

“Rich continues to be one of the foremost authorities on tuning the Oracle Database. His
collection of tuning tips and tricks is a must-have for any database professional.”

—Judith Sim, Chief Marketing Officer, Oracle

“This is a timely update of Rich’s classic book on Oracle Database performance tuning to cover
hot new topics like Oracle Database 12c Release 2, Oracle Exadata, and Oracle Cloud Database
as a Service. This is a must-have for both traditional DBAs and DBAs in Cloud DevOps teams
moving to these new products.”

—Andrew Mendelsohn, Executive Vice President, Oracle Corporation

“Packed with tips and tuning tricks, Rich draws from a lifetime of Oracle experience. This book is
essential reading for every Oracle DBA who wants to stay current with the nuances of Oracle
Database performance tuning.”

—Sohan DeMel, Vice President of Product Strategy, Oracle Corporation

“Another ‘must have’ technical reference for the Oracle professional. Rich’s books provide
invaluable insight that allows you to get the most out of Oracle and push it to the limit and
beyond.”

—Matt Swann, Vice President of Software Development, Amazon.com

“Rich makes most complex concepts in Oracle simple and interesting. His deep passion to educate
everybody is unique in all his books. I remember 12 years back when I started learning Oracle
reading Rich Niemiec books, and even today I consider his books the most reliable source in
decision making. No DBA library in this world is complete without Rich Niemiec books.”

—Shiv Iyer, Founder & CEO, Ask DB Experts, Bangalore, India

“When I was a junior DBA in Chicago sixteen years ago, Rich Niemiec’s brilliant and unique
DBA/developer topics exposed me to the wonderful world of performance tuning. In today’s era of
Oracle Exadata when hardware and software are engineered to work together, I find Rich still at
the forefront of this technology.”

—Steven Xueyong Lu, iTech Consultant Lead, Oracle China

“Tuning Oracle Databases is a science. When I need to have an answer to any tuning issue, I
always turn to Rich’s Oracle Tuning Books. Whether it is 9i, 10g, 11g, or 12c, I know I can find the
correct solution to the problem.”

—Stan Novinsky, Senior Oracle DBA/VMware Engineer, The Johns Hopkins University Applied
Physics Laboratory

“To every difficult problem exists a simple solution; this is what I’ve learned from Rich’s books”
—Ghazi Ben Youssef, MBA, Senior Oracle DBA, Sogique, Canada

“If you could buy only one book this is the one to have in your DBA arsenal. If it’s not on your
shelf, consider yourself unarmed. Rich does an excellent job of piecing the puzzle of performance
tuning in an easy to follow outline.”

—Jerry D. Robinson Jr., Senior DBA, Northrop Grumman

“I admire Rich for his knowledge on Oracle Technology. This book from him is another
masterpiece useful for anyone who would like to excel in Oracle Performance Tuning. The book
encompasses Rich’s rich Oracle expertise and experience and is a must read for all Oraclelites.”

—Hardik Bhatt, Chief Information Officer, State of Illinois

“If you need the best tuning DBA: call Rich Niemiec! Or get his Oracle tuning book”
—Julian Dontcheff, Global Database Lead, Accenture, Finland

“There is nothing more rewarding than to see someone from your family succeed in life. Rich being
from our Purdue Upward Bound Family has brought much pride to us with not only with his expert
Oracle technology knowledge but also with his caring attitude and dedication to help others!”

—Joseph Flores, Director Upward Bound, Purdue University Calumet

“Rich Niemiec is a phenomenal entrepreneur with incredible depth of knowledge regarding Oracle
applications.”

—Prof. Gerald Hills, Coleman Chair of Entrepreneurship, University of Illinois at Chicago

“We have learned much from Rich.”
—Nguyen Hoang, Information Expert, Ministry of Finance, Viet Nam

“Rich Niemiec had the courage to make his dreams come true. Through hard work and
determination he overcame obstacles and serves as a role model for all students in TRiO Pre-
College Programs. His knowledge and passion go beyond computers; he seeks to inspire others to
have the courage to make their dreams come true too!”

—Bobbi Jo Johnson, Upward Bound Advisor, UW-Sheboygan

“The best Oracle Tuning book that I ever read is from Rich Niemiec and I would recommend his
book to anyone who needs a better understanding about performance tuning and to enhance their
skills in Oracle.”

—Shaharidan Karim, Senior DBA, Commerce Dot Com Sdn Bhd, Malaysia

“Rich’s boundless passion for technology combined with his zeal to share provides him the unique
advantage to create a profound product that is rich in every way—he provides an insider’s view
that you cannot afford to miss.”

—Anil Khilani, Global Technical Lead, Oracle Corporation

“Back in the time before MetaLink when Oracle Support was measured in hold time and pounds of
manuals, I was lost in the darkness between unrealistic expectations and unreasonable demands.
And then there was Rich. Years later, Rich is still a beacon whose insights light the path to my own
discovery.”

—Fran Koerner, LAOUG Treasurer, DIRECTV, Oracle DBA

“Developers take note: Tuning is not just for DBAs. The proven techniques Rich explains in this
book will help you create the most efficient application possible. Every developer who works with
the Oracle database should own and read this book.”

—Peter Koletzke, Quovera

“Michelangelo tells us that our problem is not aiming too high and missing but in aiming too low
and hitting every time. With a master like Rich on your bookshelf, you can aim high with
confidence.”

—Ronan Miles, British Telecommunications, London

“Rich Niemiec’s record as an expert speaks for itself. His diverse and extensive skills in Oracle
technology with infinite possibilities impacts various aspects of life’s application.”

—Albert Nashon Odhoji, Project Coordinator, THE SLUMCODE GROUP, Nairobi, Kenya

“Rich doesn’t just know Oracle—he is THE Oracle!”
—Dennis Remmer, MD, E2 Australia, National President, Australian Oracle User Group (AUSOUG)

“Rich is not only a subject matter expert with Oracle technologies, he is also an outstanding
author and friend. He consistently contributes his time, knowledge, and professional experience
with the Oracle user community by introducing new features or helping others in need of support.
It’s individuals like Rich who truly make an impact for the greater good in the Oracle community.”
—Richard Stroupe, President, TRS Consulting Inc., Co-author Oracle Database 10g Insider Solutions

“The knowledge and skills from Mr. Niemiec are a unique experience within tuning issues.”
—Filipe Texeira de Souza, Systems Manager, Rio de Janeiro City Hall’s Secretary of Education,

Brazil

“Rich is a true expert in Oracle tuning. He not only masters the theory and tools, but is also able
to perform insightful analyses of real-world problems and present the results in a way that makes
sense even to people not so experienced with database technologies. This is important since
business people are getting more and more interested in IT performance in general—as they really
should.”

—Jussi Vira, Manager, SAP Technologies and Infrastructure, Nokia Corporation

“Rich Niemiec is the Oracle expert on tuning and we can all learn from Rich.”
—Dr. Oleg Zhooravlev, CEO, Adit Information Technologies, Israel

“Someone said that smart people learn from their mistakes while wise people learn from others’
mistakes. When involved in performance and tuning issues I think that both smart and wise ones
can learn from the vast and valuable experience Rich has documented within these pages.”

—Maurizio Bonomi, Italy

Copyright © 2017 by McGraw-Hill Education. All rights reserved. Except as permitted under the
United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-1-25-958969-0
MHID: 1-25-958969-2.

The material in this eBook also appears in the print version of this title: ISBN: 978-1-25-958968-3,
MHID: 1-25-958968-4.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and
sales promotions or for use in corporate training programs. To contact a representative, please visit
the Contact Us page at www.mhprofessional.com.

Information has been obtained by Publisher from sources believed to be reliable. However, because
of the possibility of human or mechanical error by our sources, Publisher, or others, Publisher does
not guarantee to the accuracy, adequacy, or completeness of any information included in this work and
is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or
completeness of any information contained in this Work, and is not responsible for any errors or
omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of
1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s
prior consent. You may use the work for your own noncommercial and personal use; any other use of
the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with
these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS
MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR

http://www.mhprofessional.com

COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education
and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education
nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission,
regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has
no responsibility for the content of any information accessed through the work. Under no
circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result from the use of or inability
to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause
arises in contract, tort or otherwise.

About the Author
Rich Niemiec is a world-renowned IT Expert. Rich is an Oracle Ace Director, Oracle Certified
Master, and was a cofounder and the CEO of TUSC: a Chicago-based, Inc. 500, systems integrator
with ten U.S. offices focused on Oracle-based business solutions. TUSC was started in 1988. Rich
also has served as an Executive Advisor to Rolta International Board of Directors, President of Rolta
TUSC, and President of Rolta EICT International. TUSC was the Oracle Partner of the Year in 2002,
2004, 2007, 2008, 2010, 2011, and 2012 (Rolta TUSC for the last two). Rolta is an international
market leader in IT-based geospatial solutions and caters to industries as diverse as infrastructure,
telecom, electric, airports, defense, homeland security, urban development, town planning, and
environmental protection. Rich is the past president of the International Oracle Users Group (IOUG)
and the current president of the Midwest Oracle Users Group (MOUG). Rich has spoken in virtually
every major U.S. city and many major international cities over the past three decades and has been
named by attendees as the Top Speaker at Collaborate/IOUG (six times), MOUG (ten times), as well
as at Oracle OpenWorld. Rich has architected and tuned many Fortune 500 systems over the past 25
years. Some Fortune 500 accounts he has managed and tuned include ACT, M&M Mars, McDonald’s
Corp., Nokia, Navteq (MapQuest), University of Michigan, AT&T, and PepsiCo. His experience in
data processing ranges from innovation and architecture to teaching and consulting, with an emphasis
on executive direction, database administration and architecture, performance tuning, project
management, and technical education. Rich was one of six Oracle Certified Masters originally
honored worldwide and works cooperatively with Oracle development from time to time, especially
during the beta process. In 2011, he authored the Oracle best seller Oracle 11g Performance Tuning
Tips & Techniques (McGraw-Hill), an update of his previous three Oracle best sellers on Oracle8i,
Oracle9i, and Oracle 10g performance tuning. He was awarded the National Trio Achiever Award in
2006 and the Purdue Outstanding Electrical & Computer Engineer award in 2007. He has also won
IOUG’s prestigious Chris Wooldridge award twice. Rich was inducted into the Entrepreneurship Hall
of Fame in 1998.

About the Technical Reviewer
Michelle Malcher is a data and security professional with several years of experience in database
development, design, and administration. She has expertise in security, performance tuning, data
modeling, and database architecture of very large database environments. As an Oracle ACE
Director, she enjoys sharing knowledge about best practices involving database environments. Her
experience is focused on designing, implementing, and maintaining stable, reliable, and secure
database environments to support business and important business processes. She has held several
positions on the IOUG Board of Directors. She has authored articles for the IOUG Select Journal and
a book, Oracle Database Administration for the Microsoft SQL Server DBA (McGraw-Hill/Oracle
Press, 2010) and is a co-author of Oracle Database 12c: Install, Configure & Maintain Like a
Professional and Securing Oracle Database 12c (McGraw-Hill/Oracle Press).

“We’ve all been touched by the hand of God and Greatness is within us.”

To Regina, the love of my life…

I was sitting in the Sweet Shop at Purdue University, where I was a student, when I noticed Regina;
one look stopped me in my tracks. I was instantly attracted to her. She was dressed for the working
world, unlike most college students, and she had a laser focus and concentration while she studied
that appealed to me as well. She was stunning in every way that mattered to me. What are all those
things you see in a single moment that leads you to your eventual spouse, the person you’ll spend your
entire adult life with? I don’t know. I know it’s different for everyone, but for me, the world stood
still for that moment. What is it that the mind sees that you don’t notice until much later? Maybe I was
just getting older, looking for something deeper; maybe it was the Marine in me that was looking for
that super, well-put-together, sharp looking, fine young lady. I don’t know, but I sure didn’t pass her
up. I boldly sat down at her booth; she was not amused, perhaps even slightly irritated by this. Regina
had worked hard at a job during the day and gone to college at night to get her two-year degree
focused on management. Now, she had transferred to Purdue and was working on her four-year

degree; she had no plans to be distracted from her goals. I asked her about her class. She was in
Speech Pathology. She said the homework was pretty hard (it was the physics of sound waves and
frequencies—I was in Electrical Engineering—child’s play, I thought). I told her that I could teach her
this in about 10 to 15 minutes and then we could go catch a movie. No, she wasn’t looking to go to a
movie with me or anyone else. I quickly read the examples in her book and started teaching her how
to do these problems (scanning the examples and figuring it out like the true DBA I would become). If
she was impressed, she sure didn’t show it. She hesitantly let me help her through her homework,
kindly thanked me, and she said she had to go now. Wouldn’t see a movie, wouldn’t let me walk her
home, and wouldn’t give me her number—that was three strikes if ever I saw it. It was back to the
game room for me and pinball, Asteroids, or Space Invaders.

She was across the room when I walked in a week later, same booth, same look, focused as ever,
but a hint of concern. I walked over and could see graphs on the page. It was physics class homework
again…I was in luck. I actually asked to sit down this time (figuring that was the right thing to do, and
figuring she’d say yes this time). “No,” she said, explaining she was really too busy with physics
homework and then French class homework (I figured that I was in luck again—three years of high
school French class just might come in handy for the very first time in my life). I took a look at her
physics book and said that I could help her with this in no time and then I could help her with French
as well. Reluctantly she agreed, and I sat down. When we were done, I asked if she wanted to go do
something. “Not right now,” she said, indicating she really needed to get home and prepare a bit more
for French class. (“How much does she study?” I thought. It was early in the semester and I wasn’t
even considering picking up a book until the first test.) I tried again, “How about a movie sometime?”
“Maybe, sometime, if I see you here.” “Can I get your number?” “No, my mother told me never to
give out my number. Maybe, if I see you here, sometime.” I persisted, “How about Tuesday?”
(Tuesday was dollar movie night and that’s really about all I could afford anyway.) “Okay,” she
relented, “I’ll meet you here next Tuesday.”

So I met her there the next Tuesday, driving up in my beat-up Pinto wagon with the clutch going
out. Halfway there, startled, Regina noticed the road going by under her feet (I had a reasonably sized
hole in the floor)—I instructed her to slide the cardboard a little to the right to cover the hole.
“Ohhhhh…okay,” she said slowly. So I took her to see Platoon, being the Marine I am (yes, I should
have taken her to a romantic comedy, seeing it was a first date, but I wasn’t quite that smart—I was
still just a kid who really didn’t know a lot about anything). After the movie, I told her I would spring

for another movie since it was dollar night. She agreed. It was a magical night; as I drove her home,
she was a bit warmer to me, but still not willing to get too close—but, she did give me her number to
study again some time together. A week or two later after seeing her in the Sweet Shop another couple
of times and studying with her, I told Regina that I’d like to cook dinner for her. I couldn’t do it at my
place since my room consisted of a bed and a desk (it had a community bathroom), but I told her I
would cook at her place if her roommate allowed that (and since she had a stove). I actually couldn’t
remember having cooked anything to that point in life. (I had sisters, and my brothers and I would
wash dishes or do other odd jobs for them and they would cook things for us in return.) So I went to
the store, bought a couple of steaks, potatoes, and a vegetable. In the checkout line I asked the older
ladies in front of me: “How long do I cook this stuff, about an hour or so each?” They give me this
concerned look and instantly started instructing me, but the line was too fast and I didn’t fully
comprehend everything they were saying. I arrived at Regina’s apartment and nervously started to
prepare things, and when I was about to put the steaks on, she asked: “You want me to help? We might
want to put those potatoes on first.” She’d keenly figured out that unless she helped, we would
probably have to eat out, and given my financial situation, she may even have to buy. She pretty much
cooked the whole dinner and then thanked me multiple times for cooking such a wonderful dinner. We
were hitting it off, and after that night we started to study together a whole lot more.

I grew up in poverty at times, so I can handle anything that comes my way. I didn’t really date too
many people in high school, and it was a tough place (we called it “Teenage Wasteland,” after the
song by The Who). Before meeting Regina, I had never really found that special person who I liked
well enough to live with forever and who would live with me through better or worse—plenty who
would live with me through better, but not worse. I used to study with Regina all night for tests (my
professors started wondering why my grades were so good this early in the semester). One day I told
her to keep in mind that I may not turn out to be much…not many from my neighborhood ever did. I
might even just end up as a homeless person. She said if I did, she would be the homeless person by
my side. Wow, now that’s the woman I wanted to marry—someone who would stick by me! I was 100
percent sure now! It was probably there from the first time I looked at her. What is it that your mind
sees that you just can’t walk by? Something deeper, maybe just God taking you right to the person at
just the right time, the person who fits you perfectly in life. For me, Regina is the best person I’ve
ever met, and she makes me a better person every day of life! She quietly helps people from the
shadows of life; with no praise, she tenaciously continues on. My prayers were answered the day of
our wedding, and I can honestly say that marriage has continued to get even better the longer we’ve
been married (it will be 30 years for us in 2018). How lucky I was to have met Regina on that first
day!

Regina is wonderful, because she focuses on what’s really important in life. Neither one of us had
too much materially while growing up, but we learned important lessons in life. Most things that
really matter in life don’t cost too much. Regina always values the things that matter most in life: God,
family, close friends, a cool night, a day in the country, a fall day with a cup of hot pumpkin spice
coffee, a gentle breeze, a field of wildflowers (God’s natural beauty); it’s the simple things that matter
a lot, not the artificial things in the world that are shiny on the outside and hollow on the inside. It’s
not that we don’t need some things, and we can buy some cool things here and there as well (God
gave us all this, too, to enjoy), but we have to be careful that things don’t weigh us down and take
away from life either. Regina always knows that balance and keeps me balanced. I had just gotten out
of being with the regular Marines (and into the Reserves) and starting a new semester when I met her.
Regina showed me that college was a rare privilege and she was going to study hard until she

graduated. Regina was never perfect, but she was always a perfect fit for me. She is indeed one of
those Uncommon Leaders the Marines taught me that I’d meet in life. The things that the Marines
taught me to work on to better myself were the things I saw in Regina, and still do:

 Integrity She has a deep love and commitment to her family and to her faith.
 Physical courage She endures all things and motivates others to do the same.
 Initiative She helped create something from nothing in our period of history (TUSC and

Cornerstone Young Women’s Learning Center), and was always there when I needed her.
 Mental courage Her courage to look past criticism and still work to make a difference.
 Unselfishness She shares all she has—both the first and last of what she has at times.
 Tact She always tries to find a way through and never loses her desire to help.
 Tenacity She attacks issues head-on. Her parents passed to her an incredibly rare tenacity.
 Respect She shows respect for everyone, but still pushes them hard to better themselves.
 Humility She humbly makes a difference from the shadows of life.
 Fortitude Fortitude is strength of mind to endure pain and adversity with courage and

character. Regina has had fortitude above and beyond the call of duty over the years!

Regina is a rare find and truly the diamond in the rough (that’s hard to spot unless you look for
exactly this). Success doesn’t happen overnight; it includes many painfully long nights, tender
patience, rigid tenacity, deep learning, and most of all adapting and overcoming…for me, I had a
woman by my side who helped me with all of these attributes. She allows me to see the future while
not missing the present. The Purdue Sweet Shop led me to the sweetest sweet—Regina!

Contents at a Glance

1 Introduction to Oracle Database 12c R1 & R2 New Features (DBA and Developer)
2 Basic Index Principles (Beginner Developer and Beginner DBA)
3 Pluggable Databases, Disk Implementation Methodology, and ASM (DBA)
4 Tuning the Database with Initialization Parameters (DBA)
5 Tuning with Enterprise Manager Cloud Control (DBA and Developer)
6 Using EXPLAIN, TRACE, and SQL Plan Management (Developer and DBA)
7 Basic Hint Syntax (Developer and DBA)
8 Query Tuning (Developer and Beginner DBA)
9 Table Joins and Other Advanced Tuning (Advanced DBA and Developer)

10 Using PL/SQL to Enhance Performance (Developer and DBA)
11 Oracle Cloud, Exadata, Tuning RAC, and Using Parallel Features
12 The V$ Views (Developer and DBA)
13 The X$ Tables and Internals Topics (Advanced DBA)
14 Using Statspack and the AWR Report to Tune Waits, Latches, and Mutexes
15 Performing a Quick System Review (DBA)
16 Monitor the System Using Unix Utilities (DBA)
A Key Initialization Parameters (DBA)
B The V$ Views (DBA and Developer)
C The X$ Tables (DBA)

Index

Contents

Acknowledgments
Introduction

1 Introduction to Oracle Database 12c R1 & R2 New Features (DBA and Developer)
Oracle Database 12cR1 (12.1.0.1)

Increased Size Limit to 32K for VARCHAR2 and NVARCHAR2
Partial Indexes
Invisible Columns
Multiple Indexes on the Same Column List
Fetch First x Rows
Pluggable Databases (PDBs)
Oracle Database Cloud Service (Database as a Service)
PDB Level: MEMORY_LIMIT and MEMORY_MINIMUM (12cR2)
Change Compression at Import Time
Adaptive Query Optimization
PGA_AGGREGATE_LIMIT
Concurrent Execution for UNION/UNION ALL
Invoker Rights Function Can Be Results Cached
New DBMS_UTILITY.EXPAND_SQL_TEXT
Default for Columns Based on Sequence
Multiple SSD Devices for Smart Flash Cache
Concurrent Cost-Based Optimizer Statistics Gathering
Enhanced System Statistics
Resource Manager for Runaway Queries
Automatic Data Optimization (ADO)
Global Index Maintenance: Drop and Truncate Partition Operations
ASM Disk Scrubbing
Online Capability Improvements
Data Guard Improvements
RMAN Improvements

Oracle Database 12cR1 (12.1.0.2)
In-Memory Database
Advanced Index Compression
Automatic Big Table Caching
FDA Support for Container Databases
Full Database Caching

JSON Support
FIPS 140 Parameter for Encryption
PDB Subset Cloning
Rapid Home Provisioning—Creating “Gold Images”

Oracle Database 12cR2 (12.2)
Application Development
Enhanced Features to Reduce Costs and Issues for Migration to Oracle
Availability
Big Data
Compression and Archiving
Oracle RAC and Grid Infrastructure
Security

New Background Processes in 12c
Exadata—New with Exadata X6!
Version Comparison Chart
New Features Review
References

2 Basic Index Principles (Beginner Developer and Beginner DBA)
Basic Index Concepts
Invisible Indexes
Multiple Types of Indexes on the Same Column(s)
Concatenated Indexes
Suppressing Indexes

Using the NOT EQUAL Operators: <>, !=
Using IS NULL or IS NOT NULL
Using LIKE
Using Functions
Comparing Mismatched Data Types

Selectivity
The Clustering Factor
The Binary Height

Additional Details Concerning BLEVEL and Index Height
Using Histograms
Fast Full Scans
Skip-Scans
Types of Indexes

B-Tree Indexes
Bitmap Indexes
Hash Indexes
Index-Organized Tables
Reverse Key Indexes

Function-Based Indexes
Partitioned Indexes
New 12cR2 Features for Partitioned Indexes
Bitmap Join Indexes

Fast Index Rebuilding
Rebuilding Indexes Online
Tips Review
References

3 Pluggable Databases, Disk Implementation Methodology, and ASM (DBA)
Pluggable Databases (New in Oracle 12c)

CDB or PDB Created Objects
Creating a PDB: Many Ways to Do It
Great Pluggable Database Commands
ALTER SYSTEM While in a PDB and Other Nice Commands
Using In-Memory (IM) with Pluggable Databases
Other 12cR2 Features with Pluggable Databases
Subset Standby (New in Oracle 12cR2)

Disk Arrays
Use Disk Arrays to Improve Performance and Availability
How Many Disks Do You Need?
What Are Some of the RAID Levels Available?
The Newer RAID 5
Solid-State Disks
ASM Storage Management (Striping/Mirroring)

Setup and Maintenance of the Traditional Filesystem
What Is the Cost?
Storing Data and Index Files in Separate Locations
Avoiding I/O Disk Contention

The 12c Heat Map and Automatic Data Optimization (ADO)
12c I/O Performance Tracking Views (Outliers)
Oracle Bigfile Tablespaces
ASM Introduction

Communication Across IT Roles
ASM Instances
ASM Initialization Parameters
ASM Installation in 12c
Srvctl Enhancements
ASM Disk Scrubbing
ASM Rebalance Enhancements
ASM Fast Mirror Resync
ASM Filter Driver

ASM and Privileges
ASM and Multipathing
Bigfile and ASM

Avoiding Disk Contention by Using Partitions
Getting More Information About Partitions
Other Types of Partitioning
Partitioned Indexes (Local)
Partial Indexes
Global Index Maintenance: Drop and Truncate Partition Operations
Other Partitioning Options
Index Partitioning
Exporting Partitions

Eliminating Fragmentation (Only If Needed—Careful!)
Using the Correct Extent Size
Avoiding Chaining by Setting PCTFREE Correctly
Using Automatic Segment Space Management (ASSM)

Increasing the Log File Size and LOG_CHECKPOINT_INTERVAL for Speed
Determining If Redo Log File Size Is a Problem

Determining the Size of Your Log Files and Checkpoint Interval
Other Helpful Redo Log Commands

Storing Multiple Control Files on Different Disks and Controllers
Other Disk I/O Precautions and Tips
Issues to Consider in the Planning Stages
Tips Review
References

4 Tuning the Database with Initialization Parameters (DBA)
When Upgrading to Oracle Database 12c
Using SEC_CASE_SENSITIVE_LOGON
Crucial Memory Initialization Parameters for Performance
PDB Level: MEMORY_LIMIT and MEMORY_MINIMUM
In-Memory Database (INMEMORY_SIZE)
Changing the Initialization Parameters Without a Restart
Modifying an Initialization Parameter at the PDB Level
Insight into the Initialization Parameters from Oracle Utilities
Viewing the Initialization Parameters with Enterprise Manager
Increasing Performance by Tuning the DB_CACHE_SIZE
Using V$DB_CACHE_ADVICE in Tuning DB_CACHE_SIZE

Monitoring the V$SQLAREA View to Find Bad Queries
Setting DB_BLOCK_SIZE to Reflect the Size of Your Data Reads
Setting SGA_MAX_SIZE to 25 to 50 Percent of the Size Allocated to Main Memory
Tuning the SHARED_POOL_SIZE for Optimal Performance

Using Stored Procedures for Optimal Use of the Shared SQL Area
Setting the SHARED_POOL_SIZE High Enough to Fully Use the DB_CACHE_SIZE
Keeping the Data Dictionary Cache Objects Cached
Keeping the Library Cache Reload Ratio at 0 and the Hit Ratio Above 95 Percent
Using Available Memory to Determine If the SHARED_POOL_SIZE Is Set Correctly
Using the X$KSMSP Table to Get a Detailed Look at the Shared Pool
Points to Remember About Cache Size
Waits Related to Initialization Parameters

Using Oracle Multiple Buffer Pools
Pools Related to DB_CACHE_SIZE and Allocating Memory for Data
Modifying the LRU Algorithm
Pools Related to SHARED_POOL_SIZE and Allocating Memory for Statements

Tuning PGA_AGGREGATE_TARGET and PGA_AGGREGATE_LIMIT
Modifying the Size of Your SGA to Avoid Paging and Swapping
Understanding the Oracle Optimizer

How Optimization Looks at the Data
Creating Enough Dispatchers

Have Enough Open Cursors (OPEN_CURSORS)
Don’t Let Your DDL Statements Fail (DDL_LOCK_TIMEOUT)

Two Important Exadata Initialization Parameters (Exadata Only)
Top 25 Initialization Parameters

Initialization Parameters over the Years
Finding Undocumented Initialization Parameters

Understanding the Typical Server
Modeling a Typical Server
Sizing the Oracle Applications Database

Tips Review
References

5 Tuning with Enterprise Manager Cloud Control (DBA and Developer)
Oracle Enterprise Manager Basics and Accessing OEM via Oracle Cloud
Starting with All Targets and Other Groupings
Monitoring and Tuning Using the OEM Performance Menu

Performance Tab: Top Activity
Performance Tab: SQL | SQL Performance Analyzer
Performance Tab: Real-Time ADDM
Performance Tab: SQL | Access Advisor
Performance Tab: Manage Optimizer Statistics
Performance Tab: AWR | AWR Administration
Performance Tab: ASH Analytics

Monitoring and Tuning Using the OEM Administration Menu
Database Administration Tab: Storage|Tablespaces

Database Administration Tab: In-Memory Central and Initialization Parameters
Database Administration Tab: All Initialization Parameters
Database Administration Tab: Resource Manager (Consumer Groups)

Monitoring and Tuning Using the OEM Database or Cluster Database Menu
Database Tab: Job Activity

Cluster Database Tab: Configuration|Database Topology
Monitoring the Hosts
Monitoring the Application Servers and Web Applications
Real Application Testing (Database Replay)
Summary
Tips Review
References

6 Using EXPLAIN, TRACE, and SQL Plan Management (Developer and DBA)
The Oracle SQL TRACE Utility

Simple Steps for SQL TRACE with a Simple Query
The Sections of a TRACE Output
Digging into the TKPROF Output

Using DBMS_MONITOR
Setting Trace Based on Session ID and Serial Number
Setting Trace Based on Client Identifier
Setting Trace for the Service Name/Module Name/Action Name
Enabled Tracing Views
TRCSESS Multiple Trace Files into One File

Using EXPLAIN PLAN Alone
An Additional EXPLAIN Example for a Simple Query
EXPLAIN PLAN—Read It Top to Bottom or Bottom to Top?
Tracing/Explaining Problem Queries in Developer Products
Important Columns in the PLAN_TABLE Table
Using DBMS_XPLAN
Initialization Parameters for Undocumented TRACE

Using Stored Outlines
Dropping Stored Outlines

Using SQL Plan Management (SPM) and SPM Example
SPM Terms
Using SPM
Using Fixed SQL Plan Baselines
Dropping a Plan
Converting from Stored Outlines to SQL Plan Management
Adaptive Plans (12c New Feature) and SPM

Tips Review
References

7 Basic Hint Syntax (Developer and DBA)
Top Hints Used

Use Hints Sparingly
Fix the Design First

Available Hints and Groupings
Execution Path
Access Methods
Query Transformation Hints
Join Operations
Parallel Execution
Other Hints

Specifying a Hint
Specifying Multiple Hints
When Using an Alias, Hint the Alias, Not the Table
The Hints

The Oracle Demo Sample HR Schema
The FIRST_ROWS Hint
The ALL_ROWS Hint
The FULL Hint
The INDEX Hint
The NO_INDEX Hint
The INDEX_JOIN Hint
The INDEX_COMBINE Hint
The INDEX_ASC Hint
The INDEX_DESC Hint
The INDEX_FFS Hint
The ORDERED Hint
The LEADING Hint
The NO_EXPAND Hint
The DRIVING_SITE Hint
The USE_MERGE Hint
The USE_NL Hint
The USE_HASH Hint
The QB_NAME Hint
The PUSH_SUBQ Hint
The PARALLEL Hint
The NO_PARALLEL Hint
The PARALLEL_INDEX Hint
The APPEND Hint
The NOAPPEND Hint
The CACHE Hint

The NOCACHE Hint
The RESULT_CACHE Hint
The CURSOR_SHARING_EXACT Hint
The INMEMORY and NO_INMEMORY and Other IM Hints
The USE_INVISIBLE_INDEXES Hint
The CONTAINERS Hint
The WITH_PLSQL Hint

Some Miscellaneous Hints and Notes
Undocumented Hints
Using Hints with Views
Notes on Hints and Stored Outlines (or SQL Plan Baselines)

Why Isn’t My Hint Working?
Hints at a Glance
Tips Review
References

8 Query Tuning (Developer and Beginner DBA)
Which Queries Do I Tune? Querying V$SQLAREA and V$SQL Views

Selecting from the V$SQLAREA View to Find the Worst Queries
Selecting from the V$SQL View to Find the Worst Queries

Oracle 12c Views for Locating Resource-Intensive Sessions and Queries
Selecting from V$SESSMETRIC to Find Current Resource-Intensive Sessions
Viewing Available AWR Snapshots
Selecting from the DBA_HIST_SQLSTAT View to Find the Worst Queries

When Should I Use an Index?
Selecting Query Text from the DBA_HIST_SQLTEXT View
Selecting Query EXPLAIN PLAN from the DBA_HIST_SQL_PLAN View

What If I Forget the Index?
Creating an Index
Invisible Index
Checking the Index on a Table
Is the Column Properly Indexed?

What If I Create a Bad Index?
Exercising Caution When Dropping an Index
Indexing the Columns Used in the SELECT and WHERE
Using the Fast Full Scan
Making the Query “Magically” Faster
Caching a Table in Memory
Using the Result Cache
Choosing Among Multiple Indexes (Use the Most Selective)
The Index Merge
Indexes That Can Get Suppressed

Function-Based Indexes
Virtual Columns
The “Curious” OR
Using the EXISTS Function and the Nested Subquery
That Table Is Actually a View!
SQL and Grand Unified Theory
Tuning Changes in Oracle Database 12c

Oracle 12c Adaptive Query Optimization
Adaptive Statistics
Oracle 12c Changes in Statistics Gathering and Two New Histograms
Oracle 12c Changes in SQL Plan Management

Oracle Automatic SQL Tuning
Ensuring the Tuning User Has Access to the APIs
Creating the Tuning Task
Making Sure the Task Can Be Seen in the Advisor Log
Executing the SQL Tuning Task
Checking Status of the Tuning Task
Displaying the SQL Tuning Advisor Report
Reviewing the Report Output

Tuning SQL Statements Automatically Using SQL Tuning Advisor
Enabling Automatic SQL Tuning Advisor
Configuring Automatic SQL Tuning Advisor
Viewing Automatic SQL Tuning Results

Using SQL Performance Analyzer (SPA)
Tips Review
References

9 Table Joins and Other Advanced Tuning (Advanced DBA and Developer)
Database Replay (capture/replay)

Set Up Source Database for Database Replay Capture
Prepare to Capture Workload
Capture the Workload
Prepare the Workload for Replay
Process the Workload for Replay
Prepare to Replay the Workload
Execute the Workload Replay

SQL Performance Analyzer
Create a SQL Tuning Set
Create an Analysis Task
Execute Analysis Task
Query SQL Performance Analyzer Advisor Tasks
Cancel an Executing SQL Performance Analyzer Analysis Task

Remove SQL Performance Analyzer Analysis Task
Determine Active SQL Tuning Sets
Remove SQL Tuning Set
Drop SQL Tuning Set

Join Methods
NESTED LOOPS Joins
SORT-MERGE Joins
CLUSTER Joins
HASH Joins
INDEX-MERGE Joins

Table Join Initialization Parameters
SORT-MERGE and HASH Join Parameters

A Two-Table Join: Equal-Sized Tables (Cost-Based)
A Two-Table INDEXED Join: Equal-Sized Tables (Cost-Based)
Forcing a Specific Join Method
Eliminating Join Records (Candidate Rows) in Multitable Joins
A Two-Table Join Between a Large and Small Table
Three-Table Joins: Not as Much Fun
Bitmap Join Indexes

Bitmap Indexes
Bitmap Join Index
Best Uses for the Bitmap Join Index

Third-Party Product Tuning
Example 1
Example 2
Example 3

Tuning Distributed Queries
When You Have Everything Tuned
Miscellaneous Tuning Snippets

External Tables
Snapshot Too Old: Developer Coding Issue
Set Event to Dump Every Wait
14 Hours to 30 Seconds with the EXISTS Operator

Tuning at the Block Level (Advanced)
Key Sections of a Block Dump
A Brief Look at an Index Block Dump

Tuning Using Simple Mathematical Techniques
Traditional Mathematical Analysis
Seven-Step Methodology
Deriving Performance Equations
Pattern Interpretation

Mathematical Techniques Conclusions
Tips Review
References

10 Using PL/SQL to Enhance Performance (Developer and DBA)
Leverage the PL/SQL Function Result Cache to Improve Performance (Improved in 12c)
Define PL/SQL Subprograms in a SQL Statement (New in 12c)
Reference Sequences Directly in PL/SQL Expressions
Identity Columns (New in 12c)
Max Size Increase to 32K for VARCHAR2, NVARCHAR2, and RAW Data Types (New in 12c)
Allow Binding PL/SQL-Only Data Types to SQL Statements (New in 12c)
Use Named Parameters in SQL Function Calls
Simplify Loops with the CONTINUE Statement
Leverage Compile-Time Warnings to Catch Programming Mistakes (Improved in 12c)
Increase Performance with Native Compilation
Maximize Performance with the Optimizing Compiler
Use DBMS_APPLICATION_INFO for Real-Time Monitoring
Log Timing Information in a Database Table
Reduce PL/SQL Program Unit Iterations and Iteration Time
Use ROWID for Iterative Processing
Standardize on Data Types, IF Statement Order, and PLS_INTEGER

Ensure the Same Data Types in Comparison Operations
Order IF Conditions Based on the Frequency of the Condition
Use the PLS_INTEGER PL/SQL Data Type for Integer Operations

Reduce the Calls to SYSDATE
Reduce the Use of the MOD Function
Improve Shared Pool Use by Pinning PL/SQL Objects

Pinning (Caching) PL/SQL Object Statements into Memory
Pinning All Packages

Identify PL/SQL Objects That Need to Be Pinned
Use and Modify DBMS_SHARED_POOL.SIZES

Find Large Objects
Get Detailed Object Information from DBA_OBJECT_SIZE

Get Contiguous Space Currently in the Shared Pool
Find Invalid Objects
Find Disabled Triggers
Use PL/SQL Associative Arrays for Fast Reference Table Lookups
Find and Tune the SQL When Objects Are Used
Consider Time Component When Working with DATE Data Types
Use PL/SQL to Tune PL/SQL
Understand the Implications of PL/SQL Object Location
Use Rollback Segments to Open Large Cursors

Active Transaction Management: Process Large Quantities of Data
Use Temporary Database Tables for Increased Performance
Limit the Use of Dynamic SQL
Use Pipelined Table Functions to Build Complex Result Sets
Leave Those Debugging Commands Alone!
The “Look and Feel”: Just for the Beginners

PL/SQL Example
Create a Procedure Example
Execute the Procedure from PL/SQL Example
Create a Function Example
Execute the GET_CUST_NAME Function from SQL Example
Create a Package Example
Database Trigger Example Using PL/SQL

Tips Review
References

11 Oracle Cloud, Exadata, Tuning RAC, and Using Parallel Features
The March to the Cloud (Past and Present)
The Oracle Cloud
Exadata Database Machine

Exadata Terminology and the Basics
Exadata Statistics
Exadata Storage Expansion Rack Briefly
Smart Scans
Flash Cache
Storage Indexes
Hybrid Columnar Compression
I/O Resource Management
Use All Oracle Security Advantages with Exadata
Best Practices
Summary: Exadata = Paradigm Shift!

Oracle Database Appliance (ODA)
SuperCluster Using the M7 SPARC Chip
Other Oracle Hardware to Consider

Oracle Big Data Appliance X6-2
ZFS Storage Servers
StorageTek Modular Library System

Parallel Databases
Real Application Clusters (RAC)

Oracle RAC Architecture
Internal Workings of the Oracle RAC System

RAC Performance Tuning Overview

RAC Cluster Interconnect Performance
Finding RAC Wait Events—Sessions Waiting
RAC Wait Events and Interconnect Statistics
Cluster Interconnect Tuning—Hardware Tier

Basic Concepts of Parallel Operations
Basic Concepts of Parallel Operations
Parallel DML and DDL Statements and Operations
Managing Parallel Server Resources and Parallel Statement Queuing
Parallelism and Partitions
Inter- and Intra-operation Parallelization
Examples of Using Inter- and Intra-operations (PARALLEL and NO_PARALLEL Hints)
Creating Table and Index Examples Using Parallel Operations
Monitoring Parallel Operations via the V$ Views
Using EXPLAIN PLAN and AUTOTRACE on Parallel Operations
Using the SET AUTOTRACE ON/OFF Command
Tuning Parallel Execution and the Initialization Parameters
Parallel Loading
Optimizing Parallel Operations in RAC
Objectives of Parallel Operations
RAC Parallel Usage Models
Parallel Initialization Parameters
V$ Views for Viewing Parallel Statistics
Create Table As
Parallel Index Builds
Performance Considerations and Summary
Other Parallel Notes

Oracle Documentation Is Online
Tips Review
References

12 The V$ Views (Developer and DBA)
Creating and Granting Access to V$ Views

Obtaining a Count and Listing of All V$ Views
Getting a Listing for the X$ Scripts That Make Up the V$ Views

Examining the Underlying Objects That Make Up the DBA_ Views
Using Helpful V$ Scripts

Basic Database Information
Basic Automatic Workload Repository (AWR) Information
Basic Licensing Information
Database Options Installed in Your Database

Summary of Memory Allocated (V$SGA)
Querying V$IM_SEGMENTS After Setting the INMEMORY_SIZE

Automatic Memory Management and MEMORY_TARGET
Detailed Memory Allocated (V$SGASTAT)
Detailed Memory Allocated (V$SGASTAT) for a PDB vs. Root CDB

Finding spfile.ora/init.ora Settings in V$PARAMETER
Modifying an Initialization Parameter at PDB Level
Determining If Data Is in Memory (V$SYSSTAT & V$SYSMETRIC)
Determining Memory for the Data Dictionary (V$ROWCACHE)
Determining Memory for the Shared SQL and PL/SQL (V$LIBRARYCACHE)
Querying V$CONTAINERS and V$PDBS for Container Information

Querying V$CONTAINERS When Using Pluggable Databases
Querying V$PDBS for Pluggable Database Information
Using the Result Cache

Identifying PL/SQL Objects That Need to Be Kept (Pinned)
Finding Problem Queries by Monitoring V$SESSION_LONGOPS
Finding Problem Queries by Querying V$SQLAREA
Finding Out What Users Are Doing and Which Resources They Are Using

Finding Out Which Objects a User Is Accessing
Getting Detailed User Information

Using Indexes
Identifying Locking Issues

Killing the Problem Session
Finding Users with Multiple Sessions
Querying for Current Profiles

Finding Disk I/O Issues
Checking for Privileges and Roles
Wait Events V$ Views
Some of the Major V$ View Categories
Tips Review
References

13 The X$ Tables and Internals Topics (Advanced DBA)
Introducing the X$ Tables

Misconceptions About the X$ Tables
Granting Access to View the X$ Tables

Creating V$ Views and X$ Tables in 12c
The X$ Tables Comprising the V$ Views

Obtaining a List of All the X$ Tables in 12c
Obtaining a List of All the X$ Indexes in 12c
Using Hints with X$ Tables and Indexes
Monitoring Space Allocations in the Shared Pool
Creating Queries to Monitor the Shared Pool

ORA-04031 Errors

Large Allocations Causing Contention
Shared Pool Fragmentation
Low Free Memory in Shared and Java Pools
Library Cache Memory Use
High Number of Hard Parses
Mutex/Latch Waits and/or Sleeps
Miscellaneous X$ Table Notes

Obtaining Information About Redo Log Files
Setting Initialization Parameters

Case 1
Case 2
Case 3
Case 4
Case 5

Exploring Buffer Cache/Data Block Details
Buffer Statuses
Segments Occupying Block Buffers
Hot Data Blocks and the Causes of Latch Contention and Wait Events

Obtaining Database- and Instance-Specific Information
Effective X$ Table Use and Strategy
Oracle Internals Topics

Traces
DBMS_TRACE Package
Events
Dumps
ORADEBUG
trcsess Utility

Reading the Trace File
Wait Information and Response Time
Recursive Calls
Module Info
Commit
Unmap
Bind Variables
Errors

Some Common X$ Table Groups
Some Common X$ Table and Non-V$ Fixed View Associations
Common X$ Table Joins
X$ Table Naming Conventions (My Favorite Section of This Book!)

X$ Table Naming Conventions with CON_ID, and INMEMORY
Future Version Impact in 12cR2

Tips Review
References

14 Using Statspack and the AWR Report to Tune Waits, Latches, and Mutexes
What’s New in 12cR2 (12.2) Statspack and the AWR Report
Installing Statspack

Security of the PERFSTAT Account
Post-Installation
Gathering Statistics
Running the Statistics Report

The Automatic Workload Repository (AWR) and the AWR Report
Manually Managing the AWR
AWR Automated Snapshots
AWR Snapshot Reports
Run the AWR Report in Oracle Enterprise Manager Cloud Control

Interpreting the Statspack and AWR Report Output
The Header Information and Cache Sizes
The Load Profile
Instance Efficiency
Shared Pool Statistics
Top Wait Events
Oracle Bugs
The Life of an Oracle Shadow Process
RAC Wait Events and Interconnect Statistics
Top SQL Statements
Instance Activity Statistics
Tablespace and File I/O Statistics
Segment Statistics
Additional Memory Statistics
UNDO Statistics
Latch and Mutex Statistics
Tuning and Viewing at the Block Level (Advanced)
Dictionary and Library Cache Statistics
SGA Memory Statistics
Nondefault Initialization Parameters

Top 15 Things to Look for in AWR Report and Statspack Output
Managing the Statspack Data
Upgrading Statspack
Deinstalling Statspack

Quick Notes on the New ADDM Report
Scripts in 12cR2
Tips Review

References

15 Performing a Quick System Review (DBA)
Total Performance Index (TPI)
Education Performance Index (EPI)
System Performance Index (SPI)
Memory Performance Index (MPI)

Top 25 “Memory Abuser” Statements Tuned
Top 10 “Memory Abusers” as a Percent of All Statements
Buffer Cache Hit Ratio
Dictionary Cache Hit Ratio
Library Cache Hit Ratio
PGA Memory Sort Ratio
Percentage of Data Buffers Still Free
Using the Result Cache Effectively
Pinning/Caching Objects

Disk Performance Index (DPI)
Top 25 “Disk-Read Abuser” Statements Tuned
Top 10 Disk-Read Abusers as Percentage of All Statements
Tables/Indexes Separated or Using ASM
Mission-Critical Table Management
Key Oracle Files Separated
Automatic Undo Management
Using Pluggable Databases Effectively

Total Performance Index (TPI)
Overall System Review Example

Rating System
Example System Review Rating Categories
Items Requiring Immediate Action
Other Items Requiring Action

System Information List
Memory-Related Values
Disk-Related Values
CPU-Related Values
Backup- and Recovery-Related Information
Naming Conventions and/or Standards and Security Information Questions
DBA Knowledge Rating

Other Items to Consider in Your TPI and System Review
Tips Review
References

16 Monitor the System Using Unix Utilities (DBA)

Unix/Linux Utilities
Using the sar Command to Monitor CPU Usage

sar –u (Check for CPU Bogged Down)
The sar –d Command (Find I/O Problems)
The sar –b Command (Check the Buffer Cache)
The sar –q Command (Check the Run Queue and Swap Queue Lengths)

Using the sar and vmstat Commands to Monitor Paging/Swapping
Using sar –p to Report Paging Activities
Using sar –w to Report Swapping and Switching Activities
Using sar –r to Report Free Memory and Free Swap
Using sar –g to Report Paging Activities
Using sar –wpgr to Report on Memory Resources

Finding the Worst User on the System Using the top Command
Monitoring Tools

Using the uptime Command to Monitor CPU Load
Using the mpstat Command to Identify CPU Bottlenecks
Combining ps with Selected V$ Views

CPU/Memory Monitoring Tool (Task Manager) on Windows
Using the iostat Command to Identify Disk I/O Bottlenecks

Using iostat –d for Disk Drives sd15, sd16, sd17, and sd18
Using iostat –D
Using iostat –x
Combining iostat –x with Logic in a Shell Script

Using the ipcs Command to Determine Shared Memory
Using the vmstat Command to Monitor System Load
Monitoring Disk Free Space

The df Command
The du Command

Monitoring Network Performance with netstat
Modifying the Configuration Information File

Other Factors That Affect Performance
Other Sources to Improve Performance
Tips Review
References

A Key Initialization Parameters (DBA)
Obsoleted/Desupported Initialization Parameters
Deprecated Initialization Parameters
Top 25 Initialization Parameters
Top 20 Initialization Parameters Not to Forget
Top 13 Undocumented Initialization Parameters (As I See It)
Bonus 11 Undocumented Initialization Parameters

Listing of Documented Initialization Parameters (V$PARAMETER)
Listing of Undocumented Initialization Parameters (X$KSPPI/X$KSPPCV)
Additional Oracle Applications Notes

Concurrent Managers
Applications—Finding Module-Specific Patches
Diagnostics Data Collection: EBS Analyzers
Web Server Tuning
Timeouts
Database Initialization Parameter Sizing

Top 10 Reasons Not to Write a Book
Tips Review
References

B The V$ Views (DBA and Developer)
Creation of V$ and GV$ Views and X$ Tables
A List of Oracle 12c (12.2.0.0.1) GV$ Views
A List of Oracle 12c (12.2.0.0.1) V$ Views
Oracle 12c Scripts for the X$ Tables Used to Create the V$ Views

C The X$ Tables (DBA)
Oracle 12cR2 X$ Tables Ordered by Name
Oracle 12cR2 X$ Indexes
Oracle 12cR2 V$ Views Cross-Referenced to the X$ Tables

Index

Acknowledgments

“Perhaps, in order to really become free, we have to move from struggling to hear God’s Voice to
letting God’s Voice speak through us.”
—Rabbi Jonathan Kraus

The goal of this book is primarily focused on helping beginner and intermediate Oracle
professionals understand and better tune Oracle systems. Many expert topics are also covered, but the
objective is primarily to assist professionals who are frustrated and looking for simple tips to help
improve database performance. This book has one simple aim: to provide an arsenal of tips you can
use in various situations to make your system faster.

I would like to thank Michelle Malcher, who writes great books herself, for her absolutely great
job as a technical editor. Michelle is a very humble Oracle guru who ensured I wasn’t missing certain
features that mattered to her. She added valuable content to every chapter she edited. She’s one of
those Oracle professionals who constantly gives back to the community. I would like to thank Wendy
Rinaldi, Editorial Director at the International & Professional Group at McGraw-Hill Education, for
her positive attitude and professional direction in taking me through this edition of the book; and
Claire Yee, Editorial Coordinator for the International & Professional Group at McGraw-Hill
Education, for avidly keeping me on track through the very end—you are so wonderful to work with
and you stay motivated throughout the process. Thank you Rachel Gunn, the Production Editor for this
edition; she was patient, detailed, and wonderful to work with throughout the copyediting and
proofreading part of production. Thanks to Janet Walden and Lynn Messina, who assisted Rachel
during production. Lastly, thanks to Scott Rogers and Jeremy Judson for getting me through the first
book after I’d let you guys know it would be done in a few weeks (and it took two years, for each)!

Thanks to the following people who helped in some way with the following chapters:

 Mike Messina, for your work in updating much of Chapter 1. You also do an outstanding job,
and you are still an incredible Oracle talent!

 Dave Radoicic, for an excellent and thorough job writing and testing Chapter 2. Thanks Kevin
Loney for your work in previously updating Chapter 2.

 Joe Mathew for the outstanding job updating Chapter 3 and the great ASM information and
testing. Also, Sridhar Avantsa, Bill Callahan, and Nitin Vengurlekar for previous updates to
Chapter 3.

 Mike Messina for updating Chapter 4. Also, Lucas Niemiec for testing scripts in Chapter 4 and
Palani Kasi for additions on Oracle Applications to Chapter 4. Craig Shallahamer, Randy
Swanson, and Jeff Keller for previous updates of Chapter 4.

 Asad Mohammed for the outstanding update to Chapter 5. Thanks for insights on EM from
Werner DeGryter. Also, thanks Anil Khilani, Prabhaker Gongloor (GP), David LeRoy, Martin
Pena, Valerie Kane, and Mughees Minhas for your help with previous updates.

 Warren Bakker for your always great update and additions to Chapter 6. Thanks to Mark
Riedel and Greg Pucka for previous help on this chapter.

 Mark Riedel for previous updates of Chapter 7. Thanks to Lucas Niemiec for additional hint
research.

 Janis Griffin for the wonderful additions to Chapter 8. Janis’s additions and material on the
optimizer are fantastic; I consider Janis one of the best query tuning people on earth. Connor
McDonald, Rama Balaji, and Rob Christensen helped with previous notes and versions.

 Thanks for previous updates and tips by Joe Holmes, Mike Messina, Francisco Javier Moreno,
Guillermo L. Ospina Romero, Rafael I. Larios Restrepo, and Roger Schrag to Chapter 9.

 Greg Bogode for a great update of Chapter 10. Also thanks for great work by Bob Taylor on
the 11g update; Joe Trezzo and Dave Ventura helped with previous versions.

 Sridhar Avantsa for additional sections on HCC, Exadata, and RAC and Mike Messina for
Exadata 6.2 information to Chapter 11. Thanks for some great additions by Richard Stroupe
previously, along with contributions from Madhu Tumma, Brad Nash, Jake Van der Vort, and
Kevin Loney.

 Thanks for previous updates and tips by Rama Balaji, Kevin Gilpin, Bob Yingst, and Greg
Pucka to Chapter 12.

 Thanks for previous updates and excellent additions by Graham Thornton and Kevin Gilpin to
Chapter 13. Steve Adams of Australia was a technical editor in the past and a great contributor
to the X$ scripts.

 Hollyann Niemiec for quotes in Chapter 14. Robert Freeman and Kevin Loney for previous
sections of Chapter 14.

 Thanks for previous updates and tips by Brad Nash to Chapter 15 and Lucas Niemiec for
testing the queries.

 Thanks for new tips in Chapter 16 by Dana MacPhail and Alwyn Santos, and help from Mark
Nierzwicki. Thanks for previous updates of Chapter 16 by Doug Freyburger, Judy Corley,
Mike Gallagher, and Jon Vincenzo.

 Lucas Niemiec for testing all of the queries in Appendix A and updating them, and Palani Kasi
for additions on Oracle Applications to Appendix A.

 Jacob Niemiec for testing all of the queries in Appendix C and updating them.
 Melissa Niemiec for thoughts and suggestions for the introduction.

Thanks to those from Oracle who have made a big difference in my life:

 Thanks Larry Ellison, Bob Miner, Bruce Scott, and Ed Oates for the great database and future
thinking (cloud currently), and for creating the most innovative company in history!

 The IOUG for making my Oracle life easier over the years by focusing on education.
 Andy Mendelsohn—thanks for this incredible version of the database; Bob Miner would be

proud of your leadership!
 Judith Sim—you are one of the Oracle leaders who puts Oracle at the top. Thanks for all your

help and leadership with user groups over the years!
 Thomas Kurian—thanks for your Ace updates, putting Fusion Middleware on the map so that

everything works together, and for taking Oracle Applications to the next level in the cloud.
 Mary Ann Davidson—thanks for your leadership and keeping Oracle secure.
 Tom Kyte—you are the ultimate Oracle tech guru; enjoy retirement—you’ve earned it!
 Angelo Pruscino, Kirk McGowan, and Erik Peterson—without you three, there would be no

RAC; without Angelo, RAC would be a mess. Dan Norris and Phil Stephenson for their help
with Exadata.

 Justin Kestelyn—you educate the world with OTN.
 Tirthankar Lahiri—what a job on the buffer cache!
 Bruce Scott—thanks for taking the time to do the Select article interview and for sending me

the rare Oracle founders’ picture.

Thanks to the following people who in some way have contributed to this version of the book
(in addition to those above):
David Anstey, Eyal Aronoff, Mike Ault, Penny Avril, Janet Bacon, Kamila Bajaria, Roger Bamford,
Greg Bogode, Mike Broullette, Bill Burke, Don Burleson, Rachel Carmichael, Tony Catalano, Rob
Christensen, Craig Davis, Sergio Del Rio, Dr. Paul Dorsey, Kim Floss, Khadish Franklin, K.
Gopalakrishnan, Tim Gorman, Kent Graziano, Mark Greenhalgh, Damon Grube, Roman Gutfraynd,
Vinod Haval, Scott Heaton, Gerry Hills, Steven Hirsch, Nguyen Hoang, Pat Holmes, Jeff Jacobs,
Tony Jambu, Tony Jedlinski, Ron Jedlinski, Zhigang Ji, Jeremy Judson, Dave Kaufman, Mike

Killough, Peter Koletzke, Tom Kyte, Mike La Magna, Vinoy Lanjwal, Steve Lemme, Jonathan Lewis,
Bill Lewkow, Bryn Llewellyn, Kevin Loney, Steven Lu, Scott Martin, Connor McDonald, Sean
McGuire, Ronan Miles, Cary Milsap, Ken Morse, Shankar Mukherjee, Ken Naim, Arup Nanda,
Albert Nashon, Frank Naude, Pradeep Navalkar, Aaron Newman, Jennifer Nicholson, Dan Norris,
Stanley Novinsky, Cetin Ozbutun, Tanel Poder, Venkatesh Prakasam, Greg Pucka, Heidi Ratini, Steve
Rubinow, Chuck Seaks, Craig Shallahamer, Burk Sherva, Judy Sim, Felipe Teixeira de Souza, Bert
Spencer, Randy Swanson, Richard Stroupe, Megh Thakkar, George Trujillo, Madhu Tumma, Gaja
Krishna Vaidyanatha, Murali Vallath, Jake Van der Vort, Shyam Varan Nath, Dave Ventura, Sandra
Vucinic, Lyssa Wald, Milton Wan, Graham Wood, Tom Wood, Zhong Yang, Pedro Ybarro, Ghazi Ben
Youssef, and Dr. Oleg Zhooravlev.

I want to thank the two best partners a person can ever have in Brad Brown and Joe Trezzo. We
make a great band of brothers! I would like to thank many of the people at TUSC, Rolta, Piocon, and
WhittmanHart (all now one global Rolta company), who work hard every day and are dedicated to
excellence. Thanks Barb, Karen, Sandy, Kim, and Amy for keeping us sane. Thanks Tony, Dave,
Barry, Burk, Bill, Bob, Janet, Terry, Heidi, John, Matt, and Mike for the leadership and memories.
Thanks KK, Preetha, Ben, Mark, Sohrab, Vinay, Blane, Jack, Dave, and Rif for taking us into that
global world. Thanks Sanjay, Narendra, Nimesh, and all of the others for keeping us sane on the other
side of the world. I also want to thank Eric Noelke and Mike Simmons personally for giving me my
first job at Oracle and Matt Vranicar for helping me understand indexes when I got there. Although I
can’t thank the almost 4000 people at Rolta individually, thanks for all you do every day to improve
the world!

I do want to thank those from Rolta and TUSC who assisted during the writing of the book
(since it’s a smaller list of superstars):

Huda Ahmed, Andy Anastasi, Hiranya Ashar, Sridhar Avantsa, Mohammad Ayub, Steve Babin, Rohit
Badiyani, Warren Bakker, Rama Balaji, Bruce M. Bancroft, Otis Barr, Chris Baumgartner, Roger
Behm, Vinny Belanger, Sohrab Bhot, Andor Bogdany, Greg Bogode, Jessica Brandenburg, John Brier,
Bradley David Brown, Mike Butler, Richard Byrd, Eric Camplin, Alain Campos, Tony Catalano,
Chandra Cheedella, Rob Christensen, John Clark, Liz Coffee, Randy Cook, Judy Corley, Matt Cox,
Attila Cserhati, Janet Dahmen, Terry Daley, Prithis Das, David deBoisblanc, Joe DeMartino, Brian
Decker, Hank Decker, Dinesh De Silva, Ernie DiLegge, Robert Donahue, Melloney Douce, Barb
Dully, Christopher Dupin, Ben Eazzetta, Stephen Efange, Patrick Fettuccia, Yvonne Formel, Dave
Fornalsky, Stacie Forrester, Sergio Frank “Power Surge”, George Frederick, Doug Freyburger, Jan
Gabelev, Afrul Gafurkhan, Steve Galassini, David Gannon, Laxmidhar Gaopande, Brad Gibson,
Kevin Gilpin, Ken Gleason, MK Govind, Chelsea Graylin, Dexter Greener, John Griebel, Narendra
Gupta, Brian Hacker, Marc Hamilton, Scott Heaton, Andrew Henderson, Mark Heyvaert, Karen
Hollomon, Amy Horvat, Mohammad Jamal, Cyndi Jensen, Rif Jiwani, Shafik Jiwani, Kimberly
Johnson, Kimberly Joyce, William Kadlec, Anil Kalra, Sandeep Kamath, Palaniappan
Kasiviswanathan, Palani Kasi, Dave Kaspar, Irfaan Khan, Karen King, Bruce Kissinger, Peter
Korkis, Kiran Kulkarni, Matthew Kundrat, Felix LaCap, Lynn Lafleur, Alan Lambkin, Randy Lawson,
Joseph Layous, Jack Leahey, Bill Lewkow, Brad Linnell, Scott Lockhart, George Loewenthal, Steven
Lu, Dana MacPhail, Chris Madding, Daniel Martino, Chip Mason, Grant Materna, Joe Mathew, Jason
McCoy, Chris McElroy, Brendan McGettigan, Patrick McGovern, Rey Mendez, Mike Messina, Matt
Metrik, Brian Michael, Michael Milner, Asad Mohammed, Quadeerullah Mohammed, Farooq
Mohiuddin, John Molinaro, Patrick Monahan, Mohammed Mubeen, Brian Mullin, Muhammad
Mustafa, Nasir Mustafa, Prashanth Myskar, Brad Nash, Mark Nierzwicki, Eric Noelke, Mark
O’Dwyer, James Owen, David Pape, John Parker, Mark Pelzel, Abhijit Pokhare, Bruce Powell,
Lynne Preston, Preetha Pulusani, Roman Pysak, Mohammed Quadeer, Karen Quandt, Dave Radoicic,
Heidi “Trinity” Ratini, Alex Reyderman, Mark Riedel, Holly Robinson, Suresh Sah, Alwyn Santos
“The Machine”, Sameer Satish, Vinay Sawarkar, Shobhit Saxena, Blane Schertz, Chad Scott, Burk
Sherva, Syed Siddique, A.P. Singh, Aditya Singh, KK Singh, Talha Siraj, David Smith, Karen
Smudde, Shannon Soqui, Ed Stayman, Jack Stein, Cheryl Stewart, Jerzy Suchodolski, Bill Swales,
Michael Tarka, Atul Tayal, Bob Taylor, Chris Thoman, Graham Thornton, Joseph Conrad Trezzo,
Dave Trch “Torch”, Joel Tuisl, Joseph Ung, Tom Usher, Amit Vaidya, Lynne VanArsdale, Prashant
Vaze, Dave Ventura, Jonathan Vivar, Matt Vranicar, Sandra Wade, Barry Wiebe, Mark Woelke, Gary

Wojda, Lisa Wright, and Bob Yingst.
I would also like to thank all of the people who make a difference in my life (in addition to

those above and from the previous books):

Sandra Hill, Floyd & Georgia Adams, Brad & Kristen Brown, Joe & Lori Trezzo, Sohaib Abbasi,
Michael Abbey, Ian Abramson, Jeff & Donna Ackerman, Steve & Becky Adams, Keith Altman, Maria
Anderson, Joe Anzell, Joe Arozarena, Mike Ault, Paster James C. Austin, Jim John Beresniewicz,
Josh Berman, Hardik Bhatt, Jon & Linda Bischoff, Melanie Bock, Mike Boddy, A.W. Bolden, Rep.
Henry Bonilla, Rene Bonvanie, Ted Brady, Barry Brasseaux, J. Birney & Julia Brown, John Brown,
Karen Brownfield, Sam & Rhonda Bruner, Bill Burke, Dan Cameron, Rebecca Camus, Bogdan
Capatina, Monty Carolan, Christina Cavanna, Sheila Cepero, Edward Chu, Dr. Ken Coleman, Peter
Corrigan, Stephen Covey, Richard Daley, Sharon Daley, Nancy Daniel, Jeb Dasteel, Mary Ann
Davidson, Tom Davidson, Tony & Elaine DeMeo, Sohan DeMel, Jose DiAvilla, Julian Dontcheff,
Mary Lou Dopart, Joe Dougherty Jr., Carlos Duchicela, Ben & Melissa Eazzetta, Jeff Ellington, Lisa
Elliot, Buff Emslie, Dan Erickson, Chick Evans Jr., Dr. Tony Evans, Mark Farnham, Tony Feisel,
Dick Fergusun, Stephen Feurenstein, Caryl Lee Fisher, Charlie Fishman, Joe Flores, Mark Fontechio,
Heidi Fornalsky, Vicky Foster, Janella Franklin, Sylvain Gagne, Mike Gangler, Fred Garfield, Robert
Gaydos, Len Geshan, Tom Goedken, Alex Golod, Laverne Gonzales, Melvin & Ellen Gordon, Dennis
Gottlieb, Joe Graham Jr., Cammi Granato, Tony Granato, John Gray, Kent Graziano, Alan Greenspan,
Ken Guion, Mark Gurry, Eric Guyer, John Hall, Don Hammer, Rick & Tammy Hanna, Jeff Henley,
John Hernandez, Bob & Penny Hill, Patrick Holmes, Napoleon Hopper Jr (JR)., Jerry Horvath, Dan
Hotka, Bob Hoyler, Maureen Hoyler, Jerry Ireland, Shiv Iyer, Suman Iyer, Jeff Jacobs, Ken Jacobs
“Dr. DBA”, Tony Jambu, Don & Dianne Jaskulske, Tony Jedlinski, Corey Jenkins, Bobbi Jo Johnson,
Steve Johnson, Jeff Jonas, Shawn Jones, Michael Jordan, Michael Josephson, Ari Kaplan, Stephen
Karniotis, Tom Karpus, Murali Kashaboina, Dr. Ken & Cathy Kavanaugh, Maralynn Kearney, John
Kelly, Robert Kennedy, Kate Kerner, Charles Kim, Anil Khilani, John & Peggy King, Martin Luther
King Jr., George Koch, Jodi Koehn-Pike, Fran Koerner, Mark & Sue Kramer, John Krasnick, Paul C.
Krause, Mark Krefta, Ron Krefta, Dave Kreines, Thomas Kurian, Mark Kwasni, Donald Lamar,
Marva Land, Ray Lane, Karen Langley, Carl Larson, John Lartz, Brian Laskey, Deb LeBlanc,
Margaret Lee, Herve Lejeune, Steven Lemme, Anna Leon, Coleman Leviter, Troy Ligon, Victoria
Lira, Juan Loaiza, Jeff London, Bob Love, Senator Dick Lugar, Dave Luhrsen, James Lui, Lucas

Lukasiak, Barb Lundhild, Liz Macin, Tony Mack, Ann Mai, Patricia Mahomond, Tom Manzo, Lisa
McClain, Donna McConnell, Stephen McConnell, Kirk McGowan, Carol McGury, Dennis
McKinnon, Gail McVey, Ehab & Andrea Mearim, Margaret Mei, Kuassi Mensah, Scott Messier, Venu
Middela, Debbie Migliore, Mary Miller, Beth Miller, Mary Miner, Justine Miner, Jal Mistri, Dr.
Arnold Mitchem, Matt Morris, Minelva Munoz, Ken Naim, Shyam Nath, Scott Nelson, Jennifer
Nicholson, Cindy Niemiec, Dr. Dave & Dawn Niemiec, Mike Niemiec, Regina Sue Elizabeth
Niemiec, Robert & Cookie Niemiec, Dr. Ted & Paula Niemiec, Merrilee Nohr, Rick Norris, Stan
Novinsky, Justin Nugent, Cheryl Nuno, Julie O’Brian, Shaun O’Brien, Jon O’Connell, Barb
O’Malley, Rita Palanov, Jeri Palmer, Dr. Mary Peterson, Elke Phelps, Chuck Phillips, Lisa Price,
John Quinones, John Ramos, Sheila Reiter, Wendy Rinaldi, Jerry D. Robinson Jr., Mike Rocha, Ulka
Rodgers, Charlie Rose, Chuck Rozwat, Steve Rubin, Joe Russell, Theresa Rzepnicki, Stan Salett,
Douglas Scherer, Scott Schmidt, Jeff Schumaker, Joze Senegacnik, Guner Seyhan, Dr. Austin Shelley,
Muhammad Shuja, Julie Silverstein, Judy Sim, Sinbad, David Sironi, Linda Smith, Karen Smudde,
Anthony Speed, Jeff Spicer, Rick Stark, Bill Stauffer, Bob Stoneman, Bob Strube Sr., Burt & Dianna
Summerfield, Matt Swann, Mary Swanson, Matt Szulik, David Teplow, Maggie Tomkins, Eugene
(EGBAR) & Adrienne (Sky’s the Limit) Trezzo, Sean Tucker, David Tuson, Vicky Tuttle, Razi Ud-
Din, Paul Ungaretti, Pete Unterlander, Lupe Valtierre, Nitin Vengurlekar Angelica Vialpando, Matt
Vranicar, Jerry Ward, Oleg Wasynczuk, Bill Weaver, Huang Wei, Dale Weideling, John Wilmott,
Jeremiah Wilton, Marty Wolf, Marcia Wood, Chris Wooldridge, Don Woznicki, David Wright, Lv
Xueyong, Stan Yellott, Janet Yingling Young, Ron Yount, Ji Zhigang, Edward Zhu, and Tony Ziemba.

Lastly, thanks to (your name goes here) for buying this book and being dedicated to improving your
own skills (or if I forgot your name above). Father Tony once told me everything you need to know in
life: “Nothing in life is so big that God can’t handle it and nothing is so small that God doesn’t
notice it.” Thanks to all of those above who have made and continue to make both big and small
differences in my life and in this book!
In Memory:
“Only a life lived for others is worth living.”
—Albert Einstein

Finally, we need to remember our friends we’ve lost over the recent years who always gave back to
the community, especially Gary Goodman, Karen Morton, and John Nash.

God takes us home one day when our work is done; we’ll be with them soon enough to “run with
angels on streets made of gold.” I look forward to that day, but until that day, let’s continue to make a
difference and ensure that God speaks through us by our wonderful actions toward one another! By
always looking to improve our integrity, knowledge, physical courage, loyalty, self-control,
enthusiasm, unselfishness, tact, moral courage, respect, humility, and initiative, we will ensure that
we have the fortitude to face any tough challenge ahead. And, of course, never forget, faith, hope, and
love... “and the greatest of these is Love.” To make a difference in the world with character and with
a heart that always brings out the best in others—this is my goal in life!

Introduction

“The enterprise that does not innovate inevitably ages and declines. And in a period of rapid change
such as the present, an entrepreneurial period, the decline will be fast.”
—Peter F. Drucker (1909–2005)

Disruptive innovation occurred as postal mail moved to e-mail, as telegraph moved to telephone, as
telephone moved to cell phones, computers moved to smartphones, encyclopedias moved to
Wikipedia, and floppy drives moved to USBs. You don’t stop innovation! So what’s next? Most
everything in Star Trek either has been invented or is in the process of being invented. Star Trek
technology that once looked so futuristic now looks very old. Even Twilight Zone predictions pale in
comparison to the reality we see unfold daily. E-mail has given way to texting and then to Snapchat,
cell phones are now moving to smart watches, and the promise of Google Glass is now moving to
virtual reality (VR) devices. Small plastic pieces that you picked up at Wal-Mart in the past can now
be printed in the home. You no longer need Microsoft Office installed on every device as Google
Docs will do it for free in the cloud from any device (Microsoft now has a cloud version—kids use
Google). All of these technologies are already here; they are not what’s next. Innovation is the
introduction of something new or different. Some companies embrace innovation and thrive, while
others don’t, and fall behind or disappear. Some innovation is helpful or only mildly unsettling while
other innovation radically disrupts people, countries, or businesses. When innovation occurs in a
product category, no amount of new investment in the older product will yield a normal rate of return.
Building a nicer, faster, better telegraph machine could not stop the telephone. Microsoft stayed flat as
a stock for ten years until it came out with its Azure cloud computing platform. Oracle is embracing
the cloud, not only because of Amazon’s amazing profits in the cloud services market, but because
cloud computing is an innovation that is here to stay. Oracle has realized that it must embrace it to

survive. In Peter Drucker’s Innovation and Entrepreneurship book, he talks about the “deadly
temptation to feed yesterday and starve tomorrow.” As clearly represented by Oracle Database 12c
(the c standing for cloud), Oracle has resisted the temptation to feed its on-premises business at the
expense of starving the cloud, knowing that it would be a losing proposition in the long run.

Many people think the cloud is the path to eliminating their job. If you are one of them, I have news
for you: where there is more innovation, there is more business and more profit to be had than
anywhere else. There will be greater demand as companies move at least part of their operations to
the cloud, while keeping some of them in-house (a hybrid cloud model that will be used by many
companies for a time). Companies requiring great control or security might allow little movement to
the cloud, but the majority of IT innovation today is happening in the cloud. To be more precise, with
mobile applications, cloud computing is where most mobile-enabling technologies live. When the
operations department at a company resists the cloud, the development department moves their Agile
development directly to the cloud with DevOps (a new person with Development combined with
Operations experience) personnel. Big data and consumer applications are already in the cloud, as is
the next-generation IT person. Is your job as a DBA or sysadmin going away? No, it’s just shifting, at
least partly, to the cloud, to include managing the consolidation of applications, enabling faster
development, working with throw-away architecture, and developing the future robotic helper (if
you’re willing to educate yourself and embrace the bend in the road). Those who are educated and
prepared for the cloud will be able to make more money in this demand area of the economy. Those
who resist will find themselves with flat expectations, but still with more than enough work to
manage operations that can’t be moved to the cloud. I see the industry bifurcating, or splitting into
two: those who move to the cloud and have bots (computer robots) working for them to make them
more productive, and those who stagnate and become workers of the future robot bosses (perhaps
only a computer—not necessarily a robot walking around) that manage their operations, constantly
looking for ways to eliminate them and save the company yet more money.

The first cloud warning shot from Oracle came with 12c Release 1 (as the c was for cloud), but
the bigger shot came with Oracle Database 12c Release 2. Oracle 12.2 has been released first in the
cloud (without a timetable for the on-premise release). Oracle 12cR2 was announced by Larry
Ellison on September 18, 2016 to be released on the Oracle Exadata Express Cloud Service at
$175/month (even Oracle salespeople selling Exadata complained about the low price). This
announcement is Oracle telling you that the cloud is the most important focus that they will ever have.
Larry Ellison calls it a once in a generation move to the cloud. Whether it’s Larry Ellison, Mark
Hurd, Safra Catz, Thomas Kurian, Andy Mendelsohn, or Judith Sim, these Oracle leaders all talk
about the cloud first or the cloud only. They’ll only accelerate this innovative arena and eventually
starve their on-premises business.

As with many new technologies, the cloud is painful to adopt, with so many moving parts including
your own personnel. But consider companies like Google, Amazon, Apple, and Oracle; what do they
have in common? They are mature companies that innovate constantly and embrace or create the
future, and they have all invested heavily in the future of the cloud. Even Facebook and Twitter
succeed because they innovate; they grow despite their naive corporate youth. Facebook would have
had LinkedIn’s market share as well were they more mature in their business growth. Is your
company as innovative and mature as Google, which went from its origins as an Internet search
service to offer mapping, images and video, translation, and Google Docs, and then expanded to
encompass everything from the Android OS, smart watches, virtual reality, and Chromecast to a
dashboard in your car, to driving your car, to Nest in your house, to robotics? Amazon comes closest

to Google. Oracle and Apple are mature leaders and innovators, but primarily limited to the tech
world. Oracle went from 8-bit RDBMS, to 32-bit, to client-server, to 64-bit (way back in 1995), to
web database, to Linux support, to RAC, to Grid, to BEA middle tier, to every major application
including Financials, JDE, EBS, HCM, EPM (Hyperion), SCM, Retail, Data Warehousing, to
hardware and Sun, to three to four new hardware appliances every year, to 128-bit with ZFS, to an
all-flash server (1 petabyte available now), to In-Memory Database, to multitenant, to web-based and
mobile applications, to Oracle Cloud. Don’t forget Oracle owns the largest offering of NoSQL
databases with the Sleepycat software (Berkeley DB) acquisition (over 100M deployments) and
MySQL databases with the Sun acquisition. Their Solaris machine has both security and queries
running in the silicon with the new M7 chip, and their recent Ravello Systems acquisition hurts
Amazon while helping Oracle. Oracle doesn’t have the breadth of Google or Amazon in the consumer
market, but it has much greater depth and maturity. My calculations based on the number of servers
and other data (unofficially) show Amazon, Microsoft, Google, and Oracle as the largest (by far)
cloud providers, with HP, Facebook, Yahoo, Digital Ocean, OVH, China Telecom, SoftLayer,
Rackspace, Akamai Tech, Intel, and Comcast on the distant second tier (tens to hundreds of thousands
of servers). While Google, Amazon, and Microsoft are all in the 1M+ server range, Oracle with
compression is the largest public cloud with over 10 exabytes of storage as of October 2016. Oracle
is number one due to their own technology! I only see Oracle accelerating by further leveraging the
technology they have. Oracle hasn’t moved their customers to the cloud yet, but the Oracle Public
Cloud (OPC) will get a lot bigger when they do. In the past, most Oracle databases would not fit on
an Oracle server in DRAM or even flash, but now they do. I remember seeing a 4000-node Hadoop
big data warehouse with 16P (16,000T) of raw disk and people saying that you can’t fit big data on
Oracle. That same 4000-node cluster would fit on this year’s X6-2 with 1.3P and 15× compression to
give you 19.5P of raw disk equivalent. A single machine replacing an entire room of servers (a very
large computer room)! Whether on premises or in the cloud, most databases would fit on one Oracle
server. Think of the power savings and space savings alone, not to mention the maintenance. Think of
the cloud you could build starting with this size Lego!

Because of the explosion of data through social media, sensor data, biological, traffic, RFID data,
environmental, aerial, wireless, security, video, medical, and archived data, we now have data that
will help businesses and individuals make better decisions. However, this widespread availability of
data also puts our privacy at risk and requires greater security and products that will protect us.
While big data helps us compete better, understand our customers better, grow business streams, and
lower costs, we often resist it in IT because the security and maturity of the products in the big data
world are lacking. Big Data is supposedly too big to fit in a normal database (which is true if you
need a 4000-node Hadoop cluster—replace this with a couple of Exadata Servers instead). Oracle
now provides a way to go from Oracle SQL directly to Hadoop, Hive, and other NoSQL databases by
writing SQL. The enhanced security of Oracle now makes it possible to manage all of these data
sources that are already in the cloud. Welcome to the future; it’s the best of both worlds! Many
NoSQL database are eventually consistent; Oracle is just consistent (the correct data all the time).
Many NoSQL databases have some security; Oracle has encryption at the chip level, auditing, virtual
private databases, global roles, secure application roles, fine-grained auditing, transparent data
encryption, audit vault, database vault, multitenant security, and many security evaluations. It will take
decades for other vendors to catch up at a time when security is paramount to nations across the
world. You want to use Spark? Oracle has a connector to that. You want to use Node.js or Angular
JavaScript? Oracle now welcomes that code base.

Archived data used to tell you what happened and maybe even why it happened. Now we head
into predictive and prescriptive analytics, where archived data tells you what will happen and what’s
the best thing that could happen if you act correctly (it’s a lot like the movie Minority Report—
perhaps even more advanced). Oracle has some of the most advanced data warehouse tools with
Oracle Business Intelligence Enterprise Edition (OBIEE) in addition to Oracle R Enterprise (a
component of Oracle Advanced Analytics) to leverage big data to write these programs. Those tools
have been developed over the past two decades. My company once combined several of a customer’s
systems to show what was going to break in a plant before it broke (reliability system), then checked
when their supplier would have the part (supply chain system), ordered the part ahead of time (order
entry), trained the correct person to fix it before it broke (training system), ensured that person
wouldn’t be on vacation when it was probably going to break (HR system), etc. It saved the customer
millions of dollars every year in lost downtime. BI tools like Oracle or Entrigna (the next-generation
BI tool) will take every database source and allow you to build that future. Perhaps the big data
world will be connected via pluggable databases (PDBs), with everyone using multitenant (as
suggested by Oracle’s decision to deprecate non-CDB [container database] or non-multitenant as of
12.1.0.2). But be quick, because the Internet of Things (IOT) is also already here. We’ve used it at
Rolta to build Smart Cities, Rockwell uses it to build smart manufacturing, GE uses it to put better
devices in your home, grocery stores use it to market the right products to you, Google has it in your
Nest thermostat, and Gartner recommends that companies don’t cross the “creepy line” when storing
all that information. IOT is already here!

So if the cloud, big data, and IOT are the present, what’s the future? The future is robotics in every
facet of life. There are robots that already look exactly like a real person, can recognize gestures,
fetch a cup of coffee from Starbucks (complete with using the elevator), vacuum your rugs (Roomba
—or as I call it, Skynet), water your grass or flowers based on weather data retrieved from the cloud
via IOT devices, etc. Robotics is the future, it’s here now, it’s growing fast, and you should be
building things that use these tools as a tech person.

Your goals should be as follows: Get on Oracle 12cR2, leverage all of the applicable features
(this book will help), learn how to keep an encrypted backup on the cloud, learn how to spin up
database cloud services for the development team quickly when they need them (so DevOps isn’t
needed), learn which systems shouldn’t go to the cloud and why (be the knowledgeable and
discerning person in the room), and then start fitting robotics into your competitive advantage as a
company. Oracle is the best tool in the world and is unbeatable if you can leverage it fully. Every
great carpenter uses the best tools and learns how to use them well; you need to do the same with
Oracle. Read the whole book, implement the tuning techniques in your systems, and get working on
what’s next for you and your company!

What’s coming next? Implants are next with virtual reality and exoskeletons. Those people you see
wearing smart watches, Google Glass, or VR headsets will be same ones who also beta test the
implants that are on the way. This is the first wave toward a future where you’ll no longer recognize
the past. It’s been 13.7 billion years since the Big Bang to get to this acceleration point in history.
What are you doing with this opportunity as you are at the exact right place at exactly the right time in
history? What gifts has God given you that you can leverage? Don’t worry about losing your job to the
cloud like the AT&T operators worried about losing their jobs to computers. Think about how you
will react as the road bends ahead, and go where the opportunity lies. God has a place for you out
there during this pivotal time in history!

Rod Serling said it well: “There is a fifth dimension beyond that which is known to man. It is a

dimension as vast as space and as timeless as infinity. It is the middle ground between light and
shadow, between science and superstition, and it lies between the pit of man’s fears and the summit of
his knowledge. It is an area which we call the Twilight Zone.” With Exadata, flash, and the cloud, we
have started exploring this area in all corners of the world. It will prove to be an area of implants,
augmentations of every kind, and one that will test our definition of what makes up a human being.
What amount of human augmentation transforms a human into a robot? What if you could transfer
every experience you’ve ever had and every thought in your mind to a computer and then download
that into a 3D printed replica of the brain, printed using your own cells? When incorporated into a 3D
print of the rest of your body, is it a person or a robot at that point? (I think it would still be a clone of
sorts, perhaps a facsimile, but not the real thing.) Could it go to work for you? When will we be able
to 3D print ourselves to help us do chores? What happens when 75 percent of the body is robotic and
only 25 percent is human? With human augmentations, the percentage of robotic parts will continue to
rise. Will these replicated humans have rights? Consider that a recent U.S. Supreme Court ruling gave
organizations the right to spend unlimited money on campaigns of candidates running for office; this
was perhaps the largest right given to nonhumans in our history. In the future, Wall Street (“the bull” is
primarily run by computer trading, or robots, today) could use its computer-driven trading profits to
install these future robots as leaders of companies in the same way that it does most trading currently
—by computer. Why wouldn’t they want a robot with the ability of many humans (or every human on
earth) running the company instead of a mere mortal? Wall Street and those companies could then use
their money to finance the campaigns of their own political candidates, quietly (even the U.S.
president, who may potentially nominate Supreme Court justices that they choose). This is no longer
science fiction, but challenges we face in the near future. There are now leaders of tech companies
funding large projects to ensure our future as a species continues because of this coming shift.

Connecting into the brain has already occurred; what’s next will certainly lead us to something
well beyond a Twilight Zone future. It is a future where arranging atoms to create objects, or transport
them or hide them, will become more common. As Rod Serling said, “You unlock this door with the
key of imagination.” We are no longer limited; what you can imagine, you can create. I think it’s an
amazing time to live and to work! Perhaps knowledge-building edible technology will be the follow-
up to wearable technology. What future will these primarily robotic systems and workers eventually
build? It’s hard to predict, and hard to predict where we humans will fit in. Wall Street at times can
be more beast than bull—it listens to no person or country, and it silently builds more efficiency and
productivity into the corporate world based on algorithms of all of those traders throughout its history
that made up almost all trading. There is a new world ahead that is part man, part machine, and for
this there is a standing-room-only audience watching from the other side. What has God in store for
all of us ahead? Is it the final act, or a better future that will bring out the best in each of us and to
each of us? Some of us keep looking back for that wisp of what was; try looking forward! What’s on
the signpost up ahead? Nobody knows for sure, but you’ll soon be at this fork in the road. Godspeed
humans, and choose wisely!

Why is this brave new world coming so quickly whether we like it or not, and whether we are
ready for it or not? We started on the mainframe with 8 bits and the ability to access 256 bytes of
addressable memory, and then 16 bits and Windows with 64K of memory and, if you bought extra
hardware, 1M of extended memory. Then came the Internet age, as we boldly headed into the gigabyte
SGA world that 32 bits brought us and 4G of addressable memory. Now technology has grown to 64
bits and moves from the burdens of 4G max, which the 32-bit Internet world gave us. With 64 bits, the
theoretical limit of directly addressable memory (2 to the power of 64) has become 16E (exabytes),

or 18,446,744,073,709,551,616 bytes (264 bytes), waiting for us to leverage its incredible power in
every aspect of our lives. We will go from gigabyte SGAs to petabyte SGAs (a petabyte is 1000
terabytes) with bigger data. Make sure you take time to consider where you are in history and what
role you want to play! Consider how much memory computers could directly address (use), and
remember that we’re using the latest technology to build the latest technology for even greater
acceleration:

Another way to put this comparison into perspective is to consider what it would mean in terms of
miles per hour, with Windows as the starting point:

Oracle RDBMS History Over the Years
1970 Dr. Edgar Codd publishes his theory of relational data modeling.
1977 Software Development Laboratories (SDL) is formed by Larry Ellison, Bob Miner, Ed
Oates, and Bruce Scott with $2,000 of startup cash. Larry and Bob come from Ampex, where
they were working on a CIA project code-named “Oracle.” Bob and Bruce begin work on the
database.
1978 The CIA is SDL’s first customer, yet the product is not released commercially. SDL
changes its name to Relational Software Inc. (RSI).
1979 RSI ships the first commercial version, Version 2, of the database, written in Assembler
Language (no V1 is shipped based on fears that people won’t buy a first version of software).
The first commercial version of the software is sold to Wright-Patterson Air Force Base. It is the
first commercial RDBMS on the market.
1981 The first tool, Interactive Application Facility (IAF), which is a predecessor to Oracle’s
future SQL*Forms tool, is created.
1982 RSI changes its name to Oracle Systems Corporation (OSC) and then simplifies the name

to Oracle Corporation.
1983 Version 3, written in C (which makes it portable) is shipped. Bob Miner writes half, while
also supporting the Assembler-based V2, and Bruce Scott writes the other half. It is the first 32-
bit RDBMS.
1984 Version 4 is released, along with some first tools (IAG-genform, IAG-runform, RPT).
Version 4 is the first database with read consistency. Oracle is ported to the PC.
1985 Version 5 is released, first Parallel Server database on VMS/VAX.
1986 Oracle goes public March 12 (the day before Microsoft and eight days after Sun). The
stock opens at $15 and closes at $20.75. Oracle Client/Server is introduced, which is the first
client/server database. Oracle 5.1 is released.
1987 Oracle is the largest DBMS company. Oracle Applications group started. First
symmetrical multiprocessing (SMP) database introduced.
1987 Rich Niemiec along with Brad Brown and Joe Trezzo while working at Oracle implements
the first production client/server application running Oracle on a souped-up 286 running 16
concurrent client/server users for NEC Corporation.
1988 Oracle V6 released. First row-level locking. First hot database backup. Oracle moves
from Belmont to Redwood Shores. PL/SQL introduced.
1992 Oracle V7 is released.
1993 Oracle GUI client/server development tools introduced. Oracle Applications moved from
character mode to client/server.
1994 Bob Miner, the genius behind the Oracle database technology, dies of cancer.
1995 First 64-bit database developed.
1996 Oracle 7.3 released.
1997 Oracle8 is introduced. Oracle Application Server is introduced. Applications for the Web
are introduced. Oracle is the first Web database. Oracle BI tools like Discoverer are introduced
for data warehousing. Tools have native Java support.
1998 First major RDBMS (Oracle8) ported to Linux. Applications 11 shipped. Oracle is the
first database with XML support.
1999 Oracle8i released. Integrates Java/XML into development tools. Oracle is the first
database with native Java support.
2000 Oracle9i Application Server released. It becomes the first database with middle-tier
cache. Launches E-Business Suite, wireless database with OracleMobile, Oracle9i Application
Server Wireless, and Internet File System (iFS).
2001 Oracle9i (9.1) released. Oracle is the first database with Real Application Clusters
(RAC).
2002 Oracle9i Release 2 (9.2) released.
2003 Oracle at France Telecom is #1 on Winter Group’s Top Ten in DB size at 29T.
2003 Oracle 10g comes out, with grid focus, encrypted backups, auto-tuning, and ASM.
2005 Oracle RAC at Amazon hits the Winter Group’s Top Ten in DB size at 25T.
2005 Oracle acquires PeopleSoft (includes JD Edwards), Oblix (Identity Management), Retek
(Retail) for $630M, TimesTen (in memory DB), and Innobase (InnoDB Open Source).

2006 Oracle buys Siebel for $5.8B, Sleepycat Software (Open Source), and Stellant (Content
Management). Oracle with an open source push offers “unbreakable” support for Red Hat Linux.
2006 Oracle 10g Release 2 comes out in fall
2007 Oracle buys Hyperion for $3.3B. Oracle 11g comes out (2009 was the first release of
11gR2).
2008 Oracle Exadata announced; Oracle buys BEA.
2009 Oracle releases 11gR2. Oracle buys Sun (which includes Java, MySQL, Solaris,
hardware, Open Office, StorageTek).
2010 Oracle announces MySQL Cluster 7.1, Exadata 2-8, Exalogic, and 11.2.0.2 released.
2011 Oracle 11gR2 (11.2.0.4) terminal release (all Exadata line is 11gR2) and Oracle 11g
Express Edition released (September 24, 2011). Oracle announces Exalytics, SuperCluster,
Oracle Data Appliance, Exadata Expansion Rack, and Oracle Cloud 12c (late 2011).
2012 Exadata X3-2 released; Oracle expands cloud offerings; Solaris 11.1.

2013 12cR1 is released; Exadata X3-8 released; Oracle acquires Acme Packet and Reponsys.
2014 Oracle releases In-Memory on 12.1.0.2; X4 released; acquires Corente.
2015 X5-2 and X5-8 released; FS1 Flash Array; acquires StackEngine (Docker tool).

2016 12cR2 released on Exadata Express
Cloud Server at $175/mo; Ravello/CASB acquisitions.
2021 13cR2 database prediction.

Oracle is a company that has matured in breadth, ability, and character over the years. Oracle’s
leaders live to innovate, and they’ve always hired for that next leader and visionary like Larry
Ellison, or the next quietly driven Bob Miner, that next superstar developer like Bruce Scott.
Somehow Oracle finds that creative/innovative special something in every employee they hire.
Oracle hires unique, incredibly intelligent, intensely driven, and innovative people! It started with the
attitude of Larry, and his ability to get more out of people than they are aware they have within them,
and his ability to reward them when they deliver. Oracle also has the genius, spirit, and “blue collar–
like” hard-working drive of a Bob Miner in all of those in the development world who have followed
him. Oracle is well run because they have leaders in Safra Catz and Mark Hurd balancing out
operations; Judith Sim driving marketing at an always “catch us if you can,” too-fast speed; and
delivery on products due to Andy Mendelsohn and his tremendously intelligent team inventing the next
bend in the road. Thomas Kurian and his ever-growing, accelerating team are always finding new
ways to integrate applications on the cloud and make businesses even more successful. Then there’s
Mary Ann Davidson’s silent warriors in security, and many more.

TUSC

Lastly, I want to provide a quick note on TUSC, The Ultimate Software Consultants. At TUSC, I was
blessed to work with the best of the best. We were often called the Navy Seals or the Marines of the
Oracle world (being a former Marine, I like the latter description). We were called into Fortune 500
companies across the globe to solve various complex problems, and we always delivered! Thanks
Brad Brown, Joe Trezzo, and all TUSC members of yesteryear.

I’ve tuned systems across the globe and I believe you will find something in this book that will
help you. I’ve traveled to Australia, Austria, Belgium, Canada, China, the Czech Republic, Denmark,
Finland, Germany, Italy, India, Ireland, Luxembourg, Mexico, Poland, Slovakia, Spain, Sweden,
Switzerland, the U.A.E., and the United Kingdom. I’m always available as an architect or advisor at
richniemiec@gmail.com and work with a great tuning product at
http://tuningace.com/partners/RichNiemiec.html.

To my fellow Marines, Semper Fi, and to all servicemen and women, government workers, and
agencies that protect freedom, thanks for making the world a safer and better place. The Marines
always taught me God, Family, Country, and Corps. Add to that, the golden rule, not the version that
goes “He who has the gold makes the rules,” but the true golden rule: “To love your neighbor as
yourself.” Somehow, these two versions of the golden rule contrast the worst values, at times, on Wall
Street with the best values on Main Street. Although it’s tough to do, loving your neighbor as yourself
will take you a whole lot further in life, and even if it leads you to a tough life, it will certainly lead
you to a better place just after life. That’s the best advice I could give you to prepare for the
challenging future ahead!

How This Book Is Organized and Changes in This
Version
If you read this entire book and apply it, you will be in the top 1 percent of Oracle Tuning
professionals. Over 425 Tuning experts have added to this book in some manner. For those who read
the last version of the book, here are some changes and/or additions for each of the chapters:

 Chapter 1 Rewritten completely for basic Oracle 12cR2 new features

http://tuningace.com/partners/RichNiemiec.html

 Chapter 2 Expanded to cover all of the index types and tested for 12cR2

 Chapter 3 Updated for 12cR2: ASM, LMT, Auto UNDO, and improved I/O sections

 Chapter 4 Added PGA_AGGREGATE_LIMIT, INMEMORY_SIZE, and In-Memory sections
and updated initialization parameters for 12cR2

 Chapter 5 Added 12c screenshots and Application Performance Monitoring (APM)

 Chapter 6 Updated EXPLAIN, SQL Plan Management, DBMS_MONITOR, and TRCSESS

 Chapter 7 Added new hints and updated others—the best resource for hints!

 Chapter 8 Updated for 12cR2; added Result Cache and SQL Performance Analyzer

 Chapter 9 Updated and tested for 12cR2; includes block tuning and added DB Replay

 Chapter 10 Expanded again as PL/SQL tuning expands; added 12cR2 changes

 Chapter 11 Added cloud, updated Exadata, RAC, and Parallel Query operations

 Chapter 12 Expanded again to show more V$ view queries, especially those new in 12cR2

 Chapter 13 Expanded X$ view queries, trace section, and X$ naming conventions

 Chapter 14 Updated AWR, Statspack for 12cR2; updated mutexes and block tuning

 Chapter 15 Updated for 12cR2 and for much larger systems

 Chapter 16 Unix chapter updated to include a couple more commands

 Appendix A Updated queries for 12cR2 and new Top 25 initialization parameters

 Appendix B Updated for 12cR2 with updated V$ view queries

 Appendix C Updated for 12cR2 with updated X$ queries

References
Peter F. Drucker, Innovation and Entrepreneurship (HarperBusiness, Reprint, 2006).
Twilight Zone series, Rod Serling.
Mark Harris, “Wish You Were Here,” Daywind, 2006.
Donita Klement, History of Oracle, 1999.
Rich Niemiec, “Retrospective: Still Growing After All These Years,” Oracle Magazine, 2001.
Rich Niemiec, “Rich Niemiec Interviews Bruce Scott,” Select Magazine, 2001.
Rich Niemiec, “64-Bit Computing,” Oracle Magazine, 2004.
Lee Strobel, The Case for a Creator (Illustra Media, 2006).
Wikipedia website: Googol, Exabyte.
Mike Wilson, The Difference Between God and Larry Ellison (William Morrow, 1997).
Websites: www.oracle.com, www.tusc.com, www.rolta.com.

http://www.oracle.com
http://www.tusc.com
http://www.rolta.com

F

CHAPTER
1

Introduction to Oracle Database 12c R1 & R2
New Features (DBA and Developer)

irst, I want to note that this book is primarily focused on helping beginner and intermediate
Oracle professionals understand and better tune Oracle systems. Many expert topics are also
covered in the later chapters, but the objective is primarily to assist professionals who are
frustrated and looking for simple tips to help improve performance. This book has one

simple goal: to provide an arsenal of tips you can use in various situations to make your system faster.

Chapter 1 is a new features chapter covering the new features focused on tuning. The new features
chapter has been so popular in past editions of this book that I continue to make it the first chapter.
The rest of the chapters gradually increase in complexity and provide a wide range of tips to help you
in your tuning adventures. I am sure that you will encounter at least some information that you won’t
find elsewhere. With Oracle’s relatively new focus on the cloud, I’ve included a section on the cloud
here as an introduction to the more detailed information in Chapter 11. It’s important to note that on
September 18, 2016, Larry Ellison introduced 12cR2 on the cloud-first. The Oracle Exadata Express
Cloud Server had an introductory price of only $175/month including all database options!

If you want a single method or an all-encompassing way of tuning a database (in a single chapter),
I provide a few options for those who don’t have the time to read the whole book. The first is Chapter
14 on Statspack and the AWR Report (Statspack is free, but AWR is better). The second option is the
combination of two incredible chapters that include most of the common scripts the majority of
experts use to tune a system using V$ views and X$ tables (covered in Chapters 12 and 13). The third
option is Chapter 5 on Oracle Enterprise Manager Cloud Control (OEM), which includes Database
Control and Cloud Control; it is a tool of the future that provides a graphical way to tune your system,
including many features for both RAC systems and large-scale cloud control. This tool gives you the
ability to view and tune multiple systems through one single interface. There is also a great tuning
product at http://tuningace.com/partners/RichNiemiec.html.

This first chapter will discuss, briefly, some of the more interesting new features that are included
in Oracle Database 12c Releases 1 and 2 covering 12.1.0.1, 12.1.0.2, and 12.2. Many new and
improved features are included in this latest version. Oracle’s goal in 12c was not only to create a
more robust database management system, but also to include a cloud solution, multitenant database,
In-Memory column store, and management improvements to simplify the installation/administration
activities, thereby enhancing availability. Oracle’s strategic direction is to provide a fully integrated
set of features that replaces the third-party software that DBAs typically use to help them manage
their environments. Not all features listed in this chapter are detailed in the book (since they are not

http://tuningace.com/partners/RichNiemiec.html

directly tuning related and the size of the book is limited), yet I wanted a chapter to mention some of
the best features whether directly tuning related or not to give you an overview of the latest version of
Oracle Database 12c. Security is the focus of several other books, but it is important to state here that
12c is a critical release for security features. Not only does 12c contain the most security changes in a
long time, but it also has performance enhancements for auditing, access controls, and encryption as
security becomes more embedded in the database engine. Lastly, we cannot cover all the new features
here, since the Oracle Database New Features Guide for 12.1.0.1, 12.1.0.2, and 12.2 combine to
make up 240 pages. We will just highlight the more significant improvements (note that in some
sections of 12.1, there will be notes about enhancements to 12.2).

The new features covered in this chapter include the following, listed by release:

 Oracle Database 12cR1 (12.1.0.1)
 Increased size limit to 32K for VARCHAR2 and NVARCHAR2
 Partial indexes on partitioned tables
 Invisible columns in 11g lead to multiple indexes on the same column(s) in 12c
 Fetch first x rows
 Pluggable databases (multitenant DB)
 Oracle Database Cloud Service (Database as a Service)
 Change compression at import time
 Adaptive Query Optimization
 PGA_AGGREGATE_LIMIT, new initialization parameter
 Concurrent execution for UNION/UNION ALL
 Invoker rights function can be Results Cached
 New DBMS_UTILITY.EXPAND_SQL_TEXT
 Default for columns based on sequence
 Interval-REF partitioning
 Multiple SSD devices for Smart Flash Cache
 Concurrent cost-based optimizer statistics gathering
 Enhanced system statistics
 Resource Manager for runaway queries
 Automatic Data Optimization (ADO)
 Global index maintenance for DROP and TRUNCATE Partition operations
 ASM disk scrubbing
 Online capability improvements
 Data Guard improvements

 RMAN improvements
 Active database duplication improvements
 Cross-platform backup and restore
 Table-level recovery
 Pluggable database backup and recovery
 Network-enabled restore

 Oracle Database 12cR1 (12.1.0.2)
 In-Memory Database
 Advanced index compression
 Automatic big table caching
 Flashback Data Archive support for container databases
 Full database caching
 JSON support
 FIPS 140 parameter for encryption
 PDB subset cloning
 Rapid Home Provisioning

 Oracle Database 12cR2 (12.2)
 Application development

 Improved SQL and PL/SQL
 Reduced costs and complexities for migration to Oracle

 Availability
 Accelerated Active Data Guard adoption
 Best-of-breed logical replication
 Online operations
 Recovery Server and RMAN improvements
 Sharding
 Simplified upgrades and data redaction for testing

 Big data
 Big data management system infrastructure
 Enhanced query processing and optimization

 Compression and archiving

 Hybrid Columnar Compression improvements
 Index compression enhancements

 Oracle RAC and Grid Infrastructure
 Automatic Storage Management
 Rapid Home Provisioning and patch management

 Security
 Increased adoption of encryption

 New background processes in 12c
 Exadata—new with X6!
 Version 12c feature comparison chart

CAUTION
Because these features are new, you should use them cautiously and test them completely until you
are sure they work without causing problems for your database. If you have access to My Oracle
Support, I strongly advise you to determine whether any known problems exist with the feature you
are preparing to use. There are also many experts and Oracle Aces out there with blogs and
websites that give information that is well worth searching for.

Oracle Database 12cR1 (12.1.0.1)
Oracle Database 12cR1 is often referred to as the pluggable database (PDB) version of Oracle.
Oracle made it possible to aggregate the many databases that people had invested in over the years.
Oracle also added several new features; many are contained in this chapter.

 Increased Size Limit to 32K for VARCHAR2 and
NVARCHAR2
The maximum value for a VARCHAR2 and an NVARCHAR2 column in tables has been increased
from 4000 to 32,767. This greatly expands that ability to use a VARCHAR2 data type before having
to consider moving to a LOB column type. You do need to set the MAX_STRING_SIZE initialization
parameter to EXTENDED (and you may not go back to the original STANDARD size). You also
must shut down, restart in UPGRADE mode, change MAX_STRING_SIZE to EXTENDED, run the
$oracle_home/rdbms/admin/utl32k.sql script, and then restart in NORMAL mode.

 Partial Indexes
Partitioned tables have been providing management and performance improvements for quite some
time. However, partitioned tables were typically very large tables and therefore had very large
indexes as well. In Oracle 12c, partial indexes enable you to create an index and apply it only to
specific partitions of the table, reducing the size of the index and only indexing partitions that get
frequent use. The partial index can apply to both local and global indexes. To utilize this new feature,
specify with the partition of a table if the partitioned table is to be indexed using the INDEXING
clause (INDEXING ON/INDEXING OFF). For example:

Then, create the index and indicate if it is a partial index with the PARTIAL INDEX clause. For
example, on a global index:

Here’s an example on a local index:

Other partitioning new features in 12cR2 include being able to split and merge partitions online;
convert nonpartitioned tables to partitioned tables online; use multiple column list partitions; use list
partitioning as a subpartitioning strategy for composite partitioned tables; and use read-only
partitions.

 Invisible Columns
Invisible columns provide the ability for columns in a table to be invisible when someone tries to
perform a SELECT *…; however, it is still possible to see the column if the column name is
specified in the SELECT. Whether or not the column is displayed, it is still part of the table and
continues to be subject to all DML UPDATE operations as well as DDL operations affecting the
table. Marking a column invisible can be done with an ALTER TABLE command:

 Multiple Indexes on the Same Column List
Oracle 12c now allows multiple indexes to exist on the same column list. For example, we can create
a unique index on the DEPT table as follows:

If we try to create an index on the same column list, we get an error:

However, if we make the unique index invisible, we can create the index on the same columns list:

Keep in mind we still cannot insert duplicate values into the table even though the index is
invisible. It is a valid index and will still maintain the uniqueness of the table when DML operations
are performed. The index will not be used when SELECT using the column is performed. Also, now
that it’s invisible, we can create an additional index on the DEPT_NO column:

It is possible to create two visible indexes on a column at once, if one of those indexes is a
function-based index. Let’s make the third index invisible and add a fourth (and fifth):

Now when we check the index views, we see that we have five indexes on the same column with
two indexes (one being a bitmap and another a function-based index) being visible:

We now have five indexes on the same column. Three indexes are invisible. One bitmap and one
function-based index are visible and can be used. See Chapter 2 for more information on indexes.

 Fetch First x Rows
Not only are you able to fetch the first x rows without scanning all rows, you can even skip some

rows (offset) to get rows from the middle of the table for a better sample. It is a fast way to retrieve a
certain number of rows from a table. The syntax is

FETCH FIRST x ROWS ONLY
or

OFFSET x ROWS FETCH FIRST x ROWS ONLY
Here’s a quick example that does not skip rows:

Here’s a quick example skipping rows:

 Pluggable Databases (PDBs)
The pluggable databases (PDBs) feature in 12c (covered in detail in Chapter 3) enables you to have a
container database (CDB) with multiple PDBs within the container. Pluggable databases are also
called multitenant databases because each “tenant” can have its own PDB. “Pluggable” databases
can be unplugged from one container and plugged into another container easily, therefore making
databases portable between environments and allowing the upgrade of a database by unplugging it
from one environment at one version and plugging it into a new environment at a higher version. You
can also unplug a PDB from on premises and plug it into the cloud (or vice versa). This new feature
also allows a single PDB to be independently recovered (you can even flashback a PDB in 12cR2).

Each PDB looks to an application like any other traditional Oracle database (called a non-CDB), so
no application changes are needed to work the PDB architecture. Non-CDBs are now deprecated as
of 12.1.0.2.

The following are some notes to keep in mind when using container and pluggable databases:

 CDB = container database (has a root DB and also a seed PDB)
 PDB = pluggable database (plugged into a CDB)
 Non-CDB = traditional type of database (neither a CDB nor a PDB)
 Quickly create a new database (PDB) or clone an existing one (PDB)
 Move existing PDBs to a new platform or location or clone it (snapshot)
 Patch/upgrade a PDB by plugging it into a CDB at a later version
 Physical machine runs more PDBs and can be easier to manage/tune
 Back up entire CDB + any number of PDBs
 New syntax for commands: PLUGGABLE DATABASE
 Redo shared by CDB and all PDBs
 Undo shared by CDB and all PDBs
 TEMP can be created for each PDB
 SYSTEM and SYSAUX individually for each CDB and PDB
 Timezone, each PDB
 DB initialization parameters: some are CDB specific, but many are for each PDB

Figure 1-1 shows a container database (CDB$ROOT) with a seed PDB (PDB$SEED) and two
application PDBs (erppdb and dwpdb). Along with the logical/physical layout, it also shows a CDB
administrator and two separate administrators for the two application PDBs. The physical files that
are shared between the CDB and PDBs and those that can be at the PDB level only are discussed in
the previous list. Since many PDBs can share application objects, such as code or metadata, Oracle
introduced application containers in 12cR2. Now you just update the shared application container
instead of updating all the PDBs.

FIGURE 1-1. A CDB with three PDBs (PDB$SEED and two application PDBs)

One reason to use PDBs is that you can consolidate hundreds of databases on one machine.
Separate machines can mean too many resources are required when you add up all of the SGAs! The
need to easily move data around becomes increasingly important in scenarios such as these: big data
sources are needed; a company makes acquisitions; a company moves data to and from the cloud;
partners need shared research; governments share security or other data.

The following are a few nice example commands for the multitenant world (see Chapter 3 for
more).

Is the database a CDB or non-CDB? (YES in CDB column = CDB)

Query the PDBs (three PDBs in this example)

Clone PDB (source no longer needs to be read-only in 12cR2—hot
cloning)

Move around and start up PDBs

In 12cR2, you can also issue a FLASHBACK of a PDB and have restore points to only that PDB.
This can be done using the SCN, Restore Point, Clean Restore Point, or Guarantee Restore Point. You
can also use local UNDO in 12cR2. The FLASHBACK command for an individual PDB is shown
here (you can get SCNs from V$ARCHIVED_LOGL, V$DATABASE,
V$FLASHBACK_DATABASE_LOG, or V$LOG):

 Oracle Database Cloud Service (Database as a
Service)
There is a push to the cloud as mobile applications become a dominant consumer need. This includes
either “hosting” or “outsourcing” IT operations completely. The new cloud players (led by Oracle,
Amazon, Microsoft, and Google) are the gold standard of the IT industry. They now predict that
everyone will soon be on the cloud as the smartphone market continues to dwarf all other markets.

What’s fueling the growth of the cloud:

1. Connecting to social media and accessing marketing big data are faster over the cloud, as are
leveraging this data and connecting it to mobile applications.

2. Every company can have an encrypted backup that’s secure and offsite. This is a big plus to the
many companies that still don’t have this protection.

3. Cloud services are great for smaller companies that can’t afford a real IT department. They can
obtain IT servers and operations to any scale they’ll ever need.

4. It’s inexpensive to store archived data to the cloud for infrequent use.
5. You pay for what you use, scale up easily when you need to, and scale down easily when

needed.
6. It’s relatively inexpensive for testing new applications, new servers, or new versions.
7. The current generation of developers and DBAs is cloud-ready. They don’t want to be tied to a

specific computer and they already do almost everything in the cloud.

In the end, whether the cloud helps or detracts from your competitive advantage really depends on
your costs, personnel, operations, and all of the preceding points. Keep in mind that, whether they
realize it or not, everyone does something in the cloud already (known as the hybrid cloud model, a
mix of cloud/on-premises, which is already at 100 percent). As Chapter 11 should convince you, a
large portion of applications and IT operations will be hosted on the cloud. You need to be prepared
for this generational switch to an era of cloud computing. Not all systems will move to the cloud
though.

Setting up a Database Cloud Service instance for the first time takes a few hours, but setting up
subsequent instances time takes only a few minutes. Database as a Service (DBaaS) will certainly be

a reality for many shops to quickly spin up development servers for DevOps (Development and
Operations).

Oracle announced in late 2016 that 12c Release 2 of the database will be released on the cloud
first. This is not just a cloud-first event, but an Oracle-first event. This is similar to Oracle releasing
less important platform database software (AIX comes to mind) later than Linux. Another example is
Oracle releasing 12c on Express Edition (the free version) much later than Standard Edition (SE) or
Enterprise Edition (EE). Oracle has a way of creating a bend in the road that you’ll probably soon be
following. Also, Oracle has available currently in the cloud a database that you can use anytime
(https://livesql.oracle.com) to learn SQL and PL/SQL. When I tried it in early September of 2016, it
was already the 12.1.0.2 database. When Larry Ellison introduced 12cR2, available on the cloud first
via the Oracle Database Exadata Express Cloud Service, it had an introductory price of only
$175/month—including all database options! This is one of the fastest servers on planet Earth I’ve
ever seen, and for the lowest price in the cloud; it’s also on the 12cR2 database. The ability to run or
test your development applications on a server of this size and potential scale (when needed) is
unprecedented. Oracle also introduced (on the same day) Application Performance Monitoring
(APM) for DevOps. APM enables DBAs and developers to pinpoint performance problems at every
layer of the application. Chapter 11 goes into great detail on setting up an Oracle Cloud Database
Service instance, but I’ll show a few of the major points here.

To begin to use the Oracle Cloud, you can simple go to https://cloud.oracle.com/tryit and choose to
try it out for 30 days (see Figure 1-2). The website offers a lot of video tutorials and a lot of
information about the different roles needed for the cloud. When we go to cloud.oracle.com/tryit, it
will take us to this introductory page where we can click on the 30-Day Trial seen in Figure 1-2.

https://livesql.oracle.com
https://cloud.oracle.com/tryit

FIGURE 1-2. Oracle 30-Day Trial screen

Click the Try It button and then choose Database (Your Oracle Database in the Cloud) to set up a
Database Cloud Service instance. Note that these screens and information have changed three times in
the past year. Information about your 30-Day Trial comes up next. It includes an overview of the
process as well as the ability to start the Database as a Service Trial. You’ll also be asked to log in to
your Oracle account. After you sign on with your single sign-on to Oracle, you will be ready to get a
connection to the Oracle Cloud. Fill in the basic information about you and your company, click Sign
Up, and, upon approval, Oracle sends a verification to my phone followed by an e-mail to officially
sign in to the Oracle Cloud (Figure 1-3).

FIGURE 1-3. Sign in to the Oracle Cloud.

You’ll get a welcome message and an immediate offer to get some free training if you need it.
Included in the Quick Start lesson is everything required to ensure you know how to set up Database
as a Service. Those items include setting up SSH and using PuTTY, Creating a Service Instance,
Finding the Connection Details about your Database Instance, Enabling Secure Access, Connecting
via SQL Developer, Performing Operations on your Cloud Database, and Monitoring your Database
Service. Once you’re ready, click Get Started and then click Create Service to launch the Create
Database Cloud Service Instance wizard. Choose whether you want a VM preinstalled or want to set
it up using DBCA. Also choose a billing frequency, either hourly or monthly. Click Next, and choose
either 11g (11.2.0.4) or 12c (12.1.0.2) as the database and then choose the edition of the database
(Figure 1-4).

FIGURE 1-4. Choose the edition of the database (pricing differs for each).

Click Next, and on the Service Details page, choose the service name, size/shape of the server
(very price specific), passwords, backup and recovery configuration, whether you’ll use an encrypted
file to build the database from your on-premises database, etc. You can also set up a Standby
Database using Data Guard, enable GoldenGate, and install the demo PDB. Click Next, and you’ll
see that the process of building your Database Service is in progress (Figure 1-5) and then you will
be told that your database is ready to use.

FIGURE 1-5. A Database Cloud Service instance being created

You’ve now successfully created an Oracle Database Cloud Service instance! You can use Oracle
Enterprise Manager (OEM) to manage the Cloud Database with the pull-down menu (see Chapter 5
for OEM details that can be monitored). Click Open OEM Console to see details of your database
(Figure 1-6 shows that my database has been up over 234 days). Also note that many of the settings
and locations for files and the default that you would use if you installed the database.

FIGURE 1-6. Information in the OEM Express Console in the cloud

From the screen shown in Figure 1-6, I can click “CDB (2 PDBs)” and get to the details of the
containers. Note that one of the PDBs is the DEMOS PDB that I chose to install when I created the
Database Cloud Service instance and the other is PDB1. I can take a look at Memory Management to
see the various settings and allocation of memory similar to OEM in my on-premises database. You
have many different choices (see the discussion of OEM in Chapter 5 for greater detail). You can
easily check things like memory initialization parameters to see if the In-Memory Size is set (if you
are using the In-Memory column store. You can then click Set to change a parameter.

Similar, but separate from OEM, you can also use a new tool within Oracle Management Cloud
called Application Performance Monitoring (APM, shown in Figure 1-7) to see greater detail in the
cloud at every tier of operations. This is a cloud-only product. It shows performance and details at
the database, application server, application, and even page level of the customer screen (thanks
Oracle for this screenshot and the next one).

FIGURE 1-7. Application Performance Monitoring (APM), a cloud-only product

You can also get additional details of the customer experience in viewing the application with a

special focus on the application web page, as shown in Figure 1-8.

FIGURE 1-8. APM customer shopping cart

By using this information, you can gauge the customer experience and limit problems with speed or
errors before the customer complains.

The Oracle Cloud is here to stay! As the next few years go by, Oracle will accelerate their cloud
and mobile offerings. It’s important to become educated on all of these products so that you can
discern for your company which products fit now and which ones require a wait-and-see approach.
See Chapter 11 for additional screenshots and information.

 PDB Level: MEMORY_LIMIT and
MEMORY_MINIMUM (12cR2)
In addition to the new MEMORY_TARGET initialization parameter to set all of memory for Oracle
SGA+PGA, there are PDB-specific parameters to ensure a minimum amount and a maximum setting.
Those parameters set at the PDB level using resource plan directives are

 MEMORY_LIMIT Limits the PDB to this percentage of PGA+SGA

 MEMORY_MINIMUM Guarantees the PDB this percentage of PGA+SGA
You’ll also see in the In-Memory Database section in this chapter that there is an

INMEMORY_SIZE parameter both at the CDB level and at the PDB level. Initialization parameters
are covered in Chapter 4.

The following are some other 12cR2 new features with pluggable databases (see Chapter 3 for
detailed coverage):

 The source no longer needs to be read-only when cloning a PDB (point-in-time clone).
 You can do a PDB refresh of clones manually or automatically (they must be read-only).
 You can create a class of PDB (Gold/Silver/Bronze) by setting

DB_PERFORMANCE_PROFILE and then using Resource Manager to set directives for each
class of PDB.

 You can do a FLASHBACK of a PDB and restore points to only that PDB!
 You can build a subset standby of just one or a portion of your PDBs!
 You can now have 4096 PDBs, not just 252.

 Change Compression at Import Time
You use the impdp command-line option (or use DBMS_DATAPUMP) with the
TABLE_COMPRESSION_CLAUSE to change the compression at import time. This is especially
helpful for Exadata migrations where more compression options (HCC) are available. You can see
listed below the following quick impdp example of changing the EMPLOYEES table to be
NOCOMPRESS and the many options settings for the TABLE_COMPRESSION_CLAUSE:

The next basic example demonstrates using impdp and COMPRESS to compress the DEPT2 table
as it’s being imported (note that the output below the impdp statement shows that the table is being
transformed and compressed):

 Adaptive Query Optimization
The Adaptive Query Optimization feature in Oracle Database 12c allows the optimizer to adjust the
execution plan, even changing join methods, during runtime. This featured is on by default and utilizes
discovery of additional information that can ultimately lead to better statistics. This additional
information allows the optimizer to adjust query plans and is very useful in situations where current
statistics are not enough to get an optimal plan. The two main components that adaptive query
optimization focused on improving is the execution time of the query and checking adaptive statistics
(ensuring the expected statistics are the actual statistics when the query is running). Adaptive
statistics can also provide additional information for future executions. By getting more information
and utilizing the information better over time, better query adjustments can be made, thereby
improving execution plans, which can improve query performance. This feature is covered in detail
in Chapter 8, but a few notes are listed here:

 Adaptive Query Optimization allows the optimizer to adjust the execution plan at runtime
when additional/better information is available. Oracle will then use Adaptive Plans based on
that information. Those plans may employ different Join Methods (i.e., change NL to HASH
“on the fly”) or different parallel query distribution. With adaptive statistics, the optimizer
adapts plans based on not just the original tables’ statistics, but also additional adaptive
statistics. Dynamic statistics are gathered, automatic reoptimization occurs on the very next
execution, and SQL plan directives allow for permanent changes based on those new statistics.

 Adaptive plans do not pick the final plan until execution time based on statistics collectors.
Information learned at execution time is used in future executions. You’ll see the following in
the EXPLAIN PLAN table output (in the Note section):

 There are three types of adaptive statistics:
 Dynamic statistics (previously dynamic sampling in 10g/11g) or runtime statistics
 Automatic reoptimization of statistics generated after the initial execution
 SQL plan directives direct the optimizer to use dynamic statistics and get accurate

cardinality for the future.
In 12cR2, Oracle introduced Continuous Adaptive Query Plans (CAQP) where certain queries,

based on input data, can benefit from continuous adaptive join methods (such as a recursive WITH
that has different input data compared to previous iterations).

 PGA_AGGREGATE_LIMIT
In 11g, you could set a target for the PGA with the initialization parameter
PGA_AGGREGATE_TARGET. In 12c, there is a new initialization parameter called
PGA_AGGREGATE_LIMIT to limit how high this value will go. The PGA makes up part of the
MEMORY_TARGET. See Chapter 4 for a full discussion of initialization parameters, but here’s a
quick example:

When PGA_AGGREGATE_LIMIT is not set, it defaults to the largest of 2G, 200 percent of
PGA_AGGREGATE_TARGET, or 3M times the number of processes.

 Concurrent Execution for UNION/UNION ALL
Typically, the sections of a UNION and UNION ALL were executed serially; now with Oracle 12c
the database is able to run the sections within a UNION and UNION ALL in parallel, which can
greatly improve performance.

 Invoker Rights Function Can Be Results Cached
The Results Cache can apply to both definer and invoker. This allows the results of all functions to
utilize the Result Cache, helping to improve performance of function executions that have repeated

executions. The results in the Results Cache, however, are not passed between the instances within a
RAC cluster.

 New DBMS_UTILITY.EXPAND_SQL_TEXT
This new feature is a big help for performance tuning when queries are using views. This allows the
expanding of views to the base tables, which will allow better SQL performance investigation by
being able to see the tables that make up the views to investigate table ordering, index utilization, and
join types.

 Default for Columns Based on Sequence
You no longer need to fetch a sequence value manually or through a trigger. This feature allows a
column to be based on a sequence, which means a sequence can now be populated without the use of
an INSERT trigger or the application having to prefetch the value from a sequence. For example:

 Multiple SSD Devices for Smart Flash Cache
This feature improves the Smart Flash Cache feature to be able to utilize multiple SDD devices. The
main challenge prior to this was that you needed to create an SSD disk device and utilize it for the
Smart Flash Cache. However, to get larger spaces you sometimes had to use a volume manager, as the
Smart Flash Cache could only use a single location. Now we can define and use multiple locations
for the Smart Flash Cache. For example, the following sets the initialization parameters to use
multiple devices with multiple sizes:

 Concurrent Cost-Based Optimizer Statistics

Gathering
The gathering of statistics before Oracle 12c was a serial operation and therefore gathering cost-
based optimizer statistics could take a very long time on a large database. In Oracle 12c, we can now
gather cost-based optimizer statistics on multiple tables or multiple partitions of the same table in
parallel.

To use this feature:

 Enhanced System Statistics
Enhanced system statistics in 12c allow the cost-based optimizer to account for storage hardware in
query plan generation. The enhanced system statistics can now recognize the speed of the database
storage and utilize that when making plan determinations. This is very useful for environments where
SSD and other fast storage solutions such as Exadata are utilized. You get better-performing SQL by
generating plans that understand that faster disk speeds may allow scan operations and hash joins to
perform faster than normal storage solutions.

To use this feature:

There is also an Optimizer Statistics Advisor (in 12cR2) that tracks historical information on how
statistics are gathered, the quality of the statistics gathered, and the status of automatic stats gathering.
The advisor then suggests changes based on Oracle best practices, providing a report as well as a
SQL script to run (see the Oracle Database Performance Tuning Guide for more information).

 Resource Manager for Runaway Queries
The Resource Manager is a tool that creates limits for queries (and/or users) to prevent long-running,
unimportant, resource-intensive queries from affecting the performance of the entire database. It also
prevents one query from stopping an entire system. The database administrator can proactively
prevent runaway queries by setting limits that are automatically enforced based on query thresholds
(such as estimated execute time, actual execution time, amount of CPU used, physical I/Os used, and
logical I/Os used). Based on the defined thresholds, once a query exceeds a threshold, the query will
automatically be switched to a lower-priority consumer group or you can kill the session running the
query, etc. The following example will kill a session that exceeds 60 seconds of CPU time:

 Automatic Data Optimization (ADO)
In 12c, we are given the ability to implement automatic data lifecycle management. The Automatic
Data Optimization feature allows for policies that will automatically move data between storage tiers
and compression levels. This is done through the ilm_clause of the CREATE and ALTER table
statements. The feature determines when data meets the policy standard for movement by the Heat
Map, which tracks changes to the table and table partitions. There are two types of policies, a
table_compression or tiering_clause. When data meets the policy, the data is either compressed row
level or segment level, or is moved to a new storage tier based on the policy criteria supplied in the
AFTER clause of the policy.

Some parts of the ilm_clause are as follows:

 ADD_POLICY Specify the policy to add to the table.

 DELETE Delete a policy from the table.

 ENABLE Enable a policy for the table.

 DISABLE Disable a policy on the table.

The following are some parts of the AFTER clause of the policy:

 LOW ACCESS For policy to take effect after a period of time of low table access

 NO ACCESS For policy to take effect after a period of time of no table access

 NO MODIFICATION For policy to take effect after a period of time with no table changes

 CREATION For policy to take effect after a period of time after table creation

This example shows how to compress a row after it has not been modified for seven days:

 Global Index Maintenance: Drop and Truncate
Partition Operations
With 12c when you drop or truncate a partition, the global indexes are no longer invalid and managed
automatically. Keep in mind that TRUNCATE now has a CASCADE function for tables, but you must
be careful with this!

 ASM Disk Scrubbing
In 12c, ASM has the ability to automatically repair logical corruption from the mirror disk within
ASM. This feature can auto check, auto detect, and auto repair the logical corruption through the
mirror that exists in normal and high redundancy diskgroups. See Chapter 3 for detailed ASM
information. Here is an example:

 Online Capability Improvements
Oracle Database 12c is taking availability to a new level with many new operations that can be
performed online:

 New DDL online capability commands:

 Drop index online
 Drop constraint online
 Set unused column online
 Alter index unusable online
 Alter index visible online
 Alter index invisible online

 Move database datafile online
 Move table partition online:
alter table dept move partition d1 tablespace data2 online;

 MERGE/SPLIT partitions online (12cR2)
 Change nonpartitioned tables to partitioned tables online (12cR2)

 Data Guard Improvements
There are several Data Guard improvements in 12c that are worth mentioning:

 Broker support for cascaded standby databases A standby database is tied off of a standby
database and not the primary. Redo is shipped to the first standby, and then the first standby
sends the redo to another standby.

 Real-time apply Now the default.

 Active Data Guard support for global temporary tables Capability to write to global
temporary tables when a physical standby is open in read-only mode and applying logs.

 Active Data Guard real-time cascade A cascaded standby can get real-time apply via redo
and no longer has to wait for standby archive redo log. This keeps the cascaded standby
database more in sync with the primary database. (Note: Requires Active Data Guard
License.)

 Disaster protection during rolling database upgrade The standby can continue to receive
redo while the database is in upgrade mode.

 Broker support for rolling database upgrade The broker configuration no longer has to be
rebuilt after a rolling database upgrade.

 RMAN Improvements
These are the notable RMAN improvements in 12c:

 Active database duplication improvements SECTION SIZE can be used to parallel an active
duplicate with very large datafiles. This supports compression during the restore, which helps
reduce duplicate time by better using the network.

 Cross-platform backup and restore Allows the backup from one platform to be restored on
another platform without any extra work.

 Table-level recovery Enables recovery of a table or set of tables using an RMAN backup
directly using RESTORE TABLE.

 Pluggable database backup and recovery A new feature added to support the PDB feature of
12c, allows a backup, restore, and recovery of a single PDB. It also allows a backup of a
single tablespace within a CDB or PDB. Examples of this include the following:

 BACKUP PLUGGABLE DATABASE pd1, pd3
 BACKUP TABLESPACE USERS
 BACKUP TABLESPACE pb1:SYSASUX

 Network-enabled restore Adds the ability to restore/recover one or more datafiles from a
live database or running standby database. This feature supports compression and mutisection
operations as well.

Oracle Database 12cR1 (12.1.0.2)
Oracle Database 12cR1 (12.1.0.2) is often referred to as the In-Memory (IM) version of Oracle.
Oracle made it possible to have an additional memory area for data warehousing operations. This
area is a compressed memory area with an In-Memory column store. In this area you are able to place
specific columns in memory for faster warehousing applications while continuing to use Oracle’s
original memory area for transactional queries, as in past versions.

 In-Memory Database
This is by far the best new feature for improving database performance in 12c. This capability is
perfect for many types of workloads and, best of all, does not require any application changes to
make use of it. Describing this new feature in full could fill an entire chapter, therefore we will cover
it in more detail in Chapter 4.

This feature is made possible through the unique dual memory areas. The first is the main database
memory cache (it used to be the only one) where the Oracle queries for individual rows are
maintained primarily for OLTP (DB_CACHE_SIZE of the SGA). The second area is a new In-
Memory column store (set using the INMEMORY_SIZE initialization parameter), which gives the
capability to store compressed column(s) from tables (and other objects) and is primarily used for
analytical processing (making it fast to perform functions on just a column). Now Oracle maintains
both the row and columnar formats at the same time without any changes to the application. You can
enable this feature without having to change a single line of code in your applications. It also is fully

compatible with all existing Oracle database features and options, and can be used with RAC,
partitioning, compression, pluggable databases, Exadata, and so on.

The In-Memory database option is an In-Memory column store that is an addition to the database
System Global Area (SGA) buffer cache. It is known as the In-Memory (IM) area or the In-Memory
column store. This will not “double” memory requirements for the database. It is estimated that only
20 percent overhead is expected to make full use of this feature with a huge impact. This feature
maintains the buffer cache as it normally would in a row-format-based store, which is most efficient
for DML activity. However, at the same time it will maintain a columnar-based format (the data is
also compressed), which is most effective for query and analytical activities. Not all tables or
columns should be part of the In-Memory area. The IM should only be populated with the tables that
are most critical to overall database performance related to analytics. When the IM and the buffer
cache are combined with now lower-cost flash storage, huge performance improvements can be
realized. The In-Memory database option is turned on by setting the INMEMORY_SIZE to a non-zero
value (don’t set this until you are ready to be licensed for it). It must be set to at least 100M and it is
part of the SGA_TARGET (and therefore the MEMORY_TARGET depending on if one or both of
these parameters are used). Figure 1-9 shows an SGA which is using the In-Memory column store as
set below using the INMEMORY_SIZE initialization parameter.

FIGURE 1-9. SGA listing showing the In-Memory area

The following is an example of using this new feature (see Chapter 4 for setting initialization
parameters):

For an object to be populated in the new In-Memory area, the INMEMORY attribute is set for the
given object. Setting the attribute can be a default at the tablespace level, for a table, set for specific
column(s) of a table, and partition(s) of a table. Here are some examples:

The In-Memory area has the option for objects to be populated immediately upon database startup
or when the object is first read/queried. This is controlled by the PRIORITY keyword. It allows some
objects to be immediately populated to the In-Memory area upon database startup so that those
objects are in memory upon first access, which helps avoid the performance hit of a first-time read.
The PRIORITY keyword also allows you to assign to objects a priority for entering the In-Memory
column store. This is all controlled by the following five priority levels, which control the loading of
objects into the In-Memory area:

 CRITICAL Object is populated immediately after the database is opened.

 HIGH Object is populated after all CRITICAL objects have been populated, if space remains
available in the IM column store.

 MEDIUM Object is populated after all CRITICAL and HIGH objects have been populated, if
space remains available in the IM column store.

 LOW Object is populated after all CRITICAL, HIGH, and MEDIUM objects have been
populated, if space remains available in the IM column store.

 NONE Objects only populated after they are scanned for the first time (default), if space is
available in the IM column store.

Setting the priority determines how and when the objects are loaded into the In-Memory column
store and in which order. For example, to set mytable into the In-Memory column store at database
startup (to be one of the first loaded), set the priority to CRITICAL:

The In-Memory area also is compressed and creates In-Memory compression units. There are
several In-Memory compression options:

 NO MEMCOMPRESS Data is populated without any compression

 MEMCOMPRESS FOR DML Minimal compression optimized for DML performance

 MEMCOMPRESS FOR QUERY LOW Optimized for query performance (default)

 MEMCOMPRESS FOR QUERY HIGH Optimized for query performance and space saving

 MEMCOMPRESS FOR CAPACITY LOW Balanced, with a greater bias toward space
saving

 MEMCOMPRESS FOR CAPACITY HIGH Optimized for space saving

By default, the In-Memory compression is FOR QUERY LOW. This provides the best performance
while still getting some benefits from compression. The amount of compression experienced can vary
anywhere from 2× to 20× and is based on data type, compression type, and the physical data within
the table. The following example shows how we can apply compression, as well as other In-Memory
settings, all in the same operation. In this example, we specify where we do not want In-Memory for
a large LOB column (c4) and that we want to compress the table for In-Memory at QUERY HIGH, but
want to use CAPACITY HIGH for column c2.

Oracle also automatically creates and maintains storage indexes on each column in the In-Memory
Compression Unit (IMCU). The performance benefits for In-Memory get even better with these
storage indexes (as needed based on queries), which allow data pruning from the SQL WHERE
clause directly. This lessens the number of rows returned to the optimizer. SIMD (single instruction,
multiple data values) vector processing scans multiple data values in the same CPU instruction (this
is commonly used in gaming; consider the online game League of Legends has 27M daily users). In-
Memory joins take advantage of Bloom filters to transform a join and improve the overall
performance during the scan of larger tables. In 12cR2, the join group (column joined between two
tables) is also compressed so that decompression is not needed when tables are joined (a potential
issue prior to 12cR2). Also in 12cR2 is the ability to have In-Memory virtual columns, and Active
Data Guard can now use the In-Memory column store while open in read-only mode.

In 12cR2, Automatic Data Optimization (covered in Chapter 3) is extended to manage the In-
Memory column store moving objects like tables and partitions in and out of memory based on the
Heat Map statistics. In 12cR2, you can now dynamically resize the INMEMORY_SIZE while the
system is running, provided you have the memory available in SGA_TARGET (and
MEMORY_TARGET). In-Memory is supported with PDBs since 12.1.0.2, and 12cR2 Data Guard
can now use the In-Memory column store. You can also now use DBMS_STATS functions on In-
Memory statistics. While statistics are managed automatically by Oracle based on objects In-Memory
and evictions, in 12cR2, Oracle has improved the transparency of the statistics.

 Advanced Index Compression
Oracle 12.1.0.2 improved index compression so that the size of all indexes is reduced, including

those that did not benefit from prior index compression due to not having leading columns in the index
that repeated. Even unique indexes are smaller and benefit from this new index compression.

 Automatic Big Table Caching
Database 12c adds a big table cache that provides huge performance improvements for full table
scans where the table being scanned will not fit inside the database buffer cache. To turn this feature
on, set the DB_BIG_TABLE_CACHE_PERCENT_TARGET initialization parameter to the amount of
the database buffer cache memory that should be targeted for use. The
PARALLEL_DEGREE_POLICY initialization parameter must be set to AUTO or ADAPTIVE as
well for the feature to be turned on.

 FDA Support for Container Databases
Flashback Data Archive now provides support for multitenant database configurations (pluggable
databases).

 Full Database Caching
This feature provides the ability to cache the entire database in memory. With server RAM
capabilities getting larger, some databases really are able to completely fit in the server RAM. In a
RAC environment where services divide the application data to multiple database instances, the
ability to fit in the combined RAC configuration is even more likely. Keep in mind that there is
additional room required for duplicate blocks/objects across the instances, so the combined RAM of
the buffer caches has to be larger than the database. This new feature can provide huge performance
boosts to database performance by eliminating I/O to disks or flash.

 JSON Support
Oracle 12c added support for storing JavaScript Object Notification (JSON). The Oracle database
allows the storage and enforcement of JSON rules for JSON objects stored in the database. It also
allows the access to the data stored via PATH notation and integrated into SQL.

 FIPS 140 Parameter for Encryption
Oracle 12c has a new parameter, DBFIPS_140, which provides the ability to utilize the Federal

Information Processing Standards (FIPS) 140 cryptographic processing mode. This feature allows
companies and government agencies to meet this standard.

 PDB Subset Cloning
PDB subset cloning enables you to specify the tablespaces that need to be available in a new
pluggable database via the USER_TABLESPACES clause. This can be used in cases where you have
a schema that is divided by tablespace that will go into multiple pluggable databases.

 Rapid Home Provisioning—Creating “Gold Images”
Rapid Home Provisioning (RHP) provides the ability to have multiple predefined ORACLE_HOMEs
creating “gold_image” homes stored in a catalog of pre-created ORACLE_HOMEs. This allows
ORACLE_HOMEs to be provisioned from the catalog of “gold images.” This decreases deployment
or ORACLE_HOMEs to new environments and updating of ORACLE_HOMEs based on updates to
the “gold images” and sharing, which can reduce storage space.

Oracle Database 12cR2 (12.2)
Oracle Database 12cR2 is the version of Oracle that most companies will migrate to and continue to
run for many years. Oracle 12cR2 has many new features that enhance pluggable databases and the In-
Memory column store. There are also additions that make it easier to move things to and from the
cloud in this release. Additionally, there are many security enhancements.

 Application Development
In addition to some of the features listed above, there are some fantastic features for the developers
as well. While I will cover some of the SQL and PL/SQL improvements, they are too numerous to list
them all here.

Improved SQL and PL/SQL
Improvements in SQL and PL/SQL are always welcome. PL/Scope Reports allow common SQL
statements within PL/SQL code to be identified. This includes SELECT, INSERT, UPDATE, and
DELETE statements. The reporting identifies the statement type, SQL text, and the sql_id of the
statement. This is useful when you identify a poorly performing SQL statement and need to identify all
PL/SQL locations where that SQL is utilized (which is achieved via the new DBA_STATEMENTS
view).

There is an enhancement of the CAST function with error handling so that a user-specified value

can be returned when a conversion error happens, rather than an error. The next highlight for SQL and
PL/SQL is a new function that will allow you to pass a value and determine if it can be converted to a
requested data type.

The best enhancement in 12cR2 is that a 32K VARCHAR is available by default. This allows the
extending of the VARCHAR data types without having to enable the extended mode specifically.

Approximate query processing is a new feature that counts distinct values and adds approximate
percentile aggregation. This allows faster processing of large data sets using approximation instead
of exact aggregation. Since this is an aggregation, it is not assured to be completely accurate;
however, in most cases it is very close and acceptable considering the large performance boost it
provides. Note that the results returned are 100 percent accurate—only how the query is processed is
approximated (lowers time to figure out how to execute the query efficiently). In 12cR2, there are
additional approximate percentile functions and the capability to reuse approximate aggregations for
multiple queries (via materialized views and query rewrite).

Instead of using this to achieve 100 percent accuracy:

 Enhanced Features to Reduce Costs and Issues for
Migration to Oracle
In 12c, object names for users, roles, tables, columns, indexes, constraints, and so forth have been
increased from 30 bytes to 128 bytes, with a few limitations. The limit for tablespace names and
pluggable databases is still 30 bytes, but others all increase to 128 bytes. You will notice this change
in the dictionary views, where the VARCHAR2 columns will show as 128 bytes instead of 30 bytes.
This is to overcome some limitations for multibyte character set languages, where in some languages,
when non-Unicode, the name fits fine, but changing database to Unicode character set the name
became too long. It also helps in migrations from non-Oracle systems where the name is longer than
30 characters.

 Availability
There are several improvements to increase availability when implemented. Many options will

accelerate Active Data Guard adoption such as accepting more data types, distributed transaction
support, and a compare tool. Logical replication and more ONLINE operations will help keep your
system up 24/7.

Accelerated Active Data Guard Adoption—12cR2 Improvements
There are several improvements in 12cR2 focused on the adoption of the Active Data Guard option.
Distributed transactions are now allowed on CLOB, BLOB, and XMLType data types. Distributed
transactions are transactions that occur over a database link. These new capabilities for these data
types over database links open the possibility for more transactions over database links. This
flexibility is important for pluggable databases, especially where schemas that used to live in the
same database and could communicate directly and share data now go across database links, as they
now live in separate PDBs.

Next, there is an improvement to multi-instance redo apply. In prior releases, RAC primary
databases funneled all redo apply to a single standby instance. This limited the standby apply to one
instance. With 12cR2, redo apply can be configured to one or more instances on the standby side,
which allows redo apply performance to scale where previously, in some cases, the standby would
fall behind when it was doing multiple instance redo apply on a single instance on the standby. Also,
allowing multi-instance standby databases is incorporated into the broker so that broker configuration
can handle multi-instance apply.

On Oracle Data Guard for Data Warehouses, we now have NOLOGGING operations on the
primary that can be tracked. Originally, blocks on the standby would be marked unrecoverable when
NOLOGGING was used on the primary. With the new tracking, Data Guard can track the blocks for
loads with NOLOGGING and, using RMAN, recover the blocks using the new RMAN command
RECOVER DATABASE NOLOGGING.

There is also an Oracle Data Guard Database compare tool that compares the blocks in a primary
database to the blocks in a physical standby database. This helps to find disk errors that otherwise are
not located by tools such as DBVERIFY. The DBA can now identify block issues in a standby that
could otherwise be missed, ensuring the standby has no physical corruption.

With pluggable databases, Oracle 12cR2 introduces the concept of a subset standby. This allows a
standby database in a multitenant environment to have a standby without having to take all the PDBs
into the standby. Keep in mind this impacts switchover and failover operations, so you should
understand the impact that only a subset of PDBs has on switchover and failover operations.

In 12cR2, the Data Guard Broker can handle multiple automatic failover targets for fast-start
failover capability. When multiple standby databases exist and have multiple fast-start failover
targets, if one standby is not in a state to fail over, another standby allows the failover to complete to
this alternate standby rather than having the failover outright fail. The Data Guard Broker also now
supports multiple observers from many fast-start failover configurations.

Data Guard now supports the ability to transport redo to a database destination with a different
Endian than the primary. This is to allow the redo transport to the Zero Data Loss Recovery
Appliance (ZDRLA), where the Endian format is different from that of the primary database.

Lastly, Data Guard provides an auto sync of database password files between primary and
standby. This feature will automatically sync the password file between the primary and standby
databases in a Data Guard Configuration when the password file changes on the primary.

Best-of-Breed Logical Replication
Oracle Database 12cR2 made some improvements geared toward replication, including GoldenGate.
GoldenGate integrated capture mode error-handling improvements have been made to allow the
viewing of conflict management configuration within the database using a new set of views:

 DBA_APPLY_REPERROR_HANDLERS
 DBA_APPLY_HANDLECOLLISIONS
 DBA_APPLY_DML_CONF_HANDLERS
 DBA_APPLY_DML_CONF_COLUMNS

GoldenGate also adds a new view for conflict detection and resolution exception handling:
DBA_APPLY_EXCEPTIONS

There is also the ability to handle DDL with Oracle GoldenGate Integrated Replicat using a stored
procedure, as well as the ability to replicate procedure executions for certain DBMS packages such
as DBMS_REDEFINTION.

Online Operations
Several improvements have been made to improve availability in Database 12cR2, including many
operations that can be performed online. Oracle now also introduces the ability to restart a
redefinition from a failure. There is also the ability to roll back a redefinition using
DBMS_REDEFINITION.ROLLBACK, which essentially swaps the original table back into place.
There is also a redefinition progress-monitoring capability view (V$ONLINE_REDEF). The
redefinition has support for BFLIE columns in tables.

Some of the online features include the online conversion of a nonpartitioned table to a partitioned
table, and the ability to online split or merge a partition or subpartition of a partitioned table.

We can now move a table to a new tablespace online, which helps reduce downtime when we do a
table reorg/move. We can also move to a new tablespace using information lifecycle management
with no outages.

Recovery Server and RMAN Improvements
RMAN improvements in Database 12cR2 include disk space checking for the recover table feature
and the ability to import pluggable databases into a multitenant database across platforms. This
allows cross-platform migration by plugging the database into a new container database on a different
platform (or the cloud). There is also support for cross-platform migration for encrypted tablespaces,
enabling you to migrate databases to a new platform where encrypted tablespaces are utilized. There
is DUPLICATE command support for encrypted backups that are not auto login wallet based. Lastly,
there is cross-platform migration support (over the network) allowing a duplicate over the network in
that process. See Oracle-specific documentation on these new very helpful improvements.

Sharding
Sharding is the concept of physically dividing the database objects for an entire application between
multiple separate databases called shards (for horizontal scaling). From the application point of
view, things are presented as a single large database (logically). This has been done for applications
and environments for a long time before RAC and other cluster solutions became available (to scale
an application without using sharding). However, 12cR2 adds capabilities to sharding for automated
deployments, high-performance routing, and lifecycle management. Sharding is used for OLTP
applications as a way to scale at the database level and is designed to be used with applications that
were specifically designed to be sharded. See Oracle documentation for further details.

Simplified Upgrades and Data Redaction for Testing
Upgrade improvements include online patching for critical updates so that security patches no longer
should require database downtime! Oracle Data Guard Rolling Upgrade now has Label Security
support and Database Vault support, therefore databases using Label Security and/or Database Vault
can now perform rolling upgrades. Database Vault now has support for flashback operations such as
PURGE TABLE, PURGE TABLESPACE, PURGE RECYCLEBIN, and PURGE
DBA_RECYCLEBIN. Oracle also provides a DBMS_REDACT package for Data Redaction
(DBMS_REDACT is now available in 11g and 12cR1 because it was backported). This is great for
testing! You can also GRANT only READ privilege, instead of SELECT (which could be used to
lock a table with SELECT...FOR UPDATE).

 Big Data
One of the biggest paradigm shifts in the business world is the rapid shift to finding, retaining, and
helping customers through the use of big data. Oracle has several new features that help companies
use big data along with the Oracle database. Oracle also offers solutions to securely access big data
from the Oracle database, eliminating the massive security hole that big data created in most IT
systems.

Big Data Management: External Tables Can Access Data Stored in
Hadoop
Oracle Database 12cR2 has incorporated some improvements geared toward “big data” such as
partitioned external tables, which allows you to map partitioned Hive tables into the Oracle
environment and also allows you to define partitioning on top of Hadoop Distributed File System
(HDFS). These features extend external tables to access data stored in HDFS and HIVE via the
external table functionality of the Oracle database. In 12cR2, there is also Parallel Query Services for
Oracle RAC environments with read-only nodes. This allows a RAC environment with read-only
nodes to spread parallel query execution across many read-only nodes within a RAC cluster. This in
turn allows large amounts of data to be queried very quickly.

Enhanced Query Processing and Optimization
The Oracle database is constantly being enhanced with improvements that help performance. In
12cR2, the following are enhanced query processes and optimization improvements:

 Optimizer Statistics Advisor Provides a way for the database to track and analyze how the
optimizer statistics are collected and then utilize that information to report issues with current
statistics collection and make suggestions for improvement.

 SQL Plan Management Has been enhanced to be able to use AWR data as a source for SQL
plan baselines.

 Compression and Archiving
Oracle also improved the storage and speed of accessing data. With Oracle you store much more data
in less space due to compression algorithms that Oracle employs. Oracle also allows different ways
to archive information.

Hybrid Columnar Compression (HCC) Improvements
Oracle 12cR2 adds the capability for HCC to be used with array-level inserts, essentially allowing
HCC compression with the SQL INSERT SELECT without having to use the APPEND hint. This also
applies to array-level inserts from applications using the Oracle Call Interface (OCI) and PL/SQL.
Oracle Database 12cR1 introduced the ability to do information lifecycle management within the
database (ADO). With 12cR2, HCC can compress data with a ADO row-level policy.

Index Compression Enhancements
In Oracle 12c, better index compression is available with the HIGH compression option now
available for compressing indexes (LOW compression is the default). Since index reads are a huge
activity for most databases, compressing indexes can offer performance improvements as well as disk
space improvements.

 Oracle RAC and Grid Infrastructure
Oracle has also made many improvements to ASM, including better use of “gold images.” ASM
continues to be the standard when setting up Oracle.

Automatic Storage Management
Oracle 12cR2 adds a few improvements for Automatic Storage Management (ASM), such as ASM
Split Mirror for Oracle Exadata. This feature supports the split of an ASM mirror to allow a read-

only copy for an Exadata clone-db copy.
Another improvement is the Flex disk group quota management in ASM. The “Flex” disk groups

allow the control of storage consumption by a database via a “quota” in environments where multiple
databases utilize the same ASM disk groups. Additionally, “Flex” disk groups offer the capability to
prioritize rebalance operations. This will be useful in multitenant environments because not all
databases in a multitenant environment need the same priority (due to differences in the critical nature
of the PDBs to the business).

Rapid Home Provisioning and Patch Management
A “gold image” of Oracle database software and Grid homes can be used to automatically provision,
patch, and upgrade the ORACLE_HOMEs from the “gold image.”

 Security
Oracle has led the way in database security for over forty years! Many newer Wall Street backed
databases lack even basic security that Oracle employed decades ago. Despite that lead, Oracle
continues to implement better security with every version of the database with the expansion of TDE,
encryption at multiple object levels, and encryption at the chip level with the M7.

Increase Adoption of Encryption
Oracle Database 12cR2 adds the ability to encrypt, decrypt, and rekey tablespaces with Transparent
Data Encryption (TDE). This allows a live conversion and initial encryption of a tablespace to a new
encrypted tablespace, allowing easy deployment of TDE into the database. This also allows the
encryption keys to be rotated without downtime, which allows keys to be changed, for security
reasons, without impact to availability. You can also set the INACTIVE_ACCOUNT_TIME
parameter within a user profile to lock out a login if it’s been idle for a specified amount of time.

Also, SYSTEM, SYSAUX, and UNDO can have tablespace encryption applied to them. In prior
versions, we could have encrypted tablespaces, but the database in SYSTEM, SYSAUX, and UNDO
was left unencrypted.

New Background Processes in 12c
Here is a table listing the new Oracle Background Processes in 12c.

Exadata—New with Exadata X6!
Oracle 12cR2 was officially released on September 18, 2016 on cloud-first and on an Exadata
Database Machine. Oracle is officially a software, cloud, and hardware company! Exadata is
introduced in this first chapter because hardware determines where you tune next (Chapter 11 looks at
Exadata and Cloud in detail). Oracle has accelerated the hardware world in the same way they
accelerated the software world. Exadata is great, but HP, EMC, IBM, and many others continue to put
out great hardware to run your Oracle database. The Exadata X6-2 (just came out in 2016) has 14.6T

of DRAM and an all flash option with 179.2T of all flash storage, or 1.3P of disk storage (although
higher numbers are possible in other configurations). It also has around 1200 CPUs when you count
the ones on the storage as well. Speed ranges from 2M to over 5M reads or writes per second.

The Exadata X6 got a CPU upgrade using the latest 22-core Intel Xeon E5-2699 v4 processors,
which gives each Exadata compute node 8 extra cores per server over the X5 but gives each core a
boost in performance as well. The storage cell CPUs got an upgrade using the latest 10-core Intel
Xeon E5-2630 v4 processors. This is a big improvement over the older 8-core processors used in the
X5, which was the same as in the X4. This is a welcome improvement in core performance and an
increase of 4 cores per storage cell, which should help those times we have seen the storage cell
performance on a Hybrid Columnar Compressed table using a Smart Scan (in the past hindered by
CPU in the storage).

Storage has been significantly increased for both Flash and High Capacity storage. Flash has been
increased from 1.6T per flash card to 3.2T per flash card, which doubles the size of the solid-state
storage for the Exadata X6 over the X5. There are four flash cards per server, increasing flash storage
per server from 6.4T per server to 12.8T per server. The full rack has a total of 179.2T of flash
(230T of all flash in some configurations). The High Capacity disk size has been increased to 8T,
which is double the size of the X5, which was 4T. The X6-2 has a maximum disk storage capacity of
1.344P (1.7P in some configurations is possible).

The upgraded storage cell performance allows you to apply an upgrade in just over an hour. In the
past, storage cell upgrades have taken over 2 hours, so in some cases this has been cut in half. Storage
indexes are now preserved through a cell reboot; until now you always lost your storage indexes
when you rebooted a cell. This means not only that you can upgrade your storage cell software in an
hour, but that the storage cells indexes are still safe after the cell reboots as part of the upgrade.
Another huge improvement for the storage indexes is that they will also now move along with the data
for device-predictive or true failures. This means that when a drive fails, the storage indexes are not
lost and move along with the data to another drive.

Using the Oracle Exadata Deployment Assistant, you can set up VLAN tagging; prior to this any
VLAN tagging had to be done after the initial installation and setup of the Exadata.

The capacity on-demand minimums have been slightly adjusted. The minimum for an X6-2 is 14
cores per server, and the X6-8 minimum cores total is 56. This makes the minimum basically the same
as the X5 even though there were core count increases in the X6.

Version Comparison Chart
The following chart shows which components or options are available in the various editions of
Oracle 12c (and if they are an additional cost). Note that a free limited version of Oracle called
Oracle Express Edition (XE) is also available; in 11g, it had an 11G database, 1 CPU, and 1G of
memory. This is subject to change for 12c, so please check Oracle.com to verify any features. If you
can afford it, you definitely want the Enterprise Edition! This chart shows features that are available
for a given version of Oracle, but keep in mind, some cost extra to add (i.e., RAC, Oracle Tuning
Pack, Advanced Compression, In-Memory column store, Multitenant [pluggable databases], etc.).
Standard Edition (SE/SE1) is available for 12.1.0.1 and Standard Edition 2 (SE2) is available
starting with 12.1.0.2. Consult with your salesperson for pricing and licensing and see
www.oracle.com/us/products/database/index.html for the latest information.

http://www.oracle.com/us/products/database/index.html

This is by no means a complete list of features in Oracle Database 12c. Overall, Oracle has made
major strides in providing enhanced functionality and automating many administrative tasks, reducing
the total cost of ownership. RAC and Grid Computing are mature technologies that have now been
extended to multitenant and the cloud. Oracle is leading the effort at integrating this technology and
engineering it together with their Exadata and Exalogic, providing features like Flash Data

Compression, Hybrid Columnar Compression, and Hybrid Columnar Compression Row-Level
Locking.

New Features Review
 12cR2 increases the size limit for VARCHAR2 and NVARCHAR2 to 32K.
 In 12c, there is a feature for partial indexes on partitioned tables.
 In 12cR2, new partitioning features include: SPLIT and MERGE partitions online, convert

nonpartitioned tables to partitioned tables online, and leverage read-only partitions.
 In 12cR1 you can build multiple indexes on a column by leveraging invisible indexes.
 For fast testing, you can fetch first x rows, and also skip rows before fetching them.
 You can change the compression of a table at import time (great for migrations).
 Pluggable databases are new with 12c and help with consolidation or moving to the cloud.
 PGA_AGGREGATE_LIMIT now limits the PGA original set with

PGA_AGGREGATE_TARGET in 12cR1.
 Oracle now has an Adaptive Query Optimization method that changes a driving method for

queries to fix slow queries (as they are executing).
 There is a new Resource Manager for preventing runaway queries.
 In 12.1.0.2, Oracle introduced the In-Memory (IM) column store, giving the ability to have an

In-Memory data warehouse (columns are stored compressed in this new memory area).
 The source no longer needs to be read-only when cloning a PDB (point-in-time clone).
 You can do a PDB refresh of clones manually or automatically (they must be read-only).
 You can do a FLASHBACK of a PDB and restore points to only that PDB in 12cR2. This can

be done using the SCN, Restore Point, Clean Restore Point, or Guarantee Restore Point. You
can also use local UNDO in 12cR2.

 You can build a subset standby of just one or a portion of your PDBs in 12cR2.
 You can now have 4096 PDBs, not just 252, in 12cR2.
 Oracle introduced a number of online operations in 12cR2.
 Oracle now features sharding for horizontal scaling.
 Oracle provides a big data management system infrastructure including a feature that uses

external tables to read Hadoop data.
 With Oracle Database 12cR2 the ability to encrypt, decrypt, and rekey tablespaces with

Transparent Data Encryption (TDE) has been added.
 Oracle added a number of new background processes in 12c, detailed in this chapter.
 X6-2 is what is new with Exadata, including over 1P of storage or 180T of flash. Oracle also

has an all-flash server (FS1), which includes around 1P of flash.

References
My Oracle Support documents (several listed in the chapter).
Rich Niemiec, “Oracle 12c New Features,” Oracle OpenWorld Presentation, 2015.
Oracle Database Administrator’s Guide, 12c Release 1 (12.1) (Oracle Corporation).
Oracle Database Administrator’s Guide, 12c Release 2 (12.2) (Oracle Corporation). Oracle
Database New Features Guide, 12c Release 1 (12.1) (Oracle Corporation).
Oracle Database New Features Guide, 12c Release 2 (12.2) (Oracle Corporation).
Oracle Database SQL Language Reference, 12c Release 2 (12.2) (Oracle Corporation).
“Oracle Database In-Memory,” an Oracle White Paper, July 2015.

Many thanks to Mike Messina, who did half of the upgrade of this chapter to Oracle 12c! Thanks to
Jacob Niemiec for providing Figure 1-1, created in Blender.

T

CHAPTER
2

Basic Index Principles (Beginner Developer
and Beginner DBA)

his chapter is neither for the experts nor for those looking for fast answers. This is a chapter
(maybe the only one) that looks at very basic indexing theory, including some new features
in version 12c Release 2 (12cR2), such as multiple types of indexes on the same column(s).
The toughest part of being a beginner is finding information that will fill in the most basic

gaps and enable visualization of Oracle’s indexing capabilities. This chapter is intended to serve that
purpose. While a considerable amount of material is published at the intermediate and advanced
level, the beginner’s information that is useful is usually scarce, yet highly desirable. Chapter 5 has
additional index information on query tuning and the Access Advisor (using Cloud Control—or as
some still call it, Oracle Enterprise Manager [OEM]), which suggests indexes that should be created.
Chapters 8 and 9 cover specific query tuning and driving tables (which heavily influence which
indexes are used). Index information related solely to Exadata or the Oracle Cloud is located in
Chapter 11.

Oracle offers a variety of indexing options. Knowing which option to use in a given situation can
be crucial to an application’s performance. A wrong choice may cause performance to come to a
grinding halt or cause processes to be terminated because of deadlock situations. By taking processes
that previously took large amounts of resources and hours or even days to run and having them finish
in minutes can make you an instant hero. This chapter will discuss each of the indexing options and
point out the benefits and limitations of each. The introduction of the invisible index in Oracle
Database 12cR2 adds a new way to turn off unused or potentially harmful indexes before you delete
them (when you are sure that you don’t need them). Tips covered in this chapter include the
following:

 Basic index concepts
 Leveraging invisible indexes
 Multiple indexes on the same column(s)—12c only
 Finding which tables are indexed and which have concatenated indexes
 How concatenated indexes are used
 The Oracle ROWID
 Using functions and indexes

 How to avoid comparing unmatched data types, causing index suppression
 Cluster factors as an index strategy
 Using the INDEX_STATS view
 The binary height of an index
 About histograms
 Fast full scans
 How to use the index skip-scan feature
 Explanation of b-tree indexes
 When to use bitmap indexes
 When to use hashing indexes
 When to use the index-organized table
 When to use reverse key indexes
 When to use function-based indexes
 Local and global partitioned indexes
 Additional 12cR2 features on partitioned tables

Basic Index Concepts
When accessing data from tables, Oracle has two options: to read every row in the table (also
referred to as a full table scan) or to access a single row at a time via ROWID. When accessing a
small percentage of the rows of a large table, you would want to use an index. For example, if you
only wanted to select 5 percent of the rows in a very large table, you would do fewer I/Os if you used
the index to identify which blocks to read. If you don’t use an index, you will read all of the blocks in
the table (this changes with INMEMORY; see Chapter 4 for more information).

The degree to which indexes help performance depends partly on the selectivity of the data and the
way in which the data is distributed among the table’s blocks. If the data is very selective, there will
be few rows in the table that match the indexed value (such as a passport number). Oracle will be
able to query the index quickly for the ROWIDs that match the indexed value, and the small number of
related table blocks can be quickly queried. If the data is not very selective (such as the country
name), then many ROWIDs may be returned by the index, resulting in many separate blocks being
queried from the table.

If the data is selective but the related rows are not stored near each other in the table, then the
benefit of indexing is further reduced. If the data that matches the indexed value is scattered
throughout the table’s blocks, then you may have to select many individual blocks from the table to
satisfy your query. In some cases, you will find that when the data is dispersed throughout the table’s
blocks you are better off bypassing the index and performing a full table scan instead (or doing an
INMEMORY scan). When doing a full table scan, Oracle uses a multiblock read, enabling it to scan a
table quickly. Index-based reads are single-block reads, so your goal when using an index should be

to reduce the number of single blocks needed to resolve the query.
With some of the options available in Oracle, such as partitioning, parallel DML, parallel query

operations, and larger I/O using the DB_FILE_MULTIBLOCK_READ_COUNT, the balance point
between full table scans and index lookups is changing. Hardware is getting faster, disks cache more
information in on-disk caching, and memory and flash continue to get cheaper. At the same time,
Oracle has enhanced the indexing features to include skip-scan indexes and other internal operations
that reduce the time needed to retrieve your data.

TIP
As you upgrade Oracle versions, be sure to test your application’s queries to determine whether
the execution paths for your queries still use the indexes that were used prior to the upgrade. See
if the execution plan has changed and if it is better or worse.

Indexes will generally improve performance for queries. The SELECT statement, the WHERE
clauses of UPDATE commands, and the WHERE clauses of DELETE statements (when few rows are
accessed) can benefit from indexes. In general, adding indexes will decrease performance for
INSERT statements (since INSERTs to both the table and the index must be performed). UPDATEs of
indexed columns will be slower than if the columns were unindexed because the database has to
manage the changes to both the table and the index. Additionally, DELETEs of large numbers of rows
will be slowed by the presence of indexes on the table.

A DELETE statement deleting half of a table will also need to delete half of the rows for the index
(very costly for this specific situation). In general, every index on a table slows INSERTs into the
table by a factor of 3. Two indexes generally make the INSERT twice as slow as one does; however,
a two-column single index (either concatenated index or two-part single index) is not too much worse
than a one-column single index (a one-part single index). UPDATEs of the indexed columns and
DELETEs may be similarly slowed. You need to balance the query performance benefits of indexes
against their impact on your data manipulation performance.

To get a listing of all of the indexes on a table, query the DBA_INDEXES view. Also, note that
you can retrieve the indexes for your schema by accessing USER_INDEXES. To see the indexes on
all tables to which you have access, query ALL_INDEXES.

Shown here, for example, is a creation of indexes on the EMP table owned by SCOTT from the
original Oracle demo tables provided as part of the product. You can use any of the old or new demo
tables to test queries:

When you issue those commands, the database creates two separate indexes on the EMP table.
Each of the indexes contains the specified values from the EMP table along with the ROWID values
for the rows that match them. If you want to find an EMP record that has a SAL value of 1000, the

optimizer could use the EMP_ID2 index to find that value, find the related ROWID in the index, and
then use that ROWID to find the right row(s) in the table.

The following USER_INDEXES (you could also look in DBA_INDEXES) query shows the new
indexes on the EMP table:

The output shows the two indexes, but it does not show the columns in each index. To get the specific
columns that are indexed for a given table for the current user, access the USER_IND_COLUMNS
view. Also note that DBAs can retrieve the columns that are indexed for all schemas by accessing
DBA_IND_COLUMNS, and you can see the indexed columns for all of the tables you can access via
ALL_IND_COLUMNS. To get the specific columns that are indexed for a given table, access the
USER_IND_COLUMNS view, shown next.

The EMP table has two indexes. The first, EMP_ID1, is a concatenated index that indexes the
EMPNO, ENAME, and DEPTNO columns. The second, EMP_ID2, indexes the SAL column only.
The COLUMN_POSITION displayed in the listing shows the order of columns in a concatenated
index—in this case, EMPNO, then ENAME, then DEPTNO.

TIP

Query DBA_INDEXES and DBA_IND_COLUMNS to retrieve a list of the indexes on a given table.
Use USER_INDEXES and USER_IND_COLUMNS to retrieve information for only your schema.

Invisible Indexes
Deciding which columns to index is hard. The primary key is automatically indexed, the foreign keys
should also be indexed, but then what? Even more difficult is deciding which index to remove that
might be a bad index. Every time a record is inserted, all of the indexes have to be updated. If the
column of an index is updated, the index has to be updated. Deciding which index to drop without
causing a slew of full table scans or Cartesian joins for subsequent user queries is difficult,
especially when tuning third-party applications where the code cannot be changed. The solution just
might be the invisible index! Oracle allows you to turn off the index (make it invisible), yet continue
to maintain the index (during any DML operation—INSERT/UPDATE/DELETE) in case you need to
turn it back on quickly. You can do this by making the index visible or invisible:

 ALTER INDEX idx1 INVISIBLE;
 ALTER INDEX idx1 VISIBLE;
 CREATE INDEX … INVISIBLE;

The following query shows the creation of a new invisible index on the DEPTNO column of the EMP
table and subsequent query where the index is not seen:

I can still force the use of the index if I use a hint. This only worked in the earliest versions of 11g

with an INDEX hint; in 12cR2, with a USE_INVISIBLE_INDEXES hint—or by setting the
initialization parameter OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE (see Appendix A):

If I make the index visible, I no longer need to use the hint:

I can also use the NO_INDEX hint to turn off an index (before making it invisible) to see if another

index (or no other index) will be used, other than the one that I intend to make invisible. In other
words, use any index except the one listed in the NO_INDEX hint. Here is an example:

I can make the index invisible again at any time:

I can check visibility by querying USER_INDEXES or DBA_INDEXES:

TIP
By using invisible indexes, you can “turn off” indexes temporarily (make them invisible) to check
how queries perform without them. Because invisible indexes continue to be maintained while

invisible, turning them back on (making them visible again), if needed, is easy.

Multiple Types of Indexes on the Same Column(s)
There can be multiple types of indexes on the same column(s), but only one index may be set to
visible at the same time, unless the other index is a function-based index (since a function-based
index isn’t really on the same column; it’s on the function of the column). This feature is great for
variable workloads on the same table. It is great to use different types of indexes for batch, query, or
data warehousing at different times of the day or night. There are some restrictions: For a given
column(s), you cannot create a B-tree and B-tree cluster index. Also, you cannot create a B-tree and
an index-organized table (IOT). All indexes are maintained during DML operation (even when set to
invisible). Keep in mind, DML operations may run slow if too many indexes are created.

The following is a basic SELECT to DEPT table that we will use for the examples in this section:

First, create a unique index into which duplicates may not be inserted:

Even if indexes are set to invisible, duplicates still cannot be inserted:

The following example checks to see that the indexes are set to invisible:

We can’t create another index on the same column:

But, we can if we make the first index invisible and then create the second index:

Now if we check our index views, we find two indexes are on the exact same column:

If we try to make both indexes visible, it will result in an error, as shown next. Only one index may
be visible at a time (except function-based indexes).

Note that despite a unique index (that is invisible), only the visible index is used:

To add a third index, we must make the first two indexes invisible:

It is possible to create two visible indexes on a column at once, if one of those indexes is a
function-based index. Let’s make the third index invisible and add a fourth (and fifth):

Now when we check the index views, we see that we have five indexes on the same column, with
two (one being a function-based index) indexes being visible:

TIP
By using invisible indexes, in 12c, you can now create multiple indexes on the same column or
columns. This can be helpful with variable workloads. Perhaps use a b-tree index for the daily
workload and use a reverse key index at night. But, keep in mind that there is internal index
maintenance and also costs for INSERT, DELETE and when you update the indexed column on all
of these indexes.

Concatenated Indexes
When a single index has multiple columns that are indexed, it is called a concatenated or composite
index. While Oracle’s introduction of skip-scan index access has increased the optimizer’s options
when using concatenated indexes, you should be careful when selecting the order of the columns in
the index. In general, the leading column of the index should be the one most likely to be used in
WHERE clauses and also the most selective column of the set.

Prior to the introduction of skip-scan functionality, queries could only use the index if the leading
column of the index was in the WHERE clause. Consider the example in the following listing where
the EMP table has a concatenated index (three parts) on EMPNO, ENAME, and DEPTNO. Note that
EMPNO is the first part; ENAME is the second part; and DEPTNO is the third part. If you are not
making use of the skip-scan functionality, Oracle will generally not use this index unless your
WHERE clause specifies a value for the leading column (EMPNO).

Since ENAME is not the leading column of the index, the optimizer may elect not to use the index.
With the skip-scan functionality the optimizer may choose to use the index, even though an EMPNO
value is not specified in the WHERE clause. Instead, the optimizer could choose to perform a fast full
scan of the index or a full scan of the table.

The same holds true if the third column of the index is used in the WHERE clause:

In this listing, the WHERE clause specifies a value for the third column in the index. The optimizer
may select to perform an index skip-scan access, an index fast full scan, or a full table scan. By
creating the index, you have given the database more choices to consider when executing the query,
hopefully improving overall performance. Note that the user’s code does not change; the optimizer is
aware of the index and bases its decisions on the anticipated cost of each alternative.

In the following example, a part of the index is used. The leading column, EMPNO, is used as a
limiting condition in the WHERE clause so that Oracle can use the first part of the index (if the
second part, ENAME, was in the WHERE clause in addition to EMPNO, it would use two parts; if
all three parts were there, it would use the whole index—the best and most limiting solution). In this
example, we just use the first part of the index by a condition on EMPNO:

The two most common types of index scans are unique scans and range scans. In a unique scan, the
database knows that the index contains a list of unique values. In a range scan, the database returns
multiple values from the index according to the query criteria. To create a unique index, use the
CREATE UNIQUE INDEX command when creating the index.

When you create a primary key or a UNIQUE constraint, Oracle automatically creates a unique
index based on the columns you specify (unless the constraint is created with the DISABLE clause). If
you create a multicolumn primary key, Oracle creates a concatenated index with the columns in the
same order in which you specified them when creating the primary key.

Creating range scan indexes provides Oracle with the ability to access a single row of data by
supplying the ROWID of the individual row as it is returned for a given query. The ROWID is a
pointer directly to the physical location of the individual row.

TIP
Avoid hard-coding Oracle’s ROWID into specific code. The ROWID structure in the past has
changed from version to version and will probably change again in future releases. I recommend
never hard-coding a ROWID.

Suppressing Indexes
Unintentionally suppressing indexes is one of the most common mistakes made by an inexperienced
developer. SQL contains many traps that cause indexes not to be used. Some of the most common
problems are discussed in the following sections.

The Oracle optimizer works behind the scenes to try to choose and exploit the most effective
methods possible for retrieving your data. For example, there are multiple cases in which you don’t
need to specify a WHERE clause for Oracle to use an index. If you query the MIN or MAX value of
an indexed column, Oracle retrieves that value from the index rather than from the table. Similarly, if
you perform a COUNT function on an indexed column, Oracle can count the index instead of the
column. In the following sections, you will see situations in which the logic of the WHERE clause
prevents Oracle from using an index.

 Using the NOT EQUAL Operators: <>, !=
Indexes can only be used to find data that exists within a table. Whenever the NOT EQUAL operators
are used in the WHERE clause, indexes on the columns being referenced cannot be used. Consider the
following query on the CUSTOMERS table, which has an index on the CUST_RATING column. The
following statement would result in a full table scan (since most records would usually be retrieved)
even though the CUST_RATING column has an index:

When you analyze your tables, Oracle collects statistics about the distribution of data within the
table. Using that analysis, the cost-based optimizer may decide to use the index for some values in
your WHERE clause but not for other values. During application development and testing, you should
use a representative set of rows so you can simulate the actual distribution of data values in the
production environment.

TIP
You can create your indexes and analyze them in a single step by using the COMPUTE
STATISTICS clause of the CREATE INDEX command, but, as of 10g, Oracle always computes
statistics on all index create/rebuild operations when the index is not empty. You can also import
statistics from a production database to test out execution paths (refer to the Oracle 12cR2
Database Performance Tuning Guide). Oracle 12cR2 also has a V$INDEX_USAGE_INFO view for
additional information.

 Using IS NULL or IS NOT NULL
When you use IS NULL or IS NOT NULL in your WHERE clauses, index usage is suppressed
because the value of NULL is undefined. There is no value in the database that will equal a NULL
value; not even NULL equals a NULL.

NULL values pose several difficulties for SQL statements. Indexed columns that have rows
containing a NULL value do not have an entry in the index (except for bitmapped indexes—which is
why bitmap indexes are usually fast for NULL searches). Under normal circumstances, the following
statement would cause a full table scan to be performed, even if the SAL column is indexed:

To disallow NULL values for the columns, use NOT NULL when creating or altering the table.
Note that if the table already contains data, you can only set a column to NOT NULL if it has a non-
NULL value for every row or if you use the DEFAULT clause of the ALTER TABLE command. The
following listing shows the modification of the EMP table’s SAL column to disallow NULL values:

Note that an error will be returned if insertion of a NULL value is attempted for the SAL column.

TIP
Creating a table specifying NOT NULL for a column causes NULL values to be disallowed and
eliminates the performance problems associated with querying NULL values.

The following table creation statement provides a default value for the DEPTNO column. When a

value for the column is not specified during INSERTs, the default value is used. If a default value is
specified and you do want a NULL value, then you need to insert a NULL into the column.

TIP
NULL values often cause indexes to be suppressed. Create a table specifying NOT NULL and
DEFAULT for an unspecified column to help avoid a potential performance issue.

 Using LIKE
LIKE, in some cases, uses an index, while in others, it does not. The most common uses of LIKE are
LIKE ‘%somevalue%’ or LIKE ‘somevalue%’ (where the % is only at the end of the search string).
Only one of these cases uses the index—the case where the value is first, LIKE ‘somevalue%’.

Let’s examine this using a set of examples. First, create an index on the SCOTT.EMP table for the
ENAME column so you can use an index when looking up employee names. This allows you to see

when the index is used with a LIKE and when it is not.

Now let’s examine what happens when using LIKE with ‘%somevalue%’:

Now let’s put the value first, before the ‘%’:

Notice that when the ‘%’ appears first, the index is not used, but when you put the value first,
Oracle is able to utilize the index.

 Using Functions
Unless you are using function-based indexes, applying functions on indexed columns in the WHERE
clause of a SQL statement causes the optimizer to bypass indexes. Some of the most common
functions are TRUNC, SUBSTR, TO_DATE, TO_CHAR, and INSTR. All of these functions alter the
value of the column. Therefore, the indexes on the columns being referenced are not used. The
following statement causes a full table scan to be performed, even if there is an index on the
HIRE_DATE column (as long as it isn’t a function-based index):

Changing the statement to the following would allow for an index lookup:

TIP
By altering the values being compared to the column, and not the columns themselves, the indexes
become available. Use this to eliminate full table scans.

For further details on function-based indexes, see the “Function-Based Indexes” section later in
this chapter.

 Comparing Mismatched Data Types
One of the more difficult performance issues to resolve is caused by comparing differing data types.
Oracle does not complain about the types being incompatible—quite the opposite. For example,
Oracle implicitly converts the data in the VARCHAR2 column to match the numeric data type that it is
being compared to. Consider the following example where ACCOUNT_NUMBER is a VARCHAR2.

If the ACCOUNT_NUMBER column uses a VARCHAR2 data type, the following statement may
cause a full table scan to be performed, even if the ACCOUNT_NUMBER column is indexed:

Oracle internally changes the WHERE clause to be

which suppresses the index. An EXPLAIN PLAN of this query only shows that the table was
accessed using a “FULL SCAN” (usually to the coder’s bewilderment). To some DBAs and
developers, this appears to be a rare situation, but in many systems, numeric values are zero-padded
and specified as VARCHAR2. Rewrite the preceding statement as follows to use the index on the
account number by correctly including the single quote marks for the field:

Alternatively, the ACCOUNT_NUMBER column could be defined to use the NUMBER data type,
providing the leading zeros are not critical information for the column.

TIP
Comparing mismatched data types can cause Oracle to suppress an index internally. Even an
EXPLAIN PLAN on the query will not help you understand why a full table scan is being
performed. Only knowing your data types can help you solve this problem.

Selectivity
Oracle offers several methods to determine the benefit of using an index. Which method you should
choose depends upon both the query and the data. First, determine the number of unique or distinct
keys in the index. You can determine the number of distinct values by analyzing the table or the index.
You can then query the DISTINCT_KEYS column of the USER_INDEXES view to examine the
results of the analysis. By comparing the number of distinct keys to the number of rows in the table (as
shown in the NUM_ROWS column of USER_INDEXES), you can determine the index’s selectivity.
The greater the selectivity, the better an index will be for returning small numbers of rows.

TIP
An index’s selectivity is what helps the cost-based optimizer determine an execution path. The
more selective the index is, the fewer the number of rows that are returned, on average, for each
distinct value. For concatenated indexes, the additional columns added to the index do not
improve the selectivity greatly, and the cost of the additional columns may outweigh the gain.

The Clustering Factor
The clustering factor is a measure of the ordered-ness of an index in comparison to the table that it is
based on. It is used to check the cost of a table lookup following an index access (multiplying the
clustering factor by the index’s selectivity gives you the cost of the operation). The clustering factor
records the number of blocks that will be read when scanning the index. If the index being used has a
large clustering factor, then more table data blocks have to be visited to get the rows in each index
block (because adjacent rows are in different blocks). If the clustering factor is close to the number of
blocks in the table, then the index is well ordered, but if the clustering factor is close to the number of
rows in the table, then the index is not well ordered. The clustering factor is computed by the
following (explained briefly):

1. The index is scanned in order.
2. The block portion of the ROWID pointed at by the current indexed value is compared to the

previous indexed value (comparing adjacent rows in the index).
3. If the ROWIDs point to different TABLE blocks, the clustering factor is incremented (this is

done for the entire index).

The CLUSTERING_FACTOR column in the USER_INDEXES view gives an indication as to how
organized the data is compared to the indexed columns. If the value of the CLUSTERING_FACTOR
column value is close to the number of leaf blocks in the index, the data is well ordered in the table. If
the value is not close to the number of leaf blocks in the index, then the data in the table is not well
ordered. The leaf blocks of an index store the indexed values as well as the ROWIDs to which they
point.

For example, say the CUSTOMER_ID for the CUSTOMERS table is generated from a sequence
generator, and the CUSTOMER_ID is the primary key on the table. The index on CUSTOMER_ID
would have a clustering factor very close to the number of leaf blocks (well ordered). As the
customers are added to the database, they are stored sequentially in the table in the same way the
sequence numbers are issued from the sequence generator (well ordered). An index on the
CUSTOMER_NAME column would have a very high clustering factor, however, because the
arrangement of the customer names is random throughout the table.

The clustering factor can impact SQL statements that perform range scans. With a low clustering
factor (relative to the number of leaf blocks), the number of blocks needed to satisfy the query is
reduced. This increases the possibility that the data blocks are already in memory. A high clustering
factor relative to the number of leaf blocks may increase the number of data blocks required to satisfy
a range query based on the indexed column.

TIP
The clustering of data within the table can be used to improve the performance of statements that
perform range scan–type operations. By determining how the column is being used in the
statements, indexing these column(s) may provide a great benefit.

The Binary Height
The binary height of an index plays a major role in the amount of I/O that needs to be performed to
return the ROWID to the user process. Each level in the binary height adds an extra block that needs
to be read, and because the blocks are not being read sequentially, they each require a separate I/O
operation. In Figure 2-1, an index with a binary height of three returning one row to the user would
require four blocks to be read: three from the index and one from the table. As the binary height of an
index increases, so does the amount of I/O required to retrieve the data.

FIGURE 2-1. Index with binary height or BLEVEL = 3 (Level 3 is where the leaf blocks reside.)

After analyzing an index, you can query the BLEVEL column of DBA_INDEXES to see its binary
height:

TIP
Analyzing the index or the table will provide the binary height of the index. Use the BLEVEL
column in the USER_INDEXES view to check the binary height of the indexes.

The binary height increases mainly because of the number of non-NULL values for the indexed
column in the table and the narrowness of the range of values in the indexed columns. Having a large
number of deleted rows in the index can also increase the height. Rebuilding the index may help to
decrease the height. While these steps reduce the number of I/Os performed against the index, the
performance benefits may be small. If the number of deleted rows within an index approaches 20–25
percent, then rebuild the indexes to help reduce the binary height and the amount of empty space that
is being read during an I/O.

TIP
In general, the larger the database block size, the smaller the binary height of the index. Each
additional level in binary height (BLEVEL) adds additional performance costs during DML
operations.

 Additional Details Concerning BLEVEL and Index
Height

The b-tree level (BLEVEL) is the depth of the index from its root block to its leaf blocks. A depth of
0 indicates that the root block and leaf block are the same. All indexes start out with a single leaf
node (block), which represents a b-tree level of 0. As rows are added to the index, Oracle puts the
data into the block/leaf node. Once the initial block fills as rows are inserted, two new blocks are
created. Oracle handles this in two ways, typically known as a 90-10 index split or a 50-50 index
split. Each type of split (only one or the other is executed) depends on the value being inserted:

 If the new value is greater than any values already in the index, then Oracle executes a 90-10
split by copying the values of the block into one of the new blocks and placing the new value
in the other block.

 If the new value being inserted is not the maximum indexed value, then Oracle splits the block
50-50. It places the lower half of the indexed values in one of the new blocks and the higher
half of the indexed values into the other new block.

The existing block, which was originally full, is updated to contain only pointers to the new leaf
nodes and becomes a branch, specifically the root branch of the index. The resulting index now has a
branch level of 1. As rows continue to be inserted into the index, when a leaf node fills, Oracle
creates a new leaf block. If the value being inserted is greater than any value currently in the leaf node
block, then Oracle places the new value into the new block. If the value is not MAX value, then
Oracle splits the values of the block in half (50-50) by value, keeping the lower values in the current
block and placing the higher values in the new block. Then the branch block for these leaf nodes is
updated with the pointer for the new block and existing block. This continues until the branch
node/block fills. When the branch node fills, the same block-split operation is performed. A new
branch block is added and half the block is copied to the new block and the other half remains in the
existing branch block. This does not increase either the height or BLEVEL of the index; it simply
provides a new branch for a query to take when traversing the index. Only when a root branch block
fills and splits does the height of the index increase.

NOTE
The only time two new blocks are created for an index is when the root branch block splits. The
content in the current root block is split between the two new branch blocks, which form the top
level of a higher index tree. The root block does not change its block address, and by adding two
blocks when the split occurs at the root, the index tree is always balanced.

Effects on Index from UPDATE Operations
The index is only affected by an UPDATE if the columns in the table that make up the index are
updated. Therefore, in many cases, UPDATE operations do not affect an index at all. When the table
columns that make up the index are updated, the operation within the index is a DELETE and
INSERT. The old value is marked as deleted, and a new value for the entry is inserted. Therefore, no
true “update” is performed within the index, in the way you would typically think of an update being
performed. Index entries are also cleaned out by Oracle’s delayed block cleanout feature. Only after

the index entry is deleted and the block cleaned can the space in the index block be reused by new
entries.

Effects on Index from DELETE Operations
DELETE operations for an index do not really remove the entry from the index to create empty space.
When a DELETE operation occurs on a row in the table, the corresponding index entry is marked as
deleted but remains in the index until it is cleaned out. The most common way to clean out an index
entry is during an INSERT operation on that block. Index entries are also cleaned out by Oracle’s
delayed block cleanout feature (this happens on a subsequent query, which could be a SELECT
statement). After the index entry is deleted and the block cleaned, the space in the index block can be
reused by new entries.

Effects on Index from UPDATE and DELETE Operations
There has been much debate and many myths about indexes regarding the effects DELETEs and
UPDATEs have on them. I have explained how basic DELETEs and UPDATEs work in Oracle
indexes, so let’s examine the true effect in detail. In DELETE operations, deletes are done by marking
the index entry as deleted in the index, meaning that DELETE operations leave behind data in the leaf
blocks that needs to be cleaned up. An INSERT operation in a leaf block, with rows marked for
deletion, forces the cleanout of these rows, allowing the space to be “reused” by further inserts in that
leaf block. Are there circumstances when that insert will not occur? Yes, but the index block is
eventually cleaned out by the delayed block cleanout process.

UPDATE operations, along with DELETEs/INSERTs within the same transaction, tend to increase
the size of an index greatly, but only if you perform these operations in large numbers within the same
transaction (which is not recommended anyway). DELETEs in and of themselves do not cause higher
index heights or BLEVELs, but are merely a symptom of the larger issue of reusing deleted row areas.
This means that a high number of DELETE operations or UPDATE operations, or a large number of
deleted/updated entries in a single transaction, can potentially cause the size, height, and BLEVEL to
increase (but Oracle does not recommend you perform lots and lots of DML operations within the
same transaction). The solution for this is to break up your transactions with commits, effectively
creating multiple transactions for larger numbers of DELETE+INSERT operations. This helps reuse
space and does not cause the index to grow artificially larger than it needs to be. This also explains
why large DELETE operations that contain large INSERTs within the same transaction usually cause
index growth.

In Oracle’s useful Ask Tom blog (https://asktom.oracle.com), Tom Kyte puts it this way:
Well, the fact is that indexes, like people, have a certain “weight” they like to be at. Some of us are
chubby—some skinny—some tall—some short. Sure, we can go on a diet—but we tend to gravitate
BACK to the weight we were. The same is true for indexes—what happened to this person is their
index wanted to be wide and fat and EVERY MONTH they rebuilt it (put it on a diet). It would
spend the first half of the month then getting fat again and generating gobs of redo due to the
block splits it was undergoing to get there.

The moral of the story is to use locally managed tablespaces to avoid fragmentation and to rebuild
indexes rarely (build them right the first time and only rebuild when performance degrades versus on

https://asktom.oracle.com

a regular basis).

Effects on BLOCKSIZE
As just covered, the height and branch level of an index only increase when a block split occurs and
causes all the branch blocks up to the root block to also be split. The number of block splits, or more
specifically, branch block splits, can be minimized by using larger block sizes for indexes. This is a
reason why some experts believe that indexes should be created in larger block size tablespaces. If
each block can hold more data, the need to split would occur far less frequently. Therefore, the
overall number of branches and leafs could be reduced. This greatly depends on the size of the data
for the indexed values—old block size versus new block size. Be careful when measuring the impact
of a higher block size tablespace on an index. Moving an index to a larger block size tablespace
involves rebuilding the index, which removes all entries marked for deletion and compresses space
within the index, reclaiming the space of not only entries marked for deletion, but also entries deleted
where space was not reclaimed or reused. Therefore, the full impact of a larger block size may not be
as expected or as impressive when you consider what is truly going to occur.

Using Histograms
Histograms record the distribution of data when you analyze a table or index. With this information in
hand, the cost-based optimizer can decide to use an index for conditions it knows will return a small
number of rows and bypass the index when the condition will return many rows based on the limiting
condition. The use of histograms is not limited to indexes. Any column of a table can have a histogram
built on it.

The main reason for generating histograms is to help the optimizer plan properly if the data in a
table is heavily skewed. For example, if one or two values make up a large percentage of a table, the
related indexes may not help to reduce the number of I/Os required to satisfy the query. Creating a
histogram lets the cost-based optimizer know when using the index is appropriate, or when 80 percent
of the table is going to be returned because of the value in the WHERE clause.

When creating histograms, specify a size. This size relates to the number of buckets for the
histogram. Each bucket will contain information about the value of the column(s) and the number of
rows.

The preceding query creates a ten-bucket histogram on the COMPANY table, as shown in Figure 2-2.
The values for the COMPANY_CODE column are divided into the ten buckets as displayed in the
figure. This example shows a large number (80 percent) of the COMPANY_CODE is equal to 1430.
As is also shown in the figure, most of the width-balanced buckets contain only 3 rows; a single
bucket contains 73 rows. In the height-balanced version of this distribution, each bucket has the same
number of rows and most of the bucket endpoints are 1430, reflecting the skewed distribution of the

data.

FIGURE 2-2. A histogram is built on a COMPANY_CODE field with a size of 10 (buckets).

Oracle’s histograms are height-balanced as opposed to width-balanced. Consequently, all of the
buckets in the histogram contain the same number of rows. The starting and ending points for a bucket
are determined by the number of rows containing those values. The width-balanced histogram
specifies the range values for each bucket and then counts the number of rows within that range, not an
ideal option.

TIP
If the data in a table is skewed, histograms will provide the cost-based optimizer with a balanced
picture of the distribution (by balancing it into buckets). Using the histograms on columns that are
not skewed will not provide an increase in performance.

TIP
By default, Oracle creates 254 buckets in a histogram. You can specify SIZE values ranging from 1
to 254.

Fast Full Scans
During a fast full scan of an index, Oracle reads all of the leaf blocks in a b-tree index. The index is
being read sequentially, so multiple blocks can be read at once. The
DB_FILE_MULTIBLOCK_READ_COUNT parameter in the initialization file controls the number of
blocks that can be read simultaneously. The fast full scan usually requires fewer physical I/Os than a
full table scan, allowing the query to be resolved faster.

The fast full scan can be used if all of the columns in the query for the table are in the index with
the leading edge of the index not part of the WHERE condition (you may need to specify the
INDEX_FFS hint as detailed in Chapter 7). In the following example, the EMP table is used. As
shown earlier in this chapter, it has a concatenated index on the columns EMPNO, ENAME, and
DEPTNO.

Because all of the columns in the SQL statement are in the index, a fast full scan is available. Index
fast full scans are commonly performed during joins in which only the indexed join key columns are
queried. As an alternative, Oracle may perform a skip-scan access of the index; the optimizer should
consider the histogram for the DEPTNO column (if one is available) and decide which of the
available access paths yields the lowest possible performance cost.

TIP
If the indexes are relatively small in comparison to the overall size of the table, the fast full scan
may provide the performance burst necessary for the application. With concatenated indexes that
contain most of the columns of a table, the index may be larger than the actual table and the fast
full scan could cause performance degradation.

Skip-Scans
As discussed in the section “Concatenated Indexes” earlier in this chapter, the index skip-scan feature
enables the optimizer to use a concatenated index even if its leading column is not listed in the
WHERE clause. Index skip-scans are faster than full scans of the index, requiring fewer reads to be
performed. For example, the following queries show the difference between a full index scan and a

skip-scan. See Chapter 6 to better understand the execution plan or the statistics displayed in the
following listing. In this listing, the EMP5 table has many hundreds of thousands of rows.

Following the execution of the queries, the listing shows the time the query took, its execution path
within the database, and statistics showing the number of logical reads (consistent gets) and physical
reads required to resolve the query:

As shown in the listing, the second option used an INDEX_SS (SKIP SCAN) operation to read the
index. That execution path required 21 logical reads, which, in turn, required 17 physical I/Os. The
first option performed an INDEX (FAST FULL SCAN) operation, which required a significantly
greater number of logical and physical I/Os.

To influence the optimizer to choose a skip-scan, you may need to use a hint in the query as shown
in the listing. The hint influences the optimizer and biases it toward the execution path you specify.

TIP
For large tables with concatenated indexes, the index skip-scan feature can provide quick access
even when the leading column of the index is not used in a limiting condition.

Types of Indexes
The following is a list of indexes discussed in this section:

 B-tree
 Bitmap
 Hash
 Index-organized table
 Reverse key
 Function-based
 Partitioned (local and global)
 Bitmap join indexes

 B-Tree Indexes
B-tree indexes are the general-purpose indexes in Oracle. They are the default index types created
when creating indexes. B-tree indexes can be single-column (simple) indexes or
composite/concatenated (multicolumn) indexes. B-tree indexes can have up to 32 columns.

In Figure 2-3, a b-tree index is created on the LAST_NAME column of the EMPLOYEE table.
This index has a binary height of three; consequently, Oracle must go through two branch blocks to get
to the leaf block containing the ROWID. Within each branch block, there are branch rows containing
the block ID of the next block ID within the chain.

FIGURE 2-3. B-tree index creation

A leaf block contains the index values, the ROWID, and pointers to the previous and next leaf
blocks. Oracle has the ability to transverse the binary tree in both directions. B-tree indexes contain
the ROWIDs for every row in the table that has a value in the indexed column. Oracle does not index
rows that contain NULL values in the indexed column. If the index is a concatenation of multiple
columns and one of the columns contains a NULL value, the row will be in the index and the column
containing the NULL value will be left empty.

TIP
The values of the indexed columns are stored in an index. For this reason, you can build
concatenated (composite) indexes that can be used to satisfy a query without accessing the table.
This eliminates the need to go to the table to retrieve the data, reducing I/O.

 Bitmap Indexes
Bitmap indexes are ideal for decision support systems (DSSs) and data warehouses. They should not
be used for tables accessed via transaction-processing applications. Bitmap indexes provide fast
access to very large tables using low to medium cardinality (low to medium number of distinct
values) columns. Although bitmap indexes can have up to 30 columns, they are generally used for a
small number of columns.

For example, your table may contain a column called GENDER with two possible values: male
and female. The cardinality would be only 2, and it would be a prime candidate for a bitmap index if
users frequently query the table by the value of the GENDER column. The real power of the bitmap
index is seen when a table contains multiple bitmap indexes. With multiple bitmap indexes available,
Oracle has the ability to merge the result sets from each of the bitmap indexes to eliminate the
unwanted data quickly.

The following listing shows an example of creating a bitmap index:

TIP
Use bitmap indexes for columns with a low cardinality. An example would be a column called
GENDER with two possible values of “male” or “female” (the cardinality is only 2). Bitmaps are
very fast for low-cardinality columns (few distinct values) because the size of the index is
substantially smaller than a b-tree index. Since they are very small when compared to a low-
cardinality b-tree index, you can often retrieve over half of the rows in the table and still use a
bitmap index.

Bitmap indexes usually outperform b-trees when loading tables (INSERT operations) in batch
(single-user) operations when the bulk of the entries do not add new values to the bitmap. You should
not use bitmap indexes when multiple sessions will be concurrently inserting rows into the table, as
occurs in most transaction-processing applications.

Bitmap Index Example
Consider a sample table called PARTICIPANT that contains surveys from individuals. Each of the
columns AGE_CODE, INCOME_LEVEL, EDUCATION_LEVEL, and MARITAL_STATUS has a
separate bitmap index built on it. The balance of the data in each histogram and the execution path for
a query accessing each of the bitmap indexes are displayed in Figure 2-4. The execution path in the
figure shows how the multiple bitmap indexes have been merged, creating a significant performance
gain.

FIGURE 2-4. Bitmap index creation

As shown in Figure 2-4, the optimizer uses each of the four separate bitmap indexes whose
columns were referenced in the WHERE clause. Each bitmap contains binary values (like 1 or 0) that
indicate which rows (often ranges of rows, making it smaller than a normal index) contain the indexed
value. Given that, Oracle then performs a BITMAP AND operation on the table containing the
indexed value. Given that, Oracle then performs another BITMAP AND operation to find which rows
would be returned from all four of the bitmaps. That value is then converted into a ROWID value and
the query proceeds with the rest of the processing. Note that all four of the columns had very low
cardinality, yet the index allowed the matching rows to be returned very quickly.

TIP
Merging multiple bitmap indexes can lead to significant performance improvement when combined
in a single query. Bitmap indexes also work better with fixed-length data types than they do with
variable-length data types. Large block sizes improve the storage and read performance of bitmap

indexes.

The following query displays index types. B-tree indexes are listed as ‘NORMAL’; bitmap
indexes will have an INDEX_TYPE value of ‘BITMAP’.

TIP
To query a list of your bitmap indexes, query the INDEX_TYPE column in the USER_INDEXES
view.

Bitmap indexes are not generally recommended for online transaction processing (OLTP)
applications. B-tree indexes contain a ROWID with the indexed value. So, when updating tables and
their indexes, Oracle has the ability to lock individual rows. Bitmap indexes are stored as
compressed indexed values, which can contain a range of ROWIDs. Therefore, Oracle has to lock the
entire range of the ROWIDs for a given value. This type of locking has the potential to cause
deadlock situations with certain types of DML statements. SELECT statements are not affected by this
locking problem. A solution to updates is to drop the index, do the updating in batch during off-hours,
and then rebuild the bitmap index (you could also add/drop an index on a column(s) that makes the
update faster possibly as well).

Bitmap indexes have several restrictions:

 Bitmap indexes are not considered by the rule-based optimizer.
 Performing an ALTER TABLE statement and modifying a column that has a bitmap index built

on it invalidates the index.
 Bitmap indexes do not contain any of the data from the column and cannot be used for any type

of integrity checking.
 Bitmap indexes cannot be declared as unique.
 Bitmap indexes have a maximum length of 30 columns.

TIP
Don’t use bitmap indexes in heavy OLTP environments. Bitmap indexes are often much smaller
than other indexes.

 Hash Indexes
Using hash indexes requires the use of hash clusters. I don’t see many people using these! When you
create a cluster or hash cluster, you define a cluster key. The cluster key tells Oracle how to store the
tables in the cluster. When data is stored, all the rows relating to the cluster key are stored in the same
database blocks, regardless of what table they belong to. With the data being stored in the same
database blocks, using the hash index for an exact match in a WHERE clause enables Oracle to
access the data by performing one hash function and one I/O—as opposed to accessing the data by
using a b-tree index with a binary height of three, where potentially four I/Os would need to be
performed to retrieve the data. As shown in Figure 2-5, the query is an equivalence query, matching
the hashed column to an exact value. Oracle can quickly use that value to determine where the row is
physically stored, based on the hashing function.

FIGURE 2-5. Using hash indexes

Hash indexes can potentially be the fastest way to access data in the database, but they do come
with their drawbacks. The number of distinct values for the cluster key needs to be known before
creating the hash cluster. This value needs to be specified at the time of creation. Underestimating the
number of distinct values can cause collisions (two cluster key values with the same hash value)
within the cluster, which are very costly. Collisions cause overflow buffers to be used to store the

additional rows, thus causing additional I/O. If the number of distinct hash values has been
underestimated, the cluster will need to be re-created to alter the value. An ALTER CLUSTER
command cannot change the number of HASHKEYS.

Hash clusters have a tendency to waste space. If it is not possible to determine how much space is
required to hold all of the rows for a given cluster key, space may be wasted. If it is not possible to
allocate additional space within the cluster for future growth, then hash clusters may not be the best
option.

If the application often performs full table scans on the clustered table(s), hash clusters may not be
the appropriate option. Because of the amount of empty space within the cluster to allow for future
growth, full table scans can be very resource-intensive.

Caution should be taken before implementing hash clusters. Revise the application fully to ensure
that enough information is known about the tables and data before implementing this option.
Generally, hashing is best for static data with primarily sequential values.

TIP
Hash indexes are most useful when the limiting condition specifies an exact value rather than a
range of values.

 Index-Organized Tables
An index-organized table alters the storage structure of a table to that of a b-tree index, sorted on the
table’s primary key. This unique type of table is treated like any other table—all DML and DDL
statements are allowed. ROWIDs are not associated with the rows in the table because of the
structure of the table.

Index-organized tables provide faster key-based access to the data for statements involving exact
match and range searches on the primary key columns. UPDATE and DELETE statements based on
the primary key values should perform better because the rows are physically ordered. The amount of
storage required is reduced because values of the key columns are not duplicated in the table and then
again in an index.

If you do not frequently query the data by the primary key column, then you will need to create
secondary indexes on other columns in the index-organized table. Applications that do not frequently
query tables by their primary keys do not realize the full benefits of using index-organized tables.
Consider using index-organized tables for tables that are always accessed using exact matches or
range scans on the primary key.

TIP

You can create secondary indexes on index-organized tables.

 Reverse Key Indexes
When sequential data is loaded, the index may encounter I/O-related bottlenecks. During the data
loads, one part of the index, and one part of the disk, may be used much more heavily than any other
part. To alleviate this problem, you should store your index tablespaces on disk architectures that
permit the files to be physically striped across multiple disks.

Oracle provides reverse key indexes as another solution to this performance problem. When data
is stored in a reverse key index, its values are reversed prior to being stored in the index. Thus, the
values 1234, 1235, and 1236 are stored as 4321, 5321, and 6321. As a result, the index may update
different index blocks for each inserted row.

TIP
If you have a limited number of disks and large concurrent sequential loads to perform, reverse
key indexes may be a viable solution.

You cannot use reverse key indexes with bitmap indexes or index-organized tables.

 Function-Based Indexes
You can create function-based indexes on your tables. Without function-based indexes, any query that
performed a function on a column could not use that column’s index. For example, the following query
could not use an index on the JOB column unless it is a function-based index:

The following query could use an index on the JOB column, but it would not return rows where the
JOB column had a value of ‘Mgr’ or ‘mgr’:

You can create indexes that allow function-based columns or data to be supported by index
accesses. Instead of creating an index on the JOB column, you can create an index on the column
expression UPPER(job), as shown in the following listing:

Although function-based indexes can be useful, be sure to consider the following questions when
creating them:

 Can you restrict the functions that will be used on the column? If so, can you restrict all
functions from being performed on the column?

 Do you have adequate storage space for the additional indexes?
 How will the increased number of indexes per column impact the performance of DML

commands against the table?

Function-based indexes are useful, but you should implement them sparingly. The more indexes
you create on a table, the longer all DML statements (INSERTs, UPDATEs, and DELETEs) will take.

NOTE
For function-based indexes to be used by the optimizer, you must set the
QUERY_REWRITE_ENABLED initialization parameter to TRUE.

To see the magnitude of the benefit of function-based indexes, consider the following example that
queries a table named SAMPLE that contains 1.4 million rows (note that you must first create the
RATIO function; it is not built in):

 Partitioned Indexes
A partitioned index is simply an index broken into multiple pieces. By breaking an index into
multiple physical pieces, you are accessing much smaller pieces (faster), and you may separate the
pieces onto different disk drives (reducing I/O contention). Both b-tree and bitmap indexes can be
partitioned. Hash indexes cannot be partitioned. Partitioning can work several different ways. The
tables can be partitioned and the indexes are not partitioned; the table is not partitioned but the index
is; or both the table and index are partitioned. Either way, the cost-based optimizer must be used.
Partitioning adds many possibilities to help improve performance and increase maintainability.

There are two types of partitioned indexes: local and global. Each type has two subsets, prefixed
and non-prefixed. A table can have any number or combination of the different types of indexes built
on its columns. If bitmap indexes are used, they must be local indexes. The main reason to partition
the indexes is to reduce the size of the index that needs to be read and to enable placing the partitions
in separate tablespaces to improve reliability and availability.

Oracle also supports parallel query and parallel DML when using partitioned tables and indexes
(see Chapter 11 for more information), adding the extra benefit of multiple processes helping to
process the statement faster.

Local (Commonly Used Indexes)
Local indexes are indexes that are partitioned using the same partition key and same range boundaries
as the partitioned table. Each partition of a local index will only contain keys and ROWIDs from its
corresponding table partition. Local indexes can be b-tree or bitmap indexes. If they are b-tree
indexes, they can be unique or non-unique.

Local indexes support partition independence, meaning that individual partitions can be added,
truncated, dropped, split, taken offline, etc., without dropping or rebuilding the indexes. Oracle
maintains the local indexes automatically. Local index partitions can also be rebuilt individually
while the rest of the partition is unaffected.

Prefixed Prefixed indexes are indexes that contain keys from the partitioning key as the leading edge
of the index. For example, let’s take the PARTICIPANT table again. Say the table was created and
range-partitioned using the SURVEY_ID and SURVEY_DATE columns and a local prefixed index is
created on the SURVEY_ID column. The partitions of the index are equipartitioned, meaning the
partitions of the index are created with the same range boundaries as those of the table (see Figure 2-
6).

FIGURE 2-6. Partitioned, prefixed indexes

TIP
Local prefixed indexes allow Oracle to prune unneeded partitions quickly. The partitions that do
not contain any of the values appearing in the WHERE clause will not need to be accessed, thus
improving the statement’s performance.

Non-prefixed Non-prefixed indexes are indexes that do not have the leading column of the
partitioning key as the leading column of the index. Using the same PARTICIPANT table with the
same partitioning key (SURVEY_ID and SURVEY_DATE), an index on the SURVEY_DATE column
would be a local non-prefixed index. A local non-prefixed index can be created on any column in the
table, but each partition of the index only contains the keys for the corresponding partition of the table
(see Figure 2-7).

FIGURE 2-7. Partitioned, non-prefixed indexes

For a non-prefixed index to be unique, it must contain a subset of the partitioning key. In this
example, you would need a combination of columns, including the SURVEY_DATE and/or the
SURVEY_ID columns (as long as the SURVEY_ID column was not the leading edge of the index, in
which case it would be a prefixed index).

TIP
For a non-prefixed index to be unique, it must contain a subset of the partitioning key.

Global
Global partitioned indexes contain keys from multiple table partitions in a single index partition. The
partitioning key of a global partitioned index is different or specifies a different range of values from
the partitioned table. The creator of the global partitioned index is responsible for defining the ranges
and values for the partitioning key. Global indexes can only be b-tree indexes. Global partitioned
indexes are not maintained by Oracle by default. If a partition is truncated, added, split, dropped, etc.,
the global partitioned indexes need to be rebuilt unless you specify the UPDATE GLOBAL INDEXES
clause of the ALTER TABLE command when modifying the table. With Oracle Database 12c, when
you drop or truncate a partition, the global indexes are no longer invalid and managed automatically.

Prefixed Normally, global prefixed indexes are not equipartitioned with the underlying table.
Nothing prevents the index from being equipartitioned, but Oracle does not take advantage of the
equipartitioning when generating query plans or executing partition maintenance operations. If the
index is going to be equipartitioned, it should be created as a local index to allow Oracle to maintain
the index and use it to help prune partitions that will not be needed (see Figure 2-8). As shown in the
figure, the three index partitions each contain index entries that point to rows in multiple table
partitions.

FIGURE 2-8. Partitioned, global prefixed index

TIP
If a global index is going to be equipartitioned, it should be created as a local index to allow
Oracle to maintain the index and use it to help prune partitions, or exclude those partitions that
are not needed by the query.

Non-prefixed Global non-prefixed indexes should not be used as Oracle does not support them. They
do not provide any benefits over normal B-tree indexes on the same columns, so they have no value.

 New 12cR2 Features for Partitioned Indexes

Several new features for partitioned tables are discussed in Chapter 3, which covers partitioned
tables in detail. Those new features affect the underlying partitioned index, so I list them here (see
Chapter 3 for more detail):

 SPLIT and MERGE PARTITION are now online operations for heap-organized tables.
 A nonpartitioned table can be converted online to a partitioned table (including indexes).
 List partitioning may now be on multiple partitioned columns.
 Composite partitioned tables may use list partitions on subpartitions.
 Partitions and subpartitions can be set to read-only.

TIP
In 12cR2 you can do an online conversion of a nonpartitioned table to a partitioned table,
including the indexes. You can also set partitions and subpartitions to be read-only.

 Bitmap Join Indexes
A bitmap join index is a bitmap index based on the join of two tables. Bitmap join indexes are used
in data warehousing environments to improve the performance of queries that join dimension tables to
fact tables. When creating a bitmap join index, the standard approach is to join a commonly used
dimension table to the fact table within the index. When a user queries the fact table and the
dimension table together in a query, the join does not need to be performed because the join results
are already available in the bitmap join index. Further performance benefits are gained from the
compression of ROWIDs within the bitmap join index, reducing the number of I/Os required to access
the data.

When creating a bitmap join index, you specify both tables involved. The syntax should follow this
model:

The syntax for bitmap joins is unusual in that it contains both a FROM clause and a WHERE
clause, and it references two separate tables. The indexed column is usually a description column
within the dimension table—that is, if the dimension is CUSTOMER and its primary key is
CUSTOMER_ID, you would normally index a column such as CUSTOMER_NAME. If the FACT
table is named SALES, you might create an index using the following command:

If a user then queries the SALES and CUSTOMER tables with a WHERE clause that specifies a
value for the CUSTOMER_NAME column, the optimizer can use the bitmap join index to return the
rows quickly that match both the join condition and the CUSTOMER_NAME condition.

The use of bitmap join indexes is restricted; you can only index the columns in the dimension
tables. The columns used for the join must be primary key or unique constraints in the dimension
tables, and if it is a composite primary key, you must use each of the columns in your join. You cannot
create a bitmap join index on an index-organized table, and the restrictions that apply to regular
bitmap indexes also apply to bitmap join indexes.

Fast Index Rebuilding
The REBUILD option of the ALTER INDEX statement is executed to rebuild an index quickly using
the existing index instead of the table:

Modifications to the STORAGE clause can be made at this time and the parallel option may also be
used.

TIP
Use the REBUILD option of the ALTER INDEX statement for quickly rebuilding an index using the
existing index instead of the table. You must have enough space to store both indexes during this
operation.

Rebuilding Indexes Online
You can create or rebuild indexes even when doing DML (INSERT/UPDATE/DELETE) statements
on the base table. However, rebuilding during low DML activity is still better. Prior to Oracle 11g,
this required an exclusive lock at the beginning and end of the rebuild. This lock could cause DML
delays and a performance spike. This lock is no longer required for this operation, and rebuilding

indexes online is now much faster! Rebuilding is also faster than a DROP and CREATE index.
Here’s the basic syntax:

Note that rebuilding an index is not the same as coalescing an index. A nice comparison is shown
here:

TIP
You can use the REBUILD ONLINE option to allow DML operations on the table or partition
during the index rebuild. You cannot specify REBUILD ONLINE for bitmap indexes or for indexes
that enforce referential integrity constraints.

TIP
Rebuilding indexes online during high levels of DML activity in 12cR2 is much faster than it was
in 10g.

Tips Review
 As you upgrade Oracle versions, be sure to test your application’s queries to determine

whether the execution paths for your queries still use the indexes that were used prior to the
upgrade. See if the execution plan has changed and if it is better or worse.

 Query DBA_INDEXES and DBA_IND_COLUMNS to retrieve a list of the indexes on a given

table. Use USER_INDEXES and USER_IND_COLUMNS to retrieve information for only
your schema.

 By using invisible indexes, you can “turn off” indexes temporarily (make them invisible) to
check how queries will perform without them. Since invisible indexes continue to be
maintained while invisible, turning them back on (making them visible again) if needed is fast
and simple.

 In 12c, invisible indexes are also the means for creating multiple indexes on the same
column(s). This allows for one type of index for daytime processing and another for nightly
processing, and perhaps even another type for monthly processing. Only one index may be
visible at a time (other than function-based indexes).

 You can create your indexes and analyze them in a single step by using the COMPUTE
STATISTICS clause of the CREATE INDEX command, but, as of 10g, Oracle always
computes statistics on all index create/rebuild operations when index is not empty.

 Using the default values clause for a table column causes NULL values to be disallowed and
eliminates the performance problems associated with using NULL values.

 By using functions (such as a TO_DATE or TO_CHAR) that alter the values being compared
to a column and not the columns themselves, the indexes are used. The indexes might have
been suppressed had you used the function on the column itself.

 Comparing mismatched data types can cause Oracle to suppress an index internally. Even an
EXPLAIN PLAN (covered in Chapter 6) on the query will not help you understand why a full
table scan is being performed.

 An index’s selectivity is what helps the cost-based optimizer determine an execution path. The
more selective, the fewer number of rows will be returned. Improve selectivity by creating
concatenated/composite (multicolumn) indexes.

 Analyzing the index or the table provides the binary height of the index. Use the BLEVEL
column in the USER_INDEXES view to check the binary height of the index.

 If the number of deleted rows within an index approaches 20–25 percent, rebuild the index to
help reduce the binary height and the amount of empty space that is being read during an I/O.

 If the data in a table is skewed, histograms provide the cost-based optimizer with a picture of
the distribution. Using the histograms on columns that are not skewed will not provide a
performance increase but will probably degrade it.

 For large tables with concatenated indexes, the index skip-scan feature provides quick access
even when the leading column of the index is not used in a limiting condition.

 The values of the indexed columns are stored in an index. For this reason, you can build
concatenated (composite) indexes that can be used to satisfy a query without accessing the
table. This eliminates the need to go to the table to retrieve the data, reducing I/O.

 Use bitmap indexes for columns with a low cardinality. An example is a column called
GENDER with two possible values of “male” or “female” (the cardinality is only 2).

 To query a list of your bitmap indexes, query the USER_INDEXES view.

 Don’t use bitmap indexes to avoid locking issues, where many INSERTs occur on tables, such
as heavy OLTP environments; learn the restrictions associated with bitmap indexes.

 Consider using index-organized tables for tables that are always accessed using exact matches
or range scans on the primary key.

 If you have a limited number of disks and large concurrent sequential loads to perform, reverse
key indexes may be a viable solution.

 For function-based indexes to be used by the optimizer, you must set the
QUERY_REWRITE_ENABLED initialization parameter to TRUE.

 Local prefixed indexes allow Oracle to prune unneeded partitions quickly. The partitions that
do not contain any of the values appearing in the WHERE clause will not need to be accessed,
thus improving the statement’s performance.

 Specify the UPDATE GLOBAL INDEXES clause of the ALTER TABLE command when
modifying a partitioned table. By default, you need to rebuild global indexes when altering a
partitioned table.

 Use bitmap join indexes to improve the performance of joins within data warehousing
environments.

 Use the REBUILD option of the ALTER INDEX statement for quickly rebuilding an index
using the existing index instead of the table.

 You can use the REBUILD ONLINE option to allow DML operations on the table or partition
during the index rebuild. You cannot specify REBUILD ONLINE for bitmap indexes or for
indexes that enforce referential integrity constraints. This option has been improved and is
faster and better in 12cR2.

 In 12cR2 you can do an online conversion of a nonpartitioned table to a partitioned table,
including the indexes. You can also set partitions and subpartitions to be read-only.

References
Rich Niemiec, “12c Best New Features!”, IOUG Conference Paper, 2015.
Ask Tom blog, https://asktom.oracle.com.
“B-tree,” http://www.wikipedia.org/wiki/B-tree#Insertion.
Kevin Loney and Bob Bryla, Oracle Database 11g DBA Handbook (Oracle Press, 2007).
My Oracle Support NOTE: 39836.1.
Rich Niemiec, “Expert Tuning Tips: Beginners Will Be Toast!”, IOUG Conference Paper, 2005.
Server Concepts and Server References (Oracle Corporation).
Greg Pucka, Oracle Indexing (TUSC), IOUG Conference Paper, 2003.
Server Concepts (Oracle Corporation).
Server Reference (Oracle Corporation).

Dave Radoicic did the main update for 12cR2. Greg Pucka contributed a major portion of this
original chapter. Kevin Loney contributed the major portion of the 10g update to this chapter. Rich
Niemiec added 11g new content and Mike Messina tested queries and added BLEVEL detail for the

https://asktom.oracle.com
http://www.wikipedia.org/wiki/B-tree#Insertion

11g version.

W

CHAPTER
3

Pluggable Databases, Disk Implementation
Methodology, and ASM (DBA)

ith 12c, Oracle has changed the structure of a database. We now have multitenant
databases with the introduction of pluggable databases (PDBs). Oracle also changed
the landscape of disk access in Oracle 10g with the release of Automatic Storage
Management (ASM). With the releases of Oracle 11g and 12c, more features have been

added to ASM to make it even more robust. ASM is now the standard for Oracle databases! This
chapter will focus heavily on pluggable databases and ASM in addition to the non-ASM-specific disk
implementation methodology in Oracle.

In addition to its broad coverage of ASM and disk management, this chapter will start with an
introduction to 12c multitenant databases, which include container databases (CDBs) and PDBs.
Starting with 12c, Oracle supports a new architecture that lets you have subdatabases inside a single
database. Oracle calls the subdatabases PDBs and the main database a CDB. Within the main CDB,
there can be a maximum of 252 subdatabases (PDBs) in 12cR1 and 4096 in 12cR2. With this new
feature, you can consolidate databases rather than having them scattered in multiple instances, which
makes patching and provisioning of databases simpler.

In the last several years, disk configuration techniques seemed to be reaching the point where you
couldn’t do much more to improve the performance of your system without greatly complicating your
life as a DBA. If your system operated with some unique qualities, or you chose to review the I/O
activity on your tablespaces on a frequent basis, you might be able to achieve slightly better
performance than simply mashing all your disk use into a single logical device, but for most DBAs,
this just wasn’t worth it. If you used raw partitions and were diligent, you could get some
performance advantages from using that “technology,” but again, it didn’t simplify your life as a DBA.
Then with the enormous leap in the capacity of single devices, even in the high-end Fibre Channel
sector, things were further complicated; restricting yourself to only four or six very large disks was
simple, whereas before you may have had a full array or multiple arrays of disks. In the most recent
releases of the Oracle Database, you have been given a whole new toolbox. With a full X6-2 Exadata
with an entire flash array of storage, you can now have 180T of flash. The Oracle FS1 flash array has
almost a petabyte of flash (912T).

More features are now available for managing how the data resides on disk. And more have been
released in the last 24 months with Exadata (most recently X6). To make it even better, almost anyone
running an Oracle database can use these new features. Don’t worry, this chapter will still talk about
balancing your disk (including 12c sharding) and eliminating fragmentation, but it will also discuss

12c new features you can utilize to rid yourself of the repeated effort these activities required in the
past or, very possibly, prevent you from having to do them altogether.

To keep your system running at its peak, this chapter offers the following tips:

 Exploiting 12c new features for pluggable databases and 12cR2 features
 Understanding storage hardware and its performance implications
 Understanding RAID levels
 Using the 12c Heat Map and 12c I/O performance views
 Understanding bigfile tablespaces and getting to the 8-exabyte Oracle 12c database
 Understanding ASM instances including the 12c install and 12c new features
 Understanding ASM disks, diskgroups, and multipathing
 Avoiding disk contention and managing large tables by using partitions
 Sizing extents properly to eliminate fragmentation, reduce chaining, and keep performance

optimal
 Managing redo and rollbacks in the database for speed
 Having multiple control files on different disks and controllers
 Understanding issues to consider in the planning stages of your system

Pluggable Databases (New in Oracle 12c)
I’m starting the chapter with an introduction to pluggable databases since it is such a key feature in
12c. While the focus of the book is tuning, I do want to ensure you have an arsenal of commands to be
able to work with this new feature, but please read the Oracle Database Administrator’s Guide for
complete coverage of this topic (this chapter will only get you started and exposed to PDBs).

“Pluggable” databases can be unplugged from one container database (CDB) and plugged into
another CDB easily, therefore making databases portable between environments and allowing the
upgrade of a database by unplugging it from one environment at one version and plugging it into a new
environment at a higher version. You can also unplug a PDB from on premises and plug it into the
cloud (or vice versa). This new feature also allows a single PDB to be independently recovered (you
can flashback a PDB in 12cR2). Each PDB looks to an application like any other traditional Oracle
database (called a non-CDB), so no application changes are needed to work with the PDB
architecture. Non-CDBs are now deprecated. The following are some notes to keep in mind when
working with a CDB and PDBs. Keep in mind that these are subject to change.

 CDB = container database (has a root database and also a seed PDB).
 PDB = pluggable database (plugged into a CDB).
 Non-CDB = traditional Oracle database instance (neither a CDB nor a PDB).
 Why PDBs? To consolidate hundreds of databases on one machine. Too many resources are

required when you add up the System Global Areas (SGAs) for each of the instances when not
using PDBs. One CDB has one SGA and resources shared for multiple PDBs.

 Share PDBs (e.g., big data sources, acquisitions, partners, shared research, governments).
 Quickly create a new database (PDB) or copy an existing one (PDB).
 In 12cR2, can refresh a read-only PDB.
 In 12cR2, can flashback an individual PDB.
 Recover an individual PDB.
 Move existing PDBs to a new platform or location or clone them (snapshot).
 Patch/upgrade a PDB by plugging it into a CDB at a later version.
 Physical machine runs more PDBs the old way; easier to manage/tune.
 Back up entire CDB + any number of PDBs.
 New syntax for commands: PLUGGABLE DATABASE.

The following sections show a few commands that you can run with pluggable databases. The need
to easily move data around is becoming increasingly important in many scenarios: integrating big data
sources; company acquisitions; moving data to/from the cloud; sharing research among partners; and
governments sharing security or other data. To give you a taste of what’s possible, the following are a
few nice examples of queries for the multitenant world.

Is the database a CDB or non-CDB?

This example is a CDB, as indicated by YES in the CDB column.
You can also query the PDBs. In this example, I have three PDBs, but only PDB_SS and PDB1

were created by me. PDB$SEED was created by Oracle when I installed the database. I can clone the
seed PDB to create new, empty PDBs.

 CDB or PDB Created Objects
Some items are specific to only the CDB, some are specific to only the PDB, and some are shared by
both (or the DBA can choose to create separate or shared). The following list details which items are
specific to the CDB, PDB, or shared by both:

 Background processes/SGA Shared by root and all PDBs

 Character set Shared by root and all PDBs

 Redo Shared by root and all PDBs

 Undo Shared by root and all PDBs

 Time zones Shared or can be set for each PDB

 Initialization parameters Some can be set by PDB

 Temporary tablespace Shared by PDBs or create your own local TEMP

 SYSTEM and SYSAUX Separate for root and each PDB

 Datafiles Separate for root and each PDB (same block size)

Pluggables 0 – 254+
Oracle has the capability to support up to 252 PDBs in 12cR1 and 4096 PDBs in 12cR2. Here is
what is in each container:

 Creating a PDB: Many Ways to Do It
There are many ways to create a PDB. Most DBAs create new PDBs by cloning the seed PDB and
then going from there. For example, creating a PDB to use for a warehouse application may be
accomplished by cloning from another PDB that holds OLTP data. You may also get a clone from
another system, which includes the XML file (small) and datafiles (large), and create your PDB based
on those files, which is fast since the data only needs to be attached, not imported. The commands for
many of these options are provided in the following section, but these are the ways to create a PDB:

 Create a PDB by copying the seed PDB (common way)
 Create a PDB by cloning another PDB (very common way)
 Create a PDB by using the XML metadata files and other files and plugging them into a CDB

(very common way)
 Create a PDB using a non-CDB (multiple ways):

 Use DBMS_PDB to create an unplugged PDB (less common)
 Create an empty PDB and use Data Pump to move data (common way)
 Use GoldenGate replication (common for initial migration)

 Great Pluggable Database Commands
This section contains many of the commands that you’ll be using with multitenant (pluggable)
databases. These include commands for creating pluggable databases, moving between containers
(most of which are different PDBs or the main root), starting and shutting down, and finding out
where the actual data in tables resides (in which PDB).

Cloning a PDB

The following three examples show how to create a PDB from another PDB. All three allow different
settings for the new PDB, and the last example shows how to do it over a link.

NOTE
The source no longer needs to be read-only in 12cR2 (PDB hot clone as long as the database is in
ARCHIVELOG mode and local undo mode).

Unplugging and Dropping PDBs
This section provides a few examples of unplugging and dropping PDBs. The first query shows the
most common way to unplug a PDB so that someone else can create a PDB using it (that is, plug in the
PDB). This operation completes very fast, even if the set of datafiles or the PDB is very large. It’s
fast because you are only creating an XML file and then copying the datafiles (instead of unloading
them) to an additional location and plugging in the PDB.

These two commands show how to drop PDBs with and without the datafiles, respectively:

How to Move Between Containers (CDB/PDB)
The following commands show how to move between containers:

Opening and Closing PDBs
The following examples show different ways for opening and closing PDBs:

Starting Up an Individual PDB from the CDB (Root)
The following examples show how to start up an individual PDB when you are in the CDB.

Starting Up the CDB
(Note that I am not using In-Memory here.)

The following command shows how to start the CDB and the resulting feedback upon startup.

Also note that in 12cR2, the PDBs are opened on startup if they were in an open state when the
container was shut down.

Tracking PDBs to Datafiles (Where Is Everything?)
One of the tougher things to find out is where the data is for a given PDB, or what table is in which
PDB. The following query shows you how to map PDBs to datafiles, and the second query shows you
how to map tables to PDBs. You can do this similarly with all objects by accessing the V$ related to
the object.

Map tables to PDBs:

Checking PDB History (When Was It Created?)
Important information about where a PDB came from (where was it cloned from), how it was
created, and when it was created is located in the CDB_PDB_HISTORY, which you can query as
follows:

Identifying Which Services You Have
The following query enables you to find out which services you have:

 ALTER SYSTEM While in a PDB and Other Nice
Commands
The following powerful DBA commands are not only part of the root database, but can be run at an
individual PDB level:

CAUTION
These are very powerful commands to run at the PDB level (you should usually not run these in
production). If you FLUSH the caches or change initialization parameters, it could seriously
affect the performance of other sessions.

 ALTER SYSTEM FLUSH SHARED_POOL
 ALTER SYSTEM FLUSH BUFFER_CACHE
 ALTER SYSTEM SET USE_STORED_OUTLINES
 ALTER SYSTEM CHECKPOINT
 ALTER SYSTEM KILL SESSION
 ALTER SYSTEM DISCONNECT SESSION
 ALTER SYSTEM SET initialization_parameter

Modifying Initialization Parameters for a Given PDB
There are also initialization parameters that can be set even at an individual PDB level (Chapter 4
covers initialization parameters in detail), as follows:

Using RMAN Commands
The RMAN commands that can be executed for a database are the same for a given PDB. A few
examples are displayed here:

 Using In-Memory (IM) with Pluggable Databases
Pluggable databases can also use the In-Memory (IM) column store (which is an option you must
license and is covered in Chapter 4). While you can set the INMEMORY_SIZE parameter for the
entire database, you can also set the INMEMORY_SIZE for individual PDBs. You can additionally
oversubscribe the INMEMORY_SIZE of the main database (the sum of the PDBs can be more than
the main database setting). What will happen as you use up the memory? When you are out, you are
out, so whoever gets it first when it is oversubscribed is how it works.

The following are some other notes on using IM with PDBs:

 All PDBs within a CDB share a single IM column store set at the CDB.
 There is an INMEMORY_SIZE initialization parameter on the CDB.
 Each PDB also sets an INMEMORY_SIZE and anything put in IM comes from total CDBs IM.
 All PDBs added together can be higher than CDBs IM (oversubscribed); used on a first-come

basis, by design, to ensure this CDB IM is not wasted.
 One PDB can take up the entire CDB IM and starve other PDBs.
 Each PDB has its own PRIORITY list (see Chapter 4 for additional information; which PDB

starts first will matter a lot because it will get more IM!). When you are out of space, you are
out until a PDB shuts down or something is removed from the IM.

 Other 12cR2 Features with Pluggable Databases
The following are other 12cR2-only features of pluggable databases:

 The source no longer needs to be read-only when cloning a PDB (point-in-time clone).
 You can do a PDB refresh of clones manually or automatically (they must be read-only).
 You can create a class of PDB (Gold/Silver/Bronze) by setting

DB_PERFORMANCE_PROFILE and then using Resource Manager to set directives for each
class of PDB.

 You can do a flashback of a PDB and restore points to only that PDB!
 You can build a subset standby (introduced next) of just one or a portion of your PDBs!
 You can now have 4096 PDBs, not just 252.

 Subset Standby (New in Oracle 12cR2)
The new subset standby feature allows a standby database in a multitenant environment to have a

standby without having to take all the PDBs into the standby. Keep in mind this impacts switchover
and failover operations, so you should understand the impact that only a subset of PDBs has on
switchover and failover operations.

TIP
One of the best features of 12cR1 is pluggable databases. It offers the ability to consolidate
hundreds of databases into a single container database (CDB) with hundreds of pluggable
databases (PDBs). Two of the best features of 12cR2 are the ability to flashback pluggable
databases (PDBs) and the ability to build a subset standby with only some PDBs.

Disk Arrays
Configuring disks with RAID (Redundant Array of Independent/Inexpensive Disks) is now the norm.
RAID is here to stay, and one would be hard pressed to buy even a midrange system without it. Later
in this chapter, you’ll see that ASM also provides levels of redundancy. Even in the personal
computing area, using some hardware-based configuration of redundant disks has become more
commonplace. For the DBA, this means that more than ever, care must be taken to ensure that the disk
array configuration used enhances I/O while also providing appropriate protection against drive
failure. Regardless of whether the RAID configuration is hardware- or software-based (hardware-
based is usually faster), the configuration should be configured properly for best performance,
without sacrificing protection.

 Use Disk Arrays to Improve Performance and
Availability
A RAID logical unit number (LUN) is created by grouping several disks in such a way that the
individual disks act as one logical disk (grouped into a volume or virtual disk). Prior to the advent of
the storage area network (SAN), a LUN was the address (number) for the disk drive. During normal
operation, a single logical device now gets the benefit of having multiple physical devices behind it,
which means faster access to data (when configured properly) and the ability to have storage volumes
that are significantly greater than the physical limit of an individual device. If a disk fails and all the
data on the disk is destroyed, the group of disks can be structured so the data exists in more than one
place. The system never goes down because of the failure of a single disk (when the proper RAID
level is employed). Users continue to operate as if nothing has happened. The system alerts the system
administrator that a specific disk has failed. The administrator pulls out the disk and slides in a new
disk. The hardware controller or operating system automatically writes the missing information on the
new disk. The system goes on without missing a beat.

 How Many Disks Do You Need?
I know the hardware vendors out there are going to love me for saying this, but it is true. A good rule
of thumb on buying disks in today’s market is “Don’t buy disks on the basis of capacity alone.” If you
have a moderately sized database at 10T, where performance is very important, why would you buy
600G SAS disks instead of 2T SATA disks to run it? Speed and data distribution—that’s why. SAS
disks at 15,000 RPMs are much faster than SATA at 7,200 RPMs, but the infrastructure and tools
surrounding SAS are also faster. With disk capacities hovering between 300G to 2T, this choice can
be hard to rationalize, but too often lately I have seen people make disk purchase choices on capacity
alone. This leaves them with inadequate redundancy (when they forget about mirroring costs), poor
performance (using slower disks), or both. You can certainly still use the slower 2T disks for online
backups, archived information, or very old information. Remember, after you configure that 2T disk
properly, you may have only less than 1T of usable storage (after mirroring, etc.). Whatever you do,
try to use the high-speed 15,000 RPM SAS disks for your most important databases. There are now
8T drives in a full X6-2 Exadata or an entire Flash Array of storage, but you only get 180T in the
same X6-2. These are the questions that techs must ask the business so the correct choices are made.

Consider speeds of different types of hardware:

 Memory: Nanoseconds
 10 Gigabit Ethernet (GbE) network: 50 microseconds
 Flash: 20 to 500 microseconds
 Disk: 4 to 7 milliseconds

 What Are Some of the RAID Levels Available?
Almost every midrange to enterprise-class server today offers a hardware RAID solution either built
into the server or as an attached storage device. Using the various available RAID levels is pretty
much standard, regardless of the type of array you buy. The following list describes some of the more
common options that Oracle database administrators will want to consider:

 RAID 0 (Striped Set) Automatic disk striping means that the Oracle datafiles are
automatically spread across multiple disks. The tablespace’s corresponding datafile pieces
can be spread across and accessed from many disks at the same time instead of from one (a
large savings in disk I/O). Just be wary; this isn’t a solution for high availability or fault
tolerance, as a loss of one disk in the group means all the data needs to be recovered.

 RAID 1 (Mirrored Set) Automatic disk mirroring is available on most systems today. It’s
generally used for the operating system itself but can be used with the Oracle database for
higher availability. You need twice the storage compared to the amount of data that you have
for RAID 1.

 RAID 5 (Striped Set with Parity) This level carries the parity on an extra disk, which allows

for media recovery. Heavy read applications get the maximum advantage from this disk array
distribution. This solution is low-cost and generally very bad for write-intensive Oracle
applications. I will discuss improvements to this more in the next section.

 RAID 1+0 (RAID 10, a Stripe of Mirrors) Mirrored disks that are then striped. This level is
a common Oracle OLTP production RAID level, also known as “RAID 10.” RAID 1+0
incorporates the advantages of the first two RAID levels by adding the disk I/O striping
benefit of RAID 0 to the mirroring provided by RAID 1. For high read/write environments
such as OLTP, where sporadic access to data is the norm, this RAID level is highly
recommended.

 RAID 0+1 (RAID 01, a Mirror of Stripes) Striped disks that are then mirrored. Often
confused with RAID 10 or thought not to exist, this level incorporates the advantages of the
first two RAID levels by providing the disk I/O striping benefit of RAID 0 to the mirroring
provided by RAID 1. For high read/write environments such as OLTP, where sporadic access
to data is the norm, this RAID level is good, but it is not as robust as RAID 10, and it cannot
tolerate two disk failures if they are from different stripes. Also, in a rebuild after failure, all
the disks in the array must participate in the rebuild, which is also not as favorable as RAID
10.

 RAID 1+0+0 (RAID 100, a Stripe of RAID 10s) Mirrored disks that are then striped and then
striped again (usually with software, the top-level stripe is a MetaLun or soft stripe). The
advantages are mainly for random read performance improvement and the elimination of
hotspots.

 The Newer RAID 5
Many hardware vendors configure systems with a RAID 5 configuration to maximize the utilization of
available space on disk and reduce the overall cost of the array. Although RAID 5 is a good choice
for inexpensive redundancy, it is usually a poor choice for write-intensive performance. At the most
general level, when a write request is made to a RAID 5 array, the modified block must be changed
on disk; a “parity” block is read from disk; and using the modified block, a new parity block is
calculated and then written to disk. This process, regardless of the size of the write request, can limit
throughput because for every write operation, there are at least two more I/O operations. I
recommend RAID 5 only for mostly read or read-only filesystems. Most storage vendors realize that
this parity write is a penalty and have come up with various solutions to reduce the impact of this
additional operation. The most common solution is to implement a memory cache on the array to
speed up the write performance of all I/O on the array. For periodic or light write activity, this
solution may be completely suitable for your system, but you need to remember that eventually those
write operations need to make it to disk. If you overload that disk cache with heavy write activity, you
may produce what is often referred to as a “serialized I/O” condition. This is where the array can’t
write to disk fast enough to clear the cache, essentially neutralizing the benefit of your cache. Be sure
to check out other solutions that your vendor may have implemented. Don’t be afraid to ask them how
they handle heavy I/O. Some solutions to look for are

 Dynamic cache management This is the ability for the array to adjust the way that the cache
is being used. Some vendors simply split the cache down the middle—if you have 1G of
cache, 500M is for read and 500M is for write. Because the Oracle buffer cache is essentially
already a read cache, being able to adjust the array cache so it is primarily a write cache can
give you some flexibility. This ability to adjust the array cache to be primarily a write cache
goes for other configurations other than just RAID 5.

 Bundled writes Generally, the maximum size of a write operation is larger than an Oracle
block. Some vendors have implemented intelligence into their arrays that allows them to group
multiple parity operations into a single I/O operation. Because this requires fewer round trips
to the physical disk, it can greatly improve the performance and effectiveness of the cache
when running RAID 5.

RAID 6 is another variant of RAID 5 that you may also see advertised. RAID 6 behaves just like
RAID 5, except it utilizes corresponding parity blocks for every set of data block stripes. While this
does carry the added benefit of more fault tolerance, because you can lose two disks, it also brings
with it even lower performance.

I still prefer to see RAID 1+0 (mirroring and then striping). RAID 1+0 (aka RAID 10) is generally
going to be faster or at least as fast as RAID 5 and natively more fault tolerant to multiple device
failures. Because you may be in a situation where you have multiple physical enclosures for your
disk, using striping and mirroring allows you to build fault tolerance between enclosures too.

 Solid-State Disks
Solid-state disk (SSD) data is stored and accessed in dynamic random access memory (DRAM),
which in turn improves performance by avoiding the disk I/O that is typical of magnetic disks.
Magnetic disk latency includes rotational delay, which is the time taken for a disk platter to revolve
until the desired storage address is found. Disk I/O service time influences performance on databases
and applications; with SSDs, service times are very fast because SSDs do not perform the costly disk
operations such as disk rotation that cause the delays incurred by magnetic disks. Oracle recommends
storing REDO logs, undo datafiles, and TEMP tablespace on SSD storage media to achieve better
read/write performance and reduce I/O waits. What do Google, Facebook, and Amazon all have in
common? Their data centers are “racks of flash” as far as the eye can see! Do you want your company
to be a leader? Get an X6-2 with all flash storage (180T) or, if you need more storage, get an FS1
(Oracle’s all flash array) with a petabyte of storage. Be the leader or be left behind!

 ASM Storage Management (Striping/Mirroring)
A database created under the constructs of ASM (much of this chapter is dedicated to ASM) will be
striped by default and mirrored as specified in the stripe-and-mirror-everything (SAME)
methodology (i.e., the I/O load is evenly distributed and balanced across all disks within the
diskgroup). The striping is done on a file-by-file basis, using a 1M stripe size, as opposed to other

logical volume managers (LVMs) that perform striping and mirroring at a disk-volume level. Oracle
states that an ASM 1M stripe depth has proved to be the best stripe depth for Oracle databases. This
optimal stripe depth, coupled with even distribution of extents in the diskgroup, reduces the
occurrence of hot spots.

ASM allocates space in units called allocation units (AUs). ASM always creates one-AU extents
(not the same as tablespace extents) across all of the disks in a diskgroup. For diskgroups with
similarly sized disks, there should be an equal number of AU extents on every disk. A database file is
broken up into file extents. There are two types of AU extent distributions: coarse and fine. For
coarse distribution, each coarse-grain file extent is mapped to a single AU. With fine-grain
distribution, each grain is interleaved 128K across groups of eight AUs. Fine distribution breaks up
large I/O operations into multiple 128K I/O operations that can execute in parallel, benefiting
sequential I/Os. Coarse- and fine-grain attributes are predefined, as part of system templates, for all
system-related files.

TIP
Redo and archive log files are defined as fine-grained, whereas datafiles are coarse.

Setup and Maintenance of the Traditional Filesystem
Using RAID-configured groups of physical devices and traditional filesystems makes Oracle datafile
setup and maintenance much easier for the DBA because manually balancing disks is not as arduous.
With the large disk sizes in today’s storage systems, dissecting filesystem configuration between four
or six devices quickly becomes an exercise in splitting hairs. Unless you are utilizing a system where
12 or more physical disks are involved, dividing these up into more than one logical disk device
provides only a small benefit. Even if you have a case where two datafiles are heavily utilized, the
cache or host bus adapter (HBA) that they share on the array may be a common avenue to the disk.
Finally, depending on your expected growth, the number of filesystems you end up managing could, in
time, make keeping all of this in balance a frustrating exercise.

TIP
Try to avoid splitting a logical device in a disk array into more than one filesystem. Splitting may
seem to give you flexibility, but it can also increase the number of datafile locations you have to
manage.

 What Is the Cost?

To support disk arrays that mirror data, you need more—sometimes much more—raw disk storage
(for RAID 1, you need at least double the space). While this requirement can increase the price of
your initial system, the benefits are usually well worth it. For these reasons, while you are deciding
how to configure the new storage system you are going to buy, think about the return on investment
(ROI) for keeping the system up and running and also the value of great performance.

This leads me to another class of storage system that is becoming more popular. With the rising
capacity of even the most basic storage array, companies are looking to leverage that storage space
with multinode access technologies. Whether the implementation is as a storage area network (SAN)
or network-attached storage (NAS), the initial investment and added benefit of being able to “plug in”
another server to your storage system is often well worth it. So when you are faced with the dilemma
of having a 4-Gbit/sec Fibre Channel (Exadata has 40-Gbit/sec each direction with InfiniBand)
storage array with four disks and are feeling a bit like you aren’t utilizing the resource to its
maximum, consider expanding that purchase into an infrastructure decision that allows your enterprise
to grow and share that resource among all your important systems.

TIP
Use disk arrays to improve performance and protect your data against disk failure. Choose the
proper RAID level and technology solutions that enable you to maintain the availability your
organization needs. Don’t go “good enough,” because you will regret it at 2 a.m. when you lose a
disk.

 Storing Data and Index Files in Separate Locations
Tables that are joined (simultaneously accessed during a query) often could also have their data and
index tablespaces separated. The following example shows a table join and one possible solution for
managing the data:

Here is a data management solution:

This solution allows the table join to be done while accessing four different disks and controllers.
Separate data and index files onto different physical disk devices and controllers; consequently, when
tables and indexes are accessed at the same time, they will not be accessing the same physical
devices. You could expand this to involve a larger number of disks. You will see later in the chapter
that table and index partitioning will help you to accomplish this more easily. Oracle’s ASM does a
great job of assisting with this when you set it up, but it also has ways of moving hot data to a
different part of a disk.

TIP
Separate key Oracle datafiles in traditional filesystems to ensure that disk contention is not a
bottleneck. By separating tables and indexes of often-joined tables, you can ensure that even the
worst of table joins do not result in disk contention. In Enterprise Manager (Cloud Control),
Oracle makes it easy to move data to a hotter or colder region of a disk.

 Avoiding I/O Disk Contention
Disk contention occurs when multiple processes try to access the same physical disk simultaneously.
Disk contention can be reduced, thereby increasing performance, by distributing the disk I/O more
evenly over the available disks. Disk contention can also be reduced by decreasing disk I/O. To
monitor disk contention, review the Database Files Metrics in Cloud Control. This Metric group
contains two sets of metrics. The Average File Read Time and Average File Write Time apply to all
datafiles associated with your database. If you find that one or two datafiles seem to have especially
high values, you click one and then use the Compare Objects File Name link to view collected
statistics between them. If they are both busy at the same time and are on the same disk, you may
choose to relocate one datafile to another filesystem, if you are concerned about performance during
that time.

You can also determine file I/O problems by running a query:

Here is a partial query output:

NOTE
You may also have SYSAUX01.DBF, USERS01.DBF, and EXAMPLE01.DBF.

A large difference in the number of physical writes and reads between disks may indicate that a
disk is being overburdened. In the preceding example, filesystems 1–3 are heavily used whereas
filesystems 4–5 are only lightly used. To get a better balance, you’ll want to move some of the
datafiles. Splitting datafiles across multiple disks or using partitions would also help move access to
a table or an index to an additional disk.

TIP
Query V$FILESTAT and V$DATAFILE to see how effectively datafiles have been balanced. Note
that temporary tablespaces are monitored using V$TEMPFILE and V$TEMPSTAT.

The 12c Heat Map and Automatic Data Optimization
(ADO)
Even with better data/index placements on disks, there can be problems with how data inside the
disks is stored. If a process is constantly accessing a certain data block, and that data block is on a
disk that has poor latency, performance will be degraded. If multiple SAN tiers are used, and each
SAN has different I/O capabilities, then it would be advisable to move the objects that are frequently
used into one of the faster SAN disks and have the less-accessed data on slower SAN disks. Prior to
12c, we would manually move the hot objects to faster disks. We would query the
V$SEGMENT_STATISTICS view and extract objects that are frequently used and manually move
them to faster disks to eliminate issues. Starting with 12c, the process can be automated via the Heat
Map and Automatic Data Optimization (ADO).

The new Heat Map is a feature in 12c that tracks usage information at a row and segment level.
Data modifications are tracked at the row level and aggregated to the block level. The Heat Map
tracks data modifications, table full scans, and index lookups at the segment level. It provides a
detailed view of how data is being accessed and how access patterns are changing over time. The
Heat Map, when enabled, automatically collects segment- and row-level statistics that can be used to
define compression and storage policies, which will then be automatically maintained throughout the
life cycle of the data (often referred to as information lifecycle management [ILM]). The Heat Map
skips internal system tasks like gathering stats and system DDLs.

To enable the Heat Map:

DBA tables (see Figure 3-1) can be queried to retrieve detailed information for any objects
captured. The V$HEAT_MAP_SEGMENT view displays real-time segment access information.

FIGURE 3-1. Heat Map for segments

Automatic Data Optimization allows the creation of policies for data compression and data
movement. ADO works in conjunction with the Heat Map where information from the Heat Map is
used in the compression policies. The Oracle database evaluates ADO policies during database
maintenance windows and uses the information collected by the Heat Map to determine which
operations to execute. ADO operations are executed automatically in the background with no user
intervention. The policies ADO uses can be specified at the segment or row level for tables and table
partitions. Policies will be executed automatically in the background when policy criteria are
satisfied. Policies can also be executed manually.

This is done through the ilm_clause (ilm referring to information lifecycle management) of the
CREATE TABLE and ALTER TABLE statements. The feature determines when data meets the policy
standard for movement by the Heat Map, which is tracking changes to the table and table partitions.
There are two types of policies, a table_compression or tiering_clause. When data meets the policy,
the data is either compressed row level or segment level, or is moved to a new storage tier based on
the policy criteria supplied in the AFTER clause of the policy.

Some parts of the ilm_clause are as follows:

 ADD_POLICY Specify the policy to add to the table.

 DELETE Delete a policy from the table.

 ENABLE Enable a policy for the table.

 DISABLE Disable a policy on the table.

The following are some parts of the AFTER clause of the policy:

 LOW ACCESS For policy to take effect after a period of time of low table access

 NO ACCESS For policy to take effect after a period of time of no table access

 NO MODIFICATION For policy to take effect after a period of time with no table changes

 CREATION For policy to take effect after a period of time after table creation

The following example shows how to compress a row after it has not been modified for seven
days:

Even though ADO uses the Heat Map to determine which segments to move, you can also create
custom conditions using PL/SQL functions to extend the flexibility of ADO (to use your own data to
determine when to move or compress data). The Heat Map and ADO require purchasing the
Advanced Compression option. In 12cR2, ADO is extended to manage the In-Memory column store
moving objects like tables and partitions in and out of memory based on the Heat Map statistics.

12c I/O Performance Tracking Views (Outliers)
Starting with 12c, Oracle provides dynamic views that give detailed analysis of I/O that takes a long
time to complete (i.e., a large, slow report). The views are dynamically populated when the I/O has
taken longer than 500 ms to complete. The default threshold of 500 ms can be modified by the hidden
parameter _IO_OUTLIER_THRESHOLD.

 V$IO_OUTLIER Use this view to see if there are any occasional delays in servicing a disk
I/O request by the storage subsystem.

 V$LGWRIO_OUTLIER Contains entries corresponding to Log Writer process that have
taken longer than the default 500 ms to complete.

 V$KERNEL_IO_OUTLIER Use this view to see the individual kernel components of the I/O
subsystem that have taken more than 500 ms to complete; this view is specific to Solaris
operating systems and must meet conditions for it to be populated. On Solaris platforms, to
have the view populated, the database should be configured to use ASM or raw devices and
have the initialization parameter DISK_ASYNCH_IO=FALSE. Oracle uses Solaris DTrace
functionality to populate this view.

Oracle Bigfile Tablespaces
Introduced in Oracle 10g was a locally managed tablespace type for extreme-size databases: Bigfile
tablespaces allow for the creation of tablespaces with one file where the size of that datafile fully
incorporates the power of 64-bit systems. When implemented with Oracle Managed Files (OMF) or
ASM, bigfile tablespaces can greatly simplify the management of your storage system. Additionally,
because you should have fewer datafiles, performance of database management operations such as

checkpoints should improve, but be aware that recovery operation times are likely to increase in the
event of datafile corruption.

Now you be may asking: “Then what is the benefit of bigfile tablespaces?” A bigfile tablespace,
with a typical 8K block size, can contain a single 32T datafile. If you’re using a 32K block, it can
contain a 128T datafile. This is achieved by changing the way ROWIDs are managed within the
tablespace. In a traditional tablespace, three positions in the ROWID are used to identify the relative
file number of the row. Because you only have one datafile in bigfile tablespaces, these three
positions are instead used to lengthen the data block number for the row, thereby allowing for a much
larger number of ROWIDs from traditional smallfile tablespaces.

NOTE
To have the largest Oracle 12c database possible, 8 exabytes, you must use 128T datafiles (and
must also use bigfile tablespaces and a 32K block size).

To use bigfile tablespaces, you must be using locally managed tablespaces with Automatic
Segment Space Management (ASSM), discussed later in the chapter. Also, you cannot use bigfile
tablespaces for UNDO, TEMP, or SYSTEM. If you are thinking of using bigfile tablespaces to reduce
the amount of management needed for your system, consider also using OMF and ASM (covered
next). Also, if you are using traditional filesystems, make sure you are using a logical volume
manager that provides the flexibility to map out your storage system appropriately so the single
datafile can grow as needed.

ASM Introduction
In Oracle Database 10g Release 2, storage management and provisioning for the database has been
greatly simplified using Automatic Storage Management (ASM). ASM provides filesystem and
volume manager capabilities built into the Oracle database kernel. In Oracle Database 11g and 12c,
Oracle ASM as a technology is the best of all worlds, combining the benefits of using raw devices
with the ease of management as seen with standard volume managers in UNIX. With this capability,
ASM simplifies storage management tasks, such as creating/laying out databases and disk space
management. Because ASM allows you to manage disks using familiar CREATE/ALTER/DROP SQL
statements, DBAs do not need to learn a new skill set or make crucial provisioning decisions to use
ASM. ASM is basically built on raw devices; therefore, it is also inherently cluster aware. The initial
release of ASM was first built for a clustered database and then made available for nonclustered
databases. An Enterprise Manager interface (see Chapter 5 for additional information), as well as a
new command-line utility (new in Oracle Database 10g Release 2 and available in 11g and 12c),
ASMCMD, is also available for those ASM administrators who are not familiar with SQL.

ASM is a management tool specifically built to simplify the DBA’s job. It provides a simple
storage management interface across all server and storage platforms. ASM provides the DBA with
flexibility to manage a dynamic database environment with increased efficiency. This feature is a key
component of grid computing and database storage consolidation.

The following are some of ASM’s key benefits:

 As good as raw devices from a performance perspective.
 An extremely simple, but powerful, volume manager toolkit/utility for managing the space from

a database perspective.
 Spreads I/O evenly across all available disk drives to prevent hot spots and maximize

performance.
 Eliminates the need for overprovisioning and maximizes storage resource utilization

facilitating database consolidation.
 Inherently supports large files.
 Performs automatic online redistribution after the incremental addition or removal of storage

capacity.
 Maintains redundant copies of data to provide high availability or leverage third-party RAID

functionality.
 Supports Oracle Database 10g, 11g, 12c, and Oracle Real Application Clusters (RAC).
 The OCR and voting disk can be on the ASM diskgroup and cluster filesystem with ASM in

11gR2. With 12c password files can also be stored in the ASM diskgroup.
 Can leverage third-party multipathing technologies.
 Inherently capable of supporting async I/O as well as direct I/O.
 Fully integrated into Oracle Managed Files (OMF), thereby reducing complexity without

compromising performance.
 Exadata only allows ASM!

For simplicity and easier migration to ASM, an Oracle 10gR2 and above database can contain
ASM and non-ASM files. You can use the RMAN COPY command to move datafiles from the
filesystem to an ASM diskgroup.

DBAs have much to consider before they deploy and create a database. They must consider and
determine the following:

 Plan filesystem layout and device usage
 Determine application workload characteristics (random read/write for OLTP versus

sequential I/O for DSS systems)
 Calculate storage capacity and sizing for the database

ASM addresses these concerns in the following ways:

 Traditionally, DBAs would create filesystems to store their database files, and then create
additional filesystems as needed. Doing this can become a manageability and provisioning
nightmare since DBAs also have to manage the I/O load on each filesystem. ASM presents a

single storage pool (diskgroup), so there is no need to maintain several filesystem containers
and no need to worry about the placement of the next datafile.

 One of the core benefits of ASM is the ability to expand storage to meet an application’s
capacity needs. Thus, the ASM diskgroup that houses the database can be expanded without
worrying excessively about storage capability management.

 Using ASM and applying the defined general best practices, ASM-based databases should be
able to handle any workload. Additionally, because ASM inherently uses raw devices,
considerations such as async I/O and direct I/O become nonissues.

 Communication Across IT Roles
Sometimes there is a disconnect among the DBA, system admin, and storage admin. The DBA asks
for a 200G filesystem, the storage/system admin provides a 200G RAID 5 device or RAID 10 device
that has an improper or inefficient stripe size, and performance starts to suffer. Later, the DBA finds
out what was actually provisioned and isn’t very happy.

DBAs and other technical IT roles will always experience some inherent level of disconnect
because these groups think and operate differently. As this disconnect is mostly a communication
issue, ASM doesn’t necessarily fix it. However, several things come into play with ASM that have
lessened this communication issue. First, Oracle published a paper called “Optimal Storage
Configuration Made Easy.” This paper proposed a stripe-and-mirror-everything (SAME)
methodology. With this paper came a standard methodology for database deployment, which made
DBA-storage admin communication much simpler because DBAs had a way to express what they
needed.

NOTE
You can access “Optimal Storage Configuration Made Easy” at OTN:
www.oracle.com/technetwork/database/focus-areas/performance/opt-storage-conf-130048.pdf.

ASM incorporates all the essentials of the SAME methodology. ASM also offers a streamlined
approach to storage capacity management. With ASM, database storage can be expanded as business
or capacity plans dictate, all with no application downtime.

 ASM Instances
Starting with Oracle Database 10g (and continuing through 11gR2 and 12c), there are two types of
instances: database and ASM instances. The ASM instance, which is generally named +ASM, is
started with the INSTANCE_TYPE=ASM initialization parameter. This parameter, when set, signals

http://www.oracle.com/technetwork/database/focus-areas/performance/opt-storage-conf-130048.pdf

the Oracle initialization routine to start an ASM instance, not a standard database instance. Unlike the
standard database instance, the ASM instance contains no physical files, such as log files, control
files, or datafiles, and requires only a few initialization parameters for startup.

Upon startup, an ASM instance will spawn all the basic background processes, plus some new
ones that are specific to the operation of ASM. The STARTUP clauses for ASM instances are similar
to those for database instances. For example, NOMOUNT starts up an ASM instance without
mounting any diskgroup. The MOUNT option simply mounts all defined diskgroups. Oracle has
continued to make great strides in how disks are accessed and configured using ASM. Prior to 12c,
Oracle had tightly coupled configuration between databases and ASM instances on servers. Versions
10g and 11g required ASM and database instances to be on the same server. With new features of 12c
ASM, this tightly coupled configuration for ASM and database instance has been loosened, and this
provides for greater flexibility when managing ASM instances in a RAC environment.

Here is an example to query for the instance name that you are connected to:

The next example lists the various views that you can query to see the ASM configuration:

These views are also available under the database that is using ASM, sometimes with slightly
different information, such as V$ASM_CLIENT.

 ASM Initialization Parameters
The list that follows shows some of the basic initialization parameters required to start ASM (in
12c). Observe that all ASM processes begin with asm, as opposed to the database processes, whose
names begin with ora.

In 11g and 12c, DBAs who use ASM tend to use AUTOMATIC MEMORY MANAGEMENT, so it
uses the initialization parameters MEMORY_TARGET and MAX_MEMORY_TARGET:

 ASM Installation in 12c

Installation of 12c Grid Infrastructure (GI) is very similar to the 11g version except for the additional
features related to Flex ASM and the option for using IPv4/IPv6, ASM private network, and Grid
Infrastructure Management Repository (MGMTDB, required on 12.1.0.2, Doc ID 1568402.1). During
the GI installation, you have the option to choose the typical cluster (similar to 11g) or to enable Flex
Cluster. If you choose the standard-cluster option and then the advanced configuration option during
installation, it will provide an option for configuring Flex ASM (see Figure 3-2).

FIGURE 3-2. ASM installation—storage options

One of the requirements for configuring Flex ASM is Grid Naming Service (GNS). GNS
simplifies client connections to servers, especially when the cluster has a large number of nodes. The
GNS daemon dynamically collects cluster information and passes it to the DNS server for name
resolutions. To configure GNS you must obtain a static public IP address from your network
administrator. The DNS server must be configured to forward all cluster IPs to the GNS VIP. The
GNS daemon and VIP will run on a single node of the cluster. Oracle clusterware manages the GNS
services and will perform failover if GNS service fails.

Figure 3-3 must be completed if Flex ASM is to be configured; the GNS VIP is required even if
you are not planning on using GNS.

FIGURE 3-3. ASM installation—GNS information

How does GNS get the cluster names and the corresponding node addresses? This information is
collected when cluster services start and DHCP provides cluster IPs to the clusterware during
startup; the cluster IPs are then automatically registered with GNS. After installation, you can view
which node is running the GNS VIP by issuing the following command:

Oracle 12c Has Introduced Oracle Flex ASM
Flex ASM can be enabled during the initial installation of Grid Infrastructure by choosing Advanced
Installation and choosing Use Oracle Flex ASM for Storage. This is relevant only when the cluster is
installed and not for a single-instance configuration. Also, an existing non-Flex cluster can be
converted to Flex using the “asmca” GUI tool. Once Flex ASM is configured, the process cannot be
reverted to a standard ASM cluster.

To confirm Flex is enabled:

Oracle Flex ASM allows database clients to connect to remote ASM instances if the local ASM
instance fails. When configuring Flex ASM, a private ASM network is added during installation for
communicating between ASM instances in a cluster. When an ASM instance fails, databases running
on the failed ASM instance are automatically connected to surviving ASM instances on the cluster via
the ASM network. It is strongly recommended to configure a separate network interface for ASM
even though it is possible to use the private cluster interconnect for ASM communication. When an
ASM instance fails in Flex configuration, Oracle Clusterware will start a new ASM instance on a
different server to maintain the cardinality setting. ASM cardinality settings determine how many
ASM instances will be available in a cluster at any time. The default value for ASM cardinality is 3,
and this value can be changed using the srvctl command.

To view ASM cardinality value:

From the preceding output, “ASM instance count : 3” shows the default setting. This setting can be
changed dynamically by srvctl modify asm –count <value>:

When the ASM cardinality value is modified, the clusterware automatically adjusts the number of
ASM instances on the cluster. For example, before modifying the ASM cardinality value to 2, the
two-node test RAC with Flex ASM configuration showed the third ASM instance as OFFLINE,
which is due to the default cardinality value (3) for enabling Flex ASM. Even though there is not a
third node, clusterware will show three entries for ASM. If we set the cardinality value to 5, it will
show five ASM entries with three as OFFLINE, and this is done dynamically by clusterware. This
configuration allows the flexibility to scale up or down as needed.

The following example shows cardinality value 5 where only two servers exist:

The minimum value for setting cardinality value is 2:

Figure 3-4 shows a three-node Flex ASM configuration using cardinality 2. ASM is running on
Server1 and Server3 which is consistent with the cardinality rule of two ASM instances. Server2,
where ASM is not running, is the client database server. This server uses the ASM network to
communicate with the Flex ASM server to retrieve ASM metadata. If the ASM instance fails on
Server3, clusterware will automatically start an ASM instance on Server2 to confine to the
cardinality value 2 where at least two ASM instances need to be online, and the database on Server3
will automatically connect to the surviving Flex ASM instances.

FIGURE 3-4. Three-node Flex ASM configuration

In a Flex ASM environment, the database instances that are connected to ASM will seamlessly
connect to the surviving ASM nodes. This can be tested by forcing the ASM instance down, as shown
next. If a database instance is connected to an ASM instance, then we cannot just shut down the ASM
instance; otherwise it will result in an error, stating the diskgroups will need to be relocated.

As the preceding error states, it will need to be forced down by executing the command following
this paragraph. It’s very important to note that you should only try this when Flex ASM is enabled and
the database version is 12.1 or higher. Database versions earlier than 12.1 will require an ASM
instance running on the same node as the database, and if ASM is forced down on an 11g database, it
will bring ASM and the database down. Execute this command on a Flex ASM 12c database to force
ASM down on a node and have the database automatically connect to a surviving ASM instance:

When the force shutdown of the Flex ASM instance completes, the database alert log will show
that the database has registered with the ASM instance on the surviving Flex ASM node. The
database alert log will show entries similar to these:

Once the database has switched over to the surviving Flex ASM instance, all ASM metadata is
retrieved from the surviving ASM instance. Output of crsctl stat res –t would show ASM and
diskgroups as “offline” where the shutdown command was executed. The view V$ASM_CLIENT
will show to which ASM instance the database has connected; the view can be queried from the
database or from an ASM instance:

The preceding output shows a two-node RAC instance (column INST_ID 1 and 2) where +ASM1
is hosting both RAC databases (oradb_cd). Typically you would see +ASM1 for the first instance and
+ASM2 for the second instance. This is because the ASM instance is down on instance 2 and Flex
ASM has connected the database to the surviving ASM instance on instance 1. Even after the failed
ASM instance on Node 2 is brought online, the database connection will remain on instance 1 until
it’s relocated back to instance 2 or a cluster bounce. To move the database back to the original ASM
instance, first connect to the ASM instance that is currently hosting the database, and after confirming
ASM and the diskgroup are online on the destination node, issue the RELOCATE command shown a
bit later.

Before relocating the database:

Start ASM on Node 2:

Connect to the surviving ASM instance where the database that needs to be migrated resides and
issue the RELOCATE command. We need to relocate the instance named oradbcd2 to ASM2.

Connect as sysasm:

After issuing the RELOCATE command, you can see that the INST_ID for oradbcd2 has changed
to INST_ID 2, which means ASM2 is hosting the database:

You can confirm this by connecting to the oradbcd2 instance and querying V$ASM_CLIENT:

Flex ASM uses the ASM network settings defined during the install. A new ASM listener is
enabled with default port 1522 that connects to ASM on remote servers. Local ASM listener runs on
each node where the Flex ASM instance is running. Connections are load balanced across the ASM
cluster.

Connecting to the remote ASM instance requires an ASM password file. ASM password files are
automatically created during installation. 12c ASM password files are kept in the ASM diskgroup, so
this information is shared within the cluster. If there is a need to create the password file, the new
orapwd utility now accepts a diskgroup for storing the password file.

To create an ASM password file:

To create a database password file:

To view the Flex ASM password file:

Importantly, note that Oracle 12c requires an ASM diskgroup compatibility setting of 12.1.0.0 or
higher for storing password files in ASM. The compatibility setting can be modified by using the
“asmca” GUI tool or by issuing the following command:

If the password diskgroup compatibility setting is incorrect, then you will receive an error when
creating the database.

Oracle provides an option to convert from 12c standard ASM to Flex ASM using asmca:

Oracle 12c Flex Cluster
Starting with Oracle 12c Grid Infrastructure, Oracle has introduced a new topology for RAC and how
high-availability applications and databases are managed using RAC. Oracle Flex Cluster provides a
platform for both applications and databases that are managed by cluster services. The correlation

between Flex ASM and Flex Cluster is that Flex ASM is required for Flex Cluster, but Flex ASM
does not require Flex Cluster.

Oracle Flex Cluster contains two types of nodes, referred to as Hub Nodes and Leaf Nodes. Hub
Nodes are considered similar to the standard cluster configuration where ASM and database
instances run and have access to shared storage. The main difference between a Hub Node and a Leaf
Node is that a Hub Node has direct access to shared storage whereas the Leaf Node does not. Leaf
Nodes are different from standard Oracle grid nodes in that they don’t require VIPs or direct access
to shared storage. The processes which run on Leaf Nodes are the cluster services without ASM or
database. The main purpose for Leaf Nodes is to host high-availability applications that are
registered and managed by cluster services. Leaf Nodes are not meant to host databases, as of this
release. Leaf Nodes are intended for configuring high-availability applications similar to GoldenGate
and WebLogic and Apps.

Use the following command to check if Flex Cluster is enabled:

Check the role for each node in the cluster as follows:

Options for converting from Leaf to Hub and vice versa are provided using the runInstaller -
updateNodList command.

 Srvctl Enhancements
With version 12c of ASM, Oracle has made several enhancements to commands that manage database
and cluster services. One such enhancement is that you can now determine the steps a command
would take when executing without actually executing the command. Unlike prior versions, which
have no method to evaluate the execution path of the command, this version will provide detailed
steps and show the impact on the database or cluster of executing the command. The Server Control
Utility, srvctl, has been modified to predict or evaluate a command before actually executing. Not
all srvctl commands are enabled to take advantage of this option; only a subset of commands has
this feature enabled.

The –eval option of srvctl enables you to simulate running a command without having any
impact on the system. The –eval option provides information about what will happen if the command
is executed. The following srvctl commands can use the –eval option to simulate running the
command:

If your databases are configured using the standard admin-managed configuration, then the
preceding commands might fail as shown here:

To confirm there are no server pools configured, execute the following:

The output shows the default server pools available. There is a “Free” pool and a “Generic” pool,
but there are no servers assigned to the pool. The srvctl command provides detailed help for each
option. For example, to view the available options for starting a database using srvctl:

The -help option of srvctl will provide details on all the command options, including -eval. In
addition to the -eval commands, Oracle 12c ASM provides another useful command, predict,
which predicts what will happen when a resource fails and cannot be restarted on the same node.
Same as the -eval command, this command also does not make any modification to the system.

To view the list of srvctl commands that can be used with predict, add the –help option:

The srvctl predict command evaluates the consequences of resource failure:

For example, to predict the outcome if ASM fails on a two-node RAC:

The preceding output from predict outlines the consequences if ASM is stopped. It shows that the
diskgroups (DB_DISK01, OCR_DISK) will be stopped, database mgmtdb (single-node database)
will be stopped, and database oradb_cdb (two-node RAC instance) will be stopped. So the predict
command is predicting that if ASM crashes on both nodes on a two-node RAC environment, it will
bring down everything. The two-node RAC test environment I’m using is configured for Flex ASM,
so why is it bringing down the databases if ASM is down? The answer is that the command I issued
to stop ASM was cluster wide, and not for a specific ASM instance running on a cluster server.

The following example predicts if ASM fails on a specific cluster node:

Note the preceding example is isolating ASM failure on node linux72; the output shows diskgroups
only come down and does not show any impact on the database running on this node. If this was an
11g RAC environment, the databases running on cluster node linux72 would crash if ASM fails. With
Flex ASM enabled with 12c, the database will automatically connect to the surviving ASM instance
on the cluster via the ASM listener.

More detailed help for each predict command can be seen using the -help option:

In addition to the preceding changes for srvctl, 12c has deprecated single-character parameters
when executing commands. Version 12.1 of srvctl still is backward compatible and will allow for

single-character parameters, but for newer versions, the single-character parameter will be
deprecated. For example, the -d parameter for database option would need to spelled out as follows:

To see the improvement of 12c, consider the following list of new 12c srvctl commands that did
not exist on 11g ASM. To understand how each command works, use the –help option for the
command.

For crsctl, the only newly added command seems to be crsctl eval, which is similar to
srvctl –eval. To get detailed help on crsctl eval, use the -help option.

 ASM Disk Scrubbing
With Oracle ASM 12c, logical disk corruptions can be repaired by the scrubbing process. ASM disks
that are configured with normal or high redundancy can take advantage of this process. Disk
scrubbing works by using the mirror disks to fix logical corruptions, and the scrub operation has
minimal impact to I/O. The scrub operation can be performed on a diskgroup, disks, or ASM datafile.
The scrub operation provides four options for disk scrubbing:

1. REPAIR : alter diskgroup DB_DISK01 scrub repair;
The REPAIR option automatically repairs disk corruptions. If the REPAIR option is not
specified, the process only checks for logical corruption without fixing the corruption.

2. POWER (AUTO, LOW, HIGH, MAX): alter diskgroup DB_DISK01 scrub POWER
HIGH;

The POWER option controls the resources ASM will allocate for the scrub operation. If the
POWER option is not specified, then the default is AUTO, where ASM would evaluate the
current system load and run the scrub process with minimal impact to the system.

3. WAIT: alter diskgroup DB_DISK01 scrub wait;
When the WAIT option is used, the scrub operation is not added to the scrubbing queue; instead
the process waits for the scrubbing operation to complete. If this option is performed using
SQL*Plus, the prompt won’t return until the scrub wait completes. The alert log for ASM will
show the “wait” process. For example:

4. FORCE: alter diskgroup DB_DISK01 scrub force;
This option is used to force a scrub operation even if the system load is high. As previously
mentioned, the scrub operation can be performed on ASM diskgroups, disks, and files:

 Diskgroup: alter diskgroup DB_DISK01 scrub repair power high force;

 Disks: alter diskgroup DB_DISK01 scrub disk DB_DISK01_0000 repair power
high force;

 ASM file: alter diskgroup DB_DISK01 scrub file
’+DB_DISK01/ORADB_CDB/DATAFILE/users.259.908469163’ repair power max
force

The exception to ASM files is the TEMP files, as shown in the previous log for WAIT:

The disk scrubbing process can be combined with a diskgroup rebalancing operation to reduce I/O
resources. The progress of the scrub operation can be viewed using V$ASM_OPERATION, or use
ASMCMD LSOP.

 ASM Rebalance Enhancements
One of the new options in 12c in regard to ASM disks is the choice of rebalancing ASM disks
manually. Typically ASM disks are automatically rebalanced, where disk configuration changes by
adding or removing disks from a diskgroup. With 12c ASM, Oracle provides the ability to run manual
rebalance operations. The ALTER DISKGROUP REBALANCE operation uses the POWER value to
allocate resources and speed up the rebalance operation. If the POWER value is not specified, the
process uses the value in ASM_POWER_LIMIT specified in the ASM spfile, which by default is 1.
In 12c ASM the POWER values range from 0 to 1024, and for setting the values larger than 11, you
must set the COMPATIBLE.ASM parameter to 11.2.0.2 or higher. If the COMPATIBLE.ASM is set to
less than 11.2.0.2, then the max POWER setting will be 11 even if you explicitly set the POWER limit
to a higher value.

With the POWER settings of the rebalance operations, you can control the degree of parallelism
and thus speed up the rebalance operation. This option also provides functionality to increase or
decrease the POWER limit to accommodate for the server resource capacity. You can completely halt
the rebalance operation by setting the POWER value to 0, and when you want it to resume, you can
then increase the POWER setting to start the rebalance operation from where it stopped.

The EXPLAIN WORK SQL statement, which is new to 12c ASM, uses the V$ASM_ESTIMATE
view to determine the amount of work required to add or drop disks. The EXPLAIN WORK
statement populates the V$ASM_ESTIMATE view with the estimated work to complete the operation
without actually executing the command. By modifying the POWER setting in the EXPLAIN WORK
statement, you can view the adjustments made to the EST_WORK column of the V$ASM_ESTIMATE
view. Column EST_WORK provides an estimate of the number of allocation units to be moved for
the rebalance operation to complete. Oracle ASM tries to keep rebalance I/O for each unit of power.
Each I/O requires Program Global Area (PGA) memory for the extent involved in the relocation, so
increasing PGA might speed up the rebalance operation.

Rebalance behavior can be affected by modifying the CONTENT.CHECK and
THIN_PROVISIONED diskgroup attributes. The CONTENT.CHECK attribute enables or disables
content checking when performing data copy operations for rebalancing a diskgroup. The attribute
value is either TRUE or FALSE (the default value). When the value is set to TRUE, logical content
checking is enabled for all rebalance operations. The THIN_PROVISIONED attribute enables or
disables the functionality to discard unused storage space after a diskgroup rebalance is completed;
the default value is FALSE. This attribute is supported only on 12c with Oracle ASM Filter Driver

(ASMFD), which is described in more depth a bit later in the chapter.
To view ASM attribute settings, you can query V$ASM_ATTRIBUTE or, if connected to

ASMCMD, run the following command. Oracle 12c ASM has added more diskgroup attributes to
those available in previous releases.

The following is an example for EXPLAIN WORK:

You can use EXPLAIN WORK with almost any ALTER DISKGROUP commands and query
V$ASM_ESTIMATE to better estimate the amount of work needed for completion.

With 12c ASM, we have V$ACTIVE_SESSION_HISTORY (ASH), which gives us the ability to
query ASM SQL history and check when commands were executed in ASM; this requires using the
“tuning-pack” license.

 ASM Fast Mirror Resync
Oracle ASM fast resync significantly reduces the time to resynchronize a failed disk by quickly
resynchronizing the Oracle ASM disk extents. Problems that make a failure group temporarily
unavailable are considered transient failures that can be recovered from by the ASM fast mirror
resync feature. This feature keeps track of pending changes to extents on an offline disk during an
outage. When the disk is brought back online, the extents stored on the offline disk are resynced.
When a disk is taken offline, Oracle ASM by default will drop the disk in 3.6 hours. By setting the
DISK_REPAIR_TIME attribute you can delay the drop operation by specifying a time interval. The
DISK_REPAIR_TIME attribute can only be set on diskgroups with high or normal redundancy, and
the ASM compatibility setting must be set at 11.1 or higher. The REPAIR_TIME of V$ASM_DISK
shows the amount of time left, in seconds, before the offline disk is dropped. When the
REPAIR_TIME is elapsed, ASM will drop the disk.

You can use the ALTER DISKGROUP command to set the DISK_REPAIR_TIME attribute to a
specified hour or minute value:

During the ALTER DISKGROUP operations, you can query V$ASM_OPERATION as follows to
view the state of the current operation. The PASS column of V$ASM_OPERATION shows the type of
operation performed.

Use this query of V$ASM_OPERATION to verify what might be running to slow down I/O
performance, noting the type of operation performed.

 ASM Filter Driver
Starting with 12c ASM, for stand-alone and cluster environments, Oracle provides a kernel module
called ASM Filter Driver (ASMFD) for managing ASM disks. As part of the 12c Grid Infrastructure
(GI) install, ASMFD simplifies the configuration and management of disk devices by eliminating the
need to rebind disk devices when Oracle ASM is restarted. ASMFD also filters any non-Oracle I/O
request that could accidently overwrite ASM disks. If ASMLIB is already configured while installing
12c GI, then ASMFD will not automatically override ASMLIB configuration. After installing 12c GI,
you will need to migrate disks manually from ASMLIB to ASMFD if you decide to not use ASMLIB.
Oracle 12c GI will work with ASMLIB and this functionally will still be supported, but if the choice

is to migrate to ASMFD for better management and security for ASM disks, then after the 12c GI
install, you will need to manually migrate to ASMFD.

One of the key benefits of migrating to ASMFD is the security it provides to the ASM disks. Once
the disks are migrated to ASMFD, the ownership of the disks will be “root” and not “oracle” or
“grid.” By having the ownership changed to root, the disks are better secured from non-root users
accidently damaging the header or contents of the disks. Oracle provides documentation on how to
configure ASMFD with and without ASMLIB (Doc ID 2060259.1). Since the test environment I am
using is a two-node 12c cluster without ASMFD, the following steps provide an example of how to
convert from ASMLIB to ASMFD.

Before configuration of ASMFD, as you can see here, ASMFD is not loaded (run as root user):

And before configuration of ASMFD, my disks are owned by oracle:oinstall:

Now, I’ll configure ASMFD (run as root user). As the Oracle GI owner, I update the Oracle ASM
disk discovery string to enable ASMFD to discover devices. You can check what the current ASM
disk discovery string is as follows:

So, the output shows the ASM disk discovery string is ’/dev/oracleasm/disks/*’. I need to
update this value to have ASM automatically discover ASMFD disks also:

As the preceding example shows, I used the ASMCMD DSSET command to add to the ASM disk
discovery string ’AFD:*’, so the disk discovery path has both the old and new search paths for ASM

disks. If you need to completely remove the old ASM disk discovery path, then issue ASMCMD DSSET
’/dev/oracleasm/disks/*’, but for now, until I have completely configured ASMFD, I’ll leave the
old disk path in place.

Since my test environment is two-node RAC 12c, I will need to shut down the CRS stack on all
nodes before configuring ASMFD. To check how RAC nodes are configured:

To stop CRS on all nodes, issue crsctl stop has as root for each node:

After CRS is stopped on all nodes, I can start configuring ASMFD. As root user, I run
afd_configure:

Following are the details on my test system:

After applying patch 18321597, I try to configure AFD:

After stopping ASMLIB, I am able to successfully run the AFD_CONFIGURE command:

The preceding process will add AFD devices into /etc/udev/rules.d/53-afd.rules as listed here:

AFD_STATE reports LOADED on the first node, linux71. Since this is two-node RAC, I need to
run ASMCMD AFD_CONFIGURE on the second node, also after stopping ASMLIB on the second
node:

After running ASMCMD AFD_CONFIGURE on all nodes, I need to migrate the current ASM
disks to ASMFD. Similar to ASMLIB, after configuring ASMFD it creates a directory named
/dev/oracleafd on all nodes where AFD_CONFIGURE was run:

On all RAC nodes, I disable oracleasm.service, to avoid ASMLIB from automatically starting up
after rebooting:

I then confirm the AFD driver is loaded:

Next, I migrate ASMLIB disks to AFD. Before you perform the migrate command, make sure you
have the correct diskgroup and path; importantly, make sure you have the correct disk partition (in
sdc1, for example, the 1 shows that it is partition one).

After running the preceding command, an ASCII text file is created under the /dev/oracleafd/disks/
directory, as shown next, and the content of the text file is the actual raw disk path. Also important to
note is that root is the owner of the new ASCII text file.

After executing the preceding command on all nodes, I start the cluster for each node:

Once the cluster is online, I connect to the ASM instance via SQL*Plus and confirm PATH is using
AFD:

Next I modify the settings for ASM_DISKSTRING and AFD_DISKSTRING:

I confirm /etc/afd.conf file settings are correct on all nodes:

And then I confirm all cluster environments are online:

To add new disks to diskgroups, first partition the new disk using fdisk and then simply add the
disks using ASMCMD AFD_LABEL DB_DISK_01 ’/dev/sdd1’ and then perform ASMCMD
AFD_SCAN on the rest of the nodes. When creating a new diskgroup using “asmca”, make sure the
discovery path is AFD during the Create Disk Group step. After adding the new disk, you should be
able to list the newly added disk:

Oracle has provided another new tool that displays GI/RAC cluster info (Doc ID 1568439.1). The
Perl script ols.pl provides detailed information on the current configuration of the cluster, including
Flex usage and AFD configuration and whether Hub/Leaf Nodes are configured. Sample output is

shown here:

More detailed output can be obtained by passing the parameter ols.pl -f –v; the script can also
be run on 11g cluster environments.

Table 3-1 lists some of the ASM background processes and briefly describes each process.

TABLE 3-1. ASM Background Processes

 ASM and Privileges
Access to the ASM instance is comparable to access to a standard instance, requiring a privilege
level similar to that of SYSDBA and SYSOPER. Note, however, that since there is no data
dictionary, authentication is done from an operating system level and/or an Oracle password file.
Typically, the SYSDBA privilege is granted through the use of an operating system group. On Unix,
this is typically the dba group, also referred to as the OSDBA group. With Oracle 10g, members of
the dba group have SYSDBA privileges on all instances on the node, including the ASM instance.
Users who connect to the ASM instance with the SYSDBA privilege have complete administrative
access to all diskgroups in the system.

In 11g and 12c, Oracle has modified this concept and introduced the concept of ASMDBA, as well
as the role of SYSASM. This role is tied to the OS-level group, logically called OSASM. This
continues support for the separation-of-duties concept between system administrators and DBAs. The
SYSDBA role can still be used when connecting to an ASM instance, but this role is not the all-
powerful user. It has access capabilities to all the V$ views but does not have administrative
privileges on ASM instances. The various roles are outlined here:

Three additional administrative users are introduced in 12c: SYSBACKUP, SYSDG, and
SYSKM.

The following query lists who has been granted SYSDBA, SYSOPER, SYSASM, SYSBACKUP,
SYSDG, or SYSKM as derived from the password file:

The SYSOPER privilege is supported in ASM instances and limits the set of allowable SQL
commands to the minimum required for basic operation of an already-configured system.

The SYSASM privileges permit mounting and dismounting diskgroups and other storage
administration tasks. SYSASM privileges provide no access privileges on an RDBMS instance. The
following commands are available to SYSASM users:

 STARTUP/SHUTDOWN
 ALTER DISKGROUP MOUNT/DISMOUNT
 ALTER DISKGROUP ONLINE/OFFLINE DISK
 ALTER DISKGROUP REBALANCE
 ALTER DISKGROUP CHECK
 Access to all V$ASM_* views

All other commands, such as CREATE DISKGROUP, ADD/DROP/RESIZE DISK, and so on,

require the SYSDBA privilege and are not allowed with the SYSOPER privilege:

 SYSBACKUP is used to perform all backup and recovery operations (new to 12c).
 SYSDG is used for Data Guard activities (new to 12c).
 SYSKM is used for key management–related operations (new to 12c).

 ASM and Multipathing
An I/O path generally consists of an initiator port, a fabric port, a target port, and a LUN. Each
permutation of this I/O path is considered an independent path. Dynamic multipathing/failover tools
aggregate these independent paths into a single logical path. This path abstraction provides I/O load
balancing across the host bus adapters (HBAs), as well as nondisruptive failovers on I/O path
failures. Multipathing (MP) software requires all the required disks to be visible on each available
and eligible HBA. An MP driver detects multipaths by performing a SCSI inquiry command.
Multipathing software also provides multipath software drivers. To support multipathing, a physical
HBA driver must comply with the multipathing services provided by this driver. Please ensure that
the configuration that you are considering is certified by the vendor. A multipathing tool provides the
following benefits:

 Provides a single block device interface for a multipathed LUN
 Detects any component failures in the I/O path, for example, fabric port, channel adapter, or

HBA
 When a loss of path occurs, ensures that I/Os are rerouted to the available paths with no

process disruption
 Reconfigures the multipaths automatically when events occur
 Ensures that failed paths get revalidated as soon as possible and provides auto-failback

capabilities
 Configures the multipaths to maximize performance using various load-balancing methods, for

example, round robin, least I/Os queued, or least service time

TIP
Although ASM does not provide multipathing capabilities, it does leverage multipathing tools, as
long as the path or device produced by the multipathing tool returns a successful return code from
an FSTAT system call. My Oracle Support Note 294869.1 provides more details on ASM and
multipathing.

 Bigfile and ASM
The bigfile feature (as stated earlier in this chapter) is a perfect fit for VLDBs (very large databases)
and ASM. Instead of managing several hundred datafiles, using bigfiles reduces the number of
datafiles significantly. This improves checkpointing, and the time to open the database become
significantly faster, as fewer file opens have to be performed. Using bigfiles reduces the internal
overhead needed to manage a large number of datafiles. With ASM, bigfiles can be 32T for external
redundancy and 12T for normal/high redundancy. This is based on an 8K block size. When using
bigfiles, you have to review your backup and recovery strategy carefully. Obviously, you can’t do full
datafile backup for a 36T datafile, so things like RMAN incremental and cumulative backups become
an integral part of bigfile management.

Avoiding Disk Contention by Using Partitions
Partitioning is probably the single best option available for increasing the performance related to
large tables. Partitioning is a way to increase efficiency by accessing smaller pieces of a table or
index instead of accessing the full table or index. This can be particularly useful when one or more
users are accessing multiple parts of the same table. If these partitions (pieces) of the table reside on
different devices, the throughput is greatly increased. Partitions can also be backed up and recovered
independently of each other (even while they are in use), eliminating potential disk I/O issues during
backup times. Only when partitions are properly implemented are Oracle’s best performance-
enhancing features realized. In 12cR2, Oracle also allows read-only partitions and subpartitions. The
best way to understand partitioning is to look at an example. Consider the following simple example,
where you partition the DEPT table into three partitions (pieces) using the DEPTNO column.

The TABLE DEPT is created with three range partitions:

This example builds three distinct partitions on the DEPT table. The key to getting better throughput is
to ensure that each partition is placed on a different physical disk so that all three partitions can be
accessed simultaneously if you are not using ASM. The tablespaces DEPT1, DEPT2, and DEPT3
must have physical files that are located on different physical disks. Remember that the tablespace is
the logical holder of information where the datafile is the physical disk. You can have one tablespace
that includes multiple datafiles, but a datafile can only relate to a single tablespace. The key to
partitioning to improve disk I/O is to ensure that the partitions that will be accessed simultaneously
either are located on different physical disks or use ASM.

Data is then entered into all three table partitions:

The DEPT table still looks like a single table when you select from it:

Here you selected all records from all of the partitions in the preceding example. In the next three
examples, you select individually from each partition.

In this instance, you select from a single partition and access only a single partition:

Note that in the final example, you eliminate the need to access the first or second partition
(partition elimination). Partitioning indexes and using the parallel option along with partitions make
partitioning even more powerful.

TIP
To minimize disk I/O on a single large table, you can break the table into multiple partitions that
reside in tablespaces on different physical disks.

With interval partitioning (as of 11g), you no longer need to specify MAXVALUE in the upper
partition. If you set it to 30 instead, and insert values above that, an additional partition will be built
by Oracle:

A new partition will be created automatically (SYS_P41 in my case), which now holds the value of
70 in it. There are now four partitions in this table. Also, interval partitions in 12cR2 can be part of a
subpartition (values can be inserted that are not in the range of the original table).

 Getting More Information About Partitions
You can retrieve the information regarding partitions by accessing USER_TABLES,
DBA_PART_TABLES, and USER_SEGMENTS. Example queries to these three tables are displayed
next with corresponding output for the examples in the preceding section.

In the preceding example, the PAR (partitioned) column indicates whether a table is partitioned.

In the preceding and following examples, there are three partitions on the DEPT table:

TIP
Tables can be easily partitioned for individual pieces to be accessed and/or manipulated; you can
still access the entire table of a partitioned table. Accessing the tables DBA_TABLES,

DBA_PART_TABLE, and DBA_SEGMENTS provides additional information concerning tables that
have been partitioned. See Chapter 2 for more information on index partitioning.

 Other Types of Partitioning
There are several types of partitioning. The main types are range, hash, composite, and list
partitioning. There are also multiple index types associated with partitions. I covered range
partitioning in the preceding section, but another partitioning option is multicolumn range partitioning.

Multicolumn Range Partitioning
Multicolumn range partitioning is the same as range partitioning except when using multiple
columns to define the ranges. In the following example, the data is segmented into quarters so you can
eliminate the quarters that are not needed when a single quarter is accessed, but also so the data can
be archived one quarter at a time without interfering with another quarter. The data can also be
segmented into multiple tablespaces so better I/O is achieved.

TIP
You can also partition tables using multiple columns as the criteria. You must specify MAXVALUE
for all columns that are part of the partition key except for interval partitioning as of 11g. With
interval partitioning, you no longer need to set MAXVALUE, and Oracle will create new partitions
for you.

Hash Partitioning
Hash partitioning is generally used when you are unsure where to put the breakpoints as you would
in range partitioning. Hash partitioning breaks up data into the number of partitions specified based
on the hash of the partition key specified. To get an even distribution, you should always specify a
power of 2 (2n) as the number of hash partitions. Hash partitioning only supports local indexes and
range- or hash-partitioned global indexes. You can specify the names of the index and table partition,
and you can later add or reduce the number of partitions if you find you have too many or too few. The
following example shows a table with four hash partitions that is built on the partitioning key
ACCT_NO and distributed across four tablespaces:

TIP
When you don’t know how to break up a table, but you know that it needs to be partitioned and
spread out, use hash partitioning.

Composite Partitioning
Sometimes a table is so large and accessed so frequently that you need a much better way to “slice
and dice it.” Composite partitioning combines range and hash partitioning. You use range
partitioning to allow partition elimination and then hash the partitions further to distribute I/O.
Composite partitioning supports local indexes and range- or hash-partitioned global indexes. The
following is an example of composite partitioning that could lead to incredible job security due to its
nonintuitive complexity:

This example build partitions based on the range of values listed for the ORDERDATE column and
puts them into partitions Q1, Q2, Q3, and Q4. It then subpartitions each of these range partitions into
eight subpartitions based on a hash of the PRODUCTID column.

Here is an example of a hash-partitioned global index created on this table:

In 12cR2, composite partitioning may use interval partitioning as a subpartitioning strategy. In
other words, MAXVALUE is not needed because the future subpartitions will automatically be built
as data is added that is outside the current ranges.

List Partitioning
Oracle added list partitioning for the DBA or developer who really knows his or her data well. List
partitioning allows you to assign the individual column values associated with each of the partitions.
Several restrictions on list partitioning are displayed after the following code listing.

Restrictions on list partitioning are as follows:

 You can specify only one partitioning key in the column list, and it cannot be a LOB column. If
the partitioning key is an object-type column, you can partition on only one attribute of the
column type.

 Each partition value in the VALUES clause must be unique among all partitions of the table.
 If you specify the literal NULL for a partition value in the VALUES clause, then to access data

in that partition in subsequent queries, you must use an IS NULL condition in the WHERE
clause, rather than a comparison condition.

 You cannot list partition an index-organized table.
 The string comprising the list of values for each partition can be up to 4K.
 The total number of partition values for all partitions cannot exceed 64K–1.

TIP
In 12cR2, you can also have the database automatically create a separate partition for each
distinct partition key value (auto-list partitioning).

 Partitioned Indexes (Local)
Different types of partitioned indexes are covered in Chapter 2. The most common type is a local
partitioned index, which is where the index is partitioned on the same columns, same number of
partitions and bounds as the corresponding table:

 Partial Indexes
Although partitioned tables have been providing management and performance improvements for
quite some time, partitioned tables typically are very large tables and therefore have very large

indexes as well. In Oracle 12c, the introduction of partial indexes enables you to create an index and
apply it to only specific partitions of the table, reducing the size of the index and only indexing
partitions that get frequent use. The partial index can apply to both local and global indexes. To utilize
this capability, we specify with the partition of a table if the partitioned is to be indexed using the
INDEXING clause (INDEXING ON/INDEXING OFF). For example:

Then, we create the index and indicate if it is a partial index with the PARTIAL INDEX clause.
For example, on a global index:

And here’s an example on a local index:

Other partitioning new features in 12cR2 include the capability to split and merge partitions
online; convert nonpartitioned tables to partitioned tables online; create multiple-column list
partitions; use list partitioning as a subpartitioning strategy for composite partitioned tables; and

create read-only partitions.

Reference Partitioning
As of 11gR2, Oracle has added reference partitioning where a child table derives its partitioning
information from the parent table, and the relationship is defined based on existing primary key
(PK)/foreign key (FK) relationships between the parent and child. The partitioning key is resolved
through an existing parent-child relationship, enforced by enabled and active primary key and foreign
key constraints. Tables with a parent-child relationship can be logically equipartitioned by inheriting
the partitioning key from the parent table without duplicating the key columns. The logical
dependency also automatically cascades partition maintenance operations, thus making application
development easier and less error-prone.

For example, consider the simple case of the ORDERS (parent) and LINEITEMS (child) tables,
which are joined based on the PK/FK relationship on the ORDER_ID column in both tables. The
ORDERS table also has an ORDER_DATE column, which is used to partition and prune the
ORDERS table (there is range partitioning on the ORDER_DATE). The LINEITEMS table does not
have any such column (so it’s not duplicated), and, therefore, there’s not an easy way to partition this
table, and it can’t take advantage of partition pruning or partition-wide joins based on the
ORDER_DATE column.

With reference partitioning, however, the ORDERS table is range-partitioned on ORDER_DATE,
for a month at a time, and the LINEITEMS table also now automatically has one partition for each
partition of the parent table (given that a reference partition is created using the PARTITION BY
REFERENCE clause). The partitioning key is inherited through the PK/FK relationship. Please see
the Oracle VLDB (Very Large Database) and Partitioning Guide for more information.

TIP
Reference partitioning is tailor-made for the partitioning of OLTP systems and those systems that
tend to be far more normalized than the rest.

Partition-wise Joins
Oracle also allows a query against two partitioned tables to join on only the needed partitions.
Instead of joining many rows to many rows, you can now perform partition elimination on each table
and then join the results. To join on partitions, the tables must be equipartitioned tables, which means

 Tables are partitioned using the same partition key.
 Tables must be partitioned with the same partition breakpoints.

System Partitions
System partitions are used to break data into many smaller partitions, but not grouped into any

particular groupings other than whatever you decide. System partitions are great to use when you are
inserting large amounts of data and want to break it into smaller pieces, but using the same table. You
decide exactly what data goes where. Yes, this is as powerful and as dangerous as it sounds; things go
exactly where you want them! You can’t forget to specify the partition or you will get an “ORA-
14701: Partition-extended name or bind variable must be used for DMLs on tables partitioned by
System method.”

System partitions have the following restrictions:

 Cannot be used with index-organized tables
 Cannot play a part in composite partitioning
 Cannot split
 Cannot be used with CREATE TABLE AS SELECT…
 Cannot be used with INSERT INTO table AS...

The basic syntax is

where n is 1 to 1024K–1.
The following is an example:

The PARTITION clause is optional for UPDATEs and DELETEs, but more efficient if you can use it
(be very careful to ensure that what you are doing is what you want to do).

 Global Index Maintenance: Drop and Truncate

Partition Operations
 With Database 12c, when you drop or truncate a partition, the global indexes are no longer

invalid and managed automatically.
 Table partitions can be moved online:
alter table dept move partition d1 tablespace data2 online;

 MERGE/SPLIT partitions are now online operations (12cR2).
 Nonpartitioned tables can be changed to partitioned tables online (12cR2).
 In 12cR2, Automatic Data Optimization (ADO, covered in the discussion of the Heat Map

earlier in this chapter) is extended to manage the In-Memory column store moving objects like
tables and partitions in and out of memory based on the Heat Map statistics.

 Other Partitioning Options
This section covers some of the many options that you can use when managing partitions. You will
see that many of these options that are available for operations on tables are also available for
partitions:

 MODIFY PARTITION partition_name Modifies the real physical attributes of a table
partition. You can specify any of the following as new physical attributes for the partition:
LOGGING, PCTFREE, PCTUSED, INITRANS, and STORAGE (note MAXTRANS is
deprecated and defaults to 255 concurrent update transactions for a given data block, if there
is enough available space in the block).

 RENAME PARTITION partition_name TO new_partition_name Renames table partition
PARTITION_NAME to NEW_PARTITION_NAME.

 MOVE PARTITION partition_name Moves a table partition to another segment. You can
move partition data to another tablespace, recluster data to reduce fragmentation, or change a
create-time physical attribute:
alter table dept move partition d3 tablespace dept4 nologging;

In this example, the D3 partition with all corresponding data is moved from the DEPT3
tablespace, where it originally resided, to the DEPT4 tablespace; NOLOGGING disables redo
generation during the MOVE operation and is not the same as the LOGGING or NOLOGGING
attribute of the partition or table.

TIP
When moving a partition, use the NOLOGGING option (if possible) for speed.

 ADD PARTITION new_partition_name VALUES LESS THAN (value_list) Adds a new
partition to the “high” end of a partitioned table. You can specify any of the following as new
physical attributes for the partition: LOGGING, PCTFREE, PCTUSED, INITRANS, and
STORAGE. The VALUES clause specifies the upper bound for the new partition. The
VALUE_LIST is a comma-separated, ordered list of literal values corresponding to partition
key values. The VALUE_LIST must contain values that are greater than the partition bound for
the highest existing partition in the table.

 EXCHANGE PARTITION This powerful option allows you to convert a partition or
subpartition into a nonpartitioned table or convert a nonpartitioned table into a partition. This
option is very useful if you are archiving old range partitions and want to export them as stand-
alone tables before you drop them. Also, it can be useful for quickly loading incremental data
into an already-existing partitioned table.

 DROP PARTITION partition_name Removes a partition and the data in that partition from a
partitioned table:
alter table dept drop partition d3;

TIP
Dropping a table partition causes its local index (but not the other local partition indexes) to be
dropped and a global index (one that exists on the entire table) to be unavailable (unless you’re
willing to rebuild the indexes afterward). Don’t use global indexes if you plan to drop table
partitions.

 TRUNCATE PARTITION partition_name Removes all rows from a partition in a table. The
example that follows shows the truncation of the D1 partition. For each partition or
subpartition truncated, Oracle Database also truncates corresponding local index partitions
and subpartitions. If those index partitions or subpartitions are marked UNUSABLE, then the
database truncates them and resets the UNUSABLE marker to VALID.
alter table dept truncate partition d1;

 SPLIT PARTITION partition_name_old Creates two new partitions, each with a new
segment, new physical attributes, and new initial extents. The segment associated with the old
partition is discarded. The example that follows shows splitting the D1 partition into a D1A
partition and D1B partition at DEPTNO=5. Note that you must also rebuild the indexes after
this operation.

 MERGE PARTITIONS partition_list INTO PARTITION new_name Takes two partitions
and combines them into one partition. The next example shows merging the D1A and D1B
partition back into the partition named D1. Note that you must also rebuild the indexes after
this operation.

The following bullet points are no longer commands, but options you can use with the partition
maintenance commands (ALTER TABLE PARTITION name MODIFY or the ALTER INDEX):

 UNUSABLE LOCAL INDEXES Marks all the local index partitions associated with the
specified partition as unusable.

 REBUILD UNUSABLE LOCAL INDEXES Rebuilds the unusable local index partitions
associated with the named partition.

 ALTER INDEX .. MODIFY PARTITION .. UNUSABLE Marks the index or index
partition(s) as unusable. An unusable index must be rebuilt or dropped and re-created before it
can be used. While one partition is marked unusable, the other partitions of the index are still
valid, and you can execute statements that require the index if the statements do not access the
unusable partition. You can also split or rename the unusable partition before rebuilding it.

 ALTER INDEX .. REBUILD PARTITION Rebuilds one partition of an index. You can also
use this option to move an index partition to another tablespace or to change a create-time
physical attribute.

 Index Partitioning

Partitioned indexes have the same advantages as partitioned tables. Accessing smaller pieces instead
of one index on the entire table increases performance when properly executed. There are local and
global indexes, and prefixed or nonprefixed indexes. A local index has been partitioned; each piece
is a local index. A global index is just a regular nonpartitioned index. A prefixed index is when the
leftmost part of the index is the partition key, whereas a nonprefixed index can be costly to access
because the partition key is not indexed. If a partition of a table with a global index is dropped, then
the corresponding global index is invalidated. If a partition of a table with a local prefixed index is
dropped, then the local index is also dropped.

The initialization parameter SKIP_UNUSABLE_INDEXES allows the user to disable error
reporting of indexes and index partitions marked unusable. If you do not want the database to choose
a new execution plan to avoid using unusable segments, you should set this parameter to FALSE (the
default value is TRUE).

The following is an example of a local prefixed partitioned index (the most common type). The
index name is DEPT_INDEX, and the index is on the DEPTNO column of the DEPT table. The index
is split into three pieces (D1, D2, and D3) that are located in three tablespaces (DEPT1, DEPT2, and
DEPT3) that are striped differently from the location of the corresponding table data. This ensures
that accessing information from a table partition and its corresponding index partition will result in
accessing two physical disk drives instead of one—given that DEPT1–DEPT3 are tablespaces that
correspond to datafiles on different physical disks.

You can get the information regarding partitioned indexes by accessing DBA_INDEXES:

TIP
Indexes that are partitioned (local indexes) should also be prefixed, meaning the partitioning key
is the leading edge of the index.

 Exporting Partitions
Partitions can be effortlessly exported. If the data in your table is segmented carefully, it is possible
to keep all new information in a single partition to export. This is only true for certain datasets that
use some sort of increasing column value for the partition key. For example, if you partition by date,
all new data goes into the latest partition. However, if your data is partitioned by username, or some
other generic identifier, then this is not always true. By using a partition key of increasing values, you
could potentially eliminate the need to export data from partitions that have not changed and have
been previously exported. By using the EXPORT command and giving the owner.table.
partition_name for the table to be exported, only the partition is exported:

Here’s a simple example using the DEPT table:

TIP
If you are archiving old data, consider exchanging the partition for a table name that is more
verbose before exporting it. This way, you could import just that table back for reference later and
potentially avoid even having to return it to the partitioned table.

Eliminating Fragmentation (Only If Needed—Careful!)
Fragmentation can hamper space management operations in the database, but it is a long-enduring
myth that overall the number of extents in a segment always impacts performance against the database.
It is an equally long-enduring myth that the number of extents never impacts performance. Bitmap
indexes with many noncontiguous extents spanning multiple datafiles can cause a big performance
problem. Generally, locally managed tablespaces can minimize most extent-related issues. The need
for repeated reorganizations should be a thing of the past for most (but not all) DBAs, if you have set
up your storage properly. Fortunately, if you do still need to deal with the occasional reorganization,
you now have several ways to perform this activity while minimizing downtime.

To avoid performance issues with extent management, you can do the following:

 Use locally managed uniform-extent tablespaces when you know how big a segment will grow
or the rate at which it will grow.

 Use extent sizes that are multiples of the database block size.
 Move tables to tablespaces with an appropriate extent size when they grow too large.
 Avoid row chaining by using Automatic Segment Space Management (ASSM, discussed a bit

later).

I recommend that you regularly monitor your database to find segments that are growing to extreme
numbers of extents (over a thousand) and then manage those segments appropriately:

TIP
Query DBA_SEGMENTS on a regular basis to ensure that objects are not building up too many
extents (when not using ASM). Catching problems early is the key to avoiding performance issues
later (there are times when it’s better just to leave things as they are, particularly when there isn’t
an issue). The goal is to place objects correctly in tablespaces with uniform extent sizes that are
appropriate for the expected growth of the objects.

 Using the Correct Extent Size
When data is read from a table, it is either accessed by a ROWID operation via an index or by a full
table scan (except for index-organized tables). In most cases, access by ROWID is the preferred
method. The ROWID method allows the database to determine the exact block that a record resides in
and, therefore, bypasses any extent allocation information in the segment. The short answer is that
ROWID operations do not care how many extents are in the segment. Database block sizes generally
range from 4K to 32K. So, regardless of the number of extents in a segment, a full table scan always
performs the same number of reads as long as the extent size is a multiple of the database block size.

Do you still need to worry about extent counts if you are using extents that are multiples of the

block size? Yes you do, but you aren’t as driven by it as you used to be. Think of it this way, the more
extents you have, the more you have to manage, even if it is managed via faster methods. Therefore,
my rule of thumb is if you have a segment growing over 4096 extents (assuming you are using locally
managed tablespaces), consider moving it to a tablespace where the extent size is more appropriate
for the size of the segment. If you have a 15G table, using a 200M extent size is probably more
efficient than using a 1M extent size. For the purposes of loading data alone, you will save backend
processing time because the database does not have to allocate as many extents during the load
process.

 Avoiding Chaining by Setting PCTFREE Correctly
When a row is created in a table, the data is written to a block and is given a ROWID. The ROWID
identifies the data’s location on disk. If a row is updated, the changes are written to the same location
on disk. The ROWID for the row does not change. Row chaining can occur when there isn’t enough
room in the data blocks to store a single row or the most recent changes made to a row. A chained
row is one that exists in multiple blocks instead of a single block. Accessing multiple blocks for the
same row can be costly in terms of performance. To see if you have chaining problems, run the
utlchain.sql script that Oracle provides to create the CHAINED_ROWS table. The utlchain.sql file
comes with Oracle and is in the /rdbms/admin subdirectory of your ORACLE_HOME. You can also
use Enterprise Manager or look for “Fetch By Continued Row” in STATSPACK or AWR Report to
detect chained rows. You should check for chaining on a weekly basis and fix any problems
immediately. To analyze the amount of chaining in a table (CUSTOMER in this example), run the
following query:

Then, run the following query accessing the CHAINED_ROWS table to check the CUSTOMER
table for chaining:

If no rows are returned, then you don’t have a chaining problem. If there is a chaining problem,
then the query will return the HEAD_ROWID for all chained rows. You can also use SELECT
COUNT(*) against the CHAINED_ROWS table to find the number of chained rows. In V$SYSSTAT,
“table fetch continued row” is an indicator of chained rows as well.

To avoid row chaining, set PCTFREE (the amount of space reserved in a block for updates)
correctly (don’t set this when using ASSM, discussed next). This parameter is set when the table is

created. The default value is set to 10 (10 percent free for updates), but this needs to be much higher
in a table where there is a large frequency of update activity to rows in the table.

Incidentally, if you have a table where update activity will be very low to nonexistent, you can set
the PCTFREE to a slightly lower value to ensure more rows will fit into the block and, therefore,
conserve space in your table.

TIP
Find chaining problems by accessing the CHAINED_ROWS table. Avoid chaining problems by
correctly setting PCTFREE or choosing the correct size for your database.

 Using Automatic Segment Space Management
(ASSM)
Automatic Segment Space Management in locally managed tablespaces is an alternative to using free
lists. This system of managing free space in segments utilizes bitmaps to track the amount of free
space in blocks that is available for inserting rows. Because free lists are no longer used when
ASSM is enabled, the overall time and resources needed by the database are greatly minimized.

In the latest version of the database, Oracle has further expanded the feature set of ASSM and
provided a new clause to the ALTER TABLE and ALTER INDEXES statements. The SHRINK
SPACE clause essentially coalesces the free space in the segment, releasing unused space so the
segment can be smaller. This improves the performance of queries on this segment, and it is much
easier to implement than to reduce a segment size through EXPORT/IMPORT or MOVE/RENAME
operations. Refer to the documentation on this feature for restrictions and limitations.

ASSM should improve overall performance of block management within segments, but there is a
circumstance where the architecture of using a free space bitmap for the block usage can slow
performance. Full table scans of small tables (< 1000 rows) in an ASSM-enabled tablespace will
actually require more buffer gets than a non-ASSM tablespace. Therefore, if you have your
tablespaces organized by segment size, ASSM should probably be used only on those tablespaces
with medium to large segments.

ASSM has the potential to make a dramatic improvement to block management performance, but
do your research, as there are several bugs scattered across different versions of the database that can
affect you in specific situations. Before implementing ASSM on your system, be sure to research the
types of segments you will have in your tablespace and check for issues related to operations against
those types of segments for your version of the database. Most of these bugs have patches that can be
applied to resolve the issues.

TIP
Improve performance and segment management by using ASSM, or use separate tablespaces for
smaller segments.

Increasing the Log File Size and
LOG_CHECKPOINT_INTERVAL for Speed
If you want to speed up large numbers of INSERTs, UPDATEs, and DELETEs, increase the sizes of
your log files and make sure they are on the fastest disk. Previously, you could also increase the
LOG_CHECKPOINT_INTERVAL if it was set such that it would checkpoint prior to a log switch,
and this currently defaults to zero (which means switching based on the redo log being full). The
LOG_CHECKPOINT_INTERVAL determines the length of time between checkpoints. Therefore, any
recovery that involves applying the online redo logs is affected—meaning complete database
recovery or instance recovery. Increasing the size of your log files can increase the time needed for
media recovery.

Oracle relies on online redo log files to record transactions. Each time a transaction takes place in
the database, an entry is added to the online redo log file. If you increase the size allocated for the
redo log files, you can increase performance by decreasing the overall number of required log
switches and checkpoints. Uncommitted transactions generate redo entries, too, because they generate
undo records and these undo records are also written to the redo logs. You can watch the logs spin
during a large batch transaction. But keep the following characteristics in mind when you make
modifications to the size of your log files:

 A log file must be online and available while the database is up or the database will halt (one
of the few things that stops the database immediately).

 Online redo log files are recycled and offline redo log files are written to archived log files
automatically (if archiving is activated).

 Minimum is two online redo log files. Online redo log file multiplexing (additional copies) is
recommended to provide redundancy in case an online redo log file is lost.

 The number of initial log files and their sizes are determined automatically when the database
is created.

 Archive logging can be turned on and off by restarting the database in MOUNT mode and then
using the ALTER DATABASE command.

 Checkpoints occur when committed transactions in redo logs get written to the database.
Checkpoints also update the datafile headers to set the checkpoint SCN, which is used during
the rolling back phase of recovery. If the current SCN for the database at the time of failure
was 234578, and the datafiles have a checkpoint SCN of 234500, then only the changes in the
redo logs from 234500 to 234578 need to be rolled back. Checkpoints are basically
consistency markers for the database—a way of saying everything is in sync at this point.

Determining If Redo Log File Size Is a Problem
Two potential problems are possible that should be addressed. The first concerns batch jobs that do
not have enough total redo space to complete or are so fast that the online redo logs wrap (cycle
through all the logs and start writing to the first one again) before they are archived to the offline redo
logs. Because an online redo log cannot be overwritten until it is archived (when archiving is
enabled), DML and DDL activity has to wait until an online log becomes available. By listing the
online redo logs with their last update date and time at the operating system level, you can determine
how often they are switching. You can also query V$LOG_HISTORY for the last 100 log switches. If
you increase the size of the online redo logs, it may provide the space for large batch jobs doing large
INSERT, UPDATE, and DELETE transactions. A better solution may be to increase the number of
online redo logs so the additional space is provided while also having a frequent log switch (smaller
but more online redo logs).

The second potential problem concerns long-running jobs that are spending a large amount of time
switching online redo logs. Long-running jobs are often much faster when the entire job fits into a
single online redo log. For the online transaction processing (OLTP) type of environment, smaller
online redo logs are usually better. My rule of thumb is for online redo logs to switch every half hour
(not counting the long-running batch jobs that shorten this time). By monitoring the date and time of the
online redo logs at the operating system level (or querying V$LOG_HISTORY), you can determine
whether to increase the size or number of online redo logs to reach an optimum switching interval.

Here is a query that shows you the time between log switches. It can be handy in determining if
you have a problem:

 Determining the Size of Your Log Files and
Checkpoint Interval
You can determine the size of your online redo log files by checking the size at the operating system
level or querying the V$LOG and V$LOGFILE views. Displaying information about redo logs is
shown in the query listed here:

The query output shows two groups of redo logs. Each group has two redo log files in it (one primary
file and one multiplexed file). The data in /disk1/log1a.ora and in /disk2/log1b.ora is exactly the
same (multiplexing redo log files is for availability and recoverability purposes).

TIP
Increase the size of your log files to increase the rate at which large INSERTs, DELETEs, and
UPDATEs (DMLs) are processed.

 Other Helpful Redo Log Commands
You can add additional redo logs by using the ALTER DATABASE ADD LOGFILE command to
create larger redo logs and then to drop the smaller ones.

To multiplex online redo log files (creating a mirrored copy), use this command to add a log file to
an existing group:

To drop an online redo log member, use this command:

To add a new online redo log group, use this command:

To drop an entire online redo log group (all copies), use this command:

NOTE
You cannot drop a redo log file group if doing so would cause the redo thread to contain less than
two redo log file groups. You cannot also drop the redo log file group if it contains the current
online redo log (ORA-01623). In this case, you need to switch log groups first and then you can
drop the redo log group.

To switch log files (change current redo log group to next redo log group):

TIP
Put the redo logs on the fastest disk (or SSD or flash) if you plan to write a lot of information. Try
to use the outer edge of the disk (the fastest part on many disk types) for the redo logs. Better yet,
there is an ASM feature that does this: The Intelligent Data Placement feature enables you to
specify disk regions on Oracle ASM disks to ensure that frequently accessed data is placed on the
outermost (hot) tracks, which provide higher performance.

Additional Redo Log Instance Parameters
These further instance parameters can have an effect on the performance of your online redo log files:

 LOG_ARCHIVE_DUPLEX_DEST Directory location with archive prefix (arch). This is a
location to write an additional copy of archive logs (as redo logs are filled and are archived
in ARCHIVELOG mode only). If you have the space, this safety net can save you if archiving
errors occur. For Oracle Enterprise Edition (EE) databases, this parameter is deprecated in
favor of the LOG_ARCHIVE_DEST_n parameters. If Oracle EE is not installed or it is
installed but you have not specified any LOG_ARCHIVE_DEST_n parameters, this parameter
is valid.

 LOG_ARCHIVE_MIN_SUCCEED_DEST Can be set to 1 to 10 if you are using
LOG_ARCHIVE_DEST_n, or to values of 1 or 2 if you are using LOG_ARCHIVE_DEST and
LOG_ARCHIVE_DUPLEX_DEST. This is the minimum number of successful archives

written for a redo log. If you set it to 2, then you have two mandatory archiving destinations,
similar to setting LOG_ARCHIVE_DEST1 and LOG_ARCHIVE_DEST2 and mandatory
archive sites. If you set any LOG_ARCHIVE_DEST_n parameter where n > 3, then those sites
are treated as optional archive sites. If you set LOG_ARCHIVE_MIN_SUCCEED_DEST to 1,
then the LOG_ARCHIVE_DUPLEX_DEST or LOG_ARCHIVE_DEST_n (n > 1) sites are
optional best-effort archive sites, not mandatory sites.

 DB_WRITER_PROCESSES This is the number of database writers to write data from the
SGA to disk when one database writer isn’t enough.

 DBWR_IO_SLAVES If you can’t use multiple processes (or if you don’t have asynchronous
I/O and want to emulate it), then you can use DBWR_IO_SLAVES to distribute the load of the
ARCH and LGWR processes over multiple I/O slaves. This can’t be used if
DB_WRITER_PROCESSES > 1.

Storing Multiple Control Files on Different Disks and
Controllers
Control files store information regarding startup, shutdown, and archiving. Because your system is
useless without at least one good control file, you should store three copies of the control files on
separate disks and controllers (if possible). If you do happen to remove all the control files while the
database is open, you can use the ALTER DATABASE BACKUP CONTROLFILE command to
generate a new one. If the database is closed and the control file is missing, you can use the CREATE
CONTROLFILE statement to re-create the control file. However, re-creating the control file from
scratch is a lot of work and prone to error. And lots of valuable, possibly critical, information is lost
(for example, the most recent backup information for RMAN backups).

To view current control files, run the following query:

Another suggestion is to create a text copy of the control file at regular intervals, or at least after
any database architectural change (at the file or tablespace level). This helps if you lose all copies
and have to re-create the control file from scratch.

Other Disk I/O Precautions and Tips
Here are a few further miscellaneous notes pertaining to disk I/O:

 If you can afford it and you need the speed, put everything on SSD (flash) or Exadata. At a
minimum, try to put redo logs on SSD and, if possible, UNDO and TEMP.

 Heavy batch processing may need much larger UNDO, REDO, and TEMP tablespace sizes.
 Heavy DML (INSERT, UPDATE, and DELETE) processing may need much larger UNDO,

REDO, and TEMP tablespace sizes.
 Heavy user access to large tables will usually require more CPU and memory.
 Poorly tuned systems will require more CPU and memory and larger temporary tablespace

sizes.
 A greater number of well-balanced disks and controllers will always increase performance

(by reducing I/O contention).
 If you increase disk capacity, you can speed backup and recovery time by keeping a copy of

the backup on disk instead of tape.
 If you can afford it, Exadata, EMC, and/or solid state or flash disk solutions are some of the

absolute best ways to improve Oracle I/O performance.
 Versions 10g and 11g required ASM and database instances to be on the same server. With

new features of 12c ASM, this tightly coupled configuration for ASM and database instance
has been loosened, and this provides for greater flexibility in managing ASM instances in
RAC environments and remote ASM. Oracle also provides the new 12c Flex Clusters for
RAC, the ability to rebalance hot spots, and fast sync and repairs.

Issues to Consider in the Planning Stages
If you’re planning a new system or an upgrade, here are some things you’ll want to consider:

 What is the maximum possible disk capacity for the hardware?
 What disk sizes are available?
 What will be the initial size of the database?
 What will be the future size of the database and what is the rate of growth?
 Will there be a RAID (striping) level for database files or the OS? Can I use ASM?
 What recovery methods will be employed?
 What archiving methods will be used to store historical information?
 How often will report output be kept on the system?
 What development space will be needed?
 What software will be installed, and how much space will it need to function efficiently?
 What system utilities will be installed, and how much space will they need to function

efficiently?

 What data transfer methods are going to be employed?
 Is ASM installed? Learn and plan for it if it is.
 What are the batch processing requirements, and will there be ad hoc user queries?
 How will the data be accessed that may cause potential hot spots?

Finally, it’s worth mentioning the product Oracle Orion here. Oracle Orion is a tool for predicting
the performance of an Oracle database without having to install Oracle or create a database. Unlike
other I/O calibration tools, Oracle Orion is expressly designed for simulating Oracle database I/O
workloads using the same I/O software stack as Oracle. Orion can also simulate the effect of striping
performed by Oracle Automatic Storage Management

TIP
When you are in the system planning stage, ensure that you find out all of the information related
to the current and future use of the system. Don’t just think about the Oracle database needs—
investigate the other software and applications that affect the performance of your Oracle
database.

Tips Review
 One of the best features of 12c is pluggable databases. It offers the ability to consolidate

hundreds of databases into a single container database (CDB) with hundreds of pluggable
databases (PDBs).

 Two of the best features of 12cR2 are the ability to flashback pluggable databases (PDBs) and
the ability to build a subset standby with only some PDBs. In 12cR2, you can also set
partitions and subpartitions to be read-only.

 Redo and archive log files are defined as fine-grained, whereas datafiles are coarse.
 Try to avoid splitting a logical device in a disk array into more than one filesystem. Splitting

may seem to give you flexibility, but it can also increase the number of datafile locations you
have to manage.

 Use disk arrays to improve performance and protect your data against disk failure. Choose the
proper RAID level and technology solutions that enable you to maintain the availability your
organization needs. Don’t just go “good enough,” because you will regret it at 2 a.m. when you
lose a disk. ASM is a great option with striping and mirroring capabilities.

 Separate key Oracle datafiles in traditional filesystems to ensure that disk contention is not a
bottleneck. By separating tables and indexes of often-joined tables, you can ensure that even
the worst of table joins do not result in disk contention. In Enterprise Manager (Cloud
Control), Oracle makes it easy to move data to a hotter or colder region of a disk.

 Query V$FILESTAT and V$DATAFILE to see how effectively datafiles have been balanced.
Note that temporary tablespaces are monitored using V$TEMPFILE and V$TEMPSTAT.

 To have the largest Oracle 12c database possible, 8 exabytes, you must use 128T datafiles
(and must also use bigfile tablespaces and a 32K block size).

 Although ASM does not provide multipathing capabilities, it does leverage multipathing tools,
as long as the path or device produced by the multipathing tool returns a successful return code
from an FSTAT system call. My Oracle Support Note 294869.1 provides more details on
ASM and multipathing.

 To ensure that ASM is using the multipath device names and not the regular device, set the
ASM_DISKSTRING parameter to look for the multipath device names. For example, if you
are using EMC PowerPath, set the disk string to ‘/dev/emcpower*’. The only exception is
when you are using Linux and the disk string is set to ‘ORCL:*’. In such cases, you would
configure ASMLIB to give preference to saved multipath devices.

 To minimize disk I/O on a single large table, you can break the table into multiple partitions
that reside in tablespaces on different physical disks.

 Tables can be easily partitioned for individual pieces to be accessed and/or manipulated; you
can still access the entire table of a partitioned table. Accessing the tables DBA_TABLES,
DBA_PART_TABLE, and DBA_SEGMENTS provides additional information concerning
tables that have been partitioned.

 You can also partition tables using multiple columns as the criteria. You must specify
MAXVALUE for all columns that are part of the partition key except for interval partitioning
as of 11g. In 12cR2, you can have interval partitions as part of composite partitions using the
intervals as a subpartitioning strategy.

 When you don’t know how to break up a table, but you know that it needs to be partitioned and
spread out, use hash partitioning.

 In 12cR2, you can have multiple columns for list partitioning.
 In 12cR2, you can also have the database automatically create a separate partition for each

distinct partition key value (auto-list partitioning).
 Reference partitioning is tailor-made for the partitioning of OLTP systems and those systems

that tend to be far more normalized than the rest.
 Use the NOLOGGING option when rebuilding a problem table to avoid generating large

amounts of redo.

CAUTION
When you create a table or index as NOLOGGING, the database does not generate redo log
records for the operation. Thus, you cannot recover objects created with NOLOGGING, even if you
are running in ARCHIVELOG mode. If you cannot afford to lose tables or indexes created with

NOLOGGING, then make a backup after the unrecoverable table or index is created. But, in
12cR2, on Oracle Data Guard for Data Warehouses, we now have NOLOGGING operations on the
primary that can be tracked. Originally, blocks on the standby would be marked unrecoverable
when NOLOGGING was used on the primary. With the new tracking, Data Guard can track the
blocks for loads with NOLOGGING and, using RMAN, recover the blocks using the new RMAN
command RECOVER DATABASE NOLOGGING.

 Dropping a table partition causes its local index (but not the other local partition indexes) to
be dropped and a global index (one that exists on the entire table) to be unavailable (unless
you’re willing to rebuild the indexes afterward). Don’t use global indexes if you plan to drop
table partitions.

 Indexes that are partitioned (local indexes) should also be prefixed, meaning the partitioning
key is the leading edge of the index.

 If you are archiving old data, consider exchanging the partition for a table name that is more
verbose before exporting it. This way, you could import just that table back for reference later
and potentially avoid even having to return it to the partitioned table.

 Query DBA_SEGMENTS on a regular basis to ensure that objects are not building up too
many extents (when not using ASM). Catching problems early is the key to avoiding
performance issues later (there are times when it’s better just to leave things as they are,
particularly when there isn’t an issue). The goal is to place objects correctly in tablespaces
with uniform extent sizes that are appropriate for the expected growth of the objects.

 Find chaining problems by accessing the CHAINED_ROWS table. Avoid chaining problems
by correctly setting PCTFREE or choosing the correct size for your database.

 Improve performance and segment management by using ASSM, or use separate tablespaces
for smaller segments.

 Increase the size of your log files to increase the rate at which large INSERTs, DELETEs, and
UPDATEs (DMLs) are processed.

 Put the redo logs on the fastest disks (SSD or flash) if you plan to write a lot of information.
Try to use the outer edge of the disk (the fastest part on many disk types) for the redo logs.
Better yet, there is an ASM feature that does this: The Intelligent Data Placement feature
enables you to specify disk regions on Oracle ASM disks to ensure that frequently accessed
data is placed on the outermost (hot) tracks, which provide higher performance.

 Increase the size of online redo logs if log switches are occurring less than every half hour
during normal business conditions (excluding infrequent large batch jobs). Increase the number
of online redo logs if you are wrapping during large batch jobs.

 When you are in the system planning stage, ensure that you find out all of the information
related to the current and future use of the system. Don’t just think about the Oracle database
needs—investigate the other software and applications that impact performance of your Oracle
database.

References
Oracle Database Concepts (Oracle Corporation).
Oracle Database Administrator’s Guide (Oracle Corporation).
Oracle Database Reference (Oracle Corporation).
Oracle Database VLDB and Partitioning Guide (Oracle Corporation).
“Relative Speeds from RAM to Flash to Disk” by Sheryl Koenigsberg,
http://blog.infinio.com/relative-speeds-from-ram-to-flash-to-disk.
TUSC DBA Guide, 1988–2006.

Many thanks to Joe Matthew, who did the 12c update to this chapter. Also, thanks to Sri Avantsa,
who did most of the updates for the 11g version, and to Bill Callahan, who did the previous update of
this chapter. Thanks to Nitin Vengurlekar, who contributed a large amount of ASM knowledge to this
chapter originally for 11g.

T

CHAPTER
4

Tuning the Database with Initialization
Parameters (DBA)

he Oracle initialization files (SPFILE or a PFILE such as initSID.ora) determine many
Oracle operating system environment attributes, such as memory allocated for data, memory
allocated for statements, resources allocated for I/O, and other crucial performance-related
parameters. Each version of Oracle has added to the total number of initialization

parameters, and Oracle 12c is no exception, having added many new parameters, especially related
to the In-Memory Database. Oracle 12c Release 2 now has 4649 initialization parameters (412
documented and 4237 hidden). Note that these numbers will vary slightly on different patch releases
and different operating systems.

As you might expect, an entire book could be written on how to set and tune each parameter; this
book focuses on the key parameters that affect database performance. Consider reading or referencing
Appendix A after this chapter, as it contains a list of all documented initialization parameters,
obsolete and deprecated parameters, my Top 25 (many covered in this chapter), my Top 20 not-to-
forget parameters (things like AUDIT_TRAIL for auditing and CELL_OFFLOAD_PROCESSING for
smart scans in Exadata), my Top 13 undocumented parameters (many for recovery and corruption),
my bonus Top 10 undocumented new parameters (such as the Exadata parameter
_KCFIS_STORAGEIDX_DISABLED to turn off storage indexes for tuning/testing), and lastly, a
section containing recommendations from the Oracle Applications Development team for 12c.

The key to an optimized Oracle database is often the architecture of the system and the parameters
that set the environment for the database. Setting key initialization parameters (MEMORY_TARGET,
MEMORY_MAX_TARGET, SGA_MAX_SIZE, PGA_AGGREGATE_TARGET,
PGA_AGGREGATE_LIMIT, DB_CACHE_SIZE, SHARED_POOL_SIZE, and
INMEMORY_SIZE) can be the difference between subsecond queries and queries that take several
minutes (new 12c parameters are bolded). The MEMORY_TARGET parameter can replace some of
the key parameters that are covered in this chapter (although you often need to still set minimums for
some parameters to ensure Oracle allocates enough memory for them, especially DB_CACHE_SIZE
and SHARED_POOL_SIZE). This chapter focuses on the crucial initialization parameters, but also
lists the Top 25 initialization parameters near the end of the chapter. The chapter concludes with a
look at the always growing typical server configurations for various database sizes.

This chapter contains the following tips and techniques designed to achieve the greatest
performance gain with the least effort by focusing on the parameters that yield the biggest impact:

 When upgrading to 12c
 Using SEC_CASE_SENSITIVE_LOGON and case-sensitive passwords
 Crucial memory initialization parameters for performance
 Setting the pluggable database (PDB) level using resource plan directives: MEMORY_LIMIT

and MEMORY_MINIMUM (12cR2)
 Using Database 12c (12.1.0.2 and above) In-Memory Database
 Modifying the initialization parameter file without a restart
 Working with the SPFILE and creating a readable PFILE (init.ora)
 Viewing the initialization parameters via Enterprise Manager Cloud Control
 Tuning the DB_CACHE_SIZE
 Tuning the SHARED_POOL_SIZE
 Checking library cache and dictionary cache
 Querying the X$KSMSP table to get another picture of SHARED_POOL_SIZE
 Using multiple buffer pools
 Tuning the PGA_AGGREGATE_TARGET and PGA_AGGREGATE_LIMIT (12c)
 User, session, and system memory use
 Working with the OPTIMIZER_MODE parameter
 Two important Exadata initialization parameters
 The top 25 performance-related initialization parameters to consider
 Typical server setups with different size databases
 Oracle Applications recommendations (more in Appendix A)

When Upgrading to Oracle Database 12c
When upgrading to Oracle Database 12c, you need to consider many parameters that will apply to
your unique system. Please check Appendix A for any parameters that are obsolete (i.e., removed) or
deprecated (i.e., may be removed in the future and use is discouraged, although still okay to use for
backward compatibility). We will cover a few parameters that are both important and common for
most systems. The Database Upgrade Assistant (DBUA) is extremely helpful and shows that Oracle
truly wants to assist you in the upgrade process. The DBUA uses pre-upgrade scripts that check the
following before the upgrade:

 Invalid user accounts or roles
 Invalid data types or invalid objects
 Desupported character sets

 Statistics gathering (recommended, but not checked by DBUA)
 Adequate resources (UNDO/ROLLBACK segments, tablespaces, and free disk space)
 Missing SQL scripts needed for the upgrade
 Listener running (if Oracle Enterprise Manager Cloud Control upgrade or configuration is

requested)
 Oracle Database software linked with the Database Vault option (if Database Vault is enabled,

disable it before upgrade)

Next, consider some key parameters related to the In-Memory (IM) Database, which include:
INMEMORY_SIZE, INMEMORY_QUERY, INMEMORY_MAX_POPULATE_SERVERS,
INMEMORY_FORCE, INMEMORY_CLAUSE_DEFAULT, INMEMORY_VIRTUAL_COLUMNS,
and INMEMORY_TRICKLE_REPOPULATE_SERVERS_PERCENT. To turn on the In-Memory
Database (In-Memory column store), set the following:

The INMEMORY_SIZE enables the In-Memory Database when it is set to any value (so ensure
you are licensed before you do this). Also note that SGA_TARGET and MEMORY_TARGET will
probably need to be increased by the amount of INMEMORY_SIZE since the value of
INMEMORY_SIZE is included in the amount you set for the SGA_TARGET and therefore the
MEMORY_SIZE. The “In-Memory Database (INMEMORY_SIZE)” section of this chapter covers
this subject in detail.

There are also new parameters related to Adaptive Query Optimization (covered in detail in
Chapter 8). The main parameters new in 12c are OPTIMIZER_ADAPTIVE_FEATURES and
OPTIMIZER_ADAPTIVE_REPORTING_ONLY. All the parameters that can change the behavior of
Adaptive Query Optimization are listed here (and a couple of extra ones below that; the defaults are
listed):

By default, the OPTIMIZER_ADAPTIVE_FEATURES parameter is set to TRUE to enable
adaptive plans, automatic re-optimization, SQL plan directives, and adaptive distribution. Adaptive

plans are those that allow execution plans to automatically alter things like the join method (I’ve seen
this work well) or the parallel query distribution on the first run. The
OPTIMIZER_ADAPTIVE_REPORTING_ONLY parameter can be set to TRUE (FALSE is the
default) to first test which queries are going to adapt before the optimizer actually uses the adapted
plan. This might be helpful when first upgrading from an earlier version of Oracle, to avoid any
unexpected behavior.

Using SEC_CASE_SENSITIVE_LOGON
Be aware that passwords are case sensitive. This is controlled by an initialization parameter
introduced in 11g, SEC_CASE_SENSITIVE_LOGON. The default is TRUE, which makes passwords
case sensitive by default. Set this to FALSE to disable this feature. You can also lock an account if a
user fails to enter the correct password a specified number of times, using the
SEC_MAX_FAILED_LOGIN_ATTEMPTS parameter (the default is 10). Based on your security
needs, you may consider changing this value.

Once locked, the DBA must issue the following command to unlock an account:

Crucial Memory Initialization Parameters for
Performance
Although tuning specific queries individually can lead to performance gains, the system will still be
slow if the parameters for the initialization file are not set correctly, because the initialization file
plays such an integral role in the overall performance of an Oracle database. While you can spend
time setting all the initialization parameters, there are a few main parameters that need to be set
correctly to realize significant performance gains:

 MEMORY_TARGET
 MEMORY_MAX_TARGET
 SGA_TARGET
 SGA_MAX_SIZE
 PGA_AGGREGATE_TARGET
 PGA_AGGREGATE_LIMIT
 DB_CACHE_SIZE
 SHARED_POOL_SIZE
 INMEMORY_SIZE

The MEMORY_TARGET parameter and optionally the parameter MEMORY_MAX_TARGET

will enable Automatic Memory Management (AMM) for all shared memory, including the Program
Global Area (PGA), shared pool, and database buffer cache. This will set a defined amount of
memory and allow Oracle to control the memory automatically and adjust the defined memory pool
between the areas based on system needs (AMM is described in more detail in My Oracle Support
Note 443746.1 as well as later in this chapter). In 10g, SGA_TARGET and SGA_MAX_SIZE were
introduced as Automatic Shared Memory Management (ASMM) (My Oracle Support Note 295626.1
describes this in detail), which is essentially Automatic Memory Management minus the automatic
management of the PGA included. The Oracle Applications Development team recommends using
SGA_TARGET and SGA_MAX_SIZE for both 10g and 11g in 11i Apps (My Oracle Support Note
216205.1) and for 11g in Release 12 Apps (My Oracle Support Note 396009.1). I’ve included the
Oracle Applications Development team’s recommendations at the end of this chapter.

The MEMORY_TARGET parameter enables you to set memory allocated to Oracle with one easy
parameter (although you’ll shortly see that setting some minimums for other values is recommended).
MEMORY_TARGET is used by Automatic Memory Management to set other memory settings, such
as the memory allocated to both the PGA and SGA (System Global Area) combined. Setting this
parameter enables Automatic Memory Management, but you can also set minimum values for key
parameters. MEMORY_TARGET is used for everything that SGA_TARGET covers (including the
INMEMORY_SIZE if used), but also now includes the PGA (especially important since this covers
PGA_AGGREGATE_TARGET and PGA_AGGREGATE_LIMIT, an important area). Key parameters
such as DB_CACHE_SIZE, SHARED_POOL_SIZE, PGA_AGGREGATE_TARGET,
LARGE_POOL_SIZE, and JAVA_POOL_SIZE are all set automatically when MEMORY_TARGET
is set. Setting minimum values for important initialization parameters in your system is also a very
good idea. The MEMORY_MAX_TARGET parameter is optional and is the maximum memory
allocated for Oracle and the maximum value allowed for MEMORY_TARGET.

In Oracle9i, you saw the beginning of Oracle’s Automated Memory Management with the
SGA_MAX_SIZE (no more setting buffers, just DB_CACHE_SIZE and granule size:
_KSMG_GRANULE_SIZE).

In Oracle 10g, the SGA_TARGET parameter was introduced (still recommended by Oracle
Applications even in 11g). In the 10g edition of this book, however, it was recommended that you
still set minimums for the key memory areas such as the Database Cache (DB_CACHE_SIZE) and
shared pool (SHARED_POOL_SIZE). MEMORY_TARGET now combines the SGA and PGA into
one setting, making life easy, especially for smaller, less complex systems, and it is still
recommended when using automatic memory management of any kind to set minimums for each of the
memory areas as described in this chapter. Some parameters are automatically sized (this chapter
details the use of many of these parameters in the coming pages). Also note that MEMORY_TARGET
(Automatic Memory Management) manages and includes SGA_TARGET and
PGA_AGGREGATE_LIMIT, so it should be as big as the sum of the two of these. It is one level
above Automatic Shared Memory Management (SGA_TARGET) and Automatic PGA Memory
Management (PGA_AGGREGATE_TARGET). This manages many of the memory settings for the
SGA that all used to be set individually (and still can be, and in some environments still should be).
Setting this individual parameter is covered in later sections in this chapter.

These parameters are automatically sized when you use MEMORY_TARGET or SGA_TARGET
(unless you set minimums), but setting minimums for each of the memory areas separately (as
described in this chapter) is still recommended when using AMM of any kind:

These are manually sized SGA components that also use MEMORY_TARGET:

As stated earlier, the PGA is now managed by MEMORY_TARGET as well. This includes the
PGA_AGGREGATE_TARGET and PGA_AGGREGATE_LIMIT parameters. You should also set a
minimum for PGA_AGGREGATE_TARGET, and a maximum, as of 12c, for
PGA_AGGREGATE_LIMIT. To move from the SGA_TARGET to MEMORY_TARGET, set the
MEMORY_TARGET and MEMORY_MAX_TARGET. To determine what value to use, run the
following query and ensure that you add the values for SGA_TARGET and
PGA_AGGREGATE_TARGET to estimate MEMORY_TARGET (the following outputs are limited
to key values):

The following query can be used to find the current settings of the key initialization parameters on
your database (if SGA_TARGET is set to a non-zero value, then some of these parameters are set to
zero, which means Oracle sets it). For this example, I manually set the shared pool:

The MEMORY_TARGET approach and move to simplicity, especially for beginners and those
who manage many databases, is excellent and should simplify and minimize management going
forward for many environments.

PDB Level: MEMORY_LIMIT and
MEMORY_MINIMUM
In addition to the new MEMORY_TARGET initialization parameter to set all of memory for the
Oracle SGA and PGA, there are PDB-specific parameters to ensure a minimum amount and a
maximum setting. Those parameters set at the PDB level using resource plan directions are

 MEMORY_LIMIT Limits the PDB to this percentage of PGA+SGA

 MEMORY_MINIMUM Guarantees the PDB this percentage of PGA + SGA

You’ll also see in the next section that there is both an INMEMORY_SIZE that you can set at the
CDB level and then also INMEMORY_SIZE that you can set at the PDB level as well.

In-Memory Database (INMEMORY_SIZE)
Introduced in Oracle Database version 12.1.0.2, the In-Memory Database is by far the best new
feature for improving database performance (especially data warehouse performance). This
capability is perfect for some types of workloads and helpful for others, but best of all, it does not
require any application changes to make use of it.

Online transaction processing (OLTP) and data warehouse applications are common in most
enterprises, and many systems dramatically blur the lines between what is OLTP and what is data
warehousing—increasingly more OLTP systems are including reporting and data warehouse
components. The Oracle Database now has a buffer cache for OLTP and all the DML activity you
might do, while also having the in-memory cache to improve performance in data warehousing
operations that stays consistent even with the other OLTP cache changes (similar to how
tables/indexes stay consistent with each other). This is the typical mixed workload that is becoming
more common, and the In-Memory Database just made the mixed workload performance skyrocket.

The In-Memory feature is made possible through a unique dual format that maintains an Oracle

row-based format for OLTP and a pure in-memory columnar format for query and analytical
processing. This feature maintains both the row and columnar formats at the same time without any
awareness from the application, therefore maintaining full compatibility back to the applications and
allowing use of this feature without having to change a single line of code in your applications. It is
also fully compatible with all existing Oracle Database features and options and therefore can be
used with all features such as Real Application Clusters (RAC), partitioning, compression, pluggable
databases, etc.

The In-Memory Database option is an In-Memory column store that is an addition to the database
SGA called the in-memory area. Don’t be concerned, though, because this does not “double” memory
requirements for the database; in fact, it is estimated that only 20 percent overhead is expected to
make full use of this feature with a huge impact. This feature maintains the buffer cache as it normally
would in a row-format-based store, which is most efficient for DML activity. At the same time, it will
maintain an additional memory area for the columnar-based format, which is most effective for query
and analytical activities (storing specified columns of compressed data for quick sums, averages,
etc.). Not all tables should be part of the in-memory area, and it should be populated only with the
columns of tables that are most critical to overall analytics performance. When you combine the in-
memory area with the buffer cache in memory (the SGA), and then you add flash for everything else
(what Google, Facebook, and Amazon do), you realize huge performance improvements.

The In-Memory Database option is turned on by setting the INMEMORY_SIZE to a non-zero value
(must be set to at least 100M). Keep in mind this is a fixed memory size and is not managed
automatically by an LRU (least recently used) algorithm. Once you are out of space, you are out until
you remove something. Also remember that this memory comes out of the SGA settings, therefore, you
will probably want to increase your SGA to accommodate it by increasing SGA_TARGET and
MEMORY_TARGET by the amount of INMEMORY_SIZE depending on which your database is
using. Also, the use of the In-Memory column store is controlled by the INMEMORY_QUERY
parameter, which is enabled by default, meaning that the optimizer will use the IM for queries. If
INMEMORY_QUERY is disabled at the system or session level, then the optimizer will not direct
queries to use the IM. The in-memory use can be turned off dynamically by setting the
IN_MEMORY_QUERY to DISABLED; for example:

FIGURE 4-1. Screenshot of SGA listing showing the in-memory area

The following example shows how to turn on the In-Memory Database (in-memory store):

Other key initialization parameter for setting up the In-Memory Database are

 INMEMORY_MAX_POPULATE_SERVERS Number of workers used to populate the IM
Column Store. The default is 0.5xCPU_COUNT. Lowering it slows down repopulation.

 INMEMORY_FORCE If set to OFF, the IM will not be populated no matter what the object
settings are. The default is DEFAULT, which allows normal population.

 INMEMORY_CLAUSE_DEFAULT Set defaults to be different. For example, to change the
default compression:
ALTER SYSTEM SET INMEMORY_CLAUSE INMEMORY PRIORITY HIGH;

 INMEMORY_TRICKLE_REPOPULATE_SERVERS_PERCENT The maximum
percentage of time a worker (process) can participate in trickle repopulation (wakes up every
2 minutes). The default is 1 percent. It can also be set to 0 to disable trickle repopulation.
Trickle repopulation refers to repopulating the In-Memory column store with change blocks
from the SGA. Note that when a query is run against a given column in the In-Memory column
store, any changed blocks from the SGA are moved at that time (your data is always “up to
date” when queried).

In 12cR2, you can now dynamically resize the INMEMORY_SIZE while the system is running,
provided you have the memory available in SGA_TARGET (and MEMORY_TARGET). In-memory
is also supported with pluggable databases, but there are some things to keep in mind. All PDBs use
and share a single memory area defined in the container database (CDB) level. You can define the
INMEMORY_SIZE in each PDB, but it comes out of the INMEMORY_SIZE defined in the CDB;
therefore, the sum of all PDBs’ used area cannot exceed the INMEMORY_SIZE defined at the
container level. That said, you can oversubscribe the amount in the CDB. For instance, if you had
three PDBs, each with an INMEMORY_SIZE=3M, and the CDB had an INMEMORY_SIZE=8M
(which is allowed), the total that can fit is only 8M even though the sum of the PDBs is 9M. The first
8M will get the space, with each PDB having a maximum of 3M (one PDB may only get 2M). This
provides some flexibility.

The In-Memory column store for RAC is defined on a per-instance basis. In a RAC environment,
each instance has its own INMEMORY_SIZE defined for that instance. This means that each RAC
instance can have a different INMEMORY_SIZE defined. However, it is recommended that the
INMEMORY_SIZE remain consistent across all nodes—after all, the objects that will be placed are
database level, not instance level. Different data can exist in the IM for each of the instances and
large tables can span different instances across nodes in the cluster, and this is done by default
(essentially it’s like having the combined memory of all the instances for the in-memory store). The
distribution can be changed and you can set DUPLICATE across the cluster so that even the IM is
fault tolerant. In Exadata only, you can set DUPLICATE ALL so that each in-memory store is an exact
duplicate on each node in the cluster, which provides complete fault tolerance and continuous
performance if a failure occurs in the In-Memory column store.

The following listings show how to duplicate:

(Duplicate to second node in-memory)

** Duplicate copies on all nodes (ignored if not engineered systems; i.e., Exadata)

Why have an IM columnar store? Because transactions run faster in row format and analytics run
faster in columnar format. For analytics, the columnar In-Memory is better and faster because it only
accesses the column data needed (and in compressed format—smaller/faster). In the buffer cache,
typically you only see 10 to 20 percent of the table or table partition data, whereas in the IM, 100
percent of the table column(s) or table partition(s) is in memory.

To place an object in the new In-Memory column store, the INMEMORY attribute is set. Setting
the attribute can happen as a default, at the tablespace level, or for a whole table. You can also set it
for a single column(s) of a table or even for partition(s) of a table. There are so many options that I
will simply give you some examples:

 Tablespace alter tablespace users default INMEMORY;

 Table alter table mytable INMEMORY;

 Column alter table mytable INMEMORY NO INMEMORY (prod_id);

 Partition alter table mytable modify partition mytable_part1 NO INMEMORY;

Once we place a table object into memory, we can see when our queries use in-memory by looking
at the execution/ EXPLAIN PLAN, as shown in this example:

The IM has hints that you can use in your SQL as well to force the optimizer to utilize the In-
Memory column store:

 /*+ INMEMORY(table) */ Put a table into the IM area

 /*+ NO_INMEMORY(table) */ Take a table out of the IM area

 /*+ INMEMORY_PRUNING(table) */ Control the use of the IM storage index

 /*+ NO_INMEMORY_PRUNING(table) */ Control the use of the IM storage index

 /*+ PX_JOIN_FILTER(table) */ Force the use of a Bloom filter for a join if the optimizer
doesn’t

 /*+ NO_PX_JOIN_FILTER(table) */ Force the non-use of a Bloom filter for a join if the
optimizer doesn’t

The IM has the option for objects to be populated immediately on database startup or when the

object is first read/queried. This is controlled by the PRIORITY keyword. This allows you to
immediately populate the in-memory area on database startup for some objects and help save the
performance hit on first-time read. It also allows you to assign the importance level of the objects that
get into the in-memory store. This is all controlled via priority levels. There are five priority levels
that control the loading of objects into the in-memory area:

 CRITICAL Object is populated immediately after the database is opened

 HIGH Object is populated after all CRITICAL objects have been populated, if space remains
available in the IM column store

 MEDIUM Object is populated after all CRITICAL and HIGH objects have been populated, if
space remains available in the IM column store

 LOW Object is populated after all CRITICAL, HIGH, and MEDIUM objects have been
populated, if space remains available in the IM column store

 NONE Objects only populated after they are scanned for the first time (default), if space is
available in the IM column store

Setting the priority determines how and when/if the objects are loaded into the IM store and in
which order. For example, to set mytable into the IM store at database startup and have it be one of
the first loaded, I would set the priority to CRITICAL:

The in-memory area also has compression, which is critical because it allows more data to be
stored in-memory and uses less physical memory doing it. In 12c Release 2, Automatic Data
Optimization (ADO, covered in Chapter 3) is extended to manage the In-Memory column store
moving objects like tables and partitions in and out of memory based on the Heat Map statistics.
There are several in-memory compression options:

 NO MEMCOMPRESS Data is populated without any compression

 MEMCOMPRESS FOR DML Minimal compression optimized for DML performance

 MEMCOMPRESS FOR QUERY LOW Optimized for query performance (default)

 MEMCOMPRESS FOR QUERY HIGH Optimized for query performance as well as space
saving

 MEMCOMPRESS FOR CAPACITY LOW Balanced with a greater bias toward space
saving

 MEMCOMPRESS FOR CAPACITY HIGH Optimized for space saving

To see the table:

By default, in-memory compression is FOR QUERY LOW, which provides the best performance
while still getting some benefits from compression to improve the in-memory area utilization. The
amount of compression experienced can vary anywhere from 2x–20x and is based on data type,
compression type, and the data within the table.

The following example shows how we can apply different compression levels and in-memory all
in the same table. This example specifies to not use in-memory for a large LOB column (c4), but to
compress the table for in-memory at QUERY HIGH and to use CAPACITY HIGH for column c2:

Performance benefits for in-memory do not just stop at the In-Memory column store memory area;
they also extend to In-Memory storage indexes created and maintained by Oracle. These are created
for columns in the In-Memory column store, which allows data pruning from the SQL WHERE clause
directly upon reading, saving rows returned to the optimizer for filtering. Oracle leverages SIMD
speed developed in the gaming industry (think Volibear and League of Legends, the game that is
played online by over 27M people daily). The SIMD (single instruction, multiple data) vector
processing allows a single CPU instruction to evaluate multiple data points using a vector register
and vector comparing all values in one CPU cycle (over 100× faster). Also, in-memory joins take
advantage of Bloom filters to transform a join and improve the overall performance during the scan of
larger tables. In 12cR2, the join group (column joined between two tables) is also compressed so that
decompression is not needed when tables are joined (a very important advantage of R2). Also in
R12cR2 is the ability to have In-Memory virtual columns, and Active Data Guard can now use the In-
Memory column store while open in read-only mode. You can use In-Memory Expressions with the
DBMS_INMEMORY_ADMIN package to capture hot expressions in the IM using the
DBMS_INMEMORY_ADMIN.IME_CAPTURE_EXPRESSION. You can also use this package using
the DBMS_INMEMORY_ADMIN.FASTSTART_ENABLE procedure to save data in the IM to a
FastStart area (the specified tablespace, also see V$INMEMORY_FASTSTART_AREA) which can

be used to repopulate the IM on database restarts (in the original priority order). See the Oracle
Database In-Memory Guide for additional information. Lastly, updates to internal dictionary objects
have been made to accommodate the In-Memory Database capability:

 V$IM_SEGMENTS, V$IM_USER_SEGMENTS, V$IM_COLUMN_LEVEL,
USER_TABLES, and V$KEY_VECTOR

 USER_TABLES (inmemory, inmemory_priority, inmemory_compression,
inmemory_distribute, inmemory_duplicate)

TIP
Setting INMEMORY_SIZE can lead to unbelievably fast analytics, but only set this parameter
when properly licensed for this option.

Changing the Initialization Parameters Without a
Restart
With each version of Oracle, you can alter more and more parameters without needing to restart the
database, greatly reducing the need for scheduled downtime to implement system tuning changes.

As an example, this command changes the SHARED_POOL_SIZE to 128M while the database is
running:

In addition to being able to change parameters dynamically, you can now use a server parameter
file (SPFILE) to store dynamic changes persistently to the instance parameters. Prior to Oracle9i, any
dynamic changes were lost when the database was restarted unless the parameters were added to the
initialization parameter file manually. As of Oracle9i, and continuing through Oracle 12c Release 2,
dynamic changes can be stored in an SPFILE. The default order of precedence when an instance is
started is to read parameter files in the following order:

1. spfile<SID>.ora
2. spfile.ora
3. init<SID>.ora

Parameters can be dynamically modified at a system-wide or session-specific scope. In addition,
parameters can be changed in memory only or persistently across restarts via an SPFILE. In the first
example, I change the SHARED_POOL_SIZE and also write it to the SPFILE. Note that you can use
K (kilobytes), M (megabytes), and G (gigabytes), but not T (terabytes), P (petabytes), or E (exabytes)

yet (even though in 64-bit, an Oracle database can be 8E and you can directly address 16E of
memory). Also, note that 1G = 1024*1024*1024 = 1,073,741,824 bytes.

In the second example, I write SHARED_POOL_SIZE to both the SPFILE (for future restarts) and
the MEMORY (for the current SGA):

I can also create a PFILE from the SPFILE (since the SPFILE is nonreadable):

Or, as shown here, it checks the default location and writes it to the default location:

If my SPFILE is deleted for some reason (don’t ever do this), I can also re-create the SPFILE from
the PFILE (if I’ve created one), as shown here, or from MEMORY:

When you look at PFILE’s output, other than the parameters I’ve physically set, it has limited
information. It also has all of the settings for key memory parameters that have been set for me since I
only set MEMORY_TARGET. Consider what happens if I run this:

TIP
If you use the ALTER SYSTEM commands to write to the SPFILE only, and then on startup realize
you have set them incorrectly, the database will not start, and you cannot use an ALTER SYSTEM
command to fix the problem. You can, however, create a PFILE from the SPFILE, modify the
PFILE, and then use that to start the database. Afterward you need to create the SPFILE again and
restart the database with the SPFILE.

Here is a listing of the INITORCL.ORA file (note that my MEMORY_TARGET was 6.56G and
INMEMORY_SIZE=0):

You can get a better listing by dumping the MEMORY to a PFILE so you can see everything set:

This shows every parameter set for the database instance (whether you set them or Oracle did):

TIP
If you can’t figure out why your system isn’t using the value in your init.ora file, an SPFILE is
probably overriding it. And, don’t forget, you can also use a hint to override parameters at the
query level.

Finally, in a Real Application Clusters (RAC/Grid) environment, parameters can be changed for a
single instance or for all clustered database instances in a cluster.

There are two key fields in the V$PARAMETER view (which shows the parameter in effect for
the session; V$SYSTEM_PARAMETER shows the parameters in effect for the entire instance):

 ISSES_MODIFIABLE Indicates if a user with the ALTER SESSION privilege can modify
this initialization parameter for his or her session.

 ISSYS_MODIFIABLE Indicates if someone with ALTER SYSTEM privilege can modify this
particular parameter.

The following query illustrates a list of initialization parameters that can be set without shutting
down and restarting the database. This query displays the initialization parameters that can be
modified with an ALTER SYSTEM or ALTER SESSION command (partial result displayed):

The result of the query (partial listing only) is all of the initialization parameters that may be
modified:

Be careful granting the ALTER SESSION privilege to users, as knowledgeable developers can set
individual parameters that positively affect their session at the expense of others on the system. A user
could run the following command with the ALTER SESSION privilege:

TIP
Changing initialization parameters dynamically is a powerful feature for both developers and
DBAs. Consequently, a user with the ALTER SESSION privilege is capable of irresponsibly
allocating 100M+ for the SORT_AREA_SIZE for a given session, if it is not restricted.

Modifying an Initialization Parameter at the PDB Level
You can gain some insight into which initialization parameters are modifiable at the pluggable
database (PDB) level (or just the CDB level) by using the following query (PDBs are covered in
detail in Chapter 3):

Among the 150 initialization parameters that are modifiable in 12cR2, keys ones include
CURSOR_SHARING, OPEN_CURSORS, RESULT_CACHE_MODE, SORT_AREA_SIZE,
DB_CACHE_SIZE, SHARED_POOL_SIZE, PGA_AGGREGATE_TARGET, and
INMEMORY_SIZE. One of the key initialization parameters that is not modifiable is
MEMORY_TARGET.

Insight into the Initialization Parameters from Oracle
Utilities
You can gain some insight into how Oracle balances some of these SGA parameters by crawling
through the utility upgrade information and other scripts Oracle has published as guidelines. An
interesting find is listed here, showing various size caches for different versions of Oracle, as well as
32- vs. 64-bit that Oracle (I added 12c based on the EBS notes later in this chapter) included in the
scripts as minimum values (given you have the memory). These guidelines can be nice, but I think the
DB_CACHE_SIZE is a bit too low for all of these. There are some great examples at the end of this
chapter as well.

Viewing the Initialization Parameters with Enterprise
Manager
You can also use Enterprise Manager to view the initialization parameter settings by going to the
Database home page, selecting the server, and then selecting Initialization Parameters under the
Database Configuration heading. The section of Enterprise Manager displayed in Figure 4-2 shows
the initialization parameters. It shows the current settings for the parameters and also shows if the
parameters can be modified (dynamic=•) without shutting down the database. Oracle Enterprise
Manager is covered in detail in Chapter 5.

FIGURE 4-2. Enterprise Manager—initialization parameters in the SPFILE

Increasing Performance by Tuning the
DB_CACHE_SIZE
Long-time users of Oracle and readers of prior editions of this book will notice that some familiar
parameters have not been mentioned. In 10g, parameters such as DB_BLOCK_BUFFERS were
deprecated (a parameter _DB_BLOCK_BUFFERS was set behind the scenes for backward
compatibility). In later Oracle versions, DB_BLOCK_BUFFERS is back, but set to 0 (default), which
means it’s not used unless you set it (use DB_CACHE_SIZE instead). While many of the familiar
parameters from prior versions of Oracle are still valid, using them may disable many features,
including Automatic Memory Management (AMM).

The DB_CACHE_SIZE is the initial memory allocated to the main data cache or the memory used
for the data itself. This parameter doesn’t need to be set if you set MEMORY_TARGET or
SGA_TARGET, but it is a good idea to set a value for this as a minimum setting. Your goal should
always be getting toward a memory-resident database or at least getting all data that will be queried
in memory. After MEMORY_TARGET (or SGA_TARGET) and MEMORY_MAX_TARGET,
DB_CACHE_SIZE is the first parameter to look at in the initialization parameter file because it’s the
most crucial parameter in Oracle for retrieving data. If the DB_CACHE_SIZE is set too low, Oracle
won’t have enough memory to operate efficiently and the system may run poorly, no matter what else
you do to it. If DB_CACHE_SIZE is too high, your system may begin to swap and may come to a halt.
DB_CACHE_SIZE makes up the area of the SGA that is used for storing and processing data in
memory initially and for subsequent queries to access. (If the In-Memory columnar store is used,
some of the DB_CACHE_SIZE may be used less, as described earlier in this chapter.) As users
request information, data is put into memory. If the DB_CACHE_SIZE parameter is set too low, then
the least recently used (LRU) data is flushed from memory. If the flushed data is recalled with a
query, it must be reread from disk (consuming I/O and CPU resources).

Retrieving data from memory can be over 10,000 times faster than retrieving it from disk
(depending on the speed of memory, flash used, and disk device speed, which may or may not have
memory caching on the disk). Even if you take into consideration disk caching (memory on disk) and
Oracle inefficiencies, retrieving data from memory is still about 100 times faster than reading data
from the fastest disks or flash. Therefore, the higher the frequency that records are found in memory
(without being retrieved from disk), the faster the overall system performance (usually at least 100+
times faster for well-tuned queries). Having enough memory allocated to store data in memory
depends on the value used for DB_CACHE_SIZE.

TIP
Retrieving data from physical memory is generally substantially faster than retrieving it from disk,
so make sure the SGA and PGA are large enough. One Oracle study showed Oracle memory access
as averaging about 100 times faster than disk access. However, this takes into account disk-
caching advances and flash, which you may or may not have on your system. The same study also
showed an individual case where Oracle memory access was well over 10,000 times faster than
disk (which was hard for me to believe), but it shows how important it is to measure this on your
own unique system.

MEMORY_TARGET, SGA_TARGET (if used), and DB_CACHE_SIZE (if a minimum is set) are
the key parameters to use when tuning the data cache hit ratio. The data cache hit ratio is the
percentage of the data block accesses that occur without requiring a physical read from disk. While
several situations can artificially inflate or deflate the data cache hit ratio, this ratio is a key indicator
of system efficiency.

You can use the following query to view the data cache hit ratio (the first output is one with a lot of
full table scans, the second a simple index scan):

While every application has exceptions, a data cache hit ratio of 95 percent or greater should be
achievable for a well-tuned transactional application with the appropriate amount of memory.
Because there is such a performance difference between some disk devices and memory access,
improving the data cache hit ratio from 90 to 95 percent can nearly double system performance when
reading disk devices that are extremely slow. Improving the cache hit ratio from 90 to 98 percent
could yield nearly a 500 percent improvement where disks are extremely slow and under the right (or
should I say wrong) architectural setup. However, with the advent of more flash cache on storage
servers, this continues to be something you have to look at in depth to understand what is appropriate
for your particular hardware and application load profile (what’s running through the system on a
regular basis). If the load profile stays the same, but the hit ratio radically changes, you should
investigate why it happened immediately (don’t wait for system users to complain). In the first output
just shown, I was aware of many full table scans that were not an issue, so the low hit ratio was not
an issue.

Poor joins and poor indexing can also yield very high hit ratios due to reading many index blocks,
so make sure your hit ratio isn’t high for a reason other than a well-tuned system. An unusually high
hit ratio may indicate the introduction of code that is poorly indexed or includes join issues. If the hit
ratio goes much higher (bad query that might have over-indexing or poor use of indexes in joins) or
much lower than normal (someone may have dropped an index or altered it to be invisible), you
should investigate why it happened immediately (don’t wait for system users to complain).

TIP
Hit ratios are useful to experienced DBAs but can be misleading or of little use to inexperienced
DBAs. The best use of hit ratios is still to compare them over time (a barometer) to help alert you

to a substantial change to a system on a given day. While some people have deprecated hit ratios
from their tuning arsenal, they are usually tool vendors who don’t see the value of tracking hit
ratios over time because their tools are point-in-time or reactive-based tuning solutions. Hit ratios
should never be your only tool, but they should definitely be one of many proactive tools in your
arsenal (especially with the advent of the invisible index).

Oracle continues to downplay the importance of hit ratios by reducing the discussions on using hit
ratios for tuning, but also continues to include them as barometers. Oracle is beginning to focus on
analyzing system performance in terms of work done (CPU or service time) versus time spent waiting
for work (wait time). Areas where hit ratios are still the primary tuning method are library cache and
dictionary cache. See Chapter 14 on the AWR Report for more information on balancing the entire
tuning arsenal, including hit ratios.

Using V$DB_CACHE_ADVICE in Tuning
DB_CACHE_SIZE
V$DB_CACHE_ADVICE is a view to assist in tuning DB_CACHE_SIZE. The view can be queried
directly, and the data in the view is used by the Oracle kernel (or database engine) to make automatic
cache management decisions.

Here is a query to view the effect of changing DB_CACHE_SIZE on the data cache hit ratio:

Reading these simple results from this very small SGA, you see the following:

 The current cache size in this example was small at 24M (SIZE_FACTOR = 1).
 You can decrease the cache size to be 16M and maintain the current cache hit ratio, since the

PHYSICAL_READ_FACTOR remains at 1 up to a decrease to 16M.

Although this view provides an estimate of the effect of changing the cache size on the cache hit
ratio, test any changes to validate that the results are as forecasted. Oracle Enterprise Manager
provides a graphical view of the data in V$DB_CACHE_ADVICE. (Enterprise Manager is covered
in Chapter 5.) To populate V$DB_CACHE_ADVICE, you have to enable the Dynamic Buffer Cache

Advisory feature, and it is not recommended to have this feature enabled on production systems all
the time.

Using hit ratios to tune is not a good idea (nobody I know has ever said this), but using them as a
barometer when things change is helpful to the great DBA who uses quick indicators to find potential
trouble spots. Tool vendors and others hate these easy methods to see warning signs, because they
would rather do it for you or charge you for a product you don’t need. The hit ratio for the data cache
is usually greater than 95 percent for most transactional systems. The best use for a hit ratio, however,
is to study your system over time to see major changes that should warrant further investigation.
Usually, if your hit ratio is less than 95 percent, you may need to increase the value of
DB_CACHE_SIZE. In some instances, you can increase performance substantially by increasing the
hit ratio from 95 to 98 percent—especially if the last 5 percent of the hits going to disk are the main
lag on the system or the disk cache gets flooded (full with cached data).

Although hit ratios less than 95 percent could be a sign that your DB_CACHE_SIZE is set too low
or that you have poor indexing, hit ratio numbers can be distorted and this should be taken into
account while tuning (note that Exadata works differently and is covered in Chapter 11). Hit ratio
distortion and non-DB_CACHE_SIZE issues include the following:

 Recursive calls
 Missing or suppressed indexes
 Data sitting in memory
 UNDO/ROLLBACK segments
 Multiple logical reads
 Physical reads causing the system to use CPU

 Monitoring the V$SQLAREA View to Find Bad
Queries
When issues occur, locate bad queries by monitoring the V$SQLAREA view or using Enterprise
Manager. Once you isolate the queries that are causing performance hits, tune the queries or modify
how the information is stored to solve the problem. Using the Performance page of Enterprise
Manager Grid Control or Database Control, a DBA can generate a report of the Top Activity for his
or her system. The Top Activity section of Enterprise Manager Database Control (see Figure 4-3)
displays a list of the worst SQL statements in the current cache based on Activity and also the Top
Sessions by Activity. The graph at the top of Figure 4-3 shows increasing performance issues. The
graphs on the left and right show the problem SQL (left) and users (right). The DBA can then click the
problem SQL to begin the process of analyzing and tuning the SQL statement. Chapter 5 discusses the
benefits of Oracle Enterprise Manager in detail and how to tune the SQL statements using Enterprise
Manager. Also note that Database Control is installed with the Oracle Database software. Grid
Control is a separate product.

FIGURE 4-3. Use Oracle Enterprise Manager Database Control to find problem queries.

TIP
Use Enterprise Manager Cloud Control or Database Control to find problem queries.

When an Index Is Suppressed
Consider the following query, where the CUSTOMER table is indexed on the unique CUSTNO
column. It is not optimal to have this index suppressed by using the NVL (Null Value) because it
results in a poor hit ratio.

If you are looking at this in Enterprise Manager, you’ll see an index missing on a query that is

being executed at the current time. Focus on the query that is causing this problem and fix the query.
The query can be found by accessing the V$SQLAREA view, as shown in Chapter 8. You could build
a function-based index (see Chapter 2) to solve this problem as well. For Exadata, this might be fine
if all of the data is in the Flash Cache on a cell or if the query brings back fewer blocks of data based
on features like the Smart Scan or Storage Index (more in Chapter 11).

TIP
A low hit ratio for a query could be an indication of a missing or suppressed index.

Well-Indexed Queries
Consider the following query, where the CUSTOMER table is indexed on the unique CUSTNO
column. In this situation, it is optimal to utilize the CUSTNO index because it results in an excellent
hit ratio.

If you are looking at this in Enterprise Manager, there is usually an index on the query that is being
executed or the table could be cached in memory.

Bad Queries Executing a Second Time
When a full table scan is completed for the second time and the data is still in memory, you may see a
good hit ratio even though the system is trying to run a bad query:

If you are looking at this in Enterprise Manager, it appears that there is an index on the query being
executed when, in fact, the data is in memory from the last time it was executed. The result is that you
are “hogging up” a lot of memory even though it appears that an indexed search is being performed.

Since 10g, you can flush the buffer cache to clear it (similar to flushing the shared pool if you are
familiar with that). You can also do this for an individual PDB. It is generally not intended for
production use, but rather for system testing purposes. This can help with your tuning needs or as a
Band-Aid if you have “free buffer” waits (there are better ways to fix free buffer waits, such as
writing more often or increasing the DB_CACHE_SIZE). Note that any Oracle I/O not done in the
SGA counts as a physical I/O. If your system has O/S caching or disk caching, the actual I/O that
shows up as physical may indeed be a memory read outside of Oracle.

To flush the buffer cache, perform the following:

TIP
Bad (slow) queries show in the V$SQLAREA view or V$SESSION_LONGOPS view (under certain
conditions) with poor hit ratios the first time they are executed. You can also use Enterprise
Manager to see statistical information. Make sure you tune them at that time. The second time that
they execute, they may not show a poor hit ratio. Flushing the buffer cache for testing can help
you get accurate results.

Other Distortions
You should consider several other hit ratio distortions:

 Oracle Developer distortion Systems that use Oracle Developer tools, JDeveloper (screens),
or Application Express (APEX) to retrieve single rows of data frequently use the same
information over and over. This reuse by some users of the system will drive up the hit ratio.
Other users on the system may not be experiencing hit ratios that are as good as these users, yet
the overall system hit ratio may look very good. The DBA must take into consideration that
these users may be boosting the hit ratio to an artificially high level.

 UNDO/ROLLBACK segment distortion Because the header block of the
UNDO/ROLLBACK segment is usually cached, the activity to the UNDO/ROLLBACK
segment gives a falsely high hit ratio impact when truly there is no significant impact on the hit
ratio.

 Index distortion An index range scan results in multiple logical reads on a very small number
of blocks. I’ve seen hit ratios as high as 86 percent be recorded when none of the blocks are
cached prior to the query executing. Make sure you monitor the hit ratio of individual, poorly
tuned queries in addition to monitoring the big picture (overall hit ratio). You can also check
bad indexes by making them invisible (see Chapter 2 for more information).

 I/O distortion Physical reads that appear to be causing heavy disk I/O may be actually causing
you to be CPU bound. In tests, the same amount of CPU was used for 89 logical reads as was

used to process 11 physical reads. The result is that the physical reads are CPU costly because
of buffer management. Fix the queries causing the disk I/O problems and you will usually free
up a large amount of CPU as well. Performance degradation can be exponentially downward
spiraling, but the good news is that when you begin to fix your system, it is often an
exponentially upward-spiraling event. It’s probably the main reason why some people live to
tune; tuning can be exhilarating.

Setting DB_BLOCK_SIZE to Reflect the Size of Your
Data Reads
The DB_BLOCK_SIZE is the size of the default data block size when the database is created. Since
Oracle 10g Release 2, each tablespace can have a different block size, thus making block size
selection a less critical selection before the database is created. That said, a separate cache memory
allocation must be made for each different database block size. But it is still very important to choose
wisely. Although you can have different block-size tablespaces, this is not truly a performance
feature, as the nondefault buffer caches are not optimized for performance. You still want to put the
bulk of your data in the default buffer cache. You must rebuild the database if you want to increase the
DB_BLOCK_SIZE. The block size for data warehouses is often 32K (you want many rows to be read
at a time) and OLTP systems are often 8K. Most experts recommend an 8K block size.

The data block cache for the default block size is set using the DB_CACHE_SIZE initialization
parameter. Cache is allocated for other database block sizes by using the DB_nK_CACHE_SIZE,
where n is the block size in K. The larger the DB_BLOCK_SIZE, the more that can fit inside a single
block and the more efficiently large amounts of data can be retrieved. A small DB_BLOCK_SIZE
actually lets you retrieve single records faster and saves space in memory. In addition, a smaller
block size can improve transactional concurrency and reduce log file generation rates. As a rule of
thumb, a data warehouse should use the maximum block size available for your platform (either 16K
or 32K) as long as no bugs exist for the given block size (check My Oracle Support to make sure),
whereas a transaction-processing system should use an 8K block size. Rarely is a block size smaller
than 8K beneficial, but I’ve used a 2K block size for a stock exchange application and I’ve seen a 4K
block size in benchmarks. If you have an extremely high transaction rate system or very limited system
memory, you might consider a block size smaller than 8K.

Full table scans are limited to the maximum I/O of the box (usually 64K, but as high as 1M on
many systems). Most systems support 1M I/O rates now. You can up the amount of data read into
memory in a single I/O by increasing the DB_BLOCK_SIZE to 8K or 16K. You can also increase the
DB_FILE_MULTIBLOCK_READ_COUNT to a maximum value of (max I/O
size)/DB_BLOCK_SIZE.

Environments that run many single queries to retrieve data could use a smaller block size, but “hot
spots” in those systems will still benefit from using a larger block size. Sites that need to read large
amounts of data in a single I/O read should increase the DB_FILE_MULTIBLOCK_READ_COUNT.
This may not be necessary with a parameter set, by default, to be much larger in 12c. My default for
DB_FILE_MULTIBLOCK_READ_COUNT was 128, but check your system for variations to the
default. The default value Oracle uses corresponds to the maximum I/O size that can be efficiently
performed and is platform-dependent (according to Oracle docs). Setting the
DB_FILE_MULTIBLOCK_READ_COUNT higher is especially important for data warehouses that

retrieve lots of records. If the use of DB_FILE_MULTIBLOCK_READ_COUNT starts to cause many
full table scans (since the optimizer now decides it can perform full table scans much faster and
decides to do more of them), then set OPTIMIZER_INDEX_COST_ADJ between 1 and 10 (I usually
use 10) to force index use more frequently.

TIP
The database must be rebuilt if you increase the DB_BLOCK_SIZE. Increasing the
DB_FILE_MULTIBLOCK_READ_COUNT allows more block reads in a single I/O, giving a
benefit similar to a larger block size.

Setting SGA_MAX_SIZE to 25 to 50 Percent of the Size
Allocated to Main Memory
If you use it, the general rule of thumb is to start with an SGA_MAX_SIZE parameter of 20 to 25
percent of the size allocated to your main memory. A large number of users (300+) or a small amount
of available memory may force you to make this 15 to 20 percent of physical memory. A small
number of users (less than 100) or a large amount of physical memory may allow you to make this 30
to 50 percent of physical memory. If you set the SGA_MAX_SIZE less than 1G, then the
_KSM_GRANULE_SIZE is 4M. If the SGA_MAX_SIZE is greater than 1G and less than 8G, then the
_KSM_GRANULE_SIZE is 16M; from there, up to 16G is 32M, up to 32G is 64M, up to 64G is
128M, up to 128G is 256M, and if your SGA_MAX_SIZE is greater than 256G, then the
_KSM_GRANULE_SIZE is 512M. This granule size determines the multiples for other initialization
parameters. A granule size of 4M means that certain initialization parameters are rounded up to the
nearest 4M. Therefore, if I set SGA_MAX_SIZE to 64M and DB_CACHE_SIZE to 9M, then the
DB_CACHE_SIZE is rounded to 12M (since the granule size is 4M). If I set SGA_MAX_SIZE to
2000M and DB_CACHE_SIZE to 9M, then the DB_CACHE_SIZE is rounded to 16M (since the
granule size is 16M). The V$SGA_DYNAMIC_COMPONENTS view allows you to see the sizes
used for each SGA component (such as shared pool, buffer caches, etc.) and the granule size used.

TIP
The SGA_MAX_SIZE determines the granule size for other parameters. An SGA_MAX_SIZE < 1G
means a 4M granule size, whereas an SGA_MAX_SIZE >= 256G means a 512M granule size. Some
benchmarks have the granule size as high as 256M.

Tuning the SHARED_POOL_SIZE for Optimal
Performance

Sizing the SHARED_POOL_SIZE correctly makes sharing identical SQL statements possible. Getting
the statement parsed is your first priority. If the query never makes it into memory, it can never request
the data to be accessed; that’s where the SHARED_POOL_SIZE comes in. SHARED_POOL_SIZE
specifies the memory allocated in the SGA for data dictionary caching and shared SQL statements.

The data dictionary cache is very important because that’s where the data dictionary components
are buffered. Oracle references the data dictionary several times when a SQL statement is processed.
Therefore, the more information (database and application schema and structure) that’s stored in
memory, the less information that has to be retrieved from disk. While the dictionary cache is part of
the shared pool, Oracle also caches SQL statements and their corresponding execution plans in the
library cache portion of the shared pool (see the next section for how the shared SQL area works).

The data dictionary cache portion of the shared pool operates in a manner similar to the
DB_CACHE_SIZE when caching information. For the best performance, it would be great if the
entire Oracle data dictionary could be cached in memory. Unfortunately, this generally is not feasible,
so Oracle uses a least recently used (LRU) algorithm for deciding what gets to stay in the cache.

Lastly, the Result Cache is part of the shared pool (allocated from the shared pool, but a separate
area) as well, if you use it. Query function results and query fragments can be cached in memory for
future executions. Choose calculations that frequently run over and over again. You should also
choose data that does not frequently change. To use the Result Cache, set the
RESULT_CACHE_SIZE=amount and the RESULT_CACHE_MODE=force parameters (set to force
to automatically use it). The Result Cache takes its memory from the shared pool. You can use
DBMS_RESULT_CACHE.FLUSH to clear the Result Cache. Note that anything cached is not passed
between RAC/Grid nodes in 11gR1 (stays local to each instance), but data from the Result Cache is
transferred over the interconnect to other RAC instances starting in 11gR2. Each Result Cache is
local to each instance, as is the buffer cache, but can be shared over the interconnect since 11gR2.
There is no global Result Cache. Please check the documentation for other restrictions and rules.

 Using Stored Procedures for Optimal Use of the
Shared SQL Area
Each time a SQL statement is executed, the statement is searched for in the shared SQL area and, if
found, used for execution. This saves parsing time and improves overall performance. Therefore, to
ensure optimal use of the shared SQL area, use stored procedures as much as possible since the SQL
parsed is exactly the same every time and, therefore, shared. However, keep in mind that the only time
the SQL statement being executed can use a statement already in the shared SQL area is if the
statements are identical (meaning they have the same content exactly—the same case, the same
number of spaces, etc.). If the statements are not identical, the new statement is parsed, executed, and
placed in the shared SQL area (exceptions to this are possible when the initialization parameter
CURSOR_SHARING has been set to SIMILAR or FORCE).

In the following example, the statements are identical in execution, but the word from causes
Oracle to treat the two statements as if they were different, thus not reusing the original cursor that
was located in the shared SQL area:

TIP
SQL must be written exactly the same to be reused. Case differences and any other differences will
cause a reparse of the statement.

In the following example, I am using different values for ENAME, which is causing multiple
statements to be parsed:

A query of V$SQLAREA shows that two statements were parsed even though they were very close
to the same thing. Note, however, that PL/SQL converted each SQL statement to uppercase and
trimmed spaces and carriage returns (which is a benefit of using PL/SQL):

In the following example, there is a problem with third-party applications that do not use bind
variables (they do this to keep the code “vanilla” or capable of working on many different databases
without modification). The problem with this code is that the developer has created many statements
that fill the shared pool and these statements can’t be shared (since they’re slightly different). You can
build a smaller shared pool so there is less room for cached cursors and thus fewer cursors to search

through to find a match (this is the Band-Aid inexperienced DBAs use). If the following is your output
from V$SQLAREA, you may benefit from lowering the SHARED_POOL_SIZE, but using
CURSOR_SHARING is a better choice.

Setting CURSOR_SHARING= force and the query to V$SQLAREA will change to the one listed
next because Oracle builds a statement internally that can be shared by all of the preceding
statements. Now the shared pool is not inundated with all of these statements, but only one simple
statement that can be shared by all users:

 Setting the SHARED_POOL_SIZE High Enough to
Fully Use the DB_CACHE_SIZE
If the SHARED_POOL_SIZE is set too low, then you will not get the full advantage of your
DB_CACHE_SIZE (since statements that can’t be parsed can’t be executed). The queries that can be
performed against the Oracle V$ views to determine the data dictionary cache hit ratio and the shared
SQL statement usage are listed in the sections that follow. These will help you determine if increasing
the SHARED_POOL_SIZE will improve performance.

The SHARED_POOL_SIZE parameter is specified in bytes. The default value for the
SHARED_POOL_SIZE parameter varies per system but is generally lower than necessary for large
production applications.

 Keeping the Data Dictionary Cache Objects Cached
The data dictionary cache is a key area to tune because the dictionary is accessed so frequently,
especially by Oracle. At startup, the data dictionary cache contains no data. But as more data is read

into cache, the likelihood of cache misses decreases. For this reason, monitoring the data dictionary
cache should be done only after the system has been up for a while and stabilized. If the dictionary
cache hit ratio is less than 95 percent, then you’ll probably need to increase the size of the
SHARED_POOL_SIZE parameter in the initialization parameter file. Implementing locally managed
tablespaces (LMT) can also help your dictionary cache (see My Oracle Support Note 166474.1, “Can
We Tune the Row Cache?”). However, keep in mind that the shared pool also includes the library
cache (SQL statements), and Oracle decides how much of the distribution is for the library cache
versus the row cache.

Use the following query against the Oracle V$ view to determine the data dictionary cache hit
ratio:

TIP
Measure hit ratios for the row cache (data dictionary cache) of the shared pool with the
V$ROWCACHE view. A hit ratio of greater than 95 percent should be achieved. However, when the
database is initially started, hit ratios will be around 85 percent.

Using Individual Row Cache Parameters to Diagnose Shared Pool
Use
To diagnose a problem with the shared pool or overuse of the shared pool, use a modified query to
the V$ROWCACHE view. This shows how each individual parameter makes up the data dictionary
cache, also referred to as the row cache (partial listing):

This query places an asterisk (*) for any query that has misses greater than 10 percent. It does this
by using the CASE expression to limit the miss ratio to the tenth digit and then analyzes that digit for
any value greater than 0 (which would indicate a hit ratio of 10 percent or higher). A 0.1 miss or
higher returns an *. Explanations of each of the columns are provided in the next section.

 Keeping the Library Cache Reload Ratio at 0 and
the Hit Ratio Above 95 Percent
For optimal performance, you’ll want to keep the library cache reload ratio [sum(reloads) /
sum(pins)] at zero and the library cache hit ratio greater than 95 percent. If the reload ratio is not
zero, then statements are being “aged out” that are later needed and brought back into memory. If the
reload ratio is zero (0), it means items in the library cache were never aged or invalidated. If the
reload ratio is greater than 1 percent, the SHARED_POOL_SIZE parameter should probably be
increased. Likewise, if the library cache hit ratio comes in less than 95 percent, then the

SHARED_POOL_SIZE parameter may need to be increased. Also, if you are using ASMM, the
SGA_TARGET includes both auto-tuned and manual parameters. When you decide to raise a
parameter specifically (such as SHARED_POOL_SIZE), it influences the auto-tuned part. (Other
parameters are affected; see My Oracle Support Notes 443746.1 and 295626.1, “How to Use
Automatic Shared Memory (AMM) in 12c.”)

You can monitor the library cache in a couple of ways. The first method is to execute the
STATSPACK report (STATSPACK is covered in detail in Chapter 14). The second is to use the
V$LIBRARYCACHE view.

The following query uses the V$LIBRARYCACHE view to examine the reload ratio in the library
cache:

This next query uses the V$LIBRARYCACHE view to examine the library cache’s hit ratio in
detail:

This hit ratio is excellent (greater than 99 percent) and does not require any increase in the
SHARED_POOL_SIZE parameter.

Using Individual Library Cache Parameters to Diagnose Shared
Pool Use
Using a modified query on the same table, you can see how each individual parameter makes up the
library cache. This may help diagnose a problem or reveal overuse of the shared pool.

Use the following list to help interpret the contents of the V$LIBRARYCACHE view:

 namespace The object type stored in the library cache. The values SQL AREA,
TABLE/PROCEDURE, BODY, and TRIGGER show the key types.

 gets Shows the number of times an item in the library cache was requested.

 gethits Shows the number of times a requested item was already in the library cache.

 gethitratio Shows the ratio of gethits to gets.

 pins Shows the number of times an item in the library cache was executed.

 pinhits Shows the number of times an item was executed when that item was already in the

library cache.

 pinhitratio Shows the ratio of pinhits to pins.

 reloads Shows the number of times an item had to be reloaded into the library cache because it
aged out or was invalidated.

Keeping the Pin Hit Ratio for Library Cache Items Close to 100
Percent
The pin hit ratio for all library cache items—sum(pinhits)/sum(pins)—should be close to 1 (or a 100
percent hit ratio). A pin hit ratio of 100 percent means that every time the system needs to execute
something, it is already allocated and valid in the library cache. Although you will always experience
some misses the first time a request is made, misses can be reduced by writing identical SQL
statements.

TIP
Measure hit ratios for the library cache of the shared pool with the V$LIBRARYCACHE view. A hit
ratio of greater than 95 percent should be achieved. However, when the database is initially
started, hit ratios are around 85 percent.

Keeping the Miss Ratio Less Than 15 Percent
The miss ratio for data dictionary cache sum(getmisses)/sum(gets) should be less than 10 to 15
percent. A miss ratio of zero (0) means that every time the system went into the data dictionary cache,
it found what it was looking for and did not have to retrieve the information from disk. If the miss
ratio sum(getmisses)/sum(gets) is greater than 10–15 percent, the initialization
SHARED_POOL_SIZE parameter should be increased.

 Using Available Memory to Determine If the
SHARED_POOL_SIZE Is Set Correctly
Here’s the main question that people usually want answered: “Is there any memory left in the shared
pool?” To find out how fast memory in the shared pool is being depleted (made noncontiguous or in
use) and also what percent is unused (and still contiguous), run the following query after starting the
database and running production queries for a short period of time (for example, after the first hour of
the day):

If you have plenty of contiguous free memory (greater than 2M), after running most of the queries
in your production system (you’ll have to determine how long this takes), then you do not need to
increase the SHARED_POOL_SIZE parameter. I have never seen this parameter go all the way to
zero (Oracle saves a portion for emergency operations via the SHARED_POOL_RESERVED_SIZE
parameter).

TIP
The V$SGASTAT view shows how fast the memory in the shared pool is being depleted. Remember
it is only a rough estimate. It shows you any memory that has never been used combined with any
piece of memory that has been reused. Free memory will go up and down as the day goes on,
depending on how the pieces are fragmented.

 Using the X$KSMSP Table to Get a Detailed Look at
the Shared Pool
You can query the X$KSMSP table to get the total breakdown for the shared pool. This table will
show the amount of memory that is free, memory that is freeable, and memory that is retained for large
statements that won’t fit into the current shared pool. Consider the following query for a more
accurate picture of the shared pool. Refer to Chapter 13 (the X$ tables) for an in-depth look at this
query and how it is adjusted as Oracle is started and as the system begins to access shared pool
memory.

Oracle does not state anywhere what the values for status in the X$KSMSP table indicate (KSMSP
stands for Kernel Service layer Memory management SGA HEAP; I always remember it as Kernel
Shared Memory Shared Pool instead). In the following table, I offer the following possible
descriptions based on the behavior of these values as researched in Chapter 13. In Chapter 5, I also
show how to graph these results in Enterprise Manager.

TIP
The general rule of thumb (exact sizing depends on your unique systems) is to make the
SHARED_POOL_SIZE parameter around 50–150+ percent of the size of your DB_CACHE_SIZE.
In a system that makes use of a large amount of stored procedures or Oracle supplied packages,
but has limited physical memory, this parameter could make up as much as 150+ percent of the
size of DB_CACHE_SIZE. In a system that uses no stored procedures, but has a large amount of
physical memory to allocate to DB_CACHE_SIZE, this parameter may be 10–20 percent of the size
of DB_CACHE_SIZE. I have worked on larger systems where the DB_CACHE_SIZE was set as
high as tens of gigabytes. I’m sure that hundreds of gigabytes to terabyte SGAs already exist (see
examples at the end of this chapter). Petabyte databases are currently starting to make their entry.
Note that in a shared server configuration (previously known as MTS), items from the PGA are
allocated from the shared pool rather than the session process space.

 Points to Remember About Cache Size
Here are some further notes about setting your cache and share pool sizes:

 If the dictionary cache hit ratio is low (less than 95 percent), then consider investigating and
increasing SHARED_POOL_SIZE.

 If the library cache reload ratio is high (>1 percent), then consider investigating and increasing
SHARED_POOL_SIZE.

 Size the data cache and shared pool appropriately for your systems in terms of workload
requirements.

 Waits Related to Initialization Parameters
Setting initialization parameters incorrectly often results in various types of performance issues that
show up as general “waits” or “latch waits” in a STATSPACK report. In Chapter 14, I cover every
type of wait and latch issue related to this. The following tables identify some waits and latch waits
and their potential fixes.

Some latch problems have often been bug related in the past, so make sure you check My Oracle
Support for issues related to latches. Any of the latches that have a hit ratio less than 99 percent
should be investigated.

Using Oracle Multiple Buffer Pools
There are pools for the allocation of memory. These pools relate to the DB_CACHE_SIZE and
SHARED_POOL_SIZE. Each of these parameters, which were all-inclusive of the memory they
allocate, now has additional options for memory allocation within each memory pool. I will cover the
two separately.

 Pools Related to DB_CACHE_SIZE and Allocating
Memory for Data
In this section, I will focus on the Oracle pools that are used to store the actual data in memory. The
initialization parameters DB_CACHE_SIZE, DB_KEEP_CACHE_SIZE, and
DB_RECYCLE_CACHE_SIZE are the determining factors for memory used to store data.
DB_CACHE_SIZE refers to the total size in bytes of the main buffer cache (or memory for data) in
the SGA. Two additional buffer pools are DB_KEEP_CACHE_SIZE and
DB_RECYCLE_CACHE_SIZE. These additional two pools serve the same purpose as the main
buffer cache (DB_CACHE_SIZE), with the exception that the algorithm to maintain the pool is
different for all three available pools. Note that the BUFFER_POOL_KEEP,
DB_BLOCK_BUFFERS, and BUFFER_POOL_RECYCLE parameters have been deprecated and
should no longer be used. Unlike BUFFER_POOL_KEEP and BUFFER_POOL_RECYCLE,

DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE are not subtracted from
DB_CACHE_SIZE; they are allocated in addition to DB_CACHE_SIZE.

The main buffer cache (defined by DB_CACHE_SIZE) maintains the LRU (least recently used)
list and flushes the oldest buffers in the list. While all three pools utilize the LRU replacement policy,
the goal for the main buffer cache is to fit most data being used in memory.

The keep pool (defined by DB_KEEP_CACHE_SIZE) is hopefully never flushed; it is intended for
buffers that you want to be “pinned” indefinitely (buffers that are very important and need to stay in
memory). Use the keep pool for small tables (that fit in their entirety in this pool) that are frequently
accessed and need to be in memory at all times.

The recycle pool (defined by DB_RECYCLE_CACHE_SIZE) is a pool from which you expect the
data to be regularly flushed because too much data is being accessed to stay in memory. Use the
recycle pool for large, less important data that is usually accessed only once in a long while (ad hoc
user tables for inexperienced users are often put here).

The following examples give a quick look at how information is allocated to the various buffer
pools. Remember, if no pool is specified, then the buffers in the main pool are used.

1. Create a table that will be stored in the keep pool upon being accessed:

2. Alter the table to the recycle pool:

3. Alter the table back to the keep pool:

4. Find the disk and memory reads in the keep pool:

 Modifying the LRU Algorithm
In this section, I’m going to go over the deep edge for experts only. Skip this section if you’ve used
Oracle for only a decade or less. There are five undocumented initialization parameters (defaults are
in parentheses) that you can use to alter the LRU algorithm for greater efficiency when you really have
studied and understand your system buffer usage well:

 _DB_PERCENT_HOT_DEFAULT (50) The percent of buffers in the hot region

 _DB_AGING_TOUCH_TIME (3) Seconds that must pass to increment touch count again

 _DB_AGING_HOT_CRITERIA (2) Threshold to move a buffer to the MRU end (hot end) of
LRU chain

 _DB_AGING_STAY_COUNT (0) Touch count reset to this when moved to MRU end

 _DB_AGING_COOL_COUNT (1) Touch count reset to this when moved to LRU end

 _DB_AGING_FREEZE_CR (FALSE) Make CR (consistent read) buffers always too cold to
keep in cache

By decreasing the value of the first of these parameters, you allow buffers to remain longer;
increasing the values causes a flush sooner. Setting the second parameter lower gives higher value to
buffers that are executed a lot in a short period of time. The third, fourth, and fifth parameters all
relate to how quickly to move things from the hot end to the cold end and how long they stay on each
end.

 Pools Related to SHARED_POOL_SIZE and
Allocating Memory for Statements
In this section, I focus on the pools that are used to store the actual statements in memory. Unlike the
pools related to the data, the LARGE_POOL_SIZE is allocated outside the memory allocated for
SHARED_POOL_SIZE, but it is still part of the SGA.

The LARGE_POOL_SIZE is a pool of memory used for the same operations as the shared pool.
Oracle defines this as the size set aside for large allocations of the shared pool. You’ll have to do
your own testing to ensure where the allocations are coming from in your system and version of
Oracle. The minimum setting is 300K, but the setting must also be as big as
_LARGE_POOL_MIN_ALLOC, which is the minimum size of shared pool memory requested that
will force an allocation in the LARGE_POOL_SIZE memory. Unlike the shared pool, the large pool
does not have an LRU list. Oracle does not attempt to age memory out of the large pool.

You can view your pool settings by querying the V$PARAMETER view:

TIP
The additional buffer pools (memory for data) available in Oracle are initially set to zero. You
should not need to set them initially, but you may need to for your unique system.

Tuning PGA_AGGREGATE_TARGET and
PGA_AGGREGATE_LIMIT
The PGA_AGGREGATE_TARGET, now included as part of MEMORY_TARGET, specifies the
total amount of session PGA memory that Oracle will attempt to allocate across all sessions. Oracle
will allocate what it feels is appropriate based on MEMORY_TARGET, but you should set a
minimum value based on what you’ve seen in prior versions. My Oracle Support Note 223730.1
describes Automatic PGA_AGGREGATE_TARGET Management quite well.
PGA_AGGREGATE_TARGET was introduced in Oracle9i and should be used in place of the
*_SIZE parameters such as SORT_AREA_SIZE, although a local session may still want to set a local
SORT_AREA_SIZE for some local short-term operation. Also, since Oracle9i, the
PGA_AGGREGATE_TARGET parameter does not automatically configure ALL *_SIZE parameters.
For example, both the LARGE_POOL_SIZE and JAVA_POOL_SIZE parameters are not affected by
PGA_AGGREGATE_TARGET. The advantage of using PGA_AGGREGATE_TARGET is the ability
to cap the total user session memory to minimize OS paging.

When PGA_AGGREGATE_TARGET is set, WORKAREA_SIZE_POLICY must be set to AUTO.
Like the V$DB_CACHE_ADVICE view, the V$PGA_TARGET_ADVICE (Oracle 9.2 and later
versions) and V$PGA_TARGET_ADVICE_HISTOGRAM views exist to assist in tuning the
PGA_AGGREGATE_TARGET. Oracle Enterprise Manager provides graphical representations of
these views.

The PGA_AGGREGATE_TARGET should be set to attempt to keep the
ESTD_PGA_CACHE_HIT_PERCENTAGE greater than 95 percent. By setting this appropriately,
more data will be sorted in memory that may have been sorted on disk.

The next query returns the minimum value for the PGA_AGGREGATE_TARGET that is projected
to yield a 95 percent or greater cache hit ratio:

Since the PGA_AGGREGATE_TARGET would get too high in 11g, Oracle created an additional
parameter. In 12c, there is a new 12c initialization parameter called PGA_AGGREGATE_LIMIT.

The PGA makes up part of the MEMORY_TARGET. Set the parameter as follows:

Modifying the Size of Your SGA to Avoid Paging and
Swapping
Before you increase the size of your SGA, you must understand the effects on the physical memory of
your system. If you increase parameters that use more memory than what is available on your system,
then serious performance degradation may occur. When your system processes jobs, if it doesn’t have
enough memory, it starts paging or swapping to complete the active task.

When paging occurs, information that is not currently being used is moved from memory to disk.
This allows memory to be used by a process that currently needs it. If paging happens a lot, the
system will experience decreases in performance, causing processes to take longer to run.

When swapping occurs, an active process is moved from memory to disk temporarily so that
another active process that also desires memory can run. Swapping is based on system cycle time. If
swapping happens a lot, your system is dead. Depending on the amount of memory available, an SGA
that is too large can cause swapping.

Understanding the Oracle Optimizer
The Oracle optimizer was built to make your tuning life easier by choosing better paths for your
poorly written queries. Rule-based optimization (now obsolete and unsupported) was built on a set of
rules for how Oracle processes statements. Oracle 10g Release 2 only supported the use of the cost-
based optimizer; the rule-based optimizer was no longer supported. Since Oracle 10g Release 2,
Oracle has automatic statistics gathering turned on to aid the effectiveness of the cost-based
optimizer. In Oracle, many features are only available when using cost-based optimization. The cost-
based optimizer now has two modes of operation: normal mode and tuning mode. Normal mode
should be used in production and test environments; tuning mode can be used in development
environments to aid developers and DBAs in testing specific SQL code.

 How Optimization Looks at the Data
Rule-based optimization is Oracle-centric, whereas cost-based optimization is data-centric. The
optimizer mode under which the database operates is set via the initialization parameter
OPTIMIZER_MODE. The possible optimizer modes are as follows:

 ALL_ROWS Gets all rows faster (generally forces index suppression). This is good for
untuned, high-volume batch systems. This is the default.

 FIRST_ROWS Gets the first row faster (generally forces index use). This is good for untuned
systems that process lots of single transactions.

 FIRST_ROWS (1|10|100|1000) Gets the first n rows faster. This is good for applications that
routinely display partial results to users such as paging data to a user in a web application.

 CHOOSE Now obsolete and unsupported but still allowed. Uses cost-based optimization for
all analyzed tables. This is a good mode for well-built and well-tuned systems (for advanced
users). This option is not documented for 12cR2 but is still usable.

 RULE Now obsolete and unsupported but still allowed. Always uses rule-based optimization.
If you are still using this, you need to start using cost-based optimization, as rule-based
optimization is no longer supported under Oracle 10g Release 2 and higher. This option is not
documented for 12cR2 but is still usable.

The default optimizer mode for 12cR2 is ALL_ROWS. Also, cost-based optimization is used even
if the tables are not analyzed. Although RULE/CHOOSE are definitely desupported and obsolete and
people are often scolded for even talking about using rule-based optimization, I was able to set the
mode to RULE in 12cR2. Consider the following error I received when I set OPTIMIZER_MODE to
a mode that doesn’t exist (SUPER_FAST):

NOTE
The optimizer in Oracle 12c Release 2 uses cost-based optimization regardless of whether the
tables have been analyzed or not.

TIP
In Oracle 12c Release 2, the main OPTIMIZER_MODEs to use are ALL_ROWS (the default) and
FIRST_ROWS.

Creating Enough Dispatchers
When using Shared Server, some of the things you need to watch for are high busy rates for the

existing dispatcher processes and increases in wait times for response queues of existing dispatcher
processes. If the wait time increases, as the application runs under normal use, you may wish to add
more dispatcher processes, especially if the processes are busy more than 50 percent of the time.

Use the following statement to determine the busy rate:

Use the following statement to check for responses to user processes that are waiting in a queue to
be sent to the user:

Use the following statement to check the requests from user processes that are waiting in a queue
to be sent to the user:

 Have Enough Open Cursors (OPEN_CURSORS)
If you don’t have enough open cursors, then you will receive errors to that effect. The key is to stay
ahead of your system by increasing the OPEN_CURSORS initialization parameter before you run out
of open cursors.

 Don’t Let Your DDL Statements Fail
(DDL_LOCK_TIMEOUT)
DDL statements (CREATE/ALTER/DROP) require exclusive locks and thus sometimes fail due to
bad timing when they conflict with other statements that lock the table. The parameter
DDL_LOCK_TIMEOUT specifies the amount of time (in seconds) the DDL statement will wait for
the lock before timing out and failing. The default value is 0; the max value is 100,000 (27.77 hours).
The following example shows setting the value to 1 hour or 3600 seconds.

Two Important Exadata Initialization Parameters
(Exadata Only)
Oracle has two very important parameters to use to test major features of Exadata. The first is
CELL_OFFLOAD_PROCESSING, which relates to Smart Scans (cell scans). The default value is
TRUE, which means that Smart Scans are turned on for Exadata (if you are using it). You can set this
value to FALSE to turn off Smart Scans and check other features or compare speeds with and without
this feature.

The second parameter is undocumented and should only be used with the consent of Oracle
Support and also only for testing purposes. The second is _KCFIS_STORAGEIDX_DISABLED,
which is used to disable storage indexes. This tells Oracle not to use storage index optimization on
storage cells if set to TRUE. The default is FALSE. Another undocumented parameter (again check
with Oracle Support) is also related to how the Smart Scan works and uses Bloom filters. The
parameter _BLOOM_FILTER_ENABLED is set to TRUE by default. With Exadata, Bloom filters are
used for join filtering with Smart Scans. _BLOOM_PRUNING_ENABLED also has a default of
TRUE. Set these parameters to FALSE to disable them. See Chapter 11 for additional information.

Top 25 Initialization Parameters
The following list is my list of the top 25 most important initialization parameters, in order of
importance. Your top 25 may vary somewhat from my top 25 because everyone has a unique business,

unique applications, and unique experiences.

1. MEMORY_TARGET This is the initialization parameter setting for all of the memory
allocated to both the PGA and SGA combined (new in 11g). Setting MEMORY_TARGET
enables Automatic Memory Management, so Oracle allocates memory for you based on system
needs, but you can also set minimum values for key parameters. MEMORY_TARGET is used
for everything that SGA_TARGET was used for but now additionally includes the PGA
(especially important as MEMORY_TARGET now includes the important area
PGA_AGGREGATE_TARGET). Important parameters such as DB_CACHE_SIZE,
SHARED_POOL_SIZE, PGA_AGGREGATE_TARGET, LARGE_POOL_SIZE, and
JAVA_POOL_SIZE are all set automatically when you set MEMORY_TARGET. Setting
minimum values for important initialization parameters in your system is also a very good
idea.

2. MEMORY_MAX_TARGET This is the maximum memory allocated for Oracle and the
maximum value to which MEMORY_TARGET can be set.

3. DB_CACHE_SIZE Initial memory allocated to data cache or memory used for data itself. This
parameter doesn’t need to be set if you set MEMORY_TARGET or SGA_TARGET, but setting
a value for this as a minimum setting is a good idea. Your goal should always be toward a
memory-resident database or at least toward getting all data that will be queried in memory.

4. SHARED_POOL_SIZE Memory allocated for the data dictionary and for SQL and PL/SQL
statements. The query itself is put in memory here. This parameter doesn’t need to be set if you
set MEMORY_TARGET, but setting a value for this as a minimum is a good idea. Note that
SAP recommends setting this to 400M. Also note that the Result Cache gets its memory from
the shared pool and is set with the RESULT_CACHE_SIZE and RESULT_CACHE_MODE
(FORCE/AUTO/MANUAL) initialization parameters. Lastly, an important note since 11g is
that this parameter now includes some SGA overhead (12M worth) that it previously did not in
version 10g. Set this 12M higher than you did in 10g!

5. INMEMORY_SIZE The In-Memory column store resides in this area, which is separate from
the buffer cache used to store data in memory. Tables, tablespaces, partitions, and other objects
can have single columns stored in this memory area in a compressed fashion. This allows for
much faster analytics (like summing an individual column). Oracle builds indexes to make this
even faster based on ranges of values. This is new in 12c.

6. SGA_TARGET If you use Oracle’s Automatic Shared Memory Management, this parameter is
used to determine the size of your data cache, shared pool, large pool, and Java pool
automatically (see Chapter 1 for more information). Setting this to 0 disables it. This
parameter doesn’t need to be set if you set MEMORY_TARGET, but you may want to set a
value for this as a minimum setting for the SGA if you’ve calibrated it in previous versions.
The SHARED_POOL_SIZE, LARGE_POOL_SIZE, JAVA_POOL_SIZE, and
DB_CACHE_SIZE are all set automatically based on this parameter (or MEMORY_TARGET
if used). INMEMORY_SIZE is also included in this number.

7. PGA_AGGREGATE_TARGET and PGA_AGGREGATE_LIMIT The _TARGET is a soft
memory cap for the total of all users’ PGAs. This parameter doesn’t need to be set if you set
MEMORY_TARGET, but setting a value as a minimum setting is a good idea. Note that SAP

specifies to set this to 20 percent of available memory for OLTP and 40 percent for OLAP. The
_LIMIT sets the upper limit that is allowed (the hard memory cap).

8. SGA_MAX_SIZE Maximum memory that SGA_TARGET can be set to. This parameter
doesn’t need to be set if you set MEMORY_TARGET, but you may want to set a value if you
use SGA_TARGET.

9. OPTIMIZER_MODE FIRST_ROWS, FIRST_ROWS_n, or ALL_ROWS. Although
RULE/CHOOSE are definitely desupported and obsolete and people are often scolded for
even talking about using rule-based optimization, I was able to set the mode to RULE.
Consider the following error I received when I set OPTIMIZER_MODE to a mode that doesn’t
exist (SUPER_FAST):

10. SEC_MAX_FAILED_LOGIN_ATTEMPTS If the user fails to enter the correct password
after this many tries (new as of 11g) the server process drops the connection and the server
process is terminated. The default is 3 (consider increasing this value for less secure systems).
A similar parameter in my top 25 list in the prior edition included
SEC_CASE_SENSITIVE_LOGON, which was new as of 11g, but is deprecated as of 12.1.
Be careful if you’re still using this parameter in 11g (fix case issues with passwords by
ensuring passwords can be lower, upper, or mixed case before you upgrade to 12c!).

11. CURSOR_SHARING Converts literal SQL to SQL with bind variables, reducing parse
overhead. The default is EXACT. Consider setting it to FORCE after research.

12. OPTIMIZER_USE_INVISIBLE_INDEXES The default is FALSE to ensure invisible indexes
are not used by default (new in 11g). Set this parameter to TRUE to use all of the indexes and
to check which ones might have been set incorrectly to be invisible; this could be a helpful
tuning exercise, or it could also bring the system to halt, so only use it in development.

13. OPTIMIZER_USE_PENDING_STATISTICS The default is FALSE to ensure pending
statistics are not used, whereas setting this to TRUE enables all pending statistics to be used
(new in 11g).

14. OPTIMIZER_INDEX_COST_ADJ Coarse adjustment between the cost of an index scan and
the cost of a full table scan. Set between 1 and 10 to force index use more frequently. Setting
this parameter to a value between 1 and 10 pretty much guarantees index use, however, even
when not appropriate, so be careful because it is highly dependent on the index design and
implementation being correct. Please note that if you are using Applications 11i, setting
OPTIMIZER_INDEX_COST_ADJ to any value other than the default (100) is not supported
(see My Oracle Support Note 169935.1). I’ve seen a benchmark where this was set to 200.
Also, see bug 4483286. SAP suggests that you not set it for OLAP, but set it to 20 for OLTP.

15. DB_FILE_MULTIBLOCK_READ_COUNT For full table scans to perform I/O more
efficiently, this parameter reads the given number of blocks in a single I/O. The default value is
12812cR2, but it is usually noted not to change this from the default.

16. LOG_BUFFER Server processes making changes to data blocks in the buffer cache generate

redo data into the log buffer. SAP says to use the default, whereas Oracle Applications sets it
to 10M. I’ve seen benchmarks with it set over 100M.

17. DB_KEEP_CACHE_SIZE Memory allocated to the keep pool or an additional data cache that
you can set up outside the buffer cache for very important data that you don’t want pushed out
of the cache.

18. DB_RECYCLE_CACHE_SIZE Memory allocated to a recycle pool or an additional data
cache that you can set up outside the buffer cache and in addition to the keep pool described in
item 17. Usually, DBAs set this up for ad hoc user query data with poorly written queries.

19. OPTIMIZER_USE_SQL_PLAN_BASELINES The default is TRUE, which means Oracle
uses these baselines if they exist (new in 11g). Note that Stored Outlines are deprecated
(discouraged but they still work) in 11g, as they are replaced with SQL Plan Baselines.

20. OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES The default is FALSE, which means
that Oracle does not capture them by default, but if you create some, it will use them as stated
in the previous parameter (new in 11g).

21. LARGE_POOL_SIZE Total bytes in the large pool allocation for large PL/SQL and a few
other Oracle options less frequently used.

22. STATISTICS_LEVEL Used to enable advisory information and optionally keep additional OS
statistics to refine optimizer decisions. TYPICAL is the default.

23. JAVA_POOL_SIZE Memory allocated to the JVM for Java stored procedures.
24. JAVA_MAX_SESSIONSPACE_SIZE Upper limit on memory that is used to keep track of the

user session state of Java classes.
25. OPEN_CURSORS Specifies the size of the private area used to hold (open) user statements. If

you get an “ORA-01000: maximum open cursors exceeded,” you may need to increase this
parameter, but make sure you are closing cursors that you no longer need. Prior to 9.2.0.5,
these open cursors were also cached and, at times, caused issues (ORA-4031) if
OPEN_CURSORS was set too high. As of 9.2.0.5, SESSION_CACHED_CURSORS now
controls the setting of the PL/SQL cursor cache. Do not set the parameter
SESSION_CACHED_CURSORS as high as you set OPEN_CURSORS, or you may
experience ORA-4031 or ORA-7445 errors. SAP recommends setting this to 2000; Oracle
Applications has OPEN_CURSORS at 600 and SESSION_CACHED_CURSORS at 500.

TIP
Setting certain initialization parameters correctly could be the difference between a report taking
two seconds and two hours. Test changes on a test system thoroughly before implementing those
changes in a production environment.

 Initialization Parameters over the Years

Oracle has moved from a time when there were over four times as many documented parameters as
undocumented in Oracle 6, to the undocumented parameters exceeding the documented in Oracle 8i,
to four times as many undocumented as documented parameters in Oracle 10g, to six times more in
11g. In 12c, the increase is less on documented, but substantially more on the undocumented side.
Clearly, Oracle has migrated to a place where experts have more dials to set in 12c (undocumented),
but the number of dials to set for the standard database setup (documented parameters) is not
increasing as much and is becoming standardized. The following table charts the changing numbers of
documented and undocumented parameters:

 Finding Undocumented Initialization Parameters
Querying the table X$KSPPI shows you documented as well as undocumented initialization
parameters. The query may only be done as user SYS, so be careful. See Chapter 13 for a complete
look at the X$ tables. My top 13 undocumented initialization parameters are listed in Appendix A.
Appendix C gives a complete listing as of the writing of this book of the X$ tables.

The following is a brief description of the columns in the X$KSPPI and X$KSPPCV tables:

 KSPPINM Parameter name

 KSPPSTVL Current value for the parameter

 KSPPSTDF Default value for the parameter

A partial output listing of the initialization parameters is shown here:

TIP
Using undocumented initialization parameters can cause corruption. Never use these if you are
not an expert and you are not directed by Oracle Support! Ensure that you work with Oracle
Support before setting these parameters.

Understanding the Typical Server
There’s nothing typical about most unique systems. The key to understanding Oracle is to understand
its dynamic nature. Oracle continues to have many attributes of previous versions while also leading
the way by implementing the future of distributed database and object-oriented programming.
Experience from earlier versions of Oracle always benefits the DBA in future versions of Oracle.
Here are some of the future changes to consider as you build your system:

 With pluggable databases (PDBs) and the public cloud, Oracle can be consolidated and
maintained at a single point. (Many databases with fewer DBAs managing the system looks
like the corporate future.)

 Database maintenance is becoming more visual (all point-and-click maintenance as in
Enterprise Manager). The V$ views are still your lowest-performance-cost access method, but
Enterprise Manager is easier to use for more complex inquiries that may require multiple V$
views to get the same result.

 Hardware and CPUs continue to get faster, eliminating the CPU as a bottleneck. (I/O

limitations are solved with flash, DRAM, and correct design.)
 Object-oriented and Agile development is crucial to rapid system development.
 Graphics, big data, and image storage is leading to databases that are soon to become

increasingly larger. Also, the fact that disk space and flash are getting less expensive has made
businesses more willing to keep historical data.

 While Oracle has excelled in the software market, no hardware maker has kept up over the
past decade. With the advent of Exadata, Oracle is getting us to exabyte databases faster than
anticipated.

 Modeling a Typical Server
This section contains very rough estimates designed as setup guidelines. However, it is important to
emphasize that these are only guidelines and that the reality is that every system is different and must
be tuned to meet that system’s demands. (CPU speed depends on the type of processor, e.g., RISC or
SPARC vs. Intel.) The following table does not include guidelines for Oracle Applications. Oracle
Applications tends to have unique issues that are addressed by Oracle in the application
documentation and on My Oracle Support.

The following variables can be reason to deviate from the typical server configuration:

 Heavy DML processing may require much larger ROLLBACK/UNDO, REDO, and TEMP
tablespace sizes. Exadata best practice is a 32G logfile; you don’t need as many at this size!

 Poorly tuned systems require more CPU and memory.
 A greater number of disks, cache on disks, and controllers always increase performance by

reducing I/O contention.
 An increase in the disk capacity can speed backup and recovery time by going to disk and not

tape. Faster tape speeds lower backup and recovery times as well. Oracle’s purchase of Sun
also netted them StorageTek.

 Using all flash changes everything. Leading-edge companies often have all flash!

 Sizing the Oracle Applications Database
The Oracle Applications Development team wrote a note on My Oracle Support (Note 216205.1 for
11i and 396009.1 for Release 12) that shows the initialization parameters that should be used (or not
used) with various versions of Oracle Applications. I always review the settings that the Oracle
Applications Development team recommends, as they often are dealing with large systems and
they’ve learned some nice tricks. The common database parameters suggested are listed in Appendix
A and version-specific parameters follow that listing (note that many comments were removed for
brevity; see the actual My Oracle Support note for full detail). For a given Oracle E-Business Suite
(EBS) instance, always make sure that the init.ora parameters are set according to the My Oracle

Support document “Database Initialization Parameters for Oracle E-Business Suite Release 12” (Doc
ID 396009.1). An EBS database instance has to adhere to these recommendations since they went
through rigorous testing inside Oracle Labs’ systems simulating various EBS data patterns/modules...
etc. Of course, Oracle wrote the code for EBS and developed it, so they know better than anybody
else how the application code would behave at certain points in time. The following table gives an
example of how to size the memory of an EBS database.

The range of user counts provided in the table refers to active Oracle Applications users, not total
or named users. For example, if you plan to support a maximum of 500 active Oracle Applications
users, then you should use the sizing per the range 101–500 users. The parameter values provided in
this document reflect a development/test instance configuration, and you should adjust the relevant
parameters according to the Applications user counts (refer to the table).

On the other hand, EBS does allow all sorts of customizations to use the underlying Database
features. So, any number of partitioning can be done for huge tables for a better performance with the
approval of Oracle Support. The only caveat with having many customizations is to keep a tab on
them for maintenance, patching, and future upgrades.

Let’s assume that as part of the problem identification process, we have determined that the Auto
Invoice Import concurrent program is running slower than normal. We have also eliminated user login
issues (people are able to successfully log in to the EBS home page from multiple sites) and have
verified other concurrent programs are finishing on time. That narrowed down the problem to a single
concurrent request. By having the concurrent request ID, we can tie that to a specific database session

ID (SID) and serial number by running the following query (or by using any of the traditional methods
like OEM, AWR, ASH reports, V$ views, etc.):

Once a specific database session is identified, we can drill down further by collecting a runtime
EXPLAIN PLAN and looking at various wait events that are associated with a particular SQL query
that’s being executed in the database. We can also run the SQLT tracing/diagnostic tools as described
in the My Oracle Support Note “All About the SQLT Diagnostic Tool” (Doc ID 215187.1). After
identifying and looking at the SQL Plans and and the raw tkprof/trace files, we can go through all the
tables/indexes that are in question and verify when the database statistics were last collected for
these tables/indexes that are involved in the query. For all the seeded queries, do a general search on
the short name of the program at the MOS website. You might be running into an already known issue
and there could be a performance fix patch available. If not, open up a service request (SR) with
Oracle Support asking for a code fix. In most cases, Oracle Support will have you collect most of the
diagnostic data discussed here and upload the raw tkprof/trace files to the SR.

For custom DML statements/complex select queries, EBS does allow you to create custom
indexes, histograms, etc. We can also use the SQL Performance Analyzer or SQL Plan Management
features to make certain we have good plans as “Accepted” and “Fixed” plans, so that the optimizer
will always choose those plans irrespective of what the optimizer engine says about the current data,
as long as there were no DDL changes in the underlying objects of a query. This can be done using
Oracle Enterprise Manager (OEM) or SQL*Plus commands. Please refer to the SQL Plan
Management chapter (Chapter 8) in this book for more detailed information.

For more generic, database-wide slow response times, we can make use of all of the tips and
techniques discussed in the other chapters of this book and troubleshoot further. For example, running
the AWR report during a problem window, running an ASH report, or running an ADDM report for a
specific problem window will all help narrow down the problem. Please refer to Chapter 14 for
further information on AWR, ASH, ADDM, and OEM monitoring.

At a high level, make sure that the Gather Schema Stats concurrent program is scheduled to run at a
frequent interval. Schedule this program to run once a week for all the schemas with a 20 percent or
30 percent estimate, and leave all the other parameters to their defaults for stable performance in the
database. Module-specific or tables/indexes-specific versions of this program can be run depending
on the need and just after any major custom concurrent program, data load programs, or DML
statements that might skew the data pattern in the database.

Run daily reports to find the object lists based on the last_modified time stamp and created
columns from DBA_OBJECTS for the last 24 hours. The idea is to identify any objects at the
database level that were created/modified and are being accounted/reconciled against the internal
change request system. Often, unaccounted, unapproved, and untested code changes prove to harm the
stability of the production systems. Run a daily report to identify the list of users and responsibilities
for which the debug/trace profile options are turned on. Turn them off if they are no longer needed.
Ideally, the production environment should not have any trace or debugs enabled unless a specific
issue is being worked on. Unnecessary trace/debugs would put pressure and overhead on the database

and filesystem space and also cause a poor response time for the EBS from an end-user perspective.
Look for orphaned M$LOG tables with a large number of rows in the database. If the volume

keeps growing over a period of time, then it is an indication of an orphaned materialized view (MV).
Materialized views are based on a trigger logic and, depending on the complete or full refresh and the
way in which the MVs are maintained (or not maintained), the M$LOG table would tend to grow. In a
normal scenario during a complete or fast refresh or at the end of the refresh, the underlying M$LOG
table would get deleted in the source for the already updated rows in the target. When this process is
broken, the trigger on the source table is on and it will make the M$LOG grow exponentially, using
large amounts of database low-level resources such as enqueues and latches. This could put
enormous overhead on the database and eventually on the applications. Additional Oracle
Applications notes are at the end of Appendix A.

Tips Review
 The key initialization parameters in Oracle are MEMORY_TARGET,

MEMORY_MAX_TARGET, SGA_TARGET, SGA_MAX_SIZE,
PGA_AGGREGATE_TARGET, PGA_AGGREGATE_LIMIT, DB_CACHE_SIZE,
SHARED_POOL_SIZE, and INMEMORY_SIZE. If you use ASMM, then SGA_TARGET is
also a key initialization parameter.

 Setting INMEMORY_SIZE can lead to unbelievably fast analytics, but only set this parameter
when properly licensed for this option. Active Data Guard can also use the In-Memory column
store, and there are also In-Memory virtual columns allowed.

 If you use the ALTER SYSTEM commands to write to the SPFILE only, and then on startup
realize you have set them incorrectly, the database will not start, and you cannot use an ALTER
SYSTEM command to fix the problem. You can, however, create a PFILE from the SPFILE,
modify the PFILE, and then use that to start the database. Afterward you need to create the
SPFILE again and restart the database with the SPFILE.

 If you can’t figure out why your system isn’t using the value in your init.ora file, you probably
have an SPFILE overriding it. And don’t forget, you can also use a hint to override parameters
at the query level in 12c. Different PDBs (pluggable databases) can have some parameters set
at the PDB level.

 Changing initialization parameters dynamically is a powerful feature for both developers and
DBAs. Consequently, a user with the ALTER SESSION privilege is capable of irresponsibly
allocating 100M+ for the SORT_AREA_SIZE for a given session, if it is not restricted.

 Retrieving data from physical memory is generally substantially faster than retrieving it from
disk, so make sure the SGA and PGA are large enough. One Oracle study showed Oracle
memory access as averaging about 100 times faster than disk access. However, this takes into
account disk-caching advances and flash, which you may or may not have on your system. The
same study also showed an individual case where Oracle memory access was well over
10,000 times faster than disk (which was hard for me to believe), but it shows how important
it is to measure this on your own unique system.

 Poor joins and poor indexing also yield very high hit ratios, so make sure your hit ratio isn’t
high for a reason other than a well-tuned system. An unusually high hit ratio may indicate the
introduction of code that is poorly indexed or includes join issues.

 Hit ratios are useful to experienced DBAs but can be misleading or of little use to
inexperienced DBAs. The best use of hit ratios is still to compare them over time (a
barometer) to help alert you to a substantial change to a system on a given day. While some
people have deprecated hit ratios from their tuning arsenal, they are usually tool vendors who
don’t see the value of tracking hit ratios over time because their tools are point-in-time or
reactive-based tuning solutions. Hit ratios should never be your only tool, but they should
definitely be one of many proactive tools in your arsenal (especially with the advent of the
invisible index).

 In Oracle 12c Release 2, use Enterprise Manager Cloud Control to find problem queries.
 A low hit ratio for a query could be an indication of a missing, invisible, or suppressed index.
 Bad (slow) queries show in V$SQLAREA or V$SESSION_LONGOPS (under certain

conditions) views with poor hit ratios the first time they are executed. You can also use
Enterprise Manager to see statistical information. Make sure you tune them at that time. The
second time that they execute, they may not show a poor hit ratio (may be in memory). Flushing
the buffer cache for testing can help you get accurate results.

 The database must be rebuilt if you change the DB_BLOCK_SIZE. Increasing the
DB_FILE_MULTIBLOCK_READ_COUNT allows more block reads in a single I/O, giving a
benefit similar to a larger block size. In 12c, the default is 128, so it may not need to be
changed.

 The SGA_MAX_SIZE determines the granule size for other parameters. An SGA_MAX_SIZE
< 1G means a 4M granule size, whereas an SGA_MAX_SIZE >= 256G means a 512M granule
size. Some benchmarks have the granule size as high as 256M.

 SQL must be written exactly the same to be reused. Case differences and any other differences
will cause a reparse of the statement unless you use CURSOR_SHARING.

 Measure hit ratios for the row cache (data dictionary cache) of the shared pool with the
V$ROWCACHE view. A hit ratio of greater than 95 percent should be achieved. However,
when the database is initially started, hit ratios will be around 85 percent.

 Measure hit ratios for the library cache of the shared pool with the V$LIBRARYCACHE
view. A hit ratio of greater than 95 percent should be achieved. However, when the database
is initially started, hit ratios are around 85 percent.

 The V$SGASTAT view shows how fast the memory in the shared pool is being depleted.
Remember that it is only a rough estimate. It shows you any memory that has never been used
combined with any piece of memory that has been reused. Free memory will go up and down
as the day goes on, depending on how the pieces are fragmented.

 The general rule of thumb (exact sizing depends on your unique systems) is to make the
SHARED_POOL_SIZE parameter 50–150+ percent of the size of your DB_CACHE_SIZE. In
a system that makes use of a large amount of stored procedures or Oracle supplied packages,

but has limited physical memory, this parameter could make up as much as 150+ percent of the
size of DB_CACHE_SIZE. In a system that uses no stored procedures, but has a large amount
of physical memory to allocate to DB_CACHE_SIZE, this parameter may be 10–20 percent of
the size of DB_CACHE_SIZE. I have worked on larger systems where the DB_CACHE_SIZE
was set as high as 10s of Gigs. I’m sure that 100s of Gigs to Terabyte SGAs already exist.
Petabyte databases are currently starting to make their entry. Note that in a shared server
configuration (previously known as MTS), items from the PGA are allocated from the shared
pool rather than the session process space.

 The additional buffer pools (memory for data) available in Oracle are initially set to zero. You
should not need to set them initially, but you may need to for your unique system.

 The optimizer in Oracle 12c Release 2 uses cost-based optimization regardless of whether the
tables have been analyzed or not. CHOOSE and RULE are obsolete and unsupported settings
for OPTIMIZER_MODE, yet they are still allowed; ALL_ROWS is the default.

 There is no OPTIMIZER MODE called COST (a misconception). If you are using Oracle
Database 9i Release 2 or an earlier version and are not sure what optimizer mode to use, then
use CHOOSE or FIRST_ROWS and analyze all tables. As the data in a table changes, tables
need to be reanalyzed at regular intervals. In Oracle 12c Release 2, the main
OPTIMIZER_MODEs to use are ALL_ROWS and FIRST_ROWS (ALL_ROWS is the
default).

 Setting certain initialization parameters correctly could be the difference between a report
taking two seconds and two hours. Test changes on a test system thoroughly before
implementing those changes in a production environment.

 Using undocumented initialization parameters can cause corruption. Never use these if you are
not an expert and you are not directed by Oracle Support! Ensure that you work with Oracle
Support before setting these parameters.

References
Rich Niemiec, DBA Tuning: Now YOU Are the Expert (TUSC).
Oracle Installation Guide (Oracle Corporation).
Oracle My Oracle Support Notes: 216205.1, 396009.1, 295626.1, 443746.1, 223730.1.
Performance Tuning Guide (Oracle Corporation).
Craig Shallahamer, “All About Oracle’s Touch-Count Data Block Buffer Algorithm” (OraPub,
excellent!).
Murali Vallath “Using Oracle Database 11g Release 2 Result Cache in an Oracle RAC Environment,”
www.oracle.com/technetwork/articles/datawarehouse/vallath-resultcache-rac-284280.html.

Thanks to Mike Messina, who did the primary update for the chapter to 12c, and Palani Kasi, who
provided the Oracle Applications section update at the end. Thanks to Randy Swanson, who did the
update for this chapter in the 9i version of the book (where were you this time around?). Thanks to
Lucas Niemiec for finding the scripts that show Oracle’s installation settings. Thanks to Binu Joy,
who provided some great installation notes and SAP parameters for this chapter and Appendix A.

http://www.oracle.com/technetwork/articles/datawarehouse/vallath-resultcache-rac-284280.html

O

CHAPTER
5

Tuning with Enterprise Manager Cloud
Control (DBA and Developer)

racle Enterprise Manager Cloud Control finally matches or exceeds the market’s answer to
monitoring and tuning the Oracle database. Oracle has usually been behind the market with
okay-to-good products over the years. No longer is this the case; Oracle has stepped up to
the plate and delivered one of the best products ever (including support for Exadata and

the cloud). This chapter provides a quick tour of why Oracle Enterprise Manager Cloud Control
(called both OEM or EM) is now at the next level. The tour neither explores the entire product nor
teaches you how to use all of the features (that would take an entire book). Rather, this chapter
exposes you to some of the tools and tuning features that you will find helpful in your tuning
endeavors. With Oracle’s focus on the grid since Oracle 10g and continuing into 11g, many
screenshots show multiple instances so you can see either a single-instance or multi-instance cluster
with the product. The grid of servers can now be in the cloud or on-premises and also can be RAC or
non-RAC (especially with 12c sharding). With multitenant databases in 12c, OEM also shows all
pluggable databases (PDBs) with drill-down screens. OEM is an excellent tuning tool for all levels
of DBAs and is especially valuable as you head into the growing decade of the cloud.

One way to ensure great performance for your system is to monitor your system for potential
performance issues before they become major problems. One vehicle that provides a graphical user
interface (GUI) for tuning is OEM, along with related performance-tuning add-on products (which are
an added cost). The OEM product suite continues to change over time, but this particular version has
taken a giant leap forward with its support for both on-premises and cloud databases. With the
statistics from the Automatic Workload Repository (AWR), this tool is now tremendously powerful.
AWR snapshots are taken every hour by default, and once the AWR snapshot is taken, the Automatic
Database Diagnostic Monitor (ADDM) analysis occurs immediately (STATISTICS_LEVEL must be
set to TYPICAL or ALL) via the MMON background process. The results of ADDM are also stored
in the AWR and accessible via OEM. All of these streamline managing both on-premises and cloud
databases.

In addition to monitoring, spectacular screens will show you where a problem is occurring, down
to the “latch wait” or “global cache cr transfer wait.” The tools for running the AWR Report (covered
in detail in Chapter 14) are included, as are tools to change the spfile.ora or init.ora file. The
tools for monitoring a group of servers are equally spectacular (yes, they are that good). Screens
showing performance on every instance and piece of hardware (each in a different color) allow you
to click the graph to branch to an individual instance or look at a particular piece of hardware. You

can delve into performance at the database, host, application server, network, or disk (ASM or non-
ASM) level. Of all the Oracle products I have seen hit a home run over time, this one hit a grand slam
with the Oracle OEM Cloud Control release.

Oracle Enterprise Manager standard applications include a central management console and
additional packs, and many products (like Diagnostics Pack) have an additional cost (please check
with Oracle for any price implications for different modules/packs). Accessing the AWR requires the
Diagnostics Pack, and running SQL Tuning Sets requires the Tuning Pack. You can use ADDM to see
what Oracle advises after an hour of gathering statistics to AWR. You can use the SQL Tuning
Advisor for tuning a specific SQL statement or set of statements (you can also run this from the Top
Activity screen). Use the SQL Performance Analyzer to tune statements in a Guided Workflow, which
shows the before and after tuning results for a set of SQL statements. You can compare an Oracle
version’s effect on SQL statements; for instance, you can compare a tuning set from one version to
another, and you can even look at the before and after comparison of initialization parameter changes.
Finally, you can even perform an Exadata simulation and run an AWR Report or Active Session
History (ASH, or mini-AWR) report from OEM.

The following tips are covered in this chapter:

 Enterprise Manager basics and accessing OEM via Oracle Cloud Services
 Monitoring policies and alerts
 Monitoring the database
 Evaluating potential changes with SQL Performance Analyzer
 Tuning the Oracle database using OEM’s ADDM
 Monitoring and tuning via the OEM menus
 Viewing the Oracle topology
 Monitoring and tuning the hosts
 Monitoring and tuning application servers and web applications (using APM)
 Viewing and scheduling jobs
 Accessing available reports, including the ASH and AWR Reports
 Real Application Testing (Database Replay)

Oracle Enterprise Manager Basics and Accessing OEM
via Oracle Cloud
Once OEM is installed, the login screen (shown in Figure 5-1) is displayed. Depending on how
security is set up, you may need to enter the username, password, or database information at login
screens, depending on which screens are accessed within the product. Once installed, you can log in,
but if you don’t, you will need the remember this URL (I suggest bookmarking this URL).

FIGURE 5-1. Oracle Enterprise Manager Cloud Control 12c login screen

Shortly after logging in to OEM, you will be in the main screen showing enterprise-level
architecture and actions. Figure 5-2 shows the Enterprise tab with options for monitoring, reporting,
configuring, as well as provisioning and patching. The Inventory and Usage information on the right
side of the screen shows different servers in the architecture. With this version of OEM, you can
monitor systems that are both on-premises and in the cloud. Shortly, we’ll go into the Enterprise
Summary choice on the Enterprise menu to do some performance tuning on some of the databases
there, but first let’s look at some of the basics included in the product.

FIGURE 5-2. OEM Enterprise-level screen and the Enterprise drop-down menu

If you set up the cloud separately, you can either use the main version of OEM to monitor the cloud

service directly, or you can use a cloud-only OEM Express version that comes with the cloud service.
Figure 5-3 shows the menu from which to access the 12c OEM Console from a cloud service (rolta1
in this example) and gives a feel for how the OEM Express screen looks. Oracle Cloud My Services
has a pull-down list from your cloud service that allows you to open the OEM Express console. All
of the OEM screens in the cloud are the same or similar to those on-premises (although OEM Express
is a cloud-only lighter version). The rest of the examples in the chapter will show the OEM screens
from on-premises (see Chapter 11 for more on the Oracle Cloud).

FIGURE 5-3. Oracle Cloud My Services pull-down menu to open the OEM Express Console

As shown in Figure 5-2, some of the available setup options on the Enterprise menu include
Monitoring, Configuration, Provisioning and Patching, and access to various tools and other
configuration items. For example, if you choose Enterprise | Monitoring | Blackouts, you’ll see the
screen shown in Figure 5-4. Blackouts are periods of time that allow the system to suspend
monitoring for the performance of maintenance activities. This eliminates the skewing of the data
during normal operating hours. Even though statistics gathering is suspended, the period is still
recorded to ensure too many blackouts aren’t scheduled by a DBA.

FIGURE 5-4. Setup and configuration for blackouts

After familiarizing themselves with OEM, DBAs should set up the preferences that are deemed
best for the environment being monitored. At any time while using the product, you can click Setup
(the setup options tab is located at the upper-right hand of the Figure 5-2 screen) to see all the
preference options, as displayed in Figure 5-5 (in this case I chose the Provisioning and Patching
option from the Setup tab). Several preferences should be set, including the e-mail addresses for
sending various alerts or messages as well as notification rules. You can even change the tabs to be
exactly what seems most intuitive for the environment. It is best to stay within the Oracle standard
configuration, however, so another DBA can easily follow what’s been done. Spend some time
investigating all of the nice links from the Setup tab.

FIGURE 5-5. Setting preferences – Patch Recommendations

One of the best parts of OEM is the great online help that is provided (Figure 5-6). No matter
where you are, you can always access the Help option from the drop-down menu of your username

(located in the upper-right of the screen; my username is ROLTAADMIN, as shown in Figure 5-5).
You can then search for either a very general area like “monitoring database performance” or
something very specific like “setting e-mail address.” Substantial help is included in the product on
how to tune the various areas of Oracle at the host, database, application server, ASM, OS, or
network levels. Also, an interesting feature is the Oracle Database 2 Day series of books that are
incorporated into the OEM help. You can browse through 2 Day DBA within OEM, for example. The
key is to take advantage of these resources and learn something every time you access OEM.

FIGURE 5-6. Enterprise Manager Online Help window

TIP
In Oracle Enterprise Manager 12c, the online help is spectacular. Learn something every day by
reading or searching for topics in the new Enterprise Manager Online Help window.

Starting with All Targets and Other Groupings
The Enterprise Summary is the first option displayed after logging into OEM and clicking the

Enterprise tab pull-down in Figure 5-2. The Enterprise Summary window is then displayed with five
panes: Overview, Patch Recommendations, Inventory and Usage, Compliance Summary, and Least
Compliant Targets. Figure 5-7 shows that the Overview pane is open to the All Targets view with 273
targets being currently monitored. In the Status section, green indicates targets are up, red indicates
targets are down, yellow indicates targets with an unknown status, and black indicates targets under
blackout. The Overview pane also reports incidents, problems, and jobs. The Inventory and Usage
pane shows all hosts that are being monitored. By viewing these two panes, you will immediately
know whether instances are up or down, the status of jobs that were executed, and the ability to drill
deeper to get the details of given server or database instance or cluster database. This window is the
one that I want to see first thing in the morning so I know that everything being monitored is up and
running efficiently. It also has a Patch Recommendations section to make you aware of available
patches, and Compliance Summary and Least Compliant Targets sections to identify security policy
violations and targets that need special attention. With OEM 12c, a nice feature is the ability to group
common areas together. For instance, you can group all databases together into a group called
PROD_DB so the group can be monitored together to see if they are all running. The same can be
done for development databases (call them DEV_DB). A DBA usually configures things so the
PROD_DB group is more proactive in sending alerts, pages, or e-mails than the DEV_DB group.

FIGURE 5-7. OEM Enterprise Summary window in OEM 12c

While I used OEM 12c as the main focus of this chapter, I also include coverage of new products
such as Application Performance Monitoring (APM). OEM 13c, while recently available, doesn’t
support Linux prior to Release 6, and the overall screens and flow are very similar to those in 12c (I
stuck with what most people will be using to support both 12c and 11g as well as various releases of
Linux; you must use a 12.1.0.2+ repository with OEM 13c). For reference, I’ve included a
comparable OEM 13c Enterprise Summary screenshot in Figure 5-8.

FIGURE 5-8. OEM Enterprise Summary window in OEM 13c

We’ll look at a few other options from this screen later, such as Hosts and Job Activity, but I want
to focus on performance tuning first. For performance-related issues, you can click the value next to
Targets Monitored (upper-left side of Figure 5-7) and then click Database Instance under the
Databases tab. We’ll choose to monitor the PRODDB (Container Database) as displayed in Figure 5-
9. You can see in the Performance pane that we have three container databases: PROD, PDB$SEED,
and CDB$ROOT. You can also see the main Performance tab pull-down menu with many options we
will investigate in the coming sections including: Top Activity, SQL Performance Analyzer, Real-
Time ADDM, Access Advisor, Optimizer Statistics, AWR, and ASH Analytics. The menu can also
take you to the Database Replay (covered near the end of this chapter).

FIGURE 5-9. The Performance tab drop-down for PRODDB (Container Database)

Monitoring and Tuning Using the OEM Performance
Menu
You’ll find several tabs under the Database Instance Server or Cluster Database (depending on which
one you select). Clicking the Performance menu will show a list of helpful options shown in Figure 5-
9. In this section, I want to focus on those menu items that are most beneficial to quick performance
improvements. The most important when the system is in serious trouble is the Top Activity screen.
The Top Activity will show the SQL and Users waiting the most and overall system performance.
When the system is less busy, you might want to look into the SQL Performance Analyzer and tuning
queries with ADDM and Tuning SQL Tuning Sets.

 Performance Tab: Top Activity
The Top Activity Screen quickly shows how the system is running overall, where problems exist, and
what specific problems need to be fixed. Clicking Top Activity in the pull-down menu in Figure 5-9
will bring up the Top Activity screen displayed in Figure 5-10. The waits are shown in various
colors and also listed to the right of the graph. You can also go directly to a Wait Activity by clicking
the item you want to see in more detail. Also note that the Top Activity screen option is listed at the
bottom of most performance-related screens in OEM. When systems have serious issues, I spend a lot
of time on the Top Activity screen. Figure 5-10 shows a Top Activity screen with some serious
performance spikes, especially between 11:40 and 11:47 AM. You can move (click and drag) the
shaded rectangle on the graph to the area that you would like to focus in on (you can look back in time
to what happened before an issue occurred as well as after an issue happens). In the lower part of the
screen you will see the associated Top SQL statements (on the lower left) and the associated Top
Sessions (on the lower right). If you scroll down, you can instantly see the cost of each SQL statement

and how the statement adds up to the graph in the shaded rectangle area. You can instantly check the
boxes next to all of the Top SQL statements that you would like the Tuning Advisor to tune for you (or
at least make suggestions).

FIGURE 5-10. Top Activity screen

 Performance Tab: SQL | SQL Performance Analyzer
Clicking SQL Performance Analyzer Home in the pull-down menu in Figure 5-9 under Performance |
SQL | SQL Performance Analyzer Home will bring up the SPA screen displayed in Figure 5-11. The
SQL Performance Analyzer (SPA) gives a variety of options for tuning Oracle. You can use a Guided
Workflow, even comparing different releases for a SQL Tuning Set. You can compare the effect of
changing an initialization parameter, and you can even perform an Exadata simulation. Although I
can’t show all of the steps for each of these tasks, I’ll try to show a few of the key screens here.

FIGURE 5-11. SQL Performance Analyzer screen

Clicking the Guided Workflow option brings up a step-by-step way to compare two different SQL
Tuning Sets (Figure 5-12). This allows you to make changes to an environment, tune the SQL
statements, or test another change.

FIGURE 5-12. Guided Workflow screen

After completing all of the Guided Workflow steps, the SQL Performance Analyzer shows the
output comparing the SQL Tuning Sets before and after changes. Figure 5-13 shows the before and

after elapsed times.

FIGURE 5-13. SQL Performance Analyzer Task Report for a Guided Workflow

Instead of choosing the Guided Workflow option in the SPA, this time let’s choose the Upgrade
from 10.2 or higher releases option (see Figure 5-10) to compare upgrades from 10.2 or 11g to 12c.
Figure 5-14 shows one of the screens that appear for this comparison. You need to fill in the Task
Name, SQL Tuning Set, and two Database Link fields for a successful test.

FIGURE 5-14. SPA task comparing upgrades from 10.2 or 11g to 12c for a SQL Tuning Set

Once I complete the steps for the comparison, the SPA displays a detailed comparison similar to
the output shown in Figure 5-16.

FIGURE 5-16. SPA Task Report for an Exadata Simulation

In OEM 12c there is the ability to simulate Exadata. Clicking the Exadata Simulation option in the
SPA (see Figure 5-10) displays the Exadata Simulation screen (Figure 5-15).

FIGURE 5-15. Exadata Simulation screen

Once I enter all of the information and run the associated jobs for the Exadata Simulation, the SPA
displays a comparison of my current system to Exadata to see if it would be beneficial (Figure 5-16).
For my test, I tried something easy to see if even the most simple queries would show I needed
Exadata (when, in fact, I didn’t). Fortunately, the SPA indeed showed that Exadata would not be
beneficial, as all statements were unchanged—to which I give Oracle credit (I thought surely they
would try to talk me into Exadata!).

 Performance Tab: Real-Time ADDM
Clicking Real-Time ADDM in the pull-down menu in Figure 5-9 under Performance | Real-Time
ADDM will bring up the Real-Time ADDM Results screen displayed in Figure 5-17. There are also
other screens that you can click a button to get Real-Time ADDM as well. This shows performance
based on the last time ADDM was generated.

FIGURE 5-17. Real-Time ADDM Results screen

As stated earlier, Oracle gathers stats every hour on the hour for the AWR and runs an ADDM
report directly after that. However, if a problem occurs after the hour (perhaps at 3:01 PM as you see
in Figure 5-17), the ADDM report that ran at 3 pm doesn’t reveal the problem, and perhaps you really
don’t want to wait until 4 pm if the problem is severe. The answer is the ability to Run ADDM now.
You can start the Real-Time ADDM now by clicking Start. After the ADDM is complete, you’ll see
the screen in Figure 5-18 under the Progress tab showing it with a status of Finished.

FIGURE 5-18. Real-Time ADDM Results Finished screen

You can also run an ADDM Report (addmrpt.sql) in SQL*Plus to see these findings. In an effort
to increase performance, the ADDM analyzes a number of different database-related problems,
including:

 Memory-related issues such as shared pool latch contention, log buffer issues, or database
buffer cache–related problems

 CPU bottlenecks
 Disk I/O performance issues
 Database configuration problems
 Space-related issues, such as tablespaces running out of space
 Application and SQL tuning issues such as excessive parsing and excessive locking
 RAC-related issues such as global cache interconnect issues, lock manager issues, global

resource contention issues, and any other globally significant issues

TIP
Use the SQL Tuning Advisor only to tune SQL statements, not conditions such as row locks.

By clicking the Findings tab, the Findings for ADDM are displayed. This screen displays the
finding(s)/problem(s) as well as offering action(s) needed for fixing the problem or related SQL. In
the example in Figure 5-19, the issue has to do with SQL statements consuming significant database

time (the Priority is Medium).

FIGURE 5-19. Real-Time ADDM Results Findings screen

You can schedule the SQL Tuning Advisor (note that this is part of the SQL Tuning Pack) to
investigate the SQL in greater detail and get recommend changes in the problem SQL. Choosing
Performance in Figure 5-9, and clicking | SQL | SQL Tuning Advisor opens the SQL Tuning Advisor,
ready to tune any SQL in question and offer suggestions. In Figure 5-20, the recommendations for the
subpar SQL statements for a given SQL Tuning Set are identified by check marks. The worst SQL
(SQL ID = 9rk22atf5ng4p) seems like it will benefit from implementing an index.

FIGURE 5-20. SQL Tuning Advisor, SQL Tuning Recommendations

By selecting the radio button corresponding to the worst SQL text and then clicking View
Recommendations, you can see the SQL and the recommendations to enhance the SQL (Figure 5-21).
Implementing the index should help by 95.89 percent according to the recommendations. You can also
click the link in the rightmost column to compare the Explain Plans to see what is being changed and
what the benefit will be.

FIGURE 5-21. SQL Tuning Advisor recommends adding an index or running the Access Advisor to check indexes.

The Explain Plans comparison shows that the order of table access has been changed as well as
some of the joining methods. Creating the index would not require the SQL to perform full table
scans, as seen in Figure 5-22.

FIGURE 5-22. Explain Plans comparison

TIP
Compare Explain Plans is a great SQL Tuning Advisor tool built into OEM.

In Figure 5-23, it is evident from the Top Activity screen that the now-tuned SQL statement is no
longer causing the negative impact (performance spike) that was previously felt earlier in the day
(refer to Figure 5-17). The entire system is now running much better, with fewer users waiting in the
queue.

FIGURE 5-23. Top Activity screen—much better after tuning

 Performance Tab: SQL | Access Advisor
Within the Tuning Pack, you will find a product called SQL Access Advisor (SAA). SAA can be used
for tuning the entire workload (not just high-load SQL statements). Choose the option available from
the Performance menu (Figure 5-9). To access the screen, choose Performance | SQL | Access
Advisor, shown in Figure 5-24. SAA gives recommendations on how to improve performance of a
workload through indexes (bitmap, b-Tree, functional, and concatenated), materialized views/logs,
and a combination of these. SAA considers the cost of DML in terms of index maintenance and
storage when it recommends additional access structure. SAA can also be used during the
development phase to figure out what access structures are required before production deployment.
You can use SQL Tuning Sets as input to SAA. Please check the Oracle documentation for additional
information.

FIGURE 5-24. SQL Access Advisor screen

 Performance Tab: Manage Optimizer Statistics
Another option available from the Performance menu (Figure 5-9) is access to the Optimizer
Statistics Console screen, shown in Figure 5-25. To access the screen, choose Performance | SQL |
Optimizer Statistics. Keeping statistics up to date for dynamic tables can be a chore (worse if done
for static tables too—don’t do that). The Optimizer Statistics Console can help in this endeavor.
Many different gathering options for optimizer statistics can be specified from this screen, as well as
the scheduling and managing of specific jobs.

FIGURE 5-25. Optimizer Statistics Console screen

 Performance Tab: AWR | AWR Administration
You can access the Automatic Workload Repository (AWR) by choosing Performance | AWR | AWR
Administration. The Automatic Workload Repository screen includes information on all snapshots
and collection levels. (See Chapter 14 for more on AWR and how snapshots work.) In the example in
Figure 5-26, there are 372 snapshots with a retention of 15 days and an interval of 60 minutes.

FIGURE 5-26. Automatic Workload Repository screen

By clicking the Edit button, you can change the interval or retention period on the Edit Settings
screen, shown in Figure 5-27. You can also edit the collection level.

FIGURE 5-27. Automatic Workload Repository Edit Settings

In Figure 5-26 you can also click the Run Compare Periods Report button and then enter any
specific snapshot to begin and end with to generate some basic snapshot details, as shown in Figure
5-28 (like a very mini-Statspack).

FIGURE 5-28. AWR Run Compare Periods Report

Alternatively, you can run and display the full AWR Report by clicking the Run AWR Report
button (covered in detail in Chapter 14—see that chapter for full display sections). Once you have
completed the Begin Snapshot and End Snapshot fields, click the Generate Report button to generate
the report shown in Figure 5-29.

FIGURE 5-29. The AWR Report

 Performance Tab: ASH Analytics
You can access the Active Session History (ASH) Analytics by choosing Performance | ASH
Analytics (Figure 5-30). The best report, in my humble opinion, is the Automatic Workload
Repository (AWR) Report (covered above). The next best report is a mini-AWR report (as I call it)
or the Active Session History Report (ASH Report) found in the reporting sections of OEM. It shows
in a very quick way the key sections found in a Statspack or AWR Report. In 12c, you now have near
real-time ASH information from that report with ASH Analytics (Figure 5-30).

FIGURE 5-30. Viewing the ASH (Active Session History) Analytics

Some of the information in the ASH Report includes various Top Events and Load Profile, as in a
Statspack or AWR Report. While the details of this report are beyond the scope of this chapter, please
refer to Chapter 14 for tuning wait events and detailed information on the AWR Report, which
includes much of the same information that will help in understanding the ASH Report.

TIP
The Active Session History (ASH) Analytics is a new and simple way to find and diagnose
performance problems quickly.

Monitoring and Tuning Using the OEM Administration
Menu
You’ll find several tabs under the Database Instance Server or Cluster Database (depending on which
one you select). Clicking the Administration menu will show a list of helpful options (Initialization
Parameters, In-Memory Central, Storage, Resource Manager, and more). The scope of these options
is well beyond this chapter, but you can get an idea from the screen shown in Figure 5-31 that some
wonderful built-in tools are available to help the DBA work more effectively and efficiently. A
couple of these frequently used options are described in this section.

FIGURE 5-31. The Administration menu

 Database Administration Tab: Storage|Tablespaces
Choosing Administration | Storage | Tablespaces displays the Tablespaces screen, shown in Figure 5-
32. This screen lists all of the tablespaces for this database, including information on allocated and
used space, the type of tablespace, extent management, and segment management.

FIGURE 5-32. Tablespaces screen, accessed via Administration | Storage

By clicking a specific tablespace (USERS in this example), the View Tablespace screen in Figure
5-33 is displayed. This screen includes additional information, including the actual datafile(s)
underlying the tablespace. Also notice all the available pull-down menu actions. Some of these are
very powerful and huge time-savers.

FIGURE 5-33. View Tablespace screen for the USERS tablespace

Choosing Show Tablespace Contents from the Actions pull-down menu displays the screen shown
in Figure 5-34. This shows all of the segments that are contained in the given tablespace and is an
excellent way to view objects that correspond to a heavily accessed tablespace.

FIGURE 5-34. Show Tablespace Contents screen

Something more difficult to discover is the Extent Map. Clicking the arrow (>) next to Extent Map
(shown at the bottom of Figure 5-34) expands the Show Tablespace Contents screen to display a very
cool Extent Map, an example of which is shown in Figure 5-35. The Extent Map provides a graphical
view of all tablespaces, datafiles, segments, total data blocks, free data blocks, and percentage of
free blocks available in the tablespace’s current storage allocation. The tool gives you the option of
displaying all segments for a tablespace or all segments for a datafile. The Extent Map also provides
additional information for each segment, including average free space per block, chained rows, and
the last date that the object was analyzed.

FIGURE 5-35. Show Tablespace Contents screen with the Extent Map displayed

TIP
The Extent Map, which displays the information in a tablespace block by block in a graphical
manner, is a super-cool feature that’s hard to discover in OEM.

 Database Administration Tab: In-Memory Central
and Initialization Parameters
The Administration menu is useful for getting to many areas that are easier to change using OEM
instead of SQL. Items such as In-Memory Central (if you are using the In-Memory feature) and
Initialization Parameters (shown at the container database level) are included under the
Administration menu (Figure 5-36).

FIGURE 5-36. The Administration menu offers many useful options, including In-Memory Central.

 Database Administration Tab: All Initialization
Parameters
Choose Administration | Initialization Parameters to open the screen shown in Figure 5-37. You can
view and change the current initialization parameters from this screen. You can also group the
parameters by category or sort out the dynamic parameters. Other databases and/or instances can be
checked for any current values or recent changes.

FIGURE 5-37. Initialization Parameters screen, Current tab

Clicking the SPFile tab displays the contents (see more information in Chapter 4) if the SPFILE is
being used. Figure 5-38 shows an example of viewing the initialization parameters from the SPFILE;
it also shows the location.

FIGURE 5-38. Initialization Parameters screen, SPFile tab

 Database Administration Tab: Resource Manager
(Consumer Groups)
Another option available from the Administration menu is Resource Manager, which enables you to
monitor and tune using consumer groups. After choosing Administration | Resource Manager, click the
highlighted Consumer Groups link to display the Consumer Groups screen, as shown in Figure 5-39.
A system that includes users in AR (Accounts Receivable), CRM (Customer Relationship
Management), and BI (Business Intelligence) can be better visualized when services are set up for
each of them (now it’s easy to see who is using all of the resources). In Figure 5-39, you see a
Consumer Group BATCH_GROUP as the first listing.

FIGURE 5-39. Consumer Groups screen

TIP
If you take the time to set up services, you can use the Top Consumers screen to see quickly which
business areas are consuming the most resources.

Monitoring and Tuning Using the OEM Database or
Cluster Database Menu
The Oracle Database menu, shown in Figure 5-40, also has several administration options, notably
Logs (for accessing associated alert log and trace files, viewing alert log errors, and archiving and
purging alert logs), Provisioning, and Cloning.

FIGURE 5-40. Accessing logs and trace files from the Oracle Database menu

Database Tab: Job Activity
Scheduler Central contains all scheduled tasks. It also includes links for the Oracle Scheduler, Jobs,
and Automated Maintenance tasks. Choosing Oracle Database | Job Activity opens the Job Activity
screen, in which the job activity and all jobs are listed (Figure 5-41). It show the time that each job
will execute, as well as the target system on which the job will execute. There is also information
about the owner, status, and job type.

FIGURE 5-41. Job Activity screen

 Cluster Database Tab: Configuration|Database
Topology
The Configuration Topology screen (as shown in Figure 5-42) shows the topology for a 12c cluster
database. Notice that details are shown on the right part of the screen. (Clicking the database from the
graph would show details about the database, clicking the Listener from the graph would show details
about the listener, etc.) Something nice is the information about the node, which pops up when the
mouse rolls over one of the pictures in the graph.

FIGURE 5-42. Configuration Topology screen

Monitoring the Hosts
While the Top SQL is usually the problem, digging into other areas of the infrastructure can quickly
reveal issues. Choosing Targets (Figure 5-7) | Hosts displays all of the hosts out there. In the example
shown in Figure 5-43, five hosts are listed.

FIGURE 5-43. The Hosts screen

Clicking just one of the hosts (HQORADB02) displays all of the detailed information about that
host. This includes the IP address, the OS, the number of CPUs, the amount of memory, and the
available disk space. It also shows any Alerts or Policy violations as it did at the database or
instance level. Figure 5-44 shows that the host is currently up.

FIGURE 5-44. Viewing information about a host

By clicking the Host tab, hovering over the Monitoring tab from the drop-down menu, and then
clicking the Status History button, the complete availability of this host is displayed over a period of
time. In Figure 5-45, the host shown has been down 0 percent of the time.

FIGURE 5-45. Viewing information about host availability

Monitoring the Application Servers and Web
Applications
While database and host monitoring was crucial to the performance of client/server systems in the
1990s, the Internet and web applications have driven performance issues at the application-server
level over the last decade. Finding issues at the application-server level (usually where the actual
code is running) is critical to good performance. OEM offers several ways to monitor all application
servers. The main way is by choosing it from the Targets in Figure 5-7 as we did for Hosts. The
application server name as well as CPU and memory usage is displayed. As at the database and host
levels, alerts and policy violations are also listed. One of the nicest aspects of OEM is that you can
monitor a piece of the infrastructure or investigate a specific program that is causing performance
issues.

In this section, viewing the web application itself will be discussed. Choosing Targets | Web
Applications displays all of the information about a given web application. OEM shows whether the
application is up or down, how long it’s been up, its availability, related topology, alerts, and a
variety of performance information. OEM also tests the performance of a given web application by

allowing beacons to run at various times to measure its performance. These beacons are
representative queries of what a user may be doing on a regular basis. Now the DBA knows when an
application is slow because he or she will also be running a query that is similar to the user’s query
on a regular basis.

Oracle Cloud has added an even better tool for monitoring web applications and specific customer
web pages. When you are running Oracle Cloud Services, you can look at the application
performance in much more detail using the new Application Performance Monitoring (APM) tool.
Figure 5-46 shows the topology of a RideShare application with response times for different tiers,
including the AppServer and Database tiers.

FIGURE 5-46. Application Performance Monitoring tool application server monitoring

You can also click a specific application being used by customers and see the breakdown of time
spent loading the page, page views in less than a minute, errors, and other details (Figure 5-47).
Thank you to Oracle for providing Figures 5-47 and 5-48 of this new product (late 2016).

FIGURE 5-47. Application Performance Monitoring tool customer performance

FIGURE 5-48. Database Replay (the capture and replay tasks)

TIP
You can use Enterprise Manager to monitor web servers and web applications. In Oracle Cloud
12c, Oracle provides a new tool for DevOps called Application Performance Monitoring (APM) to
help monitor customer web pages in much greater detail.

Real Application Testing (Database Replay)
Real Application Testing, which captures the database workload on one system (usually your current
system) and replays it later on a different system (your future system), is a great tool. It is under the
Performance tab | Database Replay in Figure 5-9. This is helpful for testing upgrades to 12c—capture

an 11g or 10g workload and then test it against 12c. I recommend taking a full Oracle class on this to
understand it fully. The Database Replay option is shown in Figure 5-48.

Here are the steps in brief:

1. Capture the workload on a database.
2. Prepare the test database.
3. Prepare for replay.
4. Replay the workload on the test database.
5. Compare your results.

You can compare your results using a few different options. You can run a Synchronized Replay
that replays everything with exact concurrency and commits with minimal data divergence. You can
also perform an Unsynchronized Replay, which replays without the same concurrency or commits.
Also, data divergence can be large depending on the load test performed. A report is created based
on Data Divergence, Error Divergence, and Performance Divergence. The detail for the Capture task
is shown in Figure 5-49.

FIGURE 5-49. Database Replay with Capture details

TIP
A great way to test how your system will perform on new hardware or with a new version of Oracle
is to use Oracle’s Real Application Testing (Database Replay).

Summary

With OEM, DBAs are able to manage more databases and also manage systems more effectively
using this versatile tool, which now extends into cloud computing, grid computing, and Exadata. This
comprehensive knowledge of system health and performance also enables businesses to plan and
trend out usage for future growth. Enterprise Manager is the most powerful Oracle utility available.
It’s not just for beginners; the better you are, the better this tool is. Keep in mind that OEM 13c is now
available (shown in Figure 5-8), but it doesn’t support Linux prior to Release 6 and requires use of a
12.1.0.2+ repository, which is why the functionally similar OEM 12c was the main focus of this
chapter.

Tips Review
 In Oracle Enterprise Manager 12c, the online help is spectacular. Learn something every day

by reading or searching for topics in the new Enterprise Manager Online Help button window.
 Use the SQL Tuning Advisor only to tune SQL statements, not conditions such as row locks.
 Compare Explain Plan is a great SQL Tuning Advisor tool built into OEM.
 The Extent Map, which displays the information in a tablespace block by block in a graphical

manner, is a super-cool feature that’s hard to discover in OEM.
 If you take the time to set up Services, you can use the Top Consumers screen to see quickly

which business areas are consuming the most resources.
 You can use Enterprise Manager to monitor web servers and web applications. In Oracle

Cloud 12c, Oracle provides a new tool for DevOps called Application Performance
Monitoring (APM) to help monitor customer web pages in much greater detail.

 The Active Session History (ASH) report is a new and simple report that you can use to find
and diagnose performance problems quickly.

 A great way to test how your system will perform on new hardware or with a new version of
Oracle is to use Oracle’s Real Application Testing (Database Replay).

References
Oracle Enterprise Manager Cloud Control Documentation (Oracle Corporation).
Using Oracle Application Performance Monitoring Cloud Service (Oracle Corporation).
Using Clusterware Administration and Deployment Guide (Oracle Corporation).
Rich Niemiec, Tuning the Oracle Grid (IOUG).
Rich Niemiec, “Tuning the Oracle Grid” (Oracle Open World).
Rich Niemiec, “Exadata 101” (Oracle Open World).
Oracle Learning Library
Tuning Pack 2.0 (Oracle White Paper).

Thanks to Asad Mohammed, who did most of the update for the chapter to 12c. Thanks to Steve
Lemme for the screenshots for APM. Thanks to Anil Khilani, Prabhaker Gongloor (GP), Valerie K.
Kane, and David LeRoy of Oracle, who contributed a couple of the screenshots and a bit of the

verbiage to this chapter previously. I want to also thank Ken Morse of Oracle, who contributed the
majority of the screenshots and verbiage in the first tuning book on SQL Analyze, Oracle Expert, and
Tuning Pack 2.0. Ken was a tremendous help in completing this chapter the first time around, while
Valerie and David were instrumental the second time around.

F

CHAPTER
6

Using EXPLAIN, TRACE, and SQL Plan
Management (Developer and DBA)

inding and fixing problem queries has a lot to do with using the tools that are available.
Different tools need to be used for different situations. The tools covered in this chapter are
Oracle’s provided utilities: SQL TRACE, TKPROF, EXPLAIN PLAN, DBMS_XPLAN, and
STORED OUTLINES (previously used, and to convert to what is now used: SQL Plan

Baselines/plan stability). These tools were enhanced, including the addition of the
DBMS_MONITOR and DBMS_SESSION packages and TRCSESS, in 10g. The SQL tracing options
have been centralized and extended using the DBMS_MONITOR package. Starting with Oracle 11g,
SQL PLAN MANAGEMENT (SPM) has been added. STORED OUTLINES still work but are
deprecated (discouraged) and will probably be gone for good in a future release. With 12c, Adaptive
SQL Plan Management has been added.

The tips covered in this chapter include the following:

 Simple steps for using SQL TRACE/TKPROF
 Exploring sections of the SQL TRACE output
 Tracing a more complex query and what to look for to help performance
 Using DBMS_MONITOR
 Using TRCSESS
 Using EXPLAIN PLAN
 Reading EXPLAIN PLAN—top to bottom or bottom to top?
 Using DBMS_XPLAN (a much better way)
 Tracing in developer tools
 Important columns in the PLAN_TABLE table
 Tracing for errors and the undocumented initialization parameters
 Using SQL PLAN MANAGEMENT (SPM)
 Converting from STORED OUTLINES to SQL PLAN MANAGEMENT

 Using adaptive plans and SPM, a 12c new feature
 Using Adaptive SQL Plan Management, a 12c new feature

The Oracle SQL TRACE Utility
You use the Oracle SQL TRACE utility to measure timing statistics for a given query, a batch process,
and an entire system. SQL TRACE is deprecated (discouraged and on the way out) in 11g, but it still
works and is still used by many developers. It has been replaced with DBMS_MONITOR and
DBMS_SESSION. I’m keeping this section because so many people still use SQL TRACE, but please
start using the newer packages. SQL TRACE is a thorough method for finding potential bottlenecks on
the system. SQL TRACE has the following functionality:

 SQL TRACE runs the query and generates statistics about an Oracle query (or series of
queries) that is executed.

 SQL TRACE helps developers analyze every section of a query.

Generally, the Oracle SQL TRACE utility records all database activity (particularly queries) in a
trace file. This trace file is very hard to read and should be changed into a readable format using the
TKPROF utility (as described in the following section).

 Simple Steps for SQL TRACE with a Simple Query
The steps for setting up and running Oracle’s SQL TRACE utility are listed here:

1. Set the following init.ora parameters (SPFILE users will need to use the ALTER SYSTEM
command to change these parameters):
TIMED_STATISTICS = TRUE
MAX_DUMP_FILE_SIZE = unlimited

The TIMED_STATISTICS parameter allows tracing to occur on the system. The
MAX_DUMP_FILE_SIZE specifies the maximum file size in “minimum physical block size at
device level” blocks. This is the largest size that the file will grow to; any further data to be
recorded will be ignored, will not be written to the trace file, and might be missed. Both of
these parameters may also be set via an ALTER SYSTEM command (for the entire system)
and take effect when the next user logs in, but they will not affect those currently logged in to
the system. You may also set the TIMED_STATISTICS and MAX_DUMP_FILE_SIZE
parameters at the session level using the ALTER SESSION command (for an individual
session). The output will be stored in the USER_DUMP_DEST (for Oracle 10.2 and earlier
systems). After 11.1, the DIAGNOSTIC_DEST parameter is used instead, and its value is set
automatically by Oracle. To determine the location of the files, run the following script:

NOTE
In addition to VALUE, you can also specify the instance (INST_ID) and container ID (CON_ID)
for pluggable databases.

2. Enable SQL TRACE for a SQL*Plus session (this starts tracing for an individual session):

There are actually several different ways of starting and stopping trace sessions, which will
be discussed later in this chapter.

3. Run the query to be traced:

4. Disable SQL TRACE for the SQL*Plus session:

You do not actually have to stop the trace to examine the trace file, but it is a good idea. After
running SQL TRACE, your output filename will look something like the following (the process
ID is usually included in the trace filename):

TIP
Setting TIMED_STATISTICS = TRUE in the initialization file enables the collection of time
statistics.

Finding the generated trace file may be the trickiest part of this whole process. The generated file
should be named for the process ID of the trace session and include that number in the filename.
Looking for the date and time of the file makes it easy to find if you are the only one tracing
something. In the previous example, 19554 is the process ID of the session being traced. The trace
filenames may vary between ora% and ora_%, depending on the operating system on which the trace
was performed, and the file should appear in the location specified by running the script listed in Step
1. Another way of finding the file is to put a marker inside the file output (such as issuing a query like
SELECT ‘Rich1’ FROM DUAL;), and then use a file search utility like grep in Linux or Windows

Search to find the text and the file that contains it.
You can use the following query, running from the same session, to obtain the number included in

the trace filename (assuming you can access the V$ views):

NOTE
Don’t forget to grant SELECT on V_$PROCESS, V_$SESSION, and V_$MYSTAT to the user if not
already granted.

Run TKPROF at the operating system prompt to convert the trace file into a readable format. The
following command creates the file rich2.prf in the current directory from the ora_19554.trc
trace file and also logs in to the database as system/manager to get the EXPLAIN PLAN output:

The TKPROF utility translates the TRACE file generated by the SQL TRACE facility to a
readable format. You can run TKPROF against a TRACE file that you have previously created, or you
can run it while the program that is creating the TRACE file is still running. Table 6-1 lists options
for TKPROF.

TABLE 6-1. Command-Line Options for TKPROF

The syntax for TKPROF is as follows:

The following are some quick examples using the options described in Table 6-1.
Run TKPROF and list only the top five CPU (fetch + execute + parse) results:

Run TKPROF and omit all recursive statements:

Run TKPROF and create a file that shows your TRACE session:

TIP
The TKPROF utility puts traced output into a readable format. Without running TKPROF, reading
the output of a TRACE would be difficult. By specifying explain = username/password (as
shown in the accompanying examples), you are able to get the EXPLAIN execution path, in
addition to the execution statistics of the query.

TIP
Run TKPROF from the command line without any parameter to get a list of all the parameters.

Now let’s run a quick example and see the output:

Here’s the output:

Here is the execution plan (no index used):

The preceding output shows 142 disk reads (physical reads) and 430 total reads (query + current).
The number of memory reads is the total reads less the disk reads, or 288 memory reads (430 – 142).
Having such a high number of disk reads compared to query reads is certainly a potential problem
unless you are running a data warehouse or queries that often do require full table scans. The
execution path shows a full table scan, confirming that you may have a potential problem.

TIP
A traced query with a large number of physical reads may indicate a missing index. The DISK
column indicates the physical reads (usually when an index is not used), and the QUERY column
added to the current column is the total number of block reads (the physical reads are included in
this number). A query with a large number of query reads and a low number of disk reads may
indicate the use of an index, but if the query reads are overly high, it could indicate a bad index or
bad join order of tables. A query with a large number of current reads usually indicates a large
DML (UPDATE, INSERT, DELETE) query.

The next listing shows what happens when you rerun the query (after restarting the system) to be

traced, but now using an index on the OWNER column:

The following listing shows the output of the file rich2.prf. Often you’ll see zero (0) disk reads
for queries that have frequently accessed data. The first time a query is run, there will always be disk
reads.

Note that the number of total reads went from 430 to 148 by using an index. The following listing
(abbreviated) shows the execution plan (index used):

 The Sections of a TRACE Output
The TRACE utility has multiple sections, including the SQL statement, statistics, information, and
EXPLAIN PLAN. Each of these is discussed in the following text sections.

The SQL Statement
The first section of a TKPROF statement (yes, still works in 12.2) is the SQL statement. This
statement will be exactly the same as the executed statement. If any hints or comments were in the
statement, they are retained in this output. This can be helpful when you are reviewing the output from
multiple sessions. If you find a statement that is causing problems, you can search for the exact
statement. Remember, some of the statements from Oracle Forms are generated dynamically, so parts
of the query (particularly WHERE clause predicates) may be displayed as bind variables (:1) and not
actual text.

The Statistics Section
The statistics section contains all the statistics for this SQL statement and all the recursive SQL
statements generated to satisfy this statement. This section has eight columns, the first being the type
of call to the database. There are three types of calls: Parse, Execute, and Fetch. Each call type
generates a separate line of statistics. The Parse is where the SQL statement itself is put into memory
(library cache of the shared pool), or it can also reuse an exact cursor. The Execute is where the
statement is actually executed, and the Fetch is where the data is retrieved. The other seven columns
are the statistics for each type of call. Table 6-2 explains each column and its definition.

TABLE 6-2. Statistics for Each Type of Call

The Information Section
The information section contains information about the number of library cache misses from parse
and execute calls. If the number of misses is high, you may have a problem with the size of the shared
pool. You should check the hit ratio and the reload rate of the library cache. This section also shows
the username of the last user to parse this statement. You’ll also find information about the current
optimizer mode setting.

The Row Source Operation Section

The row source operation section lists the number of rows cross-referenced with the operation that
used the rows.

TIP
The trace file is a point-in-time picture of what happened on the system at the time that the trace
was run (includes the row source operation). In contrast, the EXPLAIN PLAN (detailed next) is
generated when the TKPROF listing is created, which could be some time later. The row source
operation listing is generated as part of the trace file and can be used to see if the database
objects have changed since the trace was performed.

The EXPLAIN PLAN (Execution Plan)
I find this section of the TKPROF output to be the most useful. The first column of this section is the
number of rows processed by each line of the execution plan. Here, you are able to see how slow a
statement is. If the total number of rows in the Fetch statistics is low compared to the number of rows
being processed by each line of the EXPLAIN PLAN, you may want to review the statement. This
plan is generated when you use the EXPLAIN OPTION of the TKPROF command and is the plan that
would be generated if the SQL was executed at the time that the TKPROF command was run. If you
want the plan that was generated at the time that SQL was originally run, then use the row source
operation plan command.

It is also possible that only one line of the execution plan is processing a large number of rows
compared to the rest of the statement. This situation can be caused by full table scans or the use of a
bad index.

Table 6-3 lists some of the problems to look for in the TKPROF output.

TABLE 6-3. Problems to Look for in the TKPROF Output

 Digging into the TKPROF Output
When you compare the TKPROF output to the actual object’s physical characteristics, you start to see
how Oracle really works. Consider a CUSTOMER table with over 100,000 records contained in
over 1000 blocks. By querying DBA_TABLES and DBA_EXTENTS, you can see the blocks that are
both allocated (1536) and being used (1382), as shown in the following listing:

If you look at the TKPROF output of a query that counts all records in the CUSTOMER table
(shown in the next listing), you see that it performs a full table scan because this is the first access
after a startup. Also note that the number of blocks accessed (mostly physical disk access) is slightly
higher than the total number of blocks in the physical table (seen in the previous queries). All but 4 of
the 1387 query blocks read are disk reads. (Disk reads are a subset of the query, which is the sum of
disk and memory reads in consistent mode.)

If you run this query a second time (shown in the following listing), a big change occurs. Looking
at the TKPROF output of a query that counts all records in the CUSTOMER table, this time you see
that it still performs a full table scan, but now there are many fewer disk reads because most of the
blocks needed are already cached in memory. Most of the 1387 query blocks read are memory reads.
(Only 121 are disk reads.)

TIP
Full table scans are one of the first things Oracle pushes out of memory (becoming least recently
used as soon as you run them) because they are so inefficient, generally using a lot of memory.

Using DBMS_MONITOR
In a multitier environment with connection pooling or a shared server, a session can span multiple
processes and even multiple instances. DBMS_MONITOR is a built-in package introduced in Oracle
10g that allows any user’s session to be traced from client machine to middle tier to the backend
database. This makes it easier to identify the specific user who is creating a large workload.
DBMS_MONITOR replaces trace tools such as DBMS_SUPPORT. The DBA role is required to use
DBMS_MONITOR.

End-to-end application tracing can be based on the following:

 Session Based on session ID (SID) and serial number on the local instance.

 Client identifier Allows trace to be set across multiple sessions. Specifies the end user based
on the logon ID. Set this using the DBMS_SESSION.SET_IDENTIFIER procedure.

 Instance Specifies a given instance based on the instance name.

 Service name Specifies a group of related applications. Set using the
DBMS_SERVICE.CREATE_SERVICE procedure (which creates a DB service).

 Module name Set by developers in their application code using procedure

DBMS_APPLICATION_INFO.SET_MODULE. This name is used to represent the module or
code being executed.

 Action name Set by developers in their application code using procedure
DBMS_APPLICATION_INFO.SET_ACTION. This name is used to represent the action being
performed by the module.

End-to-end application tracing can generate the following details:

 Waits If TRUE, then wait information is written to the trace file.

 Binds If TRUE, then bind information is written to the trace file.

 Instance name The name of the instance being traced if this parameter is set.

 Plan stat (new in 11g) Frequency that row source statistics are written to trace file (possible
values include NEVER, FIRST_EXECUTION [default], or ALL_EXECUTIONS).

Service name, module name, and action name are associated hierarchically; you can’t specify an
action name without specifying the module name and the service name, but you can specify only the
service name, or only the service name and module name.

Oracle 11g introduced an important parameter called plan stat. If you want to guarantee that a row
source plan is present in the trace file for each SQL statement, then use a value of
ALL_EXECUTIONS for the parameter.

TIP
Using a value of ALL_EXECUTIONS for the PLAN_STAT ensures that information regarding the
execution plans is always contained in the trace file.

 Setting Trace Based on Session ID and Serial
Number
To set the trace based on session ID and serial number, first determine the SID and serial number of
the session you want to trace:

To enable the trace using DBMS_MONITOR:

The third parameter is for waits (default is TRUE), and the fourth parameter is for bind variables
(default is FALSE).

To turn off the trace:

To trace the current session, set the SID and SERIAL# to NULL:

(or exit the session).

 Setting Trace Based on Client Identifier
To set the trace based on a client identifier as the user, first set the identifier for the current session by
running the following:

To verify the client identifier:

Now you can set the trace for this client identifier:

The second parameter is for waits (default is TRUE), and the third parameter is for bind variables
(default is FALSE). The benefit of using CLIENT_ID traces is that tracing is enabled for all instances
and is persistent across restarts. Whatever shared process or session ID the client with the identifier
bryan id uses, this user’s activities will be written to one or more trace files. For a multitier
environment, the connection between the end client and database is nonstatic; that is, the end client
makes a request and can be routed to different database sessions from the middle tier. In older
versions, you had no way to keep track of clients across many database sessions, whereas now you
can use end-to-end tracing to get the CLIENT_IDENTIFIER attribute. This column can also be found
in V$SESSION.

To disable this client identifier trace:

 Setting Trace for the Service Name/Module
Name/Action Name
In order to use the action name, you must include the module name and the service name. In order to
use the module name, the service name must be present. Tracing is enabled for a given combination of
service name, module name, and action name globally for a database unless an instance name is
specified for a procedure. The service name is determined by the connect string used to connect to a
service.

An Oracle database is represented to clients as a service; that is, the database performs work on
behalf of clients. A database can have one or more services associated with it. For example, you
could have one database with two different services for web clients: book.us.acme.com for clients
making book purchases and soft.us.acme.com for clients making software purchases. In this example,
the database name is SALES.ACME.COM, so the name isn’t even based on the database name. The
service name is specified by the SERVICE_NAMES parameter in the initialization parameter file. A

default service name is created automatically for the database with the same name as the global
database name, a name comprising the database name (DB_NAME parameter) and the domain name
(DB_DOMAIN parameter).

To enable tracing for a service name (assuming the service ebk2 has been created):

This traces all sessions that connect to the database using a service with the name of ebk2.
To enable tracing for a combination of service, module, and action:

To disable tracing in the preceding code, use the procedure
SERV_MOD_ACT_TRACE_DISABLE, as shown here:

To trace for the entire database or instance (not recommended):

TIP
When using DBMS_MONITOR, disable tracing when you are done; otherwise, every session that
meets the criteria specified will be traced.

 Enabled Tracing Views
DBA_ENABLED_TRACES and DBA_ENABLED_AGGREGATIONS are the views to look at to
see what enabled tracing and statistics gathering is in place. You can use these views to make sure all
the tracing options have been disabled. The following example shows the output from the
DBA_ENABLED_TRACES view:

 TRCSESS Multiple Trace Files into One File
The TRCSESS utility allows trace data to be selectively extracted from multiple trace files and saved
into a single trace file based on criteria such as session ID or module name. This command-line
utility is especially useful in connection pooling and shared server configurations, where each user
request could end up in a separate trace file. TRCSESS lets you obtain consolidated trace information
pertaining to a single user session.

This consolidated trace file can be created according to several criteria:

 Session ID
 Client ID
 Service name
 Action name
 Module name

The command syntax for TRCSESS is as follows:

Example 1
This is from one of the examples in the earlier section “Using DBMS_MONITOR,” where
SERVICE_NAME = EBK2, MODULE= SALARY_UPDATE, and ACTION = INSERT_ITEM. Go to
the DIAGNOSTIC_DEST directory or ADR_HOME, the location is <DIAGNOSTIC_DEST
dir>/rdbms/DB_NAME/SID/trace, and run the following command:

This searches all the trace files that meet the preceding criteria and creates a consolidated trace
file named combo.trc.

Now TKPROF can be run against combo.trc:

Example 2
Set the client ID:

Enable tracing for the client ID:

Trace by this client ID, and then issue this command (from the directory as before):

TRCSESS checks all the trace files for the specified client ID. Now TKPROF can be run against
combo2.trc (the combined trace file).

Example 3
In the first case, all the trace files in the current directory are used as input, and a single trace file
(combo3.trc) is created, with all session=17.1988 trace information. (Note that 17.1988 is the
<SID>.<Serial#>.)

In the second case, only the two trace files listed are used as input and a single trace file
(combo4.trc) is created, with all session=17.1988 trace information from the two trace files listed.

Using EXPLAIN PLAN Alone
The EXPLAIN PLAN command allows developers to view the query execution plan that the Oracle
optimizer uses to execute a SQL statement. This command is very helpful in improving the
performance of SQL statements because it does not actually execute the SQL statement—it only
outlines the plan and inserts this execution plan in an Oracle table. Prior to using the EXPLAIN
PLAN command, a file called utlxplan.sql (located in the same directory as catalog.sql,
typically ORACLE_HOME/rdbms/admin) must be executed under the Oracle account that will be
executing the EXPLAIN PLAN command.

The script creates a table called PLAN_TABLE that the EXPLAIN PLAN command uses to insert
the query execution plan in the form of records. This table can then be queried and viewed to
determine if the SQL statement needs to be modified to force a different execution plan. Oracle
supplies queries to use against the PLAN_TABLE table, too: utlxpls.sql and utlxplp.sql. Either
will work, but utlxplp.sql is geared toward parallel queries. An EXPLAIN PLAN example is
shown next (executed in SQL*Plus).
Q. Why use EXPLAIN without TRACE?
A. The statement is not executed; it only shows what will happen if the statement is executed.
Q. When do you use EXPLAIN without TRACE?
A. When the query will take an exceptionally long time to run.

The procedures for running TRACE vs. EXPLAIN are demonstrated here:

Q. How do I use EXPLAIN by itself?
A. Follow these steps:

1. Find the script; it is usually in the ORACLE_HOME/rdbms/admin directory:
utlxplan.sql

2. Execute the script utlxplan.sql in SQL*Plus:
@utlxplan (run this as the user who will be running the EXPLAIN plan)

This script creates the PLAN_TABLE for the user executing the script. You can create your
own PLAN_TABLE, but use Oracle’s syntax—or else!

3. Run EXPLAIN PLAN for the query to be optimized (the SQL statement is placed after the FOR
clause of the EXPLAIN PLAN statement):

4. Optionally, you can also run EXPLAIN PLAN for the query to be optimized using a tag for the
statement:

TIP
Use the SET STATEMENT_ID = ‘your_identifier’ when the PLAN_TABLE will be populated by
many different developers. I rarely use the SET STATEMENT_ID statement. Instead, I explain a
query, look at the output, and then delete from the PLAN_TABLE table. I continue to do this
(making changes to the query) until I see an execution plan that I think is favorable. I then run the
query to see if performance has improved. If multiple developers/DBAs are using the same
PLAN_TABLE, the SET STATEMENT_ID (case sensitive) is essential to identifying a statement.

5. Select the output from the PLAN_TABLE:

TIP
Use EXPLAIN instead of TRACE so you don’t have to wait for the query to run. EXPLAIN shows
the path of a query without actually running the query. Use TRACE only for multiquery batch jobs
to find out which of the many queries in the batch job are slow.

TIP
You can use the utlxpls.sql and utlxplp.sql queries provided by Oracle to query the plan
table without having to write your own query and without having to format the output.

 An Additional EXPLAIN Example for a Simple
Query
This section walks you through a simple process of running a query and then checking the EXPLAIN
PLAN for the information about how the query will be processed.

1. Run the query with the EXPLAIN syntax embedded prior to the query:

2. Retrieve the output of EXPLAIN by querying the PLAN_TABLE.
To retrieve the information for viewing, you must execute a SQL statement. Two scripts
provided in the Oracle documentation are displayed in Steps 2 and 3, along with the results of
each based on the previous EXPLAIN PLAN command. Note that this example varies from the
last example. The CUSTOMER_NUMBER column is an indexed number field, which, in the
second example, is suppressed because of a datatype mismatch (111 is in quotes, forcing a
TO_CHAR operation). In the first example, I treated the CUSTOMER_NUMBER column
correctly as a number field (111 is not in quotes). At times, the optimizer is smart enough not
to do this to you, but when you use Pro*C or other similar coding, the optimizer may not be
able to translate this for you.

Alternatively, you could just run the utlxpls.sql script.

3. Retrieve more intuitive and easy-to-read output for EXPLAIN:

Here is the output:

 EXPLAIN PLAN—Read It Top to Bottom or
Bottom to Top?
Whether you should read from top to bottom or bottom to top depends on how you write the query that
retrieves the information from the PLAN_TABLE table. This is probably why many people disagree
about which way to read the result. (All methods may be correct.) The following listing shows the
order of execution based on the query that retrieves the information. In this example, the output is read
top to bottom, with one caveat: you must read it from the innermost to the outermost. This listing
shows a method that should clear up any questions:

Reading the EXPLAIN PLAN
Using the previous EXPLAIN PLAN, I will elucidate the steps. The numbers in the left column in
Table 6-4 identify each step. They are listed in the order in which they are executed.

TABLE 6-4. Reading the EXPLAIN PLAN

TIP
Whether the EXPLAIN PLAN is read from top to bottom or from bottom to top depends entirely on
the query used to select information from the PLAN_TABLE. Both methods of reading the query
may be correct, given that the query selecting the information is correctly structured.

Setting AUTOTRACE ON
There is also an easier method available for generating an EXPLAIN PLAN and statistics about the
performance of a query with SQL*Plus. The main difference between AUTOTRACE and EXPLAIN
PLAN is that AUTOTRACE actually executes the query (in the way TRACE does) and automatically
queries the plan table, whereas EXPLAIN PLAN does neither. The AUTOTRACE command
generates similar information, as shown in the next listing. To use AUTOTRACE, the user must
possess the PLUSTRACE role (by running plustrce.sql, which is usually located in the
ORACLE_HOME/sqlplus/admin directory).

The output is as follows:

The AUTOTRACE option provides an EXPLAIN PLAN and statistics for a query. AUTOTRACE
provides many of the TRACE and TKPROF statistics such as disk reads (physical reads) and total
reads (consistent reads + db block gets).

TIP
If the error “Unable to verify plan table format or existence” occurs when enabling AUTOTRACE,
you must create a plan table using the utlxplan.sql script.

CAUTION
AUTOTRACE may fail when querying system views because the user may not have permission to
view underlying objects.

Table 6-5 shows other AUTOTRACE options.

TABLE 6-5. AUTOTRACE Options

EXPLAIN PLAN When Using Partitions
Table partitions yield different outputs for their EXPLAIN PLANs (as shown in the following listing).
Here, I’ve created a table with three partitions and a partitioned index. Broadly speaking, partitions
are tables stored in multiple places in the database. For more information on partitioning tables, refer
to Chapter 3.

I now generate an EXPLAIN PLAN that forces a full table scan to access the first two partitions:

When selecting from the plan table, you must select the additional columns PARTITION_START
(starting partition) and PARTITION_STOP (ending partition). For a full table scan, all partitions will
be accessed:

The output (for the full table scan) is shown here:

The preceding example shows that a full table scan on the DEPT1 table is performed. All three
partitions are scanned. The starting partition is 1, and the ending partition is 3.

Next, an EXPLAIN PLAN is generated in the following listing for an index range scan of partition
2 only (ensure that you delete from the plan table to clear it):

Now I generate an EXPLAIN PLAN for an index range scan accessing only the second partition:

The output (for the index range scan) is shown here:

This output shows that the only partition of the table or index that is accessed is the second
partition. This is because the value for DEPTNO = 15 is within the second partition of the DEPT1
table. The DEPTNO column is also indexed, and this value is also within the second partition of the
index.

TIP
Partitions can also be viewed by the EXPLAIN PLAN by accessing the columns PARTITION_START
and PARTITION_STOP in the PLAN_TABLE table.

Finding High Disk and/or Memory Reads Without Using TRACE
Is there another method for retrieving problem disk and memory read information without tracing
everything? Yes! By using V$SQLAREA, you can find the problem queries on your system. This next
listing shows how to find the problem queries. In this query, you are searching for queries where the

disk reads are greater than 10,000 (missing or suppressed index potentials). If your system is much
larger, you may need to set this number higher.

This output suggests that there are two problem queries causing heavy disk reads. The first has the
index on ORDERID suppressed by the SUBSTR function; the second shows that there is a missing
index on CITY.

In the query in the following listing, you are searching for queries where the memory reads are
greater than 200,000 (over-indexed query potentials). If your system is much larger, you may need to
set this number higher.

The output suggests that one problem query is causing substantially heavy memory reads (300,219
blocks of data read into memory). The index on DIVISION appears to have a cardinality of 1 because
this table has only a single division. What’s happening here is that the entire index is being read and
then the entire table is being read. The index should be suppressed for this statement to improve
performance (and perhaps should be removed permanently if additional divisions will not be added).

TIP
Accessing the V$SQLAREA table can give statistics that are often found when tracing a query. See
Chapter 12 for additional information on accessing V$SQLAREA.

 Tracing/Explaining Problem Queries in Developer
Products
Although you can issue the ALTER SESSION SET SQL_TRACE TRUE command on the SQL*Plus
command line to TRACE SQL statements, doing this is tough when it comes to using developer
products. One drawback to this option is that you are not able to trace a form or report; you need to
cut the code out of the form or report and run it from SQL*Plus. This process can be very time-
consuming if you do not know which statements you need to trace.

There is another way to create a trace of the execution of a form. If you are using Forms (versions
6i, 10g, and 11g), you can include statistics = yes on the command line. This way, you are able
to trace individual forms. Later versions of Oracle Forms and Oracle Reports (all part of Fusion
Middleware) allow tracing from inside a form or report. Please refer to the Forms and/or Reports
(Fusion Middleware) documentation for an explanation of how to use these options. Oracle
Applications often has a menu item to do this as well. You could also use DBMS_MONITOR to trace
these products. Lastly, some methods for tracing PL/SQL programs are available:
DBMS_PROFILER, DBMS_TRACE, and DBMS_HPROF.

TIP
You can also use TRACE within the Fusion Middleware (Developer) products. You simply need to
set statistics = yes on the command line for some products, or you may embed the tracing
within an actual trigger to turn tracing on and off.

 Important Columns in the PLAN_TABLE Table
The descriptions for some of the more important columns available in the PLAN_TABLE table are as
follows:

 STATEMENT_ID The value of the option STATEMENT_ID parameter specified in the
EXPLAIN PLAN statement.

 TIMESTAMP The date and time when the EXPLAIN PLAN statement was issued.

 REMARKS Any comment (up to 80 bytes) you wish to associate with each step of the
EXPLAIN PLAN. If you need to add or change a remark on any row of the PLAN_TABLE
table, use the UPDATE statement to modify the rows of the PLAN_TABLE table.

 OPERATION The name of the internal operation performed in this step. In the first row
generated for a statement, the column contains one of four values: DELETE, INSERT,
SELECT, or UPDATE, depending on the type of statement.

 OPTIONS A variation on the operation described in the OPERATION column. See Chapter 7

of Oracle Database SQL Tuning Guide 12c for information on the contents of this column.

TIP
The OPERATION and OPTIONS columns of the PLAN_TABLE are the most important columns for
tuning a query. The OPERATION column shows the actual operation performed (including type of
join), and the OPTIONS column tells you when a full table scan is being performed (that may need
an index).

 OBJECT_NODE The name of the database link used to reference the object (a table name or
view name). For local queries using the parallel query option, this column describes the order
in which output from operations is consumed.

 OBJECT_OWNER The name of the user who owns the schema containing the table or index.

 OBJECT_NAME The name of the table or index.

 OBJECT_INSTANCE A number corresponding to the ordinal position of the object as it
appears in the original statement. The numbering proceeds from left to right, outer to inner,
with respect to the original statement text. Note that view expansion results in unpredictable
numbers.

 OBJECT_TYPE A modifier that provides descriptive information about the object, for
example, NON-UNIQUE for indexes.

 OPTIMIZER The current optimizer mode.

 ID A number assigned to each step in the execution plan.

 PARENT_ID The ID of the next execution step that operates on the output of the ID step.

TIP
The PARENT_ID column is very important because it shows the dependencies of two steps in an
EXPLAIN PLAN. If a step in the EXPLAIN PLAN has a PARENT_ID, it implies that this statement
must run prior to the PARENT_ID that is specified.

 POSITION The order of processing for steps that all have the same PARENT_ID.

 OTHER Other information that is specific to the execution step that a user may find helpful.

 OTHER_TAG The contents of the OTHER column.

 COST The cost of the operation as estimated by the optimizer’s cost-based approach. The
value of this column does not have any particular unit of measurement; it is merely a weight
value used to compare costs of execution plans.

 CARDINALITY The cost-based approach’s estimate of the number of rows accessed by the
operation.

 BYTES The cost-based approach’s estimate of the number of bytes accessed by the operation.

 OTHER_XML This column can be queried to find out extra information that the optimizer
used to determine the execution plan.

TIP
The BYTES column is extremely important when evaluating how to tune a query. When an index is
used and the number of bytes is great, it implies that doing a full table scan would perhaps be
more efficient (i.e., reading the index and data is more costly than just reading the data in a full
table scan). Also, the number of bytes helps you determine which table should be accessed first in
the query (driving table) because one table may limit the number of bytes needed from another. See
Chapter 9 for tips on choosing the driving table.

TIP
Remember that both the COST and BYTES values in a query are estimates; it is quite possible for a
version of a query with a higher estimated cost or bytes to run faster than another with a lower
value.

 Using DBMS_XPLAN
DBMS_XPLAN is one of the most common and best ways to query the execution plan of a query
quickly. It automatically queries the last plan in PLAN_TABLE when you use the
DBMS_XPLAN.DISPLAY procedure. There are a couple of other options as well to display it in
different ways, but most people like it because it’s a quick way to see the last execution plan as they
are tuning a query. It will also give additional information after the execution plan. It will highlight
filter versus join conditions and let you know if the plan table is current. It will also display a
warning message if an old version of the plan table is being used. Keep in mind that OPERATION
column text truncation might be a problem if you don’t set the LINESIZE as shown in the following
example. The DBMS_XPLAN package has the following table functions:

 DISPLAY Display the last query plan

 DISPLAY_CURSOR Display contents and execution plan of any loaded cursor (can specify
SQL_ID)

 DISPLAY_AWR Display contents and execution plan of stored SQL statement in AWR

 DISPLAY_SQLSET Display contents and execution plan of statements in a SQL Tuning Set

The following is a DBMS_XPLAN example (run this after you run an EXPLAIN PLAN on a
query):

There is an additional procedure to display the plan stored in AWR (AWR is covered in Chapter
14) or in a Tuning Set (more on this in Chapter 8). The following are queries to look at SQL Plan
Baselines (covered in Chapter 8) and a quick query to display a cursor (query V$SQL or other V$
views to get the cursor; Chapter 12 covers V$ views):

There are many options for different levels of statistics, specific child numbers of a cursor, and the
ability to use your own plan table. Please check the Oracle docs for additional information. A few
more quick examples are listed here:

 Initialization Parameters for Undocumented
TRACE
One area that the experts can investigate is the X$KSPPI table. A brief listing for undocumented
TRACE parameters in init.ora is shown here (see Appendix A for additional information). Note
that Oracle does not support use of undocumented features of the product.

TIP
The X$KSPPI table can be accessed only by the SYS user. See Chapter 13 for tips on accessing the
X$ tables and using some of these parameters. Do not use any undocumented parameters without
consulting My Oracle Support. Also, the layout and column names of these views have been known
to change between Oracle releases.

Tracing Errors Within Oracle for More Information
This section explains the use of one of the undocumented features of TRACE. Before using
undocumented initialization parameters, please contact My Oracle Support. To TRACE errors
for a session, you can set an event in the initialization parameters file (see Chapter 13 for more
information). You can also trace sessions for errors by running the query shown next (used to TRACE
a 4031 error). These queries build a TRACE file in your USER_DUMP_DEST that will contain a
dump of the full error text.

Use the following command to trace sessions for errors:

TIP
Tracing queries can help performance, but using the TRACE facility built into the undocumented
TRACE init.ora parameters (discussed previously) can give you great insight into solving errors
within Oracle.

Tracing by Enabling Events
Trace sessions can also be initiated by using this command:

The value of the level (1 in the previous command) can be 1 (regular trace), 4 (trace bind
variables), 8 (trace wait states), or 12 (regular trace, plus bind variables and wait states).
Information about bind variables and wait states can then appear in the trace file but will be ignored
by TKPROF when formatting the report. The trace file output for the previous command looks like
this:

To turn event tracing off, use the following command:

Oracle 11g introduced a new syntax for setting events that makes it easier to trace processes
without knowing the SID or SERIAL# (see My Oracle Support Note 813737.1 for additional
information). You can now use the following command instead:

Using Stored Outlines
Oracle8i introduced a facility called STORED OUTLINES that allows a query to use a predetermined
execution plan every time that query is run, no matter where the query is run from. While the use of
STORED OUTLINES was deprecated (discouraged) in 11g, they are still used and thus covered here
briefly (sections following this will cover converting STORED OUTLINES to SQL Plan Management
and SQL Plan Baselines). People sometimes speak of the STORED OUTLINES as storing an

execution plan, but this is not really what happens. Instead, Oracle stores a series of hints—
instructions to the database to execute a query in a precise way—to duplicate the execution plan as
saved during a recording session.

Oracle can replicate execution plans for queries using STORED OUTLINES through a process
similar to using the EXPLAIN PLAN functionality in SQL*Plus. First, you set up the STORED
OUTLINE session by telling Oracle to save outlines for queries you are about to run using the ALTER
SESSION command. Next, you execute the query for which you want the outline stored. (You
generally do this on a session-only basis so as not to affect other users.) Finally, if the execution plan
is acceptable, you can save it to the database so it can be used by everyone everywhere. STORED
OUTLINES have been largely replaced by SPM (SQL Plan Management).

 Dropping Stored Outlines
How do you get rid of STORED OUTLINES when you don’t want them anymore or when they impact
performance negatively? Use the DROP_UNUSED procedure in the DBMS_OUTLN package.

To drop all unused outlines:

To remove outlines that have been used, first apply the DBMS_OUTLN.CLEAR_USED
procedure, which accepts an outline name (available from the USER_OUTLINES view) and can be
run against only one outline at a time. You could write a short PL/SQL program to clear outlines en
masse.

To determine whether an outline is actually being used, examine the USED column in
USER_OUTLINES. You can also query the OUTLINE_CATEGORY column in the V$SQL view to
see things that are still in the cache.

Using SQL Plan Management (SPM) and SPM Example
SQL Plan Management has been added to help preserve the performance of SQL statements by only
allowing execution plans that improve the performance of the statement being executed. SPM is
similar to, yet different from, STORED OUTLINES. Like STORED OUTLINES, SPM’s goal is to
stabilize the execution plan of a SQL statement. STORED OUTLINES freeze an execution plan for a
SQL statement, whereas SPM allows a new execution plan to be selected as long as it improves the
performance of the SQL statement. Some of the reasons that you would need SPM include:

 New version of Oracle (new optimizer version—use capture/replay to test effect)
 Changes to optimizer statistics or data changes
 Schema, application, or metadata changes (use SQL Advisor to get suggestions)
 System settings changes (use SQL Replay to find what works)
 SQL Profile (statistics—data skews and correlated columns) creation

TIP
STORED OUTLINES freeze an execution plan whereas SPM allows a new execution plan as long
as the plan improves the performance of the SQL statement. If both a stored outline and an SPM
plan exist for a SQL statement, the stored outline takes precedence.

 SPM Terms
The following are terms related to the SMB hierarchy.

 Main components of SPM:

 Plan capture Creation of the SQL Plan Baseline that stores accepted execution plans.

 Plan selection Any new execution plans for an accepted statement are initially stored as
unaccepted plans in the SQL Plan Baseline.

 Plan evolution Evaluation of all unaccepted plans and only plans which increase
performance by a certain threshold are changed to accepted and used.

 SQL Management Base (SMB) SQL Plan History and SQL Plan Baseline are located within
the SMB. The SMB is located in the SYSAUX tablespace and also contains SQL profiles.

 SQL Plan History A subset of SMB that includes both accepted and not accepted plans
generated for a SQL statement.

 SQL Plan Baseline A subset of SQL Plan History that includes only the set of accepted plans
generated for a SQL statement.

 Flags Used to indicate the status of an execution plan in the SMB:

 Enabled The default value for an execution plan in Plan History or Plan Baseline is
ENABLED.

 Accepted The plan needs to be accepted before it can be considered to be used.

 Fixed The plan takes precedence over other execution plans.

 Reproduced Automatically set to YES when the CBO (Cost-Based Optimizer) is able to

reproduce the plan for the given SQL statement and set to NO when that is not possible.

 Adaptive (new in 12c) The plan has been determined to be an adaptive plan and not
accepted; once the plan is accepted, the adaptive flag will be set to NO.

The illustration on the next page shows a target chart of how this hierarchy looks.
The following are terms related to the status of plans:

 Accepted plan A plan must be both ENABLED and ACCEPTED in order to be considered by
the optimizer.

 Enabled plan The default value for an execution plan in Plan History or Plan Baseline is
ENABLED. A plan must be both ENABLED and ACCEPTED to be considered by the
optimizer.

 Fixed plan This execution plan gets priority over other plans for a SQL statement unless there
are other FIXED plans, in which case the FIXED plan with the best performance is selected.

Some other terms associated with SPM include

 AUTOPURGE A plan is automatically purged from Plan History if it has not been used for 53
weeks (based on the LAST_EXECUTED date in DBA_SQL_PLAN_BASELINES). This date
can be modified using the DBMS_SPM.CONFIGURE package.

 OPTIMIZER_USE_SQL_PLAN_BASELINES The database parameter that determines if

the Plan Baseline will be used if it is present for a SQL statement. The default is TRUE.

 OPTIMIZER_CAPTURE_PLAN_BASELINES Any SQL statements executed while this
parameter is set to TRUE are added to the Plan Baseline (but not necessarily ACCEPTED).
The default is FALSE.

 DBA_SQL_PLAN_BASELINES A view for gathering information about Plan Baselines that
have been created.

TIP
A SQL Plan Baseline must be both ENABLED and ACCEPTED to be considered by the optimizer.

 Using SPM
SPM is enabled and SQL statements are stored in the SQL Management Base using the following
method:

1. Set the OPTIMIZER_CAPTURE_PLAN_BASELINES parameter to TRUE at the system or
session level.

2. Use the SQL Tuning Set (see Chapter 29 of the Oracle Database 12c SQL Tuning Guide for
details).

3. Extract the statement from the shared pool using the
DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE function (see the Oracle Database
12c SQL Tuning Guide, Chapter 29, for details).

Note that only repeatable SQL statements (that is, statements that have been parsed or executed
more than once) are considered by SPM.

SPM is helpful for

 Database upgrades
 System and/or data changes
 Deployment of new application modules

SPM Example
Here is an example of how SPM works:

1. Turn capture on and run the SQL statement more than once so SPM can determine if the
statement is repeatable, and then turn capture off:

2. Query DBA_SQL_PLAN_BASELINES to determine the status of the SQL statement in SPM:

Note that ENABLED is YES, ACCEPTED is YES, and FIXED is NO. Also note the module
that was used to add this plan (SQL*Plus).

3. Now make a change to the environment (index added) and run the SQL statement again:

4. Query DBA_SQL_PLAN_BASELINES to determine the status of the SQL statement in SPM:

Note that another PLAN NAME was added (with the same SQL_HANDLE) that has an
ACCEPTED value of NO, which means the optimizer will not consider this plan.

Now I’m going to set OPTIMIZER_USE_SQL_PLAN_BASELINE to FALSE and allow the
optimizer to choose a plan (not necessarily in the Plan Baseline). Then I will set the
OPTIMIZER_USE_SQL_PLAN_BASELINE to TRUE and force the optimizer to choose only an
accepted plan in the Plan Baseline.

Using DBMS_XPLAN tells you what actually happened versus an EXPLAIN PLAN, which tells
you what’s intended (by comparing the two, you can see if something changed from what execution
plan was intended/started and what execution plan was eventually used/ended with). Note that in the
first case, the optimizer chooses a plan that makes use of the index, but, in the second case, it did not
because that plan was not an ACCEPTED plan.

The next step is to evolve a SQL plan to allow a plan with an ACCEPTED status of NO to be
changed to YES if the plan performs better than plans that already have an ACCEPTED value of
YES:

Here is the output:

Note that the plan, which was previously not ACCEPTED, is now ACCEPTED:

Now when I run the SQL statement with OPTIMIZER_USE_SQL_PLAN_BASELINE set to
TRUE, this newly ACCEPTED plan is chosen because it performs better than other ACCEPTED
plans for this SQL statement:

 Using Fixed SQL Plan Baselines
Fixed plans (if present) are used instead of any other plans in the Plan Baseline for a SQL statement.
If more than one Fixed plan exists for a SQL statement, then the Fixed plan with the best performance
is used. Here is an example of how to set a plan to FIXED:

 Dropping a Plan
Here is an example of how to drop a plan using the SQL_HANDLE:

 Converting from Stored Outlines to SQL Plan
Management
Now I will walk you through an example of how to convert a SQL statement from using STORED
OUTLINES to using SQL Plan Management.

To create a stored outline:

To use the stored outline:

The following shows the status of the stored outline:

Note that the MIGRATED status field shows it to be NOT-MIGRATED and the USED status field
shows it to be USED.

To migrate this stored outline to a Plan Baseline:

Here is the output:

To migrate all stored outlines:

To retrieve the status of the stored outline and the plan outline after the migration:

Note that ACCEPTED is set to YES for the PLAN OUTLINE and MIGRATED is set to
MIGRATED for STORED_OUTLINE. Because the status of the STORED OUTLINE is MIGRATED,
the optimizer will not look at the STORED OUTLINE when determining which plan to use.

To drop the migrated stored outline:

This drops all migrated stored outlines.

 Adaptive Plans (12c New Feature) and SPM
The concept of an adaptive plan is that the execution of a statement can start with one execution plan
(say, for instance, a join using nested loops) and switch to another (join using a Hash Join) during
execution without rerunning based on what it’s seeing (statistics-wise) while it’s running. Statistic
collectors are set at critical points during the plan execution to see if the actual execution is varying
greatly from what was expected originally, based on the statistics. This allows Oracle to compare
actual row counts (during the execution) with estimates (prior to execution that were used). If the
difference in the comparison crosses certain thresholds, Oracle will switch to a better execution plan

during execution. If automatic plan capture is enabled and the SQL statement is identified as an
adaptive plan, only the plan that is executed will be captured in the baseline if a plan for the SQL
statement does not already exist in the baseline. If a plan already exists in the baseline, then the new
plan will be marked as ADAPTIVE and that plan will be checked during the evolve process (either
the automatic or manual evolve process—see the next section for an example). Oracle also ensures
the next execution of this statement will use the new execution plan.

Adaptive SQL Plan Management
There have been changes in 12c to the process of evolving SQL Plan Baselines.
SYS_AUTO_SPM_EVOLVE_TASK is a new automatic evolve task that runs in the default
maintenance window (normally starting at 22:00 M–F and 6:00 Sat–Sun). The task is used to rank all
unaccepted plans and run the evolve process on those plans. Unaccepted plans whose performance is
better than the existing accept plan(s) by a defined amount are “evolved” to an ACCEPTED status. In
addition to this automatic evolve process, there is also a manual evolve process.

Settings for the task SYS_AUTO_SPM_EVOLVE_TASK are listed next.
DBMS_SPM.set_evolve_task_parameter can be used to change parameters.

Evolving SQL Plan Baseline Manually Using an Example

Here is the initial setup: Table EBKM_TAB has 10,000 rows with no indexes. The
OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES =TRUE and
OPTIMIZER_USE_SQL_PLAN_BASELINES =TRUE. The following SQL statement will be
executed several times in this test:

Following is the initial run of the SQL statement:

Another execution is needed so that the SQL is added to the SQL Plan Baseline:

Now an index is added to the EMP_ID column of the EBKM_TAB table and stats are computed:

Rerun the original SQL statement:

A second SQL_HANDLE has been added for the SQL statement but with ACCEPTED = NO:

The first step in manually evolving the statement is the CREATE_EVOLVE_TASK:

Use the TASK_NAME in the following EXECUTE_EVOLVE_TASK:

Use TASK_NAME and EXECUTION_NAME in the following REPORT_EVOLVE _TASK:

The unaccepted plan has met the performance improvement criteria and can be changed to an
accepted plan:

The new accepted plan is now being used:

Tips Review
 Setting TIMED_STATISTICS = TRUE in the init.ora will enable the collection of time

statistics. The initialization parameter SQL_TRACE has been deprecated (may go away in the
future).

 The TKPROF utility converts traced output into a readable format. Without running TKPROF,
reading the output of a TRACE would be difficult. By specifying explain =
username/password, you can get the EXPLAIN execution path, in addition to the execution
statistics for the query. There is also an option for a PDB (pluggable database) in R12.

 Run TKPROF from the command line without any parameter for a list of all the parameters.
 A traced query with a large number of physical reads may indicate a missing index.
 The trace file is a point-in-time picture of what happened on the system at the time that the

trace was run (includes the row source operation). In contrast, the EXPLAIN PLAN is
generated when the TKPROF listing is created, which could be some time later. The row
source operation listing is generated as part of the trace file and can be used to see if the
database objects have changed since the TRACE was performed.

 Full table scans are one of the first things Oracle pushes out of memory (becoming least
recently used as soon as you run them) because they are so inefficient, generally using a lot of
memory.

 Using a value of ALL_EXECUTIONS for the PLAN_STAT ensures that information regarding
the execution plan is always contained in the trace file.

 When using DBMS_MONITOR, disable tracing when you are done; otherwise, every session
that meets the criteria specified will be traced.

 Use the SET STATEMENT_ID = ‘your_identifier’ when the PLAN_TABLE will be
populated by many different developers. I rarely use the SET STATEMENT_ID statement.
Instead, I explain a query, look at the output, and then delete from the PLAN_TABLE table. I
continue to do this (making changes to the query) until I see an execution plan that I think is
favorable. I then run the query to see if performance has improved. If multiple
developers/DBAs are using the same PLAN_TABLE, the SET STATEMENT_ID (case
sensitive) is essential to identifying a statement.

 Use EXPLAIN instead of TRACE so you don’t have to wait for the query to run. EXPLAIN
shows the path of a query without actually running the query. Use TRACE only for multiquery
batch jobs to find out which of the many queries in the batch job are slow.

 You can use the utlxpls.sql and utlxplp.sql queries provided by Oracle to query the
PLAN_TABLE table without having to write your own query and format the output.

 Whether the EXPLAIN PLAN is read from top to bottom or from bottom to top depends
entirely on the query used to select information from the PLAN_TABLE. Both methods of
reading the query may be correct, given that the query selecting the information is correctly
structured.

 If the error “Unable to verify plan table format or existence” occurs when enabling
AUTOTRACE, you must create a PLAN_TABLE using utlxplan.sql.

 AUTOTRACE may fail when querying system views because the user may not have
permission to view underlying objects.

 Partitions can also be viewed by the EXPLAIN PLAN by accessing the columns
PARTITION_START and PARTITION_STOP in the PLAN_TABLE table.

 Accessing the V$SQLAREA table can give statistics that are often found when tracing a query.
 You can also use TRACE within the Fusion Middleware (Developer) products. You simply

need to set statistics = yes on the command line for some products, or you may embed the
tracing within an actual trigger to turn tracing on and off.

 The OPERATION and OPTIONS columns of the PLAN_TABLE are the most important
columns for tuning a query. The OPERATION column shows the actual operation performed
(including type of join), and the OPTIONS column tells you when a full table scan is being
performed (that may need an index).

 The PARENT_ID column is very important because it shows the dependencies of two steps in
an EXPLAIN PLAN. If a step in the EXPLAIN PLAN has a PARENT_ID, it implies that this
statement must run prior to the PARENT_ID that is specified.

 The BYTES column is extremely important when evaluating how to tune a query. When an
index is used and the number of bytes is great, it implies that doing a full table scan would
perhaps be more efficient (i.e., reading the index and data is more costly than just reading the
data in a full table scan). Also, the number of bytes helps you determine which table should be
accessed first in the query (driving table) because one table may limit the number of bytes
needed from another.

 Both the COST and BYTES values in a query are estimates; it is quite possible for a version
of a query with a higher estimated cost or bytes to run faster than another with a lower value.

 The X$KSPPI table can be accessed only by the SYS user. See Chapter 13 for tips on
accessing the X$ tables and using some of these parameters. Do not use any undocumented
parameters without consulting My Oracle Support. Note that the layout and column names of
these views have been known to change between Oracle releases.

 Tracing queries can help performance, but using the TRACE facility built into the
undocumented TRACE init.ora parameters can give you great insight into solving errors
within Oracle.

 STORED OUTLINES freeze an execution plan whereas SQL Plan Management allows a new
execution plan as long as the plan improves the performance of the SQL statement. If both a
stored outline and an SPM plan exist for a SQL statement, the stored outline takes precedence.

 A SQL Plan Baseline must be both ENABLED and ACCEPTED to be considered by the
optimizer.

 An adaptive plan is one in which the execution of a statement can start with one execution plan
(a join using nested loops) and switch to another (join using a Hash Join) during execution

without rerunning based on what it’s seeing (statistics-wise) while it’s running. Statistic
collectors are set at critical points during the plan execution to see if the actual execution is
varying greatly from what was expected originally, based on the statistics. If the difference in
the comparison crosses certain thresholds, Oracle will switch to a better execution plan
during execution. Comparing EXPLAIN PLAN (execution at start) to DBMS_XPLAN (final
plan at completion), you can see the before/after plans.

References
My Oracle Support (Metalink) Notes: 293661.1, 13737.1, 726802.1.
Oracle Database 12c SQL Tuning Guide (Oracle Corporation).

Many thanks to Warren Bakker for upgrading this chapter to Oracle 12c, 11g, and 10g. Thanks to
Mark Riedel for previously upgrading this chapter to Oracle9i, and to Dave Hathway, Greg Pucka,
and Roger Behm for their original contributions to this chapter.

A

CHAPTER
7

Basic Hint Syntax (Developer and DBA)

lthough the cost-based optimizer is incredibly accurate in choosing the correct
optimization path and use of indexes for thousands of queries on your system, it is not
perfect (even with 12c Adaptive Query Optimization). To this end, Oracle provides hints
that you can specify for a given query to override the optimizer, hopefully achieving better

performance for a given query. This chapter focuses on the basic syntax and use of hints. The chapters
following this one (Chapters 8 and 9) have more complex examples, using various hints covered in
this chapter.

Because every system is diverse, the most useful hints for your system may not be the same ones
that I have found to be best. Common to most systems is the use of the FULL, INDEX, ORDERED,
and LEADING hints. A system with the parallel option may use the PARALLEL hint most often. In
12c, some of the best hints are those related to the In-Memory (IM) column store (INMEMORY and
NO_INMEMORY hints), those related to pluggable databases (CONTAINERS hint), and those
related to Adaptive Query Optimization (ADAPTIVE_PLAN and AUTO_REOPTIMIZE hints).
Lastly, I do cover the hint that’s not an optimizer hint (WITH_PLSQL). Other hints that were
introduced in 11g that you might not be using yet include RESULT_CACHE, MONITOR, and
NO_MONITOR. Several formerly supported hints were removed from the Oracle Database SQL
Language Reference (these were deprecated/discouraged/unsupported): RULE, the anti-join hints
(HASH_AJ, NL_AJ, MERGE_AJ), the semi-join hints (HASH_SJ, NL_SJ, MERGE_SJ), ROWID,
and AND_EQUAL.

Tips covered in this chapter include the following:

 The top hints used, the available hints and groupings, and specifying multiple hints
 When using an alias, the necessity to use the alias, not the table name, in the hint
 Using the FIRST_ROWS hint generally to force the use of indexes
 Using the ALL_ROWS hint generally to force a full table scan
 Using the FULL hint to perform a full table scan
 Using the INDEX hint to affect the use of an index
 Using the NO_INDEX hint to disallow a specified index from being used
 Using the INDEX_ASC hint to use an index ordered in ascending order
 Using the INDEX_DESC hint to use an index ordered in descending order

 Using the INDEX_JOIN hint to allow the merging of indexes on a single table
 Using the INDEX_COMBINE hint to access multiple bitmap indexes
 Performing fast full scans with the INDEX_FFS hint
 Using the ORDERED hint to specify the driving order of tables
 Using the LEADING hint to specify just the first driving table
 Using the NO_EXPAND hint to avoid OR expansion
 Using queries involving multiple locations and the DRIVING_SITE hint
 Using the USE_MERGE, USE_NL, and USE_HASH hints to change how tables are joined

internally
 Processing subqueries earlier with PUSH_SUBQ
 Using the parallel query option and PARALLEL and NO_PARALLEL
 Using APPEND and NOAPPEND for faster data inserts
 Caching and pinning a table into memory with the CACHE hint in the buffer cache
 Using the NOCACHE hint
 Caching table data with the RESULT_CACHE in the shared pool
 Overriding the CURSOR_SHARING setting with the CURSOR_SHARING_EXACT hint
 Using the INMEMORY and NO_INMEMORY hints (only 12.1.0.2+)
 Using the USE_INVISIBLE_INDEXES hint (12c)
 Using the CONTAINERS hint (12c)
 Using the WITH_PLSQL hint (12c)
 Miscellaneous hints and notes from 12c and other versions

Top Hints Used
I did an informal survey at TUSC to see which hints both DBAs and developers use in their day-to-
day tuning. I asked them to give me only the top three that they used. The results were not surprising to
me, but if you’ve never used hints, this is quite helpful in determining where to start. Here is the list
of TUSC’s top hints, in the order in which they are used (I personally use INDEX, ORDERED,
PARALLEL, LEADING, FULL, APPEND, and NO_INDEX the most):

1. INDEX
2. ORDERED
3. PARALLEL
4. FIRST_ROWS
5. FULL

6. LEADING
7. USE_NL
8. APPEND
9. USE_HASH
10. RESULT_CACHE

NOTE
The top three in this list are also the top three that I’ve used the most since hints were introduced.
I’ve frequently used all of these in my tuning, so they are a great place to start.

The Top Hints list will probably be expanded to add these five new hints by 12cR2:

1. INMEMORY/NO_INMEMORY
2. USE_INVISIBLE_INDEXES
3. CONTAINERS
4. AUTO_REOPTIMIZE/ADAPTIVE_PLAN
5. WITH_PLSQL

 Use Hints Sparingly
Hints fall into two primary categories: usage directives and compiler directives. Usage directives
are those that can be set using initialization parameters in addition to the statement level (i.e.,
FIRST_ROWS, ALL_ROWS). If you have an OLTP database, setting the optimizer (at the instance
level) from ALL_ROWS to FIRST_ROWS immediately focuses the optimizer on returning the first
few rows faster (best response time for most OLTP applications). Setting the optimizer (at the
instance level) to ALL_ROWS immediately focuses the optimizer on returning all rows faster (best
throughput for all rows, which may be preferred for batch operations or data warehouses). The hints
you give the optimizer influence its choices for join operations and the order of operations. In both
database cases (OLTP and data warehouse), the goal is to solve performance issues system-wide
instead of needing to tune individual queries.

When there are queries inside a data warehouse that behave more like OLTP queries or vice versa,
you may need to use hints for those specific statements. As you begin to use hints, you may find
yourself tuning the same type of problem over and over, an indication that you have improper
instance-level settings or improper database structures (missing indexes or I/O contention, for
example) that are impacting performance. Tuning the symptoms (using compiler directives in the short
term) leads you to the pattern that can be fixed for the long term. Then you will hopefully be able to
apply a usage directive to fix the problem system-wide. Try to use hints with this in mind and you’ll
use them only rarely.

Hints are best used sparingly. Hints are called “hints” and not “commands” for a reason: the cost-
based optimizer may reject the instruction if it decides that the query will perform better without
implementing the hint. Furthermore, hints can perform unpredictably when used with other hints,
upgrading the database, applying patches, or changing database initialization/session parameters.
Hints can provide valuable functionality, but you should only use them when other ways of achieving
the same goals do not work.

 Fix the Design First
In a three-table join, depending on the column order of the index on the intersection table, the query
usually accesses the tables in a particular order. By correctly indexing the intersection table and the
joined columns of the other tables, you will eliminate many of your performance problems before they
happen. If you are using an ORDERED or LEADING hint over and over for joins, review the indexes
on the joined tables to help you change how the optimizer is looking at the problem. Rewriting SQL
statements so they correctly use indexes will also solve many of your problems, eliminating the need
for a hint. Putting a function on an indexed column may suppress the index and cause the tables to
drive differently (be read in a different order). Use hints when you have exhausted the other avenues
for tuning a query. If you find that you are using the same hint for the same problem over and over, you
almost certainly have a problem that can be fixed system-wide instead. Always try to unlock the
system problem inside each query-level issue. This also helps you avoid the pain caused by hints
working differently when you upgrade to a new version.

For example, consider a typical three-table join between STUDENT, CLASS, and
STUDENT_CLASS tables. The STUDENT table contains one row for each student, the CLASS table
contains one row for each CLASS, and the STUDENT_CLASS table is the intersection table, as
multiple students attend multiple classes. The primary keys for the tables may look like this:
STUDENT primary key STUDENT_ID
CLASS primary key CLASS_ID
STUDENT_CLASS concatenated primary key of (CLASS_ID, STUDENT_ID)

When the primary keys are defined in this manner, Oracle automatically creates indexes to support
them. The intersection table, STUDENT_CLASS, has a concatenated index on two columns,
CLASS_ID and STUDENT_ID, with CLASS_ID as the leading column. Is this the best column order
for all of the application’s queries? Unless you can forecast all of the queries that will join these
tables, you should create a second index on the STUDENT_CLASS table’s primary key columns:

STUDENT_CLASS secondary index on (STUDENT_ID, CLASS_ID)

When processing a join of these three tables, the optimizer can now choose to begin at either the
STUDENT or CLASS table and will have an available index on STUDENT_CLASS that will
support its needs. You may find that the secondary index is rarely used—but it is there when it is
needed to support application users and their related business processes. By designing the indexing
structures to support multiple access paths, you give the optimizer the tools it needs to choose the best
execution path without resorting to a hint.

Available Hints and Groupings
The available hints vary according to the version of the database installed. While this chapter focuses
on frequently used hints, many hints that are not covered in detail may give great performance gains
for someone with a particular system. Hint functionality and syntax is listed in the Oracle
documentation in the Oracle Database SQL Language Reference.

Hints are separated into the different categories described in the following sections according to
which type of operation is being modified by the hint. Each hint is discussed in detail, including
syntax and examples, in the sections that follow. The view V$SQL_HINT lists the available hints, the
version in which they became available, and the hint class (such as ACCESS, CACHE, etc.).

 Execution Path
Hints modify the execution path when an optimizer processes a particular statement. The instance-
level parameter OPTIMIZER_MODE can be used to modify all statements in the database to follow a
specific execution path, but a hint to a different execution path overrides anything that is specified in
the instance parameter file. If a SQL statement has a hint specifying an optimization approach and
goal, then the optimizer should use the specified approach regardless of the presence or absence of
statistics, the value of the OPTIMIZER_MODE initialization parameter, and the OPTIMIZER_MODE
parameter of the ALTER SESSION statement. Oracle also notes this in its documentation: If these
statistics have not been gathered, or if the statistics are no longer representative of the data stored
within the database, then the cost-based optimizer does not have sufficient information to generate the
best plan.

Hints that change the execution path include the following:

 ALL_ROWS
 FIRST_ROWS(n)

 Access Methods
The hints that are grouped into access methods allow the coder to vary the way the data is accessed.
This group of hints is most frequently used, especially the INDEX hint. The INDEX hint provides
direction as to whether and how indexes are used, and how the corresponding indexes will be merged
to get the final answer.

The access method hints are listed here and described later in this chapter:

 FULL
 INDEX, INDEX_ASC, INDEX_DESC
 NO_INDEX, NO_INDEX_FFS, NO_INDEX_SS
 INDEX_COMBINE

 INDEX_JOIN
 INDEX_FFS
 INDEX_SS, INDEX_SS_ASC, INDEX_SS_DESC

 Query Transformation Hints
Query transformation hints are especially helpful in a data warehouse if you are familiar with using
fact and dimension tables. The FACT hint can designate a given table to be the FACT or driving table
for a query. The NO_FACT hint does the opposite. The STAR_TRANSFORMATION hint is used to
access the fact table efficiently when joining multiple tables. The NO_STAR_TRANSFORMATION
hint instructs the optimizer not to perform a star query transformation when you have a schema whose
structure appears to be that of a data warehouse but isn’t actually. Persuading the cost-based
optimizer to use star plans is assisted by using bitmap indexes instead of b-tree indexes.

Some of the query transformations have nothing to do with star queries. Many transformations take
place behind the scenes without using hints at all, but hints are available to help this process along.
MERGE requests index values (not table values) as the primary data source; REWRITE rewrites a
query to access a materialized view instead of source tables; and UNNEST works with subqueries to
restructure the query to use a table join. Use NO_QUERY_TRANSFORMATION to avoid query
transformations.

The query transformation hints are

 FACT, NO_FACT
 MERGE, NO_MERGE
 USE_CONCAT, NO_EXPAND
 NO_QUERY_TRANSFORMATION
 REWRITE, NO_REWRITE
 STAR_TRANSFORMATION, NO_STAR_TRANSFORMATION
 UNNEST, NO_UNNEST

 Join Operations
The join operations group of hints controls how joined tables merge data together. A join operation
may direct the optimizer to choose the best path for retrieving all rows for a query (throughput) or
for retrieving the first row (response time).

Two hints are available to influence join order directly. LEADING specifies a table to start with
for the join order to use, whereas ORDERED tells the optimizer to join the tables based on their
order in the FROM clause, using the first table listed as the driving table (accessed first).

Hints available to direct the use of join operations include

 LEADING, ORDERED
 USE_HASH, NO_USE_HASH
 USE_MERGE, NO_USE_MERGE
 USE_NL, USE_NL_WITH_INDEX, NO_USE_NL

 Parallel Execution
The parallel execution group of hints applies to databases using the parallel option (only available
with Oracle Enterprise Edition). These hints override the table specification for the degree of
parallelism.

The parallel execution hints are

 PARALLEL, NO_PARALLEL
 PARALLEL_INDEX, NO_PARALLEL_INDEX

 Other Hints
Other hints are not easily grouped into categories. The APPEND and NOAPPEND hints can be used
without the parallel option, but they are frequently used with it. The cache grouping pertains to the
hints that will put items as most recently used (CACHE) or least recently used (NOCACHE).

Like APPEND and CACHE, the following hints are available to influence the ways in which the
optimizer processes the table accesses:

 APPEND, NOAPPEND
 CACHE, NOCACHE
 CURSOR_SHARING_EXACT
 DRIVING_SITE
 DYNAMIC_SAMPLING
 MODEL_MIN_ANALYSIS
 PUSH_PRED, NO_PUSH_PRED
 PUSH_SUBQ, NO_PUSH_SUBQ
 QB_NAME
 OPT_PARAM
 RESULT_CACHE, NO_RESULT_CACHE

Specifying a Hint
If you incorrectly specify a hint in any way, it becomes a comment and is ignored. No error is issued
because the botched hint becomes a comment (unless the comment structure itself is incorrect). Be
very careful to get the hint syntax exactly correct. The best way to ensure that a hint has been
correctly specified is to run an EXPLAIN PLAN (or DBMS_XPLAN), or set AUTOTRACE to ON in
SQL*Plus to see if the hint was used; check to see if the execution plan is producing the expected
results if the hint should affect the plan. Some hints are overridden by the optimizer despite the fact
that a hint is primarily for influencing decisions made by the Oracle optimizer. The basic hint syntax
(in this example, it is for a FULL hint) is shown here. Note that the difference in these two formats is
that the first uses multiline comment delimiters and the second uses inline comment delimiters. If you
use the inline comment delimiter, then anything that comes after it (like column names) is ignored. You
must continue the query on the next line.

The (TABLE) in the preceding code snippet is the table name on which to perform a full table scan,
or the alias for the table if you specified an alias in the FROM clause, as shown here:

In this example, even if you have an index on the DEPARTMENT_ID column, a full table scan should
be performed. The hint is not required to be uppercase. If using block comments with hints, be careful
not to try to comment out the hinted text later with an enclosing block comment. The database ignores
the second start block comment marker (it will be commented), uses the first closing block comment
marker (from the hint) to close the initial block comments, and raises a syntax error when the second,
unmatched block comment terminator is found.

In this query, if there were an index on the DEPARTMENT_ID column, the index would be used

because the hint is missing the plus sign (+) and becomes a comment.
When a hint accepts multiple arguments, spaces or commas may separate arguments:

or

TIP
Incorrect hint syntax leads to the hint being interpreted as a comment. If an additional hint is
specified correctly, it will be used.

By default, hints only affect the code block in which they appear. If you hint the access of the
EMPLOYEES table in a query that is part of a UNION operation, the other queries within the UNION
are not affected by your hint. If you want all of the unioned queries to use the same hint, you need to
specify the hint in each of the queries. This also applies to views, subqueries, and subquery factoring
(the WITH clause).

You can specify the query block name in hints to specify the query block to which the hint applies.
Thus, in an outer query, you can specify a hint that applies to a subquery. The hint syntax for the
QUERY_BLOCK argument is in the form

where QUERY_BLOCK is a user-specified or system-generated identifier. Use the QB_NAME hint to
specify the name for the query block. If you are using system-generated hints, you can view the query
block names via the EXPLAIN PLAN for the query (an example is given later in this chapter).

Specifying Multiple Hints
You can use more than one hint at a time, although this may cause some or all of the hints to be
ignored. Separate hints with spaces, as shown here:

The (TABLE) in this code snippet is the table name to perform the full scan and cache on:

TIP
Multiple hints are separated with a space. Specifying multiple hints that conflict with each other
causes the query to use none of the conflicting hints.

When Using an Alias, Hint the Alias, Not the Table
When you use aliases on a given table that you want to use in a hint, you must specify the alias and
not the table name in the hint. If you specify the table name in the hint when an alias is used, the hint is
not used.

The (TABLE) in this code snippet has to be replaced with the alias that follows since the query
uses an alias. If an alias is used, the alias must be used in the hint or the hint will not work:

TIP
If an alias is used, the alias must be used in the hint or the hint will not work.

The Hints
The hints discussed here are available as of Oracle Database 12c Release 1 as well as being
available in Oracle Database 12c Release 2. Consult the Oracle documentation for more information

on these or other hints.
As of 11g and continuing into 12c, Oracle Database automatically maintains optimizer statistics if

it is enabled. The database automatically collects optimizer statistics for tables with absent or stale
statistics. If fresh statistics are required for a table, then the database collects them both for the table
and associated indexes. The automatic optimizer statistics collection runs as part of AutoTask and is
enabled by default to run in all predefined maintenance windows (which means, once daily).
Automatic optimizer statistics collection relies on the modification monitoring feature. This
monitoring is enabled by default when STATISTICS_LEVEL is set to TYPICAL or ALL. Monitoring
tracks the approximate number of INSERTs, UPDATEs, and DELETEs for that table and whether the
table has been truncated since the last time statistics were gathered. If a monitored table has been
modified more than 10 percent, then these statistics are considered stale and gathered again. You use
the DBMS_STATS package to manage the statistics manually. Adaptive Query Optimization
(discussed in Chapter 8 in detail) improves the Oracle optimizer.

 The Oracle Demo Sample HR Schema
I used the sample Oracle demo HR schema to produce the examples that follow. In some cases, I
created additional objects to facilitate working with some of the hints where they were not created
with the sample schema.

 The FIRST_ROWS Hint
The FIRST_ROWS hint directs the optimizer to optimize a query on the basis of retrieving the first
rows the fastest. This approach is especially helpful when users of the system are using online
transaction processing (OLTP) systems to retrieve a single record on their screen. This approach
would be a poor choice for a batch-intensive environment where a lot of rows are generally retrieved
by a query. The FIRST_ROWS hint generally forces the use of indexes, which, under normal
circumstances, may not have been used. The FIRST_ROWS or ALL_ROWS hint (the optimizer makes
a best-guess effort to choose the better of the two) is used, even when statistics are not gathered for
the optimizer (ALL_ROWS is the default).

The FIRST_ROWS hint is ignored in UPDATE and DELETE statements since all rows of the
query must be updated or deleted. It is also ignored when any grouping statement is used (GROUP
BY, DISTINCT, INTERSECT, MINUS, UNION) because all of the rows for the grouping have to be
retrieved for the grouping to occur. The optimizer may also choose to avoid a sort when there is an
ORDER BY in the statement if an index scan can do the actual sort. The optimizer may also choose
NESTED LOOPS over a SORT MERGE when an index scan is available and the index is on the

inner table. The inner table shortens the result set that is joined back to the outside table in the query,
and specifying access paths overrides this hint.

You may also specify the number of rows (as in the second example that follows) that you want
FIRST_ROWS to optimize getting (the default is one). Note that this is specified in powers of 10 up
to 1000. Using FIRST_ROWS (n) is totally based on costs and is sensitive to the value of n. With
small values of n, the optimizer tends to generate plans that consist of nested loops joins with index
lookups. With large values of n, the optimizer tends to generate plans that consist of hash joins and
full table scans (behaving more like ALL_ROWS).

Syntax

Example

Example

TIP
The FIRST_ROWS hint causes the optimizer to choose a path that retrieves the first row (or a
specified number of rows) of a query fastest, at the cost of retrieving multiple rows slower. The
FIRST_ROWS hint may be set as the default for the entire database by setting
OPTIMIZER_MODE = FIRST_ROWS in the system parameter file; query-level hints will override
the default setting for a given query. You can also set the optimizer to FIRST_ROWS_n (see
Chapter 4 for additional information).

 The ALL_ROWS Hint
The ALL_ROWS (best throughput) hint directs a query to optimize a query on the basis of retrieving
all of the rows the fastest. This approach is especially helpful when users of the system are in a heavy
batch report environment and running reports that retrieve a lot of rows. This would be a poor choice
for a heavy transaction processing environment where users are trying to view a single record on a
screen. The ALL_ROWS hint may suppress the use of indexes that under normal circumstances would
have been used. Specifying access path hints overrides the use of this hint.

Syntax

Example

TIP
The ALL_ROWS hint causes the optimizer to choose a path that retrieves all the rows of a query
fastest, at the cost of retrieving one single row slower. The ALL_ROWS hint may be set as the
default for the entire database by setting OPTIMIZER_MODE = ALL_ROWS (the default) in the
system parameter file; query-level hints will override the default setting for a given query.

 The FULL Hint
The FULL hint directs a query to override the optimizer and perform a full table scan on the specified
table in the hint. The FULL hint has different functionality based on the query that you are tuning. You
can use it to force a full table scan when a large portion of the table is being queried. The cost of
retrieving the index and the rows may be greater than just retrieving the entire table. The FULL hint
may also cause an unexpected result. Causing a full table scan may cause tables to be accessed in a
different order, because a different driving table is used. This may lead to better performance, leading
one to believe that the full table scan was the key benefit, when changing the order of the driving table
was the real cause of the improved performance.

Syntax

Here, (TABLE) is the table name to perform the full scan on. If an alias is used, the alias must be used
in the hint or it will not work.

Note that you should only specify the table name in the hint, not the schema name.

Example

The FULL hint in this example would be particularly helpful if the only department in the company
was one (1). Going to an index on DEPARTMENT_ID and the EMPLOYEES table would be slower
than simply performing a full table scan on the EMPLOYEES table.

The FULL hint is also a necessary part of using some of the other hints. The CACHE hint can cache
a table in memory only when the full table is accessed. Some of the hints in the parallel grouping also
necessitate the use of a full table scan. I cover each of these hints later in this chapter.

TIP
The FULL hint performs a full table scan on the table that is specified, not all tables in the query.
The FULL hint may also lead to better performance, which is attributable to causing a change in
the driving table of the query and not to the actual full table scan.

If multiple tables have the same name in the same query, assign aliases to them in the FROM
clause and then reference the aliases in the hints.

 The INDEX Hint
The INDEX hint is frequently used to request one or more indexes to be used for a given query.
Oracle generally chooses the correct index or indexes with the optimizer, but when the optimizer
chooses the wrong index or no index at all, this hint is excellent. You may also use multiple indexes
with this hint, and Oracle will choose one or more of the indexes specified based on the best plan. If
you only specify one index, the optimizer considers only the specified index.

Syntax

Example

In the preceding example, the EMP_EMP_ID_PK index on the EMPLOYEES table is used.

Example

In the second example, Oracle may use the EMP_DEPARTMENT_IX index or the
EMP_EMP_ID_PK index or a merge of both of them. I’ve given these choices to the optimizer to
decipher the best choice. It would have been best, however, to only specify the index on the
EMPLOYEE_ID column (EMP_EMP_ID_PK) if this were the most restrictive statement (usually
much more restrictive than the department).

TIP
The INDEX hint causes the optimizer to choose the index specified in the hint. Multiple indexes
for a single table can be specified, but it is usually better to specify only the most restrictive index
on a given query (and, that way, avoid the merging of each index’s result). If multiple indexes are
specified, Oracle chooses which (one or more) to use, so be careful or your hint could potentially
be overridden.

Example

In this example, no index is specified. Oracle now weighs all of the possible indexes that are
available and chooses one or more to be used. Since I have not specified a particular index, but I
have specified the INDEX hint, the optimizer should not do a full table scan.

TIP
The INDEX hint, without a specified index, should not consider a full table scan, even though no
indexes have been specified. The optimizer will choose the best index or indexes for the query.

As of Oracle Database 10g, you can specify column names as part of the INDEX hint. The columns
can be prefixed with the table names (not table aliases). Each column listed in the hint must be a
physical column in the table, not an expression or calculated column.

Syntax

Example

 The NO_INDEX Hint
The NO_INDEX hint disallows the optimizer from using a specified index. This is a great hint for
tuning queries with multiple indexes. Although you may not know which of multiple indexes to drive
the query with, you might know which ones that you don’t want the optimizer to use (NO_INDEX).
You may also want to disallow an index for many queries prior to dropping an index or, as of Oracle

11g, make invisible an index that you don’t think is necessary.

Syntax

Example

In this example, the specified index on the EMPLOYEES table should not be used. If the
NO_INDEX hint is used and no index is specified, a full table scan is performed. If the NO_INDEX
and a conflicting hint (such as INDEX) are specified for the same index, then both hints are ignored
(as in the example that follows).

Example

TIP
The NO_INDEX hint must be in the tuning expert’s toolkit. It is used to remove an index from
consideration by the optimizer, so you may evaluate the need for the index prior to dropping it or
so you can evaluate other indexes. Be careful not to conflict with other index hints. The
NO_INDEX hint is one of my personal favorites when I want to drop an index and check which
index (if any) will be used instead of the one that I plan to drop.

 The INDEX_JOIN Hint
The INDEX_JOIN hint merges separate indexes from a single table together so only the indexes need
to be accessed. This approach saves a trip back to the table.

Syntax

Example

In this query, the optimizer should merge both specified indexes and not need to access the table.
All information needed is contained in these two indexes when they are merged. For a more detailed
example, see Chapter 8.

TIP
Not only does the INDEX_JOIN hint allow you to access only indexes on a table, which is a scan
of fewer total blocks, but also it can be five times faster (in some of my tests) than using an index
and scanning the table by ROWID.

 The INDEX_COMBINE Hint
The INDEX_COMBINE hint is used to specify multiple bitmap indexes when you want the optimizer
to use all indexes that you specify. You can also use the INDEX_COMBINE hint to specify single
indexes (this is preferred over using the INDEX hint for bitmaps). For b-tree indexes, use the INDEX
hint instead of this one. The INDEX_COMBINE hint is similar to the INDEX_JOIN hint but is used
for bitmap indexes.

Syntax

Example

TIP
The INDEX_COMBINE hint causes the optimizer to merge multiple bitmap indexes for a single
table instead of choosing which one is better (as with the INDEX hint).

 The INDEX_ASC Hint
The INDEX_ASC hint currently does exactly the same thing as the INDEX hint. Since indexes are
already scanned in ascending order, this does nothing more than the current INDEX hint. So what is it
good for? Oracle does not guarantee that indexes will be scanned in ascending order in the future, but
this hint does guarantee that an index will be scanned in ascending order.

Syntax

Example

In this example, the specified index should be used.

TIP
The INDEX_ASC hint does exactly what the INDEX hint does because indexes are already scanned
in ascending order. INDEX_ASC guarantees this to be true, however, as Oracle may change this
default in the future. Descending indexes are actually sorted in descending order. Oracle treats
descending indexes as function-based indexes. The columns marked DESC are sorted in
descending order.

 The INDEX_DESC Hint
The INDEX_DESC hint causes indexes to be scanned in descending order (of their indexed value or
order), which is the opposite of the INDEX and INDEX_ASC hints. This hint is overridden when the
query has multiple tables because the index needs to be used in the normal ascending order to be
joined to the other table in the query. Some restrictions for this include that it does not work for
bitmap indexes or for descending indexes (because it causes the index to be scanned in ascending
order), and it does not work across partitioned index boundaries but performs a descending index
scan of each partition. The execution plan should list “INDEX RANGE SCAN DESCENDING” for
an operation when this hint is adopted, and the data might come back in reverse order (though the
only way to be certain of sorting is to use an ORDER BY clause).

Syntax

Example

TIP
The INDEX_DESC hint processes an index in descending order of how it was built. This hint
should not be used if more than one table exists in the query.

 The INDEX_FFS Hint
The INDEX_FFS hint indicates a fast full scan of the index should be performed. That is, all values
in the index will be read without sorting. INDEX_FFS accesses only the index and not the
corresponding table. The fast full scan of the index is used only if all of the information that the query
needs to retrieve is in the index. This hint can give great performance gains, especially when the table
has a large number of columns. Beware, at times a fast full scan of an index is the wrong path for the
optimizer to take (look for it in the EXPLAIN PLAN as a potential issue).

Syntax

Example

The INDEX_FFS hint is used only if the index contains all the columns in the SELECT list. The
NO_INDEX_FFS hint has the same syntax, but this hint tells the optimizer not to perform fast full
index scans of the specified indexes. You must specify both the table and index in both of these hints.

TIP
The INDEX_FFS hint processes only the index and does not take the result and access the table.
All columns that are used and retrieved by the query must be contained in the index.

 The ORDERED Hint
The ORDERED hint directs tables to be accessed in a particular order, based on the order of the
tables in the FROM clause of the query, which is often referred to as the driving order for a query.
Generally, the last table in the FROM clause is the driving table in queries (this is version
dependent); however, using the ORDERED hint causes the first table in the FROM clause to be the
driver (and each table in order). The ORDERED hint also guarantees the driving order. When the
ORDERED hint is not used, Oracle may internally switch the driving table, when you compare how
tables are listed in the FROM clause (EXPLAIN PLAN can show how tables are accessed). The
complexity of possibilities when this hint is used is so great that much of the next chapter is focused
on this subject (please see Chapter 8 for more information regarding tuning joins). This chapter
briefly covers this hint, mainly for syntactical purposes.

Syntax

Example

If both tables (EMPLOYEES and DEPARTMENTS) have been analyzed and there are no indexes
on either table, the EMPLOYEES table should be accessed first and the DEPARTMENTS table is
accessed second. There are many possible variations (covered in the next two chapters) that cause
this to work differently (especially based on the join).

Example

In this example for a three-table join, EMPLOYEES should be joined first to DEPARTMENTS
(second as listed in the FROM clause), and then the result set joined to JOBS. There are many
possible join-order variations (covered in the next chapter) that could cause this to work differently,
but generally, when the ORDERED hint is used, if accepted, the join order should be as specified.

TIP
The ORDERED hint is one of the most powerful hints available. It processes the tables of the
query in the sequential order in which they are listed in the FROM clause. There are many
variations that cause this to work differently. The version of Oracle, the existence of indexes on
the tables, and which tables have been analyzed can all cause this to work differently. However,
when a multiple join is slow and you don’t know what to do, this is one of the first hints you should
try!

 The LEADING Hint
As the complexity of queries becomes greater, figuring out the order of all of the tables using the
ORDERED hint becomes more difficult. You can often figure out which table should be accessed first
(driving table), but you may not know which table to access after that one. The LEADING hint allows
you to specify one table to drive the query; the optimizer figures out which table to use after that. If
you specify more than one table with this hint, it is ignored. The ORDERED hint overrides the
LEADING hint.

Syntax

Example

As stated in the discussion of the ORDERED hint, the process by which a leading table is selected
is complex. In this example, the EMPLOYEES table would probably be chosen as the driving table as
it is the intersection table. The LEADING hint allows you to specify another table (I chose
DEPARTMENTS as the driving table) to be the first table accessed in the query. Be sure you have
properly configured the indexes to support the join order you specify.

TIP
The LEADING hint works similarly to the ORDERED hint. The LEADING hint is used to specify a
single table to drive a query while allowing the optimizer to figure out the rest.

 The NO_EXPAND Hint
The NO_EXPAND hint is used to keep the optimizer from “going off the deep end” when evaluating
IN lists that are combined with an OR. It disallows the optimizer from using OR expansion, which
refers to converting a query to apply OR conditions to execute as separate subqueries whose results
are merged with UNION ALL instead of applying OR conditions as a filter. Without the
NO_EXPAND hint, the optimizer may create a very long execution plan or use an INLIST
ITERATOR access method. To use OR expansion, use the USE_CONCAT hint.

Syntax

Example

I have used the NO_EXPAND hint and was able to increase performance to almost 50 times faster
than without the hint. For simple queries, there may not be much difference in the EXPLAIN PLAN
with or without the hint. However, when using a query that joins the EMPLOYEES and
DEPARTMENTS tables and selects at least one column from each table, you can see a big difference
in the EXPLAIN PLAN. In 12cR2, the optimizer uses the UNION ALL operator to perform OR
expansion, where previously the optimizer used the CONCATENATION operator. It’s yet to be seen
if this will correct some of the issues.

TIP
The NO_EXPAND hint prevents the optimizer from using OR expansion and is used when the query
becomes substantially more complex as a result of the expansion.

 The DRIVING_SITE Hint
The DRIVING_SITE hint is for processing distributed queries in the designated database. The table
specified in the hint should determine the driving site that will be used to process the actual join.

Syntax

Example

Oracle normally retrieves the rows from the remote site and joins them at the local site if this hint
is not specified. Because the EMPLOYEE_ID = 7747 limits the result set, I would rather pass the

small number of rows from the EMPLOYEES table to the remote site instead of pulling an entire
DEPARTMENTS table department back to my local site to process to minimize the overhead of data
transfer.

A similar benefit may be achieved by limiting the rows that are retrieved from a remote site by
creating a view locally for the remote table (if you can have a limiting WHERE clause in the view
that still retrieves the desired data). The local view should include the WHERE clause that will be
used, so the view will limit the rows returned from the remote database before they are sent back to
the local database. I have personally tuned queries from hours to seconds using this method of
creating a remote view versus using the DRIVING_SITE hint.

When using the DRIVING_SITE hint, the location is not specified in the hint (just the table name).
However, if an alias is used, the alias has to be used instead of the table name in the hint.

TIP
The DRIVING_SITE hint is extremely powerful, as it will potentially limit the amount of
information that will be processed over your network. The table specified with the DRIVING_SITE
hint is the location where the join will be processed. Using views for remote tables can also lead to
better performance by limiting the number of rows passed from the remote site before the records
are sent to the local site.

 The USE_MERGE Hint
The USE_MERGE hint is a hint that tells the optimizer to use a MERGE JOIN operation when
performing a join. A MERGE JOIN operation may be useful when queries perform set operations on
large numbers of rows, perhaps on non-equijoin conditions.

Assume you are joining two tables together. In a MERGE JOIN, the row set returned from each
table is sorted and then merged to form the final result set. Because each result is sorted and then
merged together, this action is most effective when retrieving all rows from a given query. If you want
the first row faster instead, then USE_NL might be a better hint (to force a nested loops join).

In the following illustration, the EMPLOYEES and DEPARTMENTS tables are joined, and that
result set is then joined to the JOBS table via a MERGE JOIN operation.

Syntax

where the first table should be accessed by a merge join. The second table specification is optional,
and, if unspecified, the optimizer decides what to join the first table to.

Example

The USE_MERGE hint in this query causes the JOBS table to be joined in a sort-merge join to the
returned row source resulting from the join of the EMPLOYEES and DEPARTMENTS tables. The
rows are sorted and then merged together to find the final result. The NO_USE_MERGE hint uses the
same syntax but instructs the optimizer to not use merge joins when selecting execution paths for a
query. The optimizer will instead favor other join methods such as hash joins and nested loops joins.
See Chapter 9 for a more detailed discussion of joins.

TIP
In a join of three or more tables, the USE_MERGE hint causes the table(s) specified in the hint to
be sort-merge joined with the resulting row set from a join of the other tables in the join.

 The USE_NL Hint
The USE_NL (use nested loops) hint is usually the fastest way to return a single row (in terms of
response time); it may be slower at returning all the rows. This hint causes a statement to be
processed using nested loops, which takes the first matching row from one table based on the result
from another table. This is the opposite of a merge join, which retrieves rows that match the
conditions from each table and then merges them together.

Syntax

where table1 should be the first table read (usually the smaller of the two tables by blocks) and
table2 the inner or lookup table. Reversing the order of the tables might persuade the cost-based
optimizer to read the tables in the suggested order; if not, try the LEADING or ORDERED hints to
specify the order of the tables, which can affect performance. If only one table is specified in the hint,
use a nested loops access method with the optimizer, choosing the table listed in the hint to be the
inner or lookup table.

Example

The USE_NL hint directs the optimizer to take the resulting rows returned from the EMPLOYEES
table and process them with the matching rows from the DEPARTMENTS table (the specified nested
loop table). The first row that matches from the DEPARTMENTS table can be returned to the user
immediately (as in a web-based application), as opposed to waiting until all matching rows are
found. The ORDERED hint specifies that the EMPLOYEES table should be processed first. Note that
there is a difference between using this query with or without the ORDERED hint as well.

TIP
The USE_NL hint usually provides the best response time (first row comes back faster) for smaller
result sets, whereas the USE_MERGE hint usually provides the best throughput when the
USE_HASH hint can’t be used.

The NO_USE_NL hint uses the same syntax but instructs the optimizer not to use nested loops
joins. A related hint, USE_NL_WITH_INDEX, takes two parameters—the name of the inner or
lookup table for the join along with the name of the index to use when performing the join.

 The USE_HASH Hint
The USE_HASH (use hash join) hint is usually the fastest way to join many rows together from
multiple tables if you have adequate memory for this operation. The USE_HASH <hint or method>
is similar to the nested loops where one result of one table is looped through the result from the
joined table. The difference is that the second table (the lookup table) is put into memory and should
usually be the smaller table. You must have a large enough HASH_AREA_SIZE or
PGA_AGGREGATE_LIMIT (see Chapter 4) for this to work properly; otherwise, the operation will
occur on disk (which slows things down).

NOTE
Don’t confuse USE_HASH with HASH, which is used with hash clusters—physical data structures
that store master and detail rows together in the same databases as already joined.

Syntax

Example

The USE_HASH hint directs the optimizer to take the rows returned from the EMPLOYEES table
and process them with the matching rows from the DEPARTMENTS table (the specified hash table),
which are hashed into memory. The first row that matches from the DEPARTMENTS table can be
returned to the user immediately, as opposed to waiting until all matching rows are found. There are
cases in which the optimizer overrides this hint, and environmental settings greatly affect the
optimizer’s decision to use hash joins. In the preceding query, if you added the condition “AND
D.DEPARTMENT_ID=1”, the optimizer would override the USE_HASH hint and do the more
efficient nested loops join (since the DEPARTMENTS table has been narrowed down by this
condition) or use a merge join.

The NO_USE_HASH hint has a similar syntax but instructs the optimizer to not use hash joins
when selecting execution paths for a query. The optimizer should instead use other join methods such
as nested loops or merge joins. You often need to add the ORDERED hint in addition to table join

hints to drive things the way you want them.

TIP
The USE_HASH hint usually provides the best response time for larger result sets.

SWAP_JOIN_INPUTS is an undocumented hint (there are My Oracle Support articles about it)
used to persuade the cost-based optimizer to use the specified table as the lookup hash table. Even
though it is undocumented, it is listed in the V$SQL_HINT view.

Syntax

 The QB_NAME Hint
The QB_NAME hint is used to assign a name to a query block within a statement. You can then assign
a hint elsewhere in the statement that references the query block. For example, if you have a query that
contains a subquery, you can assign a query block name to the subquery and then provide the hint at
the outermost query level. If two or more query blocks are given the same QB_NAME value, the
optimizer ignores the hints. You can also use the query block names when looking at execution plans
to decide to which part of the query a particular operation belongs. This hint in 12cR2 is used in the
CONTAINERS hint (described later in the chapter) to push hints to pluggable databases (PDBs).

If you have a complex query, with subqueries in the EXPLAIN PLAN, it appears that the optimizer
generates a default name for these query blocks, such as emp@sel$4. By using the QB_NAME hint,
you can specify the name instead (use a name that means something to you). This option is very
helpful when trying to tune extremely complex queries that contain more than one subquery.

Syntax

Example

Even though the FULL hint is specified in the outer query (main query), it should affect the
subquery because you used the query block specified in the inner query (subquery).

 The PUSH_SUBQ Hint
The PUSH_SUBQ hint can lead to dramatic performance gains (an increase of more than 100 times in
terms of performance) when used in the appropriate situation. The best situation in which to use this
hint is when the subquery returns a relatively small number of rows (quickly); those rows can then be
used to substantially limit the rows in the outer query. PUSH_SUBQ causes the subquery to be
evaluated at the earliest possible time. This hint cannot be used when the query uses a merge join and
cannot be used with remote tables. Moving the subquery to be part of the main query (when possible)
can lead to the same gains when the tables are driven in the correct order (accessing the former
subquery table first).

Syntax

Example

This query processes the subquery to be used by the outer query at its earliest possible time. I used
the undocumented CARDINALITY hint to simulate a large dataset because it was impossible to get
PUSH_SUBQ to do anything with the small amount of rows I had. CARDINALITY tells the optimizer
to use the indicated number as the expected number of rows in a data source instead of data dictionary
statistics or defaults.

TIP
The PUSH_SUBQ hint can improve performance greatly when the subquery returns only a few
rows very fast, and those rows can be used to limit the rows returned in the outer query.

 The PARALLEL Hint
The PARALLEL hint tells the optimizer to break a query into pieces (the degree of parallelism) and
process each piece with a different process simultaneously. The degree of parallelism is applied to
each parallelizable operation of a SQL statement. A query that requires a sort operation causes the
number of processes used to be double the degree specified, as both the table accesses and the sorts
are parallelized. A query coordinator process is also invoked to split and put the results together, so
if you set the degree of parallelism for a query to four, it may use four processes for the query plus
four more processes for the sorting, plus one more process for the breaking up and putting together of
the four pieces, or nine (9) total processes.

PARALLEL can be applied to the INSERT, UPDATE, and DELETE portions of a statement (you
have to commit immediately after if you use this) as well as to SELECT commands. You should
create tables with the PARALLEL clause when you plan to use this option (which should make using
the hint unnecessary, although the degree of parallelism can be changed with the hint). See Chapter 11
for a detailed look at all of the requirements and rules associated with this powerful option.

Syntax

The degree is the number of pieces (processes) into which the query is broken.

Example

This statement does not specify a degree of parallelism. The default degree of parallelism is
dictated by the table definition when the table was created or the system default is used.

Example

This statement specifies a degree of parallelism of 4. Per previous discussion, as many as nine
query servers may be allocated or created to satisfy this query. If you have multiple tables and you
specify the PARALLEL hint with a numeric value, that is the degree of parallelism used for all the
tables in the query, overriding the parallel setting at the table level. If you specify a table name (as in
the previous example), then the PARALLEL hint applies to only that table; any other tables accessed
by the query use the table’s parallelism setting.

TIP
Using the PARALLEL hint enables the use of parallel operations. If the degree is not specified with
the hint, the default degree specified during table creation is used.

 The NO_PARALLEL Hint
If a table is created with a parallel degree set, the table should automatically be queried in parallel
and should use that degree for all full table scan queries. You may, however, also “turn off” the use of
parallel operations in any one given query on a table that has been specified to use parallel
operations by using the NO_PARALLEL hint. The NO_PARALLEL hint results in a query with a

degree of one (1).

NOTE
The NO_PARALLEL hint used to be NOPARALLEL before Oracle standardized the naming.

Syntax

Example

TIP
Using the NO_PARALLEL hint disables parallel operations in a statement that would otherwise
use parallel processing due to a parallel object definition.

 The PARALLEL_INDEX Hint
The PARALLEL_INDEX hint asks the optimizer to parallelize index scans (full, range, or fast full)
for b-tree indexes. Oracle documentation suggests that PARALLEL_INDEX works with partitioned
indexes, but I found that it worked with nonpartitioned indexes too. Essentially PARALLEL_INDEX
is a PARALLEL hint for index reads and, like the PARALLEL hint, specifying the degree of
parallelism is optional.

Syntax

Example

NO_PARALLEL_INDEX (formerly NOPARALLEL_INDEX) is used to avoid parallel index reads.

Syntax

 The APPEND Hint
The APPEND hint can improve the performance of INSERTs (at times dramatically), but with a
potential cost in terms of physical database space. The APPEND hint does not check to see if there is
space within currently used blocks for INSERTs but instead appends the data into new blocks. You
might potentially waste space, but you will gain speed. If you never delete rows from a table, you
should definitely consider the APPEND hint.

If an INSERT is parallelized using the PARALLEL hint, then APPEND is used by default. You can
use the NOAPPEND hint (next section) to override this behavior. Also note that before you can use
this example, you must first enable parallel DML.

Syntax

Example

There are a couple of things to consider when using the APPEND hint. First, remember that
APPEND ignores existing free space, so you can waste a lot of disk space when using this option.

Second, APPEND does not work with single-row inserts using a VALUES clause; it only works with
INSERTS whose data comes from subqueries. Finally, a COMMIT should follow an INSERT using
APPEND to avoid an error when querying back newly inserted data.

TIP
The APPEND hint inserts values into a table without checking the free space in the currently used
blocks, instead appending the data into new blocks. Great performance is often the end result at
the cost of physical disk space (and well worth it).

 The NOAPPEND Hint
The NOAPPEND hint overrides the default for the PARALLEL inserts (the default, of course, is
APPEND). The NOAPPEND hint turns off the direct-path INSERT option.

Syntax

Example

TIP
The NOAPPEND hint overrides a PARALLEL hint, which normally uses the APPEND hint by
default.

 The CACHE Hint
The CACHE hint causes a full table scan to be cached (pinned) into memory (into the buffer cache),
so future queries accessing the same table find it in memory instead of going to disk. This creates one
potentially huge problem. If the table is very large, then it takes up an enormous amount of memory
(data block buffer cache space in particular). For small lookup tables, however, this is an excellent
option. Tables can be created with the CACHE option to be cached the first time they are accessed.

Syntax

Example

The entire DEPARTMENTS table is now cached in memory and is marked as a most recently used
(MRU) object.

TIP
The CACHE hint should be used with small lookup tables that are often accessed by users. This
ensures the table remains in memory.

 The NOCACHE Hint
The NOCACHE hint causes a table that is specified to be CACHED at the database level to not get
cached when you access it and is usually used to override an existing table specification.

Syntax

Example

In this example, the table should not be cached despite the ALTER statement and is put on the least
recently used (LRU) list.

TIP
The NOCACHE hint should be used to prevent caching a table specified with the CACHE option—
basically, when you want to access the table but you don’t want to cache it.

 The RESULT_CACHE Hint
As of 11g (and now in 12c), Oracle provides a new, separate shared memory pool to store query
results. This Result Cache is allocated directly from the shared pool but is maintained separately.
Queries executed often may experience better performance when using the new pool through the
RESULT_CACHE hint. Setting the RESULT_CACHE_MODE initialization parameter to FORCE
stores all results in the new cache for every query executed (this may not be desirable), but the
NO_RESULT_CACHE hint can be used to override this behavior. The difference between
RESULT_CACHE and CACHE is where the data is stored. NO_RESULT_CACHE requests that data
not be cached in the shared pool (it still can be cached in the buffer cache).

The RESULT_CACHE hint should work with individual parts of a query (query blocks) as well as
entire result sets. The RESULT_CACHE operation appears in an execution plan as RESULT_CACHE
with a system-generated temporary table name when the hint is used or when the query results are
retrieved from the Result Cache (best used with SUM, MAX, MIN, etc.).

Syntax

Example

TIP
The RESULT_CACHE hint caches query results in the shared pool; the NO_RESULT_CACHE hint
is used when you don’t want to cache data in the shared pool (it still can be cached in the buffer
cache).

 The CURSOR_SHARING_EXACT Hint
The CURSOR_SHARING_EXACT hint is used to ensure that literals in SQL statements are not
replaced with bind variables. This hint can be used to correct any minor issues when you don’t want
to use cursor sharing even though the instance-level CURSOR_SHARING parameter is set to either
FORCE or SIMILAR (but note that SIMILAR is deprecated and its use should be avoided).

Syntax

Example

In this example, Oracle will not be able to reuse a current statement in the shared pool unless it is
exactly like this one (including white space and the 123 literal). It should not create a bind variable.
Additional examples related to cursor sharing are in Chapter 4.

TIP

The CURSOR_SHARING_EXACT hint overrides the system parameter file setting of
CURSOR_SHARING to either FORCE or SIMILAR.

 The INMEMORY and NO_INMEMORY and Other
IM Hints
One of the biggest changes in 12c (12.1.0.2+) is the addition of the In-Memory (IM) column store
(covered in detail in Chapter 4). Included in this release are several hints to help drive a query. The
main ones are the INMEMORY and NO_INMEMORY hints.

INMEMORY (table_name) and NO_INMEMORY(table_name)
A quick example (drives the query to use INMEMORY):

The INMEMORY_PRUNING hint (and NO_INMEMORY_PRUNING) controls the use of the IM
storage index (which scans the CUs, or compression units). You can use it and then also check if a
storage index (automatically built by Oracle in the IM) was used to further prune the result. Note the
following example first selects values from the EMP table, and then runs the query used to check for
storage index pruning in the V$STATNAME and V$MYSTAT views.

The IM option has several hints that you can use in your SQL as well to force the optimizer to
utilize the In-Memory column store. The following are used most often:

 /*+ INMEMORY(table) */ (place a table into the In-Memory column store)

 /*+ NO_INMEMORY(table) */ (remove a table from the In-Memory column store)

 /*+ INMEMORY_PRUNING(table) */ (control the use of the IM storage index)

 /*+ NO_INMEMORY_PRUNING(table) */ (control the use of the IM storage index)

 /*+ PX_JOIN_FILTER(table) */ (force Bloom filter for a join if optimizer doesn’t)

 /*+ NO_PX_JOIN_FILTER(table) */ (force non-use of Bloom filter for a join if optimizer
doesn’t)

 /*+ VECTOR_TRANSFORM */ (force use of VECTOR GROUP BY—not in docs!)

TIP
In 12c (12.1.0.2+) the addition of the In-Memory (IM) column store brought us several hints. The
INMEMORY hint (also, NO_INMEMORY) can be used to help drive a query to use (or not use) the
In-Memory column store.

 The USE_INVISIBLE_INDEXES Hint
You can create or alter an index to be invisible. In 11g, when you set an index to invisible, it required
an exclusive lock that not many people noticed (since it was always fast if you weren’t doing a lot of
DML). In 12c, the lock is not needed anymore (truly performed online). The following query shows
the creation of a new invisible index on the DEPTNO column of the EMP table and subsequent query
where the index is not seen/used, and finally using the hint to force it:

You can still force the use of the index if you use a hint, in 12cR2, with a

USE_INVISIBLE_INDEXES hint—or by setting the initialization parameter (see Chapter 4)
OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE:

TIP
You can still force the use of an invisible index in 12cR2 with the USE_INVISIBLE_INDEXES hint.

 The CONTAINERS Hint
With the advent of pluggable databases (PDBs) in 12c (see Chapter 3), there are hints that help you
do more, even across PDBs. The ability to aggregate data across multiple PDBs using the
CONTAINERS hint, as a common user (like SYSTEM) in the CDB, is helpful. The CONTAINERS
hint causes the SQL to be recursively executed in each PDB. You can even pass hints to those PDBs
as well with the hint_string. Basic syntax example:

TIP
With pluggable databases (PDBs) in 12c, you can aggregate data across multiple PDBs, while in
the CDB, using the CONTAINERS hint. The CONTAINERS hint causes the SQL to be recursively
executed in each PDB.

 The WITH_PLSQL Hint
Lastly, the hint that’s not an optimizer hint: WITH_PLSQL. If a query containing the PL/SQL
declaration section is not the top-level query, the top-level query must include the WITH_PLSQL hint
(if not included, you will receive an ORA-32034 error). It can be a SELECT or DML (both will fail
under these conditions). The WITH_PLSQL hint allows the statement to compile and run as expected,
but it is not an optimizer hint, just a hint. Basic syntax example:

TIP
In 12c, if a query containing the PL/SQL declaration section is not the top-level query, the top-
level query must include the WITH_PLSQL hint, but it is not an optimizer hint.

Some Miscellaneous Hints and Notes
This section lists “the best of the rest” of the hints that are available. Each hint is listed with a brief
explanation. Please see the Oracle documentation if you want to use one of them.

 DYNAMIC_SAMPLING The DYNAMIC_SAMPLING hint is set from 0 to 10. The higher
the number is set, the more effort the compiler puts into dynamic sampling. It generates
statistics at run time for use in a query.

 INDEX_SS The INDEX_SS hint instructs the optimizer to use the skip-scan option for an
index on the specified table. A skip-scan is when Oracle skips the first column of a
concatenated index and uses the rest of the index. This hint works well with a two-part
concatenated index, where you often use both parts but infrequently need only the second part
(at times you don’t have any condition for the first part). You need to specify both the table and
the index.

 INDEX_SS_ASC The INDEX_SS_ASC hint is the same as the INDEX_SS hint, but this could
change in a future version of Oracle.

 INDEX_SS_DESC The INDEX_SS_DESC hint uses the same syntax as the INDEX_SS hint
but instructs the optimizer to scan the index skip-scan in descending order.

 MODEL_MIN_ANALYSIS The MODEL_MIN_ANALYSIS hint instructs the optimizer to
omit some compile-time optimizations of spreadsheet rules. This hint can reduce the
compilation time required during spreadsheet analysis and is used with SQL modeling queries
(queries using the MODEL clause).

 MONITOR The MONITOR hint turns index monitoring on for short queries. For MONITOR
to work, the initialization/session parameter CONTROL_MANAGEMENT_PACK_ACCESS
must be set to “DIAGNOSTIC+TUNING”. NO_MONITOR turns off index monitoring, even
for long-running queries. Monitoring refers to entries logged in the V$SQL_MONITOR and
V$SQL_PLAN_MONITOR tables during query execution.

 NATIVE_FULL_OUTER_JOIN When the full outer join condition between two tables is an
equijoin, Oracle Database automatically uses a native execution method based on a hash join.
This hint instructs the optimizer to consider using the hash full–outer join execution method,
when it might not normally do so. If you specify NO_NATIVE_FULL_OUTER_JOIN, then the
full outer join is executed as a union of the left outer join and an antijoin.

 NOLOGGING There is no “NOLOGGING” hint to turn off archive logging for a DML
statement although developers sometimes think there is. You can, however, ALTER TABLE
EMP NOLOGGING and then do an INSERT /*+ APPEND */ into the EMP table to bypass the
redo if the database is in ARCHIVELOG mode (careful, as this has major recovery
implications—back up after this). If the database is in NOARCHIVELOG mode (not
recommended), any direct load operations, such as the INSERT /*+ APPEND */, are not
recoverable. NOLOGGING works with many DDL commands, such as for creating tables,
creating indexes, and rebuilding indexes (careful, as this also has major recovery implications;
back up after and don’t leave tables and indexes in NOLOGGING mode).

 OPT_PARAM This hint allows you to modify the parameter setting in effect for the duration
of the query. This only works with session parameters that can be changed! Remember to put
parameter names in single quotes.

 PUSH_PRED This hint causes WHERE clause conditions to be pushed into a query view to
exclude rows as soon as possible in the select process. NO_PUSH_PRED reverses this
activity.

 REWRITE_OR_ERROR The REWRITE_OR_ERROR hint in a query produces the
following error if the query did not rewrite for queries against materialized views (this
happens when there are no suitable materialized views for query rewrite to use):

 ORA-30393: a query block in the statement did not rewrite
 Support My Oracle Support Note 1215173.1 discusses this hint.

 USE_NL_WITH_INDEX The USE_NL hint instructs the optimizer to use a nested loops join
with the specified table as the nondriving table (or as the inner table that is looped through
with the result of the driving table). The USE_NL_WITH_INDEX hint allows you to also
specify the index that is used during access. However, the optimizer must be able to use that

index with at least one join.

 GATHER_OPTIMIZER_STATISTICS The use of GATHER_OPTIMIZER_STATISTICS
(and NO_GATHER_OPTIMIZER_STATISTICS) is now allowed in 12c during bulk loads
CREATE TABLE should be ... AS SELECT and INSERT INTO... SELECT. There is also an
undocumented parameter that can force things as well
(_OPTIMIZER_GATHER_STATS_ON_LOAD)

 USE_CUBE Use a cube join for the query in 12c (also, NO_USE_CUBE). You need to ensure
the initialization parameter _OPTIMIZER_CUBE_JOIN_ENABLED=true (for the system or
session). Also, CUBE_AJ and CUBE_SJ are available.

 AUTO_REOPTIMIZE The optimizer changes execution plan on future executions of the
query (also, NO_AUTO_REOPTIMIZE) starting in 12c.

 ADAPTIVE_PLAN Use an adaptive plan (also, NO_ADAPTIVE_PLAN hints) starting in
12c when _OPTIMIZER_ADAPTIVE_PLANS=false.

 Undocumented Hints
The Oracle Database SQL Language Reference contains seldom-used hints that I have not
mentioned. Other hints are mentioned in the Oracle documentation but not the SQL guide. These hints
are generally found in sources such as the Oracle Database Data Warehousing Guide or
performance tuning manuals but without a formal write-up of their syntax and functionality. Some
hints exist but are not mentioned anywhere in the documentation (as mentioned previously,
V$SQL_HINT gives you a complete list of all hints). A few undocumented hints like
SWAP_JOIN_INPUTS are included in My Oracle Support articles describing their syntax and
functionality, but most are a complete mystery. Distinguishing between undocumented hints and mere
comments included in the hint comment structure can be difficult. What might appear to be an
undocumented hint may actually be nothing more than a comment that uses the same comment
delimiters (/* */) as hints, but without the “+” sign.

You should not use undocumented hints unless directed to by Oracle Support. Undocumented
features tend to be unsupported.

The RULE hint is deprecated, undocumented, and is unsupported in 12c (and 11gR2), even though
it was supported in previous versions of the database. The RULE optimizer mode was officially
desupported in Oracle 10.1. My Oracle Support (Doc ID 189702.1) has a good write-up on this
change, and also contains links and tips for migrating to the cost-based optimizer. Even the
Performance Tuning Guide for Oracle 10.1 release says, “The CHOOSE and RULE optimizer hints
are no longer supported. The functionalities of those hints still exist but will be removed in a future
release.” I believe these hints are currently only retained to support upgrades from older systems
(such as 9i). However, as Oracle9i moves into complete obsolescence, the RULE-related parameter
settings and hints will most likely be removed from the software. Prepare now!

RULE invokes the rule-based optimizer, an older way of determining an execution path for a
query based on a set of rules. The rule-based optimizer is generally less efficient than the cost-based
optimizer but can be useful under some rare conditions, generally where no valid statistics for query

objects exist:

 CAST conversions of collections to temporary tables
 TABLE function temporary table conversions (pipelined functions)
 When joining views (including views of views and inline views)
 When joining many tables together (more than three, very rarely) and the cost-based optimizer

becomes overwhelmed and chooses a suboptimal path (and takes a while to do it)
 Queries against system tables where the cost-based optimizer is not making optimal choices

It has been suggested that the undocumented CARDINALITY hint (which allows override of the
cardinality statistic) can overcome some of these limitations, but CARDINALITY requires an
estimate of the number of rows beforehand and table cardinality is only a part of what the cost-based
optimizer uses to determine an execution path.

Because the RULE hint is unsupported (according to the 12c, 11g, and 10g documentation), only
use it with extreme caution, if at all. The RULE hint should probably only be used when migrating
queries written for the rule-based optimizer to the cost-based optimizer.

 Using Hints with Views
Although hints can be hard-coded into views, doing so is generally a bad idea because it is
impossible to know how a view will be used (selected standalone, joined to other tables or views, or
even used by other views). It is better to push a hint into a view when needed in a query rather than
permanently embed a hint in a view through a global hint.

To use a global hint, use the view name followed by a period followed by the name of the affected
table designation, as used inside the view (table name or alias).

Example

When using global hints, you need to know the usage of tables and aliases in the target view. In this
example, the EMP_DETAILS_VIEW uses the alias d for DEPARTMENTS, so that designator must be
used in the global hint. The underlying table name is EMP.

 Notes on Hints and Stored Outlines (or SQL Plan

Baselines)
SQL Plan Baselines or stored outlines, which still work, but are deprecated/discouraged in 11g, are
covered in Chapter 6, but a note here is relevant for the discussion on hints. Migrating from stored
outlines to SQL Plan Baselines is also covered in Chapter 6. STORED OUTLINES or baselines
allow a query to use a predetermined execution plan every time that query is run, no matter where the
query is run from. People sometimes speak of the STORED OUTLINES as storing an execution plan,
but this is not really what happens. Instead, Oracle stores a series of hints to duplicate the execution
plan as saved during a recording session. If you want to query the hints for a STORED OUTLINE,
you can use the following query to USER_OUTLINE_HINTS:

Example

The very same considerations regarding using hints apply to stored outlines: unpredictable
behavior when upgrading, applying patches, or changing initialization/session parameters. Also, if the
query structure changes in any way, the stored outline may stop working.

Why Isn’t My Hint Working?
Often a hint won’t behave like you want it to. Sometimes the optimizer overrides the hint, but usually
people have a problem related to one of the following:

 The hint syntax is incorrect.
 The table(s) is not analyzed or the statistics are not current.
 There is a conflict with another hint.
 The hint requires a system parameter to be set for it to work.
 The table name was aliased in the query, but you used the table name, not the alias, in the hint.
 The hint requires a different version of Oracle than you have.
 You don’t understand the correct application for the hint.
 You haven’t slept lately—for many of the reasons cited here.
 There is a software bug.

Hints at a Glance

The following table lists many hints discussed in this chapter (and a couple of others) and how the
hint is used.

Tips Review
 Incorrect hint syntax leads to the hint being interpreted as a comment. If an additional hint is

specified correctly, it will be used.
 Multiple hints are separated with a space. Specifying multiple hints that conflict with each

other causes the query to use none of the conflicting hints.
 If an alias is used, the alias must be used in the hint or it will not work.
 The FIRST_ROWS hint causes the optimizer to choose a path that retrieves the first row (or a

specified number of rows) of a query the fastest, at the cost of retrieving multiple rows more
slowly. The FIRST_ROWS hint may be set as the default for the entire database by setting
OPTIMIZER_MODE = FIRST_ROWS in the system parameter file; query-level hints will
override the default setting for a given query. You can also set the optimizer to
FIRST_ROWS_n.

 The ALL_ROWS hint causes the optimizer to choose a path that retrieves all the rows of a
query the fastest, at the cost of retrieving one single row more slowly. The ALL_ROWS hint
may be set as the default for the entire database by setting OPTIMIZER_MODE =
ALL_ROWS (the default) in the system parameter file; query-level hints will override the
default setting for a given query.

 The FULL hint performs a full table scan on the table that is specified, not all tables in the
query. The FULL hint may also lead to better performance, which is attributable to causing a
change in the driving table of the query and not to the actual full table scan.

 The INDEX hint causes the optimizer to choose the index specified in the hint. Multiple
indexes for a single table can be specified, but it is usually better to specify only the most
restrictive index on a given query (and, that way, avoid the merging of each index’s result). If
multiple indexes are specified, Oracle chooses which (one or more) to use, so be careful or
your hint could potentially be overridden.

 The INDEX hint, without a specified index, should not consider a full table scan, even though
no indexes have been specified. The optimizer will choose the best index or indexes for the
query.

 The NO_INDEX hint must be in the tuning expert’s toolkit. It is used to remove an index from
consideration by the optimizer, so you may evaluate the need for the index prior to dropping it
or so you can evaluate other indexes. Be careful not to conflict with other index hints. The
NO_INDEX is one of my personal favorites when I want to drop an index and check which
index (if any) will be used instead of the one that I plan to drop.

 Not only does the INDEX_JOIN hint allow you to access only indexes on a table, which is a
scan of fewer total blocks, but also it can be five times faster (in some of my tests) than using
an index and scanning the table by ROWID.

 The INDEX_COMBINE hint causes the optimizer to merge multiple bitmap indexes for a
single table instead of choosing which one is better (as with the INDEX hint).

 The INDEX_ASC hint does exactly what the INDEX hint does because indexes are already
scanned in ascending order. INDEX_ASC guarantees this to be true, however, as Oracle may
change this default in the future. Descending indexes are actually sorted in descending order.
Oracle treats descending indexes as function-based indexes. The columns marked DESC are
sorted in descending order.

 The INDEX_DESC hint processes an index in descending order of how it was built. This hint
should not be used if more than one table exists in the query.

 The INDEX_FFS hint processes only the index and does not take the result and access the
table. All columns that are used and retrieved by the query must be contained in the index.

 The ORDERED hint is one of the most powerful hints available. It processes the tables of the
query in the sequential order in which they are listed in the FROM clause. There are many
variations that cause this hint to work differently. The version of Oracle, the existence of
indexes on the tables, and which tables have been analyzed can all cause this to work
differently. However, when a multiple join is slow and you don’t know what to do, this is one
of the first hints you should try!

 The LEADING hint works similarly to the ORDERED hint. The LEADING hint is used to
specify a single table to drive a query while allowing the optimizer to figure out the rest.

 The NO_EXPAND hint prevents the optimizer from using OR expansion and is used when the
query becomes substantially more complex as a result of the expansion.

 The DRIVING_SITE hint is extremely powerful, as it will potentially limit the amount of
information that will be processed over your network. The table specified with the
DRIVING_SITE hint is the location where the join will be processed. Using views for remote
tables can also lead to better performance by limiting the number of rows passed from the
remote site before the records are sent to the local site.

 In a join of three or more tables, the USE_MERGE hint causes the table(s) specified in the hint
to be sort-merge joined with the resulting row set from a join of the other tables in the join.

 The USE_NL hint usually provides the best response time (first row comes back faster) for
smaller result sets, whereas the USE_MERGE hint usually provides the best throughput when
the USE_HASH hint can’t be used.

 The USE_HASH hint usually provides the best response time for larger result sets.
 The PUSH_SUBQ hint can improve performance greatly when the subquery returns only a few

rows very fast, and those rows can be used to limit the rows returned in the outer query.
 Using the PARALLEL hint enables the use of parallel operations. If the degree is not specified

with the hint, the default degree specified during table creation is used.
 Using the NO_PARALLEL hint disables parallel operations in a statement that would

otherwise use parallel processing due to a parallel object definition.
 The APPEND hint inserts values into a table without checking the free space in the currently

used blocks, instead appending the data into new blocks. Great performance is often the end
result at the cost of physical disk space (and well worth it).

 The NOAPPEND hint overrides a PARALLEL hint, which normally uses the APPEND hint by
default.

 The CACHE hint should be used with small lookup tables that are often accessed by users.
This ensures that the table remains in memory.

 The NOCACHE hint should be used to prevent caching a table specified with the CACHE
option—basically, when you want to access the table but you don’t want to cache it.

 The RESULT_CACHE hint caches query results in the shared pool; the NO_RESULT_CACHE
hint is used when you don’t want to cache data in the shared pool (it still can be cached in the
buffer cache).

 The CURSOR_SHARING_EXACT hint overrides the system parameter file setting of
CURSOR_SHARING to either FORCE or SIMILAR.

 In 12c (12.1.0.2+) the addition of the In-Memory (IM) column store brought us several hints.
The INMEMORY hint (also, NO_INMEMORY) can be used to help drive a query to use (or
not use) the In-Memory column store.

 In 12c (12.1.0.2+) the INMEMORY_PRUNING hint controls the use of the IM storage index.
You can check to see if a storage index was used to further prune the result by checking
V$STATNAME and V$MYSTAT views.

 You can still force the use of an invisible index in 12cR2 with the
USE_INVISIBLE_INDEXES hint.

 With pluggable databases (PDBs) in 12c, you can aggregate data across multiple PDBs, while
in the CDB, using the CONTAINERS hint. The CONTAINERS hint causes the SQL to be
recursively executed in each PDB.

 In 12c, if a query containing the PL/SQL declaration section is not the top-level query, the top-
level query must include the WITH_PLSQL hint, but it is not an optimizer hint.

References
My Oracle Support Document 453567.1: SQL Query Result Cache.
Rich Niemiec, Expert Tuning Tips: Beginners Will Be Toast!, TUSC, IOUG Conference Paper, 2005.
Oracle Database Performance Tuning Guide (Oracle Corporation).
Oracle Database SQL Language Reference (Oracle Corporation).

Many thanks to Mark Riedel for upgrading this chapter to Oracle 11g! Lucas Niemiec also did
some research on a few of the hints and My Oracle Support notes listed.

T

CHAPTER
8

Query Tuning (Developer and Beginner DBA)

his chapter focuses on specific queries that you may encounter and some general information
for tuning those specific queries, but it has also been updated to include some great
information on Oracle 12c Adaptive Query Optimization, on Oracle’s Automatic SQL
Tuning, and some queries to access Oracle’s Automatic Workload Repository (AWR).

Examples of query tuning are spread throughout this book as well as instructions on making them
more effective in terms of your system’s architecture. This chapter centers on some of the most
common queries that can be tuned on most systems. A query can display several variations in
behavior, depending on system architecture, the data distribution in the tables, what tool or
application is accessing the database, the specific version of Oracle Database, and a variety of other
exceptions to the rules. Your results will vary; use your own testing to come up with the most
favorable performance. The goal in this chapter is to show you many of the issues to watch for and
how to fix them.

This chapter uses strictly cost-based examples for timings (except where noted). No other queries
were performed at the time of the tests performed for this chapter. I also flush the buffer cache and
shared pool to retest things. Many hints are also used throughout this chapter. For a detailed look at
hints and the syntax and structure of hints, please refer to Chapter 7. Multiple table and complex
queries are the focus of the next chapter and are not covered here.

Please note that this is not an all-inclusive chapter. Many other queries are covered throughout the
book, which need to be investigated when trying to increase performance for a given query. Some of
the most dramatic include using the parallel features of Oracle Database (Chapter 11), using
partitioned tables and indexes (Chapter 2), and using PL/SQL to improve performance (Chapter 10).
Note the benefits of using EXPLAIN and TRACE for queries (Chapter 6). Oracle Database 12c
provide the AWR and Automatic Database Diagnostic Monitor (ADDM). The Oracle Enterprise
Manager Cloud Control views of these new features are shown in Chapter 5. Tips covered in this
chapter include the following:

 Which queries do I tune? Querying the V$SQLAREA and V$SQL views
 Some useful 12c views for locating resource-intensive sessions and queries
 When should I use an index?
 What if I forget the index?
 Creating and checking an index

 What if I create a bad index?
 Exercising caution when dropping an index
 Using invisible indexes
 Function-based indexes and virtual columns
 Increasing performance by indexing the SELECT and WHERE columns
 Using the Fast Full Scan feature to guarantee success
 Making queries “magically” faster
 Caching a table into memory
 Using the Result Cache
 Choosing between multiple indexes on a table (use the most selective)
 Indexes that can get suppressed
 Tuning OR clauses
 Using the EXISTS clause and the nested subquery
 That table is a view!
 SQL and the Grand Unified Theory
 Tuning changes in Oracle Database 12c
 12c Adaptive Query Optimization
 Automatic SQL Tuning and the SQL Tuning Advisor
 Using the SQL Performance Analyzer (SPA)

Which Queries Do I Tune? Querying V$SQLAREA and
V$SQL Views
V$SQLAREA and V$SQL are great views that you can query to find the worst-performing SQL
statements that need to be optimized. The value in the DISK_READS column signifies the volume of
disk reads that are being performed on the system. This, combined with the executions
(DISK_READS/EXECUTIONS), returns the SQL statements that have the most disk hits per statement
execution. Any statement that makes the top of this list is most likely a problem query that needs to be
tuned. The AWR Report or Statspack Report also lists the resource-intensive queries; see Chapter 14
for detailed information.

 Selecting from the V$SQLAREA View to Find the
Worst Queries

The following query can be used to find the worst queries in your database. This query alone is worth
the price of this book if you’ve not heard of V$SQLAREA yet.

The DISK_READS column in the preceding statement can be replaced with the BUFFER_GETS
column to provide information on SQL statements requiring the largest amount of memory.

Now consider the output in a second example where there is a count of a billion-row table
(EMP3) and a count of what was originally a 130M-row table (EMP2), where all of the rows in
EMP2, except the first 15 rows inserted, were deleted. Note that Oracle counts all the way up to the
high water mark (HWM) of EMP2 (it read over 800,000, 8K blocks even though all of the data was
only in 1 block). This listing would have told you something is wrong with the query on EMP2 that
needs to be addressed, given that it only has 15 rows in it (analyzing the table will not improve this).

For this issue, if the EMP2 table was completely empty, you could simply truncate the table to fix
it. Since the table still has 15 rows, you have a few options; which option you choose depends on
your unique situation. I can

 EXPORT/TRUNCATE/IMPORT; CREATE TABLEemp2b AS SELECT * FROM emp2
(CTAS) and then DROP and RENAME (I have to worry about indexes/related objects, etc.)

 Do an “ALTER TABLE emp2 MOVE TABLESPACE new1” and rebuild the indexes.
 If it has a primary key, use DBMS_REDEFINITION.CAN_REDEF_TABLE to verify that the

table can be redefined online.

Please check the Oracle documentation for syntax/advantages/disadvantages and stipulations (not
all are listed here) for each of these options, so you can apply the best option to your situation (each
of these options has major downsides, including users not being able to access the table and related
objects getting dropped depending on which you use, so be careful). Once I reorganize the table, the
next count(*) only reads 1 block instead of 800,065 blocks (it was well worth fixing the problem).
Note in the query, I change “emp2” to “emP2” so I can find that cursor in the cache.

You can also shrink space in a table, index-organized table, index, partition, subpartition,
materialized view, or materialized view log. You do this using the ALTER TABLE, ALTER INDEX,
ALTER MATERIALIZED VIEW, or ALTER MATERIALIZED VIEW LOG statement with the
SHRINK SPACE clause. See the Oracle Administrators Guide for additional information. Lastly, if
you want to use the “ALTER TABLE table MOVE TABLESPACE tablespace_name” command,
consider using the same size tablespace (or smaller if appropriate) to move things “back and forth” so
as not to waste space.

TIP
Query V$SQLAREA to find your problem queries that need to be tuned.

 Selecting from the V$SQL View to Find the Worst
Queries
Querying V$SQL allows you to see the shared SQL area statements individually versus grouped
together (as V$SQLAREA does). Here is a faster query to get the top statements from V$SQL (this
query can also access V$SQLAREA by only changing the view name):

You can alternatively select SQL_TEXT instead of ADDRESS if you want to see the SQL:

TIP
You can also query V$SQL to find your problem queries that need to be tuned.

Oracle 12c Views for Locating Resource-Intensive
Sessions and Queries
Oracle 12c provides many views, giving you access to a wealth of information from the OS
(operating system) and the Automatic Workload Repository (AWR). The AWR provides metric-based
information, which is useful for monitoring and diagnosing performance issues. Metrics are a set of
statistics for certain system attributes as defined by Oracle. Essentially, they are context-defined
statistics that are collated into historical information within the AWR.

Accessing the AWR and ADDM information via Enterprise Manager is covered in Chapter 5 as
well as in the Oracle documentation. In this section, I am only looking at pulling some specific
information out of these views using SQL to locate queries that may need tuning. Please check your
licensing to ensure which products are an added cost (this can vary by version!). You must have the
Oracle Diagnostics Pack license to use AWR and ADDM (including accessing their underlying
tables, such as the DBA_HIST tables). Statspack was still free the last time I checked, but check
Oracle licensing on any product you use to be sure. You can also check the
DBA_FEATURE_USAGE_STATISTICS table.

 Selecting from V$SESSMETRIC to Find Current
Resource-Intensive Sessions
The following query shows the sessions that are heaviest in physical reads, CPU usage, or logical
reads over a defined interval (15 seconds, by default). You may want to adjust the thresholds as
appropriate for your environment.

 Viewing Available AWR Snapshots
The next few queries access AWR snapshot information (including the next section).

Query the DBA_HIST_SNAPSHOT view to find more information about specific AWR snapshots:

 Selecting from the DBA_HIST_SQLSTAT View to
Find the Worst Queries
SQL statements that have exceeded predefined thresholds are kept in the AWR for a predefined time
(seven days, by default). You can query the DBA_HIST_SQLSTAT view to find the worst queries.
The following is the equivalent statement to the V$SQLAREA query earlier in this chapter.

Note that in the output, the same SQL_ID appears in three different AWR snapshots. (In this case, it
was executed during the first one and is still running.) You could also choose to filter on other
criteria, including cumulative or delta values for DISK_READS, BUFFER_GETS,
ROWS_PROCESSED, CPU_TIME, ELAPSED_TIME, IOWAIT, CLWAIT (cluster wait), and so on.
Run a DESC command of the view DBA_HIST_SQLSTAT to get a full list of its columns. This listing
shows different SQL_IDs at the top of the list.

When Should I Use an Index?
In Oracle version 5, many DBAs called the indexing rule the 80/20 Rule; you needed to use an index
if less than 20 percent of the rows were being returned by a query. In version 7, this number was
reduced to about 7 percent on average, and in versions 8i and 9i, the number was closer to 4 percent.
In versions 10g and 11g, Oracle is better at retrieving the entire table, so the value continues to be in
the 5 percent or less range, although it depends not only on the number of rows but also on how the
blocks are distributed (see Chapter 2 for additional information).

Figure 8-1 shows when an index should generally be used (in V5 and V6 for rule-based
optimization and in V7, V8i, V9i, V10g, V11g, or V12c for cost-based optimization). However, based
on the distribution of data, parallel queries or partitioning can be used and other factors need to be
considered. In Chapter 9, you will see how to make this graph for your own queries using
mathematical models. If the table has fewer than 1000 records (small tables), then the graph is also
different. For small tables, Oracle’s cost-based optimizer generally uses the index when only less
than 1 percent of the table is queried. This graph shows you the progress in versions of Oracle (these
are hardware dependent). The lower the percentage of rows returned, the more likely you would use
an index. This graph shows the speed of a full table scan becoming faster. Because of the many
variables starting with Oracle9i, the percentage could continue to decrease as the trend shows
happening from V5 to V8i, or it could increase slightly, depending on how you architect the database.
In Oracle9i, Oracle 10g, Oracle 11g, or 12c, you create where the graph goes. Hardware like
Exadata and Exalogic enhancements can further alter this graph (where percentage could decrease to
less than 1 percent); your choice may depend on how the data and indexes are architected, how the
data is distributed within the blocks, and how it is accessed.

FIGURE 8-1. When to generally use an index based on the percentage of rows returned by a query

TIP
When a small number of rows (“small” is version and hardware dependent, but almost always less
than 5 percent, and even less than 1 percent at times) are returned to meet a condition in a query,
you generally want to use an index on that condition (column), given that the small number of rows
also returns a small number of individual blocks (usually the case).

 Selecting Query Text from the
DBA_HIST_SQLTEXT View
The query text for the offending queries shown in the previous two examples can be obtained from the
DBA_HIST_SQLTEXT view with the following query:

 Selecting Query EXPLAIN PLAN from the
DBA_HIST_SQL_PLAN View
The EXPLAIN PLAN for the offending SQL is also captured. You may view information about the
execution plan through the DBA_HIST_SQL_PLAN view. If you want to display the EXPLAIN
PLAN, the simplest way is to use the DBMS_XPLAN package with a statement such as this one:

As you can see, this particular query is a Cartesian join, which is normally not a valid table join
(certainly not a good idea as it joins every row of one table with every row of another table) and can
lead to the massive resource consumption. This query was used to show how to take advantage of
some of the new functionality for identifying and collecting information about poorly performing SQL.
Here is the output for the query that was used earlier that queries the EMP3 table, which is over 1
billion rows (still fast at 5 minutes, even though it’s 1B rows):

What If I Forget the Index?
Although it seems obvious that columns, which are generally restrictive, require indexes, this
requirement is not always such common knowledge among users or managers. I once went to a
consulting job where their database was suffering from incredibly poor performance. When I asked
for a list of tables and indexes, they replied, “We have a list of tables, but we haven’t figured out
what indexes are yet and if we should use them or not—do you think you can help our performance?”
My first thought was, “Wow, can I ever—my dream tuning job.” My second thought was that I had
been training experts too long and had forgotten that not everyone is as far along in their performance
education. While basic index principles and structure are covered in Chapter 2, this section will
focus on query-related issues surrounding indexes.

Even if you have built indexes correctly for most columns needing them, you may miss a crucial
column here and there. If you forget to put an index on a restrictive column, then the speed of those
queries will not be optimized. Consider the following example where the percent of rows returned by
any given CUST_ID is less than 1 percent (there are about 25M rows on the SALES2 table and about
25K of them are CUST_ID=22340). Under these circumstances, an index on the CUST_ID column
should normally be implemented. The next query does not have an index on CUST_ID:

Not only is the query extremely slow, but it also uses a tremendous amount of memory and CPU to
perform the query. This results in an impatient user and a frustrating wait for other users due to the

lack of system resources. (Sound familiar?)

 Creating an Index
To accelerate the query in the last example, I build an index on the CUST_ID column. The storage
clause must be based on the size of the table and the column. The table is over 25 million rows (the
space for the index is about 461M). Specifying Automatic Segment Space Management for the
underlying tablespace allows Oracle to manage segment space automatically for best performance. I
could also perform an ALTER SESSION SET SORT_AREA_SIZE = 500000000 (if I had the
necessary OS memory) and the index creation would be much faster.

 Invisible Index
Oracle has a feature called invisible indexes. An invisible index is invisible to the optimizer by
default. Using this feature, you can test a new index without affecting the execution plans of the
existing SQL statements or you can test the effect of dropping an index without actually dropping it
(the index continues to be maintained even though it is not seen by the optimizer; this ensures if you
make it visible again, it’s up to date). Note that Chapter 2 has additional information and queries
related to invisible indexes.

You can create an invisible index or you can alter an existing index to make it invisible. To enable
the optimizer to use all invisible indexes (not a good idea usually), set the new initialization
parameter called OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE. This parameter is set to
FALSE by default. You can run this CREATE instead of the one in the previous section:

 Checking the Index on a Table

Before creating indexes, check for current indexes that exist on that table to ensure there are no
conflicts.

Once you have created the index, verify that it exists by querying the DBA_IND_COLUMNS
view:

The TABLE_NAME is the table that is being indexed; the INDEX_NAME is the name of the
index; the COLUMN_NAME is the column being indexed; and the COLUMN_POSITION is the order
of the columns in a multipart index. Because our index involves only one column, the
COLUMN_POSITION is 1 (CUST_ID is the first and only column in the index).

Query USER_INDEXES to verify the visibility of the index:

 Is the Column Properly Indexed?
Rerun the same query now that the CUST_ID column is properly indexed. The query is dramatically
faster, and more important, it no longer “floods” the system with a tremendous amount of data to the
SGA (it has a much lower number of block reads) and subsequently reduces the physical I/O as well.
Originally, this query took around 120,000 physical reads. Now it only takes about 60 physical reads
(1000× less) and over 800× faster. Even though the query itself runs in seconds, this time difference
can be a big deal if the query runs many times.

TIP
The first tip concerning slow queries is that you’ll have a lot of them if you don’t index restrictive
columns (return a small percentage of the table). Building indexes on restrictive columns is the
first step toward better system performance.

What If I Create a Bad Index?
In the query to the PRODUCT table, I have a COMPANY_NO column. Since this company’s
expansion has not occurred, all rows in the table have a COMPANY_NO = 1. What if I am a beginner
and I have heard that indexes are good and have decided to index the COMPANY_NO column?
Consider the following example which selects only certain columns from the PLAN_TABLE after
executing the query.

The cost-based optimizer will analyze the index as bad and suppress it. The table must be
reanalyzed after the index (depending on the statistics level) is created for the cost-based optimizer to
make an informed choice. The index created on COMPANY_NO is correctly suppressed by Oracle
internally (since it would access the entire table and index).

You can force an originally suppressed index to be used (bad choice), as follows:

Indexes can also be suppressed when they cause poorer performance by using the FULL hint:

Next, consider a similar example on a faster server with a 25M-row table where I am summing all
rows together. Oracle is once again smart enough to do a full table scan since I am summing the entire
table. A full table scan only scans the table, but if I force an index (as in the second example), it has to
read many more blocks (almost 50 percent more), scanning both the table and the index (resulting in a
query that is almost four times slower).

Now let’s try scanning the index and then go to the table (bad idea):

TIP
Bad indexes (indexing the wrong columns) can cause as much trouble as forgetting to use indexes
on the correct columns. While Oracle’s cost-based optimizer generally suppresses poor indexes,
problems can still develop when a bad index is used at the same time as a good index. The cost of
each index for INSERTs and DELETEs must also be considered when adding many indexes.

Exercising Caution When Dropping an Index
Some people’s first reaction when they find a query that is using a poor index is to drop the index.
Suppressing the index should be your first reaction, however, and investigating the impact of the index
on other queries should be the next action. Unless your query was the only one being performed
against the given table, changing/dropping an index might be a detrimental solution (perhaps it’s only
used during month-end or year-end reporting). The invisible index feature can be used to determine
the effect of dropping an index without actually dropping it (Chapter 2 covers the indexes in detail as
well using the invisible index to create multiple types of indexes on the same column at the same time
in 12c). Issue the following command against the index that needs to be dropped:

An invisible index is an index that continues to be maintained, but is ignored by the optimizer
unless you explicitly set it back to being visible or turn all invisible indexes on by setting the
OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE (careful). This way you can test the effect of
dropping a particular index. If you want to reverse it, all you need to do is

The next section investigates indexing columns that are both in the SELECT and WHERE clauses
of the query.

Indexing the Columns Used in the SELECT and
WHERE
The preceding section described how dropping an index can hurt performance for a query. Consider
the following query where the index was created to help. I built a million-row EMPLOYEES table
from the famous SCOTT.EMP table. This query does not have indexed columns:

First, I place an index on the DEPTNO column to try to improve performance:

This situation is now worse since almost all values for DEPTNO were equal to 10 (we read the
entire index and almost the entire table, which takes longer than just reading the entire table). In this
query, only the ENAME is selected. If this is a crucial query on the system, choose to index both the
SELECT and the WHERE columns. By doing this, you create a concatenated index:

The query is now tremendously faster:

The table itself did not have to be accessed (only read the entire index), which increases the speed
of the query. Indexing both the column in the SELECT clause and the column in the WHERE clause
allows the query to only access the index.

Consider the following 25M-row SALES3 table (created from SALES2). I have a two-part single

index on the CUST_ID and PROD_ID columns. Oracle only needs to access the index (no table
access), since all needed information is contained in the index (60K reads instead of the 160K you
saw earlier).

TIP
For crucial queries on your system, consider concatenated indexes on the columns contained in
both the SELECT and the WHERE clauses so only the index is accessed.

Using the Fast Full Scan
The preceding section demonstrated that if I index both the SELECT and the WHERE columns, the
query is much faster. Oracle does not guarantee that only the index will be used under these
circumstances. However, there is a hint that guarantees (under most circumstances) that only the index
will be used. The INDEX_FFS hint is a fast full scan of the index. This hint accesses only the index
and not the corresponding table. Consider a query from a table with 100M rows with the index on
CUST_ID called SALES2_IDX.

First, you check the number of blocks read for a full table scan and then a fast full index scan:

Now let’s try to select using a full index scan instead:

The query with the INDEX_FFS hint now only accesses the index. Instead of scanning over 800K
blocks (of which 400K were physical reads), you only scan around 300K blocks (of which 210K are
physical reads). Also note, sometimes your queries scan the entire index (as this one did), which is
often not as good as if you have a limiting condition, so be careful; using an index search is much
better than a full index scan when possible. Oracle often scans the index versus scanning the table for
a count(*), by default, in 12c. Running either of these queries a second time (see next section) does
not get rid of the physical scans since the query retrieves enough data to fill half of the number of
blocks as in the total buffer cache (it is pushed out of the cache quickly since it is not a short table;
see Chapter 14 for additional details).

TIP
The INDEX_FFS hint processes only the index and does not access the table. All columns that are
used and retrieved by the query must be contained in the index.

Making the Query “Magically” Faster
Consider the following query from the last example in which the user adds a hint called
“RICHS_SECRET_HINT.” The user overheard a conversation about this hint at a recent user group
and believes this hint (buried deep in the X$ tables) is the hidden secret to tuning. First, the query is
run and no index can be used (a large EMPLOYEES table with over 14M rows):

There is no index that can be used on this query. A full table scan is performed. The user now adds
Rich’s secret hint to the query:

The hint worked and the query is “magically” faster, although a full table scan was still performed
in the second query. Actually, the data is now stored in memory and querying the data from memory is
now much faster than going to disk for the data—so much for the magic! By effectively using the 12c
Result Cache, you can magically make things faster as well. See the “Using the Result Cache” section
later in this chapter.

TIP
When running a query multiple times in succession, it becomes faster because you have now
cached the data in memory (although full table scans are aged out of memory quicker than indexed
scans). At times, people are tricked into believing that they have made a query faster, when in
actuality they are accessing data stored in memory. Flushing the buffer cache or restarting the test
system can help you get accurate tuning results for comparisons. The next time a user calls and
says a query was too slow, just say: Really? Try running it again.

Caching a Table in Memory

While it is disappointing that there is no “secret hint” for tuning (ORDERED and LEADING are the
hints closest to magic), you can use the previous section to learn from, and then you can use this
knowledge to your advantage. In the previous section, the query ran faster the second time because it
was cached in memory. What if the tables used most often were cached in memory all the time? Well,
the first problem is that if you cannot cache every table in memory, you must focus on the smaller and
more often used tables to be cached. You can also use multiple buffer pools as discussed in Chapter
4. The following query is run against an unindexed CUSTOMER table to return one of the rows:

The database is then stopped and restarted so as to not influence the timing statistics (you can also
perform an ALTER SYSTEM FLUSH BUFFER_CACHE, but only do this on a test system). The table
is altered to cache the records:

Query the unindexed, but now cached, SALES table and it still takes 0.84 seconds. The table has
been altered to be cached, but the data is not in memory yet. Every subsequent query will now be
faster (after the first one). I query the unindexed (but now cached) SALES table to return one of the
rows in 0.04 seconds, or 21 times faster (this increase in speed could add up fast if this query is run
thousands of times):

The query is faster because the table is now cached in memory; in fact, all queries to this table are
now fast regardless of the condition used. A cached table is “pinned” into memory and placed at the
“most recently used” end of the cache; it is pushed out of memory only after other full table scans to
tables that are not cached are pushed out. Running a query multiple times places the data in memory
so subsequent queries are faster—only caching a table ensures that the data is not later pushed out of
memory. Oracle caches frequently used data, by default, as you access things over and over.

TIP
Caching an often-used but relatively small table into memory ensures that the data is not pushed
out of memory by other data. Be careful, however—cached tables can alter the execution path
normally chosen by the optimizer, leading to an unexpected execution order for the query (for
instance, affecting the driving table in nested loop joins).

Using the Result Cache
The Result Cache lets you cache SQL results in an area of the SGA to improve performance.

The following RESULT_CACHE hint caches the results on execution:

When a query with RESULT_CACHE hint is run, Oracle will see if the results of the query have
already been executed, computed, and cached, and, if so, retrieve the data from the cache instead of
querying the data blocks and computing the results again. Take the following important points into
consideration before using this feature:

 The Result Cache feature is useful only for SQL queries that are executed frequently.
 The underlying data doesn’t change very often. When the data changes, the result set is

removed from the cache.

If you are executing the same queries over and over, using the RESULT_CACHE hint often makes
subsequent queries run faster. Chapters 1 and 4 contain additional information on this.

TIP
If you are executing the same queries over and over (especially grouping or calculation functions),
using the RESULT_CACHE hint often makes subsequent queries run faster (at times very much
faster).

Choosing Among Multiple Indexes (Use the Most
Selective)
Having multiple indexes on a table can cause problems when you execute a query where the choices
include using more than one of the indexes. The optimizer almost always chooses correctly. Consider
the following example where the percent of rows returned by any given PRODUCT_ID is less than 1
percent where the data is equally distributed between the blocks. Under these circumstances, place an
index on the PRODUCT_ID column. The following query has a single index on PRODUCT_ID:

Now create an additional index on the COMPANY_NO column. In this example, all of the records
have a COMPANY_NO = 1, an extremely poor index. Rerun the query with both indexes (one on
PRODUCT_ID and one on COMPANY_NO) existing on the table:

Oracle has chosen not to use either of the two indexes (perhaps because of a multiblock
initialization parameter or some other “exception to the rule”), and the query performed a full table
scan. Depending on the statistical data stored and version of Oracle used, I have seen this same query
use the right index, the wrong index, no index at all, or a merge of both indexes. The correct choice is
to force the use of the correct index. The correct index is the most restrictive. Rewrite the query to
force the use of the most restrictive index, as follows, or better yet, fix the real initialization
parameter issue (the less hints that you use, the better—especially when you upgrade to the next
version of Oracle).

To rewrite the query to force the use of the most restrictive index:

TIP
When multiple indexes on a single table can be used for a query, use the most restrictive index
when you need to override an optimizer choice. While Oracle’s cost-based optimizer generally
forces the use of the most restrictive index, variations will occur, depending on the version of
Oracle used, the structure of the query, and the initialization parameters that you may use. Fix the
larger issue (get rid of bad indexes) if you see this as a trend.

TIP
Bitmap indexes usually behave differently because they are usually much smaller. See Chapter 2
for more information on the differences between bitmap indexes and other indexes.

The Index Merge
Oracle’s index merge feature allows you to merge two separate indexes and use the result of the
indexes instead of going to the table from one of the indexes. Consider, for instructional purposes
only, the following example (if you use a rule-based hint, which Oracle does not support, but uses
internally at times, Oracle includes a note in the EXPLAIN PLAN that specifically suggests you use
the cost-based optimizer). Also note that OPTIMIZER_MODE set to CHOOSE is not supported
either, so use either ALL_ROWS or FIRST_ROWS instead.

The following statistics are based on 1,000,000 records. The table is 210M.

In the first query, I test the speed of using just one of the indexes and then going back to the table
(under certain scenarios, Oracle tunes this with an AND-EQUAL operation to access data from the
indexes). I then use the INDEX_JOIN hint to force the merge of two separate indexes and use the
result of the indexes instead of going back to the table. When the indexes are both small compared to
the size of the table, this can lead to better performance. On a faster system, the second query takes
only 0.06 seconds, so your mileage will vary.

Now, let’s consider a query to the 25M-row SALES3 table on a faster server with separate
indexes on the CUST_ID and PROD_ID columns. Using an index merge of the two indexes yields a
very slow response time and many blocks read (over 200K physical reads):

If I drop the two indexes on SALES3 and replace them with a two-part single index on the
CUST_ID and PROD_ID columns, performance improves greatly—over ten times faster. Another
benefit is the reduction of physical block reads from over 200K to only 60K.

Indexes That Can Get Suppressed
Building the perfect system with all of the correctly indexed columns does not guarantee successful
system performance. With the prevalence in business of bright-eyed ad hoc query users comes a
variety of tuning challenges. One of the most common is the suppression of perfectly good indexes. A
modification of the column side of a WHERE clause often results in that index being suppressed
(unless function-based indexes are utilized or the super-smart optimizer figures out a better path).
Alternative methods for writing the same query do exist that do not modify the indexed column. A
couple of those examples are listed next. Oracle does use the indexes in many cases, internally fixing
the suppression (they continue to get better at this from version to version), especially when an index
search or a full index scan can be run instead of a full table scan. If you use 3GL code or code within
applications, the results vary, so I continue to show these areas that are a problem with certain tools
or applications for you to consider when you run into that full table scan that you didn’t expect.

A math function is performed on the column:

The math function is performed on the other side of the clause (Oracle often fixes this internally):

A function is performed on the column:

The function is rewritten so the column is not altered (a LIKE or function-based index would fix
this):

As I stated previously, Oracle is often smart enough to figure out the issue and still use the index.
The following query shows that the index is scanned with no table access despite the attempt to
suppress the index (adding zero (0) or using an NULL Value (NVL) gave the same result). In the
following case, everything needed is in the index. Oracle figures out the substring function on the
leading edge of the index but is still able to use only the index despite needing both columns from the
index (versus using the index to access back to the table).

TIP
At times, modifying the column side of the query can result in the index being suppressed unless a
function-based index is used. Oracle may also fix this issue during parsing. The more complex the
query, the less likely Oracle will fix it.

Function-Based Indexes
One of the largest problems with indexes, as seen in the previous section, is that indexes are often
suppressed by developers and ad hoc users. Developers using functions often suppress indexes.
There is a way to combat this problem. Function-based indexes allow you to create an index based on
a function or expression. The value of the function or expression is specified by the person creating
the index and is stored in the index. Function-based indexes can involve multiple columns, arithmetic
expressions, or maybe a PL/SQL function or C callout.

The following example shows how to create a function-based index:

An index that uses the UPPER function has been created on the ENAME column. The following
example queries the EMP table using the function-based index:

The function-based index (EMP_IDX) can be used for this query. For large tables where the
condition retrieves a small amount of records, the query yields substantial performance gains over a
full table scan. See Chapter 2 for additional details and examples.

The following initialization parameters must be set (subject to change with each version) to use
function-based indexes (the optimization mode must be cost-based as well). When a function-based
index is not working, this is often the problem.

TIP
Function-based indexes can lead to dramatic performance gains when used to create indexes on
functions often used on selective columns in the WHERE clause.

To check the details for function-based indexes on a table, you may use a query similar to this:

Virtual Columns
A helpful feature introduced in Oracle 11g is the virtual column, a column that allows you to define a
function on other column(s) in the same table. Here is an example of creating a table with a virtual
column:

An important point to remember is that indexes defined against virtual columns are equivalent to
function-based indexes.

The “Curious” OR
The optimizer often has problems when the OR clause is used. The best way to think of the OR clause
is as multiple queries that are then merged. Consider the following example where there is a single
primary key on PK_COL1, PK_COL2, and PK_COL3. Prior to Oracle 9i, Oracle Database
performed this query in the following way:

NOTE
PK_COL2 and PK_COL3 were not used for index access.

Since Oracle9i, Oracle has improved how the optimizer handles this query (internally performing
an OR expansion). In 12c, the optimizer uses the full primary key and concatenates the results (as
shown next), which is much faster than using only part of the primary key (as in the preceding access
path). Even though the access path for the preceding query looks better because there are fewer lines,
don’t be tricked; fewer lines in the EXPLAIN PLAN doesn’t mean a more efficient query.

To get this desired result prior to 9i, you would have needed to break up the query as shown here
(I show this since often making a query longer can make it faster, as it’s processed differently):

TIP
Oracle has improved the way that it performs the OR clause. The NO_EXPAND hint can still be
helpful, as it prevents the optimizer from using OR expansion, as described in Chapter 7.

Using the EXISTS Function and the Nested Subquery
Another helpful tip to remember is to use the EXISTS function instead of the IN function in most
circumstances. The EXISTS function checks to find a single matching row to return the result in a
subquery. Because the IN function retrieves and checks all rows, it is slower. Oracle has also
improved the optimizer so it often performs this optimization for you as well. Consider the following
example, where the IN function leads to very poor performance. This query is faster only if the
ITEMS table is extremely small.

In this query, the entire ITEMS table is retrieved.
This query is faster when the condition PRODUCT_ID = 167 substantially limits the outside

query:

In this query, only the records retrieved in the outer query (from the PRODUCT table) are checked
against the ITEMS table. This query can be substantially faster than the first query if the ITEM_NO in
the ITEMS table is indexed or if the ITEMS table is very large, yet the items are limited by the
condition PRODUCT_ID = 167 in the outer query.

TIP
Using the nested subquery with an EXISTS clause may make queries dramatically faster,
depending on the data being retrieved from each part of the query. Oracle 12c often makes this
translation internally, saving you time and giving you performance gains!

That Table Is Actually a View!
Views can hide the complexity of SQL but they can also add to the complexity of optimization. When
looking at a SELECT statement, unless you have instituted some kind of naming convention for views,
you cannot tell if an object is a table or a view from the SELECT statement alone. You must examine
the object in the database to tell the difference. Views can join multiple tables. Be careful about
joining views or using a view designed for one purpose for a different purpose, or you may pay a
heavy performance price. Ensure that all tables involved in the view are actually required by your
query. Also keep in mind that different types of triggers can also hide performance issues behind a
simple query. Good developer documentation can save a lot of time in finding performance issues in
complex code.

SQL and Grand Unified Theory
Many physicists have searched for a single theory that explains all aspects of how the universe
works. Many theories postulated have worked well in certain circumstances and break down in
others. This is fine for theoretical physics, but it can spell disaster in a database. When writing SQL,
one should not attempt to write the “Grand Unified SQL” statement that will do all tasks, depending
on the arguments passed to it. This typically results in suboptimal performance for most tasks
performed by the statement (or you feel the effect during the next upgrade). It is better to write
separate, highly efficient statements for each task that needs to be performed.

Tuning Changes in Oracle Database 12c
The general SQL tuning principles remain the same in 11g and 12c, but some significant cost-based
optimizer changes should be noted:

 The RULE (and CHOOSE) OPTIMIZER_MODE has been deprecated and desupported in both
11g and 12c. (The only way to get rule-based behavior is by using the RULE hint in a query,
which is not supported either.) In general, using the RULE hint is not recommended, but for
individual queries that need it, it is there. Consult with My Oracle Support before using the
RULE hint. See Chapter 4 for more information on initialization parameters.
OPTIMIZER_MODE values include ALL_ROWS, FIRST_ROWS, and FIRST_ROWS_n.

 In 12c, the cost-based optimizer has two modes:
 In NORMAL mode, the cost-based optimizer considers a very small subset of possible

execution plans to determine which one to choose. The number of plans considered is far
smaller than in past versions of the database in order to keep the time to generate the
execution plan within strict limits. SQL profiles (statistical information) can be used to
influence which plans are considered.

 The TUNING mode of the cost-based optimizer can be used to perform more detailed
analysis of SQL statements and make recommendations for actions to be taken and for
auxiliary statistics to be accepted into a SQL profile for later use when running under
NORMAL mode. TUNING mode is also known as the Automatic Tuning Optimizer mode,
and the optimizer can take several minutes for a single statement (good for testing). See the
Oracle Database Performance Tuning Guide Automatic SQL Tuning (Chapter 17 in the
11.2 docs). Oracle states that the NORMAL mode should provide an acceptable execution
path for most SQL statements. SQL statements that do not perform well in NORMAL mode
may be tuned in TUNING mode for later use in NORMAL mode. This should provide a
better performance balance for queries that have defined SQL profiles, with the majority of
the optimizer work for complex queries being performed in TUNING mode once, rather
than repeatedly, each time the SQL statement is parsed.

 In Oracle 12c, the optimizer has been greatly improved by introducing the Adaptive Query
Optimization feature. This new feature allows the optimizer to “change its mind” during the
first run of an execution plan, and then discover additional information to further fine-tune the
plan going forward. In other words, the optimizer can now make runtime adjustments during
the execution of the plan. Figure 8-2 shows all the components that make up Adaptive Query
Optimization. Adaptive plans can change the join method or the parallel distribution method at
execution time. Adaptive statistics can be gathered at execution time and then stored for future
use. I’ll go over each one of these components in detail in the next two subsections.

FIGURE 8-2. Adaptive Query Optimization

 Oracle 12c Adaptive Query Optimization
Adaptive plans help the optimizer make the final plan choice on the first execution of a SQL
statement. Let’s review how the optimizer creates the default execution plan, as shown in Figure 8-3.

FIGURE 8-3. Creation of a default execution plan

After a SQL statement is parsed, the query is first sent to a query transformer, which tries to
rewrite the SQL to be more efficient. After the query is transformed, it is sent to an estimator, which
computes estimated costs of CPU and I/O by using default statistics. All of that information is then
sent to the plan generator, which creates multiple plans using different data access paths and join
methods. Only the plan with the lowest cost is chosen. After that, the default plan is sent to a row
source generator, which creates all the steps and their associated default costs for actual execution.

In Oracle 12c, the optimizer now instruments the default plan with statistics collector. So at
runtime, the optimizer reads and buffers a small number of rows in each step, and compares the actual
statistics with the default plan estimates. If they are significantly different, the step is adapted to use
the better plan to avoid poor performance. Currently the only steps that can change in a default plan
are join method operations and parallel query distribution.

There are two new initialization parameters that control the adaptive features,
OPTIMIZER_ADAPTIVE_FEATURES and OPTIMIZER_ADAPTIVE_REPORTING_ONLY. All of
the parameters that can change the behavior of adaptive optimization are listed here:

By default, the OPTIMIZER_ADAPTIVE_FEATURES parameter is set to TRUE so execution
plans can automatically change the join method operations (I’ve seen this work well) or the parallel
query distribution on the first run. The OPTIMIZER_ADAPTIVE_REPORTING_ONLY parameter
can be set to TRUE to first test which queries are going to adapt before the optimizer actually uses the
adapted plan. This might be helpful when first upgrading from an earlier version of Oracle to avoid
any unexpected behavior. By default, the REPORTING_ONLY option is set to FALSE. Both
parameters can be set at system or session levels. You can also set the
OPTIMIZER_FEATURES_ENABLE parameter to something less than 12.1.0.1 in order to turn this
feature off. However, I recommend using the REPORTING_ONLY parameter to control this feature as
it’s less intrusive. Finally, the OPTIMIZER_DYNAMIC_SAMPLING parameter has a new level that
helps control dynamic statistics, which I’ll talk about later in this section.

To identify whether a SQL statement is using an adaptive plan, we need to look at a new column in
the V$SQL table called IS_RESOLVED_ADAPTIVE_PLAN. If the value of this column is Y, then the
plan has been adapted and is the final plan. If the column value is N, then the plan is adaptable but the
final plan has not yet been chosen. The N value is rarely seen, as the final plan is chosen on the first
run. If the column is null, then the plan is not adaptable. Another new column in V$SQL is called
IS_REOPTIMIZABLE. This column is used to tell the optimizer to look for a better plan on the next
execution. We will discuss this column in more detail when looking at adaptive statistics.

The following query can be used to quickly identify which SQL statements are using adaptive
plans:

In my examples, I’ve used the ‘OE’ sample schema and the following SQL statement to
demonstrate how Adaptive Query Optimization works:

Figure 8-4 shows that the query for a customer’s order shipped status has been adapted. Notice
that on the very first execution, Child Number 0 has changed from the default plan to an adapted plan.
In fact, all of the child cursors have adaptive plans, identified by the ‘Y’ in the
IS_RESOLVED_ADAPTIVE (IRAP) column. Also, notice that Child Number 0 has a value of ‘R’ in
the IS_REOPTIMIZABLE (IR) column. The ‘R’ value is used to tell the optimizer that the
OPTIMIZER_ADAPTIVE_REPORTING_ONLY parameter is set to TRUE. The optimizer won’t use
this plan, but you can see what the plan would be if the Adaptive Query Optimization features were
enabled. After changing the REPORTING_ONLY parameter to FALSE, we can see that Child Number
1 has a value of ‘Y’ in the IS_REOPTIMIZABLE column. After the first execution, the optimizer
compares default cardinality estimates with the actual number of rows for each operation. If the
estimates are significantly different, the child is marked with a ‘Y’ so the plan won’t be used again.
When the IS_RESOVED_ADAPTIVE column equals ‘Y’, the optimizer performs a hard parse on the
next execution (Child Number 2), so it can use the newly gathered statistics to find a better plan.
Finally, Child Number 3 has been successfully reoptimized and no more changes are currently
required. The IS_REOPTIMIZABLE column is set to ‘N’ on the final plan.

FIGURE 8-4. Query is resolved adaptive and is reoptimizable.

To find more information about why child cursors can’t be shared and why plans change, we can
query the V$SQL_SHARED_CURSOR table. This table contains 70 columns of mismatches or
differences between the child cursors. Each column identifies a specific reason why the cursor cannot
be shared with a ‘Y’ value. Viewing this table can be difficult because of all the Y and N columns.
The following SQL statement can be used to report the results in a more readable format for a
particular SQL_ID:

Figure 8-5 displays the results of the preceding V$SQL_SHARED_CURSOR query for our
customer order query. Notice the ‘Y’ column names under each child number as the REASON for the
change.

FIGURE 8-5. V$SQL_SHARED_CURSOR example

To view adaptive plans, there are two new format parameter values for the
DBMS_XPLAN.DISPLAY_CURSOR function. The +ADAPTIVE format parameter will show all
active and inactive steps of a plan. The +REPORT format parameter can be used when the
OPTIMIZER_ADAPTIVE_REPORTING_ONLY parameter is set to TRUE to see how the plan would
be adapted if the optimizer were running Adaptive Query Optimization. Figure 8-6 shows an example
of setting the REPORTING_ONLY parameter to TRUE at session level. Then, using the +ADAPTIVE
and +REPORT format parameters on the DISPLAY_CURSOR function, we can view what changes
would occur if the optimizer were in non-reporting mode. Since we asked for the ‘+adaptive’ format,
the inactive steps are also listed and marked with a hyphen. Basically, the STATISTICS
COLLECTOR and HASH JOIN steps have been marked inactive. Also, notice in the “Note” section
that “adaptive plans are enabled for reporting mode only” and the new plan without the inactive steps
is listed again.

FIGURE 8-6. Format parameters +ADAPTIVE and +REPORT of DBMS_XPLAN.DISPLAY_CURSOR

The +REPORT parameter also shows any reoptimization changes or improvements on statistics. In
Figure 8-6, the default estimated rows for the INVENTORY table were at 1112. This is probably the
reason for the optimizer choosing the hash join method. However, the actual statistics sampled during
the execution shows that only 28 rows from the INVENTORY table will be returned, so the optimizer
switched to using the nested loops join method instead, which should be substantially better (see
Figure 8-7).

FIGURE 8-7. Reoptimized plan

The optimizer is able to change the join method, such as changing a nested loops join to a hash
join, on the fly at runtime. The only exception to this rule is when the initial join step is a sort merge
join, as there will be no adaptation. This is probably due to the overhead of the sort, as the sampling
would be too costly.

EXPLAIN PLAN can still be used with the DBMS_XPLAN.DISPLAY function to show estimated
plans. However, you should always check the OPTIMIZER_ADAPTIVE_REPORTING_ONLY
parameter value, as it may be displaying the adaptive plan when it’s actually in reporting-only mode.
It’s important to know that when viewing adaptive plans in either the V$SQL_PLAN table or Oracle
Enterprise Manager, all the steps, both active and inactive, will be shown without distinguishing
which steps were actually used. You can, however, tell if the plan has been adapted by looking at the
OTHER_XML column in V$SQL_PLAN. If the plan is adaptive, the OTHER_XML column will have
an XML tag of <info type=“adaptive_plan”>yes</info>. The best way to see the actual plan is
to use the DBMS_XPLAN.DISPLAY_CURSOR function with the +ADAPTIVE format parameter.

The other way a plan can adapt is when a SQL statement is resolved by using a parallel query. The
optimizer tries to evenly distribute the number of rows across the number of processes that is has to
work with. Historically, the optimizer would look at the number of rows and degree of parallelism
(DOP) and then decide how to distribute the data. This often caused problems when there were only a
few parallel processes trying to distribute a large number of rows. Also, any data skew could cause
unequal distribution and performance issues. In 12c, a new Hybrid Hash distribution technique tries
to fix those issues. Basically, the optimizer chooses the distribution method at execution time by
inserting statistic collectors in front of the parallel processes on the producer side of the operation.

The optimizer will choose the Hybrid Hash distribution method if rows are greater than the threshold
or it will choose the Broadcast distribution method if rows are less than the threshold. The threshold
is defined as 2 × DOP.

Figure 8-8 shows an example of how the Hybrid Hash distribution works. A hybrid hash does not
decide the final data distribution until execution time. The optimizer collects statistics in front of the
parallel server processes to check the threshold. Notice that I included a hint so the DOP for our
customer query is set to 20. So my threshold is 2 × 20 = 40.

FIGURE 8-8. Hybrid Hash, a new parallel distribution method

The optimizer chose to use the Hybrid Hash distribution method on the INVENTORIES table
because the rows accessed were well over my threshold of 40. Likewise, it chose the Broadcast
distribution method when accessing ORDERS and ORDER_ITEMS because they had rows below the
threshold.

 Adaptive Statistics
The other piece to the Adaptive Query Optimizer is adaptive statistics (refer to Figure 8-2 shown
earlier). I’ve already presented some examples of the optimizer using them, but I’ll dive further into
all the different aspects of adaptive statistics, including dynamic statistics, automatic reoptimization,
and SQL plan directives.

Dynamic Statistics
Dynamic sampling is not a new feature in 12c. However, the name has been changed to dynamic
statistics because you can instruct the optimizer to automatically decide when to use dynamic
statistics for any SQL statement. Historically, if statistics were missing, the optimizer would first
sample a few random blocks to get more information. In 12c, you can set the initialization parameter
OPTIMIZER_DYNAMIC_SAMPLING to a new level, 11. This new level, which can be set either at
system or session level, will allow the optimizer to decide whether to use dynamic statistics even if
there are base table statistics. The optimizer considers the base table statistics, the complexity of the
statement, and the total execution time in order to decide whether to use dynamic statistics or not.
This feature could be really useful if your data is rapidly growing and changing at such a pace that
statistics get stale very quickly. Figure 8-9 shows a good example of why you would want to use
dynamic statistics.

FIGURE 8-9. Dynamic statistics

In the example in the upper portion of Figure 8-9, the SELECT statement shows the number of
rows returned will be over 1 million. My EXPLAIN PLAN shows that the default plan estimated a

little over 101K rows will be returned. This is almost ten times off what is really going to be returned
from the table. The bottom of the figure shows how to set the dynamic sampling to level 11. Notice
now the optimizer has better statistics at 898K and the sampling level is set to AUTO. It is important
to know that parse time will take longer when you have dynamic sampling set to AUTO or level 11.
However, the results are often persisted in cache as dynamic statistics or as a SQL plan directive that
can be used for other “like” or similar queries. We’ll get into more detail on SQL plan directives in a
few pages.

Automatic Reoptimization
I briefly discussed automatic reoptimization in the context of adaptive plans. However, automatic
reoptimization differs from adaptive plans in that reoptimization changes the plan after the first
execution, not during it. The optimizer uses the information gathered during the execution and
compares it with the default estimates. If they differ significantly, then the plan will be reoptimized on
the next run. Sometimes, the optimizer will store the new information gathered as a ‘SQL plan
directive’ so other similar queries can benefit from the information. Or it will store an
OPT_ESTIMATE hint in V$SQL_REOPTIMIZATION_HINTS for future reference. The optimizer
can reoptimize a query several times by using statistics feedback or performance feedback to change
the plan.

Statistics Feedback Statistics feedback is used when estimated cardinalities are wrong. This can be
due to missing or inaccurate statistics or complex predicates, or if there are multiple (and/or) filter
predicates on a table. Also, the optimizer will use statistics feedback if the predicates contain
complex operations for which the optimizer can’t compute any estimates. Figure 8-10 shows an
example of how statistics feedback works. For this example, the DBMS_XPLAN format parameter
ALLSTATS LAST is used in conjunction with the GATHER_PLAN_STATISTICS hint to show the
estimated rows versus the actual rows returned in each step.

FIGURE 8-10. Statistics feedback

In this example, notice how far off the default estimates are. In step 6 alone, the estimated number
of rows read is 1042K, when in reality only 57,350 rows are needed. The optimizer realizes this
discrepancy and uses statistics feedback to further optimize it.

Performance Feedback Performance feedback is another part of reoptimization that deals with
parallel queries. The initialization parameter PARALLEL_DEGREE_POLICY needs to be set to
ADAPTIVE before the optimizer will use this feature. On the first execution, the optimizer decides
whether to execute the statement in parallel and then decides the degree of parallelism (DOP) based
on estimates. After the first run, the optimizer compares the DOP chosen with the DOP based on the
actual execution. If they differ significantly, the statement will be marked for reparse and the actual
performance statistics (e.g., CPU time) will be stored as feedback for subsequent executions.
Basically, the optimizer looks at the CPU time it took and compares that with the value of the
parameter PARALLEL_MIN_TIME_THRESHOLD. If the PARALLEL_DEGREE_POLICY
parameter is not set to ADAPTIVE, statistics feedback can still be used to change the DOP. Figure 8-
11 shows an example of performance feedback. Notice that the notes section shows that it computed
the degree of parallelism.

FIGURE 8-11. Performance feedback

SQL Plan Directives
As mentioned earlier, automatic reoptimization sometimes stores additional discovered statistics so
the optimizer can use that extra information for other queries. It stores them in two new tables,
DBA_SQL_PLAN_DIRECTIVES and DBA_SQL_PLAN_DIR_OBJECTS. The tables contain
additional instructions for missing column group statistics (i.e., extended statistics) or data skew in
join columns. Column group statistics are used for related columns, such as the CITY, STATE, and
ZIP columns in a CUSTOMER table, for example. The optimizer can make much more intelligent
choices if it knows only a few column combinations can occur. A SQL plan directive will direct the
optimizer to gather dynamic statistics for better cardinality estimates and, hopefully, a better plan.

Other queries that contain the same query expression can also benefit from the SQL plan directive.
In my example, a SQL plan directive on the CUSTOMER table for CITY, STATE, and ZIP would
direct the optimizer to gather dynamic statistics on every SQL statement that references those columns
in the WHERE clause. It’s important to note that the directive will be used until there is a supported
column group statistic or histogram created with DBMS_STATS. If the optimizer finds significant
data skew within the combination of columns, it will automatically create the column group statistic
or histogram.

However, I think it’s important to keep an eye on the number of directives you have in your
database, as they can give clues to problems with current statistics-gathering methods. The following
query can be used to view all the directives under the example schema of ‘OE’:

The SQL plan directive 7222552036492658097 in Figure 8-12 has identified a join cardinality
misestimate for the CUSTOMERS, ORDERS, and ORDER_ITEMS tables. The optimizer will use
dynamic statistics when these three tables are joined. The next directive, 8043841522631655845, has
identified a column group of CUSTOMER_ID, CUST_FIRST_NAME, and CUST_LAST_NAME.
We could create extended statistics for this column group using DBMS_STATS so this directive is no
longer needed.

FIGURE 8-12. SQL plan directives

The database manages SQL plan directives in a shared pool and periodically writes them (every
15 minutes) to the SYSAUX tablespace. If a directive is not used for 53 weeks, it is deleted from the
tables by default. A new system package, DBMS_SPD, can be used to manually manage SQL plan
directives. Please note that you can’t manually create directives; you can only alter, drop, change
settings, or stage them for moving to other databases. There is also a command to flush the directives
out of the SGA. This can be especially useful when testing.

Following is an example of dropping all directives for the example schema OE. The PL/SQL
loops through all the directives in the two tables and runs the
DBMS_SPD.DROP_SQL_PLAN_DIRECTIVE procedure.

 Oracle 12c Changes in Statistics Gathering and Two
New Histograms
In Oracle 12c, basic statistics are now gathered during index CREATE TABLE AS (CTAS) and
INSERT AS SELECT (IAS) operations. During these operations, the optimizer has to read the data
anyway, so it might as well capture the statistics at the same time. Statistics are also gathered for
global temporary tables at the session level to improve costing information.

In addition, there are two new types of histograms, Top-Frequency and Hybrid. In previous
versions, there were only two types of histograms: Frequency, where the number of distinct values
(NDVs) had to be less than or equal to 254, and Height Balanced, where NDVs were greater than
254. These histograms didn’t work very well if you had some values that were more popular than
others. The Top-Frequency histogram fixes this if you have greater than 254 NDVs but only a few of
these values take up most of the rows. Top-Frequency will ignore the unpopular values and store only
the popular values in the histogram. Figure 8-13 shows that the table, LOCATIONS, has a Top-
Frequency histogram on the COUNTRY_ID column.

FIGURE 8-13. Top-Frequency histogram

On further inspection, we can see that there are 305 distinct values for COUNTRY_ID, but many
of them are unpopular. Therefore, the Top-Frequency histogram can fit the popular values into 254
buckets and ignore the 51 rows that statistically won’t make a difference. Notice that by selecting the
COUNTRY_ID values from the LOCATION table that are not in the histogram, we can see that value
351 is being ignored.

The Hybrid histogram is similar to the Height Balanced histogram (which is deprecated in 12c) in
that it deals with NDVs that are far greater than 254 buckets. In the Height Balanced histogram,
endpoints often crossed buckets, especially if you had a mix of popular values and unpopular values.
This often led to many different distinct values in one bucket, which rendered the histogram
ineffective. The new Hybrid histogram (see Figure 8-14) stores the frequency of the endpoints instead
of letting the endpoints run over into multiple buckets. It can get more endpoints into the buckets, thus
giving the optimizer more information about the data skew.

FIGURE 8-14. Hybrid histogram

Figure 8-14 shows an example of a Hybrid histogram on the CUST_LAST_NAME column with
1000 distinct values stored in 254 buckets. Notice that ENDPOINT_REPEAT_COUNT contains the
number of rows containing the same last name.

It’s important to note that the new histograms will only be created if you use
DBMS_STATS.GATHER_*_STATS with AUTO_SAMPLE_SIZE (the default) turned on.

 Oracle 12c Changes in SQL Plan Management
SQL Plan Management (SPM) was introduced to help stop performance regression caused by bad
plan changes. Basically it involves using baselines to compare any new plan against the existing
baseline to make sure that only new plans that perform better (1.5 times greater) can be used. The
only change in 12c is there is now a nightly task called SYS_AUTO_SPM_EVOLVE_TASK that will
automatically run against nonaccepted plans and decide whether to evolve them or not. The DBA can
then view a report of the automatic changes via a new function in DBMS_SPM called
REPORT_AUTO_EVOLVE_TASK. Please note that the old way of evolving plans has been
deprecated…although it’s still listed in the package and still works.

The following example shows the new way to manually evolve a plan using tasks. The
CREATE_EVOLVE_TASK function takes the SQL_HANDLE in DBA_SQL_PLAN_BASELINES
and creates a task name. The EXECUTE_EVOLVE_TASK function then evaluates the new plan and

the IMPLEMENT_EVOLVE_TASK function marks it as accepted or not. Notice that I forced this plan
to be accepted. The optimizer doesn’t automatically evolve plans where the performance isn’t 1.5
times greater than the existing baseline. I found that some plans, while not meeting this criteria, can
and do improve performance, so careful consideration should be given when forcing a plan to be
accepted.

The REPORT_EVOLVE_TASK function lists information about the evolution and whether it
passed or failed in accepting the plan as a new baseline. In Figure 8-15, we can see the values of the
bind variables and review its findings and recommendations. Since I forced this plan to be accepted,
the recommendation already happened.

FIGURE 8-15. SQL Plan Management evolution report

To turn off the nightly automated task to automatically evolve and accept new baselines, you can
run the following commands:

Oracle Automatic SQL Tuning
Oracle introduced the SQL Tuning Advisor to help DBAs and developers improve the performance of

SQL statements (note that you must purchase the Diagnostics Pack). A component of the SQL Tuning
Advisor is the Automatic SQL Tuning Adviser, which includes statistics analysis, SQL profiling,
access path analysis, and SQL structure analysis. The SQL Tuning Advisor uses input from the
ADDM, from resource-intensive SQL statements captured by the AWR, from the cursor cache, or
from SQL Tuning Sets. Oracle has extended the SQL Tuning Advisor by adding additional features
such as SQL Replay (also a cost option), Automatic SQL Tuning, SQL Statistics Management, and
SQL Plan Management.

Since this chapter is focused on query tuning, I’ll describe how to pass specific SQL to the SQL
Tuning Advisor in the form of a SQL Tuning Set, and then I’ll cover the Automatic SQL Tuning
Advisor and SQL Performance Analysis (SQL Replay). The Oracle recommended interface for the
SQL Tuning Advisor is Oracle Enterprise Manager (see Chapter 5), but you can use the Application
Programming Interfaces (APIs) via the command line in SQL*Plus. I cover the command-line session
so you can better understand the analysis procedure for a single query. This section is only a small
glance into the functionality of the SQL Tuning Advisor. You also have the capability to create SQL
Tuning Sets and SQL profiles and to transport SQL Tuning Sets from one database to another.

 Ensuring the Tuning User Has Access to the APIs
The following privileges needed to access the API should be restricted to authorized users in a
production environment (with proper licensing). The privileges are granted by SYS. The
ADMINISTER SQL TUNING SET privilege allows a user to access only his or her own tuning sets.

 Creating the Tuning Task
If you want to tune a single SQL statement, for example,

you must first create a tuning task using the DBMS_SQLTUNE package:

 Making Sure the Task Can Be Seen in the Advisor
Log
To see the task, query the USER_ADVISOR log:

 Executing the SQL Tuning Task
To execute the tuning task, you use the DBMS_SQLTUNE package, as shown here:

 Checking Status of the Tuning Task
To see the specific tuning task, query the USER_ADVISOR log:

 Displaying the SQL Tuning Advisor Report
To see the SQL Tuning Advisor Report, you also use the DBMS_SQLTUNE package:

 Reviewing the Report Output
The report output shown next is lengthy, but it essentially recommends creating a function-based index
on the OWNER column of table T2. Had the SQL Tuning Advisor recommended the use of a SQL
profile, this could have been accepted by using the DBMS_SQLTUNE.ACCEPT_SQL_PROFILE
package.

Tuning SQL Statements Automatically Using SQL
Tuning Advisor
Oracle’s Automatic SQL Tuning Advisor analyzes Automatic Workload Repository data to find high-
load SQL statements that have been executed repeatedly. Oracle then uses the SQL Tuning Advisor to
tune those statements, creates SQL profiles, if needed, and tests them thoroughly. If the advisor thinks
implementing the SQL profile is beneficial, it automatically implements those profiles. No
intervention is needed. The Automatic SQL Tuning Advisor runs during the normal maintenance
window. The DBA can then run reports against those recommendations and validate those SQL
profiles.

 Enabling Automatic SQL Tuning Advisor
The following procedure is used to enable the Automatic SQL Tuning Advisor:

 Configuring Automatic SQL Tuning Advisor
To query what is currently set for the Automatic SQL Tuning Advisor, run the following query:

Now change SQL_PROFILE parameters as follows:

The next step is to force the execution of the task so you see the results immediately:

 Viewing Automatic SQL Tuning Results
The following procedure reports the most recent run of the Automatic SQL Tuning Advisor:

Print :p_report prints the report and recommendation:

Check the Recommendation sections. The SQL Tuning Advisor has recommended that you collect
statistics. Just by running the following statement, you would improve the performance of the problem
SQL listed in the SQL Tuning Advisor report:

Using SQL Performance Analyzer (SPA)
The concept of SQL Tuning Sets and the SQL Tuning Advisor were introduced in 10g. Oracle makes
use of SQL Tuning Sets with the SQL Performance Analyzer, often referred to as SPA. The SPA
compares the performance of specific SQL statements defined in a particular SQL Tuning Set, before
and after a database change. The database change could be a major upgrade, an initialization
parameter change, or simply an index or statistics collection change. Chapter 5 covers how to do this
in Enterprise Manager. Because this chapter focuses on SQL tuning, this section looks at what the
SQL Performance Analyzer can do with queries before and after creating an index. In Chapter 9, I
cover more uses for the SPA, especially in database and application upgrades, as well as Real
Application Testing and Database Replay. The SPA is a part of Real Application Testing and is not
available in the database by default. The use of the SPA and Database Replay requires the Oracle
Real Application Testing licensing.

Step 1: Set Up the Testing Environment
For this test, a table is created called OBJECT_TAB, and the table is populated to simulate a decent
workload:

The OBJECT_TAB table does not have any indexes; statistics are collected (as displayed here):

Next, the shared pool is flushed to clear out SQL statements in memory to get a new workload:

Step 2: Execute the Queries
Execute the following testing queries:

Later you’ll create an index for the OBJECT_ID column and compare the performance of the SQL
statement before and after the index is created.

Step 3: Create a SQL Tuning Set
Creating a SQL Tuning Set is done by collecting many SQL statements that you would like to tune into
one set. Create a SQL Tuning Set with the following command:

Step 4: Load the SQL Tuning Set
The following procedure loads the Tuning Set by obtaining SQL statements from the
CURSOR_CACHE that query the OBJECT_TAB table:

Step 5: Query from the SQL Tuning Set
Run the following query:

Step 6: Print from the SQL Tuning Set
Print from the SQL Tuning Set and note the TASK ID (record it somewhere for later use):

Step 7: Execute Before Analysis Task
Execute the contents of the Tuning Set before the database change to gather performance information:

Step 8: Make the Necessary Changes
Add an index that you already know you need to improve performance of the queries in the Tuning Set
(and regather statistics):

Step 9: Execute after Create Index Analysis Task

Step 10: Execute Compare Analysis Task

Step 11: Print the Final Analysis

Report Output

Wow! Overall impact is a positive 99.59 percent! Having viewed the queries, this makes sense. The
query accessed a 1.1-million row table, yet only 16 rows satisfied the OBJECT_ID = 100 condition.
By adding an index on the OBJECT_ID column, performance is drastically improved!

Tips Review
 In 12c, Oracle introduced Adaptive Query Optimization. Now Oracle can change execution

plans on the fly from, say, a hash join to a nested loops join based on the dynamic statistics it
is collecting as it is executing. It can also use the better execution plan for future executions as
well using automatic reoptimization. You can also tune and direct future executions using SQL
plan directives.

 Query V$SQLAREA and V$SQL to find problem queries that need to be tuned.
 You can also query V$SQL to find your problem queries that need to be tuned.
 When a small number of rows (“small” is version and hardware dependent, but almost always

less than 5 percent and even less than 1 percent at times) are returned to meet a condition in a
query, you generally want to use an index on that condition (column), given that the small
number of rows also returns a small number of individual blocks (usually the case).

 The first tip concerning slow queries is that you will have a lot of them if you don’t index
restrictive columns (return a small percentage of the table). Building indexes on restrictive
columns is the first step toward better system performance.

 Bad indexes (indexing the wrong columns) can cause as much trouble as forgetting to use
indexes on the correct columns. While Oracle’s cost-based optimizer generally suppresses
poor indexes, problems can still develop when a bad index is used at the same time as a good
index. The cost of each index for INSERTs and DELETEs must also be considered when
adding many indexes.

 For crucial queries on your system, consider concatenated indexes on the columns contained in
both the SELECT and the WHERE clauses so only the index is accessed.

 The INDEX_FFS hint processes only the index and does not access the table. All columns that

are used and retrieved by the query must be contained in the index.

 When running a query multiple times in succession, it becomes faster because you have now
cached the data in memory (although full table scans are aged out of memory quicker than
indexed scans). At times, people are tricked into believing that they have actually made a
query faster, when in actuality they are accessing data stored in memory. Flushing the buffer
cache or restarting the test system can help you get accurate tuning results for comparisons.
The next time a user calls and says a query was too slow, just say: Really? Try running it
again.

 Caching an often-used but relatively small table into memory ensures that the data is not
pushed out of memory by other data. Be careful, however—cached tables can alter the
execution path normally chosen by the optimizer, leading to an unexpected execution order for
the query (for instance, affecting the driving table in nested loop joins).

 If you are executing the same queries over and over (especially grouping or calculation
functions), using the RESULT_CACHE hint often makes subsequent queries run faster (at times
very much faster).

 When multiple indexes on a single table can be used for a query, use the most restrictive index
when you need to override an optimizer choice. While Oracle’s cost-based optimizer
generally forces the use of the most restrictive index, variations will occur, depending on the
version of Oracle used, the structure of the query structure, and the initialization parameters
that you may use. Fix the larger issue (get rid of bad indexes) if you see this as a trend.

 Bitmap indexes usually behave differently because they are usually much smaller. See Chapter
2 for more information on the differences between bitmap indexes and other indexes.

 At times, modifying the column side of the query can result in the index being suppressed
unless a function-based index is used. Oracle may also fix this issue during parsing. The more
complex the query, the less likely Oracle will fix it.

 Function-based indexes can lead to dramatic performance gains when used to create indexes
on functions often used on selective columns in the WHERE clause.

 Oracle has improved the way that it performs the OR clause. The NO_EXPAND hint can still
be helpful, as it prevents the optimizer from using OR expansion, as described in Chapter 7.

 Using the nested subquery with an EXISTS clause may make queries dramatically faster,
depending on the data being retrieved from each part of the query. Oracle 12c often makes this
translation internally, saving you time and giving you performance gains!

 In 12c, adaptive plans help the optimizer make the final plan choice on the first execution of a
SQL statement. It accomplishes this by instrumenting the default execution plan with statistic
collectors that will be used during execution or on future executions.

 The 12c optimizer might change the execution plan during the execution phase if the SQL is
long running and the statistic collector exceeds the threshold it expects. This is known as
dynamic statistics and the execution plan could change from a nested loops to a hash join
based on the new statistics collected while the query is running.

 Most importantly, ensure that you are correctly licensed. Many tuning packs are an extra cost.

Check DBA_FEATURE_USAGE_TABLE to confirm which features you are using.

References
Oracle Database Performance Tuning Guide 12c Release 2 (12.2) (Oracle Corporation).
Deb Dudek, DBA Tips, or a Job Is a Terrible Thing to Waste (TUSC).
Query Optimization in Oracle9i, An Oracle Whitepaper (Oracle Corporation).

Janis Griffin did the great 12c update and additions to this chapter. In the prior edition, Rama
Balaji added several new sections and helped with the update for 11g. Thanks to Connor McDonald
for his feedback on V$SQLAREA. Rob Christensen contributed the major portion of a previous
update to this chapter.

W

CHAPTER
9

Table Joins and Other Advanced Tuning
(Advanced DBA and Developer)

ith Oracle Database 11g and available in 12c, Oracle introduced a new option called
Real Application Testing. Real Application Testing allows you to capture a complete
database workload on one database and replay it on another database. You can replay
the exact workload and you even have the option to synchronize workload timing. This

tool is very valuable for load testing on a new application release, database patch, or database
upgrade. If you need to tune a specific object or set of queries, 12c also offers the SQL Performance
Analyzer (SPA). This tool provides the ability to examine a SQL workload on a database, record a
portion of it based on what you want collected/tested, and then take that workload and examine it in
another environment. The new environment can include any database changes (including initialization
parameter changes), hardware changes, or environment changes. SPA not only offers a powerful new
way to examine the potential impact of change with more predictable results, but also allows the
targeting of a specific change while measuring its potential impact.

This chapter was originally the most painful to write due to the complexities of Oracle joins and
block level tuning. I’ve included many examples from Oracle and other products over the years to
show different possible tuning patterns and how to solve future patterns. This chapter includes a
section that shows how to link tuning to mathematical equations so that you can develop your own
tuning theory and compare results for your unique system. This chapter is not strictly 12c related;
rather, it is focused on advanced query tuning concepts, showing the evolution of the Oracle database.
Oracle is growing much faster and is truly more of a platform than a database these days.

The driving table or the first table accessed in a query is an important aspect of superior
performance. Using the Enterprise Manager Cloud Control Tuning Pack and Automatic Workload
Repository (AWR) statistics, Oracle can do a lot to help you tune things (see Chapter 5 for more
information). If the optimizer has designated the wrong table as the driving table in a query, the
optimizer’s choice can be the difference between hours and seconds. Usually, the cost-based
optimizer chooses the correct table, but your indexing on tables affects how this works. If you need to
change the driving table using a hint on the same table over and over, this symptom often indicates an
indexing plan that still needs work. When you have to tune multiple tables using hints, tuning
increasing numbers of tables gets progressively harder. With only two or three tables, it’s easy enough
to use an ORDERED hint (guaranteeing the order of the tables) and then to try variations of the table
order until you achieve the fastest outcome. However, a ten-table join has 3,628,800 possible
combinations, which makes trying all these combinations slightly time-consuming. Using a LEADING

hint (you specify the first or leading table to drive the query with) simplifies this chore, but it is still
far more daunting than building the correct indexing scheme in the first place.

One of the greatest challenges of this book was trying to put driving tables into a helpful format for
readers, using the EXPLAIN PLAN, AUTOTRACE, and TKPROF. The optimizer’s complexity and
all the potential paths for joining and optimizing a query can be mind-boggling. Suppressing a single
index in a query can affect the driving table, how Oracle joins tables in a query, and how Oracle uses
or suppresses other indexes. This chapter focuses on helping you make better decisions when
choosing a driving table. Although I have a good understanding of how Oracle performs these
complexities, putting that understanding into words was the challenging task for the first half of this
chapter. The challenge for the second half was relating performance tuning to mathematical equations.

The tips covered in this chapter include the following:

 Real Application Testing
 Database Replay
 SQL Performance Analyzer
 Join methods
 Table join initialization parameters
 A two-table join: equal-sized tables (cost-based)
 A two-table INDEXED join: equal-sized tables (cost-based)
 Forcing a specific join method
 Eliminating join records (candidate rows) in multitable joins
 A two-table join between a large table and a small table
 Three table joins: not as much fun (cost-based)
 Bitmap join indexes
 Third-party product tuning
 Tuning distributed queries
 When you have everything tuned
 Miscellaneous tuning snippets
 Tuning at the block level (advanced)
 Tuning using Simple Mathematical Techniques

Database Replay (capture/replay)
Database Replay (often referred to as Real Application Testing or capture/replay) is used to capture
a database workload on one system and replay it later on a different system and is very useful when
comparing two different systems or different versions of Oracle. You can perform Real Application
Testing in text mode (covered in this section only as an overview—use the Oracle documentation as

your guide if you choose to use this) or through Oracle Enterprise Manager Cloud Control 12c or 13c.
It’s a great way to test your upgrade to 12c (capture on your 10gR2+ system and then test it against
12c). There is a screenshot of Enterprise Manager Cloud Control running Database Replay in Chapter
5.

To perform Real Application Testing, the basic steps are as follows:

1. Capture workload on a database, from 10gR2 or higher.
2. Restore the database on a test system to the SCN when capture begins.
3. Perform the upgrade and make changes to the test system as needed.
4. Preprocess the captured workload if it is not preprocessed.
5. Configure the test system for replay.
6. Replay the workload on the test system (can be synchronized or unsynchronized).
7. Create a report that shows Data, Error, and Performance divergences.

Database Replay is used to replay a workload in a manner that you would like to test. You can have a
replay that executes exactly as it was captured or use other Oracle options to replay it in a different
manner. Database Replay can be used in command-line mode or through Oracle Enterprise Manager.

 Set Up Source Database for Database Replay
Capture
As stated earlier, you can utilize database releases prior to 11g for capturing a workload for replay
on a 12c database (as early as 10gR2). First, however, some setup is required (see the Oracle notes
on this that come with the product).

 Prepare to Capture Workload
You need to prepare the source database where you will be capturing the workload for replay.

To create a directory location where the workload capture file can be written:

To create a directory within the source database where the workload will be captured:

 Capture the Workload
Prior to executing the workload, you need to initiate the capture.

1. Start the capture process:

2. Run the workload.
3. When complete, or when you have captured the desired workload, stop the capture process:

4. Execute a report on the capture:

 Prepare the Workload for Replay
The following steps show how to prepare the workload for replay:

1. Create a directory location for the captured workload to be placed in for processing and replay
on both the processing database and the replay database if the processing and replay databases
are different. Best practice is to process the workload on the same database that will execute
the replay.
c:\oracle> mkdir replay

2. Copy the captured workload files to another directory if on the same host as the database where
the workload was captured or to the destination system location to be processed:
copy c:\oracle\dbcapture* c:\oracle\Replay

3. Create a directory in the Oracle database that will process the captured workload:
SQL> create directory REPLAY as ’c:\oracle\replay’;

 Process the Workload for Replay
This process is resource-intensive. It should, therefore, be done on a nonproduction system. If you
capture the workload on your production system, move the capture files to a test or development
system to prepare them for replay.

Process the captured workload:

The process creates the following files in the REPLAY directory (and a few others) during the
processing of the captured workload (you may also have a subdirectory, which you would need to
add to any of the directory locations):

 Prepare to Replay the Workload
Next, you need to prepare the replay database. In the following steps, you prepare the replay
database. Keep in mind this is version/system dependent, and there may be variations needed for your
system.

1. Go to the database where the replay will be executed if different from the database that
processed the workload. If the replay database is the same as the database that processed the
workload, skip to Step 3; otherwise, proceed to Step 2.

2. If you have not done so already, go to the “Prepare the Workload for Replay” section, earlier in
this chapter, and execute the steps on the database that will replay the workload.

3. Initialize the replay:

SQL> exec dbms_workload_replay.initialize_replay (’TEST_REPLAY’,’REPLAY’);

4. Prepare for workload replay:
SQL> exec dbms_workload_replay.prepare_replay(synchronization=>TRUE);

5. Calibrate the workload to determine the number of workload replay clients. At the command
line, change to the REPLAY directory and calibrate:

 Execute the Workload Replay
Now that the workload has been captured and processed, the workload is ready to be replayed. I
suggest using Oracle Enterprise Manager Cloud Control if possible. Follow these steps to execute the
workload on the new system:

1. Note the number of workload replay clients indicated in the previous section that you need to
execute the processed workload.

2. Open a window for each workload replay client that you will need, as these will each be
separate executions. As indicated in the previous step, you only need one client.

3. From the command line, enter the replay command with the wrc utility for the number of
workload replay clients needed, with one command in each window:
c:\oracle\proccapture>wrc system/xxxxx@orcl12c replaydir=c:\oracle\replay

4. Repeat for each of the replay clients needed.
5. AWR information will be available for the time period in which the workload replay was

executed. Oracle recommends that the executed workload replay cover at least one complete
snap period to provide the most useful data. You can take a snapshot prior to beginning and
immediately after the workload execution (this is optional):
SQL> execute DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();

6. From another window, log in to the database where the workload replay will be executed and
start the workload replay process. An indication that the workload has been started will
appear:

7. Monitor the workload replay until it is completed.
8. Once the workload replay is complete, take another AWR snapshot (optional):

SQL> execute DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();

9. Execute workload replay report extraction, and evaluate the results from the report:

10. Go to the directory used in the script, C:\oracle\replay, and view the Replay.html file.

SQL Performance Analyzer
The SQL Performance Analyzer (SPA) is a great tool for measuring and reporting on performance
before and after instituting a change. The SPA uses the DBMS_SQLTUNE package to accomplish its
analysis. In Chapter 8, you learned how to use the SPA for a simple tuning issue in which the SPA
recommended an index that improved performance by over 99 percent. But the SPA is much broader.
This tool is one of the most powerful ways to answer some of the most common performance
questions:

 What will be the impact of removing this index?
 What will be the impact of adding an index to this table?
 What will be the impact of changing an index from a b-tree to a bitmap?
 What will be the impact of reorganizing and ordering this table?
 What will be the impact of partitioning this table?
 What will be the impact of changing a table to an index-organized table?
 What will be the impact of regathering the cost-based optimizer stats?
 What will be the impact of updating the database patch level?
 What will be the impact of upgrading the database to the next version?
 What will be the impact of changing this database initialization parameter?
 What will happen if I change the database from using file systems to ASM?

 Create a SQL Tuning Set
To make a comparison using the SPA, the first step is to create a SQL Tuning Set. The first execution
of the SQL Tuning Set is the one to use as a baseline; use the second to make the comparison. Create a
SQL Tuning Set (as shown here) prior to making any changes, and then create a second Tuning Set
after you’ve made the changes. You can also do this in Enterprise Manager (see Chapter 5 for
additional information).

 Create an Analysis Task
After creating a SQL Tuning Set with the SQL workload execution, you create an analysis task:

 Execute Analysis Task
After creating the analysis task, you need to execute the task for a baseline tuning set. After executing
the analysis task, you can make your changes for comparison against the baseline. This requires
creating a second SQL Tuning Set, a second analysis task, and then executing that task. Then you can
generate a comparison.

Pre-change:

Post-change:

Now you have two SQL Tuning Sets and are ready to generate a comparison.
To generate a comparison:

 Query SQL Performance Analyzer Advisor Tasks
You can show the Advisor tasks using the DBA_ADVISOR_TASKS view or

USER_ADVISOR_TASKS view:

 Cancel an Executing SQL Performance Analyzer
Analysis Task
If a SQL Performance Analyzer analysis task is in the process of executing, you can cancel it
manually at any time. You may need to do this for tasks you wish to interrupt due to resource issues,
database performance impact issues, and so on.

Syntax

 Remove SQL Performance Analyzer Analysis Task
After you have utilized the information from the SQL Performance Analyzer analysis, you may no
longer need the analysis task. To clear space and remove unused or unneeded analysis tasks, it is best
to drop them. Oracle provides a procedure within the DBMS_SQLPA package to remove an analysis
task.

Syntax

Example

 Determine Active SQL Tuning Sets
Before you can drop a SQL Tuning Set, you must remove all references to the SQL Tuning Set,
including SPA analysis tasks as well as SQL Tuning Advisor tasks. You can determine references to
SQL Tuning Sets via the DBA_SQLSET_REFERENCES view. Having the reference ID is critical to
being able to inactivate a SQL set reference.

 Remove SQL Tuning Set
After you have finished the SQL Performance Analyzer analysis, to conserve space and remove
unneeded results from SQL Performance Analyzer activities, you may want to remove SQL Tuning
Sets. You can only remove inactive SQL Tuning Sets. To remove an active SQL Tuning Set, you have
to first remove the SPA analysis tasks that reference the SQL Tuning Set. After removing all analysis
tasks, you must remove the SQL Tuning Set references; otherwise, an ORA-13757 error will result
indicating the SQL Tuning Set is still active.

Remove SQL Tuning Set Reference

Syntax

Example

 Drop SQL Tuning Set
Ensure all references to the SQL Tuning Set being dropped have first been removed, and then you can
drop the SQL Tuning Set itself.

Syntax

Example (references have not been removed)

Example (references have been removed):

Join Methods
Since the days of Oracle 6, the optimizer has used three primary ways to join row sources together:
the NESTED LOOPS join, the SORT-MERGE join, and the CLUSTER join. (There is also the
favorite of the ad hoc query user—the Cartesian join.) Oracle 7.3 introduced the HASH join, and
Oracle8i introduced the INDEX join, making for a total of five primary join methods. Each method
has a unique set of features and limitations. Before you attack a potential join issue, you need to know
the answers to the following questions:

 Which table will drive the query (first table accessed), and when will other tables be accessed
given the path that is chosen for the query? What are the alternate driving paths?

 What are the Oracle join possibilities (described in this section)? Remember, each join
possibility for Oracle can yield different results, depending on the join order, the selectivity of
indexes, and the available memory for sorting and/or hashing.

 Which indexes are available, and what is the selectivity of the indexes? The selectivity of an
index not only can cause the optimizer to use or suppress an index, but can also change the way
the query drives and may determine the use or suppression of other indexes in the query.

 Which hints provide alternate paths, and which hints suppress or force an index to be used?
These hints change the driving order of the tables, and they change how Oracle performs the
join and which indexes it uses or suppresses.

 Which version of Oracle are you using? Your choices vary, depending on the version and
release of Oracle you are using. The optimizer also works differently, depending on the
version.

 NESTED LOOPS Joins
Suppose somebody gave you a telephone book and a list of 20 names to look up, and then asked you
to write down each person’s name and corresponding telephone number. You would probably go
down the list of names, looking up each one in the telephone book one at a time. This task would be
pretty easy because the telephone book is alphabetized by name. Moreover, somebody looking over
your shoulder could begin calling the first few numbers you write down while you are still looking up
the rest. This scene describes a NESTED LOOPS join.

In a NESTED LOOPS join, Oracle reads the first row from the first row source and then checks
the second row source for matches. All matches are then placed in the result set and Oracle goes on to
the next row from the first row source. This continues until all rows in the first row source have been
processed. The first row source is often called the outer or driving table, whereas the second row
source is called the inner table. Using a NESTED LOOPS join is one of the fastest methods of
receiving the first records back from a join.

NESTED LOOPS joins are ideal when the driving row source (the records you are looking for) is
small and the joined columns of the inner row source are uniquely indexed or have a highly selective
nonunique index. NESTED LOOPS joins have an advantage over other join methods in that they can

quickly retrieve the first few rows of the result set without having to wait for the entire result set to be
determined. This situation is ideal for query screens where an end user can read the first few records
retrieved while the rest are being fetched. NESTED LOOPS joins are also flexible in that any two-
row sources can always be joined by NESTED LOOPS—regardless of join condition and schema
definition.

However, NESTED LOOPS joins can be very inefficient if the inner row source (second table
accessed) does not have an index on the joined columns or if the index is not highly selective. If the
driving row source (the records retrieved from the driving table) is quite large, other join methods
may be more efficient.

Figure 9-1 illustrates the method of executing the query shown next where the DEPT table is
accessed first and the result is then looped through the EMP table with a NESTED LOOPS join. The
type of join performed can be forced with a hint and will vary due to different variables on your
system.

FIGURE 9-1. NESTED LOOPS join (DEPT is the driving table)

 SORT-MERGE Joins
Suppose two salespeople attend a conference and each collects over 100 business cards from
potential new customers. They now each have a pile of cards in random order, and they want to see
how many cards are duplicated in both piles. The salespeople alphabetize their piles, and then they
call off names one at a time. Because both piles of cards have been sorted, it becomes much easier to
find the names that appear in both piles. This example describes a SORT-MERGE join.

In a SORT-MERGE join, Oracle sorts the first row source by its join columns, sorts the second
row source by its join columns, and then merges the sorted row sources together. As matches are
found, they are put into the result set.

SORT-MERGE joins can be effective when lack of data selectivity or useful indexes renders a
NESTED LOOPS join inefficient, or when both of the row sources are quite large (greater than 5
percent of the blocks accessed). Also, SORT-MERGE joins can be used only for inequalities,
whereas HASH joins can be used only for equijoins (WHERE D.deptno = E.deptno, as opposed to
WHERE D.deptno >= E.deptno). SORT-MERGE joins require temporary segments for sorting (if
SORT_AREA_SIZE or the automatic memory parameters like MEMORY_TARGET are set too
small). This can lead to extra memory utilization and/or extra disk I/O in the temporary tablespace.

Figure 9-2 illustrates the method of executing the query shown next when a SORT-MERGE join is
performed.

FIGURE 9-2. SORT-MERGE join

 CLUSTER Joins
A CLUSTER join is really just a special case of the NESTED LOOPS join that is not used very often.
If the two row sources being joined are actually tables that are part of a cluster, and if the join is an
equijoin between the cluster keys of the two tables, then Oracle can use a CLUSTER join. In this
case, Oracle reads each row from the first row source and finds all matches in the second row source
by using the CLUSTER index.

CLUSTER joins are extremely efficient because the joining rows in the two row sources will
actually be located in the same physical data block. However, clusters carry certain caveats of their
own, and you cannot have a CLUSTER join without a cluster. Therefore, CLUSTER joins are not
very commonly used.

 HASH Joins
HASH joins are the usual choice of the Oracle optimizer when the memory is set up to accommodate
them. In a HASH join, Oracle accesses one table (usually the smaller of the joined results) and builds
a hash table on the join key in memory. It then scans the other table in the join (usually the larger one)
and probes the hash table for matches to it. Oracle uses a HASH join efficiently only if the parameter
PGA_AGGREGATE_TARGET is set to a large enough value. If MEMORY_TARGET is used, the
PGA_AGGREGATE_TARGET is included in the MEMORY_TARGET, but you may still want to set
a minimum (see Chapter 4 for additional information). If you set the SGA_TARGET, you must set the
PGA_AGGREGATE_TARGET as the SGA_TARGET does not include the PGA (unless you use
MEMORY_TARGET as just described). The HASH join is similar to a NESTED LOOPS join in the
sense that there is a nested loop that occurs—Oracle first builds a hash table to facilitate the
operation and then loops through the hash table. When using an ORDERED hint, the first table in the
FROM clause is the table used to build the hash table.

HASH joins can be effective when the lack of a useful index renders NESTED LOOPS joins
inefficient. The HASH join might be faster than a SORT-MERGE join, in this case, because only one
row source needs to be sorted, and it could possibly be faster than a NESTED LOOPS join because
probing a hash table in memory can be faster than traversing a b-tree index. As with SORT-MERGE
joins and CLUSTER joins, HASH joins work only on equijoins. As with SORT-MERGE joins,
HASH joins use memory resources and can drive up I/O in the temporary tablespace if the sort
memory is not sufficient (which can cause this join method to be extremely slow). Finally, HASH
joins are available only when cost-based optimization is used (which should be 100 percent of the
time for your application running on Oracle 11g).

Figure 9-3 illustrates the method of executing the query shown in the listing that follows when a
HASH join is used.

FIGURE 9-3. HASH join

 INDEX-MERGE Joins

Prior to Oracle8i, you always had to access the table unless the index contained all of the information
required. As of Oracle8i, if a set of indexes exists that contains all of the information required by the
query, then the optimizer can choose to generate a sequence of HASH joins between the indexes. Each
of the indexes is accessed using a range scan or fast full scan, depending on the conditions available
in the WHERE clause. This method is extremely efficient when a table has a large number of columns
but you want to access only a limited number of those columns. The more limiting the conditions in
the WHERE clause, the faster the execution of the query. The optimizer evaluates this as an option
when looking for the optimal path of execution.

You must create indexes on the appropriate columns (those that will satisfy the entire query) to
ensure that the optimizer has the INDEX-MERGE join as an available choice. This task usually
involves adding indexes on columns that may not be indexed or on columns that were not indexed
together previously. The advantage of INDEX-MERGE joins over fast full scans is that fast full scans
have a single index satisfying the entire query. INDEX-MERGE joins have multiple indexes
satisfying the entire query.

Two indexes (one on ENAME and one on DEPTNO) have been created prior to the execution of
the corresponding query in this next listing. The query does not need to access the table! Figure 9-4
shows this INDEX-MERGE join in graphical format.

FIGURE 9-4. An INDEX MERGE join of EMP_IDX1 and EMP_IDX2

To show the improved efficiency, consider this example that uses the TEST2 table. The TEST2
table has 1 million rows and is 210M in size. First, you create the indexes:

Neither DOBY nor STATE is very limiting when queried individually; consequently, the first
indication is to execute a full table scan, as shown in this listing:

Using a single index on DOBY is slower than the full table scan:

Using a single index on STATE is also slower than a full table scan:

However, using an INDEX-MERGE join of DOBY and STATE is quicker than a full table scan
because the table does not need to be accessed, as in this listing:

However, the INDEX_FFS (if a single index on all needed columns exists) is still the most
efficient method, as shown here:

Although fast full scan is the most efficient option in this case, the INDEX join accommodates
more situations. Also, an INDEX_FFS is often a problem as it scans through many index blocks and
shows up as a severe amount of ’db file sequential read’ waits (so try to tune it by using a
better index or having a more selective query so it doesn’t need to scan the whole index). Your

mileage will vary; this example is only to show how to tune. Which solution is best will be clearer on
your unique system after detailed testing.

Table Join Initialization Parameters
Performance of SORT-MERGE joins and HASH joins is strongly impacted by certain initialization
parameters. Join performance can be crippled if certain parameters are not set properly.

 SORT-MERGE and HASH Join Parameters
The initialization parameter DB_FILE_MULTIBLOCK_READ_COUNT specifies how many blocks
Oracle should read at a time from disk when performing a scattered read such as a full table scan. In
11g, my default was 128 (128 * 8192 = 1048576, or 1M; but this is platform dependent and 1M for
most platforms), which should be more than sufficient. Because SORT-MERGE joins often involve
full table scans, setting this parameter correctly reduces overhead when scanning large tables.

The initialization parameter PGA_AGGREGATE_TARGET (this can be part of the memory
allocated with MEMORY_TARGET, if used, as described earlier) specifies how much memory can
be used for sorting, which has a strong impact on performance of all sorts. Because SORT-MERGE
joins require sorting of both row sources, the amount of memory allocated for sorting can greatly
impact SORT-MERGE join performance. If an entire sort cannot be completed in the amount of
memory specified, then a temporary segment in the temporary tablespace is allocated. In this case, the
sort is performed in memory one part at a time, and partial results are stored on disk in the temporary
segment. If memory allocated for sorting is set very small, then excessive disk I/O is required to
perform even the smallest of sorts. If it is set too high, then the operating system may run out of
physical memory and resort to swapping. The same is true for HASH joins. If the HASH table can’t
be built because of insufficient memory, a HASH join could be excessively slow using disk I/O
instead.

Table 9-1 provides a quick view of the primary join types.

TABLE 9-1. Primary Join Methods

A Two-Table Join: Equal-Sized Tables (Cost-Based)
Consider the following tables (they have been analyzed) that will be used for this example:

This section of examples is important as you learn more about how the cost-based optimizer
works, with all conditions being equal in a join (same size tables/no indexes).

Example 1
Neither table has an index and there aren’t any other noteworthy conditions on the tables. Oracle uses
a HASH join if the initialization parameters have been set up to allow a HASH join; otherwise, it
uses a SORT-MERGE join. In this example, both tables are equal, so the first one in the FROM clause

is used and Oracle uses a HASH join:

Join Method: HASH Join (If Hash Initialization Parameters Are Set Up) The SMALL1 table is
accessed first and used to build a hash table. Oracle accesses the SMALL1 table and builds a hash
table on the join key (COL1) in memory. It then scans SMALL2 and probes the hash table for matches
to SMALL2.

Join Method: SORT-MERGE Join (If Hash Initialization Parameters Are Not Set Up) Although
SMALL1 would normally be the driving table (because it is first in the FROM clause and this
example uses cost-based optimization), a SORT-MERGE join forces the sorting of each of the tables
before they are merged together (because there are no indexes). A full table scan is needed on both
tables, and the order in the FROM clause has no impact, but the SMALL1 table is accessed first for
this operation (an EXPLAIN or AUTOTRACE shows this).

Now change the order of the tables in the FROM clause. The SMALL2 table is listed first and is
also accessed first as the driving table. A HASH join is performed. A full table scan is needed on
both tables, and the order in the FROM clause has no impact on the driving table, as shown here:

Join Method: HASH Join (If Hash Initialization Parameters Are Set Up) The SMALL2 table is
accessed first and used to build a hash table. Oracle accesses the SMALL2 table and builds a hash
table on the join key (COL1) in memory. It then scans SMALL1 and probes the hash table for matches
to SMALL1.

Join Method: SORT-MERGE Join (If Hash Initialization Parameters Are Not Set Up) Although
SMALL2 would normally be the driving table (because it is first in the FROM clause and using cost-
based optimization), a SORT-MERGE join forces the sorting of each of the tables before they are
merged together (because there are no indexes). A full table scan is needed on both tables, and the
order in the FROM clause has no impact, but the SMALL2 table is accessed first for this operation
(an EXPLAIN or AUTOTRACE will show this).

Example 1 Outcomes
If you have set up the initialization parameters for hashing, Oracle builds a hash table from the join
values of the first table (accessed first), and then it probes that table for values from the second table.
Forcing a USE_MERGE hint always causes the first table to be accessed first in my testing regardless
of the order in the FROM clause.

Finally, if neither table is analyzed in Example 1, Oracle accesses what it believes to be the
smallest table first (very important point here). Before I ran the ANALYZE, it listed SMALL2 as
slightly less than 10,000 rows, and it always accessed it first regardless of the order in the FROM
clause. Once I ran an ANALYZE on both tables, they both were listed at 10,000 rows, and the first
table listed in the FROM clause was always accessed first as the driving table.

Example 2
Neither table has an index, and you will use the ORDERED hint, as in this listing:

Join Method: HASH Join (If Hash Initialization Parameters Are Set Up) The SMALL1 table is
accessed first and used to build a hash table. Oracle accesses the SMALL1 table and builds a hash
table on the join key (COL1) in memory. It then scans SMALL2 and probes the hash table for matches
to SMALL2.

Join Method: SORT-MERGE Join (If Hash Initialization Parameters Are Not Set Up) Although
SMALL1 would normally be the driving table (because it is first in the FROM clause and using cost-
based optimization), a SORT-MERGE join forces the sorting of each of the tables before they are
merged together (because there are no indexes). A full table scan is needed on both tables, and the
order in the FROM clause has no impact, but the SMALL1 table is accessed first for this operation
(an EXPLAIN or AUTOTRACE will show this).

Now change the order of the tables in the FROM clause:

Join Method: HASH Join (If Hash Initialization Parameters Are Set Up) The SMALL2 table is
accessed first and used to build a hash table. Oracle accesses the SMALL2 table and builds a hash
table on the join key (COL1) in memory. It then scans SMALL1 and probes the hash table for matches
to SMALL1.

Join Method: SORT-MERGE Join (If Hash Initialization Parameters Are Not Set Up) Although
SMALL2 would normally be the driving table (because it is first in the FROM clause and using cost-
based optimization), a SORT-MERGE join forces the sorting of each of the tables before they are
merged together (because there are no indexes). A full table scan is needed on both tables, and the
order in the FROM clause has no impact, but the SMALL2 table is accessed first for this operation
(an EXPLAIN or AUTOTRACE will show this).

Example 2 Outcomes
If hash initialization parameters are set up, Oracle builds a hash table from the join values of the first
table listed and then probes that hash table for values from the second table listed. If hash
initialization parameters are not set up, the first table in the FROM clause in cost-based optimization
is accessed first and is the driving table when an ORDERED hint is used; but in a SORT-MERGE
join, this has no impact because each table must be sorted and then all tables must be merged together.

TIP
Using cost-based optimization, the first table in the FROM clause is the driving table when the
ORDERED hint is used. This overrides the optimizer from choosing the driving table. If a SORT-
MERGE join is used, then the order of the tables has no impact because neither will drive the
query (although the first listed table is accessed first for the operation and is the driving table).
Knowing which table is generally the driving table when using an ORDERED hint in small joins
can help you solve larger table join issues and also help you find indexing problems.

TIP
When hash initialization parameters are set up, the optimizer uses HASH joins in lieu of SORT-
MERGE joins. With HASH joins, the first table is used to build a hash table (in memory if
available), and the second table in the FROM clause then probes for corresponding hash table
matches. The first table in the FROM clause (using the ORDERED hint) is the first table accessed
in a HASH join.

A Two-Table INDEXED Join: Equal-Sized Tables (Cost-
Based)
To get a better understanding of the driving table and how Oracle processes a query, an example
where all conditions are equal in both tables is instructive. Although the queries in this section look
strange because I am trying to keep all conditions equal, they are helpful in understanding the way
joins work. Consider the following tables (they have been analyzed) that will be used for this
example:

NOTE
This section of examples is important as you learn how the cost-based optimizer works using
indexes. Although the query in this section wouldn’t normally be written, it shows how the driving
table works with a two-table join, all conditions being equal. In other words, it is only for
instructional purposes.

Example 1
Both tables have an index on the COL1 column, as in this example:

Join Method: HASH Join (If Hash Initialization Parameters Are Set Up) The SMALL1 index is
the query’s driving statement (since the SMALL1 table is the first table listed in the FROM clause).
The SMALL1 index is accessed first and used to build a hash table. Oracle accesses the SMALL1
index and builds a hash table on the join key (COL1) in memory. It then scans the SMALL2 index and
probes the hash table for matches to SMALL2. Also note, switching the order of the predicates in the
two AND clauses does not change anything.

Join Method: NESTED LOOPS Join (If Hash Initialization Parameters Are Not Set Up) The
SMALL1 index (since the SMALL1 table is the first table listed in the FROM clause) is the query’s
driving statement. Oracle retrieves the records from the index on SMALL1 and then takes each record
and checks for matches in the SMALL2 index. A NESTED LOOPS join is faster when the source
rows from the SMALL1 table are a small set and there is a reasonably selective index on the
SMALL2 joining column (brief EXPLAIN PLAN listed here).

Now change the order of the tables in the FROM clause:

Join Method: HASH Join (If Hash Initialization Parameters Are Set Up) The SMALL2 index
(since the SMALL2 table is the first table listed in the FROM clause) is the query’s driving statement.
The SMALL2 index is accessed first and used to build a hash table. Oracle accesses the SMALL2
index and builds a hash table on the join key (COL1) in memory. It then scans the SMALL1 index and
probes the hash table for matches to SMALL1. Also note, switching the order of the predicates in the
two AND clauses does not change anything.

Join Method: NESTED LOOPS Join (If Hash Initialization Parameters Are Not Set Up) The
SMALL2 index (since the SMALL2 table is the first table in the FROM clause) is the query’s driving
statement. Oracle retrieves the records from the index on SMALL2 and then takes each record and
checks for matches in the SMALL1 index. A NESTED LOOPS join is faster when the source rows
from the SMALL2 table are a small set and there is a reasonably selective index on the SMALL1
joining column (brief EXPLAIN PLAN listed here).

Example 1 Outcomes

All conditions being equal, the index from the first table is accessed first (the first table in the FROM
clause) in cost-based optimization and is the driving table. The index is used on the join condition for
the second table. In Example 1, Oracle uses a HASH join to join the queries, but a NESTED LOOPS
join or SORT-MERGE join is also possible, depending on other factors in the table and index.

Example 2
Both tables have an index on the COL1 column, and I use the ORDERED hint, as shown here:

Join Method: HASH Join (If Hash Initialization Parameters Are Set Up) The SMALL1 index
(since the SMALL1 table is the first table listed in the FROM clause) is the query’s driving statement.
The SMALL1 index is accessed first and used to build a hash table. Oracle accesses the SMALL1
index and builds a hash table on the join key (COL1) in memory. It then scans the SMALL2 index and
probes the hash table for matches to SMALL2. Also note, switching the order of the predicates in the
two AND clauses does not change anything.

Join Method: NESTED LOOPS Join (If Hash Initialization Parameters Are Not Set Up) The
SMALL1 index (since the SMALL1 table is the first table listed in the FROM clause) is the query’s
driving statement. Oracle retrieves the records from the index on SMALL1 and then takes each record
and checks for matches in the SMALL2 index. A NESTED LOOPS join is faster when the source
rows from the SMALL1 table are a small set and there is a reasonably selective index on the
SMALL2 joining column (brief EXPLAIN PLAN listed next).

Now change the order of the tables in the FROM clause:

Join Method: HASH Join (If Hash Initialization Parameters Are Set Up) The SMALL2 index
(since the SMALL2 table is the first table listed in the FROM clause) is the query’s driving statement.
The SMALL2 index is accessed first and used to build a hash table. Oracle accesses the SMALL2
index and builds a hash table on the join key (COL1) in memory. It then scans the SMALL1 index and
probes the hash table for matches to SMALL1. Also note, switching the order of the predicates in the
two AND clauses does not change anything.

Join Method: NESTED LOOPS Join (If Hash Initialization Parameters Are Not Set Up) The
SMALL2 index (since the SMALL2 table is the first table in the FROM clause) is the query’s driving
statement. Oracle retrieves the records from the index on SMALL2 and then takes each record and
checks for matches in the SMALL1 index. A NESTED LOOPS join is faster when the source rows
from the SMALL2 table are a small set and there is a reasonably selective index on the SMALL1
joining column (brief EXPLAIN PLAN listed here).

Example 2 Outcomes
All conditions being equal, the index from the first table is accessed first (the first table listed in the
FROM clause) in cost-based optimization using a HASH or NESTED LOOPS join and is the driving
statement with or without the ORDERED hint. Only the ORDERED hint guarantees the order in which
all the tables are accessed. The index is used on the join condition for the second table.

TIP
Using cost-based optimization and a NESTED LOOPS join as the means of joining, the first table
in the FROM clause is the driving table (all other conditions being equal), but only the ORDERED
hint guarantees this. In NESTED LOOPS joins, choosing a driving table that is the smaller result
set (not always the smaller table) makes fewer loops through the other result set (from the
nondriving table) and usually results in the best performance.

Forcing a Specific Join Method
When choosing an execution plan for a query involving joins, the Oracle optimizer considers all
possible join methods and table orders. The optimizer does its best to evaluate the merits of each
option and to choose the optimal execution plan, but sometimes the optimizer does not choose the best
solution because of poor indexing strategies.

In these situations, you can use the USE_NL, USE_MERGE, and USE_HASH hints to request a
specific join method, and you can use the ORDERED hint to request a specific join order for all
tables (or use LEADING to use the first table in the FROM clause as the driving table and leave the
order of the remaining tables for Oracle to figure out). The optimizer does its best to observe the
wishes of these hints, but if you ask for something impossible (such as a SORT-MERGE join on an
antijoin), the optimizer ignores the hint.

When tuning SQL that uses joins, you should run benchmark comparisons between different join
methods and table execution order. For example, if a report joins two tables that form a master-detail
relationship and the proper primary-key and foreign-key indexes are in place, the optimizer will
probably choose to use a NESTED LOOPS join. However, if you know that this particular report
joins all of the master records to all of the detail records, you might think it’s faster to use a SORT-
MERGE join or HASH join instead. Run a benchmark to ensure that you have the best solution.

In the following three listings, the first listing shows an example query and its TKPROF output, the
second listing shows the same query with a USE_MERGE hint, and the third listing shows it with a
USE_HASH hint. In this example, the indexes were built so that a full table scan must be executed on
the PURCHASE_ORDER_LINES table. (Using an index would have been the better choice but not as
instructive.) You can see that in this situation the HASH join reduced CPU time by almost 40 percent
and logical I/Os by about 98 percent. The goal is not to demonstrate how to tune this type of query,
but how to use different types of joining.

Forcing a NESTED LOOPS Join
The PURCHASE_ORDER_LINES table is the driving table. Each record (one at a time) is taken
from the PURCHASE_ORDER_LINES table, and for each one, you loop through for matches in the
PURCHASE_ORDERS table. This is slow because the driving table list is large.
(PURCHASE_ORDER_LINES has a large number of rows.)

Forcing a SORT-MERGE Join
For the SORT-MERGE case, Oracle sorts both tables and then merges the result. This method is still
not an efficient way to perform the query.

Forcing a HASH join
The HASH join has proven to be the most efficient because it puts the PURCHASE_ORDERS table
into a hash table and then scans to retrieve the corresponding records from
PURCHASE_ORDER_LINES. If you cannot get the correct access order, you can use the
SWAP_JOIN_INPUTS hint as well.

Oracle chose to do a NESTED LOOPS join in 10g and a HASH join in 11g. In 12c, it does a
HASH join. NESTED LOOPS is not the most efficient way of joining in this case, but if you don’t set
the memory parameters appropriately, Oracle might choose NESTED LOOPS over a HASH Join. For
this query, by using the USE_HASH hint, you can cut CPU time by almost 40 percent and logical I/Os
by about 98 percent. Although the CPU reduction is impressive, the reduction in logical I/Os (memory
reads) is saving SGA memory for other users. Sometimes when you are retrieving a large amount of
data, access using a full table scan is the most efficient method. In 11g, Oracle uses the HASH join
method frequently, provided the initialization parameters related to it are set appropriately.

TIP
To change the method that Oracle uses to join multiple tables, use the USE_MERGE, USE_NL,
and USE_HASH hints. Multiple tables may need to be specified for the hint to work, and the
driving order is usually from first to last in the FROM clause.

Eliminating Join Records (Candidate Rows) in
Multitable Joins
Suppose you have a list of 1000 residents of your town along with each resident’s street address, and
you are asked to prepare an alphabetized list of residents who have the newspaper delivered to their
home. (Only 50 get the newspaper.) You could first alphabetize the list of 1000 names (all residents
in the town) and then look up each street address in the list of 50 residents who get the newspaper.
(Sort the 1000 and then find the 50.) A faster method would be to look up each street address of those
who get the newspaper first, and then get the names of the residents at that street and do the
alphabetization last. (Find the 50 who get the newspaper from the list of 1000 and then sort the 50
matches.) Either way, you need to look at the 1000 street addresses. However, these lookups will

eliminate many names from the list, and the sorting will be faster when you have a list of only 50 to
sort.

You can apply the same concept when writing SQL table joins together. The Oracle optimizer is
pretty smart about choosing the most efficient order in which to perform tasks, but how a query is
written can constrain the options available to the optimizer.

The query in this next listing leaves the optimizer no choice but to read all of Acme’s invoice lines
(the large table/the intersection table), when, in fact, only the unpaid invoices (the small table) are of
interest:

You could rewrite this query, as shown here:

In the rewritten query in this listing, the optimizer eliminates all of the paid invoices (the new
intersection table) before joining to the INVOICE_LINES table. If most of the invoices in the
database have already been paid, then the rewritten query is significantly faster. (The schema design
in this example is dubious and is used only for illustrative purposes.)

TIP
In a three-table join, the driving table is the intersection table or the table that has a join
condition to each of the other two tables in the join. Try to use the most limiting table as the
driving table (or intersection table) so your result set from the join of the first two tables is small

when you join it to the third table.

A Two-Table Join Between a Large and Small Table
Consider the following tables that will be used for this example:

This section uses only cost-based optimization. This section of examples is important because it
looks at a situation often encountered. It involves a two-table join between a small (business small)
table and a large table. The subsequent conditions (beyond the join itself) are on the column that you
are joining. At times, the index on this column in the subsequent condition is suppressed.
Unfortunately, this situation leads to seven possible situations, based on various conditions. This
section covers three of the main situations, and the results are summarized at the end.

Example 1
Neither table can use an index (they are suppressed), and there are no other conditions, as shown in
this example:

EXPLAIN PLAN Output

The order of the tables in the FROM clause can be reversed, as shown here:

EXPLAIN PLAN Output

Example 1 Outcome
All conditions being equal, the first table in the FROM clause in cost-based optimization is the
driving table (first accessed). Because these tables are different sizes, however, Oracle chooses the
smaller table to be the driving table regardless of the order in the FROM clause. The PRODUCT
table is used to build a hash table on the join key (PRODUCT_ID), and then the PRODUCT_LINES
table is scanned, probing the hash table for join key matches.

TIP
Using cost-based optimization, when a large table and a small table are joined, the smaller table
is the driving table (accessed first), and the smaller table is used to build a hash table in memory
on the join key. The larger table is scanned and then probes the hash table for matches to the join
key. Also note that if there is not enough memory for the hash, the operation can become extremely
slow because the hash table may be split into multiple partitions that could be paged to disk. If the
ORDERED hint is specified, then the first table in the FROM clause is the driving table, and it
will be the one used to build the hash table.

Example 2
A subsequent clause allows the large table to use the PRODUCT_ID index:

EXPLAIN PLAN Output

The order of the tables in the FROM clause can be reversed, as shown here:

EXPLAIN PLAN Output

Example 2 Outcomes
When a subsequent condition on PRODUCT_ID on the large table exists, the larger table is always
the driving table regardless of the order in the FROM clause. The order of the tables in the FROM
clause does not alter the order in which Oracle performs this join unless an ORDERED hint is used.
In Example 2, a SORT-MERGE join is executed. For this example, a HASH join is also possible.

TIP
Using cost-based optimization, when a large and small table are joined, the larger table is the
driving table if an index can be used on the large table. If the ORDERED hint is specified, then the
first table in the FROM clause is the driving table.

Example 3
A subsequent clause, shown in the following listing, allows the small table to use the PRODUCT_ID

index. The large table still drives the query after getting this condition (on PRODUCT_ID) passed to
it by the join. Oracle is smart enough to figure out that PRODUCT_ID exists in both tables and it is
more efficient to limit the PRODUCT_LINES table. In the upcoming section “Three-Table Joins: Not
as Much Fun,” Oracle’s excellent internal processing to improve queries will become more evident.

EXPLAIN PLAN Output

The order of the tables in the FROM clause can be reversed, as shown here:

EXPLAIN PLAN Output

Example 3 Outcomes

When a subsequent condition on PRODUCT_ID on the small table exists, the larger table gets this
condition passed to it via the join and is still the driving table. The order of the tables in the FROM
clause does not alter the procedure unless an ORDERED hint is used. For this example, a HASH join
is also possible.

Summary
The examples in this section demonstrate the value of some of the optimizer’s behavior. The
optimizer almost always chooses how to drive a query correctly, but sometimes it must be corrected
for a given query. It chooses the right path in most situations.

Three-Table Joins: Not as Much Fun
In a three-table join, Oracle joins two of the tables and joins the result with the third table.

When the query in the following listing is executed, the EMP, DEPT, and ORDERS tables are
joined together, as illustrated in Figure 9-5.

FIGURE 9-5. A three-table join

Which table is the driving table in a query? People often give different answers, depending on the
query that accesses the PLAN_TABLE. This query would drive with the EMP table accessed first, the
DEPT table accessed second, and the ORDERS table accessed third (there are always exceptions to
the rule).

This next listing shows a query that has only one possible way to be accessed (the subqueries must
be accessed first) and a query to the PLAN_TABLE that will be used for the remainder of this

chapter. This listing is provided to ensure that you understand how to read the output effectively.

The following listing is a quick and simple EXPLAIN PLAN query (given the PLAN_TABLE is
empty). Throughout this chapter, I show many of these, but I also show the output using AUTOTRACE
(SET AUTOTRACE ON) and TIMING (SET TIMING ON).

EXPLAIN PLAN Output
Next, you can see abbreviated EXPLAIN PLAN output. (Additional EXPLAIN PLAN information
can be found in Chapter 6.)

The order of access is PRODUCT_INFORMATION, ORDER_LINES, and CUSTOMERS. The
innermost subquery (to the PRODUCT_INFORMATION table) must execute first so it can return the
PRODUCT_ID to be used in the ORDER_LINES table (accessed second), which returns the

CUSTOMER_ID that the CUSTOMERS table (accessed third) needs.

TIP
To ensure that you are reading your EXPLAIN PLAN correctly, run a query in which you are sure
of the driving table (with nested subqueries).

One exception to the previous subquery is shown here:

EXPLAIN PLAN Output

The expected order of table access is based on the order in the FROM clause:
PRODUCT_INFORMATION, ORDER_LINES, and CUSTOMERS. The actual order of access is
ORDER_LINES, PRODUCT_INFORMATION, and CUSTOMERS. The ORDER_LINES query takes
the PRODUCT_ID from the subquery to the PRODUCT_INFORMATION table and executes first
(Oracle is very efficient).

Bitmap Join Indexes
Oracle changes the boundaries of relational database design and implementation with the addition of
new indexing features. The bitmap join index allows you to build a single index across the joined
columns of two tables. The ROWIDs from one table are stored along with the matching values from
the other table. This feature is an incredible performance gold mine, as was the case of the function-
based index, and it is as powerful as the designer, developer, or DBA who implements it. This
section focuses on the bitmap join index.

 Bitmap Indexes
To fully appreciate where a bitmap join index is helpful, it is important to understand a bitmap index.
Bitmap indexes are most helpful in a data warehouse environment because they are generally great
(fast) when you are only selecting data. A bitmap index is smaller than a b-tree index because it
stores only the ROWID and a series of bits. In a bitmap index, if a bit is set, it means that a row in the
corresponding ROWID (also stored) contains a key value. For example, consider the EMP table with
two new columns indicating gender and marital status:

The bitmaps stored may be the following (the actual storage depends on the algorithm used
internally, which is more complex than this example):

As you can tell from the preceding example, finding all of the females by searching for the gender
bit set to a ‘1’ in the example would be easy. You can similarly find all of those who are married or
even quickly find a combination of gender and marital status. Oracle stores ranges of rows for each
bitmap as well, which is why bitmaps don’t do well when you update the bitmap-indexed column (as

you can lock an entire range of rows).
You should use b-tree indexes when columns are unique or near-unique; you should at least

consider bitmap indexes in all other cases. Although you generally would not use a b-tree index when
retrieving 40 percent of the rows in a table, using a bitmap index generally makes this task faster than
doing a full table scan. Using an index in this situation is seemingly in violation of the 80/20 or 95/5
rules, which are generally to use an index when retrieving 5–20 percent or less of the data and to do a
full table scan when retrieving more. Bitmap indexes are smaller and work differently than b-tree
indexes, however. You can use bitmap indexes even when retrieving a large percentage (20–80
percent) of a table. You can also use bitmaps to retrieve conditions based on NULLs (because NULLs
are also indexed), and can be used for not-equal conditions for the same reason. The best way to find
out is to test!

Bitmap Index Caveats
Bitmap indexes do not perform well in a heavy DML (UPDATE, INSERT, DELETE) environment and
generally are not used in certain areas of an OLTP environment. There is a heavy cost if you are doing
a lot of DML, so be very careful with this. Applying NOT NULL constraints and fixed-length columns
allows bitmaps to use less storage, so a good designer is once again worth his or her weight in gold.
Use the INDEX_COMBINE hint instead of the INDEX hint or AND_EQUAL hint for bitmap indexes.
Like b-tree indexes, bitmap indexes should be rebuilt (ALTER INDEX … REBUILD) if there is a lot
of DML activity. Bitmaps are very good for multicolumn read-only indexes that together make a
reasonably selective value but separately do not. These columns when indexed together, if often used
together in a WHERE clause, are a good choice for a bitmap.

 Bitmap Join Index
In a typical business relational database, you are often joining the same two or three tables over and
over. The bitmap join index can give you substantial gains when properly applied to many of these
circumstances. In a bitmap join index, the ROWIDs from one table are stored along with the indexed
column from the joined table. The bitmap join index in Oracle is a lot like building a single index
across two tables. You must build a primary key or unique constraint on one of the tables. When you
are looking for information from just the columns in the index or a count, then you will be able to
access the single join index. Let’s look at a very simple example to learn how to use it. Then I’ll
show you how to apply it to multiple columns and multiple tables.

Example 1
Let’s create two sample tables from our friendly EMP and DEPT tables, as shown in this listing:

You must then add a unique constraint (or have a primary key) to the DEPT1 table to use this type
of index. You can then create the bitmap index on the EMP1 table that includes the columns of both
tables.

You are now storing the ROWID to the DEPT1 table in the bitmap index that maps to the DEPTNO
column in the EMP1 table. To test how well this works, you can perform a simple count(*) of the
intersection rows between the two tables (you would generally have additional limiting conditions),
forcing the use of the bitmap index with an INDEX hint:

You can see from the preceding EXPLAIN PLAN output that the bitmap index was used;
alternatively, you could use SET AUTOTRACE ON while in SQL*Plus to get the following output:

Although this simplistic example shows how to count an index (instead of the table) and applies
some benefits of the bitmap join index, the next section explores better uses of the bitmap join index
by manipulating columns outside the join in the index.

 Best Uses for the Bitmap Join Index
Example 1 in the previous section shows a basic use of the bitmap join index, focusing on just the
joined columns. The next three sections show targeted areas where you may discover better uses for
bitmap join indexes.

Bitmap Join Indexes on Columns Other Than the Join
Consider this example where the EMP1 and DEPT1 tables are once again joined on the DEPTNO
column. In this example, you want to index the LOC column instead of the join column. This allows
you to select the LOCATION column from the DEPT1 table by directly accessing only the index and
the EMP1 table. Remember, the join condition must be on the primary key or unique column. The
example in the following listing assumes that the unique constraint on DEPT1.DEPTNO from the
example in the earlier listing (where I added a unique constraint to the DEPT1 table) exists.

The query shown next can now use the bitmap join index appropriately:

Bitmap Join Indexes on Multiple Columns
Consider an example where you want an index on multiple columns. The syntax is still the same, but
now you include multiple columns in the index. The next example assumes that the unique constraint
on DEPT1.DEPTNO from the example in the earlier listing (where I added a unique constraint to the
DEPT1 table) exists.

The query in the following listing is able to use the bitmap join index appropriately:

Bitmap Join Indexes on Multiple Tables
As you become more familiar with using the bitmap join index, you will be able to solve complex
business problems that involve multiple tables. The following example shows how to apply the
bitmap join index to multiple tables. The syntax is still the same, but it has now been expanded to
include multiple columns in the index and multiple tables being joined for the index. The example
shown next assumes that the unique constraint on DEPT1.DEPTNO from the example in the earlier
listing (where I added a unique constraint to the DEPT1 table) exists and, additionally, that it exists
on SALES1.EMPNO (creation not shown).

The query in this next listing is now able to use the bitmap join index appropriately:

Bitmap Join Index Caveats
Because the result of the join is stored, only one table can be updated concurrently by different
transactions, and parallel DML is supported only on the fact table. Parallel DML on the dimension
table marks the index as unusable. No table can appear twice in the join, and you can’t create a
bitmap join index on an index-organized table (IOT) or a temporary table.

Another Nice Use for the Bitmap Join Index
A nice tuning trick when you are counting rows is to try to count the index instead of the table.
Consider the following large-table example used for counting. These tables each contain roughly 2
million rows, so that you can see the possible impact on a larger scale. The new tables, EMP5 and
EMP6, each have 2 million rows with EMPNO indexes on them.

To add the constraint and run a join without the bitmap index:

There is an index on the EMP5 table, but there is no correlation or index back to the EMP6 table
because the index on EMP6 contains only EMPNO as the second part of a concatenated index. The
result is a relatively slow query.

If you make EMPNO the only part or the leading part of the concatenated index, you solve this
problem. Use the new bitmap join index, as shown here:

Performing a count of the bitmap join index makes this very fast. I chose this example for a reason.
The real problem with the original slow query was not that it took a minute to execute, but that it
performed over 6 million memory block reads and over 7000 disk block reads. You may not receive
any wait events, but you have a poorly written query that will cause problems when you have
volumes of users on the system. Take a step up to expert level by finding queries with large memory
and disk reads and start doing proactive tuning now so you don’t get to wait states and need to tune
things reactively. Using a bitmap join index is one way to improve performance.

Third-Party Product Tuning
Sometimes, you are at the mercy of a third-party product. Although you cannot modify the code, you
can often modify the use of indexes. The following three examples are from a third-party financial
product.

 Example 1
This query took 22 minutes to run. By providing a hint (using SQL Plan Management) to use a more
efficient index, I reduced the query execution time to 15 seconds.

This next listing shows the query before the hint was added:

Now, here’s the query after the index hint was added:

 Example 2
The query in the next listing was taking 33 minutes to run. By creating a concatenated index on the
PS_GROUP_CONTROL table (columns: DEPOSIT_BU, DEPOSIT_ID, PAYMENT_SEQ_NUM), I
reduced the query execution time to 30 seconds, as shown here:

Here is the EXPLAIN PLAN before the index was added:

And here’s the EXPLAIN PLAN after the index was added:

 Example 3
The query shown next was taking 20 minutes to run and was reduced to 30 seconds. To achieve this, I
created a concatenated unique index on the PS_CUST_OPTION table (columns: CUST_ID, EFFDT)
instead of the current index, which is only on CUST_ID. This forces Oracle to use a concatenated
unique index rather than a single-column index, as shown here:

Here’s the EXPLAIN PLAN before the index was added:

Here’s the EXPLAIN PLAN after the index was added:

TIP
You may not be able to modify actual code for some third-party products, but you can often add,
force, or suppress indexes (using SQL Plan Management) to improve performance.

Tuning Distributed Queries
When improperly written, distributed queries can sometimes be disastrous and lead to poor
performance. In particular, a NESTED LOOPS join between two row sources on separate nodes of a
distributed database can be very slow because Oracle moves all the data to the local machine
(depending on how the query is written). The following listing shows a simple distributed query and
its execution plan. This query is slow because, for each row retrieved from the CUSTOMERS table,
a separate query is dispatched to the remote node to retrieve records from the BOOKINGS table.
This results in many small network packets moving between the two database nodes, and the network
latency and overhead degrade performance.

The following is the TKPROF output (note that TKPROF still works in 11g and is located in
$ORACLE_HOME/bin):

The query in the preceding listing can be rewritten in a form that causes less network traffic. In the
next listing, one query is sent to the remote node to determine all customers with open bookings. The
output is the same, but performance is greatly improved. Both versions of the query use roughly the
same CPU time and logical I/Os on the local node, but the elapsed time is about 97 percent better
here. This gain is attributable to reduced network overhead.

Here is the TKPROF output:

When distributed queries cannot be avoided, use IN clauses, set operators such as UNION and
MINUS, and use everything else you can to reduce the network traffic between nodes of the database.
Views that limit the records in a table can also improve performance by reducing what is sent from
the remote client to the local client.

TIP
When distributed queries cannot be avoided, use IN clauses, set operators such as UNION and
MINUS, and use everything else you can to reduce the network traffic between database nodes.
Queries written in a manner that causes looping between distributed nodes (distributed databases)
can be extremely slow.

When You Have Everything Tuned
If you have successfully tuned all of your queries, then you can start working on those that go to the
data dictionary views. Is it possible to get tuning tips or techniques from looking at data dictionary
queries and how they are structured? The answer is yes! You can see them in the SQL_TRACE
output. The next example shows that even Oracle’s own views have some highly complex joining
schemes (note that this process has one less step than 10g required, and it still takes a fraction of a
second and only 37 memory reads):

The execution plan output is as follows:

Miscellaneous Tuning Snippets
The issues covered in this section will help the advanced DBA. I’ll discuss external tables, consider
the “Snapshot Too Old” issue along with how to set the event to dump every wait, and explore what’s
really going on by performing block dumps.

 External Tables
External tables allow you to access data that is not inside the database. Relational databases took off
in the 1980s because of the ability to access data through relational tables. This was the first move
away from mainframes and legacy systems that stored information in flat files or some facsimile of
that. Oracle 11g continues the next paradigm in relational database technology. External tables extend
the relational model beyond the database. Now you have a means by which to access all of the legacy
data. You have a way to access all of that information dumped into flat files (perhaps, via third-party
products).

One of the most costly parts of the extract, transform, load (ETL) process used for data
warehousing and business intelligence is loading data into temporary tables so it can be used with

other tables already in the database. Although external tables were introduced primarily to assist in
the ETL process, Pandora’s box cannot be closed. I have seen a plethora of uses for external tables,
and I believe it’s just the beginning. If Java and XML were minor aspects integrated into the relational
model, the use of external tables brings the entire machine into the database and forever changes the
rules of engagement.

This simple example shows you exactly how to use external tables. First, you need a flat file of
data to access for the examples. You do this by simply spooling some data from our familiar friend,
the EMP table:

The following is partial output of the emp4.dat file:

Then you need to create a directory from within SQL*Plus so Oracle knows where to find your
external tables:

You then create the actual table definition that will reference the flat file that resides externally.
Note that even if you successfully create the table, access to the external table may not necessarily
result in a successful query. If the data is not stored in a way that matches the column definition of

your table, you will get an error when you select the actual data. An example of the CREATE TABLE
command is shown here:

There is currently no support for DML (INSERT, UPDATE, DELETE) commands, but you can
always do this outside the database because the data is in a flat file. By using shell scripting, as
shown next, you can certainly replicate those commands. Although you can’t create an index currently,
external tables are pleasantly and surprisingly fast.

To count records, you can either use the Unix command or do it within the database. Either way,
you have a means to work with data in flat files that are not within the database. This next listing is
the wc (word count) command with the -1 option, which indicates to count the lines. This is a simple
Unix command for counting records in a flat file. I created a file with 200,020 rows for the next more
intensive test.

You can also count the records in the flat file using SQL, since you’ve now built an external table.
The command shown next takes less than one second to return its result:

Once you know you can count records in less than one second, you press on to look for specific
information. Can you count selective pieces of data that fast? Yes. The code in the next listing looks
for specific employee numbers (EMPNO) from the flat file, which is now referenced via an external
table. The result is returned once again in less than one second.

Once you know you can scan through 200,000 records in less than one second (on a single-
processor machine in my case), you want to see how fast you can scan through millions of records.
The example shown next builds a second table and joins it with the first so you can test scanning
through 4 million rows. The result is less than 3 seconds to scan through this massive amount of data
using only modest hardware.

Now you join the two 200,000-row tables to create a join that merges the 20 rows in the first
result set with the 20 rows of the second table, as shown next. This results in a join accessing 4
million rows with a result set of 400 rows. The result is an answer in less than 3 seconds.

Here is the execution plan for the previous join:

You can also use hints with external tables, and you can join external tables with regular tables.
You can parallelize the operation, and you can even insert the data from the external table directly
into the database at any time. The possibilities are endless. External tables are not simply a serious
advantage of using Oracle; they are one of the greatest benefits to relational technology in the past
decade. They give you the window into the data that is not in your database. They allow you to access
those legacy systems that have data stored in a multitude of flat files. They provide you the path to
consolidate those legacy systems by moving step-by-step into the future.

Consider the quick use for an external table to read the alert file shown in the following listing.
The original script for this was written by Dave Moore and passed to me by Howard Horowitz. The
following is an alteration of those scripts:

CAUTION

External tables are one of the best Oracle inventions in many versions. Your innovative mind will
drive you to new heights using external tables. But be careful: data residing outside the database
is not subject to the same Oracle backups and security as data inside the database.

 Snapshot Too Old: Developer Coding Issue
Oracle holds undo information in case you need to roll back a transaction and also to keep a read-
consistent version of data. Long-running queries may need the read-consistent versions of the data in
UNDO segments because they may not be at the same System Change Number (SCN) as the ones
currently in memory. (They may have been changed since the start of the query.) If the UNDO segment
holding the original data is overwritten, the user receives the dreaded Snapshot Too Old error. With
advances in Oracle 11g, this error is, indeed, not rare (using automatic undo management), but there
is another, more frequent occurrence of the error in the later versions of Oracle.

In their infinite wisdom, developers find wonderful ways to update information that they are
querying within the same piece of code causing this problem. They are the ones both querying and
updating and causing the Snapshot Too Old error to occur. One flawed developer method is known as
the Fetch Across Commit. In this method, the developer first selects a large number of rows from a
table into a cursor and then fetches the rows to use for an update to the table, committing after a select
number (say, every 1000 records) based on a counter. What happens is that the cursor needs a read-
consistent image of the table, yet the developer is committing 1000 records within the same code to
the table. The result is a Snapshot Too Old error.

TIP
In addition to the more typical reasons, when developers modify the data as it is being selected,
fetching across commits, the Snapshot Too Old error can occur. To fix this problem, close and
reopen the cursor causing the issue.

 Set Event to Dump Every Wait
In Chapter 14, you will learn about two excellent tuning tools that Oracle offers: Statspack and AWR.
These are great tools for showing everything in a single report for you to analyze. But what if you
have a burning issue and you directly need to dump exactly what the system is doing so you can see
every wait on the system? If the compilation of all waits in the V$ views is not enough to solve
problems and you need to see the waits in real time, the answer is the very dangerous “Set Event
10046 at the system level.” You can also do this at the session level (see Chapter 13 for additional
settings beyond this section).

This event dumps every single wait that occurs so you can search through and see exactly what’s
causing the problem. You should use this strategy only as a last resort, and you should rarely use it.

You need a lot of disk space to use it when you have a lot of waits.
When you’re ready to dump the problem, here’s how to turn it on:

NOTE
You are also often required to increase the max size of dump files to get all the info you need
within the single trace file.

The following listing shows what you’ll get (in your DIAGNOSTIC_DEST):

Although this output shows some irrelevant waits that come up when you quickly turn this on and
off, when you have a real problem, the waits will be clear. You are looking for a section with
something like the following, which shows a latch free issue. (See Chapter 14 for steps on how to
resolve this issue.) When you don’t know what you’re waiting for, this gives you a slightly more “at
the street” level understanding of exactly what’s going on than the V$ views do:

When you have a nice dump of the problem, here’s how you turn it off:

CAUTION
Using the event 10046 at the system level can give a real-time dump of waits. Be careful because
you can use a lot of space very quickly on a very busy system. Only an expert who has the help of
Oracle Support should use this method.

 14 Hours to 30 Seconds with the EXISTS Operator
Although the Oracle optimizer is very good at ensuring a query is efficient, you can change a
multitable join into a query with a subquery using the EXISTS operator. You can only do this if the
table to put into the subquery doesn’t have anything being selected from it in the SELECT statement.
In this example, the goal is to pull one row back to use for test data in a test system:

You can see from this example that using EXISTS instead of joining the tables can be very
beneficial. Thanks to Mark Riedel of TUSC for sending, as he puts it, “the TUSC patented EXISTS
statement.” We first discovered this around 1990.

Tuning at the Block Level (Advanced)
Although block tuning is covered briefly in Chapter 14, here I cover it in a bit more depth. An internal
table called the buffer hash table (X$BH) holds block headers. There is a hash chain to which blocks
are linked that are protected by a CBC latch (cache buffers chains latch). This hash chain links to the
actual address located in memory (the memory set up with DB_CACHE_SIZE, which is the cache
used for data). For a given block in Oracle, only one version of a block is CURRENT, and no more
than six other CR versions of the block (as of 11g) exist. Thus, only seven versions of a given block
(maximum) are in memory at a time (forming a hash chain of six), although different blocks can be
hashed to the same chain (depending on the hashing algorithm). When you perform a DML transaction
—INSERT, UPDATE, or DELETE—you always need the CURRENT version of a block. In some
versions of Oracle 8, you had to set _DB_BLOCK_HASH_BUCKETS to a prime number to keep the
dba blocks evenly balanced in the hash buckets (more information on this in Chapter 14) and to avoid
a long hash chain arising from the way the hash was calculated. If you didn’t set this to a prime
number, you could get a very long hash chain (as many blocks were hashed to the same chain), and
then get major CBC latch waits (CBC latches are used in 10g, 11g and 12c, although not under all
conditions). The hashing algorithm changed and will not need to be prime in 12c (so don’t change it).

Also note that Oracle has something called in-memory undo (IMU), which can give you some
hard-to-understand results when you are viewing information at the block level. If you are familiar
with IMU, which was new as of 10g, you will find that blocks don’t show up as dirty when you query
X$BH and they have been dirtied. This is because updates are made inside the actual block, as
opposed to in the UNDO block, before images are taken. I discovered that this happens only for
certain retention settings, though. There is a parameter, _IN_MEMORY_UNDO=TRUE, in the
initialization file that is set to FALSE for some TPC benchmarks. Other parameters include
_IMU_POOLS and _DB_WRITER_FLUSH_IMU. If you access the block trying to update a different
row in the block, the IMU is flushed to the UNDO block, and the block shows as dirty (in my tests
anyway, although I was told this depends on what the UNDO retention is set to). IMU writes the
UNDO and REDO to memory instead of to disk (which is what the _IMU_POOLS parameter is for).
IMU transactions always have room reserved in the current log file for writing out their REDO. They
also acquire an interested transaction list (ITL) in the block header (discussed in the next section)
and reserve space in the UNDO segment. Several sections of IMU statistics are displayed in the AWR
Report or the Statspack Report.

When you are querying a block for the first time, you always use the CURRENT version. If the
block is being used, you will build a clone of the block called a CONSISTENT READ (CR) version
by applying any UNDO needed to the CURRENT version of the block to get it to a point in time that
makes it useful to you (perhaps you need a version of the block before the DML was performed and
not committed by another user). This complex and Oracle-patented process may include reading the
ITL (which is populated when someone does a DML [Data Manipulation Language] on a block),
mapping the record to the UNDO HEADER, or directly to the UNDO BLOCK, and then applying the
UNDO to get the correct CR version that you need. So let’s take a look at how this happens:

 User 1 updates a record in block 777 (User 1 has not committed).
 User 2 queries the same block and sees that the lock byte is set for a row being queried.
 User 2 goes to the ITL portion of the block and gets the transaction ID (XID).

 The XID maps to the UNDO block, which holds the information before the update was
performed.

 A clone of the block is made (call it block 778).
 The UNDO information is applied to the block, rolling it back to where it used to be.
 Block 777 is a CURRENT block.
 Block 778 is a CONSISTENT READ block before the User 1 update occurred.
 If another user wants to do a query before the commit, that user can also read the CR version.

Also note that REDO goes forward; UNDO goes back. Yes, the UNDO (ROLLBACK) information
is applied to the block, but this has the effect of undoing the most recent changes to the block,
including setting the SCN for the block to a past time, not a future time. This is why they are called
ROLLBACK segments.

Note especially the fact that the block is not rolled back to what it was, but it is rolled forward to
what it used to be. While the result is the same, how Oracle performs this operation is critical to
understanding how Oracle works. Oracle blocks are always moving forward in time (this is why the
REDO works—it’s always applying things forward sequentially). There are also links to all blocks
for the least recently used (LRU) and least recently used-write (LRU-W) to help make buffer
replacement and writing much faster. This information is also maintained in the buffer headers.

If nothing has been advanced enough for you so far, this section is worth the price of the book and
should keep you busy for the next decade tuning your system to perfection (if you’d like). Oracle often
has perplexing new features: either I can’t seem to get them working or there’s simply a bug in the
program that I am unaware of. How do you find out if a problem is yours or Oracle’s? Dump the
blocks one at a time.

Consider the intense example in the listing that follows. Find the table/index block information that
you want to dump, as shown here:

Dump the table/index block information, as demonstrated here:

The ALTER SYSTEM command selects and then dumps the data blocks for the EMP table owned
by SCOTT to a trace file for the current user session in the DIAGNOSTIC_DEST directory, much
like TKPROF. The information that is dumped is very cryptic, but it can be helpful for tuning
purposes.

The information in the listing that follows compares portions of the block dumps of two different
bitmap join indexes. One is on the DEPTNO column, where the tables are also being joined by
DEPTNO. The other is on the LOCATION column, where the table is being joined by DEPTNO. By
comparing index information, you can see that the LOCATION column was included in the stored part
of the index, even though the query was going back to the table to retrieve the LOCATION column in
the query. The problem was an Oracle bug that you would discover only by performing this dump
(partially shown in this next listing; only the first record is displayed for each).

The best use for dumping blocks is to see how Oracle really works (unless data encryption is
enabled, making it unhelpful). Get ready for a long night if you plan to use this tip; I spent a weekend
playing with this the first time I used it.

TIP
Dumping data blocks can be a valuable tool to understand how Oracle works and to investigate

problem-tuning areas. Only a tuning expert should use block dumps, and even an expert should use
the help of Oracle Support. Oracle does not publish the structure of block dumps, so they can
change at any time.

Now let’s look at an example to show you how to interpret some of the output that you get from a
block dump as well as some other helpful queries that you can do when you do the deep dive into
block dumps.

This query will give you the block number for every record of a table:

Most of the information found in block dumps can be found in the data dictionary or can be
accessed using a built-in package such as DBMS_SPACE. In certain scenarios, however, knowing
how to read a block dump might benefit you; for instance, it may help you determine exactly why a
transaction is blocked. You will probably use other tools prior to dumping a block, utllockt.sql,
for instance, or Enterprise Manager, but if you want to see exactly what is holding a lock on a row in
a block, and how many rows are blocked, the block dump output can be quite useful. You may also
want to look at row chaining, look at the space utilization in the block for each row, or simply look at
the block because a block is corrupted and you want to take a closer look at it. Sometimes, looking at
what is stored in a corrupted block can help you figure out where the corruption originated—for
example, text that comes from a third-party tool or a block for which large chunks were changed to all
zeros (disk repair utilities).

 Key Sections of a Block Dump
Sections to note within the block dump include the block ITL, the flag section, and the block data

section. Each section is discussed in the text that follows.

The Block ITL Section in a Block Dump
One of the key sections of a block dump is the interested transaction list (ITL). The ITL section
shown next appears in the early part of the dump. This one shows two ITL slots (two is the minimum
number of ITL slots for both tables and indexes—if you don’t believe what you read, you can dump it
yourself to make sure). The XID is the transaction ID. The UBA is the Undo Block Address. I’ll
discuss the Flag in a moment. The Lock shows the number of records locked (four records are locked
in the first ITL slot because I deleted four rows for this example), and the SCN/FSC is either the SCN
for committed information (Flag is a C) or FSC (Free Space Credit), which is the amount of bytes that
will be recovered within the block if the transaction is committed. This number is a hexadecimal
number. For this example, it is 9d, which is 157 bytes recovered if the transaction to delete four
records is committed; the transaction could also be rolled back.

Here is another block dump example of an ITL section where three updates were being done on the
EMP1 table, DEPTNO column: one user updating all records with DEPTNO=10 (6 records), one
user updating all records with DEPTNO=20 (4 records), and a third user updating all records with
DEPTNO=30 (5 records).

The Flag Section
The flag section is a bit complex. It tells you what state the transaction is in (CBUT):

The Block Dump Data Section
The next block dump shows the data section. This is the first part (the header section) of the block
dump data section.

Following is the description of this header information:

The data part of the block dump data section starts with the line col0, as is shown in the block
dump that follows:

The following example shows how to interpret the output from the block dump data section for the
first column (col0), which is the EMPNO column:

The following example shows how to interpret the dump output from the block dump data section
for the second column (col1), which is ENAME:

Also note that the hex values correspond to the character mapping tables (which depend on the
National Language Support [NLS] settings for your database). For example, if you search “ASCII
code character” on Google, you can view a table of hex/decimal ASCII codes, in which 4d/77
corresponds to M.

This example from the dump output from the block dump data shows the HIREDATE column,
which is a DATE field:

You may want to select the hex data from the table. The following example uses SELECT dump()
and gets the ENAME from the hex:

Let’s query a new block (56650) from EMP1 and watch the EMP1 buffer header change (so far it’s
clean—the dirty bit is N—and consists of only one copy [or record], and it’s the current version, with
state=1):

Watch the EMP1 buffer header when you delete a row:

Let’s query the block (56650) and watch the EMP1 buffer header. There are now two copies (or
records): one copy is the current version (state=1), and one is a clone (CR, state=3).

Note that V$TRANSACTION now has the record (created when transactions have UNDO):

The column names in the output have these meanings:

 USN is the Undo Segment Number (ROLLBACK segment ID).
 SLOT is the slot number in the ROLLBACK segment’s transaction table.
 SQN is the sequence number for the transaction.
 USN+SLOT+SQN are the three values that uniquely identify a transaction XID.
 UBLK is the block for the last UNDO entry (it tells you how many UNDO blocks there are).
 UREC is the record number of the block (it shows how many table and index entries the

transaction has inserted, updated, or deleted).

If you are doing an INSERT or DELETE, then you will see that UREC is set to (number of indexes

for this table) + (how many rows you insert/delete). If you UPDATE a column, then UREC will be
set to (number of indexes that his column belongs to) * 2 + (number of updated rows). If the column
belongs to no index, then the UREC is set to the number of rows that were updated. If UBLK and
UREC decrease each time you query, then the transaction is rolling back. When UREC reaches zero,
the rollback is finished.

If you dump the block at this time, you see the locked record in the first row of the ITL section:

NOTE
The Least Redo Block Address (LRBA) is set only for the current block, and the current block is the
one with the DIRTY flag set to Y.

Can you get more than six versions of a block? Probably, but this is unsupported. In the following
listing, I’ve selected the maximum-allowed CR buffers per data block address (dba):

Now consider an example in 11g where I am updating/selecting multiple times in a block to get the
maximum number of CR versions of a block:

Now I am going to run the 11g command to flush the buffer cache:

Now I’ll rerun all of my SELECTs/UPDATEs to refill the cache to see the result. The result is that
I get five CR versions and one CURRENT version of the block, but the original seven buffered blocks
that I had are now reset to mostly zeros. Oracle has populated all new records in X$BH and zeroed
out the original ones after the buffer cache flush (5 CR and 1 CURRENT + 7 other zeroed out).

This listing still has room for one more active CR block. The listing gives a good feeling for how
Oracle handles the buffer cache flush. Testing things at the block level can help you to understand new
functionality but shouldn’t be used every day. Block tuning should be primarily used in a test system
for often-run code that needs detailed attention.

A deeper dive into block tuning is beyond the scope of this book. However, some of the queries

I’ve presented in this section will allow you to investigate what is going on at the block level in the
very rare case that you need to see it. The best reason to perform block dumps is to see what’s going
on inside of Oracle. In the next section, you get a brief look at the block level of bitmap indexes and a
few other types.

 A Brief Look at an Index Block Dump
Now let’s take a quick look at some index block dumps. First let’s look at a bitmap index. Each of the
indexed rows consists of five lines:

Consider the following bitmap index block dump:

If you insert 64 rows (0–63) and then take a block dump (note the 3f in col 2),

then you insert one more row (0–64), you get the following (note the 40 in col 2):

An index value exists in a block with ROWID=02 40 2d 60 00 40 (40(hex) => 64
(decimal)). The previous end ROWID was 3f (3*16+15 = 63). When the index is updated, you
must have enough space to accommodate growth; if you don’t, a split occurs. Not just that, a lock is
placed on the entry in the leaf index—but this entry can span over multiple blocks. As a side effect,
for the duration of a lock, no other transaction can update the blocks in the affected block range.
Bitmap indexes are used for a column with just a few different values, so on bigger tables each
bitmap likely covers quite a few blocks. A lock placed on those blocks can have disastrous effects on
other transactions, which is why bitmap indexes are almost always used for query-only data or mostly
static data.

Now let’s see how the block dump of a reverse key index looks. Note that a reverse key index will
be marked with the value NORMAL/REV in dba_indexes (index_type). You can see in the
following example that the hex values in col 1 are reversed.

Regular index entry:

Reverse key:

Finally, let’s take a quick look at how a regular index (ascending) differs from a descending index
when you do an index block dump.

A regular index:

A descending index:

You can see from all of these examples that the block dump can give you insight into new features
as well as details about internal data structures and indexes in Oracle. Use the block dump sparingly
and generally on a test system, however.

Tuning Using Simple Mathematical Techniques
This section discusses some simple but effective mathematical techniques you can use to significantly
improve the performance of some Oracle SQL–based systems. These techniques can leverage the
effectiveness of Oracle performance diagnostic tools and uncover hidden performance problems that
can be overlooked by other methods. Using these techniques also helps you make performance
predictions at higher loads.

NOTE
Joe A. Holmes provided the material for this section. I am extremely grateful for his contribution
because I believe it ties all the chapters of this book together.

The methodology called Simple Mathematical Techniques involves isolating and testing the SQL

process in question under ideal conditions, graphing the results of rows processed versus time,
deriving equations using simple methods (without regression), predicting performance, and
interpreting and applying performance patterns directly to tuning SQL code.

 Traditional Mathematical Analysis
First of all, do not be intimidated by this section. You will be able to understand this, and the
information provided will help you predict response times for your queries as the tables grow.

Traditional mathematical methods are very useful for analyzing performance. These may include
graphing performance metrics on an x-y coordinate axis to obtain a picture of what a process is really
doing and applying Least Squares Regression or Polynomial Interpolation to derive equations for
predicting performance at higher loads. Computer science academics and specialists use these
techniques extensively for performance analysis, which is laden with problems. First, textbook
notation and explanations are often very complex and difficult to understand. Most math textbooks I
have encountered that treat approximation and interpolation, for example, are steeped in theory rather
than providing clear and practical examples.

Second, little or no information is available on how to apply this kind of analysis directly to tuning
SQL code. This is probably because SQL analysis requires more specific interpretations to be useful
rather than something broader or more general.

 Seven-Step Methodology
The following are seven steps in the methodology. Note that deriving performance equations and
interpreting patterns are discussed in more detail in the sections that follow.

1. Isolate the SQL code in question.
The SQL code in question is isolated from surrounding system code and placed in a SQL*Plus
or PL/SQL script that can be run independently to duplicate the production process.

2. Run tests under ideal conditions.
In this context, “ideal” is defined as one SQL process running on a dedicated machine with
hardware-processing power fixed and executed under high-volume data.

3. Graph performance observations on an x-y coordinate axis.
From tests, the number of rows processed (x) versus time (y) for each SQL statement within a
process is graphed on an x-y coordinate axis. This is referred to as a row-time metric. Ideally,
the optimizer is, for the most part, more mechanical and less random, creating a more clearly
defined and predictable trendline. The basic line shape can provide clues to the cause of
underlying performance problems.

4. Use simple equation determination.
Once points are plotted on a graph, you assume that what appears straight is a linear function

and what appears curved upward is a quadratic function. (Other shapes may appear, but they
are beyond the scope of this section.) From these observations, you can use either a simple
two-point linear or three-point quadratic method to determine the equations. You can perform
both methods easily by hand or with a basic calculator. You can also use spreadsheets like
Microsoft Excel with graphing and trendline (regression) capabilities. Each separate SQL
statement is graphed and analyzed individually.

5. Predict performance.
You can use derived equations to predict performance at much higher loads than are practical
to test. Because the accuracy of the predictions may decrease as the predicted load increases,
it is suggested that you make only ballpark predictions.
It may be advantageous to calculate two performance lines: the first as a lower bound if the
performance line is truly linear, and the second as an upper bound if the performance line
might turn out to be a quadratic curve. The predicated value would, therefore, lie somewhere
in between. Later, you may want to try a test to see how close your prediction was to the actual
time. Also be aware that it is not as important whether a slow-running process is predicted to
take 20 or 24 hours, but rather, whether it can be improved to, say, 1 hour.

6. Interpret performance patterns and experiment.
The shape of the performance lines and the nature of the equations can provide clues about the
cause of underlying performance problems and support (or sometimes contradict) the
interpretations of diagnostic tools. You can conduct experiments on SQL code based on pattern
clues and the correction applied to production code. You can graph tests of an improved
process again and compare the results with the original process.

7. Keep a record of results to build expertise.
To build up your expertise at using both these mathematical methods and your interpretation of
Oracle diagnostic tools, keep a record of before and after performance graphs, the true cause
of performance problems, and the effective solutions you found. Graphs provide hard evidence
of performance problems that you can present in a clear visual form to management and end
users.

 Deriving Performance Equations
The following sections discuss two simple methods for equation determination based on simplified
versions of Newton’s Divided Difference Interpolating Polynomial. You can use these methods if you
assume that what appears as a straight line is linear and what appears as upward sloping is quadratic.

Simple Linear Equation Determination
The following is a simple two-point method for determining a linear best-performance line equation:

y = a0 + a1x (This is the final equation to use for linear queries.)

y = the number of rows in the table

x = the time to process the query
a1 = the slope of the line (Calculate this with two query tests.)

a0 = the y-intercept of the line (Calculate this with two query tests.)

Figure 9-6 shows points from an ideal test that appears linear. You visually select two points (x1,
y1) and (x2, y2) that define a straight line of minimum slope, where slope: a1 = (y2 – y1)/(x2 – x1):

FIGURE 9-6. Linear best-performance line

y-intercept: a0 = y1 – a1x1

A Simple Example These equations look great, but let’s look at a real-life query (using a basic query
to the EMP table). You must time the query on the basis of two different table sizes to get an equation
for the line.

For a very small system, consider the response for two tests:

1. When 1000 records were in the EMP table, this query took 2 seconds.
2. When 2000 records were in the EMP table, this query took 3 seconds.

Therefore, you know that
y1 = 2 (seconds)

x1 = 1000 (records)

y2 = 3 (seconds)

x2 = 2000 (records)

 Step 1 Find the slope of the line.
a1 = (y2 – y1)/(x2 – x1)

a1 = (3 – 2)/(2000 – 1000)

a1 = 0.001 (The slope of the line is 0.001.)

 Step 2 Get the y-intercept.
a0 = y1 – a1x1

a0 = 2 – (0.001)(1000)

a0 = 2 – 1

a0 = 1 (The y-intercept is 1.)

 Step 3 Now you can calculate response for any size EMP table.

You now have everything you need for this query, so you can figure out how long this query will
take as the number of rows in the EMP table increases.

What will the response time be for 3000 rows?
y = a0 + a1x (The response time is y, and x is the number of rows in the table.)

y = 1 + (0.001)(3000)
y = 1 + 3
y = 4 seconds (The response time for this query in a 3000-row EMP table will be 4 seconds.)

What will the response time be for 100,000 rows?
y = a0 + a1x

y = 1 + (0.001)(100,000)
y = 101 seconds (The response time for a 100,000-row EMP table will be 1 minute and 41
seconds.)

Simple Quadratic Equation Determination
Unfortunately, many queries don’t behave linearly. Consequently, the preceding section doesn’t
always help you. But never fear—a simple method for curved lines is next. Once again, do not be
intimidated by this section. You will be able to understand this, and with this information, you will be
able to predict query scaling (predict any response time for an increased number of rows). The
following is a simple three-point method for determining a quadratic best-performance equation. This
is the equation you will use:

y = a0 + a1x + a2x2 (This is the final equation to use for nonlinear queries.)

y = response time for a query
x = number of rows
a0, a1, a2 = constants derived from the curve the query creates

Figure 9-7 shows points from an ideal test.

FIGURE 9-7. Quadratic best-performance curve

You visually select three points, (0, y0), (x1, y1), and (x2, y2), that appear to be of minimum slope
on a quadratic-like curve. The midpoint between 0 and x1 is xa, and the midpoint between x1 and x2 is
xb, such that

xa = (x1 + 0)/2 and xb = (x2 + x1)/2

When joined, (0, y0) and (x1, y1) form a secant (a straight line that connects two points on a curve)
with slope Sa, and (x1, y1) and (x2, y2) form a secant with slope Sb. The x midpoints (xa, ya) and (xb,
yb) lie on the desired curve with tangents having slopes Sa and Sb, respectively. From the derivative
of a quadratic equation, which gives the slope of the curve at the midpoints, you have

Sa = (y1 – y0)/(x1 – 0) = a1 + 2a2xa

Sa = slope of the lower part of the curve

Sb = (y2 – y1)/(x2 – x1) = a1 + 2a2xb

Sb = slope of the upper part of the curve

Using Gauss elimination, you solve for the ai coefficients, such that
a2 = (Sb – Sa)/[2(xb – xa)] = (Sb – Sa)/x2
a1 = Sa – 2a2xa = Sa – a2x1-
a0 = y0

You’ll have to use these three equations to get a0, a1, and a2, and then you can use the final
equation. These will be the constants in the equation that will give you the response time of a query as
you vary the number of rows in the table.

NOTE
This method will not work in all cases. If any ai coefficients are negative, the equation may dip
below the X axis and something else must be used. Often, the origin or a0 = y0 = 0 works best with
this method.

A Simple Example All of these equations look great, but let’s look at a real-life query. You must time
the query using two different table sizes to get an equation for the line. The ORDERS table has an
index on ORDNO, but it is suppressed by the NVL function (causing the nonlinear response time).
The real solution to this problem is to eliminate NULLs in the ORDERS table and remove the NVL
function from the query. However, this example is for instructional purposes to generate a quadratic
equation.

For your system, consider the response of this query for two tests:

 When there were 100 records in the ORDERS table, this query took 5 seconds.

 When there were 2000 records in the ORDERS table, this query took 1000 seconds.
You want to know how long this query will take when you have 10,000 rows in the ORDERS

table. Therefore, you know that

y1 = 5 (seconds)

x1 = 100 (records)

y2 = 1000 (seconds)

x2 = 2000 (records)

y0 = 1 (second – estimate); this is the y-intercept

You could calculate y0 by using two points near the lower part of the curve (near 100 rows using
the linear equations from the preceding section), but because the lower part of the curve is small (5
seconds for 100 rows), you can guesstimate this to be 1 second. (You should calculate it.)

 Step 1 Calculate Sa and Sb.
Sa = (y1 – y0)/(x1 – 0)

Sa = (5 – 1)/(100 – 0)

Sa = 0.04 (The slope of the lower part of the curve is almost horizontal.)

Sb = (y2 – y1)/(x2 – x1)

Sb = (1000 – 5)/(2000 – 100)

Sb = 0.52 (The slope of the upper part of the curve is much higher than the lower part.)

 Step 2 Calculate a0, a1, and a2.

a2 = (Sb – Sa)/x2

a2 = (0.52 – 0.04)/2000

a2 = 0.00024

a1 = Sa – a2x1

a1 = 0.04 – (0.00024)(100)

a1 = 0.016

a0 = y0

a0 = 1 (The y-intercept is 1.)

 Step 3 Create the equation to use as the table grows.

y = a0 + a1x + a2x2

y = 1 + (0.016)x + (0.00024)x2 (This is your equation to calculate future responses.)

 Step 4 Calculate the expected response for 10,000 rows.

y = 1 + (0.016)x + (0.00024)x2

y = 1 + (0.016)(10,000) + (0.00024)(10,0002)
y = 24,161 (The query will take 24,161 seconds, or just under seven hours; you have a
problem.)

You’ll have to fix the NVL problem soon so the users don’t have to wait seven hours. But in
reality, you have calculated only a couple of points, and this should be extended out further to get a
better future estimate of performance.

TIP
Spreadsheets like Microsoft Excel are very useful tools for graphing performance metrics and
automatically deriving trendline equations. For example, to create a graph using Excel, list the
observed (x,y) data in cells. Highlight the cells, and select Chart Wizard | XY (Scatter) | Chart Sub-
type. Select a Line subtype and click Next | Next | Finish to create the graph. To derive a trendline
equation, click the graph line once, and select Chart | Add Trendline. On the Type tab, select
Linear, Polynomial Order = 2 (for quadratic) or other model type. To show the trendline equation,
on the Options tab, select Display Equation On Chart. Then click OK to complete the graph. The
solution equation can be programmed back into the spreadsheet (depending on your spreadsheet
version) and used to predict values at higher volumes.

 Pattern Interpretation
Graphical performance patterns provide clues to underlying SQL problems and solutions, as seen in
Figure 9-8. The ultimate goal in using these methods is to convert a steep linear or quadratic best-
performance line to one that is both shallow and linear by optimizing the SQL process. This may
involve experiments with indexes, temporary tables, optimizer hint commands, or other Oracle SQL
performance tuning methods.

FIGURE 9-8. Examples of performance patterns

With pattern interpretation, performing your own application-specific SQL experiments to develop
expertise at using these methods is important. Table 9-2 shows more specific interpretations—based
on my personal experience—that provide a general idea of how you can apply what you observe
directly to tuning SQL code. Assuming the scale is correct, pattern interpretation often provides a
more accurate picture of what is actually happening to a process and may support or even contradict
what a diagnostic tool tells you.

TABLE 9-2. Graphical Representations of Various Tuning Situations

General Linear and Quadratic Interpretations
A shallow linear performance line usually indicates a relatively efficient process compared to
something much steeper or curved. The slope a1 indicates the rate y increases for a given x. Scale is
important because a shallow line on one scale can look steep on another, and vice versa. A large a0
coefficient always indicates an inefficient process.

An upward-sloping (concave) quadratic curve almost always indicates a problem with the process
because as more rows are added, the time to process each additional row increases. Coefficient a2
affects the bowing of the curve. If it is very small, the equation may be more linear. However, even a
very slight bowing may be an indicator of something more insidious under much higher volumes.

In rare cases, a quadratic curve might appear downward sloping (convex), indicating a process
where as more rows are added, the time to process each additional one decreases (i.e., economies of
scale). This is desirable and may occur at a threshold, where a full table scan is more efficient than

using an index.

Indexing
Missing indexes commonly cause poor SQL performance. In Figure 9-8, line A or C could result from
a missing index, depending on code complexity and data volume. Proper indexing improves
performance to line B. Over-indexing can be as bad as missing indexes. Line A or C could be a
process that is forced to use an index, whereas a full table scan would improve the process to B.
Inserting into an indexed table is always slower than into an index-free table. Line A or C could be
from an INSERT into a heavily indexed table versus line B with no indexing.

Indexing Example This listing illustrates what can happen with indexing analysis. Suppose you have
two tables, TABLE_A and TABLE_B, and there is a one-to-many relationship between them based on
KEY_FIELD. There does not have to be a join between the two tables.

You want to perform the following update within a KEY_FIELD:

The SQL statement shown next will do this. Note that the EXISTS subquery must be used to
prevent the NULLing out of any TABLE_A.TOTAL fields, where TABLE_A.KEY_FIELD does not
match TOTAL_B.KEY_FIELD.

If there is a unique index on the TABLE_A.KEY_FIELD and a nonunique index on

TABLE_B.KEY_FIELD, then the performance will be similar to line B in Figure 9-8. However, if
there is no index on TABLE_B.KEY_FIELD or the cost-based optimizer decides to shut it off, a line
will be generated similar to A or C. The reason is that the EXISTS subquery heavily depends on
indexing.

I have seen cases where the number of rows in TABLE_A was small (< 2000), but the cost-based
optimizer shut off the index on TABLE_B and reported a small EXPLAIN PLAN cost. This was
regardless of the number of rows in TABLE_B (which was up to 800,000 rows). Actual tests showed
a steep performance line that contradicted the EXPLAIN PLAN cost. This is an example of
uncovering a problem that may have been overlooked by a diagnostic tool.

When the optimizer (cost-based) finds a query to retrieve less than 5–6 percent (based on the
average distribution) of the data in a table, the optimizer generally drives the query with an index if
one exists. Figure 9-9 shows how Oracle has evolved through the past years prior to Oracle9i. In
Oracle 10g, the optimizer is very good at analyzing not only the number of rows, but also the
distribution of data, and also knows if the query has been run previously. The first time a query is
executed is different from the second time even if this was weeks ago. While the response time still
depends on the percentage of blocks (better than looking at the percentage of rows) retrieved by the
query, what kind of disks, cache for the disks, cache for the operating system, and previous queries
change the upper part of the graph greatly (where you retrieve most of the table). Everything starts
depending more on your hardware and access patterns. In 11g, this continues to improve, and in
Exadata, you have a whole new paradigm with even greater efficiencies. I have left the following
graph in Figure 9-9 in this version of the book to show where Oracle has been in the past (Chapter 8
shows a graph of where we are currently with 11g).

FIGURE 9-9. Optimum percentage of rows for index for older versions of Oracle

Optimizer Execution Plan
You can graph performance patterns to leverage available diagnostic tools. For example, you
analyzed a slow and complex SQL statement that used views and ran high-volume data under the

Oracle cost-based optimizer. Results showed a very high performance line identical to D in Figure 9-
8. The Oracle EXPLAIN PLAN also showed an inefficient execution plan. Once an effective
optimizer hint command was found (i.e., FIRST_ROWS) and added directly to the SQL statements
that defined the views, performance improved dramatically to line B.

Multiple Table Joins
Complex multiple-table join statements often run poorly regardless of the conventional tuning used
and may be similar to lines A or C in Figure 9-8. From past experience, rather than trying to tune only
the statement with conventional techniques, a more effective solution is to decompose it into a series
of simple SQL statements using temporary tables. The final result would be the same, but at much
faster speed, represented by a composite line at B.

Jackknifing
Jackknifing is a pattern where a performance line starts off shallow but then veers steeply upward at
a certain threshold point, similar to E in Figure 9-8. Two linear equations may define the behavior; its
cause could be anything from disk I/O or memory limitations to a switch in the optimizer execution
plan due to changing data volumes. Possible solutions are to increase the system’s limitations, run
fresh optimizer statistics, or break the statement into selection ranges. Proper tuning might either
straighten out the line to E1 or improve it further to line B.

Riding the Quadratic Curve
Often, a poorly performing SQL process is designed and tested on low-volume data, but in production
under higher volumes, its true and degrading quadratic nature is revealed, as shown by curve A in
Figure 9-10. In this example, a process was created and tested up to x1. Performance was believed to
be close to line B, but once in production and when the volume was increased to x3, the line really
turned out to be curve A.

FIGURE 9-10. Example of riding the quadratic curve

If you cannot find a proper tuning solution, you can still improve a quadratic process of unknown
cause by breaking the original statement into lower-volume selection ranges and riding the shallow
part of the quadratic curve. Suppose in Figure 9-10, you break the process into three selection ranges:
from [0 to x0] that rides the lower part of curve A, from [x1 to x2] that rides the lower part of curve
A1, and from [x2 to x3] that rides the lower part of curve A2. The overall result is something closer to
line B from [0 to x3] with y2’ taking a lot less time than the original y2. Although this technique may
not be the best solution, it could still solve the problem.

Instead of running everything all at once, breaking up the process using a SQL loop and commit
mechanism can sometimes buy better overall performance for processes like UPDATEs and
DELETEs that use ROLLBACK segments.

Volatility Effects
Running under ideal conditions and graphing the results makes it much easier to analyze the effects of
outside traffic and its resulting volatility. For example, line A in Figure 9-11 is from an inefficient
linear process run under ideal conditions. Suppose a controlled amount of traffic from another
process is then run at the same time. It could be a large query, insert, update, or backup, etc. This
second test moves line A by 100 percent to A1. In other words, the process with added traffic on the
system is twice as slow.

FIGURE 9-11. Example of volatility effects

Now suppose you optimize the original process. Under an ideal test of the new process, the best
performance line shifts down to B. If you were to predict what would happen if you applied the same
controlled traffic to the new process, you might predict a 100 percent shift to B2.

However, since the slopes between A and B differ (with A being much steeper than B), the 100
percent time increase from B to B2 would be much less than from A to A1. In fact, an actual traffic test
on line B might prove to be much less than even the predicted 100 percent due to the overall
efficiency of the line B process. In general, more efficient SQL processes are less susceptible to
added traffic effects than less efficient processes.

 Mathematical Techniques Conclusions
Simple Mathematical Techniques is an effective Oracle SQL performance analysis and tuning
methodology that involves running tests under ideal conditions, graphing performance observations,
and using simple linear and quadratic equation determination for predicting performance at higher
loads. It also includes the interpretation of performance patterns that can be applied directly to tuning
SQL code. You can build your own tuning tools using these methods.

The methodology acts as a catalyst by combining the use of some traditional mathematical analysis
with Oracle diagnostic tools to aid in their interpretation and to leverage their effectiveness. It can
also help you identify hidden problems that may be overlooked by other diagnostic methods by
providing a broad picture of performance. The technique can also help you overcome performance-

tuning barriers such as inexperience with Oracle, lack of hard evidence, or difficulties with
diagnostic tool interpretation that may prevent effective performance tuning. You can also analyze
volatility effects from outside traffic. Graphs provide a visual picture of performance for presentation
to management and end users. And you can use spreadsheets such as Microsoft Excel with these
techniques for quick and easy performance analysis.

TIP
If you want an Oracle symphony as great as one of Beethoven’s, you must learn and know how to
apply mathematical techniques to your tuning efforts. You don’t have to learn everything that you
learned in college calculus; merely apply the simple equations in this chapter to tie everything in
this book together. Thank you, Joe Holmes, for doing the math for us!

Tips Review
 Using cost-based optimization, the first table in the FROM clause is the driving table when the

ORDERED hint is used. This overrides the optimizer from choosing the driving table. If a
SORT-MERGE join is used, then the order of the tables has no impact because neither will
drive the query (although the first listed table is accessed first for the operation and is the
driving table). Knowing which table is generally the driving table when using an ORDERED
hint in small joins can help you solve larger table join issues and also help you find indexing
problems.

 When hash initialization parameters are set up, the optimizer uses HASH joins in lieu of
SORT-MERGE joins. With HASH joins, the first table is used to build a hash table (in
memory if available), and the second table in the FROM clause then probes for corresponding
hash table matches. The first table in the FROM clause (using the ORDERED hint) is the first
table accessed in a HASH join.

 Using cost-based optimization and a NESTED LOOPS join as the means of joining, the first
table in the FROM clause is the driving table (all other conditions being equal), but only the
ORDERED hint guarantees this. In NESTED LOOPS joins, choosing a driving table that is the
smaller result set (not always the smaller table) makes fewer loops through the other result set
(from the nondriving table) and usually results in the best performance.

 To change the method that Oracle uses to join multiple tables, use the USE_MERGE, USE_NL,
and USE_HASH hints. Multiple tables may need to be specified for the hint to work, and the
driving order is usually from first to last in the FROM clause.

 In a three-table join, the driving table is the intersection table or the table that has a join
condition to each of the other two tables in the join. Try to use the most limiting table as the
driving table (or intersection table) so your result set from the join of the first two tables is
small when you join it to the third table. Also, ensure that all join conditions on all tables are
indexed!

 Using cost-based optimization, when a large table and a small table are joined, the smaller
table is the driving table (accessed first), and the smaller table is used to build a hash table in
memory on the join key. The larger table is scanned and then probes the hash table for matches
to the join key. Also note that if there is not enough memory for the hash, the operation can
become extremely slow because the hash table may be split into multiple partitions that could
be paged to disk. If the ORDERED hint is specified, then the first table in the FROM clause is
the driving table, and it will be the one used to build the hash table.

 Using cost-based optimization, when a large and small table are joined, the larger table is the
driving table if an index can be used on the large table. If the ORDERED hint is specified, then
the first table in the FROM clause is the driving table.

 To ensure that you are reading your EXPLAIN PLAN correctly, run a query for which you are
sure of the driving table (with nested subqueries).

 You may not be able to modify actual code for some third-party products, but you can often
add, force, or suppress indexes (using SQL Plan Management) to improve performance.

 When distributed queries cannot be avoided, use IN clauses, set operators such as UNION and
MINUS, and use everything else you can to reduce the network traffic between database
nodes. Queries written in a manner that causes looping between distributed nodes (distributed
databases) can be extremely slow.

 In addition to the more typical reasons, when developers modify the data as it is being
selected, fetching across commits, the Snapshot Too Old error can occur. To fix this problem,
close and reopen the cursor causing the issue.

 Dumping data blocks can be a valuable tool to understand how Oracle works and to
investigate problem-tuning areas. Only a tuning expert should use block dumps, and even an
expert should use the help of Oracle Support. Oracle does not publish the structure of block
dumps, so they can change at any time.

 If you want an Oracle symphony as great as one of Beethoven’s, you must learn and know how
to apply mathematical techniques to your tuning efforts. You don’t have to learn everything that
you learned in college calculus; merely apply the simple equations in this chapter to tie
everything in this book together.

 If you’ve read and understood this entire chapter, you’re probably among the top-tuning
professionals and you will see the heights and joys that I’ve seen with tuning Oracle.

References
E. Aronoff, K. Loney, and N. Sonawalla, Advanced Oracle Tuning and Administration (Oracle
Press, Osborne McGraw-Hill, 1997).
Mike Ault, “Advantages of Oracle9i Real Application Clusters” (TUSC, 2002).
Janet Bacon, “Reading a Block Dump” (TUSC).
Block Level Reading Tool from Terlingua Software.
Bradley Brown, Oracle Web Development (McGraw-Hill, 1999).
S. Chapra and R. Canale, Numerical Methods for Engineers; with Programming and Software

Applications, 3/e (McGraw-Hill, 1998).
Kevin Gilpin, Mark Bobak, and Jonathon Lewis, Metalink notes “EM Grid Control 10g”
(otn.oracle.com, Oracle Corporation).
Guy Harrison, Oracle SQL High-Performance Tuning 2/e (Prentice Hall, 2000).
J. A. Holmes, “Leveraging Oracle Performance Tuning Tools Using Simple Mathematical
Techniques,” SELECT Magazine, Vol. 5, No. 4, July 1998, IOUG-A, pp. 36–42.
J. A. Holmes, “Seven Deadly SQL Traps and How to Avoid Them,” SELECT Magazine, Vol. 6, No.
4, July 1999, IOUG-A, pp. 22–26.
J. A. Holmes, “Amazing SQL*Plus Tricks,” SELECT Magazine, Vol. 7, No. 4, July 2000, IOUG-A,
pp. 26–33.
J. A. Holmes, “SQL Performance Analysis and Tuning Using Simple Mathematical Techniques,” The
Carleton Journal of Computer Science, No. 2, 1998, Carleton University Press Inc., Ottawa, ON,
pp. 9–14.
R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental Design,
Measurement, Simulation and Modeling (John Wiley & Sons, Inc., 1991).
Scott Marin, The Machinations of Oracle (Terlingua Software).
Dave Moore, Oracle Professional, February 2002, Managing Oracle9i Real Application.
James Morle, Scaling Oracle8i (Addison-Wesley, 1999).
Rich Niemiec, “Oracle10g New Features” (TUSC Presentation).
Oracle11g Documentation (Oracle Corporation).
Real Application Cluster Documentation Set (technet.oracle.com).
Jay Rossiter, “Oracle Enterprise Manager 10g: Making the Grid a Reality” (Oracle Corporation)
Oracle 10g and Oracle9i documentation.
Craig Schallahamer, “All about Oracle’s Touch Count Algorithm” (orapub.com).
Roger Schrag, “Tuning Joins” (Database Specialists).
Randy Swanson, “Oracle10g New Features” (www.tusc.com).
Dave Wotton, “Understanding ‘Snapshot Too Old’” (http://home.clara.net/dwotton/dba/snapshot.htm).
“Clusters: An Oracle White Paper,” March 2001.
“Oracle RAC—Cache Fusion Delivers Scalability: An Oracle White Paper,” May 2001.
“Building Highly Available Database Servers using RAC: An Oracle White Paper,” May 2001.
The tips and techniques section of www.ioug.org.
Other websites: www.tusc.com, www.oracle.com, www.ixora.com, www.laoug.org,
technet.oracle.com, and www.lookuptables.com.

Thanks to Mike Messina who added the Real Application Testing, Database Replay, and SQL
Performance Analyzer sections. Special thanks to Francisco Javier Moreno, Guillermo L. Ospina
Romero, and Rafael I. Larios Restrepo from the University Nacional in Medellín, Colombia (who
contributed; Maurizio Bonomi of Italy (detailed join sections); Joe Holmes of Canada (for the
“Tuning Using Simple Mathematical Techniques” section); Veljko Lavrnic (VL), Scott Martin, and
Tirth (tink) for help and insight with the block tuning section; and Roger Schrag (basic join sections).
Thanks to Joe Trezzo, Andy Mendelsohn, Sean McGuire, Mike Broulette, Judy Corley, Greg Pucka,
Randy Swanson, Bob Taylor, and Mark Greenhalgh for their contributions to this chapter.

http://www.tusc.com
http://home.clara.net/dwotton/dba/snapshot.htm
http://www.ioug.org
http://www.tusc.com
http://www.oracle.com
http://www.ixora.com
http://www.laoug.org
http://technet.oracle.com
http://www.lookuptables.com

A

CHAPTER
10

Using PL/SQL to Enhance Performance
(Developer and DBA)

s with each release before it, Oracle Database 12c continues to elevate PL/SQL
performance and functionality to new levels. This chapter focuses on helpful tips that are
new with 12c (up to 12cR2) as well as tips that continue to be useful from older versions.
Once you have great queries to monitor your system, you need to automate them. PL/SQL

gives you the capability to do so while also providing some great packages and procedures that you
can use for tuning. The PL/SQL engine processes all PL/SQL requests and passes the statements on to
Oracle for execution. When PL/SQL is passed to Oracle, it is placed in Oracle’s System Global Area
(SGA), more particularly in the shared pool. In Oracle, PL/SQL source code can be stored in the
database in the form of procedures, functions, packages, and triggers. Once these objects are stored in
the database in compiled format, they can be executed from any Oracle tool by any user who has been
granted EXECUTE privilege on that object. Upon execution, the p-code (executable code) is loaded
into the shared pool and executed by Oracle. A PL/SQL object remains in the shared pool until the
object is aged out with a Least Recently Used (LRU) algorithm. If any process calls the object, it does
not have to be reloaded into the SGA shared pool as long as it has not been aged out. Therefore,
Oracle looks in the shared pool (which is very efficient) for the object prior to going to disk (which
is not as efficient) to load the object. How well the SQL within the PL/SQL is tuned is probably the
biggest factor driving performance, yet I will cover other tuning considerations in this chapter. The
last portion of this chapter is dedicated to understanding and being able to locate the PL/SQL. Here
are the tips covered in this chapter:

 Leverage the PL/SQL Function Result Cache to improve performance (improved in 12c)
 Define PL/SQL subprograms in a SQL statement (new in 12c)
 Reference sequences directly in PL/SQL expressions
 Identity Columns (new in 12c)
 Max size increase for VARCHAR2, NVARCHAR2, and RAW data types (new in 12c)
 Binding PL/SQL-only data types to SQL statements using DBMS_SQL (new in 12c)
 Use named parameters in SQL function calls
 Simplify loops with the CONTINUE statement
 Leverage compile-time warnings to catch programming mistakes

 Increase performance with native compilation (improved in 12c)
 Maximize performance with the optimizing compiler (improved in 12c)
 Use DBMS_APPLICATION_INFO for real-time monitoring
 Use a custom replacement of DBMS_APPLICATION_INFO for real-time monitoring in a

RAC environment
 Log timing information in a database table
 Reduce PL/SQL program unit iterations and iteration time
 Use ROWID for iterative processing
 Standardize on data types, IF statement order, and PLS_INTEGER
 Reduce the calls to SYSDATE
 Reduce the use of the MOD function
 Improve shared pool use by pinning objects
 Identify the PL/SQL that needs to be pinned
 Use and modify DBMS_SHARED_POOL.SIZES
 Get detailed object information from DBA_OBJECT_SIZE
 Find invalid objects
 Find disabled triggers
 Use PL/SQL associative arrays for fast reference table lookups
 Find and tune the SQL when objects are used
 Consider the time component when working with Oracle’s DATE data type
 Use PL/SQL to tune PL/SQL
 Understand the implications of PL/SQL location
 Specify a rollback segment for a large cursor
 Use temporary database tables for increased performance
 Integrate a user-tracking mechanism to pinpoint execution location
 Limit the use of dynamic SQL
 Use pipelined table functions to build complex result sets
 Suppress debugging commands with conditional compilation
 Take advantage of the samples just for the beginners (beginners start here)

Leverage the PL/SQL Function Result Cache to Improve

Performance (Improved in 12c)
Perhaps the best developer feature in Oracle Database 12c is the improved PL/SQL Function Result
Cache. This feature provides a quick way to build a cache of function results that will be used
automatically when a subsequent call to a function is made with the same parameter values. It
essentially eliminates the hand-coded caches that you’ve had to build in the past using PL\SQL array
structures. More importantly, the new Function Result Cache works at the instance level, not the
session level as is the case with hand-coded mechanisms.

Let’s start the example with these tables:

There are a total of 398,124 USA residents with these totals in some key cities:

Next, you create a function that returns the average salary for a specified country:

The baseline performance is obtained by executing the function several times to compute the
average salary of residents in the USA:

The initial execution, which incurs the overhead of parsing the statement, is ignored to yield an
average execution time of 0.3625 seconds. Not a bad showing overall considering the RESIDENTS
table contains 1 million records. However, let’s see how this seemingly fast performance can
compound into poor performance when the function is utilized within a complex query. The task is to
determine the number of Chicago residents who earn more than the average salary. Here are the
results:

Clearly, the problem here is that the GET_AVG_SAL function is being executed 869 times, once
for each resident who lives in Chicago. Realizing that the GET_AVG_SAL function can only return 65
different values (one for each country), one might be inclined to build a caching mechanism into the
function call. You can implement a cache in a matter of seconds by simply adding the
RESULT_CACHE keyword to the function definition:

With the Result Cache enabled, the average execution time of the function has dropped to 0.0155
seconds, as shown here:

The complex Chicago query now completes in a blazing 0.749 seconds!
Let’s take a closer look at what is happening within the function. First, the function is modified

slightly to generate console output every time it executes:

Now let’s run the complex Chicago query:

The single “Executing Function Body” indicates that the function body was only executed a single
time. When you re-execute the query,

the “Executing Function Body” text does not appear because the results are coming from the Result
Cache. As an added benefit, the Result Cache is automatically leveraged by any session of the
instance. In comparison, a manually coded cache would be session-specific (each session would
maintain its own copy of the cache array and values). To test this, start a new SQL session and run the
complex Chicago query:

Clearly, the new database session is utilizing the cache that was populated in the original session
for the get_avg_sal(’USA’) function call. If you alter the query to report on Dublin, Ireland, you
will see that the function must be executed again to fill the cache with data for Ireland:

If you are wondering what happens to the cache when the underlying table data is changed, let’s
take a look using a few SQL commands (run in a relaunched database):

Clearly the cache is not aware of the underlying data manipulations and the result being returned is
now incorrect. Oracle provides a utility package, DBMS_RESULT_CACHE, that you can leverage to
force an immediate purging of the cache, as shown next. Purging, of course, allows the cache to be
repopulated with the proper values, taking into account the sweeping salary change that was made.
Note that EXECUTE privileges for the DBMS_RESULT_CACHE package are not provided by
default.

The appropriate long-term solution is to alter the function definition to identify underlying
dependencies that the cache needs to take into account. Do this with the RELIES_ON clause:

The Result Cache now monitors changes to the CITIES and RESIDENTS tables and refreshes
itself as needed. The CITIES table is listed as a dependency to track any reorganizations that may
occur, such as a new city being added to a country. Let’s see how this change impacts the results:

The cache now responds to changes in the underlying tables that the function relies on and refreshes
itself as needed.

In addition to the DBMS_RESULT_CACHE package mentioned earlier, Oracle provides several
performance views to monitor the Result Cache: V$RESULT_CACHE_STATISTICS,
V$RESULT_CACHE_MEMORY, V$RESULT_CACHE_OBJECTS, and
V$RESULT_CACHE_DEPENDENCY. From a developer perspective, the most useful of these views
are V$RESULT_CACHE_STATISTICS and V$RESULT_CACHE_OBJECTS. The former provides a
summary overview of the entire Result Cache, whereas the latter provides details for each object in
the Result Cache.

The V$RESULT_CACHE_STATISTICS view always returns ten records providing summary
information about the entire Result Cache. Here’s an example of the information returned by
V$RESULT_CACHE_STATISTICS:

These name-value pairs are defined as follows:

The STATUS column of V$RESULT_CACHE_STATISTICS indicates the viability of the data in
the cache with values being limited to

 New Result is still under construction.

 Published Result is available for use.

 Bypass Result will be bypassed for use.

 Expired Result has exceeded expiration time.

 Invalid Result is no longer available for use.

The rows in the V$RESULT_CACHE_OBJECTS view with the value ‘Result’ for the TYPE
column are of most interest as they allow you to review information such as hit rates. The view
contains a “Published Result” record (TYPE = ‘Result’ and STATUS = ‘Published’) for each unique
combination of function name and input parameters that is still valid in the cache. The
V$RESULT_CACHE_OBJECTS view also contains “Invalid” records (STATUS = ‘Invalid’) that
result when cache entries are invalidated, such as when a change in a RELIES_UPON object causes
the cache to be refreshed. Based on the SQL that has been issued during this discussion, you can
expect the view to have two published result records: one for the numerous calls to
get_avg_sal(’USA’) and one for the calls to get_avg_sal(’Ireland’). Here is a portion of the
record for the USA call:

These columns are identified as follows:

In conclusion, the new PL/SQL Function Result Cache makes possible enormous performance
gains with a minimum of development effort. It shouldn’t be used as a crutch for poorly
written/designed functions but as another tool for creating highly efficient routines.

In 12c, we also can combine invoker rights (AUTHID CURRENT_USER) with the Function
Result Cache (RESULT_CACHE). Our function will look like this now:

With this declaration the Result Cache for an invoker rights function is logically partitioned by the
name of the current user. Performance will be improved when executed by the same user invoking this
function with exactly the same parameter.

Define PL/SQL Subprograms in a SQL Statement (New
in 12c)
Release 12c presented two new features to increase query performance when a subprogram is called.
We can now create a PL/SQL subprogram inline SELECT statement utilizing the WITH clause
declaration. This function when created in the WITH clause subquery is only available for the current
query and is not stored as an object in the database (similar to an inline view). Since this subprogram
in the WITH clause will be called from the SELECT statement, only the function in the declaration
can be used.

Let’s use the function from the previous example:

In 12c, if we don’t want to store this function in the database, and use it just in SELECT
statements, we can use the WITH clause:

No switching from SQL to PL/SQL engines and vice versa, and no stored object with all needed
grants, synonyms, and so on! In addition to performance gains for one execution, this new 12c feature
is very helpful for queries written using read-only accounts. You don’t need to create functions’
privileges in the specialized reports if no reusability is required. The local WITH clause declaration
takes precedence over the stand-alone function with the same name.

A second, related feature new in 12c is that a function can be created with the UDF pragma to
inform the compiler that the function is always called in a SELECT statement. UDF stands for user-
defined function. Since version 7, we have been able to create PL/SQL functions, store them in the

database, and call them from SQL or PL/SQL. The problem on the performance side is that this
requires context switching from SQL and PL/SQL each time. With Oracle 12c we can use PRAGMA
UDF as a compiler directive indicating that this function is used in the SQL statement.

Let’s take our function from the previous example and add this PRAGMA UDF:

Let’s compare the performance of this new option to just calling the simple stored GET_AVG_SAL
function, which we will set as 1× performance. When using the WITH option, performance is 3.7×
faster, and with UDF pragma performance is 3.9× faster. As you can see, the performance gain is
significant, but you need to remember a few of the drawbacks. A function utilizing the WITH clause is
not stored in the database and cannot be reused. A function created with PRAGMA UDF can slow
down performance if called directly from another PL/SQL program. So, use PRAGMA UDF in a
function only when calling it from a SQL statement.

Reference Sequences Directly in PL/SQL Expressions
You can reference sequences directly in PL/SQL expressions without the archaic “select from dual”
construct. The result is more streamlined code that is easier to read and maintain. Oracle also
promises improved performance and scalability. Let’s start with a PL/SQL block written the “old
fashioned” way with a “select from dual” construct being used to pull values from a sequence:

This block executes in 61.47 seconds (averaged across three executions).
You can streamline the code by referencing the NEXTVAL and CURRVAL pseudocolumns directly

within the PL/SQL code, as shown here:

The average execution time with this block is 61.90 seconds. While the ability to reference the
sequence value directly in PL/SQL has simplified the code, a performance gain has not been realized.
In fact, the performance has degraded slightly. To investigate further, the previous tests are repeated
with sequences using various cache sizes. The results are summarized here.

So it would appear that the inline construct has a slight performance advantage, particularly when
the sequences are defined with a cache. However, the advantage is so slight that I am reluctant to say
definitively that the new construct is indeed faster. A second round of testing with the same
parameters as before and the performance advantage now tips in favor of the “select from dual”
construct.

Identity Columns (New in 12c)
You can utilize the ability to define an IDENTITY clause against a table column defined using a
numeric type, instead of code that creates and uses a sequence object (the Create Sequence privilege
is required to create Identity Columns since they are in fact sequential values or sequences). When
creating a table (or altering a column) with the 12c Identity Column, the following options are
available: ALWAYS, BY DEFAULT, and ON NULL. ALWAYS forces the use of the identity. If an
INSERT statement references the Identity Column (even to specify a NULL value), an error will be
raised.

An example with ALWAYS looks like this:

But any attempt to pass a value for the EMP_ID will result in an error:

The BY DEFAULT clause allows you to use the identity if the column isn’t referenced in the
INSERT statement, but if the column is referenced, the specified value will be used in place of the
identity.

An example with BY DEFAULT looks like this:

The BY DEFAULT ON NULL clause allows the identity to be used if the Identity Column is
referenced but a value of NULL is specified.

An example with BY DEFAULT ON NULL looks like this:

A couple of additional notes about Identity Columns:

 Identity Columns are always NOT NULL.
 [DBA|ALL|USER]_TAB_IDENTITY_COLS views show information about Identity Columns.
 The link between the table and the sequence is stored in the SYS.IDNSEQ$ table:

Performance tests between using sequences and an Identity Column gave comparable results since
sequences internally created and utilized the sequence, where an Identity Column allows clear column
identity and less code to populate sequential values.

Max Size Increase to 32K for VARCHAR2,
NVARCHAR2, and RAW Data Types (New in 12c)
Since the introduction of the VARCHAR2 and NVARCHAR2 data types, the maximum size limitation
has been 4K (and RAW with 2K). To overcome this limitation, Large Object (LOB) data types needed
to be used. With 12c, this limitation is removed and data types can be declared up to 32,767 bytes,
which is especially useful for search capabilities in SQL statements and indexing for these increased-
size columns. Size declaration will direct how the column is stored internally in the database. When
declared with up to 4K for VARCHAR2 and NVARCHAR2 (and RAW up to 2K), the data is stored
inline. When utilizing new increased sizing up to 32K, the data is stored out-of-line and the column is
called an extended character data type column.

The database needs to be configured to utilize this new extended character data type. Simply
creating a table with the column of this extended type will result in an error:

The following steps must be completed first to use this new extended data type:

1. Restart the database in upgrade mode (STARTUP UPGRADE).
2. Issue ALTER SYSTEM set max_string_size=extended.

3. Execute the utl32k.sql script from rdbms/admin as SYSDBA.

4. Restart the database in normal mode.

Now we can create this table with the extended character data type:

Allow Binding PL/SQL-Only Data Types to SQL
Statements (New in 12c)
Oracle 12c now supports the binding of PL/SQL-only data types to anonymous blocks, PL/SQL
function calls in SQL, the TABLE operator in SQL, and CALL statements like

 BOOLEAN Type
 Record Types
 TABLE Operator
 Collections

Some of the most interesting uses of this feature are in dynamic SQL. Let’s take a look at an
example with a Boolean type calling function, where annual salary will be increased or not
increased based on the passed Boolean parameter:

Use Named Parameters in SQL Function Calls
When passing formal parameter values to PL/SQL subprograms, Oracle has always permitted
position, named, and mixed notations. It is generally an accepted best practice to use the named
notation, as it both increases code readability and offers a level of protection against changes to a
subprogram’s signature. Unfortunately, in prior versions to 11g the named notation was not available
when PL/SQL functions were called from within a SQL command. This limitation left PL/SQL
function calls that were embedded in SQL statements vulnerable to undesired effects if the subroutine
signatures were not changed in a very careful manner.

Let’s look at an example. First, I create a function that accepts a person’s first and last names and
formats them into a single string using the format LastName, FirstName:

I’ll now use this function to format a couple of fictitious records from an EMPLOYEES table. I
start out by using the positional notation that was mandatory in 11g:

For comparison purposes, I’ll employ the same data using a PL/SQL block, as that method has
always offered the use of named notation:

As expected, the results are identical to what was returned by the SQL statement. Now let’s fast-
forward to a future enhancement in which the FORMAT_NAME function supports the middle name as
well:

Note that the developer interjected the new middle name parameter between the existing
parameters. Re-executing the SQL and PL/SQL extraction commands from before, you see that the
former is returning incorrect results because of the positional notation:

You can now utilize the named notation with SQL to limit the impact of function signature changes,
as shown here:

TIP
Named notation continues to be the preferred method for passing parameters to subroutines. You
can now extend this best practice approach to SQL statements to yield consistency across the
entire code base.

Simplify Loops with the CONTINUE Statement
The CONTINUE statement is used to cycle a loop (and skip the remaining statements) without
requiring a branch to the end or raising an exception. The CONTINUE statement has two forms:

CONTINUE;

CONTINUE WHEN boolean expression;

The first form executes unconditionally and the second form executes only when the Boolean
expression is TRUE. The CONTINUE statement will not necessarily improve performance but it
provides better structured coding techniques and helps to avoid the awkward GOTO statement.

The following example displays only numbers divisible by three from within a loop.
Without CONTINUE statement:

With CONTINUE statement:

With CONTINUE statement using WHEN clause:

From a performance perspective, none of these three techniques has a distinctive advantage over
the other two. Consider the following modified versions of the samples executed over a much larger
number of iterations:

In this particular execution, both uses of the new CONTINUE statement were outpaced by the
original GOTO technique; however, the gap was very small and repeated executions show that the
lead can easily tip in any direction.

TIP
The new CONTINUE statement creates loop constructs that are more streamlined, but there are no
performance gains to be realized at this time.

Leverage Compile-Time Warnings to Catch
Programming Mistakes (Improved in 12c)
Since 10g, the PL/SQL compiler has had the capability to provide compile-time warnings regarding
common programming mistakes. These warnings cover an assortment of issues that, if left unattended,
may result in performance problems or logic errors. Before moving into the examples, note that the
PL/SQL compiler does not issue compile-time warnings by default. This functionality is controlled by
the Oracle Server parameter, PLSQL_WARNINGS. This parameter can be set specifically for a
desired session by altering the session, as shown here:

To ensure that compilation warnings are given consistently, however, it is recommended that the
parameter be configured at the database level (consider setting this only for development or test

systems, not for production systems).
Consider the following sample procedure in which the developer has created an if-then condition

that is unreachable during execution. The PL/SQL compiler issues a warning drawing the developer’s
attention to the problem.

Since 11g, Oracle included additional deficiencies that the PL/SQL compiler can detect. Easily the
most notable of these is PLW-06009, which detects the inappropriate use of the WHEN OTHERS
exception handler. Consider the following example:

The developer has made a programming error that will cause the variable v_ctr_n to be
overflowed on the last iteration of the loop. Normally, this error would not be a major concern
because the overflow would trip a runtime exception that could be used to respond to and handle the
overflow. However, the developer’s inappropriate use of the WHEN OTHERS exception handler
effectively suppresses any such runtime exception, so the system reacts as if nothing has gone wrong.
Indeed, if the procedure is executed, it seems to complete successfully:

While there are a few legitimate cases in which WHEN OTHERS NULL might be useful, in
general, it is an extremely bad programming habit that developers should avoid. Runtime exceptions
that should be ignored should be isolated with an exception handler specific to that exception. The
WHEN OTHERS handler, when employed, should propagate the exception (or raise a new one) to
identify the failure condition to the calling subroutine. Tweaking the previous code in this manner
yields the desired runtime results, as shown here:

TIP
Experienced and novice developers alike should leverage PL/SQL compile-time warnings to catch
obscured programming problems before code deployment.

Increase Performance with Native Compilation
Native compilation is the process by which a stored PL/SQL program is compiled into native code
that does not need to be interpreted at runtime. In comparison, code that is not natively compiled is
stored in an intermediate form that must be interpreted at runtime.

The ability to compile PL/SQL code natively has been around since Oracle9i; however, the
implementation has changed significantly starting with 11g. In 9i and 10g, the compiled program units
were stored and executed externally as C programs. The compilation required an external C compiler
and system configuration by a DBA. Starting with 11g and continuing with 12c, the database can
handle the native compilation on its own and an external compiler is no longer needed. The natively
compiled program units are stored within the databases in the system tablespace.

Because the natively compiled code does not need to be interpreted at runtime, the expectation is
that it will execute faster. However, the native compilation only applies to the procedural code in a
PL/SQL program unit, not any embedded SQL statements. As a result, the performance gains to be
realized really depend upon how much procedural code exists in relation to SQL code. At a bare
minimum, a natively compiled program unit that is SQL heavy should execute at least as fast as its
non-natively compiled counterpart. As the volume of procedural code increases, the faster the
natively compiled code should be.

To begin, let’s start with four stored procedures utilizing various amounts of procedural and SQL

code. The first procedure contains absolutely no SQL, whereas the rest contains increasing amounts
of SQL intermixed with the PL/SQL.

The default compilation mode (native or interpreted) can be set at the system level via the
PLSQL_CODE_TYPE database initialization parameter. Alternatively, the mode can be changed at
the session level using one of the following commands:

The session/system needs to be altered prior to compiling a given program unit. Altering the
compilation mode parameter does not impact program units that are already compiled in the database.
To ascertain the compilation type from an existing program unit, query the PLSQL_CODE_TYPE
column of the USER_PLSQL_OBJECT_SETTINGS dictionary table.

Here are the results when the test procedures are compiled in interpreted mode:

Here are the results when the test procedures are compiled natively:

Native compilation provided increased performance across the board, particularly with the
program units that contained more procedural logic in relation to SQL commands, as detailed in the
table:

With nothing to lose and everything to gain, setting the database default to native compilation
would seem to make sense. Any performance degradation caused by it—and I have yet to come
across any—should be handled on a one-off basis, shifting individual program units back to native
interpretation as needed.

Maximize Performance with the Optimizing Compiler
With each release of the database, Oracle tweaks the PL/SQL compiler to yield faster performance.
You’ve already seen how natively compiled PL/SQL code can execute faster than code that is
interpreted and compiled. Now let’s take a look at what is possible when you give the compiler
greater freedom to “tweak” your PL/SQL programs as it compiles them. Since 10g Oracle has given
developers the ability to control the level of optimization that is applied via the
PLSQL_OPTIMIZE_LEVEL parameter, which has the following valid values:

One of the specific optimizations triggered at Level 2 is subroutine inlining. Subroutine inlining is
optimization that replaces modularized subroutines with copies of the subroutine. The intent is to
eliminate the inherent overhead when calling modularized program units. The effects should be most
dramatic when the subprogram is called repeatedly as part of a large-volume loop. The primary
caveat is that subroutine inlining can only occur if the subroutine being called is within the same
program unit as the caller.

When a stored program is installed/recompiled, the compiler optimization level defaults from the
database configuration, which can be ascertained with the following query:

Alternatively, you can set a specific optimizer level by altering the current session:

Remember, the optimizer level setting only comes into play at the next compilation. It does not
impact compiled programs already in the database. Use the ALTER command to recompile any
existing program units with the current optimizer setting.

So that you can see what the various optimizer levels bring to the table, I will demonstrate using
some stored functions that are compiled at each of the levels and then executed. Note I’m using native
compilation throughout this test. First up is a simple function that uses a basic FOR loop and a nested
function to compute a running total of the numbers between 1 and 100 million. This procedure does
not interact with any database tables.

Clearly, the performance increases with each optimizer level. Unfortunately, Oracle does not
publish the exact optimizations that are being applied to the code at each level, but it is possible to
get some insight, particularly with respect to subroutine inlining.

The technique calls for enabling all PL/SQL warnings prior to compilation:

The compilation warnings confirm that subroutine inlining was performed and the original
subroutine removed. At Levels 2 and 3, the optimizer is free to rearrange the code to replace the
function call (to UPDATE_TOTAL) with a copy of the subroutine, thereby eliminating the overhead.
The overhead is small (remember, we are dealing with 100 million loop iterations in this example),

but it does exist.
In the second example, the basic FOR loop is replaced with a cursor to the RESIDENTS table that

I have been experimenting with. Recall that this table contains 1 million records. The cursor fetches
the salary of each resident and then passes that to a nested subroutine that updates a running total
variable:

These are the testing results:

As before, you can see that performance improves with each optimizer level, with a significant
gain as you move beyond Level 1. Looking at the compiler warnings, you will see that the optimizer
is inlining both the nested function call (UPDATE_TOTAL) and the cursor definition:

Moving on, the program is revised to no longer fetch the salary in the cursor. The
UPDATE_TOTAL nested procedure now has the additional task of fetching the salary for each
resident based upon the resident identifier:

These are the testing results:

This less efficient design definitely takes longer to execute, but it still achieves a significant
performance improvement once the optimizer reaches Level 2. You see almost no further
improvement as you move to Level 3, however. The PL/SQL compilation warnings reveal that the
cursor and the UPDATE_TOTAL procedure call are being inlined just as before. Optimizations or
not, the limiting factor here is the 1 million individual queries being issued to perform piecemeal
fetching of resident salaries.

The final iteration of the test program replaces the cursor loop with a basic FOR loop spanning the
range 0 to 1 million. This is possible because the resident IDs are densely packed in this range.

These are the testing results:

This program shows the least amount of improvement as the optimization level increases. As in the
previous example, the real limitation here is the high volume of one-off queries that are being issued
to retrieve each resident’s salary. Regardless, optimization Level 3 has once again turned in the best
performance. The specific optimizations being reported by the compiler are shown here:

Let’s investigate subprogram inlining a bit further. As noted earlier, inlining becomes possible at
optimization Level 2. That doesn’t mean that it will happen at Level 2, just that the optimizer will
consider it. The optimizer could choose not to perform inlining based upon some analytical result. If
inlining is going to be performed automatically by the optimizer, it would most likely occur at Level
3. Suppose automatic inlining were occurring and the impact was reduced performance. You could
reduce the optimization level to prevent the inlining, but you may sacrifice other optimizations in the
process. The preferred solution is to stop the inlining and nothing else. You can accomplish this with
the INLINE pragma. The INLINE pragma provides a mechanism by which the developer can coerce
or prevent inlining. In the case of coercion, it is nothing more than that—a suggestion that the
optimizer perform inlining, but the optimizer has the final word. In the case of prevention, however,
the optimizer must obey. To demonstrate, I slightly revised the OPTCOMP_1 function that I
experimented with earlier to add an INLINE pragma to prevent the inlining of the UPDATE_TOTAL
function:

These are the testing results:

The results are nearly identical to what you saw before, with the sole exception being the results at
Level 3. Unlike before, there is almost no improvement as the level changes from 2 to 3. Earlier,
Level 3 yielded a performance increase of 8 seconds over Level 2. Reviewing the PL/SQL warnings
reveals that the inlining was blocked by the pragma directive:

Comparing these warnings to those from the analysis of OPTCOMP_1 reveals that the optimizer
chose to perform inlining at Level 3 originally.

Clearly, the optimizer is capable of making notable improvements in PL/SQL performance. The
test scenarios that I tried did not uncover any situations in which optimization Level 2 or 3 failed to
increase performance, although it is always a possibility. It is probably best to leave the optimizer at
Level 2, the default, but those wishing to squeeze out every last bit of performance may want to
increase that to Level 3.

Use DBMS_APPLICATION_INFO for Real-Time
Monitoring
The DBMS_APPLICATION_INFO package provides a powerful mechanism for communicating
point-in-time information about execution in an environment. The following example illustrates this,
as it enables a long-running PL/SQL program unit to provide information on the progress of the
routine every 1000 records. The PL/SQL code segment updates the application information with the
number of records processed and the elapsed time every 1000 records.

The following is an example illustrating the update of all employees’ salaries:

To monitor the progress, query the V$SESSION view, as shown in the following example:

Please note that this query needs to be run in a separate session from the one executing the PL/SQL
block.

The following is the output from the V$SESSION view, when queried three different times. The
last output is when the PL/SQL program unit was completed.

Your response time will depend on how fast your system is and how well it is architected. The
reason for the two records being returned for each query in the preceding output is that both the
execution of the PL/SQL program unit to update employees’ salary and the SQL statement to monitor
the progress via the V$SESSION view are executed under the SCOTT schema in two different
SQL*Plus sessions. The preceding example illustrates a valuable technique to deploy in an
environment and provides a real-time monitoring mechanism. It becomes easier to determine
accurately how long a program has been running and to estimate how long a program has to complete.

If DBAs do not want users’ queries against the V$SESSION view to return information for all
users, they can create a view based on the V$SESSION view that limits the retrieval to only the
executing user’s session information. This can be accomplished by executing the commands as the
SYS user. The following syntax creates the new view (the new view is named SESSION_LOG, but
any name can be used). Including “USER” in the query that follows returns the name of the session
user (the user who logged on) with the data type VARCHAR2:

The following syntax creates a public synonym:

The following syntax grants SELECT permission to all users:

Once the SESSION_LOG view is set up, as shown in the preceding statements, the preceding
V$SESSION view query can be changed to SELECT from the SESSION_LOG view, as in the
following query, to limit the output to only the user executing the query:

TIP
Use the Oracle-supplied package DBMS_APPLICATION_INFO to log point-in-time information to
the V$SESSION view to enable monitoring of long-running processes.

Log Timing Information in a Database Table
Monitoring performance is an ongoing process. Many variables in an environment can change and
affect performance over time; therefore, performance should be monitored continuously. Some of the
variables include user growth, data growth, reporting growth, application modification/enhancement
deployment, and additional load on the system from other applications. With this in mind, an Oracle
system must be regularly monitored to ensure performance remains at, or above, an acceptable level.
(Oracle ADDM does this for you as well.) One method for monitoring the system performance is to
create a mechanism for logging timing statistics for certain aspects of an application. Batch programs
are good candidates for this monitoring procedure. The monitoring procedure can be accomplished by
inserting timing statistics into a database table. The following example provides the database table
logging method by creating a database table and then integrating INSERT statements for the timing of
the process into the table. Oracle’s own SQL monitoring starts when a SQL statement runs parallel or
when it has consumed at least 5 seconds of CPU or I/O time in a single execution. You can monitor
the statistics for SQL statement execution using many V$ views (especially V$SQL and
V$SQL_MONITOR). See Chapter 12 for many great queries to the V$ views used for Oracle
monitoring.

In this example, the important information to log in the database table is the program identifier
(some unique method of identifying the program), the date and time the program is executed, and the
elapsed time of the execution. One column has been added for this application, namely, the number of
records updated. This additional column is important for this application to monitor the growth of
employee records being processed. When creating a timing log table for your application, add
columns to store additional important processing information that may affect your timing results.
Create the following table to log the timing information:

Once you have created the table, you can enhance PL/SQL program units to log the timing
information into the PROCESS_TIMING_LOG table, as illustrated in the following program:

As shown in the preceding code segment, the timer is started at the beginning of the program unit
and then stopped at the end of the program unit. The difference between the start and ending times is
logged into the PROCESS_TIMING_LOG for each execution of the UPDATE_SALARY program. If
the UPDATE_SALARY program unit is executed three times, as shown in the following syntax, then
three timing records are inserted into the PROCESS_TIMING_LOG table:

The following script retrieves the information from the PROCESS_TIMING_LOG table:

This output shows one possible result. There is a difference in the elapsed time for the same
program execution. If the difference increases over time, this may indicate a need to analyze the
program unit further or the application to determine what caused the execution time increase. With
logging mechanisms in place, the elapsed time can be monitored at any point in time because the
timing information is being logged to a database table.

In the preceding example, the time logged was per program unit. If the program is complex and
executed for an extended period of time, you may want to change the logging of timing statistics in the
program. The INSERT into the PROCESS_TIMING_LOG table could be performed after a certain
number of iterations or to log timing for certain functionality in a program unit.

TIP
Log (INSERT) execution timing information into a database table for long-running PL/SQL
program units to integrate a proactive performance-monitoring mechanism into your system. The
database table can be reviewed at any point in time to determine if performance has decreased
over time.

Another method is to use the DBMS_PROFILER package to get timing statistics per line of
PL/SQL code. See Metalink (My Oracle Support) article 104377.1, “Performance of New PL/SQL
Features” for more information.

TIP

System load in terms of number of active sessions can have a large impact on the performance of
program execution; therefore, modifying the database table logging method to include a column
for the number of active sessions can be helpful. You can fill this column by adding one additional
query to the program unit being executed to retrieve the count from the V$SESSION view.

Reduce PL/SQL Program Unit Iterations and Iteration
Time
Any PL/SQL program unit involving looping logic is a strong candidate for performance
improvements. Potential improvements for these types of programs can be accomplished in two ways.
The first is to reduce the number of iterations by restructuring the logic to accomplish the same
functional result. The second is to reduce the time per iteration. Either reduction often improves
performance dramatically.

To bring this point into perspective, think of the following scenario: You need to process 9000
employee records in a PL/SQL routine, and to process each employee takes 2 seconds. This equates
to 18,000 seconds, which equates to 5 hours. If the processing per employee is reduced to 1 second,
the time to process the 9000 employees is reduced by 9000 seconds, or 2.5 hours … quite a
difference!

The following example shows a minor restructuring of a PL/SQL program unit to illustrate
reducing per-loop processing and overall processing. The program unit processes a loop 1,000,000
times. Each iteration adds to the incremental counter used to display a message each 100,000
iterations and adds to the total counter used to check for loop exiting. To view DBMS_OUTPUT,
make sure you issue the SET SERVEROUTPUT ON command first.

The package has been created.

The package body has been created.

By changing the program to only add to the LV_TOTAL_COUNTER_NUM variable each time the
incremental counter reaches 100,000, overall execution time is reduced:

The DBMS_OUTPUT.PUT_LINE output for each batch of processed records was not included in
the following output:

The preceding example illustrates the performance difference achieved by changing the iteration
logic to reduce the timing per iteration. The example is basic and shows a 34 percent increase on 1
million iterations. Based on the restructuring and the iterations, this improvement can make a huge
difference.

TIP
When a PL/SQL program unit involves extensive looping or recursion, concentrate on reducing the
execution time per iteration. The benefits add up fast, and it is easy to do the math to determine
the overall improvement potential. Also review the looping or recursion for restructuring to reduce
the number of iterations, while keeping the functionality. With the extreme flexibility of PL/SQL
and SQL, a variety of ways typically exist to accomplish the same result. If a PL/SQL program unit
is not performing optimally, sometimes you have to rewrite the logic another way.

Use ROWID for Iterative Processing
The ROWID variable can improve PL/SQL programs that retrieve records from the database,
perform manipulation on the column values, and then complete with an UPDATE to the retrieved
record. When retrieving each record, the ROWID can be added to the selected column list. When
updating each record, the ROWID can be used in the predicate clause. The ROWID is the fastest
access path to a record in a table, even faster than a unique index reference.

The performance improvement of using the ROWID is illustrated in the following example. The

example retrieves each of the 25,000 employee records, calculates a new salary for each employee,
and then updates the employees’ salary. The actual salary calculation is not shown in this example.
The first PL/SQL code segment shows the timing results with the UPDATE using the EMPLOYEE_ID
column, which has a unique index on the column:

The following output shows the timing of two executions of the preceding code segment:

In the following procedure, the same functionality is maintained while changing the UPDATE to
perform the UPDATE based on the ROWID. This involves adding the ROWID in the SELECT
statement and changing the UPDATE predicate clause.

The following output shows the timing of two executions of the preceding code segment:

As evidenced from the timings, execution is faster using the ROWID. The first PL/SQL code
segment UPDATE statement retrieves the result by using the index on EMPLOYEE_ID to get the
ROWID and then goes to the table to search by ROWID. The second PL/SQL code segment UPDATE
statement goes directly to the table to search by ROWID, thus eliminating the index search. The
performance improvement increases when more records are involved and when the index used does
not refer to a unique index.

TIP
Use the ROWID variable to enhance performance when SELECTing a record in a PL/SQL program
unit and then manipulating the same record in the same PL/SQL program unit.

Standardize on Data Types, IF Statement Order, and
PLS_INTEGER
Several minor programming modifications can be introduced into your standard PL/SQL development

that can improve performance. Three of these techniques are outlined in this section:

 Ensure the same data types in comparison operations.
 Order IF conditions based on the frequency of the condition.
 Use the PLS_INTEGER PL/SQL data type for integer operations.

 Ensure the Same Data Types in Comparison
Operations
When variables or constant values are compared, they should have the same data type definition. If
the comparison does not involve the same data types, then Oracle implicitly converts one of the
values, thus introducing undesired overhead. Any time values are compared in a condition, the values
should be the same data type. You should use this standard when developing PL/SQL program units as
it is good programming style.

The following procedure illustrates the cost of comparing different data types, namely, a numeric
data type to a character value in the IF statement:

The following illustrates the execution of the TEST_IF procedure:

The following output is the execution result of the TEST_IF procedure:

Unnecessary overhead is introduced with the different data types. If the procedure is changed to
the same data type comparisons, the following execution is much faster:

The following code listing illustrates the execution of the new TEST_IF procedure:

As shown in the preceding examples, the execution is 23 percent faster. The improvement
increases as the frequency of execution increases.

Therefore, in the final example, the comparison in the IF statement of LV_TEMP_COND_NUM to
a 1,2,3, and so forth, is comparing a NUMBER to a PLS_INTEGER. Some internal Oracle
conversion overhead is still taking place. To eliminate this overhead, the 1,2,3 … should be changed
to 1.0, 2.0, 3.0 … . When I made this change to the final example, the timing was reduced to 0.16
seconds.

TIP
Ensure all conditional comparisons compare the same data types. Additionally, ensure the data
types within the numeric family are comparing the same subtype.

 Order IF Conditions Based on the Frequency of the
Condition
The natural programming method when developing IF statements with multiple conditions is to order
the conditional checks by some sequential order. This order is typically alphabetical or numerically
sequenced to create a more readable segment of code, but it usually is not the most optimal order.
Especially when using the ELSIF condition several times in an IF statement, the most frequently met
condition should appear first, followed by the next most frequent match, and so forth.

In the preceding section, the execution of the procedure was always carried out by passing an 8,
which meant every loop had to check all eight conditional operations of the IF logic to satisfy the
condition. If you pass a 1, which is equivalent to saying the first condition satisfies all IF executions,
you get a more optimized result, as shown in the following example:

The preceding output illustrates a performance improvement from the preceding section with the
correct ordering of IF conditions. Therefore, take the extra step of analyzing IF condition order before
coding them.

TIP
Ensure the string of PL/SQL IF conditions appear in the order of most frequently satisfied, not a
numerical or alphanumerical sequential order.

 Use the PLS_INTEGER PL/SQL Data Type for
Integer Operations
The typical standard for declaring a numeric data type is to use the NUMBER data type. In PL/SQL
release 2.2, Oracle introduced the PLS_INTEGER data type. This data type can be used in place of

any numeric family data type declaration, as long as the content of the variable is an integer and
remains within the bounds of –2147483648 and +2147483647. Therefore, most counters and
operations with integers can use this data type. The PLS_INTEGER involves fewer internal
instructions to process, thus improving performance when using this numeric data type. The more
references to this variable, the more improvement realized. Operations on NUMBER data types use
library arithmetic, whereas operations on the data types PLS_INTEGER, BINARY_FLOAT, and
BINARY_DOUBLE use hardware arithmetic. For local integer variables, use PLS_INTEGER. For
variables that can never have the value NULL, do not need overflow checking, and are not used in
performance-critical code, use SIMPLE_INTEGER (see the Oracle Database PL/SQL Language
Reference for more types and additional information). Note also that if you assign a PLS_INTEGER
variable to a NUMBER variable, then PL/SQL converts the PLS_INTEGER value to a NUMBER
value (because the internal representations of the values differ). However, whenever possible, you
should avoid these implicit conversions.

This improvement for PLS_INTEGER is illustrated in the following PL/SQL code segment. The
code segment is the same example as used in the previous two sections, with the data type
declarations being changed to PLS_INTEGER from NUMBER.

The following illustrates the execution of the TEST_IF procedure:

The following performance improvement is evident based on the execution results:

TIP
Use the PLS_INTEGER type when processing integers to improve performance. If a number with
precision is assigned to a PLS_INTEGER variable, the value will be rounded to a whole number as
if the ROUND function had been performed on the number.

Reduce the Calls to SYSDATE
The SYSDATE variable is a convenient method of retrieving the current date and time. Calls to
SYSDATE involve some overhead; therefore, if this variable is needed to log the date of certain
processing, the call to this variable should be made once at the start of the program rather than at each
iteration. This technique of calling SYSDATE once at the start of the program assumes the date
logging is desired at the point in time the program started.

The reduction of SYSDATE calls is illustrated in the following example. The example loops
through 10,000 iterations, calling SYSDATE (only the date portion of the variable because the
TRUNC function is used to truncate the time portion) every iteration.

The following output shows the timing of two executions of the preceding code segment:

The following PL/SQL code segment has been modified to retrieve the SYSDATE only once, at the
beginning of the program, and set to another variable each iteration:

The following output shows the timing of two executions of the preceding code segment:

As evident in the preceding example, overhead is associated with the SYSDATE call, and the
number of calls to SYSDATE should be reduced, if possible.

TIP
Attempt to limit the calls to SYSDATE in iterative or recursive loops because overhead is
associated with this variable. Set a PL/SQL date variable to SYSDATE in the declaration and
reference the PL/SQL variable to eliminate the overhead.

Reduce the Use of the MOD Function

Certain PL/SQL functions are more costly to use than others. MOD is one function that has better
overall performance when applied using additional PL/SQL logic. This is illustrated in the following
example. MOD is a useful function, but if it is executed in an IF statement, as illustrated here,
additional overhead is introduced.

The following output shows the timing of two executions of the preceding code segment:

Here, I have modified the preceding PL/SQL code segment to eliminate use of the MOD function
and perform the same check with additional PL/SQL logic:

As shown in the two preceding examples, the MOD function adds overhead. You can get better
performance with PL/SQL IF statements.

Improve Shared Pool Use by Pinning PL/SQL Objects
The SHARED_POOL_SIZE parameter sets the amount of shared pool allocated in the SGA (see
Chapter 4 and Appendix A for a detailed look at SHARED_POOL_SIZE and closely related shared
pool parameters). The shared pool stores all SQL statements and PL/SQL blocks executed in the
Oracle database. Given the method by which Oracle manages the shared pool, as far as aging, the
shared pool can become fragmented. In addition, since Oracle will not age any objects that are
currently being processed by a session, you may get an Oracle error indicating that the shared pool
does not have enough memory for a new object. The exact error message is “ORA-4031: unable to
allocate XXX bytes of shared memory” (where XXX is the number of bytes Oracle is attempting to
allocate). If you receive this error, it means you should increase the size of your SGA shared pool as
soon as possible. The method to do this prior to Oracle9i was to modify the initialization parameter
SHARED_POOL_SIZE and then shut down and start up the database. The quick, but costly, method of
eliminating this error until the next database shutdown was to flush the SGA shared pool. You

accomplished this with the following command (only allowed if ALTER SYSTEM privilege is
assigned to a user):

In Oracle9i, you could modify the SHARED_POOL_SIZE parameter without shutting down the
database as long as you didn’t exceed the SGA_MAX_SIZE. This eliminated the need to do things
that you had to do in previous versions. You still had to pin the large objects into the shared pool
when the database had started and make sure the shared pool was large enough for all of these
statements to be cached. Starting with 10g, Oracle uses Automatic Memory Management (AMM). In
both 11g and 12c, you can set the MEMORY_TARGET (but you can also set a minimum for the
SHARED_POOL_SIZE). Oracle internally manages the memory parameters for you and can be
altered dynamically as long as you don’t exceed the value of MEMORY_MAX_TARGET (see
Chapter 4 on setting initialization parameters).

 Pinning (Caching) PL/SQL Object Statements into
Memory
In the event that you cannot maintain a sufficient SHARED_POOL_SIZE to keep all statements in
memory, keeping the most important objects cached (pinned) in memory may become necessary. The
following example shows how to pin PL/SQL object statements (the procedure PROCESS_DATE is
pinned in the example that follows) in memory using the DBMS_SHARED_POOL.KEEP procedure:

or

By pinning an object in memory, the object will not be aged out or flushed until the next database
shutdown. Also consider My Oracle Support Note 61760.1: DBMS_SHARED_POOL should be
created as user SYS. No other user should own this package. Any user requiring access to the
package should be granted EXECUTE privileges by SYS. If you create the package in the SYS
schema, and run the sample code in a different schema, you need to

1. Grant the EXECUTE_CATALOG_ROLE role to the user running the example (i.e., TEST), and
grant EXECUTE privilege on DBMS_SHARED_POOL to TEST.

2. Fully qualify the package, as in SYS.DBMS_SHARED_POOL.KEEP, because the
dbmspool.sql script does not create a public synonym for this package.

TIP
Use the DBMS_SHARED_POOL.KEEP procedure to pin PL/SQL objects into the shared pool.

NOTE
To use this procedure prior to Oracle 10g, you had to first run the dbmspool.sql script. The
prvtpool.plb script is automatically executed after dbmspool.sql runs. In 10g through 12c, the
dbmspool.sql script is called by catpdbms.sql, and catpdbms.sql is called by catproc, so the
procedure is already created.

 Pinning All Packages
To pin all packages in the shared pool, execute the following as the SYS user (this code comes from
My Oracle Support):

A more targeted approach, pinning only packages that need to be reloaded, would be better than
pinning all packages, especially because most DBA interfaces since Oracle9i involve PL/SQL
packages. At the very least, you should check to make sure you are not trying to pin invalid packages
as well. Common packages that are shipped with Oracle (that should be kept) include STANDARD,
DBMS_STANDARD, and DIUTIL.

TIP
Use the DBMS_SHARED_POOL.KEEP procedure in PL/SQL to pin all packages when the
database is started (if memory/shared pool permits) and to avoid errors involving loading
packages in the future.

Identify PL/SQL Objects That Need to Be Pinned
Fragmentation causing several small pieces to be available in the shared pool, and not enough large
contiguous pieces, is a common occurrence. The key to eliminating shared pool errors (as noted in the
preceding section) is to understand which of the objects will be large enough to cause problems when
you attempt to load them. Once you know the problem PL/SQL, you can then pin this code when the
database has started (and the shared pool is completely contiguous). Doing this ensures that your
large packages are already in the shared pool when they are called, instead of searching for a large
contiguous piece of the shared pool (which may not be there later as the system is used). You can
query the V$DB_OBJECT_CACHE view to determine PL/SQL that is both large and currently not
marked “kept.” These are objects that may cause problems (due to their size and need for a large
amount of contiguous memory) if they need to be reloaded at a later time. This query only shows the
current statements in the cache. The example that follows searches for those objects requiring greater
than 100K:

TIP
Query the V$DB_OBJECT_CACHE view to find objects that are not pinned and are also large
enough to cause problems potentially.

Use and Modify DBMS_SHARED_POOL.SIZES
An alternative and very precise indication of shared pool allocation can be viewed through the
DBMS_SHARED_POOL.SIZES package procedure. This call accepts a MINIMUM SIZE parameter
and displays all cursors and objects within the shared pool of a size greater than that provided. The
following is the actual statement issued to retrieve this:

The preceding query can be placed into a procedure package, of your own construction, to display
a formatted view of cursors and objects within the shared pool.

 Find Large Objects
You can use the DBMS_SHARED_POOL.SIZES package procedure (DBMS_SHARED_POOL is the
package and SIZES is the procedure within the package) to view the objects using shareable memory
higher than a threshold that you set.

Execute the DBMS_SHARED_POOL.SIZES package as displayed next for a threshold of 100K
(the output follows):

Get Detailed Object Information from
DBA_OBJECT_SIZE
Query the DBA_OBJECT_SIZE view to show the memory used by a particular object along with
much more detailed information concerning the object:

 Get Contiguous Space Currently in the Shared Pool

Why does the shared pool return errors when an object is loaded? The answer is that a large enough
piece of the shared pool is not available to fit the piece of code. In the last section you learned how to
find the size of the code that you have. You also saw in a previous section how to pin pieces of code
into the shared pool. Now, let’s look at the query that will tell you which code, of the code that has
made it into the shared pool, is very large and either should be pinned or should be investigated and
shortened if possible.

The following query accesses an X$ table (see Chapter 13), and you must be the SYS user to
access these tables:

This query shows that the packages that have been accessed are very large and should be pinned at
the time that the database has started. If the last line of this query is eliminated, it will also show the
large pieces of free memory (KSMCHCOM = ‘free memory’ and KSMCHCOM = ‘permanent
memory’) that are still available (unfragmented) for future large pieces of code to be loaded. See
Chapter 13 for more details on the X$ tables and example output.

TIP
Query X$KSMSP to find all large pieces of PL/SQL that have appeared in the shared pool. These
are candidates for pinning when the database has started.

Find Invalid Objects
Developers often change a small section of PL/SQL code that fails to compile upon execution, forcing
an application failure. A simple query, reviewed daily, helps you spot these failures before the end
user does:

The preceding example displays any objects that are invalid, meaning they were never compiled
successfully or changes in dependent objects have caused them to become invalid. If you have a
procedure called PROCESS_DATE, for example, which was found to be invalid, you could manually
recompile this procedure with the following command:

Once this command is executed and PROCESS_DATE passes the recompile, Oracle would change
the procedure automatically from INVALID to VALID.

Another manual method that exists is to call the DBMS_UTILITY.COMPILE_SCHEMA package
procedure to recompile all stored procedures, functions, and packages for a given schema:

NOTE
You could also run the utlrp.sql script to recompile all the invalid objects in the database. See
the script for restrictions on running this script.

To find the state of all PL/SQL objects for your schema, execute the following:

TIP
You can recompile an entire schema (either all or just the invalid objects) with
DBMS_UTILITY.COMPILE_SCHEMA.

Find Disabled Triggers
In some respects, a disabled trigger is far more dangerous than an invalid object because it doesn’t
fail—it just doesn’t execute! Disabled triggers can have severe consequences for applications, and
consequently business processes, that depend on business logic stored within procedural code.

The following script identifies disabled triggers:

If you modify the preceding query to check only the SYS schema and certain columns, as shown
next, you get a list of disabled triggers that are provided by Oracle:

To find all triggers for your schema, execute the following code:

TIP
Query DBA_TRIGGERS (for system-wide objects) or USER_TRIGGERS (for your schema only) to
find the state of triggers and avoid errors with disabled triggers. Disabled triggers can have fatal
results for an application: they don’t fail; they just don’t execute.

Use PL/SQL Associative Arrays for Fast Reference Table
Lookups
Programs that are designed to process data coming into a system usually incorporate numerous
reference table lookups to validate and/or code the incoming data properly. When the reference tables

are searched, using a unique key that is a numerical data type, the query performance against the
reference tables can be drastically improved by loading the reference tables into PL/SQL associative
arrays (formerly known as index-by tables). Consider an incoming dataset that contains a single
numerical column that must be translated to a coded string using a reference table. Here is a program
to handle this task using the classic approach of repeated searches against the reference table.

Although this program may appear to be written efficiently, it is, in fact, hampered by the repeated
queries against the reference table. Even though Oracle may have the entire reference table in
memory, due to pinning or prior queries, a certain amount of overhead is still involved with
processing the queries.

A more efficient technique is to load the entire reference table into a PL/SQL associative array.
The numerical column (that the searches are performed against) is loaded as the array index. When a
lookup against the reference data is required, the array is used instead of the actual reference table—
the code in the incoming data that must be translated is used as the array index. The inherent nature of
working with PL/SQL associative arrays is that if an invalid array index is used (meaning the code in
the incoming data does not match any value in the reference table), the NO_DATA_FOUND exception
will be raised.

Here is the same processing program rewritten using an associative array to store the reference
data:

The result should be a drastic increase in the processing speed due to the reduced overhead in
working with the PL/SQL associative arrays in comparison to the actual database table.

Finally, quite some time ago, the requirement that an associative array be indexed by a numeric

value was lifted. Thus, the index of an associative array can be a string value. This capability makes
it possible to use the same solution when the coded values that need to be resolved are not
necessarily of a numerical nature. Consider the traditional example that some inbound data is carrying
a two-character representation of a state code that needs to be resolved and validated. A slight
modification to the previous procedure, as shown next, makes this possible. The index type for the
array must be a VARCHAR2 type.

TIP
Load reference tables into PL/SQL associative arrays for faster lookups. This takes advantage of
the performance of array indexes in PL/SQL.

Find and Tune the SQL When Objects Are Used
At times, the hardest part of tuning stored objects is finding the actual code that is stored in the
database. This section looks at queries that retrieve the SQL that can be tuned. This section shows
how to query views that retrieve information about the actual source code that exists behind the stored
objects.

Retrieve the code for a procedure you created called PROCESS_DATE:

This query works for procedures, triggers, or functions. For packages, change the last line in the
query to

The following example retrieves the code for the familiar DBMS_RULE package:

The following example attempts to retrieve the package body for the DBMS_JOB package:

In this example, the package was wrapped (protected) using the WRAP command, and the output is
unreadable. If you find yourself tuning the preceding code, you need sleep!

You can use the following query to retrieve the source code for a trigger:

The following example shows how to find the dependencies for PL/SQL objects:

TIP
Finding the source code behind PL/SQL package procedures involves querying the
USER_SOURCE and DBA_SOURCE views. Finding the source code behind a trigger involves
querying the USER_TRIGGERS and DBA_TRIGGERS views. You can find dependencies among
PL/SQL objects by querying the USER_DEPENDENCIES and DBA_DEPENDENCIES views.

Consider Time Component When Working with DATE
Data Types
When working with the Oracle DATE data type, think of it as a TIME data type, which is more
accurate. This is because the DATE data type always stores a complete temporal value, down to the
second. It is impossible to insert a date value only into either a PL/SQL variable or a database
column that is defined as a DATE. If you do not keep this behavior in mind during application design,
the finished product may exhibit undesirable side effects. One of the most common side effects of
improper date management within an application is when reports that filter the data by a date value
return different results across multiple executions.

When a column or variable of this type (DATE) is initialized with a value, any missing component
(if any) is automatically supplied by Oracle. If the initialization value contains only the date
component, only then does Oracle supply the time component, and vice versa. This raises the question
of how you can tell which component, if any, is missing during the initialization. Quite simply, both
components are automatically present only when a date variable is initialized from another date
variable. The system variable SYSDATE is one such date variable. Thus, whenever a column or
variable is initialized from SYSDATE, it will contain a value representing the date and time when the
initialization occurred.

If it is January 10, 1998, at 3:25:22 a.m., and you execute the following command

the value contained in the variable DATE_VAR_1 will be

You can also initialize a date variable using a text string. For example, if

the value contained in the variable DATE_VAR_2 will be

Here is a simple PL/SQL block that will allow you to see this for yourself:

TIP
A DATE data type always stores a complete temporal value, down to the second. It is impossible to
insert a date value only into either a PL/SQL variable or a database column that is defined as a
DATE.

At this point, it should be clear that DATE_VAR_1 and DATE_VAR_2 are not equal. Even though
they both contain a date component of 10-JAN-98, they are not equal because their time components
differ by almost three and a half hours. Herein lies the problem with a program that does not
anticipate the time component that is inherent with date values. Consider an application that uses the
SYSDATE variable to initialize the accounting date of records inserted into a database table. If a
PL/SQL processing program (or a simple SQL SELECT statement) does not take the time component
of the records into account, then records will be missed during processing.

Given that the date values in a table contain time values other than 12:00 midnight, the following
statements would miss records. The problem is that the time is not the same and these statements all
miss records.

The solution is to truncate the time on both sides of the WHERE clause.
One way to prevent this problem is to negate the difference in time components on both sides of

the conditional test:

One note on these examples: If you modify the NLS_DATE_FORMAT to a different value than the
default, these examples might not work. I used “dd-mon-yy hh:mi:ss” as my format, and the modified
queries returned no rows. When I logged out and back in to reset the NLS_DATE_FORMAT setting,
the same queries then returned rows.

The tuned solution is where the time is truncated on the noncolumn side of the WHERE clause.
This technique has the undesired effect of suppressing any indexes that might otherwise improve
query performance—the TRUNC function on the COLUMN_NAME suppresses the index on the
column. The desired technique is to adjust the filter conditions to include all possible times within a
given date (note in the example that .000011574 of one day is 1 second):

TIP
The Oracle DATE data type has both date and time included in it. Avoid suppressing indexes when
trying to match dates. The key is never to modify the column side in the WHERE clause. Do all

modifications on the noncolumn side. As you saw in Chapter 2, you can add a function-based index
to overcome this issue.

Use PL/SQL to Tune PL/SQL
You can also use PL/SQL to time your PL/SQL and ensure that it is performing to your standards.
Here is a simple example of how you can write a script that allows you to test and tune your
procedures (a procedure called GET_CUSTOMER in this example) directly from SQL*Plus (or
PL/SQL within SQL*Plus):

TIP
Use PL/SQL to display the start and end times for your PL/SQL. Basically, don’t forget to use
PL/SQL to tune your PL/SQL. Use things like the package DBMS_PROFILER (mentioned earlier
in this chapter) to get timing statistics per line of PL/SQL code.

NOTE
You could also use DBMS_HPROF. The profiler reports the dynamic execution profile of a PL/SQL
program organized by function calls, accounting for SQL and PL/SQL execution times separately.
The plshprof command-line utility is in the $ORACLE_HOME/bin/ directory and generates an
HTML report from either one or two profiler output files.

Understand the Implications of PL/SQL Object Location
In the old days at TUSC, we generally recommended storing the PL/SQL objects on the server side,

for many of the obvious reasons. The server is usually much more powerful and objects are reused
much more often (especially when pinned into the shared pool). The security methods employed are
also more straightforward. Sending the PL/SQL to be processed on the client side can be dependent
on the power of the client and can lessen the number of roundtrips from client to server. But, when
written correctly, the calls may be limited back to the server (see the next section for an example).
There is certainly a continuing debate on this one, but with the evolving thin client, the server is
probably the only place to store the PL/SQL. Figure 10-1 diagrams how PL/SQL is executed when
stored on the server side. Some additional reasons for storing code on the server are listed here:

FIGURE 10-1. Executing an object on the server side

 Performance is improved because the code is already compiled code (p-code).
 You can pin objects in the Oracle SGA.
 It enables transaction-level security at the database level.
 You have less redundant code and fewer version control issues.
 You can query the source code online because it is stored in the data dictionary.
 Performing impact analysis is easier since the code is stored in the data dictionary.
 It uses less memory because only one copy of the code is in memory.
 If packages are used, then the entire package is loaded upon initially being referenced.

TIP
Where to store the PL/SQL code is an ongoing debate. Generally, the server side is the preferred
place to store the code, and it may become the only choice as thin clients become more prevalent.

Use Rollback Segments to Open Large Cursors
This section is intended for developers and DBAs who are not using Oracle’s automatic undo
management. Any skilled PL/SQL developer should be familiar with the need to size and use rollback
segments properly when attempting large INSERTs/UPDATEs/DELETEs to the database. If a
rollback segment of the appropriate size is not explicitly set prior to the performance of a large data
manipulation operation, the operation may fail. The error code usually returned is “ORA-01562:
failed to extend rollback segment.” The reason for the failure is that transactions that do not explicitly
set the rollback segment use one that is randomly assigned by Oracle. If this randomly assigned
rollback segment is insufficiently sized to hold the entire transaction, the operation fails. You can
eliminate errors of this type by anticipating the amount of data that will be changed, choosing an
appropriately sized rollback segment (the DBA_ROLLBACK_SEGS view is helpful in this regard),
and setting this rollback segment just prior to the DML statement. The following example
demonstrates the proper set of statements:

You can also determine the current UNDO retention period by querying the
TUNED_UNDORETENTION column of V$UNDOSTAT. In DBA_TABLESPACES, query the column
RETENTION, which contains a value of GUARANTEE/NOGUARANTEE to get the retention
guarantee setting for the UNDO tablespace. The NOT APPLY value is used for tablespaces other than
the UNDO tablespace.

It is a little known fact that Oracle uses rollback segments when cursors are employed, even if
DML statements are not being issued from within the cursor loop. The rollback segments are used as
a type of work area as a cursor loop is being executed. Thus, a cursor loop will quite possibly fail if
a rollback segment of insufficient size is used to read the cursor. The failure does not occur
immediately—only after numerous iterations of the cursor loop have been performed. Because the
error message that is returned is the same as what would be returned when a single DML statement
fails, many developers are fooled into thinking that the error lies elsewhere in their code. Valiant
efforts are made to manage transaction sizes properly within the cursor loops, but to no avail. To
successfully open a large cursor, it is imperative to set a large rollback segment just prior to the
opening of the cursor:

If large amounts of data are being manipulated within the cursor loop, the code should be setting
rollback segments within the cursor loop as well. This prevents the DML statements from utilizing the
same rollback segment that is being used to ensure that the large cursor can be read.

TIP
If you are not using automatic undo management, then you may need to specify a large enough
rollback segment when opening a large cursor.

 Active Transaction Management: Process Large
Quantities of Data
When coding procedures that will process large quantities of data, remember to take into account the
size of the rollback segments. The rollback segments are the weak link in a program that performs
mass data manipulation. A procedure that performs a single COMMIT statement at the end just won’t
do if it is processing millions of rows of data. It could be argued that a single transaction could be
used to process mass quantities of data, provided the rollback segments were large enough. This logic
has two flaws: (1) rarely is it feasible to devote gigabytes of valuable drive space to serve as undo
space; and (2) should a hardware or software error occur, then the entire dataset would have to be
reprocessed. Thus, active transaction management is always the desired technique when processing
large quantities of data; it yields efficient utilization of drive space (devoted to undo segments) and
provides for automatic recovery in the event of hardware/software failures. Also ensure that the undo
tablespace has enough space to accommodate the UNDO_RETENTION setting.

Active transaction management is a coding technique that consists of three components: setting
transactions for cursor and DML statements, performing intermittent database COMMITs, and
utilizing a table column as a processing flag to indicate which records have been processed. Consider
the following database procedure:

The SET TRANSACTION statements ensure that an appropriately sized rollback segment is used
for both cursor reading and DML statements on systems that use rollback segments. The database
COMMIT for every 1000 records processed does two things: prevents the DML statements from
exceeding the capacity of the rollback segment (or UNDO segment) and divides the records being
processed into discrete units in the event that there is a hardware/software failure. Finally, the
PROCESS_TIME column serves as the processing flag that allows the procedure to identify records
that have not yet been processed. With automatic undo management, the database manages UNDO
segments in an UNDO tablespace. When you start a transaction, it is assigned automatically to an
available UNDO segment. You cannot specify which UNDO segment should be used, and you do not
need to do so.

TIP
Maintaining sufficient space for rollback or undo segments can be critical in transactional
processing. Limiting the amount of data manipulated between COMMITs is key to avoiding
Snapshot Too Old errors.

Use Temporary Database Tables for Increased
Performance
PL/SQL tables are great for specific cases, especially when repeated iterations are involved and the
amount of data is relatively small. As outlined earlier in this chapter, the memory cost (per session)
can add up fast if not used properly. When a temporary storage area is needed to house large volumes
of records for a short period of time, the method of creating, indexing, and querying a temporary
database table should be viewed as a viable and useful option. I have seen far too many developers
abandon the common method of temporary database tables after the introduction and expansion of
PL/SQL tables; remember, PL/SQL tables are not the preferred method in all cases.

Oracle writes UNDO data for temporary tables to facilitate transaction recovery, rollback to
savepoints, read consistency, and reclaiming of space. Thus, transactions in temporary tables generate
REDO data because you need to log the changes made to the rollback or undo segments. The redo
generated should be less than the redo generated for DML on permanent tables.

Limit the Use of Dynamic SQL
Oracle provides the Oracle-supplied package DBMS_SQL and the native dynamic SQL command
EXECUTE IMMEDIATE, both of which provide for or allow the creation of dynamic SQL and
PL/SQL commands. These are extremely powerful features, but also dangerous if not used
appropriately. When designing and developing Oracle applications, one of the hardest decisions that
must be made is where to draw the line on building in dynamic capabilities and flexibility.
Developing dynamic and flexible applications is extremely helpful from a functional perspective.
However, the more dynamic and flexible an application, the more potential for performance
degradation.

A completely accurate and functional application is considered a failure if it does not perform at
acceptable levels. Users will reject an application if they have to wait to do their job. I am not
advocating the elimination of dynamic or flexible applications, but a balance must exist. Build
flexibility into applications when necessary, not just to make every application module more flexible
for the future in case business rules may change. Only build flexibility into applications when you are
sure the flexibility is needed and the performance impact will be negligible.

Both the DBMS_SQL package and the EXECUTE IMMEDIATE command provide the dynamic
and flexible means in PL/SQL program units. Use these features when needed, but do not abuse them,
unless you want to set yourself up for failure.

TIP
If you integrate the DBMS_SQL package into a PL/SQL program unit to create SQL statements
dynamically for a production application, remember that optimizing the generated SQL statements
will be difficult. Instead, use bind variables with dynamic SQL to minimize Shared Pool resource
contention and maximize performance.

Use Pipelined Table Functions to Build Complex Result
Sets
Occasionally, I encounter situations in which a DML SELECT statement is incapable of providing the
necessary information. Typically, this occurs when the data doesn’t reside in database tables or the
number of transformations necessary to get table data into a usable form exceeds the capabilities of
SQL and inline functions. Historically, the solution to such a problem would have been the creation of
a preprocessor that, when called, would accumulate the data in some type of intermediate table,
perhaps a global temporary table, for subsequent extraction using a simple DML SELECT. However,
pipelined table functions not only allow you to combine these two steps but also allow you to
eliminate the overhead associated with maintaining the data in an intermediate table.

Pipelined table functions are functions that produce a collection of rows (such as a nested table)
that can be queried like a physical database table or assigned to a PL/SQL collection variable. You
can use a table function in place of the name of a database table in the FROM clause of a query or in
place of a column name in the SELECT list of a query.

To demonstrate, I will start with the assumption that this simple table is the only table in my
schema:

The problem to be solved is that I need a way to create a SQL script to reproduce all of the custom
constraints in my schema, subject to the following requirements:

 The script is to be created on an application server, not the database server, by a Java Server
Pages (JSP) approach.

 The script needs to ensure that dependencies between constraints are taken into account.
 The script should leave disabled constraints in a disabled state when they are reproduced.
 The script should protect against revalidation of existing data when enabled check and foreign

key restraints are reproduced.

Now, it might be possible to solve this problem with a huge SQL query using multiple table joins
and several UNION clauses and a healthy dose of DECODE statements, but the end result would most
likely be a monstrosity that would be difficult to maintain. So I will opt for a more elegant solution
that involves pipelined table functions that, as you will see, are founded in some very basic PL/SQL
functionality. By using a pipelined table function, I simplify what the JSP needs to do to get the

desired information from the database … issue a simple DML SELECT statement. The pipelined
table function will return the DDL commands to the JSP in the proper format, adhering to all the
requirements. From the JSP’s perspective, the pipelined table function looks and behaves like a table,
so it can simply issue the query and iterate over the returning result set, writing the commands to a file
as they are fetched.

A pipelined table function is declared by specifying the PIPELINED keyword. The PIPELINED
keyword indicates that the function returns rows iteratively. The return type of the pipelined table
function must be a supported collection type, such as a nested table or a varray (it cannot be an
associative array type). This collection type can be declared at the schema level or inside a package.
Inside the function, you return individual elements of the collection type. Here is the package header
for the solution to the problem. Note that the GET_CONSTRAINT_DDL function returns a collection
type and uses the PIPELINED keyword.

In PL/SQL, the PIPE ROW statement causes a pipelined table function to return a row and continue
processing. The statement enables a PL/SQL table function to return rows as soon as they are
produced. The PIPE ROW statement may be used only in the body of pipelined table functions; an
error is raised if it is used anywhere else. The PIPE ROW statement can be omitted for a pipelined
table function that returns no rows. A pipelined table function may have a RETURN statement that
does not return a value. The RETURN statement transfers the control back to the consumer and
ensures the next fetch gets a NO_DATA_FOUND exception.

Before looking at the package body, I will briefly discuss some of the key components of the
solution:

 First, to avoid the tedious assembly of reconstructive DDL from various dictionary tables, the
DBMS_METADATA package is utilized. The DBMS_METADATA package is a supplied
package that does the work of building DDL from the dictionary. It requires some initial
PL/SQL-based configuration calls that would have invalidated its use in the “do it in a
monstrous SQL statement” approach. By using the DBMS_METADATA package, you ensure
that you will capture all of the nuances of reconstructive DDL (such as storage parameters,
tablespaces, and segment attributes) if desired.

 Once the base reconstructive DDL has been obtained from DBMS_METADATA, it will be

processed using string commands to implement the specified functionality.
 The internal processing of the pipelined function is where the dependency order of the

constraints must be taken into account. The order in which records are returned by the function
(via the PIPE ROW statement) defines the order in which the calling DML SELECT statement
receives them.

 As cautioned in the Oracle Database PL/SQL Language Reference:
A pipelined table function always references the current state of the data. If the data in the
collection changes after the cursor opens for the collection, then the cursor reflects the
changes. PL/SQL variables are private to a session and are not transactional. Therefore,
read consistency, well known for its applicability to table data, does not apply to PL/SQL
collection variables.

Now for the package body:

After the package is installed, executing it is as simple as issuing a DML SELECT statement …
almost. There are a couple of minor nuances to remember when accessing a pipelined table function
from SQL:

 The SQL TABLE collection expression must be used to inform Oracle that the collection being
returned from a pipelined table function should be treated as a table for purposes of query and
DML operations.

 The desired columns to be accessed from the collection must be explicitly enumerated. The
column list wildcard (*) cannot be used.

TIP
Avoid intermediate tables by using pipelined table functions to build complex result sets.

Leave Those Debugging Commands Alone!
During the development of nearly any PL/SQL module, it inevitably becomes littered with a plethora
of debugging commands. More important than the debugging commands themselves is the strategic
location chosen by the developer to maximize the benefit of the debugging. For complex algorithms,
effective debugging often becomes artistic in nature, and only someone intimately familiar with the
code knows the precise location of debug statements to yield maximum benefit. Unfortunately, prior to

putting the code into production, those strategically placed debugging statements must be either
removed or disabled (commented out) because PL/SQL lacks the conditional compilation that is a
given in many programming languages. Until 11g, that is! In 11g and 12c, Oracle has given the
PL/SQL developer the power to leave those debugging commands in place so that they can be
reactivated on the fly should an issue arise.

With conditional compilation, you can enter an if-then control structure that is only evaluated at
compile time. The intent is to use the if-then control structure to control which textual statements
(from the THEN or ELSE clauses) are included in the program as it compiles. The conditional
compilation control structure is identified by the conditional compilation trigger character ($), which
is prepended to the keywords (IF, THEN, ELSE, ELSIF, END, and ERROR) of a standard if-then
block (the exception being that the block terminator is END in lieu of END IF). The Oracle PL/SQL
compiler performs a preliminary scan of the source code looking for the conditional compilation
trigger character, $. If any valid trigger characters are found, then the compiler evaluates the
compilation condition to determine which code text, if any, should be included in the actual
compilation of the code.

Here is the basic structure of the conditional compilation block:

Conditional compilation uses either a selection directive or an inquiry directive to determine
which text is to be included in the compiling program. The selection directive allows a static
expression to be evaluated at compile time.

Here is the simplest form of a conditional compilation command that uses the selection directive:

At compile time, if STATIC_BOOLEAN_EXPRESSION evaluates to TRUE, then the
TEXT_TO_INCLUDE is included in the compiling program; otherwise, the TEXT_TO_INCLUDE is
skipped. To demonstrate, I’ll start with a package specification that will be used exclusively to store
conditional compilation constants for debugging purposes:

Next, I create the package specification for some fictional component of a business application:

I follow that with the package body that includes a conditional compilation command referencing
the static constant in the debugging package:

Since the static constant was set to TRUE at the time I compiled this package body, the extra
DBMS_OUTPUT command is included in the compiled program. This can be verified by executing
the RUN_PRC procedure:

Changing the DEBUG_PKG package causes all dependent objects to recompile, and, as that
occurs, the current value of the conditional compilation control constant is used to determine if the
debugging statements are compiled into the recompiled code:

This time around, because the static constant was set to FALSE, the extra DBMS_OUTPUT

command is not included in the compiled program as the WORKER_PKG package automatically
recompiles. This can be verified by executing the RUN_PRC procedure again:

Let’s pause for a moment and perform a traditional activity of querying the data dictionary to
retrieve the source of a stored package:

What I discovered is that the _SOURCE (such as USER_SOURCE or DBA_SOURCE) dictionary
tables can no longer be relied upon to reveal the precise code that is executing within the database.
The _SOURCE dictionary tables are, after all, just that … the source code. To ascertain the exact
code that has been compiled, taking into account conditional compilation, Oracle now provides the
DBMS_PREPROCESSOR package:

Now back to the debugging package. To have a bit more granularity over which procedures are
debugged, I simply need to introduce some procedure-specific control constants:

And then I update the WORKER_PKG package to utilize the new constants:

Let’s make sure that everything is still working as expected:

Keep in mind that a physical dependency exists between the package containing the static constants
and the packages referencing them for conditional compilation. Thus, if you alter the DEBUG_PKG
package to change the setting for a single constant, it is still going to cause a cascading recompilation
of all procedures/functions that are dependent upon that package—regardless of whether or not the
changed constant is referenced in the dependent package. In an application with a large population of
stored code, this may be undesirable behavior. In such scenarios, you can disperse the static constants
across more packages, or as of Oracle Database 10g Release 2, you can switch to another method of
controlling conditional compilation: inquiry directives.

First, I start by cleaning up a bit:

The conditional compilation inquiry directive allows the test conditions to be tied to the
compilation environment via the following predefined directive names:

 Any of the Oracle PL/SQL compilation initialization parameters, such as PLSQL_CCFLAGS,
PLSQL_CODE_TYPE, or PLSQL_WARNINGS

 The module line number from PLSQL_LINE
 The current source unit name from PLSQL_UNIT (note that this directive name returns NULL

for anonymous blocks)
 A custom name-value pair introduced via PLSQL_CCFLAGS

For this example, I will construct a custom name-value pair via the PLSQL_CCFLAGS
initialization parameter:

Next I modify the test procedure to switch to an inquiry directive:

And a quick test reveals that everything is working per expectations:

Unlike when I was using selection directives tied to a static constant, altering the value of my
custom inquiry directive does not cause automatic recompilation of the package:

Until another stimulus causes the package to recompile, the change in the custom inquiry directive
will not be realized:

Optionally, to adjust the behavior of a specific package without altering the session, you can
specify the PL/SQL persistent compiler parameters during a forced recompilation of the module:

The REUSE SETTINGS clause is used to bypass the normal compiler behavior of dropping and
reloading (from the session) all the persistent compiler parameters. Thus, the only compiler
parameter that is updated during the forced recompile is the one that was specified as part of the
ALTER command.

The error directive provides a quick method for supplying debugging output within your
procedures. For example, if you create a procedure that uses some PL/SQL functionality that was
introduced in Oracle Database 12c, but this procedure also has to run on an Oracle 10.2 database,
then you could use the error directive to write an error message identifying the database release as
not supported by the procedure. See Example 2-59 in the Oracle Database PL/SQL Language
Reference for 12c.

TIP
Suppress debugging commands in PL/SQL code with conditional compilation.

TIP
Use the static constants defined in DBMS_DB_VERSION as selection directives to control
conditional compilation. The DBMS_DB_VERSION package specifies the Oracle version numbers
and other information, which is useful for simple conditional compilation selections based on
Oracle versions.

The “Look and Feel”: Just for the Beginners
Since many developers and DBAs who may read this book are beginners at PL/SQL, I am also
including examples of a piece of PL/SQL code, a procedure, a function, a package, and a trigger. I
believe it is important that you have a feel for what these objects look like and how they differ,
especially if you haven’t seen some of them before. This section is intentionally placed as the last
section of this chapter as a short reference section only and to give you a feel for how each looks. The
goal is not to teach you how to write PL/SQL (please refer to Joe Trezzo’s PL/SQL Tips and
Techniques [McGraw-Hill, 1999] for that).

Both procedures and functions can take parameters and can be called from PL/SQL. However,
procedures typically perform an action. The parameters used in procedures can be in(put), out(put),
or in(put)/out(put) parameters, whereas functions typically compute a value and the parameters can
only be in(put) parameters. As a matter of fact, you can’t even specify the “direction” of the
parameters. Functions only permit the passing of one return value. Functions are “selectable,” so you
can create your own user-defined functions that return information (you can have multiple RETURN
statements in a function, but each RETURN statement can only pass a single expression).

Functions can also be used when creating indexes so the index key is sorted in a fashion that
matches your queries.

 PL/SQL Example
Here is an example of a piece of PL/SQL code:

 Create a Procedure Example
Here is an example of how to create a procedure. I have listed it here in case you have never
witnessed one before:

 Execute the Procedure from PL/SQL Example
Here is an example of how to execute a PL/SQL procedure from within a block of PL/SQL code. As
before, I have listed it here in case you have never witnessed one before:

 Create a Function Example
Here is an example of how to create a function. Once again, I have listed it here in case you have
never witnessed one before:

 Execute the GET_CUST_NAME Function from
SQL Example
Here is an example of how to execute the GET_CUST_NAME function:

 Create a Package Example

Here is an example of how to create a package:

 Database Trigger Example Using PL/SQL
Here is an example of how to create a trigger using PL/SQL:

Tips Review
 In 12c, we also can combine invoker rights (AUTHID CURRENT_USER) with the Function

Result Cache (RESULT_CACHE).
 It is now possible to create a PL/SQL subprogram inline SELECT statement utilizing the

WITH clause declaration in 12c.
 Named notation continues to be the preferred method for passing parameters to subroutines.

You can now extend this best practice approach to SQL statements to yield consistency across
the entire code base.

 In 12c, you can define an identity clause against a table column defined using a numeric type,
instead of code that creates and uses a sequence object (Create Sequence privilege is required
to create Identity Columns—since they are in fact sequential values or sequences).

 The new CONTINUE statement creates loop constructs that are more streamlined, but there are
no performance gains to be realized at this time.

 Experienced and novice developers alike should leverage the PL/SQL compile-time warnings
to catch obscured programming problems before code deployment.

 The introduction of compound triggers in conjunction with execution order control are
welcome enhancements.

 Use the Oracle-supplied package DBMS_APPLICATION_INFO to log point-in-time
information to the V$SESSION view to enable monitoring of long-running processes.

 Log (INSERT) execution timing information into a database table for long-running PL/SQL
program units to integrate a proactive performance-monitoring mechanism into your system.
The database table can be reviewed at any point in time to determine if performance has
decreased over time.

 System load in terms of number of active sessions can have a large impact on the performance
of program execution; therefore, modifying the database table logging method to include a
column for the number of active sessions can be helpful. You can fill this column by adding
one additional query to the program unit being executed to retrieve the count from the
V$SESSION view.

 When a PL/SQL program unit involves extensive looping or recursion, concentrate on reducing
the execution time per iteration. The benefits add up fast, and it is easy to do the math to
determine the overall improvement potential. Also review the looping or recursion for
restructuring to reduce the number of iterations, while keeping the functionality. With the
extreme flexibility of PL/SQL and SQL, a variety of ways typically exist to accomplish the
same result. If a PL/SQL program unit is not performing optimally, sometimes you have to
rewrite the logic another way.

 Use the ROWID variable to enhance performance when SELECTing a record in a PL/SQL
program unit and then manipulating the same record in the same PL/SQL program unit.

 Ensure that all conditional comparisons compare the same data types. Additionally, ensure that
the data types within the numeric family are comparing the same subtype.

 Ensure the string of PL/SQL IF conditions appear in the order of most frequently satisfied, not
a numerical or alphanumerical sequential order.

 Use the PLS_INTEGER type when processing integers to improve performance. If a number
with precision is assigned to a PLS_INTEGER variable, the value will be rounded to a whole
number as if the ROUND function had been performed on the number.

 Attempt to limit the calls to SYSDATE in iterative or recursive loops because overhead is
associated with this variable. Set a PL/SQL date variable to SYSDATE in the declaration and
reference the PL/SQL variable to eliminate the overhead.

 Use the DBMS_SHARED_POOL.KEEP procedure to pin PL/SQL objects into the shared
pool.

 Use the DBMS_SHARED_POOL.KEEP procedure in PL/SQL to pin all packages when the
database is started (if memory/shared pool permits) and to avoid errors involving loading
packages in the future.

 Query the V$DB_OBJECT_CACHE view to find objects that are not pinned and are also large
enough to potentially cause problems.

 Query X$KSMSP to find all large pieces of PL/SQL that have appeared in the shared pool.
These are candidates for pinning when the database has started.

 You can recompile an entire schema (either all or just the invalid objects) with
DBMS_UTILITY.COMPILE_SCHEMA.

 Query DBA_TRIGGERS (for system-wide objects) or USER_TRIGGERS (for your schema
only) to find the state of triggers and avoid errors with disabled triggers. Disabled triggers can
have fatal results for an application: they don’t fail; they just don’t execute.

 Load reference tables into PL/SQL associative arrays for faster lookups. This takes advantage
of the performance of array indexes in PL/SQL.

 Finding the source code behind PL/SQL package procedures involves querying the
USER_SOURCE and DBA_SOURCE views. Finding the source code behind a trigger
involves querying the USER_TRIGGERS and DBA_TRIGGERS views. You can find
dependencies among PL/SQL objects by querying the USER_DEPENDENCIES and
DBA_DEPENDENCIES views.

 A DATE data type always stores a complete temporal value, down to the second. It is
impossible to insert a date value only into either a PL/SQL variable or database column that is
defined as a DATE.

 The Oracle DATE data type has both date and time included in it. Avoid suppressing indexes
when trying to match dates. The key is never to modify the column side in the WHERE clause.
Do all modifications on the noncolumn side. As you saw in Chapter 2, you can add a function-
based index to overcome this issue.

 Where to store the PL/SQL code is an ongoing debate. Generally, the server side is the
preferred place to store the code, and it may become the only choice as thin clients become
more prevalent.

 If you are using automatic undo management and flashback together, you may need to increase
the size of a fixed UNDO tablespace (and the UNDO retention period, or an autoextend UNDO
tablespace with a MAXSIZE limit). Snapshot Too Old errors during a flashback indicate that
you need to ensure sufficient UNDO data is retained to support these flashback operations.

 Maintaining sufficient space for rollback or undo segments can be critical in transactional
processing. Limiting the amount of data manipulated between COMMITs is key to avoiding
Snapshot Too Old errors.

 If you integrate the DBMS_SQL package into a PL/SQL program unit to create SQL statements

dynamically for a production application, remember that optimizing the generated SQL
statements will be difficult. Instead, use bind variables with dynamic SQL to minimize Shared
Pool resource contention and maximize performance.

 Use bind variables with dynamic SQL to minimize resource contention and maximize
performance.

 Avoid intermediate tables by using pipelined table functions to build complex result sets.
 Suppress debugging commands in PL/SQL code with conditional compilation.
 Use the static constants defined in DBMS_DB_VERSION as selection directives to control

conditional compilation. The DBMS_DB_VERSION package specifies the Oracle version
numbers and other information, which is useful for simple conditional compilation selections
based on Oracle versions.

References
Oracle Database PL/SQL Language Reference 12c Release 2 (Oracle Corporation).
Oracle Database Advanced Application Developer’s Guide (Oracle Corporation).
Bradley Brown, “OOPs-Objected Oriented PL/SQL,” SELECT Magazine, April 1996.
Steven Feuerstein and Bill Pribyl, Oracle PL/SQL Programming, 6/e (O’Reilly & Associates,
2014).
Steven Feuerstein, “Using SQL to Examine Stored Code,” Integrator, February 1996.
Bob Bryla, Oracle Database 12c DBA Handbook (McGraw-Hill Education, 2015).
Frank Naude’s underground Oracle web page (www.orafaq.com).
Oracle Database SQL Language Reference (Oracle Corporation).
Joe Trezzo, PL/SQL Tips and Techniques (Oracle Press, 1999).
Joe Trezzo, Procedures, Functions, Packages, and Triggers (TUSC, 1999).
Michael McLaughlin, Oracle Database 12c PL/SQL Programming (McGraw-Hill Education, 2014).

Thanks to Greg Bogode for the excellent update to this chapter for 12c! Bob Taylor did the several
great updates to the previous versions of this chapter. Thanks, Bob! Joe Trezzo, and Dave Ventura of
TUSC all made contributions to this chapter in the past.

http://www.orafaq.com
https://www.amazon.com/Michael-McLaughlin/e/B001ILM90O/ref=dp_byline_cont_book_1

W

CHAPTER
11

Oracle Cloud, Exadata, Tuning RAC, and
Using Parallel Features

ith Oracle’s acquisition of Sun, a paradigm shift occurred in the database market, the
hardware world, and the IT industry as a whole. While this current shift is well under
way, signs are showing that a larger shift is on its way based on this acquisition. On
September 18, 2016, Larry Ellison introduced Oracle Database 12cR2, available on

the cloud first via the Oracle Database Exadata Express Cloud Service, which leverages the Sun
acquisition and was rolled out at an outrageously low starting price of only $175/month—including
all database options. This is the first step to consolidating Oracle on Oracle Cloud, filled with Sun
servers. Not unknown to Wall Street, this acquisition and corresponding shift is called industry
consolidation.

In the world of hardware, Oracle has widened its influence (their FS1 Flash Server is almost a
petabyte of flash storage) and will challenge the Fortune 50 companies as one of the top performers
as they continue to advance their own hardware to advance Oracle Cloud (with security at the silicon
level). With Java, Oracle’s influence could quickly move into the consumer world, if they choose.
Oracle’s recent partnership with GE has taken them into the Internet of Things (IOT) world and closer
to the consumer world. Exadata was the beginning of Oracle’s move into the hardware world. Oracle
has quickly followed that up with many versions of Exadata, Exalogic machines, Oracle Database
Appliance, Exadata Storage Expansion Rack, Flash Server, ZFS Storage Appliance, Zero Data Loss
Recovery Appliance, and SuperCluster, to name just a few. Their slogan “software and hardware
engineered together” is certainly an accurate description of how well Exadata is performing, but it
also reveals a barrier to entry for other companies that might try to compete. Exadata is hardware that
combines the power of the database and features at the hardware level that other hardware providers
will not be able to replicate easily (or at all). I’ve now worked on a quarter, half, and full rack of
Exadata machines and every one of them performed with client-gasping performance. Every client
I’ve talked to who is using Exadata is already considering adding more machines to other areas of
their business. Exadata has quickly become the fastest-selling product Oracle has ever had (over
10,000 sold)!

Oracle has touched upon hardware in the past with the likes of ncube and the “ahead of its time”
Network Computer (NC), perhaps the precursor to Google’s Chromebook. With the acquisition of
Sun, Oracle dove into the water head first, introducing the Exadata box (prior to the acquisition of
Sun, Oracle partnered with HP on Exadata V1). With the second and third versions of Exadata, the
Exadata Storage Expansion Rack, Exalogic, and the latest Oracle Unbreakable Linux Kernel, Oracle

became a serious contender, if not the leader, in taking the entire stack—software to hardware. In
September 2011, Oracle introduced the Oracle Database Appliance for small businesses and for
departmental servers, and their new SPARC SuperCluster T4-4, which includes 16 T4 processors
with 8 cores each (each core has 8 threads). This Solaris-based machine has 1200 threads total on the
entire SuperCluster when you add all cores on the machine (more on the latest version of
SuperCluster later in the chapter).

In early October 2011 at OpenWorld, Oracle introduced the Oracle Exalytics Business Intelligence
Machine, which included the TimesTen In-Memory Database, Oracle Business Intelligence Enterprise
Edition (OBIEE), and Essbase Analytics in 1T of memory—can you say instant BI! Oracle also
introduced the Oracle Public Cloud (OPC) in 2011, now rebranded Oracle Cloud. Other hardware of
note includes the Big Data Appliance for unstructured data using Hadoop and NoSQL, Pillar Storage
Systems for SAN data, ZFS for NAS, and StorageTek server expandable to ten units that can store up
to 1E of data with a 2:1 compression! In 2015, Oracle announced the previously mentioned FS1 Flash
Array with nearly 1P of flash (912T) and started acquisitions targeting cloud companies. In 2016,
Oracle announced the X6-2 Exadata (as well as the X6-8) with an all-flash option and the
SuperCluster M7 (with security in the silicon) and announced that the 12cR2 database would first be
offered on the Oracle Cloud. I’ll cover each of these new offerings briefly so you can see where they
might fit in the future. Please see Oracle.com for the latest hardware offerings; this chapter serves as
a basis for what will surely change quickly over time.

In this chapter, I’ll also cover the Big Data Appliance, Oracle Cloud, Real Application Clusters
(RAC), and parallel features in Oracle. Oracle first introduced their parallel server in Oracle 6.1
(beta) and Oracle 6.2 (limited customer release production) but only widely used it on VAX/VMS.
Not until Oracle9i, when they rewrote the code for the RAC product almost completely (95 percent I
am told), did Oracle truly have a clustering product. In Oracle 10g, RAC not only matured but had
become the cornerstone for grid computing (entire grids of servers using the Oracle RAC or
clustering architecture). In 12c, RAC has become Oracle’s competitive advantage (as its clustered
version has on Oracle’s MySQL Enterprise Edition database). RAC is also the centerpiece of
Exadata, Exalogic, and SuperCluster hardware. In fact, Exadata became a quick way to have an eight-
node RAC cluster almost instantly (Exadata X6-2; more on this shortly). In addition to using many
servers to help increase availability and improve performance, Oracle has also improved the parallel
query technology that was first introduced with Oracle release 7.1. In Oracle 12c, most operations
can be parallelized and even tuned by the Adaptive Optimizer, including queries (parallel SQL
execution), DML, DDL operations, intra-partition parallelism, parallelism for data replication and
recovery, and data loading; multiple parallel query server processes can even execute against the
same partition.

The tips covered in this chapter include the following:

 The march to the cloud and the Oracle Cloud (understanding what fits your needs)
 Exadata terminology and basics about the latest Exadata hardware platform, X6
 Basics about the Exadata Storage Expansion Rack
 Leveraging Smart Scans
 How fast is the Flash Cache
 Using storage indexes

 Using Hybrid Columnar Compression (HCC)
 Using I/O Resource Management (IORM)
 Leveraging Exadata security, utilities, and best practices
 Basics about the Oracle Database Appliance
 Basics about the SuperCluster using the SPARC chip
 Overview of the Big Data Appliance, ZFS, and StorageTek
 Real Application Clusters (RAC) overview and architecture
 Tuning the RAC interconnect and finding RAC wait events
 Basic concepts of parallel operations
 Parallel DDL and DML statements and operations
 Managing parallel server resources and parallel statement queuing
 Parallelism and partitions
 Creating table and index examples using parallel operations
 Parallel DML statements and examples
 Monitoring parallel operations via the V$ views
 Using EXPLAIN PLAN and AUTOTRACE on parallel operations
 Tuning parallel execution and initialization parameters
 Parallel loading
 Performance comparisons and monitoring parallel operations
 Optimizing parallel operations

The March to the Cloud (Past and Present)
I remember a CEO once telling me to watch for things the third time they come around as they often
stick by then. The first push for outsourcing and hosting started around 30 years ago (mid-1980s to
early 1990s). Some companies (around 5 to 20 percent, depending on industry and location)
outsourced their IT operations to a third-party company. Some outsourced IT operations to local
companies with off-shore workers to help reduce the price. This push lasted 5 to 10 years and then
subsided after the market improved for most companies and horror stories circulated from those who
outsourced. I recall in the late 1980s helping a company build a “screen scraper” to get their data
back from a hosting company that was charging them exorbitant fees for a full download of their own
data. Back then, people didn’t always buy the software; instead, they used it remotely and their data
stayed remote. The cloud was very prevalent in the 1980s—it just wasn’t called “the cloud.”

Then around 18 years ago (late ’90s), the push for hosting and outsourcing came again. This time it
was Wall Street pushing the latest dotcom hosting companies. The difference the second time around
was that you didn’t have to outsource IT (if you didn’t want to), but instead could locate servers in a

more economical way (to some warehouse that had underground diesel tanks that would ensure the
power could never go off). Some companies (around 10 to 30 percent, depending on industry and
location) hosted their IT operations to a third-party company (often high-flying dotcom startups). The
hosting company would provide a “cage” where your secure servers would reside (you could even go
visit them). Some even hosted cages to local companies with off-shore workers, to help reduce the
price even further. This push also lasted 5 to 10 years and subsided after the market improved for
most companies and horror stories circulated of those crashed-and-burned dotcom startups. The
biggest problem this time was being able to access your own systems so that you could get
development or administration work completed in a reasonable amount of time (and deciding what to
do once the dotcom crash started). It was a major event to go visit your servers in one of these highly
secure warehouses. People would point through the cages at all the blinking lights.

Now there is a new push to the cloud (again led by Wall Street, but prompted by Amazon profits in
the cloud). This includes using either “hosting” or “outsourcing” of IT operations. Cloud providers
are ensuring that this time is different. The new cloud players (the four horsemen of the cloud) are
the gold standard of the IT industry: Oracle, Amazon, Microsoft, and Google. They now say that
everyone will be on the cloud soon (similar to predictions 5 years ago that everyone would own a
tablet instead of a laptop, or even 2 years ago that a watch would replace your smartphone). Are
things really different this time, or is this a repeat of the tablet market that will plateau at 20 or 30
percent? One certainty is that the number of mobile applications is growing fast and the smartphone
market continues to dwarf all other markets. A sign that things may be different this time was revealed
at Oracle OpenWorld in September 2016, which featured Larry Ellison showing Oracle Cloud
performance that was staggering when compared to Amazon and pricing on Exadata that was so low
it shocked the Oracle world (but, will they keep it that low?).

Let’s look at why there is such a big push for the cloud (some of these include “perceived”
benefits to customers that move to the cloud):

1. There are better profit margins for cloud companies than they had prior to selling cloud
(similar to hosting, outsourcing, and off-shoring). This is actually, by far, the number one
reason for the cloud bandwagon; the cloud provider makes a killing, usually with unexpected
add-on costs to customers (Wall Street loves this, and they are not in it for the long haul—
either rise fast or get out of their way). Amazon has proven that profits from cloud services are
huge!

2. Using cloud services lowers (perceived?) costs for IT operations (again, this is similar to
hosting, outsourcing, and off-shoring). This is the number two reason why the cloud is big.
Profits for the cloud customers go up as IT costs go down (at least initially).

3. It’s easier to administer and provide better customer service from IT when shifted to the cloud
(debatable, as the past two times were). While it’s easier to maintain the cloud (since it’s
difficult to change things), not much ever changes (which keeps costs down). Updates can
happen automatically.

4. You are not tied to a specific company (yeah, right!). Currently, this is the case, but with
consolidation, that could change (again, Wall Street loves the cloud because you probably
won’t be able to get back out of the cloud, or you’ll pay dearly to get out, or they’ll be out of
the cloud company’s stock by the time you get out, so they really don’t care).

Now let’s look at what is truly different this time around (and will fuel the longevity of the cloud):

1. Cloud services are great for smaller companies that can’t afford a real IT department. They can
obtain IT servers and operations to any scale they’ll ever need.

2. Connecting to social media and accessing marketing big data are faster over the cloud, as are
leveraging this data and connecting it to mobile applications.

3. On Oracle Cloud, every company can have an encrypted backup that’s secure and offsite. This
is a big plus to the many companies that still don’t have this protection.

4. Development can spin up a production-size server for testing for a couple of hours. This is a
huge benefit, but still only relatively inexpensive.

5. Spinning up a data warehouse or two for a week is inexpensive.
6. You pay for what you use, scale up easily when you need to, and scale down easily when you

need to (better than in the past). Because of the size of cloud companies, this works very well
now compared to the first two times around.

7. Testing an extremely large server for a few hours to see if it’s worth buying is relatively
inexpensive (compared to the costs of buying it).

8. Testing the new version of a product or a new database version with the current version of an
application is easy. You can also test new versions of the database or middleware for new
features or capabilities.

9. You can benefit from the economies of scale when consolidating many of your databases (you
can do this on-premises, of course, yet many companies don’t).

10. Using Oracle Cloud, it’s easier to share pluggable databases (PDBs) with other companies for
partnering.

11. The current generation of developers and DBAs is cloud-ready. They would rather use Google
Docs in the cloud than require a machine running Microsoft Word everywhere they go. They
don’t want to be tied to a specific computer, and they already do everything in the cloud.

12. Cloud companies will push companies that use their cloud toward success because they
mutually benefit. CFOs get the tax benefit of OPEX (cloud) versus CAPEX (on-premises).

In the end, whether the cloud helps or detracts from your competitive advantage really depends on
your costs, personnel, operations, and all of the preceding points. If your current IT operations are
part of your competitive advantage (as is true for many large companies), you may hurt your company
by moving to the cloud, if you’re not careful. But, if your IT operations are overworked, hindering
your innovation, or mired in red tape, you may benefit from moving to the cloud. The CEO, CFO,
CIO, department head, etc., individually or as a group, needs to make a serious and educated
evaluation that discerns between all of the salient factors. The CFO will almost always agree to
cloud adoption, as there are many short-term profits to be had that few CFOs will be able to resist.
DBAs need to be well educated about the cloud so that they can offer sound advice when upper
management starts pushing.

As previously discussed, whether they realize it or not, everyone does something in the cloud
already (that is, the hybrid cloud model, a mix of cloud/on-premises, is already at 100 percent). Many
things are done on the Internet (in the cloud), so predictions that a large number of companies will at

least embrace a hybrid cloud have already been true for a decade or two.
The following questions about the cloud remain in many people’s minds:

 Will the price stay low when the market consolidates? (Probably not.)
 Will it be easy in the future to move my data back if I want? (Hard to say.)
 Will it increase my competitive advantage to move further into the cloud? (Probably.)

With those questions yet to be answered fully, these are your options:

 Stay private.
 Go all-in on the public cloud (immediate OPEX benefit).
 Use a hybrid of public/private (true of almost everyone already—but, what’s the split?).
 Lease a server owned by Oracle but located on your own site (OPEX benefit on-premises; this

is known as Cloud at the Customer).

Hopefully, you’re convinced from this overview that a portion of applications and IT operations
will be hosted on the cloud and that the cloud is here to stay. It’s prudent to be prepared for this
generational switch to cloud computing and the direction in which some things will progress in the
future.

The Oracle Cloud
As mentioned in the chapter introduction, on September 18, 2016, Larry Ellison introduced the
Oracle Database Exadata Express Cloud Service running the 12cR2 database for only $175/month,
including all database options. This includes one PDB of Oracle Enterprise Edition running on
Exadata with 20G of database storage and 120G of data transfer (there are increased data use and
transfer options for a higher price; see https://cloud.oracle.com for the latest pricing). With Larry’s
announcement, one of the fastest servers on the planet, running the latest version of the database
became the first cloud server that could begin a major Oracle IT march to the cloud. The ability to run
or test applications on an Exadata database machine for such a low price will be too good for any
Oracle development department to pass up. Moving your encrypted backup to the cloud now becomes
a 2017 exercise. Oracle also introduced, on the same day, Application Performance Monitoring
(APM) for DevOps. APM enables DBAs and developers to pinpoint performance problems at every
layer of the application (you’ll see screenshots later in this chapter).

Oracle’s Database as a Service (DBaaS) offering is Oracle Database Cloud Service. Setting up a
Database Cloud Service instance for the first time takes a few hours. Setting one up the second time
takes a few minutes. Initially you need to set up the networking and security, which allows access to
all products in the cloud, not just Oracle. I believe that Oracle Database Cloud Service will be a huge
opportunity for many shops to quickly spin up development servers for DevOps (Development
Operations—a new term meaning a mix of development and operations).

Oracle announced 12c Release 2 of the database will be released on the cloud first (September
18, 2016). This is not just a cloud-first event, but an Oracle-first event. This is similar to when
Oracle started releasing less important platform database software (AIX comes to mind) later than

https://cloud.oracle.com

Linux. Another example is Oracle releasing 12c on Express Edition (the free version) much later than
Standard Edition (SE) or Enterprise Edition (EE). Oracle has a way of creating a bend in the road
that you’ll probably soon be following to some degree. Also, Oracle has available currently in the
cloud a database that you can use anytime (https://livesql.oracle.com) to learn SQL and PL/SQL.
When I tried it September 24, 2016, it was already the 12.1.0.2 database. The cloud helps us to learn
and test things much faster!

Now let’s keep you from becoming a dinosaur and teach you how to create your first Database in
the Cloud (also known as a Database Cloud Service instance). To begin to use the Oracle Cloud, you
can simple go to either of the following:

https://cloud.oracle.com/tryit (next click Try It in the database section to try out the Oracle Cloud
for 30 days—the database is listed under PaaS and IaaS)

https://cloud.oracle.com/database (click Try It to only try the database)

The first thing to notice is that there are many video tutorials available. There is also a lot of
information about the different roles needed for the cloud. Think of how long it would take you to spin
up everything that you see in the Database Cloud Service instance shown in Figure 11-1.

FIGURE 11-1. Your Database Cloud Service

Go to http://cloud.oracle.com/tryit to see the introductory page shown in Figure 11-2, where you
can click the Try It button as seen in Figure 11-2.

https://livesql.oracle.com
https://cloud.oracle.com/tryit
https://cloud.oracle.com/database
http://cloud.oracle.com/tryit

FIGURE 11-2. Oracle Free 30-Day Trial button

Next, choose Database (Your Oracle Database in the Cloud) to set up a Database Cloud Service
instance. Information about your 30-Day Trial comes up next. It includes an overview of the process
as well as the ability to start the Database as a Service Trial. You’ll also be asked to log in to your
Oracle account. After you sign on with your single sign-on to Oracle, you’ll be prompted to fill in the
connection information requested, as shown in Figure 11-3. You’ll then click on Request Code to
receive a verification code that goes to your phone. You then create a new account, agree to the terms
and conditions, and then click on the Sign Up button (not shown in Figure 11-3, but at the bottom of
this screen). You will receive an email with a link that will take you to the Oracle Cloud.

FIGURE 11-3. Sign up for Oracle Public Cloud Services.

Congrats! You now have a Cloud Account. Oracle will send an e-mail to you so that you can sign
in to the cloud. Once approved, your e-mail connects you to sign in to the Oracle Cloud (Figure 11-4).
You can also sign into the cloud by going to the following link in the future:

FIGURE 11-4. Sign in to the Oracle Cloud.

https://dbaas.oraclecloud.com

You’ll get a welcome message and an immediate offer to get some free training if you need it (see
Figure 11-5). Included in the Quick Start lesson is everything required to ensure you know how to set
up Database as a Service. Those items include setting up SSH and using PuTTY (depending on the
cloud service, SSH and PuTTY may not be available), Creating a Service Instance, Finding the
Connection Details about your Database Instance, Enabling Secure Access, Connecting via SQL
Developer, Performing Operations on your Cloud Database, and Monitoring your Database Service.
Once you’re ready, click Get Started.

https://dbaas.oraclecloud.com

FIGURE 11-5. Click Get Started after going through the training.

Next, on the page shown in Figure 11-6, click Create Service to launch the Create Database Cloud
Service Instance wizard. First, choose whether you want a VM preinstalled or want to set it up using
DBCA. Also choose a billing frequency (hourly or monthly).

FIGURE 11-6. Click Create Service to build your first Database Service instance in the Cloud.

Next, choose either 11g (11.2.0.4) or 12c (12.1.0.2) as the database and then choose the edition of
the database (Figure 11-7). Click Next.

FIGURE 11-7. Choose the edition of the database release (pricing differs for each).

Next, on the Service Details page (see Figure 11-8), choose the service name, size/shape of the
server (very price specific), passwords, backup and recovery configuration, whether you’ll use an
encrypted file to build the database from your on-premises database, etc. You can also set up a
Standby Database using Data Guard, enable GoldenGate, and install the demo PDB. Click Next.

FIGURE 11-8. Choose the specific size and configuration of the database (pricing varies).

You’ll next be shown that the process of building your Database Cloud Service instance is in
progress (Figure 11-9) and then you’ll be told that your database is ready to use.

FIGURE 11-9. A Database Cloud Service instance being created

Figure 11-10 shows my successfully created Database Cloud Service instance after I’ve created
two different services (I’m in the process here of terminating one of them in Figure 11-10). Details
for all services are listed.

FIGURE 11-10. I have two database services in my Oracle Cloud instance.

As shown in the pull-down menu in Figure 11-11, I can now access (among other options)
Enterprise Manager (EM) to manage the Database Cloud Service Instance (see Chapter 5 for EM
details that can be monitored). Note that this is not the full Oracle Enterprise Manager (OEM or EM);
it’s more like 12c Database Express, so you may want to ensure that it does what you need.

FIGURE 11-11. Menu to open the EM Console from the Database Cloud Service

Clicking Open EM Console shows that my database Instance in the cloud has been up over 234
days (Figure 11-12). Also note that many of the settings and locations for files and the default that you
would use if you installed the database.

FIGURE 11-12. Information in the EM Console in the Cloud (EM Express)

I can click “CDB (2 PDBs)” and get to the details of the containers. Note that one of the PDBs in
Figure 11-12 is the DEMOS PDB that I chose to install when I created the Database Cloud Service
instance and the other is PDB1. I can take a look at Memory Management to see the various settings
and allocation of memory similar to EM in my on-premises database (Figure 11-13).

FIGURE 11-13. Information in the EM Console in the Cloud (EM Express)

As you can see, you have many different choices (refer to Chapter 5 for greater detail). You can
easily check things like memory initialization parameters to see if the In-Memory Size is set (if you
are using the In-Memory column store). You can then click Set to change a parameter.

Similar, but separate from EM, you can also use a new Oracle Cloud Service Solution called
Oracle Management Cloud. In the initial launch of the Oracle Management Cloud at OpenWorld
2015, three services were packaged and released focusing on the highest customer pain points:
Application Performance Monitoring, Log Analytics, and IT Analytics. There were three more
announced at OpenWorld 2016. With them, customers gain real-time insight into application and
infrastructure performance, optimizing (development, applications, and IT resources), and effectively
planning for future business needs with data normalized and analyzed in visualizations that make the
most sense to business stakeholders. Oracle Management Cloud services are powered by a big data
platform behind the scenes providing real-time monitoring, rapid diagnostics, operational insight, and
business analytics capabilities. Data uploaded is stored securely in a single unified big data platform
and is automatically correlated and processed by a robust and scalable data pipeline that enables
high-throughput processing of large amounts of data for analysis. Within the Oracle Management
Cloud is Application Performance Monitoring (see Figure 11-14), which can be used to see greater
detail in the cloud at every tier of operations. This is a cloud-only product. It shows performance and
details at the database, application server, application, and even page level of the customer screen
(thanks Oracle for the previous two screenshots).

FIGURE 11-14. Application Performance Monitoring, a cloud-only product

You can also get additional details of the customer experience in viewing the application with a
special focus on the application web page, as shown in Figure 11-15.

FIGURE 11-15. APM customer shopping cart

By using this detailed information, you can gauge the customer experience and head off potential
problems with performance or errors before the customer complains.

The Oracle Cloud is here to stay! As the next few years go by, Oracle will only accelerate their
cloud and mobile offerings to better serve you. It’s hard to predict how much of the corporate
workload will make it to the cloud (predictions range from 40 to 90 percent) or how fast that
corporations will be able to move that workload to the cloud generally are 5 to 10 years), but the
acceleration of technology could also accelerate this migration. It’s important to become educated on
all of these products so that you can discern for your company which products fit now and which ones
deserve a wait-and-see approach. The Oracle Cloud is standards-based (you can move things from
the Oracle Cloud to the Amazon cloud). Charges are on an hourly or monthly subscription basis (and
you can even put the server on your own site). I certainly foresee there will be more cloud services
and more cloud customers by the time you read this.

TIP
Get ready for the cloud by trying a simple DBaaS instance at http://cloud.oracle.com/tryit for free
or by trying the new 12cR2 Oracle Database Exadata Express Cloud Service for $175/month.

http://cloud.oracle.com/tryit

Exadata Database Machine
Oracle’s Exadata Database Machine (Exadata) transformed Oracle into a serious hardware
contender. By June 2011, Oracle had already sold their 1000th Exadata machine, by mid-2014 they
had sold more than 10,000 Exadata machines, and the market has been growing since then as well. As
mentioned, the Exadata machine now delivers 4.5M flash IOPS. This figure is sure to have changed
by the time you read this. Oracle is accelerating the hardware world as they did the software world;
you can now build anything you can dream of!

 Exadata Terminology and the Basics
When I think of an Exadata Database Machine full rack (X6-2 at the time of writing in the fall of
2016), I think of it as a “prebuilt eight-node RAC cluster with Super SAN or all flash option.” The
Exadata Database Machine includes all the power one needs to run an Oracle database environment
and is also a highly flexible architecture (it has an eighth rack option all the way to multiple racks of
Exadata interconnected as one).

The X6-2 model architecture includes (standard configuration—you can go larger!):

 Eight compute nodes, with a total of 352 cores for 8 servers and 2T (up to 6T) of DRAM per
rack clustered together using Oracle GI clustering and RAC at the database tier.

 An additional 280 CPU cores (see next point for detail on each cell) per rack dedicated to
storage with a super-fast, low-latency interconnect network (2 × 40 Gb/sec each way).

 14 storage cells providing database and SQL-aware storage, each with 2 CPU sockets × 10
core CPUs × 14 storage cell = 280 CPUs on the storage. Two storage options are available:

 Disk storage 1.3P of disk space: 12 disks × 8 TB × 14 storage cells, 7200 RPM drives
per cell plus 4 × 3.2T NVMe PCIe flash cards

 All flash storage 180T of Flash Cache (up to 358T is possible): 14 storage cells × 4 ×
3.2T NVMe PCIe flash SSD

The X6-8 Exadata Rack is much like the X6-2 except that it comes with two or four database
nodes, each with 8 × 18 core CPUs (144 CPU cores) and 2T of DRAM. My take on it: if you need it
and can afford it—you want it (all flash X6-2, SuperCluster M7, or all flash FS1 are the best Oracle
hardware solutions on the planet!).

NOTE
The Exadata X6’s have an all Flash Cache option (180T to 358T) instead of 168 × 8T disks (1.3P),
combined with write through/write back capability. It has almost eliminated all physical I/O
performance.

The Exadata X6’s also include 4 × 1/10 GbE copper Ethernet interfaces, 2 × 10 GbE optical
Ethernet ports, and Integrated Lights Out Management (ILOM) for remote administration capabilities.
How fast is it? In general, it’s 5 to 100 times faster than much of the data warehousing competition
and 20 times faster than most OLTP competition. A full rack Exadata can deliver up to 4.5M IOPS
(I/Os per second) and a throughput of 350 GB/sec.

What makes it so fast? Fast hardware, many CPUs, Flash Cache, lots of DRAM (parallel query in
DRAM in 11.2), compression (saves 10×–70×), partition pruning (saves 10×–100×), storage indexes
(saves 5×–10×), and Smart Scan (saves 4×–10×). You can turn a 1T search into a 500M search or
even 50M when you leverage all these features. If anything, I think Oracle might be understating the
true power of this hardware (Oracle calls it a “database machine”).

 Exadata Statistics
In 2008, Oracle released V1 of the Exadata; the original Exadata was on HP hardware. In 2009,
Oracle released Exadata V2, which was an all Oracle/Sun solution after the Sun acquisition. The
following year, in 2010, Exadata X2 was released, which was a hardware upgrade. In 2010, Oracle
also introduced the X2-8 model. Around 2011, Oracle released the Exadata Storage Expansion Rack,
with the goal of providing the flexibility of growing storage capacity without needing to upgrade
compute capacity. In 2012, Oracle released Exadata X3, with significant improvements to usage and
capacity of Flash Cache, which earned it the name “in-memory database.” At the same time,
December 2013, Oracle released version X4, which included hardware upgrades and improved
capacity and performance characteristics. One of the subtler changes in this version was that the
interconnect used two InfiniBand IP links, in active/active mode. In January 2015, Oracle released
version X5, which introduced all flash storage. Once again, the improvements came in the form of
newer, faster Non-Volatile Memory Express (NVMe) flash cards and drives. The all flash drive
option officially eliminated the option to use high-performance disks over high-capacity disks.
Another key development with the X5 was the concept of “elastic configuration,” which
fundamentally frees the customer from the rigid structure implied by quarter rack or half rack or full
rack. The customer can mix and match compute versus storage nodes based on actual need and have
capacity on demand. Earlier this year, Oracle released Exadata X6 (April 2016), which increased the
core count on the compute nodes and doubled the Flash Cache capacity as well the pure flash storage
capacity.

The X6-2 Exadata model comes in the following sizes and models:

 A full rack, which has eight compute servers (2 socket and 14 storage cells)
 A half rack, which has four compute servers and seven storage cells
 A quarter rack, which comes with two compute servers and three storage cells
 An eighth rack, which is the same hardware as a quarter rack, with half the CPU and half the

disk activated

Traditionally, the largest issues with respect to scaling the Exadata have been hardware cost and
licensing cost:

 The supported scaling model was eighth rack → quarter rack → half rack → full rack. This
assumed a built-in scaling of both CPU and storage.

 Any specific DB options had to be licensed for all CPUs, needed or not.
 As a result, the licensing cost increases were significant.

To address the licensing pain point, Oracle came out with the following innovative approaches and
options:

 Starting with the X5 model class, called “Elastic Configuration,” Oracle allowed the end user
to define the number of compute nodes versus the number of storage nodes in a rack.

 Starting with the X5 model, Oracle also developed on-demand capacity licensing.
 Around the time of the release of Exadata X6, Oracle supported the use of Oracle Virtual

Machine (OVM) with Exadata.

An X6-2 full rack Exadata Database Machine includes:

 8 compute servers:
 8 servers × 2 CPU sockets × 22 cores = 356 cores
 8 servers × 4 disks × 600G (10K RPM) local storage
 8 servers × 768G DRAM = 6144G DRAM (standard is 2T with 256G per server)

 3 InfiniBand switches (40 Gb/s) × 36 ports = 108 ports
 14 storage servers:

 14 cells × 2 CPU sockets × 10 core/CPU = 280 cores
 14 cells × 128G = 1792G memory

 High Capacity Storage Option:
 14 × 12 × 8T 7200 RPM drives for 14 cells = 1344T raw storage (1.3P)
 14 × 4 × 3.2T NVMe PCIe flash cards = 179.2T of flash

 Extreme Flash Storage Option:
 14 cells × 8 3.2T NVMe PCIe 3.0 flash drives = 358.4T flash

An X6-8 Exadata machine includes the same as the X6-2 in terms of storage and options. The
difference is in the compute options:

 2 compute servers option:
 2 servers × 8 CPU sockets × 18 cores = 288 cores
 2 servers × 2T DRAM = 4T DRAM

 4 compute servers option:

 4 servers × 8 CPU sockets × 18 cores = 576 cores
 4 servers × 2T DRAM = 8T DRAM

The following table shows some actual storage-related statistics:

These are some important points to note about this table:

 HC = High Capacity; EF = Extreme Flash.
 The storage capacity does not take into account benefits of compression (HCC or Advanced

Compression).
 Usable space is computed after taking into account ASM redundancy, DBFS and Flash

Recovery Disk groups, ACFS disk, OS images/binaries, etc.
 The SQL metrics are based on 8K IOPS and take into account ASM redundancy, which issues

multiple IOPS.

 Exadata Storage Expansion Rack Briefly
As of July 2011, Oracle added an Exadata Storage Expansion Rack that allows you to grow storage
capacity of the X6-2 and X6-8 by connecting to it via InfiniBand. This addition is great news for
those who are looking to have petabytes (P) of information. It is also welcome news for those who
would like to store more of their archived-to-tape data on disk. The Storage Expansion Rack can have
up to 18 additional HC storage cells and 19 EF storage cells. Each cell has the exact same
characteristics as the cells in the Exadata Database Machine racks.

 A single HC cells can add about 1.7 T/hr to the overall data load rate.
 A single EF cell can add about 2.0 T/hr to the data load rate.
 A fully loaded expansion rack with HC storage can add 690T of usable space with normal

redundancy and 540T with high redundancy.
 A fully loaded expansion rack with EF storage can add 175T of usable space with normal

redundancy and 140T with high redundancy.

Exadata Storage Server software uses the following features (covered in detail later in this
chapter):

 Smart Scan technology
 Smart Flash Cache
 Storage indexes
 Hybrid Columnar Compression
 IORM/DBRM both available
 Smart Scans of data mining model scoring
 Automatic Storage Management (ASM)
 Backup with RMAN
 Restores using Flashback technologies
 Redundant power and InfiniBand switches

The Oracle database is capable of storing 8 exabytes (8E). Here’s what’s possible:

 In 2011, as noted in the prior edition of this book, it took 41,227 Storage Expansion Racks to
get to the maximum 8E (exabytes of mirrored uncompressed storage) 11g Database.
Compression gives you 80–500+ exabytes. At 10× compression, you would only need 4123
Storage Expansion Racks to get to 8E, and at 70× compression, you would only need 589
Storage Expansion Racks to get to 8E.

 In 2016, the X6-2 has 1.3P and it would take only 6154 Exadata X6-2s to get to the maximum
8E 12c Database. Compression gives you 80–500+ exabytes. At 10× compression, you would

only need 616 Storage Expansion Racks to get to 8E, and at 70× compression, you would only
need 88 Storage Expansion Racks to get to 8E.

 The Facebook data warehouse has about 0.3E of stored data and is growing at 0.2E per year,
so it will reach 8E in about 38 years (except it will be faster, I predict, since Facebook’s
growth will be faster in the future). Facebook would currently fit on 23 X6-2s with 10×
compression or only four X6-2s with 70× compression (except, you need mirroring, standby,
etc). That’s a lot better than the warehouses that house Facebook’s servers.

 64 bit allows 16E to be in memory (18,446,744,073,709,551,616).

 Smart Scans
Smart Scans are done internally by Oracle, and when they are used, you commonly realize a 10×
savings in query time. Oracle filters data based on WHERE clause conditions (predicates), and it
filters on row, column, and join conditions. Oracle also performs incremental backup filtering. Smart
Scans work with uncommitted data, locked rows, chained rows, compressed data, and even encrypted
data (since 11.2). You can see and monitor the benefits with Oracle Enterprise Manager Cloud
Control.

Smart Scans leverage Bloom filters used for faster join filtering. Bloom filters are a quick way to
search for matches. They save space and are transparent to the user. Bloom filters are basically
hardware-level filters that test to see if the elements are in a set. Google BigTable uses Bloom filters
to reduce disk lookups as well. Oracle’s join filtering is a perfect application for Bloom filters.
Following are some simple Smart Scan comparisons.

Without Smart Scan (push whole table via network):

 5T table scan
 Network bandwidth (40 Gb/s)
 40 Gb/s = 5 GB/s (e.g., with 14 storage cells, each cell has a data transfer rate of 0.357 GB/s)

16 minutes, 40 seconds (5T at 5 GB/s)—without Smart Scan

With Smart Scan (limit first at hardware level):

 5T table scan
 Limit result before it hits the network
 Effectively scan 21 GB/s (1.5G/storage cell × 14 cells)

3 minutes, 58 seconds (5T at 21 GB/s)—with Smart Scan

 Flash Cache
The Flash Cache is composed of solid-state disks (information stored on chips). It is between 20×–
50× faster than disk (depending on the disks). The Flash Cache caches hot data (frequently used
data). It does this as the last step (so it returns data to you first and then caches it for next time based
on the settings you give it). It uses PCIe-based flash cards (PCIe is Peripheral Component
Interconnect Express). It knows which objects not to cache, such as full table scans, but you can also
specify exactly which data you want to cache using the STORAGE clause or you can specify it at the
table/partition level with CREATE/ALTER:

 STORAGE CELL_FLASH_CACHE KEEP

 Table/partition level CREATE or ALTER

Flash Cache also has a write-through cache that you can use to accelerate reads. With this feature,
data written to disk might also be written to cache (again, stored in the cache after the user gets it
written to disk) for future reads.

The Flash Cache caches:

 Hot data/index blocks
 Control file reads/writes
 File header reads/writes

The Flash Cache does not cache:

 Mirror copies, backups, or Data Pump
 Tablespace formatting
 Table scans (or, at least, this is rare; for example, small tables are possibilities)

The Flash Cache LRU (least recently used) settings for caching include:

 CELL_FLASH_CACHE storage clause The possible values are:

 DEFAULT Normal, large I/Os not cached.

 KEEP Use Flash Cache more aggressively/it may not occupy > 80 percent of all cache.

 NONE Flash Cache not used.

 CACHE (NOCACHE) hint I/O cached/not-cached in the Flash Cache.
 SELECT /*+ CACHE */ …

 EVICT hint Data removed from the Flash Cache. ASM rebalance data is evicted from cache
when done.

Large I/O (full table scans) on objects with CELL_FLASH_CACHE set to DEFAULT are not cached.

Setting the KEEP cache is accomplished as follows:

Use the following query to see if a table is currently set to cache or not:

Here is how the Flash Cache works: A database request comes to CELLSRV (cell storage server).
The CELLSRV (first time) gets data from disk and the data is cached based on settings, hints, and so
on. The data that goes to WRITE may also be cached after being written if it is deemed that it may be
needed again. The CELLSRV (next time) checks the Memory Hash Table that lists what is cached. If
cached, the data goes to Flash Cache; if not cached, it may cache based on settings and so on. You can
also query the hardware cells directly as listed here:

SQL*Plus Query—is it working?

This second line times block size (*8192) is the bytes of Flash Cache used; it’s working!

It is working … 4G query:

run2...

run4...

It is working … V$SQL:

NOTE
The Exadata PCIe card Smart Flash Cache (that is, the stored Exadata hardware PCIe Card
Cache) is not the same as the Database Flash Cache (file stored) used with Oracle Enterprise
Linux or Solaris only.

Finally, keep in mind that Flash Cache wears out faster than disks (see the specifications for more
information; Flash Cache wears out faster in higher elevations). Oracle does give you uncounted
“extra” space to make up for this, however.

 Storage Indexes
A storage index utilizes minimum and maximum values for certain columns to help queries run faster
by eliminating rows (similar to partitioning). A performance gain of 10× is common with storage
indexes (could be higher/lower depending on the minimum/maximum and how many rows can be
eliminated for a given query). These indexes primarily maintain summary information about the data
(like metadata in a way). The memory structure resides in the cell level (storage). It groups data into
min/max for various columns (based on usage patterns), and it eliminates I/Os where there is no
match. A storage index is 100 percent transparent to the user. Indexing is performed at the hardware
level, and one storage index is used for every 1M of disk. A storage index does not perform like a B-
tree index, but more like partition elimination—where you skip data not meeting the query conditions.
Oracle builds 100 percent of the storage indexes based on query patterns and data use; no additional
coding is required. Consider the following queries to see if storage indexing is working on a two-
node RAC cluster.

Is it working for me?

This is the actual savings from an Exadata-built storage index; it’s working on this node!

Check both servers (only savings on one node during this test):

This is the actual savings from the Exadata-built storage index; it’s working!

 Hybrid Columnar Compression
Hybrid Columnar Compression (HCC), also known as Exadata Hybrid Columnar Compression
(EHCC), is data that is organized by a hybrid of columns/rows and compressed versus data organized
by basic row format. A performance gain anywhere from 10× to 30× is common. The tables are
organized in compression units (CUs), which contain around 1000 rows (more or less depending on
the amount of data in the rows). CUs span many blocks. HCC is very good for bulk-loaded data, but is
not built for OLTP or single block read operations. It is primarily built for data warehouses and
queried data, not for frequently updated data.

Using the old OLTP compression algorithm, you could get 2–3× compression or so. Yet, with
HCC, 10× compression in a typical data warehouse is common. In limited tests, I got anywhere from
4–11×. HCC also allows archive compression (used for cold data), which gives you anywhere from
15× to 70× compression (I got approximately 32× compression in limited tests). The nice thing about
HCC is that operations are faster because the query runs without decompression. The compressed
version is processed in the Flash Cache, which results in lower I/O. The compressed version is also
sent over InfiniBand; it is cloned compressed; and it is even backed up compressed! As a result, it
scans much less (compressed) data!

Figure 11-16 is a logical representation of a CU. The image does not specifically show block
headers and so on, but they are maintained for each block. The initial piece of a CU is a header that
maintains the metadata associated with its contents. Among other things, it contains the starting point
of each column within the CU.

FIGURE 11-16. Logical structure of a compression unit under HCC

A given column’s data can span over several blocks, and for that reason the CU header is
structured similarly to chained rows within regular tables, with a pointer to the top of each column.
Therefore, ROWID for an HCC-organized table must refer to the CU and not the block itself. For
normal tables, the ROWID is composed of the following:

 FILE NUMBER or RELATIVE FILE NUMBER
 BLOCK NUMBER
 ROW NUMBER

In the case of HCC, the FILE NUMBER and BLOCK NUMBER actually relate to the CU itself.
We can use DBMS_ROWID.ROWID_RELATIVE_FNO and
DBMS_ROWID.ROWID_BLOCK_NUMBER to see how many rows are in each CU, an example of
which can be seen in the following query. To see how many blocks were actually in use, not just
allocated, we used the Oracle-provided PL/SQL package DBMS_SPACE.UNUSED_SPACE.

HCC can be deployed in multiple flavors :

 HCC Query Low or Query High More suited for querying data. Lesser compression benefits
but less costly to query. Query Low uses the LZO compression algorithm while Query High
uses the ZLIB algorithm.

 HCC Archive Low or Archive High More suited for archiving data, thus higher compression
but more costly to query. Archive logs use the ZLIB algorithm while Archive High uses the
BZIP2 algorithm.

Tables 11-1 and 11-2 provide a comparison of the compression ratio and CU usage statistics,
respectively, by type of HCC.

TABLE 11-1. Compression Ratio by Compression Type

TABLE 11-2. CU Usage Statistics by Compression Type

Data load rates will depend upon the nature and type of data load. Bulk load operations are better
suited for HCC than single row inserts. Similarly, full table scans are better suited for HCC. Either
way, there is a penalty that comes with using HCC. Figures 11-17 and 11-18 show sample data to that
effect.

FIGURE 11-17. Data loads with compression

FIGURE 11-18. Effect of compression on full table scans

Another important point to understand is the locking behavior in HCC during updates. Oracle
traditionally has maintained row-level locking as the mantra and rule. This rule does not apply to
HCC in the same way. When a table is created to take advantage of HCC, irrespective of the type,
locking is now managed and maintained at the CU level. What this means is that if a session updates a
row that is currently stored using HCC compression type, then the session lock is taken at the CU
level. In other words, another session that tries to update a second row in the same CU will be
blocked by the first session and will have to wait on an “enq: TX - row lock contention” wait event
(see Chapter 14 for detail on locks/latches). It is important to note that though the lock is effectively
on a CU, the wait event reported is still a row-level lock. Oracle asserts that performance of
UPDATEs and INSERTs with CUs has been improved in 12cR2.

Note that you can still use standard table compression for OLTP, and a single block lookup is still
generally faster than other columnar storage. The updated rows migrate to normal/lower-level
compression. HCC fully supports:

 B-tree indexes
 Bitmap indexes
 Text indexes
 Materialized views
 Partitioning
 Parallel queries
 Data Guard physical standby

 Logical standby and Streams (in a future release)
 Smart Scans of HCC tables!

 I/O Resource Management
Oracle’s latest I/O Resource Management (IORM) tool can be used with Exadata to manage multiple
workloads and set resources as you deem necessary. Although I don’t cover this in detail here, please
consider the following ways that you can set up three instances with different resources. Instance A
gets 50 percent, instance B gets 30 percent, and instance C gets 20 percent. You can further break
down the 50 percent that instance A gets into the various user- and task-related percentages.

Set I/O resources for different instance

 Instance A = 50%
 Instance B = 30%
 Instance C = 20%

Further set I/O based on users and tasks

 Instance A Interactive = 50%
 Instance A Reporting = 20%
 Instance A Batch = 15%
 Instance A ETL = 15%

You can also continue to use Database Resource Manager (DBRM) as in the past. DBRM has been
enhanced for Exadata. It allows management of inter- and intra-database I/O. With inter-database I/O,
you manage using IORM and Exadata storage software. For intra-database I/O, you manage using
Consumer Groups. You can set limits for CPU, UNDO, degree of parallelism (DOP), active sessions,
and much more. Please see the Oracle documentation for more details. This section is only a brief
introduction so you can see what’s possible.

 Use All Oracle Security Advantages with Exadata
Oracle is known for its incredible security. Their first customer was the CIA (Central Intelligence
Agency), so they’ve always been focused on security (for over 30+ years). Don’t forget to investigate
these security and recovery options that are available with Exadata:

 Audit Vault
 Total Recall/Flashback (recovery)

 Database Vault
 Label security
 Advanced security
 Secure encrypted backup (Please use!) (also available—incremental backup with change

tracking file, which is much faster)
 Data masking
 Data Guard (recovery)
 Failure groups (automatic for storage cell failure)

 Best Practices
There are many best practices that will help you get the most out of Exadata. I’ll start with a list of
must haves and don’t do’s. Note, however, that these can change at any time, so check Oracle’s docs
for the latest information.* Here is my list as of the writing of this chapter (late 2016):

 Must have Bundle Patch 5 (see Metalink Note 888828.1 for the latest).
 Must have ASM to use Exadata.
 Must have three floor tiles on a raised floor (must support 2219 lbs./964 kg) with holes

(cooling) for a full rack (between 1560 CFM and 2200 CFM front to back—less for a half or
quarter rack). You don’t want to melt it! All of this is subject to change, so please check the
latest specifications.

 Must have the correct power needs (it is not standard).
 Must use Oracle Linux and Oracle DB 11.2 or 12c (current).
 Must use RMAN for backups.
 Ensure InfiniBand is connected and MTU is set to 65520.
 Check disk group balance and notes on auto-extend.
 Capture performance baselines early in your implementation.
 Consider a ZFS appliance with connectivity over InfiniBand for database backups. If you do

so, please make sure to configure the database with Oracle dNFS for maximum benefit.
 Alternatively, consider StorageTek tape backup (many positive reviews but it is pricey).
 Use an ASM allocation unit (AU) size of 4M (currently).
 Don’t add any foreign hardware … or no support!
 Don’t change BIOS/firmware … or no support!

Next, I’d like to list some Oracle stated best practices. Note that these can change at any time, as

well, so please check your Oracle docs for the latest. Best practices include:

 CREATE ALL celldisk and griddisks.
 Use DCLI to run on all storage servers at once (helpful and saves time).
 Use IORM for resource management.
 Decide fast recovery area (FRA) and MAA needs before you install.
 Set log file size at 32G (whoa!).
 To optimize fast scan rates, ensure database extent sizes are at least 4M (locally managed

tablespaces [LMTs] can have a uniform or auto-allocate extent policy).
 Move data with Data Pump (usually, but many other options are available).

 Summary: Exadata = Paradigm Shift!
I’ve covered many Exadata topics in this section, including Exadata terminology and basics, Flash
Cache, storage indexes, Smart Scans, Hybrid Columnar Compression, I/O Resource Manager,
security, and best practices. To summarize, what makes Exadata fast is fast hardware, many CPUs,
fast Flash Cache, lots of DRAM on database servers and storage, compression (saves 10×–70×),
partition pruning (saves 10×–100×), storage indexes (saves 5×–10×), Smart Scan (saves 4×–10×),
and other features not covered (see Oracle Docs for more information). Exadata is the best way to
turn a 1T search into a 500M search or even a 50M search. I believe that Exadata is The Real Deal
and will drive future accelerated hardware innovation by all major hardware vendors.

Oracle Database Appliance (ODA)
Exadata may be overkill for some customers. When Oracle introduced the Oracle Database
Appliance, they were thinking about small- and medium-sized businesses (SMBs) and customers that
needed departmental servers. The goal of ODA, however, is to have a quickly implemented, mid-
sized server. Currently there are two different models where Oracle has one 10-core CPU in the X6-
2S (128-384G RAM) and two 10-core CPUs in the X6-2M (256-768G RAM). Both systems come
standard with 6.4T Flash (NVMe) that can be expanded to 12.8T and can run on Enterprise Edition
(EE) or Standard Edition 2 (SE2) with licensing up to only two CPU cores (to save $$). The ODA
X5-2 has two servers for a larger footprint. A database appliance can include:

 Oracle with ASM and RAC running on Oracle Linux
 High-availability fault tolerance—two nodes/dual server
 Cluster in a box (Oracle Clusterware comes installed)
 Oracle Appliance Manager (for quick patching and system management)
 Auto memory management, auto tuning, auto disk backup

The Oracle Database Appliance is now a little beefier since its introduction, but can be ready to
go in a couple of hours (software and RAC is preloaded). It even has a phone-home capability; it
calls for service and has one-button patching. Introducing the Oracle Database Appliance is just
another way that Oracle is leveraging its Sun acquisition to create a full line of hardware that benefits
its customers. While the hardware itself is inexpensive, the software license cost can certainly add up
if you use the maximum CPU configuration, but it’s still much lower priced than a quarter rack at the
current time (a quarter rack is over 2× faster though). I’m confident that this will evolve over time, so
please check with Oracle for the latest configuration and pricing.

SuperCluster Using the M7 SPARC Chip
On September 26, 2011, Oracle announced the new SPARC SuperCluster T4-4 and I thought, “How
will they ever top a 1000+ threaded system?” In 2016, new SuperCluster using the M7 SPARC chip
includes built-in hardware encryption (on the silicon with near zero overhead), protection from
memory attacks (again at the silicon level), up to 512 CPU cores, and 8T of DRAM per rack. It also
has HCC for 10–15×+ compression. It was engineered with the 12c database and Exadata storage
(including those benefits described in the previous Exadata sections). SuperCluster runs the Solaris
operating system (Solaris 11 or Solaris 10) with hardware using the new M7 multithreaded SPARC
processor.

Oracle is primarily targeting their Solaris install base to migrate to SuperCluster. Oracle’s goal is
not only to make migrating easy for this install base, but also to give them the speed of Exadata and
Exalogic in a single M7 SPARC-based machine. From reviewing the last few sections, you can see
that Oracle is leveraging its Sun acquisition with the fastest hardware on earth for parallel database
processing (rack(s) of Exadata), fastest middleware server or Internet eBusiness application server
machine(s) (rack(s) of Exalogic), large company migration from Solaris to mix of Exadata/Exalogic
speed systems (rack(s) of SuperCluster), small business or department server (Oracle Database
Appliance(s)), and infinite storage (rack(s) of Exadata Storage Expansion Racks). I’m sure Oracle
has already exceeded all of this, even as amazing as it sounded at the time I wrote this. My advice:
Teach your kids Oracle!

Other Oracle Hardware to Consider
In this section, I cover some of the other hardware that you should at least consider as you implement
your business solutions. All of these come from Oracle acquisitions.

 Oracle Big Data Appliance X6-2
Oracle Big Data Appliance X6-2 is used to acquire, organize, analyze, and make sense of all the
unstructured data in your company or on the Web. Big data is all the data associated with weblogs,
social media, e-mail, sensors, photographs, videos, and all the other sources of big data that are
coming. The Oracle Big Data Appliance is an engineered system that includes an open source version
of Apache Hadoop, Oracle NoSQL Database (think of it as version 2 of Oracle, a highly scalable

key-value database), Oracle Data Integrator Application Adapter for Hadoop (simplifies data
integration in Hadoop), Big Data SQL to connect all data sources querying with SQL (query Hadoop
or Hive directly from Oracle SQL), and an open source version of R (Oracle R Enterprise integrates
with the open source statistical environment R to deliver advanced analytics). You can also integrate
the Oracle Big Data Appliance with the Oracle Database, Exadata, or Exalytics. When you use
Oracle’s Big Data SQL to query Hadoop, you can apply security and access policies to Hadoop or
other NoSQL (NoSQL = Not only SQL) sources. Exadata features such as Smart Scan and storage
indexes coexist with Hadoop itself. It runs on Linux and includes Java, MySQL, Big Data Plug-in,
Oracle R, Oracle NoSQL, Cloudera Impala, Apache HBase, Apache, Spark, Apache Kafka, Cloudera
Hadoop (CDH), and Cloudera Manager. The hardware side includes up to 792 cores (36 × 22-core
processors), 14T DRAM, and 1.7P of storage.

 ZFS Storage Servers
Sun ZFS Storage ZS4-4 has 6.9P of raw storage capacity. This is a high-performance network
attached storage (NAS) system with SAN storage capabilities. It supports an active-active cluster
option, supports Oracle Database HCC, and has data compression and inline deduplication. It has
6.9P of raw storage capacity (and can be configured with 3T of read optimized cache) with eight 15-
core processors.

With Oracle Database 12c, ZFS now uses the Oracle Intelligent Storage Protocol, which watches
access patterns and tunes itself for optimal performance. It includes full PDB-level analytics (ZS
Analytics) with 12c. It also includes Exadata storage features such as HCC. ZFS is an 128-bit file
system that can address 16E more data than 64-bit can.

 StorageTek Modular Library System
One of the largest companies I know of recently had to recover from tape. Most companies have
online fast recovery areas (FRAs) for quick recoveries, as well as online backups located on slower
2T SATA disks. But there is still a place for an offsite tape backup, and StorageTek makes it fast and
easy. Looking inside one of these machines is like watching a production assembly line where tapes
are moved around as needed automatically. Another benefit of the Sun acquisition was getting this
incredible company called StorageTek. It is no surprise that Oracle now archives more data than
anyone else in the world.

The StorageTek SL8500, with a maximum configuration of ten libraries (there are many
models/sizes to choose from if you need something smaller), includes the ability to back up 500P
native or 2.1E (1 Exabyte = 1000P) with a 2.5:1 compression (at a speed of 553 TB/hr). To put this
in perspective, a decade ago (around 2005), a business magazine estimated that the average Fortune
1000 company had an average size of 1P for all of their databases. That means all Fortune 1000
databases could have been backed up with this device (maximum ten-library configuration) with a 2:1
compression in 2005. You can connect up to 32 of these libraries for a maximum tape backup capacity
of 67E. After reading these last few sections, you should start to see the future of Oracle accelerating

at the speed of thought!

Parallel Databases
A parallel clustered database is a complex application that provides access to the same database
(group of data tables, indexes, and other objects) from any server in the cluster concurrently without
compromising data integrity. Parallel databases typically contain multiple instances of a database
(located on many nodes/servers) accessing the same physical storage or data concurrently. In terms of
storage access type, parallel systems are implemented in two ways: a shared-nothing model or a
shared-disk model.

In a shared-nothing model, also termed a data-partitioning model, each system owns a portion of
the database and each partition can only be read or modified by the owning system. Data partitioning
enables each system to locally cache its portion of the database in processor memory without
requiring cross-system communication to provide data access concurrency and coherency controls.
Both IBM’s and Microsoft’s databases can operate this way and have in the past. Perhaps Oracle’s
adoption of the shared-disk model is what gave them a huge lead in grid computing and will help in
the cloud.

In a shared-disk model, all the disks containing data are accessible by all nodes of the cluster.
Disk sharing architecture requires suitable lock management techniques to control the update
concurrency. Each of the nodes in the cluster has direct access to all disks on which shared data is
placed. Each node has a local database buffer cache. Oracle’s RAC database operates this way.

With due emphasis on high availability and high performance, Oracle has provided Oracle
Parallel Server (OPS) for a long time. With Oracle9i, it drove into the next generation and rebuilt
OPS as Real Application Clusters (RAC). RAC follows the shared-disk model and thus has access to
all the shared disks as well as to an extensive mechanism to coordinate the resources across the
nodes. Shared-disk technology has advanced rapidly over the past few years, giving RAC added
advantages. Storage area network (SAN) technology hides much of the complexity of hardware units,
controllers, disk drives, and interconnects from the servers and provides just storage volumes. In the
same way, a group of servers together in a cluster provides a single system image and computing
resource. Oracle’s acquisition of Sun only strengthens an already-compelling RAC story.

Real Application Clusters (RAC)
High performance and high availability of information systems constitute key requirements for day-to-
day business operations. As the dependence on stored information grew over the last couple of
decades, large amounts of data are being accumulated and analyzed. There is an ever-increasing
demand for high-performance databases, and at the same time, awareness of and requirements for
keeping such databases online all the time has increased. Global operations and e-business growth
depend very much on highly available stored data. With uneven and unpredictable loads on the
database systems, it has become imperative for many business groups to search for high-performance
systems and suitable parallel systems to support complex and large database systems. Scalability is
another important feature. As the business grows, data accumulation and data interaction increase.
More and more users and applications begin to use the database systems. The database systems
should be able to support the increased demand for data without losing ground in performance and

scope of availability.
Oracle9i introduced Real Application Clusters (RAC) to solve these issues. In Oracle 10g, Oracle

started to perfect Grid Control for managing clusters of databases. In 11g, Oracle introduced Oracle
RAC One Node. RAC One Node represents an Oracle RAC database that runs only one active Oracle
database instance and can be managed using Server Control Utility (SVRCTL) as any Oracle RAC
database. You can add nodes that can be used for failover, but you cannot add additional instances
without first converting Oracle RAC One Node to Oracle RAC. You can convert from single instance
to RAC One Node or RAC using Oracle’s Database Configuration Assistant (DBCA) at any time. You
can use Online Database Relocation with SVRCTL to perform a live migration of the database
instance and connections to one of the failover nodes. This gives you the ability to move a database
easily from an overworked server to a less-utilized server in the same cluster. RAC One Node helps
you to consolidate many databases into one cluster with minimal overhead while also providing the
high-availability benefits of client failover, online rolling patch application, and rolling upgrades for
the operating system and Oracle Clusterware. Please see the documentation for full details and use.
Oracle also enhanced Grid Control to make adding or subtracting nodes as well as managing the
cluster infrastructure easier. Oracle 11g also adds zero-downtime patching and a 64-bit ASM cluster
file system, eliminating the need for a third-party cluster file system. This section by no means covers
all aspects of RAC functioning. It merely highlights some important concepts and some of RAC’s
inner workings. The scope of this book does not cover RAC specifically. You can switch from single-
instance Oracle DB to RAC One Node or RAC at any time (if you have the appropriate licenses!). In
12c you can use In-Memory to replicate the IM column store on each node in a RAC cluster so that
even memory used for analytics is fault-tolerant!

 Oracle RAC Architecture
At a very high level, RAC is multiple Oracle instances (on separate nodes) accessing a single Oracle
database. The database is a single physical database stored on a shared storage system. Each of the
instances resides on a separate host (also called a node or server). All the nodes are clustered
through a private interconnect, and all nodes have access to the shared storage. All the nodes
concurrently execute transactions against the same database. The cluster manager software, usually
supplied by the cluster vendor, provides a single system image, controls node membership, and
monitors the node status. Broadly, the major components include:

 Nodes/servers
 High-speed private interconnect (connects the nodes together)
 Cluster Manager or OSD (operating system–dependent layer)
 Shared disk or storage
 Cluster file system or raw devices
 Volume manager
 Public network

 The database software

Cluster Interconnect
If a block of data has been changed in the cache memory on one node and the user asks for it on
another node, Oracle uses Cache Fusion to pass one block through the interconnect (such as
InfiniBand) to the cache on the other node. Parallel processing relies on passing messages among
multiple processors. Processors running parallel programs call for data and instructions and then
perform calculations. Each processor checks back periodically with the other nodes or a master node
to plan its next move or to synchronize the delivery of results. These activities rely on message-
passing software, such as the industry-standard Message Passing Interface (MPI).

In parallel databases, there is a great deal of message passing and data blocks, or pages,
transferring to the local cache of another node. Much of the functionality and performance depends on
the efficiency of the transport medium or methodology. The transport medium becomes very critical
for the overall performance of the cluster and usage of the parallel application. Because parallel
databases do not impose any constraints on the nodes to which users can connect and access, users
have a choice to connect to any node in the cluster. Irrespective of the nature of the application, OLTP,
or data warehousing databases, the movement of data blocks from one node to another using the
interconnect is widely practiced. The role of the cluster interconnect to provide some kind of
extended cache encompassing the cache from all the nodes is one of the most significant design
features of the cluster. In general, the cluster interconnect is used for the following high-level
functions:

 Health, status, and synchronization of messages
 Distributed lock manager (DLM) messages
 Accessing remote file systems
 Application-specific traffic
 Cluster alias routing

High performance, by distributing the computations across an array of nodes in the cluster,
requires the cluster interconnect to provide a high data transfer rate and low-latency communication
between nodes. Also, the interconnect needs to be capable of detecting and isolating faults, and using
alternative paths. Some of the essential requirements for the interconnect are

 Low latency for short messages
 High speed and sustained data rates for large messages
 Low host-CPU utilization per message
 Flow control, error control, and heartbeat continuity monitoring
 Host interfaces that execute control programs to interact directly with host processes (OS

bypass)
 Switch networks that scale well

Many of the cluster vendors have designed very competitive technology. Many of the interconnect
products come close to the latency levels of a symmetric multiprocessing (SMP) bus.

 Internal Workings of the Oracle RAC System
Oracle uses Global Cache Services to coordinate activity. A lock is treated as a held resource. RAC
is a multi-instance database. Multiple instances access the same database concurrently. In terms of
structure, the difference between a RAC instance and a stand-alone Oracle instance is miniscule.
Besides all the usual Oracle background processes, many special processes are spawned to
coordinate inter-instance communication and to facilitate resource sharing among nodes in a cluster.
The Oracle documentation goes through all of the processes if you are interested in knowing more.
Here is a brief description of some of the main ones:

 ACMS The Atomic Controlfile to Memory Service (ACMS) is an agent on a per-instance
basis that helps to ensure a distributed SGA memory update is globally committed on success
and globally aborted on failure.

 LMON The Global Enqueue Service Monitor (LMON) monitors the entire cluster to manage
global enqueues and resources. LMON manages instance and process expirations and the
associated recovery for the Global Cache Service.

 LMD The Global Enqueue Service Daemon (LMD) is the lock agent process that manages
enqueue manager service requests for Global Enqueue Service enqueues to control access to
global enqueues and resources. The LMD process also handles deadlock detection and remote
enqueue requests.

 LMSn These Global Cache Service processes (LMSn) are processes for the Global Cache
Service (GCS). RAC software provides for up to ten GCS processes. The number of LMSn
processes varies depending on the amount of messaging traffic among nodes in the cluster. The
LMSn processes do these things:

 Handle blocking interrupts from the remote instance for Global Cache Service resources
 Manage resource requests and cross-instance call operations for shared resources
 Build a list of invalid lock elements and validate lock elements during recovery
 Handle global lock deadlock detection and monitor lock conversion timeouts

 LCK0 process The Instance Enqueue Process manages global enqueue requests and cross-
instance broadcast. Manages non–Cache Fusion and library/row cache requests.

 RMSn RAC management processes include tasks like the creation of resources as nodes are
added.

 RSMN Remote Slave Monitor (RSMN) performs remote instance tasks for a coordinating
process.

 GTX0-j The Global Transaction Process supports global XA transactions.

Global Cache Service (GCS) and Global Enqueue Service (GES)
GCS and GES (which are basically RAC components) play the key role in implementing Cache
Fusion. GCS ensures a single system image of the data even though the data is accessed by multiple
instances. GCS and GES are integrated components of Real Application Clusters that coordinate
simultaneous access to the shared database and to shared resources within the database and database
cache. GES and GCS together maintain a Global Resource Directory (GRD) to record information
about resources and enqueues. The GRD remains in memory and is stored on all the instances. Each
instance manages a portion of the directory. This distributed nature is a key point for fault tolerance of
RAC.

The coordination of concurrent tasks within a shared cache server is called synchronization.
Synchronization uses the private interconnect and heavy message transfers. The following types of
resources require synchronization: data blocks and enqueues. GCS maintains the modes for blocks in
the global role and is responsible for block transfers between instances. LMS processes handle the
GCS messages and do the bulk of the GCS processing.

An enqueue is a shared memory structure that serializes access to database resources. It can be
local or global. Oracle uses enqueues in three modes: null (N) mode, shared (S) mode, and exclusive
(X) mode. Blocks are the primary structures for reading and writing into and out of buffers. An
enqueue is often the most requested resource.

GES maintains or handles the synchronization of the dictionary cache, library cache, transaction
locks, and DDL locks. In other words, GES manages enqueues other than data blocks. To synchronize
access to the data dictionary cache, latches are used in exclusive (X) mode and in single-node cluster
databases. Global enqueues are used in cluster database mode.

Cache Fusion and Resource Coordination
Because each node in a Real Application Cluster has its own memory (cache) that is not shared with
other nodes, RAC must coordinate the buffer caches of different nodes while minimizing additional
disk I/O that could reduce performance. Cache Fusion is the technology that uses high-speed
interconnects to provide cache-to-cache transfers of data blocks between instances in a cluster. Cache
Fusion functionality allows direct memory writes of dirty blocks to alleviate the need to force a disk
write and reread (or ping) of the committed blocks. This is not to say that disk writes do not occur;
disk writes are still required for cache replacement and when a checkpoint occurs. Cache Fusion
addresses the issues involved in concurrency between instances: concurrent reads on multiple nodes,
concurrent reads and writes on different nodes, and concurrent writes on different nodes.

Oracle only reads data blocks from disk if they are not already present in the buffer caches of any
instance. Because data block writes are deferred, they often contain modifications from multiple
transactions. The modified data blocks are written to disk only when a checkpoint occurs. Before I go
further, you need to be familiar with a couple of concepts introduced with RAC: resource modes and
resource roles. Because the same data blocks can concurrently exist in multiple instances, there are
two identifiers that help to coordinate these blocks:

 Resource mode The modes are null, shared, and exclusive. The block can be held in different
modes, depending on whether a resource holder intends to modify data or merely read it.

 Resource role The roles are locally managed and globally managed.

The Global Resource Directory is not a database. It is a collection of internal structures and is
used to find the current status of the data blocks. Whenever a block is transferred out of a local cache
to another instance’s cache, the GRD is updated. The following information about a resource is
available in the GRD:

 Data Block Identifiers
 Location of most current versions
 Data block modes (N, S, X)
 Data block roles (local or global)

Past Image
To maintain data integrity, a new concept of past image was introduced in the 9i version of RAC. A
past image (PI) of a block is kept in memory before the block is sent and serves as an indication of
whether it is a dirty block. In the event of failure, GCS can reconstruct the current version of the block
by reading PIs. This PI is different from a CR block, which is needed to reconstruct read-consistent
images. The CR version of a block represents a consistent snapshot of the data at a point in time.

For example, Transaction-A of Instance-A has updated row-2 on block-5, and later another
Transaction-B of Instance-B has updated row-6 on the same block-5. Block-5 has been transferred
from Instance-A to Instance-B. At this time, the past image for block-5 is created on Instance-A.

SCN Processing
System change numbers (SCNs) uniquely identify a committed transaction and the changes it makes.
An SCN is a logical timestamp that defines a committed version of a database at one point in time.
Oracle assigns every committed transaction a unique SCN.

Within RAC, since you have multiple instances that perform commits, the SCN changes need to be
maintained within an instance, but at the same time, they must also be synchronized across all
instances with a cluster. Therefore, SCNs are handled by the Global Cache Service using the Lamport
SCN generation scheme, or by using a hardware clock or dedicated SCN server. SCNs are recorded
in the redo log so recovery operations can be synchronized in RAC.

Is RAC Unbreakable?
Can RAC be brought down? Sure it can. Any bad design or choice will bring it down. Besides the
database itself, many components are involved in providing database service. RAC may be up and
running, but clients may not be able to reach it. The intermediate network components involved
between client machines and database servers may fail. Natural outages that destroy all of the
hardware—fire, flood, and earthquake—will make the cluster and database inoperable.

Assuming that failures are localized or contained, however, RAC provides maximum protection
and provides continuous database service. Even with the loss of many of the components, a RAC

cluster can still function. But it calls for redundant design in terms of all the components involved.
Design is the key word. Just setting up two or more nodes is not enough; dual interconnects, dual
paths to storage units, dual storage units, dual power supplies, dual public network interfaces, and so
on, will create a robust RAC cluster. For example, this table shows the effects of individual
component failures:

As long as one of the Oracle instances is available in the cluster, client applications have data
access and can execute their applications without any problems. Oracle Exadata makes many of these
events of the past non-issues because Exadata machines are already designed for dual components
and high availability.

Summary
This section by no means covers all aspects of RAC internal functioning. It merely highlights some
important concepts and some of the inner workings of RAC (subject to change, of course).

Understanding special RAC requirements and implementation of the global shared cache helps you
properly plan RAC implementation and its usage. An entire book is needed to cover RAC fully, but
the next few sections should help you with tuning RAC.

RAC Performance Tuning Overview
Performance issues related to a RAC implementation should focus on the following areas in the
order listed:

 Traditional database tuning and monitoring (most of this book)
 RAC cluster interconnect performance (this chapter and Chapter 5)
 Monitoring workload performance (most of this book, especially Chapter 5)
 Monitoring contention uniquely associated with RAC (this chapter)
 Prior to tuning RAC-specific operations, tuning each instance separately:

 APPLICATION tuning
 DATABASE tuning
 OS tuning

 Begin tuning RAC

Normal or traditional database monitoring is covered in other areas of this book (especially
Chapter 5). Aspects of database performance related to RAC are covered in this chapter. After tuning
each instance individually, then focus on the processes that communicate through the cluster
interconnect.

 RAC Cluster Interconnect Performance
The most complex aspect of RAC tuning involves monitoring and the subsequent tuning of processes
associated with the Global Resources Directory (GRD). The group of processes associated with the
GRD is the Global Enqueue Service (GES) and the Global Cache Service (GCS). The GRD
processes communicate through the cluster interconnects. If the cluster interconnects are not
configured to process data packets efficiently, then the entire RAC implementation performs poorly.
This is true regardless of performance-related tuning and configuration efforts in other areas.

 Finding RAC Wait Events—Sessions Waiting
You can monitor sessions that wait on nonidle wait events that impact interconnect traffic with a
query that lists GCS waits using the global dynamic performance view GV$SESSION_WAIT. You
may also see these waits in a Statspack or AWR Report. The following are the major waits being

monitored:

To identify the sessions experiencing waits on the system, perform the following tasks:

1. Query GV$SESSION_WAIT to determine whether any sessions are experiencing RAC-related
waits (at the current time).

2. Identify the objects that are causing contention for these sessions.
3. Try to modify the object or query to reduce contention.

For example, query GV$SESSION_WAIT (shown next) to determine whether any sessions are
experiencing RAC cache–related waits. Note that the GV$ views are used much more to show
statistics for the entire cluster, whereas the V$ views still show statistics from a single node. If you
plan to use RAC, you must extend the V$ views and queries to the GV$ views for multiple nodes.
This section is only an initial guide to help you see all of the components. The scope of this book
does not cover RAC specifically, but some things that will help you tune RAC.

The output from this query should look something like this:

Run this query to identify objects that are causing contention for these sessions and the object that
corresponds to the file and block for each FILE_NUMBER/BLOCK_NUMBER combination returned
(this query is a bit slower):

The output is similar to

Modify the object to reduce the chances for application contention by doing the following:

 Reduce the number of rows per block.
 Adjust the block size to a smaller block size.
 Modify INITRANS and FREELISTS.

 RAC Wait Events and Interconnect Statistics
The RAC events are listed next in the Statspack or AWR Report if you are running RAC (multiple
instances). As stated earlier, you need to run a Statspack or AWR Report for each instance that you
have. For Statspack, you run the statspack.snap procedure and the spreport.sql script on each
node you want to monitor to compare to other instances. One of the best methods for seeing if a node
is operating efficiently is to compare the report from that node to one from another node that accesses
the same database. I cover Cloud Control tuning in Chapter 5. Remember that single-instance tuning
should be performed before attempting to tune the processes that communicate via the cluster
interconnect—this is very important! In other words, tune the system in single instance before you
move it to RAC.

Some of the top wait events that you may encounter are listed briefly next; wait events are covered
in more detail in Chapter 14. The top global cache (gc) waits to look out for include:

 gc current block busy Happens when an instance requests a CURR (current version of a
block) data block (wants to do some DML) and the block to be transferred is in use. A block
cannot be shipped if Oracle hasn’t written the REDO for the block changes to the log file.

 gc buffer busy A wait event that occurs whenever a session has to wait for an ongoing
operation on the resource to complete because the block is in use. The process has to wait for
a block to become available because another process is obtaining a resource for this block.

 gc cr request/gc cr block busy This happens when one instance is waiting for blocks from
another instance’s cache (sent via the interconnect). This wait says that the current instance

can’t find a consistent read (CR) version of a block in the local cache. If the block is not in the
remote cache, then a db file sequential read wait will also follow this one. Tune the SQL that
is causing large amounts of reads that get moved from node to node. Try to put users who are
using the same blocks on the same instance so blocks are not moved from instance to instance.
Some non-Oracle application servers move the same process from node to node looking for
the fastest node (unaware that they are moving the same blocks from node to node). Pin these
long processes to the same node. Potentially increase the size of the local cache if slow I/O
combined with a small cache is the problem. Monitor V$CR_BLOCK_SERVER to see if an
issue like reading UNDO segments is occurring. Correlated to the waits, the values for
P1,P2,P3 are file, block, lenum, respectively. For the value for P3, lenum, look in
V$LOCK_ELEMENT for the row where LOCK_ELEMENT_ADDR has the same value as
lenum. This happens when an instance requests a CR data block and the block to be transferred
hasn’t arrived at the requesting instance. This wait is the one I see the most, and it’s usually
because the SQL is poorly tuned and many index blocks are being moved back and forth
between instances.

Figure 11-19 shows the AWR Report RAC Statistics section. You can see that there are six
instances (nodes) in this cluster. You can also see things like the number of blocks sent and received
as well as how many of the blocks are being accessed in the local cache (93.1 percent) versus the
disk or another instance. As you would guess, accessing blocks in the local cache is faster, but
accessing one of the remote caches on one of the other nodes is almost always faster (given a fast
enough interconnect and no saturation of the interconnect) than going to disk.

FIGURE 11-19. The AWR Report RAC Statistics section

The following is another valuable query to derive session wait information. The INSTANCE_ID
lists the instance where the waiting session resides. The SID is the unique identifier for the waiting
session (GV$SESSION). The P1, P2, and P3 columns list event-specific information that may be
useful for debugging. LAST_SQL lists the last SQL executed by the waiting session.

Here is a query that gives a description of the parameter names of the events seen in the last
section:

Some of the contents of the GV$SESSION_WAIT view are as follows:

True proof of how much faster the database is in recent releases is evident with the move from
waits being measured in seconds to waits being measured in microseconds.

TIP
Use V$SESSION_WAIT or GV$SESSION_WAIT, Statspack, or the AWR Report to find RAC wait
events.

GES Lock Blockers and Waiters
Sessions that are holding global locks that persistently block others can be problematic to a RAC
implementation and are, in many instances, associated with application design. Sessions waiting on a
lock to release cannot proceed (hang) and are required to poll the blocked object to determine status.
Large numbers of sessions holding global locks will create substantial interconnect traffic and inhibit
performance. The following queries will help you find blocking sessions:

Cache Fusion Reads and Writes
Cache Fusion reads occur when a user on one system queries a block and then a user on another
system queries the same block. The block is passed over the high-speed interconnect (versus being
read from disk). Cache Fusion writes occur when a block previously changed by another instance
needs to be written to disk in response to a checkpoint or cache aging. When this occurs, Oracle
sends a message to notify the other instance that a fusion write will be performed to move the data
block to disk. Fusion writes do not require an additional write to disk and are a subset of all physical
writes incurred by an instance. The ratio DBWR fusion writes to physical writes shows the
proportion of writes that Oracle manages with fusion writes.

Here is a query to determine ratio of Cache Fusion writes:

Here is some sample output:

A larger than usual value for Cache Fusion writes ratio may indicate:

 Insufficiently large caches
 Insufficient checkpoints
 Large numbers of buffers written due to cache replacement or checkpointing

 Cluster Interconnect Tuning—Hardware Tier
Cluster interconnect tuning is a very important piece of the clustered configuration. Oracle depends
on the cluster interconnect for movement of data between the instances. Using a dedicated private
network for the interconnect is extremely important.

The speed of the cluster interconnect solely depends on the hardware vendor and the layered
operating system. Oracle, in its current version, depends on the operating system and the hardware for
sending packets of information across the cluster interconnect. For example, one type of cluster
interconnect supported between Sun Fire 4800s is the User Datagram Protocol (UDP). However,
Solaris on this specific version of the interconnect protocol has an OS limitation of a 64K packet size
used for data transfer. To transfer 256K worth of data across this interconnect protocol would take
this configuration over four round trips. On a high-transaction system where you have a large amount
of interconnect traffic, this could cause a serious performance issue.

After the initial hardware and operating system level tests to confirm the packet size across the
interconnect, perform subsequent tests from the Oracle database to ensure that there is not any
significant added latency using cache-to-cache data transfer or the Cache Fusion technology. The
query that follows provides the average latency of a consistent block request on the system. The data
in these views are a cumulative figure since the last time the Oracle instance was bounced. The data
from these views do not reflect the true performance of the interconnect or give a true picture of the
latency in transferring data. To get a more realistic picture of performance, bounce all the Oracle
instances and test again. To obtain good performance, the latency across the cluster interconnect must
be as low as possible. Latencies on the cluster interconnect could be caused by

 Large number of processes in the run queues waiting for CPU or scheduling delays
 Platform-specific OS parameter settings that affect IPC buffering or process scheduling
 Slow, busy, or faulty interconnects

Oracle recommends that the average latency of a consistent block request typically should not
exceed 15 milliseconds, depending on the system configuration and volume. When you are sending

many blocks across the interconnect, this figure is really too high (especially since going to disk is
usually this fast). For a high-volume system, latency should be in the single-digit millisecond-to-
microsecond range. The average latency of a consistent block request is the average latency of a
consistent read request roundtrip from the requesting instance to the holding instance and back to the
requesting instance.

In the preceding output, notice that the AVG CR BLOCK RECEIVE TIME is 443.78 (ms); this is
significantly high when the expected average latency, as recommended by Oracle, should not exceed
15 (ms). A high value is possible if the CPU has limited idle time and the system typically processes
long-running queries. However, an average latency of less than one millisecond with user-mode IPC
is possible. Latency can also be influenced by a high value for the
DB_MULTI_BLOCK_READ_COUNT parameter. This is because a requesting process can issue
more than one request for a block, depending on the setting of this parameter. Correspondingly, the
requesting process may have to wait longer. This kind of high latency requires further investigation of
the cluster interconnect configuration and that tests be performed at the operating system level. When
such high latencies are experienced over the interconnect, another good test is to perform a test at the
operating system level by checking the actual ping time. Checking the ping time helps to determine if
there are any issues at the OS level. After all, the performance issue may not be from data transfers
within the RAC environment.

Apart from the basic packet transfer tests that you can perform at the database level, you can
undertake other checks and tests to ensure that the cluster interconnect has been configured correctly.
There are redundant private high-speed interconnects between the nodes participating in the cluster.
Implementing network interface card (NIC) bonding or pairing helps interconnect load balancing and
failover when one of the interconnects fails. The user network connection does not interfere with the
cluster interconnect traffic. That is, they are isolated from each other. At the operating system level,
the netstat and ifconfig commands display network-related data structures. In 12c, Oracle has
Redundant Interconnect Usage. Oracle Grid Infrastructure and Oracle RAC can now make use of
redundant network interconnects, without using other network technology, to enhance optimal

communication in the cluster. Redundant Interconnect Usage enables load-balancing and high
availability across multiple (up to four) private networks (also known as interconnects). The output
that follows, from netstat-i, indicates that four network adapters are configured and NIC pairing is
implemented:

The values in the IFACE column are defined as follows:

 bond0 The public interconnect created using the bonding functionality (bonds Eth0 and Eth1).

 bond0:1 The Virtual IP (VIP) assigned to bond0.

 bond1 A private interconnect alias created using bonding functionality (bonds ETH2 and
ETH3).

 ETH0 and ETH1 The physical public interfaces that are bonded/paired together (bond0).

 ETH2 and ETH3 The physical private interfaces that are bonded/paired together (bond1).

 lo This is the loopback; that is, the output also indicates that a loopback option is configured.
Verify whether Oracle is using the loopback option using the ORADEBUG command, which is
discussed later in this section. The use of the loopback IP depends on the integrity of the
routing table defined on each of the nodes. Modifying the routing table can result in the
inoperability of the interconnect.

Also found in the preceding netstat output is the maximum transmission unit (MTU), which is set
at 1500 bytes (this is a standard setting for UDP). MTU definitions do not include the data-link
header. However, packet-size computations include data-link headers. The maximum packet size
displayed by the various tools is MTU plus the data-link header length. To get the maximum benefit
from the interconnect, MTU should be configured to the highest possible value supported. For
example, a setting as high as 9K using jumbo frames would improve interconnect bandwidth and data
transmission.

Apart from the basic packet transfer tests that you could perform at the OS level, you can undertake
other checks and tests to ensure that the cluster interconnect has been configured correctly. Perform
checks from the Oracle instance to ensure proper configuration of the interconnect protocol. If the
following commands are executed as user SYS, a trace file is generated in the user dump destination
directory that contains certain diagnostic information pertaining to the UDP/IPC configurations. (See

Chapter 13 for more on the DEBUG functionality.) Please do not use this until you read the Oracle
documentation on it.

The following is the extract from the trace file pertaining to the interconnect protocol. The output
confirms that the cluster interconnect is being used for instance-to-instance message transfer:

The preceding output is from a Sun Fire 4800 and indicates the IP address and that the protocol used
is UDP. On certain operating systems such as Tru64 (now discontinued) the trace output does not
reveal the cluster interconnect information. The following NDD Unix command at the operating
system level confirms the actual UDP size definition. The following output is from a SUN
environment:

This output reveals that the UDP has been configured for an 8K packet size. Applying this finding to
the data gathered from Oracle’s views indicates that it would take 14,050 trips for all the blocks to be
transferred across the cluster interconnect (112,394/8 =14,050). If this were set to be 64K, then the
number of roundtrips would be significantly reduced (112,394/64 = 1756 trips).

Another parameter that affects the interconnect traffic is
DB_FILE_MULTIBLOCK_READ_COUNT. This parameter helps read a certain number of blocks at
a time from disk. When data needs to be transferred across the cluster interconnect, this parameter
determines the size of the block that each instance would request from the other during read transfers.

Sizing this parameter should be based on the interconnect latency and the packet sizes as defined by
the hardware vendor and after considering operating system limitations (for example, the Sun UDP
max setting is only 64K). The following kernel parameters define the UDP parameter settings:

 UDP_RECV_HIWAT
 UDP_XMIT_HIWAT

Setting these parameters to 65536 each increases the UDP buffer size to 64K.
Another parameter, CLUSTER_INTERCONNECTS, provides Oracle information on the

availability of additional cluster interconnects that you could use for Cache Fusion activity across the
cluster interconnect. The parameter overrides the default interconnect settings at the operating system
level with a preferred cluster traffic network. While this parameter does provide certain advantages
on systems where high interconnect latency is noticed by helping reduce such latency, configuring this
parameter could affect the interconnect high-availability feature. In other words, an interconnect
failure that is normally unnoticeable could instead cause an Oracle cluster failure as Oracle still
attempts to access the network interface. The parameter also overrides the network classifications
stored by OIFCFG in the Oracle Cluster Registry (OCR).

Resource Availability
Resources available on any machine or node or to an Oracle instance are limited, meaning they are
not available in abundance, and if a process on the system needs them, they may not be immediately
available. A physical limit is imposed on the amount of resources available on any system. For
example, the processor resources are limited by the number of CPUs available on the system, and the
amount of memory or cache area is limited by the amount of physical memory available on the system.
Now, for an Oracle process, this is further limited by the actual amount of memory allocated to the
SGA. Within the SGA, the shared pool, the buffer cache, and so on, are again preallocated from the
shared pool area. These memory allocations are used by a regular single-instance configuration.

In a RAC environment, there are no parameters to allocate any global-specific resources, for
example, global cache size or global shared pool area. Oracle allocates a certain portion of the
available resources from the SGA for global activity. The availability of global resources can be
monitored using the view GV$RESOURCE_LIMIT.

Parallel Operations
Using parallel operations enables multiple processes (and potentially processors) to work together
simultaneously to resolve a single SQL statement. This feature improves data-intensive operations, is
dynamic (the execution path is determined at run time), and (when wisely implemented) makes use of
all of your processors and disk drives. There are some overhead costs and administrative
requirements, but using parallel operations can improve the performance of many queries.

 Basic Concepts of Parallel Operations

Consider a full table scan. Rather than have a single process execute the table scan, Oracle can create
multiple processes to scan the table in parallel. The number of processes used to perform the scan is
called the degree of parallelism (DOP). The degree can be set in a hint at the time of table creation
or as a hint in the query. Figure 11-20 shows a full table scan of the EMP table broken into four
separate parallel query server processes. (The degree of parallelism is four.) A fifth process, the
query coordinator, is created to coordinate the four parallel query server processes.

FIGURE 11-20. A simple full table scan with parallel execution (disk access not shown)

If the rows returned by the full table scan shown in Figure 11-20 also need to be sorted, the
resulting operation will look like Figure 11-21 instead. Now Oracle may use one process to
coordinate the query, four processes to run the query, and four processes to sort the query. The total is
now nine processes, although the degree of parallelism is still 4. If you have nine processors (CPUs),
your machine can use all nine processors for the operation (depending on your system setup and other
operations that are being performed at the same time). If you have fewer than nine processors
available, you may encounter some CPU bottleneck issues as Oracle manages the query.

FIGURE 11-21. Simple full table scan requiring a sort with parallel execution (SGA not shown)

Because the query coordination parts of the operation take resources, fast-running queries are not
usually enhanced (and may be degraded) with the use of parallel operations.

TIP
Using parallel operations on very small tables or very fast queries can also degrade performance
because the query coordination may also cost performance resources. You should evaluate whether
the parallel cost exceeds the nonparallelized cost.

Both queries in Figure 11-20 and Figure 11-21 require access to the physical disks to retrieve
data, which is then brought into the SGA. Balancing data on those disks based on how the query is
“broken up” makes a large I/O difference.

TIP
When the parallel degree is set to N, it is possible to use (2*N) + 1 total processes for the parallel
operation. Although parallel operations deal with processes and not processors, when a large
number of processors are available, Oracle generally uses the additional processors to run
parallel queries, often enhancing the performance of the query.

 Parallel DML and DDL Statements and Operations
Oracle supports parallelization of both DDL and DML operations. Oracle can parallelize the

following operations on tables and indexes:

 SELECT
 UPDATE, INSERT, DELETE
 MERGE
 CREATE TABLE AS
 CREATE INDEX
 REBUILD INDEX
 MOVE/SPLIT/COALESCE PARTITION
 ENABLE CONSTRAINT

The following operations can also be parallelized within a statement:

 SELECT DISTINCT
 GROUP BY
 ORDER BY
 NOT IN
 UNION and UNION ALL
 CUBE and ROLLUP
 Aggregate functions such as SUM and MAX
 NESTED LOOPS joins
 SORT-MERGE joins
 Star transformations

Oracle uses the cost-based optimizer to determine whether to parallelize a statement and to determine
the degree of parallelism applied. Most operations can be parallelized, including queries, DML, and
DDL operations. Intrapartition parallelism is also supported; multiple parallel query server processes
can execute against the same partition.

The degree of parallelism may be limited by a number of factors. Although the partitioning strategy
does not play as significant a role for parallelism, you should still be aware of other limiting factors:

 The number of processors available on the server
 That you still need to have the partition option enabled, and UPDATE, DELETE, and MERGE

are parallelized only for partitioned tables
 The number of parallel query server processes allowed for the instance, set via the

PARALLEL_MAX_SERVERS initialization parameter
 The parallel degree limit supported for your user profile if you use the Database Resource

Manager
 The number of parallel query server processes used by other users in the instance
 The setting for the PARALLEL_ADAPTIVE_MULTI_USER parameter, which may limit your

parallelism in order to support other users (if used; note that it is deprecated in 12c)

Monitoring your parallel operations in multiuser environments to guarantee they are allocated the
resources that you planned for them to use is important. The Database Resource Manager can help
allocate resources.

 Managing Parallel Server Resources and Parallel
Statement Queuing
If you use the Database Resource Manager to manage parallel server resources, and a consumer
group uses up all its assigned resources, Oracle might be forced to downgrade the parallelism of the
parallel statements issued by users assigned to that consumer group. You configure the allocation of
parallel server resources for a consumer group with the PARALLEL_TARGET_PERCENTAGE
directive. This directive specifies the maximum percentage of the parallel server pool that a
particular consumer group can use.

In 12c, Oracle has parallel statement queuing, which offers the following features:

 When no more parallel servers are available, the parallel statement is queued. The parallel
statement is dequeued and processed as parallel servers are freed up.

 A resource plan can be used to control the order of the parallel statement queue. When parallel
servers are freed up, the resource plan is used to select a consumer group. The parallel query
at the head of its queue is run.

 Parallel servers can be reserved for critical consumer groups.

This feature adds stability to the execution of SQL statements in parallel, but can introduce an
additional wait time for parallel statements if the database server is running at full capacity. For a
parallel statement to be queued, the following conditions must be met:

 The PARALLEL_DEGREE_POLICY initialization parameter is set to AUTO.
 The number of active parallel servers across all consumer groups exceeds the value of the

PARALLEL_SERVERS_TARGET initialization parameter.
 The sum of the number of active parallel servers for the consumer group and the degree of

parallelism of the parallel statement exceeds the target number of active parallel servers. In
other words, (V$RSRC_CONSUMER_GROUP.CURRENT_PQ_SERVERS_ACTIVE + DOP
of statement) > (PARALLEL_TARGET_PERCENTAGE/100 *
PARALLEL_SERVERS_TARGET).

You can also use the NO_STATEMENT_QUEUING and STATEMENT_QUEUING hints in SQL
statements to manage parallel statement queuing.

 Parallelism and Partitions
Oracle’s partitioning feature can have a significant impact on parallel operations. Partitions are
logical divisions of table data and indexes, and partitions of the same table or index can reside in
multiple tablespaces. Given this architecture, the following important distinctions exist with parallel
operations on partitions:

 Operations are performed in parallel on partitioned objects only when more than one partition
is accessed.

 If a table is partitioned into 12 logical divisions and a query executed against the table
accesses only 6 of those partitions (because the dimension of the data dictates the partition in
which the data is stored), a maximum of 6 parallel server processes can be allocated to satisfy
the query. When partition granules are used to access a table or index, the maximum allowable
DOP is the number of partitions (block range granules are the basic unit of most parallel
operations, even on partitioned tables; partition granules are the basic unit of parallel index
range scans, joins between two equipartitioned tables, parallel operations that modify multiple
partitions of a partitioned object, and partitioned table/index creation).

 Inter- and Intra-operation Parallelization
Due to the distribution of data, the processor allocated to each parallel server process, and the speed
of devices servicing the parallel server data request, each parallel query server process may
complete at a different time. As each server process completes, it passes its result set to the next
lower operation in the statement hierarchy. Any single parallel server process may handle or service
statement operation requests from any other parallel execution server at the next higher level in the
statement hierarchy.

TIP
Any server process allocated for a statement may handle any request from a process within the
same statement. Therefore, if some processes are faster than others, the ones that are faster can
process the rows produced by the child set of parallel execution processes as soon as they are
available instead of waiting for the ones that are slower (but only at the next higher statement
hierarchy level).

The optimizer evaluates a statement and determines how many parallel query server processes to

use during its execution. This intra-operation parallelization is different from interoperation
parallelization. Intra-operation parallelization is dividing a single task within a SQL statement, such
as reading a table, among parallel execution servers. When multiple parts of a SQL statement are
performed in parallel, the results from one set of parallel execution servers are passed to another set
of parallel execution servers. This is known as interoperation parallelization.

The degree of parallelism is applied to each operation of a SQL statement that can be parallelized,
including the sort operation of data required by an ORDER BY clause. As shown earlier in Figure
11-21, a query with a degree of parallelism of 4 may acquire up to nine processes.

 Examples of Using Inter- and Intra-operations
(PARALLEL and NO_PARALLEL Hints)
You can parallelize SQL statements via a SQL hint or with the object-level options declared for the
table or index. The following listing illustrates a statement hint:

The preceding statement does not specify a degree of parallelism. The default degree of
parallelism dictated by the table definition or the initialization parameters will be used. When you
create a table, you can specify the degree of parallelism to use for the table, as shown here:

When you execute queries against the ORDER_LINE_ITEMS table without specifying a degree of
parallelism for the query, Oracle uses 4 as the default degree. To override the default, specify the new
value within the PARALLEL hint, as shown in this next listing. Also shown in the listing is the
PARALLEL_INDEX hint, whose only difference from the PARALLEL hint is that the index name is
also specified.

This listing specifies a degree of parallelism of 6. As many as 13 parallel execution servers may be
allocated or created to satisfy this query.

To simplify the hint syntax, use table aliases, as shown in the following listing. If you assign an
alias to a table, you must use the alias, not the table name, in the hint.

TIP
Using the PARALLEL hint enables the use of parallel operations. If you use the PARALLEL hint but
do not specify the degree of parallelism with the hint or set it at the table level, the query still
executes in parallel, but the DOP is calculated from the initialization parameters.

You can also “turn off” the use of parallel operations in a given query on a table that has been
specified to use parallel operations. The ORDER_LINE_ITEMS table has a default degree of
parallelism of 4, but the query shown here overrides that setting via the NO_PARALLEL hint:

TIP
The use of the NO_PARALLEL hint disables parallel operations in a statement that would
otherwise use parallel processing due to a parallel object definition.

To change the default degree of parallelism for a table, use the PARALLEL clause of the ALTER
TABLE command:

To disable parallel operations for a table, use the NOPARALLEL clause of the ALTER TABLE
command (notice that there is an underscore with the hint, but none with the clause below):

The coordinator process evaluates the following in determining whether to parallelize the
statement:

 Hints contained in the SQL statement
 Session values set via the ALTER SESSION FORCE PARALLEL command
 Tables/indexes defined as parallel as well as table/index statistics

You are advised to specify an explicit degree of parallelism either in the SQL statement itself or in
the table definition. You can rely on default degrees of parallelism for many operations, but for
performance management of time-sensitive operations, you should specify the degree of parallelism
using a hint.

TIP
Specify the degree of parallelism using a hint instead of relying on the table definition to ensure
that all operations are tuned for the given query.

 Creating Table and Index Examples Using Parallel
Operations
To further illustrate the application of parallel operations in SQL statements, consider the
implementations of parallel operations for table and index creation shown in the following listings.

Using parallel operations for table creation

Using parallel operations for index creation

The CREATE INDEX statement creates the ORDER_KEY index using parallel sort operations.
The CREATE TABLE statement creates a new table ORDER_LINE_ITEMS with a degree of
parallelism of 4 by selecting from an existing OLD_ORDER_LINE_ITEMS table using a parallel
operation. In the preceding table creation listing, two separate operations within the CREATE
TABLE command are taking advantage of parallelism: the query of the OLD_ORDER_LINE_ITEMS
table is parallelized, and the insert into ORDER_LINE_ITEMS is parallelized.

NOTE
Although parallel queries increase the performance of operations that modify data, the redo log
entries are written serially and could cause a bottleneck. By using the NOLOGGING option, you
can avoid this bottleneck during table and index creation.

Because the writes to the redo log files are serial, redo log writes may effectively eliminate the
parallelism you have defined for your statements. Using NOLOGGING forces the bulk operations to
avoid logging, but individual INSERT commands are still written to the redo log files. If you use the
NOLOGGING option, you must have a way to recover your data other than via the archived redo log
files.

TIP
Use NOLOGGING to remove the I/O bottleneck caused by serial writes to the redo logs.

Up to this point, I have ignored the physical location of the data queried in the example SELECT
statements. If a full-scanned table’s data is all contained on a single disk, you may succeed only in
creating a huge I/O bottleneck on the disk. An underlying principle of the performance gains that you

can achieve using parallel operations is that the data is stored on different devices, all capable of
being addressed independently of one another.

TIP
Make sure your data is properly distributed or the parallel query server processes may add to
existing I/O bottleneck problems.

Not only that, but using the Parallel Execution Option (PEO) may make your system perform
worse. If your system has processing power to spare but has an I/O bottleneck, using PEO will
generate more I/O requests faster, creating a larger queue for the I/O system to manage. If you already
have an I/O bottleneck, creating more processes against that same bottleneck will not improve your
performance. You need to redesign your data distribution across your available I/O devices.

TIP
Parallel processes commonly involve disk accesses. If the data is not distributed across multiple
disks, using the Parallel Execution Option (PEO) may lead to an I/O bottleneck.

Returning to the CREATE INDEX statement shown earlier in the “Using parallel operations for
index creation” listing, consider the following tips:

 Index creation uses temporary tablespace if there is not enough memory available to perform
the sort in memory (SORT_AREA_SIZE). Construct the temporary tablespace in such a way
that the physical datafile are striped across at least as many disks as the degree of parallelism
of the CREATE INDEX statement.

 When adding/enabling a primary or unique key for a table, you cannot create the associated
index in parallel. Instead, create the index in parallel first and then use ALTER TABLE to
add/enable the constraint and specify the USING INDEX clause. For this to work, the index
must have the same name and columns as the constraint.

 Monitoring Parallel Operations via the V$ Views
The V$ dynamic performance views are always a great place for instance monitoring and evaluating
the current performance of the database; parallel operations are no exception. The key performance
views for monitoring parallel execution at a system level are V$PQ_TQSTAT and V$PQ_SYSSTAT.
In general, V$ views beginning with V$PQ give statistics and DBA information (mostly tuning
information) whereas the V$PX views give details at the process level about parallel sessions and
operations (mostly the mechanics). In the following sections, you will see examples of the most

commonly used V$ views for monitoring parallel operations.

V$PQ_SYSSTAT
V$PQ_SYSSTAT provides parallel statistics for all parallelized statement operations within the
instance. V$PQ_SYSSTAT is ideal for evaluating the number of servers executing currently high-
water mark levels and the frequency of startup and shutdown of parallel servers. The following
listing illustrates the statistics found on a freshly started instance and then a query run where there
was a degree of parallelism of 4:

As you can see, four parallel execution servers were used and no new processes were started.
Query V$PQ_SYSSTAT after a SELECT on a table defined with a hint specifying a parallel

degree of 5. The following listing illustrates V$PQ_SYSSTAT output following the query. Note the
values for Servers Busy and Servers Highwater.

In this case, the hint has overridden the default degree of parallelism defined for the table, using
five parallel query server processes.

TIP
A PARALLEL hint overrides the degree of parallelism defined for a table when determining the
degree of parallelism for an operation.

V$PQ_SESSTAT
To provide the current session statistics, query the V$PQ_SESSTAT view. Use this view to see the
number of queries executed within the current session, as well as the number of DML operations
parallelized. Here’s a sample output of a simple query from this view:

The output shown in V$PQ_SESSTAT refers only to the current session, so it is most useful when
performing diagnostics during testing or problem resolution processes. Note that V$PX_SESSTAT
has a similar name but a completely different set of columns. V$PX_SESSTAT joins session
information from V$PX_SESSION with the V$SESSTAT table. V$PX_SESSION can also give
information on the process requested degree (REQ_DEGREE) as compared to the actual degree
(DEGREE) that ends up being used. A listing of V$ views related to parallel operations is given in
the section “Other Parallel Notes” at the end of this chapter.

The next listing shows a simple example of querying V$PX_SESSTAT. In this example, if you tried
to execute a parallel query where the specified degree of parallelism (12) is greater than
PARALLEL_MAX_SERVERS (10), you might see the following:

The V$PX_SESSTAT view is populated only while a parallel operation is executing; as soon as
the parallel operation finishes, the contents of this view are cleared.

 Using EXPLAIN PLAN and AUTOTRACE on
Parallel Operations
You can use the EXPLAIN PLAN command to see tuned parallel statements. When you create a
PLAN_TABLE for your database (via the utlxplan.sql script in the /rdbms/admin subdirectory

under the Oracle software home directory), Oracle includes columns that allow you to see how
parallelism affects the query’s execution path. The information about the parallelization of the query
is found in the OBJECT_NODE, OTHER_TAG, and OTHER columns in PLAN_TABLE.

TIP
New columns may be added to the PLAN_TABLE with each new release of Oracle. You should drop
and re-create your PLAN_TABLE following each upgrade of the Oracle kernel. If you upgrade an
existing database to a new version of Oracle, you should drop your old PLAN_TABLE and re-
execute the utlxplan.sql script to see all of the new PLAN_TABLE columns. You can also view
the plan using Oracle Enterprise Manager in the SQL Details page.

The OBJECT_NODE column is the name of the database link used to reference the object. The
OTHER column provides information about the query server processes involved. The OTHER_TAG
column describes the function of the OTHER column’s entries. The OTHER column contains a
derived SQL statement—either for a remote query or for parallel query operations.

Table 11-3 shows the possible values for OTHER_TAG and their associated OTHER values.

TABLE 11-3. Possible Values for PLAN_TABLE.OTHER_TAG for Parallel Operations

When an operation is parallelized, it may be partitioned to multiple query server processes based
on ranges of ROWID values; the ranges are based on contiguous blocks of data in the table. You can
use the OTHER_TAG column to verify the parallelism within different query operations, and you can
see the parallelized query in the OTHER column. For example, the query in this next listing forces a
MERGE JOIN to occur between the CUSTOMERS and SALES tables; because a MERGE JOIN
involves full table scans and sorts, multiple operations can be parallelized. You can use the
OTHER_TAG column to show the relationships between the parallel operations.

Next, you can see the partial EXPLAIN PLAN for the MERGE JOIN query:

As shown in the plan, Oracle performs a full table scan (TABLE ACCESS FULL) on each table,
sorts the results (using the SORT JOIN operations), and merges the result sets. The query of
PLAN_TABLE in the next listing shows the OTHER_TAG for each operation. The query shown in the
listing following the OTHER_TAG for each operation generates the EXPLAIN PLAN listings.

The result of the query for the MERGE JOIN example is shown here:

You can see (by their OTHER_TAG values) that each of the TABLE ACCESS FULL operations is
parallelized and provides data to a parallel sorting operation. The SORT JOIN operations are
PARALLEL_COMBINED_WITH_PARENT (their “parent” operation is the MERGE JOIN). The
MERGE JOIN operation is PARALLEL_TO_SERIAL (the merge is performed in parallel; output is
provided to the serial query coordinator process).

The OBJECT_NODE column values display information about the query server processes
involved in performing an operation. The following listing shows the OBJECT_NODE column for the
TABLE ACCESS FULL of CUSTOMERS operation performed for the MERGE JOIN query:

As shown in this listing, the OBJECT_NODE column references a parallel query server process.
(Q15000 is an internal identifier Oracle assigned to the process for this example.)

TIP
When using the EXPLAIN PLAN command for a parallelized query, you cannot rely on querying
just the operations-related columns to see the parallelized operations within the EXPLAIN PLAN.
At a minimum, you should query the OTHER_TAG column to see which operations are performed

in parallel.

Oracle provides a second script, utlxplp.sql, also located in the /rdbms/admin subdirectory
under the Oracle software home directory. The utlxplp.sql script queries the PLAN_TABLE, with
emphasis on the parallel query data within the table. You must create the PLAN_TABLE (via the
utlxplan.sql script) and populate it (via the EXPLAIN PLAN command) prior to running the
utlxplp.sql script.

TIP
When using EXPLAIN PLAN for parallel operations, use the utlxplp.sql script to view the
PLAN_TABLE.

 Using the SET AUTOTRACE ON/OFF Command
You can have the EXPLAIN PLAN automatically generated for every transaction you execute within
SQL*Plus. The set autotrace on command causes each query, after being executed, to display
both its execution path and high-level trace information about the processing involved in resolving the
query.

To use the set autotrace on command, you must have first created the PLAN_TABLE table
within your account. When using the set autotrace on command, you do not set a
STATEMENT_ID, and you do not have to manage the records within the PLAN_TABLE. To disable
the AUTOTRACE feature, use the set autotrace off command.

If you use the set autotrace on command, you will not see the EXPLAIN PLAN for your
queries until after they complete—unless you specify TRACEONLY. The EXPLAIN PLAN command
shows the execution paths without running the queries first. Therefore, if the performance of a query
is unknown, use the EXPLAIN PLAN command before running it. If you are fairly certain that the
performance of a query is acceptable, use set autotrace on to verify its execution path.

The next listing shows the effect of the set autotrace on command. When a MERGE JOIN
query is executed, the data is returned from the query followed by the EXPLAIN PLAN. The
EXPLAIN PLAN is in two parts: the first part shows the operations involved, and the second part
shows the parallel-related actions. Here, you can see the first part of the AUTOTRACE output.

The AUTOTRACE output shows the operations and the objects on which they act. The information
near the far right (Q1 and so on) identifies the parallel query servers used during the query. The
AUTOTRACE also shows the step ID values to describe the parallelism of the execution path’s
operations, as shown here (this one you can read from bottom to top).

 Tuning Parallel Execution and the Initialization
Parameters
Parameters related to physical memory are generally set much higher in a database that uses parallel
operations than in a nonparallel environment. If you are using MEMORY_TARGET (sets memory for
PGA/SGA), you should set it higher for a system using parallel operations. Many of the related

parameters (detailed here) are set automatically, but you may want to set minimums. See Chapter 4
for information on setting MEMORY_TARGET and other initialization parameters. The settings
shown in Table 11-4 are general parameter settings, but your settings must be based on your unique
business environment. Also note that OPTIMIZER_PERCENT_PARALLEL and
ENQUEUE_RESOURCES (deprecated in 10.2 and removed in 11g) are obsolete and thus not shown
in this table.

TABLE 11-4. Oracle 12c Parallel Initialization Parameters

NOTE
Table 11-4 is a limited list; see the Oracle docs for more settings.

TIP
Be sure your environment is properly configured to support the increase in processes, memory, and
transactions generated by parallel operations.

The parameters in the initialization file define and shape the environment used by parallel
operations. You enable parallel operations for your commands by using a PARALLEL hint on a SQL
statement or using the PARALLEL clause during a CREATE/ALTER table command. When you are
considering adjusting any initialization parameter (or removing deprecated parameters), fully
investigate the Oracle Database Administrator’s Guide, 12c, the Oracle Database Upgrade Guide,
12c, or the appropriate server installation guide for your system prior to experimenting with an
Oracle database.

 Parallel Loading
To use parallel data loading, start multiple SQL*Loader sessions using the PARALLEL keyword.
Each session is an independent session requiring its own control file. This listing shows three
separate direct path loads, all using the PARALLEL=TRUE parameter on the command line:

Each session creates its own log, bad, and discard files (p1.log, p1.bad, etc.) by default. You
can have multiple sessions loading data into different tables, but the APPEND option is still required.
APPEND is very fast because it fills only unused blocks. The SQL*Loader REPLACE, TRUNCATE,
and INSERT options are not allowed for parallel data loading. If you need to delete the data using
SQL commands, you must manually delete the data.

TIP
If you use parallel data loading, indexes are not maintained by the SQL*Loader session unless you
are loading a single table partition. Before starting a parallel loading process, you must drop all
indexes on the table and disable all of its PRIMARY KEY and UNIQUE constraints. After the
parallel loads completely, you need to re-create or rebuild the table’s indexes. Inserting data using
APPEND and UNRECOVERABLE is the fastest way to insert data into a table without an index.
External tables may provide faster extract, transform, and load (ETL) operations.

In parallel data loading, each load process creates temporary segments for loading the data; the
temporary segments are later merged with the table. If a parallel data load process fails before the
load completes, the temporary segments will not have been merged with the table. If the temporary
segments have not been merged with the table being loaded, no data from the load will have been
committed to the table.

You can use the SQL*Loader FILE parameter to direct each data loading session to a different
datafile. By directing each loading session to its own database datafile, you can balance the I/O load
of the loading processes. Data loading is very I/O-intensive and must be distributed across multiple
disks for parallel loading to achieve significant performance improvements over serial loading.

TIP
Use the FILE parameter to direct the writes generated by parallel data loads.

After a parallel data load, each session may attempt to re-enable the table’s constraints. As long as
at least one load session is still under way, attempting to re-enable the constraints will fail. The final
loading session to complete should attempt to re-enable the constraints, and it should succeed. You
should check the status of your constraints after the load completes. If the table being loaded has
PRIMARY KEY and UNIQUE constraints, you should first re-create or rebuild the associated indexes
in parallel and then manually enable the constraints.

TIP
The PARALLEL option for data loading improves performance of loads, but it can also waste space
when not properly used.

 Optimizing Parallel Operations in RAC
The benefits of using parallel operations with an Oracle database have been well established, with
the feature first being offered in version 7.1. Parallel execution of SQL statements on traditional Unix-
based symmetric multiprocessor (SMP) architectures greatly increases utilization of the server and
the speed of large resource-intensive operations. In a Real Application Clusters (RAC) architecture,
the equivalent of a parallel SMP deployment is placed into effect and utilizes all the available servers
(nodes) in the cluster. Use of parallel operations with RAC greatly enhances the scale-out cluster
architecture.

 Objectives of Parallel Operations
The objective of a parallel implementation is to use all available resources of the database platform
architecture to increase overall processing potential. Resources included in this type of deployment
are memory, processor, and I/O. Parallel operations that can be performed in any scale-up or single-
system SMP image environment can also be performed in the scale-out RAC cluster environment.
Operations that are included are as follows:

 Queries (based on full table scan)
 CREATE TABLE AS
 Index builds/rebuilds
 DML operations (INSERT, UPDATE, DELETE) on partitioned tables
 Data loads

You can perform the first four operations referenced in this list with the use of SQL hints or by
setting the degree of parallelism at the object level. Configure node groups to restrict parallel

operations to specific nodes. Therefore, when implementing a large RAC architecture (more than two
servers), allocate named servers to named groups to restrict or enable parallel operations.

 RAC Parallel Usage Models
Several usage models are available for parallel execution with RAC. Because splitting a query
across multiple nodes can degrade performance as well, take care when using the parallel query with
RAC! The models included are as follows:

 Standard Use of parallel query for large datasets. In this deployment, the degree of
parallelism is usually defined to utilize all of the available resources in the cluster.

 Restricted This deployment restricts processing to specific nodes in the cluster. The
referenced nodes can be logically grouped for specific types of operations.

 Parallel index builds/rebuilds In cases where large index builds are required, parallelism can
be utilized to maximize the use of cluster node resources.

 Parallel Initialization Parameters
Several standard parameters can be set to implement parallel processes at the server level as
discussed earlier in the chapter. The two general parallel parameters to consider are as follows:

 V$ Views for Viewing Parallel Statistics

Several database views are used to obtain parallel operation statistics. The view names referenced
here are prefaced with the GV$ identifier, which depicts the RAC-level statistics:

 Create Table As
Using the CREATE TABLE AS (CTAS) feature within Oracle can be extremely useful for making
copies of table objects. For large tables, the operation can be performed in parallel in the same
manner as with the parallel query examples in the prior section. The SQL statement that follows is an
example of using CTAS with the parallel option. Instance groups can also be used to restrict
processing to specific nodes. Thus, based on the INSTANCE_GROUPS parameter, the query is
executed only on the TEST1 node.

 Parallel Index Builds
Performing index creates or rebuilds for large tables is another resource-intensive operation where
performance can be greatly improved with parallel operations. The INDEX CREATE statement
requests a parallel degree of 6 for the operation. Similar to the previous examples, this operation can
also utilize the INSTANCE_GROUPS parameter to restrict the operation to specific nodes.

 Performance Considerations and Summary
The downside of parallel operations is the exhaustion of server resources. The easiest server
resource to monitor is CPU utilization. If normal CPU utilization were relatively high, deploying a
large number of parallel processes would not be advisable. Exceeding the total number of CPUs
would cause performance degradation as well. Data layout is another immediate consideration. If I/O
bottlenecks currently exist, use of parallel operations may exacerbate this condition. Ensure that
datafiles for parallel target objects are spread across a reasonable number of disk spindles.

The use of parallel operations within a RAC deployment provides for the flexibility to utilize all

server hardware included in the cluster architecture. Utilizing instance groups, database
administrators can further control the allocation of these resources based on application requirements
or service level agreements.

 Other Parallel Notes
Planning (or reengineering) the physical location of datafiles is key to successful parallel data access.
Determine an appropriate degree of parallelism for each parallelized SQL statement and parallelize
the creation of your physical design. Don’t let the initialization parameters dictate how the degree of
parallelism is determined. Remember, you’re usually trying to optimize a small number of slow
queries, not every table access. Experiment with conservative parameters; use parallel operations for
table or index creations and hint the degree of parallelism you identify as optimal. Use proper syntax
for the parallel hints or they will be ignored. Other V$ views that may be helpful to you include
V$PX_SESSION (session performing parallel operations), V$PX_SESSTAT (statistics for sessions
performing parallel operations), V$PX_PROCESS (parallel processes),
V$PX_PROCESS_SYSSTAT (statistics for parallel execution servers), V$SESSTAT (user session
statistics), V$FILESTAT (file I/O statistics), V$PARAMETER (initialization parameters), and
V$PQ_TQSTAT (workload statistics for parallel execution servers).

The parallel features offered in Oracle are incredibly powerful tools when used in a targeted
fashion—most databases can be tuned to place indexes in the right quantity and location to deliver
acceptable performance. Use parallel operations for those statements that cannot be written any other
way but to scan an entire table or address a partitioned large table/index. Parallelized operations are
powerful tools for managing data warehouses or performing periodic maintenance activities.
Configure the database environment to take full advantage of the benefits parallelism offers.

Oracle Documentation Is Online
Don’t forget that all of the Oracle documentation (multiple Oracle versions) for all of the products is
online at http://docs.oracle.com.

Tips Review
 The cloud is here to stay. Ensure that you become educated on the Oracle Cloud so that you can

discern which parts benefit your company and which parts require a wait-and-see approach.
 Get ready for the cloud by trying a simple DBaaS instance at http://cloud.oracle.com/tryit or

http://cloud.oracle.com/database for free or by trying the new 12cR2 Oracle Database Exadata
Express Cloud Service for $175/month.

 Exadata has been the next generation flagship hardware platform for relational database
architecture. Get ready for it, it is constantly being updated.

 Use V$SESSION_WAIT or GV$SESSION_WAIT, Statspack, or the AWR Report to find RAC

http://docs.oracle.com
http://cloud.oracle.com/tryit
http://cloud.oracle.com/database

wait events.

 Using parallel operations on very small tables or very fast queries can also degrade
performance because the query coordination may also cost performance resources. You should
evaluate whether the parallel cost exceeds the nonparallelized cost.

 When the parallel degree is set to N, it is possible to use (2*N) + 1 total processes for the
parallel operation. Although parallel operations deal with processes and not processors, when
a large number of processors are available, Oracle generally uses the additional processors to
run parallel queries, often enhancing the performance of the query.

 Any server process allocated for a statement may handle any request from a process within the
same statement. Therefore, if some processes are faster than others, the ones that are faster can
process the rows produced by the child set of parallel execution processes as soon as they are
available instead of waiting for the ones that are slower (but only at the next higher statement
hierarchy level).

 Using the PARALLEL hint enables the use of parallel operations. If you use the PARALLEL
hint but do not specify the degree of parallelism with the hint or set it at the table level, the
query still executes in parallel, but the DOP is calculated from the initialization parameters.

 The use of the NO_PARALLEL hint disables parallel operations in a statement that would
otherwise use parallel processing due to a parallel object definition.

 Specify the degree of parallelism using a hint instead of relying on the table definition to
ensure that all operations are tuned for the given query.

 Use NOLOGGING to remove the I/O bottleneck caused by serial writes to the redo logs.
 Make sure your data is properly distributed or the parallel query server processes may add to

existing I/O bottleneck problems.
 Parallel processes commonly involve disk accesses. If the data is not distributed across

multiple disks, using the Parallel Execution Option (PEO) may lead to an I/O bottleneck.
 A PARALLEL hint overrides the degree of parallelism defined for a table when determining

the degree of parallelism for an operation.
 New columns may be added to the PLAN_TABLE with each new release of Oracle. You

should drop and re-create your PLAN_TABLE following each upgrade of the Oracle kernel. If
you upgrade an existing database to a new version of Oracle, you should drop your old
PLAN_TABLE and re-execute the utlxplan.sql script to see all of the new PLAN_TABLE
columns. You can also view the plan using Oracle Enterprise Manager in the SQL Details
page.

 When using the EXPLAIN PLAN command for a parallelized query, you cannot rely on
querying just the operations-related columns to see the parallelized operations within the
EXPLAIN PLAN. At a minimum, you should query the OTHER_TAG column to see which
operations are performed in parallel.

 When using EXPLAIN PLAN for parallel operations, use the utlxplp.sql script to view the
PLAN_TABLE.

 Be sure your environment is properly configured to support the increase in processes, memory,
and transactions generated by parallel operations.

 If you use parallel data loading, indexes are not maintained by the SQL*Loader session unless
you are loading a single table partition. Before starting a parallel loading process, you must
drop all indexes on the table and disable all of its PRIMARY KEY and UNIQUE constraints.
After the parallel loads completely, you need to re-create or rebuild the table’s indexes.
Inserting data using APPEND and UNRECOVERABLE is the fastest way to insert data into a
table without an index. External tables may provide faster extract, transform, and load (ETL)
operations.

 Use the FILE parameter to direct the writes generated by parallel data loads.
 The PARALLEL option for data loading improves performance of loads, but it can also waste

space when not properly used.
 Exadata, Exalogic, Exadata Storage Expansion Rack, Oracle Database Appliance, SPARC

SuperCluster, Exalytics BI Machine, ZFS, Pillar Storage, and the latest StorageTek combines
probably more hardware speed than the entire hardware industry put out prior to Oracle
buying Sun. Hardware speeds were doubling every 18 months; enter Oracle and hardware
speed is now accelerating exponentially with Oracle at the wheel (in the last two years Oracle
has probably accelerated hardware/software performance 2,000–20,000 times if you know
how to use it). The Terabytes database will soon be the Exabytes database. Teach your kids
Oracle!

References
“Advanced Compression with Oracle Database 11g R2,” Steven Lu (Oracle Corporation).
Oracle Exadata Database Machine X6-2 and X6-8, Oracle Specs, August 2016.
Rich Niemiec, “Oracle RAC Tuning” (Collaborate and Oracle World Conference Paper).
Rich Niemiec, “Oracle 12c R1/R2 Best Features.”
Oracle Data Warehousing Guide (Oracle Corporation).
Oracle Server Concepts (Oracle Corporation).
Oracle Server Reference (Oracle Corporation).
Oracle Server Tuning (Oracle Corporation).
Oracle Database Appliance, Oracle, October 2011.
“Oracle Enterprise Manager Deployment and High Availability Best Practices,” Jim Viscusi (Oracle
Corporation), Jim Bulloch (Oracle Corporation), Steve Colebrook-Taylor (Barclays Global
Investors).
Oracle Exadata Implementation Workshop, Oracle Corporation, McLean, Virginia.
“Oracle Exalogic Elastic Cloud,” an Oracle White Paper, September 2011.
Oracle Learning Library, multiple sessions/topics. (This resource is very good!!)
SPARC SuperCluster, Oracle, October 2016.
Websites: www.tusc.com, www.oracle.com, https://code.facebook.com, and www.ioug.org.

Special thanks to Sridhar Avantsa for additions to the Exadata and RAC sections. Thanks also go

http://www.tusc.com
http://www.oracle.com
https://code.facebook.com
http://www.ioug.org

to Madhu Tumma of Credit Suisse First Boston for writing the original section “Real Application
Clusters” for this chapter. Jake Van der Vort did a major portion of the original parallel query chapter.
Kevin Loney did the update to Oracle9i for the original parallel query chapter. Brad Nash did most of
the Oracle 10g update and added the RAC information. Special thanks to Murali Vallath for many
contributions to this chapter and his great book on RAC.

* This is an abbreviated list. Please see My Oracle Support Doc ID 757552.1 for the full document.
Note 1274475.1 is the subsection for performance-specific information.

S

CHAPTER
12

The V$ Views (Developer and DBA)

enior DBAs often tell junior DBAs that back in version 6 they used to know every V$ view
by heart. Version 6 had only 23 V$ views, so the DBAs from the old days had it pretty easy.
Oracle 10gR2 had 372 V$ views and 613 X$ tables. Oracle 11gR2 has 525 V$ views and
945 X$ tables. Oracle 12cR2 has 746 V$ views and 1312 X$ tables (the number of tables

and views depends on the version, OS, and options that you use as well). There are new V$ views
related to the In-Memory column store and pluggable databases (PDBs) in 12c. There is also an
additional column on many V$ views for Container ID (CON_ID) with PDBs and container databases
(CDBs).

Almost every great tuning or DBA product has one aspect in common. Most of them access the V$
views to get the insightful information that is retrieved about the database, individual queries, or an
individual user. Accessing the V$ views has become quite prevalent due to the numerous
presentations by Joe Trezzo and other V$ gurus. If you currently don’t look at the V$ views, you don’t
know what you’re missing. The V$ views look into the heart of the Oracle database. They are the link
to moving from the average DBA to the expert DBA.

Chapter 13 more extensively explores the X$ tables, which are the underlying part of the V$
views. Appendixes B and C provide information about the V$ views and also the creation scripts
from the X$ tables. Unfortunately, I can’t show every great V$ script due to space limitations, and I’ll
try not to duplicate things that are covered in depth in other chapters. Please check my sessions on the
Web for the latest V$ scripts available.

Topics covered in this chapter include the following:

 Creating V$ views and granting access to them in 12c
 Getting a listing of all V$ views in 12c
 Getting a listing of the X$ scripts that make up the V$ views in 12c
 Examining the underlying objects that make up the DBA_ and CDB_ views
 Querying V$DATABASE to get database creation time and archiving information
 Learning about the Automatic Workload Repository (AWR)
 Querying V$LICENSE to view licensing limits and warning settings
 Accessing V$OPTION to view all options that have been installed
 Querying V$SGA and using MEMORY_TARGET to allocate basic memory for 12c

 Querying V$SGA when setting INMEMORY_SIZE for the In-Memory column store
 Querying V$IM_SEGMENTS and V$IM_COLUMN_LEVEL for the In-Memory column store
 Querying V$SGASTAT to allocate detailed memory for Oracle
 Querying V$SGASTAT as the Root CDB user or PDB user
 Finding initialization parameter settings in V$PARAMETER
 Determining if an initialization parameter is modifiable at PDB level in V$PARAMETER
 Determining memory for data (V$SYSSTAT and V$SYSMETRIC)
 Determining memory for the data dictionary (V$ROWCACHE and V$SYSMETRIC)
 Determining memory for shared SQL and PL/SQL (V$LIBRARYCACHE and

V$SYSMETRIC)
 Determining memory for the In-Memory column store (12.1.0.2+ only)
 Querying V$CONTAINERS for CDB and PDB information
 Querying for pluggable databases in V$PDBS at both PDB and CDB levels
 Using the Result Cache
 Deciding which objects need to be pinned and whether there is contiguous free memory

(V$DB_OBJECT_CACHE)
 Finding the problem queries by accessing V$SESSION_LONGOPS, V$SQLAREA,

V$SQLTEXT, V$SESSION, and V$SESS_IO
 Finding out what users are doing and which resources they are using
 Identifying locking problems and killing the corresponding session
 Finding users with multiple sessions
 Balancing I/O using V$DATAFILE, V$FILESTAT, and DBA_DATA_FILES
 Checking privileges and roles
 Finding Waits with V$SESSION, V$SESSION_WAIT, V$SESSION_EVENT,

V$SESSION_WAIT_CLASS, V$SESSION_WAIT_HISTORY, V$SYSTEM_EVENT, and
V$SYSTEM_WAIT_CLASS

Creating and Granting Access to V$ Views
The V$ views are created by the catalog.sql script (in $ORACLE_HOME/rdbms/admin). As of
Oracle 12cR2, there are approximately 746 V$ views. The actual number varies by version and
platform. Here is the number of views from Oracle 6 to Oracle 12cR2:

The views are all created with the prefix V_$ and GV_$. Two of the views are created by the
catldr.sql script, which is used for SQL*Loader direct load statistical information. The underlying
view definitions (technically, these views are never created; their definitions are hard-coded into the
binary) for each V$ and GV$ view can be seen in the V$ view named
V$FIXED_VIEW_DEFINITION. The V$ views are created by selecting instance-specific
information from GV$ views. For almost every V$ view, there is a corresponding GV$ view. GV$,
or global V$, views contain the same information as the V$ views but across all instances of a RAC
database (each instance is identified by its instance ID). The GV$ views are created by selecting
from one or more X$ tables. A view is created for each V_$ and GV_$ view to allow users to access
the view. Users cannot access the actual V$ views (they actually access the V_$ views; the V$
objects are only visible to SYS). In other words, this method provides access to these views via a
view on a view. The view name changes the prefix of each view to V$. Lastly, a public synonym is
created for each view because the SYS user owns the tables. The following listing shows an example
of a V$ and GV$ view creation in the cdfixed.sql script called by the catalog.sql script:

The complete sequence of events is detailed in the following steps.

1. The GV$ view definitions are created from the X$ tables when the database is created (note
that the CON_ID [Container ID] column was not present in the previous version):

2. The version-specific catalog script is executed as the following:

3. A V_$ view is created from the V$ view when the CREATE database script executes the
following:

4. A new V$ synonym is created on the V_$ view:

5. A new GV$ synonym is created on the GV_$ view:

TIP
The V$ views that are accessed by SYSTEM are actually synonyms that point to the V_$ views that
are views of the original V$ views based on the X$ tables. (Better read that one again!)

The only operation that you can perform on these views is a SELECT. To provide access to the V$
views, you must grant access to the underlying V_$ view.

You cannot grant access to the V$ views (even as the SYS user), however:

Although the error message (following the preceding code) for attempting to grant access to
V$FIXED_TABLE is erroneous, the GRANT is not allowed. You may, however, grant access to the

underlying V_$ view that is behind the V$ view.
To connect to the SYS superuser, use the following:

To grant access to an underlying view to the desired user, use the following:

To connect as the desired user, use this:

Access the V$FIXED_TABLE view via the synonym V$FIXED_TABLE, which is created for
V_$FIXED_TABLE with the following:

You still can’t access the V_$FIXED_TABLE even though that grant was made (SYS can access it,
however):

You can access the V_$FIXED_VIEW if you preface it with SYS:

To avoid confusion, give access to the V_$ views and notify the DBA that he or she has access to
the V$ views. Using this method, you may give access to the V$ view information without giving out
the password for the SYS or SYSTEM accounts. The key is granting SELECT access to the original
SYS owned V_$ view.

TIP
When other DBAs need access to the V$ view information, but not the SYS or SYSTEM passwords,
grant the user access to the V_$ views. The user may then access the V$ views that have public
synonyms to the V_$ views. However, scripts could always be written to query the SYS.V_$ views
directly, to avoid the performance cost of dereferencing the public synonym, but this savings is
small.

Please refer to Oracle documentation for guidelines and granting privileges to different levels of
users. This is especially important when you have a very large number of users.

CAUTION
You should grant non-DBA users privileges to the V$ views only as needed, and use caution.
Remember, performance costs come with querying the V$ views, and the larger your environment,
the greater those costs.

 Obtaining a Count and Listing of All V$ Views
To get a count of all V$ views for a given version of Oracle, query the V$FIXED_TABLE view. The
number of V$ views continues to change even within the same version. The examples that follow
display the V$ view queries for Oracle 12cR2. The frontier in the world of the V$ views continues to
expand with each version of Oracle.

To get a count of V$ views, query as shown here:

Many of the V$ views continue to be undocumented. The methods of exploring information
continue to expand in Oracle because the number of views continues to expand. In Oracle8 (now
desupported), the GV$ views were introduced. The GV$ (global V$) views are the same as the V$
views with an additional column for the instance ID (for RAC). In 12c, we now see an additional
column in many for the Container ID (CON_ID) used for pluggable databases. To get a list of GV$
views, query as shown here (this is a partial listing; you’ll find a complete list of V$ views in
Appendix B):

TIP
Query V$FIXED_TABLE to obtain a listing of all GV$ and V$ views in the database. The GV$
views are the exact same as the V$ views, except the instance ID contains an identifier, and the
GV$ views contain data for all instances of an Oracle RAC database.

Getting a Listing for the X$ Scripts That Make Up the
V$ Views

To understand where the V$ view information comes from, query the underlying X$ tables (see
Chapter 13 for X$ table information). At times, querying the underlying X$ tables may be
advantageous because the V$ views are often the join of several X$ tables. The X$ tables are very
cryptic because they are similar to the underlying table constructs of the Oracle data dictionary.
Oracle creates V$ views in the SGA to allow users to examine the information stored in the X$ tables
in a more readable format. In fact, when SELECTs are performed against the V$ views, the SELECTs
are actually retrieving information out of the SGA—and more specifically, out of the X$ tables,
which are truly memory constructs that interface the software code constructs (which is why they are
so cryptic).

With the knowledge of the V$ view underlying a given SELECT statement, you have the capability
to create customized views; simply copy the existing V$ view underlying the SELECT statement and
modify it or create a new customized SELECT on the X$ tables. This technique allows more
selective and more optimized queries. The next listing is used to access the underlying query to the
X$ tables. To get a listing of the X$ tables that make up the V$ views, you must access the
V$FIXED_TABLE_DEFINITION view (output formatted for readability).

Output

TIP
Access the V$FIXED_VIEW_DEFINITION view to get all information about the underlying X$
tables that make up a V$ view. CON_ID (Container ID) is a new column you’ll see in 12c for
pluggable databases.

Also note that, as of Oracle8, there are indexes on the underlying X$ tables to provide faster
execution of queries performed on the V$ views (amazing that it took Oracle until version 8 to use

indexes!). You can view the index information on the underlying X$ tables through the
V$INDEXED_FIXED_COLUMN view (see Chapter 13 on X$ tables for more information).

 Examining the Underlying Objects That Make Up
the DBA_ Views
Some people think the DBA_ views also come from the X$ tables and/or the V$ views. They actually
come from Oracle’s underlying database tables (although some access the X$ tables as well). To look
at the objects that make up the DBA_ views, access DBA_VIEWS, as shown in this listing (also note
there is a CDB_ view for every corresponding DBA_ view):

NOTE
You may need to use set long 2000000 to see all of this output.

Never modify the underlying objects; many DBAs have corrupted their database in this manner. Do
not do the following, but note that it is possible:

Also consider the following CDB versus PDB example:

Note the hierarchy: The main CDB contains information including the PDB, but the PDBs only
hold their own information (but there may be multiple USERS in each PDB).

TIP
The DBA_ views are not derived from the X$ tables or V$ views. The fact that you can delete rows
from OBJ$ and ruin your database is a great reason to never be the SYS superuser. There is a
CDB_ view for every DBA_ view, and the Root CDB_ views also contain PDB information.

Using Helpful V$ Scripts
The rest of this chapter is dedicated to scripts that are helpful in analyzing different areas of the
Oracle database. Many of these scripts are dynamic and provide valuable insight into areas of the
database that you may need to analyze to determine resource contention at a point in time. Typically,
the result is that the DBA performs some operation to eliminate the contention immediately by tuning a
query or increasing an initialization parameter to reduce the resource contention in the future.
Revoking access to a given ad hoc query user, or restricting his or her system resource use with
profiles, could be an emergency option as well. The next four sections include scripts that retrieve the
following:

 Basic database information
 Basic Automation Workload Repository (AWR) Information
 Basic licensing information
 Database options installed in your database

 Basic Database Information
Getting the basic information about your instance is usually as easy as logging in to SQL*Plus
because all of the information shows in the banner at that time. If you would like to see the full banner
header, you can access the V$VERSION view to display the banner. The following listing shows a
quick way to see the version you are using as well as other information:

Version Information:

Output from 12.2:

Database Information:

Accessing V$DATABASE gives you basic information concerning the database. The most
important information in the output is to ensure that you are in the desired ARCHIVELOG mode. The
output also gives you the exact date when the database was created, as you can see in the preceding
listing.

Another way to view the archive log status for the database is to simply use the ARCHIVE LOG
LIST command as the SYS user in SQL*Plus:

TIP
Query V$VERSION and V$DATABASE to view basic database information such as the version, to
find out when your database was created, and to find out basic archiving information.

 Basic Automatic Workload Repository (AWR)
Information
With the advent of the Automatic Workload Repository (AWR), you now have many areas to watch.
By default, the repository is populated every hour with a retention period of seven days. Here are
some queries that are worth knowing for the AWR (the MMON background process is used to flush
AWR data from memory to disk). See Chapter 5 for detailed information on AWR, licensing related to
the V$ views based on the AWR, and using information from the AWR for tuning purposes.

How much space is the AWR using?

What’s the oldest AWR information on the system?

What’s the retention period for AWR information?

To change the retention period for AWR information to 15 days:

TIP
Query V$SYSAUX_OCCUPANTS to ensure that the Automatic Workload Repository (AWR) isn’t
taking up too much space. Use DBMS_STATS to check history and retention.

 Basic Licensing Information
The V$LICENSE view allows a DBA to monitor system activity in terms of overall database
licensing, warnings, and current use at any time. It provides a DBA with a log of the maximum number
of concurrent sessions at any time, which allows a company to ensure it is licensed properly. The
current number of sessions is displayed along with the session warning level and session maximum
level (as shown next).

As a DBA, execute the script periodically to find out the actual number of sessions on the system
throughout the day. In this next listing, there is no limit on the number of users if the value is set to 0:

 Database Options Installed in Your Database
The script shown next describes what options are installed on your database and are available for
use. If you have purchased a product that does not show up in this list, you may have incorrectly
installed it. Query the V$OPTION view to check for installed products or log on to SQL*Plus to see
the products that are installed (does your open source database do all this?).

Output

The previous listing shows that the database has the PARTITIONING option installed (TRUE), but
it does not have Real Application Clusters (RAC) installed (FALSE). Also note that Automatic
Storage Management (ASM) is FALSE because this is a test environment; however, ASM would
almost always be used on most production systems.

TIP
Query the V$OPTION view to retrieve the Oracle options you have installed. The V$VERSION
view gives you the versions of the installed base options.

Summary of Memory Allocated (V$SGA)
V$SGA gives the summary information for the System Global Area (SGA) memory structures of your
system, as shown in the next listing. The “Database Buffers” is the number of bytes allocated to
memory for data. It comes from the init.ora parameter DB_CACHE_SIZE, if set. The “Redo
Buffers” comes primarily from the value of the init.ora parameter LOG_BUFFER, which is used to
buffer changed records and flushed to the REDO logs whenever a COMMIT is issued.

Consider this smaller SGA output listed using the SHO SGA command:

FIGURE 12-1. The SGA listens when the In-Memory column store is used.

Consider the same query, but now a query to V$SGA (if I go to an individual PDB, I will get the
exact same output—there is no “local” information):

Set the following initialization parameters to turn on the In-Memory column store (also referred to
as IM or INMEMORY or In-Memory):

 Querying V$IM_SEGMENTS After Setting the
INMEMORY_SIZE
After setting the INMEMORY_SIZE, which is included in the SGA (as seen in the previous section),
you can check In-Memory (IM) segments. The V$IM_SEGMENTS view and the In-Memory column
store are only available in 12.1.0.2 or later of the database. This view shows the memory allocated
for all segments in the IM column store.

The following example shows how to create a one-column EMP7 table and put it into the IM:

You can also alter it INMEMORY after it’s created:

Check the EMP7 table in the V$IM_SEGMENTS view:

Check the EMP7 table in the V$IM_COLUMN_LEVEL view:

Please see Chapter 4 for detailed information about the In-Memory (IM) column store. The
following are a few other helpful commands as you use IM.

Place the entire tablespace (puts tables/partitions/mv) into IM:

Instantly remove the EMP table from the IM column store:

Instantly remove D1 Partition(dept) from the IM column store:

Exclude some columns from going into the IM (by default all columns go into the IM):

The main views to view IM information include V$IM_SEGMENTS, V$IM_USER_SEGMENTS,
V$IM_COLUMN_LEVEL, USER_TABLES, and (the deep dive) V$KEY_VECTOR.

TIP
Query the V$IM_SEGMENTS and V$IM_COLUMN_LEVEL views to retrieve detailed information
about specific objects that are stored in the In-Memory column store (only available in 12.1.0.2+).

 Automatic Memory Management and

MEMORY_TARGET
Oracle simplified PGA memory management by introducing a PGA_AGGREGATE_TARGET
parameter. In 12c, Oracle introduced the PGA_AGGREGATE_LIMIT parameter to ensure there is a
cap on the PGA. Oracle also simplified SGA memory management by providing Automatic Shared
Memory Management (ASMM) and by providing the SGA_TARGET parameter. Oracle offers
Automatic Memory Management (AMM) that unifies both PGA memory and SGA memory in a single
parameter setting, the MEMORY_TARGET parameter (see Chapter 4 for more information on all
initialization parameters). As a result, Oracle provides a data dictionary table called
V$MEMORY_DYNAMIC_COMPONENTS. Here is a query that shows the dynamic components
using AMM parameters:

The V$MEMORY_TARGET_ADVICE view provides tuning advice for setting the
MEMORY_TARGET parameter. Issue the following query to obtain advice on the effects of
increasing or shrinking the MEMORY_TARGET parameter:

When MEMORY_TARGET is set, SGA_TARGET and PGA_AGGREGATE_TARGET initially
have zero values (automatically set) unless you set minimum values (a maximum value for PGA can
be set with PGA_AGGREGATE_LIMIT as of 12c). To use ASMM, set SGA_TARGET to a nonzero
value.

Consider a larger SGA in this example and a different way to show it:

If SGA_TARGET is used, it dynamically resizes internally:

This output indicates a relatively large SGA (over 4.5G) with a buffer cache that includes
DB_CACHE_SIZE, DB_KEEP_CACHE_SIZE, and DB_RECYCLE_CACHE_SIZE of over 2.5G.
As discussed in Chapters 1 and 4, I could have just set the SGA_TARGET to something like 4.5G and
set the other parameters to enforce minimum sizes only. The predominant part of the Variable Size
category is the buffer cache and shared pool. (The shared pool for this SGA is 1G.) This SGA is over
4.5G of the actual physical system memory in the preceding listing. This information is also given in
the AWR or Statspack Report (still available in 12cR2; see Chapter 14) and can also be displayed by
issuing a SHOW SGA command as the SYS superuser.

TIP
Access the V$SGA view to get a baseline idea of the system’s physical memory allocated for data,
shared pool, large pool, Java pool, and log buffering of Oracle.

 Detailed Memory Allocated (V$SGASTAT)
A V$ view to query and retrieve more detailed information about memory allocation for the SGA is
the V$SGASTAT view (most records are related to the shared pool). This view provides dynamic
information about SGA and memory resources. It changes as the database is accessed. This statement
describes the SGA sizes at a detailed level. The records FIXED_SGA, BUFFER_CACHE, and
LOG_BUFFER are the same values for both V$SGA and V$SGASTAT. The remaining records in
V$SGASTAT make up the only other V$SGA record (the Variable Size or Shared Pool record).

In Oracle 9.2, V$SGASTAT had only 43 total records; in 12cR2, it has 1312 records, as shown
here (partial listing only; varies based on database use):

Some of this information is also given in the AWR or Statspack Report (see Chapter 14), along
with the starting and ending values over the duration of the Statspack Report.

TIP
Querying V$SGASTAT provides a detailed breakdown for the Oracle SGA and details all
aggregated buckets of shared pool allocation.

 Detailed Memory Allocated (V$SGASTAT) for a
PDB vs. Root CDB
When I go to an individual PDB and query a view, only the information for that PDB is displayed. As
stated earlier, querying V$SGA is the same at the PDB level or CDB level. If I query V$SGASTAT,
there are many more records at the CDB level (which includes the CDB and all PDBs) than at the
PDB level:

We can see that for the CDB, there are 1130 records and in the PDB only 47 records. One important
note is that there are some CON_ID=0 records in the PDB (such as free memory that will be used by
the PDB), but the used SGA items show as CON_ID=3 (or specific to this PDB).

Finding spfile.ora/init.ora Settings in V$PARAMETER
The script in the next listing displays the initialization parameters for your system. It also provides
information on each parameter that identifies whether the current value is the default value
(ISDEFAULT=TRUE). It further shows whether the parameter is modifiable with the ALTER
SESSION command and with the ALTER SYSTEM command
(ISSYS_MODIFIABLE=IMMEDIATE). You can modify these with the ALTER SESSION and
ALTER SYSTEM commands instead of modifying the init.ora file and shutting down and restarting
the instance. The example in this listing displays some of the initialization parameters that you can
modify with one of the ALTER commands. (IMMEDIATE means it can be modified and it will take
effect immediately.) Note that you can use an ALTER command, but for some parameters, such as
O7_DICTIONARY_ACCESSIBILITY, you can only use an ALTER SYSTEM … SCOPE=SPFILE
command to modify it, and then you have to bounce the database for it to take effect. The query here
shows the parameter values in effect for the instance (not what is necessarily in the parameter file):

Query of V$PARAMETER:

Version-dependent columns are also available.

TIP
Query V$PARAMETER to get the current values for the initialization parameters. V$PARAMETER
also shows which initialization parameters have been changed from their original defaults:
ISDEFAULT=FALSE. It also shows which parameters may be changed only for a given session if
ISSES_MODIFIABLE=TRUE. Lastly, it shows which parameters may be changed without shutting
down and restarting the database for ISSYS_MODIFIABLE=IMMEDIATE as well as
ISSYS_MODIFIABLE=DEFERRED for a parameter that is enforced for all new logins but not
currently logged-on sessions. If the parameter ISSYS_MODIFIABLE=FALSE, then the instance
must be shut down and restarted for the parameter to take effect. See Chapter 4 for more
information on the initialization parameters.

Modifying an Initialization Parameter at PDB Level
You can gain some insight into which initialization parameters are modifiable at the PDB level (or
just the CDB level) by using the following query (pluggable databases are covered in detail in
Chapter 3):

The following key initialization parameters are reported as modifiable: cursor_sharing,
open_cursors, result_cache_mode, sort_area_size, db_cache_size, shared_pool_size,
pga_aggregate_target, inmemory_size.

The key initialization parameter that is reported as not modifiable is memory_target.

Determining If Data Is in Memory (V$SYSSTAT and
V$SYSMETRIC)
Query V$SYSSTAT (as shown in the next listing) to see how often your data is being read from
memory. V$SYSSTAT gives the hit ratio for the setting of the database block buffers. This information
can help you identify when your system needs more data buffers (DB_CACHE_SIZE) or when a
system is not tuned very well. (Both lead to low hit ratios.) Generally, you should ensure the read hit
ratio is greater than 95 percent (95 percent of data is accessed from memory). Increasing the hit ratio
on your system from 98 percent to 99 percent could mean performance that is 100+ percent faster
(depending on what is causing the disk reads).

In 12c, you can also go directly to AWR information in V$SYSMETRIC. The V$SYSMETRIC
view displays the system metric values captured for the most current time interval. It does this for a
60-second interval (INTSIZE_CSEC column = 6017) and another for a 15-second duration
(INTSIZE_CSEC column = 1504); both are displayed in hundredths of a second. The following query
displays the two rows:

In addition to the V$SYSMETRIC view, V$SYSMETRIC_SUMMARY displays a summary of
system metric values for the long-duration system metrics (the 60-second ones) along with minimum,
maximum, and average values over a 60-second duration. V$SYSMETRIC_HISTORY displays the
last 90 minutes of 60-second duration metric values.

The hit ratio in this listing is very good, but that does not mean the system is perfectly tuned. A high
hit ratio could mean that overly indexed queries are being used. If this hit ratio is well below 95
percent, you may need to increase the instance parameter, DB_CACHE_SIZE, or tune some of the
queries that are causing disk reads (if possible and efficient to do so). One exception to this (many
others are covered in Chapter 4) is when the distribution of data within the individual blocks is
greatly skewed. Despite this possibility, hit ratios less than 90 percent almost always involve systems
that are poorly tuned—other than those that are built in a Petri dish by someone who has built an
extremely rare balance of data within each block (see Chapter 4 for additional information on data hit
ratios).

You can also use the new V$DB_CACHE_ADVICE view to help you resize the data cache if you
feel it is necessary. The next listing creates a list of values that shows you the effects of larger and
smaller data caches and the resulting effect on physical reads (as buffers are increased, the value in
the “Estd Phys Reads” column goes down):

Determining Memory for the Data Dictionary
(V$ROWCACHE)
You use the V$ROWCACHE view (as in this next listing) to find how often the data dictionary calls
are effectively hitting the memory cache allocated by the SHARED_POOL_SIZE instance parameter.
Chapter 4 discusses this in detail. The only goal here is to review the V$ view access. If the
dictionary hit ratio is not adequate, the overall system performance suffers greatly.

You can also go directly to AWR information in V$SYSMETRIC:

The recommended hit ratio is 95 percent or greater (see Chapter 4 for some qualifications to this).
If the hit ratio falls below this percentage, it indicates that the SHARED_POOL_SIZE parameter may
need to be increased. But remember, you saw in the V$SGASTAT view that the shared pool is made
up of many pieces, of which this is only one.

NOTE
Environments that make heavy use of public synonyms may struggle to get their dictionary cache
hit rate higher than 75 percent even if the shared pool is huge. This is because Oracle must often
check for the existence of nonexistent objects.

Determining Memory for the Shared SQL and PL/SQL
(V$LIBRARYCACHE)
Accessing the V$LIBRARYCACHE view shows how well the actual statements (SQL and PL/SQL)
are accessing memory. If the SHARED_POOL_SIZE parameter is too small, enough room may not be
available to store all of the statements into memory. If the shared pool becomes extremely fragmented,
large PL/SQL routines may not fit into the shared pool. If statements are not reused effectively, an
enlarged shared pool may cause more harm than good (see Chapter 4 for additional details).

There is an execution ratio (pinhitratio) and a reload hit ratio. The recommended hit ratio for pin
hits is 95+ percent, and the reload hit ratio should be 99+ percent (less than 1 percent reloads).
Reloads occur when a statement has been parsed previously, but the shared pool is usually not large
enough to keep in memory as other statements are parsed. The body of the statement is pushed out of
memory (the head is still there); when the statement is again needed, a reload is recorded to reload
the body. A reload could also occur if the execution plan for the statement changes. If either of the hit
ratios falls below these percentages, it indicates that you should investigate the shared pool in greater
detail. The following listing shows how to query for all of the information discussed (specifically,
query V$LIBRARYCACHE to see if SQL is being reused):

The V$SYSMETRIC view also displays the Library Cache system metric values captured for the
most current time interval for 60-second and 15-second durations. The following query displays two
rows, one for the last 60-second intervals and one for the last 15-second intervals:

Query V$SQL_BIND_CAPTURE to see if binds per SQL statement are greater than 20 (issue):

Find the problem SQL to fix:

Query V$SQL_BIND_CAPTURE to see if average binds are greater than 15 (issue):

Querying V$CONTAINERS and V$PDBS for Container
Information
Pluggable databases (PDBs) are covered in detail in Chapter 3. This chapter will serve to cover the
V$ views aspect of CDBs and PDBs only. In 12c you can have a container database (CDB)
containing multiple PDBs. Pluggable databases are also known as multitenant databases because
each “tenant” can reside in their own PDB. “Pluggable” databases can be unplugged from one
container and plugged into another container easily, therefore making a database portable between
environments and allowing upgrade of a database by unplugging from one environment at one version
and plugging into a new environment at a higher version. You can also unplug from on-premises and
plug into the cloud (or vice versa). This feature also allows a single pluggable database to be
independently recovered (you can flashback a PDB in 12cR2).

As mentioned in Chapter 3, in 12cR2, the number of containers went from 254 in 12cR1 to 1000+.
Oracle supports 252 PDBs in 12cR1 and 4096 PDBs in 12cR2. Here is what is in each container:

 Querying V$CONTAINERS When Using Pluggable
Databases
You can query the container information by accessing V$CONTAINERS. As an example, first I’ll log
into the Root CDB which has two different tenants (PDB1 and PDB2), and then log into PDB1 and
query V$CONTAINERS.:

Or

Next, I’ll query V$CONTAINERS (I’m in the Root CDB which shows four containers, 1–4):

Finally, I’ll go into PDB1 and query V$CONTAINERS (now only one container appears,
CON_ID=3):

In the next section, we’ll look into the corresponding PDB names (accessing V$PDBS) for each of
the containers.

 Querying V$PDBS for Pluggable Database
Information
You can query the pluggable database information by accessing V$PDBS. Again, first I’ll log into the
Root CDB (showing two different methods of doing so) and then connect to PDB1:

Or

Next I query V$PDBS (which displays three PDBs, PDB$SEED, PDB1, and PDB_SS):

Here is a different CDB (with three PDBs, PDB$SEED, PDB1, and PDB2):

Finally, I query V$PDBS while in PDB1 (now only one PDB appears, PDB1):

While logged into the Root CDB (CON_ID=1), all PDBs are listed in V$PDBs. While logged into
an individual PDB (CON_ID=3 or PDB1 in the previous example), only information about that PDB
is shown. There is also a V$PDB_INCARNATION view that is used to access information about a
PDB incarnation (when a PDB is open with the RESETLOGS option).

TIP
Query V$CONTAINERS and V$PDBS to get detailed information on both containers and pluggable
databases. When connected to the PDB, you only see information related to that specific PDB.

 Using the Result Cache
Up to version 10g, the SHARED_POOL_SIZE consisted of the Library Cache and Dictionary Cache.
You can obtain hit ratios for these caches by querying V$ROWCACHE and V$LIBRARYCACHE
data dictionary views. Oracle 12c (and also 11g) provides an additional area of memory called
Result Cache Memory (set with the RESULT_CACHE_MAX_SIZE parameter). This memory (also
part of the shared pool) stores the results of SQL and PL/SQL functions in memory. The
RESULT_CACHE_MODE initialization parameter controls the behavior of this memory. When
RESULT_CACHE_MODE is set to MANUAL, queries need to employ a RESULT_CACHE hint to

use this memory. When RESULT_CACHE_MODE is set to FORCE, all queries use this memory, if
possible. The following shows an example of a query using the RESULT_CACHE hint, resulting in
the use of the Result Cache Memory:

The following query displays the objects that are cached along with other attributes:

The following query displays all the memory blocks and corresponding statistics:

The following query monitors Result Cache Memory usage. For a system that makes good use of
Result Cache Memory, you should see a low value for Create Count Failures and a high value for
Find Count.

TIP
Query V$LIBRARYCACHE to see how often your SQL and PL/SQL are being read from memory.
The pinhitratio should generally be 95 percent or greater, and the number of reloads should not be
greater than 1 percent. Query V$SQL_BIND_CAPTURE to see if binds per SQL are too high and
CURSOR_SHARING is needed. Use the Result Cache to force results from a query to remain in the
Result Cache Memory portion of the shared pool.

Identifying PL/SQL Objects That Need to Be Kept
(Pinned)
Fragmentation resulting in several small pieces being available in the shared pool and not enough
large contiguous pieces is a common occurrence in the shared pool. The key to eliminating shared
pool errors (see Chapters 4 and 13 for more information) is to understand which objects can cause
problems. Once you know the potential problem PL/SQL objects, you can then pin this code when the
database is started (and the shared pool is completely contiguous). You can query the
V$DB_OBJECT_CACHE view to determine PL/SQL that is both large and currently not marked
kept.

This query shows only the current statements in the cache. The example in this listing searches for
those objects requiring greater than 100K.

TIP
Query the V$DB_OBJECT_CACHE view to find objects that are not pinned and are also
potentially large enough to cause fragmentation problems in the shared pool.

Finding Problem Queries by Monitoring
V$SESSION_LONGOPS
If you want to track long-running SQL queries, Oracle provides a data dictionary table called
V$SESSION_LONGOPS. Run the following query to get the SID, serial number, and message for
long-running queries:

You can monitor the performance of SQL statements while they are being executed. Oracle
provides two data dictionary views to monitor the performance of long-running statements:
V$SQL_MONITOR and V$SQL_PLAN_MONITOR (additional columns you can add in 12c are
IS_ADAPTIVE_PLAN and IS_FINAL_PLAN as well as CON_ID when accessing this view).

The STAT column displays EXEC when the query is still running. This status shows which step is
being executed at a point in time. In the V$SESSION_LONGOPS view, you can query the
TIME_REMAINING and SOFAR columns, but using these to estimate how long something will take
is tough. Oracle considers operations to be linearly running, so later operations may take longer than
earlier ones (and vice versa). Lastly, not every long-running query shows up in this view. The
following criteria must be met (note that it is not the scans that must meet the minimum block
threshold, but the objects being scanned):

 Must be running over 6 seconds of actual time AND
 Be a full table scan of a table that occupies over 10,000 blocks OR
 Be a full index scan of an index that occupies over 1000 blocks OR
 Be a hash join (as few as 20 blocks reported to show up)

This changes from version to version; do your own testing to make sure.

Finding Problem Queries by Querying V$SQLAREA
V$SQLAREA provides a means of identifying the potential problem SQL statements or SQL
statements that need to be optimized to improve overall database optimization by reducing disk
access. The DISK_READS column displays the volume of disk reads being performed on the system.
This, combined with the EXECUTIONS column (DISK_READS/EXECUTIONS), returns the SQL
statements that have the most disk hits per statement execution. The DISK_READS value is set to
100000, but it could be set much higher or lower on production systems (depending on the database)
to reveal only the top problem statements on your system. Once identified, review and optimize the
top statements to improve overall performance. Typically, a statement with very large disk reads is
not using an index or the execution path is forcing the statement to not use the proper indexes.

One potentially misleading part of the query in the following listing is the RDS_EXEC_RATIO
column. RDS_EXEC_RATIO contains the number of disk reads divided by the executions. In reality,
a statement may be read once using 100 disk reads and then forced out of memory (if memory is
insufficient). If it is read again, then it will read 100 disk reads again and the RDS_EXEC_RATIO
will be 100 (or 100 + 100 reads divided by 2 executions). But if the statement happens to be in
memory the second time (memory is sufficient), the disk reads will be 0 (the second time) and the
RDS_EXEC_RATIO will be only 50 (or 100 + 0 divided by 2 executions). Any statement that makes
the top of this list is a problem and needs to be tuned—period!

NOTE
The following code was formatted for ease of reading.

The DISK_READS column in the preceding statement can be replaced with the BUFFER_GETS

column to provide information on SQL statements that may not possess the large disk hits (although
they usually do) but possess a large number of memory hits (higher than normally desired). These
statements are using a large amount of memory that is allocated for the data (DB_CACHE_SIZE). The
problem is not that the statement is being executed in memory (which is good), but that the statement
is hogging a lot of the memory. Many times, this problem is attributable to a SQL statement using an
index when it should be doing a full table scan or a join. These types of SQL statements can also
involve a join operation that is forcing the path to use a different index than desired, or using multiple
indexes and forcing index merging or volumes of data merging. Remember, the bulk of system
performance problems are attributable to poorly written SQL and PL/SQL statements.

TIP
Query the V$SQLAREA to find problem queries (and users).

Finding Out What Users Are Doing and Which
Resources They Are Using
Joining V$SESSION and V$SQLTEXT displays the SQL statement that is currently being executed by
each session, as shown here. This query is extremely useful when a DBA is trying to determine what
is happening in the system at a given point in time.

The SQL_TEXT column displays the entire SQL statement, but the statement is stored in the
V$SQLTEXT view as a VARCHAR2(64) data type and, therefore, spans multiple records. The
PIECE column is used to order the statement. To view the resources being used by each of the users,
simply use the query in the next listing. The goal of this statement is to highlight the physical disk and

memory hits for each session. Recognizing users who are performing a large number of physical disk
or memory reads is very easy.

TIP
Query V$SESSION, V$SQLTEXT, and V$SESS_IO to find the problem users and what they are
executing at a given point in time.

 Finding Out Which Objects a User Is Accessing
Querying V$ACCESS can point you to potential problem objects (potentially missing indexes) once
you have found the problem user or query on your system. It can also be helpful when you want to
modify a particular object and need to know who is using it at a given point in time, as shown here:

This script displays all objects being accessed, including synonyms, views, and stored source
code.

TIP
Query V$ACCESS to find all objects that are being accessed by a user at a given time. This can
help to pinpoint problem objects, while also being helpful when modifying a particular object (find
out who is accessing it). However, this operation would be very expensive on a system with a large
shared pool and hundreds of users.

 Getting Detailed User Information
A method for analyzing user statistics is extremely valuable when testing a new or updated
application module to determine overhead. This method also provides a window to a user who is
having performance problems because it provides statistics on a variety of areas for each user. In
addition, it can serve as a guideline for setting profiles to limit a particular user. The script in this
next listing limits the statistics only to areas that have a value (b.value != 0).

Using Indexes
The V$OBJECT_USAGE view indicates whether the index is used but not how often it is used. You
need to turn monitoring ON and OFF individually for indexes that you want to monitor. You initiate
monitoring with the ALTER INDEX command, and index use is then tracked by querying the
V$OBJECT_USAGE view. Here is a description of the V$OBJECT_USAGE view:

Before any index is monitored, the view has no records:

You start monitoring on four indexes (connect to user schema-owning indexes):

The view now shows the four indexes with a start time but no use yet:

If you query using HRDT_INDEX1, the view now shows that this index has been used:

You end the monitoring on HRDT_INDEX4, and the view now shows an end monitoring time:

TIP
Use the V$OBJECT_USAGE view to find out if indexes are being used. Perhaps some indexes are
not needed.

Identifying Locking Issues
Identifying locking issues is instrumental in locating the user who is waiting for someone or
something else. You can use this strategy to identify users who are currently being locked in the
system and to determine whether an Oracle-related process is truly locked or just running slowly. You
can also identify the current statement that the locked user is currently executing. The next listing
provides an example of identifying locking issues.

NOTE
These statements were not tuned in the early version of the book. (Now that’s embarrassing!)

You also need to identify the user in the system who is causing the problem of locking the previous
user, as shown in this listing. (Usually this is the user/developer who presses ctrl-alt-del as you

approach his or her desk.)

JOHNSON will make everyone happy by forgetting a crucial WHERE clause. Unfortunately,
JOHNSON has locked the authorized user of this table.

You can also look at locking in more detail to see exactly what’s running and blocking. In Chapter
9, I discuss block-level tuning; there I describe some of these columns and also how to perform
queries to V$TRANSACTION (which shows all DML [UPDATE/INSERT/DELETE] transactions
currently running). In the following listing, you can see four transactions all running at the same time
to the same block of information. There is no blocking because the initrans is set to handle (at least
set to 4 ITL slots—max of 24 slots) all four changes within the same block at the same time. If there
was a problem, the LMODE would have been 0 and the REQUEST would have been 6 (TX6), as in
the third query that follows.

Four users are updating different rows in the same block:

Here three users are trying to update the exact same row:

Here two users are blocked:

 Killing the Problem Session
A user may have run something that he or she really didn’t want to run, or a problem query may need
to be eliminated during business hours and rerun at night. If the operation in the preceding section
needs to be aborted, you could execute the statements in the next listing (to find and then kill the
session):

You can also do this in a single statement using

You can’t kill your own session though:

The order of parameters is SID and then SERIAL# (alter system kill session
’sid,serial#’;). Make sure you describe V$SESSION (DESC V$SESSION) because many of its
columns are helpful. In previous versions of Oracle, you could kill the current user session.
Thankfully, you can no longer kill your own session accidentally, as just shown in the preceding
listing.

TIP
Identify users who are locking others and kill their session (if necessary).

 Finding Users with Multiple Sessions
At times, users enjoy opening multiple sessions to accomplish several tasks at once, and this can be a
problem. The problem may also be a developer who has built a poor application that begins
spawning multiple processes. Either of these could degrade the system’s overall performance. In the
following output, the usernames that are NULL are background processes. The query to the
V$SESSION view in this listing displays these types of issues:

On certain OS platforms, if a user starts a session and reboots his or her PC, oftentimes the
process continues in the background on the server as the user starts another session. If the user is
running multiple reports on multiple terminals or PCs, this could also affect the system’s overall
performance.

NOTE
The rows in V$SESSION that have NULL values for username are the Oracle background
processes.

TIP
Identify users who are running multiple sessions and determine whether the problem is
administrative (the user is using multiple terminals) or system related (sessions are not being
cleaned or are spawning runaway processes).

 Querying for Current Profiles
Profiles are limits on a given schema (user). The Oracle STIG (Security Technical Implementation
Guide) Profile is provided in Oracle 12c. This is much stronger security than the DEFAULT profile.
To view the profiles for your system, execute the query shown here:

Finding Disk I/O Issues
The views V$DATAFILE, V$FILESTAT, and DBA_DATA_FILES provide file I/O activity across all

database datafiles and disks. Ideally, the physical reads and writes should be distributed equally. If
the system is not configured properly, overall performance suffers. The script in this next listing
identifies the actual distribution and makes identifying where an imbalance exists easy. Chapter 3
looks at this topic in great detail; this section just shows the quick-hit query to get a baseline.

The queries in the following listings provide an improved formatted report for file and data
distribution issues. The first listing gets the datafile I/O:

This second listing gets the disk I/O:

TIP
The views V$DATAFILE, V$FILESTAT, and DBA_DATA_FILES provide file I/O activity across all
database datafiles and disks. Ensure that both datafiles and disks are properly balanced for
optimal performance.

The query in this listing shows the waits on the entire system as a whole:

Checking for Privileges and Roles
This section contains several V$ scripts that show various security privileges. The title of each script
preceding each of the following listings gives you a quick idea of what it retrieves for you. The output
can be very large, depending on your system, so run with caution!

Object-level privileges that have been granted by username

Object-level privileges that have been granted by grantee

System-level grants by username

System-level grants by grantee

Roles granted by username

Roles granted by grantee

Usernames with corresponding granted privileges

TIP
Document the privileges that you have for your system so you are ready for any type of security
situation.

Usernames with corresponding profile, default tablespace, and temporary tablespace

Wait Events V$ Views
This section contains several V$ scripts that show wait events. Personally, I prefer using the
Statspack Report, the AWR Report, or Enterprise Manager to find wait events. That said, this section
presents some nice views to look at wait events. Several new views have been added over the years,
but the best thing in 11g and 12c is that everything you found in V$SESSION_WAIT in the past is now
in V$SESSION.

To find out who is waiting right now, query V$SESSION_WAIT or V$SESSION:

To view specific waits for who is waiting right now, query V$SESSION_WAIT:

To view the last ten waits for who is waiting, query V$SESSION_WAIT_HISTORY:

To find what P1, P2, and P3 stand for, query V$EVENT_NAME:

To view all waits since the session started, query V$SESSION_EVENT:

To view all SESSION waits by class, query V$SESSION_WAIT_CLASS:

To view all waits since the system started, query V$SYSTEM_EVENT:

To view SYSTEM waits by class, query V$SYSTEM_WAIT_CLASS (you could also do a
sum(total_waits) in the SELECT and add a group by wait_class):

To view SYSTEM waits by class, query V$ACTIVE_SESSION_HISTORY. This view also has
many columns to check INMEMORY (INMEMORY_QUERY and others) as well as a
SQL_ADAPTIVE_PLAN_RESOLVED column. Here are a couple of queries to the
V$ACTIVE_SESSION_HISTORY view:

TIP
All wait event columns that are in V$SESSION_WAIT are now in V$SESSION. So make sure you
query V$SESSION for wait information since it’s a faster view. V$ACTIVE_SESSION_HISTORY
(ASH) rolls many of the great statistics into one view as well as one report (ASH Report).

Some of the Major V$ View Categories
The views in this section are categorized according to their primary function. Not all are listed
(please see Appendix B for a complete listing of the V$ views with X$ table queries). You will often
need to join one category to another category to retrieve the desired information. The V$ views can
be queried the same as any other Oracle view, but keep in mind that the information in these tables
changes rapidly. You can insert the information from the V$ views into a pre-created table to allow
for the compilation of data over a period of time—data to be analyzed later or to build statistical
reports and alerts based on different conditions in your database.

Most DBA monitoring tools on the market today use the V$ view (and X$ table) information.
Querying this database information without a DBA monitoring tool requires that you have an in-depth
understanding of the information stored in each view and how to query the view properly. Table 12-1
contains a list of V$ views categorized according to their primary function. The views are listed in
categories related to the operation that they monitor. This list is not exhaustive. It contains only the
most commonly used views. Some views have changed from version to version of Oracle.

TABLE 12-1. V$ Views Categories

NOTE
The V$ROLLNAME view is created slightly differently than the other V$ views. The

V$ROLLNAME is a join of an X$ table and the UNDO$ table. Some of the V$ timing fields are
dependent on the TIMED_STATISTICS init.ora parameter being set to TRUE; otherwise, there
will be no timing data in these fields.

Tips Review
 The V$ views that are accessed by SYSTEM are actually synonyms that point to the V_$ views

that are views of the original V$ views based on the X$ tables.
 When other DBAs need access to the V$ view information, but not the SYS or SYSTEM

passwords, grant the user access to the V_$ views. The user may then access the V$ views that
have public synonyms to the V_$ views. However, scripts could always be written to query
the SYS. V_$ views directly, to avoid the performance cost of dereferencing the public
synonym, but this savings is small.

 Query V$FIXED_TABLE to obtain a listing of all GV$ and V$ views in the database. The
GV$ views are the exact same as the V$ views, except the instance ID contains an identifier,
and the GV$ views contain data for all instances of an Oracle RAC database.

 Access the V$FIXED_VIEW_DEFINITION view to get all information about the underlying
X$ tables that make up a V$ view. CON_ID (Container ID) is a new column you’ll see in 12c
for pluggable databases in many V$ views.

 The DBA_ views are not derived from the X$ tables or V$ views. The fact that you can delete
rows from OBJ$ and ruin your database is a great reason to never be the SYS superuser. There
is a CDB_ view for every DBA_ view, and the Root CDB_ views also contain PDB
information about all PDBs.

 Query V$VERSION and V$DATABASE to view basic database information such as the
version, to find out when your database was created, and to find out basic archiving
information.

 Query V$SYSAUX_OCCUPANTS to ensure that the Automatic Workload Repository (AWR)
isn’t taking up too much space. Use DBMS_STATS to check history and retention.

 Query the V$OPTION view to retrieve the Oracle options you have installed. The
V$VERSION view gives you the versions of the installed base options.

 Query the V$IM_SEGMENTS and V$IM_COLUMN_LEVEL views to retrieve detailed
information about specific objects that are stored in the In-Memory (IM) column store (only
available in 12.1.0.2+).

 Access the V$SGA view to get a baseline idea of the system’s physical memory allocated for
data, shared pool, large pool, Java pool, and log buffering of Oracle. A new SGA parameter to
set is INMEMORY_SIZE.

 Querying V$SGASTAT provides a detailed breakdown for the Oracle SGA and details all
aggregated buckets of shared pool allocation.Query V$PARAMETER to get the current values
for the initialization parameters. V$PARAMETER also shows which initialization parameters
have been changed from their original defaults: ISDEFAULT= FALSE. It also shows which

parameters may be changed only for a given session if ISSES_MODIFIABLE=TRUE. Lastly,
it shows which parameters may be changed without shutting down and restarting the database
for ISSYS_MODIFIABLE=IMMEDIATE as well as ISSYS_MODIFIABLE=DEFERRED for
a parameter that is enforced for all new logins but not currently logged-on sessions. If the
parameter ISSYS_MODIFIABLE=FALSE, then the instance must be shut down and restarted
for the parameter to take effect. See Chapter 4 for more information on the initialization
parameters.

 Query V$CONTAINERS and V$PDBS to get detailed information on both containers and
pluggable databases. When connected to the PDB, you only see information related to that
specific PDB. Query V$LIBRARYCACHE to see how often your SQL and PL/SQL are being
read from memory. The pinhitratio should generally be at 95 percent or greater, and the number
of reloads should not be greater than 1 percent. Query V$SQL_BIND_CAPTURE to see if
binds per SQL are too high and CURSOR_SHARING is needed. Use the Result Cache to force
results from a query to remain in the Result Cache Memory portion of the shared pool.

 Query the V$DB_OBJECT_CACHE view to find objects that are not pinned and are also
potentially large enough to cause fragmentation problems in the shared pool.

 Query the V$SQLAREA to find problem queries (and users).
 Query V$SESSION, V$SQLTEXT, and V$SESS_IO to find the problem users and what they

are executing at a given point in time.
 Query V$ACCESS to find all objects that are being accessed by a user at a given time. This

can help to pinpoint problem objects, while also being helpful when modifying a particular
object (find out who is accessing it). However, this operation would be very expensive on a
system with a large shared pool and hundreds of users.

 Use the V$OBJECT_USAGE view to find out if indexes are being used. Perhaps some indexes
are not needed.

 Identify users who are locking others and kill their session (if necessary).
 Identify users who are holding multiple sessions and determine whether the problem is

administrative (the user is using multiple terminals) or system related (sessions are not being
cleaned or are spawning runaway processes).

 The views V$DATAFILE, V$FILESTAT, and DBA_DATA_FILES provide file I/O activity
across all database datafiles and disks. Ensure that both datafiles and disks are properly
balanced for optimal performance.

 Document the privileges that you have for your system so you are ready for any type of security
situation. The Oracle STIG (Security Technical Implementation Guide) Profile is provided in
Oracle 12c.

References
Oracle Ask Tom, https://asktom.oracle.com.
My Oracle Support (Metalink) Notes: 276103.1, 296765.1, 287679.1, 1019592.6 (Script Library),

243132.1, and 245055.1.
Oracle Database SQL Language Reference, 12c Release 2 (Oracle Corporation).
Oracle Database Advanced Application Developer’s Guide (Oracle Corporation).
Rich Niemiec and Kevin Loney, How I Broke into Your Database (COUG, 2001).
Gints Plivna, Long Running Operations in Oracle, 2011.
Joe Trezzo, “The V$ Arsenal: Key V$ Scripts Every DBA Should Use Regularly” (TUSC).
Joe Trezzo, “The V$ Views—A DBA’s Best Friend,” IOUG-A Proceedings (TUSC).

Joe Trezzo wrote most of this chapter for the original book. Also, thanks to Kevin Gilpin, Rama
Balaji, Robert Freeman, Bob Yingst, and Greg Pucka who contributed to this chapter in some way.

W

CHAPTER
13

The X$ Tables and Internals Topics (Advanced
DBA)

hy do people climb mountains? Because they are there! Why do people open the hood
of their car and look at what’s inside? Because they can! Why do DBAs look at the X$
tables? Because they are there and they can!

Oracle now has 1312 X$ tables in 12cR2 (there were 945 in 11gR2), and they are
the last frontier for the expert DBA to explore and analyze the deepest cavern of the Oracle database.
Querying the X$ tables can give secrets to undocumented features and parameters, information about
future Oracle versions, and shorter or faster routes to database information. The X$ tables are rarely
mentioned in the Oracle documentation or the Oracle user community. Therefore, I am including them
in this book as one of the only detailed references available. The queries in this chapter were tested
accessing version 12.2 of the database.

The tips covered in this chapter include:

 Introducing the X$ tables
 Creating V$ views and X$ tables in 12c
 X$ tables comprising the V$ views (including V$MEMORY_AREA and V$PDBS)
 Obtaining a list of all the X$ tables in 12c
 Obtaining a list of all the X$ indexes in 12c
 Using hints with X$ tables and indexes
 Monitoring space allocations in the shared pool
 Creating queries to monitor the shared pool
 Obtaining information about redo log files
 Setting initialization parameters and X$KSPPCV (undocumented)
 Exploring buffer cache/data block details
 Obtaining database- and instance-specific information
 Effective X$ table use and strategy

 Oracle internals topics
 Reading the trace file
 Some common X$ table groups
 Some common X$ table and non-V$ fixed view associations
 Common X$ table joins
 X$ table naming conventions (including 12c)—my favorite section of the book!
 X$ 12c tables including CON_ID and INMEMORY

Introducing the X$ Tables
The X$ tables are intriguing to mischievously curious DBAs. There are 1312 X$ tables in 12cR2,
compared to only 945 X$ tables in 11gR2 (11.2.0.1). There are also 799 indexes on the X$ tables.
Appendix C shows how to list all of these. The Oracle dynamic tables are designed similarly to many
of the robust Oracle application data models. A set of tables is available to users (DBAs) via a set of
synonyms on a set of views based on these tables. The synonym names start with V$ and are the
object names published in the reference manual of the Oracle documentation set. These synonyms on
the V$ views are used as the primary method of querying data from these tables. Interested DBAs,
however, keep and use a toolkit of practical X$ table queries that supplement their V$ view queries.

The X$ tables contain instance-specific information spanning a variety of areas. They contain
information about the current configuration of the instance, information about the sessions connected
to the instance, and a gold mine of performance information. The X$ tables are platform-specific. The
documented column definitions of the V$ views may be consistent from platform to platform, but the
underlying SQL statements referencing the X$ tables may differ. The Oracle kernel consists of layers.
The X$ table names contain an abbreviation for the particular kernel layer to which they pertain. They
have been expanded for pluggable databases (PDBs) with CON_ID (Container ID) on many current
tables/views (new X$ tables such as X$CON) and expanded in 12.1.0.2+ for In-Memory column
store (X$KTSIMAU).

The X$ tables are not permanent or even temporary tables that reside in database datafiles. The
X$ tables reside only in memory. When you start up your instance, they are created. They exist even
before you create your control file. When you shut down your instance, they are destroyed. All 1312
X$ tables are defined right after the instance is started (before mount). They are defined, but they
cannot all be queried. Many of them require at least a mounted, if not open, database. To observe this,
query the X$KQFTA and X$KQFDT table after starting your instance with the NOMOUNT option.

The X$ tables are owned by the SYS database user and are read-only, which is why they are
referred to as fixed tables and the V$ views are referred to as fixed views. This statement might be a
juicy invitation for you to try to verify this read-only property. Any attempt to alter these tables with a
DDL or DML statement is met with an ORA-02030 error.

Oracle has extensively used the DECODE function in the underlying SQL statements of the data
dictionary views. If you compare the V$ view underlying SQL statements from version to version,
you will likely find differences in the implementation of some V$ views. The columns of the V$
views may stay more constant in terms of their name and meaning, which allows Oracle RDBMS
engineers to change the X$ tables from version to version while not disrupting too much of the Oracle

user community’s use of the V$ views. The fact that the V$ views are accessed through synonyms
gives Oracle engineers another level of flexibility to alter the underlying structures, also with little or
no impact on the user community’s use of the V$ views. Oracle’s extensive use of the DECODE
function in the underlying V$ view SQL statements also facilitates the platform-specific
implementation of a query, returning the generic data that a user of a particular V$ view expects from
platform to platform. Consequently, running the correct scripts when upgrading a database is
important to ensure the dictionary views are created in a way that matches the underlying X$ tables.

NOTE
Application designers and developers may save themselves some development and maintenance
pain by adopting a similar strategy. They can employ views and synonyms for application software
access to an application’s underlying tables and stored programmatic objects (Java and PL/SQL).

Although this section is by no means a complete treatment of useful X$ table queries, it introduces
some of the commonly used X$ table queries, grouped by the major tuning areas to which they
pertain. Because X$ table queries are a supplement to queries of fixed views rather than a
replacement for them, this section includes queries of both X$ tables and related fixed views.

 Misconceptions About the X$ Tables
Do not use the X$ tables if you have a heart condition or are an inexperienced DBA—or you may ruin
the entire database. (At least this is what some people will tell you. Sounds pretty scary!)

The most common misconception about the X$ tables is that the DBA can drop one or update one,
thus ruining the database. However, X$ tables cannot be ruined. The only user who can select from
these tables is the SYS user. A SELECT statement is the only command available to be performed on
these X$ tables. An error occurs if you attempt to grant SELECT access to a user. Consider the
following attempts to drop or alter an X$ table in the following listings. In the first listing, you cannot
drop any of the X$ tables (even as the SYS user):

In this next listing, you are not able to update, insert, or delete any data in the X$ tables (even as the
SYS user):

TIP
When you mention the X$ tables, most people say, “Oh, pretty scary. I would never touch those
tables.” The fact is DML commands (UPDATE, INSERT, DELETE) are not allowed on the X$
tables, even as the SYS superuser in 12cR2 (I tried).

 Granting Access to View the X$ Tables
You cannot grant access to the X$ tables even if you are the SYS user. If you try to make grants to the
X$ tables, you get the error in the following listing:

Although the error message for attempting to grant access to X$KSPPI in the previous code is a
little cryptic at first, it clarifies that you can perform only a SELECT and that the grant is not allowed.
However, you may build your own X$ views from the original X$ tables and then grant access to
those views. Consider the examples in the following six listings, which give access to the X$KSPPI
table via a view called X$_KSPPI and a synonym called X$KSPPI.

Connecting to the SYS superuser

Creating a view mirroring the X$KSPPI table

Creating a synonym for the newly created view

Granting the desired user access to the newly created view

Connecting as the desired user

Accessing the X$_KSPPI view via the synonym created for X$_KSPPI

You can now give access to the X$ table information without giving the password to the SYS
account. The key is creating a view that references the original SYS-owned X$ tables.

TIP
A DBA may need access to the X$ table information, but not the SYS password. Create a view
under a different name that mirrors the desired tables. Name these tables according to the
appropriate synonyms of the original tables.

Creating V$ Views and X$ Tables in 12c
The X$ tables are virtual or fixed tables, which are created in memory at database startup and
maintained real-time in memory. These tables store up-to-date information on the current activity of
the database at the current point in time or since the last database startup. In the SGA, V$ views are

created (see Chapter 12) on these X$ tables to allow users to view this information in a more
readable format. The X$ tables are fixed tables, and because they have been created in memory,
access to these tables is very limited.

The V$ views are known as the virtual tables, fixed tables, V$ tables, dynamic performance
tables, and by a half-dozen other names. The first hurdle to understanding the X$ tables is to become
familiar with their creation, security, content, and relationship to the V$ views.

In addition, these X$ tables are very cryptic in nature. They are similar to the underlying table
construction of the Oracle data dictionary. Therefore, Oracle creates V$ views that are more readable
and practical. In addition, Oracle has built other views (USER, DBA, ALL) within the scripts called
by the catalog.sql script for easier use. Oracle has also created a public synonym on V_$ views in
the cdfixed.sql file that changes the name back to a view with a prefix of V$. An example of a V_$
view and the creation of a V$ public synonym in cdfixed.sql is shown here (it resides in the
$ORACLE_HOME/rdbms/admin directory):

NOTE
See Chapter 12 and Appendix B for detailed V$ view information and Appendix C for detailed X$
information.

Once the catalog.sql file has been executed, the V$ views are available only to users with the
SELECT_CATALOG_ROLE privilege. At this point, you can grant access to V$ views by granting
SELECT on the V$ view. Therefore, all SELECTs performed against the V$ views are actually
retrieving information out of the SGA, more specifically out of the X$ tables. DBAs cannot modify
X$ tables in any manner, and they cannot create indexes on these tables. Oracle began providing
indexes on the X$ tables in version 8. In addition, the V$ views are the underlying views that are
used for Oracle monitoring tools. Here you can see how to get a listing of all V$ views:

Here is the partial output:

Note that the GV$ views are the same as the V$ tables except that you can see multiple instances
with Oracle Real Application Clusters (RAC). The only difference between the GV$ and V$ tables is
a column that shows the instance ID.

 The X$ Tables Comprising the V$ Views
To obtain a list of the X$ tables that comprise the V$ views, you must access the
V$FIXED_VIEW_DEFINITION view. This view shows how the V$ views were created. By
knowing which X$ tables comprise a V$ view, you may be able to build a faster query that goes
directly to the X$ tables, as shown here (note that the CON_ID [Container ID] column has been added
to many X$ tables for pluggable databases; see Chapter 12 for details):

Here is the output:

TIP
Access the X$KQFVI table for a listing of all V$ and GV$ views. Access the
V$FIXED_VIEW_DEFINITION view to get all of the information regarding the underlying X$
tables that comprise a V$ view, including new views for containers (pluggable databases) and In-
Memory column store (see both below).

V$INMEMORY_AREA and X$KTSIMAU in 12cR2
Also consider that there are now parameters and tables related to the INMEMORY setting used with
the In-Memory column store (as of 12.1.0.2+). Here is the underlying X$ table behind the
X$KTSIMAU view:

Here is the output:

In 12c (12.1.0.2+), KTSIMAU stands for Kernel Transaction Segment In Memory Allocation Unit,
which makes use of the GV$INMEMORY_AREA view (and in turn the V$INMEMORY_AREA
view). See the section on naming conventions later in this chapter for a full list.

V$CONTAINERS and V$PDBS and X$CON in 12cR2
Also consider that there are now parameters and tables related to PDBs in 12c. Here is the
underlying X$ table (X$CON) behind the V$CONTAINERS and V$PDBS views:

Here is the output:

In 12c, there are new X$ tables for containers. X$CON is the primary X$ for containers that
makes use of the V$PDBS and V$CONTAINERS views.

TIP
The X$ tables and V$ views have been expanded for pluggable databases with CON_ID (Container
ID) on many current tables/views (new X$ tables such as X$CON) and expanded in 12.1.0.2+ for
In-Memory column store (X$KTSIMAU).

Obtaining a List of All the X$ Tables in 12c
The names of the X$ tables are in the X$KQFTA table (which contains 1,275 of the X$ tables), the
X$KQFDT table (which contains another 37 of the X$ tables), and the X$KQFVI table, which
contains the V$/GV$ as described in the previous section. The V$FIXED_TABLE view combines all
three of these tables so you can obtain a listing of any desired grouping. The query in this next listing
shows how to obtain a listing of just the 1,312 X$ tables:

Following is the partial output (for a complete listing, see Appendix C):

The following query shows output from X$KQFDT, which is a partial listing of the X$ tables:

TIP

Query V$FIXED_TABLE for the names of the X$ tables, or you can also access the two X$ tables
X$KQFTA and X$KQFDT for partial listings that, when combined, make up the full list. In 12c,
new X$ tables include X$CON (containers) and X$KTSIMAU (In-Memory).

Obtaining a List of All the X$ Indexes in 12c
If you often query the V$ views or X$ tables for information, you will find it helpful to understand
which indexes are being used, as shown here:

Few of the X$ tables have multicolumn indexes, as shown in this listing:

To see the data about the X$ tables from which the information is retrieved, perform this query to
the V$FIXED_VIEW definition table:

Here is the output (notice the CON_ID column in 12c for containers):

TIP
Access the V$INDEXED_FIXED_COLUMN view for a listing of all X$ table indexes.

Using Hints with X$ Tables and Indexes
As with other tables, you can also use hints with the X$ tables to achieve greater performance. The
queries in the next two listings show the EXPLAIN PLAN and statistics while changing the driving
table using an ORDERED hint. Note that I am using aliases for the tables and would need to hint the
alias (and not the table) if I used a hint requiring the table (such as the index hint). The ORDERED
hint does not require the table name but accesses tables in the order listed in the FROM clause.

Forcing the X$KSBDD table as the driving table

Using the ordered hint to force the driving table to be X$KSBDP

TIP

Oracle generally uses the indexes as needed, but from time to time, you may use hints to achieve a
desired result.

Monitoring Space Allocations in the Shared Pool
You can use the X$KSMLRU table to monitor space allocations in the shared pool that may be
causing space allocation contention. The relevant columns in this table are as follows:

You can use the X$KSMSP table to examine the current contents of the shared pool:

When you use the X$KSMSP table to examine the current contents of the shared pool, each row
represents a chunk of memory in the shared pool. The relevant columns in this table are as follows
(note that the preceding query groups the chunks into classes via the ksmchcls command):

Creating Queries to Monitor the Shared Pool
The shared pool is often a key area impacted by performance. This section focuses on queries that
help you investigate the shared pool.

 ORA-04031 Errors
V$SHARED_POOL_RESERVED.REQUEST_FAILURES [or SUM(X$KGHLU.KGHLUNFU)] gives
the number of ORA-04031 errors that have occurred since the instance was started. If any ORA-
04031 errors are occurring, then SHARED_POOL_SIZE and/or JAVA_POOL_SIZE are too small, the
shared pool is fragmented, or application code may not be being shared optimally. The query in this
listing checks the ORA-04031 errors that have occurred since the instance was started. Also, see
Chapter 4 for setting parameters related to automating memory management, including
MEMORY_TARGET, MEMORY_MAX_TARGET, and/or SGA_TARGET.

If any ORA-04031 errors have occurred, then some SHARED_POOL_SIZE, JAVA_POOL_SIZE,
and/or application tuning is in order. Consider one or more of the following:

 Pin large, high-use [high values for X$KSMLRU.KSMLRSIZ,
COUNT(X$KSMLRU.KSMLRHON), and/or X$KSMLRU.KSMLRNUM] PL/SQL packages
in memory with DBMS_SHARED_POOL.KEEP:
EXECUTE dbms_shared_pool.keep(’PACKAGENAME’);

 Pin large, high-use Java classes with DBMS_SHARED_POOL.KEEP. You can pin a Java class
by enclosing it in double quotes:
EXECUTE dbms_shared_pool.keep(’“FullJavaClassName”’, ’JC’);

TIP
Enclose the class in double quotes if it contains a slash (/); otherwise, you will get an ORA-00995
error.

 Increase the size of the shared pool by increasing the SHARED_POOL_SIZE initialization
parameter if the percentage of shared pool free memory is low and there is contention for
library cache space allocation and/or more than zero occurrences of the ORA-04031 error. A
section of Chapter 4 notes that increasing the shared pool is not always recommended if a low
amount of shared pool memory is observed. If you are increasing the size of the shared pool,
you might also need to raise the value of the parameters MEMORY_TARGET,
MEMORY_MAX_TARGET, and/or SGA_TARGET (see Chapter 4 for additional
information).

 Increase the size of the shared pool reserved area by increasing the
SHARED_POOL_RESERVED_SIZE initialization parameter (the default is 5 percent of
SHARED_POOL_SIZE).

 Promote the sharing of SQL, PL/SQL, and Java code by application developers.

 Large Allocations Causing Contention
The object being loaded (X$KSMLRU.KSMLRHON) is a keep candidate (consider keeping it with
DBMS_SHARED_POOL.KEEP) if the X$KSMLRU.KSMLRCOM value is MPCODE or PLSQL%.

If you use features such as Shared Servers (previously called MTS), Recovery Manager, or
Parallel Query, you should configure a larger shared pool and also configure a large pool that is
bigger than the default. These features will create large allocations in the shared pool and use the

large pool instead if it is large enough.

TIP
If X$KSMLRU.KSMLRCOM is similar to Fixed UGA, then a high amount of session-specific
allocation is occurring, which suggests that OPEN_CURSORS may be set too high. This is
relevant only in cases where Shared Servers are being used.

 Shared Pool Fragmentation
This section takes a closer look at the shared pool using a plethora of queries to help you conduct
detailed investigations when needed. (The shared pool is also discussed in detail in Chapter 4.) The
shared pool may be fragmented if you observe a large number of entries in X$KSMLRU, particularly
a large number of them with small KSMLRSIZ values, or if you observe many chunks of type “free”
in X$KSMSP. Contrast this with a large number of entries in X$KSMLRU with medium to high
values of KSMLRSIZ, which is not likely to be a symptom of a fragmented shared pool; rather, it
indicates that large PL/SQL packages and/or Java classes need to be kept in the shared pool and
possibly also that the shared pool itself is too small, and perhaps that application code is not being
effectively shared (or some combination thereof). In identifying the problem, take the time to monitor
the application code use over time to find out which code the user sessions are attempting to load.
Network with application users, developers, designers, and application vendors. The queries in the
following listings will help you find contention and fragmentation issues.

Finding contention and fragmentation issues

Fragmentation of shared pool

Following is the output on a smaller system:

Next is the output on a larger Linux system (12cR2):

Information about SHARED_POOL_RESERVED_SIZE

 Low Free Memory in Shared and Java Pools
If a low percentage of the shared or Java pools’ memory is free, then the shared and/or Java pools
may have crossed the fine line between an optimal amount of free memory and not enough free
memory. To determine this, consider how many free chunks exist, the size of the largest chunk,
whether there is a high number of reloads, and whether there have been any ORA-04031 errors. The
two queries shown here will help.

Amount of shared pool free memory

Amount of Java pool free memory

 Library Cache Memory Use
A low library cache hit ratio is a symptom of one of several problems. The shared and/or Java pools
may be too small; the SHARED_POOL_RESERVED_SIZE may be too small; CURSOR_SHARING
may need to be set to FORCE; there may be inefficient sharing of SQL, PL/SQL, or Java code; or
there may be insufficient use of bind variables. Investigate which application code is being used over
time and how efficiently it is used (code sharing). Monitor the shared and Java pool “free space”
over time. If the amount of free memory in the shared and Java pools is relatively high, no ORA-
04031 errors are occurring, and the library cache hit ratio is low, then poor code sharing is probably
occurring. The queries in the following listings help you investigate this area. I include some V$ view
queries here because of the applicable nature to this subject.

Library cache reload ratio (note PDB is now a namespace)

Library cache high-use objects (make this a top 10 list by adding WHERE ROWNUM<11)

Library cache object sizes

Shared pool object sharing efficiency (you may want to limit these)

A high percentage of reloads indicates that the shared and/or Java pools are too small, code
sharing is insufficient, and possibly also large code objects are repeatedly being used. Monitor the
application code used over time. If particular large code objects are identified as frequently used,
consider pinning them and/or increasing the size of the SHARED_POOL_RESERVED_SIZE. If
features such as Shared Servers, Recovery Manager, or Parallel Query are used, consider a larger
SHARED_POOL_SIZE and/or larger LARGE_POOL_SIZE (if setting parameters like
MEMORY_TARGET and/or SGA_TARGET, please refer to Chapter 4 and ensure you always set a

minimum for the SHARED_POOL_SIZE even if you use these other parameters).

 High Number of Hard Parses
You should review similar queries with low numbers of executions to uncover opportunities to
combine them into statements using bind variables. A high ratio of hard parses may mean that the
shared pool itself is too small or perhaps a SQL statement is repeatedly nudging other code out of the
precious shared pool or Java pool cache space. Identify these statements and consider pinning.
Consider also setting the parameter CURSOR_SHARING = FORCE. The next listing shows various
queries to view parse activity:

 Mutex/Latch Waits and/or Sleeps
If mutex (mutual exclusion; see Chapter 14 for detail on mutexes) or latch waits are high but shared
and Java pool free space is also high, consider reducing the size of the shared and/or Java pools.
When this happens, it could indicate that sessions are spending time scanning the unnecessarily large
list of free shared pool chunks (be very careful before you do this—the goal is to get everything in
memory—so ensure that you have enough allocated). Monitor the amount of shared and Java pool free
space over time. If ample free space is available in these pools and no ORA-04031 errors are
occurring, consider reducing the sizes of these pools. Investigate when the miss ratio and sleeps are
high for any of the mutexes/latches in the following list:

 Row cache objects
 Library cache
 Shared pool
 Shared Java pool

If free space in the shared and Java pools is low, then you should consider the other tuning areas,
such as increasing the shared and/or Java pools, pinning objects, and combining similar SQL
statements to use bind variables. The query in the next listing helps you acquire some of these metrics.
A mutex (which replaced many types of library cache latches other than the library load lock latch) is
used to eliminate the possibility of two processes simultaneously using a common resource (while
one or both are trying to change it); when one session is changing it, the second can’t view it or
change it, and when one session is viewing it, the second can’t change it.

Oracle moved from latches to mutexes in some areas of the library cache because mutexes are
lighter weight and provide more granular concurrency than latches. Mutexes require less memory
space and fewer instructions. Oracle uses mutexes instead of library cache latches and library cache
pin latches to protect objects in the library cache. With a mutex, if I have the resource and you can’t
get it after trying a specified number of times asking (spins), you sleep and try again a very short time
later. Use the V$MUTEX_SLEEP view (covered in Chapter 12) in addition to the V$LATCH query
listed next to query mutex/latch information:

No issues occur in the output above (minimal sleeps). Remember that before increasing the
SHARED_POOL_SIZE, you should consider whether there are any shared pool or library
latch/mutex waits. Depending on what you observe, it may actually be more appropriate to reduce the
size of the shared pool, for instance, if you have a sufficient amount of free shared pool memory
available, a low number of reloads, and a high number of shared pool latch waits. The reason to

consider reducing the shared pool in this case is that, with an oversized shared pool, sessions will
hold the shared pool latch slightly longer than is needed otherwise because the shared pool needs to
scan a larger amount of space to determine exactly where to allocate the space it is requesting. Fixing
the issues causing a shared pool issue and then ensuring it is large enough to fit all statements in
memory is a key to good performance. Fix the problem and then make sure the shared pool is large
enough (too many people make it way too small and problems occur!).

 Miscellaneous X$ Table Notes
After exhausting the previously discussed shared and Java pool tuning options, you could consider
some undocumented parameters. The number of the library cache hash table bucket count can be
increased by setting _KGL_BUCKET_COUNT (see Appendix A for more information on the
undocumented initialization parameters); note that 9 (the default) puts this at ((2 to the 9th
power)*256)–1 = 131,071, which should be more than enough for most systems. Oracle 12c still has
an _KGL_LATCH_COUNT parameter. Remember that you should never set the underscore
parameters without direction from Oracle Support. In 12c, each library cache bucket (131,071) is
protected by a mutex! Also, in 12c, the _KGL_LATCH_COUNT is set at 0 and probably doesn’t need
to be set, but consult with Oracle Support before setting this.

Adjusting this parameter is, as with all undocumented parameters, unsupported by Oracle.
Implement such changes only under the direction of Oracle Support and after thoroughly testing under
direct simulation of production conditions.

Note that any particular database may experience conditions that are a combination of two or more
of the previous conditions. Frequently, you must evaluate multiple conditions and decide on two or
more potential corrective measures.

Also note that after each query on X$KSMLRU, the values in this table are reset to zero. To
effectively monitor the table, consider capturing the contents of it to a permanent table with an
INSERT INTO … AS SELECT … statement or by simply spooling the output to a file. Furthermore,
whenever you query X$KSMLRU, you might always want to select all of the columns instead of just
one or the few you might be interested in at a particular moment; otherwise, you may miss some
information that you later decide you want to see.

CAUTION
When “resetting” the X$KSMLRU table, note rows may still be in this table after each query. Do
not interpret the remaining rows appearing after each query as entries pertaining to contention-
causing code, but rather to preallocated entries in this table. If no problem statements are in
X$KSMLRU, then the KSMLRHON and KSMLRSIZ values are NULL and zero, respectively. If they
are non-NULL, then these rows pertain to contention-causing code. Make sure multiple DBAs do
not simultaneously query X$KSMLRU, because each of them may observe misleading results.

Remember that when you decide to alter initialization parameters to remedy performance

problems, you can now alter many of them by using an ALTER SYSTEM command. Despite the ease
of doing this, you should first test such changes on a test system. For example, if you attempt to make
the SHARED_POOL_SIZE too small, the SQL*Plus session may hang and/or consume a large amount
of memory and CPU resources during the execution of the ALTER SYSTEM command. Or, prior to
Oracle9i, if you set the _KGL_LATCH_COUNT parameter too high, you got an ORA-600 [17038]
error when you next tried to start the database. The point here is to be careful and know what you’re
doing before changing any of these parameters.

Obtaining Information About Redo Log Files
The X$KCCCP table contains information about the current redo log file. The X$KCCLE table
contains information about all redo log files, as shown here:

If you observe in V$LOG_HISTORY or in the “log file space waits” statistic that log switches are
occurring more frequently than is appropriate for your database, you may decide to alter the redo log
file configuration. You can perform this task while the database is open to users and all tablespaces
are online. If you want to minimize the impact on database performance while this or other similar
maintenance is performed that involves a DBA-induced log switch with the ALTER SYSTEM
SWITCH LOG FILE command, you can use the query in the preceding listing to measure how much
redo log information has to be copied to complete the archive of the current log file. This is
particularly relevant in cases of databases with large redo log files (500M or larger).

You can also use this query as a tuning aid to measure how much redo activity is created by a
particular transaction or process, if it is possible to isolate a particular database to one session that is
guaranteed as the only creator of redo records, other than Oracle itself. Capturing before and after
results of this query, when testing (such a transaction), may be useful.

Setting Initialization Parameters
The SPFILE allows DBAs to make persistent initialization parameter changes with the ALTER
SYSTEM command without having to incorporate these changes manually into a traditional parameter
file, or PFILE, to implement the persistence of the parameter change. SPFILEs also allow the DBA to
save the current instance configuration instantaneously to a file for archival or backup purposes. This
flexibility introduces a bit of initialization parameter management complexity in that the Oracle
instance can be started with either a PFILE or an SPFILE. This complexity raises a few questions for

the DBA when managing initialization parameters. The DBA must know what Oracle will use as an
initialization parameter file at instance startup time, where the initialization parameters will be saved
when an ALTER SYSTEM … SCOPE=SPFILE or ALTER SYSTEM … SCOPE=BOTH command is
issued, and whether a currently running Oracle instance was started using a PFILE, an SPFILE, or
both.

If the SPFILE in the platform-specific default location with the platform-specific default name
exists, then Oracle uses it to start the instance. To get Oracle to use an SPFILE other than the one
residing in the default location with the default filename, you must first rename, relocate, or delete
this default SPFILE, and then relocate and/or rename the desired SPFILE from the nondefault location
to the default location and name. Alternatively, you can specify this nondefault SPFILE in the SPFILE
initialization parameter in a PFILE that is used to start the instance.

Note that the concept of the platform-specific default name and location for the PFILE still exists;
this concept is used if no SPFILE is in the SPFILE default location and name. As in pre–Oracle9i
versions, you can use a nondefault PFILE to start an instance with the PFILE option of the STARTUP
command. These are the only ways that Oracle will use a nondefault parameter file to start the
instance. There is no STARTUP SPFILE command. SPFILEs and PFILEs are not interchangeable.
SPFILEs are (mostly) binary files that can be altered only with ALTER SYSTEM commands and can
be created only with CREATE SPFILE commands.

As in pre-Oracle9i versions, PFILEs are simply text files that may be created and altered with a
text editor. An attempt to use an SPFILE in the STARTUP PFILE command will result in an ORA-
01078 error. If an instance was started with an SPFILE, then any changes made using the ALTER
SYSTEM … SCOPE=SPFILE command or ALTER SYSTEM … SCOPE=BOTH command are
saved to the SPFILE that was used to start the instance, even if the default SPFILE exists and was not
used to start the instance. If both a PFILE and an SPFILE are used to start an Oracle instance, Oracle
overrides any parameters specified in the PFILE with those specified in the SPFILE, if any conflicts
occur.

The question of which file was used to start an Oracle instance has five possible answers:

 On startup, the database first looks for spfile<SID>.ora in the default location, and then looks
for spfile.ora in the default location. An SPFILE in the default location was used with the
default name and no PFILE was used.

 A PFILE in the default location with the default name was used and a nondefault SPFILE was
used.

 A nondefault PFILE was used and a nondefault SPFILE was used.
 A PFILE in the default location with the default name was used and no SPFILE was used.
 A nondefault PFILE was used and no SPFILE was used.

NOTE
Both an SPFILE and a PFILE may have been used to start an instance, however. Check the
following queries in the order listed to answer the question of which files may have been used for

the initialization parameters to start the instance.

 Case 1
Run the query in this listing to check for SPFILE-specified initialization parameters:

Or simply use the SQL*Plus command SHOW PARAMETER SPFILE. This tells you exactly which
SPFILE was used to start the database (gets set automatically when the database is started without
specifying a PFILE or SPFILE). If you start the database with the PFILE option, then this parameter is
NULL. The following is the equivalent to the query in the preceding listing but involves less typing:

 Case 2
Run this query to determine which SPFILE was used to start the instance:

Look for a PFILE in the default location. If the SPFILE parameter value from the query in the
preceding listing (to V$PARAMETER) is non-NULL and the value is not the default value for the
SPFILE, then a PFILE was used, and it specified an alternate SPFILE in the SPFILE parameter. If this

is the case and if the default PFILE exists, then it was used to start the instance.

 Case 3
If the SPFILE parameter value from the query in the Case 2 listing (to V$PARAMETER) is non-
NULL and the value is not the default value for the SPFILE, then a PFILE was used, and it specified
an alternate SPFILE in the SPFILE parameter. If this is the case and if the default PFILE does not
exist, then you must determine the location of the nondefault PFILE. See Case 5.

 Case 4
If the SPFILE parameter value from the query in the listing in Case 2 (to V$PARAMETER) is NULL,
then a PFILE was used and no SPFILE was used. If this is the case and if the default PFILE exists,
then it was used to start the instance.

 Case 5
If it is determined from Cases 1 through 3 that no SPFILE was used at all, and that the default PFILE
was not used, then the remaining possibility is that a nondefault PFILE was used and no SPFILE was
used. Many site-specific possibilities exist for a nondefault PFILE. A database startup, shutdown, or
backup script, a third-party backup or database management software package, or a site-specific
Oracle software directory structure may give a clue to what this file is. If there is uncertainty about
this file, you can save the existing configuration initialization parameters by querying some of the
Oracle X$ tables pertinent to initialization parameters. There is also the possibility that OEM, which
can store a local copy of the parameter file, started the database.

Several X$ tables are relevant to initialization parameters: X$KSPSPFILE, X$KSPPSV,
X$KSPPSV2, X$KSPPCV, X$KSPPCV2, X$KSPPI, and X$KSPPO. The X$KSPSPFILE table lists
the contents of the SPFILE. The V$SPPARAMETER view, which is based on the X$KSPSPFILE
table, excludes parameter names that start with an underscore, unless such “underscore” or
“undocumented” parameters were explicitly specified in an SPFILE, in a PFILE, or with an ALTER
SYSTEM command and/or Oracle had to modify the DBA-specified value to fit a functional
requirement of the parameter, such as a requirement that a particular parameter value be a prime
number or a multiple of another DBA-specified parameter value, for example. To see all the
parameter names, including those that the V$SPPARAMETER view excludes, query the
X$KSPSPFILE table.

Note that if an SPFILE was not used to start an instance, then all of the values in the
KSPSPFFTCTXSPVALUE column of X$KSPSPFILE are NULL and all of the values in the
KSPSPFFTCTXISSPECIFIED column are FALSE. Conversely, if an SPFILE was used to start an
instance, the values in the KSPSPFFTCTXISSPECIFIED column for which the particular parameter

was specified in the SPFILE are TRUE and the value in the KSPSPFFTCTXSPVALUE column for
such parameters is a non-NULL value.

The X$KSPPSV table lists the parameter names and values that are currently in effect for the
instance. The V$SYSTEM_PARAMETER view, which is based on the X$KSPPSV table, excludes
parameters that start with an underscore and have not been modified from their default value.

The X$KSPPSV2 table is very similar to the X$KSPPSV table. The difference is in how
parameter values are stored that consist of lists of values. This table, like the X$KSPPSV table, lists
parameters and parameter values that are currently in effect for this Oracle instance. A new session
inherits parameter values from the system values. Each list parameter value appears as a separate
row in the table. Presenting the list parameter values in this format enables you to quickly determine
the values for a list parameter. For example, if a parameter value is “a,b” looking at X$KSPPSV does
not tell you whether the parameter has two values (“a” and “b”) or one value (“a,b”). X$KSPPSV2
makes the distinction between the list parameter values clear. Correspondingly, the
V$SYSTEM_PARAMETER2 view is based on the X$KSPPSV2 table.

The X$KSPPCV and X$KSPPCV2 tables are similar to the X$KSPPSV and X$KSPPSV2 tables,
except that the X$KSPPCV and X$KSPPCV2 tables apply to the current session, not necessarily the
whole instance. If a parameter is changed with an ALTER SESSION command, the change is
reflected in the X$KSPPCV and X$KSPPCV2 tables. The V$PARAMETER and V$PARAMETER2
fixed views are based on the X$KSPPCV and X$KSPPCV2 tables, respectively.

The X$KSPPI table lists the initialization parameter names, types, and statuses. The
V$PARAMETER, V$PARAMETER2, V$SYSTEM_PARAMETER, and
V$SYSTEM_PARAMETER2 fixed views are based on the X$KSPPCV, X$KSPPCV2, X$KSPPSV,
and X$KSPPSV2 tables; each of these X$ tables is joined with the X$KSPPI table in these fixed
views to get the associated parameter names and other information. The query in this next listing is
the query on which V$SYSTEM_PARAMETER is based, excluding the line in
V$SYSTEM_PARAMETER that excludes parameter names that start with an underscore. The
underlying SQL statements of the V$PARAMETER, V$PARAMETER2, and
V$SYSTEM_PARAMETER2 fixed views have the same structure as the query in the listing in Case 2
described previously.

The V$OBSOLETE_PARAMETER fixed view, which is based on the X$KSPPO table, lists
obsolete initialization parameters. For some of these, such as SPIN_COUNT, you may note that they
are now undocumented parameters.

Exploring Buffer Cache/Data Block Details
Four key performance-related buffer cache topics are the current buffer statuses, the identification of
segments that are occupying the block buffers, the detection of hot (popular or high contention) data
blocks, and the cause of buffer-cache-related latch contention and wait events. These topics are
relevant to buffer cache tuning in all Oracle versions, but there are additional considerations in
Oracle8, 8i, and 9i. Oracle8 introduced the concept of multiple buffer pools. Oracle9i introduced the
concept of multiple data block sizes and, therefore, the need for multiple buffer cache buffer sizes.
This continues in 12cR2.

The X$ tables are used in the buffer-cache-related queries that follow:

The queries in the following sections are relevant to these topics.

 Buffer Statuses
A low number of buffers with a status of “Free” in X$BH does not necessarily mean that the buffer
cache is undersized. It may, in fact, mean that the buffer cache is optimally sized such that Oracle will
not have to perform frequent organization and maintenance on a superfluous number of buffers.
Unfortunately, this same thought process leads many DBAs to undersize the buffer cache and leave
memory sitting idle on their system. Similarly, if a large percentage of buffers are consistently free,
then perhaps the buffer cache is oversized. See the subsequent sections discussing buffer cache
contents, latches, and wait events for a better indication of the proper sizing and configuration of the
buffer cache as it relates to the segments that are being used. Tuning and looking at Oracle at the block
level is covered in detail in Chapter 9. The query in this listing shows how to see the state of the
buffers in the buffer cache:

Here is a quick reference listing the buffer states in X$BH:

 Segments Occupying Block Buffers
Noting the distribution of segment owners, types, and names among the occupied buffers is useful.
Note, in particular, which objects occupy the most buffers. Observe the indexes currently in the cache.
Question whether these indexes are appropriate. If they are nonselective indexes being used by
selective queries (or vice versa), these indexes could be occupying precious buffers that could be
used more effectively by the corresponding table blocks or by the blocks of other segments
experiencing “buffer busy waits” wait events. Query V$SQLTEXT to observe the SQL statements
currently using the segments occupying the highest percentages of the buffers and determine whether
index usage in these statements is appropriate. The two queries in the following listings show the
segments occupying block buffers and also the percentage of buffers occupied by segments in the
buffer cache.

Percentage of buffers occupied by segments in the buffer cache

Note also that only segments that are of the same block size as the block size of the default pool
(the default block size) may be assigned to the keep or recycle pools. As of the first release of
Oracle9i, the keep and recycle pools are not available for use by segments that are not the default
block size. This defeats some of the strategy involved with tuning segments that are either high or low
access and are not the default block size. However, other tuning options are available for such
segments, such as partitioning.

Pool-specific buffer cache buffer occupation

 Hot Data Blocks and the Causes of Latch Contention
and Wait Events
The segment blocks returned by the query in the next listing are ones that are being accessed
frequently, particularly if the value of the TCH (touch count) column changes (higher and lower)

between consecutive executions of this query. The TCH column value is incremented every time a
particular buffer is “touched” or “visited” by a transaction. This value can fluctuate as a buffer is
moved up and down the Least Recently Used (LRU) list. The reason for the fluctuation is that Oracle
internally adjusts the TCH value according to its position in the LRU list and other factors, such as
how long it has been since the buffer was last touched. In some scenarios of this algorithm, Oracle
internally resets the TCH value back to 1.

Capture the SQL statements involving these segments by querying V$SQLTEXT for SQL_TEXT
lines that contain these segment names, and analyze their execution plans with the EXPLAIN PLAN as
described in Chapter 6. Consider the number of sessions accessing these blocks using the queries in
this section and whether these blocks are tables or appropriate indexes. Table blocks appearing in
this list that are being accessed by multiple sessions are candidates for the keep pool. Table segments
in this list that incur frequent full table scans are candidates for being re-created in tablespaces that
are configured for large block sizes (16K or larger). Conversely, table segments that incur single-row
accesses are candidates for being re-created in tablespaces that are configured for smaller block
sizes (2K, 4K, or 8K).

Note that you should balance rebuilding such single-row access tables in small block tablespaces
with data locality considerations. If such a single-row access table is accessed frequently for similar
data that is likely to be stored consecutively, then you should consider storing such segments in large
block tablespaces instead of a small block tablespace. As a result, a lower number of physical block
reads occurs because of the increased chance that the block containing the desired rows already
resides in a buffer cache buffer from other recent queries.

Deciding how to size such objects depends on the default block size of the database and the
amount of physical memory and SGA space available for creating a keep pool. Segments in buffers
with a consistently low touch count are candidates for the recycle pool, depending on the block size
of the particular table versus the default block size. You should review the application SQL code,
particularly the indexing strategy, to reconsider the logic of accessing such blocks frequently, in an
effort to reduce contention on them. The following queries will help. (Note that since 10gR2, the
cache buffers chain latch can be shared—but not all the time. Also, in-memory UNDO [IMU] lessens
issues with the buffer cache especially in 11g.) Although Oracle does in-memory updates all the time,
this updating happens in the buffer cache. IMU is new because UNDO and REDO in Oracle9i had to
be written out to disk quickly to protect the data.

Segments experiencing waits on the cache buffers’ LRU chain latch

Sessions experiencing waits on the buffer busy waits or write complete waits events

Problem segments returned by queries in this section are likely to be the same as those returned by
the query returning hot buffers earlier in this section. If they’re not, a possible explanation may be that
such a segment is accessed frequently by one session, as shown by the hot buffer query, but there may
be no contention for it by other sessions, as may be shown by the absence of that segment from the
result set of the other queries in this section. Other than that scenario, the segments returned by a hot
buffers query are likely to also be returned by the other queries in this section that show the problem
segment. Each of these queries conveniently includes the blocks of the particular segments associated
with the latches or waits in question.

For table segments, you can use the DBMS_ROWID PL/SQL package to map the file and block
numbers returned by these queries to the corresponding table rows. If one or a set of segments
consistently shows up in the result sets of the queries in this section, then these are highly used
segments. Investigate the application to reconsider the use of these popular segments. Ask questions
such as the following:

 Is the indexing scheme appropriate?
 Are PL/SQL (or Java) loop exit conditions included where they should be?
 Are superfluous tables included in join queries?
 Can any SQL code be reengineered to alter a join strategy, either with reengineered

subqueries, inline views, or similar alternatives?
 Should some hints, like ORDERED, USE_HASH, etc., be used?
 Are statistics up to date?
 Do any of the involved tables have a high watermark that is well beyond the actual blocks that

contain rows?
 Could a table or index make advantageous use of partitioning or histograms?
 Should you use a keep pool?

If a variety of different segments are repeatedly showing up in the result of the buffer-busy query,

the buffer cache is probably undersized or the disk subsystem is not writing changed (dirty) buffers
out to the datafiles fast enough for them to be reused (or both). If there does not seem to be contention
on particular segments, but rather on a varying set of segments, this problem indicates that Oracle is
having trouble in general satisfying requests to load blocks into free buffers.

You should also review the storage parameter configuration of the problem segments returned by
the queries in this section. Consider whether sufficient free lists are available for the tables and
indexes that can be classified as high concurrent update (multiple sessions updating them
concurrently). You should probably set free lists to two or higher for these segments, but do not set
free lists higher than the number of CPUs in the database server. Another solution is to use Automatic
Segment Space Management (ASSM). You should review the data block size and PCT_FREE
because different conditions call for blocks of a table or index to contain more rows or fewer rows.
In situations in which a particular segment block is popular, you may want to reconstruct the segment
with a higher PCT_FREE; thus, the interblock contention for rows that were previously stored in the
same block is reduced because the chance of those rows being stored in the same block has been
reduced by simply reducing the number of rows that can be inserted into a block.

Obviously, more buffer cache buffers are required to accommodate a table reconstructed to have a
larger PCT_FREE and, therefore, consist of more row-containing blocks. The trade-off is that this
can reduce the performance of full table scan operations on such tables because more blocks must be
visited to complete a full table scan. In general, you must consider the overall use of these tables and
indexes to judge whether having more or fewer rows in the blocks of the particular table or index is
more advantageous. These points can be summarized as follows:

 Condition Higher PCT_FREE and, therefore, fewer rows per block:

 Advantage Less contention on updates of popular blocks.

 Disadvantage The segment consists of more blocks and, therefore, reduces full table scan
performance.

 Condition Lower PCT_FREE and, therefore, more rows per block:

 Advantage There is a better chance that the block containing a requested row is already in
a buffer cache buffer from a recent query. Full table scans will need to visit fewer blocks.

 Disadvantage Blocks being updated may contain more contention. If a block contains a
row to be updated, all the other rows (more of them) in that block are now in a copy of the
block that is incompatible with other sessions requesting a read of other rows in that block;
thus, another read-consistent copy of the block must be read into another buffer cache
buffer.

Obtaining Database- and Instance-Specific Information
You can obtain some database- and instance-specific information from the X$KCCDI table. Consider
the following queries, which you can use to find overall instance- and database-specific information:

Datafile creation times

Background process names and process IDs

Various instance resources

Note that the last query has different values returned for the resource values on different platforms.

Effective X$ Table Use and Strategy
Consider creating a separate X$ query user who has his or her own X$ views on the SYS X$ tables,
as described earlier in the chapter. This user could manually, or with DBMS_JOB, perform periodic
queries to capture X$ table data into some other tables so the contents of the X$ tables can be
examined over time. If you do this, keep in mind that the data in the X$ tables is highly transient.
Some scripts or jobs written to capture such information will likely miss a lot of it. On the other hand,
you do not want to query these tables so frequently that the queries themselves and their associated
activity information are a non-negligible percentage of the data in the tables.

In monitoring the X$KSMLRU table (and perhaps X$KSMSP and others), you may find it prudent

to capture the contents of the table to a permanent table for analysis and comparison over time.

Oracle Internals Topics
Alas, more toys for the mischievously curious DBAs. Except for traces, you should not use the
utilities described in the following sections in production without the guidance of Oracle Support.
You can take them and run with them in a sandbox database to learn what useful information they
provide.

 Traces
Database sessions can be traced to collect session information about the work performed in the
session and to diagnose problems. Traces can be turned on by a variety of methods:

 Set SQL_TRACE = TRUE with an ALTER SESSION command.
 Set SQL_TRACE = TRUE in the initialization parameter file.
 Execute the DBMS_SYSTEM.SET_SQL_TRACE_IN_SESSION() PL/SQL procedure for

another session.
 Create traces with the $ORACLE_HOME/rdbms/admin/dbmssupp.sql script.
 Execute the DBMS_SYSTEM.SET_EV() PL/SQL procedure to set tracing events in another

session.
 Use the ORADEBUG command.

CAUTION
If you set SQL_TRACE = TRUE in the parameter file, it generates traces for every process
connected to the database, including the background processes.

The simplest method to invoke a trace of a session is for the session itself to enable tracing with
the following command:

Developers may do this themselves from SQL*Plus and may also include it in PL/SQL code using
the EXECUTE IMMEDIATE facility. The DBA may optionally decide to make the trace files in the

user dump destination readable by all (Unix and OpenVMS) by setting the hidden parameter
_TRACE_FILES_PUBLIC to TRUE on instance startup.

Having users generate traces for themselves is simple but not always practical. Third-party
applications usually do not permit the code to be modified for the insertion of TRACE commands, and
there is usually no SQL prompt from where the trace can be started. You could use system logon
triggers to identify the user connecting and optionally start a trace, but there are easier methods at
your disposal.

In these situations, you need to be able to invoke a trace for another session. As the DBA, you have
a number of methods to do this. In each case, however, you need to know the SID and the SERIAL# of
the session you want to trace. You can find this information in the V$SESSION view, as shown here:

Once you have this information, you can use the SET_SQL_TRACE_IN_SESSION procedure of
the DBMS_SYSTEM package to invoke the trace. The procedure takes three arguments: SID,
SERIAL#, and a Boolean argument to start or stop the tracing. It is invoked as follows:

When sufficient tracing information has been collected, disable the trace as follows:

Alternatively, you can use the DBMS_SUPPORT package to start the trace. The
DBMS_SUPPORT package is an option that can be loaded into the database from the rdbms/admin
directory. To load the package, you must be connected to the database as a SYSDBA privileged user
and then run the dbmssupp.sql script.

The DBMS_SUPPORT package offers much of the same functionality for tracing as the
DBMS_SYSTEM package but with these additional features:

 It allows bind variables and session wait information to be optionally included in the trace file.
 It verifies the SID and SERIAL# specified for tracing, rejecting invalid combinations. This can

be useful in critical situations. It can be very frustrating to have spent an hour believing you
have collected useful trace information only to find that you mistyped something and the user

dump destination directory is empty.

Use the START_TRACE_IN_SESSION procedure of the DBMS_SUPPORT package to start the
trace. The procedure takes four arguments: SID, SERIAL#, a Boolean specifying if wait information
is recorded (default TRUE), and a Boolean specifying if bind variables are recorded (default
FALSE). Invoke it as follows:

To stop tracing, use the STOP_TRACE_IN_SESSION procedure:

Another method to invoke tracing for another session is to use the DBMS_SYSTEM.SET_EV
method to set a tracing event for a session. This procedure allows database events to be set in any
session in the database. By setting the 10046 event, you can gather complete tracing information about
any session. As before, you need the SID and SERIAL# of the session you want to monitor. You can
then set the event as follows:

The first two arguments are the SID and SERIAL# of the session. The next argument is the event you
want to set, which, in this case, is event 10046 to trace the session. The fourth argument sets the level
of the event. Here the level is set to 12 to gather all wait and bind variable information in addition to
the basic trace. The available levels are as follows:

NOTE
STAT dumping was amended in 11g so individual dumps are not aggregated across all executions
but are dumped after execution. This change addresses cases where the cursor is not closed and,
therefore, the STAT information is not dumped. Now Oracle guarantees to capture the STAT
information following the execution.

To stop tracing, you need to set the event level to zero as follows:

Finally, you could use the ORADEBUG facility to invoke the required trace. This will be explored
further later in this chapter.

Once a trace file has been generated, you can use the standard TKPROF utility to interpret the
contents of the trace. (The TKPROF tool is covered in detail in Chapter 6.) Oracle also offers the
more advanced Trace Analyzer tool, which can be downloaded from My Oracle Support (see Note
224270.1). The more adventurous DBA may wish to examine the raw trace file, which can sometimes
yield information not shown by TKPROF. The Trace Analyzer takes the trace files generated by the
methods described previously and produces a series of formatted reports. The reports are typically
written to the user dump destination directory. The reports are very detailed and can take an extended
period of time to produce, especially if your server is running poorly to begin with. To generate the
report, you need to know the name of the trace file generated, and then you can invoke the Trace
Analyzer as follows:

FIGURE 13-1. Sample Trace Analyzer report

The finished HTML report summarizes the trace file (see Figure 13-1). The report includes all of
the details found on TKPROF, plus additional information normally requested and used for a
transaction performance analysis.

 DBMS_TRACE Package
The DBMS_TRACE package is another method of tracing, but unlike the preceding examples, it is
designed specifically to trace PL/SQL rather than individual sessions. It can be extremely useful when
trying to debug PL/SQL programs. To use the DBMS_TRACE package, the DBA must first load the
following scripts from the rdbms/admin directory as a SYSDBA user:

Once the packages are loaded, PL/SQL can be traced using two methods:

All PL/SQL code created by the session after this point will have the additional hooks to allow it
to be traced, including anonymous PL/SQL blocks. However, code created before this point cannot be
traced with the DBMS_TRACE package. Alternatively, any existing PL/SQL package, procedure, or
function can be recompiled using the following command:

TIP
Anonymous PL/SQL blocks cannot be traced using the “compile debug” method. PL/SQL tracing
for the entire session must be enabled with the ALTER SESSION SET PLSQL_DEBUG=TRUE
command.

Now to trace the PL/SQL code execution, you can start with the following command:

The argument here specifies which lines of PL/SQL to trace. The options are
TRACE_ALL_LINES to trace every line executed, TRACE_ENABLED_LINES to trace only
PL/SQL that was explicitly compiled with the debug option, TRACE_ALL_EXCEPTIONS to trace
only exceptions, and TRACE_ENABLED_EXCEPTIONS to trace only exceptions of PL/SQL that
was explicitly compiled with the debug option. When the tracing is complete, disable it with the
following command:

The results of the trace can be seen in the PLSQL_TRACE_EVENTS table owned by the SYS
schema, as shown here:

 Events
An event is similar to a system trigger in an Oracle instance. A trigger can capture pertinent
information about the instance and individual database sessions to trace files. If an event is set in an
initialization parameter file or with an ALTER SYSTEM or ALTER SESSION setting, then Oracle
captures information to a trace file based on the conditions set in the event. Several events can be set.
These can be described with the oerr command-line facility. Try the following command (in Unix
only):

A particularly useful tuning tool is event 10046 (described in Chapter 9 in detail). This event can
be enabled in the initialization parameter file with the following line (although this is not something
that you generally want to set at the database level):

Or it is more likely to be used at the session level with an ALTER SESSION command:

The trace information is captured to a file in the USER_DUMP_DEST directory derived from the

DIAGNOSTIC_DEST parameter in the initialization parameter file. This event is equivalent to
setting SQL_TRACE = TRUE in the initialization parameter file. At level 12, this event setting
includes the values of bind variables and the occurrences of wait events. Other events are useful in
troubleshooting database and performance issues. Do not set events in production databases without
first consulting with Oracle Support and testing them in a test database.

You can use the ORADEBUG command (covered later in this chapter in the “ORADEBUG”
section) or the DBMS_SUPPORT PL/SQL package to set events in sessions other than the current
session. Also, to UNSET this event, you use

 Dumps
Several structures in an Oracle instance or database can be dumped to a trace file for low-level
analysis, such as these:

 Control files
 Datafile headers
 Redo log file headers
 Instance state
 Process state
 Library cache
 Data blocks (covered in detail in Chapter 9)
 Redo blocks

Create these dumps with these commands:

The trace files containing this dump information are in the USER_DUMP_DEST directory.

 ORADEBUG
You use the ORADEBUG command for troubleshooting the instance or sessions. The ORADEBUG
command can capture current instance state information, set events in sessions, and perform other
low-level diagnostics. Type oradebug help from SQL*Plus to get the usage list shown next.

NOTE
You must be connected to AS SYSDBA to be able to access ORADEBUG (version dependent listing
—run this for your own version).

The following example shows using the ORADEBUG command to invoke a trace of another
session. Let’s say a user complains of slow performance on a database, or you have identified the
process ID from the operation system. To get the SPID, use the following query:

Then you use the SETOSPID command to attach to the process and invoke the trace:

Now that you are attached, you can invoke the trace by setting the 10046 event. Here, I select a
level 12 to force all bind variables and wait information to be written to the trace file:

The session is now tracing. If you want to see the name of the trace file being generated, use the
TRACEFILE_NAME option as follows:

This shows you the name and location of the trace file. This file can then be processed with the
TKPROF analysis tool to obtain detailed information about the operations of the monitored process.

If your Oracle database has trace file-size limitations specified in the SPFILE or init.ora file,
you can override this from ORADEBUG using the following command:

The DBA should remember, however, that Oracle buffers its writes to the trace file, and so the
information contained in the file might not be completely up to date. Fortunately, the ORADEBUG
command gives you the ability to flush the trace file write buffer as follows:

The ORADEBUG command can also be used to suspend the execution of a process. For example,
you might have a long-running database job that is about to fail due to space, or an intensive update
job that you want to disable during a backup. The ORADEBUG command allows specific sessions to
be suspended as follows:

The Oracle operating system process 6943 is now suspended and will remain that way until you issue
the ORADEBUG RESUME command.

TIP
Do not use ORADEBUG SUSPEND on the Microsoft Windows platform. Due to the thread-based
processing model of Windows, the whole database will be suspended, not just the process you are

attached to.

When you want to disable tracing for the specified session, you can use the following
ORADEBUG command:

 trcsess Utility
Oracle provides users with another tracing utility: trcsess. This utility can be found in the bin
directory under Oracle Home. The tool is designed to read database trace files and extract
information the DBA is interested in. Trace information can be located based on session information
(SID and serial number), client identifier, service name, action name, or module name. The tool is
primarily designed for use in shared server or connection pooling environments where multiple
processes may have to be traced to capture all relevant information. The tool does not interpret the
trace information; it simply aggregates multiple trace files into a single one based on the criteria
provided. The result is a combined trace file that can be analyzed using TKPROF, TRCANLZR, or
another tool. For additional information on this tool, see My Oracle Support Note 280543.1.

Reading the Trace File
The preceding section showed several methods that can be used to generate a trace of a session. Once
the session being traced has completed, the DBA needs to locate, read, and interpret the trace file.
The trace file is written to the directory pointed to by the user dump destination parameter. You can
see it from SQL*Plus with the following command:

The trace file has the filename format <sid>_ora_<process id>.trc. The process ID can be found
in the V$PROCESS view as follows:

So, in this example, my trace file name is

Once located, I can read the trace file with the TKPROF tool (see Chapter 6) or the Trace
Analyzer tool, shown earlier in this chapter. However, the curious DBA might be interested to see the
contents of the trace file for himself or herself. Because the raw trace file is written in ANSI format,
reading it can be accomplished with any standard file browser or editor. The trace file shows the
traced session as a series of blocks. Each block represents a database call and is separated by a
single line. At the top of the trace file is the standard trace file header that many DBAs are already
familiar with:

The trace file then shows each database call that was executed in the traced session in sequential
order. The following example shows a simple SELECT statement:

The first line shows information about the statement being executed. The tags can be interpreted as
follows:

The trace file then shows the text of the SQL statement being executed. In this case, I am selecting
the BIRTHDATE from the USER_DETAIL table. You can also see from the trace file that this
statement has been assigned cursor #7.

TIP
Cursors may be reassigned if the cursor is closed and released. Therefore, when reading a long
trace file, remember that a cursor number referenced at one part of the trace file may not represent
the same SQL statement as it does elsewhere in the trace file.

The trace file next shows the operations Oracle performs to actually satisfy the query. This
basically amounts to a series of executions (EXEC) and fetches (FETCH). Both the EXEC and
FETCH trace lines report the following tracing information:

Applying this knowledge to the EXEC line from my trace, I can determine the following:

 A total of 6999 ms of CPU was used for this EXEC.
 Total elapsed time was 51312 ms.
 Physical reads were zero.
 Buffers retrieved in CR (consistent read) mode were 84.
 Buffers retrieved in current mode were zero.
 Library cache misses was 1 (this statement was not found in the cache).
 Rows processed was zero.
 Recursive call depth was zero (this was a user call).
 Optimizer goal was all rows.

 Wait Information and Response Time
The trace file also includes wait (WAIT) information. This shows the length of time Oracle spent
waiting for certain items between parsing, executing, and fetching data. In this trace file, you can see
this wait event:

The NAM field shows the event that was waited on. The ELA field shows the length of time
waited. The meaning of the P1, P2, and P3 fields depends on the event. The information shown can
also be observed by inspecting the GV$SESSION_WAIT view during statement execution. In this
example, you can also see that Oracle waited on a “SQL*Net message to client” event for 5 ms. The
wait is followed by this:

The FETCH step takes 142 ms, reads 13 buffers in CR mode, and processes 1 row. The 142 ms
includes the 5 ms from the WAIT step. Elapsed times for all WAIT events immediately preceding an
EXEC or FETCH operation are incorporated in the total elapsed time shown for that event:

In the preceding example, the elapsed time for the FETCH operation shown on line 3 includes the
elapsed times from lines 1 and 2.

 Recursive Calls
The trace file identifies recursive calls by showing the call depth of each call. In the following
extract, you see a user call (cursor #50) being serviced by a recursive call (cursor #54), which itself
is serviced by two recursive calls (cursor #35).

The CPU time, elapsed time, OS block reads, and CR and current block reads for all recursive
calls are added to the totals for the originating call. In the preceding example, the total elapsed time

for cursor #50 of 31,087 ms includes the 4,986 ms elapsed time for cursor #54, which itself includes
the 71 ms spent executing in cursor #35 and the 48 ms spent fetching.

 Module Info
The raw trace file includes module information recorded by calls to the
DBMS_APPLICATION_INFO package:

The entry includes the following tags:

 Commit
Commit operations are shown in the trace file as XCTEND (Transaction END) calls:

The rlbk tag has a value of 1 if a rollback is performed or zero if it is committed. The rd_only
tag has a value of 1 if the transaction was read-only or zero if blocks were changed.

 Unmap
The unmap operation records when temporary tables are cleaned up:

The flag records the same information as for EXEC and FETCH operations.

 Bind Variables
One of the most powerful features of the 10046 trace with a level of 8 or 12 is that bind variable
information is captured in the trace. You can see this in the raw trace file as a series of BIND
operations. The following example is taken from an 11g database with cursor sharing set to FORCE:

In the preceding example, the SQL statement is shown as you see it in the V$SQLTEXT view, with the
bind variable represented as SYS_B_0. However, the BIND operation listed shows that the bind
variable zero of cursor 1 is being bound to the value ’Alex’. Note that you must be careful when
interpreting the BIND information. Oracle replaces all static values with dynamically generated
variable names such as SYS_B_n. However, named variables are not replaced. The BIND statements
are listed in strict sequential order, with each value being bound to the next variable in the statement.
Consider the following statement:

If CURSOR_SHARING is set to FORCE, the value ’Nicola’ is replaced with the variable SYS_B_0
and the value ’DDMONYY’ is replaced with SYS_B_1. For the purposes of binding, however,
SYS_B_0 is treated as variable 0, BIRTHDAY is treated as variable 1, and SYS_B_1 is treated as
variable 2:

When tracing larger, more complex queries, remember that SYS_B_n does not necessarily bind to
variable n.

 Errors
The raw trace file will include errors that occur during the period of the trace. Two types of errors
are recorded: execution errors and parsing errors. Parsing errors occur when the SQL statement
cannot be parsed due to problems such as syntax or object permissions:

The preceding trace line shows error ORA-936 when parsing cursor #7. The information includes all
of the same information as a successful parse operation, except for the SQL hash and address, as the
failed statement is not stored in the library cache.

Execution errors simply list the error code and the time of the error:

The preceding trace line shows that error ORA-1555 was raised during the execution of cursor #76.

Some Common X$ Table Groups
Some of the X$ tables can be logically grouped as shown in Tables 13-1 through 13-44. This is by no
means a complete list. The descriptions for these tables are updated to the best of my knowledge
(listed here are only a small and limited number of X$ tables even within a group). Oracle
Corporation does not provide a full description list. In the final section of the chapter, I include a very
nice definition tree structure that was provided for an earlier version of the X$ tables. You can

certainly use this with most versions to help you understand the naming conventions much better.

TABLE 13-1. Version/Installation

TABLE 13-2. Instance/Database

TABLE 13-3. NLS (National Language Support)

TABLE 13-4. Time Zones

TABLE 13-5. Archive Log Files/Destinations/Processes

TABLE 13-6. Datafiles

TABLE 13-7. Control Files

TABLE 13-8. Redo Log Files

TABLE 13-9. Tablespaces

TABLE 13-10. Sort/Temp Segments

TABLE 13-11. Rollback/Undo Segments

TABLE 13-12. Temporary Objects

TABLE 13-13. Database Links

TABLE 13-14. Materialized Views

TABLE 13-15. Replication

TABLE 13-16. Backup

TABLE 13-17. Recovery

TABLE 13-18. RMAN

TABLE 13-19. Standby Databases

TABLE 13-20. LogMiner

TABLE 13-21. Sessions/Processes

TABLE 13-22. Session Performance

TABLE 13-23. Transactions

TABLE 13-24. Global Transactions

TABLE 13-25. Advanced Queuing (AQ)/Resource Management

TABLE 13-26. Real Application Clusters

TABLE 13-27. Library Cache

TABLE 13-28. Shared Memory

TABLE 13-29. Buffer Cache

TABLE 13-30. Rowcache

TABLE 13-31. Locks/Enqueues

TABLE 13-32. Latches

TABLE 13-33. Optimizer

TABLE 13-34. Shared Servers

TABLE 13-35. Parallel Query

TABLE 13-36. Security-Granted Privileges and Roles, Fine-Grained Security Policies

TABLE 13-37. Resource/Consumer Groups

TABLE 13-38. Contexts

NOTE
“Contexts” has nothing to do with Oracle Text, which used to be called “Context.”

TABLE 13-39. Heterogeneous Services

TABLE 13-40. PL/SQL

TABLE 13-41. Loader/Direct Path API

TABLE 13-42. Java Source

TABLE 13-43. Miscellaneous Tables

TABLE 13-44. Other X$ Tables

Some Common X$ Table and Non-V$ Fixed View
Associations
Table 13-45 lists non-V$ fixed views (V$ views are listed in Appendixes B and C) that are based on
at least one X$ table. Many of the fixed views are based on one or more X$ tables, plus other fixed
views. You can use this list with $ORACLE_HOME/rdbms/admin/sql.bsq and
$ORACLE_HOME/rdbms/admin/migrate.bsq as an aid in deciphering the meaning of X$ table and
column contents and in constructing queries that join X$ tables to other X$ tables or to fixed views.

TABLE 13-45. X$ Table and Non-V$ Fixed View Associations

Common X$ Table Joins
Table 13-46 lists the X$ table column joins used in fixed views.

TABLE 13-46. Common Table Joins

NOTE
See Appendixes B and C for detailed listings of all V$ views and X$ tables. There are 1312 X$
tables in Oracle 12.2. Appendix C lists all X$ tables along with all indexes. There is also a cross-
listing of many X$ to V$ tables.

X$ Table Naming Conventions (My Favorite Section of
This Book!)
This summary lists X$ table definitions. The last revision was in Oracle 7.3.2, and the main purpose
of this section is to show the naming conventions (these are great to get to know some of the Oracle
acronyms; I’ve included these despite the fact that many are now outdated, but it is still nice to see
where some of these names came from originally).

 X$ Table Naming Conventions with CON_ID and
INMEMORY
In 12c, many X$ tables now have the CON_ID (Container ID) column for pluggable databases. The
following are some major tables/views that include CON_ID in the X$ tables and V$ views:

Also in 12c, there are several new INMEMORY V$ views (most identified earlier in the chapter)
that access the X$ tables, particularly the X$KTSIMAU table:

Future Version Impact in 12cR2
As noted several times in this chapter, the V$ views and X$ tables are constantly being enhanced as
more and more features are added to Oracle. In 12c, the performance of SELECTs on V$ views and
X$ tables has improved and they have been expanded to include CON_ID (Container ID) on many of
the underlying X$ tables for PDBs (as well as INMEMORY in views and tables). More changes will
certainly come in the future (did you see Oracle Cloud coming?)!

Why don’t I climb mountains? I don’t have the time—I’m a DBA!
Why do I open the hood of my car and look at what’s inside? To impress my wife!
Why do I look at the X$ tables? Because I don’t spend a lot of time climbing mountains, and I

don’t know what’s really under the hood of my car, but I do know how to use these to my advantage!
Now you do, too!

Tips Review
 The X$ tables and V$ views have been expanded for pluggable databases with CON_ID

(Container ID) on many current tables/views (new X$ tables such as X$CON) and expanded
in 12.1.0.2+ for In-Memory column store (X$KTSIMAU).

 When you mention the X$ tables, most people say, “Oh, pretty scary. I would never touch those
tables.” The fact is that DML commands (UPDATE, INSERT, DELETE) are not allowed on
the X$ tables, even as the SYS superuser in 12cR2 (I tried).

 Only the SYS superuser can SELECT from the X$ tables. An error occurs if an attempt is
made to grant SELECT access to a user. But the X$ tables are not completely harmless.
Because they are not documented, they could lead to data being misinterpreted. For example, if
a V$ view definition is modified to use a brand-new X$ table, but the DBA has created his or
her own view on the X$ tables, he or she might not have accurate information following an
upgrade.

 A DBA may need access to the X$ table information, but not the SYS password. Create a view
under a different name that mirrors the desired tables. Name these tables according to the
appropriate synonyms of the original tables.

 Access the X$KQFVI table for a listing of all V$ and GV$ views. Access the
V$FIXED_VIEW_DEFINITION view to get all of the information regarding the underlying X$
tables that comprise a V$ view, including new views for containers (pluggable databases) and
In-Memory (IM).

 Query V$FIXED_TABLE for names of the X$ tables, or you can also access two X$ tables
X$KQFTA and X$KQFDT for partial listings that, when combined, make up the full list. In
12c, new X$ tables include X$CON (containers) and X$KTSIMAU (In-Memory).

 Access the V$INDEXED_FIXED_COLUMN view for a listing of all X$ table indexes.
 Oracle generally uses the indexes and uses the correct driving table as needed for accessing

the X$ tables, but from time to time, you may use hints to achieve a desired result.
 Enclose the class in double quotes if it contains a slash (/); otherwise, you will get an ORA-

00995 error.
 If X$KSMLRU.KSMLRCOM is similar to Fixed UGA, then a high amount of session-specific

allocation is occurring, which suggests that OPEN_CURSORS may be set too high. This is
relevant only in cases where Shared Servers are being used.

 Anonymous PL/SQL blocks cannot be traced using the “compile debug” method. PL/SQL
tracing for the entire session must be enabled with the ALTER SESSION SET
PLSQL_DEBUG=TRUE command.

 Do not use ORADEBUG SUSPEND on the Microsoft Windows platform. Due to the thread-
based processing model of Windows, the whole database will be suspended, not just the
process you are attached to.

 Cursors may be reassigned if the cursor is closed and released. Therefore, when reading a
long trace file, remember that a cursor number referenced at one part of the trace file may not
represent the same SQL statement as it does elsewhere in the trace file.

 12cR2 includes 1312 X$ tables. The naming conventions continue with a few changes for
containers and In-Memory.

References
Steve Adams, Oracle8i Internal Services for Waits, Latches, Locks, and Memory (O’Reilly, 1999).
Eyal Aronoff and Noorali Sonawalla, “Monitoring Oracle Database: The Challenge” (IOUG, 1994).
Tony Jambu, Select Magazine column.
Frank Naude’s underground Oracle web page (www.orafaq.com).
Oracle dump information (www.ixora.com.au).
Oracle FAQs, www.orafaq.com.
Oracle Database SQL Language Reference, 12c Release 2 (Oracle Corporation).
Oracle Database Advanced Application Developer’s Guide (Oracle Corporation).
Tanel Poder, “Memory Management and Latching Improvements in Oracle9i and 10g”
(http://integrid.info/).
Tip of the Week, Wolfgang Genser (for an idea on making touch counts faster), www.oracle.com.
Joseph Trezzo, “Journey to the Center of the X$ Tables” (TUSC).
Joseph Trezzo, “Get the Most Out of Your Money: Utilize the v$ Tables” (IOUG, 1994).

Metalink Notes
186859.995, 1066346.6, 153334.995, 258597.999, 235412.999, 135223.1, 221860.999, 104933.1,
83222.996, 43600.1, 129813.999, 10630.996, 86661.999, 4256.997, 2497.997, 102925.1, 95420.1,
14848.997, 235412.999, 62172.1, 135223.1, 221860.999, 83222.996, 163424.1, 104397.1, 33883.1,

http://www.orafaq.com
http://www.ixora.com.au
http://www.orafaq.com
http://integrid.info/
http://www.oracle.com

346576.999, 96845.1, 73582.1, 221860.999, 212629.995, 162866.1, 138119.1, 137483.1,
186859.995, 1066346.6, 153334.995, 258597.999, 235412.999, 135223.1, 221860.999, 104933.1,
83222.996, 43600.1, 129813.999, 10630.996, 86661.999, 4256.997, 2497.997, 102925.1,
210375.995, 39366.1, 62294.1, 187913.1, 171647.1, 39817.1, 224270.1, 62294.1, 39817.1,
104239.1, 280543.1, 175982.1

Graham Thornton updated the 11g version of the chapter. Graham Thornton and Kevin Gilpin
helped with the incredible job of updating this chapter in 10g. (Please read it quietly and with an
English accent.)

I

CHAPTER
14

Using Statspack and the AWR Report to Tune
Waits, Latches, and Mutexes

f you could choose just two Oracle utilities to monitor and find performance problems on your
system, you should choose Enterprise Manager (Chapter 5) and the Automatic Workload
Repository (AWR) Report and/or Statspack (both covered in this chapter). In Oracle 12cR2, the
AWR Report has much more information than you can find with Statspack—and a whole lot

more when it comes to impact tuning! Statspack remains in 12cR2 but has few improvements and does
not currently include In-Memory statistics. The Statspack utility has been available and free since
Oracle 8.1.6 to monitor database performance. Statspack originally replaced the
UTLBSTAT/UTLESTAT scripts available with earlier versions of Oracle. The AWR Report
leverages the AWR statistics and can be executed within Oracle Enterprise Manager Cloud Control,
if desired; it will probably replace Statspack for good in the future. Although the AWR Report has
some very nice things in it that Statspack doesn’t have, you must license the Oracle Diagnostics Pack
to access the AWR dictionary views necessary for the AWR Report. Statspack is still a free utility
that many people use (which is why I include coverage of it in this chapter). Although you are not
supposed to modify the Statspack code, you can modify it. If you modify the code, however, Statspack
is not supported.

In this chapter, you learn how to install the AWR Report and Statspack, how to manage them, and
how to run and interpret the reports generated. Statspack includes data for both proactive and reactive
tuning and is probably the best way to query most of the relevant V$ views and X$ tables and view
the results in a single report. The AWR Report is a great way to mine the AWR for aggregate
performance data in a report similar to, but better than, the Statspack Report. I’ll cover Statspack
first, but only because it’s a starting point to the AWR, which is by far more advanced and
comprehensive and should be used instead of Statspack if at all possible.

Tips covered in this chapter include the following:

 What’s new in 12c for Statspack and the AWR (PERFSTAT at the CDB level in 12.2)
 Creating a tablespace to hold the Statspack data apart from your application and SYSTEM

objects
 Finding the files needed to create, manage, and drop the Statspack objects
 Changing the PERFSTAT password and locking the account when it is no longer in use

 Selecting the proper level for your reporting
 Times to avoid running Statspack Reports
 Running the AWR Report and Statspack together: cautionary notes
 Using Oracle Enterprise Manager Cloud Control to run the AWR Report
 Tuning the top wait events, including Oracle Database 12c mutex wait events
 Using the Segment Statistics sections of the reports to find issues
 Tuning latches and mutexes, including 12cR2 In-Memory latches
 Tuning at the block level to find hot blocks and interested transaction list (ITL) problems
 The top ten things to look for in the 12cR2 AWR Report and Statspack output
 Managing the Statspack data and analyzing and purging it as needed
 Monitoring Statspack space usage
 Including Statspack data in your backup and upgrade plans
 Using the ADDM Report (text) as a stand-alone tool

What’s New in 12cR2 (12.2) Statspack and the AWR
Report
Oracle Database 12c offers a few new details in the reports. I have listed the ones here that I see as
important and helpful to both the AWR and Statspack Reports. New features in 12cR2 include the
following:

 Setting up Statspack and AWR for pluggable databases (PDBs) and the container database
(CDB) is important. We’ll discuss how to set them up and analyze for different PDBs and the
CDB, but one very important setup note in 12.2 is that PERFSTAT can now be created in the
CDB. In 12.1, you have to either create a common user (C##PERFSTAT) or only run the script
in a PDB or run the sqlsessstart.sql script first in the CDB and then run spcreate.sql.
In 12.2, the ALTER SESSION contained in sqlsessstart.sql is now part of
spcreate.sql.

 MEMORY_TARGET is an initialization parameter for sizing all memory since Oracle 10g
(see Chapter 4). With 12c (12.1.0.2), Oracle now includes INMEMORY_SIZE in the
MEMORY_TARGET parameter (otherwise it’s included in the SGA_TARGET if
INMEMORY_SIZE is unset or set to 0).

 In the IO Stats section in 12.2, you will see some In-Memory (IM) population statistics.
 In the 12.2 LATCH MISS section, you’ll see even more IM information on latches, including

In-Memory columnar segment latch misses (and others).
 You must ensure that idle events are set (in 12.1 many of my top waits were idle events—in

12.2 this was corrected). In 12.1, there were many idle events inserted into

STATS$IDLE_EVENT (thanks!).
 You use spup112.sql to upgrade 11gR2 to 12c Statspack. You also use spup12102.sql and
spup12200.sql to update to 12.1.0.2 and 12.2, respectively. The spup112.sql script adds
many new and needed idle events.

 Sections on the new Foreground Processes, Background Processes, and a combination of both
are now included in the report.

 DB time is contained in many sections.
 Physical memory is now displayed in gigabytes (G) instead of megabytes (M).
 In 12.1, some of the Statspack results in the PDBs versus the CDB didn’t have the right

statistics (i.e., sometimes Statspack showed the aggregate totals of the CDB in the PDB
incorrectly, but percentages for the ratios at the PDB level were correct). In the AWR, it
correctly showed the totals in the CDB and PDB, but had the wrong percent in the PDB. The
things that I checked were correct at both levels in 12.2, so as with tuning and with different
versions, ensure this is correct depending on which report you use.

 At the end of the report you’ll see initialization parameters including these 12cR2 ones:
COMPATIBLE=12.2.0.0.0, INMEMORY_SIZE, and PGA_AGGREGATE_LIMIT (you’ll see
them because you are now using them, hopefully).

Installing Statspack
Statspack must be installed in every database to be monitored (and that includes every pluggable
database that you want to monitor separately). If you are using the AWR Report (preferable), you do
not need to run Statspack. Prior to installing Statspack, you should create a tablespace to hold the
Statspack data. If you don’t specify a tablespace, the SYSAUX tablespace is used. During the
installation process, you are prompted for the name of the tablespace to hold the Statspack database
objects. You should also designate a temporary tablespace that will be large enough to support the
large INSERTs and DELETEs Statspack may perform.

The installation script, named spcreate.sql, is found in the /rdbms/admin subdirectory under the
Oracle software home directory. The spcreate.sql script creates a user named PERFSTAT. (In
12.1, while this works in a single PDB, if you run this in the main CDB, it will fail, as the CDB
requires a common user, such as C##PERFSTAT. This is fixed in 12.2.)

TIP
Allocate at least 120M for the initial creation of the PERFSTAT schema’s objects.

To start the spcreate.sql script, change your directory to ORACLE_HOME/rdbms/admin and
log in to SQL*Plus using an account with SYSDBA privileges:

During the installation process, you are prompted for the PERFSTAT user password (for security
purposes, a default password is no longer included); then you are prompted for a default tablespace
for the PERFSTAT user (a list of available tablespaces is displayed along with this prompt). You are
also asked to specify a temporary tablespace for the user. Once you have provided default and
temporary tablespaces for the PERFSTAT account, the account is created and the installation script
logs in as PERFSTAT and continues to create the required objects. If there is not sufficient space to
create the PERFSTAT objects in the specified default tablespace, the script returns an error.

The spcreate.sql script calls three scripts: spcusr.sql to create the user, spctab.sql to
create the underlying tables, and spcpkg.sql to create the packages. When run, each of these scripts
generates a listing file (spcusr.lis, etc.). Although you start the installation script while logged in
as a SYSDBA-privileged user, the conclusion of the installation script leaves you logged in as the
PERFSTAT user. If you want to drop the PERFSTAT user at a later date, you can run the spdrop.sql
script (which calls spdusr.sql and spdtab.sql) located in the ORACLE_HOME/rdbms/admin
directory.

 Security of the PERFSTAT Account
The spcusr.sql script creates the PERFSTAT account and asks you to supply a password (the
default was PERFSTAT in previous versions). The Statspack utility does not need to use the
PERFSTAT default password; change the password after the installation process completes. Also,
remember that in 12c, passwords are case sensitive. This is controlled by an initialization parameter
SEC_CASE_SENSITIVE_LOGON. The default is TRUE, which makes passwords case sensitive by
default. Set this to FALSE to disable this feature (see Chapter 4 for more information on initialization
parameters). Consider the following case-sensitivity issue, if my username/password was
perfstat/perfstat (which it shouldn’t be, because it would be too easy to hack):

The PERFSTAT user is granted the SELECT_CATALOG_ROLE and privileges on many of the
V_$ views (which allows you to query the corresponding V$ views; see Chapter 12). The

PERFSTAT user is also granted several system privileges (CREATE/ALTER SESSION, CREATE
TABLE, CREATE VIEW, CREATE/DROP PUBLIC SYNONYM, CREATE SEQUENCE, and
CREATE PROCEDURE). PERFSTAT is also granted EXECUTE privilege on
DBMS_SHARED_POOL and DBMS_JOB. Any user who can access your PERFSTAT account can
select from all of the dictionary views. For example, such a user could query all of the database
account usernames from DBA_USERS, all the segment owners from DBA_SEGMENTS, and the
currently logged-in sessions from V$SESSION. The PERFSTAT account, if left unprotected, provides
a security hole that allows intruders to browse through your data dictionary and select targets for
further intrusion.

In addition to the privileges it receives during the installation process, the PERFSTAT account
also has any privileges that have been granted to PUBLIC. If you use PUBLIC grants instead of roles
for application privileges, you must secure the PERFSTAT account. You can lock and unlock database
accounts as needed. To lock the PERFSTAT account when you are not using Statspack, use the
ALTER USER command, as shown in the following listing:

When you need to gather statistics or access the Statspack data, you can unlock the account:

 Post-Installation
Once the installation process is complete, the PERFSTAT account owns 72 tables and 72 indexes, 75
public synonyms (PUBLIC actually owns all of the public synonyms), a sequence, a view, and a
package (with body).

You use the package, named Statspack, to manage the statistics collection process and the data in
the tables. The collection tables, whose names all begin with “STATS$,” use column definitions
based on the V$ view definitions. For example, the columns in STATS$WAITSTAT are the columns
found in V$WAITSTAT, with three identification columns added at the top:

The CLASS, WAIT_COUNT, and TIME columns are based on the CLASS, COUNT, and TIME
columns from V$WAITSTAT. Statspack has added these identification columns:

Each collection you perform is given a new SNAP_ID value that is consistent across the collection
tables. You need to know the SNAP_ID values when executing the statistics report provided with
Statspack.

 Gathering Statistics
As mentioned in the previous description of the SNAP_ID column, each collection of statistics is
called a snapshot. Snapshots of statistics have no relation to snapshots or materialized views used in
replication. Rather, a snapshot is a point-in-time collection of the statistics available via the V$
views and is given a SNAP_ID value to identify it. You can generate reports on the changes in the
statistics between any two snapshots. With Statspack, you can collect as many snapshots as you need
and then generate reports against any combination of them. The Statspack Report is only valid if the
database is not shut down and restarted between the evaluated snapshots.

TIP
Be sure the TIMED_STATISTICS database initialization parameter is set to TRUE prior to
gathering statistics.

To generate a snapshot of the statistics, execute the SNAP procedure of the Statspack package, as
shown in the following listing. You must be logged in as the PERFSTAT user to execute this

procedure.

When you execute the SNAP procedure, Oracle populates your STATS$ tables with the current
statistics. You can then query those tables directly, or you can use the standard Statspack Report (to
see the change in statistics between snapshots).

Snapshots should be taken in one of two ways, depending on the purpose:

 To evaluate performance during specific tests of the system For these tests, you can
execute the SNAP procedure manually, as shown in the prior example.

 To evaluate performance changes over a long period of time To establish a baseline of
system performance, you may generate statistics snapshots on a scheduled basis. For these
snapshots, you should schedule the SNAP procedure execution via the Oracle Scheduler or via
an operating system scheduler.

For the snapshots related to specific tests, you may wish to increase the collection level, which
lets you gather more statistics. As noted in the section “Managing the Statspack Data” later in this
chapter, each snapshot has a cost in terms of space usage and query performance. For example, since
the V$SYSSTAT view has 1,688 rows in 12.2 (note we have CDB and PDBs now), whereas there
were only 588 rows in Oracle 11.2 on Windows (628 on Linux), every snapshot generates 1,688
rows in STATS$SYSSTAT. In 10.2, there were only 347 rows in V$SYSSTAT. Avoid generating
thousands of rows of statistical data with each snapshot unless you plan to use them.

To support differing collection levels, Statspack provides the I_SNAP_LEVEL parameter. By
default, the level value is set to 5. Prior to changing the level value, generate several snapshots and
evaluate the reports generated. The default level value is adequate for most reports. Alternative level
values are listed in the following table:

The greater the collection level, the longer the snapshot will take. The default value (5) offers a
significant degree of flexibility during the queries for the most resource-intensive SQL statements.
The parameters used for the resource-intensive SQL portion of the snapshot are stored in a table
named STATS$STATSPACK_PARAMETER. You can query STATS$STATSPACK_PARAMETER to
see the settings for the different thresholds during SQL statement gathering. Its columns include
SNAP_LEVEL (the snapshot level), EXECUTIONS_TH (threshold value for the number of
executions), DISK_READS_TH (threshold value for the number of disk reads), and
BUFFER_GETS_TH (threshold value for the number of disk reads).

For a level 5 snapshot using the default thresholds, SQL statements are stored if they meet any of
the following criteria:

 The SQL statement has been executed at least 100 times.
 The number of disk reads performed by the SQL statement exceeds 1000.
 The number of parse calls performed by the SQL statement exceeds 1000.
 The number of buffer gets performed by the SQL statement exceeds 10,000.
 The sharable memory used by the SQL statement exceeds 1M.
 The version count for the SQL statement exceeds 20.

When evaluating the snapshot’s data and the performance report, keep in mind the SQL threshold
parameter values are cumulative. A very efficient query, if executed enough times, will exceed 10,000
buffer gets. Compare the number of buffer gets and disk reads to the number of executions to
determine the activity each time the query is executed.

To modify the default settings for the thresholds, use the MODIFY_STATSPACK_PARAMETER
procedure in the STATSPACK package. Specify the snapshot level via the I_SNAP_LEVEL
parameter, along with the parameters to change. Table 14-1 lists the available parameters for the

MODIFY_STATSPACK_PARAMETER procedure.

TABLE 14-1. Modification Parameters

To increase the BUFFER_GETS threshold for a level 5 snapshot to 100,000, issue the following
command (“-” indicates the command continues on the next line):

If you plan to run the SNAP procedure on a scheduled basis, you should pin the Statspack package
following database startup. The following listing shows a trigger that is executed each time the
database is started. The KEEP procedure of the DBMS_SHARED_POOL package pins the Statspack
package in the shared pool. As an alternative to pinning, you can use the
SHARED_POOL_RESERVED_SIZE initialization parameter to reserve shared pool area for large
packages.

TIP
Pin the Statspack package following database startup if you plan to run the SNAP procedure on a
scheduled basis.

 Running the Statistics Report
If you have generated more than one snapshot, you can report on the statistics for the period between
the two snapshots. The database must not have been shut down between the times the two snapshots
were taken. When you execute the report, you need to know the SNAP_ID values for the snapshots. If
you run the report interactively, Oracle provides a list of the available snapshots and the times they
were created.

To execute the report, go to the /rdbms/admin directory under the Oracle software home directory.
Log in to SQL*Plus as the PERFSTAT user and run the spreport.sql file found there:

Oracle displays the database and instance identification information from V$INSTANCE and
V$DATABASE and then calls a second SQL file, sprepins.sql.

The sprepins.sql script generates the report of the changes in the statistics during the snapshot
time interval. The available snapshots are listed, and you will be prompted to enter beginning and
ending snapshot IDs. Unless you specify otherwise, the output is written to a file named
sp_beginning_ending.lst (for example, sp_1_2.lst for a report between SNAP_ID values of 1
and 2—this will be exactly what you get when you run your first Statspack Report).

TIP
A second report, sprepsql.sql, can be used for additional research into the problem SQL
statements identified via the spreport.sql report.

The Automatic Workload Repository (AWR) and the
AWR Report
The AWR Report reports on the AWR stored data and is definitely the next generation of the
Statspack Report. It does require additional licensing, so ensure that you are licensed to use it. The
AWR collects database statistics every 60 minutes (on the hour) out of the box (this is configurable),
and this data is maintained for a week and then purged. The statistics collected by the AWR are stored
in the database. The AWR Report accesses the AWR to report statistical performance information
similar to how Statspack has always done. Because the AWR schema was originally based on the
Statspack schema, you will find much of what is included in Statspack in the AWR Report. Learning
the AWR Report if you are familiar with Statspack is easy, but you will not find everything in
Statspack that you find in the AWR Report. There are some newer/cooler parts of the AWR Report
that Statspack users will definitely value.

The AWR data is stored separately from the Statspack data, so running both is a bit superfluous. If
you choose to run both, ensure that you stagger AWR data collection from the Statspack collection—
by at least 30 minutes—to avoid a performance hit as well as conflicts. You could also run both as
you switch from one reporting tool to the other for overlap to ensure that you have coverage that
shows comparison reports.

The Oracle database uses the AWR for problem detection and analysis as well as for self-tuning.
A number of different statistics are collected by the AWR, including wait events, time model
statistics, active session history statistics, various system- and session-level statistics, object usage
statistics, and information on the most resource-intensive SQL statements. To properly collect
database statistics, set the initialization parameter STATISTICS_LEVEL to TYPICAL (the default) or
ALL. Other Oracle Database 12c features use the AWR, such as Automatic Database Diagnostic
Monitor (ADDM) and other Enterprise Manager Cloud Control features as discussed in Chapter 5.

If you want to explore the AWR, feel free to do so. The AWR consists of a number of tables owned
by the SYS schema and typically stored in the SYSAUX tablespace (currently no method exists that I
know of to move these objects to another tablespace). All AWR table names start with the identifier
“WR.” AWR tables come with three different type designations:

 Metadata (WRM$)
 Historical/convertible data (WRH$, WRR$, and WRI$)
 AWR tables related to advisor functions (WRI$)

Most of the AWR table names are pretty self-explanatory, such as WRM$_SNAPSHOT or
WRH$_ACTIVE_SESSION_HISTORY (a very valuable view to check out). Also, Oracle Database
12c offers several DBA views that allow you to query the AWR repository. The views start with
DBA_HIST and are followed by a name that describes the view. These include views such as
DBA_HIST_FILESTATS, DBA_HIST_DATAFILE, and DBA_HIST_SNAPSHOT.

TIP
If you choose to run both Statspack and the AWR, ensure that you stagger the AWR data collection
from Statspack collection by at least 30 minutes to avoid a performance hit as well as conflicts. If
you are running the AWR Report, you should not also need to run Statspack.

 Manually Managing the AWR
Although the AWR is meant to be automatic (Oracle is capturing this information “out of the box”),
provisions for manual operations impacting the AWR are available. You can manually modify the
snapshot collection interval and retention criteria, create snapshots, and remove snapshots from the
AWR. I will describe these processes in more detail in the next few sections, but please refer to the
Oracle documentation for full coverage of the AWR.

You can modify the snapshot collection interval using the DBMS_WORKLOAD_REPOSITORY
package. The procedure DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS
is used in this example to modify the snapshot collection so it occurs every 15 minutes and retention
of snapshot data is fixed at 20,160 minutes (exactly 14 days):

Setting the interval parameter to 0 disables all statistics collection.

To view the current retention and interval settings for the AWR, use the
DBA_HIST_WR_CONTROL view. There are two new columns in the 12c view: CON_ID
(Container ID) and View Location. Here is an example of how to use this view:

In the preceding example, you see that the snapshot interval is every hour (the default), and the
retention is set for eight days.

You can use the DBMS_WORKLOAD_REPOSITORY package to create or remove snapshots.
The DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT procedure creates a manual
snapshot in the AWR, as seen in this example:

You can see what snapshots are currently in the AWR by using the DBA_HIST_SNAPSHOT view,
as seen in this example:

Each snapshot is assigned a unique snapshot ID that is reflected in the SNAP_ID column. If you
have two snapshots, the earlier snapshot always has a smaller SNAP_ID than the later snapshot. The
END_INTERVAL_TIME column displays the time that the actual snapshot was taken.

Sometimes you might want to drop snapshots manually. The
DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE procedure can be used to
remove a range of snapshots from the AWR. This procedure takes two parameters, LOW_SNAP_ID
and HIGH_SNAP_ID, as seen in this example:

 AWR Automated Snapshots
Oracle automatically gathers statistics for the AWR, and does so as long as the STATISTICS_LEVEL
initialization parameter is set to TYPICAL or ALL (the default is TYPICAL). Setting the
STATISTICS_LEVEL to BASIC disables many Oracle features including the AWR. To check your
STATISTICS_LEVEL run the following:

 AWR Snapshot Reports
Oracle provides reports that you can run to analyze the data in the AWR. These reports are much like
the Statspack Reports. The AWR has two reports: awrrpt.sql, which is the main AWR Report, and
awrrpti.sql. Both reports are available in the $ORACLE_HOME/rdbms/admin directory. The
output of these reports (run from SQL*Plus) is essentially the same, except that awrrpti.sql allows
you to define a specific instance to report on. The reports are much like the Statspack Reports of old,
in that you define beginning and ending snapshot IDs, along with the report’s output filename.
Additionally, you can opt to produce the report in either text format or HTML format. As you will see
when you run awrrpt.sql, the following simple example shows how similar this is to Statspack,
other than the text itself (Statspack-looking output), or HTML (the screenshots in this chapter are both
the text and the HTML) output:

TIP
With the new 12cR2 AWR Report, you can choose to get text (similar to Statspack output), HTML,
or the new Active HTML format (which summons OEM at the end of the report if desired) when you
run awrrpt.sql. The HTML format is much better than text, as you can click various links within
the report to navigate among sections easily. You can also run the AWR Report within OEM.

As when using Statspack, creating a baseline in the AWR is a good idea. A baseline is defined as
a range of snapshots that you can use to compare with other pairs of snapshots. The Oracle database
server will exempt the snapshots assigned to a specific baseline from the automated purge routine.
The main purpose of a baseline is, therefore, to preserve typical runtime statistics in the AWR
repository, allowing you to run the AWR snapshot reports on the preserved baseline snapshots at any
time and compare them to recent snapshots contained in the AWR. This way you can compare current
performance (and configuration) to established baseline performance, which can help you determine
database performance problems.

You can use the CREATE_BASELINE procedure contained in the
DBMS_WORKLOAD_REPOSITORY stored PL/SQL package to create a baseline, as seen in this
example (you could also create a snapshot when nobody is on the system as a comparison):

Baselines can be seen using the DBA_HIST_BASELINE view, as seen in the following example:

In this case, the column BASELINE_ID identifies each individual baseline that has been defined.
The name assigned to the baseline is listed, as are the beginning and ending snapshot IDs.

You can remove a baseline using the DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE
procedure, as seen in this example, which drops the EOM Baseline that I just created:

NOTE
The CASCADE parameter causes all associated snapshots to be removed if it is set to TRUE;
otherwise, the snapshots are cleaned up automatically by the AWR automated processes.

 Run the AWR Report in Oracle Enterprise Manager
Cloud Control
Although, as I have demonstrated, you can use the DBMS_WORKLOAD_REPOSITORY package to
manage the AWR repository, you can also manage the AWR from Oracle Enterprise Manager.
Enterprise Manager is covered in detail in Chapter 5, but some of the AWR Report screens are
covered in this chapter. Enterprise Manager provides a nice interface into the management of the
AWR and also provides an easy method for creating the AWR Report. Navigate to the database you
wish to report on, then go to the Performance tab as seen in Figure 14-1. You can then click AWR.

FIGURE 14-1. AWR is located on the Performance drop-down tab.

The next AWR screen (Figure 14-2) provides a summary of the current AWR settings and gives
you an option to modify them and has a button to Run AWR Report. You can also review details about
the snapshots in the AWR and create baseline AWR snapshots (called preserved snapshot sets in
Enterprise Manager). Some of the important things you’ll see on the edit page include snapshot
retention, how often snapshots are collected (or if collection is turned off), and the collection level.

FIGURE 14-2. AWR collection settings, snapshots and Run AWR Report button

If you click the Edit button to the right of snapshot retention, the Edit Settings page displays
information regarding snapshot retention and snapshot intervals that can be changed. You can also
click on the Run Compare Periods Report button in Figure 14-2 to compare two sets of snapshot
pairs. Clicking on this button displays the screen we see in Figure 14-3. Here you can enter starting
and ending snapshots for the AWR Report. As long as the snapshots exist, you can run a report starting
with any snapshot and ending with any snapshot. If you take snapshots every hour, you can either run a
report for an hour or run a report spanning 24 hours (as long as the instance is not shut down at any
time between snapshots). If you are running Real Application Clusters (RAC), you must run the report
for each instance individually. Comparing snapshots allows you to determine if differences exist

between a baseline snapshot and a recent set of snapshots. Using the report generated from this action,
you can determine if the current system performance is diverging from the baseline performance in
some way.

FIGURE 14-3. Running the Compare Periods Report using the AWR

You might investigate the following Oracle scripts for more information: awrginp.sql,
awrgrpt.sql, and awrgrpti.sql. When you click on the Run AWR Report button in Figure 14-2,
you just need to choose beginning and ending snapshot IDs (like you did in the Run Compare Periods
Report) and click Generate Report as you did in Figure 14-3. Also, the AWR and ADDM support
RAC and the In-Memory column store in 12cR2.

TIP
If you use Oracle Enterprise Manager (OEM), you can run the AWR Report directly from Cloud
Control or Database Control from multiple versions of OEM.

When you generate an AWR Report, you will probably see a little clock (this screen is not
displayed here), which tells you that the report is being generated. Then you will see the actual report
(shown in Figure 14-4) as it is displayed in Enterprise Manager. You can also generate the report
(awr_report_425_431.html in my case) in a file that can be viewed at any time by clicking Save To
File. Many of the AWR Report screenshots in this chapter come from this report, but I also show a
higher-volume example at times. You can see from Figure 14-4 and (in the next section) Figure 14-5
that the beginning of the AWR Report looks similar to the beginning of the Statspack Report (this one
is for snaps 2239 to 2243 on 12.2.0.0.2). We’ll see shortly that the AWR Reports and Statspack
Reports vary in structure and what’s included. Notably missing in the Statspack Report in 12.2 is the
In-Memory information, which is seen in the AWR Report in Figure 14-5.

FIGURE 14-4. The actual AWR Report is browsable or savable to a file.

Interpreting the Statspack and AWR Report Output

Several sections are included in both the Statspack and AWR Reports. I cover each of the main
sections, along with information on what to look for and how to use information that appears to be
problematic. Most information must be combined with additional research to solve an issue, leading
to an optimized system.

 The Header Information and Cache Sizes
The first section of both the AWR Report and Statspack Report contains information about the
database itself, including information on the database name, ID, release number, and host. Following
this information is information on when the snapshot was started and ended and how many sessions
were active. Always check to ensure the snapshot interval is what you were trying to measure, and
make sure that it’s a long enough interval to make it representative. If your interval is five minutes,
that is almost always not long enough unless you are measuring something very short in duration. If
your interval is five days, then you will have all kinds of peaks and valleys that average out, so it may
be too long. But having one-day, one-hour (at peak), and one-hour (at non-peak) Statspack Reports
handy is great to compare to a problem Statspack Report for any given day when an anomaly occurs
on your system. Generally, a Statspack Report should cover at least an hour of time and should be
strategically timed to measure problematic periods of time. You may also want to look at an entire
day so you can compare days over a period of time.

The first section of the Statspack Report is Cache Sizes. Prior to 12c, this was also the first
section in the AWR Report, but it has been moved down a few sections in 12c (the Load Profile
section is now first, as you saw in Figure 14-4). An example of the Statspack header information and
Cache Sizes section is displayed next. The equivalent information in the AWR Report is displayed in
Figure 14-5 (with the Cache Sizes section cut and pasted from its new, later location for easy
comparison). The notable difference between the Cache Sizes section in the two reports is that the
12cR2 Statspack Report does not include the In-Memory Area. Both reports include Buffer Cache
(DB_CACHE_SIZE), Shared Pool Size (SHARED_POOL_SIZE), Std Block Size
(DB_BLOCK_SIZE), and Log Buffer (LOG_BUFFER).

FIGURE 14-5. The AWR Report header information and Cache Sizes section (moved up for comparison)

We’ll see that the In-Memory information is also absent in places like the Load Profile and other
areas of the Statspack Report. If you are using In-Memory, the Statspack Report will not be sufficient
—use the AWR Report!

 The Load Profile
The next portion of the Statspack Report output, following the basic information, provides per-second
and per-transaction statistics for the Load Profile. As previously indicated, the corresponding section
in the AWR Report in 12c now appears first. Figure 14-6 shows the equivalent AWR Report
information. The Load Profile section is excellent for monitoring throughput and load variations on
your system. As the load on the system increases, you will see larger numbers per second. As you
tune the system for maximum efficiency, you will usually see lower numbers for the per-transaction
statistic. This is a great section to see if the load is changing day to day. The following listing shows
sample output for the Statspack Load Profile section. The notable differences in the AWR Report in
12c are that it includes “IM scan rows” for the In-Memory (IM) column store and several Read/Write
IO statistics. (The IM scan rows data in Figure 14-6 shows you that IM is working!)

FIGURE 14-6. The AWR Report Load Profile section

The Load Profile helps to identify both the load and type of activity being performed. In both the
Statspack example and AWR example, the activity recorded includes a large amount of both logical
and physical activity, but especially redo activity (I performed a lot of INSERTs during this snapshot
range).

Things to look for include the following:

 A large increase in Logical reads or Physical reads compared to a normal load for this period.
 An increase in Redo size and Block changes indicate increased DML

(INSERT/UPDATE/DELETE) activity.
 A hard parse occurs when a SQL statement is executed and is not currently in the shared pool.

A hard parse rate greater than 100 per second could indicate that bind variables are not being
used effectively; the CURSOR_SHARING initialization parameter should be used; or you
have a shared pool–sizing problem. (See Chapter 4 on sizing the shared pool and a detailed
discussion related to this.)

 A soft parse occurs when a SQL statement is executed and it is currently in the shared pool. A
very high soft parse rate could indicate program inefficiencies that need to be examined in
greater detail to see if there is a problem that needs to be fixed.

TIP
Get to know your system by reviewing and understanding your system’s regular Load Profile.
Significant changes to the Load Profile during what should be similar workloads or common times
during the day may warrant further investigation.

 Instance Efficiency
The Instance Efficiency section continues to grow and shows information for many of the common hit
ratios. In 12c, the AWR Report has added Flash Cache Hit %. Great DBAs generally keep an eye on
this section so they can be alerted to significant changes in system behavior when compared
historically (you have to know your system for this to be helpful). Hit ratios are a great alert
mechanism for general potential problems or specific potential problems, such as bad SQL that has
been introduced recently into the system. This can give you the opportunity to find the issue and
address it before it has a serious/noticeable effect on the system. Waits (covered in depth later in this
chapter) are another excellent way to find major problems, but waits usually show up after the
problem becomes a larger issue. Unfortunately, by that time, the business users will often raise it as a
problem.

Monitoring hit ratios as an alert is just one piece among the thousands of pieces of your tuning
arsenal. The reason that so many tuning tips are provided in this book is that in writing about tuning, I
am writing about all of the turns that the optimizer will make and how to be alerted to a problem or
compensate for any issues. Although I don’t believe you could capture everything in a book (you’d be

un-writing the hardest part of Oracle—the optimizer), I do believe this compilation helps solve many
of them. Some DBAs (usually those trying to sell you a tuning product or DBAs who don’t know the
system well) minimize the importance of hit ratios (proactive tuning) and focus completely on waits
(reactive tuning), since focusing on waits is a great way to solve the current burning problems
quickly (also covered in this book). By monitoring the Instance Efficiency section and Load Profile
section (and using all of Statspack and Enterprise Manager), the DBA combines reactive and
proactive tuning and will discover some problems before the users scream or wait events hit the Top
5 or Top 10 list. The listing that follows shows how well this Statspack section shows you all of the
common hit ratios at once.

Things to look for include the following:

 A Buffer Nowait % of less than 99 percent. This value is the ratio of hits on a request for a
specific buffer where the buffer was immediately available in memory. If the ratio is low, then
there are (hot) blocks being contended for that should be found in the Buffer Wait section.

 A Buffer Hit % of less than 95 percent. This value is the ratio of hits on a request for a specific
buffer when the buffer was in memory and no physical I/O was needed. While originally one
of the few methods of measuring memory efficiency, it still is an excellent method for showing
how often you need to do a physical I/O, which merits further investigation as to the cause.
Unfortunately, if you have unselective indexes that are frequently accessed, that will drive your
hit ratio higher, which can be a misleading indication of good performance to some DBAs.
When you effectively tune your SQL and have effective indexes on your entire system, this
issue is not encountered as frequently and the hit ratio is a better performance indicator. A high
hit ratio is not a measure of good performance, but a low hit ratio is often a sign of
performance that can be improved or should at least be looked into.

 A hit ratio that is steadily at 95 percent and then one day goes to 99 percent should be checked
for bad SQL or a bad index that is causing a surge of logical reads (check the load profile and
top buffer gets SQL).

 A hit ratio that is steadily at 95 percent and then drops to 45 percent should be checked for bad
SQL or a dropped index (check the top physical reads SQL) causing a surge in physical reads
that are not using an index or an index that has been dropped (I’ve seen this more often than
you can imagine).

 A Library Hit % of less than 95 percent. A lower library hit ratio usually indicates that SQL is
being pushed out of the shared pool early (could be due to a shared pool that is too small). A

lower ratio could also indicate that bind variables are not used or some other issue is causing
SQL not to be reused (in which case, a smaller shared pool may only be a bandage that
potentially fixes a resulting library latch problem). Despite the rants about lowering your
shared pool all the time to fix library cache and shared pool latching issues, most multiterabyte
systems I’ve seen with heavy usage have shared pools in the gigabytes without any issues
because they’ve fixed the SQL issues. You must fix the problem (use bind variables or
CURSOR_SHARING) and then appropriately size the shared pool. I’ll discuss this further
when I get to latch issues.

 An In-memory Sort % of less than 95 percent in OLTP. In an OLTP system, you really don’t
want to do disk sorts. Setting the MEMORY_TARGET or PGA_AGGREGATE_TARGET (or
SORT_AREA_SIZE in previous versions) initialization parameter effectively eliminates this
problem. Note that In-memory Sort % appears only in the AWR Report (as in 11g), not in the
Statspack Report.

 A Soft Parse % of less than 95 percent. As covered in the Load Profile section (last section), a
soft parse ratio that is less than 80 percent indicates that SQL is not being reused and needs to
be investigated.

 A Latch Hit % of less than 99 percent is usually a big problem. Finding the specific latch will
lead you to solving this issue. I cover this in detail in the “Latch Free” section later in the
chapter.

 A Flash Cache Hit % (only appears in the AWR Report on 12c) of less than 90 percent could
be a problem if you have a large amount of Flash Cache (system dependent). If you are using
Exadata, Chapter 11 provides some queries to help tune this problem if you’re not
appropriately using your Flash Cache.

Figure 14-7 shows how the Instance Efficiency section looks in the AWR Report (no longer the
same as Statspack).

FIGURE 14-7. The AWR Report Instance Efficiency Percentages section

If you regularly run the AWR Report or Statspack, comparing hit ratios from one day to another can
be a great barometer as to whether something drastic has changed. If an index was dropped on a
frequently accessed column, the buffer hit ratio could drop dramatically, giving you something to

investigate. If an index was added to a table, it could cause the buffer hit ratio to soar if it causes a
table join to occur in the wrong order, causing massive numbers of buffers to be read, but by using
poor indexes. A library hit ratio that rises or falls greatly from one day to the next indicates changing
SQL patterns. Latch hit ratio changes can indicate contention issues that you need to investigate more.

Hit ratios can be a very proactive tool for a DBA who regularly monitors and understands a given
production system, whereas many of the other tuning tools are reactive to problems that have already
occurred.

TIP
Hit ratios are a great barometer of the health of your system. A large increase or drop from day to
day is an indicator of a major change that needs to be investigated. Investigating waits is like
investigating an accident that has already occurred, whereas investigating a change in hit ratios is
like looking into the intersection with a changing traffic pattern that may cause an accident in the
future if something is not adjusted. Generally, buffer and library cache hit ratios should be greater
than 95 percent for OLTP, but they could be less for a data warehouse that performs many full
table scans.

Remember also that a system with very high ratios in this section of the report may still have
performance problems. As described previously, a poorly written query can cause volumes of index
searches to join to other indexes, causing a high hit ratio (with lots of buffer gets), which is not good
in this case. The database is doing most of its work in memory, but it shouldn’t be doing so much
work. Good hit ratios don’t show the whole picture either. There are always cases where the
database is working very efficiently, but performance is still bad; this report only shows the database
operations, not the application operations, server actions, or networking issues that also impact the
performance of the application.

 Shared Pool Statistics
The Shared Pool Statistics section that follows the Instance Efficiency section (both in the AWR
Report and Statspack) shows the percentage of the shared pool in use and the percentage of SQL
statements that have been executed multiple times (as desired). Combining this data with the library,
parse, and latch data helps you to size the shared pool. The following listing shows sample shared
pool statistics from the Statspack Report (Figure 14-5 showed this for the AWR):

As shown by the data in the preceding listing, at the time of the second snapshot, 76.74 percent of
the shared pool’s memory was in use. Of the statements in the shared pool, only 61.89 percent had
been executed more than once, indicating a potential need to improve cursor sharing in the
application. Adjusting the shared pool settings is covered in detail in Chapter 4.

 Top Wait Events
The Top Wait Events section of Statspack is probably the most revealing section in the entire report
when you are trying to eliminate bottlenecks quickly on your system. This section of the report shows
the Top 5 Wait Events. The 12c AWR Report, as shown in Figure 14-8, now has Top 10 Foreground
Events by Total Wait Time followed by Wait Classes by Total Wait Time instead of the Top 5 Timed
Events that Statspack has in it.

FIGURE 14-8. The AWR Report Top 10 Foreground Events and Wait Classes by Total Wait Time

In Statspack, we get the Top 5 Waits followed by the full list of Wait Events, and the Background
Wait Events. Identifying major wait events helps to target your tuning efforts to the most burning
issues on your system. If TIMED_STATISTICS is TRUE, then the events are ordered in time waited;
if FALSE, then the events are ordered by the number of waits (in testing Microsoft Windows, this still
was ordered by wait time). For example, the following listing shows the Top 5 Timed Events for a
report interval:

In the preceding example, the db file sequential read waits show an incredible number of waits
(almost 400,000,000, which, assuming a 8K block size, is 3.2T of data read) and an incredible
amount of time spent waiting on db file sequential reads. For this report, this wait event was due to a
badly written SQL statement using too many indexes and reading many more blocks than it should
have. Slow disk access contributed to the slow performance because of the large number of blocks
needing to be read (heavy I/O can lead to high SPU as well), but the real issue was the SQL itself (as
usual). After tuning the code for only a single day, over 90% of all disk reads were eliminated. Well
over 5T of reads were eliminated (over 3T just in the SQL statement causing these reads alone) in a
24-hour period.

Here is another example, showing the Top 5 Wait Events for a system:

In the preceding listing, you see a large number of waits related to reading a single block (db file
sequential read) and also waits for latches (latch free). You also see some pretty high waits for some
of the writing to both datafiles and log files, as well as other potential issues with log file contention.
To solve these issues (and to identify which ones are truly major issues), you must narrow them down
by investigating the granular reports within other sections of Statspack or the AWR Report.

The following is a sample listing of waits on this very intense system (not as bad as the preceding
one, though). Note that all waits were in one section.

Statspack and the AWR Reports have sections on Foreground Wait Events, Background Wait
Events, and Wait Events (fg and bg). A partial listing of these three sections is displayed next.
Although only a partial listing, I’ve tried to include many of the most common problems. After the
listing, I will discuss some of the common events that cause problems.

Next are some of the most common problems; explanations and potential solutions are given as
well. These sections are very important and worth their weight in gold!

DB File Scattered Read
The db file scattered read wait event generally indicates waits related to full table scans or fast full
index scans. With the speed of disks and added Flash Cache, less indexing is certainly a wave of the
future (especially on Exadata and Exalogic), but not yet. As full table scans are pulled into memory,
they are scattered throughout the buffer cache since it is generally unlikely that they fall into
contiguous buffers. A large number of db file scattered read waits indicates that there may be missing
or suppressed indexes. This could also be preferred because performing a full table scan may be
more efficient than an index scan. Check to ensure full table scans are necessary when you see these
waits. Try to cache small tables to avoid reading them into memory over and over again. Locate the

data on disk systems that have either more disk caching or are buffered by the OS file system cache.
DB_FILE_MULTIBLOCK_READ_COUNT (default is 128 for Windows or Linux) can make full
scans faster (but it could also influence Oracle to do more of them). You can also partition tables and
indexes so only a portion of the entire table or index is scanned. Slow file I/O (slow disks) can cause
these waits. Correlated to each of the waits are the values for P1,P2,P3=file, block, blocks.

DB File Sequential Read
The db file sequential read event generally indicates a single block read (an index read, for example).
A large number of db file sequential reads can indicate poor table joining orders or unselective
indexing. This number will certainly be large (normally) for a high-transaction, well-tuned system.
You should correlate this wait with other known issues within the Statspack or AWR Report such as
inefficient SQL. Check to ensure index scans are necessary and check join orders for multiple table
joins. The DB_CACHE_SIZE parameter also determines how often these waits show up; hash-area
joins causing problems should show up in the PGA memory but similarly are memory hogs that can
cause high wait numbers for sequential reads or can also show up as direct path read/write waits.
Range scans can read a lot of blocks if the data is spread over many different blocks (density within
blocks could cause issues with range scans, and reverse key indexes could be problematic with range
scans). Loading data in a sorted manner can help range scans and reduce the number of blocks read.
Partitioning can help, as it can eliminate some blocks. Look for unselective indexes that are causing a
lot of db file sequential reads. Locate the data on disk systems that either have more disk caching
and/or are buffered by OS file system cache. Correlated to the waits are the values for P1,P2,P3=file,
block, blocks.

Buffer Busy Waits IDs and Meanings
A buffer busy wait is a wait for a buffer that is being used in an unsharable way. Buffer busy waits
should not be greater than 1 percent. Check the buffer wait statistics section (or V$WAITSTAT) to
find out where the wait is. Follow the solution in this section for buffer busy waits associated with
segment header, UNDO header, UNDO block, data block, and index block. Correlated to the waits
are the values for P1,P2,P3=file, block, id (see the list in the following table from My Oracle
Support). Some people argue that buffer busy waits can be helped by adding more ITL slots
(initrans), but the information shown in the table should make it evident that initrans can help in the
appropriate situation (based on the correlated TX enqueue wait).

Buffer Busy/Segment Header
If the wait is on a segment header, you can increase the free lists or freelist groups (this can even help
single instances) or increase the PCTUSED-to-PCTFREE gap. Use Automatic Segment Space
Management (ASSM). If you are using ASSM, Oracle does this for you by using bitmap free lists.
ASSM also removes the need to set PCTUSED.

Buffer Busy/UNDO Header
If the wait is on an UNDO header, you can address this by adding rollback segments or increasing the
size of the UNDO area.

Buffer Busy/UNDO Block
If the wait is on an UNDO block, you should try to commit more often (but not too often, or you’ll get
“log file sync” waits) or use larger rollback segments or UNDO areas. You may need to reduce the
data density on the table driving this consistent read or increase the DB_CACHE_SIZE. Sizing
initialization parameters is covered in Chapter 4.

Buffer Busy/Data Block
If the wait is on a data block, you can move “hot” data to another block to avoid this hot block or use
smaller blocks (to reduce the number of rows per block, making it less “hot”). Check for scanning
unselective data, and fix queries that are causing this or partition the table to eliminate unnecessary
data scans. You can also increase initrans for a hot block (where users are simultaneously accessing
the same block). Don’t set initrans too high, as this takes 24 bytes per ITL slot, and you only need
enough for the number of users accessing the exact same block for DML at the same time (usually
something like 6 is more than enough). When a DML (INSERT/UPDATE/DELETE) occurs on a
block, the lock byte is set in the block and any user accessing the record(s) being changed must check
the ITL for information related to building the before image of the block. Oracle Database writes
information into the block, including all users who are “interested” in the state of the block, in the
interested transaction list (ITL). To decrease waits in this area, you increase the initrans, which
creates the space in the block to allow multiple ITL slots (for multiple DML user access). The default
is two ITL slots per index or data block. You can also increase the PCTFREE value on the table
where this block exists (Oracle uses space in PCTFREE to add ITL slots up to the number specified
by MAXTRANS when there are not enough slots prebuilt with the specified initrans). The value for
MAXTRANS defaults to 255. Check for correlated TX4 enqueue waits as well. Each ITL slot takes
about 24 bytes of space, so don’t just set initrans to 255, or you may unnecessarily waste space.

Buffer Busy/Index Block
Use reverse key indexes and/or smaller blocks (to reduce the number of rows per block). Note that
reverse key indexes can slow down range scans where you want the data to be sequentially located in
the same block. Check for scanning unselective indexes (bad code/bad indexes). You may want to
rebuild the index or partition the index to decrease the number of accesses to it. Increase initrans for a

hot block (not too high, as this takes 24 bytes per slot) where multiple users are accessing the same
block for DML (see “Tuning and Viewing at the Block Level” later in the chapter for more
information on ITL). Check for correlated TX4 enqueue waits as well.

Latch Free
Latches are low-level queuing mechanisms (they’re accurately referred to as mutual exclusion
mechanisms) used to protect shared memory structures in the System Global Area (SGA). Latches are
like locks on memory that are very quickly obtained and released. Latches are used to prevent
concurrent access to a shared memory structure. If the latch is not available, a latch free miss is
recorded. Most latch problems (waits, misses, and sleeps) are related to the failure to use bind
variables (library cache mutex and shared pool latch), REDO generation issues (redo allocation
latch), buffer cache contention issues (cache buffers lru chain), and hot blocks in the buffer cache
(cache buffers chains). The library cache pin (protects cursors/SQL) and library cache latch (protects
the library cache) are both replaced by mutexes (program objects that negotiate mutual exclusion
among threads). There are also latch and mutex waits related to bugs; check My Oracle Support
(Metalink) for bug reports if you suspect this is the case. If the latch miss ratio is greater than 0.5
percent, you should investigate the issue. If the latch miss ratio is greater than 2 percent and there are
a large number of them, you may have a serious problem.

TIP
The library cache pin (protects cursors/SQL) and library cache latch (protects the library cache)
are both replaced by mutexes (program objects that negotiate mutual exclusion among threads).

Cursor: pin S
The library cache pin (protects cursors/SQL) is replaced with a library cache mutex. The cursor: pin
S wait event happens because one session is waiting on another to increment (or decrement) the
reference count (an exclusive atomic update to the mutex structure itself) to keep track of its use. SQL
with high execution counts can cause this. You can modify a statement and insert a comment into it so
several statements do the same thing but are slightly different (this is the reverse of using bind
variables where you’re trying to use only one statement). Also, see the upcoming “Oracle Bugs”
section for bugs related to this wait event. No blockers exist for this type of wait event. Correlated to
each of the waits are the values for P1,P2,P3=idn, value, where. From value, you can get the session
ID holding the mutex along with the reference count, and from where, you can locate where in the
code the mutex was requested from; this value is helpful to Oracle Support.

Cursor: pin S wait on X
This wait event is more likely to occur than the cursor: pin S wait. If you are not reusing SQL, you
may see many cursor: pin S wait on X waits. A session wants a mutex in S (share mode) on a cursor
(SQL statement), but another session is holding that mutex in X (exclusive) mode. The session in S

mode is usually waiting on a hard parse of a cursor by the other session, which is holding the mutex in
exclusive X mode. You’ll also see the reverse of this: cursor: pin X wait on S. Consider setting
CURSOR_SHARING as described in Chapter 4. This may also occur if the shared pool is under a
heavy load or undersized. Correlated to each of the waits are the values for P1,P2,P3=idn, value,
where. From value, you can get the session ID holding the mutex along with the reference count, and
from where, you can locate where in the code the mutex was requested from; this value is helpful to
Oracle Support.

Library cache: mutex X
As of 11g (and continuing into 12c), the library cache latches are replaced by mutexes. Because there
are many more of these structures now, the wait events become much more specific. The library
cache mutex is generally used when you are pinning or unpinning code into the library cache. Limiting
this behavior is key; this often includes using CURSOR_SHARING and appropriately sizing the
shared pool. Under heavy loads, this wait event can exacerbate an already overloaded CPU.
Correlated to each of the waits are the values for P1,P2,P3=idn, value, where. From value, you can
get the session ID holding the mutex, and from where, you can locate where in the code the mutex was
requested from; this value is helpful to Oracle Support.

Enqueue
An enqueue is a lock that protects a shared resource. Locks protect shared resources such as data in a
record to prevent two people from updating the same data at the same time. Locks include a queuing
mechanism, which is FIFO (first in, first out). Note that Oracle’s latching mechanism is not FIFO.
Enqueue waits usually point to the ST enqueue, the HW enqueue, and the TX4 enqueue. The ST
enqueue is used for space management and allocation for dictionary-managed tablespaces. Use
locally managed tablespaces (LMTs), or try to preallocate extents or at least make the next extent
larger for problematic dictionary-managed tablespaces. HW enqueues are used with the high-water
mark of a segment; manually allocating the extents can circumvent this wait. TX4 is one of the most
common enqueue waits.

TX4 enqueue waits are usually the result of one of three issues. The first issue involves duplicates
in a unique index; you need to roll back to free the enqueue. The second concerns multiple updates to
the same bitmap index fragment. Because a single bitmap fragment may contain multiple ROWIDs,
you need to issue a commit or a rollback to free the enqueue when multiple users are trying to update
the same fragment. The third and most likely issue arises when multiple users are updating the same
block. If there are no free ITL slots when multiple users want to perform DML on a different row of
the same block, a block-level lock could occur. You can easily avoid this scenario by increasing the
initrans to create multiple ITL slots and/or by increasing the PCTFREE on the table (so Oracle can
create the ITL slots as needed). You could also use a smaller block size so there are fewer rows in
the block and thus greater concurrency on the data is allowed. Two other TX4 waits are also less
prevalent: waiting for a prepared statement and inserting a row into an index where another
transaction is splitting the index block. When users want to change the exact same record in a block, a
TX6 lock results. Lastly, while you no longer get long-lasting TM locks, which are table locks when
you don’t index foreign keys, be sure to consider indexing foreign keys to avoid performance issues.
Correlated to the transaction waits are the values for P1,P2,P3=lock type and mode, lockid1, lockid2

(a p2raw and a p3raw will also appear as p2/p3 in hex).

Log File Switch
If you see the log file switch wait event, then all commit requests are waiting for “logfile switch
(archiving needed)” or “logfile switch (chkpt.Incomplete).” Ensure that the archive disk is not full or
slow. DBWR may be too slow due to I/O. You may need to add more or larger REDO logs, and you
may also need to add database writers if the DBWR is the problem.

Log Buffer Space
When a change is made, the change is copied to the log buffer. If the log buffer doesn’t get written fast
enough to the redo logs, it can cause log buffer space issues (things get backed up). Space issues can
also be a problem when you commit a very large amount of data at once (make the log buffer larger
for these types of transactions). This wait usually occurs because you are writing to the log buffer
faster than LGWR can write the buffer contents out to the redo logs, or because log switches are too
slow, but usually not because the log buffer is too small (although this is also the case at times). To
address this problem, increase the size of the log files, or get faster disks to write to, but, as a last
resort, increase the size of the log buffer (in very large systems, it is not uncommon to see a log buffer
in the tens of megabytes). You might even consider using solid-state disks or flash disks for their high
speed for redo logs.

Log File Sync
When a user changes data in a record, the block the record is contained in is copied to the log buffer
(many records/rows are contained in a block). When a commit or rollback is issued, the log buffer is
flushed (copied) to the redo logs by the LGWR (Log Writer). The process of writing the changed data
from the log buffer to the redo log and getting a confirmation that the write successfully occurred is
called a log file sync. To reduce log file sync waits, try to commit more records at once (try to
commit a batch of 50 instead of one at a time if possible). If you commit 50 records one at a time, 50
log file syncs need to occur. Put redo logs on a faster disk or alternate redo logs on different physical
disk arrays to reduce the archiving effect on the LGWR (or use solid-state disks or flash disks). Don’t
use RAID 5 because it is very slow for applications that write a lot; potentially consider using
filesystem direct I/O or raw devices, which are very fast at writing information. Correlated to the
waits are the values for P1,P2,P3=buffer#, unused, unused.

Global Cache CR Request
When using multiple instances (RAC/Grid/Cloud), a global cache cr request wait occurs when one
instance is waiting for blocks from another instance’s cache (sent via the interconnect). This wait says
that the current instance can’t find a consistent read (cr) version of a block in the local cache. If the
block is not in the remote cache, then a db file sequential read wait will also follow this one. Tune the
SQL that is causing large amounts of reads that get moved from node to node. Try to put users who are
using the same blocks on the same instance so the blocks are not moved from instance to instance.
Some non-Oracle application servers move the same process from node to node looking for the

fastest node (unaware they are moving the same blocks from node to node). Pin these long processes
to the same node. Potentially increase the size of the local cache if slow I/O combined with a small
cache is the problem. Monitor V$CR_BLOCK_SERVER to see if an issue like reading UNDO
segments has occurred. Correlated to the waits are the values for P1,P2,P3=file, block, lenum (look
in V$LOCK_ELEMENT for the row where LOCK_ELEMENT_ADDR has the same value as lenum).

Log File Parallel Write
Put redo logs on fast disks (or use solid-state disks or flash disks) and don’t use RAID 5. Separate
redo logs from other data that might slow them down and ensure tablespaces are not left in hot backup
mode. Correlated to the waits are the values for P1,P2,P3=files written to, blocks, requests.

DB File Parallel Write
Fix or speed up the operating system I/O and file system I/O by doing the database writing to
database files. Correlated to the waits are the values for P1,P2,P3=files, blocks, requests/timeouts.

Direct Path Read
Oracle usually does direct path reads to read blocks directly into the PGA. Direct path reads are used
for things such as sorting, parallel querying, and read-aheads. The time here does not always reflect
the true wait time. This is usually an issue with the file I/O (see if any disks are I/O bound using OS
utilities, as described in Chapter 16). Check for sorting on disk instead of in memory (located in the
Instance Statistics section of the report, discussed later in the chapter). Using async I/O could reduce
the elapsed time, although it may not reduce the wait time. Correlated to the waits are the values for
P1,P2,P3=file, start block, number of blocks.

Direct Path Write
Direct path writes are used for such things as direct load operations, parallel DML, and writes to
uncached LOBs (Large Objects). The time here does not always reflect the true wait time. This wait
usually reflects an issue with the file I/O (see if any disks are I/O bound using OS utilities, as
described in Chapter 16). Check for sorting on disk (located in the Instance Statistics section of the
report). Using async I/O could reduce the elapsed time, although it may not reduce the wait time.
Correlated to the waits are the values for P1,P2,P3=file, start block, number of blocks.

Async Disk I/O
Oracle is waiting for the completion of an async write or for an async slave to write. The problem
could arise from I/O issues with the DBWR (Database Writer), the LGWR (Log Writer), the ARCH
(Archiver), and the CKPT (checkpoint process), but is usually some file I/O issue.

Idle Events
Several idle wait events are listed after the output that can be ignored. Idle events are generally listed

at the bottom of each section and include things like SQL*Net messages to or from the client and other
background-related timings. Idle events are listed in the STATS$IDLE_EVENT table. In 12cR1, there
were several idle events that were listed in the Top Waits, but that issue has been corrected in 12cR2.

Some of the most common wait problems and potential solutions are outlined here:

Following are some common idle events (by type of idle event):

 Dispatcher timer (shared server idle event)
 Lock manager wait for remote message (RAC idle event)

 Pipe get (user process idle event)
 Pmon timer (background process idle event)
 PX idle wait (parallel query idle event)
 PX deq credit: need buffer (parallel query idle event)
 PX deq: execution msg (parallel query idle event)
 Rdbms ipc message (background process idle event)
 Smon timer (background process idle event)
 SQL*Net message from client (user process idle event)
 Virtual circuit status (shared server idle event)

Oracle 12c Statspack Report also has a Wait Event Histogram that shows how many of the waits
fall into various buckets. The 12c AWR Report also shows three histogram sections (1 to 64
microseconds, 512 microseconds to 32 ms, 32 ms to 2 sec+), all the way down to 1 microsecond.
This type of histogram is also provided for file I/O by tablespace to show if you are waiting on
mostly short waits with a few very long waits or many medium-length waits. A partial listing for this
is below:

The Enqueue Activity section actually spells out the type of enqueue. For instance, if it is a TX
Enqueue, it will now say TX Transaction or TM for DML. If that isn’t good enough, it goes one step
further and even tells you the type of transaction and then it gives the Requests, Gets, Waits, and a few

other bits of helpful information. See Figure 14-9 for a look at this section in the AWR Report.

FIGURE 14-9. The AWR Report Enqueue Activity section

TIP
Tuning by wait events is one of the best possible reactive tuning methods.

 Oracle Bugs
There are also Oracle bugs (Oracle used to call bugs undocumented features) to watch for that can

cause a large number of wait events. Several bugs are related to the new mutex wait events. The first
diagnostic step to resolve these issues is to apply the latest patchset available in your platform. Most
of the buffer cache issues related to bugs can be avoided by applying these patchsets listed in the
appropriate bug note. The following table summarizes the most common bugs related to Library
Cache problems, possible workarounds, and the patchset that fixes the problem (it will be listed in
the bug note when you go to it; thanks to My Oracle Support for these listings).

The following are “cursor: pin S” waits that are related to bugs and fixed in 11g/12c:

The following are “library cache: mutex X”–related bugs and fixed in 11g/12c (note that one is
also solved above in 12.2):

 The Life of an Oracle Shadow Process
Here is a breakdown of the life of an Oracle shadow process and where it might be waiting as it
lives. This table is adapted from Oracle Doc ID 61998.1 and shows what’s happening in less than
one second within Oracle.

 RAC Wait Events and Interconnect Statistics
The RAC events are listed next in the report if you are running RAC (multiple instances). As stated
earlier, you need to run Statspack or the AWR Report for each instance that you have. For Statspack,
you run the statspack.snap procedure and spreport.sql script on each node you want to monitor
to compare to other instances. The greatest comparison report is one from another node that accesses
the same database. I cover more on tuning RAC in Chapter 11 and will not repeat that information
here. It’s very important to remember that single-instance tuning should be performed before
attempting to tune the processes that communicate via the cluster interconnect. In other words, tune the
system as a single instance before you move it to RAC. For the AWR on RAC, you can run
awrgdrpt.sql to get a global report. However, according to spdoc.txt, section 4.2, for Statspack,
it works only for a single database instance.

Some of the top wait events that you may encounter are listed briefly next and covered in more
detail in Chapter 11. The top global cache (gc) waits to look for include the following:

 gc (global cache) current block busy Happens when an instance requests a CURR data block
(wants to do some DML) and the block to be transferred is in use.

 gc (global cache) buffer busy A wait event that occurs whenever a session has to wait for an
ongoing operation on the resource to complete because the block is in use.

 gc (global cache) cr request Happens when an instance requests a CR data block and the
block to be transferred hasn’t arrived at the requesting instance. This is the one I see the most,
and it’s usually because the SQL is poorly tuned and many index blocks are being moved back
and forth between instances.

Figure 14-10 shows the AWR Report RAC Statistics section. You can see that there are six
instances (nodes) in this cluster. You can also see things like the number of blocks sent/received as
well as how many of the blocks are being accessed in the local cache (93.1 percent) as opposed to on
the disk or in another instance. As you would guess, accessing blocks in the local cache is faster, but
accessing one of the remote caches on one of the other nodes is almost always faster (given a fast
enough interconnect and no saturation of the interconnect) than going to disk (more on this in Chapter
11).

FIGURE 14-10. The AWR Report RAC Statistics section

 Top SQL Statements
The most resource-intensive SQL statements in the database are listed next, in descending order of
CPU, Elapsed Time, Buffer Gets (or Gets), Disk Reads (or Reads), Executions, Parse Calls, Sharable
Memory, and Version Count. Depending on where the problem is, you have plenty of places to
investigate. If you saw many buffer gets as the top wait event (db file sequential reads), then you
would investigate the statements in the descending order of buffer gets (focusing on the worst ones
that are at the top of the list). Because the buffer gets statistic is cumulative, the query with the most
buffer gets may not be the worst-performing query in the database; it may just have been executed
enough times to earn the highest ranking. Compare the cumulative number of buffer gets to the
cumulative number of disk reads for the queries; if the numbers are close, then you should evaluate
the EXPLAIN PLAN for the query to find out why it is performing so many disk reads. Near the end
of the 12cR2 AWR Report (discussed later in the chapter), Oracle has even provided Top SQL with
Top Events (correlating the two).

If the disk reads are not high but the buffer gets are high and the executions are low, then the query
is either using a bad index or performing a join in the wrong order. This is also a system problem, as
you are using a lot of your memory unnecessarily. Here is an example of this listing:

You may also see the internal Oracle data dictionary operations listed as part of these sections.
Your application commands commonly account for the great majority of the buffer gets and disk reads
performed by the database. If the shared pool is flushed between the execution times of the two
snapshots, the SQL portion of the output report will not necessarily contain the most resource-
intensive SQL executed during the period. V$SQL shows SQL for multiple users with the same
statement, and it shows child cursors; V$SQL_PLAN_STATISTICS shows the execution stats for
each cached cursor; and V$SQL_PLAN_STATISTICS_ALL shows the joins plan and stats and many
other performance-related statistics.

The AWR Report has many Top SQL sections. Oracle now shows how many of the Physical Reads
(or Reads) need to be optimized; see the SQL ordered by Physical Reads (UnOptimized) section. An
example of the SQL Statistics section is shown in Figure 14-11. It includes the following subsections:

FIGURE 14-11. The AWR Report SQL Statistics section

 SQL ordered by Elapsed Time
 SQL ordered by CPU Time
 SQL ordered by User I/O Wait Time
 SQL ordered by Gets (buffer gets—usually index reads)
 SQL ordered by Reads (physical reads)
 SQL ordered by Physical Reads (UnOptimized)
 SQL ordered by Executions
 SQL ordered by Parse Calls
 SQL ordered by Sharable Memory
 SQL ordered by Version Count
 Complete List of SQL Text (huge!)

TIP
Tuning the top 25 buffer get and top 25 physical get queries can yield system performance gains of
anywhere from 5 percent to 5000+ percent. The SQL section of the Statspack Report tells you
which queries to consider tuning first. The top 10 SQL statements should not be substantially more
than 10 percent of all of your buffer gets or disk reads. Near the end of the new 12c AWR Report,
the Top SQL is connected with the Top Events to help you even more!

 Instance Activity Statistics
Following the SQL statement listing, you will see the list of changes to statistics from V$SYSSTAT.
Entitled “Instance Activity Stats,” the V$SYSSTAT statistics are useful for identifying performance
issues not shown in the prior sections. Here is a partial Statspack listing with some of the key
sections listed. Note the excellent IMU (in memory undo) statistics; IMUs are covered in “Tuning and
Viewing at the Block Level,” later in this chapter.

These statistics can also be found in the AWR Report. In Figure 14-12, you can see that in 12cR2
the AWR Report now presents a helpful Key Instance Activity Stats section before the full list of stats
in the Instance Activity Stats section.

FIGURE 14-12. The AWR Report Key Instance Activity Stats and Instance Activity Stats (all)

Things to Look for in the Instance Statistics Section
Compare the number of sorts performed on disk to the number performed in memory; increase the
MEMORY_TARGET (if used and if needed to be increased) and the minimum
PGA_AGGREGATE_TARGET (or SORT_AREA_SIZE for earlier versions) or maximum
PGA_AGGREGATE_LIMIT (in 12cR2) to reduce disk sorts (see Chapter 4 for more information). If
physical reads are high, you are probably performing full table scans. If there is a significant number
of full table scans of large tables, evaluate the most-used queries and try to reduce this inefficiency by

using indexes. A large number for consistent gets signals potentially over-indexed or nonselective
index use. If dirty buffers inspected is high (over 5 percent) relative to free buffer requested, the
memory parameters for the SGA may be too small (see Chapter 4 for additional use of these
parameters and settings), or you may not be checkpointing often enough. If leaf node splits are high,
consider rebuilding indexes that have grown and become fragmented if they are causing a
performance degradation. The following sections look at a few of these scenarios.

The following listing shows the applicable rows from this section of the report:

In the preceding example, the database performed almost all sorts in memory during the reporting
interval. Of the table scans performed, most were of very small tables. The table scans (short tables)
are tables that are smaller than 2 percent of the buffer cache in Oracle 12c.

TIP
If many sorts are being performed to disk (greater than 1–5 percent of the total number of rows
being sorted), you may need to increase the initialization parameters associated with sorting. See
Chapter 4 for more information on these.

Key Areas to Consider
A few key areas to consider are explained in this section:

 Consistent gets The number of blocks read from the buffer cache for queries without the
SELECT FOR UPDATE clause. The value for this statistic plus the value of the “db block
gets” statistic constitute what is referred to as logical reads (all reads cached in memory).
These are usually the CURRENT version of the block, but can also be a Consistent Read (CR)
version.

 DB block gets The number of blocks read in the buffer cache that were accessed for INSERT,
UPDATE, DELETE, or SELECT FOR UPDATE statements. These are CURRENT versions of
the block. When these are changed, they are reflected in the “db block changes” value.

 Physical reads The number of data blocks that were not read from the buffer cache. This could

be reads from disks, OS cache, or disk cache to satisfy a SELECT, SELECT FOR UPDATE,
INSERT, UPDATE, or DELETE statement.
By adding the “consistent gets” and “db block gets,” you get the number of logical reads
(memory reads). Using the following equation, you can calculate the buffer (data) cache hit
ratio:
Hit Ratio = (Logical Reads - Physical Reads) / Logical Reads

TIP
The buffer cache hit ratio should be greater than 95 percent. If it is less than 95 percent, you
should consider increasing the size of the data cache by increasing the MEMORY_TARGET (if
used) or increasing the minimum setting for the DB_CACHE_SIZE initialization parameter (given
that physical memory is available to do this).

 Dirty buffers inspected The number of dirty (modified) data buffers that were aged out on the
least recently used (LRU) list. A value here indicates that the DBWR is not keeping up. You
may benefit by adding more DBWRs.

TIP
If “dirty buffers inspected” is greater than 1–2 percent of “free buffer requested,” consider
increasing the database writers as detailed in Chapter 3.

 Enqueue waits (timeouts) The number of times that an enqueue (lock) was requested and the
specific one that was requested was not available. If this statistic is greater than 0, investigate
the locking issues.

 Free buffer inspected Includes buffers that were skipped because they were dirty, pinned, or
busy. If you subtract those values (“dirty buffers inspected” and “buffer is pinned count”) from
this statistic, it leaves the buffers that could not be reused due to latch contention. A large
number would be a good indicator of a too-small buffer cache. There is also a “free buffer
requested” section that you can compare to this.

 Parse count The number of times a SQL statement was parsed (total count). You can also
check the version count of the SQL section to correlate with this one.

 Recursive calls The number of recursive calls to the database. This type of call occurs for a
few reasons—misses in the Dictionary Cache, dynamic storage extension, and when PL/SQL
statements are executed. Generally, if the number of recursive calls is more than four per
process, you should check the Dictionary Cache hit ratio, and see if there are tables or indexes
with a large number of extents. Unless you have PL/SQL, the ratio of recursive calls to user
calls should be 10 percent or less.

 REDO size The size in bytes of the amount of REDO information that was written to the redo
logs. This information can be used to help size the redo logs. Additional information on REDO
sizing is in Chapter 3.

 Sorts (disk) The number of sorts that were unable to be performed in memory and, therefore,
required the creation of a TEMP segment in the temporary tablespace. This statistic divided by
the sorts (memory) should not be greater than 5 percent. If it is, you should increase the
SORT_AREA_SIZE (if used) or PGA_AGGREGATE_TARGET (note that you may need to
increase MEMORY_TARGET if you don’t set a minimum value for
PGA_AGGREGATE_TARGET or you may need to increase MEMORY_TARGET if you
increase the PGA_AGGREGATE_TARGET) parameter in the init.ora file.

 Sorts (memory) The number of sorts that were performed in memory.

 Sorts (rows) The total number of rows that were sorted.

TIP
The “sorts (disk)” statistic divided by the “sorts (memory)” statistic should not be greater than 1–
5 percent. If it is, you should increase the PGA_AGGREGATE_TARGET/PGA_AGGREGATE_LIMIT
(or SORT_AREA_SIZE and/or MEMORY_TARGET) parameter in the initialization file (if physical
memory is available to do this). Remember that the memory allocated for SORT_AREA_SIZE is a
per-user value and PGA_AGGREGATE_TARGET is across all sessions. See Chapter 4 for more
information.

 Table fetch by rowid The number of rows that were accessed by using a ROWID. This
ROWID came from either an index or a “WHERE ROWID = …” statement. A high number
usually indicates a well-tuned application as far as fetching the data goes.

 Table fetch continued row The number of rows that were fetched that were chained or
migrated.

TIP
If chained rows are indicated, the problem needs to be fixed as soon as possible if performance
degradation is evident. Chained rows can cause severe degradation of performance if a large
number of rows are chained. See Chapter 3 for tips on eliminating chaining.

 Table scans (long tables) A long table is one that is larger than
_SMALL_TABLE_THRESHOLD (which is a hidden/undocumented parameter) with no
CACHE clause. The default value of _SMALL_TABLE_THRESHOLD is 2 percent of the
buffer cache in Oracle 12c and since 10g. _SMALL_TABLE_THRESHOLD is a dangerous
parameter to modify without careful benchmarking of the effects. As this affects all tables

accessing it, increasing this parameter significantly, if at all, is unwise, as it can cause blocks
to age more quickly and reduce your hit ratio. In Oracle, this parameter is the number of db
blocks up to which the table is considered small. This threshold is used to determine the
cutover point for direct-read operations. Any object that is smaller than the value of
_SMALL_TABLE_THRESHOLD will not be worth performing direct reads for and thus will
be read through the buffer cache. If the number of table scans per transaction is greater than 0,
you may wish to review the application SQL statements and try to increase the use of indexes.
Oracle does not want a large table to overrun the buffer cache; that’s the reason this parameter
ensures that every table larger than 2 percent of the buffer cache is considered a long table.

TIP
If full table scans are being performed, serious performance issues may result and data hit ratios
will be distorted. These tables need to be identified so the appropriate indexes are created or used.
See Chapters 8 and 9 on query tuning for more information.

 Table scans (short tables) A short table is one that is less than 2 percent of the buffer cache.
Full table scans on short tables are preferred by Oracle.

 Tablespace and File I/O Statistics
The next section of the Statspack Report provides the I/O statistics. Prior to the Tablespace IO Stats
and File IO Stats sections, there is a section that shows the I/O stats grouped by function, including
the types of reads that are occurring (see the listing):

If the I/O activity is not properly distributed among your files, you may encounter performance

bottlenecks during periods of high activity. As a rule of thumb, you don’t want more than 100 I/Os per
second per 10,000 RPM disk (even with a RAID array). If the Av Rd(ms) column (Average Reads per
millisecond) is higher than 14 ms (given a fair amount of reading is being done), you may want to
investigate, since most disks should provide at least this much performance. If rows in this column
show 1,000 ms or more in the Av Rd(ms) column or in the Av Buf Wt(ms) column (Average Buffer
Writes per millisecond), you probably have some type of I/O problem, and if it shows ######
(meaning it couldn’t fit the value in the size of the field), then you have a serious I/O problem of some
kind (this can also be a formatting problem, but anything greater than 1,000 is a problem when a fair
number of reads are being done).

I have seen I/O issues that are related to other problems, yet show up as an I/O problem. For disks
with a lot of memory cached on the disk, the I/O time is often less than 1 ms for a disk where heavy
reading is being done. You should use this section of the report to identify such bottlenecks and to
measure how effectively you have resolved those problems. If you have the choice between 15K
RPM 600G SAS drives and 7.2K RPM 2T SATA disks—always choose the SAS drives unless it’s
for archived information that will almost never be accessed.

Set the DB_FILE_MULTIBLOCK_READ_COUNT parameter in the initialization file (SPFILE or
init.ora) to help improve the read time. This parameter controls the number of blocks that can be
read in one I/O when a full table scan is being performed. In 12c, the default is set to 128, so it should
be sufficient. Setting it can reduce the number of I/Os needed to scan a table, thus improving the
performance of the full table scan. Unfortunately, the optimizer might do more full table scans as a
result of setting DB_FILE_MULTIBLOCK_READ_COUNT (you don’t want this behavior), so you
may also need to set the OPTIMIZER_INDEX_COST_ADJ to a number, such as 10, to eliminate this
problem and drive the use of indexes (be careful with this parameter and see Chapter 4 and Appendix
A before setting it). Here is an example listing from this section of the report:

Here are descriptions of some of the columns appearing in this output:

Following the Tablespace IO Stats section, you’ll see a File IO Stats section, as you can see here:

An example of the AWR Report IO Stats section is displayed in Figure 14-13. You can also see
from this figure that Oracle gives tablespace I/O and file I/O information as well in this section.

FIGURE 14-13. AWR Report IO Stats section

Following the tablespace I/O statistics is a file I/O section breakdown—a very granular look at
how the I/O is being distributed across the datafiles. If one of the datafiles is getting a majority of the
reads and writes, you may be able to improve performance by creating multiple datafiles on separate
disks or by striping the datafile across multiple disks. Also, stay away from RAID 5 (Chapter 3 has
more on this) or you’ll get slower write times. In 12c, Oracle allows you to move “hotter” data to the
fastest portion of the disk. I show you how to do this in Chapter 5 on Enterprise Manager.

TIP
If the number of physical reads is heavier on one physical disk, balancing the data properly or
using ASM correctly will probably improve performance. See Chapter 3 for tips on fixing I/O
problems (and using ASM) with either datafiles or tablespaces.

 Segment Statistics
One of the best data dictionary views that Oracle provides is V$SEGMENT_STATISTICS. This
view quickly became a DBA favorite after its introduction in Oracle9i. Using this view, you can view
Segment Statistics reports for everything you could ever need. Here are the sections that the AWR
Report now shows:

 Segments by Logical Reads
 Segments by Physical Reads
 Segments by Physical Read Requests
 Segments by UnOptimized Reads
 Segments by Optimized Reads
 Segments by Direct Physical Reads
 Segments by Physical Writes
 Segments by Physical Write Requests
 Segments by Direct Physical Writes
 Segments by Table Scans
 Segments by DB Block Changes
 Segments by Row Lock Waits
 Segments by ITL Waits
 Segments by Buffer Busy Waits
 Segments by Global Cache Buffer Busy (RAC only)
 Segments by CR Blocks Received (RAC only)
 Segments by Current Blocks Received (RAC only)

Figure 14-14 shows the section of the AWR Report dedicated to segment statistics. This is
particularly useful for finding what specific INDEX or DATA segment is causing a bottleneck of some
kind. Finding specific ITL waits was also very difficult prior to Oracle providing this additional
detail. Now, in the Segment Statistics section, you can see the exact number of ITL waits by owner,
tablespace name, object name, and subobject name (such as an index partition subobject name).

FIGURE 14-14. The AWR Report Segment Statistics section

TIP
Segment statistics are a great way to pinpoint performance problems to a given table, index, or
partition. Oracle provides many segment-level statistics in both the AWR Report and Statspack.

 Additional Memory Statistics
Following the I/O statistics, both reports list many memory sections, including a section for sizing the
MEMORY_TARGET (which includes the 12cR2 INMEMORY_SIZE area), a section on all of the
dynamic components related to the MEMORY_TARGET, a buffer pool advisory (for sizing the
DB_CACHE_SIZE), buffer cache statistics by pool (default, keep, and recycle), instance recovery
statistics (the number of REDO blocks), shared pool sizing advisory, and the PGA memory statistics
and advisory. I won’t be able to cover all of them here (initialization parameter sizing is covered in

Chapter 4), but I show a sample listing of several of these sections next. The MEMORY_TARGET
advisor (first listing) shows that by setting this above the current setting (Size Factor = 1;
MEMORY_TARGET = 6.56G), I will not get additional benefits given the current load at this time. If
the load changes, these values will change as well.

You can easily see, under Memory Dynamic Components (shown next), exactly where memory is
currently being allocated. Here, you see the SGA_TARGET is 4.272G, the DB_CACHE_SIZE is
2.208G, the PGA_AGGREGATE_TARGET is 2.288G, and the shared pool is just under 1G. The
Statspack Report does not list the In-Memory areas, whereas the AWR Report lists the In-Memory
Area, In Memory RO Extension Area, and In Memory RW Extension Area in the 12cR2 Memory
Dynamic Components section.

The next section is Buffer Pool Advisory. While much of this information is shown in other
sections, the Buffer Pool Statistics section is very detailed in this part of the report. It shows
individual buffer pools for the keep and recycle pools, if they are used (Chapter 4 includes more
information on using these buffer pools). This section also shows information for the different block
sizes if you use multiple block sizes. As with MEMORY_TARGET, I also have an advisor (see the
following listing) that shows my current setting for the DB_CACHE_SIZE or memory allocated for
data buffers (Size Factor = 1; DB_CACHE_SIZE = 2.208G). From this, you can see that I will not get
many additional benefits, given the current load at this time, by increasing this value. If the load
changes, these values will change as well. The hit ratio (99 percent) is shown in this listing.

The next couple of sections (not all displayed here) relate to the memory needed for PGA and
sorting or the PGA_AGGREGATE_TARGET (which is now limited by the 12cR2
PGA_AGGREGATE_LIMIT parameter). There are also sections with shared pool statistics. The
PGA_AGGREGATE_TARGET section is listed here (this value is sufficient with 100 percent of the
hits being done in memory):

The Instance Recovery Stats section is listed next:

The Shared Pool Advisory and the SGA Target Advisory sections follow the Latch section (I’ve
moved them here to present them with the other SGA components). Both of these are set sufficiently at
the current load (a size factor greater than 1.0 yields no additional savings: SHARED_POOL_SIZE =
1G and SGA_TARGET = 4.272G). You may even consider decreasing them if this load is
representative of your system during normal loads.

The next section, SGA Memory Summary, is a great breakdown of the SGA areas that you are
using during this snapshot interval. You can also see this real time by executing a SHO SGA command

in SQL*Plus as a DBA or SYSDBA user.

The AWR Report shows statistics on the following advisories. Figure 14-15 shows the AWR
Report for a 12.2 SGA with In-Memory Area set from SQL*Plus and then the SGA Target Advisory.

FIGURE 14-15. The AWR Report SGA Target Advisory (preceded by SGA with In-Memory Area)

 Instance Recovery Stats
 MTTR Advisory
 Buffer Pool Advisory
 PGA Aggr Summary
 PGA Aggr Target Stats
 PGA Aggr Target Histogram
 PGA Memory Advisory
 Shared Pool Advisory
 SGA Target Advisory
 Streams Pool Advisory
 Java Pool Advisory

TIP
In Oracle 12c, multiple data block sizes are allowed. The AWR Report and/or Statspack shows
statistics for each of these block sizes individually. Many advisories are available to help you size
the SGA that both the AWR Report (see Figure 14-15) and Enterprise Manager (graphically, see
Chapter 5) suggest. These suggestions should be tested first, however, and are not always the best
choice. As Robert Freeman would say, “Your mileage may vary.”

 UNDO Statistics
The next section provides UNDO segment statistics. The first part of this section shows the UNDO
tablespace and the number of transactions and UNDO blocks for the entire tablespace. Next, it gives
information about how many UNDO blocks are utilized and the number of transactions that have
occurred for a given segment (UNDOSTAT ROW). The AWR Report in Oracle provides a summary
and UNDO segment stats, some that were not available in previous versions. This new output is
shown in Figure 14-16.

FIGURE 14-16. The AWR Report Undo Statistics

While I have eliminated the ROLLSTAT information from this version of the book (since most
people now use AUTO UNDO), this information can still be reported in Statspack. By using the
configuration file, sprepcon.sql, you can modify the DISPLAY_ROLLSTAT parameter.

 Latch and Mutex Statistics
Latches are low-level queuing mechanisms (the accurate term is mutual exclusion mechanisms) used
to protect shared memory structures in the SGA (memory). Latches are like locks on memory that are
very quickly obtained and released, consuming roughly 32 bytes. Latches are used to prevent
concurrent access to a shared memory structure. If the latch is not available, a latch free miss is
recorded. The library cache pin (protects cursors/SQL) and library cache latch (protects the Library
Cache) are both replaced by mutexes (program objects that negotiate mutual exclusion among
threads). Most latch and mutex problems (waits, misses, and sleeps) are related to the failure to use

bind variables (library cache mutex waits and shared pool latch waits), REDO generation issues
(redo allocation latch waits), buffer cache contention issues (cache buffers lru chain waits), and hot
blocks in the buffer cache (cache buffers chain waits). There are also latch and mutex waits related to
bugs; check My Oracle Support (Metalink) for bug reports if you suspect this is the case. When latch
miss ratios are greater than 0.5 percent, you should investigate the issue. If the latch miss ratio is
greater than 2 percent and there are a large number of them, you may have a serious problem. The
cache buffers chains (CBC) latch can be shared and is still heavily used in 12cR2.

Two types of latches are available: willing to wait latches (one example is a shared pool latch)
and not willing to wait latches (an example is a redo copy latch). A process that is willing to wait
will try to acquire a latch. If none are available, it spins and then requests the latch again. It continues
to do this up to the _SPIN_COUNT initialization parameter (note that spinning costs CPU). The
_SPIN_COUNT default is 2000 for shared latches (20,000 for exclusive latches found by querying
X$KSLLCLASS—all eight classes are set to 20,000); also note that for mutexes, the default for the
_MUTEX_SPIN_COUNT is 255. If the process can’t get a latch after spinning up to the
_SPIN_COUNT, it goes to sleep, to not do anything for a while, and then wakes up after one
centisecond (one hundredth of a second). It does this twice. The process then starts this whole cycle
again, spinning up to the _SPIN_COUNT and then sleeping for twice as long (two centiseconds).
After doing this again, it doubles again. So the pattern is 1, 1, 2, 2, 4, 4, and so on. It repeats this until
it gets the latch. Every time the latch sleeps, the process creates a latch sleep wait.

Some latches are “not willing to wait.” A latch of this type does not wait for the latch to become
available. It immediately times out and tries to obtain the latch again. A redo copy latch wait is an
example of a “not willing to wait” latch. A “not willing to wait” latch generates information for the
IMMEDIATE_GETS and the IMMEDIATE_MISSES columns of the V$LATCH view and also in the
Statspack Report. The hit ratio for these latches should approach 99 percent, and the misses should
never fall below 1 percent.

By viewing the Latch Activity section of Statspack or querying the V$LATCH view, you can see
how many processes had to wait (a latch miss) or sleep (a latch sleep) and the number of times they
had to sleep. If you see ##### in any field, it usually means bad news, as the value exceeds the length
of the field. V$LATCHHOLDER, V$LATCHNAME, and V$LATCH_CHILDREN are also helpful in
investigating latch issues. Here is a partial listing of the latch activity section; there are six sections
related to latches (Latch Activity, Latch Sleep, Latch Miss, Mutex Sleep Summary, Parent Latch
Statistics, and Child Latch Statistics) for the AWR Report and Statspack Report (this Statspack
Report has no major problems as I am not missing more than 1 percent—partial display latches only):

Figures 14-17 and 14-18 show similar statistics from the AWR Report, including the new Mutex
Sleep Summary in Figure 14-18. Note in Figure 14-17 the new 12cR2 In-Memory column store
latches that mirror some of those in the buffer cache (i.e., IM Global dictionary latch, etc.). Some of
the In-Memory latches include

FIGURE 14-17. The AWR Report Latch Activity section (12cR2 includes many new In-Memory latches)

FIGURE 14-18. The AWR Report Mutex Sleep Summary

 In-Memory area latch
 In-Memory columnar segment hash table latch
 In-Memory columnar ts extent map chunk latch
 In-Memory global pool latch

A mutex (which replaces many types of library cache latches) is used to eliminate the possibility
of two processes simultaneously using a common resource (while one or both are trying to change it);
when one session is changing the resource, the second can’t view it or change it, and when one
session is viewing the resource, the second can’t change it.

Oracle moved from latches to mutexes because a mutex is lighter weight and provides more
granular concurrency than latches. A mutex requires less memory space and fewer instructions.
Mutexes take advantage of CPU architecture that has “compare and swap” instructions (and similar
types of benefits). Without going into a lot of detail, Oracle uses mutexes (mutual exclusion) instead
of library cache latches and library cache pin latches to protect objects. With a mutex, if I have the
resource and you can’t get it after trying a specified number of times (spins), you sleep and try again a
very short time later. In 10g, Oracle also used mutexes for pins, but you could use the undocumented
parameter _KKS_USE_MUTEX_PIN=FALSE to override it. This parameter is no longer available in
12c. A mutex, while similar to a latch, protects a single object, whereas a latch usually protects a
group of objects.

When you receive wait events on cursor: pin S wait on X, you are probably waiting on a hard
parse; the session needs a mutex in share mode on a resource and someone has it in exclusive mode.
A pin is when a session wants to re-execute a statement that’s in the Library Cache. Waits for pins
generally happen with high rates of SQL execution, whereas waiting for a resource held in exclusive
mode (X) usually is related to hard parsing. When a session wants a mutex in S (share mode) on a
cursor (SQL statement), but another session is holding that mutex in X (exclusive) mode, the session
waiting for the mutex in S mode will sleep. After asking enough times and not getting the latch, the
session sleeps for a short time and then it begins trying again to get the mutex. A mutex is also not
FIFO (first in, first out); order is not guaranteed. All of this is for efficiency.

Library cache latches have been replaced with mutexes. In fact, all library cache latches are
replaced with mutexes other than the library cache load lock. The following queries help you find

information related to mutex wait events when you get them. (This is an example of a cursor: pin S
wait on X wait event; check My Oracle Support for your exact wait and related values. Specific wait
events are covered later in this section.)

P1 is the idn, which is the HASH_VALUE of the SQL statement I am waiting on. I can query
V$SQL or V$SQLAREA to get the actual SQL_TEXT:

P2 is the mutex value, which is the session id (higher bits) and reference count (which is 0 if I am
sleeping/waiting for an X mode holder):

I can also go to V$SESSION to see the blocker:

P3 is the location in the code where the wait is occurring. Knowing this location can be very
helpful when Oracle Support is helping you with an issue. The library cache: mutex X wait event has
the same values for P1, P2, and P3 according to Oracle’s documentation. You can also investigate the
V$MUTEX_SLEEP and V$MUTEX_SLEEP_HISTORY views for more information. You will
generally find that the mutex type is almost always a library cache mutex or cursor pin mutex when
querying these views. Cursor parent and cursor stat mutexes also show up in these views. See the
following sample queries showing mutex sleeps:

One thing to remember about sleeping processes: These processes may also be holding other
latches/mutexes that will not be released until the process is finished with them. This can cause even
more processes to sleep while waiting for those latches. So you can see how important it is to reduce
contention as much as possible. The following table explains the columns in this part of the report:

The following are some latches and mutexes to look for and remember.

Latch Free When latch free is high in the wait events section of the report, then problems need to be
investigated in the latch section of the report. This section helps you look for which latches are
problematic. The problem could be a sleeping latch (couldn’t get the latch and now it’s sleeping until
the next try) or a spinning latch (waiting and retrying based on spin count).

Library Cache Mutex, Cursor Pin Mutex, and Shared Pool Latch The Library Cache is a hash
table you access through an array of hash buckets (similar to the buffer cache). The memory for the

Library Cache comes from the shared pool (the Dictionary Cache used for Oracle internal objects is
also part of the shared pool). The library cache mutex serializes access to objects in the library
cache. Every time a SQL or PL/SQL procedure, package, function, or trigger is executed, this library
cache mutex is used to search the shared pool for the exact statement so it can be reused. A single
shared pool latch protected the allocation of memory in the Library Cache; seven child latches are
available for this.

Contention for the shared pool latch, cursor pin mutex, or library cache mutex primarily occurs
when the shared pool is too small or when statements are not reused. When an executable form of a
SQL cursor is found in the shared pool, it is a soft parse and it is reused; when it’s not found, it’s a
hard parse or library cache miss (which requires more resources, CPU, and library cache
latches/mutexes because it has to rebuild the executable form of the SQL). Per the Oracle 12c
documentation: “Reuse of shared SQL for multiple users running the same application avoids hard
parsing (reparsing a statement). Soft parses provide a significant reduction in the use of resources,
such as the shared pool and library cache latches.” Statements are not generally reused when bind
variables are not used. Common but not exact SQL can flood the shared pool with statements.
Increasing the size of the shared pool, at times, only makes the problem worse. You can also set the
value of the initialization parameter CURSOR_SHARING=FORCE to help fix this issue and to
reduce problems when bind variables are not used. CURSOR_SHARING=FORCE substitutes bind
variables for literals (not just reduced latch/mutex contention, but also less shared pool use in the
library cache area and a faster parse). Note that in 12c, Oracle uses adaptive cursor sharing, which
enables a SQL statement to use multiple execution plans (which is also true of those that contain bind
variables).

If you are not reusing SQL, you may see quite a few cursor: pin S wait on X wait events, in which
waiting on a hard parse, a session wants a mutex in S (share) mode on a cursor (SQL statement), but
another session is holding that mutex in X (exclusive) mode. You’ll also see the reverse of this,
cursor: pin X wait on S. The shared pool latch and library cache mutex issues also occur when space
is needed in the Library Cache when the shared pool is too small for the number of SQL statements
that need to be processed. A hard parse occurs when a new SQL statement is issued that does not
exist in the shared pool currently because it has to be parsed. Oracle has to allocate memory for the
statement from the shared pool, as well as check the statement syntactically and semantically. A hard
parse is very expensive in terms of both CPU used and the number of mutexes that need to be used. A
soft parse occurs when a session issues a SQL statement that is already in the shared pool, and it can
use an existing version of that statement. As far as the application is concerned, it has asked to parse
the statement. While space is being freed up to load a SQL or PL/SQL statement, the shared pool latch
(held for allocate and free) is being held exclusively and other users must wait. You can help to
reduce contention by increasing the shared pool or by pinning large SQL and PL/SQL statements in
memory using the DBMS_SHARED_POOL.KEEP procedures to avoid reloads. Pinning helps reduce
many of the mutex and latch waits and ORA-4031 issues as well.

You can increase the number of the library cache hash table bucket count by setting
_KGL_BUCKET_COUNT (see Appendix A for more information on the undocumented initialization
parameters); note that 9 (the default) puts this at ((2 to the 9th power)*256)–1 = 131,071), which
should be more than enough for most systems. The _KGL_LATCH_COUNT parameter (which is set
to 0) is still in 12c. Remember that you should never set the underscore parameters without direction
from Oracle Support. In 12c, each library cache bucket (131,071) is protected by a mutex!

Note that a count of X$KSMSP shows how many shared pool pieces there are; each row in the
table represents a piece of memory in the shared pool. Columns to note are KSMCHCOM (describes
the piece of memory), KSMCHPTR (the physical address of the piece of memory), KSMCHSIZ
(piece size), and KSMCHCLS (the state/class of the piece of memory). Useful values of KSMCHCLS
include the following:

 recr A re-creatable piece currently in use that can be a candidate for flushing when the shared
pool is low in available memory.

 freeabl A freeable piece of memory that is currently in use and not a candidate for flushing but
can be freed.

 free A free unallocated piece of memory.

 perm A permanently allocated piece of memory that can’t be freed without deallocating the
entire heap.

The shared pool architecture is similar to the buffer cache in that there are a fixed number of hash
buckets (that grow to the next level as needed) protected by a fixed number of library cache mutexes
(unless changed, as noted earlier). The number of buckets and latches is often (but not always) prime
to avoid hashing anomalies. At startup, the database allocates 509 hash buckets and a library cache
mutex for each bucket rounded up to the nearest prime number. As the number of objects in the library
cache increases, Oracle increases the number of hash buckets in the following order: 509, 1021,
2039, 4093, 8191, 16381, 32749, 65521, 131071, and 4292967293. You can set the number of hash
buckets by setting _KGL_BUCKET_COUNT as described earlier. When installed, the default value
was 9, which gave me a Library Cache hash table bucket count of 131,071, and a library cache mutex
count of 131,071 (many more than in the past; this should reduce a lot of contention). A single hash
bucket can contain multiple SQL statements and potentially long hash chains, which explains why you
can see long library cache mutex hold times even when no space allocation is needed and no LRU list
search is involved.

Also note that a SQL hash value is not the only value used in determining which hash bucket is
used; the initial tree starts with object handles, which include name, namespace (CURSOR is the
main namespace; others include trigger and cluster), lock owner, lock waiter, pin owner, pin waiter,
and other pre-SQL items. The object handle then points to the next level of the tree, the data heap
itself (where the statement itself is for a cursor), which includes the type of heap, name (for example,
SCOTT.EMP), flags (things like wrapped, valid), tables (for example, privilege, dependencies), and
data blocks (everything else—the SQL text). This means that you can have hundreds of identical SQL
statements all referenced by different users, and they will be distributed fairly evenly across the hash
buckets with no super-long hash chains full of identical SQL, but you will need a larger shared pool.
If the statement is not in the Library Cache, the library load lock latch (this is still a latch, and the
only library cache latch that I saw in 12c) is used to load it (the library cache mutex and shared pool
latch are also needed in this process).

If the preceding paragraphs are complex or confusing, just focus on this paragraph. The main key
to limiting latch and mutex issues on the library cache mutex or shared pool latch is to use bind
variables, to use cursor sharing, to parse things once and execute them many times, to use
SESSION_CACHED_CURSORS to move the cursors from the shared pool to the PGA, and, if you
are sharing cursors and using bind variables, to increase the shared pool (although if you are not

sharing statements, reducing it may help). Lastly, try not to do any DDL (ALTER, GRANT,
REVOKE…) that would cause things to be invalidated and/or reloaded.

NOTE
I’ve seen more 10–100G+ shared pools in Oracle 12c than ever before.

Redo Copy Latch The redo copy latch is used to copy REDO records from the PGA into the redo log
buffer. The number of redo copy latches has a default of 2*CPU_COUNT, but you can set this using
the _LOG_SIMULTANEOUS_COPIES initialization parameter (the default was 2 copy latches on my
system, but I’ve seen it set to 16 as well). Increasing this parameter may help to reduce contention for
the redo copy latch.

Redo Allocation Latch The redo allocation latch allocates the space in the redo log buffer. You can
reduce contention by increasing the size of the log buffer (LOG_BUFFER) or by using the
NOLOGGING feature, which reduces the load on the redo log buffer. You should also try to avoid
unnecessary commits.

Row Cache Objects The row cache objects latch contention usually means that contention is present
in the data dictionary. This contention may also be a symptom of excessive parsing of SQL statements
that depend on public synonyms. Increasing the shared pool usually solves this latch problem. You
usually increase the shared pool for a library cache mutex problem well before this one is a problem.
Also, according to My Oracle Support (Metalink Note 166474.1), “Use Locally Managed tablespaces
for your application objects, especially indexes. This will decrease Row Cache locks in a surprising
fashion and consequently avoid common hanging problems.”

Cache Buffers Chains (CBC) The cache buffers chains (CBC) latch is needed to scan the SGA
buffer cache for database cache buffers. In Oracle 12c, the CBC can be shared, eliminating much of
the contention. Tuning the code to use fewer buffers (and hence fewer CBCs) is the best solution to
eliminating problems with this latch. Also, reducing the popularity of the block reduces the length of
the hash chain (as discussed in the next item).

CBC latches are used when searching for, adding, or removing a buffer from the buffer cache. The
buffer hash table, X$BH, holds headers (on a hash chain protected by a CBC latch) that point to
DB_BLOCK_BUFFERS (data block buffers) in memory. Buffers are “hashed to a chain,” and the
_DB_BLOCK_HASH_BUCKETS parameter defines the number of chains (buckets) to which a buffer
will hash. The more buckets (chains) present, the smaller the “chain” length will be with buffers
hashed to the same chain (as long as the number is prime). The CBC latches are used to protect a
buffer list in the buffer cache. If _DB_BLOCK_HASH_BUCKETS was not set to a prime number in
the past, you probably had many buffers hashed to one chain and none hashed to others (causing hot
blocks to tie up other blocks on the chain) because of hashing anomalies.

In 12c, my _DB_BLOCK_HASH_BUCKETS was set to a default of exactly 1M (1,048,576 =
1024*1024), which was about 4× the number of _DB_BLOCK_BUFFERS (set by Oracle behind the
scenes based on the DB_CACHE_SIZE). Contention on this latch could indicate a “hot block” or bad

setting for _DB_BLOCK_HASH_BUCKETS prior to 9i. Prior to version 8i, Oracle made this the
prime number higher than DB_BLOCK_BUFFERS/4, which worked pretty well, although multiple
blocks still got hashed to the same chain. In 8i, Oracle made this DB_BLOCK_BUFFERS*2, but they
forgot to make it prime (which, because it is a hashed value, caused many blocks to be hashed to the
same chain); many users experienced severe problems with this latch (you can set
_DB_BLOCK_HASH_BUCKETS = next prime(DB_BLOCK_BUFFERS*2) to solve this issue in
prior versions). Since 9i, Oracle sets it to a value reducing this contention, and there are enough
“hash latches,” as people often call them. Your mileage may vary, so I continue to leave this section in
the book. I also leave very important notes about other versions since most DBAs that I know still run
multiple versions of the Oracle database. You will access many hash latches (latches used to scan the
hash chain) because you need one every time you access a block, but you should not have a miss ratio
of over 1–2 percent on this latch. In 12c, these hash latches (CBC latches) are shared, and the hash
chain can be scanned in both directions.

CR Versions for a Given Block Only one block is CURRENT, and no more than six other CR
versions of the block are allowed. All of them are located on the same doubly linked (can move both
ways) hash chain. In 12c, you can see more than six versions of a block in memory for high volumes
of SELECTs to a given block. They are in multiple states, but only six are in a state=3 (CR), and only
one is a state=1 (CURRENT). The number of CR blocks is limited to six as any DML activity clears
or as more DML tries to be performed in a given block. For DML, you need the CURRENT version
(of which there is only one CURRENT version of any given block), and for a read query, you can use
the CURRENT version if it is not being used, and/or you can build a CONSISTENT READ (CR)
version by applying any UNDO needed to the CURRENT version of a changed block after cloning it.
This process of cloning a block to build a CR version may include: reading the ITL, mapping to the
UNDO header (the ITL also maps directly to the UNDO block), and applying the UNDO to get the
correct CR version that you need, which happens when IMU is not used (more on IMUs later in
“Tuning and Viewing at the Block Level”). When IMU is used, everything happens at the block level
in memory until a commit or rollback. When you have multiple versions of a block (one CURRENT
and a few CR versions), the hash chain gets longer, and the CBC latch gets held longer as it scans the
hash chain. This is why Oracle now limits the number of clones (CR versions) of a block (limits the
chain length). Although you can change this by setting _DB_BLOCK_MAX_CR_DBA, which is the
maximum allowed number of CR buffers for a given DBA (data block address), it’s a setting that
performs well out of the box.

Hot Blocks Blocks often accessed in the buffer cache cause “cache buffers chains” latch issues, or
hot blocks. Hot blocks may also be a symptom of poorly tuned SQL statements. A hot record creates a
hot block that can cause issues for other records inside that block as well as any block “hashed” to
the same chain. To find the hot block, query V$LATCH_CHILDREN for the address and join it to
V$BH to identify the blocks protected by this latch (doing this shows all blocks affected by the hot
block). You can identify the object by querying the DBA_EXTENTS view according to the file# and
DBABLK found in V$BH. Using a reverse-key index, if the hot block is on an index, moves
sequential records to other blocks so they are not locked up by the hot block in the chain. If the hot
block is the index root block, a reverse-key index won’t help.

Cache Buffers LRU Chain The cache buffers lru chain latch is used to scan the least recently used

(LRU) chain containing all of the blocks in the buffer cache. A small buffer cache, excessive buffer
cache throughput, many cache-based sorts, and the DBWR not keeping up with the workload are all
culprits that can cause this issue. Try to fix the queries that are causing the excessive logical reads
and/or use multiple buffer pools.

Some of the most common latch problems and potential solutions are described in the following
table (note that there is also a shard latch if using 12cR2 sharding):

Since Oracle9i (for people with multiple versions of Oracle to manage), you could configure LRU
latches so each buffer pool has n CPUs’ worth of latches. For example, if the system has eight CPUs,
you should set

buffer_pool_keep = buffers:XXXX, lru_latches=8
buffer_pool_recycle = buffers:YYYY, lru_latches=8

Here, XXXX and YYYY are the desired number of buffers in the keep and recycle pools, respectively.
There is really no reason to have more LRU latches than the number of processes that may be
concurrently executing.

In 12c, the parameters are now DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE,
and both accept only the size in bytes (you cannot specify LRU_LATCHES):

db_keep_cache_size= 4G (you can also use K or M, and the default is 0)
db_recycle_cache_size=1G (you can also use K or M, and the default is 0)

Some latch problems have often been bug related in the past, so make sure you check My Oracle
Support (Metalink) for issues related to latches. Any of the latches that have a hit ratio less than 99
percent should be investigated. Some of the more common latches on the problem list were detailed
in this chapter and include the cache buffers chains, redo copy, library cache mutex, and the cache
buffers lru chain.

TIP
Latches are like locks on pieces of memory (or memory buffers). If the latch hit ratio is less than
99 percent, you have a serious problem because not even the lock to get memory can be gotten.
Oracle 12cR2 has a shard latch (for sharding), and many In-Memory latches, including in-memory
area latch, in-memory columnar segment hash table latch, in-memory columnar ts extent map
chunk latch, and in-memory global pool latch.

 Tuning and Viewing at the Block Level (Advanced)
Infrequently, when you have a hot block or some other block-level issue, you may need to find the
exact location of the block for a given object and the number of versions (as was discussed in the
preceding section). Here, I briefly discuss some of the block-level Oracle details.

CAUTION
This section should not be used by beginners.

An internal table called the buffer hash table (X$BH) holds block headers. Blocks are linked to a
hash chain that is protected by a CBC latch (cache buffers chains latch). This links to the actual
address located in memory (the memory set up with DB_CACHE_SIZE, SGA_TARGET, or
MEMORY_TARGET, if used, which is the cache used for data). For a given block in Oracle, only
one version of a block is CURRENT, and there are no more than five other CR versions of the block.
So only six versions of a given block (maximum) are in memory at a time. Later in this section, I tell
you how to control this with an undocumented parameter. Oracle recommends that you not use the
undocumented parameters unless you are directed by Oracle Support or your database may not be
supported.

When you perform a DML transaction (INSERT, UPDATE, or DELETE), you always need the
CURRENT version of a block. Oracle has something called an in-memory undo (IMU), which can
give you some hard-to-understand results when you are viewing information at the block level
(whether it’s dirty or not). IMU was new as of 10g; what it means is that the UNDO records and
REDO records for some transactions are stored in memory until the transaction commits. When a CR
block is needed, the database first checks to see if the UNDO records are stored in the memory pool;
if so, it applies the UNDO and REDO records from memory instead of retrieving them from the
UNDO segments and redo logs/buffers (doing this in memory is much faster). When you are querying
a block for the first time, you always use the CURRENT version of a block. If the block is being used,
you build a clone of the block called a CONSISTENT READ (CR) version by applying any UNDO
needed to the CURRENT version of the block to get it to a point in time that makes it useful to you
(perhaps you need a version of the block before DML was performed and not committed by another

user). This complex, Oracle-patented process may include reading the ITL and mapping the record to
the UNDO header, or else mapping it directly to the UNDO block and then applying the UNDO to get
the correct CR version that you need. Let’s take a look at how this happens:

1. User 1 updates a record in block 777 (user 1 has not committed).
2. User 2 queries the same block and sees that the lock byte is set for a row being queried.
3. User 2 goes to the ITL portion of the block and gets the XID (transaction ID).
4. The XID maps to the UNDO block, which holds the information before the update was

performed. If using IMU, then a check is done to see if the UNDO for this transaction is
available in memory before going to the UNDO block.

5. A clone of the block is made (call it block 778).
6. The UNDO information is applied to the block, rolling it back to where it used to be (its

contents go to a past state, including the SCN).
7. Block 777 is a CURRENT block.
8. Block 778 is a CONSISTENT READ block before the user 1 update occurred.

9. If another user performs a query against the same block before the commit, that user can also
read the CR version.

Note especially the fact that the block is not rolled back to what it was, but it is rolled forward (to
what it used to be). While the result is the same, how Oracle performs this operation is critical to
understanding how Oracle works. Oracle blocks are always moving forward in time (this is why the
REDO works if the machine gets turned off—it’s always applying things forward sequentially). There
are also links to all blocks for the LRU and LRU-W (least recently used–write) chains to help make
buffer replacement and writing much faster. These links are also maintained in the buffer headers.

Here are some nice (rarely found) queries to get block-level information.
Finding the block number (56650) for a given object (EMP1)

Finding the versions (1 CURRENT and 5 CR versions) of a block for a given block number (56650)

NOTE
In the preceding listing, state=1 is CURRENT and state=3 is CR; only the CURRENT block is
(can be) dirty.

Finding the setting for the maximum CR versions of a block

Dumping what’s inside the block for EMP1

TIP
Never go to the block level unless you absolutely have to go there. The block level is a great place
to find hot block and ITL issues, but it takes a lot of time and energy on the part of an advanced
DBA to pinpoint problems at this level.

 Dictionary and Library Cache Statistics

The next two sections contain the Dictionary and Library Cache information. Listed first is all of the
data dictionary information. This data pertains to all of the objects in the database. This information
is accessed for every SQL statement that gets parsed and again when the statement is executed. The
activity in this area can be very heavy. Maintaining a good hit ratio is very important to prevent
recursive calls back to the database to verify privileges. You can also evaluate the efficiency of the
Dictionary Cache by querying the V$ROWCACHE view. The query that follows shows the
information that the Statspack Report lists for this section of the report:

The second part of this section of the report deals with the performance of the Library Cache.
These statistics are generated from the V$LIBRARYCACHE view. The Library Cache contains the
shared SQL and PL/SQL areas. These areas are represented by the BODY, SQL AREA,
TABLE/PROCEDURE, and TRIGGER values (these are values in the NAMESPACE column). They
contain all of the SQL and PL/SQL statements that are cached in memory. The other names are areas
that Oracle uses. If your PCT MISS value is high in this section of the report, you may need to
improve cursor sharing in your application or increase the size of the shared pool (as discussed in the
“Top Wait Events” section of this chapter). The following listing shows sample data for this section:

Here is what the columns mean in this part of the report:

TIP

If the pinhit ratio is less than 0.95 when the report is run for an extended period of time, the
SHARED_POOL_SIZE is probably too small for your best system performance. If the reloads are
greater than 1 percent, this also points to a SHARED_POOL_SIZE that is too small.

 SGA Memory Statistics
Following an SGA memory summary (from V$SGA) and a listing of the memory changes during the
snapshot interval, the reports both list the database initialization parameters in use at the beginning
and end of the report.

Taken as a whole, the report generates a significant amount of data, allowing you to develop a
profile of the database and its usage. By drawing on the initialization, file I/O, and SGA data, you can
develop an understanding of the major components in the database configuration. Here is a sample
listing of this section of the report:

 Nondefault Initialization Parameters
This last section shows the parameters in the initialization file that are set to a value other than the
default (see Figure 14-19). The list is generated by querying the V$PARAMETER view where the
default column is equal to FALSE. This list can be used as a reference. While you are tuning the
database, these parameters can provide a record of how the database performed with certain values.
The output that follows shows this section of the Statspack Report:

FIGURE 14-19. The AWR Report initialization parameters

Top 15 Things to Look for in AWR Report and Statspack
Output
As you’ve seen throughout this chapter, AWR Report is much better than Statspack. Some DBAs still
use Statspack (and it’s free), so I’ve included it in this chapter. Many DBAs already know how to use
Statspack but are not always sure what to check regularly. Remember to separate OLTP and batch
activity when you run Statspack because they usually generate different types of waits. The SQL script
spauto.sql can be used to run Statspack every hour on the hour. See the script in
$ORACLE_HOME/rdbms/admin/spauto.sql for more information (note that
JOB_QUEUE_PROCESSES, which is the maximum number of job queue slave processes, must be
greater than 0). Since every system is different, this is only a general list of things you should
regularly check in your Statspack or AWR output:

 Top 10 foreground wait events in AWR (timed events) or Top 5 Timed Events in Statspack
 Top Background Wait Events
 Load profile (includes In-Memory)

 Other wait events (working their way to the Top 5)
 Latch waits/Mutex sleeps (in 12cR2, there are many In-Memory latches)
 Top SQL
 Instance efficiency hit ratios out of the ordinary
 Instance activity
 File I/O and segment statistics
 Memory allocation
 Buffer waits
 Initialization Parameters (near the end of each report)
 In the AWR Report, the Active Session History (ASH) Report (described a bit later), which

includes sections for Top SQL with Top Events and Top Event P1/P2/P3 Values
 In the AWR Report in 12cR2, GoldenGate and Streams Replication sections (if relevant to

your system)
 Use of In-Memory effectively

A final note on the top 10 foreground wait events is to look for bugs when you have a high number
of wait events that are normally not so high. You can only do this if you are regularly monitoring your
reports or if you have captured baselines for comparisons. Take a look at the bug in Figure 14-20
from My Oracle Support that shows the behavior of a high number of “Library Cache: Mutex X” on
Koka Cursors (LOBs) Non-Shared that dominates the Top 5 Wait Events. This is a clue you may have
a bug to search for or a real bad SQL statement. See the appropriate section of this chapter for how to
fix major problems depending on the wait event.

FIGURE 14-20. Listing for a “Library Cache: Mutex X” heavy wait events

 Managing the Statspack Data
If you are one of the holdouts still using Statspack, you should manage the data generated by Statspack
to guarantee that the space usage and performance of the Statspack application meets your
requirements as the application data grows. Managing Statspack data includes the following steps:

1. Regularly analyze the Statspack data. At a minimum, you should analyze the Statspack schema
prior to running the spreport.sql script:

2. Purge old data. Because you cannot generate valid interval reports across database
shutdown/startup actions, data prior to the last database startup may not be as useful as the
most current data. When the data is no longer needed, purge it from the tables. Oracle provides
a script, sppurge.sql, to facilitate purges. The sppurge.sql script, located in the
/rdbms/admin directory under the Oracle software home directory, lists the currently stored
snapshots and prompts you for two input parameters: the beginning and ending snapshot
numbers for the purge. The related records in the STATS$ tables are then deleted. Due to the
size of the transactions involved, databases using rollback segments should force the session to
use a large rollback segment during the deletes:

The sppurge script prompts you to back up your old statistics before purging them. You can
back up the data by exporting the PERFSTAT schema.

3. Truncate the Statspack tables when the data is not needed. Old statistical data may no longer be
relevant, or you may have imported the old statistics during database migrations or creations.
To truncate the old tables, execute the sptrunc.sql SQL*Plus script from within the
PERFSTAT account. The script is located in the /rdbms/admin directory under the Oracle
software home directory.

4. Include the Statspack tables in your backup scheme. If you are using Export, Oracle provides a
parameter file named spuexp.par to assist you.

5. Include the Statspack tables in your space monitoring procedures.

 Upgrading Statspack
To upgrade old Statspack data to a new version of the database, execute the scripts provided by
Oracle. Oracle does not support upgrading Statspack directly from 8.1.6 to 9.0.1 or 9.2 to 10.2 or 11;
you must go through multiple steps. The scripts only upgrade your current schema to the next release
level, for example 9.0.1 to 9.2, so you might have to run multiple scripts to complete the upgrade
(note that even upgrades from Oracle8 are included with the 12cR2 release):

1. Upgrade from the 9.0 Statspack objects to 9.2 by executing the spup90.sql script.
2. Upgrade from the 9.2 Statspack objects to 10.1 by executing the spup92.sql script.
3. Upgrade from the 10.1 Statspack objects to 10.2 by executing the spup10.sql script.
4. Upgrade from the 10.2 Statspack objects to 11 by executing the spup102.sql script.
5. Upgrade from the 11.01 Statspack objects to 11.2 by executing the spup1101.sql script.
6. Upgrade from the 11.2 Statspack objects to 11.2.0.2 by executing the spup11201.sql script.
7. Upgrade from the 11.2.0.2 Statspack objects to 12.1 by executing the spup112.sql script.
8. Upgrade from the 12.1 Statspack objects to 12.1.0.2 by executing the spup12102.sql script.
9. Upgrade from the 12.1.0.2 Statspack objects to 12.2 by executing the spup12200.sql script.

 Deinstalling Statspack
Since Statspack includes public synonyms as well as private objects, you should remove the
application via a SYSDBA-privileged account. Oracle provides a script, spdrop.sql, to automate
the deinstallation process. From within the /rdbms/admin directory under the Oracle software home
directory, log in to SQL*Plus and execute the script as shown in the following listing:

The spdrop.sql script calls scripts (spdtab.sql, spdusr.sql) that will drop the tables, the
package, the public synonyms, and the PERFSTAT user. To reinstall Statspack, execute the
spcreate.sql script, as shown earlier in this chapter.

Quick Notes on the New ADDM Report
You can also use the Automatic Database Diagnostics Monitor (ADDM) Report, called
addmrpt.sql, to analyze a snapshot range. Run the addmrpt.sql script from SQL*Plus (the script is
located in the $ORACLE_HOME/rdbms/admin directory). The script provides you with a list of
snapshots from which you can generate the report (like Statspack or the AWR Report from
SQL*Plus). You select a begin snapshot and an end snapshot, and finally, you define the name of the
report that you want addmrpt.sql to create. The addmrpt.sql script then runs the ADDM analysis
on the snapshot pair you entered and provides the output analysis report. Using ADDM through
Enterprise Manager Cloud Control (covered in Chapter 5) is much more detailed and is
recommended. The resulting report contains a header and then detailed findings. The command to run
it is listed here, and following that command is the header; yours should look much like this example
(note that if you shut down between snapshots of the AWR or ADDM that you are running the report
for, it will result in an ORA-20200 error—instance shutdown between snaps):

Now look at the report output:

A summary information section is related to the ADDM analysis. Following the header and
individual findings, the summary is listed. An example of one such finding is seen here:

If SQL issues are discovered, the finding looks like the one shown here, suggesting that I run the
Tuning Advisor to tune the statement:

A few interesting things appear in this report. First, the finding indicates that the problem
identified had a 51 percent overall impact in the DB time. In other words, the ADDM report is sorting
its findings according to those processes that are consuming the most database time. I see, looking at
this finding further, that it is a SQL statement that is causing problems (usually the source of most
issues), and ADDM suggests that I tune the statement. Oracle gives me the SQL address and hash
value so I can find the SQL statement in the SQL area. Note that the ACTION suggests that I run the
SQL Tuning Advisor to generate some suggested tuning actions on the SQL statement in question. In
Chapter 5 and Chapter 8, I discuss the SQL Tuning Advisor and show you just how it can help you
tune SQL statements in Oracle Database 12c.

If not enough work has been done on the instance or if not enough work is being done currently,
instead of giving you suggestions, it displays the following:

The ADDM report is a good start for getting tips for tuning. As with any new utility, there is room
for improvement and growth in future releases of Oracle, and it is best used from the Enterprise
Manager interface if possible. I have not addressed other aspects related to ADDM in this section,
such as user-defined alerts and the SQL Tuning Advisor, which I discussed in Chapter 5 and Chapter
8.

While ADDM is helpful, there is also an Active Session History (ASH) Report at the end of the
AWR Report with a few very worthwhile sections to explore. My favorites are Top SQL with Top
Events (Figure 14-21) and Top Event P1/P2/P3 Values (Figure 14-22).

FIGURE 14-21. The ASH Report Top SQL with Top Events section

FIGURE 14-22. The ASH Report Top Event P1/P2/P3 Values section

TIP
The ADDM Report can be a helpful tuning utility, but ADDM is better used through Oracle
Enterprise Manager for maximum benefits. The ASH Report also has some nice areas worth
investigating, including my favorites: Top SQL with Top Events and Top Event P1/P2/P3 Values.

Scripts in 12cR2
Here is a listing of scripts that you will find in 12cR2. Please refer to the documentation for a
complete description of each of these.

NOTE
You must use the specific version of Statspack with that version of the database (for instance, you
must use the 12.2 Statspack schema with the 12.2 database). Also note that spdoc.txt is the
complete instruction and documentation file for Statspack.

Tips Review
 Allocate at least 120M for the initial creation of the PERFSTAT schema’s objects. Oracle 12c

requires approximately the same space as Oracle 11g. You must license the Oracle
Diagnostics Pack to access the AWR dictionary views necessary for the AWR Report.
Statspack does not include In-Memory information, but the 12cR2 AWR Report does.

 Be sure the TIMED_STATISTICS database initialization parameter is set to TRUE prior to
gathering statistics.

 Pin the Statspack package following database startup if you plan to run the SNAP procedure on
a scheduled basis.

 A second report, sprepsql.sql, can be used for additional research into the problem SQL
statements identified via the spreport.sql report.

 If you choose to run both Statspack and the AWR, ensure that you stagger the AWR data
collection from the Statspack collection by at least 30 minutes to avoid a performance hit as
well as conflicts. If you are running the AWR Report, you should not also need to run
Statspack.

 With the new 12cR2 AWR Report, you can choose to get text (similar to Statspack output),
HTML, or the new Active HTML format (which summons OEM at the end of the report if
desired) when you run awrrpt.sql. The HTML format is much better than text, as you can
click various links within the report to navigate among sections easily. You can also run the
AWR Report within OEM.

 If you use Oracle Enterprise Manager (OEM), you can run the AWR Report directly from
Cloud Control or Database Control from multiple versions of OEM.

 Get to know your system by reviewing and understanding your system’s regular Load Profile.
Significant changes to the Load Profile during what should be similar workloads or common
times during the day may warrant further investigation. The In-Memory (IM) statistics are not
a part of the Statspack Report in 12cR2, but are contained in the AWR Report.

 The library cache pin (protects cursors/SQL) and library cache latch (protects the Library
Cache) are both replaced by mutexes (program objects that negotiate mutual exclusion among
threads).

 Tuning by wait events is one of the best possible reactive tuning methods.
 In 12cR2, the top 10 foreground wait events in the AWR Report reveal to you the largest issues

on your system at the macro level (Top 5 timed events in Statspack). Rarely do these waits
point you to a specific problem. Other parts of the AWR Report or Statspack Report will tell
you why you are receiving the waits.

 Tuning the top 25 buffer get and top 25 physical get queries can yield system performance
gains of anywhere from 5 percent to 5000+ percent. The SQL section of the Statspack Report
tells you which queries to consider tuning first. The top 10 SQL statements should not be
substantially more than 10 percent of all of your buffer gets or disk reads. Near the end of the
new 12c AWR Report, the Top SQL is connected with the Top Events to help you even more!

 If many sorts are being performed to disk (greater than 1–5 percent of the total number of rows
being sorted), you may need to increase the initialization parameters associated with sorting.
See Chapter 4 for more information on these.

 The buffer cache hit ratio should be greater than 95 percent. If it is less than 95 percent, you
should consider increasing the size of the data cache by increasing the MEMORY_TARGET
(if used) or increasing the minimum setting for the DB_CACHE_SIZE initialization parameter
(given that physical memory is available to do this).

 If full table scans are being performed, serious performance issues may result and data hit
ratios will be distorted. These tables need to be identified so the appropriate indexes are
created or used. See Chapters 8 and 9 on query tuning for more information.

 If the number of physical reads is heavier on one physical disk, balancing the data properly or
using ASM correctly will probably improve performance. See Chapter 3 for tips on fixing I/O
problems with either data files or tablespaces. See Chapter 3 for tips on fixing I/O problems
(and using ASM) with either datafiles or tablespaces.

 In Oracle 12c, multiple data block sizes are allowed. The AWR Report and/or Statspack
shows statistics for each of these block sizes individually. Many advisories are available to
help you size the SGA that both the AWR Report and Enterprise Manager (see Chapter 5)
suggest. These suggestions should be tested first, however, and are not always the best choice.
As Robert Freeman would say, “Your mileage may vary.”

 Latches are like locks on pieces of memory (or memory buffers). If the latch hit ratio is less
than 99 percent, you have a serious problem because not even the lock to get memory can be
gotten. Oracle 12cR2 has a shard latch (for sharding), and many In-Memory latches, including
in-memory area latch, in-memory columnar segment hash table latch, in-memory columnar ts
extent map chunk latch, and in-memory global pool latch.

 Never go to the block level unless you absolutely have to go there. The block level is a great
place to find hot block and ITL issues, but it takes a lot of time and energy on the part of an
advanced DBA to pinpoint problems at this level.

 The ADDM Report can be a helpful tuning utility, but ADDM is better used through Oracle
Enterprise Manager for maximum benefits. The ASH Report also has some nice areas worth
investigating, including my favorites: Top SQL with Top Events and Top Event P1/P2/P3
Values.

References
Steve Adams, Oracle8i Internal Services for Waits, Latches, Locks, and Memory (older, but
excellent) (O’Reilly, 1999).
Robert Freeman, Oracle 12c New Features (Oracle Press).
Connie Dialeris and Graham Wood, “Performance Tuning with STATSPACK” (White Paper, 2000).
Connie Dialeris Green, Cecilia Gervasio, Graham Wood (guru), Russell Green, Patrick Tearle,
Harald Eri, Stefan Pommerenk, and Vladimir Barriere, Oracle 10g Server, Release 10.2 (Oracle
Corporation).

Tanel Poder, “Library Cache Latches Gone in Oracle 11g” (blog, August 3, 2008).
Wikipedia, Mutual Exclusion Events.
Andrey Nikolaev, “Latch, Mutex and Beyond” (website; https://andreynikolaev.wordpress.com).
Rich Niemiec, “IOUG Masters Tuning Class” (2002).
Rich Niemiec, “Tuning Oracle 12c Using Statspack and AWR Report” (IOUG Conferences).
Rich Niemiec, Tuning the Oracle Grid (IOUG 2011).
Oracle Database Performance Tuning Guide, 12c (Oracle Corporation).
Oracle Forums on www.oracle.com.
Notes from Richard Powell, Cecilia Gervasio, Russell Green, and Patrick Tearle.
Randy Swanson and Bob Yingst, “STATSPACK Checklist” (2002).
Wiki.oracle.com, Mutex (2011).
My Oracle Support (Metalink) Notes: 135223.1, 135223.1, 148511.1, 148511.1, 155971.1,
181306.1, 22908.1, 29787.1, 33567.1, 39017.1, 61998.1, 62172.1, 62160.1, 34405.1, 727400.1,
1298015.1, 1268724.1, 1310764.1, and 62354.1.

Special thanks to Robert Freeman, who contributed much of the AWR information. Thanks to
Kevin Loney for the entire installation portion of this chapter written for the last version and some
added notes. Tuning is an iterative process; as Hollyann always says: “If at first you don’t succeed,
skydiving is not for you; try tuning instead!” Thanks to Greg Pucka for the original chapter on
estat/bstat. Rich Niemiec upgraded this chapter (painful as usual!).

http://www.oracle.com
http://Wiki.oracle.com

O

CHAPTER
15

Performing a Quick System Review (DBA)

racle 12c introduced many new features that can be leveraged for automatic tuning. While
some DBAs are great at planning and implementing a new version, fewer are good at
evaluating and effectively implementing the new features that will help their system. In
12c, you now have to consider pluggable databases (PDBs, introduced in Chapter 3) and

how to leverage an additional In-Memory (IM; see Chapter 4) column store (if licensed). With the
introduction of Enterprise Manager Cloud Control (Chapter 5) combined with the Automatic
Workload Repository (AWR) and the AWR Report (see Chapter 14 for a comparison to Statspack),
you can monitor and tune your system in different and more productive ways. And with the advent of
SQL Performance Analyzer (SPA), the SQL Tuning Advisor, the Adaptive Optimizer (12c), Real
Application Testing, Exadata Simulation, and the Result Cache comes different ways to fix your
system more productively. One of the keys to a good system review is checking to see if you’ve
implemented the features that fit your needs and have a good return on the license cost of the feature
as well as the time it takes to implement it. Although nobody seems to like tests or evaluations, simple
evaluations can help to point out future performance problems and/or current issues.

One of the key approaches to achieving a focus on improving and maintaining excellent system
performance is to perform a system review on at least an annual basis. This review could be an
internal review or an external review of your system performance. Many companies have developed
methods for measuring system performance and overall system speed that are tailored directly for
their system. This chapter does not describe the six-month process that many of the more detailed
evaluations propose; instead, it serves as a very simple barometer of how your system rates
compared to others in the industry. Variations in your business processes may cause your score to be
higher or lower using this simple review. You will need to adjust these scales and/or some of the
criteria to fit your unique system. Tips covered in this chapter include the following:

 The Total Performance Index (TPI) and reasons you might want to use it
 How to evaluate your Education Performance Index (EPI)
 How to evaluate your System Performance Index (SPI)
 How to evaluate your Memory Performance Index (MPI)
 How to evaluate your Disk Performance Index (DPI)
 How to evaluate your Total Performance Index (TPI)
 An overall system review example

 The immediate action items list
 The system information list
 Rating the DBA with the help of an impartial expert

Total Performance Index (TPI)
I created the Total Performance Index (TPI) as a basic tool for Oracle DBAs to measure their system
and compare it to other systems, using a quick and simple scoring method as shown in the following
table. This index is only meant to be a barometer to see if improvements might be beneficial. Many
system categories differ based on your business case and system use, but this system tells you how
close or far your system is to or from others in the industry. Four categories are included: Education,
System, Memory, and Disk. This chapter shows how you can measure your TPI using several simple
queries (including example ratings). For detailed information on a particular category, please refer to
the chapter in this book related to that issue. To help identify how your system is progressing, use
your TPI to compare future growth in the number of users or changes in hardware and software. You
can also customize the index to conform to tools you use most often, such as Oracle Enterprise
Manager (OEM) or Automatic Database Diagnostic Monitor (ADDM). The following table gives you
the overall breakdown by index:

Education Performance Index (EPI)
This section measures the knowledge and education of your technical staff members. The following
table illustrates how to receive a perfect EPI score. This rating system is not meant to be an all-
encompassing benchmark of knowledge and education, but rather a barometer to see how your staff
might benefit from educational improvements.

Rate Your System

Grade Your System

TIP
Measuring your EPI (Education Performance Index) can be helpful in identifying educational
improvements that might be beneficial.

System Performance Index (SPI)
This section measures overall system issues. The following table illustrates how to receive a perfect
SPI score. This rating system is not meant to be an all-encompassing benchmark of overall system
issues; rather, it is a barometer to see if your system might benefit from improvements.

Rate Your System

TIP
Measuring your SPI (System Performance Index) can be helpful in identifying overall system
improvements that might benefit your system.

Memory Performance Index (MPI)
This section measures memory use and allocation. The following table illustrates how to receive a
perfect MPI score. This rating system is not meant to be an all-encompassing benchmark of memory
use and allocation; rather, it is a barometer to see if your system might benefit from memory use and
allocation improvements.

*Adjust value only where needed based on knowledge of system and if IM cache is also used.

 Top 25 “Memory Abuser” Statements Tuned
I have found that the top 25 statements accessed on most systems, when left untuned, make up over 75
percent of all memory and disk reads of the entire system. The code that follows lists and illustrates
how to find the top 25 worst memory abusers.

Query to get the top 25 worst memory abusers

Sample partial output

Rate Your System

 Top 10 “Memory Abusers” as a Percent of All
Statements
I have found that the top 10 statements accessed on most systems, when left untuned, can make up
over 50 percent of all memory reads of the entire system. This section measures how severe the most
harmful memory-using statements are, as a percentage of the entire system.

Script to retrieve this percentage

Sample output

Rate Your System

 Buffer Cache Hit Ratio
You don’t have to use the actual hit ratio as a scoring mechanism; you can use the variance from the
norm instead. The buffer cache hit ratio represents how often frequently requested blocks of data have
been found in the memory structure without requiring disk access. Hit ratios are used more in third-
party tuning products than ever before, and they are also being used more by Oracle than ever before,
primarily because they are a great barometer. But hit ratios can be misleading and should always be
used as a barometer and indicator that you may want to look deeper. Nobody ever uses hit ratios as
the sole way to tune a system (as some people claim), just as an indicator to know where to dig
deeper (I’ve asked this in very large sessions and nobody ever uses only hit ratios). People who say
you shouldn’t use hit ratios at all don’t generally understand their value or how to use them. The
DBAs who don’t look at hit ratios can miss a major issue that could have been potentially fixed at a
very low cost. Hit ratios are very rarely the indicator of good performance, but often can be an
indicator of bad performance. Their best use is as a barometer or an indicator of changing
performance. Hit ratios can be easily calculated by using the dynamic performance view
V$SYSSTAT and V$SYSMETRIC (see Chapter 12 for additional examples). See Chapter 4 for
initialization parameters used for memory allocation within Oracle.

Query for buffer cache hit ratio

Sample output

Rate Your OLTP System

You can also expand the preceding query to include the actual ratings in your result. The query that
follows shows how this is accomplished using the DECODE function. You can also apply this to the
remainder of the queries in this chapter if you would like to include the score in your results. At
TUSC, we always used a PL/SQL procedure to accomplish the results (we also displayed them
graphically).

Query for hit ratio with rating

Sample output

The data in V$SYSSTAT reflects the statistics for logical and physical reads for all buffer pools.
To derive the hit ratio for the buffer pools individually, query the V$BUFFER_POOL_STATISTICS
dynamic performance view.

The buffer cache hit ratio can be used to validate physical I/O simulated in the dynamic
performance view V$DB_CACHE_ADVICE. This dynamic performance view provides information
that assists in sizing the cache by providing information that predicts the number of physical reads for

each possible cache size. Included in the data is a physical read factor, which predicts the number of
physical reads that are estimated to change if the buffer cache is resized to a given value. To use
V$DB_CACHE_ADVICE, set the parameter DB_CACHE_ADVICE to ON and allow a
representative workload to stabilize prior to querying the view. Following is the query to validate
physical I/O simulated by the buffer cache advisory.

Query to validate physical I/O

Sample output

 Dictionary Cache Hit Ratio
The Dictionary Cache hit ratio displays the percentage of memory reads for the data dictionary and
other objects.

Query for Dictionary Cache hit ratio

Sample output

 Library Cache Hit Ratio
The Library Cache hit ratio reveals the percentage of memory reads for actual statements and PL/SQL
objects. Note that a high hit ratio is not always good; see Chapter 4 for a detailed explanation.

Query for Library Cache hit ratio

Sample output

The hit percentage is 99.97 percent, which means that only 0.03 percent of executions resulted in
reparsing.

Rate Your System

 PGA Memory Sort Ratio
Automatic PGA Memory Management simplifies the way PGA memory is allocated. By default, PGA
Memory Management is enabled. When running in this mode, Oracle adjusts, dynamically, the size of
the portion of the PGA memory dedicated to work areas, which is based on 20 percent of the SGA
memory size. When running in Automatic PGA Memory Management mode, sizing of work areas for
all sessions is automatic. In 10g, the total amount of PGA memory available to active work areas in
the instance is automatically derived from the SORT_AREA_SIZE or the
PGA_AGGREGATE_TARGET (preferred) initialization parameter. In 11g, if you use the
MEMORY_TARGET parameter, Oracle manages both the SGA and PGA. In 12c, Oracle limits the
upper bound for the PGA with PGA_AGGREGATE_LIMIT. See Chapter 4 for initialization
parameters used for memory allocation within Oracle and a discussion of the new parameters in 12c
and Automatic Memory Management (AMM).

The objective is to have sort operations in the PGA performed in memory versus in the I/O
subsystem (on disk) when possible. Statistics related to PGA memory sorts can be derived by the
query in the next section or from the AWR Report, which reflects overall values for sorts in memory
and disk, as well as the percentage of those in memory. The values reflect activity since the start of
the instance. Values for a PGA Memory Sort Ratio greater than 98 percent are desired. Depending on
the value of the memory currently allocated to the PGA by AMM (or set with
PGA_AGGREGATE_TARGET and PGA_AGGREGATE_LIMIT), user sorts may fit into memory or
be performed on disk in a specified temporary tablespace if this initialization parameter is not high
enough to hold the sort.

Query for PGA Memory Sort Ratio
You can receive specific sorting statistics (memory, disk, and rows) by running the following queries
or go to the AWR Report or Statspack output file (report.txt) to get these statistics (see Chapter 14
for more information on Statspack and the AWR Report).

Query to get PGA Memory Sort Ratio

Sample output

Rate Your System

 Percentage of Data Buffers Still Free
When you start the Oracle database, users start using memory for their queries. Although this memory
is reusable when the user’s query is complete, when the following query runs on a system after two
hours of processing, it is a good indication of how quickly the buffers are being used up (high-volume
systems may need to vary the time frame to be much shorter). The number of free buffers divided by
the total number of records in X$BH (which is the total data block buffers allocated—one record in
the table for each buffer) is the percentage. Also note that you have to run this query as SYS.
Remember that having many free buffers is not necessarily the best situation. See Chapter 13 on
queries to this table for more information. This could also be done from the In-Memory (IM) column
store as well if you are licensed for this and use it (see Chapter 4 for detailed information and queries
on IM). For a data warehouse, you might split half the scoring for the buffer cache and the other half
for the IM column store.

Query for free data buffers

Rate Your System

Note that the reason you get 0 points for greater than 25 percent free is because the data buffers are
probably oversized and potentially wasting memory (ensure the system has been running awhile). The
scoring should be tailored to your individual system use. Remember this rating is only a general
guideline and one that definitely needs to be tailored to your system.

 Using the Result Cache Effectively
The Result Cache is a separate shared memory pool to store query results. This Result Cache is
allocated directly from the shared pool upon database startup but is maintained separately. The Result
Cache allows a query’s result (for instance, a sum of all salaries after being calculated) to be cached
in memory, allowing for large performance improvements for future queries executed multiple times
that require the same results. By default, the Result Cache is set to 0.25 percent of the value of
MEMORY_TARGET (if set), 0.50 percent of the value of SGA_TARGET (if set), or 1 percent of the
SHARED_POOL_SIZE parameter (if set). You can also set it directly by using the
RESULT_CACHE_MAX_SIZE=amount and the RESULT_CACHE_MODE=force parameters (set to
force to use it automatically). Setting RESULT_CACHE_MAX_SIZE to 0 disables the Result Cache
feature. You can use DBMS_RESULT_CACHE.FLUSH to clear it. Note results are not passed
between RAC/Grid nodes. Please see Chapter 4 for more information. Also, check the documentation
for other restrictions and rules.

Rate Your System

 Pinning/Caching Objects
Objects can be pinned into memory using DBMS_SHARED_POOL.KEEP if they are often-used
objects, as shown in Chapter 10. Tables can also be pinned into memory by caching the table when it

is created, or by using the ALTER command to cache a table. See Chapter 7 for more information on
caching tables.

Some of the recommended packages to consider for pinning are the following:

Rate Your System

Grade Your System

TIP
Measuring your MPI (Memory Performance Index) can be helpful in identifying potential memory
allocation and usage improvements that could benefit your system.

Disk Performance Index (DPI)
This section measures disk use. The following table illustrates how to receive a perfect DPI score.
This rating system is not meant to be an all-encompassing benchmark of disk use; rather, it is a
barometer to see if disk use improvements might be beneficial. With the advent of storage area

networks (SANs) and other disk and disk-caching technology, you may need to alter the rating system
to be more appropriate for your system. Strongly consider using Oracle features such as Automatic
Storage Management (ASM), Locally Managed Tablespaces (LMTs), and Automatic Segment Space
Management (ASSM). (See Chapter 3 for more information on these features.)

 Top 25 “Disk-Read Abuser” Statements Tuned
I have found that the top 25 statements with the most disk reads accessed on most systems, when left
untuned, can make up over 75 percent of all disk and/or memory reads of the entire system. This
section lists the most intense 25 disk-reading statements for the entire system. The example that
follows shows a pretty well-tuned system where only data dictionary queries show up (you would
usually not tune these).

Query to get the 25 worst disk-read abusers

Sample partial output

Rate Your System

 Top 10 Disk-Read Abusers as Percentage of All
Statements
This section measures the effect of the top 10 heaviest disk-reading statements as a percentage of the
entire system.

Script to retrieve this percentage

Sample output

Alternative—simple and fast SQL

Rate Your System

 Tables/Indexes Separated or Using ASM
Tables and their corresponding indexes should be located on separate physical disks for smaller
systems to decrease file I/O for a given disk. This is, of course, becoming harder to do, as DBAs are
often unaware of where things are because of how a SAN may be managed. In Enterprise Manager,
Oracle gives you a way to see and move hot (frequently used) and cold (not frequently used) data.
Moving data to a hotter or colder region of the disk is now very easy. Information lifecycle
management (ILM), or the management of data throughout its lifetime, is becoming more and more
important. In Oracle 12c, ILM is simplified through the Heat Map, which automatically collects
segment- and row-level statistics, used to define compression and storage policies that are
automatically maintained throughout the life cycle of the data (see Chapter 3). Older data can now be
kept longer on physical, but slower, disks. Newer data can be cached to ensure speed when accessing
it. Chapter 3 covers physical data and I/O in great detail and provides queries to assist in this matter.
Note that if you use ASM, you should ensure that when you add new disks, you follow the tips on
rebalancing that are listed in Chapter 3. ASM has a feature called intelligent data placement that
enables you to specify hot/cold disk regions in ASM to ensure that frequently accessed data is placed
on the fast/outermost (hot) tracks. It also has the new Heat Map that can be used (even in Enterprise
Manager).

Rate Your System

 Mission-Critical Table Management
Locally managed tablespaces (LMTs) with ASSM is the norm. Also, review row chaining; row-

chaining is also common when the database block size is too small. Tablespaces implemented using
ASSM are sometimes referred to as locally managed tablespaces with bitmap segment-space
management, or bitmap tablespaces. To use ASSM, create locally managed tablespaces, with the
segment space management clause set to AUTO. ASSM in locally managed tablespaces eliminates the
need to specify the PCTUSED, FREELISTS, and FREELIST GROUPS storage attributes for the
tablespace. If possible, switch from manual space management to ASSM.

When a table is updated and the updated record block does not have enough room to fit the
changes, a record is “chained” to another block. In this situation, a record spans more than one block
and, in most instances, creates additional I/O. By analyzing a table for chained rows and querying the
CHAINED_ROWS table, identifying tables that have chained records is possible. The
CHAINED_ROWS table is created using the script utlchain.sql or utlchn1.sql, which resides
in a file under the $ORACLE_HOME/rdbms/admin directory, where Oracle software is located (note
that the exact name and location may vary depending on your platform). You may also consider the
ALTER TABLE SHRINK SPACE COMPACT command, but please investigate the use/restrictions of
this command in the Oracle documentation beforehand. To populate the CHAINED_ROWS table, use
the ANALYZE command. The ANALYZE command has an option to determine chained rows in a
table as follows:

The command places the output into a table called CHAINED_ROWS. The following query
selects the most informative columns of the CHAINED_ROWS table:

Rate Your System

 Key Oracle Files Separated

Separating often-accessed Oracle datafiles or effectively using ASM and the Heat Map can help
eliminate I/O bottlenecks as well as eliminate potential saturation of the disk’s memory cache.
Separating heavily written files (especially redo logs) generally improves performance.

Rate Your System

 Automatic Undo Management
Automatic undo management (AUM) should be used where possible. When configured in this manner,
the database automatically determines how long UNDO data should be kept on the basis of the length
of time queries take to run. UNDO data preserved within this window of time is said to be in the
unexpired state. After this time, the state of the UNDO data changes to expired. UNDO data is a good
candidate for overwriting only when it is in the expired state. The length of time that Oracle keeps
UNDO data in the unexpired state depends on tablespace configuration. When creating a database
with the Database Configuration Assistant (DBCA), the UNDO tablespace is set, by default, to extend
itself automatically to maintain unexpired UNDO for the longest-running query. You can also specify a
minimum UNDO retention period (in seconds) by setting the UNDO_RETENTION initialization
parameter. This is only used with AUTOEXTEND tablespaces. Oracle extends the UNDO tablespace
up to the size of MAXSIZE. Only when it is not possible to expand anymore is unexpired UNDO data
overwritten.

When using a fixed-sized UNDO tablespace, Oracle automatically keeps the UNDO data in the
unexpired state for the longest possible time for the tablespace of the specified size. If the UNDO
tablespace does not have adequate free or expired space to store active UNDO data generated by
current transactions, then Oracle might be forced to overwrite the unexpired UNDO data. This
situation might cause long-running queries to fail with an error and an alert.

In the event that AUTOEXTEND is disabled (by default it is enabled) for automatic undo
management, autoextending the UNDO tablespace will require adjusting the size of the tablespace
manually. In this case, ensure that the tablespace is large enough to meet the read-consistency
requirements for the longest-running query. Also, if using flashback features, then make certain the
tablespace is large enough to accommodate flashback operations. The queries listed next estimate the
number of bytes required when sizing the UNDO tablespace under different conditions. With AUM,
you do not have to create individual UNDO segments (Oracle does it for you). If you use AUM, you
do not have to specify rollback segments.

The following information is appropriate for UNDO query A, B, and C. Sizing an UNDO
tablespace requires three pieces of information:

 (UR) UNDO_RETENTION in seconds

 (UPS) Number of UNDO data blocks generated per second

 (DBS) Overhead, which varies based on extent and file size (DB_BLOCK_SIZE)
UndoSpace = (UR * (UPS * DBS) + DBS)

Or, when the guesstimate equates to 0, then add a multiplier (24) to the overhead (DBS) to derive
more appropriate results:

UndoSpace = [UR * (UPS * DBS)] + (DBS * 24)
Two pieces of information can be obtained from the initialization file: UNDO_RETENTION and

DB_BLOCK_SIZE. The third piece of the formula requires a query against the database. The number
of UNDO blocks generated per second can be acquired from V$UNDOSTAT as follows:

To convert days to seconds, you multiply by 86,400, the number of seconds in a day. The result of
the query returns the number of UNDO blocks per second. This value needs to be multiplied by the
size of an UNDO block, which is the same size as the database block defined in DB_BLOCK_SIZE.
The query that follows represents a point-in-time estimate based on the UNDO blocks per second at
the time of execution. The query can be utilized when UNDO space has not been allocated. If this time
frame is during high activity or a worst-case scenario for UNDO, then the results derived provide a
good estimate.

Segment/file query

Sample output

Rate Your System

 Using Pluggable Databases Effectively
The pluggable databases architecture, new in 12c and covered in detail in Chapter 3, enables you to
have a container database (CDB) with multiple pluggable databases (PDBs). As a quick review,
pluggable databases are also called multitenant databases because each “tenant” can have their own
PDB. “Pluggable” databases can be unplugged from one CDB and plugged into another CDB easily,
therefore making databases portable between environments and allowing upgrade of a database by
unplugging it from one environment at one version and plugging it into a new environment at a higher
version. You can also unplug from an on-premises CDB and plug into the cloud (or vice versa). This
feature also allows a single PDB to be independently recovered (you can flashback an individual
PDB in 12cR2). Because each PDB looks to an application like any traditional Oracle database
(called a non-CDB), no application changes are needed to work with the PDB architecture. Non-
CDBs are now deprecated.

The following are some notes to keep in mind regarding CDB/PDBs (subject to change):

 CDB = container database (has a root database and also a seed PDB).
 PDB = pluggable database (plugged into a CDB).
 Non-CDB = traditional Oracle database instance (neither a CDB nor a PDB).
 Why PDBs? To consolidate hundreds of database on one machine. Too many resources are

required when you add up the SGAs for each of the instances when not using PDBs. One CDB
has one SGA and resources shared for multiple PDBs.

 Share PDBs (big data sources, acquisitions, partners, shared research, governments).
 In 12cR2, can refresh a read-only PDB, can flashback an individual PDB, and can recover an

individual PDB.
 Move existing PDBs to a new platform or location or clone them (snapshot).
 Patch/upgrade a PDB by plugging it into a CDB at a later version.

The following shows how to determine whether a database is a CDB or a non-CDB (this is a
CDB, as indicated by YES in the CDB column):

Use the following command to see how many PDBs you have. As the output shows, I have three
PDBS, but only PDB_SS and PDB1 were created by me (each PDB might represent a different
application). PDB$SEED was created by Oracle when I installed the database. I can clone the seed
PDB (which in itself is not used) to create new, empty PDBs.

Rate Your System

Grade Your System

TIP
Measuring your DPI (Disk Performance Index) can be helpful in identifying potential disk
improvements that might benefit your system.

Total Performance Index (TPI)
The Total Performance Index is the composite score of the Education, System, Memory, and Disk
indexes, as shown here:

Grade Your System

TIP
Measuring your TPI (Total Performance Index) can be helpful in identifying bottlenecks; it is a
simple barometer of your overall system performance and may help you find areas needing
improvement.

Overall System Review Example
The following is an example rating scale. You can use the rating results to generate a yearly review
for your system. Some of the items (such as backup and recovery ratings) are not covered in depth.
The objective of this section is to give you ideas of some of the areas you might consider reviewing.
This is not an actual client system review but a slightly modified version of several reviews to help
generate discussion items for your review template. The goal is to give you a “feel” for a review.

 Rating System
Here is an example rating report that you may use as a guideline as you detail an overall review and
its ratings. Having a review that includes a rating for items that desperately need improvement or
attention (where appropriate) is important in generating manager support. In many cases, DBAs need
managerial support to be allowed the time to address major issues with their system. At times, if the
system is up and running, upper management may not realize that a change is needed. This review can
be a catalyst for needed change as issues are identified.

TIP
Have your system reviewed on an annual basis by an outside party or, at the minimum, by someone
inside your company.

 Example System Review Rating Categories
The following table summarizes the results of the system review. Although some TPI categories are
discussed, this section is an addition to the TPI that goes into greater depth. An overview of the
recommended changes should follow this section, and the TPI rating could precede or follow this
section. This section is more subjective, so an experienced person who you respect should make
these evaluations. The ratings should include more detailed comments than those given here as an
example. The recommended changes should be detailed with supporting documentation.

NOTE
This is an example, not an actual review.

 Items Requiring Immediate Action
Once you have reviewed your system, you need to make a comprehensive list of items that you need
to address immediately. The following list is a summary (partial list only) of some of the issues that
could warrant immediate action after a review:

 Lock the default accounts when unused! Let’s do it now.
 SYSTEM and SYS passwords in production should be different in development.
 Any default or commonly used passwords should be changed. Change all user passwords, as

security is currently compromised.
 MEMORY_TARGET has been set, but minimums have not been set correctly for key

initialization parameters. The minimum setting for DB_CACHE_SIZE needs to be increased
immediately (MEMORY_TARGET is set correctly though)! You can do this with the system
running if the MEMORY_TARGET is large enough. You can also use SGA_TARGET, so the

DB_CACHE_SIZE is used only as a minimum for the SGA (see Chapters 1 and 4 for more
information). PGA_AGGREGATE_LIMIT should be set to limit a runaway PGA.

 The top 25 queries causing disk and memory reads need to be tuned.

TIP
A system review should always include immediate action items. This ensures that the time needed
for improvements will be allocated.

 Other Items Requiring Action
The second list that you should make includes items needing attention after the most pressing issues
have been addressed. A summary example list is shown here. Your list should include more detail on
how the action will be corrected.

 Monitor the items detailed in this document at least once per quarter with the current growth
rate of the system. Ensure that you are estimating future system size. Leverage the Oracle
Public Cloud to offload infrequently used data.

 Resize the database objects that are currently oversized and undersized.
 Change all passwords at least once per quarter.
 Fix file protection so users are unable to delete Oracle software.
 Remove hard-coded passwords from scripts and backup jobs.
 Consider adding additional indexes for the top 25 worst disk-read queries to improve query

performance.

If you’re making initialization parameter changes, compile a list with both the current and
suggested values. Refer to Appendix A for a complete list of initialization parameters with
descriptions. Lastly, make sure you repeat the review after you have made the changes to ensure
everything has been implemented correctly.

System Information List
This section describes some of the system information that you should gather and keep with the
review. As you look back on a review, you need to know what the system parameters were at the time
of the review. Any ratings of specific items (such as backup and recovery) could be placed in this
section. I also have included a sample DBA review that illustrates some of the areas that may be
reviewed. Have someone else rate your DBA skills so you can continue to improve. This section has
been greatly simplified for the book. It is a quick list designed to give a “picture” of the system as

whole.

 Memory-Related Values
The following are memory-related questions and answers about the system:

 What is the current memory for the hardware? 400G.

 What is the current number of users? 5000 total/500 concurrent.

 What will be the future number of users? 1000–1500 concurrent in the next three months.

 What other software is used on the system? None that has a major influence.

 Is the system client/server or browser/server? Browser/server.

 What response times are required? Subsecond—OLTP transactions make up main mix.

 How large is the database? Currently 20T, with 500G currently free in the database.

 How large are often-accessed tables? One million rows is the average/100 million for the
largest table.

 What future software will affect memory? None.

 Are you implementing any other features/options? Oracle In-Memory column store as soon
as possible, Oracle GoldenGate in three months, Violin Memory Flash Memory in the
next three months, and investigating Exadata and Oracle Public Cloud (and Amazon Web
Services) over the next year.

 Disk-Related Values
The following are disk-related questions and answers:

 What is the maximum SAN capacity for the hardware? 20× current capacity.

 What disk sizes are available? 4T and 8T.

 What size will the database be in one year? 10 to 100 percent larger than current.

 Is there a RAID (striping) level for database files/OS? Yes; RAID 1+0.

 Will you have multiplexed redo logs? Yes.

 What software will be installed in the future? No additions in near future.

 What system utilities will be installed? Oracle Enterprise Manager with Diagnostics Pack.

 What transfers happen nightly? Bulk order transfers.

 Any earlier notes on implementation? Pluggable databases as soon as possible, Violin
Memory Flash Memory in the next three months, and investigating Exadata and Oracle
Public Cloud (and Amazon Web Services) over the next year.

 CPU-Related Values
The following are CPU-related questions and answers:

 What is the maximum number of processors for the hardware? 6 dual currently/12 quad
maximum.

 Is there a future upgrade path? Yes; path to 64 quad core processors.

 What is the transaction processing load? 60 percent CPU average/90 percent sustained
maximum.

 What is the batch load? Some heavy at night/okay during the day.

 Are hot backups employed? RMAN backups are employed with archiving.

 Are batch processes running during the day? None affect performance.

 Will Parallel Query be used in the future? Currently being used on some processes.

 Will there be a future distributed setup? Yes, with Oracle GoldenGate.

 Backup- and Recovery-Related Information
The following are backup- and recovery-related questions and answers:

 Does the system require 7×24 use? No, it is 6×24.

 How fast will recovery need to be (on-disk backup)? 12-hour maximum.

 Are there “standby” disks in case of failure? No, four-hour turnaround from HP.

 How much data is “backed up”; is it being “tape-striped” with parity? Unknown.

 Has the UPS been established? Yes.

 Are export files also taken? No.

 Are cold backup procedures in place? Not applicable.

 Are export procedures in place? Needs improvement/Implement Data Pump compatibility
for export/import control files (new in 11g).

 Are hot backup procedures in place? Excellent.

 Is the backup encrypted? No.

 Is it possible to use encrypted backup to the cloud? Yes.

 Is the fast recovery area (FRA) sized properly? Yes.

 Are disaster recovery procedures in place? Needs improvement (Data Guard suggested).

The following is an example of some of the areas you may evaluate in a backup and recovery
rating. Most Oracle DBA books evaluate features like these in greater depth. The layout should be
identical to your system review.

 Naming Conventions and/or Standards and Security
Information Questions
The following are naming convention, standards-related, or security-related questions and answers:

 Have you reviewed naming conventions being used? Excellent

 Have you checked file protections on key Oracle files? Poor

 Have you checked database security procedures, including info shared in the cloud? Poor

 Have you checked password procedures? Poor
 Have you reviewed the Oracle security information that exists at www.oracle.com/security

and the security information that you can find at the following link:
http://www.oracle.com/technetwork/topics/security/articles/index.html? Not complete

http://www.oracle.com/security
http://www.oracle.com/technetwork/topics/security/articles/index.html?

 DBA Knowledge Rating
Having all DBAs reviewed by an impartial expert is paramount to identifying and improving their
skills. Often, the primary DBA is too busy to attend training sessions or improve their skills on new
versions of Oracle. Assessing DBAs helps identify their strengths and weaknesses. This process will
fail if this review is used against a person. It must be used with the goal of identifying and improving
skills.

TIP
Reviewing a DBA’s ability should be done only if the review is used as a means of improving the
DBA’s skills. Reviewing a person is a very sensitive issue and must be done by someone who has
the goal of improvement in mind first and foremost. Critical knowledge for 12c includes the ability
to use pluggable databases and the In-Memory column store, and the ability to review where the
public cloud might be used (if at all).

Other Items to Consider in Your TPI and System Review
As I stated earlier, my goal in this chapter is to give the most basic barometer as a starting guide.

There are many things here that may or may not be important to your specific system. Following are
some items that I also think may be important to consider in the system review that you develop and
the TPI that you customize for your system:

 Are you effectively using ASM in your storage architecture?
 Do you have appropriate flashback technology implemented (including flashback PDB) as a

means of accelerated recovery and high availability? No query is slower than the one
accessing a system that is down!

 Are statistics being collected often enough (or too often)? Are they being collected too often
on tables that are generally static? Is everything automated correctly?

 Have you used AWR and ADDM (see Chapters 5 and 14 for more information) to diagnose
and fix potential problems?

 Has using Enterprise Manager Cloud Control made you faster at deploying new nodes and
diagnosing RAC issues?

 Do you understand how to leverage the cloud and have you investigated leveraging the public
cloud for use/nonuse? Are you leveraging big data, encrypted cloud backups, offsite storage
and developer cloud systems?

 Are you testing new hardware in the public cloud instead of first buying it?
 Have you consolidated databases to a multitenant system leveraging pluggable databases?
 Do you have a sufficient test and development system to ensure proper testing before moving

code to production? Can you test in the public cloud to save time, money, and effort?
 Have you set initialization parameters effectively that need minimum settings such as

DB_CACHE_SIZE, SHARED_POOL_SIZE, PGA_AGGREGATE_TARGET,
PGA_AGGREGATE_LIMIT, JAVA_POOL_SIZE, and INMEMORY_SIZE? Have you
investigated the use of MEMORY_TARGET?

 Do you have an encrypted backup, or could your system potentially face downtime, causing
severe delays in production performance? Once again, no query is slower than the one
accessing a system that is down!

 Are you ready for the next hardware upgrade? Have you considered Real Application Testing
or testing on Oracle Cloud? Have you investigated future hardware return on investment
(ROI), such as Violin Memory or other flash memory arrays, Oracle Exadata, Exalogic, or
Exadata Storage Expansion Rack?

Tips Review
 Measuring your EPI (Education Performance Index) can be helpful in identifying educational

improvements that might be beneficial.
 Measuring your SPI (System Performance Index) can be helpful in identifying overall system

improvements that might be beneficial.

 Measuring your MPI (Memory Performance Index) can be helpful in identifying potential
memory allocation and usage improvements that could benefit your system, especially with
12c IM.

 Measuring your DPI (Disk Performance Index) can be helpful in identifying potential disk
improvements that might benefit your systems, especially with PDBs and ASM.

 Measuring your TPI (Total Performance Index) can be helpful in identifying bottlenecks; it is a
simple barometer of your overall system performance and may help you find areas needing
improvement.

 Have your system reviewed on an annual basis by an outside party or, at the minimum, by
someone inside your company.

 A system review should always include immediate action items. This ensures that the time
needed for improvements will be allocated.

 Reviewing a DBA’s ability should be done only if the review is used as a means of improving
the DBA’s skills. Reviewing a person is a very sensitive issue and must be done by someone
who has the goal of improvement in mind first and foremost in mind. Critical knowledge for
12c includes the ability to use pluggable databases and the In-Memory column store, and the
ability to review where the public cloud might be used (if at all).

 If you can’t effectively monitor your own system, then contract someone who can. The cost of
maintaining a database is usually far less than the cost of downtime when problems occur.
With the advent of Oracle Cloud, it’s easier to monitor from an outside party.

 Include 12c new features (covered throughout this book) in your items to review as needed.

References
Maurice Aelion, Dr. Oleg Zhooravlev, and Arie Yuster, Tuning Secrets from the Dark Room of the
DBA.
Memory Performance Index, Disk Performance Index, Education Performance Index, Total
Performance Index, MPI, DPI, EPI, SPI and TPI (Copyright TUSC/RJN 1998–2016).
Oracle Database New Features Guide, versions 11g and 12c (Oracle Corporation).
Oracle Database SQL Language Reference, versions 11g and 12c (Oracle Corporation).

Many thanks to Brad Nash for updating the 10g version of this chapter. Thanks to Lucas Niemiec
for testing the queries in this chapter. Thanks to Randy Swanson, Judy Corley, Sean McGuire, and
Greg Pucka of TUSC for contributions to this chapter in previous versions.

P

CHAPTER
16

Monitor the System Using Unix Utilities (DBA)

art of being able to solve performance problems includes being able to use operating system
utilities effectively. Using the correct utilities to find CPU, memory, and disk I/O issues is
crucial to identifying where performance problems exist. Today’s DBAs and system
managers increasingly include performance management as part of their duties. This chapter

focuses on a few key and basic commands that will help you look at Oracle. It is meant for DBAs
who are not as familiar with Unix or Linux.

Basically, two main categories of activities are needed for system management. The first,
accounting and monitoring, consists of tools such as accounting logs, software monitors, hardware
monitors, or manual logs to monitor system usage, workload, performance, availability, and
reliability. Accounting and monitoring help system administrators perform load balancing and control
resource usage. The second category, performance analysis, consists of using the monitored data to
determine what system tuning is required and, by predicting future workload, when upgrading is
required. In a broad sense, system performance refers to how well the computer resources
accomplish the work they are supposed to do. This chapter gives you the utilities you need to
accomplish both of these objectives.

Because the system utilities are part of Unix and vary from vendor to vendor, this chapter draws its
details from one vendor and makes brief mention of other vendors. Including the details from Solaris,
Linux, HP-UX, and AIX would take up too much space. Oracle is dedicated to Linux, most recently
with Oracle Linux with Unbreakable Enterprise Linux Kernel. Oracle also is dedicated to Solaris
with the acquisition of Sun Microsystems and has announced that Exadata and Exalogic will run on
both Oracle Linux and Solaris. SAP has certified a version of Oracle Linux and has also decided to
certify SAP on Exadata.

Unix/Linux Utilities
This chapter focuses on tips related to Unix and Linux utilities and shell scripts that can be used to
find problems as well as gather statistics for monitoring. Tips covered in this chapter include:

 Using the sar command to monitor CPU usage
 Using sar and vmstat to monitor paging/swapping
 Using the sar command to monitor disk I/O problems

 Finding the worst user on the system using the top command
 Using the uptime command to monitor the CPU load
 Using the mpstat command to identify CPU bottlenecks
 Combining ps with selected V$ views
 Using iostat to identify disk I/O bottlenecks
 Determining shared memory usage using ipcs
 Monitoring system load using vmstat
 Monitoring disk free space
 Monitoring network performance

Using the sar Command to Monitor CPU Usage
The sar command has many different switches that you can set to display different pieces of
performance information. With the –u switch, sar can be used to monitor CPU utilization. The sar
utility is an effective way to see a quick snapshot of how much the CPU is “bogged down” or utilized
(100 percent is not a good thing). Run this utility on a regular basis to get a baseline for your system,
enabling you to identify when your system is running poorly. The sar command has the following
benefits:

 Provides great information that you can use for performance tuning and monitoring
 Logs to a disk file (but does not provide per-process information)
 Requires low overhead to run
 Is found on most Unix and Linux platforms

 sar –u (Check for CPU Bogged Down)
With the –u switch, you can use sar to monitor CPU utilization. Of the two numbers following the
switch for sar (in the following example the switch is –u), the first displays the number of seconds
between sar readings, and the second is the number of times you want sar to run. Here is a sample
report on HP-UX showing CPU utilization (the default):

A low %idle time could point to which processes are using the most CPU or an underpowered
CPU. Use the ps or top command (discussed later in this chapter) to find a CPU-intensive job. A
poorly written query requiring a large amount of disk access can also cause a large amount of CPU
usage as well.

In the following sar output, the cause for concern is the large values being returned for %wio
(waiting for block I/O) versus actual heavy CPU usage:

This list shows a high %wio time, pointing toward a disk contention problem. The iostat
command (discussed later in this chapter) can be used to pinpoint disk contention.

TIP
Use the sar –u command to see a quick snapshot of how much work the CPU is doing and whether
the CPU is overwhelmed. Run sar on a regular basis to get a baseline for your system so you can
identify when your system is running poorly. However, at times low CPU idle time can also be an
I/O issue, not a CPU issue.

Here are some things to look for in sar’s output:

 Low CPU idle times
 High percentage of time spent waiting on I/O or %wio > 10
 Bottlenecks with %sys > 15, which could indicate that swapping, paging, or backups are

causing a bottleneck
 Abnormally high %usr, which could be due to applications not being tuned properly or CPU

overutilization

 The sar –d Command (Find I/O Problems)
The sar –d command reports the activity of block devices on the system for each disk or tape drive.
This command helps identify heavily accessed disks and unbalanced disk I/O. Disk-striping software
frequently can help in cases where the majority of disk access goes to a handful of disks. When a
large amount of data is making heavy demands on one disk or one controller, striping distributes the
data across multiple disks and controllers. When the data is striped across multiple disks, accesses to
it are averaged over all the I/O controllers and disks, thus optimizing overall disk throughput. Some
disk-striping software also provides support for Redundant Array of Inexpensive Disks (RAID) and
the ability to keep one disk in reserve as a hot standby (that is, a disk that can be automatically
rebuilt and used when one of the production disks fails). When thought of in this manner, RAID can be
a very useful feature in terms of performance because a system that has been crippled by hard drive
failure will be viewed by your user community as having pretty bad performance.

This information may seem obvious, but it is important to overall system performance. Frequently,
the answer to disk performance simply rests on matching the disk architecture to system use. On
Linux, the sar –d command does not return as much information, so you might want to use the
iostat command instead. Here are some examples using sar –d to find disk I/O issues:

Things to watch for in the sar –d output include the following:

 %busy on a device that is greater than 50 percent
 If avwait is greater than avserv
 Unbalanced disk I/O load

Here’s an example using sar–d that shows a disk I/O bottleneck. A high %busy and high avque
indicates a disk I/O bottleneck. Consider the following output, where disk sd17 is a big problem (it is
100 percent busy). If this condition persisted, an analysis of disk sd17 should lead to a reorganization
of information from sd17 to a less-used disk. The sar command allows two significant numerical
inputs (as shown next): the first is the number of seconds between running sar, and the second is how
many times to run it (less than 5 indicates a five-second interval and 2 indicates two repetitions).

Tuning Disk-Bound Systems
Faster disks, disk cache, and flash take care of many disk-bound issues for larger customers, but I
have a few points in this section for smaller customers without that luxury. Conceptually, upgrading

disk systems is fairly easy. Get faster disks, get faster controllers, and get more disks. The problem is
predicting how much of an improvement you can expect from a given upgrade. If the system is truly
spindle bound, and the load is parallelizable such that adding more disks is practical, this route is
almost always the best way to go. When a straightforward upgrade path exists, no more likely or
predictable way to improve a system’s I/O exists than to increase the number of disks. The problem is
that a straightforward path for this sort of upgrade isn’t always obvious.

For example, assume you have one state-of-the-art disk on its own controller storing sendmail’s
message queue, and the system has recently started to slow down. There are two ways to add a
second disk effectively to a sendmail system. First, you could add the disk as its own filesystem and
use multiple queues to divide the load between the disks. This upgrade will work, but it will become
more difficult to maintain and potentially unreliable if it is repeated too many times. Second, you
could perform a more hardware-centric solution, upgrading to either create a hardware RAID system,
install a software RAID system to stripe the two disks together, or add NVRAM (nonvolatile RAM—
retains its contents even when power is lost) to accelerate the disk’s performance. With any of these
solutions, upgrading the filesystem might also become necessary. None of these steps is a trivial task,
and there’s no way to be nearly as certain about the ultimate effect on performance with the addition
of so many variables.

Obviously, you can’t add disks without considering the potential effect on the I/O controller. Some
systems have limits that restrict the number of controllers that can be made available to the operating
system. Although I rarely push the limits of controller throughput with a small number of disks
because e-mail operations are so small and random, adding so many disks on a system that you run
out of chassis space in which to install controller cards is possible.

Any time a system has I/O problems, do not make the mistake of quickly dismissing the potential
benefits of running a high-performance filesystem. This solution is usually inexpensive and effective,
and where available, it can offer the best bang for the buck in terms of speed improvement. If I am
asked to specify the hardware for an e-mail server, in situations where I have complete latitude in
terms of hardware vendors, I know I can get fast disks, controllers, RAID systems, and processors for
any operating system. The deciding factor for the platform then usually amounts to which high-
performance file systems are supported. This consideration is that important.

If a RAID system is already in use, performance might potentially be improved by rethinking its
setup. If the storage system is running out of steam using RAID 5 but has plenty of disk space, perhaps
going to RAID 0+1 will improve performance and increase the box’s hardware life. If the system is
having problems with write bandwidth, lowering the number of disks per RAID group and, therefore,
having a greater percentage of the disk space devoted to parity may help. Using some of your unused
space is certainly preferable to buying a new storage system. Changing the configuration of the
storage system is especially worth considering if it wasn’t set up by someone who really understands
performance tuning.

If a RAID system has been set up suboptimally, you may be able to improve its performance by
upgrading. Vendors often provide upgrade solutions to their RAID systems that can improve their
throughput, both in terms of hardware components and the software that manages the system.

Lastly, to save money, the system might have originally included insufficient NVRAM or read
cache. Performance might improve dramatically if you increase the NVRAM.

You can also use tunefs/tune2fs to help with disk issues. (On AIX, use chfs.) The
tunefs/tune2fs command lists the current characteristics of a file system (careful—some commands

cannot be run on an active system, so check your documentation for more information before running
these):

To set minfree (the percentage of reserved filesystem blocks) to 5 percent, use the following
command (be careful, however; setting this could increase the overhead for file writes and reduce the
file system’s ability to avoid fragmentation):

To change rotational delay from 1 to 0 (generally the default set with newfs and mkfs is 0, which
should make tuning this with tunefs unnecessary):

Refer to Chapter 3 for additional information on tuning disk I/O at the database level.

 The sar –b Command (Check the Buffer Cache)
The sar –b command reports on the system’s buffer cache activities (not the Oracle buffer cache). It
gives you the number of transfers per second between system buffers and block devices. The main
parameters to look for are as follows:

 Read cache: %rcache > 90%, indicating the potential for bad disk I/O
 Write cache: %wcache < 70%, likewise indicating the potential for bad disk I/O

To look deeper into the buffer cache operation, consider a typical HP processor module. It consists
of a CPU, a cache, a transaction look-aside buffer (TLB), and a coprocessor. These components are
connected together with buses, and the processor module itself is connected to the system bus. The
cache is a very high-speed memory unit. Typical access times are 10–20 nanoseconds (ns), compared
to RAM, which is typically 80–90 ns. The cache can be accessed in one CPU cycle. Its contents and
instructions and data that was recently or is anticipated to be used by the CPU are stored here. The
TLB is used to translate virtual addresses into physical addresses. It’s a high-speed cache whose
entries consist of pairs of recently used virtual addresses and their associated physical addresses.
The coprocessor is a specialized piece of hardware that does complex mathematical numerical
instructions. For memory management in Unix, vhand is the paging daemon. The buffer cache, as you
can see from the HP example, is a pool of memory designed to decrease file access time. Here are
some other noteworthy buffer cache characteristics:

 The buffer cache can have a fixed state.
 The default system uses dynamic size allocation.
 The buffer cache can increase performance of disk reads and writes.
 Data is flushed from the buffer cache by the Sync process.

 The sar –q Command (Check the Run Queue and
Swap Queue Lengths)
The sar –q command reports on the system’s run queue lengths and swap queue lengths. On Linux, it
also gives the average load numbers. The –q switch gives the length of the run queue (runq-sz), the
percentage of time the run queue was occupied (%runocc), the length of the swap queue (swpq-sz),
and the percentage of time the swap queue was occupied (%swpocc); the smaller these numbers, the
better. You need to compare sar –q to sar –w data to see if the runq-sz is greater than 4 or the
%swpocc is greater than 5, which signals a potential issue.

Using the sar and vmstat Commands to Monitor
Paging/Swapping
A quick way to determine if any swapping activity has occurred since the system started is to issue
the command vmstat –s. Having a non-zero value in the swp/in and swp/out columns is a good
indicator of a possible problem. You can delve into more detail using the sar command, which you
can also use to check for system paging and swapping. Depending on the system, any paging and
swapping could be a sign of trouble. In a virtual memory system, paging is when users who are not
currently active are moved from memory to disk (a small issue). Swapping is when users who are
currently active are moved to disk due to insufficient memory (very large issue). Swapping and
paging could easily take an entire book due to the depth of the subject. Simple and fast commands to
get a general picture of the state of your system are covered in this chapter.

 Using sar –p to Report Paging Activities
The following table describes the fields displayed with the sar –p command. On Linux, use sar –B.
On AIX, use sar -r.

The key statistic to look for is an inordinate number of page faults of any kind. A high value usually

indicates a high degree of paging. Remember that paging is not nearly as bad as swapping, but as
paging increases, swapping will soon follow. You can review the daily reports over a period of time
to see if paging is steadily increasing during a specific time frame. The command sar –p without any
time intervals shows you the paging statistics from the entire day if you have enabled periodic
automatic monitoring.

 Using sar –w to Report Swapping and Switching
Activities
The sar command with the –w switch shows swapping activity. On Linux, use the –w switch. On AIX,
you have only paging, not swapping. The sar-w command displays the swpin/s, swpot/s, bswin/s,
and bswot/s fields, which are the number of transfers and number of 512-byte units transferred for
swapins and swapouts (including initial loading of some programs). The field pswch/s shows context
switches that occur per second. pswch/s should be less than 50. Examine swapping activity closely if
swpot/s rises above 0.

A high count for process switching points toward a memory deficiency because actual process
memory is being paged. Swapping is not a problem in the preceding example.

 Using sar –r to Report Free Memory and Free Swap
The following command line and output illustrate the sar command with the –r switch:

When freemem (free memory—listed here in 512-byte blocks) falls below a certain level, the
system starts to page. If it continues to fall, the system then starts to swap out processes—a sign of a
rapidly degrading system. Look for processes taking an extreme amount of memory, or else an
excessive number of processes. On Linux and HP-UX, use vmstat.

 Using sar –g to Report Paging Activities
The following table describes the fields displayed with the –g switch. On Linux, use sar –B. On
AIX, use sar -r.

A high ppgout value (pages being moved out of memory) points toward a memory deficiency.

 Using sar –wpgr to Report on Memory Resources
More information about the system’s utilization of memory resources can be obtained by using sar –
wpgr (this combines the previously listed switches):

Check for page-outs (pgout/s means page-out requests per second; ppgout/s means page-out pages
per second), and watch for their consistent occurrence. Look for a high incidence of address
translation faults (vflt/s). Check for swap-outs (swpot/s). Occasional swap-outs may not be a cause
for concern, as some number of them is normal (for example, inactive jobs). However, consistent
swap-outs are usually bad news, indicating that the system is very low on memory and is probably
sacrificing active jobs. If you find evidence of memory shortages in any of these, you can use ps to
look for memory-intensive jobs.

TIP
Use the sar command to monitor and evaluate memory use and the potential need for additional
memory. Paging is generally the movement of inactive processes from memory to disk. A high
degree of paging is generally the predecessor to swapping. Swapping is the movement of active
processes from memory to disk. If swapping starts to escalate, your system begins the downward
“death spiral.” Fixing memory hogs or adding memory is the correct solution.

What’s a Good Idle Percentage for the CPU?
The optimum idle percentage depends on the system size and variation in time accessed. For instance,
a system that is accessed with heavy CPU usage for short periods of time may have an 80 percent
average CPU idle time. In contrast, a system with very small jobs, but many of them, may have the

same 80 percent average CPU idle time. In 12c, consolidating systems by using multitenant databases
usually results in the idle percentage being much higher and the heavy usage periods being much
lower (by averaging all systems into one). The idle percentage is not as important as what is
available when you run a job that must complete immediately (and is very important to the business).
A 50-percent idle CPU may be a problem for the company with a large CPU-bound job that must
complete quickly, whereas a 10-percent idle CPU may be more than enough for a company that has a
very small job (requiring little CPU) that must complete quickly. Oracle generally attempts to use the
entire available CPU to complete a job.

I have found it helpful to run sar at regularly scheduled intervals throughout the day. The overhead
of running sar is minimal, and it can be a great help in determining what was happening on your
system last week when the problem actually started occurring. You have the ability to keep
information in report format for 30 days by default. The following entries in crontab produce a
snapshot of the system state every 20 minutes during working hours:

The next entry produces a report of important activities throughout the workday:

To access the report at any time, simply type sar with the appropriate switches and you will see
output for each sampling period. For further information, see your man pages for “sar,” “sa1,” and
“sa2.”

TIP
In 12c, consolidating systems by using multitenant databases usually results in the CPU idle
percentage being much higher and the heavy CPU usage periods being much lower (by averaging
all systems into one). Using pluggable databases to average out the load on a single multitenant
system can be very effective!

CPU Scheduler and Context Switching
The goal in tuning is to keep the CPU as busy as possible so it uses all available resources allotted to
get things done faster. The five major process states are as follows:

 SRUN The process is running or runnable.

 SSLEEP The process is waiting for an event in memory or on the swap device.

 SZOMB The process has released all system resources except for the process table. This is

the final process state.

 SIDL The process is being set up via fork and/or exec.

 SSTOP The process has been stopped by job control or by process tracing and is waiting to
continue.

The CPU scheduler handles context switches and interrupts. In multiprocessing environments, a
context switch is when one process is suspended from execution on the CPU, its current state is
recorded, and another process starts its execution. Obviously, in computer processing environments,
the goal is good CPU and computer system component design in order to reduce context switch
management overhead, or to have a processing load that works more efficiently and does not require
too many context switches. Context switching occurs when any of the following occur:

 A time slice expires
 A process exits
 A process puts itself to sleep
 A process puts itself in a stopped state
 A process returns from user mode from a system call but is no longer the most eligible process

to run
 A real-time priority process becomes ready to run

Checking Oracle CPU Utilization Within Oracle
This section explains how to examine the processes running in Oracle. V$SYSSTAT shows Oracle
CPU usage for all sessions. The statistic “CPU used by this session” actually shows the aggregate
CPU used by all sessions. V$SESSTAT shows Oracle CPU usage per session. You can use this view
to see which particular session is using the most CPU.

For example, if you have eight CPUs, then, for any given minute in real time, you have eight
minutes of CPU time available. On Windows and Unix-based systems, this can be either user time or
system mode time (“privileged” mode, in Windows). If your process is not running, it is waiting. CPU
utilized by all systems may, therefore, be greater than one minute per interval.

At any given moment, you know how much time Oracle has utilized on the system. So if eight
minutes are available and Oracle uses four minutes of that time, then you know that 50 percent of all
CPU time is used by Oracle. If your process is not consuming that time, then some other process is.
Return to the system to discover what process is using up the CPU. Identify the process, determine
why it is using so much CPU, and see if you can tune it. If the CPU_COUNT initialization parameter
is manually set to 4 for an instance running on an eight-CPU system, that could also explain why it
was only using up to 50 percent of the CPU resources. By default, an instance has CPU_COUNT set
to the number of physical CPUs (or cores) on the server, but this parameter can be changed.

The major areas to check for Oracle CPU utilization are

 Reparsing SQL statements

 Inefficient SQL statements
 Read consistency
 Scalability limitations within the application
 Latch contention

Finding the Worst User on the System Using the top
Command
The top command shows a continuous display of the most active processes. DBAs and operations
experts often run this (or similar utilities) at the first sign of system performance issues. This display
automatically updates itself on the screen every few seconds. The first lines give general system
information, while the rest of the display is arranged in order of decreasing current CPU usage (the
worst user is on “top”). If your system does not have top installed, it is commonly available from
http://sunfreeware.com or various other sources on the Web. Simply do a web search for “top
program download” and you should be rewarded with multiple locations from which to download
the program. On AIX, the command is topas. On Solaris, both prstat and top are available.

The preceding display shows the top user to be psoft with a PID (Process ID) of 23626 (this
output may be slightly different on your system). This user is using 99.63 percent of one CPU. If this
output persisted for any length of time, finding out who this is and what he or she is doing would be
imperative! I will show how to link this back to an Oracle user employing the ps command and
querying the V$ views later in this chapter.

http://sunfreeware.com

TIP
Use the top command to find the worst user on the system at a given point in time (the kill
command usually follows for many DBAs). If the worst query lasts only a short period of time, it
may not be a problem; but if it persists, additional investigation may be necessary.

 Monitoring Tools
There are GUI monitoring tools available (Oracle Cloud Control comes to mind) on most platforms
that either come bundled with the software or are available on the Internet. The Task Manager and
“perfmon” are available on Windows; sdtprocess and Management Console are available for later
versions of Solaris (once again http://sunfreeware.com has a plethora of free tools); nmon (within
topas command) is available for AIX; and tools like Superdome Support Management Station
(SMS), glance, and HP Servicecontrol Manager are available for HP. When using any tools,
remember to manage system performance with the following guidelines:

 Measure performance continuously.
 Assess systems and applications.
 Select the tool to use.
 Monitor.
 Troubleshoot issues that arise.
 Remove bottlenecks.
 Optimize applications.
 Plan for future workloads.

You will also find it worthwhile to remember to always use basic tuning guidelines:

 Do not tune at random except to solve an emergency.
 Measure before and after you tune.
 Tune one area at a time, and only change one thing at a time.
 Always use at least two tools when possible to evaluate tuning decisions.
 Know when to say stop!

Using the uptime Command to Monitor CPU Load
The uptime command is an excellent utility for quickly viewing the CPU load averages for the past 1,

http://sunfreeware.com

5, and 15 minutes. The uptime command also displays how long the system has been running (the
uptime) and the number of users on the system. You want to look at the load average. This is the
number of jobs in the CPU run queue for the last 1, 5, and 15 minutes. Note that this is not the
percentage of CPU being used.

I have found that a system with an average run queue of 2–3 is acceptable. If you add the following
script to your cron table to run every hour, your average system load will be e-mailed to you every
two hours:

TIP
Use cron and uptime to have your system load e-mailed to you on a regular basis. See your Unix
manual for any specific syntax when using these commands.

Using the mpstat Command to Identify CPU Bottlenecks
The mpstat command is a tool on Solaris, Linux, and AIX that reports per-processor statistics in
tabular form. When using the mpstat command, you set the time interval between reports and the
number of times mpstat should repeat. Each row of the table represents the activity of one processor.
The first table shows the summary of activity since boot time. Pay close attention to the smtx
measurement, which indicates the number of times the CPU failed to obtain a mutex (mutual exclusion
lock). Mutex stalls waste CPU time and degrade multiprocessor scaling. In the example that follows,
there are four processors numbered 0–3, and a system that is heading toward disaster is displayed
(this output is specific to Solaris).

TIP
If the smtx column for the mpstat output is greater than 200, you are heading toward CPU
bottleneck problems.

Combining ps with Selected V$ Views
Which process is using the most CPU? The following ps Unix command lists the top nine CPU users
(much like the top command in “Finding the Worst User on the System Using the top Command,”
earlier in this chapter):

This command lists the %CPU used, the process ID (PID), the Unix username, and the command
that was executed. If the top user was an Oracle user, you could then get the information on the
process from Oracle using the queries listed next. You do this by passing the system PID obtained
from the ps command into the following queries:

The following output shows an example that identifies the top CPU user utilizing the previously
described commands and scripts:

Note that I use 4602 as the input, as it is the PID for the worst CPU from the ps command:

Note that I use 10 as the SID and 105 as the serial#, as they were the values retrieved in the
preceding query (PS_VIEW.SQL):

Putting it all together (setting headings off), you get

If you had a problem with users executing ad hoc queries and received problem queries that
showed up in this result on a regular basis, you could add an automated kill command at the end to
automate your job completely.

TIP
Combine operating system utilities with Oracle utilities to find problematic users quickly and
effectively.

 CPU/Memory Monitoring Tool (Task Manager) on

Windows
Task Manager can be used to monitor CPU and memory use under Windows. You can also select the
columns to display in Task Manager, one of which is the process ID. However, because Oracle uses
threaded processes, I did not find this feature useful in mapping to Oracle session IDs.

Using the iostat Command to Identify Disk I/O
Bottlenecks
You can also use the iostat command to identify a disk bottleneck. The iostat command reports
terminal and disk I/O activity, as well as CPU utilization. The first line of the output is for everything
since booting the system, whereas each subsequent line shows only the prior interval specified.

Depending on the flavor of Unix, this command has several options (switches). The most useful
switches are usually –d (transfers per second by disk), –x (extended statistics), –D (reads and writes
per second by disk), –t (terminal or tty), and –c (CPU load). The basic format for this is:

Using the –d switch, you can list the number of kilobytes transferred per second for specific disks,
the number of transfers per second, and the average service time in milliseconds. This displays I/O
only; it doesn’t distinguish between read and writes.

 Using iostat –d for Disk Drives sd15, sd16, sd17, and
sd18
The output that follows shows that sd17 is severely overloaded compared to the other drives. Moving
information from sd17 to one of the other drives would be a good idea if this information is
representative of disk I/O on a consistent basis.

 Using iostat –D
The –D switch reports the reads per second, writes per second, and percentage disk utilization:

This shows that the activity on sd17 is entirely read activity, whereas the activity on sd16 is
strictly write activity. Both drives are at a peak level of utilization, and I may also have I/O problems.
These statistics were gathered during a backup of sd17 to sd16. Your system should never look this
bad!

 Using iostat –x
Using the –x switch reports extended disk statistics for all disks. This combines many of the switches
mentioned previously.

Once again, disks sd16 and sd17 are problems that I need to investigate and monitor further.

 Combining iostat –x with Logic in a Shell Script
The script in this section takes the iostat –x output, sorts it by the busy field (%b), and prints out
the ten busiest disks for the listed interval. Some options for this script are listed here, followed by
the script example and output:

 This is the diskbusy script built on 1/1/2009:
 The shell is running in !/bin/ksh.
 This script gets an iostat –x listing and sorts it by %b field.

 Change print $10 to sort by a different field.
 Change to iostat –x 5 5 to get a different interval and count (5 seconds/5 times).
 Change tail to tail –20 to get the top 20 busiest disks only.

Running the preceding shell script, I receive this output:

In the preceding example, I run iostat five times and the top ten busiest disks are displayed over
all five runs. The disk sd17 is listed five times because it hits the combined top ten all five times that
iostat is run.

TIP
Use the sar and iostat commands to find potential disk I/O problem areas. Utilizing the
capabilities of shell scripting with these commands embedded can further enhance these
commands.

Using the ipcs Command to Determine Shared Memory
Another helpful memory command that you can use to monitor the Oracle SGA is the ipcs command.
The ipcs command displays the size of each shared memory segment for the SGA. If there is not
enough memory for the entire SGA to fit in a contiguous piece of memory, the SGA will be built in
noncontiguous memory segments. In the event of an instant crash, the memory might not be released. If
this happens to you, note that the ipcrm command removes the segments (ipcrm –m for memory
segments and ipcrm –s for semaphore segments). Use ipcs –b on Solaris and ipcs –a on Linux,
HP-UX, and AIX.

In the preceding example, the SGA is built in three noncontiguous segments (making up the 100M+
SGA). The instance is then shut down and started with a smaller SGA (so the SGA is made up of
contiguous pieces of memory). After the SGA has been lowered to 70M, I again issue the ipcs
command:

Fitting the entire SGA into a single shared memory segment is generally preferable because of the
overhead that can be required to track more than one segment and the time required to switch back
and forth between those segments. You can increase the maximum size of a single shared memory
segment by increasing the SHMMAX setting in the /etc/system file (or /etc/sysctl.conf
depending on version). See the Oracle installation documentation for more specific information for
your platform. On Solaris 10, the setting of the shared memory parameters moved to resource control,
so if you modify the /etc/system file, any changes you make are ignored. Lastly, if you configure
Hugepages, then the memory is pulled from a pool, and semaphores are not used. AMM requires the
use of semaphores, so if you set MEMORY_TARGET (see Chapter 4 for setting the initialization
parameters), you cannot use Hugepages.

TIP
Use the ipcs command to see if your SGA is built using multiple noncontiguous pieces of memory.
A database crash can cause this to be problematic by not releasing the memory. Use the ipcrm
command (only if the SGA pieces are not released after a database crash) to then remove the SGA
pieces from memory. Do not issue the ipcrm command with a running database.

Using the vmstat Command to Monitor System Load
The vmstat command is a conglomeration of many of the other commands listed in this chapter. The
advantage of vmstat is you get to see everything at once. The problem with vmstat is that you get to
see everything at once and must evaluate it.

The vmstat command shows you these sets of processes:

It additionally offers this information about CPU usage:

Having any process in the b or w column is usually a sign of a problem system (the preceding
system has a problem if this continues). If processes are blocked from running, the CPU is likely to be
overwhelmed or a device is hung. The CPU idle time that is displayed in the preceding example is 0.
Clearly the system is overwhelmed, as processes are blocked and people are waiting to get CPU
time. On the reverse side, if the idle time is high, you may not be using your system to its full capacity
(not balancing activities efficiently) or the system may be oversized for the task. I like to see an idle
time of 5–20 percent for a static (not adding new users) system.

Be aware that as the amount of time the system is waiting on I/O requests increases, the amount of
idle time on the CPU decreases. This is because system resources have to be expended to track those
waiting I/O requests. I mention this to make sure that you take a look at the whole picture before
making a decision. Eliminating an I/O bottleneck may free up significant amounts of CPU time. Time
spent tracking I/O is reflected as sy or system time in the vmstat output.

In the CPU columns of the report, the vmstat command summarizes the performance of
multiprocessor systems. If you have a two-processor system and the CPU load is reflected as 50
percent, that doesn’t necessarily mean that both processors are equally busy. Rather, depending on the
multiprocessor implementation, it may indicate that one processor is almost completely busy and the
next is almost idle. The first column of vmstat output also has implications for multiprocessor
systems. If the number of runnable processes is not consistently greater than the number of processors,
it is less likely that you can get significant performance increases by adding more CPUs to your
system.

You can also use the vmstat command to view system paging and swapping. The po (page-out)
and pi (page-in) values indicate the amount of paging that is occurring on your system. A small
amount of paging is acceptable during a heavy usage cycle but should not occur for a prolonged
period of time. On most systems, paging will occur during Oracle startup.

TIP
Use the vmstat command to find blocked processes (users waiting for CPU time) and also for

paging or swapping problems. The vmstat command is a great way to see many of the sar options
in one screen.

Monitoring Disk Free Space
Often DBAs, especially those without in-house system administrators, need to monitor disk free
space closely. For example, if the filesystem containing your archived redo logs fills, all activity on
your database can instantly come to a halt! What follows is a script that allows you to monitor disk
free space easily; it sends an e-mail message to you if there is an issue. I would schedule this script to
run about every 15 minutes. Scheduling a program to run at specified intervals is usually done through
the cron process. You add or remove entries with the command crontab –e. This command should
open your crontab file in a vi editor. Here’s an example that checks disk free space every 15
minutes:

This script runs the diskfreespace.sh program every 15 minutes, every day. For further
information about scheduling programs via cron, refer to your system’s man pages on “crontab.” The
command to view the man page (help page) for crontab is man crontab from the Unix prompt.

Finally, here is an example script to check file system free space on your host; it then sends an e-
mail message to you if there is less than 5 percent free space. You can edit this script for more or less
free space by changing $PERC –gt 95 to, for example, $PERC –gt 90. This alerts you when the
system has less than 10 percent free space. Note that this script is designed for Linux and will run
unmodified on Solaris. To run it on HP-UX, change the command df –kl to df –kP.

 The df Command
One of the biggest and most frequent problems that systems have is running out of disk space,
particularly in /tmp or /usr. There is no magic answer to the question, “How much space should be

allocated to these directories?” but a good rule of thumb is between 1500K and 3000K for /tmp and
roughly twice that for /usr (with larger systems these values need to be larger yet, especially for
/tmp). Other filesystems should have about 5 or 10 percent of the system’s available capacity. The df
command shows the free disk space on each disk that is mounted. The –k option displays the
information about each filesystem in columns, with the allocations in KB. On HP-UX, use bdf.

From this display, you can see the following information (all entries are in KB):

The usable space has been adjusted to take into account a 10-percent reserve head room
adjustment and thus reflects only 90 percent of actual capacity. The percentage shown under capacity
is, therefore, used space divided by the adjusted usable space.

 The du Command
Once you know that you need space, du (disk usage) is a nice command to find out who’s hogging the
space. Here are some nice du commands you can use to find the sizes of current directories within a
mount:

Here is a version of the same command that ensures you remain in that single filesystem and don’t
travel to other filesystems. For instance, if you run the following in /, it will show you only the
subdirectories and files in /, and won’t go into other filesystems like /opt or /tmp.

Monitoring Network Performance with netstat
One way to check for network loading is to use netstat without any parameters:

In the report, the important field is send-q, which indicates the depth of the send queue for packets.
If the numbers in send-q are large and increasing across several of the connections, the network is
probably bogged down.

Corrective Network Actions
If you suspect that there are problems with the integrity of the network itself, you must try to
determine where the faulty piece of equipment is. If the problem is that the network is extremely busy,
thus increasing collisions, time-outs, retransmissions, and so on, you may need to redistribute the
workload more appropriately. By partitioning and segmenting the network nodes into subnetworks
that more clearly reflect the underlying workloads, you can maximize overall network performance.
Installing additional network interfaces in your gateway and adjusting the addressing on the gateway
to reflect the new subnetworks accomplishes this. Altering your cabling and implementing some of the
more advanced intelligent hubs may be needed as well. By reorganizing your network, you maximize
the amount of bandwidth that is available for access to the local subnetwork. Make sure systems that
regularly perform NFS mounts of each other are on the same subnetwork.

If you have an older network and are having to rework your network topology, consider replacing
the older coax-based networks with the more modern twisted-pair types, which are generally more
reliable and flexible. Make sure the workload is on the appropriate machine(s). Use the machine with
the best network performance to do its proper share of network file service tasks. Check your
network for diskless workstations. These require large amounts of network resources to boot up,

swap, page, etc. With the cost of local storage decreasing constantly, it is getting harder to believe
that diskless workstations are still cost-effective when compared to regular workstations. Consider
upgrading the workstations so they support users locally, or at least minimize their use of the network.

If your network server has been acquiring more clients, check its memory and its kernel buffer
allocations for proper sizing. If the problem is that I/O-intensive programs are being run over the
network, work with the users to determine what can be done to make that requirement a local, rather
than a network, one. Educate your users to make sure they understand when they are using the network
appropriately and when they are being wasteful with this valuable resource.

Modifying the Configuration Information File
Solaris uses the /etc/system file for modification of kernel-tunable variables. The basic format is
this:

It can also have this format:

The /etc/system file can also be used for other purposes (for example, to force modules to be
loaded at boot time, to specify a root device, and so on). The /etc/system file is used for permanent
changes to the operating system values. Temporary changes can be made using adb (Android Debug
Bridge) kernel debugging tools. The system must be rebooted for the changes to become active using
/etc/system. Once you have made your changes to this file, you can recompile to make a new Unix
kernel. The command is mkkernel –s system. This new kernel, called vmunix.test, is placed in the
/stand/build directory. Next, you move the present stand/system file to /stand/system.prev;
then you can move the modified file /stand/build/system to /stand/system. Then you move the
currently running kernel /stand/vmunix to /stand/vmunix.prev, and then move the new kernel,
/stand/build/vmunix.test, into place in /stand/vmunix (i.e., mv /stand/build/vmunix.test
/stand/vmunix). The final step is to reboot the machine to make your changes take effect.

 Other Factors That Affect Performance
Good performance is difficult to define. Two common, but different and not necessarily equivalent,
measures are used for performance. Response time is the time between the instant the user presses the
enter key and the time the system provides a response. Throughput is the number of transactions
accomplished in a fixed period of time. Of the two measures, throughput is the better measure of how
much work is actually getting accomplished. Response time is more visible and, therefore, used more
frequently; it is a better measurement for meeting the system’s business objectives. Some people don’t

look at everything when tuning. Remember to check all of these:

 All hardware Are the CPUs fast enough and are there enough of them? How much memory is
there; is it enough?

 Operating system and application software Is the system configured correctly for the current
environment?

 People Are people trained sufficiently on the system and applications to optimize their
productivity?

 Changes What changes in workload and user requirements can be expected to occur?

A resource is a bottleneck if the size of a request exceeds the available resource. A bottleneck is a
limitation of system performance due to the inadequacy of the hardware or software component or the
system’s organization.

Tuning a CPU System
 Upgrade to faster or more processors.
 Upgrade the system with a larger data/instruction cache.
 Spread applications across multiple systems and disks.
 Run long batch jobs during off-peak hours whenever possible.
 nice (a command that changes the priority of a process) unimportant applications.
 Lock frequently used processes in memory.
 Turn off system accounting.
 Optimize the applications.

Tuning Memory-Bound Systems
 Add physical memory.
 Add flash.
 Use diskless workstations rather than X-terms.
 Reduce MAXDSIZ.
 Reduce the use of memory locking.
 Identify programs with memory leaks.
 Tune the applications.
 Reduce the size of the kernel drivers and subsystems.
 Reduce the size of the buffer cache.

Disk Tuning
 Add disk drives.
 Add disk channels.
 Use faster disks or add flash.
 Use striping.
 Use mirroring.
 Balance I/O across multiple spindles.
 Dedicate a disk section to an application.
 Use raw disk I/O.
 Increase the system buffer cache.
 Increase the kernel table sizes.
 Use the tunefs and tune NFS commands.

Volume Manager Factors That Can Affect Performance
 File system parameters
 Fragmentation
 Mirroring
 Scheduling
 Spindles
 Strictness
 Striping
 Workload
 Work type

Other Sources to Improve Performance
Another tool worth investigating is the Oracle Cluster Health Monitor (CHM). You can use it to track
operating system resources on each node. CHM tracks every process and device level continuously.
You can set thresholds, which when they are hit, set off an alert. Historical information can also be
replayed. For more information see www.oracle.com/technetwork/database/enterprise-edition/ipd-
overview-130032.pdf.

Oracle ORION Calibration Tool is another tool that you can use to create a representative
workload that stresses a storage array in the same manner as your production application. Orion
issues I/Os against raw disks using the same libraries an Oracle database would issue. It can also

http://www.oracle.com/technetwork/database/enterprise-edition/ipd-overview-130032.pdf

help you fine-tune the storage array for a production application. For more information see
https://docs.oracle.com/database/121/TGDBA/pfgrf_iodesign.htm#TGDBA015.

Lastly, please see My Oracle Support (Metalink) Note 224176.1 for additional information on
using operating system commands to diagnose Oracle Performance issues.

Tips Review
 Use the sar –u command to see a quick snapshot of how much work the CPU is doing and

whether the CPU is overwhelmed. Run sar on a regular basis to get a baseline for your system
so you can identify when your system is running poorly. However, at times low CPU idle time
can also be an I/O issue, not a CPU issue.

 Use the sar command to monitor and evaluate memory use and the potential need for
additional memory. Paging is generally the movement of inactive processes from memory to
disk. A high degree of paging is generally the predecessor to swapping. Swapping is the
movement of active processes from memory to disk. If swapping starts to escalate, your system
begins the downward “death spiral.” Fixing memory hogs or adding memory is the correct
solution.

 In 12c, consolidating systems by using multitenant databases usually results in the CPU idle
percentage being much higher and the heavy CPU usage periods being much lower (by
averaging all systems into one). Using pluggable databases to average out the load on a single
multitenant system can be very effective!

 Use the top command to find the worst user on the system at a given point in time. (the kill
command usually follows for many DBAs). If the worst query lasts only a short period of time,
it may not be a problem; but if it persists, additional investigation may be necessary.

 Use cron and uptime to have your system load e-mailed to you on a regular basis. See your
Unix manual for any specific syntax when using these commands.

 If the smtx column for the mpstat output is greater than 200, you are heading toward CPU
bottleneck problems.

 Combine operating system utilities with Oracle utilities to find problematic users quickly and
effectively.

 Use the sar and iostat commands to find potential disk I/O problem areas. Utilizing the
capabilities of shell scripting with these commands embedded can further enhance these
commands.

 Use the ipcs command to see if your SGA is built using multiple noncontiguous pieces of
memory. A database crash can cause this to be problematic by not releasing memory. Use the
ipcrm command (only if the SGA pieces are not released after a database crash) to then
remove the SGA pieces from memory. Do not issue the ipcrm command with a running
database.

 Use the vmstat command to find blocked processes (users waiting for CPU time) and also for
paging or swapping problems. The vmstat command is a great way to see many of the sar

https://docs.oracle.com/database/121/TGDBA/pfgrf_iodesign.htm#TGDBA015

options in one screen.

References
Adrian Cockcroft and Richard Pettit, Sun Performance and Tuning: Java and the Internet, Second
Edition (Sun Microsystems Press, 1998).
Mark Gurry and Peter Corrigan, Oracle Performance Tuning, Second Edition (O’Reilly, 1996).
Andy Johnston and Robin Anderson, UNIX Unleashed, System Administrator’s Edition (Sams,
2001).
Richard McDougall and Jim Mauro, Solaris Internals: Solaris 10 and OpenSolaris Kernel
Architecture, Second Edition (Prentice Hall, 2006).
Websites: www.gsp.com, www.oracle.com/technetwork., www.hp.com

Many thanks to Alwyn Santos and Dana MacPhail, who contributed tips to this version of the
chapter. Thanks also to Doug Freyburger, Mike Gallagher, Judy Corley, and Jon Vincenzo, who
updated previous versions that we built upon.

http://www.gsp.com
http://www.oracle.com/technetwork
http://www.hp.com

O

APPENDIX
A

Key Initialization Parameters (DBA)

racle 12c Release 2 has 412 different documented and 4237 different undocumented
initialization (init.ora/spfile.ora) parameters. This means you have a total of 4649
initialization parameters to play with; you can do a count(*) of X$KSPPI for the total
number of parameters both documented and undocumented (you need to be SYS to access

the X$ tables). A count of V$PARAMETER gives you a count of only the documented parameters.
When I refer to the undocumented parameters, I am referring to parameters that start with an
underscore (_), although some of them are actually even documented. There are also several
parameters that I call documented (no “_” in front of them), but they are not really documented, only
externalized or available for use, usually for backward compatibility. Even these numbers vary
slightly on different versions of Oracle and platforms. The initialization parameters vary (in both
name and number) according to the database version and release used. Run the queries listed in this
appendix (accessing the V$PARAMETER view and the X$KSPPI table) on your version of the
database to get the number of parameters and details for your specific version.

Tips covered in this appendix include the following:

 Desupported and deprecated initialization parameters
 Top 25 documented initialization parameters with descriptions and suggested settings
 Top 20 documented initialization parameters that you better not forget (option dependent)
 Top 13 undocumented initialization parameters (Shhh!)
 Bonus 11 undocumented initialization parameters (mostly Exadata)
 Complete listing of documented initialization parameters (412 in 12cR2)
 Query for undocumented initialization parameters (4237 in 12cR2)

Since every system is set up differently, my top 25 may not be the same as your top 25 (so feel free
to write in this book as if it were yours). Hopefully, this appendix will give you a place to start until
someone writes the 1000-page book on all of the initialization parameters. Please refer to Chapter 4
for a detailed look at the most important initialization parameters.

Obsoleted/Desupported Initialization Parameters

The following are some of the Oracle 12cR2 obsoleted/desupported initialization parameters (query
V$OBSOLETE_PARAMETER for the full list of 154 obsolete parameters). Obsolete means these
parameters are gone, although they sometimes become undocumented parameters, which means that
they have an underscore (_) in front of them.

 DDL_WAIT_FOR_LOCKS
 DRS_START
 GC_FILES_TO_LOCKS
 DB_BLOCK_LRU_LATCHES (undocumented parameter with default of 8)
 _KGL_LATCH_COUNT (shows as both obsolete and undocumented; default of 0)
 MAX_COMMIT_PROPAGATION_DELAY
 PLSQL_NATIVE_LIBRARY_DIR
 PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT
 ROW_LOCKING (undocumented parameter with default of ALWAYS)
 SQL_VERSION

Deprecated Initialization Parameters
The following are Oracle 12cR2 deprecated initialization parameters. You can use these for
backward compatibility, but they are probably going away in the future. To list the deprecated
parameters for a given version, run the following SQL statement (note that 23 records were returned
for this query in 12cR2, versus 26 in 12cR1), although some of these were deprecated in the past as
noted in the list):

 ACTIVE_INSTANCE_COUNT
 BACKGROUND_DUMP_DEST (replaced in 11.1 by DIAGNOSTIC_DEST)
 BUFFER_POOL_KEEP (replaced in 9i with DB_KEEP_CACHE_SIZE)
 BUFFER_POOL_RECYCLE (replaced in 9i with DB_RECYCLE_CACHE_SIZE)
 COMMIT_WRITE (as of 12.2, use COMMIT_LOGGING and COMMIT_WAIT)
 CURSOR_SPACE_FOR_TIME (as of 11.1)
 FAST_START_IO_TARGET (replaced in 9i with FAST_START_MTTR_TARGET)
 INSTANCE_GROUPS (as of 11.1)

 LOCK_NAME_SPACE (as of 10.1)
 LOG_ARCHIVE_START (as of 11.2)
 PARALLEL_ADAPTIVE_MULTI_USER (as of 12.2)
 PLSQL_DEBUG (as of 11.1)
 PLSQL_V2_COMPATIBILITY (as of 11.1)
 RDBMS_SERVER_DN (as of 12.2)
 REMOTE_OS_AUTHENT (as of 11.1)
 RESOURCE_MANAGER_CPU_ALLOCATION (as of 11.1)
 SEC_CASE_SENSITIVE_LOGON (as of 12.1)
 SERIAL_REUSE (as of 10.2)
 SQL_TRACE (as of 10.2)
 STANDBY_ARCHIVE_DEST (as of 11.1)
 USER_DUMP_DEST (as of 11.1, replaced by DIAGNOSTIC_DEST)
 UTL_FILE_DIR (as of 12.1)

Top 25 Initialization Parameters
The following list is my list of the top 25 most important initialization parameters, in order of
importance. Your top 25 may vary somewhat from my top 25 because everyone has a unique business,
unique applications, and unique experiences.

1. MEMORY_TARGET This is the initialization parameter setting for all of the memory
allocated to both the PGA and SGA combined (new in as of 11g). Setting
MEMORY_TARGET enables Automatic Memory Management, so Oracle allocates memory
for you based on system needs, but you can also set minimum values for key parameters.
MEMORY_TARGET is used for everything that SGA_TARGET was used for but now
additionally includes the PGA (especially important as MEMORY_TARGET now includes the
important area PGA_AGGREGATE_TARGET). Important parameters such as
DB_CACHE_SIZE, SHARED_POOL_SIZE, PGA_AGGREGATE_TARGET,
LARGE_POOL_SIZE, and JAVA_POOL_SIZE are all set automatically when you set
MEMORY_TARGET. Setting minimum values for important initialization parameters in your
system is also a very good idea.

2. MEMORY_MAX_TARGET This is the maximum memory allocated for Oracle and the
maximum value to which MEMORY_TARGET can be set.

3. DB_CACHE_SIZE Initial memory allocated to data cache or memory used for data itself. This
parameter doesn’t need to be set if you set MEMORY_TARGET or SGA_TARGET, but setting
a value for this as a minimum setting is a good idea. Your goal should always be toward a
memory resident database or at least toward getting all data that will be queried in memory.

4. SHARED_POOL_SIZE Memory allocated for data dictionary and for SQL and PL/SQL
statements. The query itself is put in memory here. This parameter doesn’t need to be set if you
set MEMORY_TARGET, but setting a value for this as a minimum is a good idea. Note that
SAP recommends setting this to 400M. Also note that the Result Cache gets its memory from
the shared pool and is set with the RESULT_CACHE_SIZE and RESULT_CACHE_MODE
(FORCE/AUTO/MANUAL) initialization parameters. Lastly, an important note since 11g is
that this parameter now includes some SGA overhead (12M worth) that it previously did not
(in 10g). Set this 12M higher than you did in 10g!

5. INMEMORY_SIZE The In-Memory column store resides in this area, which is separate from
the buffer cache used to store data in memory. Tables, tablespaces, partitions, and other objects
can have single columns stored in this memory area in a compressed fashion. This allows for
much faster analytics (like summing an individual column). Oracle builds indexes to make this
even faster based on ranges of values. Also, INMEMORY_QUERY should be set to
ENABLED (the default). Additional INMEMORY settings are described in Chapter 4.

6. SGA_TARGET If you use Oracle’s Automatic Shared Memory Management, this parameter is
used to determine the size of your data cache, shared pool, large pool, and Java pool
automatically (see Chapter 4 for more information). Setting this to 0 disables it. This
parameter doesn’t need to be set if you set MEMORY_TARGET, but you may want to set a
value for this as a minimum setting for the SGA if you’ve calibrated it in previous versions.
The SHARED_POOL_SIZE, LARGE_POOL_SIZE, JAVA_POOL_SIZE, and
DB_CACHE_SIZE are all set automatically based on this parameter (or MEMORY_TARGET
if used). INMEMORY_SIZE is also included in this number.

7. PGA_AGGREGATE_TARGET and PGA_AGGREGATE_LIMIT The _TARGET is a soft
memory cap for the total of all users’ PGAs. This parameter doesn’t need to be set if you set
MEMORY_TARGET, but setting a value as a minimum setting is a good idea. Note that SAP
specifies to set this to 20 percent of available memory for OLTP and 40 percent for OLAP. The
_LIMIT sets the upper limit that is allowed (the hard memory cap).

8. SGA_MAX_SIZE Maximum memory that SGA_TARGET can be set to. This parameter
doesn’t need to be set if you set MEMORY_TARGET, but you may want to set a value if you
use SGA_TARGET.

9. OPTIMIZER_MODE FIRST_ROWS, FIRST_ROWS_n, or ALL_ROWS. Although
RULE/CHOOSE are definitely desupported and obsolete and people are often scolded for
even talking about it, I was able to set the mode to RULE in 11gR2. Consider the following
error I received when I set OPTIMIZER_MODE to a mode that doesn’t exist (SUPER_FAST):

10. SEC_MAX_FAILED_LOGIN_ATTEMPTS If the user fails to enter the correct password
after this many tries (new as of 11g) the server process drops the connection and the server
process is terminated. The default is 3 (consider increasing this value for less secure systems).
A similar parameter in my top 25 list in the prior edition included

SEC_CASE_SENSITIVE_LOGON, which was new as of 11g, but is deprecated as of 12.1.
Be careful if you’re still using this parameter in 11g (fix case issues with passwords by
ensuring passwords can be lower, upper, or mixed case before you upgrade to 12c!).

11. CURSOR_SHARING Converts literal SQL to SQL with bind variables, reducing parse
overhead. The default is EXACT. Consider setting it to FORCE after research (see Chapter 4
for more information).

12. OPTIMIZER_USE_INVISIBLE_INDEXES The default is FALSE to ensure invisible indexes
are not used by default (new as of 11g). Set this parameter to TRUE to use all of the indexes
and to check which ones might have been set incorrectly to be invisible; this could be a helpful
tuning exercise, or it could also bring the system to a halt, so only use it in development.

13. OPTIMIZER_USE_PENDING_STATISTICS The default is FALSE to ensure pending
statistics are not used, whereas setting this to TRUE enables all pending statistics to be used
(new as of 11g).

14. OPTIMIZER_INDEX_COST_ADJ Coarse adjustment between the cost of an index scan and
the cost of a full table scan. Set between 1 and 10 to force index use more frequently. Setting
this parameter to a value between 1 and 10 pretty much guarantees index use, however, even
when not appropriate, so be careful because it is highly dependent on the index design and
implementation being correct. Please note that if you are using Oracle Applications 11i, setting
OPTIMIZER_INDEX_COST_ADJ to any value other than the default (100) is not supported
(see Metalink Note 169935.1). I’ve seen a benchmark where this was set to 200. Also, see bug
4483286. SAP suggests that you not set it for OLAP, but set it to 20 for OLTP.

15. DB_FILE_MULTIBLOCK_READ_COUNT For full table scans to perform I/O more
efficiently, this parameter reads the given number of blocks in a single I/O. The default value is
128 in 11gR2, but it is usually noted not to change this from the default.

16. LOG_BUFFER Server processes making changes to data blocks in the buffer cache generate
redo data into the log buffer. SAP says to use the default, whereas Oracle Applications sets it
to 10M. I’ve seen benchmarks with it set over 100M.

17. DB_KEEP_CACHE_SIZE Memory allocated to the keep pool or an additional data cache that
you can set up outside the buffer cache for very important data that you don’t want pushed out
of the cache.

18. DB_RECYCLE_CACHE_SIZE Memory allocated to a recycle pool or an additional data
cache that you can set up outside the buffer cache and in addition to the keep cache described
in item 17. Usually, DBAs set this up for ad hoc user query data with poorly written queries.

19. OPTIMIZER_USE_SQL_PLAN_BASELINES The default is TRUE, which means Oracle
uses these baselines if they exist (new as of 11g). Note that Stored Outlines are deprecated
(discouraged but they still work) in 11g, as they are replaced with SQL Plan Baselines.

20. OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES The default is FALSE, which means
that Oracle does not capture them by default, but if you create some, it will use them as stated
in the previous parameter (new as of 11g).

21. LARGE_POOL_SIZE Total blocks in the large pool allocation for large PL/SQL and a few
other Oracle options less frequently used.

22. STATISTICS_LEVEL Used to enable advisory information and optionally keep additional OS
statistics to refine optimizer decisions. TYPICAL is the default.

23. JAVA_POOL_SIZE Memory allocated to the JVM for Java stored procedures.
24. JAVA_MAX_SESSIONSPACE_SIZE Upper limit on memory that is used to keep track of the

user session state of Java classes.
25. OPEN_CURSORS Specifies the size of the private area used to hold (open) user statements. If

you get an “ORA-01000: maximum open cursors exceeded,” you may need to increase this
parameter, but make sure you are closing cursors that you no longer need. Prior to 9.2.0.5,
these open cursors were also cached and, at times, caused issues (ORA-4031) if
OPEN_CURSORS was set too high. As of 9.2.0.5, SESSION_CACHED_CURSORS now
controls the setting of the PL/SQL cursor cache. Do not set the parameter
SESSION_CACHED_CURSORS as high as you set OPEN_CURSORS, or you may
experience ORA-4031 or ORA-7445 errors. SAP recommends setting this to 2000; Oracle
Applications has OPEN_CURSORS at 600 and SESSION_CACHED_CURSORS at 500.

TIP
Setting certain initialization parameters correctly could be the difference between a report taking
two seconds and two hours. Test changes on a test system thoroughly before implementing those
changes in a production environment.

Top 20 Initialization Parameters Not to Forget
This section details some other important initialization parameters. However, these parameters may
be important only in certain cases or only if you are using a certain feature or version of Oracle:

1. CONTROL_FILES The location of your control files. You should have at least three copies.
2. COMPATIBLE Set this to the correct version, or you’ll miss things in the new version. Set to

at least 12.2.0.0.0 for 12cR2.
3. OPTIMIZER_FEATURES_ENABLE If this is not set, you are missing out on new features.

My 12.2 system had this set to 12.2.0.1, but the version that I was on was 12.2.0.0.2.
4. OPTIMIZER_ADAPTIVE_FEATURES The default is TRUE. You should not change this

unless you want to turn this off (not advisable). Two related parameters are
OPTIMIZER_ADAPTIVE_REPORTING_ONLY, which is set to FALSE by default and used to
only report on Adaptive Use (for testing). OPTIMIZER_INMEMORY_AWARE should also
stay at the default of TRUE when using INMEMORY.

5. AUDIT_TRAIL The default is set to DB in 12cR2. This parameter enables auditing for many
major commands, including CREATE, ALTER, GRANT, and AUDIT.

6. DIAGNOSTIC_DEST Trace, Alert, and Core Dump files are now in a new location. The
DIAGNOSTIC_DEST specifies the root directory where these files are located. A basic

example on how this works is to set the DIAGNOSTIC_DEST to a location (/u01/app/oracle),
for example. The corresponding locations for the dump files become
DIAGNOSTIC_DEST\DIAG\RDBMS\dbname\instname\trace (note that I have PDBs):

 background_dump_dest = /u01/app/oracle/diag/rdbms/cdb1/cdb1/trace
 user_dump_dest = /u01/app/oracle/diag/rdbms/cdb1/cdb1/trace
 core_dump_dest = /u01/app/oracle/diag/rdbms/cdb1/cdb1/cdump
 Alert files go to /u01/app/oracle/diag/rdbms/cdb1/cdb1/cdump

7. UNDO_MANAGEMENT Set this to AUTO (default) for automatic undo management.
8. UNDO_TABLESPACE Set this to the tablespace to use for undo management (UNDOTBS1 is

the default).
9. UNDO_RETENTION The UNDO retention time in seconds (900 is the default).

10. SPFILE This gives the location of the binary SPFILE used for startup. You can create a
readable PFILE with the command “CREATE PFILE=’path_and_name’ FROM SPFILE=’path
and name’;” and you can create an SPFILE from a PFILE or from MEMORY. You can also
do a startup (using the SPFILE) or do a startup pfile=… to use a given PFILE
(initSID.ora or any name you specify). The SPFILE is in the ORACLE_HOME\dbs
directory. Chapter 4 has additional information.

11. DB_BLOCK_SIZE Default block size for the database. A smaller block size reduces
contention by adjacent rows, but a larger block size lowers the number of I/Os needed to pull
back more records. A larger block size also helps in range scans where the blocks desired are
sequentially stored. An 8K block size is used for most applications and is the default.

12. CLUSTER_DATABASE You must set this to FALSE for single instance. With pluggable
databases, there are now CDB_CLUSTER and CDB_CLUSTER_NAME parameters.

13. UTL_FILE_DIR Set to use the UTL_FILE package. Note that in 11g, the UTL_FILE package
no longer opens a file if it is a symbolic link (created to close a known security hole). This
parameter is deprecated in 12c and is unset (try to move away from this).

14. LOG_CHECKPOINT_INTERVAL Checkpoint frequency (in OS blocks—most OS blocks
are 512 bytes) at which Oracle performs a database write of all dirty (modified) blocks to the
datafiles in the database. Oracle also performs a checkpoint if more than one-quarter of the
data buffers are dirty in the db cache and also on any log switch. The LGWR (log writer) also
updates the SCN in the control files and datafiles with the SCN of the checkpoint.

15. FAST_START_MTTR_TARGET Bounds time to complete a crash recovery. This is the time
(in seconds) that the database takes to perform crash recovery of a single instance. If you set
this parameter, LOG_CHECKPOINT_INTERVAL should not be set to 0. If you don’t set this
parameter, you can still see your estimated MTTR (mean time to recovery) by querying
V$INSTANCE_RECOVERY for ESTIMATED_MTTR.

16. RECOVERY_PARALLELISM Recover using the Parallel Query option for a faster recovery.
17. MAX_SHARED_SERVERS Upper limit on shared servers when using shared servers.
18. LICENSE_MAX_SESSIONS and LICENSE_MAX_USERS These limit concurrent and

named users (default is 0).
19. LICENSE_SESSIONS_WARNING Here, you specify at which session+1 you get a license

warning (default is 0).
20. CELL_OFFLOAD_PROCESSING The default is TRUE (several other CELL parameters to

consider include CELL_OFFLOAD_COMPACTION, CELL_OFFLOAD_DECRYPTION,
CELL_OFFLOAD_PARAMETERS, CELL_OFFLOAD_PLAN_DISPLAY, and
CELL_OFFLOAD_PROCESSING), which means that Smart Scans are set to be ON for
Exadata (if you are using it). (Exadata only.)

TIP
Oracle includes some excellent options. Unfortunately, some of them do not work unless you have
the initialization parameter set correctly.

Top 13 Undocumented Initialization Parameters (As I
See It)
The following list is my list of the top 13 undocumented initialization parameters in order of
importance. Your top 13 may vary somewhat, depending on your need for one of these parameters.
Although the following warning describes well the risks associated with using these parameters, I
note that the fastest RAC TPC (Transaction Processing Council) benchmark uses 17 undocumented
parameters, as do many of the TPC benchmarks that I’ve seen.

CAUTION
These 13 parameters are not supported by Oracle, and I do not recommend using them on a
production system. Use them only if directed by Oracle Support and if you have thoroughly tested
them on your crash-and-burn system (and your closest friend has been using them for years).
Undocumented initialization parameters can lead to database corruption (although some of them
can get your database back up when it becomes corrupted).

1. _ALLOW_RESETLOGS_CORRUPTION This parameter saves you when you have
corrupted redo logs. It allows the database to open with the datafiles at different SCN
synchronization levels. This means some datafiles may contain changes that other datafiles do
not (like the RBS or UNDO tablespace). This parameter may allow you to get to your data, but
there is no easy way to determine if the data that is available after using this parameter is
logically consistent. Regardless of data consistency, the DBA has to rebuild the database
afterward. Failure to do so results in multiple ORA-600 errors occurring within the database
at a later time.

2. _CORRUPTED_ROLLBACK_SEGMENTS Setting this parameter can be a means of last
resort when you have corrupted ROLLBACK segments, which you can list with this parameter
to be skipped. The _CORRUPTED_ROLLBACK_SEGMENTS parameter can force the
database open after a failed recovery, but at a very high cost.
_CORRUPTED_ROLLBACK_SEGMENTS allows the database to open by assuming every
transaction in the ROLLBACK segments is a complete, committed transaction. This leads to
logical corruption throughout the database and can easily corrupt the data dictionary. An
example would be where you transfer money from one bank to another. The transaction would
only be complete if you can verify that all parts of it are complete. In Oracle, when creating a
table, think of all the individual dictionary objects that are updated: fet$, uet$, tab$, ind$, col$,
etc. By setting this parameter, you allow table creation to succeed, even if only fet$ was
updated, but not uet$, or even if tab$ was updated, but not col$. Use it when you have no other
means of recovery and export/import/rebuild soon after.

CAUTION
These first two parameters do not always work or may corrupt the database so badly that you
cannot perform once the database is open. If they are used and do not work, then Oracle Support
cannot do anything to salvage the database if the DBA breaks down and calls Support, but the DBA
can do several things before using these parameters that will allow other recovery methods to be
used afterward. So if you must use these parameters, please ensure that you use them with the help
of Oracle Support. One good reason to use Oracle Support in this effort is the fact that the
_ALLOW_RESETLOGS_CORRUPTION parameter is problematic, often requiring an event to be
set as well, to get the database open.

3. _HASH_JOIN_ENABLED Enables/disables hash joining if you have the memory needed.
The default value is TRUE.

4. _IN_MEMORY_UNDO Makes in-memory undo for top-level transactions (Oracle’s IMU
really messed up my block-level tuning presentation as blocks in memory became more
complex). The default is TRUE. Some applications have you set this to FALSE, so please
check your application carefully for this parameter. This is one of the things that makes Oracle
fast, so be careful changing this parameter!

5. _TRACE_FILES_PUBLIC This parameter allows users to see the trace output without giving
them major privileges elsewhere. The default is FALSE; both Oracle and SAP set this to
TRUE.

6. _FAST_FULL_SCAN_ENABLED This allows fast full index scans if only the index is
needed. The default is TRUE, but Oracle Applications often recommends this be set to FALSE.

7. _KSMG_GRANULE_SIZE This is the granule size multiple for SGA granule pieces of
memory such as SHARED_POOL_SIZE and DB_CACHE_SIZE.

8. _HASH_MULTIBLOCK_IO_COUNT Number of blocks that a hash join will read/write at
once.

9. _INDEX_JOIN_ENABLED Used to enable/disable the use of index joins. Default is TRUE.
10. _OPTIMIZER_ADJUST_FOR_NULLS Adjust selectivity for null values. Default is TRUE.
11. _TRACE_POOL_SIZE Trace pool size in bytes.
12. _B_TREE_BITMAP_PLANS Enables the use of bitmap plans for tables with only b-tree

indexes. The default is TRUE, but many applications recommend setting this to FALSE.
13. _UNNEST_SUBQUERY Enables the unnesting of correlated or complex subqueries. The

default is TRUE.

TIP
Undocumented initialization parameters can corrupt your database! Some of them can help you
salvage a corrupted database. Try to use these only when all other choices have failed and with
the help of Oracle Support.

Here are five additional initialization parameters that you can use for latch contention:

1. _KGL_LATCH_COUNT Number of library cache latches (set this to the next prime number
higher than 2*CPU). Setting this parameter too high (>66) causes ORA-600 errors (bug
1381824). KGL stands for Kernel Generic Library or the Library Cache portion of the shared
pool (there is also a Dictionary Cache portion). Many *KGL* undocumented parameters are
available for debugging and improving shared pool performance. Be careful with this one as it
shows up in obsolete parameters, but still shows as undocumented as well.

2. _LOG_SIMULTANEOUS_COPIES The number of redo copy latches (or simultaneous
copies allowed into the redo log buffer). Redo records are written to the redo log buffer
requiring the redo copy latch when changes are made. Use this parameter to reduce the
contention on multi-CPU systems (default is 2).

3. _DB_BLOCK_HASH_BUCKETS Must be prime (set to next prime number higher than
2*Cache buffers) in versions 9i and 10g (there is an algorithm change in 11g). This parameter
should not be a problem or need to be set as of 10g. On my system, this value was set to a
default of 1048576 when there were only 332930 db block buffers (certainly eliminating hash
chain issues). A _DB_BLOCK_HASH_LATCHES parameter (set to 32768, by default, in my
system) is also available. My system is just under 7G MEMORY_TARGET.

4. _DB_BLOCK_MAX_CR_DBA The maximum number of consistent read (CR) blocks for a
given database block address (DBA). The default is 6 (six copies maximum of a CR block).
Before this parameter was set, large use applications updating many rows within the same
block caused so many CR versions that there were incredible issues with latches on the hash
chain looking for the correct version of a given block (see the previous parameter for related
information).

5. _SPIN_COUNT Determines how often the processor takes a new request (reduces CPU time-
outs). Also determines how many times a process tries to get a latch until it goes to sleep
(when it is a willing-to-wait latch). Many processes spinning to get a latch can cost a lot of

CPU, so be careful if you increase this value. In Oracle 7, this parameter was called the
_LATCH_SPIN_COUNT. The default is 1.

Bonus 11 Undocumented Initialization Parameters
Here are 11 more undocumented parameters that are mostly new as of Oracle 11gR2 that I think are
worth looking into, but that I’ve not personally tested too much (other than the INIT_SQL_FILE
parameter, which I’ve added to the bottom of the list; it is well worth reading through).

1. _KCFIS_STORAGEIDX_DISABLED Don’t use storage index optimization on storage cells
if this is set to TRUE. The default is FALSE. (Exadata only.)

2. _BLOOM_FILTER_ENABLED Set to TRUE by default. With Exadata, bloom filters are
used for join filtering with smart scans. _BLOOM_PRUNING_ENABLED also has a default
of TRUE. Set these to FALSE to disable. (Exadata only.)

3. _COLUMN_COMPRESSION_FACTOR Set to 0 by default.
4. _IMU_POOLS Located in the memory UNDO pools. The default is 3.
5. _NESTED_LOOP_FUDGE The default is 100 (probably means 100 percent, similar to

OPTIMIZER_INDEX_COST_ADJ, but I’ve not tested it).
6. _OPTIMIZER_MAX_PERMUTATIONS The default is 2000 (seems high to me, but I’ve not

tested it). This parameter determines the optimizer’s maximum permutations per query block.
(Note that 183 hidden parameters starting with _OPTIMIZER% are available.)

7. _PGA_MAX_SIZE The maximum size of PGA for one process. Must be prime (set to next
prime number greater than 2*Cache buffers) in version 9i and 10g (there is an algorithm
change in 12c; mine was set to around the PGA_AGGREGATE_TARGET). This parameter
should not be a problem or need to be set as of 10g.

8. _OPTIMIZER_IGNORE_HINTS The default is FALSE. Could be a way to check if you
really need all of those hints you’ve put in over the years.

9. _ALLOW_READ_ONLY_CORRUPTION The default is FALSE. This allows read-only
open even if the database is corrupt. Careful with this parameter; consult Oracle Support.

10. _OPTIM_PEEK_USER_BINDS The default is TRUE, which allows Oracle to peek at the
user’s bind variable. Setting this FALSE when peeking is not favorable can lead to huge
performance gains since Oracle peeks and uses the same plan that is not optimized for the next
bind. Related to this is OPTIMIZER_ADAPTIVE_CURSOR_SHARING, which has a default
of TRUE but is also often set to FALSE.

11. _INIT_SQL_FILE This SQL file (and its location) is executed upon database creation (usually
sql.bsq, very interesting to read if you have a long night available). It is in the
$ORACLE_HOME\rdbms\admin directory by default.

The hidden parameters are used mainly by the Oracle development group. The implementation of
hidden parameters can change from release to release, even when you only applied a patch to your
database. Because they are not documented and not supported, they may not work as you expect, or
as is described here. For a query that gives you a complete listing of all undocumented parameters,

their default values, and descriptions, see the section “Listing of Undocumented Initialization
Parameters (X$KSPPI/X$KSPPCV),” later in this chapter.

Listing of Documented Initialization Parameters
(V$PARAMETER)
The following query retrieves the listing that follows on 12cR2 (412 rows returned on Linux). This
particular query was run on 12.2.0.0.2.

The following listing contains the output for this query and includes the parameter names, values,
whether the parameter can be modified, and a brief description.

Listing of Undocumented Initialization Parameters

(X$KSPPI/X$KSPPCV)
Using these parameters is not supported by Oracle, and I do not recommend using them on a
production system. Use them only if you are directed to use them by Oracle Support and have
thoroughly tested them on your crash-and-burn system. Undocumented initialization parameters can
lead to database corruption (although a few of them can get your database back up when it becomes
corrupted). Use at your own risk. The following query retrieves the undocumented parameters (4237
of them in 12cR2). No output is displayed due to space considerations.

TIP
Undocumented initialization parameters often show a glimpse of things coming in the next version
of Oracle (or things going away from the last version). However, some of them don’t work or could
cause severe problems.

Additional Oracle Applications Notes
In Chapter 4 you received tips for sizing the Oracle Applications database. This section covers some
additional notes about Oracle Applications, including tips related to concurrent managers, module-
specific patches, Oracle E-Business Suite (EBS) modules, web server tuning, timeouts, and database
initialization parameter sizing.

 Concurrent Managers
There are multiple different ways concurrent managers (CMs) can be deployed in an EBS
implementation. In the simple case of one application server running all the application tier
processes, pay attention to all the default managers that are defined as part of the implementation. If
the default seems to be high for a simple implementation, you can reduce the number of standard

managers and create specialized managers with different work shifts. For example, you can assign
Order Management–related batch jobs to a specialized manager that runs only in the night so that
accidental execution of these programs during the peak hours can be avoided.

While reducing the standard managers, you can create custom “slow queue” and “fast queue”
concurrent managers by defining two of those entries from the Concurrent Manager | Define screen by
appropriately configuring the sleep time. For slow queues, set the sleep time to a higher number of
seconds (160 seconds), and for fast queues, set the sleep time to a low value (30 seconds).

The other important parameter related to concurrent managers is the cache size, which determines
how many requests a CM tries to execute upon each pass. If the cache size is set too low, then the CM
is polling the queue table fnd_concurrent_requests too frequently. If it is set too high, then the CM is
repeatedly trying to execute upon requests already serviced by another CM. The rule of thumb for
tuning the cache size is

of CM Processes * Desired Cache size per CM Process

For example, if you want to have 4 requests cached, then set the value to 200 for 50 target processes,
and set it to 120 for 30 target processes.

The proper tuning of the sleep and cache size parameters will play a great role if and when
parallel concurrent processing (PCP) is used along with the RAC databases. Parallel concurrent
processing is a deployment option for larger environments where more than one application server is
being used. In this setup, a primary node and a secondary node are defined for every concurrent
manager queue. PCP is activated by tuning the AutoConfig variable appldcp. When the concurrent
managers are started using adcmctl.sh, the internal concurrent manager is started on the primary
node and will constantly poll the secondary node via tns. If it does not hear back from the other node,
then concurrent managers would be failed to start in the primary node.

In RAC nodes where the interconnect bandwidth is low, an improper setting of the cache size and
sleep time can cause “gc latch waits” in the database. Because these two parameters determine how
often the SELECT FOR UPDATE query against fnd_concurrent_requests needs to be executed based
on the STATUS_CODE and PHASE_CODE columns of this table, there could be hot blocks needed at
the same time by various nodes across the RAC. The concurrency goes “critical” when Oracle RAC
loses track of the current ownership of the block and is therefore not able to complete the block
request from the other nodes (Dynamic Block Re-mastering—DRM). When multiple nodes require
the same blocks of data/modified data for concurrency, you will run into “gc latch waits”—global
cache concurrency waits that could bring down the entire EBS system to its knees.

In some implementations, either the development/implementation team or the DBA team tends to
create custom triggers on the fnd_concurrent_requests table. Any trigger has an overhead of executing
the code in it when it is fired. If you put that in the context of fnd_concurrent_requests having millions
of rows with improper sleep time and cache values for the concurrent managers in a RAC
environment, the gc latch waits issue would be even worse. So, if the triggers are not adding any
value, disable them or revisit the purpose of why they were created in the first place. The same
scenario of fnd_concurrent_requests and gc latches holds true for any other cohesive processes such
as Pick, Release, Order, Import functionalities. By nature, these two can stress the “interconnect” by
competing for the hot blocks in the Order Entry–related tables.

For very large environments, the concurrent managers can be tuned further by doing what is known

as CM affinity. It is controlled by the AutoConfig variable s_cp_twotask in the concurrent manager
nodes. This variable can be set to a specific tns value or to a CRS service value that can pin all of the
manager’s process from this particular concurrent manager to a specific instance in the RAC. There
might be concurrent programs where the trace is enabled by default. SELECT * FROM
FND_CONCURRENT_PROGRAMS WHERE ENABLE_TRACE=’Y’ can list all the concurrent
programs for which trace is enabled. Revisit the list and take appropriate action. Usually for a
specific issue, Oracle Support would ask you to turn on the trace, and people tend to forget to turn off
the trace after the issue is resolved. Verify that the “Purge Concurrent Programs Request Logs” is
scheduled to run. Frequency may vary depending on the site-specific and legislative requirements, but
not running or running for anything more than 60 days would cause fnd_concurrent_requests and other
related objects to grow substantially.

Workflow needs to be part of the discussion of concurrent managers. The Workflow Engine plays a
major role in Oracle EBS. It has business events defined for various business functionalities that
move the work from one place to the next. Work with the business analysts and/or functional folks to
determine whether all the default business events are required for the current installation. There are
numerous events that are turned on by default. When these events are on, they create workflow
records in the Workflow tables, causing excessive growth in these tables. From time to time, run the
EBS Workflow Analyzer Report as per “EBS Workflow (WF) Analyzer” (Doc ID 1369938.1). This
HTML report will provide a clear picture of the state of the Workflow Engine, with different sections
such as Workflow Administration, Workflow Footprint, Workflow Concurrent Programs, Workflow
Notification Mailer, etc. Any check that’s not passed needs to be looked into.

For example, if the Workflow Administration section shows there are a huge number of workflows
that are in “stuck” status, they need to be cleaned up. Or if the Workflow Patch Levels section
indicates patch levels are not up to the latest and greatest, these need to be worked on and cleaned up.
Even after executing the recommendations from the Workflow Analyzer Report, if you see more
volume in the WF tables, then consider adding dedicated WF agent listeners for sales
orders/purchase orders and for generic deferred events to process heavy WF items through the Oracle
Access Manager (OAM) screens. In addition, take a look at “Troubleshooting Workflow Data Growth
Issues” (Doc ID 298550.1) for details on how to purge and delete the unwanted workflow data.

 Applications—Finding Module-Specific Patches
There are module-specific performance issues and fixes available depending on what modules are
being primarily used on your current production instances. However, there is a one-stop shop to find
all the patches related to performance, from RDBMS to ATG to Financials and other major modules.
This is documented in “Oracle E-Business Suite Recommended Performance Patches” (Doc ID
244040.1) and is very frequently updated for the newly identified and bug-fixed patches. If you are an
Apps DBA, bookmark this page (it will come in handy at the time of need) and consult this document
during the design/preparation stage of your next patching cycle.

 Diagnostics Data Collection: EBS Analyzers

Over the years, EBS and its related support methodologies for day-to-day smooth operation have
matured. As of this writing, there is an analyzer tool for most of the modules in EBS. Each of these
tools is very valuable in terms of troubleshooting a module-specific problem, data discrepancy
issues, an Accounts Payable (AP) problem, a concurrent manager issue, etc. Similar to the output
described for the Workflow Analyzer Report in the “Concurrent Managers” section, all other
analyzers produce a nice HTML-formatted report that can be used for in-house maintenance purposes
or can be used at the time of troubleshooting or working with Oracle Support. The EBS analyzers are
minimally invasive, and do not perform any INSERTs, UPDATEs, or DELETEs in the database.
Instead, they just collect data to do a health check for a specific module. They review the overall
footprint for a given module, review its configuration details, and provide recommendations based on
best practices. Currently, the following analyzers are available to download from the Oracle Support
website:

1. Workflow (WF) Analyzer
2. Concurrent Processing (CP) Analyzer
3. Reports & Printing Analyzer
4. Clone Log Parser Utility
5. Database Parameter Settings Analyzer
6. BI Publisher (BIP) Analyzer
7. Cash Management Transaction Analyzer
8. Oracle Receivables Adjustment Analyzer
9. Oracle Receivables AutoAccounting Analyzer

10. Oracle Receivables AutoInvoice Analyzer
11. Oracle Receivables Period Close Analyzer
12. Oracle Receivables Transaction Analyzer
13. R12: Master GDF Diagnostic (MGD) to Validate Data Related to Invoices, Payments,

Accounting, Suppliers and EBTax
14. Payables Create Accounting Analyzer
15. Payables Period Close Analyzer
16. AP, AR, and EBTax Setup/Data Integrity Analyzer
17. Payables Trial Balance Analyzer
18. Oracle Payments (IBY) Funds Disbursement Analyzer
19. Oracle Public Sector Accounting (PSA) Data Validation Analyzer
20. Internet Expenses (OIE) Analyzer
21. Inventory Consignment Analyzer
22. Inventory Transaction Analyzer
23. Order Management Sales Order Analyzer
24. R12: Order Management (ONT) Analyzer Diagnostic Script

25. R12: Shipping Execution (WSH) Analyzer Diagnostic Script
26. V6.2: OTM Analyzer Script for Analysis and Performance Monitoring
27. R12: PO Approval Analyzer Diagnostic Script
28. iProcurement Item Analyzer
29. R12: Procurement Encumbrance Accounting Analyzer
30. R12: Procurement Accrual Reconciliation Analyzer
31. iProcurement Change Request Analyzer
32. Procure to Pay Analyzer
33. R11i/R12: ASCP Performance Analyzer Script
34. R11i/R12: ASCP Data Collections Analyzer Script for Setup and Performance Monitoring
35. V7.3.1: Demantra Performance and Setup Analyzer Script and Monitoring Tool
36. R12: Discrete LCM Integration Key Setup Analyzer
37. R12.1: OPM LCM Integration Key Setup Analyzer
38. Process Manufacturing (OPM) Actual Costing Analyzer
39. R12: SLA Unprocessed/Invalid Records Analyzer Diagnostic Script for cost management
40. Appraisal Analyzer
41. Payroll RetroPay Analyzer
42. HR Technical Analyzer
43. Oracle Time and Labor (OTL) Analyzer
44. Human Capital Management (HCM) Person Analyzer
45. Payroll Analyzer
46. Benefits (BEN) Analyzer
47. Channel Revenue Management (ChRM) SLA Unprocessed Transactions Analyze
48. Install Base Analyzer

The analyzers can be installed separately on an as-needed basis or can be downloaded as a bundle
via the EBS Support Analyzer Bundle Menu Tool, a Perl-based menu system that you can download
from Oracle Support Note 1939637.1.

 Web Server Tuning
EBS 11i and R12.1.x run on Oracle Internet Application Server (iAS). Standard Apache performance
tuning guidelines apply to these versions. You can enable verbose garbage collection methodologies,
rotate the Apache logs for readability at certain sizes, increase/decrease the log levels, etc. The
application is deployed based on the Java virtual machines (JVMs) for OACore, FormsGroup, oafm
group, etc. These JVMs are the basic engines to serve the web traffic from the browsers/applications

and can be tuned depending on the footprint of the installations. Oracle recommends one oacore JVM
per 100 active/concurrent users. Typically, one CPU core can support one JVM, so if you have a dual
quad core system (2*4=8 CPUs), it can support eight JVMs. But the numbers can vary according to
the chip architecture. You can conservatively place four JVMs in a dual quad core system, or one
JVM per two CPUs. On the other hand, the forms group can support up to 100 to 250 Oracle Forms
users. But the number depends on what kind of forms the users are opening. More complex forms
would require more resources. So, conservatively, we can say that one forms JVM can service
around 125 Oracle Forms users.

Once you determine the active users in the EBS system, you can determine the number of JVMs
required based on the given hardware according to the formulas in the previous paragraph. However,
within a JVM, memory parameters play a crucial role in terms of garbage collection, minimum value
of the starting footprint, and so on. The minimum and maximum memory per JVM are configurable.
Some Java versions will not allow more than a 2GB footprint, but later versions from 1.6/1.7 onward
allow a bigger footprint. So, the total memory needed should be calculated meticulously for a given
web server so that the OS does not do excessive swapping.

For example, if you have two oacore JVMs with -Xmx1024M and one forms group with -
Xmx1024M, that’s 3GB of total memory requirement just for this particular web server. At the OS
level, the server should have enough memory to support this configuration. For a larger environment,
if you have more than a few hundred users—for example, if you are using Oracle EBS mainly for
HCM with thousands of employees who would be using the iExpenses modules—then it is safe to
assume that, at the expense report submitting deadlines, there would be around 500 concurrent users
in the system. For this scenario, consider having more than one web/middle tier in a load-balanced
environment. Each middle tier can have multiple oacore JVMs to support this kind of huge load.
According to the expected end-user volume, the database-side processes/sessions parameters and
other SGA-related memory parameters need to be increased/tuned as well.

All of the JVMs and their memory parameters are controlled by the AutoConfig variables
oacore_nprocs, frmsrv_nprocs, forms_nprocs, oacore_jvm_start_options, oafm_jvm_start_options,
and forms_jvm_start_option. Once these variables are properly adjusted in the context file,
AutoConfig should be run for the new values to take effect.

 Timeouts
There are numerous timeout variables that determine when to terminate an idle EBS connection.
Timeout variables play an important role in the stability of an EBS system. Idle or runaway user
connections will consume the resources on the web server JVMs, OS memory, database connections
and database memory, and so forth. For larger environments, these variables need to be more
carefully calibrated in order to avoid memory/CPU problems across the tech stack. These variables
range from database to web server variables to application profiles. The following table was
originally put forth by Greg Kitzmiller, and was later enhanced by TUSC. This is not complete by any
means, but it is a good starting point on where and how to find out the actual values set across the tech
stack of an EBS system.

 Database Initialization Parameter Sizing
This material is also part of Note 396009.1, and I think it is an excellent guideline! The following
table should be used to size the relevant parameters to size the memory of an EBS database. See
Chapter 4 for related information on this table.

Also part of Note 396009.1 are parameters from your database initialization parameters file that
should be removed. Please see the note for that list. (My personal feeling is that some of these should
be used to enhance performance, but many are not set because they feel that the DEFAULT is the
correct setting … please test carefully!)

Top 10 Reasons Not to Write a Book
1. You like sleep and caffeine-enhanced water clogs your coffee maker.
2. You have enough trouble getting the time to read books, let alone write one.
3. You enjoy getting together with your family from time to time.
4. You’re tired of being the first one in the office (actually, you’ve been there all night).
5. Your hobby is golf and you never play.
6. You enjoy noticing the world around you rather than feeling a “purple haze all through your

mind.”
7. Kevin Loney will write on that subject eventually … you’ll wait for his book.
8. You don’t want to “show off” how much you know … you’re far too humble.
9. Your PC is out of disk space already, although you’ve just loaded Windows 99.1415926.

10. You just got your life back after the last Oracle upgrade—no way!

TIP
Retirement is a good time to write a book, not during the fastest tech growth cycles in history
(starting to get faster than pre-2000) followed by the Great Recession. Perhaps when the 2000-
year bull market ends somewhere between 2018 and 2020 (good time to get out of the market in my
opinion) that might be a better time.

Tips Review
 Setting certain initialization parameters correctly could be the difference between a report

taking two seconds and two hours. Test changes on a test system thoroughly before
implementing those changes in a production environment.

 Oracle includes some excellent options. Unfortunately, some of them do not work unless you
have the initialization parameter set correctly.

 Undocumented initialization parameters can corrupt your database! Some of them can help you
salvage a corrupted database. Try to use these only when all other choices have failed and
with the help of Oracle Support.

 Undocumented initialization parameters often show a glimpse of things coming in the next
version of Oracle (or things going away from the last version). However, some of them don’t
work or could cause severe problems.

 Retirement is a good time to write a book, not during the fastest tech growth cycles in history
(starting to get faster than pre-2000) followed by the Great Recession. Perhaps when the
2000-year bull market ends somewhere between 2018 and 2020 (good time to get out of the
market in my opinion) that might be a better time.

References
Kevin Loney, Oracle Database DBA Handbook (McGraw-Hill).
Metalink Notes: 22908.1, 216205.1, 316889.1, 396009.1.
Various Oracle Support Notes and Documentation Manuals on Oracle Applications
Oracle Database Performance Tuning Guide, versions 11g and 12c (Oracle Corporation).

Thanks to Lucas Niemiec for testing the queries and providing the new listings for 11gR2. Thanks
to Palani Kasi for new information on Oracle Applications. Thanks also to Brad Brown, Joe Trezzo,
Randy Swanson, Sean McGuire, Greg Pucka, Mike Broullette, and Kevin Loney for their
contributions to this chapter.

T

APPENDIX
B

The V$ Views (DBA and Developer)

he V$ views are very helpful in analyzing database issues. There are 746 V$ views in
12cR2 (there were 525 in 11gR2). This appendix lists all views and creation scripts used to
actually build the V$ and GV$ views. The V$ views vary in structure and number,
depending on the database version and release used. Run the queries on your version of the

database to get the number of views and structure for your specific version. The topics covered in this
appendix include the following:

 Creation of V$ and GV$ views and X$ tables
 A list of all Oracle 12cR2 V$ views
 Oracle 12c script listing of the X$ tables used in the creation of the V$ views

NOTE
V$ to X$ and X$ to V$ cross-references can be found in Appendix C.

Creation of V$ and GV$ Views and X$ Tables
To understand the creation of X$ tables, knowing the V$ and data dictionary views can be crucial.
And both are critical to comprehending fully the intricacies of Oracle. While knowledge of the views
and tables is critical to your career, their creation has, however, remained somewhat of a vexing
mystery. Figure 1 illustrates the creation of the underlying tables and the data dictionary views,
whereas Figure 2 illustrates the creation of the X$ tables and the V$ views.

FIGURE B-1. Creation of the data dictionary views

FIGURE B-2. Creation of the X$ tables and the V$ views

A List of Oracle 12c (12.2.0.0.1) GV$ Views

NOTE
The Oracle 12c V$ views are about the same as the GV$ views, minus the instance ID.

Here is the Oracle 12c query to obtain the listing of all the GV$ views (709 views):

A List of Oracle 12c (12.2.0.0.1) V$ Views
Here is the Oracle 12c query to get the listing of V$ views (746 views):

The listing itself follows:

Oracle 12c Scripts for the X$ Tables Used to Create the
V$ Views
Because of the number of views in 12c, it’s no longer possible to list all queries in this book. To give
you a sampling of what’s available, this section list scripts for a few dozen views that pertain to
performance tuning so you can see the results. You can run your own query to see a specific one. The
most common new columns that you’ll see in the 12c of the views are CON_ID (Container ID), with
the advent of pluggable databases, and Adaptive Query Optimization columns. Here is the Oracle
12cR2 query to get a listing of all X$ queries for the V$ views (it will return 1457 rows in 12cR2;
V$ and GV$ are returned):

View Name: GV$BH (New in 12c Bolded)

View Name: V$BH (New in 12c Bolded)

View Name: GV$CELL

View Name: V$CELL

View Name: GV$CELL_DISK

View Name: V$CELL_DISK

View Name: GV$CONTAINERS

View Name: V$CONTAINERS

View Name: GV$INMEMORY_AREA

View Name: V$INMEMORY_AREA

View Name: GV$LATCH

View Name: V$LATCH

View Name: GV$LATCHHOLDER

View Name: V$LATCHHOLDER

View Name: GV$LATCHNAME

View Name: V$LATCHNAME

View Name: GV$LATCH_CHILDREN

View Name: V$LATCH_CHILDREN

View Name: GV$LATCH_MISSES

View Name: V$LATCH_MISSES

View Name: GV$LIBRARYCACHE

View Name: V$LIBRARYCACHE

View Name: GV$MUTEX_SLEEP

View Name: V$MUTEX_SLEEP

View Name: GV$PDBS

View Name: V$PDBS

View Name: GV$SESSION_LONGOPS

View Name: V$SESSION_LONGOPS

View Name: GV$SQL (New in 12c Bolded)

View Name: V$SQL (New in 12c Bolded)

View Name: GV$SQLAREA (New in 12c Bolded)

View Name: V$SQLAREA (New in 12c Bolded)

View Name: GV$SQLTEXT

View Name: V$SQLTEXT

View Name: GV$SQL_CURSOR

View Name: V$SQL_CURSOR

View Name: GV$SYSSTAT

View Name: V$SYSSTAT

T

APPENDIX
C

The X$ Tables (DBA)

he X$ tables are usually not mentioned or talked about in many Oracle books or even in the
Oracle user community. For this reason, I am including them in this book as one of the few
references available (Chapter 13 contains many X$ queries). There are 1312 X$ tables in
12cR2. There were 945 X$ tables in 11gR2 (11.2.0.1.0), 613 X$ tables in 10gR2

(10.2.0.1), and only 394 in Oracle9i Release 2 (9.2.0.1.0). The X$ tables vary in structure and
number, depending on the database version and release used. Run the queries on your version of the
database to get the number of views and structure for your specific version. Areas covered in this
appendix include

 A list of all Oracle 12cR2 (12.2.0.0.2) X$ tables (1312 total)
 Query to list the Oracle 12cR2 (12.2.0.0.2) X$ indexed columns (1312 total)
 Some of the Oracle 12cR2 (12.2.0.0.2) V$ views cross-referenced to the X$ tables

Oracle 12cR2 X$ Tables Ordered by Name
Here is the Oracle 12cR2 query to get the following listing:

Oracle 12cR2 X$ Indexes
To get the 799 X$ indexed columns in Oracle 12cR2, run the following query:

Oracle 12cR2 V$ Views Cross-Referenced to the X$
Tables
This section presents some of the X$ tables mapped back to the V$ views. Because of the large
number of views in 12cR2, it’s no longer possible to list all cross-references here. I have, however,
listed several that pertain primarily to performance tuning. You can run your own query to see a
specific query associated with the GV$ or V$ views, as shown in Appendix B. You must go through
the GV$ view to make this inference. Here are some of the referenced X$ tables, ordered by the
selected V$ view names:

Thanks to Jacob Niemiec for testing the queries and providing the new listings.

Index

Please note that index links point to page beginnings from the print edition. Locations are
approximate in e-readers, and you may need to page down one or more times after clicking a link
to get to the indexed material.

Symbols
$DB_CACHE_ADVICE, 185–186
$LGWRIO_OUTLIER, 103
$RESULT_CACHE_DEPENDENCY view, PL/SQL, 512
$SESSION_EVENT view, 719

Numbers
30-Day Trial screen, Oracle Cloud, 13, 600–601
50-50 index split, 62
80/20 Rule, indexes, 356–357
90-10 index split, 62

A
access

to V$ views, 673–675
to X$ tables, 734

access method hints, 310
Account, Cloud, 601
ACMS (Atomic Controlfile to Memory Service), RAC, 629
action name, DBMS_MONITOR, 266, 268–269
Active Data Guard, 24, 25, 30–31
Active Session History (ASH) Report, 241, 897–898
active transaction management, 573–574
+ADAPTIVE format parameter, DBMS_XPLAN, 387–388
adaptive plans

Adaptive Query Optimization, 382–389
SQL Plan Management, 294–301

Adaptive Query Optimization

adaptive statistics, 389–394
overview of, 383–389
tuning changes, 18–19, 381–382

adaptive statistics, 389–394
ADAPTIVE_PLAN hint, 341
ADD PARTITION option, 147
ADDM (Automatic Database Diagnostic Monitor)

ADDM Report, 893–898
Real-Time ADDM, 233–237
tune Oracle Database, 222

addmrpt.sql script, ADDM Report, 893–898
Administration menu. See OEM Administration menu
ADO (Automatic Data Optimization)

12c Heat Map and, 22–23, 101–102
global index maintenance and, 146
initialization parameters, 166
manage In-Memory column store, 27

Advanced Compression, Heat Map/ADO, 102
Advanced Queuing, 726, 792
advanced tuning

from 14 hours to 30 seconds with EXISTS, 471–472
block level, 473–485
Database Replay, 417–422
distributed queries, 462–463
external tables, 465–469
overview of, 416–417
pattern interpretation, 493–498
review tips, 499–500
set event to dump every wait, 469–471
simple mathematical techniques for, 485–499
Snapshot Too Old error, 469
SQL Performance Analyzer, 423–427
table joins. See table joins
third-party products, 458–462
view data dictionary after tuning, 464

Advisor Tasks, query in SPA, 425
advisors, V$ views for, 722
AFTER clause, ADO, 22–23, 102
aliases, using hints for, 314, 342
all Flash Cache option, Exadata X6, 609
all flash storage, Exadata, 609, 610

ALL_EXECUTIONS value, PLAN_STAT, 266
ALL_IND_COLUMNS, 46
ALL_ROWS hint, 316
ALL_ROWS optimizer mode, 204–205, 373–375
ALTER DATABASE ADD LOGFILE, redo logs, 155
ALTER DATABASE BACKUP CONTROLFILE, disks, 157
ALTER DISKGROUP operations, ASM, 121–124
ALTER INDEX statement

drop index, 364–365
fast index rebuild, 79
invisible indexes, 47–49
partition options, 148
using indexes, 706–708

ALTER PLUGGABLE DATABASE, PDBs, 88, 89
ALTER SESSION command

PL/SQL tracing, 773–774
SQL TRACE, 257
STORED OUTLINES, 284

ALTER SESSION FORCE PARALLEL command, 651
ALTER SYSTEM commands

modify initialization parameters, 179–180, 753
at PDB level, 92
set events, 773–774
SQL TRACE set up, 257
switch log files, 156, 753
write to SPFILE only, 177

ALTER TABLE command
ADO policies, 102
Flash Cache, 614
invisible columns, 6
PARALLEL/NOPARALLEL clauses, 651

ALWAYS option, forcing identity, 519–520
Amazon Cloud, 596
AMM (Automatic Memory Management)

initialization parameters, 107, 167
shared pool size, 555
V$MEMORY_TARGET_ADVICE view, 687–688

analysis task, SPA, 424–426
ANALYZE command, table management, 926
AND-EQUAL operation, merge indexes, 374
APM (Application Performance Monitoring)

within Oracle Management Cloud, 16–17
pinpoint problems at every tier, 599, 606–608
view customer web pages, 251–252

APPEND hint, 333–334
application servers, monitoring, 250–252
approximate query processing, new 12cR2 features, 29–30
architecture, Real Application Cluster, 627–629
Archive High, HCC, 619–620
archive log files

directory location for copy of, 156
as fine-grained, 98
new 12cR2 features for, 33
turn off for DML statement, 340
view with ARCHIVE LOG LIST, 681
written for redo logs, 156
X$ table groups for, 786

ARCHIVE LOG LIST command, 681
Archive Low, HCC, 619–620
arithmetic, number vs. hardware, 551
ASH (Active Session History) Report, 241, 897–898
+ASM (ASM instance), 106
ASM (Automatic Storage Management)

bigfiles and, 137
communication across IT roles, 105–106
disk scrubbing, 119–121
fast filter driver, 124–132
fast mirror resync, 123–124
initialization parameters, 107
installation in 12c, 107–115
instances, 106–107
introduction to, 104–105
and multipathing, 136–137
and privileges, 132–136
rebalance enhancements, 121–123
review tips, 159–161
separate key datafiles, Disk Performance Index, 926
srvctl enhancements, 115–119
tables/indexes separated to decrease file I/O, 925
V$ views for, 722

ASM Filter Driver (ASMFD), 124–132
asmca command, 115

ASMCMD command-line
for administrators not familiar with SQL, 104
ASM Filter Driver configuration, 124–129
Flex ASM configuration, 109, 114
view ASM attribute settings, 121
view ASM disk scrubbing, 121

ASMDBA, 132
ASM_DISKSTRING parameter, 128
ASMM (Automatic Shared Memory Management)

initialization parameters, 167–168
and MEMORY_TARGET, 687
use SGA_TARGET, 208

ASSM (Automatic Segment Space Management)
avoid row chaining, 150, 152
create index, 360
performance/segment management with, 152–153
query buffer cache, 765
table management, 925–926
use big file tablespaces, 103

associative arrays, PL/SQL, 562–565
async disk I/O wait event, 848
Atomic Controlfile to Memory Service (ACMS), RAC, 629
AU extents, ASM, 97–98
AUM (automatic undo management), DPI, 574, 926–928
AUs (allocation units), ASM, 97–98
Automatic Database Diagnostic Monitor. See ADDM (Automatic Database Diagnostic Monitor)
automatic reoptimization, 390–392
Automatic Shared Memory Management. See ASMM (Automatic Shared Memory Management)
Automatic Storage Management. See ASM (Automatic Storage Management)
Automatic Tuning Optimizer mode, 381
automatic undo management (AUM), DPI, 574, 926–928
AUTOPURGE, SPM, 286
AUTO_REOPTIMIZE hint, 341
AUTOTRACE

generate EXPLAIN PLAN, 275–276
set autotrace on/off command, 658–660
specify hints, 312

availability
disk arrays improve, 94
new 12cR2 features for, 30–32
version comparison chart for, 38

view information on host, 250
AWR (Automatic Workload Repository)

display stored SQL statements, 282–283
in OEM Performance menu, 238–241
view available snapshots, 222, 355
view RAC wait events, 633–636, 639

AWR Report
ASH Report at end of, 897–898
automated snapshots, 826
AWR and, 824–825
manually managing AWR, 825–826
as next generation of Statspack Report, 816, 824
overview of, 816–817
query wait events, 718
run in OEM Cloud Control, 828–831
running, 240–241
snapshot reports, 826–828
tips for review, 900–902
what’s new, 817

AWR Report output
additional Memory Statistics, 865–871
Dictionary and Library Cache Statistics, 886–887
header information and Cache Sizes, 832–833
Instance Activity Statistics, 856–861
Instance Efficiency, 835–837
Latch and Mutex Statistics, 872–882
Load Profile, 833–834
Nondefault Initialization Parameters, 889–890
Oracle bugs, 851–852
RAC Statistics, 852–854
Segment Statistics, 864–866
SGA Memory Statistics, 888–889
Shared Pool Statistics, 838
SQL Statistics, 853–856
Tablespace and File I/O Statistics, 861–864
top 15 things to look for, 889–890
Top Wait Events, 838–851
tuning and viewing at block level, 883–886
UNDO segment statistics, 871–872

awrrpti.sql, AWR report, 826
awrrpt.sql, AWR report, 826–827

B
b-tree indexes

bitmap indexes vs., 69–71
index-organized tables and, 72
overview of, 68–69
partitioning of, 75–78
restrictions, 50
use INDEX hint for, 320

background processes
ASM, 133–135
new 12cR2 features, 34–35
new in 12.2 Statspack/AWR report, 817

Background Wait Events, AWR Report/Statspack, 838, 840–841
backup

disk I/O, 157
RMAN cross-platform (12cR1), 24
Statspack table, 892
system information list, 936
V$ views for, 722
X$ table groups for, 789

bad indexes, 362–364
baseline AWR snapshots, AWR Report, 827–831
batch processing, 157, 316
best practices, Exadata, 622–623
Big Data Appliance X6-2, Oracle, 625
big data, new 12cR2 features, 33
big table caching, automatic (12cR1), 28
bigfiles, 103, 137
binary height of index, 60–62
bind variables, 864–865, 872
BITMAP AND operation, bitmap indexes, 70
bitmap indexes

block dumps of, 483–484
INDEX_COMBINE hint for, 320–321
overview of, 69–71
partitioning, 75–78
restrictions, 71, 453–454
understanding, 452–453

bitmap join indexes
best uses, 455–458

caveats of, 456–457
defined, 452
examples, 454–455
overview of, 78–79
understanding, 452–458

blackouts, 224–225
BLEVEL, 60–64
block buffers, 760–766
block comments, 312
block for last UNDO entry (UBLK), block dump, 480
block range granules, 649
block tuning

data section of block dump, 477–483
flag section of block dump, 477
index block dumps, 483–485
ITL section of block dump, 476–477
overview of, 473–476
and viewing (advanced), 883–886

BLOCKSIZE, BLEVEL/index height and, 64
Bloom filters, 27, 207, 614
BOOLEAN type, 522–523
buffer busy waits, 842–844, 848, 853
buffer cache

check with sar -b command, 947–948
flushing, 188
hit ratio, 859, 914–916
hot data blocks/wait events in, 761–763
latch contention/wait events in, 763–766
latch/mutex waits in, 872–873
LRU chain, 881–882
segments occupying block buffers, 760–761
view state of buffers, 758–759
X$ tables used, 757, 795

Buffer Pool Advisory, AWR Report/Statspack, 867–868
buffer pools, 201–203
bundled writes, RAID 5, 97
business intelligence, version comparison chart, 37–38
BWnn (database writer) background process, 35
BY DEFAULT clause, Identity Columns, 519–520
BY DEFAULT ON NULL clause, Identity Columns, 520
BYTES column, PLAN_TABLE, 281–282, 302–303

C
cache advisors, V$ views for, 722
cache buffers chains (CBC) latch, 473, 880–881, 883
cache buffers lru chain latch, 881
Cache Fusion, in RAC

cluster interconnect tuning, 644
overview of, 630–631
reads and writes, 640–641
V$ views for, 723

CACHE hint, 334–335
CACHE (NOCACHE) hint, Flash Cache, 615
Cache Sizes section, AWR Report/Statspack, 831–833
caching/pinning

all packages, 556–557
automatic big table (12cR1), 28
full database (12cR1), 28
identify PL/SQL objects that need, 557
Memory Performance Index, 921–922
PL/SQL Function Result Cache, 505–515
PL/SQL object statements into memory, 555–556
resize data cache (V$DB_CACHE_ADVICE), 693
small, often-used tables in memory, 369–371
understanding pinning, 875
V$ views for, 723

capture/replay. See Database Replay
CAQP (Continuous Adaptive Query Plans), 12cR2, 18–19
cardinality, 69–71, 110–111
CARDINALITY hint (undocumented), 331, 342
CASCADE parameter, 827
case sensitivity

passwords, 166, 818–819
SQL, 192

CAST function, SQL and PL/SQL, 29–30
catalog.sql script, 673, 736
catldr.sql script, create $V views, 673
CBC (cache buffers chains) latch, 473, 880–881, 883
CDB (container database)

Disk Performance Index, 928–930
move between containers, 88–89
with multiple PDBs, 9–11

new in 12.2 Statspack/AWR report, 817
objects created by, 86–87
start up, 89–90

CDB_ view, 680
CELL_FLASH_CACHE storage clause, 615
CELL_OFFLOAD_PROCESSING parameter, Exadata, 207
CELLSRV (cell storage server), Flash Cache, 615–616
CHAINED_ROWS table, 152, 925–926
chaining, 151–152
checkpoints, modify log file size, 153–155
CHOOSE OPTIMIZER_MODE, 204–205, 381
class, create PDB, 93
client identifier, DBMS_MONITOR, 266–268
clients, execute PL/SQL objects on, 571–572
clones, block, 473–474, 881
cloning PDBs

create PDB via, 87
source no longer needs to be read-only when, 11, 93
subsets, 29

Cloud Account, 601
Cloud at the Customer, 598
cluster interconnect, RAC, 628–629, 633, 641–645
cluster IPs, installation of ASM, 108–109
CLUSTER joins, 429–430
clustering factor, indexes, 59–60
CLUSTER_INTERCONNECTS parameter, 644
clusters, hash indexes require hash, 71–72
collection tables, Statspack

gathering statistics, 820–822
post-installation, 819–820

collisions, as drawback of hash indexes, 71–72
columns

B-tree indexes and, 68–69
based on sequence (12cR1), 20
bitmap indexes and, 69–71
bitmap join indexes and, 454–456
check table for current indexes, 360–361
create tables with virtual, 378–379
Identity, 519–521
invisible, 6
multiple types of indexes on same, 7–8, 50–53

partition tables using multiple, 141
PLAN_TABLE, 280–282
query if properly indexed, 361–362
suppression of indexes when modifying query, 375–377

commands
hints vs., 308
redo log, 155–156

comments, undocumented hints vs., 341–342
commit operations, trace file, 783
COMMITs, limit amount of data manipulated, 574
communication across IT roles, ASM, 105–106
Compare Explain Plan tool, OEM, 237, 253
compare tool, Data Guard Database as, 31
COMPATIBLE parameter, parallel operations, 660
compile-time warnings, 528–530, 535–536
compiler directive hints, 308
composite indexes. See concatenated (composite) indexes
composite partitioning, 140–141
compression

ADO policies for data, 102
advanced index, 28
change at import time, 18
In-Memory options, 27, 174–175
new 12cR2 features, 33
Oracle database storage and, 613

compression units (CUs), 337, 618–620
compute nodes, Exadata, 609
compute servers, Exadata, 611
COMPUTE statistics clause, indexes, 55
concatenated (composite) indexes

on columns in SELECT and WHERE, 367
determine selectivity, 59
overview of, 53–54
skip-scans using, 66–67
third-party product tuning via, 459–462

conditional compilation, suppress debug in PL/SQL, 581–586
configuration information file, modify with /etc/system file, 967
Configuration Topology screen, Oracle Database menu, 248
conflict management, new 12cR2 features for, 31
CON_ID, X$ table naming conventions with, 812
consistent gets, AWR Report/Statspack, 859

consumer groups, 246–247, 797
containers, 88–89, 696–697
CONTAINERS hint, 339
CONTENT.CHECK attribute, ASM, 121
contention, shared pool, 745–747
context switching, CPU scheduler, 952–953
contexts, X$ table groups for, 798
CONTINUE statement, loops, 525–528
Continuous Adaptive Query Plans (CAQP), 12cR2, 18–19
control files

Flash Cache caching and, 615
storage of multiple, 157
V$ views for, 723
X$ table groups for, 787

CONTROL_MANAGEMENT_PACK_ACCESS parameter, MONITOR hint, 340
copy, seed PDB to create PDB, 87
cost

benefits of cloud, 597
of disk arrays that mirror data, 98–99
Exadata scalability, 610–611
new 12cR2 features for managing, 30
of parallel execution, 646

cost-based optimizer
concurrent statistics (12cR1), 21
determine whether to parallelize statement, 647
effectiveness of, 204
how it looks at data, 204–205
NORMAL and TUNING mode in 12c, 381
two table INDEXED joins, 439–443
two table joins, 435–439, 447–450

COST column, PLAN_TABLE, 281–282, 303
count, for all V$ views, 676–677
CPU cores, Exadata, 609
CPUs

check usage of, 953
disk I/O precautions and tips, 157
downside of parallel operations, 666
find which process uses most with ps, 957–959
good idle percentage for, 952
identify bottlenecks with mpstat, 956
identify disk I/O bottlenecks using iostat, 959–962

monitor load with uptime, 955–956
monitor memory use on Windows with Task Manager, 959
monitor usage with sar, 943–948
scheduler and context switching, 952–953
system information list, 935
tuning system, 968

CR versions for given block
find, 884–885
overview of, 881
query first time, 473

CREATE CONTROLFILE statement, 157
Create Database Cloud Service Instance wizard, 603–605
CREATE INDEX statement, 47, 55, 652–653
CREATE PLUGGABLE DATABASE, clone PDBs, 11, 88
CREATE TABLE AS (CTAS) operation, 12c statistics gathering, 394
CREATE TABLE statement

ADO policies, 102
Flash Cache, 614
log timing statistics into tables, 542
tune external tables, 466

CREATE UNIQUE INDEX command, 54
CREATE_EVOLVE_TASK function, SPM, 396
CRITICAL priority, In-Memory database, 26–27, 174
cron program, monitor disk free space, 964
crsctl eval command, 119
CTAS (CREATE TABLE AS) operation, 12c statistics gathering, 394
cube joins, 341
CURRENT block, DML transactions, 473–474
CURRENT version, tuning and viewing blocks, 883–885
cursor pin mutex, 876–878
cursor: pin S wait event, 845, 851
cursor: pin S wait on X event, 845, 851
cursors

read long trace files and, 779–781
use rollback segments to open large, 572–573
V$ views for, 723

CURSOR_SHARING parameter
how to use, 208
library cache memory, 747–750
query parse activity, 750
stored procedures for shared SQL area, 191–193

CURSOR_SHARING_EXACT hint, 336
CUs (compression units), 337, 618–620
customer experience, view in Database Cloud Service, 608

D
data

process large quantities of, 573–574
store in separate location from index files, 99

data blocks
buffer busy waits on, 844
multiple sizes allowed for, 871
X$ tables for queries on, 757–758

data buffers
query for free, 919–920
query if system needs more, 692
query number of dirty, 859
query percentage still free, 919–920
statistics for each type of call, 262

data cache hit ratios. See hit ratio(s)
data dictionary

access information on block dumps, 476
AWR Report/Statspack, statistics, 886–887
AWR Report/Statspack, Top SQL section,, 855
determine memory for, 693–694
view after all tuning is done, 464

data dictionary cache
keeping objects cached in, 193–194
as part of shared pool, 191
set SHARED_POOL_SIZE, 191
size of, 199

Data Guard
improvements (12cR1), 24
new 12cR2 features, 31–32
V$ views for, 726

data integrity, RAC, 631
data loads, compression, 620
data-partitioning model, parallel database, 626
data reads, DB_BLOCK_SIZE, 189–190
data redaction for testing, new in 12cR2, 32
data section, block dump, 477–483

data types
compare mismatched, 58–59
ensure comparison operations use same, 548–550
max size increase to 32k for some, 521–522
PL/SQL-only, bind to SQL statements, 522–523

data warehousing
bitmap indexes ideal for, 69–71
bitmap join indexes in, 78–79
Exadata speed vs. that of, 609–610
version comparison chart for, 37–38

Database Administration Tab, OEM Administration menu, 242–247
Database as a Service (DBaaS). See also Database Cloud Service, 11–13, 608
Database Cloud Service

in 12cR1, 11–17
Application Performance Monitoring, 606–608
building first, 603–605
create first instance, 599–600
EM Console, 605–607
free 30-Day Trial button, 600–601
Get Started, 601–602
launch Oracle Management Cloud, 606–607
sign into Oracle Cloud, 601–602
sign up for Oracle Public Cloud services, 601
view customer experience, 608

Database Configuration Assistant (DBCA), 626
Database Files Metrics in Cloud Control, I/O disk contention, 99–100
Database in the Cloud. See Database Cloud Service
Database menu, OEM, 247–248
Database Replay, 252–253, 417–421
Database Resource Manager (DBRM), 622, 648
Database tab, Oracle Database menu, 247–248
Database Vault, 32
database writer (BWnn) background process, 35
databases

number of writers, 156
V$ views for basic information, 681
version comparison chart, 38–39
X$ table groups for links, 788

datafiles
ASM disk scrubbing to repair ASM, 120–121
bigfiles reduce number of, 137

as coarse-grained, 98
map PDBs to, 90
online (12cR1), 23
plan location for parallel data access, 666
separate key, Disk Performance Index, 926
store in filesystems to prevent disk contention, 99–100
X$ table groups for, 786

DATE data type, use time component with, 568–570
date, reduce calls to SYSDATE, 552–553
DB block gets, AWR Report/Statspack, 859
db file parallel write wait event, 847, 849
db file scattered read wait event, 841–842, 848
db file sequential read wait event, 842, 848
db path read, wait event, 847–848
DBA knowledge rating, system information list, 937–938
DBA_ADVISOR_TASKS view, SPA, 425
DBA_APPLY_EXCEPTIONS view, new in 12cR2, 31
DBaaS (Database as a Service). See also Database Cloud Service, 11–13, 599, 608
DBA_DATA_FILES view, disk I/O issues, 713–714
DBA_DEPENDENCIES view, PL/SQL objects, 567
DBA_ENABLED_AGGREGATIONS view, DBMS_MONITOR, 269
DBA_ENABLED_TRACES view, DBMS_MONITOR, 269
DBA_HIST_SNAPSHOT view, AWR, 355
DBA_HIST_SQL_PLAN view, EXPLAIN PLAN, 358–359
DBA_HIST_SQLSTAT view, find worst queries, 355–357
DBA_HIST_WR_CONTROL view, AWR, 825–826
DBA_IND_COLUMNS view, indexes, 46–47, 360–361
DBA_INDEXES view, partitioned indexes, 149
DBA_IND_INDEXES view, 46–47, 49
DBA_OBJECT_SIZE view, 558–559
DBA_PART_ TABLES view, partitions, 139–140
DBA_ROLLBACK_SEGS view, open large cursors, 572–573
DBA_SEGMENTS view, extents, 151
DBA_SOURCE view, query SQL source code, 565–567
DBA_SQL_PLAN_BASELINES, SPM, 287–288, 396
DBA_SQL_PLAN_DIRECTIVES table, SQL plan directives, 392
DBA_SQL_PLAN_DIR_OBJECTS table, SQL plan directives, 392
DBA_SQLSET_REFERENCES view, active SQL Tuning Set, 426
DBA_TABLESPACES view, current UNDO retention period, 572
DBA_TRIGGERS view, 561–562, 567
DBA_views, underlying objects in, 678–680

DB_BLOCK_BUFFERS, deprecated, 182
DB_BLOCK_SIZE parameter, 189–190, 927–928
DBCA (Database Configuration Assistant), 626
DB_CACHE_SIZE parameter

block tuning, 473
db file sequential read wait events and, 842
importance of, 207
pools/allocate memory for data, 201
set SGA_MAX_SIZE parameter, 190
set SHARED_POOL_SIZE for, 193
tune to increase performance, 182–185
tune with $DB_CACHE_ADVICE, 185–186

DB_FILE_MULTIBLOCK_READ_COUNT parameter
db file scattered read wait events and, 841
importance of, 209
increase for larger DB_BLOCK_SIZE, 189–190, 219
in parallel operations, 660
set for SORT-MERGE joins, 434
set in SPFILE to improve read time, 862

DB_KEEP_CACHE_SIZE parameter, 168, 201, 209
DB_KEEP_RECYCLE_SIZE parameter, 168, 209
DBMS_APPLICATION_INFO package, 539–541, 782
DBMS_DATAPUMP package, compression at import time, 18
DBMS_DB_VERSION package, PL/SQL debug, 580–586
DBMS_INMEMORY_ADMIN package, 176
DBMS_JOB package, 566–567
DBMS_METADATA package, 577–580
DBMS_MONITOR

disable tracing when done, 269, 302
end-to-end application tracing with, 266
replaces SQL TRACE, 256
setting application tracing with, 267–270

DBMS_OUTPUT package, PL/SQL, 544–546, 582
dbmspool.sql script, cache PL/SQL objects, 555–556
DBMS_PREPROCESSOR package, PL/SQL debug, 583
DBMS_PROFILER package, PL/SQL, 543, 571
DBMS_REDACT package, new in 12cR2, 32
DBMS_RESULT_CACHE package, 510–512
DBMS_RESULT_CACHE.FLUSH package, 921
DBMS_ROWID PL/SQL package, 765
DBMS_RULE package, 565–566

DBMS_SESSION package, replaces SQL TRACE, 256
DBMS_SHARED_POOL.KEEP procedure, 556–557, 921
DBMS_SHARED_POOL.SIZES package, 557–558
DBMS_SPACE package, block dumps, 476
DBMS_SPD package, SQL plan directives, 394
DBMS_SQL package, dynamic SQL, 574–575
DBMS_SQLPA package, remove SPA task, 426
DBMS_STATS package, 28, 314, 682
DBMS_SUPPORT package, 769, 774
DBMS_SYSTEM package, invoke trace, 768, 769–770
DBMS_TRACE package, PL/SQL, 772–773
DBMS_UTILITY.COMPILE_SCHEMA package, 560
DBMS_UTILITY.EXPAND_SQL_TEXT, 20
DBMS_WORKLOAD_REPOSITORY package, AWR, 825
DBMS_XPLAN package

display EXPLAIN PLAN, 358
EXPLAIN PLAN vs., 289
specify hints correctly, 312
using, 282–283
view adaptive plans, 387

DB_nK_CACHE_SIZE, 189
DB_PERFORMANCE_ PROFILE, PDB, 93
DB_RECYCLE_CACHE_SIZE parameter, 201
DBRM (Database Resource Manager), 622, 648
DBUA (Database Upgrade Assistant), upgrade to 12c, 165–166
DBWR_IO_SLAVES, online redo log files, 156
_DB_WRITER_FLUSH_IMU parameter, IMU, 473
DB_WRITER_PROCESSES, online redo log files, 156
DDL commands

do not let statements fail, 206
new features in 12cR2, 31
new online capability commands (12cR1), 23
NOLOGGING hint for, 340
parallel, 647–648
pipelined table function, 576–577

DDL_LOCK_TIMEOUT parameter, 206
debug commands, PL/SQL, 580–586
DEBUG_PKG package, PL/SQL, 581–586
decision support systems (DSSs), use bitmap indexes, 69–71
degree of parallelism. See DOP (degree of parallelism)
DELETE statements

data section of block dump, 480
effects on index, 63
FIRST_ROWS hint ignored in, 315
increase log file size to speed up, 154–155
for index-organized tables, 73
index using WHERE clause with, 45–46
parallelized via PARALLEL hint, 331
use rollback segments for large, 572

dependencies, find PL/SQL object, 567
descending indexes, 322
design, fix first before using hints, 308–309
destinations, X$ table groups for, 786
developer products, tracing in, 279–280
df command, monitor disk space with, 965
DIAGNOSTIC_DEST parameter, 257, 774
Dictionary and Library Cache statistics, AWR Report/Statspack, 886–887
dictionary cache hit ratio, Memory Performance Index, 916–917
dictionary objects, In-Memory Database, 176
direct path operations

direct path writes wait event, 848, 849
V$ views, 724
X$ table groups, 798

directives, SQL plan, 392–394
directory, for external tables, 465–466
dirty buffers, AWR Report/Statspack, 859
disk contention, avoid, 99–100, 137–139
disk free space, monitor, 964–966
disk I/O

find problems with sar -d, 944–947
identify bottlenecks with iostat, 959–962
precautions and tips, 157–158
SORT-MERGE joins can lead to extra, 428

disk implementation methodology
12c Heat Map and ADO, 101–102
12c I/O performance tracking views, 102–103
ASM disk scrubbing to repair, 120–121
ASM striping and mirroring, 97–98
bigfile tablespaces, 103
disk arrays, 94–95
disk I/O precautions and tips, 157–158
eliminate fragmentation, 150–153

I/O disk contention avoidance, 99–100
improve performance/protect data with, 99
increase log file size/speed, 153–156
manage with ASM. See ASM (Automatic Storage Management)
number of disks needed, 95
planning stage issues, 158
RAID, 94–97
review tips, 159–161
setup/maintenance of traditional filesystem, 98–99
solid-state disks, 97
store data/index files in separate locations, 99
store multiple control files on different disks/controllers, 157
use partitions. See partitions

Disk Performance Index. See DPI (Disk Performance Index)
disk scrubbing, ASM, 23, 119–121
disk space

APPEND hint wasting, 334
check with RMAN, 32
monitor free space, 964–965
monitor with df command, 965
monitor with du command, 966

disk storage, Exadata, 609
diskfreespace.sh program, monitor disk free space, 964
diskgroup, ASM disk scrubbing, 120–121
DISK_REPAIR_TIME attribute, ASM, 123
disks

find high reads without TRACE, 278–279
system information list, 935
tuning tips, 968–969

dispatchers, create enough, 205–206
DISPLAY function, DBMS_XPLAN, 282
DISPLAY_AWR function, DBMS_XPLAN, 282
DISPLAY_CURSOR function, DBMS_XPLAN, 282, 387–388
DISPLAY_SQLSET, DBMS_XPLAN, 282
distinct (unique) keys, determine index selectivity, 59
distributed queries, tuning, 462–463
Distributed Services, V$ views for, 724
distributed transactions, 30, 39
DML transactions

CURRENT version of block for, 883
disk I/O, 157

not allowed on X$ tables, 734
parallel, 647–648
rebuild indexes online during, 79–80
require CURRENT version of block, 473
sizing Oracle Applications Database, 217
too many indexes create slow, 50
turn off archive logging, 340

DML_LOCKS parameter, parallel operations, 660
documentation

RAC, 627
save time in complex code, 381
use Oracle online, 666

DOP (degree of parallelism)
calculate from initialization parameters, 651, 667
determine with cost-based optimizer, 647
inter- and intra-operation parallelization, 649–651
PARALLEL hint for table overriding, 654
parallel operations on partitions and, 649
performance feedback and, 391
understand, 645

DPI (Disk Performance Index)
automatic undo management, 926–928
how to receive perfect score, 922
mission-critical table management, 925–926
separate key Oracle files, 926
separate tables/indexes or use ASM, 925
top “disk-read abusers,” 922–924
use PDBs effectively, 928–930

driving order for query, ORDERED hint, 323
driving table, force join methods, 428–429, 444–450
DRIVING_SITE hint, 325–326
drop

all migrated stored outlines, 294
index, 364–365
SPM plan, 292
SQL Tuning Set, 426

DROP PARTITION, 147
drop PDB commands, 88
DROP PLUGGABLE DATABASE command, 88
DROP_UNUSED procedure, STORED OUTLINES, 285
DSSs (decision support systems), bitmap indexes for, 69–71

du command, monitor disk space, 966
dumps

event, set for every wait, 469–471
to trace files for analysis, 774–775

dumps, block
data section, 477–483
flag section, 477
index, 483–485
ITL section, 476–477
overview of, 474–476

DUPLICATE command, 32, 172–173
Dynamic Buffer Cache Advisory, 185
dynamic cache management, RAID 5, 96
dynamic SQL, limit use of, 574–575
dynamic statistics, 389–390
DYNAMIC_SAMPLING hint, 340

E
E-Business Suite (EBS) database, size memory, 213–218
Edit Settings, AWR, 239, 829
Education Performance Index (EPI), 907–909
EF (Extreme Flash) storage, Exadata, 611–613
EHCC (Exadata Hybrid Columnar Compression), 618–621
eighth rack, Exadata, 610, 612
elastic configuration, Exadata, 610, 611
EM Console, Database Cloud Service, 605–607
EM (Enterprise Manager). See OEM (Oracle Enterprise Manager)
EMP table, indexes, 46–47, 53–54
EMP1, 884
encryption

FIPS 140 parameter, 28
new 12cR2 features, 34

end-to-end application tracing. See DBMS_MONITOR
Enqueue Activity Section, AWR Report, 850
enqueue waits

AWR Report/Statspack, 860
GES in RAC managing, 630
potential fix, 846, 848–849
X$ table groups for, 796

Enterprise drop-down menu, 224

Enterprise Manager. See OEM (Oracle Enterprise Manager)
Enterprise Summary window, OEM 12c, 227–229
Enterprise tab, OEM, 224
EPI (Education Performance Index), 907–909
equations, tuning via Simple Mathematical Techniques, 487–493
equijoins, 429–431
errors

failure to extend rollback segment, 572
not enough memory in shared pool, 555
solving with TRACE, 283
in trace files, 784

estimator, SQL default execution plan, 383
/etc/system file, monitor configuration, 967
Ethernet, Exadata 6 ports/interfaces, 609
ETL (extract, transform, load) process, external tables for, 465
-eval option, srvctl, 116
events

10046, 471, 774
capture information to trace files, 773–774
set to dump every wait, 469–471
tracing, 284

EVICT hint, Flash Cache, 615
evolution report, SPM, 396–397
Exadata Deployment Assistant, 36
Exadata (Exadata Database Machine)

best practices, 622–623
change compression at import time, 18
disk I/O, 157
initialization parameters, 207
Oracle Database Appliance vs., 624
other Oracle hardware vs., 625–626
as paradigm shift, 623–624
security advantages of, 622
simulation, SQL Performance Analyzer, 232–233
SPARC SuperCluster M7 chip, 624–625
statistics, 610–612
Storage Server software, 613
terminology, 609–610
versions of, 610

Exadata Hybrid Columnar Compression (EHCC), 618–621
Exadata PCIe card Smart Flash Cache, 614, 617

Exadata Storage Expansion Rack
Flush Cache, 614–617
Hybrid Columnar Compression, 618–621
I/O Resource Management, 621–622
overview of, 612–613
release of, 610
Smart Scans, 614
storage indexes, 617–618

EXECUTE IMMEDIATE command, 574–575, 768
EXECUTE_EVOLVE_TASK function, SPM, 396
execution errors, trace files, 784
execution path hints, 309–310
execution plan

force specific join method, 443–445
graph pattern interpreting, 496
tune external tables with join, 468
using INDEX_DESC hint, 322
view from DBA_HIST_SQL_PLAN, 358

EXISTS function, 380
EXISTS operator, change 14 hours to 30 seconds with, 471–472
EXPLAIN PLAN

important columns in PLAN_TABLE, 280–282
for parallelized query, 655–658
reading, 274–275
run DBMS_XPLAN after running, 282–283
select query from DBA_HIST_SQL_PLAN, 358–359
set autotrace on/off, 275–276
set autotrace on/off command, 659–660
simple query example, 273–274
specify hints correctly, 312
three-table joins, 451–452
two-table joins, 447–450
use alone, 271–273
use DBMS_XPLAN vs., 289
use instead of TRACE, 278–279, 302
use partitions with, 276–278

EXPLAIN PLAN section, TKPROF, 263
Explain Plans comparison, Real-Time ADDM, 236
EXPLAIN WORK SQL statement, ASM rebalance, 121–123
exporting partitions, 150
extended character data type, max size, 521–522

Extent Map, 244, 253
extents, eliminate fragmentation, 151
external tables, tune, 465–469
Extreme Flash (EF) storage, Exadata, 611–613

F
failover capability, 12cR2 Data Guard, 31
fast full scans

db file scattered read wait event in, 841–842
of indexes, 65–66
with INDEX_FFS hint, 322–323, 367–368
with PARALLEL_INDEX hint, 333

fast mirror resync, ASM, 123–124
FDA (Flashback Data Archive), 28
Federal Information Processing Standards (FIPS), encryption, 28
Fetch Across Commit, Snapshot Too Old error, 469
fetch first x rows, 12cR1, 8–9
FIFO (first in, first out), 846, 875
File I/O Statistics section, AWR Report/Statspack, 863–864
file mapping, V$ views for, 724
FILE parameter, direct writes from data loads, 663
filesystems

managing with ASM, 104
RAID 5 for read or read-only, 96
setup/maintenance of traditional, 98–99
store datafiles in, 99

Findings tab, Real-Time ADDM, 234–235
FIPS (Federal Information Processing Standards), encryption, 28
FIRST_ROWS hint, 315–316
FIRST_ROWS optimizer mode, 204–205, 373–375
FIXED SQL Plan Baselines, 291–292
fixed tables, X$ tables as, 733, 735–736
flags

block dumps, 476, 477
SPM, 286

Flash Cache, Exadata Storage Server software, 614–617
Flashback Data Archive (FDA), 28
flashback PDB, 11, 93–94
Flex ASM, Grid Infrastructure installation, 107, 109–115
Flex Cluster, Grid Infrastructure installation, 107, 115

Flex disk group quota management, ASM, 34
FOR loop, optimize compiler, 535–538
FORCE option, ASM disk scrubbing, 120–121
forcing specific join method, 443–445
Foreground Processes, new in 12.2 Statspack/AWR report, 817
Foreground Wait Events, AWR Report/Statspack, 839–841
FORMAT_NAME function, SQL function calls, 524–525
fragmentation

avoid chaining with PCTFREE, 151–152
overview of, 150–151
query shared pool issues, 745–747
use ASSM, 152–153
use correct extent size, 151

free buffer inspected, AWR Report/Statspack, 860
Frequency histogram, 394
FROM clause

bitmap join indexes, 78–79
expected order of table access in, 323–324, 452
two table INDEXED join, 440–442
two table joins, 436–439, 447–450
use first table as driving table, 443

FSTAT system call, ASM and multipathing, 137
full database caching, in 12cR1, 28
FULL hint, 316–317
full rack, Exadata, 610–612
full table scans

CACHE hint causing caching of, 334–335
db file scattered read wait event in, 841–842
effect of compression on, 621
fast full scan require fewer IOs than, 66
functions causing, 58
as inefficient, 301
Instance Activity Statistics section, AWR Report/Statspack, 857
mismatched data types causing, 58–59
with parallel execution, 645–646
PARALLEL_INDEX hint for, 333
problems in TKPROF output caused by, 265
read every row in table via, 45
on specified table with FULL hint, 316–317
two table joins: equal-sized tables, 436–438

function-based indexes

applying functions in, 58
create, 377–378
for multiple types of indexes, 50–53
overview of, 73–74
using with DATE, 570

functions
build complex results sets with pipelined table, 575–580
creating tables with virtual columns, 378–379
example in PL/SQL, 588
execute GET_CUST_NAME function, 588
PL/SQL Function Result Cache, 505–515

Fusion Middleware products, use TRACE within, 280

G

GATHER_OPTIMIZER_STATISTICS hint, 341
gc (global cache) wait events, RAC, 635, 847, 853–854
GCS (Global Cache Service), RAC, 629–630, 633–634
general information, V$ views for, 724
GES (Global Enqueue Service), RAC, 630, 633, 639–640
Get Started, Database Cloud Service, 601–602
gethit ratio, Library Cache, 887
GI (Grid Infrastructure) installation in 12c, 107–115
Global Cache Service processes (LMSn), RAC, 629
Global Enqueue Service Daemon (LMD), RAC, 629
Global Enqueue Service Monitor (LMON), RAC, 629
global hints, 342
global index maintenance: drop and truncate, 23, 146
global partitioned indexes

hash partitioning, 141
index partitioning, 149
non-prefixed (not supported), 78
overview of, 76–77
prefixed, 77

global transactions, X$ table groups for, 792
GNS (Grid Naming Service), Flex ASM, 108–109
gold image homes, 29, 34
Golden Gate, new replication features, 31
Google Cloud, 596
GOTO statement, simplify loops, 525–528
graphing performance metrics, 493–498
GRD (Global Resource Directory), RAC, 630–631, 633
Grid Control, enhancements to, 626
Grid Infrastructure (GI) installation in 12c, 107–115
Grid Naming Service (GNS), Flex ASM, 108–109
grouping statements, 315
GTX0-j (Global Transaction Process), RAC, 629
GUI monitoring tools, 955
Guided Workflow, SQL Performance Analyzer, 230–231
GV$ views

$V views created from, 674
listing of all, 737
V$ views vs., 677, 737

GV$PQ_SESSTAT view, parallel statistics, 665
GV$PQ_SYSSTAT view, parallel statistics, 665
GV$RESOURCE_LIMIT view, global resources, 645

GV$SESSION view, RAC session waits, 636–639
GV$SESSION_WAIT view, RAC waits, 633–634

H
Hadoop Distributed File System (HDFS), 33
half rack, Exadata, 610, 612
hardware

arithmetic, 551
Exadata. See Exadata (Exadata Database Machine)
other Oracle, 625–626

hash chains, block tuning, 473
hash indexes, 71–72, 75
HASH joins

forcing, 445
initialization parameters, 434–435
overview of, 430–431
two table INDEXED joins, 440–443
two table joins, 436–439
USE_HASH hint, 328–329

hash partitioning, 141–142
HBA drivers, ASM and multipathing, 136–137
HC (High Capacity) storage, Exadata, 611–613
HCC (Hybrid Columnar Compression), Exadata, 33, 618–621
HDFS (Hadoop Distributed File System), 33
header information section, AWR Report/Statspack, 831–833
Heat Map, 12c, 22, 101–102, 926
height-balanced histograms, 64–65, 394–395
Help, OEM online, 225–226
-help option, srvctl, 117–119
heterogeneous services, X$ table groups for, 798
High Capacity (HC) storage, Exadata, 611–613
HIGH compression option, indexes, 33
HIGH priority, In-Memory database, 26, 174
hints

use with external tables, 468
use with X$ tables and indexes, 741–742

hints, basic syntax
access method hints, 310
ALL_ROWS hint, 316
APPEND hint, 333–334

CACHE hint, 334–335
CONTAINERS hint, 339
CURSOR_SHARING_EXACT hint, 336
DRIVING_SITE hint, 325–326
execution path hints, 309–310
FIRST_ROWS hint, 315–316
fix design first, 308–309
FULL hint, 316–317
at a glance, 344
INDEX hint, 317–319
INDEX_ASC hint, 321
INDEX_COMBINE hint, 320–321
INDEX_DESC hint, 322
INDEX_FFS hint, 322–323
INDEX_JOIN hint, 320
INMEMORY, NO_INMEMORY, and other IM hints, 337
join operation hints, 311
LEADING hint, 324–325
miscellaneous, 339–341
NOAPPEND hint, 334
NOCACHE hint, 335
NO_EXPAND hint, 325
NO_INDEX hint, 319–320
NO_PARALLEL hint, 332
Oracle demo sample HR schema, 314–315
ORDERED hint, 323–324
other, 311–312
overview of, 306–307
parallel execution hints, 311
PARALLEL hint, 331–332
PARALLEL_INDEX hint, 333
WITH_PL/SQL hint, 339
problems with, 343
PUSH_SUBQ hint, 330–331
QB_NAME hint, 329–330
query transformation hints, 310–311
RESULT_CACHE hint, 335–336
review tips, 345–347
specifying, 312–313
specifying multiple, 313
specifying when using alias, 314

STORED OUTLINES, 284, 343
Top Hints list, 307–308
undocumented, 341–342
use sparingly, 308
USE_HASH hint, 328–329
USE_INVISIBLE_INDEXES hint, 338–339
USE_MERGE hint, 326–327
USE_NL hint, 327–328
using with views, 342

hint_string, pass hints to PDBs, 339
histograms

AWR Report/Statspack statistics, 849–850
defined, 64
height-balanced, 64–65, 394–395
using for tables or indexes, 64–65

hit ratio(s)
as barometer of system health, 837
buffer cache, 859, 914–916
data cache, 183–186
data dictionary cache, 193–194, 916–917
find bad queries via, 186–189
library cache, 195–197, 917
monitor Instance Efficiency for, 836–838

hosting IT, history of push towards, 596
Hosts tab, OEM, monitoring hosts, 248–250
hot blocks

latch and mutex waits related to, 872
latch issues, 881
tuning and viewing, 883–886

hot cloning, PDB, 11
hot data, Flash Cache caching, 614–615
HTML format, AWR Report in 2.2, 826
Hub Nodes, Oracle Flex Cluster, 115
HW enqueue waits, 846
hybrid cloud, 598
Hybrid Columnar Compression (HCC), Exadata, 33, 618–621
Hybrid Hash, in 12c, 388–389
Hybrid histogram, 12c, 394–396

I

I/O
ASM, multipathing and, 136–137
AWR Report/Statspack for, 861–864
binary height of index and, 60–62
bottlenecks in parallel operations, 652–653, 666
distortion of, 189
distribute processes over multiple slaves, 156
in fast full scans vs. full table scans, 66
find problems with sar -d command, 944–947
handling RAID 5 heavy, 96
hash index collisions increasing, 71–72
precautions/tips for disk, 157–158
reduce to avoid disk contention, 99–100
reduce with partitioned indexes, 75
separate tables/indexes to decrease file, 925
tracking views (outliers) in 12c, 102–103
V$ views for, 724

I/O Resource Management (IORM), Exadata, 621–622
I/O Stats section, Statspack/AWR report, 817
IAS (INSERT AS SELECT, 12c statistics, 394
Identity Columns, create table/alter column, 517–519
idle wait events, 848–850
IF statements, ordering PL/SQL, 550–551
IFACE column values, cluster interconnect, 643
ilm_clause, Automatic Data Optimization, 22–23, 102
ILOM (Integrated Lights Out Management), remote Exadata, 609
IM (In-Memory) column store

ADO managing in 12cR2, 102
configure Database Cloud Service, 16
features, 25–28
hints, 337
initialization parameters, 165–166
INMEMORY_SIZE parameter and, 17, 93, 171–176
overview of, 170–171
using with PDBs, 93
V$ views for, 722

IMCU (In-Memory Compression Unit), 27
impdp command, 18
IMPLEMENT_EVOLVE_TASK function, SPM, 396
import time, change compression at, 18
IMU (in-memory undo) statistics, 473, 855–856, 883

_IMU_POOLS parameter, IMU, 473
IN clauses, distributed queries, 463
IN function, query tuning via EXISTS vs., 380
In-Memory Central, OEM Administration menu, 244
In-Memory column store. See IM (In-Memory) column store
In-Memory Compression Unit (IMCU), 27
In-Memory Expressions, 176
In-Memory latches section, AWR Report, 874
in-memory undo (IMU) statistics, 473, 855–856, 883
index blocks

buffer busy waits on, 844
dumps, 483–485

index-by tables, as PL/SQL associative arrays, 562–565
INDEX hint

basic syntax, 317–319
INDEX_ASC hint does same thing as, 321
third-party product tuning via, 458–459

INDEX-MERGE joins, 432–434
index-organized tables, 72–73
index-organized tables (IOTs), restrictions, 50
INDEX_ASC hint, 321
INDEX_COMBINE hint, 320–321
INDEX_DESC hint, 322
indexes

advanced compression in 12cR1, 28
caution when dropping, 364–365
check table for current, 360–361
on columns used in SELECT and WHERE, 365–367
create, 360
create bad, 362–364
create with parallel operations, 652–653
db file scattered read wait events and, 841–842
distortion of, 189
Exadata storage, 617–618
fast full scan of, 367–368
find out if index is being used, 706–708
get listing of all X$ table, 740–741
graph pattern interpreting, 495–496
hints, use with X$ table, 741–742
Instance Activity Statistics section, AWR Report/Statspack, 857–858
merging two, 373–375

multiple, on same column(s), 7–8
new 12cR2 compression features, 33
parallel data loading and, 663
parallel index builds, 665
PARALLEL_INDEX hint for scanning, 333
partial, 5
partition, 149
perform count of bitmap index, 457–458
separate from tables to decrease file I/O, 925
storage, IMCU, 27
store data in separate location from, 99
suppressing, 375–377
third-party product tuning via, 458–462
using, 356–357
when you forget to provide, 359–360

indexes, basics
basic concepts, 45–47
binary height, 60–62
BLEVEL and Index Height details, 62–64
clustering factor, 59–60
comparing mismatched data types, 58–59
concatenated indexes, 53–54
fast full scans, 65–66
invisible indexes, 47–49
multiple, on same column(s), 50–53
overview of, 44–45
rebuild fast, 79
rebuild online, 79–80
review tips, 80–82
selectivity, 59
skip-scans, 66–67
suppressing indexes, 54–55
use functions, 58
use histograms, 64–65
use IS NULL or IS NOT NULL, 55–56
use LIKE, 57
use NOT EQUAL operators: <>, !=, 55

indexes, types of
B-tree indexes, 68–69
bitmap indexes, 69–71
bitmap join indexes, 78–79

function-based indexes, 73–74
hash indexes, 71–72
index-organized tables, 72–73
overview of, 67–68
partitioned indexes (local and global), 74–78
reverse key indexes, 73

INDEX_FFS hint, 322–323, 367–368, 434
INDEXING clause, partial indexes, 6, 143–144
INDEX_JOIN hint, 320, 374
INDEX_SS hint, 340
INDEX_SS_ASC hint, 340
INDEX_SS_DESC hint, 340
inequalities, SORT-MERGE for, 429
InfiniBand switches, X6-2 Exadata, 611
information integration, version comparison chart, 38
information lifecycle management, ilm_clause in ADO, 22–23, 102
information section, TKPROF, 263
initialization parameters

ASM, 107
get current values for, 690–691
modify at PDB level, 91
parallel execution, 660–662, 665
setting, 753–757
Statspack/AWR report, 817, 889–890
table joins, 434–439
undocumented TRACE, 283–284
X$ tables relevant to, 756–757

Initialization Parameters, Administration menu, 244–246
initialization parameters, tune database

avoid paging/swapping, 204
change without database restart, 176–180
create enough dispatchers, 205–206
for crucial memory, 166–170
DDL statements, do not let fail, 206
Exadata only, 207
find undocumented, 210–211
have enough open cursors, 206
insight into, 181
modify at PDB level, 180–181, 691
modify LRU algorithm, 202
monitor data dictionary cache, 193–194

monitor library cache reload/hit ratios, 195–197
monitor V$SQLAREA for bad queries, 186–189
over the years, 207–210
overview of, 164–165
at PDB level, 170
review tips, 218–220
set cache and share pool sizes, 199
set DB_BLOCK_SIZE, 189–190
set SGA_MAX_SIZE, 190
setup In-Memory database (INMEMORY_SIZE), 170–176
SHARED_POOL_SIZE and memory for statements, 202–203
SHARED_POOL_SIZE correct settings, 197–198
SHARED_POOL_SIZE set to fully use DB_CACHE_SIZE, 193
sizing Oracle Applications database, 213–218
top twenty-five, 207–210
tune DB_CACHE_SIZE, 182–186
tune PGA_AGGREGATE_TARGET/PGA_AGGREGATE_LIMIT, 203
tune SHARED_POOL_SIZE, 191
and typical server, 211–213
understand Oracle Optimizer, 204–205
upgrade to 12c and, 165–166
use Oracle multiple buffer pools, 201
use SEC_CASE_SENSITIVE_LOGON, 166
use stored procedures for shared SQL area, 191–193
use X$KSMSP table for details on shared pool, 198–199
view with Enterprise Manager, 181–182
waits and, 200

init.ora, 257, 690–691
INLINE pragma, 538–539
INMEMORY attribute, IM column store, 173
INMEMORY hint, 337
INMEMORY scans, 45
_IN_MEMORY_ UNDO=TRUE parameter, IMU, 473
INMEMORY V$ views, 812
INMEMORY_PRUNING hint, 337
INMEMORY_QUERY parameter, 171
INMEMORY_SIZE parameter

how to use, 208
IM Database setup, 170–176
new (12cR1), 25–28
query V$IM_SEGMENTS after setting, 685–686

upgrade to 12c, 166
inner table, NESTED LOOPS joins, 428–429
inquiry directives, conditional compilation, 581, 584
INSERT AS SELECT (IAS) operation, 12c statistics, 394
INSERT statements

APPEND hint improves performance of, 333–334
bitmap vs. b-tree indexes for, 69–71
data section of block dump, 480
increase log file size to speed up, 154–155
log timing statistics into database tables, 541–543
parallelized via PARALLEL hint, 331
use rollback segments for large, 572

installation
ASM, 107–109
Flex ASM, 109–115
Statspack, 818–820
Statspack deinstallation, 893
X$ table groups for, 785

Instance Activity Statistics section, AWR Report/Statspack, 855–861
Instance Efficiency section, AWR Report/Statspack, 836–838
Instance Enqueue Process (LCK0), RAC, 629
Instance Recovery Stats section, AWR Report/Statspack, 869
instances

ASM, 106–107
obtain information on, 766–767
V$ views for, 723
X$ table groups for, 785

instant recovery repopulation daemon (RPOP), 35
integer operations, PLS_INTEGER PL/SQL data type for, 551–552
Integrated Lights Out Management (ILOM), remote Exadata, 609
Intelligent Data Placement, ASM disks, 156
interconnect statistics, RAC wait events and, 635–641
interested transaction list (ITL), 473, 476–477
interoperation parallelization, 649–653
interval partitioning, avoid disk contention via, 139
intra-operation parallelization, 649–653
intrapartition parallelism, 647
invalid objects, find in PL/SQL code, 559–561
Inventory and Usage pane, Enterprise Summary, 227
invisible columns, 6
invisible indexes

create or alter existing index to, 360
force use of, 338–339
for multiple types of indexes on same column(s), 50–53
overview of, 47–49

_IO_OUTLIER_THRESHOLD parameter, 103
IORM (I/O Resource Management), Exadata, 621–622
iostat command, disk performance, 945, 959–962
IOTs (index-organized tables), restrictions, 50
ipcrm command, shared memory, 962–963
ipcs command, shared memory, 962–963
IS NOT NULL, suppress indexes, 55–56
IS NULL, suppress indexes, 55–56
I_SNAP_LEVEL parameter, Statspack, 821–822
IS_REOPTIMIZABLE column, Adaptive Query Optimization, 384–386
IS_RESOLVED_ADAPTIVE_PLAN column, Adaptive Query Optimization, 384–386
IT Analytics, Oracle Management Cloud, 606
IT operations, cloud services lower cost of, 597
iterations

reduce time for PL/SQL program, 544–546
use ROWID for, 546–548

ITL (interested transaction list), 473, 476–477

J
jackknifing pattern, 497
Java pool, 747, 751–752
Java source, X$ table groups for, 799
JAVA_POOL_SIZE parameter

cache sizes, 181
defined, 209
query ORA-04031 errors, 744
set automatically with MEMORY_TARGET, 207
unaffected by PGA_AGGREGATE_TARGET, 203
usually sets minimum value, 168

Job Activity screen, Oracle Database, 247–248
join operations hints, 311
joins. See table joins
JSON (JavaScript Object Notification), 28

K

_KCFIS_STORAGEIDX_DISABLED parameter, Exadata, 207
_KGL_BUCKET_COUNT parameter, cache buckets, 752
_KGL_LATCH_COUNT parameter, latches, 752–753

L
Label Security, new features in 12cR2, 32
Large Object (LOB) data types, 521
LARGE_POOL_SIZE parameter, 202–203, 209
Latch Activity section, AWR Report/Statspack, 873–875
Latch and Mutex Statistics, AWR Report/Statspack, 872–882
latch free wait events, 844–845, 848, 877
LATCH MISS section, Statspack/AWR report, 817
latch waits

causes of, 763–766, 872
pinning to reduce, 878
potential fixes, 200
query, 751–752

latches
library cache pin/latch replaced by mutexes, 845
and mutex statistics, 872–882
not willing to wait, 873
potential fix, 844–845
V$ views for, 724
X$ table groups for, 796

latency, tuning cluster interconnect, 641–642
LCK0 (Instance Enqueue Process), RAC, 629
LEADING hint, 324–325, 443
leaf blocks

BLEVEL index depth and, 62–64
in fast full scans of indexes, 65–66
measure clustering factor of index, 60

Leaf Nodes, Oracle Flex Cluster, 115
Least Redo Block Address (LRBA), block dumps, 480–481
LGn (log writer) slave background process, 35
library cache

cache size and, 199
hit ratio, Memory Performance Index, 917
query memory use, 747–750
query mutex/latch waits and/or sleeps, 751–752

reload ratio and hit ratio settings, 195–197
reset X$KSMLRU table, 752
statistics, AWR Report/Statspack, 886–887
X$ table groups for, 793–794

library cache mutexes
library cache pins/latches replaced by, 845–846
limiting issues, 877–879
potential fix for waits, 848
related to Oracle bugs, 851–852

licensing
AWR Report, 824
Exadata, 610–611

LIKE, use with indexes, 57
linear equation determination, 487–488, 491–494
links, clone PDBs over, 88
list of V$ views, 677
listener registration (LREG) background process, 35
LMD (Global Enqueue Service Daemon), RAC, 629
LMON (Global Enqueue Service Monitor), RAC, 629
LMSn (Global Cache Service processes), RAC, 629
load-balancing, cluster interconnect tuning, 642
Load Profile section, AWR Report/Statspack, 830, 833–834
loader, X$ table groups for, 798
LOB (Large Object) data types, 521
local partitioned indexes

example of, 149
hash partitioning supporting, 141
overview of, 75–76
utilizing, 143

lock blockers, GES, 639–640
locks

behavior, HCC during updates, 620
enqueue protecting shared resource via, 846
identify issues, 708–710
ITL section of block dump, 476
PERFSTAT account, 819
V$ views for, 724
X$ table groups for, 796

Log Analytics, Oracle Management Cloud, 606
log buffer space wait event, 846–847, 849
log file parallel write wait event, 847, 849

log file switch wait event, 846, 849
log file sync wait event, 847, 849
log files

determine if size is problem, 154
determine size of, 155
increase size for speed, 152–153
instance parameters, 156
other helpful commands, 155–156
of timing statistics into database tables, 541–543

Log Miner, V$ views for, 724
log writer (LGn) slave background process, 35
LOG_ARCHIVE_DUPLEX_DEST, 156
LOG_ARCHIVE_MIN_SUCCEED_DEST, 156
LOG_BUFFER parameter, 168, 209
LOG_CHECKPOINT_INTERVAL, 152–153
logical disk corruption, ASM disk scrubbing for, 119–121
logical replication, new 12cR2 features, 31
login screen, OEM, 223
LogMiner, X$ table groups for, 790–791
long tables, AWR Report/Statspack, 860
lookup tables, CACHE hint for, 334–335
loops

reduce PL/SQL program unit iterations, 544–546
simplify with CONTINUE statement, 525–528

LOW priority, In-Memory database, 26, 174
LRBA (Least Redo Block Address), block dumps, 480–481
LREG (listener registration) background process, 35
LRU algorithm, initialization parameters for, 202
LRU block, buffer headers, 474
LRU-W block, buffer headers, 474
LUN (logical unit number), RAID, 94
LVMs (logical volume managers), ASM vs., 97

M
materialized views

REWRITE_OR_ERROR hint, 341
V$ views for, 725
X$ table groups for, 788

mathematics
techniques for tuning. See Simple Mathematical Techniques, for tuning

traditional mathematical analysis, 486
MAX_DUMP_FILE_SIZE, SQL TRACE, 257
maximum transmission unit (MTU), cluster interconnect, 643
MAX_MEMORY_TARGET, ASM, 107
MAXVALUE, partition tables using multiple columns, 141
MEDIUM priority, In-Memory database, 26, 174
MEMCOMPRESS, In-Memory option, 174–175
MEMCOMPRESS, In-Memory options, 27
memory

caching small, often-used tables in, 369–371
crucial initialization parameters for, 166–170
DB_CACHE_SIZE and allocating, 201
disk I/O precautions and tips, 157
finding high reads without TRACE, 278–279
improve shared pool use by pinning PL/SQL objects into, 555–557
information in EM Console in Cloud, 606
MEMORY_TARGET setting SGA/PGA, 167–170
new in 12.2 Statspack/AWR report, 817
query shared/Java pools for low free, 747
query use of library cache, 747–750
reporting on free memory with sar -r, 950
reporting on resources with sar -wpgr, 950–951
setting for HASH joins, 435
SHARED_POOL_SIZE and, 202–203
SORT-MERGE joins and, 428
system information list for, 934–935
tuning system, 968
USE_HASH hint requirements, 328–329
X$ tables only reside in, 733

Memory Dynamic Components section, AWR Report/Statspack, 867
Memory Performance Index. See MPI (Memory Performance Index)
MEMORY_LIMIT parameter, PDB level, 17, 170
MEMORY_MAX_TARGET parameter, AMM, 167, 207
MEMORY_MINIMUM parameter, PDB level, 17, 170
MEMORY_TARGET advisor section, AWR Report/Statspack, 865–867
MEMORY_TARGET parameter

accommodate INMEMORY_SIZE, 171–172
ASM, 107
as crucial new initialization parameter, 17, 166–170
for HASH joins, 430, 434
how to use, 207

In-Memory database and, 25, 27
as not modifiable, 181
PGA_AGGREGATE_LIMIT as part of, 204
PGA_AGGREGATE_TARGET as part of, 203
for Result Cache, 920
Statspack/AWR report, 817
tuning data cache hit ratio, 183–184
upgrade to 12c, 166
V$MEMORY_TARGET_ADVICE view, 687–688

MERGE JOIN operation, 326–327, 657–658
MERGE PARTITIONS option, 148
MERGE/SPLIT partitions, move online, 23
Message Passing Interface (MPI), RAC, 628
metrics, V$ views for, 724
Microsoft Cloud, 596
Microsoft Excel, graphing performance metrics, 493
migration, new RMAN features, 32
MINIMUM SIZE parameter, DBMS_SHARED_POOL.SIZES, 557–558
MINUS operator, tuning distributed queries, 463
mirrored disks, RAID, 95–96
mirroring, in ASM, 97
miscellaneous tables, X$ table groups for, 799
miscellaneous V$ views, 727
miss ratio, data dictionary cache, 197
mission-critical table management, Disk Performance Index, 925–926
M$LOG tables, 218
mobile applications, and cloud, 11–17, 596
MODEL_MIN_ANALYSIS hint, 340
MODIFY PARTITION option, 146
MODIFY_STATSPACK_PARAMETER procedure, 822–823
module information, trace file identifying, 782
module name, DBMS_MONITOR, 266, 268–269
MONITOR hint, 340
MOVE PARTITION option, 146–147
MPI (Memory Performance Index)

buffer cache hit ratio, 914–916
dictionary cache hit ratio, 916–917
how to receive perfect score, 912
library cache hit ratio, 917
percentage of data buffers still free, 919–920
PGA memory sort ratio, 918–919

pinning/caching objects, 921–922
top memory-abusers, 912–914
using Result Cache, 920–921

MPI (Message Passing Interface), RAC, 628
mpstat command, 956
MTU (maximum transmission unit), cluster interconnect, 643
multicolumn range partitioning, 140–141
multipathing, ASM and, 136–137
multiple hints, 313
multiple indexes, 317–318, 319–320, 372–373
multiple tables, bitmap join indexes on, 456
multitable joins, 445–446, 471–472, 496
multitenant databases. See PDBs (pluggable databases)
multithreaded servers, V$ views for, 725
Mutex Sleep Summary section, AWR Report, 874–876
mutex waits, 872, 876–877
mutexes

defined, 845
latches as, 844–845
library cache pin/latch replaced by, 845–846, 872
Oracle move from latches to, 874
query, 751–752
statistics for latches and, 872–882

My Oracle Support (Metalink) Note 224176.1, 969

N
named notation, pass parameters to subroutine, 525
named parameters, SQL function calls, 523–525
naming conventions

system information list, 937
X$ table, 805–812

National Language Support (NLS), X$ table groups for, 786
native compilation

defined, 530
increase performance, 530–533
optimize compiler for, 533–539

NATIVE_FULL_OUTER_JOIN hint, 340
NDVs (number of distinct values), histograms, 394
nested loops, hints for, 327–328, 341
NESTED LOOPS joins

CLUSTER joins as special, 429–430
forcing, 444
overview of, 428–429
two table INDEXED joins, 440–443

nested subquery, with EXISTS clause for speed, 381
netstat, 642–643, 966–967
networking

monitor performance with netstat, 966–967
network-enabled restore, RMAN, 24
tune distributed queries, 463
version comparison chart, 39–40

new features
Oracle 12cR1 (12.1.0.2), 4, 25–29, 36–40
overview, 2–5

new features, Oracle 12cR1 (12.1.0.1)
Adaptive Query Optimization, 18–19
ASM disk scrubbing, 23
Automatic Data Optimization, 22–23
change compression at import time, 18
columns based on sequence, 20
concurrent cost-based optimizer statistics, 21
concurrent execution for UNION/UNION ALL, 20
Data Guard improvements, 24
Database Cloud Service, 11–17
DBMS_UTILITY.EXPAND_SQL_TEXT, 20
drop and truncate partitions, 23
enhanced system statistics, 21
fetch first x rows, 8–9
invisible columns, 6
known as PDB version, 5
multiple indexes on same column list, 7–8
multiple SSD devices for Smart Flash Cache, 20
NVARCHAR2 size limit increase, 5
online capability improvements, 23
overview of, 3–4
partial indexes, 5–6
PGA_AGGREGATE_LIMIT, 19
pluggable databases, 9–11
Resource Manager for runaway queries, 22
Results Cache for invoker rights, 20
RMAN improvements, 24

VARCHAR2 size limit increase, 5
version comparison chart, 36–40

new features, Oracle 12cR2 (12.2)
application development, 29–30
availability, 30–32

background processes, 34–35
big data, 33
compression and archiving, 34
Exadata X6, 35–36
Oracle RAC and grid infrastructure, 34
overview of, 4–5
PDB level: MEMORY_LIMIT and MEMORY_MINIMUM, 17
reduce costs/issues for migration to Oracle, 30
version comparison chart, 36–40

new systems, planning stage issues, 158
Newton’s Divided Difference Interpolating Polynomial, 487–493
NLS (National Language Support), X$ table groups for, 786
NLS_DATE_FORMAT, 569
NO MEMCOMPRESS, In-Memory option, 174
NO_ADAPTIVE_PLAN hint, 341
NOAPPEND hint, 333, 334
NO_AUTO_REOPTIMIZE hint, 341
NOCACHE hint, 335, 615
nodes, Oracle Flex Cluster, 115
NO_EXPAND hint, 325, 380
NO_GATHER_OPTIMIZER_STATISTICS hint, 341
NO_INDEX hint, 49, 319–320
NO_INMEMORY hint, 337
NO_INMEMORY_PRUNING hint, 337
NOLOGGING hint, 340
NOLOGGING option

create table/index, 160
create tables/indexes with parallel operations, 652
disable redo generation during MOVE, 147
new 12cR2 availability options, 31

NO_MONITOR hint, 340
non-CDBs, 9, 87
non-prefixed local indexes, 76
non-V$ fixed view associations, and X$ tables, 801–803
Non-Volatile Memory Express (NVMe), Exadata, 610
NO_NATIVE_FULL_OUTER_JOIN hint, 340
NONE priority, 26, 174
nonprefixed global indexes, 78, 149
NOPARALLEL clause, ALTER TABLE command, 651
NO_PARALLEL hint, 332, 650–651
NO_PUSH_PRED hint, 340

NO_RESULT_CACHE hint, 336
NORMAL mode, cost-based optimizer, 381
NO_STATEMENT_QUEUING hint, 648
NOT EQUAL operators (<>, !=), suppress index usage 55
NOT NULL, 521
not willing to wait latches, 873
NO_USE_CUBE hint, 341
NO_USE_NL hint, 328
NULL values

B-tree indexes, 68
suppressing indexes with, 55–56

number arithmetic, 551
number of distinct values (NDVs), histograms, 394
numeric data types, 551
NVARCHAR2, 5, 521
NVMe (Non-Volatile Memory Express), Exadata, 610
NVRAM, 947

O
objects

cache all, 556–557
find dependencies for PL/SQL, 567
find invalid PL/SQL, 559–560
find state of all PL/SQL schema, 560
identify PL/SQL, that need pinning, 557
implications of location of PL/SQL, 571–572
pinning/caching, Memory Performance Index, 921–922
query SQL source code behind stored, 565–567
V$ views for, 725

ODA (Oracle Database Appliance), 623
OEM Administration menu

Initialization Parameters, 244–246
In-Memory Central, 244
monitor and tune via, 241–242
Resource Manager/consumer groups, 246–247
Storage | Tablespaces, 242–244

OEM (Oracle Enterprise Manager)
for ASM, 104
Express console, 224–225
locate bad queries, 186–189

Online Help window, 225–226
Oracle Cloud Database, 15–16
query wait events, 718
view initialization parameters, 181–182

OEM (Oracle Enterprise Manager) Cloud Control
Administration menu, 241–248
basics/accessing via Oracle Cloud, 223–226
monitor and tune with, 222–223
monitor application servers/web applications, 250–252
monitor hosts, 248–250
Oracle Database menu, 247–248
Performance menu. See OEM Performance menu
Real Application Testing (Database Replay), 252–253
review tips, 253–254
run AWR Report, 828–831
set with all targets/other groupings, 227–229
use ADDM Report through, 893
view/monitor Smart Scan benefits, 614

OEM Performance menu
Access Advisor, 237
ASH Analytics, 241
AWR Administration, 238–241
Optimizer Statistics, 237–238
overview of, 229
Real-Time ADDM, 233–237
SQL Performance Analyzer, 230–233
Top Activity screen, 229–230

oerr command-line facility, 774
ols.pl Perl script, Flex ASM, 129–132
OLTP (online transaction processing)

bitmap indexes not used for, 69, 71
Exadata speed vs., 609
In-Memory Database and, 170–171
use hints sparingly, 308

OMF (Oracle Managed Files), 103–104
on-demand capacity licensing, Exadata, 611
ON NULL clause, Identity Columns, 519–520
online capability improvements

12cR1, 23
12cR2, 32

Online Database Relocation, RAC, 627

online services
OEM help, 225–226
Oracle Cloud, 599
Oracle documentation, 666
rebuild indexes, 79–80

online transaction processing. See OLTP (online transaction processing)
open cursors, 206
OPEN_CURSORS parameter, 181, 206, 210
OPERATION column, PLAN_TABLE, 280
OPS (Oracle Parallel Server). See also RAC (Real Application Clusters), 626
OPT_ESTIMATE hint, 391–392
optimization

Adaptive Query Optimization. See Adaptive Query Optimization
ADO. See ADO (Automatic Data Optimization)
new 12cR2 features for big data, 33

optimizer
automatic statistics collection in, 314
some hints overridden by, 312
X$ table groups for, 796

OPTIMIZER_ ADAPTIVE_FEATURES parameter, 383–384
Optimizer Statistics, 21, 237–238
OPTIMIZER_ADAPTIVE_FEATURES parameter, 166
OPTIMIZER_ADAPTIVE_REPORTING_ONLY parameter, 166, 383–384, 387–388
OPTIMIZER_CAPTURE_PLAN_BASELINES, SPM, 287–289, 295–301
OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES parameter, 209
OPTIMIZER_DYNAMIC_SAMPLING parameter, 384, 389–390
OPTIMIZER_INDEX_COST_ADJ parameter, 190, 209, 862
OPTIMIZER_MODE = ALL_ROWS, 316
OPTIMIZER_MODE = FIRST_ROWS, 316
OPTIMIZER_MODE parameter, 166, 204–205, 208
OPTIMIZER_USE_INVISIBLE_INDEXES parameter

create invisible index, 360
force use of invisible index, 48–49, 338
how to use, 209
upgrade to 12c, 166

OPTIMIZER_USE_PENDING_STATISTICS parameter, 209
OPTIMIZER_USE_SQL_PLAN_BASELINES parameter, 209, 287–291, 295–301
OPTIONS column, PLAN_TABLE, 280
OPT_PARAM hint, 340
OR clause, improvements to, 380
OR expansion, NO_EXPAND hint prevents, 325

ORA-04031 errors, 743–747
Oracle 12cR1 (12.1.0.1). See new features, Oracle 12cR1 (12.1.0.1)
Oracle 12cR1 (12.1.0.2), new features, 4, 25–29, 36–40
Oracle 12cR2 (12.2). See new features, Oracle 12cR2 (12.2)
Oracle Big Data Appliance X6-2, 625
Oracle bugs, 851–852, 872
Oracle Cloud

march to, 596–598
My Services menu, 224–225
overview of, 594–597
review tips, 667–668
sign in, 601–602
working with, 599–608

Oracle Cluster Health Monitor (CHM), 969
Oracle Database Administrator’s Guide, 12c, 662
Oracle Database Appliance (ODA), 623, 624
Oracle Database Cloud Service

access OEM Console from, 224–225
overview of, 11–17

Oracle Database Data Warehousing Guide, 341
Oracle Database Exadata Express Cloud Service, 594, 599, 608
Oracle Database New Features Guide, 2
Oracle Database Performance Tuning Guide Automatic SQL Tuning, 381
Oracle Database SQL Language Reference, 309, 341
Oracle Database Upgrade Guide, 12c, 662
Oracle Developer distortion, 188
Oracle Enterprise Manager. See OEM (Oracle Enterprise Manager)
Oracle Intelligent Storage Protocol, ZFS Storage server, 625
Oracle internals topics. See trace, generate
Oracle Managed Files (OMF), 103–104
Oracle Management Cloud, 606–607
Oracle optimizer, 204–206
Oracle ORION Calibration Tool, 969
Oracle Parallel Server (OPS). See also RAC (Real Application Clusters), 626
Oracle Public Cloud services, sign up, 601
Oracle shadow process, 852
Oracle Virtual Machine (OVM), Exadata licensing, 611
ORADEBUG command

invoke trace via, 768, 770
set events in sessions other than current one, 774
troubleshooting instance or sessions, 775–777

ORDERED hint
basic syntax, 323–324
LEADING hint overridden by, 324–325
request specific join order for all tables, 443, 445
two table INDEXED join, 441–443
two table joins, 438–439, 448–450

OSASM role, ASM, 132–136
OSDBA group role, ASM, 132, 135
OTHER_TAG column, PLAN_TABLE, parallelized query, 656–658
outer joins, 340
outsourcing IT, history of, 596
Overview pane, Enterprise Summary, 227
OVM (Oracle Virtual Machine), Exadata licensing, 611

P
packages

creating in PL/SQL, 588–589
pinning all, 556–557
query SQL source code behind, 565–567

paging
modify size of SGA to avoid, 204
monitor with sar and vmstat, 948–953
viewing with vmstat, 964

PARALLEL clause
ALTER TABLE command, 651
CREATE/ALTER TABLE command, 662
PARALLEL hint for tables created with, 331–332

parallel clustered databases, 626
parallel data loading, 662–663
parallel databases

overview of, 626
with RAC. See RAC (Real Application Clusters)

parallel execution hints, 311
Parallel Execution Option (PEO), 653
PARALLEL hint

basic syntax, 331–332
enable parallel operations for commands, 662
NOAPPEND hint overriding, 334
overrides DOP for table, 654
parallelizing SQL statements, 650

parallel hints, 666
parallel index builds/rebuilds, 665–666
PARALLEL keyword, parallel data loading, 662
parallel operations

basic concepts of, 645–646
CREATE TABLE AS (CTAS), 665
DML/DDL statements and, 647–648
initialization parameters, 665
inter- and intra-operation parallelization, 649–651
monitor via V$ views, 653–655
NO_PARALLEL hint disabling, 332
objectives of, 664
optimize in RAC, 664
other notes, 666
overview of, 645
parallel execution/initialization parameters, 660–662
PARALLEL hint, 331–332
parallel index builds, 665–666
parallel server resources/parallel statement queuing, 648
PARALLEL_INDEX hint, 333
partitions and, 649
performance considerations, 666
RAC parallel usage models, 664
review tips, 667–668
set autotrace on/off command, 658–660
table and index examples, 652–653
use EXPLAIN PLAN and AUTOTRACE on, 655–658
use parallel data loading, 662–663
V$ views for, 665, 725
version comparison chart, 38

parallel queries, X$ table groups for, 797
parallel server resources, configure, 648
parallel servers, V$ views for, 725
parallel statement queuing, 648
parallel usage models, RAC, 664
PARALLEL_ADAPTIVE_MULTI_USER parameter, 648, 661
PARALLEL_DEGREE_LIMIT parameter, 660
PARALLEL_DEGREE_POLICY parameter, 28, 391, 648
PARALLEL_EXECUTION_MESSAGE_SIZE parameter, 661
PARALLEL_FORCE_LOCAL parameter, 661
PARALLEL_INDEX hint, 333

PARALLEL_MAX_SERVERS parameter, 647, 661, 665
PARALLEL_MIN_PERCENT parameter, 661
PARALLEL_MIN_SERVERS parameter, 661, 665
PARALLEL_MIN_TIME_THRESHOLD parameter, 391
PARALLEL_SERVERS_TARGET parameter, 648
PARALLEL_TARGET_PERCENTAGE directive, 648
PARALLEL_THREADS_PER_CPU parameter, 662
parameters, V$ views for, 725
parent-child relationship, reference partitioning, 144–145
PARENT_ID, PLAN_TABLE, 281, 303
parse activity, 750
parse count, AWR Report/Statspack, 860
parsing errors, in trace files, 784
partial indexes, 5–6, 143–144
PARTITION clause, 146
partition granules, parallelism and, 649
partition-wise joins, 145
partitioned indexes

example of, 149
global, 76–78
local, 75–76, 143
new features in 12cR2, 78
overview of, 74–75

partitions
avoid disk contention via, 137–139
change nonpartitioned tables to Golden Gate, 32
change nonpartitioned tables to partitioned, 23
composite, 141–142
disk scrubbing, 23
exporting, 150
getting more information about, 139–140
global index maintenance in 12c, 23, 146
hash, 141
list, 142–143
move online (12cR1), 23
multicolumn range, 140–141
new 12cR2 features for, 34
new 12cR2 features for big data, 33
other options, 146–148
parallelism and, 647, 649
partial indexes, 143–146

partial tables (12cR1), 5–6
reference partitioning, 144–145
viewed by EXPLAIN PLAN, 276–278, 302

passwords
new 12cR2 Data Guard features, 31
SEC_CASE_SENSITIVE_LOGON for, 166
Statspack installation, 818–819

past image (PI), RAC, 631
pattern interpretation

in advanced tuning, 493–494
indexing, 495–496
jackknifing, 497
linear and quadratic interpretations, 494–495
multiple-table join statements, 496
optimizer execution plan, 496
riding quadratic curve, 497–498
volatility effects, 498

PCIe card Smart Flash Cache, Exadata, 614, 617
PCTFREE settings, avoid chaining via, 151–152
PDBs (pluggable databases)

12cR1 support for, 28
aggregate data across multiple, 339
alter system while in, 92
availability options (12cR2), 31
CDB or PDB created objects, 86–87
check history, 91
cloning, 88
detailed memory allocated for, 689–690
Disk Performance Index for, 928–930
identify services you have, 91
information in EM Console in Cloud, 606
MEMORY LIMIT and MEMORY_MINIMUM, 16–17, 170
methods of creating, 87
modify initialization parameters, 92, 179–180, 691
move between containers (CDB/PDB), 88–89
new features (12cR1), 9–11
new features (12cR2), 93–94
new features in Statspack/AWR report (12cR2), 817
open and close, 89
overview of, 84–85
review tips, 159

RMAN commands for, 93
RMAN features (12cR2), 32
RMAN improvements (12cR1), 24
Root CDB_views of, 678
sharing in Oracle Cloud, 598
start up from CDB, 89, 90
subset cloning (12cR1), 29
subset standby feature, 94
track to datafiles, 90–91
unplug and drop, 88
use In-Memory with, 93, 172
V$ views for, 722
working with, 85–86

PEO (Parallel Execution Option), 653
performance feedback, automatic reoptimization, 391–392
PERFSTAT account, 818–819
PFILE

create from SPFILE, 177
setting initialization parameters, 753–755

PGA
managed by MEMORY_TARGET, 168–170
Memory Performance Index for, 918–919

PGA_AGGREGATE_LIMIT parameter
calculate PGA memory sort ratio, 918–919
how to use, 208
new in 12c, 19
set maximum for, 168–169
tuning, 204
USE_HASH hint requiring, 328–329

PGA_AGGREGATE_TARGET parameter
calculate PGA memory sort ratio, 918–919
how to use, 208
set for HASH joins, 430
set for SORT-MERGE joins, 434–435
set minimum for, 168–169
tuning, 203–204

PGA_AGGREGATE_TARGET section, AWR Report/Statspack, 868–869
physical reads, Instance Activity Statistics in AWR Report/Statspack, 859
PI (past image), RAC, 631
pinhit ratio, library cache, 197, 887
pinning. See caching/pinning

PIPE ROW statement, PL/SQL, 576–577
PIPELINED keyword, 576–580
pipelined table functions, 575–580
PL/SQL

active transaction management, 573
ADO functions, 102
binding PL/SQL-only data types, 522–523
compile-time warnings, 528–530
data types in comparison operations, 548–550
determine memory, 694–695
example of code, 587
find disabled triggers, 561–562
find invalid objects, 559–561
find/tune SQL when objects are used, 565–567
Function Result Cache, 505–515
get contiguous space in shared pool, 559
identify objects for pinning, 557
identity columns, 519–521
leave debugging commands alone, 580–586
limit use of dynamic SQL, 573–574
log timing information in table, 541–543
“look and feel” for beginners, 586–589
Max Size increase for VARCHAR2, NVARCHAR2, and RAW data types, 521–522
monitor via DBMS_APPLICATION_INFO, 539–541
named parameters in SQL function calls, 523–525
native compilation, 530–533
new 12cR2 features, 29–30
object location, 571–572
optimizing compiler, 533–539
order IF conditions, 550–551
overview of, 504–505
pin objects for shared pool use, 555–557
pipelined table functions, 575–580
PLS_INTEGER data type, 551–552
query DBA_OBJECT_SIZE for object details, 558–559
reduce calls to SYSDATE, 552–553
reduce unit iterations/iteration time, 544–546
reduce use of MOD function, 553–554
reference sequences directly in expressions, 517–519
reference table lookups with associative arrays, 562–565
review tips, 589–591

rollback segments to open large cursors, 572–573
ROWID for iterative processing, 546–548
simplify loops with CONTINUE, 525–528
subprograms, 515–517
temporary database tables, 573
time component and DATE data types, 568–570
trace with DBMS_TRACE, 772–773
tune with PL/SQL, 570–571
use/modify DBMS_SHARED_POOL.SIZES, 557–558
X$ table groups for, 798

PL/SQL Function Result Cache, 589–591
PL/SQL Tips and Techniques (McGraw-Hill, 1999), 586
plan capture, SPM, 286, 288
plan evolution, SPM, 286, 290
plan generator, SQL, 383
plan selection, SPM, 286
plan status, SPM, 286, 288–291
planning stage, issues to consider in, 158
PLAN_STAT parameter, 266
PLAN_TABLE

EXPLAIN example for simple query, 273–274
important columns in, 280–282
for parallelized query, 656–658
reading EXPLAIN PLAN based on query for, 274–275
set autotrace on/off command, 659–660
three-table joins, 450–452
using DBMS_XPLAN, 282–283
using EXPLAIN PLAN without TRACE, 271–273
using SPM, 289–291
viewing partitions in EXPLAIN PLAN in, 278

platform-specific, X$ tables as, 733
PLS_INTEGER PL/SQL data type, 551–552
PLSQL compiler, 528–530, 533–539
PLSQL_CODE_TYPE parameter, 532
PLSQL_OPTIMIZE_LEVEL parameter, 533–539
PLSQL_WARNINGS parameter, 528–530, 535
PLUSTRACE role, AUTOTRACE, 275
policies, ADO data, 27–28, 102
POWER option, ASM disk scrubbing, 120
PRAGMA UDF, 516–517
predict command, srvctl, 117–118

preferences, OEM, 224, 226
prefixed global indexes, 78, 149
prefixed local indexes, 75–76
preserved snapshot sets, OEM, 828
PRIORITY keyword, In-Memory database, 26–27, 174
privileges

ASM and, 132–136
PERFSTAT account, 819
V$ scripts that check for, 715–717
V$ views for, 725
X$ table groups for security, 797

procedures, PL/SQL, 570–571, 587–588
processes

use vmstat to view blocked, 963–964
X$ table groups for, 786, 791

PROCESS_TIMING_LOG table, 542–543
PROD_DB group, monitoring databases, 227–228
profiles, query for current, 712
profit margins, cloud companies, 597
programming mistakes, compile-time warnings, 528–530
prvtpool.plb script, 556
ps command, find memory-intensive jobs, 951, 957–959
public cloud option, 598
PUSH_PRED hint, 340
PUSH_SUBQ hint, 330–331

Q
QB_NAME hint, 329–330
quadratic curve, pattern interpretation of riding, 497–498
quadratic equation determination, 488–495
quarter rack, Exadata, 610, 612
queries

Adaptive Query Optimization. See Adaptive Query Optimization
Continuous Adaptive Query Plans, 19
DBMS_UTILITY.EXPAND_SQL_TEXT, 20
monitor V$SQLAREA view to locate bad, 186–189
new 12cR2 features for big data, 33
Resource Manager for runaway, 22
steps for SQL TRACE with simple, 257
tuning distributed, 462–463

use hints sparingly to tune, 308–309
use indexes to improve performance, 45–46

query blocks, specifying hints, 313, 329–330
Query High, HCC, 619–620
Query Low, HCC, 619–620
query transformation hints, 310–311
query transformer, SQL default execution plan, 383
query tuning

Automatic SQL Tuning Adviser, 397–407
cache table in memory, 369–371
check if column is properly indexed, 361–362
checking index on table, 360–361
choose among multiple indexes, 372–373
create bad index, 362–364
create index, 360
create invisible index, 360
drop index with caution, 364–365
EXISTS function/nested subquery for, 380–381
fast full scan, 367–368
find current resource-intensive sessions, 354–355
find worst queries, 351–354
function-based indexes, 377–378
index columns in SELECT and WHERE, 365–367
index merge, 373–375
indexes that can get suppressed, 375–377
make query run faster, 368–369
overview of, 350–351
Result Cache, 371
review tips, 412–413
select query EXPLAIN PLAN from DBA_HIST_SQL_PLAN view, 358–359
select query text from DBA_HIST_SQLTEXT view, 357
SQL and Grand Unified Theory, 381
SQL Performance Analyzer for, 407–412
table is actually a view, 381
use OR clause, 379–380
view available AWR snapshots, 355–356
virtual columns, 378–379
when index is forgotten, 359–360
when to use indexes, 356–357

query tuning, changes in Oracle 12c
Adaptive Query Optimization, 383–389

Adaptive Query Optimization statistics, 389–394
overview of, 382–383
SQL Plan Management, 395–397
statistics gathering, 394–396

QUERY_REWRITE_ENABLED, function-based indexes, 74
queuing, lock mechanism for, 846

R
RAC (Real Application Clusters)

architecture, 627–629
changing parameters in, 179
cluster interconnect tuning, 641–645
defining In-Memory column store for, 172–173
find wait events, 633–634
interconnect performance, 633
internal workings of, 629–632
One Node, 626
optimizing parallel operations in, 664
Oracle Parallel Server rebuilt as, 626
overview of, 595–598, 626–627
parallel usage models, 664
performance tuning overview, 632–633
tips for review, 667–668
unbreakability and, 631–632
V$ views for, 723
wait events and interconnect statistics, 635–641, 852–853
X$ table groups for, 793

RAC Statistics section, AWR Report, 853–854
RAID (Redundant Array of Independent/Inexpensive Disks)

ASM. See ASM (Automatic Storage Management)
disk-striping software support for, 944
improved performance/availability, 94
number of disks needed, 95
overview of, 94
setup/maintenance of traditional filesystem, 98–99
tuning disk-bound systems, 946–947
types of, 95–97

range partitioning, 140–142
range scan, indexes, 54, 60, 333
Rapid Home Provisioning (RHP), 29

RAT masking (RM) slave background process, 35
ratings

system information list, 934–938
system reviews, 931–933

RAW data types, max size increase to 32k, 521
read-only, X$ tables as, 733
read or read-only, RAID 5, 96–97
reading

EXPLAIN PLAN, 274–279
trace files, 778–784

reads, Cache Fusion, 640–641
Real Application Clusters. See RAC (Real Application Clusters)
Real Application Testing. See Database Replay
Real-Time ADDM, OEM, 233–237
rebalance enhancements, ASM, 121–123
REBUILD ONLINE option, ALTER INDEX statement, 79–80
REBUILD option, ALTER INDEX statement, 79
REBUILD UNUSABLE LOCAL INDEXES, partition maintenance, 148
record number of block (UREC), data section of block dump, 480
record types, bind PL/SQL-only data types to, 522–523
recovery

instant recovery repopulation daemon, 35
RMAN table-level (12cR1), 24
system information list for details on, 936
V$ views for, 722
X$ table groups for, 789

RECOVERY_PARALLELISM parameter, 662
recursion, reduce PL/SQL, 544–546
recursive calls

AWR Report/Statspack, 860
trace file identifying, 782

REDEFINITION.ROLLBACK (12cR2), 32
redo allocation latch, contention, 880
redo apply (12cR2), 30–31
redo copy latch, 880
REDO data

block tuning and, 473–474
latch and mutex waits related to, 872
temporary database tables generating, 574

redo log files
determine if size is a problem, 154

determine size of, 155
as fine-grained, 98
increase size for speed, 152–153
instance parameters, 156
NOLOGGING removes I/O bottleneck in, 652
obtain information about, 753
other helpful commands, 155–156
review tips, 159–161
V$ views for, 725
X$ table groups for, 787

redo transport, 12cR2 Data Guard features, 31
Redundant Array of Independent/Inexpensive Disks. See RAID (Redundant Array of
Independent/Inexpensive Disks)
Redundant Interconnect Usage, cluster interconnects, 642
reference partitioning, 144–145
reference table lookups, PL/SQL associative arrays for, 562–565
relational databases, tune external tables, 465–469
RELOCATE command, Flex ASM, 112–113
Remote Slave Monitor (RMSN), RAC, 629
RENAME PARTITION, 146
REPAIR option, ASM disk scrubbing, 120
replication

new 12cR2 features for, 31
V$ views for, 725
X$ table groups for, 789

REPORT_AUTO_EVOLVE_TASK, SPM, 396
REPORT_EVOLVE_TASK function, SPM, 397
REPORTING ONLY parameter, DBMS_XPLAN, 387
Resource Manager

cost-based optimizer statistics in, 21
runaway queries and, 22
tune consumer groups, 246–247
V$ views for, 725

resource modes, RAC, 630–631
resource roles, RAC, 630–631
resources

cluster interconnect tuning, 644–645
X$ table groups for, 797
X$ table groups for managing, 792

response time
affect on performance, 967

and wait events in trace file, 781–782
RESTORE TABLE, RMAN, 24
restricted parallel usage model, RAC, 664
Result Cache

applying to invoker, 20
Memory, 698–700
PL/SQL Function, 505–515
query tuning via, 371
set SHARED_POOL_SIZE for, 191
use effectively, Memory Performance Index, 920–921

result sets, pipelined table functions for, 575–580
RESULT_CACHE hint, 335–336, 371, 698
RESULT_CACHE keyword, 507
RESULT_CACHE_MAX_SIZE parameter, 698, 921
RESULT_CACHE_MODE parameter, 698, 921
Results screens, Real-Time ADDM, 233–234
RETURN statement, pipelined table function, 577
reverse key indexes, 73, 484–485, 844
REWRITE_OR_ERROR hint, materialized views, 341
RHP (Rapid Home Provisioning), 29
RM (RAT masking) slave background process, 35
RMAN

commands for given PDB, 92
improvements in 12c, 3, 24
recovery server improvements, 32
X$ table groups for, 790

RMSN (Remote Slave Monitor), RAC, 629
roles

ASM, 132–136
V$ scripts that check for, 715–717
X$ table groups for security, 797

rollback segments
for large quantities of data, 573–574
open large cursors with, 572–573
V$ views for, 725
X$ table groups for, 788

root block, BLEVEL index depth and, 62
Root CDB_views, 678, 689–690
row cache

objects latch contention, 880
X$ table groups for, 795

row source generator, SQL, 383
row source operation section, TKPROF, 263
ROWID

access single row in tables, 45
avoid hard-coding into specific code, 54
B-tree indexes, 68
binary height of index and I/O required for, 60–62
bitmap join indexes compressing, 78–79
for HCC-organized table, 619
INDEX_JOIN hint faster than scanning with, 320
for iterative processing, 546–548
range scans access data via, 54
read data from table by accessing, 151

rows
access data from table, 45
avoid chaining using PCTFREE, 151–152
fetch first x (12cR1), 8–9

RPOP (instant recovery repopulation daemon), 35
RSMN (Remote Slave Monitor), RAC, 629
RULE hint, 341–342, 381
RULE OPTIMIZER_MODE (deprecated in 12c), 204–205, 381
Run AWR Report, 240–241
Run Compare Periods Reports, AWR, 829
Run Compare Reports, AWR, 240–241
run queue, check with sar -q, 948
runtime exceptions, 530

S
SAA (SQL Access Advisor), OEM Performance menu, 237
SAME (stripe-and-mirror-everything) methodology, ASM, 97, 105–106
SAnn (SG Allocator) background process, 35
sar command

good idle percentage for CPU, 952
monitor CPU usage, 943–947
monitor paging and swapping, 948–951
run at scheduled intervals throughout day, 952

scalability, 597–598, 610
scheduler, CPU, 952
SCNs (System Change Numbers)

data section of block dump, 480

flag section of block dump, 477
ITL section of block dump, 476
perform Database Replay, 417, 420
RAC, 631
Snapshot Too Old error and, 469
in UNDO (ROLLBACK), 474

scripts
new in 12.2 Statspack/AWR report, 817–818
new in 12cR2, 898–900

SCSI inquiry command, multipaths, 136–137
SEC_CASE_SENSITIVE_LOGON parameter, 166, 208, 819
SEC_MAX_FAILED_LOGIN_ATTEMPTS parameter, 166, 208
secondary indexes, index-organized tables, 73
SECTION SIZE, RMAN improvements, 24
security

Exadata options, 622
external tables not subject to Oracle, 469
new 12cR2 features for, 34
PERFSTAT account, 818–819
system information list, 937
V$ views for, 725
version comparison chart, 40
X$ table groups for, 797

Security Technical Implementation Guide (STIG) Profile, 712
segment header, buffer busy waits on, 844
Segment Statistics, AWR Report/Statspack, 864–866
segments, X$ table groups for sort/temp, 787
SELECT statement

benefits of indexes for, 45
create PL/SQL subprogram inline, 515–517
discerning table from view, 381
index columns used in, 365–367
parallelized via PARALLEL hint, 331

SELECT_CATALOG_ROLE privilege, access to X$ tables, 736
selection directives, conditional compilation, 581, 585–586
selectivity, determine benefits of index, 59
sequences

default for columns based on (12cR1), 20
reference directly in PL/SQL expressions, 517–519

SERIAL#
invoke session trace, 768–770

trace in DBMS_MONITOR, 266–267
“serialized I/O” condition, RAID 5 and, 96
Server Control Utility (SVRCTL), RAC, 626
servers

execute PL/SQL objects on, 571–572
monitor application, 250–252
understand/model typical, 211–213

service name, trace in DBMS_MONITOR, 266, 268–269
services, V$ views for, 726
session ID (SID), and tracing, 266–267, 769
session parameters, OPT_PARAM hint for, 340
session waits, viewing RAC, 636–639
sessions

read traced, 778–884
tracing. See trace, generate
V$ views for, 726
X$ table groups for, 791

SET AUTOTRACE ON/OFF command, 658–660
SET SERVEROUTPUT ON command, 544–546
SET STATEMENT_ID, 272, 302
SET_SQL_TRACE_IN_SESSION, DBMS_SYSTEM, 768–769
seven-step methodology, traditional mathematical analysis, 486–487
SG Allocator (SAnn) background process, 35
SGA Memory Summary section, AWR Report/Statspack, 870, 888–889
SGA (System Global Area)

determine shared memory, 962–963
increase to accommodate INMEMORY_SIZE, 171
In-Memory database, 25–27
memory initialization parameters, 167–170
modify size to avoid paging/swapping, 204

SGA Target Advisory section, AWR Report/Statspack, 869–871
SGA_MAX_SIZE parameter, 167, 190, 208
SGA_TARGET parameter

as crucial memory initialization parameter, 167–170
enables ASMM, 167
how to use, 208
increase to accommodate INMEMORY_SIZE, 171–172
In-Memory database and, 25, 27
with Result Cache, 920
set for HASH joins, 430
tune data cache hit ratio, 183–184

tuning, 688
upgrade to 12c, 166

sharding, new 12cR2 features for, 32
shared memory

determine using ipcs, 962–963
X$ table groups for, 794–795

shared-nothing model, parallel database, 626
shared pool

bind variables with dynamic SQL for, 575
determine memory left in, 197–198
dictionary cache/Result Cache as part of, 191
find all large pieces of PL/SQL in, 558
improve use by pinning PL/SQL objects, 555–557
monitor space allocations in, 742–743
NO_RESULT_CACHE hint for not caching in, 336
query fragmentation/contention issues, 745–747
query large allocations causing contention, 745
query library cache memory use, 747–750
query low free memory, 747
query mutex/latch waits and/or sleeps, 751–752
query ORA-04031 errors, 743
RESULT_CACHE hint caching results in, 335–336
set SGA_MAX_SIZE, 190
SQL plan directives managed in, 394
use library cache parameters to diagnose, 195–197
use/modify DBMS_SHARED_POOL.SIZES, 557–558
use stored procedures for shared SQL area, 193
use X$KSMSP table for detailed look at, 198–199
using SPM, 287

Shared Pool Advisory, AWR Report/Statspack, 869
shared pool latch, 877–879
Shared Pool Statistics, AWR Report/Statspack, 838
shared servers

query to monitor shared pool, 745
X$ table groups for, 796

shared SQL area, stored procedures for, 191–193
SHARED_POOL_RESERVED_SIZE parameter, 744, 747, 749
SHARED_POOL_SIZE parameter

cache PL/SQL objects into memory, 555–556
defined, 555
determine memory left in shared pool, 197–198

how to use, 207–208
keep objects cached in data dictionary cache, 193–194
library cache reload/hit ratio settings and, 195–197
Library Cache statistics, 887
points to remember about cache size, 199
pools related to, 202–203
query library cache memory use, 749–750
query ORA-04031 errors, 744
set to fully use DB_CACHE_SIZE, 193
set to percentage of DB_CACHE_SIZE, 199
tune for optimal performance, 191
use Result Cache effectively, 920

shell script, tune external tables, 466–467
short tables, AWR Report/Statspack, 860
SHOW PARAMETER SPFILE command, 754
Show Tablespace Contents, OEM Administration menu, 243–244
SHRINK SPACE clause, ASSM, 152–153
SID (session ID), and tracing, 266–267, 769
sign in, Oracle Cloud, 601–602
Simple Mathematical Techniques, for tuning

conclusions, 498–499
example equations, 491–493
overview of, 485
seven-step methodology, 486–487
simple linear equation determination, 487–488
simple quadratic equation determination, 488–491
traditional mathematical analysis, 486

SIMPLE_INTEGER PL/SQL data type, 551
size

Oracle Applications Database, 213–218
specify histogram, 64–65

*_SIZE parameters, PGA_AGGREGATE_TARGET, 203
skip-scans, 66–67, 340
SKIP_UNUSABLE_INDEXES, index partitions, 149
sleeping processes, 751–752, 872–876
SLOT (ROLLBACK segment’s transaction table), 480
_SMALL_TABLE_THRESHOLD parameter (undocumented), 861
Smart Flash Cache, 20
Smart Scans, Exadata, 207, 614
smartphone market, in cloud, 596
SMB (SQL Management Base), SPM, 286–287

SNAP procedure, gather statistics in Statspack, 820–823
SNAP_ID

manually manage AWR, 826
Statspack Report, 820, 822–824

Snapshot Too Old errors, 469, 574
snapshots, ADDM Report, 893–898
snapshots, AWR

automated, 826
manually manage AWR, 825–826
run reports, 826–828
run reports in OEM Cloud Control, 828–831
screen, 239

snapshots, Statspack, 820–824
social media, benefits of cloud, 597
software, Exadata Storage Server, 613
solid-state disks (SSDs), 20, 21, 97
SORT JOIN, on parallel operations, 657–658
SORT-MERGE joins

forcing, 444–445
initialization parameters, 434–435
overview of, 428–430
two table joins: equal-sized tables, 436–439
USE_MERGE hint causing, 327

sort/temp segments, X$ table groups for, 787
sorts, AWR Report/Statspack, 860
sorts (disk)

AWR Report/Statspack, 857–859, 860
V$ views for (check this), 726

SPA (SQL Performance Analyzer)
cancel analysis task, 425
create analysis task, 424
create SQL Tuning Set, 423–424
determine active SQL Tuning Sets, 426
drop SQL Tuning Set, 427
execute analysis task, 424–425
overview of, 423
query Advisor tasks, 425
remove analysis task, 426
remove SQL Tuning Set, 426–427
screen, OEM Performance menu, 230–233, 237

spaces, separate multiple hints with, 313

SPARC SuperCluster M7 chip, 624–625
spcreate.sql, 818
spdrop.sql script, 893
specifying hints

multiple, 313
overview of, 312–313
when using alias, 314

speed
Exadata speed, 609–610
increase log file size for, 152–153

SPFILE (server parameter file)
Initialization Parameters screen, SPFile tab, 245–246
setting initialization parameters, 753–757
store dynamic changes in, 176–178

spfile.ora, 690–691
SPI (System Performance Index), 909–912
_SPIN_COUNT parameter, latches, 873
Split Mirror, ASM (12cR2), 34
SPLIT PARTITION, 147–148
SPM (SQL Plan Management)

adaptive plans and, 294–301
convert STORED OUTLINES to, 292–294
drop plan with SQL_HANDLE, 292
example, 288–291
fixed SQL Plan Baselines, 291–292
Oracle 12c changes in, 395–397
overview of, 285
review tips, 301–302
STORED OUTLINES replaced by, 284–285
terms, 286–287
using, 287–288
using fixed SQL Plan Baselines, 291–292

sppurge script, purge old Statspack data, 892
spreadsheet analysis, MODEL_MIN_ANALYSIS hint, 340
sprepcon.sql script, 872
spreport.sql script, 823–824, 852–853
sprepsql.sql script, 824
sptrunc.sql SQL*Plus script, 892
SQL

limit use of dynamic, 574–575
new 12cR2 features, 29–30, 33

SQL Access Advisor, 237
SQL Tuning Advisor, 234–237
use EXPLAIN PLAN alone. See EXPLAIN PLAN
use named parameters in function calls, 523–525

SQL Access Advisor (SAA), OEM Performance menu, 237
SQL hint, 650, 664
SQL Management Base (SMB), SPM, 286–287
SQL Performance Analyzer. See SPA (SQL Performance Analyzer)
SQL Plan Baselines, SPM, 286–287, 303, 343
SQL plan directives, adaptive statistics, 392–394
SQL plan history, SPM, 286–287
SQL statement section, TKPROF, 262
SQL statements

bind PL/SQL-only data types to, 522–523
default execution plan, 383
define PL/SQL subprograms in, 515–517
determine memory for, 694–695
DOP for each parallelized, 666
find problem queries, 703–704
fix design first before using hints, 308–309
gathering statistics in Statspack, 821–823
logging timing statistics for, 541–543
manage parallel statement queuing, 648
native compilation performance increase and, 531–533
parallel operations in, 650–653
Top SQL section, AWR Report/Statspack, 853
tuning with SQL Tuning Advisor, 896
V$ views for, 723

SQL TABLE collection expression, pipelined table functions, 580
SQL TRACE

find high disk/memory reads without, 278–279
within Fusion Middleware products, 280
invoke trace via, 768
overview of, 256–257
problem queries in developer products, 279–280
setup and run, 257–261
TKPROF output, 263–265
TRACE output, 261–262
when to use EXPLAIN vs., 272

SQL Tuning Advisor, 234–237, 896
SQL Tuning Set, SPA, 423–427

SQL_HANDLE, drop SPM plan with, 292
SQL*Loader

parallel data loading, 662
V$ views for, 724

SQL*PLUS. See EXPLAIN PLAN
SQL*Plus Query, Flash Cache, 616
SQN (sequence number) column, block dump, 480
srvctl (Server Control Utility) commands, 115–119
SSD (flash), disk I/O, 157
SSDs (solid-state disks), 20, 21, 97
ST enqueue waits, 846
standard parallel usage model, RAC, 664
standby databases

V$ views for, 726
X$ table groups for, 790

startup, PDBs, 11, 89
STAT dumps, 770
STATEMENT_QUEUING hint, 648
statements

grouping, 315
top memory-abuser, 912–914

statistics
12c changes in gathering, 394–396
AWR Report RAC, 635–636
cost-based optimizer, 21
create/analyze indexes in single step, 55
Exadata, 610–612
get detailed user information, 706
IMU, 473
Optimizer Statistics, 21
RAC wait events and interconnect, 635–641
Statspack. See Statspack Report
V$ views for, 726

statistics collector, SQL default execution plan, 383
statistics feedback, automatic reoptimization, 391–392
statistics section, TKPROF statement, 262–263
STATISTICS_LEVEL parameter, 209, 826
STATS$ tables, 821
Statspack Report

choosing to run AWR and, 824–825
deinstalling, 893

gathering statistics, 820–822
installing, 818
managing data, 892
overview of, 816–817
post-installation, 819–820
query wait events, 718
RAC wait events, 633–635, 639
running statistics report, 822–824
security of PERFSTAT account, 818–819
tips for review, 900–902
upgrading old data to new version, 892–893

Statspack Report output
additional Memory Statistics, 865–871
Dictionary and Library Cache Statistics, 886–887
header information and Cache Sizes, 832–833
Instance Activity Statistics, 856–861
Instance Efficiency, 835–837
Latch and Mutex Statistics, 872–882, 883–886
Load Profile, 833–834
Nondefault Initialization Parameters, 889–890
Oracle bugs, 852
RAC Statistics, 852–854
Segment Statistics, 864–865
SGA Memory Statistics, 888–889
Shared Pool Statistics, 838
SQL Statistics, 853–856
Tablespace and File I/O Statistics, 861–864
top 15 things to look for, 890–892
Top Wait Events, 838–851
UNDO Statistics, 865–871

STATS$STATSPACK_PARAMETER, 821
STIG (Security Technical Implementation Guide) Profile, 712
storage

Exadata, 36, 609, 611–612
expanding Exadata. See Exadata Storage Expansion Rack
manage with ASM. See ASM (Automatic Storage Management)
manage with OMF, 103–104
In-Memory indexes for, 175–176
multiple control files, 157
tablespaces in OEM, 242–244

STORAGE clause, Flash Cache, 614

Storage Expansion Rack. See Exadata Storage Expansion rack
storage indexes, Exadata, 617–618
storage servers, Exadata, 611
StorageTek modular library system, 625–626
STORED OUTLINES, 284–285, 292–294, 343
stored procedures, shared SQL area, 191–193
streams, V$ views for, 726
stripe-and-mirror-everything (SAME) methodology, ASM, 97, 105–106
striped disks, RAID, 95–96
striping, in ASM, 97
subqueries

APPEND hint for, 334
change multitable joins with EXISTS into, 471–472
PUSH_SUBQ hint for, 329–330

subroutine inlining, optimize compiler, 534–535, 538–539
subroutines, SQL function calls, 523–525
Sun ZFS Storage servers, 625
SuperCluster, M7 SPARC chip, 609, 624–625
suppressed indexes

avoid when matching dates, 569–570
db file scattered read wait events from, 841–842
with function-based indexes, 377–378
with IS NULL or IS NOT NULL, 55–56
monitor V$SQLAREA to locate bad queries, 187
with NOT EQUAL operators, 55
overview of, 54–55
query tuning and, 375–377
when comparing mismatched data types, 59

SVRCTL (Server Control Utility), RAC, 626
SWAP_JOIN_INPUTS hint (undocumented), 329, 341
swapping

modify size of SGA to avoid, 204
queue lengths with sar -q, 948
report activities with sar, 949–950
view with vmstat, 964

synchronization, GES and GCS in RAC, 630
synonyms, V$ views accessed via, 732–733, 736
SYS user

cluster interconnect tuning, 643
create DBMS_SHARED_POOL as, 555–556
get contiguous space in shared pool, 558

grant access to X$ tables, 734–735
monitor via DBMS_APPLICATION_INFO, 541
as only user of X$ tables, 733–734
pin all packages in shared pool as, 556
X$KSPPI table only accessed by, 283

SYSASM privileges, ASM, 132–136
SYS_AUTO_SPM_EVOLVE_TASK, 295, 396
SYSBACKUP privilege, ASM, 136
SYSDATE, 552–553, 568–569
SYSDBA privilege, ASM, 132–136
SYSDG privilege, ASM, 136
SYS.IDNSEQ$ table, 521
SYSKM privilege, ASM, 136
SYSOPER privilege, ASM, 135–136
System Change Numbers. See SCNs (System Change Numbers)
System Global Area. See SGA (System Global Area)
system information list, 934–938
system load, monitor using vmstat, 963–964
system management, version comparison chart, 40
system monitoring. See Unix utilities, system monitoring
system partitions, 145–146
system review, example

item requiring immediate action, 933–934
other items requiring action, 934
overview of, 930–931
rating categories, 931–933
system information list, 934–938

system review, quick
DPI. See DPI (Disk Performance Index)
Education Performance Index, 907–909
example rating scale, 930–933
items requiring immediate action, 933–934
MPI. See MPI (Memory Performance Index)
other items requiring action, 934
other items to consider, 938–939
overview of, 906
review tips, 939
system information list, 934–938
System Performance Index, 909–912
Total Performance Index, 906–907, 930

system statistics, enhanced in 12cR1, 21

system, V$ views for, 725

T

table fetches, AWR Report/Statspack, 860
table joins

bitmap join indexes using, 452–458
common X$, 803–805
db file sequential read wait event, poor orders of, 842
DRIVING_SITE hint for, 325–326
eliminate join records in multitable joins, 445–446
fix design first before using hints, 308–309
initialization parameters, 434–439
partition-wise, 145
three-table, 450–452
tune external tables, 467–468
two-table INDEXED join, 439–443
two-table joins of large and small table, 447–450

table joins, methods
CLUSTER joins, 429–430
force specific method, 443–445
HASH joins, 430–431
INDEX-MERGE joins, 432–434
NESTED LOOPS joins, 428–429
overview, 427–428
review tips, 499–500
SORT-MERGE joins, 428–430

TABLE operator, 522–523
table scans, AWR Report/Statspack, 857–860
TABLE_COMPRESSION_CLAUSE, at import time, 18
tables

AWR table names, 824–825
create with Identity Columns, 519–521
create with parallel operations, 652–653
discerning views from, 381
do not use INDEX_DESC hint for multiple, 322
LEADING hint for, 324–325
log timing information in, 541–543
management of, 925–926
ORDERED hint for, 322–323
separate from indexes to decrease file I/O, 925
Statspack collection, 819–820
use temporary database, 574
V$ views for, 724

Tablespace I/O Statistics section, AWR Report/Statspack, 861–863

tablespace(s)
create prior to Statspack installation, 818
new 12cR2 features for RMAN, 32
new 12cR2 online improvements, 32
OEM Administration menu, Storage, 242–244
Oracle bigfile, 103
X$ table groups for, 787

Task Manager, CPU/memory monitoring on Windows with, 959
temp segments, X$ table groups for, 787
temporary database tables, 574
temporary objects, X$ table groups for, 788
terminology

Exadata, 609–610
SQL Plan Management, 286–287

testing
as benefit of cloud, 597
data redaction for (12cR2), 32

thin clients, execute PL/SQL objects on, 571–572
THIN_PROVISIONED attribute, ASM, 121
third-party product tuning, 458–462
three-table joins, 445–446, 450–452
thresholds, Statspack statistics, 821–823
throughput, affect on performance, 967
tiering_clause policy, ADO, 102
time

DATA datatype, 568–570
reduce calls to SYSDATE, 552–553

time zones, X$ table groups for, 786
TIMED_STATISTICS parameter

SQL TRACE, 257–258, 301
Statspack, 820

TKPROF utility
AUTOTRACE statistics for, 276
command-line options for, 259–260
example, 260–261
force specific join method, 444–445
interpret contents of trace, 770
problems to look for in output, 263–265
read trace file with, 778
review, 301
translates TRACE file to readable format, 258

tuning distributed queries, 463
top 10 “disk-read abusers” as percentage of all statements, DPI, 923–924
Top 10 Foreground Events by Total Wait Time section, AWR Report, 838–839
top 10 memory-abusers as percent of all statements, MPI, 914
top 25 “disk-read abuser” statements, DPI, 922–923
top 25 memory-abuser statements, MPI, 912–913
Top Activity report, Enterprise Manager, 186
Top Activity screen, OEM Performance menu, 229–230
top command, find worst user with, 954
Top Consumers screen, services, 247, 254
Top-Frequency histogram, 12c, 394–395
Top SQL section, AWR Report/Statspack, 853–856
Top Waits Events section, Statspack, 838–840
Total Performance Index (TPI), 906–907, 930, 938–939
TPI (Total Performance Index), 906–907, 930, 938–939
TRACE. See also SQL TRACE

initialization parameters for undocumented, 283–284
solving errors, 283–284
use EXPLAIN PLAN without, 271–273

Trace Analyzer, 770–772, 778
trace, generate

with DBMS_MONITOR. See DBMS_MONITOR
with DBMS_TRACE, 772–774
in developer tools, 279–280
dumps, 774–775
invoke, 768–772
with ORADEBUG, 775–777
reading trace file, 778–784
with SQL_TRACE. See SQL TRACE
with trcsess utility, 777–778

traditional mathematical analysis, 486
Transaction END (XCTEND) calls, 783
transaction ID (XID), block dump, 476
transaction management, active, 573–574
transactions

V$ views for, 726
X$ table groups for, 792

TRANSACTIONS parameter, parallel operations, 662
trcsess utility, 269–270, 777–778
trendline equations, Excel, 493
trickle repopulation, IM column store, 172

triggers
events as similar to system, 773–774
example using PL/SQL, 589
find disabled PL/SQL, 561–562
query SQL source code behind, 567

TRUNCATE PARTITION, 147
tuning. See advanced tuning
TUNING mode, cost-based optimizer, 381
two-table INDEXED join, 439–443
two-table join, between large and small table, 447–450
TX4 enqueue waits, 846

U
UBA (Undo Block Address), block dump, 476
UBLK (block for last UNDO entry), block dump, 480
UDF (user-defined function) pragma, PL/SQL subprograms, 516–517
UNDO

automatic, Disk Performance Index, 926–928
buffer busy waits on, 844
data section of block dumps, 480
segment statistics for AWR Report, 871–872
Snapshot Too Old error, 469
for temporary tables, 574
tuning and viewing at block level, 883–884
tuning at block level, 473
use rollback segments to open large cursors, 572
V$ views for, 725
X$ table groups for segments, 788

Undo Block Address (UBA), block dump, 476
UNDO/ROLLBACK segments

distortion, 188
tuning DB_CACHE_SIZE, 186
upgrade to Oracle Database 12c, 165

Undo Segment Number (USN), data section of block dump, 480
undocumented features, Oracle bugs, 851
undocumented hints

CARDINALITY, 331, 342
overview of, 341–342
SWAP_JOIN_INPUTS, 329, 341

undocumented initialization parameters

alter LRU algorithm, 202
can cause corruption, 211
Exadata, 207
finding, 210–211
over the years, 210–211
remedy performance problems, 752–753
TRACE, 283–284
X$ tables, 752

UNDO_RETENTION parameter, 574, 927–928
UNION operator, distributed queries, 463
UNION/UNION ALL, concurrent execution (12cR1), 20
unique (distinct) keys, determine index selectivity, 59
unique scans, indexes, 54
Unix utilities, system monitoring

determine shared memory, 962–963
find worst user, 954
guidelines for GUI monitoring tools, 955
identify CPU bottlenecks, 956
identify disk I/O bottlenecks, 959–962
and Linux utilities, 942
list top CPU users, 957–959
modify configuration information file, 967
monitor CPU load, 955–956
monitor CPU/memory use on Windows, 959
monitor CPU usage, 943–948
monitor disk free space, 964–966
monitor network performance, 966–967
monitor paging/swapping, 948–953
monitor system load, 963–964
Oracle Cluster Health Monitor, 969
Oracle ORION Calibration Tool, 969
Oracle Support (Metalink) Note 224176.1, 969
other factors affecting performance, 967–969
review tips, 969–970

unmap operation, 783
unplug PDB, 88
UNRECOVERABLE, insert data into table without index, 663
UNUSABLE LOCAL INDEXES, partition maintenance, 148
UPDATE statements

block dump data section and, 480
effects on index, 63

FIRST_ROWS hint ignored in, 315
increase log file size to speed up, 154–155
in index-organized tables, 73
indexes use WHERE clause with, 45–46
PARALLEL hint applied to, 331
rollback segments for large, 572
ROWID for iterative processing, 546–548

updates
automatic cloud, 597
locking behavior of HCC during, 620

UPDATE_TOTAL nested procedure, optimize compiler, 536–537
Upgrade option, SQL Performance Analyzer, 232
upgrade(s)

initialization parameters for 12c, 165–166
issues in planning stage, 158
new 12cR2 features for, 32
of old Statspack to new version, 892–893
test index after, 45

uptime command, monitor CPU load, 955–956
UREC (record number of block), data section of block dump, 480
usage directive hints, 308
USE_CUBE hint, 341
USE_HASH hint, 328–329, 443, 445
USE_INVISIBLE_INDEXES hint, 48–49, 338–339
USE_MERGE hint

basic syntax, 326–327
request specific join method, 443, 445
results of forcing, 437

USE_NL hint
basic syntax, 327–328
defined, 341
request specific join method, 443, 445

USE_NL_WITH_INDEX hint, 328, 341
user-defined function (UDF) pragma, PL/SQL subprograms, 516–517
USER_ADVISOR_ TASKS, SPA, 425
USER_DEPENDENCIES, PL/SQL objects, 567
USER_DUMP_DEST view, trace information, 774, 775
USER_IND_COLUMNS view, 46
USER_INDEXES view

check for current indexes, 361
check visibility of invisible index, 49

determine index selectivity, 59
retrieve index data for your schema, 46–47

USER_OUTLINE_HINTS, 343
USER_PLSQL_OBJECT_SETTINGS dictionary table, 532
users

find objects being accessed by, 705
find problem, 703–704
find worst user, 954

USER_SEGMENTS view, partitions, 139–140
USER_SOURCE view, SQL source code, 565, 567
USER_TABLES view, 139–140, 176, 686
USER_TRIGGERS view, 561–562, 567
USN (Undo Segment Number), data section of block dump, 480
utlchain.sql script, 925
utlchn1.sql script, 925
utllockt.sql, 476
utlrp.sql script, 560–561
utlxplan.sql script, 271–273, 276, 656
utlxplp.sql script, EXPLAIN PLAN, 271, 273, 658

V
V$ views

AMM and MEMORY_TARGET, 687–688
basic AWR, 682
basic database, 681
basic licensing, 683
create/grant access to, 673–676
created on X$ tables, 735–736
current profiles, 712
DBA_views, 678–680
detailed memory allocated, 689–690
disk I/O issue, 713–714
find PL/SQL objects for pinning, 700
find problem queries, 701–704
find problem users/resources used, 704–705
find users with multiple sessions, 711
find which process uses most CPU, 957–959
get detailed user information, 706
get listing of all, 736
GV$ views vs., 737

identify locking issues, 708–710
if data is in memory, 692–693
indexes, 706–708
installed database options, 683–684
kill problem session, 710–711
list of GV$ and, 676–677
list of X$ tables, 677–678
listing of all, 737
major categories of, 721–727
memory allocated, 684–685
memory for data dictionary, 693–694
memory for shared SQL and PL/SQL, 694–695
modify initialization parameter at PDB level, 691
overview of, 672–673
for PDB information, 696–698
privileges and roles, 715–717
Result Cache, 698–700
review tips, 728–729
set INMEMORY_SIZE, 685–686
spfile.ora/init.ora settings, 690–691
Statspack post-installation, 819–820
tips for review, 728–729
wait events, 718–721
which objects user is accessing, 705
X$ table and non-V$ fixed view associations, 801–803
X$ tables comprising, 737–738

V$ACTIVE_SESSION_HISTORY view, 720–721
VARCHAR2, 5, 29–30, 521
V$ASM_ CLIENT view, 112–113
V$ASM_ OPERATION view, 121
V$ASM_ATTRIBUTE view, 121
V$ASM_OPERATION view, 124
V$BUFFER_POOL_STATISTICS view, 916
V$CONTAINERS view, 696–697, 738
V$CR_BLOCK_SERVER view, 635
V$DATABASE view, 681
V$DATAFILE view, 100, 713–714
V$DB_CACHE_ADVICE view, 693, 916
V$DB_OBJECT_CACHE view, 557, 701, 748–749
version(s)

Exadata, 610

number of $V views/X$ tables for all, 673
V$VERSION view of, 681
X$ table groups for, 785

V$EVENT_NAME view, 719
V$FILESTAT view, 100, 666, 713–714
V$FIXED_TABLE view, 677, 738–739
V$FIXED_VIEW_DEFINITION view, 678, 737–738
V$HEAT_MAP_SEGMENT view, 101
View Tablespace screen, OEM, 243
V$IM_SEGMENTS view, 685–686
V$INDEXED_FIXED_COLUMN view, 740–741
V$INDEX_USAGE_INFO view, 55
V$INMEMORY_AREA view, 737–738
V$IO_OUTLIER view, 103
virtual columns, create tables with, 378–379
V$KERNEL_IO_OUTLIER view, 103
VLAN tagging, Exadata, 36
V$LATCH view, 751–752, 873
VLDBs (very large databases), bigfiles for, 137
V$LIBRARYCACHE view, 195–197, 694–695, 748
V$LICENSE view, 683
V$LOCK view, 708–710
V$LOCK_ELEMENT view, 635
V$LOG_HISTORY view, 154, 753
V$MEMORY_TARGET_ADVICE view, 687
vmstat command, 948–949, 963–964
V$MUTEX_SLEEP view, 751–752
V$OBJECT_USAGE view, 705, 707–708
V$OBSOLETE_PARAMETER view, 757
volatility effects, pattern interpretation, 498
Volume Manager factors, 969
V$OPTION view, 683–684
V$PARAMETER view

get current values for initialization parameters, 690–691
key fields in, 179
nondefault initialization parameters, 889–890
parallel operations, 666
setting initialization parameters, 754–756
shared pool settings, 202–203

V$PDBS view, 697–698, 738
V$PGA_TARGET_ADVICE view, 203

V$PGA_TARGET_ADVICE_HISTOGRAM view, 203
V$PQ_SESSTAT view, 655
V$PQ_SYSSTAT view, 653–654
V$PQ_TQSTAT view, 666
V$PX_PROCESS view, 666
V$PX_SESSION view, 666
V$PX_SESSTAT view, 666
V$RESULT_CACHE_MEMORY view, 512
V$RESULT_CACHE_OBJECTS view, 512–515
V$RESULT_CACHE_STATISTICS view, 512–513
V$ROWCACHE view, 194, 693–694
V$SEGMENT_STATISTICS view, 864–866
V$SESS_IO view, 703–704
V$SESSION view

find problem users/what they are executing, 703–704
find SID and SERIAL# for session trace, 769
find users with multiple sessions, 711
kill problem session, 710–711
real-time monitoring with DBMS_APPLICATION_INFO, 540–541
view who is waiting now, 718

V$SESSION_LONGOPS view, 701–702
V$SESSION_WAIT view, 718–719
V$SESSION_WAIT_CLASS view, 719
V$SESSION_WAIT_HISTORY view, 719
V$SESSMETRIC view, 354–355
V$SESSTAT view, 655, 666
V$SGA view, 684–685, 688
V$SGASTAT, 480
V$SGASTAT view, 689–690
V$SQL view

Adaptive Query Optimization, 384
find worst queries, 353–354
Flash Cache, 616–617
log timing statistics for SQL, 542
Top SQL section, AWR Report/Statspack, 855

V$SQLAREA view
find problem queries, 703–704
find worst queries, 186–189, 351–353
query library cache memory use, 749
statistics when tracing query, 278–279

V$SQL_BIND_CAPTURE view, 695

V$SQL_HINT view, 309
V$SQL_MONITOR view, 542, 701
V$SQL_PLAN_MONITOR view, 701
V$SQL_SHARED_CURSOR view, 386–387
V$SQLTEXT view, 703–704, 760, 763
V$SYSAUX_OCCUPANTS view, 682
V$SYSMETRIC view, 692–693, 695, 915
V$SYSSTAT view, 692–693, 855–861, 915–916, 953
V$SYSTEM_PARAMETER view, 756
V$SYSTEM_WAIT_CLASS view, 720
V$TEMPFILE view, 100
V$TEMPSTAT view, 100
V$TRANSACTION view, 709
V$UNDOSTAT view, 572
V$VERSION view, 681, 684
V$WAITSTAT view, 842–844

W
Wait Classes by Total Wait Time section, AWR Report, 838–839
Wait Event Histogram, Statspack, 849
wait events

causes of buffer cache, 763–766
find with V$ scripts, 718–721
latch free, 877
Oracle shadow process/where it lives, 852
RAC, 633–634, 635–641
related to initialization parameters, 200
and response time in trace file, 781–782
set event to dump on every wait, 469–471

wait events, AWR Report/Statspack
async disk I/O, 848
buffer busy wait, 842–844
cursor, 845
db file parallel write, 847
db file scattered read, 841–842
db file sequential read, 842
db path read, 847–848
direct path writes, 848
enqueue, 846
global cache cr request, 847

idle, 848–850
latch free, 844–845
library cache (mutex x), 845–846
log buffer space, 846–847
log file parallel write, 847
log file switch, 846
log file sync, 847
mutex, 875–876
Oracle bugs, 851–852
overview of, 838–841
RAC interconnect statistics, 852–853
reactive tuning by, 838–851
Top Wait Events section, 838–841

WAIT option, ASM disk scrubbing, 120
waiters, GES, 639–640
wc (word count) command -1, external tables, 467
web applications, monitor performance, 250–252
WHEN clause, CONTINUE statement with, 525–528
WHERE clause

bitmap join indexes using, 78–79
concatenated indexes using, 53–54
function-based indexes using, 378
index columns using, 365–367
index suppression and, 375–377
indexes UPDATE/DELETE using, 45–46
IS NULL or IS NOT NULL in, 55–56
NOT EQUAL operators in, 55
PUSH_PRED hint for, 340

willing to wait latches, 873
WITH clause, PL/SQL subprograms, 515–517
WITH_PL/SQL hint, 339
word count (wc) command -1, external tables, 467
WORKAREA_SIZE_POLICY, PGA_AGGREGATE_TARGET, 203
workload, and Database Replay, 418–422
WR identifier, AWR table names, 824
write operations, RAID 5, 96–97
write-through cache, Flash Cache, 614
writes, Cache Fusion, 640–641

X

X$ table groups
Advanced Queuing, 792
archive log files/destinations/processes, 786
backup, 789
buffer cache, 795
contexts, 798
control files, 787
database links, 788
datafiles, 786
global transactions, 792
heterogeneous services, 798
instance/database, 785
Java source, 799
latches, 796
library cache, 793–794
loader/direct path API, 798
locks/enqueues, 796
LogMiner, 790–791
materialized views, 788
miscellaneous tables, 799
National Language Support, 786
optimizer, 796
other, 800–801
parallel query, 797
PL/SQL, 798
Real Application Clusters, 793
recovery, 789
redo log files, 787
replication, 788
resource/consumer groups, 797
resource management, 791
RMAN, 790
rollback/undo segments, 788
rowcache, 795
security privileges, roles, and policies, 797
session performance, 791
sessions/processes, 791
shared memory, 794–795
shared servers, 796
sort/temp segments, 787
standby databases, 790

tablespaces, 787
temporary objects, 788
time zones, 786
transactions, 792
version/installation, 785

X$ tables
buffer cache/data block, 757–761
common joins, 803–805
with CON_ID and MEMORY, 812
create V$ views and, 735–737
database- and instance-specific information, 766–767
effective use/strategy for, 767
future version impact in 12cR2, 813
get listing of all in 12c, 678, 738–739
get listing of all X$ indexes in 12c, 740–741
grant access to, 734–735
GV$ views created from, 674
hot buffer blocks/latch contention/wait events, 761–766
initialization parameters, 753–757
introduction to, 732–734
misconceptions, 734
monitor shared pool, 742–753
monitor space allocations in shared pool, 741–742
mutex/latch waits and/or sleeps, 751–752
naming conventions, 805–812
non-V$ fixed view associations and, 801–803
overview of, 732
parse activity, 750
redo log files, 753
tips for review, 813–814
underlying V$ views in, 677, 737–738
undocumented initialization parameters, 210–211
use hints with X$ indexes and, 741–742

X6-2 Exadata Rack, 609
X6-8 Exadata Rack, 609
X$BH table, 473, 480–481, 757–764, 883
X$CON, new in 12c, 739
XCTEND (Transaction END) calls, 783
XID (transaction ID), block dump, 476
X$KCCCP table, 753
X$KCCDI table, 766–767

X$KCCLE table, 753
X$KQFDT table, 738–739
X$KQFTA table, 738–739
X$KQFVI table, 737–738
X$KSMLRU table, 742–743, 752
X$KSMSP table, 742–743, 878
X$KSMSP table, 198–199, 558
X$KSPPCV table, 756
X$KSPPCV2 table, 756
X$KSPPI table, 283, 756
X$KSPPSV table, 756
X$KSPPSV2 table, 756
X$KSPSPFILE table, 756
X$KTSIMAU table, 737–738, 739
XML metadata files, create PDB, 87

Z
ZFS Storage servers, 625

	Title Page
	Copyright Page
	About the Author
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	1 Introduction to Oracle Database 12c R1 & R2 New Features (DBA and Developer)
	Oracle Database 12cR1 (12.1.0.1)
	Increased Size Limit to 32K for VARCHAR2 and NVARCHAR2
	Partial Indexes
	Invisible Columns
	Multiple Indexes on the Same Column List
	Fetch First x Rows
	Pluggable Databases (PDBs)
	Oracle Database Cloud Service (Database as a Service)
	PDB Level: MEMORY_LIMIT and MEMORY_MINIMUM (12cR2)
	Change Compression at Import Time
	Adaptive Query Optimization
	PGA_AGGREGATE_LIMIT
	Concurrent Execution for UNION/UNION ALL
	Invoker Rights Function Can Be Results Cached
	New DBMS_UTILITY.EXPAND_SQL_TEXT
	Default for Columns Based on Sequence
	Multiple SSD Devices for Smart Flash Cache
	Concurrent Cost-Based Optimizer Statistics Gathering
	Enhanced System Statistics
	Resource Manager for Runaway Queries
	Automatic Data Optimization (ADO)
	Global Index Maintenance: Drop and Truncate Partition Operations
	ASM Disk Scrubbing
	Online Capability Improvements
	Data Guard Improvements
	RMAN Improvements

	Oracle Database 12cR1 (12.1.0.2)
	In-Memory Database
	Advanced Index Compression
	Automatic Big Table Caching
	FDA Support for Container Databases
	Full Database Caching
	JSON Support
	FIPS 140 Parameter for Encryption
	PDB Subset Cloning
	Rapid Home Provisioning—Creating “Gold Images”

	Oracle Database 12cR2 (12.2)
	Application Development
	Enhanced Features to Reduce Costs and Issues for Migration to Oracle
	Availability
	Big Data
	Compression and Archiving
	Oracle RAC and Grid Infrastructure
	Security

	New Background Processes in 12c
	Exadata—New with Exadata X6!
	Version Comparison Chart
	New Features Review
	References

	2 Basic Index Principles (Beginner Developer and Beginner DBA)
	Basic Index Concepts
	Invisible Indexes
	Multiple Types of Indexes on the Same Column(s)
	Concatenated Indexes
	Suppressing Indexes
	Using the NOT EQUAL Operators: <>, !=
	Using IS NULL or IS NOT NULL
	Using LIKE
	Using Functions
	Comparing Mismatched Data Types

	Selectivity
	The Clustering Factor
	The Binary Height
	Additional Details Concerning BLEVEL and Index Height

	Using Histograms
	Fast Full Scans
	Skip-Scans
	Types of Indexes
	B-Tree Indexes
	Bitmap Indexes
	Hash Indexes
	Index-Organized Tables
	Reverse Key Indexes
	Function-Based Indexes
	Partitioned Indexes
	New 12cR2 Features for Partitioned Indexes
	Bitmap Join Indexes

	Fast Index Rebuilding
	Rebuilding Indexes Online
	Tips Review
	References

	3 Pluggable Databases, Disk Implementation Methodology, and ASM (DBA)
	Pluggable Databases (New in Oracle 12c)
	CDB or PDB Created Objects
	Creating a PDB: Many Ways to Do It
	Great Pluggable Database Commands
	ALTER SYSTEM While in a PDB and Other Nice Commands
	Using In-Memory (IM) with Pluggable Databases
	Other 12cR2 Features with Pluggable Databases
	Subset Standby (New in Oracle 12cR2)

	Disk Arrays
	Use Disk Arrays to Improve Performance and Availability
	How Many Disks Do You Need?
	What Are Some of the RAID Levels Available?
	The Newer RAID 5
	Solid-State Disks
	ASM Storage Management (Striping/Mirroring)

	Setup and Maintenance of the Traditional Filesystem
	What Is the Cost?
	Storing Data and Index Files in Separate Locations
	Avoiding I/O Disk Contention

	The 12c Heat Map and Automatic Data Optimization (ADO)
	12c I/O Performance Tracking Views (Outliers)
	Oracle Bigfile Tablespaces
	ASM Introduction
	Communication Across IT Roles
	ASM Instances
	ASM Initialization Parameters
	ASM Installation in 12c
	Srvctl Enhancements
	ASM Disk Scrubbing
	ASM Rebalance Enhancements
	ASM Fast Mirror Resync
	ASM Filter Driver
	ASM and Privileges
	ASM and Multipathing
	Bigfile and ASM

	Avoiding Disk Contention by Using Partitions
	Getting More Information About Partitions
	Other Types of Partitioning
	Partitioned Indexes (Local)
	Partial Indexes
	Global Index Maintenance: Drop and Truncate Partition Operations
	Other Partitioning Options
	Index Partitioning
	Exporting Partitions

	Eliminating Fragmentation (Only If Needed—Careful!)
	Using the Correct Extent Size
	Avoiding Chaining by Setting PCTFREE Correctly
	Using Automatic Segment Space Management (ASSM)

	Increasing the Log File Size and LOG_CHECKPOINT_INTERVAL for Speed
	Determining If Redo Log File Size Is a Problem
	Determining the Size of Your Log Files and Checkpoint Interval
	Other Helpful Redo Log Commands

	Storing Multiple Control Files on Different Disks and Controllers
	Other Disk I/O Precautions and Tips
	Issues to Consider in the Planning Stages
	Tips Review
	References

	4 Tuning the Database with Initialization Parameters (DBA)
	When Upgrading to Oracle Database 12c
	Using SEC_CASE_SENSITIVE_LOGON
	Crucial Memory Initialization Parameters for Performance
	PDB Level: MEMORY_LIMIT and MEMORY_MINIMUM
	In-Memory Database (INMEMORY_SIZE)
	Changing the Initialization Parameters Without a Restart
	Modifying an Initialization Parameter at the PDB Level
	Insight into the Initialization Parameters from Oracle Utilities
	Viewing the Initialization Parameters with Enterprise Manager
	Increasing Performance by Tuning the DB_CACHE_SIZE
	Using V$DB_CACHE_ADVICE in Tuning DB_CACHE_SIZE
	Monitoring the V$SQLAREA View to Find Bad Queries

	Setting DB_BLOCK_SIZE to Reflect the Size of Your Data Reads
	Setting SGA_MAX_SIZE to 25 to 50 Percent of the Size Allocated to Main Memory
	Tuning the SHARED_POOL_SIZE for Optimal Performance
	Using Stored Procedures for Optimal Use of the Shared SQL Area
	Setting the SHARED_POOL_SIZE High Enough to Fully Use the DB_CACHE_SIZE
	Keeping the Data Dictionary Cache Objects Cached
	Keeping the Library Cache Reload Ratio at 0 and the Hit Ratio Above 95 Percent
	Using Available Memory to Determine If the SHARED_POOL_SIZE Is Set Correctly
	Using the X$KSMSP Table to Get a Detailed Look at the Shared Pool
	Points to Remember About Cache Size
	Waits Related to Initialization Parameters

	Using Oracle Multiple Buffer Pools
	Pools Related to DB_CACHE_SIZE and Allocating Memory for Data
	Modifying the LRU Algorithm
	Pools Related to SHARED_POOL_SIZE and Allocating Memory for Statements

	Tuning PGA_AGGREGATE_TARGET and PGA_AGGREGATE_LIMIT
	Modifying the Size of Your SGA to Avoid Paging and Swapping
	Understanding the Oracle Optimizer
	How Optimization Looks at the Data

	Creating Enough Dispatchers
	Have Enough Open Cursors (OPEN_CURSORS)
	Don’t Let Your DDL Statements Fail (DDL_LOCK_TIMEOUT)

	Two Important Exadata Initialization Parameters (Exadata Only)
	Top 25 Initialization Parameters
	Initialization Parameters over the Years
	Finding Undocumented Initialization Parameters

	Understanding the Typical Server
	Modeling a Typical Server
	Sizing the Oracle Applications Database

	Tips Review
	References

	5 Tuning with Enterprise Manager Cloud Control (DBA and Developer)
	Oracle Enterprise Manager Basics and Accessing OEM via Oracle Cloud
	Starting with All Targets and Other Groupings
	Monitoring and Tuning Using the OEM Performance Menu
	Performance Tab: Top Activity
	Performance Tab: SQL | SQL Performance Analyzer
	Performance Tab: Real-Time ADDM
	Performance Tab: SQL | Access Advisor
	Performance Tab: Manage Optimizer Statistics
	Performance Tab: AWR | AWR Administration
	Performance Tab: ASH Analytics

	Monitoring and Tuning Using the OEM Administration Menu
	Database Administration Tab: Storage|Tablespaces
	Database Administration Tab: In-Memory Central and Initialization Parameters
	Database Administration Tab: All Initialization Parameters
	Database Administration Tab: Resource Manager (Consumer Groups)

	Monitoring and Tuning Using the OEM Database or Cluster Database Menu
	Database Tab: Job Activity
	Cluster Database Tab: Configuration|Database Topology

	Monitoring the Hosts
	Monitoring the Application Servers and Web Applications
	Real Application Testing (Database Replay)
	Summary
	Tips Review
	References

	6 Using EXPLAIN, TRACE, and SQL Plan Management (Developer and DBA)
	The Oracle SQL TRACE Utility
	Simple Steps for SQL TRACE with a Simple Query
	The Sections of a TRACE Output
	Digging into the TKPROF Output

	Using DBMS_MONITOR
	Setting Trace Based on Session ID and Serial Number
	Setting Trace Based on Client Identifier
	Setting Trace for the Service Name/Module Name/Action Name
	Enabled Tracing Views
	TRCSESS Multiple Trace Files into One File

	Using EXPLAIN PLAN Alone
	An Additional EXPLAIN Example for a Simple Query
	EXPLAIN PLAN—Read It Top to Bottom or Bottom to Top?
	Tracing/Explaining Problem Queries in Developer Products
	Important Columns in the PLAN_TABLE Table
	Using DBMS_XPLAN
	Initialization Parameters for Undocumented TRACE

	Using Stored Outlines
	Dropping Stored Outlines

	Using SQL Plan Management (SPM) and SPM Example
	SPM Terms
	Using SPM
	Using Fixed SQL Plan Baselines
	Dropping a Plan
	Converting from Stored Outlines to SQL Plan Management
	Adaptive Plans (12c New Feature) and SPM

	Tips Review
	References

	7 Basic Hint Syntax (Developer and DBA)
	Top Hints Used
	Use Hints Sparingly
	Fix the Design First

	Available Hints and Groupings
	Execution Path
	Access Methods
	Query Transformation Hints
	Join Operations
	Parallel Execution
	Other Hints

	Specifying a Hint
	Specifying Multiple Hints
	When Using an Alias, Hint the Alias, Not the Table
	The Hints
	The Oracle Demo Sample HR Schema
	The FIRST_ROWS Hint
	The ALL_ROWS Hint
	The FULL Hint
	The INDEX Hint
	The NO_INDEX Hint
	The INDEX_JOIN Hint
	The INDEX_COMBINE Hint
	The INDEX_ASC Hint
	The INDEX_DESC Hint
	The INDEX_FFS Hint
	The ORDERED Hint
	The LEADING Hint
	The NO_EXPAND Hint
	The DRIVING_SITE Hint
	The USE_MERGE Hint
	The USE_NL Hint
	The USE_HASH Hint
	The QB_NAME Hint
	The PUSH_SUBQ Hint
	The PARALLEL Hint
	The NO_PARALLEL Hint
	The PARALLEL_INDEX Hint
	The APPEND Hint
	The NOAPPEND Hint
	The CACHE Hint
	The NOCACHE Hint
	The RESULT_CACHE Hint
	The CURSOR_SHARING_EXACT Hint
	The INMEMORY and NO_INMEMORY and Other IM Hints
	The USE_INVISIBLE_INDEXES Hint
	The CONTAINERS Hint
	The WITH_PLSQL Hint

	Some Miscellaneous Hints and Notes
	Undocumented Hints
	Using Hints with Views
	Notes on Hints and Stored Outlines (or SQL Plan Baselines)

	Why Isn’t My Hint Working?
	Hints at a Glance
	Tips Review
	References

	8 Query Tuning (Developer and Beginner DBA)
	Which Queries Do I Tune? Querying V$SQLAREA and V$SQL Views
	Selecting from the V$SQLAREA View to Find the Worst Queries
	Selecting from the V$SQL View to Find the Worst Queries

	Oracle 12c Views for Locating Resource-Intensive Sessions and Queries
	Selecting from V$SESSMETRIC to Find Current Resource-Intensive Sessions
	Viewing Available AWR Snapshots
	Selecting from the DBA_HIST_SQLSTAT View to Find the Worst Queries

	When Should I Use an Index?
	Selecting Query Text from the DBA_HIST_SQLTEXT View
	Selecting Query EXPLAIN PLAN from the DBA_HIST_SQL_PLAN View

	What If I Forget the Index?
	Creating an Index
	Invisible Index
	Checking the Index on a Table
	Is the Column Properly Indexed?

	What If I Create a Bad Index?
	Exercising Caution When Dropping an Index
	Indexing the Columns Used in the SELECT and WHERE
	Using the Fast Full Scan
	Making the Query “Magically” Faster
	Caching a Table in Memory
	Using the Result Cache
	Choosing Among Multiple Indexes (Use the Most Selective)
	The Index Merge
	Indexes That Can Get Suppressed
	Function-Based Indexes
	Virtual Columns
	The “Curious” OR
	Using the EXISTS Function and the Nested Subquery
	That Table Is Actually a View!
	SQL and Grand Unified Theory
	Tuning Changes in Oracle Database 12c
	Oracle 12c Adaptive Query Optimization
	Adaptive Statistics
	Oracle 12c Changes in Statistics Gathering and Two New Histograms
	Oracle 12c Changes in SQL Plan Management

	Oracle Automatic SQL Tuning
	Ensuring the Tuning User Has Access to the APIs
	Creating the Tuning Task
	Making Sure the Task Can Be Seen in the Advisor Log
	Executing the SQL Tuning Task
	Checking Status of the Tuning Task
	Displaying the SQL Tuning Advisor Report
	Reviewing the Report Output

	Tuning SQL Statements Automatically Using SQL Tuning Advisor
	Enabling Automatic SQL Tuning Advisor
	Configuring Automatic SQL Tuning Advisor
	Viewing Automatic SQL Tuning Results

	Using SQL Performance Analyzer (SPA)
	Tips Review
	References

	9 Table Joins and Other Advanced Tuning (Advanced DBA and Developer)
	Database Replay (capture/replay)
	Set Up Source Database for Database Replay Capture
	Prepare to Capture Workload
	Capture the Workload
	Prepare the Workload for Replay
	Process the Workload for Replay
	Prepare to Replay the Workload
	Execute the Workload Replay

	SQL Performance Analyzer
	Create a SQL Tuning Set
	Create an Analysis Task
	Execute Analysis Task
	Query SQL Performance Analyzer Advisor Tasks
	Cancel an Executing SQL Performance Analyzer Analysis Task
	Remove SQL Performance Analyzer Analysis Task
	Determine Active SQL Tuning Sets
	Remove SQL Tuning Set
	Drop SQL Tuning Set

	Join Methods
	NESTED LOOPS Joins
	SORT-MERGE Joins
	CLUSTER Joins
	HASH Joins
	INDEX-MERGE Joins

	Table Join Initialization Parameters
	SORT-MERGE and HASH Join Parameters

	A Two-Table Join: Equal-Sized Tables (Cost-Based)
	A Two-Table INDEXED Join: Equal-Sized Tables (Cost-Based)
	Forcing a Specific Join Method
	Eliminating Join Records (Candidate Rows) in Multitable Joins
	A Two-Table Join Between a Large and Small Table
	Three-Table Joins: Not as Much Fun
	Bitmap Join Indexes
	Bitmap Indexes
	Bitmap Join Index
	Best Uses for the Bitmap Join Index

	Third-Party Product Tuning
	Example 1
	Example 2
	Example 3

	Tuning Distributed Queries
	When You Have Everything Tuned
	Miscellaneous Tuning Snippets
	External Tables
	Snapshot Too Old: Developer Coding Issue
	Set Event to Dump Every Wait
	14 Hours to 30 Seconds with the EXISTS Operator

	Tuning at the Block Level (Advanced)
	Key Sections of a Block Dump
	A Brief Look at an Index Block Dump

	Tuning Using Simple Mathematical Techniques
	Traditional Mathematical Analysis
	Seven-Step Methodology
	Deriving Performance Equations
	Pattern Interpretation
	Mathematical Techniques Conclusions

	Tips Review
	References

	10 Using PL/SQL to Enhance Performance (Developer and DBA)
	Leverage the PL/SQL Function Result Cache to Improve Performance (Improved in 12c)
	Define PL/SQL Subprograms in a SQL Statement (New in 12c)
	Reference Sequences Directly in PL/SQL Expressions
	Identity Columns (New in 12c)
	Max Size Increase to 32K for VARCHAR2, NVARCHAR2, and RAW Data Types (New in 12c)
	Allow Binding PL/SQL-Only Data Types to SQL Statements (New in 12c)
	Use Named Parameters in SQL Function Calls
	Simplify Loops with the CONTINUE Statement
	Leverage Compile-Time Warnings to Catch Programming Mistakes (Improved in 12c)
	Increase Performance with Native Compilation
	Maximize Performance with the Optimizing Compiler
	Use DBMS_APPLICATION_INFO for Real-Time Monitoring
	Log Timing Information in a Database Table
	Reduce PL/SQL Program Unit Iterations and Iteration Time
	Use ROWID for Iterative Processing
	Standardize on Data Types, IF Statement Order, and PLS_INTEGER
	Ensure the Same Data Types in Comparison Operations
	Order IF Conditions Based on the Frequency of the Condition
	Use the PLS_INTEGER PL/SQL Data Type for Integer Operations

	Reduce the Calls to SYSDATE
	Reduce the Use of the MOD Function
	Improve Shared Pool Use by Pinning PL/SQL Objects
	Pinning (Caching) PL/SQL Object Statements into Memory
	Pinning All Packages

	Identify PL/SQL Objects That Need to Be Pinned
	Use and Modify DBMS_SHARED_POOL.SIZES
	Find Large Objects

	Get Detailed Object Information from DBA_OBJECT_SIZE
	Get Contiguous Space Currently in the Shared Pool

	Find Invalid Objects
	Find Disabled Triggers
	Use PL/SQL Associative Arrays for Fast Reference Table Lookups
	Find and Tune the SQL When Objects Are Used
	Consider Time Component When Working with DATE Data Types
	Use PL/SQL to Tune PL/SQL
	Understand the Implications of PL/SQL Object Location
	Use Rollback Segments to Open Large Cursors
	Active Transaction Management: Process Large Quantities of Data

	Use Temporary Database Tables for Increased Performance
	Limit the Use of Dynamic SQL
	Use Pipelined Table Functions to Build Complex Result Sets
	Leave Those Debugging Commands Alone!
	The “Look and Feel”: Just for the Beginners
	PL/SQL Example
	Create a Procedure Example
	Execute the Procedure from PL/SQL Example
	Create a Function Example
	Execute the GET_CUST_NAME Function from SQL Example
	Create a Package Example
	Database Trigger Example Using PL/SQL

	Tips Review
	References

	11 Oracle Cloud, Exadata, Tuning RAC, and Using Parallel Features
	The March to the Cloud (Past and Present)
	The Oracle Cloud
	Exadata Database Machine
	Exadata Terminology and the Basics
	Exadata Statistics
	Exadata Storage Expansion Rack Briefly
	Smart Scans
	Flash Cache
	Storage Indexes
	Hybrid Columnar Compression
	I/O Resource Management
	Use All Oracle Security Advantages with Exadata
	Best Practices
	Summary: Exadata = Paradigm Shift!

	Oracle Database Appliance (ODA)
	SuperCluster Using the M7 SPARC Chip
	Other Oracle Hardware to Consider
	Oracle Big Data Appliance X6-2
	ZFS Storage Servers
	StorageTek Modular Library System

	Parallel Databases
	Real Application Clusters (RAC)
	Oracle RAC Architecture
	Internal Workings of the Oracle RAC System

	RAC Performance Tuning Overview
	RAC Cluster Interconnect Performance
	Finding RAC Wait Events—Sessions Waiting
	RAC Wait Events and Interconnect Statistics
	Cluster Interconnect Tuning—Hardware Tier

	Basic Concepts of Parallel Operations
	Basic Concepts of Parallel Operations
	Parallel DML and DDL Statements and Operations
	Managing Parallel Server Resources and Parallel Statement Queuing
	Parallelism and Partitions
	Inter- and Intra-operation Parallelization
	Examples of Using Inter- and Intra-operations (PARALLEL and NO_PARALLEL Hints)
	Creating Table and Index Examples Using Parallel Operations
	Monitoring Parallel Operations via the V$ Views
	Using EXPLAIN PLAN and AUTOTRACE on Parallel Operations
	Using the SET AUTOTRACE ON/OFF Command
	Tuning Parallel Execution and the Initialization Parameters
	Parallel Loading
	Optimizing Parallel Operations in RAC
	Objectives of Parallel Operations
	RAC Parallel Usage Models
	Parallel Initialization Parameters
	V$ Views for Viewing Parallel Statistics
	Create Table As
	Parallel Index Builds
	Performance Considerations and Summary
	Other Parallel Notes

	Oracle Documentation Is Online
	Tips Review
	References

	12 The V$ Views (Developer and DBA)
	Creating and Granting Access to V$ Views
	Obtaining a Count and Listing of All V$ Views

	Getting a Listing for the X$ Scripts That Make Up the V$ Views
	Examining the Underlying Objects That Make Up the DBA_ Views

	Using Helpful V$ Scripts
	Basic Database Information
	Basic Automatic Workload Repository (AWR) Information
	Basic Licensing Information
	Database Options Installed in Your Database

	Summary of Memory Allocated (V$SGA)
	Querying V$IM_SEGMENTS After Setting the INMEMORY_SIZE
	Automatic Memory Management and MEMORY_TARGET
	Detailed Memory Allocated (V$SGASTAT)
	Detailed Memory Allocated (V$SGASTAT) for a PDB vs. Root CDB

	Finding spfile.ora/init.ora Settings in V$PARAMETER
	Modifying an Initialization Parameter at PDB Level
	Determining If Data Is in Memory (V$SYSSTAT & V$SYSMETRIC)
	Determining Memory for the Data Dictionary (V$ROWCACHE)
	Determining Memory for the Shared SQL and PL/SQL (V$LIBRARYCACHE)
	Querying V$CONTAINERS and V$PDBS for Container Information
	Querying V$CONTAINERS When Using Pluggable Databases
	Querying V$PDBS for Pluggable Database Information
	Using the Result Cache

	Identifying PL/SQL Objects That Need to Be Kept (Pinned)
	Finding Problem Queries by Monitoring V$SESSION_LONGOPS
	Finding Problem Queries by Querying V$SQLAREA
	Finding Out What Users Are Doing and Which Resources They Are Using
	Finding Out Which Objects a User Is Accessing
	Getting Detailed User Information

	Using Indexes
	Identifying Locking Issues
	Killing the Problem Session
	Finding Users with Multiple Sessions
	Querying for Current Profiles

	Finding Disk I/O Issues
	Checking for Privileges and Roles
	Wait Events V$ Views
	Some of the Major V$ View Categories
	Tips Review
	References

	13 The X$ Tables and Internals Topics (Advanced DBA)
	Introducing the X$ Tables
	Misconceptions About the X$ Tables
	Granting Access to View the X$ Tables

	Creating V$ Views and X$ Tables in 12c
	The X$ Tables Comprising the V$ Views

	Obtaining a List of All the X$ Tables in 12c
	Obtaining a List of All the X$ Indexes in 12c
	Using Hints with X$ Tables and Indexes
	Monitoring Space Allocations in the Shared Pool
	Creating Queries to Monitor the Shared Pool
	ORA-04031 Errors
	Large Allocations Causing Contention
	Shared Pool Fragmentation
	Low Free Memory in Shared and Java Pools
	Library Cache Memory Use
	High Number of Hard Parses
	Mutex/Latch Waits and/or Sleeps
	Miscellaneous X$ Table Notes

	Obtaining Information About Redo Log Files
	Setting Initialization Parameters
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5

	Exploring Buffer Cache/Data Block Details
	Buffer Statuses
	Segments Occupying Block Buffers
	Hot Data Blocks and the Causes of Latch Contention and Wait Events

	Obtaining Database- and Instance-Specific Information
	Effective X$ Table Use and Strategy
	Oracle Internals Topics
	Traces
	DBMS_TRACE Package
	Events
	Dumps
	ORADEBUG
	trcsess Utility

	Reading the Trace File
	Wait Information and Response Time
	Recursive Calls
	Module Info
	Commit
	Unmap
	Bind Variables
	Errors

	Some Common X$ Table Groups
	Some Common X$ Table and Non-V$ Fixed View Associations
	Common X$ Table Joins
	X$ Table Naming Conventions (My Favorite Section of This Book!)
	X$ Table Naming Conventions with CON_ID, and INMEMORY

	Future Version Impact in 12cR2
	Tips Review
	References

	14 Using Statspack and the AWR Report to Tune Waits, Latches, and Mutexes
	What’s New in 12cR2 (12.2) Statspack and the AWR Report
	Installing Statspack
	Security of the PERFSTAT Account
	Post-Installation
	Gathering Statistics
	Running the Statistics Report

	The Automatic Workload Repository (AWR) and the AWR Report
	Manually Managing the AWR
	AWR Automated Snapshots
	AWR Snapshot Reports
	Run the AWR Report in Oracle Enterprise Manager Cloud Control

	Interpreting the Statspack and AWR Report Output
	The Header Information and Cache Sizes
	The Load Profile
	Instance Efficiency
	Shared Pool Statistics
	Top Wait Events
	Oracle Bugs
	The Life of an Oracle Shadow Process
	RAC Wait Events and Interconnect Statistics
	Top SQL Statements
	Instance Activity Statistics
	Tablespace and File I/O Statistics
	Segment Statistics
	Additional Memory Statistics
	UNDO Statistics
	Latch and Mutex Statistics
	Tuning and Viewing at the Block Level (Advanced)
	Dictionary and Library Cache Statistics
	SGA Memory Statistics
	Nondefault Initialization Parameters

	Top 15 Things to Look for in AWR Report and Statspack Output
	Managing the Statspack Data
	Upgrading Statspack
	Deinstalling Statspack

	Quick Notes on the New ADDM Report
	Scripts in 12cR2
	Tips Review
	References

	15 Performing a Quick System Review (DBA)
	Total Performance Index (TPI)
	Education Performance Index (EPI)
	System Performance Index (SPI)
	Memory Performance Index (MPI)
	Top 25 “Memory Abuser” Statements Tuned
	Top 10 “Memory Abusers” as a Percent of All Statements
	Buffer Cache Hit Ratio
	Dictionary Cache Hit Ratio
	Library Cache Hit Ratio
	PGA Memory Sort Ratio
	Percentage of Data Buffers Still Free
	Using the Result Cache Effectively
	Pinning/Caching Objects

	Disk Performance Index (DPI)
	Top 25 “Disk-Read Abuser” Statements Tuned
	Top 10 Disk-Read Abusers as Percentage of All Statements
	Tables/Indexes Separated or Using ASM
	Mission-Critical Table Management
	Key Oracle Files Separated
	Automatic Undo Management
	Using Pluggable Databases Effectively

	Total Performance Index (TPI)
	Overall System Review Example
	Rating System
	Example System Review Rating Categories
	Items Requiring Immediate Action
	Other Items Requiring Action

	System Information List
	Memory-Related Values
	Disk-Related Values
	CPU-Related Values
	Backup- and Recovery-Related Information
	Naming Conventions and/or Standards and Security Information Questions
	DBA Knowledge Rating

	Other Items to Consider in Your TPI and System Review
	Tips Review
	References

	16 Monitor the System Using Unix Utilities (DBA)
	Unix/Linux Utilities
	Using the sar Command to Monitor CPU Usage
	sar –u (Check for CPU Bogged Down)
	The sar –d Command (Find I/O Problems)
	The sar –b Command (Check the Buffer Cache)
	The sar –q Command (Check the Run Queue and Swap Queue Lengths)

	Using the sar and vmstat Commands to Monitor Paging/Swapping
	Using sar –p to Report Paging Activities
	Using sar –w to Report Swapping and Switching Activities
	Using sar –r to Report Free Memory and Free Swap
	Using sar –g to Report Paging Activities
	Using sar –wpgr to Report on Memory Resources

	Finding the Worst User on the System Using the top Command
	Monitoring Tools

	Using the uptime Command to Monitor CPU Load
	Using the mpstat Command to Identify CPU Bottlenecks
	Combining ps with Selected V$ Views
	CPU/Memory Monitoring Tool (Task Manager) on Windows

	Using the iostat Command to Identify Disk I/O Bottlenecks
	Using iostat –d for Disk Drives sd15, sd16, sd17, and sd18
	Using iostat –D
	Using iostat –x
	Combining iostat –x with Logic in a Shell Script

	Using the ipcs Command to Determine Shared Memory
	Using the vmstat Command to Monitor System Load
	Monitoring Disk Free Space
	The df Command
	The du Command

	Monitoring Network Performance with netstat
	Modifying the Configuration Information File
	Other Factors That Affect Performance

	Other Sources to Improve Performance
	Tips Review
	References

	A Key Initialization Parameters (DBA)
	Obsoleted/Desupported Initialization Parameters
	Deprecated Initialization Parameters
	Top 25 Initialization Parameters
	Top 20 Initialization Parameters Not to Forget
	Top 13 Undocumented Initialization Parameters (As I See It)
	Bonus 11 Undocumented Initialization Parameters
	Listing of Documented Initialization Parameters (V$PARAMETER)
	Listing of Undocumented Initialization Parameters (X$KSPPI/X$KSPPCV)
	Additional Oracle Applications Notes
	Concurrent Managers
	Applications—Finding Module-Specific Patches
	Diagnostics Data Collection: EBS Analyzers
	Web Server Tuning
	Timeouts
	Database Initialization Parameter Sizing

	Top 10 Reasons Not to Write a Book
	Tips Review
	References

	B The V$ Views (DBA and Developer)
	Creation of V$ and GV$ Views and X$ Tables
	A List of Oracle 12c (12.2.0.0.1) GV$ Views
	A List of Oracle 12c (12.2.0.0.1) V$ Views
	Oracle 12c Scripts for the X$ Tables Used to Create the V$ Views

	C The X$ Tables (DBA)
	Oracle 12cR2 X$ Tables Ordered by Name
	Oracle 12cR2 X$ Indexes
	Oracle 12cR2 V$ Views Cross-Referenced to the X$ Tables

	Index

