
www.allitebooks.com

http://www.allitebooks.org

®

Oracle NoSQL
Database

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

00-FM.indd 1 11/9/13 2:34 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

00-FM.indd 2 11/9/13 2:34 PM

This page has been intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

®

Oracle NoSQL Database:
Real-Time Big Data
Management for the
Enterprise

Maqsood Alam

Aalok Muley

Ashok Joshi

Chaitanya Kadaru

New York  Chicago  San Francisco
Athens  London  Madrid  Mexico City
Milan  New Delhi  Singapore  Sydney  Toronto

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

00-FM.indd 3 11/9/13 2:34 PM

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written permission of publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

ISBN: 978-0-07-181654-0

MHID: 	 0-07-181654-2

e-book conversion by Cenveo® Publisher Services

Version 1.0

The material in this e-book also appears in the print version of this title: ISBN: 978-0-07-181653-3,

MHID:  0-07-181653-4

McGraw-Hill Education e-books are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative, please visit the Contact Us
pages at www.mhprofessional.com.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other trademarks are the property of their
respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain
these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle
Corporation and/or its affiliates.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education
does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any
information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained
in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or
for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of
them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

eBook 653-4cr_pg.indd 1 11/12/13 5:40 PM

www.allitebooks.com

http://www.allitebooks.org

To my wife, Suraiya; my marvelous angels,
Zuha and Firas; and my parents; for their unconditional,

extraordinary, and incredible love and support, as always!
—Maqsood Alam

To my parents; my wife, Sheela; and my amazing kids,
Dhruv and Anusha. Without their love and

support, this project would not have been possible.
—Aalok Muley

To my wife, Anita, and my children, Avina and
Nishant, whose love, support, and encouragement

made this possible, and to the amazing NoSQL Database
development team for creating this wonderful product!

—Ashok Joshi

This book is dedicated to my family, especially my mom;
my beautiful wife, Deepthi; and my little angel, Tanya.

—Chaitanya Kadaru

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

00-FM.indd 5 11/9/13 2:34 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

00-FM.indd 6 11/9/13 2:34 PM

This page has been intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

About the Authors
Maqsood Alam is a Director of Product Management at Oracle and has over 17 years
of experience in architecting, building, and evangelizing enterprise and system
software. Maqsood is a pure technologist at heart and has a wide range of
expertise, ranging from parallel and distributed systems to high performance
database applications and big data. His current initiatives at Oracle are focused on
Oracle NoSQL Database, Oracle Exadata, Oracle Database 12c, and the Oracle
Big Data Appliance. He is a coauthor of the book Achieving Extreme Performance
with Oracle Exadata published by McGraw-Hill Education, and also the author of
several whitepapers and best practices dealing with various Oracle technologies.
He is an Oracle Certified Professional and holds both bachelor’s and master’s
degrees in computer science.

Aalok Muley is a Senior Director of Product Management at Oracle. He is responsible
for driving adoption of Oracle’s family of database products: Oracle NoSQL
Database, Oracle Big Data Connectors, Oracle Database 12c, and engineered
systems such as Oracle Big Data Appliance and Oracle Exadata. Aalok has over 19
years of experience; he has led teams working on database industry standard
benchmarks, database product development, and Fusion Middleware technologies.
He has been part of the technology integration of many Oracle acquisitions. As part
of the product development organization, Aalok is currently focused on working
closely with partners and customers to design high-throughput, highly available
enterprise-grade solutions. He holds a master’s degree in computer engineering from
Worcester Polytechnical Institute in Massachusetts.

Ashok Joshi is the Senior Director of Development for Oracle NoSQL Database,
Berkeley DB, and Database Mobile Server. Ashok has been involved in database
systems technology for over two decades as an individual contributor, as well as in a
management role. Ashok has made extensive contributions to indexing, concurrency
control, buffer management, logging and recovery, and performance optimizations
in a variety of products, including Oracle Rdb, Oracle Database, and Sybase SQL
Server. He is the author or coauthor of several papers as well as 12 patents on
database technology. Ashok graduated from the Indian Institutes of Technology,
Bombay with a bachelor’s degree in electrical engineering and received a master’s
degree in computer science from the University of Wisconsin, Madison.

Chaitanya Kadaru is an accomplished software professional with over 12 years of
industry experience. He has spent the majority of his time with Oracle, working in
databases, middleware, and Oracle applications in various roles, including developer,
evangelist, pre-sales, consulting, and training. He recently co-founded Extuit, a premier
Oracle consulting company, and has architected solutions involving engineered
systems, such as Oracle Exadata, Oracle Exalogic, and Oracle Big Data Appliance,
for a wide range of customers. He is currently responsible for a large-scale Oracle

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

00-FM.indd 7 11/11/13 3:18 PM

www.allitebooks.com

http://www.allitebooks.org

viii   Oracle NoSQL Database

Database consolidation to Oracle Exadata for a large financial services company.
Chaitanya holds a bachelor’s degree in engineering from BITS, Pilani, and a master’s
degree in information systems from Carnegie Mellon University.

About the Developmental Editor
Dave Rubin is the Director of Oracle NoSQL Database Product Development at
Oracle, and has an extensive background in big data systems. Prior to Oracle, Dave
was with Cox Enterprises, where he ran the infrastructure engineering organization
responsible for developing big data systems for online advertising. Previously, he ran
the engineering teams at Rapt, Inc., delivering price optimization and inventory
forecasting solutions to online media companies. Dave started his career at Sybase
and holds four U.S. patents in the areas of query optimization and advanced
transaction models.

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

00-FM.indd 8 11/9/13 2:34 PM

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

	 1	 Overview of Oracle NoSQL Database and Big Data. . 1

	 2	 Introducing Oracle NoSQL Database. . 23

	 3	 Oracle NoSQL Database Architecture. .45

	 4	 Oracle NoSQL Database Installation and Configuration. 75

	 5	 Getting Started with Oracle NoSQL Database Development. 101

	 6	 Reading and Writing Data. . 119

	 7	 Advanced Programming Concepts: Avro Schemas and Bindings. 153

	 8	 Capacity Planning and Sizing . . 185

	 9	 Advanced Topics. . 207

		 Index  . . 221

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

ix

00-FM.indd 9 11/9/13 2:34 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

00-FM.indd 10 11/9/13 2:34 PM

This page has been intentionally left blank

Contents

Foreword  . 	 xv
Acknowledgments  . 	xvii
Introduction  . 	xix

	 1	 Overview of Oracle NoSQL Database and Big Data  	 1
Introduction to NoSQL Systems  . 	 2
Brief Historical Perspective  . 	 3
Big Data and NoSQL: Characteristics and Architectural Trade-Offs  	 5
Types of Big Data Processing  . 	 6
NoSQL Database vs. Relational Database  . 	 7
Types of NoSQL Databases  . 	 8

Key-Value Stores  . 	 8
Document Stores  . 	 9
Graph Stores  . 	 9
Column Stores  . 	 9

Big Data Use Cases  . 	10
Oracle’s Approach to Big Data  . 	12

Acquire  . 	13
Organize  . 	14
Analyze  . 	15
Oracle Engineered Systems for Big Data  . 	17

Summary  . 	21

	 2	 Introducing Oracle NoSQL Database  . . 	23
Oracle Berkeley DB  . 	24
Oracle NoSQL Database  . 	27
Database System Architectures  . 	29

Partitioning and Sharding  . 	31
Availability  . 	33
Eventual Consistency  . 	35

xi

00-FM.indd 11 11/9/13 2:34 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

xii   Oracle NoSQL Database

Durability—Making Changes Permanent  . 	36
Transactions  . 	38
Data Modeling  . 	39
Performance  . 	41
Administration  . 	41
Integration with Other Products  . 	42
Licensing  . 	43

Summary  . 	43

	 3	 Oracle NoSQL Database Architecture  . . 	45
High-Level Architecture and Terminology  . 	46
Intelligent Client Driver  . 	47
Shards, Storage, and Network Topology  . 	50
Hashing, Partitions, Data Distribution  . 	53

Changing the Number of Shards  . 	55
Changing the Replication Factor  . 	59

Considerations for Multiple Datacenters  . 	60
Storing Records and the Flexible Data Model  . 	63
Log-Structured Storage  . 	67
Durability  . 	69
ACID Transactions and Distributed Transactions  . 	72
Summary  . 	74

	 4	 Oracle NoSQL Database Installation and Configuration  	75
Oracle NoSQL Database Installation  . 	76

Download Oracle NoSQL Database Software  	78
Software Installation  . 	78
Oracle NoSQL Database Administration Service  	80
Create the Boot Configuration  . 	82
Perform Sanity Checks  . 	87

Oracle NoSQL Database Configuration  . 	87
Plans  . 	88
Configuration Steps  . 	89
Automating the Configuration Steps  . 	95
Verifying the Deployment  . 	96

Summary  . 	99

	 5	 Getting Started with Oracle NoSQL Database Development  	101
Developing on KVLite  . 	102

A Basic Hello World Program  . 	105
How to Model Your Key Space  . 	108
The Basics of Reading and Writing a Single Key-Value Pair  	111

00-FM.indd 12 11/9/13 2:34 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Contents  xiii

Consistency and Durability from the Programmer’s Perspective  	112
Durability  . 	113
Consistency  . 	115

Summary  . 	118

	 6	 Reading and Writing Data  . . 	119
Development Environment Setup  . 	120
Writing Records  . 	121

Basic API Functionality  . 	122
How to Specify Durability in Write API Calls  	125

Reading Records  . 	131
Read One Record or Multiple Records in Many Ways  	132
Introduction to API for Enforcing Read Consistency  	139
Exception Handling for Read Operations  . 	147

Deleting Records  . 	147
Updating Records Based on a Version  . 	150
Summary  . 	152

	 7	 Advanced Programming Concepts: Avro Schemas and Bindings  	153
Avro Schema  . 	154

Schema Evolution  . 	158
Managing Avro Schemas  . 	162

Avro Bindings  . 	165
Specific Bindings  . 	167
Generic Bindings  . 	174
JSON Bindings  . 	181

Summary  . 	184

	 8	 Capacity Planning and Sizing  . . 	185
Gather Sizing Requirements  . 	186

Application Characteristics  . 	187
Hardware Specifications  . 	192

Capacity Planning and Sizing  . 	193
Size a Representative Shard  . 	194
Determine the Total Number of Shards and Partitions  	203

Summary  . 	205

	 9	 Advanced Topics  . . 	207
Hadoop Integration  . 	208
RDF Graph  . 	211
Integration with Complex Event Processing  . 	213
Database External Tables  . 	215

Define an External Table  . 	217
Edit the Configuration File  . 	218
Publish the Configuration  . 	218

00-FM.indd 13 11/9/13 2:34 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

xiv   Oracle NoSQL Database

Test the nosql_stream Script  . 	218
Use the External Table to Read Data

from Oracle NoSQL Database  . 	219
Summary  . 	219

		 Index  . . 	221

00-FM.indd 14 11/9/13 2:34 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Foreword

Long before the term “NoSQL databases” entered our lexicon, Berkeley DB was
built with many of the goals that have recently propelled the NoSQL databases
movement. Its main guiding principle was that through a simple key-value

model, the system could achieve the best performance and most flexibility.

Developed in the late 1980s at the University of California, Berkeley, and acquired
by Oracle in 2006, Oracle Berkeley DB is an open-source software library that is
deployed as an embedded database. By supporting a simple key-value model,
Oracle Berkeley DB eliminates much of the complexity of relational databases and
can thus support very high transaction rates. Oracle Berkeley DB supports thousands
of concurrent ACID transactions, recovery from system failures, and self-managed
replication for high availability. Oracle Berkeley DB is one of the most widely used
databases because of its high performance, robustness, and flexibility.

Oracle Berkeley DB achieves many of the goals of NoSQL databases, namely: very
high transaction rates, support for unstructured data, and high availability. However,
Oracle Berkeley DB does not have scalability as a core feature. To achieve scalability,
an application would have to build it explicitly on top of Oracle Berkeley DB.

Oracle NoSQL Database was developed to augment Oracle Berkeley DB with
elastic horizontal scalability, a feature much needed by Big Data applications, and
to complement Oracle’s Big Data offering. With Oracle NoSQL Database, data is
distributed automatically over a number of servers and is replicated over a configurable
number of these servers. Servers can be added and removed dynamically to adapt to an
application’s data management requirements. As the number of servers varies, Oracle
NoSQL Database redistributes data automatically to achieve load balancing. Data is
redistributed concurrently with other application operations, thus guaranteeing
continuous and uninterrupted service. The transaction throughput and the data
capacity of Oracle NoSQL Database scale linearly with the number of servers.

xv

00-FM.indd 15 11/9/13 2:34 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

xvi   Oracle NoSQL Database

Oracle NoSQL Database uses Berkeley DB as its underlying storage manager and
augments it with a data distribution layer for scalability. It thus leverages the robust
ACID properties and high availability of Berkeley DB. Oracle NoSQL Database offers
a simple programming model and JSON support. It is integrated with Oracle Database
and Hadoop, and is a base component of Oracle’s Big Data Appliance.

The authors are members of the Oracle NoSQL Database development and
product management team. They have deep expertise in data management technology
and Big Data requirements. They have a thorough understanding of the product and the
motivation for its design. They have a close relationship with customers, understand
their use cases, and have driven the product to support their requirements.

Oracle NoSQL Database: Real-Time Big Data Management for the Enterprise
provides a comprehensive description of Oracle NoSQL Database, its architecture,
design guidelines, installation, and use. It also includes a description of how Oracle
NoSQL Database is integrated into Oracle’s Big Data platform, and a description of
a number of use cases.

Marie-Anne Neimat

Marie-Anne Neimat was the former Vice President of Development for Oracle’s embedded databases,
which includes Oracle NoSQL Database, Oracle Berkeley Database, and Oracle TimesTen In-Memory
Database. Prior to Oracle, she was a co-founder, Vice President of Engineering, and a board member of
TimesTen, Inc., which was acquired by Oracle in 2005. Before TimesTen, she worked at HP Labs and
managed several research projects, including an object-oriented database (IRIS, which later became the
OpenODB product), an extensible database, and an in-memory database.
  Marie-Anne was awarded her PhD in computer science from the University of California, Berkeley, and
has a bachelor’s degree in mathematics from Stanford University. She holds several patents, is a popular
technical conference presenter, and is the author of many publications in refereed conferences and journals.

00-FM.indd 16 11/9/13 2:34 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Acknowledgments

My sincere thanks to the McGraw-Hill Education editorial team, Paul and
Amanda, for giving me the opportunity to write (once again), and for
  providing outstanding support during the authoring process. Many thanks to

Dave Rubin for his exceptional work in reviewing the content; we all acknowledge it
was not easy. And of course I should thank everyone in my family who cooperated and
at times wondered why I would willingly put myself through this ordeal.

Special thanks also to Oracle Corp. for giving me the opportunity to work on
wonderful products throughout my career. Also, thanks to my fellow coauthors for
finally getting the chapters done.

—Maqsood Alam

First and foremost, we must acknowledge the contributions of the Oracle NoSQL
Database development team. This book would not be possible if they had not done
such a stellar job of creating Oracle NoSQL Database! We are grateful to the team
at McGraw-Hill Education who encouraged us, cajoled us, and at times, pushed us
to meet deadlines. Special thanks to Paul and Amanda. Dave Rubin spent a huge
amount of time reviewing and editing various chapters—this book has benefited
tremendously from his tireless diligence and efforts.

—Ashok Joshi

xvii

00-FM.indd 17 11/9/13 2:34 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

xviii   Oracle NoSQL Database

I would like to thank McGraw-Hill Education and Maqsood Alam for believing
in me and giving me a chance to contribute to this book. I would also want to thank
Maqsood for guiding me throughout the process and for reviewing the content.
I would like to thank Paul and Amanda for working tirelessly with us and helping
us bring out a great book on Oracle NoSQL Database. Most importantly, I would like
to thank the reviewer, Dave Rubin, for doing a wonderful job reviewing my work.

—Chaitanya Kadaru

00-FM.indd 18 11/9/13 2:34 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Introduction

The roots of NoSQL databases can be traced back to the mid-60s when
databases such as MUMPS (aka M Database) and PICK (aka MultiValue)
came into existence. The main purpose at that time was to build a schema-

less implementation of the relational database management system (RDBMS) that
would be lightweight and optimized, highly scalable, provide high-transaction
throughput, and most importantly, provide an alternative method for data access
than the traditional SQL interface.

The term “NoSQL” was initially coined by Carlo Strozzi in 1998 when he named
his lightweight, open source relational database management system as NoSQL.
Although his database still used the relational database paradigm, his main intention
was to provide an alternative interface for data access besides SQL. The term
“NoSQL” later resurfaced in 2009 as an attempt to categorize the large number of
emerging databases that defied the attributes of traditional RDBMS systems. The key
attributes of NoSQL databases are mainly to support non-relational structures;
provide a distributed implementation that is highly scalable; and at most times, to
not support the key transaction guarantee features inherent to RDBMS systems, such
as ACID properties (atomicity, consistency, isolation, and durability).

Berkeley DB (BDB) originated at University of California, Berkeley (1986−1994)
as a byproduct of the effort to convert BSD 4.3 (aka Berkeley Unix) to BSD 4.4. In
1996, Netscape requested a few additional enhancements to BDB in order to make it
usable in the browser, which led to the formation of Sleepycat Software. The purpose
of Sleepycat was to provide enterprise-level support to BDB and to make further
enhancements to the product. Sleepycat Software was later acquired by Oracle in
February 2006.

xix

00-FM.indd 19 11/9/13 2:35 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

xx   Oracle NoSQL Database

Oracle NoSQL Database is a distributed key-value database that uses the BDB
engine underneath the covers, and provides a variety of additional features such as
dynamic partitioning, load balancing, predictable latency, monitoring, and other
features that enable Oracle NoSQL Database to be used in enterprise-level
deployments. This book introduces the basics of NoSQL databases, followed by the
architecture of Oracle NoSQL Database. Topics related to installation and
configuration of the software, application development using APIs and Avro, and
sizing and integration of Oracle NoSQL Database with external systems are also
covered. Here is a brief overview of each chapter.

Chapter 1: Overview of Oracle NoSQL Database and Big Data
We start off by introducing big data and the role that NoSQL databases play in
solving real-time big data problems in enterprises. Multiple flavors of the NoSQL
databases are discussed, along with Oracle’s approach to NoSQL and big data with
optimized software and preconfigured engineered systems.

Chapter 2: Introducing Oracle NoSQL Database
This chapter introduces the foundational concepts of NoSQL systems, along with
a description of Oracle Berkeley DB, which is the foundation for Oracle NoSQL
Database.

Chapter 3: Oracle NoSQL Database Architecture
In this chapter, we discuss the detailed architecture of Oracle NoSQL Database.

Chapter 4: Oracle NoSQL Database Installation and Configuration
This chapter covers the installation and configuration steps of Oracle NoSQL
Database. You start with downloading the software, proceed through the software
installation process, and finally wrap up by configuring a distributed cluster of
Oracle NoSQL Database.

Chapter 5: Getting Started with Oracle
NoSQL Database Development
In this chapter, you are introduced to the basics of NoSQL development. You start
with a basic Hello World program and learn about modeling the key space. The
basics of reading and writing data are also covered in this chapter.

Chapter 6: Reading and Writing Data
In this chapter, you learn about the options available for reading and writing data
into the Oracle NoSQL key-value store. Consistency and durability policies are
explained with real-world examples.

00-FM.indd 20 11/9/13 2:35 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Introduction  xxi

Chapter 7: Advanced Programming Concepts:
Avro Schemas and Bindings
In this chapter, you learn about the Avro schemas and how they are used,
manipulated, and maintained. You also learn about different kinds of Avro bindings
available, and we provide sample code to explain the use of bindings.

Chapter 8: Capacity Planning and Sizing
The performance and availability of any enterprise software is dependent on the
choice and capacity of the underlying hardware. In this chapter, you are presented
with the best practices of sizing an enterprise-grade deployment of Oracle NoSQL
Database.

Chapter 9: Advanced Topics
In this chapter, we cover topics related to integration of Oracle NoSQL Database
with other products commonly found in enterprise datacenters, such as the Oracle
Relational Database Management System, Oracle Event Processing, and Hadoop.

Intended Audience
This book is suitable for the following readers:

■■ Developers who need to write NoSQL applications using Oracle NoSQL
Database

■■ Big data architects looking for different methods of storing unstructured data
for real-time analysis

■■ Database administrators who like to get into installation, administration, and
maintenance of NoSQL databases

■■ Technical managers or consultants who need an introduction to Oracle
NoSQL Database and to see how it compares to other NoSQL databases

No prior knowledge of Oracle NoSQL Database, big data, or any NoSQL
database technology is assumed.

00-FM.indd 21 11/9/13 2:35 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

00-FM.indd 22 11/9/13 2:35 PM

This page has been intentionally left blank

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

CHAPTER
1

Overview of Oracle
NoSQL Database

and Big Data

01-ch01.indd 1 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

2   Oracle NoSQL Database

Since the invention of the transistor, the proliferation and application of
computer technologies has been shaped by Moore’s Law. The growth in
CPU compute capacity, high-density memory, and low-cost data storage has

resulted in the invention and mass adoption of a variety of computing devices over
time. These devices have become ubiquitous in our life and provide various modes
of communication, computation, and intelligent sensing. As more and more of these
devices are connected to the cloud, the amount of online data generated by these
devices is growing tremendously. Until recently, there did not exist a very cost-
effective means for businesses to store, analyze, and utilize this data to improve
competitiveness and efficiency. In fact, the sheer volume and sparse nature of this
data has necessitated the development of new technologies to store and analyze the
data. This book covers those technologies, and focuses specifically on the role that
Oracle NoSQL Database plays in that space.

Introduction to NoSQL Systems
In recent years, there has been a huge surge in the use of big data technologies to
gain additional insights and benefits for business. Big data is an informal term that
encompasses the analysis of a variety of data from sources such as sensors, audio
and video, location information, weather data, web logs, tweets, blogs, user reviews,
and SMS messages among others. This large, interactive, and rapidly growing data
presents its own data management challenges. NoSQL data management refers to
the broad class of data management solutions that are designed to address this
space.

The idea of leveraging non-intuitive insights from big data is not new, but the
work of producing these insights requires understanding and correlating interesting
patterns in human behavior and aggregating the findings. Historically, such
insights were largely based on the use of secret, custom-built, in-house algorithms,
and systems. Only a handful of enterprises were able to do this successfully, because
it was very difficult to analyze the large volume of data and the various types of data
sources involved.

During the first decade of the twenty-first century, techniques and algorithms for
processing large amounts of data were popularized by web enterprises such as
Google and Yahoo!. Because of the sheer volume of data and the need for cost-
effective solutions, such systems incorporated design choices that made them diverge
significantly from traditional relational databases, leading to their characterization as
NoSQL systems. Though the term suggests that these systems are the antithesis of
traditional row and column relational systems, NoSQL solutions borrow many
concepts from contemporary relational systems as well as earlier systems such as
hierarchical and CODASYL systems. Therefore, NoSQL systems are probably better
characterized as Not only SQL rather than Not SQL.

01-ch01.indd 2 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 1:  Overview of Oracle NoSQL Database and Big Data  3

Brief Historical Perspective
It is useful to review a brief history of data management systems to understand how
they have influenced modern NoSQL systems. Database systems of the early 1960s
were invented to address data processing for scenarios where the amount of data
was larger than the available memory on the computer. The obvious solution to this
problem was to use secondary storage such as magnetic disks and tapes in order to
store the additional data. Because access to secondary storage is typically a few
hundred (or more) times slower than access to memory, early research in data
processing was focused on addressing this performance disparity. Techniques such
as efficient in-memory data structures, buffer management, sequential scanning, and
batch processing and access methods (indices) for disk resident data were created in
order to improve the performance of such systems.

The issue of data modeling also posed significant challenges because each
application had its own view of data. The manner in which information was
organized in memory as well as on disk had a huge influence on application design
and processing. In the early days, data organization and modeling was largely the
responsibility of the application. As a result, any changes to the methods in which
data was stored or organized forced drastic changes to applications. This was hugely
inefficient, and gave the impetus to decouple data storage from applications.

Early database management systems were based on the hierarchical data model.
Each entity in this model has a parent record and several sub-records that are
associated with the parent record organized in a hierarchy. For example, an employee
entity might have a sub-record for payroll information, another sub-record for
human resource (HR) information, and so on. Modeling the data in this manner
improves performance because an application needs to access only the sub-records
that are required, resulting in fewer disk accesses and better memory utilization. For
example, a payroll application needs to reference only the payroll sub-record (and
the parent record that is the “root” of the hierarchy). Application development is
also simplified because applications that manage separate sub-records can be
modularized and developed independently. Figure 1-1 illustrates how an employee
entity might be organized in the hierarchical model.

The CODASYL model improved upon the hierarchical data model by providing
indexing and links between related sub-records, resulting in further improvements in
performance and simplified application development. If we use the earlier example
of modeling Employee records, the CODASYL data model allows the designer to
link the records of all the dependents of an employee, as shown in Figure 1-2.

Despite these improvements, the issue of record structure and schema design
continued to be the dominant factor in application design. To add to the complexity,
the data model was relatively inflexible; making a significant change to the
organization of data often necessitated significant changes to the applications that
used the data. In spite of these limitations, it is important to remember that these
early systems provided excellent performance for data management problems of

01-ch01.indd 3 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

4   Oracle NoSQL Database

Employee

HR information Payroll information

Department Title

Pay rate Vacation hours

Tax info

SSN Personal info

Dependent 1 Dependent n

FIGURE 1-2.  Employee entity and child records in the CODASYL model

FIGURE 1-1.  Employee entity represented in the Network model of data

Employee

HR information Payroll information

Department Title

Pay rate Vacation hours

Tax info

SSN Home address

the day. The overall simplicity of the system also contributed to better stability and
reliability of the software. To this day, several common database applications such
as airline reservation systems and banking applications are based on these
architectures, a testament to their simplicity, performance, and reliability.

Ted Codd’s seminal research on relational database theory in the early 1970s,
the introduction of Structured Query Language (SQL) for data manipulation, and the
subsequent work on relational database management systems revolutionized the
data management industry. Relational database systems support logical relationships
between data items and provide a clean separation between the data model and the

01-ch01.indd 4 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 1:  Overview of Oracle NoSQL Database and Big Data  5

application. The database system assumes the responsibility of mapping logical
relationships to physical data organization. This data model independence has
several important benefits, including significant acceleration of application
development and maintenance, ease of physical data reorganization, and evolution
and use of the relational data repository in multiple ways for managing a variety of
data for multiple applications. Relational data is also referred to as structured data to
highlight the “row and column” organization of the data. Since the mid-1980s, the
use of relational database systems has been growing exponentially; it is fair to say
that present-day enterprise data management is dominated by SQL-based systems.

In addition to the advances in data modeling and application design, the last
40 years have also seen major architectural and technological innovations such as
the concept of transactions, indexing, concurrency control, and high availability.
Transactions embody the intuitive notion of the all-or-nothing unit of work, typically
involving multiple operations on different data entities. Various indexing techniques
provide fast access to specific data quickly and efficiently; concurrency control
ensures proper operation when multiple operations simultaneously manipulate shared
resources. Recovery and high availability ensure that the system is resilient to a variety
of failures. These technologies have been adapted and used in a variety of ways in
modern NoSQL solutions.

Modern NoSQL systems were developed in the early 2000s in response to
demands for processing the vast amounts of data produced by increasing Internet
usage and mobile and geo-location technologies. Traditional solutions were either
too expensive, not scalable, or required too much time to process data. Out of
necessity, companies such as Google, Yahoo!, and others were forced to invent
solutions that could address big data processing challenges. These modern NoSQL
systems borrowed from earlier solutions but made significant advances in horizontal
scalability and the efficient processing of diverse types of data such as text, audio,
video, image, and geo-location.

Big Data and NoSQL: Characteristics
and Architectural Trade-Offs
Big data is often characterized by the three Vs—volume, variety, and velocity.
Volume obviously refers to the terabytes and petabytes of data that need to be
processed, often in unstructured or semi-structured form. In a relational
database system, each row in a table has the same structure (same number of
columns, with a well-defined data type for each column and so on). By contrast,
each individual entity (row) in an unstructured or semi-structured system can be
structurally very different and therefore, contains more, less, or different information
from another entity in the same repository. This variety is a fundamental aspect of

01-ch01.indd 5 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

6   Oracle NoSQL Database

big data and can pose interesting management and processing challenges, which
NoSQL systems can address. Yet another aspect of big data is the velocity at which
the data is generated. For data capture scenarios, NoSQL systems need to be able to
ingest data at very high throughput rates (for example, hundreds of thousands to
millions of entities per second). Similarly, results often need to be delivered at very
high throughput as well as very low latency (milliseconds to a few seconds
per recipient).

Unlike data in relational database systems, the intrinsic value of an individual
entity in a big dataset may vary widely, depending on the intended use. Take the
common case of capturing web log data in files for later analysis. A sentiment
analysis application aggregates information from millions or billions of individual
data items in order to make conclusions about trends and patterns in the data. An
individual data item in the dataset provides very little insight, but contributes to the
aggregate results. Conversely, in the case of an application that manages user profile
data for ecommerce, each individual data item has a much higher value because it
represents a customer (or potential customer). Traditionally, every row in a relational
database repository is typically a “high value” row. We will refer to this variability in
value as the fourth V of big data.

In addition to this “four Vs” characterization of big data, there are a few implicit
characteristics as well. Often, the volume of data is variable and changes in
unpredictable or unexpected ways. For example, it may arrive at rates of terabytes
per day during some periods and gigabytes per day during others. In order to handle
this variability in volume, most NoSQL solutions provide dynamic horizontal
scalability, making it possible to add more hardware to the online system to
gracefully adapt to the increased demand. Traditional solutions also provide some
level of scalability in response to growing demand; however, NoSQL systems can
scale to significantly higher levels (10 times or more) compared to these systems.

Another characteristic of most NoSQL systems is high availability. In the vast
majority of usage scenarios, big data applications must remain available and process
information in spite of hardware failures, software bugs, bad data, power and/or
network outages, routine maintenance, and other disruptions. Again, traditional
systems provide high availability; however, the massive scalability of NoSQL
systems poses unique and interesting availability challenges. Unlike traditional
relational database solutions, NoSQL systems permit data loss, relaxed transaction
guarantees, and data inconsistency in order to provide availability and scalability
over hundreds or thousands of nodes.

Types of Big Data Processing
Big data processing falls into two broad categories—batch (or analytical) processing
and interactive (or “real-time”) processing. Batch processing of big data is targeted to
derive aggregate value (data analytics) from data by combining terabytes or petabytes

01-ch01.indd 6 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 1:  Overview of Oracle NoSQL Database and Big Data  7

of data in interesting ways. MapReduce and Hadoop are the most well-known big
data batch processing technologies available today. As a crude approximation, this is
similar to data warehousing applications in the sense that data warehousing also
involves aggregating vast quantities of data in order to identify trends and patterns
in the data.

As the term suggests, interactive big data processing is designed to serve data
very quickly with minimal overhead. The most common example of interactive big
data processing is managing web user profiles. Whenever an ecommerce user
connects to the web application, the user profile needs to be accessed with very low
latency (in a few milliseconds); otherwise the user is likely to visit a different site. A
2010 study by Amazon.com found that every 100 millisecond increase in latency
results in a 1 percent reduction in sales. Oracle NoSQL Database is a great example of
a database that can handle the stringent throughput and response-time requirements
of an interactive big data processing solution.

NoSQL Database vs. Relational Database
Relational database management systems (RDBMS) have been very effective in
managing transactional data. The Atomicity, Consistency, Isolation, and Durability
(ACID) properties of relational databases have made them a staple for enterprises
looking to manage data that spans various critical business functions. Examples
include Enterprise Resource Planning (ERP), Customer Relationship Management
(CRM), data warehouse, and a multitude of similar applications.

The Oracle Database has a 30-year legacy of high performance, scalability,
and fault tolerance. Enterprise customers demand a high level of security, disaster
recovery capabilities, and rich application development functionality. Relational
databases, like the Oracle Database, provide a very comprehensive functionality to
manage a multitude of data types and deployment options. These capabilities result
in a rich and complex database engine.

NoSQL databases were created at the other end of this spectrum; their primary
goal was to provide a very quick and dirty mechanism to retrieve information
without all the varied capabilities of the RDMBS that we have highlighted in the
preceding paragraph. NoSQL databases are highly distributed, run on commodity
hardware, and provide minimal or no transactional support; they also have a very
flexible or nonexistent schema definition requirement, and this makes them very
suitable for fast storage, retrieval, and update of unstructured data. NoSQL databases
have developed into a very lightweight, agile, developer-centric, API-driven database
engine. NoSQL database developers are comfortable using low-level APIs to interact
with the database, and don’t rely on higher-level languages such as SQL (Structured
Query Language), which is a standard for an RDBMS.

It is recommended that NoSQL databases be used for high volume, rapidly
evolving datasets, with low latency requirements, and where you need the complete
flexibility of its APIs to develop a very specialized data store. An RDBMS has

01-ch01.indd 7 11/12/13 2:57 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

8   Oracle NoSQL Database

enterprise-grade features for high availability and disaster recovery, which are
essential for transactional systems. When availability requirements are more flexible
and the possibility of data loss or consistency can be tolerated, NoSQL databases
prove to be a cost-effective solution. Also, applications that require a very efficient
mechanism to retrieve individual records without the need for operations such as
complex joins will also benefit from the use of the Oracle NoSQL Database. NoSQL
databases make efficient use of commodity servers and storage; they do not rely on
specialized hardware and can scale to thousands of servers and hence can manage
petabytes of data with very good scalability characteristics.

Both RDBMS and NoSQL databases provide significant benefits in their individual
use case scenarios. It is therefore very important to choose the appropriate technology
based on the need, and it is also critical to realize that the two can complement each
other, to provide a very comprehensive solution for big data.

While it is critical to choose a NoSQL technology that meets your specific use
case scenario, may it be key-value pair, graph, or document store (terms explained in
the next section), it is also important to realize that like any other data management
technology, NoSQL databases do not operate in a vacuum. Choose a NoSQL database
implementation that integrates very well with data ingestion tools, RDBMS, Business
Intelligence tools, and enterprise management utilities. Such an integrated NoSQL
database will allow you to combine information across different database types, and
data types (structured and unstructured), resulting in a big data deployment that brings
tremendous value to your enterprise.

Types of NoSQL Databases
In a highly distributed database management system, it is important to realize that
Consistency, Availability, and Partition Tolerance come at a price. The CAP Theorem
states that it is impossible to provide all three capabilities simultaneously. Different
NoSQL systems provide varying degrees of Consistency, Availability, and Partition
Tolerance, and it is important to choose the right implementation based on your
application needs.

In addition to the distributed system properties that are mentioned in the
preceding paragraph, you can also classify NoSQL database implementations based
on the mechanisms they use to store and retrieve data. These are important for the
application developer to consider before choosing the appropriate implementation.
There are four broad implementation types: key-value store, document store,
columnar, and graph.

Key-Value Stores
The key-value implementation stores data with unique keys, and the system is
opaque to the contents of the data. It is the responsibility of the client to introspect
the contents. This architecture allows for a highly optimized key-based lookup.

01-ch01.indd 8 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 1:  Overview of Oracle NoSQL Database and Big Data  9

Scalability is achieved through the sharding (a.k.a. partitioning) of data across
nodes. To protect against data loss, key-value store implementations replicate data
over nodes, and this can potentially lead to consistency issues when you have
network failures and inaccessible nodes. Many systems therefore leave it up to the
client to handle and resolve any consistency issues.

Key-value stores are very useful for applications such as user profile lookup,
storing and retrieving online shopping carts, and catalog lookups. These applications
have a unique user ID or an item ID associated with the data, and the key-value
store provides a clean and efficient API to retrieve this information.

Document Stores
The document stores at their foundation are very similar to key-value implementation.
An important distinction, however, is their capability to introspect the data that is
associated with the key. This is possible because the document store understands the
format of the data stored. This opens up the possibility to carry out aggregates and
searches across elements of the document itself. Also, bulk update of the data is
possible. Document stores work with multiple formats including XML and JSON.
This allows for storage and retrieval of data without an impedance match.

The scalability, replication, and consistency characteristics of document stores
are very similar to those of KV stores. Typical use cases for document stores include
the storage and retrieval of catalogs, blog posts, news articles, and data analysis.

Graph Stores
Graph stores are different from the other methods in that they have the capability not
only to capture information about objects, but can also record the relationships
between these objects. Within each graph store, there are objects and relationships,
which have specific properties attached to them. At the application level, these
properties can be used to create specific subsets of relationships or objects best suited
to a specific enterprise purpose. For example, the developer of a social network
gaming application may wish to target a promotion of free in-game currency to
those users who are friends of a gamer who ranks amongst the top 10 percentile of
the highest scorers. Such data would be difficult to retrieve in other NoSQL database
implementations, but the capability to traverse relationships in graph databases makes
such queries very intuitive. For social networks, this analytical capability of graph
stores allows for quick analysis and monetization of relationships that have been
captured in their application. Graph databases can be used to analyze customer
interactions, social media, and scientific application where it is crucial to traverse long
relationship graphs to better understand data.

Column Stores
Column stores are the final type of NoSQL database that we will review. These store
data in a columnar fashion; the result is a table where each row can have one or

01-ch01.indd 9 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

10   Oracle NoSQL Database

more columns, and the number of columns in each row can vary from row to row.
This provides a very flexible data model to store your data, and a clear demarcation
of similar attributes, which also acts as an index to quickly retrieve data. To further
demarcate by columns, you can combine similar columns to build column families.
This concept of grouping helps with more complex queries as well. At the core,
each column and its associated data is essentially a key-value pair. As data is
organized into columns, you have better indexing (and therefore visibility)
compared to other key-value stores. Also, when it comes to updates, multiple
column block updates can be aggregated. Column store databases were born when
Google open sourced its implementation of a Column store NoSQL database called
Big Table. Apparently, the data for the well-known Google e-mail service, Gmail, is
stored in the Google Big Table NoSQL Database.

Based on the discussion of the four different types of NoSQL databases, it is
evident that this family of products provides a rich set of functionality for storing and
retrieving data in a very cost-effective, fault-tolerant, and scalable manner.

Big Data Use Cases
The initial use of NoSQL technology began with the social media sites as they were
looking at ways to deal with large sets of data generated by their user communities.
For example, in 2010 Twitter saw data arriving at the rates of 12TB/day, and that
resulted in a 4PB dataset in a year. These numbers have grown significantly as
Twitter usage has expanded globally.

While the social media sites such as Twitter gave users an option to share their
thoughts, ideas, and pictures, there was no easy way to make sense of such a large
tsunami of information as it arrived from millions of users. HDFS is used to store
such data in a distributed and fault-tolerant manner, and MapReduce technology,
with its batch processing capability, is used to analyze the data. However, this
wasn’t the right technology for answering real-time analytics on the data. Each tweet
is stored with a unique identifier, and Twitter also saves the user ID. This key-value
store could potentially take advantage of the capability of NoSQL databases. NoSQL
database technologies could be used to run queries such as user searches, tweets
from a specific user, and graph database capabilities could be used to find friends
and followers.

Present-day enterprises have come to value the insight that social media
provides into customer behavior, opinions, and market trends. Combining social
media data with CRM data can provide a holistic view about the customer,
something that was not possible just a few years ago. Customer data is no longer just
limited to the past interactions; it can now include images, recordings, Likes (as in
Facebook likes), web pages visited, preferences, loyalty programs, and an evolving

01-ch01.indd 10 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 1:  Overview of Oracle NoSQL Database and Big Data  11

set of artifacts. This requires a system that can handle both structured and
unstructured data. As more channels of communication and collaboration come and
go, the data format keeps constantly changing, requiring that developers and data
management systems know how to operate in a schema-less fashion. While each
record in a transactional system is very critical for the operation of the business, the
new customer data is high volume and sparse. This requires a distributed storage
and computing environment.

Customer profile data is predominantly a read-only lookup and requires a simple
key-based access. NoSQL databases, with their support of unstructured and semi-
structured data, key-value store, and distributed deployments, are ideal candidates.
When it comes to operational analysis, you might want to combine the customer
profile data with that in your OLTP or DW systems. The tight integration between
Oracle NoSQL Database and the Oracle Database makes it possible for you to join
data across both of these systems. Therefore, enterprises now deploy NoSQL
databases alongside RDBMS, and MapReduce technologies.

Another use case that will illustrate how the different data management and
analysis technologies work together is that of online advertisers. Advertisers are
always in search of a new set of eyes, and the fast growth of mobile devices has
made that a key focus.

Usage patterns on mobile devices are characterized by short intermittent access,
as compared to that of a desktop interface, and this puts stringent constraints on the
time publishers have to make the decision about which ad to display. Typically, this
is of the order of 75 milliseconds, and a medium-sized publisher might have more
than 500 million ad impressions in a day. The short time intervals, the large number
of events, and the huge amount of associated data that gets generated require a
multifaceted data management system. This system needs to be highly responsive,
be able to support high throughput, and be able to respond to varying loads and
system fault conditions. There is no single technology that can fulfill these
requirements.

To be effective, the publisher needs to be able to quickly analyze the user so as
to decide which ad to display. A user lookup is carried out on a NoSQL database
and the profile is loaded. The profile might include details on demographics,
behavioral segments, recency, location, and a user rating, which might have been
arrived at behind the scenes through a scoring engine.

In addition to displaying the ad, there are campaign budgets to manage, client
financial transactions to track, and campaign effectiveness to analyze. NoSQL
database technologies, in conjunction with MapReduce and relational databases,
are used in such a deployment, as shown in Figure 1-3.

01-ch01.indd 11 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

12   Oracle NoSQL Database

Oracle’s Approach to Big Data
The amount of data being generated is on the verge of an explosion, and according
to an International Data Corporation (IDC) 2012 report, the total amount of data
stored by corporations globally would surpass a zettabyte (1 zettabyte = 1 billion
terabytes) by the end of 2012. Therefore, it is critical for the data companies to be
prepared with an infrastructure that can store and analyze extremely large datasets,
and be able to generate actionable intelligence that in turn can drive business
decisions. Oracle offers a broad portfolio of products to help enterprises acquire,
manage, and integrate big data with existing corporate data, and perform rich and
intelligent analytics.

Implementing big data solutions with tools and techniques that are not tested or
integrated is too risky and problematic. The approach to solve big data problems
should follow best practice methodologies and toolsets that are proven in real-world
deployments. The typical best practices for processing big data can be categorized
by the flow of data in the processing stream, mainly the data acquisition, data
organization, and data analysis. Oracle’s big data technology stack includes
hardware and software components that can process big data during all the critical
phases of its lifecycle, from acquisition to storage to organization to analysis.

FIGURE 1-3.  Typical big data application architecture for an advertising use case

Map

Reduce

MapMap

ReduceReduce

Browsers

NoSQL DB

Hadoop Cluster

RDBMS

Report ServersHTTP Servers

01-ch01.indd 12 11/12/13 2:57 PM

Chapter 1: Overview of Oracle NoSQL Database and Big Data 13

Oracle engineered systems such as Oracle Big Data Appliance, Oracle Exadata,
and Oracle Exalytics, along with the Oracle’s proprietary and open source software,
are able to acquire, organize, and analyze all enterprise data, including structured
and unstructured data, to help make informed business decisions.

Acquire
The acquire phase refers to the acquisition of incoming big data streams from a
variety of sources such as social media, mobile devices, machine data, and sensor
data. The data often has flexible structures, and comes in with high velocity and in
large volumes. The infrastructure needed to ingest and persist these big datasets
needs to provide low and predictable latencies when writing data, high throughput
on scans, and very fast and quick lookups, and it needs to support dynamic
schemas. Some of the popular technologies that support the requirements of storing
big data are NoSQL databases, Hadoop Distributed File System (HDFS), and Hive.

NoSQL databases are designed to support high performance and dynamic
schema requirements; in fact, they are considered the real-time databases of big
data. They are able to provide fast throughput on writes because they use a simple
data model in which the data is stored as-is with its original structure, along with a
single identifying key, rather than interpreting and converting the data into a well-
defined schema. The reads also become very simple: You supply a key and the
database quickly returns the value by performing a key-based index lookup. The
NoSQL databases are also distributed and replicated to provide high availability and
reliability, and can linearly scale in performance and capacity just by adding more
Storage Nodes to the cluster. With this lightweight and distributed architecture,
NoSQL databases can rapidly store a large number of transactions and provide
extremely fast lookups.

NoSQL databases are well suited for storing data with dynamic structures.
NoSQL databases simply capture the incoming data without parsing or making
sense of its structure. This provides low latencies at write time, which is a great
benefit, but the complexity is shifted to the application at read time because it needs
to interpret the structure of stored data, which is often a great trade-off because
when the underlying data structures change, the effect is only noticed by the
application querying the data. Modifying application logic to support schema
evolution is considered more cost-effective than reorganizing the data, which is
resource-intensive and time-consuming, especially when multi-terabytes of data are
involved. Project planners already assume that change is part of an application
lifecycle, but not so much for reorganization of data.

Hadoop Distributed File System (HDFS) is another option to store big data.
HDFS is the storage engine behind the Apache Hadoop project, which is the
software framework built to handle storage and processing of big data. Typical use
of HDFS is for storing data warehouse–oriented datasets whose needs are store-once
and scan-many-times, with the scans being directed at most of the stored data.

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

14   Oracle NoSQL Database

HDFS works by splitting the file into small chunks called blocks, and then storing
the blocks across a cluster of HDFS servers. As with NoSQL, HDFS also provides
high scalability, availability, and reliability by replicating the blocks multiple times,
and providing the capability to grow the cluster by simply adding more nodes.

Apache Hive is another option for storing data warehouse–like big data. It is a
SQL-based infrastructure originally built at Facebook for storing and processing data
residing in HDFS. Hive simply imposes a structure on HDFS files by defining a table
with columns and rows—which means it is ideal for supporting structured big
datasets. HiveQL is the SQL interface into Hive in which users query data using the
popular SQL language.

HDFS and Hive are both not designed for OLTP workloads and do not offer
update or real-time query capabilities, for which NoSQL databases are best suited.
On the flip side, HDFS and Hive are best suited for batch jobs over big datasets that
need to scan large amounts of data, a capability that NoSQL databases currently lack.

Organize
Once the data is acquired and stored in a persistent store such as a NoSQL database
or HDFS, it needs to be organized further in order to extract any meaningful
information on which further analysis could be performed. You could think of data
organization as a combination of knowledge discovery and data integration, in
which large volumes of big data undergo multiple phases of data crunching, at the
end of which the data takes a form suitable to perform meaningful business analysis.
It is only after the organization phase that you begin to see a business value from the
otherwise yet-to-be-valued big data.

Multiple technologies exist for organizing big data, the popular ones being Apache
Hadoop MapReduce Framework, Oracle Database In-Database Analytics, R Analytics,
Oracle R Enterprise, and Oracle Big Data Connectors.

The MapReduce framework is a programming model, originally developed at
Google, to assist in building distributed applications that work with big data.
MapReduce allows the programmer to focus on writing the business logic, rather
than focusing on the management and control of the distributed tasks, such as task
parallelization, inter-task communication, and data transfers, and handling restarts
upon failures.

As you can imagine, MapReduce can be used to code any business logic to
analyze large datasets residing in HDFS. MapReduce is a programmer’s paradise for
analyzing big data, along with the help of several other Apache projects such as
Mahout, an open source machine learning framework. However, MapReduce
requires the end user to know programming language such as Java, which needs
quite a few lines of code even for programming a simple scenario. Hive, on the
other hand, translates the SQL-like statements (HiveQL) into MapReduce programs

01-ch01.indd 14 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 1:  Overview of Oracle NoSQL Database and Big Data  15

behind the scenes, a nice alternative to coding in Java since SQL is a language that
most data analysts are already familiar with.

Open source R along with its add-on packages can also be used to perform
MapReduce-like statistical functions on the HDFS cluster without using Java. R is
a statistical programming language and an integrated graphical environment for
performing statistical analysis. R language is a product of a community of statisticians,
analysts, and programmers who are not only working on improvising and extending
R, but also are able to strategically steer its development, by providing open source
packages that extend the capability of R.

The results of R scripts and MapReduce programs can be loaded into the Oracle
Database where further analytics can be performed (see the next section on the
analyze phase). This leads to an interesting topic—integration of big data with
transactional data resident in a relational database management system such as
the Oracle Database. Transactional data of an enterprise has extreme value in itself,
whether it is the data about enterprise sales, or customers, or even business
performance. The big data residing in HDFS or NoSQL databases can be combined
with the transactional data in order to achieve a complete and integrated view of
business performance.

Oracle Big Data Connectors is a suite of optimized software packages to help
enterprises integrate data stored in Hadoop or Oracle NoSQL Database with Oracle
Database. It enables very fast data movements between these two environments using
Oracle Loader for Hadoop and Oracle Direct Connector for Hadoop Distributed File
System (HDFS), while Oracle Data Integrator Application Adapter for Hadoop and
Oracle R Connector for Hadoop provide non-Hadoop experts with easier access to
HDFS data and MapReduce functionality.

Oracle NoSQL Database also has the capability to expose the key-value store
data to the Oracle Database by combining the powerful integration capabilities of
the Oracle NoSQL Database with the Oracle Database external table feature. The
external table feature allows users to access data (read-only) from sources that are
external to the database such as flat files, HDFS, and Oracle NoSQL Database. External
tables act like regular database tables for the application developer. The database
creates a link that just points to the source of the data, and the data continues to reside
in its original location. This feature is quite useful for data analysts who are accustomed
to using SQL for analysis. Chapter 9 has further details on this feature.

Analyze
The infrastructure required for analyzing big data must be able to support deeper
analytics such as data mining, predictive analytics, and statistical analysis. It should
support a variety of data types and scale to extreme data volumes, while at the same
time deliver fast response times. Also, supporting the ability to combine big data
with traditional enterprise data is important because new insight comes not just

01-ch01.indd 15 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

16   Oracle NoSQL Database

from analyzing new data or existing data, but by combining and analyzing together
to provide new perspectives on old problems.

Oracle Database supports the organize and analyze phases of big data through
the in-database analytics functionality that is embedded within the database. Some
of the useful in-database analytics features of the Oracle Database are Oracle R
Enterprise, Data Mining and Predictive Analytics, and in-database MapReduce. The
point here is that further organization and analysis on big data can still be
performed even after the data lands in Oracle Database. If you do not need further
analysis, you can still leverage SQL or business intelligence tools to expose the
results of these analytics to end users.

Oracle R Enterprise (ORE) allows the execution of R scripts on datasets residing
inside the Oracle Database. The ORE engine interacts with datasets residing inside
the database in a transparent fashion using standard R constructs, thus providing a
rich end-user experience. ORE also enables embedded execution of R scripts, and
utilizes the underlying Oracle Database parallelism to run R on a cluster of nodes.

In-Database Data Mining offers the capability to create complex data mining
models for performing predictive analytics. Data mining models can be built by
data scientists, and business analysts can leverage the results of these predictive
models using standard BI tools. In this way the knowledge of building the models
is abstracted from the analysis process. In-Database MapReduce provides
the capability to write procedural logic conforming to the popular MapReduce
model, and seamlessly leverage Oracle Database parallel execution. In-database
MapReduce allows data scientists to create high-performance routines with complex
logic, using PL/SQL, C, or Java.

Each one of the analytical components in Oracle Database is quite powerful by
itself, and combining them creates even more value to the business. Once the data
is fully analyzed, tools such as Oracle Business Intelligence Enterprise Edition and
Oracle Endeca Information Discovery help assist the business analyst in the final
decision-making process.

Oracle Business Intelligence Enterprise Edition (OBI EE) is a comprehensive
platform that delivers full business intelligence capabilities, including BI dashboards,
ad-hoc queries, notifications and alerts, enterprise and financial reporting, scorecard
and strategy management, business process invocation, search and collaboration,
mobile, integrated systems management, and more.

OBI EE includes the BI Server that integrates a variety of data sources into a
Common Enterprise Information Model and provides a centralized view of the
business model. The BI Server also comprises an advanced calculation and
integration engine, and provides native database support for a variety of databases,
including Oracle. Front-end components in OBI EE provide ad-hoc query and
analysis, high precision reporting (BI Publisher), strategy and balanced scorecards,
dashboards, and linkage to an action framework for automated detection and

01-ch01.indd 16 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 1:  Overview of Oracle NoSQL Database and Big Data  17

business processes. Additional integration is also provided to Microsoft Office,
mobile devices, and other Oracle middleware products such as WebCenter.

Oracle Endeca Information Discovery is a platform designed to provide rapid
and intuitive exploration and analysis of both structured and unstructured data
sources. Oracle Endeca enables enterprises to extend the analytical capabilities to
unstructured data, such as social media, websites, e-mail, and other big data.
Endeca indexes all types of incoming data so the search and the discovery process
can be fast, thereby saving time and cost, and leading to better business decisions.
The information can also be enriched further by integrating with other analytical
capabilities such as sentiment and lexical analysis, and presented in a single user
interface that can be utilized to discover new insights.

Oracle Engineered Systems for Big Data
Over the last few years, Oracle has been focused on purpose-built systems that are
engineered to have hardware and software work together, and are designed to
deliver extreme performance and high availability, while at the same time making
them easy to install, configure, and maintain. The Oracle engineered systems that
assist with big data processing through its various phases are the Oracle Big Data
Appliance, Oracle Exadata Database Machine, and Oracle Exalytics In-Memory
Machine. Figure 1-4 shows the best practice architecture of processing big data
using Oracle engineered systems. As the figure depicts, each appliance plays a
special role in the overall processing of big data by participating in the acquisition,
organization, and analysis phases.

FIGURE 1-4.  Oracle engineered systems supporting acquire, organize, analyze, and
decide phases of big data

Exadata

Big Data
Appliance

DECIDE ANALYZE ORGANIZE ACQUIRE

Exalytics
Hadoop

Open Source R

Applications

Oracle NoSQL
Database

Analytic
Applications

Alerts,
Dashboards,

MD-Analysis,
Reports, Query
Web Services
BI Abstraction

Oracle
Advanced
Analytics

Data
Warehouse

Oracle
Database In

-D
at

ab
as

e
A

na
ly

tic
s

Oracle Big
Data

Connectors

Oracle Data
Integrator

01-ch01.indd 17 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

18   Oracle NoSQL Database

Oracle Big Data Appliance
The Oracle Big Data Appliance is an engineered system built with optimized
hardware and a comprehensive set of software designed to provide big data
solutions in a complete, easy-to-deploy offering for acquiring, organizing, and
analyzing big data. Oracle Big Data Appliance delivers an affordable, scalable, and
fully optimized big data infrastructure in-a-box, as compared to building a custom
system from scratch, which could be time-consuming, inefficient, and prone to
failures. Oracle Big Data Appliance, along with Oracle Exadata Database Machine
and Oracle Exalytics In-Memory Machine, creates a complete set of technologies for
leveraging and integrating big data, and helps enterprises quickly and efficiently turn
information into insight.

The Oracle Big Data Appliance provides the following benefits:

■■ Rapid provisioning of large and highly available big data clusters that can
linearly scale and process massive amounts of data

■■ Cost control benefits of deploying a pre-integrated, engineered system that
can be installed and managed easily

■■ High performance by engineering state-of-the-art hardware and pre-optimized
software to assist with acquiring, organizing, and analyzing big data

The Oracle Big Data Appliance comes in multiple configurations of different-sized
racks: the full rack, two-thirds rack, and one-third rack. The full-rack configuration
comprises 18 Sun servers and provides a total raw storage capacity of 648TB. Every
server in the rack has 2 CPUs, each with 8 cores for a total of 288 cores, and 64GB
memory that can be expanded to 512GB, for a total of 1152GB expandable to over
9TB of total memory for all 18 servers. The two-thirds rack and one-third rack
configurations have the hardware specs that are basically two-thirds and one-third
of the respective full-rack configuration. These racks can be easily cabled together
using the high-speed InfiniBand network in order to provide rapid scalability and
incremental growth, thereby enabling the cluster to handle extreme data volumes
and storage capacity.

As shown in Figure 1-5, the software preinstalled on the Oracle Big Data
Appliance includes a combination of open source software and specialized software
developed by Oracle to address enterprise big data needs. The Oracle Big Data
Appliance integrated software includes:

■■ Cloudera’s distribution including Apache Hadoop (CDH)

■■ Cloudera Manager

01-ch01.indd 18 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 1:  Overview of Oracle NoSQL Database and Big Data  19

■■ Oracle NoSQL Database Community Edition (CE)

■■ Oracle Big Data Connectors

■■ Oracle R Distribution (Oracle’s redistribution of Open Source R)

Oracle NoSQL Database Community Edition (CE) comes preinstalled on the
Oracle Big Data Appliance by default, and configured upon the customer’s request
at install time. You have the capability to run Oracle NoSQL Database on all the
18 nodes in the cluster, with each node having a dedicated space of 3TB or 6TB
(one disk or two disks, other custom configurations are also possible). Oracle
NoSQL Database is rack aware and its block placement algorithms minimize data
loss when multiple racks are interconnected by placing mirrored blocks on different
racks to enhance availability. The customer can purchase the Enterprise Edition (EE)
license of Oracle NoSQL Database and get enterprise-level features (see Chapter 2
for more details).

Cloudera’s Distribution including Apache Hadoop (CDH) consists of open source
Apache Hadoop and a comprehensive set of open source software components
needed to use Hadoop, with Cloudera’s branding and support. Cloudera Manager
is a proprietary product from Cloudera that provides an end-to-end management
application that provides monitoring and administration capabilities of CDH clusters.
It also incorporates a full range of reporting and diagnostic tools to help optimize
cluster performance and utilization.

Oracle Big Data Appliance

Oracle NoSQL
Database

Cloudera
Manager Oracle Big

Data
Connectors

Cloudera CDH

Oracle ROracle Enterprise Linux and Java VM

FIGURE 1-5.  Oracle Big Data Appliance software overview

01-ch01.indd 19 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

20   Oracle NoSQL Database

Oracle Exadata Database Machine
The Oracle Exadata Database Machine is an engineered system built to support all
types of database workloads, ranging from data warehouse applications that scan
large amounts of data, to OLTP applications supporting highly concurrent and real-
time transactions. It has an award-winning combination of smart software that runs
in the storage layers called Exadata Storage Server Software, the intelligent Oracle
Database 11g software, and the latest industry hardware components from Oracle,
all combined to deliver extreme performance in a highly available, reliable, and
highly secure environment out-of-the-box.

The Database Machine has large amounts of memory and PCIe-based Flash
storage, which allows caching and storage of frequently accessed data into entities
that are hundreds of times faster than the hard disks, which helps boost OLTP-like
workload performance. The smart features of the Exadata Storage Server Software
offloads processing to run near the disks where the data resides, thereby eliminating
a lot of unnecessary data movement between the database CPUs and disks, a feature
that can provide ten- or twenty-fold speed-up for data warehousing workloads.

The Database Machine is also well-suited for consolidating multiple databases
onto a single grid by utilizing the resource management, clustering, workload
management, and the pluggable database features of the Oracle Database. Also, the
award-winning Exadata Hybrid Columnar Compression feature allows you to
achieve 10- to 50-times compression of data on disk, thereby offering cost savings
and performance improvements because you store and scan less data.

The Oracle Exadata Database Machine has the capability to perform the
organize and analyze stages of big data processing. The In-Database Analytics offers
powerful features for knowledge discovery and data mining, which helps extract
hidden intelligence and allows the organization of data in a manner suitable for
making business decisions. The Oracle business intelligence tools, such as Oracle BI
EE and Oracle Endeca, rely on the data residing in a relational system, for which the
Exadata Database Machine is the ideal platform of choice. Connections between
Oracle Big Data Appliance, Oracle Exadata, and Oracle Exalytics are via InfiniBand,
enabling high-speed data transfer for batch or query workloads.

Oracle Exalytics In-Memory Machine
In the world of rapidly evolving economy and business dynamics, it has become
even more important for organizations to perform real-time, visual analysis, and
enable new types of analytic applications in order to assist with speed-of-thought
decision process, in order to help them stand out from the rest. Static reports and
dashboards have become passé; enterprises are now utilizing tools and techniques
such as business modeling, planning, forecasting, and predictive analytics, and
using rich and interactive visualizations to assist with actionable intelligence and
real-time decisions.

01-ch01.indd 20 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 1:  Overview of Oracle NoSQL Database and Big Data  21

Oracle Exalytics In-Memory Machine is an engineered system built to deliver
high-performance business intelligence (BI) and enterprise planning applications.
The hardware consists of a single server that is optimally configured for business
intelligence workloads and includes powerful compute capacity and abundant
memory to assist with in-memory analytics. The InfiniBand network connectivity
provides an extremely fast option to connect Exalytics to other Exalytics or Oracle
engineered systems such as Exadata. For example, this option can augment the
business intelligence capabilities of Exalytics with powerful embedded in-database
analytics capabilities of Exadata.

The software included in the Oracle Exalytics In-Memory Machine is the
optimized Oracle BI Foundation Suite (Oracle BI Foundation) and Oracle TimesTen
In-Memory Database. Business Intelligence Foundation takes advantage of the
Exalytics hardware and system configuration to deliver rich and actionable
intelligence. Exalytics also provides better query responsiveness and higher user
scalability compared to standalone installation of Oracle BI Foundation. The
TimesTen In-Memory Database for Exalytics is an optimized in-memory database
that offers some exclusive features especially enabled for Exalytics, such as
columnar compression to reduce the footprint for in-memory data.

Summary
NoSQL databases provide a simple and lightweight mechanism for storing new and
diverse sets of digital data streams, which oftentimes would not be appropriate to
store in a traditional RDBMS. NoSQL databases are optimized to handle quick reads
and writes of large datasets by allowing the application to define loose durability
and consistency models in order to favor read and write performance, which is a
key factor for a big data application with real-time needs.

Oracle NoSQL Database is a distributed key-value database designed to provide
highly reliable, scalable, and available data storage across a configurable set of
systems. Oracle NoSQL Database plays a key role in the overall portfolio of Oracle’s
big data offerings, to assist in analyzing enterprise big data. The rest of the chapters
cover Oracle NoSQL Database in much greater depth.

01-ch01.indd 21 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

01-ch01.indd 22 11/12/13 2:57 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

CHAPTER
2

Introducing Oracle
NoSQL Database

02-ch02.indd 23 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

24   Oracle NoSQL Database

Oracle NoSQL Database is a scalable, highly available, key-value store that
can be used to acquire and manage vast amounts of interactive information.
It is intended to address the “last mile” requirements of interactive big data

applications. We begin this chapter with an introduction to Oracle Berkeley DB (or
Berkeley DB for short), which is the foundation for Oracle NoSQL Database as well
as several other NoSQL systems.

Oracle NoSQL Database uses Oracle Berkeley DB Java Edition as the underlying
data storage engine. Berkeley DB Java Edition is a mature product that also provides
many, but not all, of the features and characteristics that are necessary for building
a distributed key-value store such as Oracle NoSQL Database.

Oracle Berkeley DB
The Berkeley DB family of embeddable database products was developed by
Sleepycat Software, Inc., beginning in the early 1990s. Sleepycat Software, Inc. was
later acquired by Oracle in 2006. Since the acquisition, Oracle has continued to
invest in the Berkeley DB family of products by adding features and enhancements
to meet the needs of a large and growing base of users. In addition to a SQL
interface (the SQL API is available for Berkeley DB, but not for Berkeley DB Java
Edition) for supporting ad hoc queries, there have been major performance and
reliability enhancements as well as support for enterprise mobility. Enterprise
mobility support is available through the SQL API for Berkeley DB.

Berkeley DB is a highly flexible, embeddable database engine that provides the
application designer with a wide variety of choices for configuring and using the data
management library. For example, you can run Berkeley DB as a pure in-memory
database, change transactional constraints, run it on a wide variety of servers as well
as embedded operating systems, and choose the appropriate API from a variety of

Products in the Berkeley DB Family
The Berkeley DB family of products encompasses three products: Berkeley DB,
Berkeley DB Java Edition, and Berkeley DB XML. Berkeley DB is implemented
in C and provides transactional key-value access to data. Berkeley DB supports
a variety of programmatic and scripting APIs, including a SQL interface.
Berkeley DB Java Edition is a pure Java implementation that provides similar
functionality and features (except the SQL API) as Berkeley DB. Berkeley
DB XML is designed to manage XML documents; it provides transactional
XQuery access to XML documents. Berkeley DB XML uses Berkeley DB as
the storage engine.

02-ch02.indd 24 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 2:  Introducing Oracle NoSQL Database  25

available APIs. Further, Berkeley DB supports advanced data management features
such as B-tree indexing and hash indexing (only available in Berkeley DB, but not
Berkeley DB Java Edition) as well as replication and high availability. Figure 2-1
illustrates the architecture of the Berkeley DB family of products.

Though Berkeley DB (we use the terms “Oracle Berkeley DB,” “Berkeley DB,” and
“Berkeley DB family of products” interchangeably in this discussion) was originally
focused on providing simple, fast key-value access to large amounts of disk-resident
data in a small, embeddable library, several enhancements and modes of operation
(for example, pure in-memory support) have been added to the products over the
years. The Berkeley DB founders recognized the widespread need of applications to
efficiently manage large quantities of disk-resident data; after all, programs are a
combination of data, data structures to represent information, and algorithms to
manipulate that data. Very often, the application also needs capabilities such as
concurrency, fast indexed access, transactions, and recovery. These key observations
led to the genesis of Berkeley DB. Berkeley DB provides all the data management
capabilities that we have come to expect from traditional database systems packaged
into an embeddable database library. Because Berkeley DB is an embeddable
database library, database capabilities are built into the application, as opposed to

FIGURE 2-1.  Berkeley DB product family

XML database built on
top of Berkeley DB

Berkeley DB XML

XML
Document
Manager

XML
Indexer

XQuery
Engine

2

31

Berkeley DB

Replication

TransactionsAccess Methods

Shared Memory CacheLocking

Index

High-performance,
transactional database

High-performance,
pure Java database

Database File Log File

Berkeley DB Java Edition

TransactionsAccess Methods

Heap-Based CacheLocking

Index Database/Log File

02-ch02.indd 25 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

26   Oracle NoSQL Database

the application accessing data managed by a separate server. Berkeley DB APIs are
intentionally designed from an application programmer’s point of view, rather than a
database application developer’s point of view. Rather than specifying a data request
declaratively in SQL, the Berkeley DB application developer accesses data using
intuitive get() and put() API calls. This simple and intuitive interface eliminates
the overhead of query parsing and optimization associated with SQL. In that sense,
Berkeley DB applications are similar to the proprietary hierarchical database systems
of the 1960s, where the data management engine was tightly coupled with the
application. This tight coupling and simplicity of access enable the Berkeley DB
application to get dramatic performance improvements for accessing vast quantities
of data. Figure 2-2 illustrates the differences between an application using a SQL
client-server system and an embeddable database such as Berkeley DB.

Berkeley DB’s high availability and replication feature allows an application to
survive machine failures as well as improve read scalability. A highly available
Berkeley DB application runs on multiple computers configured as a high availability
cluster; updates to the database are allowed only on one machine, designated as a
master. The application running on the other nodes (called replicas) can read the data.
Berkeley DB propagates changes to the data on the master node to all the replicas on
the other machines in the cluster to keep the replicas updated and current. If the
machine running the master should fail, Berkeley DB provides an election mechanism
that can be used to choose a new master from among the surviving replicas without
interruption of normal activity.

FIGURE 2-2.  Conventional client-server system vs. Berkeley DB application

Conventional RDBMS Berkeley DB

Network

SQL
overhead Your Application

Code
Berkeley DB

Data Type
Transformation

Your Application Code

ODBC, JDBC, OCI, etc.

TCP/IP

TCP/IP

SQL Parser

Query Optimizer

Storage Manager

02-ch02.indd 26 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 2:  Introducing Oracle NoSQL Database  27

Due to the ease of use and robust database features, Berkeley DB products are
extremely popular; there are over 200 million deployments of Berkeley DB worldwide.
A wide variety of production applications, ranging from mobile phone applications to
special-purpose appliances such as LDAP and e-mail servers to ecommerce websites,
are based on Berkeley DB. It is fair to say that Berkeley DB is one of the most mature,
high-performance, and high-function embeddable databases available today.

In recent years, several customers have built their own distributed key-value stores
using Berkeley DB as a foundation. For example, Voldemort, the database engine for
LinkedIn, one of the most popular social websites, uses Berkeley DB Java Edition for
managing information for millions of subscribers. It is no surprise, then, that the
developers of Oracle NoSQL Database also chose Berkeley DB Java Edition as the
foundation for building a distributed key-value store. Besides the high-performance
transactional indexed access capabilities, the high availability and replication
features of Berkeley DB Java Edition are crucial architectural components of Oracle
NoSQL Database.

Oracle NoSQL Database
Oracle NoSQL Database leverages the features and functionality of Oracle Berkeley
DB Java Edition. We begin with a high-level description of the features and
characteristics of the system and then explore some of the topics in more detail in
the following sections.

Oracle NoSQL Database is a shared-nothing system designed to run and scale
on commodity hardware. Key-value pairs are hash partitioned across server groups
known as shards. At any point in time, a single key-value pair is always associated
with a unique shard in the system. The major key (described shortly) of the key-
value pair is hashed in order to determine which shard the record will belong to.
Most Oracle NoSQL Database deployments use multiple machines (also referred to
as nodes) per shard; each shard is configured as a highly available system using
Berkeley DB Java Edition’s high availability feature. The recommended configuration
requires a minimum of three machines per shard; this is called the replication factor
for the configuration. Depending on application requirements, a replication factor
greater or less than 3 might be more appropriate. For example, a highly available
10-shard system with a replication factor of 3 would be deployed on 30 nodes. Of
course, other configurations are possible in practice.

At the API level, Oracle NoSQL Database provides a key-value paradigm that is
similar to Berkeley DB’s key-value API. Oracle NoSQL Database supports the notion
of a primary key (called major key) of a key-value pair, which is used to determine
which shard the key-value pair should belong to. Because Oracle NoSQL Database
is a shared-nothing, sharded, key-value client-server system, there are some key
differences between the features offered in Berkeley DB Java Edition and Oracle
NoSQL Database.

02-ch02.indd 27 11/12/13 3:05 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

28   Oracle NoSQL Database

Oracle NoSQL Database supports the notion of minor keys. The combination of
major and minor keys can be used to identify and address specific portions of the
information in a key-value pair record. Minor keys are optional, but provide a
significant convenience to the application developer. The combination of major and
minor keys serves as the fully qualified unique primary key. Oracle NoSQL Database
provides APIs for accessing all the contents of a specific key-value pair record as
well as APIs for accessing parts of the record identified by a major and minor key
combination. For example, a record in Oracle NoSQL Database might contain
textual information about a user as well as the user’s photo (image). The textual
information and the image would each have a minor key; of course, the major key
would be the person’s identifier key. The value associated with a minor key can be
retrieved and updated without having to access or modify other content in a key-
value pair. Thus, the notion of minor keys not only provides a significant convenience
to the application developer, but also results in performance improvements.

Oracle NoSQL Database leverages Berkeley DB Java Edition’s ACID transaction
capabilities in order to provide transactional semantics for data access. The notion
of Berkeley DB Java Edition transactions is more general and can support multiple
operations on multiple records within a single transaction. Unlike Berkeley DB,
an operation in Oracle NoSQL Database can only affect the contents of a single major
key. Further, Oracle NoSQL Database operations are single-API call transactions
(except for scanning the contents of the entire database) where each API request from
the client to the server is an atomic unit of work. Within the context of a single major
key, a client request might modify the contents of some minor keys, delete others, and
add some new minor keys (and values); all these activities are executed as a single
transaction. Robust ACID transaction support is one of the key distinguishing features
of Oracle NoSQL Database.

Oracle NoSQL Database leverages the high availability features in Berkeley DB in
order to provide resiliency, fault tolerance, and read scalability. In the event of a node
failure, Oracle NoSQL Database manages elections automatically and transparently
to the application. Other than a momentary delay while the election is in progress,
the application is not affected by node failures. Further, Oracle NoSQL Database
automatically optimizes the placement of masters and replicas on the hardware
servers in order to ensure the best performance of the system.

Berkeley DB provides APIs for administering and monitoring the database.
Maintenance activities such as backups and log archiving can be initiated by the
application by invoking the appropriate APIs. The application can also monitor
resource usage, performance, and other metrics of the system using the provided
APIs. Administering and monitoring a distributed system such as Oracle NoSQL
Database is significantly more complex than managing a Berkeley DB application.
Oracle NoSQL Database provides an administration console, a command-line
interface and APIs for managing and monitoring all components of the system. This
provides a tremendous convenience to the system administrator running a production
Oracle NoSQL Database application. Besides support for activities such as backups

02-ch02.indd 28 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 2:  Introducing Oracle NoSQL Database  29

and troubleshooting, it is possible to configure and alter the topology of the system,
add more shards to the cluster in response to increased demand and data volumes,
identify hotspot nodes, and redistribute the data as needed in order to maintain
optimal performance. These simple-to-use but powerful administration capabilities
are critical for smooth operation of a large production Oracle NoSQL Database
deployment.

Let us now look at some of the features of Oracle NoSQL Database in more detail.

Database System Architectures
Database systems are generally categorized as shared memory (database system
runs in a single, shared address space), shared-disk (the database system runs in
multiple processes and multiple address spaces on different computers with access
to shared storage—Oracle pioneered the concept of shared-disk database systems in
the 1980s), or shared-nothing systems (the database system runs in multiple processes
and multiple address spaces on multiple machines without any shared storage;
database system processes communicate with each other using network messages).
Tandem Non-Stop SQL pioneered the concept of scalable shared-nothing database
systems in the mid-1980s. A shared-nothing system partitions the data into disjoint
subsets (called shards), each shard managed by a node (along with replicas for
providing high availability).

Berkeley DB is a shared memory database system; this means that a Berkeley
DB application is generally constrained to run on a single computer. Though the
high availability and replication features do support running Berkeley DB on
multiple computers, this is still considered to be a shared memory architecture since

Shared Memory, Shared-Disk, and Shared-Nothing Systems
A shared memory system’s performance is limited by the hardware (memory,
processor, disk). To get additional performance, you need to get a bigger system.
A shared-disk system needs to synchronize and coordinate access to shared
data. The performance of such a system is limited by the performance of low-
level synchronization primitives. A shared-nothing system’s performance is
constrained by the limits of the messaging infrastructure. One of the keys to
getting scalable performance from shared-nothing systems is to reduce the
messaging overhead to the minimum possible. Besides the obvious solution of
using a faster network, NoSQL systems optimize messaging requirements by
limiting the kinds of operations that can be performed by the application. As we
shall see, this is a key aspect of all big data systems.

02-ch02.indd 29 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

30   Oracle NoSQL Database

the total amount of data managed by Berkeley DB is constrained by the capacity of
one computer. On the other hand, Oracle NoSQL Database is a shared-nothing
system. Oracle Real Application Clusters is an example of a shared-disk architecture.
Figure 2-3 illustrates the differences between the three types of database system
architectures.

Unlike Berkeley DB Java Edition, which is an embeddable database library,
Oracle NoSQL Database is a client-server system. Figure 2-4 illustrates the
architecture of the system in a typical deployment; in this example, there are two
client nodes and six server nodes, configured as two shards, for managing the data.
Each shard is a highly available cluster of three nodes and manages a subset of the
data. The system is designed to be dynamically scalable in the number of clients as
well as the number of shards. In short, a highly available shard is the building block
for implementing a highly scalable, shared-nothing system. Similarly, a node is the
building block for implementing a highly available shard.

FIGURE 2-3.  Shared memory, shared-disk, and shared-nothing database architectures

Shared memory
Shared memory

system
System memory System memory System memory

System memory System memory System memory

Shared-nothing system

Shared-disk system

System memory

02-ch02.indd 30 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 2:  Introducing Oracle NoSQL Database  31

Partitioning and Sharding
The primary goal of shared-nothing systems is to achieve horizontal scalability by
using additional compute and storage hardware in order to keep pace with growing
demands for data capacity and data retrieval. This “army of ants” approach requires
that the storage and processing be partitioned across the individual nodes. In contrast,
data and processing are managed by a single compute and storage resource in a
shared memory system; similarly, in a shared-disk system, the data are shared, but
processing is partitioned across multiple compute nodes.

A shared-nothing system is composed of shards; each shard in the cluster
manages a distinct and disjoint dataset. Each shard is termed the owner of the subset
of data that it manages. There are various alternatives to partitioning the data across
shards. The partitioning algorithm uses a key (specified by the user) in order to
partition the data. The most popular technique is to hash-partition the data, with the
intent of distributing data evenly across shards. Hash partitioning works well when
user requests are limited to accessing a single entity in the system and there is no
relationship between consecutive data requests. Another technique is to range
partition the record key. Range partitioning is advantageous when multiple related
records (records with adjacent keys) are accessed by the application. Range
partitioning is vulnerable to skewed distribution of data and “hotspots” in data
access if a disproportionate number of requests have to be satisfied by the same
shard. Thus, range partitioning is not widely used in practice.

A request for a specific record is routed to the owning shard. The owner processes
the request and returns the answers to the client. The key to achieving scalability is
to eliminate any single point of control and minimize the network messages that are
required to satisfy a request. This architectural requirement has a significant impact

FIGURE 2-4.  Typical Oracle NoSQL Database deployment architecture

Shard 1 Shard 2

Client 1 Client 2

02-ch02.indd 31 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

32   Oracle NoSQL Database

on the features and functionality that a shared-nothing system can offer. In particular,
the system is designed so that the vast majority of network messages are between the
Oracle NoSQL Database client driver and a specific node in a shard, rather than
messages between shards (intra-shard messages). Further, the system minimizes data
processing in the client driver and pushes as much processing as possible onto the
shard so that messages between a client and server are mostly simple request-
response kinds of messages. Any new state information from the node serving the
request is also included (piggybacked) on the response message to the client driver.
The client driver is primarily responsible for maintaining information about data
distribution and topology of the system so it can route requests intelligently to the
appropriate node in a shard. This separation of responsibility between the client
driver and the nodes in the shard results in minimal messaging overhead and a highly
scalable architecture.

Most often, the amount of data managed by a system keeps growing over time.
Oracle NoSQL Database supports the ability to add new hardware resources as data
and processing demands grow. When one or more new shards are added, data on
existing shards must be repartitioned across all the shards in the cluster. The simplest
approach is to disable user requests temporarily, redistribute the data, and resume
normal operation. However, this is unacceptable in practice, because the temporary
outage for adding new capacity can last for a significant period of time (several
hours or days), depending on the volume of data to be repartitioned. Most systems,
including Oracle NoSQL Database, redistribute data online and dynamically,
without compromising availability of the system. This is not a trivial exercise; the
data movement needs to be correct and atomic (all or nothing), the client drivers
need to be updated to reflect the new distribution, and the repartitioning needs to
be done in a way that takes maximum advantage of the newly added resources.
Careful implementation of data migration within a highly available system is a key
metric of a product’s maturity. Maximizing throughput, minimizing the impact on
user queries, allowing for operation failure and restart, and updating the system
with the new topology are all key functions and design considerations in Oracle
NoSQL Database.

If the data and/or processing requirements decrease, then it is possible to free up
some of the resources, thus reducing the amount of hardware needed by the system.
When the usage of the system is cyclical over time, or follows a predictable pattern
(for example, dramatic spike in processing demand for ecommerce systems during
the holiday season), there is a temporary need to grow the number of shards. At the
end of the peak demand period, the number of shards can be reduced to handle
“steady-state” requirements. Data redistribution required to shrink the cluster is also
an online activity.

We will use the term dynamic elasticity to refer to the ability of the system to add
and remove resources dynamically in response to changes in data and processing
requirements. Dynamic elasticity is a key characteristic of shared-nothing systems

02-ch02.indd 32 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 2:  Introducing Oracle NoSQL Database  33

that makes them very attractive for big data applications. Oracle NoSQL Database
provides administrative tools to support dynamic elasticity.

Availability
High availability is another key characteristic of Oracle NoSQL Database. Processors,
memory, storage, software, and networks can fail in unpredictable ways. As the
number of such components in a system increases, the probability of failure of some
components increases dramatically. For example, the failure rate of an individual disk
may be one failure during a period of two years. Statistically, a shared-nothing system
with 1,000 disks will experience at least one disk failure every day! If you also take
processors, memory, software, and network components into account, the frequency
of a failure is even higher! A distributed system needs to be designed to handle these
failures without impact to the application.

Availability is achieved by adding redundancy to the system. In NoSQL systems,
redundancy is commonly achieved by maintaining multiple copies of the data on
multiple nodes. Each shard comprises two or more nodes (called replicas) that have
identical copies of the data. As changes are made to the data on one node, they are
propagated to the other replicas to keep them current. Monitoring tools are used to
detect and repair failures. Should one of the nodes fail, the system automatically
detects and handles the change in the membership of a shard without any noticeable
impact to the application. It is not trivial to determine whether a particular node is
currently a member of a shard since a node might fail or there may be a temporary
network outage that makes the node temporarily unreachable.

There are two alternative approaches to handling data updates in a highly available
shard. One approach is to designate one of the replicas as the master node; a master
can serve update requests as well as read requests, while all other nodes can only
serve read requests. This architecture is called single-master. Note that it is possible to
have passive, standby replicas, but this is not common in practice. Another approach
is to allow updates at any node of the shard and then propagate those changes to the
other replicas. This architecture is called multi-master.

The advantage of a single-master architecture is that there cannot be concurrent
changes to the same record on multiple replicas; the master always has the most
current value of any record in the shard. This property of single-master architectures
simplifies the job of the application developer because there is no possibility of lost
updates, or conflicting, concurrent changes to the same record. A single-master
system needs to have a mechanism to elect a new master from one of the surviving
replicas in the shard, should the current master fail. Master re-election uses a
distributed quorum-based algorithm to unambiguously choose a new master. This is
why most highly available systems have three (or an odd number of) replicas; this
ensures that it is possible to gather a majority of votes to correctly determine the
outcome of a master election. Electing a new master is typically a very quick

02-ch02.indd 33 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

34   Oracle NoSQL Database

process, lasting no more than a second or two; during this period, update activity
to the shard is temporarily suspended. Figure 2-5 illustrates the process of master
re-election in a shard with a master and two replicas.

The advantage of a multi-master system is that any node can handle application
requests to change a record. In fact, it is possible that the same record is changed
concurrently on two different replicas. If a node fails, a request can simply be routed
to another surviving node without any pause in update activity (there is no need for
master election). As in the single-master case, changes to records are constantly
propagated to the other replicas in the shard. Resolving conflicting changes to the
same record provides interesting challenges in a multi-master system. Because
the changes occur on separate and distinct machines, it is not easy to determine the
timing and sequence of the conflicting changes. In some cases, the system can
resolve the change on its own. Most often, however, conflicts are detected when a
record is retrieved, and conflict resolution is left up to the application (or even the
end user, in some cases). Update operations (even concurrent updates to the same
record on different replicas) proceed normally. For read requests, the application

FIGURE 2-5.  Electing a new master

Client

Replica

Master crash

M

New master elected

M

M

02-ch02.indd 34 11/12/13 3:05 PM

Chapter 2: Introducing Oracle NoSQL Database 35

typically requests the same record from multiple replicas of the shard. If the versions
(along with the timestamp of the latest change) returned by different replicas are not
identical, then it is necessary to determine which is the most current version using
timestamps, application-specific semantics, and knowledge of the data. Oracle
NoSQL Database is a single-master per shard system.

Eventual Consistency
A discussion about distributed systems such as Oracle NoSQL Database would not be
complete without a mention of eventual consistency. A distributed system maintains
copies of data on multiple machines in order to provide high availability and scalability.
When an application makes a change to a data item on one machine, that change
has to be propagated to the other replicas. Because the change propagation is not
instantaneous, there’s an interval of time during which some of the copies will have
the most recent change, but others won’t. In other words, the copies will be mutually
inconsistent. However, the change will eventually be propagated to all the copies. In a
single-master system, if an application makes a change to a record, that request will
be handled by the master node. As soon as the update request completes, if the
application retrieves the same record (same major key), it is possible that the request
will be routed to one of the replicas in the shard. If the master has not yet propagated
the changes to that replica, the application will see the older version of the data.
However, if the application requests the data after the changes on the master have
been propagated to the replica, then the application will see the latest version of the
record. Depending on the relative timing of the read request, the application might
see different values!

Thus, the notion of eventual consistency is simply an acknowledgment that there
is an unbounded delay in propagating a change made on one machine to all the
other copies. Eventual consistency is not relevant in centralized (single-copy) systems
because there is no need for change propagation.

Various distributed systems address consistency in different ways because there
is a trade-off between operation latency, availability, and consistency. In some
systems, the machine where the change originates will simply send asynchronous
(and possibly unreliable) messages to the other machines and declare the operation
as successful. This is fast, but at the cost of potential data loss if the originating
machine fails before the replica(s) have received the update. Other systems send
synchronous (blocking) messages to all other machines, receive acknowledgments,
and only then, declare the operation as successful. These systems favor consistency
and availability at the cost of performance. Finally, a system might implement some
variant of these two extremes (for example, wait for acknowledgments from a
majority of the replicas).

Oracle NoSQL Database allows the application designer to choose the
consistency level required, on a per-operation basis; of course, there is a default
setting of consistency as well. The developer can either choose to use the default

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

36   Oracle NoSQL Database

semantics of consistency or specify consistency on a per-operation level for critical
operations. Per-operation choice of consistency is the most flexible and the most
application-friendly option because the application designer has a clear understanding
and control on the performance as well as the consistency guarantees without
additional complexity in the application program.

Oracle NoSQL Database offers several choices for read consistency. The application
can specify absolute consistency if it needs the most recent version; in this case, the
client driver will route the request to the master node of the shard. The application
developer can also specify time-based or transaction ID–based consistency for read
operations. For example, an application might be willing to tolerate reading data
that is no more than one second out-of-date with respect to the most recent update.
Transaction ID-based consistency is useful in scenarios where the application
modifies a record at a certain point in time and wants to ensure that a subsequent
read operation will read a version of that same record that is at least as current as
the change it made to that record (it is okay to read a more recent version). The
client driver keeps track of the change propagation between each master and its
replicas, so it is able to route the request to the replica that can satisfy such a
request. Finally, the application can also specify that it doesn’t care how consistent
the data are for a particular read request. The Oracle NoSQL Database client driver
is free to route the request to any of the replicas of the shard.

Thus, depending on the kind of read consistency required, the client driver will
route the request to the most appropriate replica of the shard. This also serves to
distribute the workload across the various nodes of the shard, thus achieving better
system utilization and improved performance.

Durability—Making Changes Permanent
Generally, a database system ensures that a change is made permanent (durable) by
writing the updated version to stable storage. Making a change durable means that
the change survives processor and memory failure. However, I/O is very expensive
compared to memory access. As a first approximation, I/O is 1,000 times slower
(millisecond latency) than accessing memory (microsecond latency). Over the years,
relational database system designers have invented several optimizations such as
write-ahead logging in order to alleviate the cost of I/O for providing durability.

Some demanding applications require more performance than what is achievable
in a cost-effective manner using the traditional optimizations such as write-ahead
logging. Quite often, these applications are willing to relax the durability guarantees
in order to achieve better performance. Some database systems (and NoSQL systems,
in particular) have implemented a variety of relaxed durability guarantees in order to
meet the needs of such applications.

For example, some systems buffer changes in memory and only propagate
changes to disk periodically. A system might choose to write the contents of the buffer
to disk every 5 seconds. Clearly, this strategy alleviates the I/O overhead significantly,

02-ch02.indd 36 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 2:  Introducing Oracle NoSQL Database  37

resulting in dramatic performance benefits. However, if there is a failure (memory
loss), the most recent set of changes will be lost. Other systems might choose to issue
the I/O to operating system buffers and declare the change to be durable before the
operating system writes the buffered data to disk. In this case, a process failure (but
not operating system failure) will not affect the durability of the changes; however, an
operating system failure will result in data loss of the most recent changes. Of course,
the most stringent (and most expensive) method to ensure durability is to issue the I/O
and then wait for the write operation to complete. It is also possible to write multiple
disks (usually, this is done by the operating system or storage subsystem) to ensure that
the changes can also survive a disk failure.

A distributed system such as Oracle NoSQL Database can take advantage of the
multiple replicas to ensure durability. Because the goal of durability is to protect
against processor, memory, and operating system failures, distributed systems
leverage the fact that an update can be made durable by propagating the change to
one or more replicas concurrently while writing the change to the local disk. The
system can declare an operation to be durable after receiving acknowledgments for
the update from the replicas, without waiting for the disk I/O to complete because
the replicas have received the update (it is durable on another node). Depending
on the speed of the network, the message delivery and receipt may be faster than
the time it takes to complete a local write (I/O) operation.

Oracle NoSQL Database supports the notion of varying degrees of durability for
update operations and exposes these options through the API so that the application
designer can make the appropriate trade-offs between performance and durability
on a per-operation basis. Three independent dimensions of durability are supported
and the application developer can choose the option that best suits the requirements
of the application. In the case of the master node, the application designer can
choose whether the change should be considered durable when it is written to the
log buffer, when it is written to the file system buffers, or when it is written to disk.
The application designer can also choose whether the change should be propagated
to the replicas asynchronously or synchronously (with acknowledgment). Finally,
when the change has been propagated to the replicas, the application can also
choose whether the change is considered durable when it is written to the log buffer,
when it is written to the file system buffers, or when it is written to disk on the
replicas. Thus, the developer has complete control over the degree of durability and
required performance for each operation. For example, the choice of “write to local
disk, wait for acknowledgments from all replicas, write to replica disk” is the most
stringent option an application can choose.

Figure 2-6 illustrates the durability and consistency options that are available
in Oracle NoSQL Database. Oracle NoSQL Database allows the user to choose
the durability policy on a per-operation basis. Oracle NoSQL Database uses this
information during transaction commit processing in order to achieve the best
performance while honoring the durability requirements of the operation.

02-ch02.indd 37 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

38   Oracle NoSQL Database

Transactions
Atomicity, consistency, isolation, and durability (ACID) are the key characteristics
provided by transactions. Oracle NoSQL Database leverages the transaction
capabilities of the underlying Berkeley DB storage engine. Berkeley DB supports
row-level locking and two-phase locking to ensure that the effects of one transaction
are isolated from other, concurrent transactions. We’ve already discussed the
semantics of consistency and durability. In the rest of this section, we discuss the
property of atomicity.

Transactional access to data is a critical requirement in many Oracle NoSQL
Database applications. Transactions provide atomicity (“all or nothing” semantics) to
ensure that either all or none of the changes in a transaction are made durable.
Consider an Oracle NoSQL Database application that stores the list of items that the
user intends to purchase (popularly referred to as the shopping cart) during a
particular shopping session. Most often, the shipping costs depend on when the user
expects the items to be delivered. For example, overnight delivery is more expensive
than delivery within 8 business days. If the user changes the delivery dates for some
items during the session, then it is important that the total cost of the transaction
be updated to reflect the changes in delivery costs. Thus, the changes to the delivery
date for each item and the shipping total cost of the purchase (including shipping
costs) need to be updated atomically. Oracle NoSQL Database supports atomicity
for all changes performed on various contents of the same major key, as long as all
those changes are specified in a single request to the server.

FIGURE 2-6.  Configurable durability and consistency policies

FS Buffer DiskMemory

• Configurable Durability Policy

write

HA ack

+

• Configurable Consistency Policy

Can read
stale data

Operating on
known or later version

Operating on
most recent versionguarantees

consistency

All

AbsoluteVersion-BasedTime-BasedNone

MajorityNone

Fastest Most Durable

Fastest Most Consistent

Data is recent
as of given time

02-ch02.indd 38 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 2:  Introducing Oracle NoSQL Database  39

Data Modeling
Data modeling is a critical aspect of proper application design for Oracle NoSQL
Database applications. The data model is very flexible and enables the application
designer to model a wide variety of data structures, without compromising efficiency
of storage or data access. Let us examine these capabilities in more detail below.

Major Keys, Minor Keys, and Values
Oracle NoSQL Database provides a key-value paradigm to the application developer.
Every entity (record) is a set of key-value pairs. A key has multiple components,
specified as an ordered list. The major key identifies the entity and consists of the
leading components of the key. The subsequent components are called minor keys.
This organization is similar to a directory path specification in a file system (for
example, /Major/minor1/minor2/). The “value” part of the key-value pair is simply
an uninterpreted string of bytes of arbitrary length.

This concept is best explained using an example. Consider storing information
about a person, John Smith, who works at Oracle Headquarters, start date January 1,
2012, and has a telephone number +1-650-555-9999. The employee ID might be a
logical choice for the major key for the person entity (for example, 123456789).
In addition, the “person” entity might contain personal information (such as the
person’s telephone number) and employment information (such as work location
and hire date). The application designer can associate a minor key (for example,
personal_info) with the personal information (+1-650-555-9999) and another minor
key (for example, employment_info) with the employment information (Oracle
Headquarters, start date January 1, 2012). Specifying the major key “123456789”
would return “John Smith.” Specifying “/123456789/personal_info” as the key
would access John Smith’s personal information; similarly, “/123456789/employment_
info” would be the key to access the employment information. Leading components
of the key are always required. Oracle NoSQL Database internally stores these as
separate key-value pair records; one for the user_id, a second for user_id/personal_
info, and the third for user_id/employment_info.

The API for manipulating key-value pairs is simple. The user can insert a single
key-value pair into the database using a put() operation. Given a key, the user can
retrieve the key-value pair using a get() operation or delete it using a delete()
operation. The get(), put(), and delete() operations operate on only a single
(multi-component) key. Oracle NoSQL Database provides additional APIs that allow
the application to operate on multiple key-value pairs within an entity (same major
key) in a single transaction.

The major key determines which shard the record will belong to. All key-value
pairs associated with the same entity (same major key) are always stored on the
same shard. This implementation enables efficient, single-shard access to logically
related subsets of the record. Figure 2-7 illustrates the concept of major and minor
keys. Note that minor keys can be nested.

02-ch02.indd 39 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

40   Oracle NoSQL Database

Oracle NoSQL Database also provides an unordered scan API that can be used to
iterate over all the records in the database; unordered scans do not have transaction
semantics, although only committed data will be returned to the application.

Large Object Support
An Oracle NoSQL database is often used to store large objects such as images,
audio, videos, and maps. In the vast majority of usage scenarios, once such content
is stored in the database, it is either retrieved or deleted, but never updated. For
example, an audio or video streaming service might store vast amounts of such
media content and then serve it up on demand.

Oracle NoSQL Database provides efficient support for managing large objects in
the database and a streaming API for easy access to the information. A large object
is stored internally as a sequence of object fragments (or chunks). Because each object
fragment is much smaller than the entire object, this design is much more efficient
in terms of memory requirements in the user application as well as the server.
Further, the streaming API ensures that the fragments can be fetched efficiently from
the containing shards.

JSON Schemas
Oracle NoSQL Database manages key-value pair data; the key and value can be
arbitrary byte strings that are interpreted only by the application. Minor keys are
a great convenience for representing the structure of the record. These capabilities
provide a lot of flexibility in terms of evolving and changing the structure of content
stored in Oracle NoSQL Database. However, the interpretation of the contents of a
record is left entirely up to the application; the contents (value portion of the key-
value pair) are represented as byte-arrays, which can make it difficult to share the
data between multiple applications.

Oracle NoSQL Database also supports JSON schemas (http:// json-schema.org/)
and Apache Avro (http://avro.apache.org/) for specifying the structure of the value in
a key-value pair. JSON schemas are self-describing, support schema evolution, and
are widely used in big data applications. Apache Avro is an extremely space-efficient

FIGURE 2-7.  Major and minor keys

Major key:

Minor key:

John Smith

Value: Oracle HQ, hire date Jan 1, 2012 +1-650-555-9999

employment_info personal_info

123456789

02-ch02.indd 40 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 2:  Introducing Oracle NoSQL Database  41

serialization format for JSON schemas; thus, the use of JSON schemas and Avro
serialization enables ease of application design and data exchange between various
applications and systems. For example, JSON schemas enable easy sharing of data
between Oracle NoSQL Database applications and MapReduce (Hadoop). Very
often, big data applications use a variety of tools and technologies such as key-value
stores, map-reduce processing, relational databases, and analytics in order to derive
new insights; the easy and efficient exchange of data from one system to another is
critical in such scenarios.

Oracle NoSQL Database is often used for managing web and ecommerce
data. JSON and Javascript are popularly used in these applications. Hence, support
for JSON schemas makes it very convenient for the developer to implement the
application without having to interpret and translate data from one format to another
each time it is stored or accessed in the database.

Performance
Oracle NoSQL Database has been designed for applications that need fast, predictable,
low latency access to vast amounts of data. Let us examine how Oracle NoSQL
Database benefits such applications by considering a typical ecommerce environment.
Such systems manage vast numbers of user profiles and have stringent response-time
requirements. Whenever a user visits the site, the retailer provides a personalized web
page based on the user’s profile. If no such profile exists, the site must create one.
These user profiles will change over time as the retailer learns more about the users.
Different user profiles may contain radically different information and the retailer may
decide to collect new information at any time. Oracle NoSQL Database addresses this
use case by virtue of its flexible key-value paradigm and scales to meet increasing
customer demand. Oracle NoSQL Database has been optimized extensively to
provide excellent scalable throughput and low latency. As of this writing, Oracle
NoSQL Database has been benchmarked at over 1.2 million operations per second
with an average latency of 1 millisecond for the 95 percent reads and 5 percent
updates workload in the Yahoo! Cloud Serving Benchmark test suite. This test was
performed on a 15-machine cluster running 10 shards with over 2 terabytes of data.
To put these numbers in perspective, credit card fraud scoring applications typically
require a throughput of less than 10,000 operations per second. Thus, Oracle NoSQL
Database delivers performance that is more than sufficient to meet the requirements of
the most demanding applications.

Administration
A distributed system is composed of large numbers of hardware and software
components. This necessitates a comprehensive and easy-to-use monitoring and
administration tool to manage the system.

Oracle NoSQL Database includes administration utilities to manage operational
tasks such as configuring the system, defining the topology of the system configuration,

02-ch02.indd 41 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

42   Oracle NoSQL Database

as well as adding new resources as needed. It also includes monitoring tools to
track the health of the overall system as well as individual components, detect
performance issues and hotspots, and dynamically redistribute the work as needed.
These monitoring capabilities are invaluable for ensuring that the system continues
to operate smoothly in spite of component and software failures.

Oracle NoSQL Database also provides JMX (Java Management Extensions) and
SNMP (Simple Network Management Protocol) APIs for programmatic monitoring
of the system. This makes it easy to integrate Oracle NoSQL Database with other
monitoring and administration tools that might already be in use. This is a huge
convenience to system administrators because it allows them to minimize the number
of separate tools that might be required in order to ensure smooth operation of a
production system.

Integration with Other Products
Most big data applications use multiple technologies including Oracle NoSQL
Database in order to derive value from big data. For example, an ecommerce site
might use Oracle NoSQL Database for the customer-facing application, a relational
database repository to store master data, data warehousing and business intelligence
tools for tracking key business parameters, and a MapReduce system to process and
analyze unstructured information. It is crucial that the components of a big data
application be well integrated so as to simplify the task of the application designer as
well as the system administrator.

Oracle NoSQL Database integrates well with these related technologies and tools.
The external tables capability allows the developer to query data stored in Oracle
NoSQL Database from Oracle Database using SQL. SQL is arguably the most popular
programming language today; being able to query Oracle NoSQL Database data using
SQL is a tremendous benefit to many developers. This also provides a huge benefit
for applications that need to reference key-value data along with relational data. For
example, this is very useful in data warehousing applications that need to have a
unified view of all data.

Oracle NoSQL Database also integrates with MapReduce technologies. MapReduce
typically reads input data from a file system (most commonly, HDFS). Oracle NoSQL
Database provides an interface that allows the mapper in a MapReduce job to read
data directly from Oracle NoSQL Database. Because MapReduce is designed to
process all semi-structured and unstructured data, this capability is very important in
big data applications.

Oracle NoSQL Database is integrated with Oracle Event Processing. Data stored
in Oracle NoSQL Database can be referenced by the event processing engine in
interactive time in order to provide real-time alerts and notifications for meaningful
events. For example, the event processing engine might be used for real-time
monitoring and trading of stocks. If a user is “watching” a particular stock, then the
event processing engine can look up the user’s parameters (buy, sell thresholds) and
alert the user immediately when the specified conditions are satisfied.

02-ch02.indd 42 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 2:  Introducing Oracle NoSQL Database  43

Oracle Coherence is an in-memory data grid solution that enables organizations
to predictably scale mission-critical applications by providing fast access to frequently
used data. Oracle NoSQL Database is integrated with Oracle Coherence; Coherence
is used to cache the most frequently accessed data in memory, while NoSQL Database
provides a scalable persistent repository for vast amounts of data stored on disk.

Oracle NoSQL Database is also integrated with Oracle RDF Graph; this makes it
easy to discover relationships between key-value pair records stored in the Oracle
NoSQL Database. The most obvious example of this capability is social networking
to discover new friends and contacts, as popularized by Facebook and LinkedIn.
There are many other scenarios such as fraud detection and security where graph
traversal capabilities for big data are important as well.

Licensing
Oracle NoSQL Database is distributed as an open source version as well as an
enterprise version. The Community Edition is available under the open source
AGPLv3 license and is intended for use in open source applications. Oracle NoSQL
Database Enterprise Edition is available under a commercial license and is intended
for proprietary applications.

Both versions of the product provide the same basic capabilities that are needed
to manage large amounts of key-value data. The Enterprise Edition also offers tighter
integration between Oracle NoSQL Database and other related Oracle products such
as RDF Graph, Oracle Event Processing, Oracle Coherence, and Oracle Database.
These additional capabilities make it easy to use Oracle NoSQL Database within a
larger data management ecosystem that may include semantic data and streaming
event data as well as relational data. Most big data applications use a combination of
products and technologies in order to derive new insights and business value from
multiple data sources. Oracle NoSQL Database Enterprise Edition is an excellent
choice for a scalable key-value store in such deployments.

Summary
In this chapter, we discussed Oracle Berkeley DB, which is the foundational
building block for Oracle NoSQL Database. We discussed the three types of
database architectures and then examined some of the characteristics of Oracle
NoSQL Database like partitioning and sharding, availability, consistency and
durability options, support for transactions and data modeling. We discussed the
need for integrating Oracle NoSQL Database with related technologies such as
MapReduce, Oracle Database, Oracle Event Processing, and Oracle Coherence. All
these features and capabilities make Oracle NoSQL Database a compelling solution
for today’s big data processing needs.

02-ch02.indd 43 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

02-ch02.indd 44 11/12/13 3:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

CHAPTER
3

Oracle NoSQL
Database Architecture

03-ch03.indd 45 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

46   Oracle NoSQL Database

The previous chapter discussed some of the underlying concepts and
technologies used in Oracle NoSQL Database. Building on this foundation,
let us take a closer look at the implementation of Oracle NoSQL Database

and how it operates. We will start with the high-level architecture, including clients,
servers, and datacenters, followed by a discussion of how records are stored. Next,
we will discuss the underlying log-structured storage architecture and how it
impacts performance of the system; we will conclude with a discussion of durability
and transactions.

High-Level Architecture and Terminology
Oracle NoSQL Database is a client-server system. The server actually comprises one
or more shards; each shard manages a distinct subset of all the data managed by the
system. Each shard comprises Replication Nodes. Generally (and this is true of other
NoSQL systems as well), each shard comprises at least three Replication Nodes.
Together, the Replication Nodes in a shard serve requests for the subset of the data
that they manage and also provide read scalability and availability. As mentioned
previously, at any point in time, one of the Replication Nodes in the shard is
designated as the master, whereas the other nodes are designated as replicas. The
master node can serve read as well as write requests; the replicas can only serve
read requests. Replication Nodes are hosted on Storage Nodes (physical or virtual
machines).

Conceptually, the Oracle NoSQL Database Client Driver is analogous to an
ODBC or JDBC driver (used in relational database systems) in that it is linked into
the application program and manages the interaction between the application and
the Replication Nodes. Each Client Driver is “aware” of all the shards in the system
and maintains a list of network addresses and port numbers for each Replication
Node. It establishes a network connection to a Replication Node when it has to
communicate with the node.

In addition to hosting one or more Replication Nodes, each Storage Node also
runs a Storage Node Agent that is responsible for administering and managing the
Replication Nodes on that Storage Node. Each Storage Node Agent interacts with
the Administration Console; the Administration Console provides a unified
management and administration view of the system.

Figure 3-1 illustrates the various components of a Oracle NoSQL Database with
a single shard. Note that although only a single shard and single Client Driver is
depicted, a typical system will have many shards and Client Drivers. Also note that the
number of clients is unrelated to the number of shards in the system. For example,
a large production application that manages many terabytes of data may have a few
hundred shards and many client instances of the application program.

03-ch03.indd 46 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   47

Intelligent Client Driver
Unlike some other systems, Oracle NoSQL Database does not have a central repository
that maintains the state information for all the nodes in the server because this would
create a single point of failure as well as a single point of contention (“hotspot”) in
the system. Instead, each Client Driver maintains information about the mapping of
keys to shards so that it can route a request for a specified key to the appropriate
shard. Keys are mapped to shards using a hash function, described later. The mapping
of keys to shards is relatively static and only changes when the number of shards is
changed (for example, in order to add more capacity to the system).

The Client Driver also keeps track of the state of each Replication Node in every
shard, including information about which node is currently the master, which nodes
are replicas, and which nodes are offline at any given moment. Rather than using
dedicated status messages for tracking state information, every Replication Node
includes information about its state in the response messages that are sent to the
Client Driver. After the state of a node changes, the next interaction between a
Client Driver and the node will inform the Client Driver of that state change. Thus,
each client learns about server node state changes independent of other clients.

FIGURE 3-1.  Description of the various components in an Oracle NoSQL Database
deployment

Oracle NoSQL Database
Administration Console

Application Code

Client Driver

Client Driver to server
connection

Admin
connection

Replication Node Replication Node

Storage Node (capacity = 2)

Replication message
connection

Storage Node Agent
(SNA)

Replication Node:
(master)

Storage Node (capacity = 1)

Storage Node Agent (SNA)

03-ch03.indd 47 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

48   Oracle NoSQL Database

Because the keys are distributed using a hashing scheme, there is generally no
locality of reference between consecutive data requests; consequently, each client
communicates frequently with every server node and becomes aware of state
changes very soon after the change occurs. Of course, every Replication Node also
has authoritative information about the state of the nodes in the shard (including
whether one or more of the nodes in its shard are online or offline). Thus, if a new
client connects to the server, it can discover the state of all the Replication Nodes as
well. This design eliminates the need for any communication between clients while
still ensuring correct and efficient operation.

The response message from a Replication Node to the Client Driver also
includes information about the consistency level of the node. As discussed
elsewhere, a change to a record (at the master) is propagated to the replicas using
log shipping. Whenever a record is changed (we will use the term “change” to
denote a modification, insertion, or deletion of a record in the database) on the
master node in a shard, it is written (as described later) to the master’s local storage;
in parallel, the master node sends the log records associated with the change to
each of the replicas in the shard. When these log records are received at the replica,
they are applied to the copy of the data on the replica in order to reflect this change.
In essence, each replica is constantly playing “catch-up” with respect to the master
node. Thus, depending on the rate of changes and the latency of the network
connection between the master and replicas, it is possible that a replica is slightly
out of date with respect to the master because the log records have still not been
received or applied on the replica side. Of course, if there are few or no
modifications to the data, then each replica will be as current as the master.

Each log record is identified with a unique and monotonically increasing log
sequence number (LSN for short). For the purposes of this discussion, it is easiest to
think of an LSN as an integer, although, in reality, an LSN often includes additional
information such as the log file ID and other internal information. Because LSNs are
monotonically increasing and unique, the log record for the most recent change at
any point in time will have the highest LSN. For example, if records A, B, and C are
changed in that time sequence (C is changed most recently), the LSN for the change
associated with record C will be higher than the LSN for the change to record B,
which in turn, will be higher than the LSN for the change to record A.

Whenever a Replication Node sends a response to the Client Driver, it includes
the highest LSN of its log in the response message. Consequently, each Client Driver
is able to track the highest LSN for each Replication Node in each shard. In
particular, for each shard, the client is aware whether a replica has the same or
lower LSN than the master node; if the replica’s LSN is lower than that of the master
node, it is also aware of the “lag” between the master and the Replication Node.
Because LSNs increase monotonically in time when records are modified, inserted,
or deleted, LSNs can also serve as a proxy for the time at which a record was
changed. Oracle NoSQL Database keeps track of the association between the time

03-ch03.indd 48 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   49

and the LSN of a change to a record. Thus, if a replica lags behind the master node,
it is possible to infer the time lag between the replica and the master as well as the
LSN lag. Obviously, a replica’s LSN can never be higher than the LSN of the master.

An application can specify the degree of consistency required for every read
operation. In particular, the application can choose between the following options:
any (don’t care how current the record is); time-based (okay to read a record that’s
out of date by no more than the specified time interval); LSN-based, also known as
version-based (okay to read a record that is out of date by no more than the specified
LSN interval); or absolute (read the most current version of the record). By keeping
track of the consistency level for each Replication Node as discussed above, the
Client Driver can route a read request to the most appropriate node, thus improving
the efficiency and read scalability of the system. If the application requests absolute
consistency, then the Client Driver will route the request to the master. On the other
hand, if the application can tolerate a lower level of consistency, the Client Driver
can route the request to one of the replicas that satisfies the consistency constraints of
the request, thereby distributing the work among all the members of a shard. Also,
keep in mind that because the master node is constantly sending new log records to
the replicas and the replicas are as constantly applying the log updates, the Client
Driver’s knowledge of the lag between the master and replica is a pessimistic
estimate. If the application requests a lower level of consistency, it is possible that the
Replication Node will have a more current version of the record by the time the
Client Driver sends the read request to the Replication Node. This is okay because
the application sees a more recent version of the record than it was willing to accept.

For each node in the cluster, the Client Driver also keeps track of the number
of currently active requests to each Replication Node. This information is used by
the Client Driver as a heuristic to route a read request to a Replication Node with
the lightest load, if more than one Replication Node can satisfy the read consistency
constraints of the operation. Thus, the Client Driver plays a very important role in
ensuring that application requests are served efficiently with a single message
exchange.

The client’s ability to track the consistency level and load for each node in the
cluster becomes particularly important in a distributed datacenter scenario when the
server nodes can be located in multiple geographic locations with differing network
latencies. The following table summarizes the kind of information that the Client Driver
maintains, and how it uses that information in order to deliver superior performance.

Information Benefit

Mapping of keys to shards, including
the partition map (partition maps are
explained in more detail later).

Enables the Client Driver to route the
request to the correct shard.

03-ch03.indd 49 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

50   Oracle NoSQL Database

Information Benefit

Online or offline state of each node
in the cluster.

Enables the Client Driver to avoid
sending useless requests to offline nodes.

For each node in each shard,
maintain information about the
current LSN lag as well as the
current time lag.

Enables the driver to route the request to
the appropriate node (master or replica)
depending on the read consistency level
specified by the application.

For each node in the cluster, maintain
information about the number
of active network connections
from between the client and the
Replication Node.

If more than one node satisfies the read
consistency constraints of the application
request, enables the driver to route the
request to the node with the lowest load,
thus providing the fastest response to the
application.

Shards, Storage, and Network Topology
Each shard is set up as a Berkeley DB High Availability system; each shard has a
master node and some number of replicas (typically, it is recommended that each
shard have at least three Replication Nodes). Nodes within a shard are tightly
coupled. Each member of the shard tracks the status (online or offline) of the other
members in the shard. The master sends new log records to each of the replicas in
response to update activity, and replicas send acknowledgments to the master.
During periods of low update activity, heartbeat messages to monitor the state (off-
line or online) of the nodes in a shard are exchanged between members of a shard.
If one of the nodes in a shard goes offline, the remaining nodes participate in an
election in order to ensure that there is a unique master node in the shard.

Under normal circumstances, there are only two kinds of network interactions in
a Oracle NoSQL Database system: client-server messages and messages between
the members of a shard for replication and high availability. Shards never communicate
with each other, except during data redistribution operations (discussed later). This is
a critical aspect of the architecture because it allows the system to scale linearly as
more shards are added (horizontal scalability). Oracle NoSQL Database has been
tested on clusters of a few hundred nodes and demonstrated near linear scalability.

Replication Nodes run on Storage Nodes; a Storage Node is the physical or
virtual machine that runs the Replication Node software. Although the architecture
does not preclude the use of virtual machines, it is generally recommended that
Oracle NoSQL Database be deployed on physical hardware, especially when the
application is sensitive to performance and latency for data access. Virtualization
software can also make it difficult to identify and troubleshoot performance
problems in the system.

03-ch03.indd 50 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   51

Oracle NoSQL Database does not require that all the Storage Nodes be identical
in terms of processing power, memory, or storage capacity. Similarly, the network
connections between the clients and Replication Nodes as well as the network
connections between nodes in a shard can have varying characteristics and
latencies. Because Oracle NoSQL Database is designed to be a cost-effective
solution for managing huge volumes of data, in a typical deployment, the total
amount of memory available on all the Storage Nodes in the cluster is likely to be
much smaller than the amount of data being managed (on disk). Further, though
Oracle NoSQL Database has an excellent buffer manager, there is unlikely to be
locality of reference in a typical Oracle NoSQL Database application (because
major keys are hash partitioned across shards). Thus, an application’s request for
data will most often incur one or more disk accesses in order to fetch the required
records. Consequently, the throughput of a node is limited by the IO bandwidth of
the storage device to which it is connected. For this reason, direct-attached storage
is preferred over SAN or NAS storage for Oracle NoSQL Database deployments
because the throughput and latency of direct-attached storage is more predictable
than other storage alternatives. For extremely high throughput and low latency
deployments, it is possible to use solid-state disks (SSD) or flash as the storage
device. Results of performance tests of Oracle NoSQL Database have demonstrated
that it can deliver over 30 times better throughput and latency using SSD or flash
storage devices as compared to hard disk storage devices. (Yahoo! Cloud Serving
Benchmark, http://labs.yahoo.com/news/yahoo-cloud-serving-benchmark/, was used
to measure the performance of NoSQL Database.)

Oracle NoSQL Database does not require that all hardware in the cluster be
identical. Some Storage Nodes can have more processing and storage capacity than
others. Most often, this can happen when a Storage Node is replaced or when
additional Storage Nodes are added to a cluster in production. When a new Storage
Node is configured, it is necessary to specify the capacity for the Storage Node. The
capacity of a Storage Node indicates the maximum number of Replication Nodes
that can run concurrently on the Storage Node. Although processing capacity and
memory are also important considerations, the available IO bandwidth is the most
important consideration from a performance point of view. As mentioned earlier,
throughput and latency of IO operations limit the throughput that a node can
deliver. If two Replication Nodes share the same disk for storage, then only half of
the available IO bandwidth is available to each Replication Node. Consequently, for
hard disk–based systems, it is generally sufficient to set the capacity of the Storage
Node to be equal to the number of attached disks. For example, if the Storage Node
has multiple processors, large amounts of memory, and 10 disks, the administrator
would specify the capacity for that Storage Node as 10. If a “small” machine with
just one disk is being used, the capacity would be set to 1.

The recommendation for choosing the capacity of the Storage Node to be equal
to the number of disks attached to the node applies primarily to hard disk–based

03-ch03.indd 51 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

52   Oracle NoSQL Database

deployments. Solid state storage (SSD) generally provides much more IO bandwidth
and much lower latency as compared to hard disks Generally, it is sufficient to set
the capacity to 1 for SSD-based deployments.

Proper selection of the capacity of each Storage Node ensures that the machine
is utilized optimally. The capacity parameter can also be used to manage the
amount of data that a single shard manages. For example, if the Storage Node has
five disks attached to it and the capacity is set to 5, then each Replication Node will
be assigned to a single disk. On the other hand, if the capacity is set to 1, then the
Replication Node associated with this Storage Node will use the cumulative
capacity of all five disks in order to manage the data, assuming that the disks are
configured as a single logical storage volume using RAID or other techniques.
Because each node within a shard manages the same subset of data, the amount of
data that a shard can manage is limited by the Replication Node that has the least
amount of storage associated with it.

If a Storage Node is configured with a capacity greater than 1, then it will host
multiple Replication Nodes. In such a scenario, Oracle NoSQL Database ensures
that each Storage Node hosts the same number of master nodes for the cluster.
Because a Replication Node failure (cluster transition) can cause a new master
to be elected, it is possible that at any given point in time, a Storage Node might
have a disproportionate number of master nodes. The Oracle NoSQL Database
administrator software periodically checks each Storage Node to determine
whether it has a disproportionate number of master nodes. If that is the case, the
Oracle NoSQL Database administrator agent will move some masters from the
overloaded Storage Node to one of the other Storage Nodes in order to evenly
distribute the number of masters among the Storage Nodes.

This is important for two reasons. Because the Storage Node (usually, a physical
machine) is the unit of failure, if a Storage Node with a disproportionately high
number of master nodes goes down, it will trigger master elections in multiple
shards. Because an election requires additional processing, this will temporarily
increase the response time for user operations on those shards until new masters
have been elected. Although it is not possible to eliminate the overhead of
elections, keeping the master nodes evenly distributed among the Storage Nodes
ensures that only a few shards are impacted (momentarily) if the Storage Node
fails. The other reason for distributing the masters evenly across all the Storage
Nodes is that a master node has to do more work than a replica because it has to
send log records to replicas for every change. By distributing masters evenly
across the Storage Nodes, Oracle NoSQL Database ensures efficient utilization
of the available hardware and better performance overall. Figure 3-2 illustrates
this scenario.

03-ch03.indd 52 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   53

Hashing, Partitions, Data Distribution
As discussed earlier, Oracle NoSQL Database is a sharded, key-value, client-server
system. Each distinct key (major key) is associated with exactly one shard. Oracle
NoSQL Database uses a two-stage, hash-based algorithm in order to assign a key-
value pair to a shard. We begin with a description of this mechanism. The reasons
for the two-stage hash distribution will become clearer in the following discussion.

The major key for a key-value pair is a Java string. The Client Driver hashes the
major key using an MD5-based hash function in order to determine a hash bucket.
Oracle NoSQL Database uses the term partition to denote a hash bucket. The
number of partitions is fixed (static hashing) and defined by the system administrator
when a new Oracle NoSQL Database store is created. We recommend that the
number of partitions be significantly larger than the maximum number of shards the
system is expected to have over its lifetime. For example, if the system administrator
determined that the system would have no more than 10 shards over its lifetime,
then it would be reasonable to set the number of partitions to be 100 (or 1,000). The
number of partitions is the absolute upper bound on the number of shards the
system can have.

FIGURE 3-2.  Maintaining an equal number of master and replica nodes on each
Storage Node

M1

Storage node 1

Storage node 2

Storage node 3

R2

M2

R3

M3

R1

Initially, each Storage Node
contains an equal number of
master RNs and replica RNs.

More masters

Equal number
of masters
and replicas

More replicas

M1

M2

R2

M3

R3

R1

Over time, due to node failure
and restart, some of the Storage
Nodes have more master RNs
than others. In this case, Storage
Node 1 has two masters.

Time

M1

R2

M2

R3

M3

R1

Oracle NoSQL Database detects
the unbalanced state, and
redistributes master and replica
RNs evenly between the Storage
Nodes.

03-ch03.indd 53 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

54   Oracle NoSQL Database

Oracle NoSQL Database assigns equal-sized sets of partitions to each shard,
such that the total number of partitions managed by all the shards is equal to the
total number of partitions (configuration parameter). For example, if the system is
configured to have 100 partitions distributed over 10 shards, then Oracle NoSQL
Database will assign 10 partitions to each shard. Partitions are identified by partition
IDs. Information about the mapping of partitions to shards is stored in the Replication
Nodes and propagated to the Client Driver when a new client connects to the
system. Each Client Driver maintains a partition map, which contains the association
between partition IDs and shards (it contains some additional information that will
be described later). The mapping between partitions and shards is relatively static and
can change only when the number of shards is changed. The two-stage algorithm
isolates the logical association between keys to partitions from the physical association
of partitions to storage. This ensures that a change in the number of shards does require
that each key be rehashed and stored in the right shard.

Let us look at a specific example to understand how partitions are used. Assume
that the system administrator has configured the system with two shards and 10
partitions. Oracle NoSQL Database might choose to assign the first five partitions to
shard 1 and the remaining five partitions to shard 2, as illustrated in Figure 3-3. This
assignment of partitions to shards is stored in the server nodes and loaded into the
Client Driver’s partition map when the client connects to the server.

FIGURE 3-3.  Partition map for a system with two shards and 10 partitions

Client

Partitions
6–10

Shard 2

Partitions
1–5

Shard 1

Partition Map:
Partitions 1–5 map to shard 1;
Partitions 6–10 map to shard 2

03-ch03.indd 54 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   55

For each API request, the Client Driver hashes the major key of the record to
determine the partition ID. Then, it looks up the partition map to determine which
shard the partition belongs to. Once the shard that owns the key has been determined,
the Client Driver uses consistency and latency information (described earlier) in order
to route the request to the appropriate node within the proper shard.

Changing the Number of Shards
Let us now examine what happens when the system administrator adds more Storage
Nodes to the cluster in response to growing volumes of data. Continuing our previous
example, assume that the system administrator adds enough hardware to accommodate
one more shard to the cluster and initiates a data redistribution operation.

A partition is the unit of data movement and redistribution. When a new shard is
added to the cluster, Oracle NoSQL Database moves some of the partitions from
existing shards to the newly available shard in order to redistribute data evenly among
the total number of shards in the system. In this example, Oracle NoSQL Database
will redistribute partitions such that two shards manage three partitions each, and
one shard manages four partitions. This data redistribution is referred to as partition
migration. Figure 3-4 illustrates the new configuration of the system. A redistribution
operation always moves some partitions from every existing shard; in other words,
every existing shard contributes some partitions to the newly created shards.

FIGURE 3-4.  Partition map after adding a shard

Partitions
7–10

Shard 3

Partitions
4–6

Shard 2

Partitions
1–3

Shard 1

Client

Partition Map:
Partitions 1–3 map to shard 1
Partitions 4–6 map to shard 2
Partitions 7–10 map to shard 3

03-ch03.indd 55 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

56   Oracle NoSQL Database

Because keys are hashed across the available partitions, it is possible that some
partitions are larger than others. During the redistribution operation, Oracle NoSQL
Database moves partitions such that each shard manages approximately equal
amounts of data. This ensures that each shard handles the same workload, assuming
that the application’s data access pattern is evenly distributed across the entire key
space. Keep in mind that this even redistribution of partitions is aimed at ensuring
that each shard (not Storage Node) manages roughly the same amount of data. As
described earlier, it is quite possible that the newly allocated hardware might have
different capacity than the hardware for the original set of shards. In that case, some
Storage Nodes will manage more data than others. Although this does not affect
correct behavior of the system, it is important for the system administrator to
understand the performance implications of having nodes with differing capacity.

Another aspect of data redistribution related to the replication factor of the system
is worth mentioning. The replication factor of an Oracle NoSQL Database store
defines the number of replicas that each shard has. Every shard within a Oracle
NoSQL Database store must have the same replication factor. When new hardware is
added to the Oracle NoSQL Database cluster, the system determines how many new
shards can be added. For example, if the replication factor of the existing system is
three, and additional hardware with a cumulative capacity of nine is added, then
three new shards will be created. On the other hand, if the cumulative capacity of
the additional hardware is not a multiple of the replication factor, then some capacity
will be left unused. In the extreme case, if there is insufficient capacity to host even a
single new shard, then Oracle NoSQL Database will not redistribute the data; the
newly allocated hardware will not be usable until more capacity is added.

Partition migration is performed as a background, online activity; application
access continues without interruption. In a typical production environment, each
partition manages several hundred gigabytes of data. Consequently, partition
migration is a long duration operation. After the system administrator provisions
new hardware and specifies the capacity of each new Storage Node, Oracle
NoSQL Database migration planner generates a plan for orchestrating partition
movement. Using the replication factor and the information about the capacity of
each new Storage Node, the planner computes the number of new shards that will
be added to the system. For each partition that will be moved, it determines the
source and destination shards. This step takes partition sizes into account in order
to ensure that each shard manages approximately the same amount of data in the
final configuration (larger cluster). Finally, it determines the Storage Node that will
host each Replication Node for each new shard.

There is an important issue in this last step that is worth mentioning, which is
easily illustrated with an example. Assume that the replication factor of the Oracle
NoSQL Database store is 3, and one additional machine, with a capacity of 3 has
been provisioned by the system administrator. Obviously, after data migration is
complete, the new configuration should have one additional shard. However, the

03-ch03.indd 56 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   57

question is: Where should the Replication Nodes for the new shard be placed?
Because a Storage Node (typically a physical machine) is also the unit of failure, it is
important that the Replication Nodes for each new shard be placed on different
physical machines in order to avoid the loss of an entire shard if a Storage Node
fails. Depending on the placement of Replication Nodes in the existing cluster, it
may be necessary to move some of the existing Replication Nodes to the new
hardware and then use this freed-up capacity to host some of the newly created
Replication Nodes.

Before beginning the process of partition redistribution, the migration planner
determines whether such a move is required. If some Replication Nodes need to be
moved from one Storage Node to another, that movement is initiated first, before
partitions are redistributed. Figure 3-5 illustrates this scenario.

FIGURE 3-5.  Proper placement of Replication Nodes for a newly added shard

The above con�guration depicts the correct placement of new replicas and masters. No shard
has all Replication Nodes on the same Storage Node.

M1 R1-1 R1-2

Initially, the system has a single shard
and each Replication Node is hosted
on a Storage Node with capacity = 1.

Later, a new Storage Node with capacity
of 3 is added. This means we can add
one more shard.

M1 R2-1 R1-2 M2 R1-1 R2-2

M1 R2-1R1-2 M2R1-1 R2-2

The above con�guration is ncorrect with respect to placement of Replication Nodes for the new
shard. Shard 2 has all replication nodes on the same Storage Node. If that Storage Node is lost,
the entire shard will become unavailable.

03-ch03.indd 57 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

58   Oracle NoSQL Database

As is evident, partition migration is a complex and time-consuming process;
consequently, only one partition migration plan can be active at any given time.
Once the migration plan has been computed, each shard is informed about its role in
the migration; in addition, the plan is persistently stored in the administrator console.

During the migration process, it is important that normal user activity proceed
without disruption. At any given moment during a partition migration, some rows in
the partition will still be on the original shard, other rows will be in transit, and the
rest of the rows will have been transferred to the new shard. Further, the application
might update rows that are actively involved in the partition migration process.
Oracle NoSQL Database ensures uninterrupted user activity during a migration
as follows.

To simplify the coordination and execution of partition migration, only master
nodes participate directly in the migration process. Note that partition migration cannot
be implemented using the log shipping mechanism used for keeping replicas updated
and current with respect to the master node. Partition migration uses a different
network protocol. For each source shard, once all the rows within a partition are
moved to the target shard, the partition can be deleted at the source shard (master).
When the partition is deleted at the source shard’s master node, log shipping (used
for keeping the replicas updated) ensures that the corresponding change occurs on
the source shard’s replicas as well. Similarly, as migrated rows arrive at the target
shard’s master node, they are sent to the target shard’s replicas using log shipping. Thus,
source and target replicas are kept up-to-date as migration proceeds.

Once an entire partition has been migrated, the source shard master and target
shard master both update their version of the partition map (described earlier). The
partition map changes are also propagated to each Client Driver when the driver
communicates with the shard. As soon as the Client Driver has an updated partition
map, it can start routing application requests to the appropriate shard. Thus, as soon
as each partition has been migrated successfully, the target shard can start serving
data for that partition.

In order to preserve correctness and uninterrupted application operation, migration
is performed by the master node, on a row-by-row basis. While data migration is in
progress, client requests are handled as follows. In the case of rows that have already
been transferred to the target shard, the source master shard forwards the request to
the target shard (source shard to destination shard request forwarding). This is the only
situation in which one shard communicates with another. In the case of rows that
have not yet been transferred, the application request can be satisfied at the source
shard; any changes to the row will get transferred to the target shard when the row
migrates. Finally, for rows that are actively being transferred, the source shard applies
the change and also forwards the request to the target shard. Changes are idempotent;
consequently, reapplying a change more than once doesn’t affect the correctness of
the update operation. This algorithm ensures that application data access continues
uninterrupted during the migration process.

03-ch03.indd 58 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   59

Although partition redistribution is an atomic operation, it cannot be undone. If
the system administrator wishes to reduce the number of shards in the system, the
administrator indicates that some hardware needs to be removed from the cluster.
This initiates a partition transfer operation that increases the number of partitions per
shard, consequently shrinking the total number of shards in the system. Once the
transfer is complete, the machines that no longer manage data can be physically
removed from the system.

Changing the Replication Factor
Oracle NoSQL Database supports another kind of data movement operation that
serves a very different purpose as compared to the data redistribution mentioned
earlier. In some scenarios, it is desirable to change (typically increase) the replication
factor of the cluster. Increasing the replication factor improves availability as well as
read scalability. Availability improves because the increased redundancy implies
higher tolerance to hardware and Replication Node failures. Read scalability improves
because read requests can be shared by the additional replicas. For example, during
peak business periods (for example, in the holiday season), it may be desirable to
provide higher read scalability, especially if the workload is predominantly read-only.
Note that each replica requires some additional work on the master node to keep it
updated. Consequently, if the workload is update-heavy, then increasing the replication
factor to a very high value might potentially affect update performance adversely. In the
case of update-intensive workloads, it is better to add more shards to the system, rather
than increasing the replication factor.

Another common reason for increasing the replication factor is to expand the
Oracle NoSQL Database store to multiple datacenters. For example, the Oracle
NoSQL Database store might be initially set up in a single datacenter in one
geographic location. At a later point in time, the system administrator might elect to
improve availability by having some of the nodes located at a geographically remote
location with independent failure characteristics. This can easily be achieved by
provisioning the new hardware capacity at the new datacenter and increasing the
replication factor of the original system. Note that Oracle NoSQL Database enforces
the rule that each shard must have the same replication factor. Consequently,
increasing the replication factor can only be achieved if the newly provisioned
capacity is a multiple of the number of shards. For example, assume you have a
10-shard system with a replication factor of 3 in datacenter A. You now want to add
another set of replicas in datacenter B. The system administrator would provision
new hardware in datacenter B such that there are 10 new Storage Nodes, each with
a capacity of 1. After this is done, the system administrator can invoke the command
to increase the replication factor. Once the command is invoked, Oracle NoSQL
Database will associate each new Storage Node in datacenter B with one of the

03-ch03.indd 59 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

60   Oracle NoSQL Database

existing shards in the system. After this is done, each shard begins the process of
populating the new Replication Node (on the newly assigned Storage Node) in order
to increase the replication factor; consequently, the database is now accessible at
both datacenters.

The mechanism for increasing the replication factor is similar to resurrecting a
failed replica, except that increasing the replication factor applies to all the shards in
the cluster. Also, similar to partition migration, increasing the replication factor is a
long duration operation. The planner first verifies that there is sufficient additional
capacity to increase the replication factor. It then assigns a new (empty) Replication
Node from the newly allocated capacity to each shard. Each shard adds the new
node to the known list of members and then begins the process of bringing the new
Replication Node up-to-date with respect to the master, using Berkeley DB Java
Edition’s restore and recover mechanisms. A snapshot of the data on the master
node is used as a “backup” copy. This backup is restored on the new replica either
by transferring the backup over the network (network restore) or by some other
means (for example, physically transporting a copy of the backups from one location
to another). Once the restore operation is complete, the replica needs to replay all
the transactions that have occurred since the time of the backup, in order to become
“current” with respect to the master. The master node in each shard sends its new
replica the log records that the replica needs in order to catch-up with the master.
This is the same log shipping mechanism that is used in order to keep replicas
updated during normal operation of the system.

Considerations for Multiple Datacenters
As mentioned previously, Oracle NoSQL Database allows the system administrator
to distribute the Storage Nodes across datacenters, possibly in geographically
separate locations. This is commonly done to guard against disasters as well as to
provide low latency read access to data from diverse locations.

Usually, variable network latency and network bandwidth between nodes is the
most obvious impact on system operation in a multi-datacenter scenario. Let us
consider a few typical ways in which nodes might be geographically distributed and
some usage patterns and implications for read and write access. In the following
paragraphs, we discuss the behavior in the context of a single shard to simplify the
explanation; of course, in reality, an Oracle NoSQL Database deployment will
consist of multiple shards and the same arguments apply to all shards in a typical,
multi-shard deployment.

We will use a simple, three-datacenter scenario to explain some of the concepts
and trade-offs involved. Consider an organization that has three datacenters, one
located in San Francisco, the other in Arizona, and a third in China. For the purposes
of this example, assume that the San Francisco datacenter and the Arizona datacenter

03-ch03.indd 60 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   61

are connected by a low-latency high-bandwidth network, whereas the China
datacenter is connected to the other datacenters with a high-latency, low-bandwidth
network connection.

Oracle NoSQL Database is designed to be a highly available system with no single
point of failure. Thus, from an application’s perspective, it is important that a change
to a record (at a master node) be propagated to at least one other replica before the
transaction can be considered durable. In the preceding example datacenter topology,
if the master node is located in either the San Francisco or the Arizona datacenter,
then a change at the master can be quickly propagated to another datacenter that is
connected to the master node’s datacenter via a low latency network, thus resulting in
low-latency update transactions. On the other hand, if the master node is located in
China, then it will take longer for the change to be propagated to one of the replicas
in the United States, which will result in high-latency update transactions. If availability
and low latency are important from the application’s perspective, it is important to have
low network latency between the master and at least one replica. Conversely, if the
network latency between the nodes comprising each shard is high, then the application
has to be willing to accept high-latency update operations (if durability and availability
of data are important) or be willing to accept some data loss in the event of a node
(or network) failure.

If the master node is in San Francisco, the loss of one datacenter (either the
Arizona datacenter or the China datacenter) does not affect the correctness or
availability of the system since there is a replica that can be used to make updates
impervious to a single point of failure. However, if both the Arizona and China
replicas are lost, then the datacenter with the master node (San Francisco in this
example) will continue to serve read requests, but will not permit write requests
because there is no way to make the changes durable cluster-wide.

Consider a different scenario. If the master node is in San Francisco and the San
Francisco datacenter is lost, then the replica in Arizona will most likely be elected
as master. This can be explained as follows. Because the Arizona datacenter is
connected to the San Francisco datacenter by a low latency network, changes at the
master will be propagated to the Arizona datacenter sooner than they are propagated
to China. Consequently, the Arizona datacenter is more likely to have received the
latest changes. As discussed earlier, the election protocol attempts to select the most
current replica as the new master should an existing master fail. Again, loss of the
master node does not affect either read availability or write availability of the system.
Thus, Oracle NoSQL Database is able to provide availability for read and write
requests under several (but not all) conditions of datacenter loss. Note that if the
San Francisco datacenter is lost and the mastership is transferred to the Arizona
datacenter, then the master in Arizona has to propagate changes over a high latency
link to the node in China. Consequently, update transactions might experience higher
latency unless the application chooses not to wait for acknowledgments from replicas
(acknowledgment = NONE).

03-ch03.indd 61 11/12/13 3:07 PM

62 Oracle NoSQL Database

From the application perspective, it is desirable that requests be served as
quickly as possible. In the preceding scenario, a client in the United States is likely
to have a low-latency network connection to the U.S. datacenters and can get read
requests satisfied by either the San Francisco or the Arizona datacenter, especially if
it specifies stringent read consistency requirements. On the other hand, a client in
China that specifies stringent read consistency requirements for reads will have the
read operation served by one of the nodes in the United States. On the other hand,
if the client in China can relax the consistency requirements to allow for high
network latency, those requests can be served by the replica in China (this assumes
that the client in China also has a high-latency network connection to the U.S.
datacenters).

In all cases, write requests must be served by the master node (in the San
Francisco datacenter in our example). This suggests that the client in China will have
to incur high latency writes. If writes are relatively infrequent, or if the application
can tolerate high latency writes (for example, if the writes are during an interactive
user session that involves user think time), then the high latency writes are usually
not a problem.

In other cases, client applications may require low latency writes to a subset of
the data but read access to all the data. For example, if the application manages user
profile data, then the client running in China will most likely prefer to have low
latency write access to the user profiles of Chinese residents. In such scenarios, the
application can create two Oracle NoSQL Database repositories, with each store
potentially having the Replication Nodes at different datacenters for availability
reasons. Obviously, the two repositories don’t share any data. If we continue with
our earlier example, the repository for the Chinese residents might have the master
node hosted in the China datacenter, whereas the repository for the U.S. residents
might have the master node hosted in the United States (either in San Francisco or
Arizona). In order to service a user request, the application needs to determine
which repository can serve the data and route the request appropriately. Figure 3-6
illustrates this scenario.

The preceding discussion is not exhaustive; it is meant to highlight some of the
application design issues that the developer and system administrator need to keep
in mind when they distribute Oracle NoSQL Database Storage Nodes over multiple
datacenters. The application designer needs to make a trade-off between client to
server network latency and read consistency requirements. Besides unexpected
events such as natural disasters, scheduled maintenance as well as network outages
can cause a datacenter to go offline. The system administrator needs to understand
the behavior of the distributed system when one or more datacenters go off-line so
that these maintenance activities can be planned and executed correctly without
disrupting availability of the Oracle NoSQL Database service.

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   63

Storing Records
and the Flexible Data Model
Let us now examine how Oracle NoSQL Database stores records in the database.
As mentioned in Chapter 2, Oracle NoSQL Database supports the notion of major
and minor keys. The major key describes the globally unique identifier for a record.
Conceptually, a minor key describes a specific component of the record. In the
discussion that follows, we use the term record to describe a logical entity being
represented in the database; we use the term key-value pair to describe a component
of the record. A record generally comprises one or more key-value pairs. A specific
record is identified by the value of its major key; in other words, the major key is
simply the label (or name) for the unique identifier for a record. Similarly, a specific

FIGURE 3-6.  Federated configuration over multiple datacenters with differing
network latencies

San Francisco
Datacenter Arizona

Datacenter

China
Datacenter

Application code

Driver 1

Notes:
The �rst Oracle NoSQL Database repository
is made up of nodes M1-1, R1-1, R1-2,
mastered in San Francisco.

The Second Oracle NoSQL Database
repository is made up of nodes M2-1, R2-1
and R2-2, mastered in China.

Each application has a connection to both
repositories; connections from only one of
the applications are shown for simplicity.

China has high-latency network connection
to the U.S. datacenters. U.S. datacenters are
connected by low-latency network.

M1-1 R2-1

Driver 2

Application code

Driver 1

R1-2 R2-2

Driver 2

Application code

Driver 1

R1-1 M2-2

Driver 2

03-ch03.indd 63 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

64   Oracle NoSQL Database

component of a record also has a label (minor key) and a value. A component may
not have a value if the minor key is sufficient to describe the component or if the
component has nested subcomponents. Note that unlike the organization of records
in a relational table, where each row has the same column names, two distinct
records in Oracle NoSQL Database might have very different components. (This
flexibility is one of the key differences between a relational database and NoSQL
systems.) Consequently, each component of each record needs to be described to
the system using a minor key (which is the name of the component) and a value
(which is the value of the component). Let’s use an example to explain these
concepts and also explain how Oracle NoSQL Database organizes data.

Consider a record that describes a person in an ecommerce web application.
The user’s login is the most obvious choice for uniquely identifying the record. A
person’s record will also typically have various components such as first name, last
name, address, telephone number, billing information, photograph, and so on.

This might be modeled in Oracle NoSQL Database as follows:

Major key = User_login; Value = doe@acmecompany.com
Minor key = Firstname; value = John
Minor key = Lastname; value = Doe
Minor key = address; value = null;
Minor key = street; value = "123 Any Street"
Minor key = city; value = "Any Town"
Minor key = state; value = "California"
Minor key = ZIP code; value = "11111"

As highlighted in the preceding example, minor keys can be nested. In particular,
the minor keys street, city, state, and ZIP code are nested under the minor
key address.

From a storage point of view, the multiple components of a specific record are
stored as individual Berkeley DB key-value pairs, with the guarantee that all these
key-value pairs are stored in the same shard. This is illustrated in the following table.
A key-value pair (component) is identified by its fully qualified key, which contains
the name of the major key (for example, User_login) as well as the value of the
major key (for example, doe@acmecompany.com) plus the ordered list of names
of the minor keys. The value of the major key (doe@acmecompany.com in this
example) is included as part of the fully qualified key.

Fully Qualified Key for Lookups Value

/User_login/{doe@acmecompany.com}/-/

/User_login/{doe@acmecompany.com}/-/Firstname/ John

/User_login/{doe@acmecompany.com}/-Lastname/ Doe

/User_login/{doe@acmecompany.com}/-/address/

03-ch03.indd 64 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   65

Fully Qualified Key for Lookups Value

/User_login/{doe@acmecompany.com}/-/address/street/ 123 Any Street

/User_login/{doe@acmecompany.com}/-/address/city/ Any Town

/User_login/{doe@acmecompany.com}/-/address/state/ California

/User_login/{doe@acmecompany.com}/-/address/ZIP code/ 11111

This organization allows the user to access the entire user record—the
multi_get() API call has to be used for this purpose—or specific components
of the record very conveniently and efficiently. This is particularly important when
the record contains some components that are large in size (for example, images,
documents, or video content). The large content can be retrieved only if needed,
thus improving network utilization and response time for the request.

Oracle NoSQL Database uses various key compression techniques (for example,
Prefix compression) for the B-tree index. This ensures optimal utilization of memory
and efficient retrieval of one or more key-value pairs of a specific record.

Oracle NoSQL Database also supports the notion of ordered iteration on the
minor keys within a record (unique major key). For example, consider a record that
is used to store the transaction history for a particular user. In this case, the most
natural way to organize this content is to use the user’s ID as the major key and then
create a new key-value pair for each transaction that is indexed by the date and
timestamp of the transaction. The table that follows illustrates how this information
might be organized.

Fully Qualified Key for Lookups Value

/User_login/{doe@acmecompany.com}/-/

/User_login/{doe@acmecompany.com}/-/Firstname/ John

/User_login/{doe@acmecompany.com}/-Lastname/ Doe

/User_login/{doe@acmecompany.com}/-/address/

/User_login/{doe@acmecompany.com}/-/address/street/ 123 Any Street

/User_login/{doe@acmecompany.com}/-/address/city/ Any Town

/User_login/{doe@acmecompany.com}/-/address/state/ California

/User_login/{doe@acmecompany.com}/-/address/ZIP code/ 11111

/User_login/{doe@oracle/com}/-/transaction_history
20130101/

Purchase car for
$23,000.00

/User_login/{doe@oracle/com}/-/transaction_history
/20130201/

Purchase laptop
for $599.00

/User_login/{doe@oracle/com}/-/transaction_
history/20130301/

Sell old desktop in
garage sale for $10.00

03-ch03.indd 65 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

66   Oracle NoSQL Database

In the preceding example, the application developer creates a new minor key
for each month with the format “transaction_ history <year month day>.”
This particular choice of format ensures that the internal sort order of the index
matches the expected sort order. Note that the value for a minor key can contain
information about one or more transactions (specified as a byte array); Oracle
NoSQL Database does not impose any restriction on the contents of the value. The
ordered iteration feature of the Oracle NoSQL Database API provides for a convenient
way to retrieve the transaction history for reporting or analysis purposes. Oracle NoSQL
Database also supports range queries, thus enabling the application to retrieve only
a subset of the data.

Oracle NoSQL Database can also store information as JSON records using Avro
schemas. The same information could be alternately stored as follows:

{
 "type" : "record",
 "name" : "userInfo",
 "namespace" : "my.example",
 "fields" : [{"First_name" : "firstname",
 "type" : "string",
 "default" : "NONE"},
 {"Last_name" : "lastname",
 "type" : "string",
 "default" : "NONE"},
 {"name" : "address",
 "type" : "record",
 "fields": [
 {"name" : "street",
 "type" : "string",
 "default" : "NONE"},
 {"name" : "city",
 "type" : "string",
 "default" : "NONE"},
 {"name" : "state",
 "type" : "string",
 "default" : "NONE"},
 {"name" : "zipcode",
 "type" : "string",
 "default" : "NONE"}]
]
}

Oracle NoSQL Database provides a very flexible storage paradigm for managing
information. Over 15 years of experience with Berkeley DB has clearly demonstrated
that the key-value paradigm directly supports several data models and can be easily
used as the basis for modeling other data models such as XML. Oracle NoSQL
Database’s key-value paradigm can easily be used to model relational data structures.

03-ch03.indd 66 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   67

It can also be used to manage Java objects, hierarchical data structures, nested data
structures, JSON data, XML data, sparse tables, and so on. Oracle NoSQL Database
can also be used as a repository for RDF graph data. This modeling flexibility simplifies
the task of the application developer because it allows the developer to model the
data in a manner most convenient to the application. Further, it is very easy for the
application developer to evolve the data model; changes can be incorporated easily
without having to unload and reload existing data.

Log-Structured Storage
Berkeley DB Java edition uses log-structured storage in order to organize data on
disk. This has significant implications for the performance as well as maintenance
and manageability of the system. Let us examine the storage and performance
implications of log-structured storage in some detail. It is useful to contrast log-
structured storage organization with a conventional “update-in-place” architecture
that is common to several popular database systems, including the Oracle database.

For disk-based database systems, I/O is generally the performance bottleneck;
hard disk is the slowest component in the system. Log-structured storage was
invented in the early 1990s based on the observation that data access latency and
throughput can be dramatically improved by replacing random I/O operations with
sequential I/O operations. Performing random I/O is a lot more expensive than
performing sequential I/O; magnetic disks incur rotational latency (delay until the
required sector is under the disk head) and seek latency (radial movement of the
disk head) in order to read or write a specific sector on disk. A random I/O involves
seek latency as well as rotational latency in order to find the required sector. On the
other hand, sequential I/O does not require a seek operation; consequently, it is
possible to perform many more I/Os per second.

In a conventional update-in-place database architecture, the storage is organized
as fixed-size pages or blocks. Pages contain individual records; if a record is larger
than a page, the record is stored as a sequence of fragments where each fragment
fits on a page. Figure 3-7 illustrates this page-based organization. Whenever a
record needs to be modified, the corresponding page is read into memory, the
appropriate changes are made, and the page is written back to the same location.
This is why this architecture is referred to as update-in-place. When new records
have to be added, the system either finds available space on existing pages or
allocates new pages to store the new records. In order to manage disk space
efficiently, the database system will typically look for free space on existing pages
first before allocating new pages on disk. This can potentially cause multiple random
I/Os on disk.

In contrast, log-structured architecture is an append-only architecture. The
database is organized as a single logical log file on disk. The log file contains all the
data including metadata such as indices. When a new record is inserted, it is

03-ch03.indd 67 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

68   Oracle NoSQL Database

appended to the end of the log. If an existing record is changed, a new version of
the record is created and appended to the end of the log instead of changing the
existing copy of the record. Thus, every change results in a new version of the
record being created rather than the record being updated in place. Of course,
indices and other related structures have to be updated in order to reflect the new
position of the new version of the record on disk. This means that during normal
processing, all changes (inserts, updates, and deletes) are written to the end of
the log. Consequently, I/O performance is optimal, and this results in the best
performance for the system.

When a record is updated, the previous version of the record is no longer needed
and can be garbage collected. Berkeley DB Java Edition includes a garbage collection
process called the cleaner. The cleaner is responsible for reclaiming the space
associated with obsolete versions of records. The cleaner runs in the background,
looking for obsolete records in the log file, and compacts the log file by moving
current records to the end of the log and reclaiming space on disk. Keep in mind
that the cleaner process does perform random I/O on disk. However, the cleaner I/O
activity proceeds in the background with minimal interference with the I/O activity
that is associated with transactions. In other words, the cleaner I/O activity is not in
the critical path of the transaction.

Although log cleaning is a background activity, it is important to optimize the
operation of the cleaner process so that it does not interfere with the overall
performance of the system. Berkeley DB Java Edition has been tuned extensively in
order to optimize the cleaner to deliver excellent steady-state performance of the
system. Figure 3-8 illustrates log-structured storage as well as the cleaner. Because
of Berkeley DB Java Edition’s log-structured storage architecture, Oracle NoSQL
Database is very well suited for update, insert, and delete operations. Because
NoSQL systems are often used to capture data at high throughput, the log-structured
architecture is ideally suited for insert-heavy workloads.

FIGURE 3-7.  Conventional “update-in-place” on-disk organization of data records

Magnetic disk

Fragmented
row spanning 3
pages

Empty page

Page

Row

03-ch03.indd 68 11/12/13 3:07 PM

Chapter 3: Oracle NoSQL Database Architecture 69

Log-structured storage has important implications for the amount of disk that is
used by the system. In a conventional update-in-place architecture, the amount of
storage used does not change when there is a lot of update (but not insert or delete)
activity in the system. In contrast, in a log-structured storage architecture, updates
result in new versions of records being created, consequently increasing the amount
of storage required. Although the cleaner will reclaim this space shortly, in the steady-
state, the amount of storage required by log-structured storage architectures is more
than the amount of storage required by conventional update in-place architectures.
It is possible to garbage collect more aggressively but that can result in suboptimal
overall performance.

Since Oracle NoSQL Database is a highly available system, each record is
replicated and stored more than once (on the replicas). It is important to keep the
storage requirements of log-structured storage-based systems in mind when sizing
the system for the application workload. This additional storage requirement is a
small price to pay in order to achieve excellent performance and high availability
for today’s demanding workloads. Several modern NoSQL systems also use log-
structured storage, with the trade-off of higher storage costs for high performance
and availability.

Durability
In a conventional database system, a transaction’s changes are made permanent by
writing those changes to disk. A transaction cannot be declared complete (committed)
until its changes are written to durable storage. In order to improve performance,
database systems use the write-ahead-log protocol (to minimize I/O in the critical path
of the user operation) and the group commit protocol (to improve the efficiency of log
writes). The write-ahead protocol is an optimization technique that requires that only
the log records associated with the changes be written to disk before the transaction
can be declared complete. The changes to the records can be propagated to the disk

FIGURE 3-8. Log-structured storage organization

Obsolete versions of records
garbage collected by cleaner

Most recent log
buffer written

here

Log file

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

70   Oracle NoSQL Database

lazily (these I/O operations are not in the critical path of the transaction). This is a very
significant optimization: As discussed earlier, log writes can be performed much faster
than random writes to the disk, thus improving throughput and latency. The group
commit protocol is designed to write several log records as a group in a single I/O to
the log file. The group commit protocol leverages the fact that the I/O throughput of
writing to a disk is only marginally affected by the amount of data written. In other
words, writing 100 bytes of log data is just as expensive as writing 1,000 bytes
of log data. Together, the two protocols enable extremely high performance. These
optimizations were pioneered in the 1970s and ’80s, and have been widely used
ever since.

Oracle NoSQL Database is also a highly available system. In order to ensure
shard-wide durability, it is important to make the changes durable on the master
node, as well as propagate the changes to the replicas before the transaction can be
declared as complete. When a transaction is ready to be committed, Oracle NoSQL
Database does the following (in parallel):

■■ Write the transaction changes to the log file on the master node

■■ Send messages containing the log records to the replicas

There are various options for these two operations that enable different degrees
of durability and performance. In the most stringent scenario, it is necessary to
propagate the changes to disk locally (on the master) as well as on each of the
replicas in the shard. This ensures that the changes are durable not only on the
master node, but on each of the replica nodes as well. A failure of one of the nodes
in the shard does not impact the durability of the transaction because the change
has been made durable on all copies.

Conversely, if the application has less stringent durability requirements, it may
be sufficient to send the changes to the replicas but not wait for the changes to be
propagated to disk before acknowledging completion of the transaction. The rationale
for this kind of durability is as follows. Assuming that the failure of one of the nodes
in the shard doesn’t cause the failure of another node (failure independence) and
assuming a reliable network, at least one of the nodes in the shard will have the
latest set of changes; consequently, the transaction’s changes can be considered
durable and permanent.

In the context of writing the log records to disk, there are three possibilities
to consider:

■■ Write the log record to the log buffer. In this case, if the thread executing the
transaction fails, the changes are contained in the log buffer. The log buffer
will be written to disk shortly. This is the least expensive option because it
does not involve any file system write() calls.

03-ch03.indd 70 11/12/13 3:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   71

■■ Write the log buffer to the file system. In this case, even if the process
fails (but not the operating system), the changes will be written to disk
asynchronously. This option is more expensive than the former because
it involves a file system write() call, which copies the log buffer to
operating system memory.

■■ Write the log buffer to disk (file system fsync() call). This ensures that the
changes are permanently written to disk. Even if the processor fails, the disk
will have a record of the changes. This is the most expensive option because
it involves a synchronous I/O to disk.

Note that these options for writing log records to disk are available at the master
node as well as the replicas.

In the context of sending messages to the replicas, there are a few possibilities to
consider as well:

■■ The master can send messages to all the replicas but not wait for
acknowledgment. In this case, the assumption is that messages will
eventually propagate the replicas.

■■ The master can send messages to all the replicas, and wait for an
acknowledgment from a majority of the replicas. In this case, the master node
needs to ensure that the majority of the replicas have received the changes.

■■ The master can send messages to all the replicas and wait for an
acknowledgment from all the replicas. This ensures that all the replicas
have, in fact, received the changes.

The replicas can either acknowledge the message after writing the change
message to the log buffer, or after writing the log buffer to the operating system, or
after writing the log buffer to disk (fsync). Figure 3-9 illustrates the possible choices
in the system.

From this description, it is clear that the user has a wide range of possibilities to
choose from in order to determine what defines the commit of a transaction. Oracle
NoSQL Database allows the user to specify the degree of durability (I/O semantics
as well as response semantics) for master and replica nodes along the dimensions
described earlier in order to decide what constitutes durability of a transaction. For
example, the user might choose to declare a transaction as committed when the log
buffer has been the written to the operating system on the master node and the
master has received acknowledgments from a majority of the replicas in the system
(even though the replicas have not written those log records to their local disk). The
user might also choose to declare that a transaction is committed only when the
master node as well as all the replicas have written the changes durably to disk and

03-ch03.indd 71 11/12/13 3:07 PM

72 Oracle NoSQL Database

acknowledged receipt of the messages. The former option provides good durability
guarantees (assuming independent failure modes of replica nodes) and also provides
excellent performance and throughput for transaction processing. The latter option
provides the strictest durability guarantees but is also the most expensive in terms of
performance and throughput.

This flexibility in choosing the degree of durability on a per-transaction basis
is crucial from an application designer point of view. The developer can make an
intelligent trade-off between performance and degree of durability for update operations
without compromising the integrity of the overall system.

ACID Transactions and
Distributed Transactions
Distributed database systems have been in existence for over three decades; these
systems pioneered many features like sharding, high availability, distributed query
optimization, and the two-phase commit protocol for distributed transactions. A
distributed database system stores subsets of data in multiple data managers (called

FIGURE 3-9. Durability choices for a transaction in Oracle NoSQL Database

Log buffer

Master node

File system buffer

disk

Three options for
writes at master
and at each replica:

1. Log buffer

2. File system buffer

3. Disk

Process address
space

Operating system
address space

disk

Send log records to replica

Wait for majority acks
Replica

Wait for acks

Don’t wait for acks

Log buffer

File system buffer

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 3:  Oracle NoSQL Database Architecture   73

resource managers in distributed transaction terminology). In a distributed database
system, a transaction will often operate upon data stored in multiple resource
managers. The two-phase commit protocol is used to ensure common agreement
(commit or abort) of the transaction between multiple resource managers.

Here’s a brief and simplified description of the two-phase commit protocol. At the
start of a distributed transaction, the transaction coordinator (the entity responsible
for managing distributed transactions) initiates a new global transaction, which is
associated with a globally unique transaction ID. During the execution of the
transaction, the transaction ID is included in the messages that are sent to the resource
managers that are involved in the distributed transaction. Each resource manager is
responsible for making changes to the data that it manages. Each resource manager
uses a sub-transaction in order to perform these local changes; it also associates the
sub-transaction identifier with the global transaction ID that was passed to it by the
coordinator.

When a distributed transaction is ready to commit, the transaction coordinator
sends prepare-to-commit messages to all the resource managers participating in the
transaction. Upon receiving the message, each resource manager determines
whether they can commit the local sub-transaction. If they can, they write a ready-
to-commit log record to the local log and respond with a ready-to-commit message
to the coordinator. Once a resource manager has agreed to commit their sub-
transaction, they cannot change this decision later on. However, if they receive an
“abort” message from the coordinator, they must abort the local sub-transaction. The
coordinator waits until they have received responses from all the resource managers
participating in the distributed transaction. If all the resource managers respond
positively (i.e., all of them respond with a ready-to-commit message), then the
coordinator sends a commit message to all participants. Upon receiving the
message, each participating resource manager commits the local sub-transaction
and responds with a done message.

If at least one of the participating resource managers responds to the prepare-to-
commit request with a cannot-commit message, then the coordinator sends an abort
message to all participants. Thus, the two-phase commit protocol ensures that all
resource managers participating in the distributed transaction record the same outcome
for the transaction. The protocol is called the two-phase protocol because it has two
distinct phases—the prepare phase and the commit phase. It is also a blocking
protocol because the coordinator has to wait for responses from all participants.

From this description, it is obvious that the two-phase commit protocol is a pretty
expensive protocol in terms of message exchanges. It also adds significant latency to
the transaction because it is a blocking protocol. Further, the transaction coordinator
is a single point of failure and also a hotspot because every distributed transaction
needs to communicate with the coordinator. For all these reasons, almost all the
modern NoSQL systems, including Oracle NoSQL Database, avoid using the two-
phase commit protocol by not supporting distributed transaction capability. These new

03-ch03.indd 73 11/12/13 3:07 PM

74 Oracle NoSQL Database

systems are intended to handle huge and unpredictable volumes of data and
transactions in a cost-effective manner. Hence, they make the trade-off in favor of
performance and simplicity, rather than functionality. Note that an application can
still change a set of records in multiple different shards; in all likelihood, barring
unexpected problems or failures, all the changes will be performed as expected.
However, there is no mechanism (such as two-phase commit) to guarantee the
atomicity of updates to a set of records stored in multiple shards.

As we have already discussed, Oracle NoSQL Database provides transactional
semantics only for single-shard operations. Multi-shard operations such as scans do
not support transactional semantics. For the vast majority of NoSQL applications,
the performance, simplicity, and scalability benefits of single-shard transactions far
outweigh the potential benefits of distributed transactions.

Summary
Oracle NoSQL Database is a highly scalable distributed key-value store. Oracle
NoSQL Database has demonstrated linear scalability on clusters of a few hundred
nodes. Recent YCSB (Yahoo! Cloud Serving Benchmark) testing has demonstrated
performance of 1.25 million operations per second on a 15-node commodity cluster
with a workload of 95 percent reads and 5 percent writes.

Oracle NoSQL Database supports ACID transactional semantics, but also allows
the application developer to intelligently trade off durability for performance. There
is no single point of failure or contention in the architecture. The system is resilient
to single points of failure and is designed to deliver uninterrupted service in production
for long periods of time. Oracle NoSQL Database is an enterprise-grade NoSQL system
for modern big data applications.

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

CHAPTER
4

Oracle NoSQL Database
Installation and

Configuration

04-ch04.indd 75 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

76   Oracle NoSQL Database

Prior to deploying Oracle NoSQL Database, it is imperative that a right-sized
database topology is architected using the best practices of sizing Oracle
NoSQL databases that satisfies the availability, reliability, and performance

requirements as set forth by the Oracle NoSQL Database application. The total
number of Storage Nodes and their respective hardware configurations, such as
CPU, memory, and disks, must be defined by now. Otherwise, poorly sized systems
are prone to performance and stability issues when subjected to production
workloads. Please refer to Chapter 8 for the best practices of sizing Oracle NoSQL
Database deployments.

The Oracle NoSQL Database deployment is typically a two-phase process. The
first phase comprises the steps to install the Oracle NoSQL Database software on the
individual Storage Nodes and starts the required processes. If your intention was
only to use KVLite, you are done after this phase and may continue with developing
your applications. KVLite is a single node and non-distributed version of Oracle
NoSQL Database suitable for development and learning purposes. Further details on
KVLite and application development are provided in Chapter 5.

The steps outlined in the second phase build a distributed and clustered version
of Oracle NoSQL Database using a set of Storage Nodes. A distributed version is
essential for achieving high availability, scalability, reliability, and performance
requirements—the key characteristics of an enterprise-grade production system.

Oracle NoSQL Database Installation
Oracle NoSQL Database installation in itself is a simple process and can be completed
very quickly, but the steps that occur before the installation may take most of your time.
Verifying the installation prerequisites such as the hardware, network, and operating
system is essential for ensuring a successful and, more important, stable installation.
Furthermore, the operating system must be configured with the appropriate set of
packages that are required by the Oracle NoSQL Database software. Hence, you must
ensure that all Storage Nodes of the key-value store satisfy the following requirements:

■■ Operating system  Oracle Linux and Oracle Solaris are the officially
supported operating systems for Oracle NoSQL Database. It may be true
that Oracle NoSQL Database, as a Java application, can run on any platform
that supports a Java Virtual Machine (JVM), but the chances of running into
issues on unsupported platforms are much higher as Oracle Corporation
tests its software products only on supported platforms. If you run into
issues, you need to reproduce the problem on a supported platform before
Oracle support can investigate and analyze the root cause. Therefore, it is
very important to ensure that the underlying operating system (OS) is fully
supported by Oracle.

04-ch04.indd 76 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  77

■■ Clock synchronization  A distributed computing cluster, such as the Oracle
NoSQL Database cluster, requires the system clocks of individual Storage
Nodes to be synchronized with a global time clock. This is essential to ensure
inter-node communications between processes running on different Storage
Nodes have the same understanding of time. The clock drift (time difference)
between all the nodes in the cluster should ideally be close to zero. NTP
(Network Time Protocol) is a reliable mechanism for synchronizing time
between multiple nodes and readily available on many OS installations,
including Oracle Linux and Oracle Solaris. As a best practice, ensure that
NTP is set on all the Storage Nodes with an optimal synchronization interval,
thereby reducing the clock drift to as close to zero as possible.

■■ Java  Ensure that Java SE 6 (JDK 1.6.0 u25) or later is installed on the
Storage Nodes. Otherwise, install the correct version of Java from Oracle’s
download site (http://www.oracle.com/technetwork/java/javase/downloads/
index.html). You may use the java –version command to check the
version of Java installed on the system.

■■ File system for KVHOME and KVROOT  KVHOME is the file system
location storing the Oracle NoSQL Database software binaries and KVROOT
is the location for storing Oracle NoSQL Database configuration files and
also serves as the default location for key-value pair data. Identify the
directories on the file system to be used for these locations and ensure that
they have enough space to hold their contents. It is recommended that you
have both these locations on the local file system and not on a shared file
system such as the Network File System (NFS), as sharing of I/O resources by
multiple applications often leads to contention issues.

■■ Network ports  The Storage Nodes and Replication Nodes of the key-value
store communicate with each other using the TCP/IP protocol over Ethernet
ports. Ensure that enough ports are available across all the Storage Nodes,
and that the ports are free and unallocated and not blocked by network
firewalls. The port numbers are user configurable and set during the initial
configuration of Oracle NoSQL Database. Further details on assigning
network ports are discussed later in this chapter.

NOTE
If you were to use the integration features of Oracle
NoSQL Database such as the integration with
Hadoop, Oracle Loader for Hadoop, and the
Oracle 11gR2 Database via database external tables,
you would require an installation of Oracle NoSQL
database software on those systems as well.

04-ch04.indd 77 11/12/13 5:48 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

78   Oracle NoSQL Database

Download Oracle NoSQL Database Software
The Oracle NoSQL Database software comes in two editions, the Community
Edition (CE) and the Enterprise Edition (EE). The Enterprise Edition includes all
features of the Community Edition, plus a few additional features related to the
integration of NoSQL with other products, such as the Oracle Database and Oracle
Event Processing. The EE also provides access to enterprise-level Oracle Support.
Refer to Chapter 2 for further details on CE vs. EE.

No matter what edition you choose to install, the steps for installation and
configuration do not deviate much. The Enterprise Edition may require additional
steps to configure the integration-specific features, but those steps are covered later
in the book.

You may download the Oracle NoSQL Database Community Edition and the
Enterprise Edition from the Oracle Technology Network, and to suit your needs, you
have an option of downloading a Tar or a Zip archive.

NOTE
Oracle NoSQL Database Community Edition is
preinstalled on the Oracle Big Data Appliance
(BDA) and configured during the BDA deployment
process upon the customer’s request.

Software Installation
By now you must have picked the directory locations for KVHOME, KVROOT, and
the Oracle NoSQL Database data directory (unless using KVROOT as the default)
on each Storage Node. Although it is not an absolute requirement, it is preferred that
you have both KVHOME and Oracle NoSQL Database data directories on a local
file system instead of a shared file system such as NFS. For KVHOME, this ensures
that patching and upgrading of the software are done in a rolling fashion and with
minimal downtime, and moreover, eliminate a single point of failure as one set of
binaries is shared across all nodes. Using a local file system for the data directory
ensures that the disks are dedicated solely for NoSQL, thereby eliminating
unforeseen IO bottlenecks that may be introduced by other applications.

NOTE
KVROOT is the default location for storing Oracle
NoSQL Database data and can be overwritten
by using the –storagedir parameter of
makebootconfig. Refer to the section “Create the
Boot Configuration” for further details.

04-ch04.indd 78 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  79

You must also ensure that KVHOME and Oracle NoSQL Database data are
located in separate directories, and are consistent (that is, follow the same paths)
across all the Storage Nodes in the key-value store by following standard naming
conventions. This is a recommended best practice for avoiding configuration errors
and helps with easier manageability. Also ensure that there is enough space
allocated by the OS for these locations. The Oracle NoSQL Database data directory
requires much more space than KVHOME as it stores the application key-value pair
data. KVHOME, on the other hand, requires less than 50MB of disk space (for the
current 11gR2 release).

NOTE
You do need superuser privileges to install Oracle
NoSQL Database. The installation can be performed
as a regular OS user.

Once you have downloaded the software, copy the Zip archive to all the Storage
Nodes and move them to the root directory of KVHOME (the mount point or the
parent folder of the intended KVHOME). Extract the package contents using the
appropriate unzip utilities (gunzip followed by tar for *.gz and unzip for
*.zip), and when the extraction completes, the KVHOME directory is created
automatically. Repeat this process on all Storage Nodes, and once the extraction
succeeds on all the nodes, you have completed the Oracle NoSQL Database
software installation. The installation process is really that simple; there are no
screens or parameters to configure.

The following example outlines the steps to install Oracle NoSQL Database
version 2.0.39 Enterprise Edition using a *.gz file. The root directory of KVHOME
used in the example is /opt/kvhomes, and at the end of the installation, KVHOME
is created as /opt/kvhomes/kv-2.0.39.

$ cd /u01/kvhomes
$ gunzip kv-ee-2.0.39.tar.gz
$ tar xvf kv-ee-2.0.39.tar
$ ls -F /u01/kvhomes/kv-2.0.39
build.xml doc/ examples/ exttab/ lib/ LICENSE.txt README.txt

The actual packages and directories created in KVHOME depend upon the
release, version, and the Oracle NoSQL Database edition (CE or EE). The KVHOME
directory itself depends on the release and the version and typically follows the
convention kv-M.N.O, where M is the software release, and N and O the major
and minor release numbers, respectively. This naming scheme ensures that future
upgrades do not overwrite existing installations and that previous installations can
easily be identified.

04-ch04.indd 79 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

80   Oracle NoSQL Database

Now that the installation is complete, you may quickly verify the installation by
running a supplied test application called kvclient.jar, which is a part of the
Oracle NoSQL Database software. The kvclient.jar application prints the
current release and version of the Oracle NoSQL Database software on the screen.
You may run kvclient.jar from one of the nodes (but ideally on all nodes) and
ensure that the output you get follows the format of version.M.N.O, where the
version is 11gR2 for the current release. The following example illustrates the use
of kvclient.jar:

$ java –jar /u01/kvhomes/kv-2.0.39/lib/kvclient.jar
11gR2.2.0.39

Oracle NoSQL Database Administration Service
The Oracle NoSQL Database Administration Service is a process that runs on the
Storage Nodes, and is in charge of a variety of administration activities on the
Oracle NoSQL Database, such as instance startup/shutdown, initial configuration,
ongoing modifications to the configuration, and monitoring system performance,
without the need for manually writing complex scripts and commands. The
Administration Service is also responsible for collecting and maintaining database
performance statistics, and also for logging important system events, and thereby
assisting with online monitoring and helping tune database performance. The
Administration Service internally uses a database called the Administration
Database to store configuration and monitoring data.

NOTE
The Administration Database under the covers
uses a key-value store.

The availability of the Administration Service is critical to performing maintenance
operations on the key-value store; therefore, it is important to have multiple
Administration Services deployed across the store to ensure high availability. The best
practice is to have a minimum of three Administration Services so at least one service
is predicted to be available in a given time. The availability of the Administration
Service is not to be confused with the availability of Oracle NoSQL Database itself,
as normal database activities such as reads, writes, and replication occur without the
intervention of the Administration Service.

The Administration Service is accessible from a command line interface
called the Administration CLI or CLI, and a web-based console called the Web
Administration Console.

04-ch04.indd 80 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  81

Administration Command Line Interface (CLI)
The Administration CLI supports all administration activities on the key-value store.
To start the Administration CLI, execute the runadmin class of kvstore.jar. The
runadmin interacts with the Administration Service and provides the CLI prompt (the
kv-> prompt). However, when you are configuring the key-value store for the first
time, you do not have any Administration Services running, but you still need to start
the CLI and to configure other parameters, for example the key-value store name. It
seems like a catch-22, and the solution to that is to use the built-in Administration
Service of the Storage Node Agent process called the Bootstrap Administration Service.
A default Administration Database gets created by the Bootstrap Administration
Service and later, when the Administration Service gets deployed by the CLI
commands, the final set of Administration Services gets created and the Bootstrap
Administration Service is stopped and no longer used.

The Bootstrap Administration Service is automatically started upon starting the
Storage Node Agent process when the administration port is specified in the boot
configuration file (boot configuration is discussed next). Therefore, you need to
ensure that the Storage Node Agent service is started prior to executing runadmin
because runadmin communicates with the SNA using the registry port.

The CLI can be invoked mainly in three modes: an interactive mode, a single
command mode, and a script mode. The interactive mode is most commonly used
and is the only mode that provides a command prompt (the kv-> prompt). Users
input commands at the prompt, one at a time, and the commands are executed in
the background (although they may run in the foreground using the –wait flag). The
following is an example of starting the CLI using runadmin to access the Storage
Node Agent on node01 with the registry port 5000:

java -jar KVHOME/lib/kvstore.jar runadmin -host node01 -port 5000
kv->

The single command mode, on the other hand, runs a single command directly
at the OS command prompt while invoking the CLI. It passes the CLI command as a
parameter to runadmin. Once the single CLI command completes its execution,
the control is returned back to the OS. If the command completes successfully, the
exit code returned to the OS is 0, and if it encounters an error, the exit code is a
value other than 0. The general usage of invoking the CLI in the single command
mode is as follows:

java -jar KVHOME/lib/kvstore.jar runadmin
-host <hostname> -port <port> [single command and arguments]

where <hostname> and <port> are the SNA hostname and the registry port,
respectively.

Last, the script mode is very similar to the single command mode, but it runs
a script containing multiple CLI commands instead of running only a single CLI

04-ch04.indd 81 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

82   Oracle NoSQL Database

command. With the script mode, it becomes easy to automate repetitive tasks, or
run tasks in a batch mode, without requiring direct supervision of an administrator.
As with the single command mode, the control returns to the OS prompt once the
script completes. The script file is specified using the load –file switch when
invoking runadmin. The following is a typical example of CLI in script mode:

java -jar KVHOME/lib/kvstore.jar runadmin
-host <hostname> -port <port> load -file <path-to-script>

The configuration steps in this chapter are mainly performed using the interactive
mode. The CLI allows a number of commands, and some commands may even have
subcommands. Commands are also grouped by the specific set of functions they
perform; for example, the show command displays the state of the key-value store
and its components, whereas the ddl command manipulates key-value store
schemas. You may use the help command to discover all commands allowed by
the CLI, or append a –help flag to a specific command to display its usage syntax.
For a complete listing of all CLI commands, refer to the Oracle NoSQL Database
Administration Guide provided by Oracle. Only the important CLI commands that
get you through the configuration steps are covered in this chapter.

Web Administration Console
Besides the Administration CLI, the Web Administration Console can also be used to
administer the Oracle NoSQL Database. The current release of the Web Administration
Console supports mainly read-only type administration activities such as browsing the
key-value store topology, monitoring plan executions, and browsing at the cluster-
wide log file; however, it does not support activities related to the store configuration
or modification. These are the tasks well handled by the Administration CLI.

The Web Administration Console is part of the Administration Services and uses
a port to listen for HTTP requests from web clients, called the Administration Port.
To access the Web Administration Console, point an HTML-based web interface to
the host running the Administration Service and specify the Administration Port. For
instance, you would use the URL http://node01:5001 to access the Web
Administration Console with the Administration Service running on node01 and
listening to port 5001.

Create the Boot Configuration
So far, you only have the Oracle NoSQL Database software installed on the Storage
Nodes. The next step is to perform a few additional tasks, such as specifying the
network ports for Storage Node Agents (SNAs), the Web Administration Console and
replication ports, and the KVROOT location to store the configuration files and,
optionally, the data files. Although these tasks are related to configuration, they are
still part of the first phase and are required to be completed before starting the main

04-ch04.indd 82 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  83

configuration steps, which is mainly focused on building a distributed cluster of
Oracle NoSQL Database.

The Storage Node Agent (SNA) process and Administration Service utilize a
configuration file at startup for setting up the network ports and other initialization
parameters. This configuration file is also referred to as the “boot config” file and is
located in the KVROOT directory with a default name of config.xml. For a
freshly installed Storage Node, the boot config file does not exist, and needs to be
created manually using the makebootconfig utility. The makebootconfig
utility has the following the syntax:

java -jar KVHOME/lib/kvstore.jar makebootconfig [-verbose]
-root <rootDirectory> -host <hostname> -hahostname <hostname>
-harange <startPort,endPort> -port <port> [-admin <adminPort>]
[-config <configFile>][-storagedir <path>] [-capacity <n_rep_nodes>]
[-num_cpus <ncpus>][-memory_mb <memory_mb>]
[-servicerange <startPort,endPort>]
[-mgmt {snmp|jmx|none}] [-pollport <snmp poll port>]
[-traphost <snmp trap/notification hostname>]
[-trapport <snmp trap/notification port>]

The following are the details on the commonly used parameters of
makebootconfig. It is a good idea to ensure that you have this information
before creating the initial boot configuration.

■■ -root <rootDirectory>  This is the KVROOT location that stores the
configuration files and, optionally, the key-value pair data (unless using the
-storagedir clause to overwrite data storage location). If using KVROOT
to store data, ensure that the disk space is large enough to accommodate the
key-value pairs destined for the Storage Node. The storage location should
also guarantee the I/O performance to satisfy the application requirements.
The examples in this book assume that the KVROOT directory is built on
/u02/kvroot on each Storage Node.

■■ -port <port>  Each Storage Node runs a Storage Node Agent (SNA)
process to facilitate communications between other SNA processes and the
client applications. The SNA listens to a registry port specified using the
–port parameter. The registry port typically used in the examples is 5000.

NOTE
All ports required for Oracle NoSQL Database
should be unallocated and unused by other
applications, and not blocked by network firewalls.
Ensure this is true on all the servers that are part of
the Oracle NoSQL Database cluster.

04-ch04.indd 83 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

84   Oracle NoSQL Database

■■ -admin <adminPort>  This is the port used by the Administration
Service to listen for HTTP connections from web clients, also called the
Administration Port. For initial configuration, use this option only on the first
Storage Node to configure the Bootstrap Administration Service. Once the
database is fully deployed, configure multiple Administration Services for
HA and ensure that they all use the same Administration Port. Otherwise,
it becomes difficult for users to identify the port of the next healthy
Administration Service when the Storage Node running the primary fails.
The Administration Port typically used in the examples is 5001.

■■ -harange <startPort, endPort>  Each Storage Node requires
a set of ports (specified using a range, called the HA Range ports) to be
used by the Replication Nodes and Administration Services for facilitating
the replication of user data (key-value pairs). The SNA internally manages
these ports and reserves one for the Administration Service and one for
each Replication Node (RN) hosted by the Storage Node (SN). If there are
multiple RNs per SN (yes, this is possible, as discussed in the corresponding
note), then you need to ensure that the range specified has enough ports
that are equal to the maximum number of RNs that the SN may ever host,
plus one for the Administration Service, as there could be at most one
Administration Service per SN. The ports are specified as a range using
“startPort, endPort.” The examples in this book use “5010, 5020” as the
HA Range ports.

NOTE
Multiple Replication Nodes can be configured per
Storage Node. Although this is not recommended as
a best practice, in certain cases where there is ample
CPU, memory, and I/O resources on the physical
server, it could be justified.

■■ -servicerange <startPort, endPort>  The Storage and Replication
Node services internally initiate Java-based RMI calls across the nodes in the
cluster (separate from data replication operations). Using the -servicerange
flag, you may specify a second range of free ports to be used specifically for
such RMI invocations. If -servicerange is not used, the RMI ports are
randomly allocated, thereby making it difficult for network administrators
to configure firewall rules. This parameter is useful when there is a network
firewall configured between the clients and the Storage Nodes and it
restricts access to specific ports. Using this parameter forces RMI calls over a
predefined range of ports upon which firewall rules can be proactively defined.

04-ch04.indd 84 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  85

■■ SNMP configuration  You could optionally configure SNMP monitoring
tools (such as Oracle Enterprise Manager or other third-party SNMP- or
JMX-based tools) to capture critical events and alerts that arise within
the Oracle NoSQL Database cluster. For this to occur, the critical events
need to be propagated outside the Oracle NoSQL Database processes and
memory structures through the built-in SNMP/JMX agent (specified using
the –mgmt flag) via an SNMP port (specified using the –pollPort flag) to
communicate with an external SNMP management system (specified using
–traphost and –trapport).

■■ -num_cpus <ncpus>  This parameter is used when you have multiple
Replication Nodes on a Storage Node. The -num_cpus specifies the total
number of processors on the server available to all the Replication Nodes
so the CPU resources can be appropriately allocated. This value defaults to
0, in which case the OS is queried to get the number of processors on
the machine. The best practice, however, is to not default it to 0 because
there is a chance that the user installing Oracle NoSQL Database may not
have access to OS utilities such as /proc/cpuinfo (for Linux) as the file
is typically owned by root, which may result in the query failing.

■■ -memory_mb <memory_mb>  The Replication Node cache and heap
sizes are set accordingly with the total memory available on the server.
Use this parameter to specify the total memory on the server in megabytes.
If not specified, it defaults to 0. This makes the system query the OS to
get the actual value but only when Oracle Hotspot JVM is used. The best
practice is to follow the same guidelines mentioned earlier and specify the
total memory using this flag instead of relying on the operating system. This
value becomes even more important when the Storage Node hosts multiple
Replication Nodes and the system needs to effectively manage the memory
between multiple Replication Nodes.

■■ -hahostname <hostname>  This flag is used for specifying a separate
network interface for routing replication traffic. This comes in handy when
segregating client requests from internal replication traffic within the
Replication Nodes. If -hahostname is not set, it defaults to the hostname
specified using the -host flag.

■■ -capacity <capacity>  This parameter is optional and, when set,
specifies the total number of Replication Nodes a Storage Node can support.
Capacity is set to values greater than 1 usually when the Storage Node
has sufficient disk, CPU, and memory, and can support multiple Replication
Nodes.

04-ch04.indd 85 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

86   Oracle NoSQL Database

■■ -storagedir <path>  This parameter is used to override the default
Oracle NoSQL Database data directory for the Replication Node. As a best
practice, always specify –storagedir instead of defaulting to KVROOT,
and decouple the Oracle NoSQL Database configuration data location
with the key-value pair data. When multiple Replication Nodes are to be
configured per Storage Node, use this parameter along with the -capacity
parameter. If –storagedir is not specified and you have specified
–capacity greater than 1, the data storage directory for each Replication
Node gets created under the KVROOT directory with default names. You
may use this parameter multiple times in the command to specify multiple
directories, one each per Replication Node, not to exceed the -capacity
parameter. For example, if the Storage Node houses eight disks, you would
specify –capacity 8 and have eight -storagedir arguments, one per
each Replication Node.

Once you have obtained the preceding information, proceed with creating
the boot config file, as shown in the following example. The example calls the
makebootconfig command with /u02/kvroot as the KVROOT, the SNA
running on port 5000, the Administration Service running on port 5001, the range
for harange ports as 5010–5020, and the capacity of 1.

$> mkdir -p /u02/kvroot
$> java -jar /u01/kvhomes/kv-2.0.39/lib/kvstore.jar makebootconfig
 -root /u02/kvroot \
 -host <hostname> \
 -port 5000 \
 -admin 5001 \
 -harange 5010,5020 \
 -capacity 1 \
 -num_cpus 0 \
 -memory_mb 0

The next step is to start the Oracle NoSQL Database Storage Node agent (SNA)
processes on each of the Oracle NoSQL Database nodes. As mentioned earlier, the
SNA automatically starts the Bootstrap Administration Service if the -admin
parameter is specified at the time of the creation of the boot config file. You can use
the start utility to start SNA processes, and also remember to start the SNA on all
Storage Nodes that will be used to configure the Oracle NoSQL Database in the
next section.

The following example starts the SNA process using /u02/kvroot as the
KVROOT:

$> nohup java -jar /u02/kvroot/lib/kvstore.jar start -root /u02/kvroot &

04-ch04.indd 86 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  87

NOTE
It is important to run the start command in the
background and preferably use nohup to avoid
process hang-ups. Also, you should configure
the nodes to start the SNA process automatically
at boot time, using OS startup utilities such as
init.d for Linux.

Perform Sanity Checks
It is important to test the installation before proceeding with the configuration steps.
There are several ways to perform sanity checks on the Storage Nodes and ensure
that the nodes are running the required services and are void of any setup- and
installation-related issues. The tests that you may perform at this stage should ensure
that the host, operating system, and the Oracle NoSQL Database software processes
are alive and healthy.

Use the JVM process status tool (jps) to check the Java processes running on the
host. The SNA Agent process, the Administration Service, and the Replication Nodes
will each have a Java process that runs on the operating system and should be visible
on the output. At a minimum, you should see the Storage Node Agent process running
with the name ManagedService and a class of RepNode, and if you have configured
the Administration Service, you should see a second ManagedService process
with a class of Admin. You may also see a kvstore.jar process if you have
configured a distributed key-value store and a kvlite.jar process if you have
started the KVLite database.

At the OS command prompt, run jps –m, as shown here:

$> jps –m
5705 kvstore.jar start -root /u02/nosql/kvroot
5945 ManagedService -root /u02/nosql/kvroot/movielite/sn1 –store

 movielite -class RepNode -service rg1-rn1
5757 ManagedService -root /u02/nosql/kvroot -class Admin –service

 BootstrapAdmin.5000 -config config.xml
25478 Jps –m

Further sanity checks are performed after the configuration steps in the next
section are complete.

Oracle NoSQL Database Configuration
After completing the installation steps, Oracle NoSQL Database needs to be
configured before it can be accessed by client applications, unless you plan on
using only KVLite, in which case the configuration is already complete and you may
proceed to Chapter 5 and start developing Oracle NoSQL Database applications.

04-ch04.indd 87 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

88   Oracle NoSQL Database

Prior to understanding the configuration process, it is important to understand
plans as they are used quite frequently during the initial configuration.

Plans
Plans are a set of commands that perform a series of predefined administrative tasks
on the Oracle NoSQL Database cluster. Plans encapsulate multiple operations that
may query or modify the state of the key-value store; interact with the key-value
store Administration Service, the Storage Nodes, or the Replication Nodes; issue
requests that require modifications to store parameters; or simply look up Storage
Node configuration parameters. Plans can sometimes be long-running operations
and may touch every Storage Node in the cluster, or sometimes run on specific
Storage Nodes and complete very quickly.

Plans are created and executed by using the plan command from the
Administration CLI. The plan command takes in a subcommand as the input
parameter, which is a prebuilt administrative operation to be performed on the
Storage Nodes. All subcommands are preprogrammed to perform documented and
specific actions. For example, there are subcommands to create a datacenter and a
Storage Node, and to reconfigure the parameters on a Replication Node. Examples
of commonly used subcommands are

■■ deploy-datacenter  Deploys a datacenter to the key-value store

■■ deploy-sn  Deploys a Storage Node to a specific host in a datacenter

■■ deploy-admin  Deploys the Administration Service on a Storage Node

■■ execute  Executes a previously created plan

When a plan subcommand gets executed, the Administration Service stores the
subcommand in the Administration Database and assigns an integer, internally
referred to as the plan_id. You may list all available plans created in the system by
using the plan command without arguments. For a complete list of all
subcommands, you may use help plan, as shown in the following example:

kv-> plan
kv-> help plan

Plans are executed using the plan command from the Administration CLI. By
default, the plan command runs asynchronously in the background and the prompt
returns immediately. You may optionally use the -wait flag to make the plan run
synchronously, in which case the command line prompt will only return after the

04-ch04.indd 88 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  89

plan completes. The following example illustrates the use of the plan command
with the -wait flag:

kv-> plan deploy-datacenter -name "Dallas" -rf 3 -wait
Executed plan 1, waiting for completion...
Plan 1 ended successfully

The plan wait command (not the same as the plan command with the
-wait flag) can be used to wait until the specified plan completes, or for a
specified time period. The -last flag refers to the most recent plan that was
created. The complete syntax for the plan wait command is

kv-> plan wait -id <id> | -last [-seconds <timeout in seconds>]

You can also create plans and defer their execution by using the optional
-noexecute flag. The -noexecute flag saves the plan in the system and returns
the plan_id. The plan can be executed later as required by using the plan
execute -id <id> command.

The -wait and -noexecute options, when coupled with the plan wait
command, provide the capability to program multiple plan executions using scripts.
Using these flags, you can run a series of interdependent plans by ensuring that the
current plan completes before the next plan is started. Moreover, you can capture
the return code of the plan command within the script and take appropriate
actions. Furthermore, you can also save plans and run them multiple times by
retrieving them from a list of stored plans. By using these powerful options available
for the plan command, the administrators can build a complex set of batch scripts
that can be scheduled to run automatically and virtually unattended.

Configuration Steps
Finally, it’s time to run the configuration steps. After all configuration steps are
completed, a set of Storage Nodes is configured to act and work as one distributed
cluster of the key-value store. The key value store is built in accordance with the
topology you require, and contains the appropriate number of shards and Replication
Nodes that you have identified as part of the capacity planning and sizing activity.

Before proceeding with the configuration steps, ensure that the individual
Storage Node Agent (SNA) processes have started on all the Storage Nodes. If you
followed the post-install steps from the installation section of this chapter, the SNA
processes should already have been started.

The key-value store configuration process comprises the following steps:

1.	 Start the Administration CLI.

2.	 Name the key-value store.

04-ch04.indd 89 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

90   Oracle NoSQL Database

3.	 Create a datacenter.

4.	 Deploy the first Storage Node.

5.	 Create an Administration Service.

6.	 Create a Storage Node Pool.

7.	 Create the remaining Storage Nodes.

8.	 Create and deploy Replication Nodes.

Start the Administration CLI
The configuration steps are performed using the Administration CLI. Prior to invoking
the CLI, select the Storage Node that would serve as the primary administration
node during the configuration process, and also the node that holds the master copy
of the Administration Database. The Administration Database stores critical data
about the key-value store and its topology, and ensuring its availability is important
for the proper functioning of the Oracle NoSQL Database. By default, the first
Storage Node you would ever connect to using the Administration CLI becomes the
primary administration node (and the only node, until other Administration Services
are added).

It is important to note that all steps for the configuration of the key-value store
should be run on the same Storage Node. The Storage Nodes cannot be switched in
the middle of the configuration. If that happens for any reason, you will have to start
over by manually cleaning up an incomplete configuration.

Log in to the Storage Node you have identified as being the primary
administration node. Start the CLI by invoking runadmin, as shown in the
following example:

> java -jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host node01
kv->

The CLI invocation assumes that the Storage Node node01 is configured with
the Storage Node Agent to listen on port 5000, known as the registry port. Also,
KVHOME is the directory where Oracle NoSQL Database software is installed.

NOTE
The configuration steps described next can also
be coded into a script file and run collectively by
passing the file using the -script flag of CLI. This is
very helpful for avoiding typos and when running the
configuration on multiple environments.

04-ch04.indd 90 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  91

Name the Key-Value Store
One of the first attributes you will configure is the name for the key-value store. The
name you choose should be suitable to the key-value store function, application,
and/or contents. The key-value store name is used to build a directory path on the
file system, under which subdirectories will be created to store the actual key-value
pairs. Therefore, syntactically speaking, any name would be valid as long as it is
allowed by the operating system for naming directories. The valid characters
supported for a key-value store name are alphanumeric characters, a minus sign (–),
an underscore (_), and a period (.).

At the kv-> prompt, use the configure -name command to name the store.
This command takes in the store name as a parameter (the only parameter) and
ensures that the name is syntactically valid and allowed by the system. Otherwise,
an error is flagged. In the example shown here, a key-value store is given the name
movieDBstore:

kv-> configure -name movieDBstore

Create a Datacenter
Conceptually speaking, a datacenter is referred to as the facility that houses computer
equipment and related infrastructure such as network, storage, and power, usually
all components residing in one location. In the context of Oracle NoSQL Database,
however, a datacenter is simply a set of Storage Nodes that are part of the key-value
store and may be geographically distributed. The current release of Oracle NoSQL
Database allows only one datacenter per key-value store. In future releases, the
concept of multiple datacenters may be introduced to indicate physically separate
entities that could be utilized by Oracle NoSQL Database to enhance its high
availability and recoverability.

The replication factor for the key-value store can be set only at the datacenter
level. Determining the appropriate replication factor is very important as the
availability and recoverability of the store depends on it. The command used to
create the datacenter is also used to define the replication factor.

Use the plan deploy-datacenter command to create the datacenter and
define the replication factor. The command takes in a datacenter name via the
-name input parameter and the replication factor via the -rf parameter. In the
example that follows, a datacenter named Dallas is created with a replication
factor of 3. The plan command returns the plan number and the status of its
execution. The -wait flag is used to indicate that the prompt should wait for the
command to finish before accepting further input.

kv-> plan deploy-datacenter -name "Dallas" -rf 3 -wait
Executed plan 1, waiting for completion...
Plan 1 ended successfully

04-ch04.indd 91 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

92   Oracle NoSQL Database

Alternatively, if you do not specify the –wait option, you may check the status
of the plan command by using show plans:

kv-> show plans
1 Deploy DC SUCCEEDED

Deploy the First Storage Node
You need to add the very first Storage Node to the key-value store. Although you
have already connected to a Storage Node and started the SNA service, it has not
been added to the key-value store. This step is a prerequisite for creating the
Administration Service.

Run the plan deploy-sn command to add the Storage Node to the key-value
store. This command takes in the datacenter ID as the input, which is obtained by
the show topology command. The example provided here indicates that dc1 is
the datacenter ID of the Dallas datacenter:

kv-> show topology
store=movieDBstore numPartitions=0 sequence=1
dc=[dc1] name=Dallas repfactor=3

Now that you have the datacenter ID, run plan deploy-sn and add the
Storage Node node01 with the registry port of 5000 to the datacenter ID dc1,
as shown in the following example:

kv-> plan deploy-sn -dc dc1 -host node01 -port 5000 -wait
Executed plan 2, waiting for completion...
Plan 2 ended successfully

Create the Administration Service
The Administration Service is in charge of maintaining the Administration Database
and providing a Web-based Administration Console. The step after creating the first
Storage Node is to create the Administration Service using the plan deploy-
admin command. This command requires the Storage Node ID (obtained from the
topology command, as shown in the next example) and the HTTP port number of
the Administration Service. As you may recall, the administration port number is
used to route HTTP traffic to the Web-based Administration Console. The following
example deploys the Administration Service on Storage Node ID sn1 with the
administration port of 5001.

kv-> show topology
store=movieDBstore numPartitions=0 sequence=1
dc=[dc1] name=Dallas repfactor=3
sn=[sn1] dc=dc1 node01:5000 capacity=1 RUNNING

kv-> plan deploy-admin -sn sn1 -port 5001 -wait
Executed plan 3, waiting for completion...
Plan 3 ended successfully

04-ch04.indd 92 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  93

NOTE
You may run the show topology command
at each step to show the progress of the
configuration process.

After a successful execution of the plan deploy-admin command, you
would have a single Administration Service deployed in the key-value store. This is
sufficient for you to continue with the remaining configuration steps, but later on,
you should configure additional nodes to run the Administration Service to ensure
that the service is available when failures occur.

Create a Storage Node Pool
A Storage Node Pool is a logical grouping of all the Storage Nodes that are present
in the key-value store. Storage Nodes are associated with pools in order to facilitate
optimal distribution of resources, especially when the Storage Nodes are added or
removed from the key-value store.

Once you have created the Administration Service, create a Storage Node Pool
using the pool create command. The command requires only the pool name as
the input and is run only once at pool creation time. Next, add the Storage Nodes to
the pool using the pool join command. You would run the pool join command
on all the Storage Nodes, including the Storage Node you have created earlier. The
pool join command associates a Storage Node to the pool and requires the pool
name and Storage Node ID as the input.

The following example illustrates the CLI commands to be run for this step:

kv-> pool create -name movieDBpool
kv-> show topology
store=movieDBpool numPartitions=0 sequence=2
 dc=[dc1] name=Dallas repFactor=3
 sn=[sn1] dc=dc1 node01:5000 capacity=1 RUNNING
kv-> pool join -name movieDBpool -sn sn1
Added Storage Node(s) [sn1] to pool movieDBpool

Create the Remaining Storage Nodes
So far, you have created only one Storage Node and joined it to the Storage Node Pool.
Although, technically speaking, a single node key-value store is allowed by the system
(with a replication factor of one), it does not provide the high availability typically
required for production deployments. Therefore, you need to deploy additional Storage
Nodes to the key-value store and add them to the Storage Node Pool.

Use the plan deploy-sn command to deploy the Storage Node to the cluster
and the pool join command to add the Storage Node to the Storage Node Pool,
as you have done in the earlier step. Remember to repeat these commands on all
Storage Nodes that you have identified to be a part of the key-value store.

04-ch04.indd 93 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

94   Oracle NoSQL Database

The following example illustrates the addition of Storage Node 02 and Storage
Node 03 to the key-value store.

kv-> plan deploy-sn -dc dc1 -host node02 -port 5000 –wait
kv-> show topology
kv-> pool join -name movieDBpool -sn sn2
kv-> plan deploy-sn -dc dc1 -host node03 -port 5000 -wait
kv-> pool join -name movieDBpool -sn sn3
....

In the preceding example, observe that show topology was run immediately
after deploy-sn to obtain the Storage Node ID of the node just deployed. The ID is
used by the pool join command for adding the Storage Node to the pool. But if
you notice, the Administration Service allocates Storage Node IDs in a sequential
manner. For instance, if the Storage Node that was just created has an ID of 5, then
the next Storage Node that you create will be allocated an ID of 6. Therefore, you
can always predict the Storage Node ID of the node you have just deployed by
incrementing the ID of the previous Storage Node by one—which means you can
directly run deploy-sn without the need to run show topology. Note that
this is only true as long as only one CLI session is used to run the deploy-sn
commands.

NOTE
Now that you have deployed all the Storage
Nodes in the cluster, you may now create multiple
Administration Services to ensure high availability.

Create and Deploy Replication Nodes
The last step in the configuration process is to create and deploy the Replication
Nodes on all the Storage Nodes in the key-value store. Although there is not a direct
command to create a Replication Node, you would create and deploy a topology,
and this in turn would create and deploy the correct set of Replication Nodes on the
Storage Nodes.

The topology create command is used to create the topology and it requires
the topology name, Storage Node Pool, and the total number of partitions as the
input. The topology name is a unique name that you define to identify the topology;
the Storage Node Pool is the name of the Storage Node Pool you created earlier; and
the total number of partitions is obtained by undergoing a capacity planning and
sizing exercise (refer to Chapter 8 for further details). The total number of partitions is
a static parameter and cannot be altered once it is set, so make sure that the number
you provide here is more than the maximum number of shards that you would ever
expect your key-value store to grow in its lifetime.

04-ch04.indd 94 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  95

The topology create command will automatically create an appropriate
number of shards and Replication Nodes based upon the number of Storage Nodes
and the replication factor. The number of shards in the key-value store is calculated
by dividing the total number of Storage Nodes by the replication factor of the
datacenter, and the number of partitions per shard is calculated by dividing the total
number of partitions provided by the total number of shards.

Finally, deploy the topology on the Storage Nodes by using the plan deploy-
topology. The command requires the topology name, and upon its completion, it
starts the Replication Node processes on all the Storage Nodes.

The following example illustrates the use of topology create and deploy-
topology commands:

kv-> topology create -name movietopo -pool movieDBpool -partitions 300
kv-> plan deploy-topology -name movietopo -wait
Executed plan 6, waiting for completion...
Plan 6 ended successfully

The key-value store is fully installed and configured once the preceding
commands are successfully completed.

Automating the Configuration Steps
Up to this point, you have run the configuration steps by creating and executing
plans using the interactive command line interface of runadmin: the kv-> prompt.
In some cases, you would need to automate the configuration steps. Perhaps, you
will be building test and development environments repeatedly, or you need to
avoid potential typographical errors introduced at the command line, or simply run
the configuration unattended during off-hours.

There are two ways to run the Administration CLI commands directly at the OS
prompt. The first method uses the load –file flag at the time of executing runadmin
to specify a script file containing a sequence of CLI commands. For example, you
may create a script named moviedeploy.kvs with the following contents:

configure -name movieDBstore
plan deploy-datacenter -name Dallas -rf 3 -wait
plan deploy-sn -dcname Dallas -host node01 -port 5000 –wait
plan deploy-admin -sn sn1 -port 5001 -wait

Execute the preceding script by issuing the following command using the load
–file flag:

java -jar kvstore.jar runadmin -host node01 -port 5000 \

 load -file moviedeploy.kvs

04-ch04.indd 95 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

96   Oracle NoSQL Database

Second, you could run a single CLI command at the OS prompt by specifying
the CLI command directly at the prompt, and thereby providing the capability to run
multiple CLI commands by running multiple OS commands. The following example
of a shell script illustrates the use of this method. Notice that each invocation of
runadmin would start a separate instance.

#!/bin/sh
HOST=node01
PORT=5000
HTTPPORT=5001
KVADMIN="java -jar lib/kvstore.jar runadmin -host $HOST -port $PORT"

Each of the following CLI command below starts a new instance of runAdmin
$KVADMIN configure -name moviestore
$KVADMIN plan deploy-datacenter -name Dallas -rf 3 -wait
$KVADMIN plan deploy-sn -dcname Dallas -host $HOST -port $PORT -wait
$KVADMIN plan deploy-admin -sn sn1 -port $HTTPPORT –wait

NOTE
On UNIX systems, you can also use a here document
as a method of scripting CLI commands at the OS
command prompt or within UNIX shell scripts. The
here document provides a mechanism for streaming
input strings to a command. Refer to your UNIX
scripting guide for further details.

Verifying the Deployment
Several methods are available to test the sanity of the newly built key-value store—
mainly, the Web Administration Console, the Administration CLI, the supplied
sample programs, and finally the ping command provided by the SNA. You can
always program your own verification method, but the ones outlined here are quick
and readily available, and also quite effective.

Verification Using the Web Administration Console and CLI
The Web Administration Console and the CLI can both be used to validate the
key-value store topology and observe the plan execution results. If using the
Web Administration Console, point your browser to the machine and port running
the Administration Service. For instance, if you used a host named node01
and listening on port 5001 for HTTP requests, point to the URL http://
node01:5001 to launch the Web Administration Console.

The landing page shown is normally the topology section of the interface, as
depicted in Figure 4-1 (if not, just click the topology link). The Topology section

04-ch04.indd 96 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  97

displays the details of the key-value store topology and the current status of its
components. Ensure that the datacenter, Storage Node, Replication Node, and
Administration Node information is correctly displayed and processes have
RUNNING status.

Verify Configuration is the function of the web-based console that verifies the
topology using an internal topology sequence and alerts you about potential violations.
Click the Verify Configuration button and observe the output, as shown in Figure 4-2.
The verification step should inform you that the store is currently in RUNNING state
and has no violations.

As shown in Figure 4-3, you may click Plan History and observe the list of plans
that were run in the process of configuring the store, along with their respective
status. Observe that the output is very similar to the show plans CLI command.

Alternatively, you may also use the Administration CLI for verifying the
configuration. At the CLI prompt, run the show plans and show topology
commands, as shown in the following example. The commands should display the

FIGURE 4-1.  Topology Browser

FIGURE 4-2.  Verify Configuration

04-ch04.indd 97 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

98   Oracle NoSQL Database

status of SUCCEEDED for the plan executions and the status of RUNNING for SNA
and Administration Services.

kv-> show plans
 1 Deploy Datacenter (1) SUCCEEDED
 2 Deploy Storage Node (2) SUCCEEDED
 3 Deploy Admin Service (3) SUCCEEDED
 4 Deploy Topo (4) SUCCEEDED
kv-> show topology
store=movielite numPartitions=300 sequence=304
 dc=[dc1] name=bigdatavm repFactor=1
 sn=[sn1] dc=dc1 bigdata:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING

Verification Using the Sample Program and Ping
The best method to test the installation is perhaps to compile and run the sample

Hello World application supplied by the Oracle NoSQL Database software
installation. Running the sample application exercises various software libraries of
the installation and ensures the connectivity to the key-value store is fully functional.

FIGURE 4-3.  Plan History

04-ch04.indd 98 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 4:  Oracle NoSQL Database Installation and Configuration  99

The sample program outputs the string Hello Big Data World on the screen, if
things work as expected.

The sample application is located in the KVHOME/examples/hello directory.
The following example illustrates the steps for running this application:

cd to KVHOME
$> cd /u01/kvhome/kv-2.0.39

Compile the sample Hello World Application
$> javac -g -cp lib/kvclient.jar:examples examples/hello/*.java

Run the Application. Substitute the <hostname>, <port> and <kvstore>
with your settings
$> java -cp lib/kvclient.jar:examples hello.HelloBigDataWorld \
-host <hostname> -port <port> -store <kvstore>

You may also run the ping command of kvstore.jar from the OS prompt.
Remember that this command was also run prior to starting the configuration
process and, at that time, it output only the version of Oracle NoSQL Database. But
now it should output the status of your Oracle NoSQL Database topology, quite
similar to the Verify Topology tool of the Web Administration Console. The following
example shows the output from a successful execution of the ping command:

$ java -jar /u02/nosql/kv-2.0.26/lib/kvstore.jar ping -port 5000 -host node01

Pinging components of store movielite based upon topology sequence #304
movielite comprises 300 partitions and 1 Storage Nodes
Storage Node [sn1] on bigdata:5000

Datacenter: bigdatavm [dc1]

Status: RUNNING Ver: 11gR2.2.0.26 2013-01-28 12:19:21 UTC

Build id: 99ef986805a3
 Rep Node [rg1-rn1] Status: RUNNING, MASTER at

 sequence number: 611 haPort: 5011

Summary
In this chapter, you have learned to install and configure a production-grade deployment
of Oracle NoSQL Database. Although the actual installation steps are quite simple, to
the extent that it’s merely a matter of running unzip or a tar command, the activities
that occur both prior to and after the installation process are quite essential, and need
to be well planned. This is not only to ensure a successful installation, but also to
ensure that the installed software operates at the optimal performance levels and
provides the right levels of availability and reliability.

04-ch04.indd 99 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

100   Oracle NoSQL Database

Therefore, the installation of enterprise-grade software should be treated like
a mini-project. The project would comprise multiple phases such as planning,
implementation, testing, and go-live, not to mention resource allocations that go
alongside to manage and execute the project. The instructions outlined in this
chapter and in Chapter 8 will help ensure that the Oracle NoSQL Database
deployed in the datacenter is fully stable, sized to provide the right capacity, and
delivers extreme performance.

04-ch04.indd 100 11/12/13 5:48 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

CHAPTER
5

Getting Started
with Oracle NoSQL

Database Development

05-ch05.indd 101 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

102   Oracle NoSQL Database

In preceding chapters, we have covered the details surrounding distributed
computing concepts, the architecture of Oracle NoSQL Database, and how
Oracle NoSQL Database is installed in production environments. In this

chapter, we begin to discuss how applications are developed on top of Oracle
NoSQL Database. It is important to note up front that application development
utilizing a distributed NoSQL database requires the application developer to
carefully consider some very important questions, as the answers to these questions
will lead directly to how the application will interact with NoSQL Database. More
specifically, the following questions should be considered during the application
design process:

■■ What are the latency requirements for the application? Does the application
execute according to a service level agreement in which strict latency
requirements must be met?

■■ How tolerant will the application be to inconsistent data? Are there portions
of the application that can operate successfully on data that may not be the
most recent copy?

■■ What kind of transactions will be needed in the application? Are there pieces
of the application functionality that will need ACID transactions? Can ACID
behavior be relaxed for portions of the application in exchange for increased
throughput and lower latencies?

■■ How should the data be modeled in Oracle NoSQL Database such that the
expected queries against this data can be satisfied easily and efficiently?

Application developers should think carefully about how to finesse the trade-offs
between application throughput, latency, availability, and consistency. These are
core concepts in developing successful applications on Oracle NoSQL Database
and should be utilized to drive the choice of which API is appropriate for a given
task. More specifically, the application designer is strongly encouraged to examine
each part of the functional requirements of the application and decide what the
trade-offs will be, and then choose the right Oracle NoSQL Database API to deliver
on those trade-offs.

Of course, there are other issues to be considered during any application design
phase such as threading model, class association, and algorithm design, but these
types of questions will not be addressed in the context of this chapter.

Developing on KVLite
It is highly advisable to begin the application development process on top of KVLite,
as this implementation of Oracle NoSQL Database provides all of the programmatic
API functionality in an extremely simple and easy-to-use package. Once a sufficient

05-ch05.indd 102 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 5:  Getting Started with Oracle NoSQL Database Development  103

level of comfort has been attained with the Oracle NoSQL Database APIs and
modeling the key space, the development process should be moved to a clustered
deployment of Oracle NoSQL Database. KVLite is a lightweight version of the
NoSQL database server that runs on a single node, has a single replication group,
and is packaged inside of the kvstore.jar file located in the lib folder in the
KVHOME directory.

KVLite can be launched using the following command:

java -jar KVHOME/lib/kvstore.jar kvlite -root ./kvroot -store <kvstore
name> -host <localhost> -port 5000
-admin 5001

When you start KVLite successfully, it will either create a new store or open
an existing store if it was started previously.

The different parameters to use with the KVLite command line utility are
as follows:

■■ -admin  If this option is specified, the admin thread that is spawned will
listen on the specified port. This will provide a listener for launching the
admin command line user interface. This defaults to port 5001 if not specified.

■■ -help  Displays a description of the command line parameters.

■■ -host  This option specifies the name of the host on which KVLite is
running. The DNS registered hostname should be used if the desire is to
connect to the KVLite instance from another computer.

■■ -logging  Turns on Java application logging. The log files are placed in
the examples directory in your Oracle NoSQL Database distribution.

■■ -port  Identifies the port on which the KVLite is listening for client
connections.

■■ -root  Identifies the path of the Oracle NoSQL Database home directory.
In the case of KVLite, the database files of the store are located here. The
directory has to be present, and if the database files are not present, they
will be created.

■■ -store  Identifies the name of the store. This option should be used only if
you are creating a new store.

NOTE
KVLite can be stopped simply by performing a ctrl-c
in the shell where the KVLite instance was launched.

05-ch05.indd 103 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

104   Oracle NoSQL Database

The APIs for Oracle NoSQL Database can roughly be broken down into the
following high-level categories:

■■ Writing data  The capability to insert key-value pairs. Several variants
exist for the programmer to be able to put a key-value pair into the store.
These include

■■ Vanilla put  Store a simple key-value pair, regardless of whether the
key exists or not. If the key already exists in the store, the value will be
overwritten.

■■ Put if not exists  Only insert the key-value pair if the key does not
already exist in the store.

■■ Put if exists  Only insert the key-value pair if the key already exists in
the store, effectively overwriting the value associated with the key.

■■ Reading data  Reading from Oracle NoSQL Database is further broken
down into the following sets of operations:

■■ Read single value  Given a key, the value associated with the key
is returned.

■■ Read multiple values  Given a partial key prefix, call key-value pairs
that begin with the supplied prefix will be returned. The programmer
can further specify that the return occur as a fully materialized set or as
a non-materialized iterator. Furthermore, the programmer may specify
a range of keys (essentially a “between clause” for those familiar with
SQL) to restrict the results being qualified.

■■ Deleting data  Given a key, delete the record associated with that key.
As with the put methods, several variants of the delete method exist:

■■ Vanilla delete  Delete a simple key-value pair, regardless of whether the
key exists or not. If the key exists in the store, the key and the value will
be deleted. If the key does not exist in the store, no action will be taken
by this method; however, it will return false to the caller.

■■ Delete by version check  Delete only the key-value pair if the version
of the key-value pair matches the supplied version.

■■ Multi-delete  Given a parent key, subrange, and depth, this method will
delete the descendant key-value pairs associated with the parent key.

■■ Mixed operations  The Oracle NoSQL Database API contains a method for
the programmer to specify a collection of mixed write and delete operations

05-ch05.indd 104 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 5:  Getting Started with Oracle NoSQL Database Development  105

along with an associated collection of key-value pairs. This enables ACID
transactions across multiple operations, with the caveat that each key in the
collection must share the same major path.

A Basic Hello World Program
As an initial exercise, we examine the program HelloToNoSQLDB, which is a very
simple piece of code that writes a single key-value pair and then reads the value
associated with the key. Note that this coding example and the examples that follow
in subsequent chapters in this book presume a cursory level of knowledge around
the Java programming language. The primary APIs of the Oracle NoSQL Database
are written in Java, and any programmer that will interact with these APIs must
know the Java programming language. Oracle NoSQL Database also publishes APIs
written in the C programming language, but the programming examples in this book
focus on Java.

The code for our simple example is as follows:

package helloNOSQL;

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;
import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.ValueVersion;

We’ve decided to place our code in a package entitled helloNOSQL. Although
packages in Java are not mandatory, it’s always a good idea to package your code in
a namespace that makes it easy for others to find your functionality and potentially
reuse your code. Also note that we have imported all of the classes that we will use
in this example from the oracle.kv package. We have decided to call our class
HelloNOSQLWorld and make this class public so that anyone can access it. Note
the private key-value store instance variable that will act as our main handle to
communicate with Oracle NoSQL Database.

public class HelloNOSQLWorld {

 private final KVStore store;

To run our program and to test it, we need a simple main method, which in our
case is simply creating an instance of the HelloNOSQLWorld class and then
calling the runExample method on that instance:

 public static void main(String args[]) {
 try {
 HelloNOSQLWorld example = new HelloNOSQLWorld (args);

05-ch05.indd 105 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

106   Oracle NoSQL Database

 example.runExample();
 } catch (RuntimeException e) {
 e.printStackTrace();
 }
 }

The constructor for our class that follows expects three arguments, which are
needed to open the store and write to it. We have default values for storeName,
hostName, and hostPort. If the user does not provide any command line
parameters, the default parameters are used. However, the user has the choice of
passing the values for a particular store located on a particular machine, which has
been configured with a non-standard port. In the code that follows, we parse
through the arguments and then see if one or more arguments are passed through
the command line. If it is passed, then it overwrites the defaults.

 /**
 * Parses command line args and opens the key-value store.
 */
 HelloBigDataWorld(String[] argv) {

 String storeName = "kvstore";
 String hostName = "localhost";
 String hostPort = "5000";

 final int nArgs = argv.length;
 int argc = 0;

 while (argc < nArgs) {
 final String thisArg = argv[argc++];

 if (thisArg.equals("-store")) {
 if (argc < nArgs) {
 storeName = argv[argc++];
 } else {
 usage("-store requires an argument");
 }
 } else if (thisArg.equals("-host")) {
 if (argc < nArgs) {
 hostName = argv[argc++];
 } else {
 usage("-host requires an argument");
 }
 } else if (thisArg.equals("-port")) {
 if (argc < nArgs) {
 hostPort = argv[argc++];
 } else {
 usage("-port requires an argument");
 }

05-ch05.indd 106 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 5:  Getting Started with Oracle NoSQL Database Development  107

 } else {
 usage("Unknown argument: " + this);
 }

Once the arguments are successfully parsed, a KVStoreConfig object is
instantiated using the command line parameters passed or the defaults. (Note that
we have chosen default values for these parameters which are the same default
values that KVLite uses.) These parameters are then used to obtain a handle to the
key-value store by calling the getStore method on the KVStoreFactory class.
Using this handle, we have access to all of the Oracle NoSQL Database API calls for
manipulating data.

 store = KVStoreFactory.getStore
 (new KVStoreConfig(storeName, hostName + ":" + hostPort));
 }

The function below just prints out the ways in which this HelloNOSQLWorld class can
be used.

 private void usage(String message) {
 System.out.println("\n" + message + "\n");
 System.out.println("usage: HelloBigDataWorld ");
 System.out.println("\t-store <instance name> (default: kvstore) " +
 "-host <host name> (default: localhost) " +
 "-port <port number> (default: 5000)");
 System.exit(1);
 }

The function runExample that follows will perform the operations of writing a
simple record into the NoSQL Database and reading that record back out again. In
this example, we insert a key-value pair with the key as the string Hello and the
value as the string NOSQL World. The insert is performed by calling the put
method on our store object. Note that to do this, we must first create an instance of
an oracle.kv.Key object and an instance of an oracle.kv.Value object. In
general, instances of oracle.kv.Key objects can be created from Java Strings and
instances of oracle.kv.Value objects can be created from Java byte arrays. This
is important to keep in mind as we begin discussing how to model keys and values
in your application later in this chapter.

 /**
 * Performs example operations and closes the key-value store.
 */
 void runExample() {

 final String keyString = "/Hello";
 final String valueString = "NOSQL World!";

05-ch05.indd 107 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

108   Oracle NoSQL Database

 store.put(Key.fromString(keyString),
Value.createValue(valueString.getBytes()));
 }

Now the next step is to obtain the value of the key we have stored to verify that
we have successfully inserted the key-value pair into our store. To do this, we try to
use the get method on the store handle. There are many variations of the put and
get methods to insert and retrieve the key-value pairs into the store, but we use the
simplest methods in this chapter as a way to start our quest into the programming
world of Oracle NoSQL Database.

 final ValueVersion valueVersion = store.get(Key.fromString(keyString));

 System.out.println(keyString + " " +
 new String(valueVersion.getValue().getValue()));

 store.close();
 }
}

We complete this example code by closing the handle to Oracle NoSQL
Database, cleaning up any resources that are allocated within this handle.

Before moving deeper into the Oracle NoSQL Database APIs and discussing
more in-depth programmer topics, it is important to understand how to model the
key space for your application.

How to Model Your Key Space
Now that you have seen a simple example of the Oracle NoSQL Database APIs and
are familiar with the basic concept of key-value storage, we turn to the topic of key
space modeling before moving on to more complex programming examples. As
with any database, care must be taken to model the data for your application such
that querying your data can be accomplished within the following constraints:

■■ Correctness  For applications that must exhibit transactional consistency or
isolation, modeling the keys correctly to support this functionality is crucial.

■■ Efficiency  Most applications are concerned with retrieving data as fast as
possible and using as few system resources as possible.

■■ Extensibility  If you’re developing a production application, and you’re
lucky enough to have many users on your application, chances are that you
will be asked to enhance your application by adding new functionality in
subsequent releases. An extensible data model will afford you the ability to
extend your application without entirely redesigning your data model.

05-ch05.indd 108 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 5:  Getting Started with Oracle NoSQL Database Development  109

■■ Normalization  For most transaction processing applications, it is desirable
to structure your data model such that queries may access the data by
limiting or completely eliminating data duplication.

Keys in the Oracle NoSQL Database are bifurcated into two discrete parts:

■■ Major component  The major component of a key denotes the shard that
will contain the records for all of the minor keys that follow from a specific
major key. This means that records that share the same combination
of major key components are guaranteed to be in the same shard, which
means they can be efficiently queried. In addition, records with identical major
key components can participate in ACID transactions. Keys are distributed
across the store by hashing on the key’s major component.

■■ Minor component  The minor key component of a key can be thought of as
the shard local path to the record. Hashing the major component will point
you to the shard that contains the data; using the minor component of the
key will point you to the record in that shard.

The entire key, major plus minor components, must be unique in Oracle NoSQL
Database.

Let’s take an example application for the following key space modeling exercise.
For this exercise, we choose a simple e-mail application. For this application, we
have been given the following simple set of requirements:

1.	 Users must have the following folders available when they bring up the
e-mail application:

a.	 Inbox  This is where e-mail messages arrive when delivered and must
be managed as an ordered container by time.

b.	 Deleted folder  After a user clicks a delete control on a message, this
folder must be populated with the message such that when a user clicks
on the deleted folder, the message will be displayed in this folder. This
folder must also be managed as an ordered container by time.

c.	 Sent folder  After a user clicks a send control on a message, this folder
must be populated with the message such that when a user clicks on
the Sent folder, the message will be displayed in this folder. Again, this
folder must also be managed as an ordered container by time.

2.	 Users must have the ability to search the messages in any folder given
a search term and a start and end date.

05-ch05.indd 109 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

110   Oracle NoSQL Database

Given the requirements just stated, we choose to model the keys in the following
manner:

/users/id/folders/-/inbox/date
/users/id/folders/-/deleted/date
/users/id/folders/-/sent/date

As a concrete example, consider a user with ID 34271 and the date 07/13/2013.
The preceding three keys would then look like the following strings;

/users/34271/folders/-/inbox/20130713
/users/34271/folders/-/deleted/20130713
/users/34271/folders/-/sent/20130713

At this point you may be wondering why we chose to structure the keys for this
application in this manner. Let’s drill down and see what our rationale was for
modeling the keys this way:

■■ ACID transactions  In Oracle NoSQL Database, ACID transactions are only
supported on a shard local basis. Remember that Oracle NoSQL will hash
the major portion of the key, and all keys that have the same major path will
hash to the same shard. Notice that we have structured the major path such
that all of the mail folders for a single user contain the exact same major
path, hashing to the same shard, and ultimately able to participate in ACID
transactions. Hence, we have just satisfied requirements 1b and 1c simply
by structuring our keys appropriately.

■■ Extensibility  It will be trivial to add more folders as these requirements
materialize. Let’s say we get a subsequent requirement to support calendars
for all e-mail users. We would simply add another key as /users/id/folders/-/
calendar/20130713.

■■ Ordering in folders  Notice that all of the keys end with a string representation
of a day that is formatted as YYYYMMDD. We chose this way to model our
keys because Oracle NoSQL Database uses the natural sort order of the
Java String class, and keys in Oracle NoSQL are simply instances of the Java
String class. Hence, if we structure our dates in this manner, we can have
Oracle NoSQL order the results of queries for us such that we may satisfy
the ordering requirements for 1a, 1b, and 1c.

■■ Searching folders  To support requirement 2, we will again make use of the
modeling construct we devised by putting a string date format at the end of
each key. This can be utilized in API calls to Oracle NoSQL to restrict the
results that are returned; furthermore, this restriction can be supplied as a
start and end range. To satisfy requirement 2, it’s not realistic to build a key

05-ch05.indd 110 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 5:  Getting Started with Oracle NoSQL Database Development  111

on every word contained in every e-mail. However, being able to restrict
the number of e-mails by time and executing this restriction in the NoSQL
cluster will be a good option for this application.

In short, having a solid understanding of how to model the keys in your application
can go a long way to meeting your application requirements. As you will see in
subsequent sections, knowledge of the APIs and how these relate to the data modeling
exercise is important to being able to tie all of this together and will help you achieve
a successful application implementation.

The Basics of Reading and Writing
a Single Key-Value Pair
Now that we have discussed the basics of how to model a key space, the very first
task the programmer faces is how to insert data into the Oracle NoSQL Database.
Fortunately, the Oracle NoSQL Database API gives you a wide variety of options
to tackle this task. There are several ways to write records into the key-value store
depending on the complexity of the functional requirements that you are trying
to address.

The code fragment that follows explores the different ways of creating a key and
storing a value using the Oracle NoSQL Database APIs. In this example, we create a
key that will be used to reference notepad data for a specific user; we choose a user
with ID 34271. Note that in both examples, the minor portion of the key (the string
after the dash) is optional. Also note the initialization of the KVStore object, which
is created by calling the getStore method on the KVStoreFactory class. The
KVStoreConfig is created using the name of the store we wish to connect to as
well as one of the host computers in the Oracle NoSQL Database cluster and the
port to contact on that host machine. This computer is used only as a bootstrap
mechanism to retrieve the topology of the Oracle NoSQL Database cluster. All
subsequent API calls will be routed to the appropriate machines in the cluster by
the Oracle NoSQL Database driver.

 String notePadKey = "/users/34271/folders/-/notepad";
 String valueString = "A test nodepad item that means nothing";
 KVStore store = KVStoreFactory.getStore
 (new KVStoreConfig("kvstore", aStoreHost + ":" + port)))

 Key myKey = Key.fromString(notePadKey);

 System.out.println(myKey.getFullPath());

 System.out.println(myKey.toString());

05-ch05.indd 111 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

112   Oracle NoSQL Database

 Value myValue = Value.createValue(valueString.getBytes());

 store.put(myKey,myValue);

In this example, the output of the System.out.println would look as follows:

 [users, 34271, folders, notepad]
 /users/34271/folders/-/notepad

In a real e-mail application, we would certainly not have the ability to statically
declare a path that includes a user ID to a specific folder. This path would be
materialized at run time based on the user that is currently logged in, and possibility
some notion of that user’s authorization to reach the specific folder (in this case, the
notepad folder). An alternative to construct the key given these constraints is shown.
In the code that follows, we presume that the user ID is returned by an application
function that contains an AuthorizationContext class for retrieving the
currently logged-in user:

 ArrayList<String> majorList = new ArrayList<String>();
 ArrayList<String> minorList = new ArrayList<String>();
 int userId = AuthorizationContext.getCurrentUserId();

 majorList.add("users");
 majorList.add(userId);
 majorList.add("folders");

 minorList.add("notepad");

 Key myKey = Key.createKey(majorList, minorList);
 store.put(myKey,myValue);

Now let’s take a look at how you would use the Oracle NoSQL Database API to
read the contents of a user’s notepad folder:

 ValueVersion valueVersion = store.get(myKey);
 String notePadContents = new String(valueVersion.getValue().
getValue());

Consistency and Durability
from the Programmer’s Perspective
In this section we introduce the concepts of durability (for writing data) and
consistency (for reading data). As you will see, these are key concepts to writing
successful applications on the Oracle NoSQL Database.

05-ch05.indd 112 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 5:  Getting Started with Oracle NoSQL Database Development  113

Durability
If you look up the term “durability” in the Merriam-Webster’s dictionary, you find
the following definition:

“Something that is able to exist for a long time without significant deterioration”

Translating this definition to the world of data storage, you can see the parallel to
how long data can be stored on any particular media before it deteriorates, or even
worse, completely disappears. You can think of durability as the storage of data in
the memory of a single computer. The data will be durable until that computer fails
or encounters a power outage. Alternatively, you can create a single copy or multiple
copies of this data and place it in the memory of another computer or set of computers
to gain confidence in the durability of the data; however, should there be a loss of
power to all of the computers, the data is lost. You can take this definition several steps
further by considering single or multiple copies of the data on disk, or you can increase
the confidence in the data’s durability by copying the data to computer memory or
disks that reside in separate datacenters that are physically separated.

Oracle NoSQL Database codifies the notion of durability into a policy that can
be set by the programmer for each API call that writes data to the store. The stricter
the durability policy, the higher your level of confidence that the data can survive a
media failure. In Oracle NoSQL Database, there are two distinct but related sets of
durability policies:

■■ Replica acknowledgment-based policies  Acknowledgment-based policies
define how strict the master should behave with respect to how many replicas
respond successfully before the master considers the write committed and
responds to the caller of the API. There are three flavors of the acknowledgment-
based durability:

■■ ALL  This is the most stringent and most durable acknowledgment-based
policy and dictates that all replicas must acknowledge successful writes
before the master will consider the transaction committed. From the
programmer’s perspective, one can think of this as synchronous replication
as the caller of the API will wait until all replicas have written the data
before the API call will return.

■■ SIMPLE_MAJORITY  This is the next most stringent and is sometimes
referred to as quorum writes. In this durability policy, the master will
asynchronously replicate the data to all replicas and then wait for a
successful response only from a majority, or quorum, of replicas before
considering the transaction committed. For example, if there is a total
of three nodes (a master and two replicas), the master need only wait for
a single replica to respond before committing the transaction, as a total
of two writes have occurred, making this a majority.

05-ch05.indd 113 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

114   Oracle NoSQL Database

■■ NONE  This is the least stringent policy and from the programmer’s
perspective, this can be thought of as purely asynchronous replication.
The master will write the data locally, send the data to the other replicas,
and immediately consider the transaction committed without waiting for
any responses from the replicas.

■■ Synchronization-based policies  Defines the basic guarantee that a write
operation has been saved to persistent storage. High levels of synchronization
offer a greater guarantee that the transaction is persistent to disk, but trade that
guarantee for lower performance. There are three flavors of synchronization
policies and these can be specified for master node as well as for non-master
node writes:

■■ SYNC  This is the most stringent level of durability and implies the most
overhead from a performance perspective. Using this policy will force
each node to flush the write to persistent storage before returning success.
While this policy gives the programmer a very high level of confidence
that a write will never be lost, it comes at a cost of performance.

■■ WRITE_NO_SYNC  This is the next most stringent level of durability
and will cause each node to make a system call that will write the
data to the file system buffer cache, but not flush the data directly to
persistent storage. The data will get flushed to persistent storage by the
file system in an asynchronous fashion.

■■ NO_SYNC  This is the least stringent level of durability and will cause
each node to write the data to its memory cache. The data will be flushed
to persistent storage either on a checkpoint or when the data gets evicted
from the node’s cache.

When choosing a durability and acknowledgment policy for any particular
operation, it’s important to think about several issues:

■■ The type of data that is being stored  If you’re storing high-value operational
data that is absolutely critical to the business and you cannot consider any
trade-offs with respect to the confidence of durability and the latency of the
API call, this should guide your choice of durability and acknowledgment
option toward the more stringent durability choices. Our e-mail application
discussed earlier is a good example of data that should be stored with a high
confidence of durability, as this application does not have extreme SLAs
for latency (single- or double-digit milliseconds) and users of our e-mail
application expect zero data loss no matter what happens to the underlying
systems. On the other hand, if the data is low value and non-critical, you
should consider trading off the confidence of durability for lower latency.

05-ch05.indd 114 11/12/13 4:05 PM

Chapter 5: Getting Started with Oracle NoSQL Database Development 115

 ■ The type of workflow being implemented There are some workloads
that dictate a very low latency service level agreement (SLA), and for
these workloads you should consider a less stringent durability and
acknowledgment policy, as this might be the right trade-off in order to
achieve the SLAs on latency that are required. For example, in systems
that service online display advertising, publishers of online content will
require that ad servers return to the browsers in less than 75 milliseconds.
This requirement, coupled with the fact that the writes in this workload
are tracking consumer browsing behavior, indicates a perfect scenario for
choosing a very low durability confidence setting in exchange for very low
latency on write operations.

Your application requirements will dictate the strategy of the durability and
acknowledgment policies used as a default setting in Oracle NoSQL as well as for
specific API calls. The default durability policy can be set for the entire store in the
KVStoreConfig class, and as you will see later in this chapter, this default
configuration can also be overridden in each API call.

Consistency
While durability speaks to the resiliency of writing data to Oracle NoSQL Database,
consistency speaks to the resiliency of reading data from Oracle NoSQL Database.
More specifically, consistency refers to the ability for an application to read the most
recent copy of data as it has been written to the store. Because a key-value store is
typically composed of a cluster of computers (called nodes) that are working
together in a distributed fashion, it is possible for a record to be written by the
master node in a shard and then subsequently read from another node in the shard.
Because there is a time lag between the time that a record is written to the master
and the time it takes for the record to be transferred over the network to the other
nodes in the shard, the record may not be consistent with the master if read from a
node that has not yet received the most recent update from the master. The level of
consistency that an application requires between records being read on any node in
Oracle NoSQL Database is called the consistency policy. As with the durability and
acknowledgment policies in Oracle NoSQL, the consistency policy gives the
programmer a powerful tool to be able to trade off performance (lower latency/
higher throughput) for stringent consistency. There are four distinct consistency
policies in Oracle NoSQL Database:

 ■ ABSOLUTE This is the most stringent consistency policy and dictates that the
read must be executed at the master node of the shard, thereby guaranteeing
that the most recent committed version of the record is returned to the caller
of the API. While using this policy gives the programmer a nice guarantee for

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

116   Oracle NoSQL Database

the state of the read, it comes at a potential cost in system throughput as well
as read latency. Using this policy will prevent the NoSQL Database driver
from spreading the read load out across all of the nodes in the shard, thereby
possibly overloading the master node and reducing overall system throughput
as well as increasing the latency of reads in the system.

■■ Time  This is the next most stringent consistency policy and, when supplied
by the programmer along with a time ceiling X and time unit Y, specifies
that the read can be performed against any node in the shard as long as
that node’s version of the record is no longer than X time units lag from the
version of the record held at the master. The Oracle NoSQL Database driver
is always topology-aware and can easily compute a heuristic for how far off
any node is from its master in the shard. As an example of how one would
use this policy, consider your e-mail application. Let’s say you’re reading the
calendar for the current user. You could supply a time-based read, a ceiling
of 500, and a unit of milliseconds, thereby specifying that you would be
willing to utilize any node in the shard for this read as long as the record
you’re reading is no more than 500 milliseconds lagging from the master.

■■ Version  This consistency policy is at least as stringent as the time-
based consistency policy described previously, but can be utilized in a
slightly different way. Version-based consistency allows the programmer to
supply a version object to the read call and dictates to the Oracle NoSQL
Database driver that it may read from any node that contains at least this
version of data and greater. Versions in Oracle NoSQL Database are simply
externalized notions of the underlying storage system’s log sequence
number, and each insert into the store will be tagged with a log sequence
number, externalized through the APIs as an instance of a Version class.
This policy is generally useful for those applications that maintain some state
information about previously inserted or updated objects and can use the
saved version information for these objects as an optimization hint to the
Oracle NoSQL Database driver.

■■ NONE_REQUIRED  This consistency policy tells the driver that it can read
the record from any node that it thinks is the most optimal node to read
from whether or not that node has data that is consistent with its master
node. This policy thus places no constraints on the read and is the most
optimal policy that can be used when reading records from Oracle NoSQL.
This policy is quite useful for those workloads that have very strict latency
SLAs and highly favor the ability to return something, even though it may
be out of date within say, 10 or 15 milliseconds. Again, we see this type
of requirement in the online display advertising world where publishers of
online content have placed extremely tight latency restrictions on their ad

05-ch05.indd 116 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 5:  Getting Started with Oracle NoSQL Database Development  117

serving providers. These providers are reading user behavioral data in an
attempt to increase the probability that the user will actually click through
an ad that is placed on the publisher’s website.

The following code snippet illustrates how to set a default level of durability and
consistency as well as how these defaults can be overridden at the individual API
call. The first parameter defines the synchronization policy at the master node level,
the second parameter defines the synchronization policy at the replication node
level, and the third parameter configures the replication acknowledgment policy.
Note that in the code snippet that follows, nothing is done with respect to exception
handling from the API calls. This is an important topic for the programmer of any
NoSQL-based application and will be covered in detail in Chapter 6.

 Durability defaultDurability = new Durability(
Durability.SyncPolicy.SYNC, // Master sync
Durability.SyncPolicy.NO_SYNC, // Replica sync
Durability.ReplicaAckPolicy.SIMPLE_MAJORITY);
 // Create an instance of the KVStoreConfig class by specifying the name
 // of our store and any machine:port in our cluster of nodes
KVStoreConfig conf = new KVStoreConfig("kvstore", "a_machine:5000");
conf.setDurability(defaultDurability);

conf.setConsistency(Consistency.NONE_REQUIRED);

 store = KVStoreFactory.getStore(conf);

The code snippet that follows will actually create a key-value pair and insert it
into the key-value store based on a new durability policy, which will override the
default one.

 majorList.add("users");
 majorList.add(userId);
 majorList.add("folders");

 minorList.add("notepad");
 Key myKey = Key.createKey(majorList, minorList);
 String content = "A test nodepad value";
 Value myValue = Value.createValue(st.getBytes());

 // Create durability policy to override the durability policy at the
 // configuration object level
 Durability durability = new Durability(Durability.SyncPolicy.NO_SYNC,
Durability.SyncPolicy.NO_SYNC, Durability.ReplicaAckPolicy.NONE);
 try {
 store.put(myKey, myValue, null, durability, 0, null);
 } catch (DurabilityException de) {
 de.printStackTrace();
 } catch (RequestTimeoutException re) {
 re.printStackTrace();
 }

05-ch05.indd 117 11/12/13 4:05 PM

118 Oracle NoSQL Database

 // Override the default consistency policy and specify absolute
 // consistency for reading back the record we just wrote
 //
 ValueVersion vv = store.get(myKey, Consistency.ABSOLUTE, 0, null);

Summary
There are many important things to consider when designing an application on top
of Oracle NoSQL Database. We have covered issues from the modeling of the key
space to the detail settings for durability and consistency, and each area denotes a
set of critical design decisions for the programmer. Unlike applications built on top
of traditional relational database systems, programmers approaching the design of
applications on Oracle NoSQL Database are encouraged to think carefully about
how their code will interact with the Oracle NoSQL APIs and how application
requirements should drive the API level trade-off decisions that will be crucial to
the overall performance and proper functioning of the application.

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

CHAPTER
6

Reading and Writing Data

06-ch06.indd 119 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

120   Oracle NoSQL Database

In the previous chapter, you were introduced to the application design process
and the basics of what it takes to start developing applications on top of the
Oracle NoSQL Database. In this chapter, you dig much deeper into the wide

variety of APIs and the use cases that compel you to choose one form of an API over
another. The Oracle NoSQL APIs give the programmer a wide variety of choices in
terms of accessing data from the NoSQL store; this chapter covers the details on all
of these variations. By the end of this chapter, you should feel confident that you
have a solid basis for determining which specific APIs are the most suitable for your
application needs and what trade-offs you are favoring by using that specific API.

Development Environment Setup
The sample code in this chapter and the next chapter have been developed using
a setup involving the following components:

■■ Eclipse  Download Eclipse and create a Java project. You can see in
Figure 6-1 that all the key-value store libraries are imported and ready for use.

■■ NoSQL KVLite  KVLite should be started and running. You can see a typical
KVLite process running in Figure 6-2.

FIGURE 6-1.  Example Eclipse IDE setup for NoSQL application development

06-ch06.indd 120 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  121

■■ Key-value store  Should be created and accessible on the machine running
Eclipse and KVLite. Figure 6-3 shows where the key-value store is located
on the Windows file system.

Writing Records
Writing records into Oracle NoSQL Database is as basic as an insert statement
in a relational database and in many ways is simpler than the classic relational
insert statement. There are several ways of writing records into the key-value store
depending on the complexity of the business case you are trying to solve. The task
of inserting or writing data into the key-value store starts from building the key itself.
Recall that a key consists of two parts:

■■ Major key component  Has to be a non-null single string or can have
multiple parts.

■■ Minor key component  Can be null or can have one or more parts.

FIGURE 6-3.  Location of key-value store on the Windows file system

FIGURE 6-2.  Screenshot of a running KVLite process

06-ch06.indd 121 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

122   Oracle NoSQL Database

The major and the minor keys together form the full key path. All the key value
pairs with the same major key component are stored in the same shard in a NoSQL
multi-node environment. Within the shard, the minor key component is used to
search for the value. Recall that this architecture provides two important artifacts:

■■ Efficient access  If all the values related to a major key component are
stored in the same shard, the get operation can be performed in a single
network I/O more efficiently.

■■ ACID transactions  If one or more values contain the same major key
component, they can be modified together in a single ACID-compliant
transaction.

Basic API Functionality
There are several different APIs for writing records into the Oracle NoSQL Database
and each type of API addresses slightly different requirements. In this section, we
cover the details and present examples for the following APIs to write data:

■■ Vanilla put  The easiest form of inserting records into the Oracle NoSQL
Database. Simply takes a key and value.

■■ putIfAbsent  A form of the classic atomic test and set operator. Will
insert a key-value pair into Oracle NoSQL only if the key does not already
exist in the store. The check for existence is made in a transactional fashion
(obeying strict isolation semantics of the ACID properties), and as you will
see later in this section, this provides the programmer with a unique set of
capabilities.

■■ putIfPresent  A form of the classic atomic test and set operator except
that, in this case, the check is to ensure that the key exists before inserting
the value into the store.

■■ putIfVersion  Insert the value into the store only if the record matches a
specific version.

The following code fragments explore the different ways of writing data into the
key-value store. In this example, we are attempting to store license plate information
for a vehicle owner. First we will illustrate a simple vanilla put operation:

majorList.add("Tanya");
majorList.add("Smith");

minorList.add("HONDA");

06-ch06.indd 122 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  123

minorList.add("Accord");
minorList.add("20090213");

String valueString = "CY1R651";
Key myKey = Key.createKey(majorList, minorlist);
Value myVal = Value.createValue(valueString.getBytes());
store.put(myKey,myValue);

The putIfAbsent method gives you some unique capabilities that you can
use to solve certain classes of synchronization problems in distributed systems. For
example, let’s say that you’d like to build a global sequence generator for your
application that will generate globally unique ID values for every object that you
wish to insert into the store for your application. In part of the algorithm, you’ll
choose the putIfAbsent method as it gives you an atomic way to test that no
other callers in your distributed system have created the initial value of your ID
generator while you’re creating it. The code that follows illustrates the method that
will return the current sequence number in the store, or if the sequence number
does not yet exist, it will create it with an initial value of 1.

/**
* Return the current value of the sequence number object or if it does
* not exist, initialize it to 1 and return it.
* Uses the atomic test and set operation of putIfAbsent to make sure
* that no other processes are stomping on the sequence number while the
* caller of this code is in there.
**/
public ValueVersion getCurSeqNum() throws DBAccessException {
 // Retrieve the current value of the global sequence number
 ValueVersion seq = db.getStore().get(Key.fromString(
 "/GlobalSeqNum"), Consistency.ABSOLUTE, 0, null);
 int currWaitMillis = 0;

 // No one has created it yet, we’ll go and create it now
 if (seq == null) {
 Value value = Value.fromByteArray(new byte[]{
 new Integer(1).byteValue()});
 while (seq == null) {
 try {
 Version seqVersion = db.getStore().putIfAbsent(
 seqKey, value);
 if (seqVersion == null) {
 // Someone got here before us
 seq = db.getStore().get(seqKey,
 Consistency.ABSOLUTE, 0, null);
 } else {
 /* We inserted it, wrap it up
 * in ValueVersion class for return
 */

06-ch06.indd 123 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

124   Oracle NoSQL Database

 seq = new ValueVersion(value, seqVersion);
 }
 } catch (RequestTimeoutException e) {
 try {
 if (currWaitMillis >= MAX_TIMEMOUT_WAIT_MILLIS) {
 throw e;
 }
 Thread.currentThread().wait(TIMEMOUT_WAIT_MILLIS);
 currWaitMillis += TIMEMOUT_WAIT_MILLIS;
 } catch (InterruptedException ie) {};
 }
 }

 }
 return(seq);
 }

The putIfPresent method gives you a convenient way to test the key, ensure
that it has not been deleted or that it does exist altogether, and then update its value,
all in a single atomic call. This type of mechanism is extremely useful in applications
that must utilize asynchronous processes. For example, it is very common in online
advertising for ad servers to update the budget of a campaign asynchronously from
the users that may be modifying the campaign. In such a scenario, utilizing the
putIfPresent method can ensure that the ad server is updating a campaign that has
not been deleted (or deactivated). It’s a bit beyond the scope of this book to present the
code for such an involved example as online display advertising. The example that
follows gives the reader some indication of how this method may be used.

/**
* Update the budget for a campaign only if that campaign still exists.
*
* @param campaignId – Key for the campaign to update
* @param val – The value to replace the existing budget value (byte array
* representation of a Double).
* @return true if successful, false otherwise
*/
public boolean updateCampaignBudget(Key campaignId, byte val[]) {

 Value upValue = Value.createValue(val);

 Version upVer = store.putIfPresent(campaignId, upValue);
 return(upVer == null ? false : true);
}

The putIfVersion method is useful for those application scenarios where
some state can be saved in the client of Oracle NoSQL. This becomes interesting in
distributed and concurrent programming as a way for programmers to ensure that no

06-ch06.indd 124 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  125

other processes (or threads) have updated a value since the last time it was seen by
the current thread/process. In the example code that follows, we expand upon the
previous example, which gets the current sequence number, and add the complete
implementation for globally unique sequence number generation. Notice that a key
part of the generation is utilizing putIfVersion.

/**
* Generate and return the next value for the globally unique sequence number
*/ 	
public int getNextSeq() throws RequestTimeoutException {
 // Get the current value of the sequence number
 ValueVersion curSeqNum = getCurSeqNum();
 Version v = null;
 Integer nextSeq = null;
 int currWaitMillis = 0;

 // Keep trying until we’re successful or we time out
 while (v == null) {
 int newSeq = java.nio.ByteBuffer.wrap(
 curSeqNum.getValue().toByteArray()).getInt();
 nextSeq = new Integer(newSeq++);
 Value newVal = Value.fromByteArray(new byte[]{nextSeq.byteValue()});

 try {
 v = db.getStore().putIfVersion(seqKey, newVal, curSeqNum.getVersion());
 } catch (RequestTimeoutException e) {
 try {
 if (currWaitMillis >= MAX_TIMEMOUT_WAIT_MILLIS) {
 throw e;
 }
 Thread.currentThread().wait(TIMEMOUT_WAIT_MILLIS);
 currWaitMillis += TIMEMOUT_WAIT_MILLIS;
 } catch (InterruptedException ie) {};
 }
 // Someone got in there and incremented the sequence number
 // before we could. We'll have to try again.
 if (v == null) {
 curSeqNum = getCurSeqNum();
 }
 }
 return(nextSeq);
}

How to Specify Durability in Write API Calls
In Oracle NoSQL, durability may be specified for every API call that performs a write
(either the key-value store’s default durability is used or it is explicitly supplied by
the programmer at an API call). Hence, the concept of durability is crucial for the
programmer to understand and we revisit this concept within the context of the
Oracle NoSQL write APIs. As stated in the previous chapter, a durability policy can be
thought of as your level of confidence in the survival of a piece of data in the event of

06-ch06.indd 125 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

126   Oracle NoSQL Database

catastrophic failures of hardware or software. As the durability policy gets stricter, the
confidence level increases that the data survives. The two types of durability policies
are reviewed in Tables 6-1 and 6-2.

How to Choose a Durability Policy Based on Real-Life Examples
The simple answer to how a durability policy is chosen is that it all depends on the
application business use case you are trying to solve. When choosing a durability
policy, the application developer should examine several issues and carefully
consider the trade-offs. Generally speaking, the application developer will be
trading off latency and throughput for increased confidence that the data will
survive a failure. For example, there may be situations where latency SLAs of
single-digit milliseconds are absolutely necessary, and to achieve this latency, the
application developer is willing to use a durability policy that will favor latency

Policy Name Definition Quality of Policy In Case of Failure

All Replicas Write to be completed
on all nodes

Most secure Any replica can be
made as master.

No Replicas Write to be completed
only on master

Least secure No copy to fall
back upon.

Simple
Majority

Write to be completed
on a simple majority
of nodes

Balanced A node in a simple
majority of nodes
can be made
as a master.

TABLE 6-1.  Acknowledgment-Based Policies

TABLE 6-2.  Synchronization-Based Policies

Policy Name Quality Where Is It Written

NO_SYNC Fastest and least durable In-memory cache

WRITE_NO_SYNC Balanced File system buffers after the
in-memory cache

SYNC Slowest and most durable Storage

06-ch06.indd 126 11/12/13 4:05 PM

Chapter 6: Reading and Writing Data 127

over the confidence of data survival in the event of a hardware failure. We consider
some real-world use cases in the following list that will shed some light on how to
think about these trade-offs:

 ■ Online display advertising Technology providers in the online display
advertising business are typically given very strict SLAs by publishers
(website owners) when pages are loaded. These SLAs are usually in the low
double-digit millisecond range (for example, 50 milliseconds). It is within
these constraints that ad servers must deliver the right ad to the right user
such that there is a high probability that a user will click the ad, thereby
maximizing revenue for the ad server provider as well as for the publisher.
This is a perfect use case for decreasing durability and trading off that
decreased confidence to latency. Since the data in this case is being used
to increase the probability of an event, it’s not so critical if a few data points
are lost in the event of a hardware or software failure.

 ■ Online social gaming sector There are use cases for in-game social
interaction that require the server to know the locations of all players on
a canvas as the players move around. In this case, the latency of the write
operations are essential, as player movement must be perceived as real time
by the game players while the movements must be stored and retrieved as
the player moves around the canvas. This use case is also a good example
of one in which you might choose to favor latency over the confidence of
survival of player movement data.

 ■ Building a scalable e-mail service In the case of e-mail applications such
as those provided by Google or Yahoo (similar to the example in the previous
chapter), the data is critical and the acknowledgment-based policy that favors
durability over latency would almost certainly be used.

So generally speaking, the synch policy along with the acknowledgment policy
will have a large impact on latency and throughput. The SYNC policy will exhibit
longer latencies compared to WRITE_NO_SYNC and NO_SYNC. Similarly in
acknowledgment policies, ALL will exhibit longer latencies compared to others.
Note that throughput as it relates to the overall latency of ongoing operations will
also be negatively affected. The key point to understand here is that in general terms,
the trade-off for a higher degree of confidence that the data will survive in the event
of a catastrophic failure is latency and throughput of the application.

Now let’s use an example similar to the one used in the previous chapter of
storing the Inbox information for a mail provider to explain how the durability
acknowledgment policies are used in the case of critical data. You can set the

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

128   Oracle NoSQL Database

durability policy at a global level in the configuration object of the key-value store.
However, we will override it and change it at an individual API call for the strictest
form of durability policies as per our business requirement. The first parameter
defines the synchronization policy at the master node, the second parameter defines
the synchronization policy at the Replication Node, and the third parameter
configures the replication acknowledgment policy.

In the current use, you use the key-value store to store the e-mail messages and
their contents in different folders such as the Inbox, Deleted Items, and so on. The
major key and the minor key are defined with key attributes such as date, time,
from, and to information that bring uniqueness to it. The value is the actual e-mail
text itself.

majorList.add("users");
majorList.add("12345");
majorList.add("folders");

inboxList.add("inbox");
inboxList.add("20130801");
inboxList.add("174510");
inboxList.add("From:Tanya");
inboxList.add("To:Jennifer");

Key inboxKey = Key.createKey(majorList, inboxList);

String st = "Hi Jennifer, Happy Birthday. Tanya";
Value emailText = Value.createValue(st.getBytes());

You store the e-mail content of one e-mail in the Inbox for a user using the
strictest durability policy available and then print it back to the console.

Durability durability = new Durability(Durability.SyncPolicy.SYNC,
 Durability.SyncPolicy.SYNC, Durability.ReplicaAckPolicy.ALL);
try {
 store.put(inboxKey, emailText, null, durability, 0, null);
} catch (DurabilityException de) {
 de.printStackTrace();
} catch (RequestTimeoutException re) {
 re.printStackTrace();
}

ValueVersion vv = store.get(inboxKey, Consistency.ABSOLUTE, 0, null);
System.out
 .println("The email content for first email on 20130801 is "
 + inboxKey.toString()
 + " is "
 + new String(vv.getValue().getValue()));

06-ch06.indd 128 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  129

The output of the code snippet will be as follows. The store is closed in the end
for releasing resources.

The email content for first email on 20130801 is /users/12345/folders/-/
inbox/20130801/174510/From:Tanya/To:Jennifer is Hi Jennifer, Happy
Birthday. Tanya

Executing a Sequence of Operations
In the previous section, you saw an insert into the key-value store for storing the
e-mail text into the Inbox folder. Now, assuming the user wants to delete the e-mail,
you need to move the e-mail from the Inbox folder to the deleted items folder. This
involves two separate operations of deleting the e-mail from the Inbox folder and
adding it into the deleted items folder. Now if there is a catastrophic failure after the
first operation happens, the data would be inconsistent because the e-mail would
have been inserted into the deleted items folder and not deleted from the Inbox
folder. This particular use case demands the facility to be able to execute a series of
operations in an all-or-nothing fashion. Oracle NoSQL provides an API to perform a
sequence of operations where all of the operations execute successfully or none of
them will. This is defined as the atomicity property of ACID (Atomic, Consistent,
Isolated, Durable) transactions in the RDBMS world. The key requirements and
characteristics for this API in Oracle NoSQL are

■■ The operations are on the keys with the same major path components.

■■ They are on a list and they may not be executed in the order specified.

■■ All the operations should not be on the same key.

■■ All the operations are performed in isolation (not visible to other processes
until all of the operations are 100 percent complete).

Now we’ll illustrate the concept by continuing the preceding example. You
insert this e-mail into the deleted Items folder and delete the e-mail from the Inbox
folder. The steps followed in this process are

1.	 Get a handle to the operation factory, which helps create operations for the
put method and the delete method.

2.	 The operations are added to a list.

3.	 The list is passed on to the execute method on the instance of KVStore.

4.	 Different exceptions are caught.

06-ch06.indd 129 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

130   Oracle NoSQL Database

The operation factory handle is obtained and the array list is created to hold the
list of operations.

OperationFactory of = store.getOperationFactory();
ArrayList<Operation> opList = new ArrayList<Operation>();

The key-value objects are created with unique elements identifying the e-mail to
be added to the deleted Items folder and its content.

deletedList.add("deletedItems");
deletedList.add("20130801");
deletedList.add("174510");
deletedList.add("From:Tanya");
deletedList.add("To:Jennifer");

Key deletedItemsKey = Key.createKey(majorList, deletedList);

The operations are created based on the deletion and insertion. The first
operation is a simple put because you are inserting the deleted e-mail into the
deleted items folder. The second operation is the delete from the Inbox folder, so
you create an operation based on the delete method. The operations are then
added to the operations list. Once the operations list is ready, it is passed on to the
execute method on the key-value store as a parameter.

opList.add(of.createPut(deletedItemsKey, emailText));
opList.add(of.createDelete(inboxKey));

try {
 store.execute(opList);
 } catch (OperationExecutionException oee) {
 } catch (DurabilityException de) {
 } catch (FaultException fe) {
 }
store.close();

Exception Handling for Write Operations
Creating highly available applications involves many subtle design and implementation
details that should be considered. One of those important details is the proper
handling of exceptions such that application failures are never or extremely rarely
seen by the end user. Hence, most applications that exhibit this degree of availability
are programmed to avoid throwing errors back to the application user. This type of
“defensive” coding is also recommended when creating applications on Oracle
NoSQL Database. Typically, programs will attempt to retry a failed operation up to a
certain threshold before returning an error to the user. Thresholds may be defined as
upper bounds on time, or as upper bounds on number of attempts, and your specific

06-ch06.indd 130 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  131

choice should be driven by the business requirements of your application. Table 6-3
should be used as a guide to determine whether or not your code should consider
re-try logic for a write operation that throws an exception.

Reading Records
Retrieving records from Oracle NoSQL Database is as basic as a Select statement in
a RDBMS database. Fortunately, Oracle NoSQL Database equips the users with a
lot of arrows in their quiver to retrieve records from the key-value store. It can be
as simple as retrieving a single record from the key-value store or as complex as
retrieving multiple records sharing common major keys. There is also a capability of
filtering the data by setting the range on the result iterator. This is the equivalent of the
frequently used where clause of the RDBMS world. Now that you have written some
records into Oracle NoSQL Database in the previous section, let’s read some of them.

TABLE 6-3.  Exception Handling Guidelines for Writes

Exception Likely Cause Possible Resolution

DurabilityException The programmer has specified

an acknowledgment policy

other than Durability

.ReplicaAckPolicy

.NONE, and a quorum of

replicas was not available

to acknowledge receipt of

the write.

1. �A Replication Node may be

temporarily unreachable and a

retry may succeed.

2. �As a fallback mechanism, the

program may wish to retry the

write operation with Durability

.ReplicaAckPolicy.NONE if this

level of durability is more acceptable

than an application error.

OperationExecutionException Thrown when one or more

operations in a list has failed.

This exception is only thrown

from the execute method.

More than likely, a retry of this method

will fail again as there is an offending

operation in a list. It is possible,

however, that a retry may succeed, as

a transient error may have occurred on

the specific operation that has failed.

The getFailedOperation method

on this exception class will return the

specific operation that has failed.

RequestTimeoutException This exception denotes an

internal error with Oracle

NoSQL Database.

It’s possible that the error detected is a

transient error and the operation can

be retried.

06-ch06.indd 131 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

132   Oracle NoSQL Database

Read One Record
or Multiple Records in Many Ways
This section explores reading records through an example of car ownership and the
license plate information of county dwellers. You may need to interact with this data
in a number of different ways, and we present some important methods. The following
assumptions are made for these use cases:

■■ The key-value store is created and is open for use.

■■ The records are already written and present in the key-value store.

Simple Get Method
The sample code that follows reads one single record from the key-value store.
You create a key that is structured with a major key component and a minor key
component. The following lines create the major and minor key components as
instantiations of an ArrayList class. Now you can search for the license plate
number of a car registered in the state of Texas using the first name, last name, and
the last four digits of the owner’s Social Security number. The major key component
and a minor key component are initialized in the following code, and then a key is
created using them.

majorList.add("Tanya");
majorList.add("Smith");
majorList.add("1006");

minorList.add("Texas");
minorList.add("BMW");
minorList.add("3-series");
minorList.add("sedan”);

Key myKey = Key.createKey(majorList,minorList);

Now you get the value associated with this key by running the simple get
method on the store handle. For this code snippet, let’s assume that a handle to the
key-value store has been obtained after providing the KVStoreConfig object to
the KVStoreFactory.

ValueVersion vv = store.get(myKey);

System.out.println("The license plate number of the car "+myKey
 .toString()+ " is "+new String(vv.getValue().getValue()));

06-ch06.indd 132 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  133

The preceding snippet of code produces the following output:

The license plate number of the car /Tanya/Smith/1006/-/Texas/BMW/3-
series/sedan is CY1R651

MultiGet Method
In this use case, one person may own multiple automobiles with license plates
from different states. You have seen that the major component stores the personal
information such as name and Social Security number, and the minor component
stores the automobile information such as state, model, and make. The minor
component is defined in multiple levels and is similar to levels in a tree-like data
structure. The number of levels of data to obtain is defined by the Depth parameter.
The Depth parameter has four possible choices:

■■ Children only  Only the immediate first-level children are selected.

■■ Descendants only  All the children are selected irrespective of the depth,
which means children, grandchildren, and so on are all selected.

■■ Parent and children  Only the parent and the first-level children are selected.

■■ Parent and descendants  All the children are selected, including the parent.

In the code snippet that follows, all the cars owned by this person are listed.
To achieve this, you need to create a key with a major component and perform a
multiGet operation on the store. Once again, you assume that a handle to the
key-value store has been obtained after providing the KVStoreConfig object to
the KVStoreFactory.

ArrayList<String> majorList = new ArrayList<String>();

majorList.add("Tanya");
majorList.add("Smith");
majorList.add("1006");

Key myKey = Key.createKey(majorList);

Now you declare a SortedMap of type Key and ValueVersion, which is used
to store all the values obtained from the multiGet operation on the key-value store.

SortedMap<Key, ValueVersion> myRecords = null;

try {
myRecords = store.multiGet(myKey, null, Depth.PARENT_AND_DESCENDANTS);
 } catch (ConsistencyException ce) {

06-ch06.indd 133 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

134   Oracle NoSQL Database

 // do something when the consistency guarantee was not met
} catch (RequestTimeoutException re) {
 // do something when the operation was not completed within the
 // timeout value
}

The KeyRange and the Depth parameters in the multiGet method call
are optional. You specify the depth as PARENT_AND_DESCENDANTS so that you
can list all the cars owned by the individual irrespective of model and the state
where the license plate originated. You set KeyRange as null because you are not
doing any additional filtering at this point. Notice that you are trying to catch the
consistencyException and the RequestTimeoutException in the
preceding code snippet. More details on exception handling are discussed later
in this chapter. You iterate through the entries in the Sorted Map that you have
obtained from the function call to the key-value store. The following statement
prints out the registration plate information of all the cars owned by the individual.

for (Map.Entry<Key, ValueVersion> entry : myRecords.entrySet()) {
 System.out.println(entry.getKey().toString()+": "
 +new String(entry.getValue().getValue()
 .getValue()));
}

The console output from this part of your code snippet will look something like this.

Output of MultiGet Method with depth - 'Parent and all descendants'
/Tanya/Smith/1006: CY1R651
/Tanya/Smith/1006/-/California/Ford/Mustang/convertible: 1224RED
/Tanya/Smith/1006/-/CarRegNumber: CY1R651
/Tanya/Smith/1006/-/NewYork/Mercedes/MClass/convertible: 122RED4
/Tanya/Smith/1006/-/Texas/BMW/3-series/sedan: CY1R651
/Tanya/Smith/1006/-/Texas/BMW/5-series/convertible: 1RED224
/Tanya/Smith/1006/-/Texas/BMW/7-series/coup: 12RED24

Notice that it shows all the entries in the key-value store which are matching the
major key component.

MultiGet Method with Iterator
While using the multiGet methods, you do not know ahead of time how many
records will be read from the key-value store for a particular major component. So this
method is very useful in the scenario where the result may be too large to fit into the
memory. The use of the iterator enables you to perform an ordered traversal while
specifying how many records to fetch in one batch. This prevents high utilization of the
available network bandwidth and also optimizes the number of network roundtrips.

06-ch06.indd 134 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  135

There are two important differences in the method call that follows apart from the
use of an iterator.

■■ Direction  This parameter simply specifies the order in which the
key-value pairs are returned. The three choices are forward, reverse, and
unordered and they are self-explanatory.

■■ KeyRange  This is a filter mechanism similar to the way a where clause
operates in relational database systems, and it can be applied to the keys.
The KeyRange was set to “Texas” in the example to filter the result set to
get only those automobiles with Texas license plates. The KeyRange is
a string that is applied to the minor key component in this example. The
KeyRanges are string-based and they can be constructed in two ways:

■■ KeyRange constructed with one string.

■■ KeyRange constructed with a beginning string, ending string, and
parameters indicating whether the beginning and the end strings are
inclusive in the filter operation. This version of the API is used and
explained in the Deleting Records section later in the chapter.

myKey = Key.createKey(majorList);
KeyRange kr = new KeyRange("Texas");

Iterator<KeyValueVersion> mgi = store
 .multiGetIterator(Direction.REVERSE,4,myKey,kr,Depth
 .DESCENDANTS_ONLY,Consistency.ABSOLUTE,0,null);
System.out.println("Output of MultiGet Method using iterator
 with Depth- 'Descendants only'");

while (mgi.hasNext()) {

 KeyValueVersion kvvi = mgi.next();
 System.out.println("The key and Value are"
 +kvvi.getKey().toString() + " " +new String(kvvi
 .getValue().getValue()));
}

Note that this snippet of code prints only three records compared to the seven in
the previous example. The difference occurs because the result set is filtered by the
KeyRange, and also occurs because we have changed the Depth to descendants
only, which means that the parent record is not returned. The following is the final
output printed to the console:

Output of MultiGet Method using iterator with Depth- 'Descendants only'
The key and Value are/Tanya/Smith/1006/-/Texas/BMW/7-series/coup

06-ch06.indd 135 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

136   Oracle NoSQL Database

12RED24
The key and Value are/Tanya/Smith/1006/-/Texas/BMW/5-series/convertible
1RED224
The key and Value are/Tanya/Smith/1006/-/Texas/BMW/3-series/sedan
CY1R651

MultiGetKeys and MultiGetKeysIterator Methods
There are certain use cases where retrieving just the keys from Oracle NoSQL can
address the use case while giving the programmer a more optimal solution than
retrieving the fully materialized value. It’s important to keep in mind that Oracle
NoSQL Database will always attempt to cache the keys residing in the B-tree in
memory, while values are never cached. Thus, it is always more optimal to request
an in-memory B-tree scan to retrieve keys rather than performing I/O to retrieve
values. You can see this type of key-only retrieval scenario in the relationship graph
use case where object relationships can be modeled as keys only. This is extremely
common in the social networking space, where many applications will have a use
case to find “friends of friends” to a certain degree. For this type of use case, you
can model these relationships in Oracle NoSQL Database as follows:

/users/id/friends/-/users/id

Furthermore, you can choose to model the display name of a user as follows:

/users/id/profile/-/display_name

The following are example friend keys:

/users/34271/-/users/67511
/users/34271/-/users/89757
/users/34271/-/users/37519

The following are examples of profile information for a user:

/users/34271/profile/-/Joe Palooka
/users/67511/profile/-/Sharon White
/users/89757/profile/-/Vincent Carillo

As you can see, you now have the ability to perform “friend of friend” type
queries simply by retrieving keys only from Oracle NoSQL Database. The following
code presents an example of how to retrieve the friends of Joe Palooka. More complex
“degrees of separation” queries are left as an exercise for the reader.

ArrayList majorKey = new ArrayList();
ArrayList minorKey = new ArrayList();

 // Create the key /users/34271/profile/-/Joe Palooka
 majorKey.add("users");

06-ch06.indd 136 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  137

 majorKey.add("34271");
 majorKey.add("profile");
 minorKey.add("Joe Palooka");
 store.put(Key.createKey(majorKey, minorKey),
 Value.createValue(new byte[]{}));

 // Create the key /users/67511/profile/-/Sharon White
 majorKey.clear();
 minorKey.clear();
 majorKey.add("users");
 majorKey.add("67511");
 majorKey.add("profile");
 minorKey.add("Sharon White");
 store.put(Key.createKey(majorKey, minorKey),
 Value.createValue(new byte[]{}));

 // Create the key /users/89757/profile/-/Vincent Carillo
 majorKey.clear();
 minorKey.clear();
 majorKey.add("users");
 majorKey.add("89757");
 majorKey.add("profile");
 minorKey.add("Vincent Carillo");
 store.put(Key.createKey(majorKey, minorKey),
 Value.createValue(new byte[]{}));

 // Create key /users/34271/friends/-/users/67511
 majorKey.clear();
 minorKey.clear();
 majorKey.add("users");
 majorKey.add("34271");
 majorKey.add("friends");
 minorKey.add("users");
 minorKey.add("67511");
 store.put(Key.createKey(majorKey, minorKey),
 Value.createValue(new byte[]{}));

 // Create key /users/34271/friends/-/users/89757
 minorKey.clear();
 minorKey.add("users");
 minorKey.add("89757");
 store.put(Key.createKey(majorKey, minorKey),
 Value.createValue(new byte[]{}));

 // First we'll look up the keys that contain the IDs of Joe's
 // friends
 // Use a partial path and get everything underneath it
 Key joePalooka = Key.fromString("/users/34271/friends");

06-ch06.indd 137 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

138   Oracle NoSQL Database

 SortedSet<Key> friendsOfJoe = store.multiGetKeys(joePalooka, null,
 Depth.DESCENDANTS_ONLY,
 Consistency.NONE_REQUIRED, 0, null);

 Iterator<Key> friendsIterator = friendsOfJoe.iterator();

 System.out.println("Joe Palooka's friends:");

 while (friendsIterator.hasNext()) {
 // Now build a key for each item in the iterator so that
 // we can retrieve the display_name from the profile
 ArrayList<String> friendMajor = new ArrayList<String>();
 Iterator <String> i =
 friendsIterator.next().getMinorPath().iterator();
 while (i.hasNext()) {
 friendMajor.add(i.next());
 }
 friendMajor.add("profile");

 Key friendKey = Key.createKey(friendMajor);
 Iterator<Key> friendNames = store.multiGetKeysIterator(
 Direction.FORWARD, 10, friendKey, null, null);
 while (friendNames.hasNext()) {
 Key k = friendNames.next();
 System.out.println("\t"+ k.toString());
 }
 }

 // close the connection before we exit
 store.close();
 }

When executed, the preceding code will print the following to the console:

Joe Palooka’s friends:

/users/67511/profile/-/Sharon%20White
/users/89757/profile/-/Vincent%20Carillo

Notice that spaces are printed using the standard URI encoding of %20.

StoreIterator to Print Everything in the Store
If your goal is to know about all the license plate information of all the cars of all
the people stored in the key-value store, then use storeIterator.

Iterator<KeyValueVersion> it = store.storeIterator(Direction.UNORDERED,0);
System.out.println("In StoreIterator Method: Printing Everything ");
while (it.hasNext()) {
 KeyValueVersion kvvi = it.next();

06-ch06.indd 138 11/12/13 4:05 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  139

 System.out.println(new String(kvvi.getValue().getValue())+
 " " + kvvi.getKey().toString());
}

The storeIterator function on the key-value store gives you the capability to
iterate through all the key-value pairs in the key-value store. Unlike other methods that
retrieve key-value pairs from the store, however, the result of the storeIterator
method is not transactional in nature. When using the storeIterator method,
obtaining the records in batches helps minimize the network trips and can make
large store scan operations more optimal. The following is a partial output of the
preceding code snippet :

In StoreIterator Method: Printing Everything
AAA999 /Kiyara/K/Kadaru/-/Texas/Pontiac/Solstice/Convertible
CY1R651 /Tanya/Smith/1006
1224RED /Tanya/Smith/1006/-/California/Ford/Mustang/convertible
CY1R651 /Tanya/Smith/1006/-/CarRegNumber
122RED4 /Tanya/Smith/1006/-/NewYork/Mercedes/MClass/convertible
CY1R651 /Tanya/Smith/1006/-/Texas/BMW/3-series/sedan
1RED224 /Tanya/Smith/1006/-/Texas/BMW/5-series/convertible
12RED24 /Tanya/Smith/1006/-/Texas/BMW/7-series/coup
…_Andy_Murray /authorList
 ABCQWE9 /Swarna/K/Walker/-/NewYork/Chevrolet/Camaro/Convertible

Introduction to API for Enforcing Read Consistency
The cornerstone of any RDBMS system is its ability to enforce ACID properties; in
particular, read consistency is an important property in the ACID quartet. Irrespective
of how many nodes you have in a relational database, in which node you update a
particular piece of data, and from which node you retrieve the same piece of data,
users must always get the same consistent answer. In a distributed shared nothing
system like Oracle NoSQL, consistency is typically defined as “eventual.” This
means that data on different nodes will eventually become consistent as changes to
the data arrive at nodes across the cluster. Oracle NoSQL Database provides unique
capabilities for the programmer to enforce different consistency policies based on
the use cases that are being addressed.

Based on the knowledge obtained in the previous chapters of this book, you
should now understand the multi-node architecture of the NoSQL database. Writes
happen to the master node first and then get propagated to the other nodes in the
shard. The change propagation is not instantaneous and the application may get
different results while querying for the same data, depending on whether the query
was satisfied by the master node or another node in the shard. The choice of which
node will service that query can be influenced by the consistency policy that is
utilized. If the system gets the copy of the data from the master node, then it can
ensure that it is the most recent version of that piece of data because all the writes
happen on the master node. If the system gets the data from a non-master node,

06-ch06.indd 139 11/12/13 4:06 PM

140 Oracle NoSQL Database

then the data may or may not be the most recent. The different kinds of consistency
policies supported by Oracle NoSQL Database are:

 ■ Consistency.NONE_REQUIRED Data can read from any node in the
shard regardless of how recent the data is with respect to the master node in
the shard.

 ■ Consistency.Time The amount of time that a replica is allowed to
lag from the master. When using this policy, the application must supply an
upper bound indicating the maximum amount of time that the application is
willing to tolerate for the recency of data from a Replication Node.

 ■ Consistency.Version A consistency policy that ensures that the
environment on a Replication Node is at least as current as denoted by the
specified key-value pair version.

 ■ Consistency.ABSOLUTE Data will be read from the master node of the
shard. Guarantees that the most recent committed transaction on a piece of
data is returned to the caller.

There are important trade-offs to consider when utilizing the ABSOLUTE
consistency policy. While this policy guarantees the most recent data, the cost for
this policy is that all read requests will be routed to the single master node in the
shard. This could significantly affect the throughput and latency of the shard as the
master node could quickly become overwhelmed by servicing all of the write
requests for the shard while servicing the entire set of read requests as well. Thus,
great care should be taken to carefully examine the use case when considering the
use of absolute consistency.

Using the NONE_REQUIRED consistency policy allows for fast reads and low
latency because it reads from the replicas but sacrifices the guarantee of the recentness
of the data. The time-based and version-based consistency policies also have the
potential to achieve better performance than ABSOLUTE consistency by agreeing to
read from the replicas, which do not guarantee the most recent data. The data read may
fall behind the most recent data by some number of versions or some permissible time
lag. Hence, it is clearly evident that there is a trade-off between the quality of the data
and the latency of the reads from Oracle NoSQL Database. As a programmer, the kind
of consistency policy to choose should be driven by the business requirements.
Table 6-4 describes how different business requirements may translate to different
consistency policies.

The configuration set at the configuration object level of a key-value store can
be overridden by the setting at the individual API call. We illustrate this point in the

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  141

following code snippet where the configuration setting at the Store Configuration
object level is NONE_REQUIRED.

KVStoreConfig conf = new KVStoreConfig(storeName,hostname
 + ":" + hostPort);
 conf.setConsistency(Consistency.NONE_REQUIRED);

store = KVStoreFactory.getStore(conf);

At the individual operation level we set the consistency as ABSOLUTE.

majorList.add("Tanya");
majorList.add("Smith");
majorList.add("1006");

minorList.add("Texas");
minorList.add("BMW");
minorList.add("3-series");
minorList.add("sedan");
Key myKey = Key.createKey(majorList,minorList);

ValueVersion vv = store.get(myKey,Consistency.ABSOLUTE,0,null);
System.out.println("The license plate number of the car
with Absolute Consistency override at the statement level is
"+myKey.toString()+ " is "+new String(vv.getValue().getValue()));

Notice how the consistency policy is changed to ABSOLUTE at the statement
level. The output of the code snippet is as follows:

The license plate number of the car with Absolute Consistency override at
the statement level is /Tanya/Smith/1006/-/Texas/BMW/3-series/sedan is
CY1R651

TABLE 6-4.  Consistency Policy Guidelines

Business Requirement Consistency Policy
Very fast web pages or low latency Consistency.NONE_REQUIRED

Commodity low budget hardware for
master node

Consistency.NONE_REQUIRED

Most recent data always needed Consistency.ABSOLUTE

Fine to display data that is not recent
by a few seconds if latency is low

Time-based consistency

Fine to display data that is not recent
by a few updates if latency is low

Version-based consistency

06-ch06.indd 141 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

142   Oracle NoSQL Database

Timeouts in Oracle NoSQL
Applications that are concerned with latency as well as high availability need to
place an upper limit on the amount of time that will be spent waiting for a response
from Oracle NoSQL Database. Many types of issues that occur in distributed systems
can cause a request to reach unacceptable response time limits. These issues may
include the following:

■■ Transient network load  Network utilization may reach limits such that
packet roundtrip latency causes unacceptable delays.

■■ Excess load on spinning disks  Disk access may be unacceptably delayed
due to a high number of requests queued up for a particular spindle.

■■ Transient garbage collection  Even though Oracle NoSQL Database
goes to great lengths to avoid JVM garbage collection, there may be rare
occurrences where the Java garbage collector causes unacceptable
response times.

The timeout and timeout unit parameters in the Oracle NoSQL APIs can be utilized
by applications to place an upper limit on the amount of time that an application
thread will wait for response from an API call. Oracle NoSQL makes a best effort not
to exceed the specified limit. If the “get” operation cannot be performed with the
required consistency in the specified time limit, then a RequestTimeoutException
is thrown.

The methods on the key-value store that contain the timeout parameter can be
broadly be classified as

■■ Get operations

■■ Delete and multi-delete operations

■■ Execute operations

■■ Put operations

■■ Store Iterator operations

There are two ways to specify the timeout parameters. They can be specified at
the individual operation level as we did in the read operation previously, or they
can be specified at the store level in the store configuration. The different kinds of
timeouts that are specified at the store level are:

■■ Default LOB timeout  Default value associated during operations using the
large object APIs.

■■ Default open timeout  Default value associated with opening sockets that
are used to make key-value store requests.

06-ch06.indd 142 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  143

■■ Default read timeout  Default value associated with read at underlying
sockets to make client requests.

■■ Default request timeout  Default timeout associated with key-value store
requests.

A shorter timeout value usually results in fast failure detection. The read timeout
value should be greater than the request timeout. If the end user is fine waiting for
10 seconds for a request to complete, there is no reason to wait at the socket for
only 5 seconds. In this case a socket read timeout will occur before the request
time. The concept of a timeout in the context of time-based consistency is explained
in detail in the next section.

Time-Based Consistency
Time-based consistency defines the upper bound on the lag of a data item between
the timestamp of that data item at the Replication Node and the timestamp of that
item at the master node. In order for time-based consistency policy to be effective,
the clocks on all the nodes in the store must be synchronized using a protocol such
as NTP. Let us explain this concept with a use case.

In this use case, you have three datacenters for a financial services application: one
in New York City, one in Princeton, New Jersey, and one in Hartford, Connecticut. This
is a consumer-oriented application that allows consumers to display their investment
portfolios, perform research, edit properties of the portfolio, and finally, to perform
trades that will update the contents of the portfolio. There are some key aspects to this
application scenario that will drive the rest of this use case:

■■ Mostly read-only  The majority of your consumer users will log into the
application, look at their portfolio and positions, and then log out. Hence
this workload is 95 percent reads and 5 percent writes.

■■ Trade and edit properties  The only operations that affect the contents of
the portfolio are trade executions and portfolio property updates.

In a situation in which a datacenter fails due to a disaster, the other datacenters
will automatically serve read and write requests. During this time, the application is
still able to service consumers, but response times to users would suffer because of a
lack of capacity. Once the failed datacenter is brought back online, the Replication
Nodes running in shards at this datacenter will begin to catch up to their master
nodes running in one of the other datacenters. While these Replication Nodes are
catching up to the master, they are operational and can service read requests, but
these requests will be out of date with the master until the nodes can catch up in the
replication stream. At this time, it might be advantageous for the application to use

06-ch06.indd 143 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

144   Oracle NoSQL Database

time-based consistency to increase service levels for users. The goal here is to lower
response times by servicing as many reads as possible from the Replication Nodes
that are coming online and catching up to the master. This may be acceptable, but
only if the data being read is no more than a few minutes’ lag from the master nodes
because the probability of reading out-of-date updates is very low since the workload
is 95 percent reads and 5 percent writes. An application may also specify a timeout
parameter for time-based consistency operations. This is referred to as the consistency
timeout, and is treated a bit differently than the operation timeout, which is an
optional parameter to all Oracle NoSQL API calls. The key-value store client driver
implements a read operation by choosing a node (usually a non-master) from the
shard, and sending it a request. If the node cannot guarantee the desired consistency
within the consistency timeout, it replies to the request with a failure status. If there is
still time remaining within the operation timeout, the client driver picks another node
and tries the request again (transparent to the application); otherwise a
ConsistencyException is thrown.

The following example code snippet will set a store-wide default consistency
policy to time-based consistency with a consistency timeout of 4 seconds.

Consistency.Time cTimePolicy = new Consistency.Time(2,
 TimeUnit.SECONDS, 4, TimeUnit.SECONDS);
conf.setConsistency(cTimePolicy);

store = KVStoreFactory.getStore(conf);

Version-Based Consistency
A key-value pair gets a version number assigned when it is first written to a key-
value store. On every subsequent update to the key-value pair, the version gets
updated and the version number increases. Remember that the writes are performed
on the master node and the change is propagated to the Replication Nodes. There is
a steady replication stream, which sends changes to the Replication Nodes from the
master node. The same key-value pair present in the master and the replica can have
different values because they may be at different versions and the replica may be
lagging the master by one or more versions. Version-based consistency ensures that
a read performed on a replica is at least as current as some previous write performed
on the master node. This is ensured using the version of the piece of data. If the
client driver cannot obtain the desired version from replica A, then it tries to read it
from replica B, and so on and ultimately tries to read it at the master to accomplish
the task in a predefined operation timeout period. If the client driver cannot read the
desired version of the data within the specified time at a replica, it replies back with
a failure status. Consistency timeout is the time the client driver is willing to wait at
a particular replica before giving up and moving to the next replica. The client driver
uses the consistency timeout as a norm for the time taken to service normal requests
when the replica is healthy. If the replica cannot satisfy the request within that time

06-ch06.indd 144 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  145

frame, then it is safe to assume that something is wrong at that replica and that it
should move on to the next replica. The operation timeout can be thought of as the
maximum amount of time the client driver is willing to wait to obtain the piece of
data across all the replicas. Thus, for the consistency timeout to be meaningful, it
must be smaller than the operation timeout.

Let’s use the portfolio application defined in the previous section as an example
use case. When a user goes to the home page on the website, the portfolio is
presented along with a variety of read-only information such as disclosures, stock
research, company 10-k and options, and so on. The majority of the site is largely
read-only, with rare updates occurring, but the portfolio section can exhibit writes
that are more frequent than the other sections of the site. Thus, we’ve built-in a
requirement that the application must service the portfolio section such that read will
always return the latest committed writes, while the other sections of the site can
read data in any state (because the state rarely, if ever, changes). When a read is
performed, the reads are usually directed to the replicas and the replicas may contain
stale data compared to the master node by a few versions. This is fine for the non-
portfolio data but not for the portfolio information as per our requirements. As of
yesterday, user Tanya Smith owns 500 shares of Facebook stock in her portfolio.
Today, she executes a stock purchase order and now owns 1,000 shares. Immediately
after the purchase, the website has to reflect the updated portfolio with the updated
number of shares for accuracy. You cannot afford to just perform a simple read
because the read activity might be directed to a replica and that can result in stale
data being presented to the end user. This requirement can be implemented by using
version-based consistency. Once the stock purchase is performed, a write happens to
the master node and you obtain the version number of your newly updated key-value
pair. Any subsequent reads performed by an application will use this version in
conjunction with the version-based consistency policy. The following code snippets
illustrate this use case.

ArrayList<String> majorList = new ArrayList<String>();
ArrayList<String> minorList = new ArrayList<String>();
majorList.add("Tanya");
majorList.add("Smith");
majorList.add("Stocks");

minorList.add("FB");
Key myKey = Key.createKey(majorList, minorList);

ValueVersion vv = store.get(myKey, null, 0, null);

System.out.println("The initial version of the KVPair from VV is "+vv
 .getVersion().getVLSN());

System.out.println("Key indicating stocks is "

06-ch06.indd 145 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

146   Oracle NoSQL Database

 + myKey.toString()
 + " and value is "
 + new String(vv.getValue().getValue()));

The following is the console output of the preceding piece of code:

The initial version of the KVPair from VV is 12409
Key indicating stocks is /Tanya/Smith/Stocks/-/FB and value is 500

Now the stock portfolio update, triggered by a stock purchase, is performed in
the following code. The recent version is also obtained along with the update.

String st1 = "1000";
Value myValue1 = Value.createValue(st1.getBytes());
Version currVersion = store.putIfPresent(myKey, myValue1);
System.out.println("Updated Version of the KVPair is "+currVersion
 .getVLSN());

The console output of the preceding piece of code is as follows:

Updated Version of the KVPair is 12409

Now let’s create a version-based consistency policy based on the recent version
obtained. You then perform a read operation based on the version-based consistency
policy we created, and if the request cannot be satisfied, an exception is thrown.

try {
 Consistency.Version verCon = new Consistency.Version(currVersion,2,
 TimeUnit.SECONDS);
 vv = store.get(myKey, verCon, 0, null);
 System.out.println("The number of shares of FB stock read
 with Version Consistency: "
 + myKey.toString()
 + " is "
 + new String(vv.getValue().getValue()));
 System.out.println("The version of the obtained KVPair is
 "+vv.getVersion().getVLSN());
} catch (ConsistencyException ce) {
 ce.printStackTrace();
}
store.close();

Console output is presented here so that you can better understand the example:

The number of shares of FB stock read with Version Consistency: /Tanya/
Smith/Stocks/-/FB is 1000
The version of the obtained KVPair is 12409

06-ch06.indd 146 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  147

Exception Handling for Read Operations
As with write operations, proper exception handling is central to providing
highly available applications. For read operations, this will typically involve retry
operations during timeouts as well as varying the consistency policy, catching the
consistency exception, and then tightening up the policy in a retry operation. You
can think of this as a lever on optimistic reads such that the application may start
with a version-based consistency policy and a consistency timeout setting to
optimistically try a read at any given node in the shard. If this fails with a consistency
exception, the application can back off and retry the operation using absolute
consistency, which will guarantee the latest version of the data at the cost of placing
more load on the master node of the shard. Table 6-5 illustrates the different exceptions
thrown by the read APIs in Oracle NoSQL and presents the likely cause of each along
with a possible resolution.

Deleting Records
There are many ways to delete records from the key-value store. The simplest way
to delete is to delete a record based on a single key. Programmers can perform a
multiDelete where the major key component of a key is provided and all the
keys that match the major key component will be deleted. The following code

TABLE 6-5.  Exception Handling Guidelines for Reads

Exception Likely Cause Possible Resolution

ConsistencyException The desired consistency
constraint could not be satisfied
at replicas in the shard within
the supplied timeout.

Retrying the operation with
absolute consistency is guaranteed
to succeed. The application may
want to retry again with the original
consistency constraint, but this may be
unsuccessful again.

FaultException It’s likely that an internal error
occurred with one or more nodes
in the NoSQL cluster.

A retry should be attempted, but may
still fail. This error could indicate a
possible transient network failure,
hardware failure, or software failure in
Oracle NoSQL Database.

RequestTimeoutException The read could not be satisfied
within the time constraint
supplied to the API.

More than likely, the application has
supplied this constraint as an upper
bound on the time willing to wait for
the read to complete and there’s little
recourse in this scenario.

06-ch06.indd 147 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

148   Oracle NoSQL Database

snippet demonstrates both ways of deleting the records. The major key components
and the minor key component are initialized for a particular Key.

ArrayList<String> majorList = new ArrayList<String>();
ArrayList<String> minorList = new ArrayList<String>();

majorList.add("Tanya");
majorList.add("Smith");
majorList.add("1006");

minorList.add("Texas");
minorList.add("BMW");
minorList.add("3-series");
minorList.add("sedan");

The Key is created based on the major and minor components and the delete
method is invoked on the store for this particular Key.

Key myKey = Key.createKey(majorList,minorList);

Boolean b = store.delete(myKey);

System.out.println("The single record was deleted and the boolean value
 returned is "+b);

The output for the preceding code snippet is as follows:

The single record was deleted and the boolean value returned is true

Utilizing the multiDelete method in Oracle NoSQL, a programmer may delete
an entire set of key/value pairs in one call. This may be extremely useful for certain
programming tasks. Consider the e-mail application previously mentioned. Let’s say
that you would like to implement the “empty deleted folder” control, which will
permanently delete all of a user’s messages from the Deleted folder. The multiDelete
method is a perfect choice for implementing this control as in a single call to the
NoSQL cluster; you can delete all of the items in a user’s Deleted folder. The following
code gives an example of using multiDelete to permanently remove all of the
messages from user 34271’s Deleted folder.

The KeyRange and the Depth parameters are optional so you pass the null value.

myKey = Key.fromString(/users/34271/folders/-/deleted/");

int a = store.multiDelete(myKey, null, null);
store.close();

The preceding code snippet gives the following output. The return value is an
integer indicating the number of records deleted from the key-value store. Note that

06-ch06.indd 148 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  149

there are seven entries at the time of reading the records in the key-value store for the
user, and while we deleted one in the single delete function shown previously, the
multiDelete operation deleted the rest of the six records in the key-value store.

The delete was done and the number of records deleted for us is 6

There are many use cases where you may wish to delete many records in a
single API call but not all of the data under a major key. You may have to filter what
you delete based on user-defined criteria. In the preceding e-mail application, let’s
say a user, Tanya Smith, wants to delete all the e-mail messages in the deleted folder
received in the month of December. To accomplish this, you need to create a major
key pointing to the deleted folder and then apply a key range to it. The data in the
key-value store is stored in the format shown here. The Key is the location of the
e-mail message with the major key defining the user and the minor key defining the
folder, date, time, and the “to” information. The value in the key-value pair is the
e-mail message.

/users/TanyaSmith/folders/-/deleted/20130101/174510/To:Jennifer:
 Hi Jennifer, This is the email number on 20130101. Thanks Tanya
/users/TanyaSmith/folders/-/ deleted /20130102/174510/To:Jennifer:
 Hi Jennifer, This is the email number on 20130102. Thanks Tanya
/users/TanyaSmith/folders/-/ deleted /20130103/174510/To:Jennifer:
 Hi Jennifer,
This is the email number on 20131224. Thanks Tanya
…..
…..
/users/TanyaSmith/folders/-/ deleted /20131225/174510/To:Jennifer:
 Hi Jennifer, This is the email number on 20131225. Thanks Tanya
/users/TanyaSmith/folders/-/ deleted /20131226/174510/To:Jennifer:
 Hi Jennifer, This is the email number on 20131226. Thanks Tanya
/users/TanyaSmith/folders/-/ deleted /20131227/174510/To:Jennifer:
 Hi Jennifer, This is the email number on 20131227. Thanks Tanya

You create the major key component and the minor key component as
shown here:

majorList.add("users");
majorList.add("TanyaSmith");
majorList.add("folders");

minorList.add("deleted");

myKey = Key.createKey(majorList,minorList);

Now the KeyRange is constructed and passed as a parameter to the multiDelete
function. The KeyRange defines a range of String values for the key components
immediately following the last component of a parent key that is used in a multiple-key

06-ch06.indd 149 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

150   Oracle NoSQL Database

operation. In our example, the KeyRange is immediately applied after the key we
constructed, which contains the major key component and a part of the minor key
component. In terms of a tree structure, the range defines the parent key’s
immediate children that are selected by the multiple-key operation.

KeyRange kr = new KeyRange("20131201",true,"20131230",true);

The Boolean parameter after the lower range boundary and the upper range
boundary indicates whether the lower or upper range is included or not.

int a = store.multiDelete(myKey, kr, Depth.PARENT_AND_DESCENDANTS);

System.out.println("The delete was done and the number of records
deleted for us is "+a);

The console output shows that 30 e-mails have been deleted.

The delete was done and the number of records deleted for us is 30

Updating Records Based on a Version
In this section, we illustrate the concept of updates in the key-value store. We also
explain how updates can happen only if the key-value pair has not been updated
from the last known version. Also, you can make sure you only insert a new key if
the key is absent. To illustrate the concept, let’s insert a new record (the license plate
number of another vehicle) for the example person we are dealing with:

ArrayList<String> majorList = new ArrayList<String>();
ArrayList<String> minorList = new ArrayList<String>();

majorList.add("Tanya");
majorList.add("Smith");
majorList.add("1006");
minorList.add("Texas");
minorList.add("YAMAHA");
minorList.add("YZF999");
minorList.add("sportsBike");
Key myKey = Key.createKey(majorList, minorList);

String st = "YAH999";
String newSt = "YAH000";
Value myValue = Value.createValue(st.getBytes());

Use the putIfAbsent method, which inserts the new record only if it is not
already present in the key-value store. When this code snippet is run for the first
time, it inserts the record and returns a version. When the code snippet is run the

06-ch06.indd 150 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 6:  Reading and Writing Data  151

second time, it does not get inserted because the record is already there and the
version returned is NULL. In this case, an update happens.

Version ver = store.putIfAbsent(myKey, myValue);

if (ver == null) {

 ValueVersion vv = store.get(myKey);
 System.out.println("The current version of the Key is "
 +vv.getVersion().getVLSN());
 System.out.println("The key and current value is "+myKey.toString()+" "
 +new String(vv.getValue().getValue()));

 Version newVer = store.putIfVersion(myKey,
 Value.createValue(newSt.getBytes()), vv.getVersion());
 System.out.println("The version of the updated record is "
 + newVer.getVersion());

 vv = store.get(myKey);
 System.out.println("The key and value of the updated record is "
 +myKey.toString() +" "+ new String(vv.getValue().getValue()));

} else {
 System.out.println("The current version of the Key is "+ver.getVersion());
 System.out.println("The key and current value is "+myKey.toString()
 +" "+ new String(myValue.toByteArray()));

}
myKey = Key.createKey(majorList);

 store.close();

The version is printed along with the key and value of the record on different
runs. The console output during the first run is as follows:

The current version of the Key is 742
The key and current value is /Tanya/C/Kadaru/-/Texas/YAMAHA/YZF999/
sportsBike
YAH999

The code is run a second time to update the license plate number of the bike.
Note how the version gets changed, and also how the value gets changed. The
console output during the second run is as follows.

The current version of the Key is 742
The key and current value is /Tanya/C/Kadaru/-/Texas/YAMAHA/YZF999/
sportsBike YAH999
The version of the updated record is 744
The key and value of the updated record is /Tanya/C/Kadaru/-/Texas/
YAMAHA/YZF999/sportsBike YAH000

06-ch06.indd 151 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

152   Oracle NoSQL Database

Summary
Writing successful applications utilizing the Oracle NoSQL Database APIs involves
careful consideration of many factors. Having a solid understanding of the functional
requirements of the application and how to nuance consistency, durability, and
exception handling to achieve these trade-offs can be the difference between an
application that is always on, scales easily to meet demand, and maintains low
response times, and an application that is wrought with data errors, scaling problems,
and high response times. The examples and use cases presented in this chapter give
the reader a good basis for making these important decisions about acceptable
trade-offs.

06-ch06.indd 152 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

CHAPTER
7

Advanced Programming
Concepts: Avro Schemas

and Bindings

07-ch07.indd 153 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

154   Oracle NoSQL Database

In the preceding chapters, you learned about the various methods of retrieving
and storing key-value pairs in Oracle NoSQL Database and discovered that a
rich set of APIs exists to assist with building complex and distributed NoSQL

Database applications. You also learned about the importance of modeling the key
space, and that the modeling choices you make can either help you in addressing
application requirements or hurt you.

Similarly, imposing a structure or a model on the value field of the key-value pair
ensures that the data adheres to a standard format, thereby facilitating its exchange with
other entities and helping optimize its storage footprint. In the examples presented in
the previous chapter, the format of the value field of the key-value pair was a simple
string and did not adhere to any specific structure or a predefined schema. Defining a
schema on the value part ensures that the composition or the structure of data is known
in advance, and can be understood when it is fetched or transmitted to other
applications or software components.

In this chapter, we discuss Avro schema, an integral part of the Apache Avro
framework, and the mechanism behind standardizing data serialization and exchange
among different applications and/or software components.

NOTE
Defining Avro schemas on the key-value pair data in
many ways is similar to defining XSD (XML Schema
Definition) on XML data. The XSD ensures that the
XML document conforms to a structure, as defined
by the XSD.

Avro Schema
Before we talk about Avro schema, it makes sense to talk about Apache Avro, an
Apache open source foundation project. Apache Avro (or just Avro) is a serialization
framework built to facilitate data storage, retrieval, and exchange among multiple
applications. Data serialization in the software industry is the process of encoding
data into an efficient format (such as the binary format) so that it can be stored
optimally on a persistent storage medium such as the hard disk, or exchanged
efficiently between two applications over the network. Similarly, a deserialization is
the reverse of serialization, in which the binary representation of data is taken from
persistent storage and re-created in memory in the format that is efficient for
processing by computer programs.

Another key component of Avro aside from serialization is the standardization of
data exchange by defining a format on data using an Avro schema. The Avro schema
defines a structure on the data, in a fashion similar to a database table structure or
the structure of an XML document. When the data portion of the key-value pair is

07-ch07.indd 154 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  155

stored on disk, the schema is stored with it, and when the data is read, the schema is
applied to ensure that the data conforms to the structure defined in the schema.
When exchanging data between two applications, the schema would be known to
both applications beforehand and the schema conformance on the data can be
tested by the receiving application.

Oracle NoSQL Database supports the use of the Avro schema for the value part
of the key-value pair. With the Avro schema, the value part is serialized in a space-
efficient binary format and is prepended with an internal schema identifier. The
schema identifier is very compact in size (occupying less than 4 bytes) and does not
incur much overhead in storage. The identifier is used to refer to the schema definition,
which is stored in an internal catalog called the Avro catalog. The association of the
values to the Avro schema is made transparent to the application and the schema
identifier is managed by the Avro bindings, which are discussed later in this chapter.

An Avro schema is represented using a JSON (JavaScript Object Notation) object,
a lightweight data interchange format that is easy for both humans and machines to
read, write, and understand. The following example illustrates a simple JSON object
that stores user profiles for a social networking website.

{
 "type" : "record",
 "name" : "userProfiles",
 "namespace" : "com.user.profiles",
 "fields" : [
 {"name" : "FullName","type" : "string"},
 {"name" : "UserName","type" : "string"}
]
}

Let’s closely examine the different parts of the preceding JSON object:

■■ Type  Specifies the “type” of the JSON record. At the top level of an Avro
schema, it is mandatory that the type be of “record”. It is also mandatory
to define the type of an individual field, which can be either a complex (i.e.,
a record) or a primitive data type. We discuss complex and primitive data
types later in the chapter.

■■ Name  The name of the Avro schema being defined. The name can be
alphanumeric and must begin with a character.

■■ Namespace  The namespace is a high-level logical identifier of the Avro
schema, and although it could be any alphanumeric value, it makes sense
to use a name that identifies the application or the department that owns
the Avro schema. The combination of name and the namespace used to
define an Avro schema in the key-value store must be unique.

07-ch07.indd 155 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

156   Oracle NoSQL Database

■■ Fields  These are the individual data elements that make up the JSON
object. You may have multiple fields and each field can either be of a simple
data type such as a string or an integer, or a complex data type such as a
“record,” which can be further made up of simple and complex data types.

Table 7-1 contains the complete list of primitive data types supported by Avro.
In Apache Avro, you can also use complex types. Complex types are defined as

follows:

■■ Record  Records contain some mandatory attributes such as name, type,
and fields. They also contain optional attributes such as namespace,
doc, and aliases. The mandatory attribute field record has multiple
subfields:

■■ Name  The name attribute at field level is mandatory. It begins with
letters and can contain only letters and digits and is case-sensitive.

■■ Type  Describes the type of a field, which is either a record or an
embedded JSON Schema definition. The value of type in top-level
schema definitions must be record.

■■ Fields  Mandatory one or more occurrences describing the record as
a whole.

TABLE 7-1.  List of Primitive Types and Their Descriptions

Primitive Types Description
Null Used when you want to define a field as having no value
Boolean Binary value denoting true or false
Int 32-bit signed integer
Long 64-bit signed integer
Float 32-bit floating point number
Double 64-bit floating point number
Bytes Sequence of 8-bit unsigned bytes
String Unicode character sequence

07-ch07.indd 156 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  157

The following optional attributes are provided:

■■ Namespace  Uniquely identifies a record type. The namespace and
name attributes together must form a unique qualifier.

■■ Doc  Provides documentation about the record. It is stored with the
schema and is accessible using the Avro API but it does not decrease the
serialization efficiency in any way.

■■ Alias  Provides the ability to use an array of alternate names for the
JSON record. You may optionally use aliases to map a writer’s schema
to the reader’s. This facilitates schema evolution as well as processing
disparate datasets.

■■ Default  Default value the field will take if no data is supplied.

■■ Order  An optional attribute. Possible values are ascending,
descending, or ignore. Oracle NoSQL Database always ignores
this property.

■■ Enum  Used to enumerate different types and has similar attributes of
name, namespace, alias, and doc as the record and the field
objects do. However, there is a new attribute in enum called symbols,
which stores all the values of the Enum as an array of names. Symbols is a
mandatory attribute and the rest of the attributes behave in much the same
way that record and field do.

{

 "type" : "enum",

 "name" : "userTypes",

 "namespace" : "com.user.profiles",

 "doc" : "These are the different user profiles",

 "symbols" : ["personUser", "smallBusinessUser", "LargeBusinessUser",

 "nonProfitBusinessUser"]

}

■■ Array  The only attribute that the array type supports is the items
attribute, which is mandatory. The items attribute identifies the type of
the items in the array. In the example that follows, the items are typed
as integers.

{"type": "array", "items": "int"}

07-ch07.indd 157 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

158   Oracle NoSQL Database

■■ Maps  Behaves like an array with data as key-value pairs. The key has to
be a string and the only attribute supported is values. In the example, the
items are typed as strings.

{"type": "map", "values": "string"}

■■ Union  Used to represent a field as something that can be more than one
type. It is represented as a JSON array. A hypothetical use case requires a
field to be a string or a null. Then the field is defined as a union, in which
case it is represented as ["string", "null"]. The following is a complete
example:

{
 "type": "record",
 "namespace": "com.user.profiles.user.address",
 "name": "Address",
 "fields": [
 { "name": "Address1", "type": ["string", "null"] },
 { "name": "Address2", "type": "string", "default" : "" },
 { "name": "City", "type": "string", "default" : "" },
 { "name": "State", "type": "string", "default" : "" }
]
}

	 The field Address1 can be a string or a null value.

■■ Fixed  A fixed type is used to declare a field of fixed size (in bytes) that
is used for storing binary data. The required attributes are name and size.
The following is an example of a fixed object named sampledata with
200,000 bytes of size.

{"type": "fixed", "name": "sampledata", "size": 200000}

Schema Evolution
Over time in any enterprise project, the schema requirements may change for a
record, and you may have to add, delete, or modify the record fields contained in
the schema. The modification of the schema over time because of the new
requirements is termed schema evolution.

Consider a scenario in which data may have been written to the key-value store
using one version of the schema; then the schema is modified to satisfy the new
application requirements, and the data needs to be read again. Which schema do
you think will be used for the read, the old schema or the new schema? Thankfully,
Avro contains rich support for schema evolution via its specification of the writer
schema (the schema used to store the value) and the reader schema (the schema used
to read the value), thereby allowing multiple versions of the schema to coexist in the
Avro catalog. The Avro catalog is a catalog of Avro schemas being used by the store.

07-ch07.indd 158 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  159

Oracle NoSQL Database fully supports schema evolution by storing the unique
ID of the schema at the time the record was written along with the record. Therefore,
if you use the unique ID, it is possible to identify the schema that was used to write
the record (writer schema), and all read operations on that record could be performed
using the writer schema. The following sequence of events occurs when the
application needs to store a value in the key-value store (the serialization process):

1.	 A version of the schema is chosen from the list of available schemas for
the key-value store and it is called the “writer” schema.

2.	 A binding is created based on the schema chosen for the serialization
process.

3.	 The AvroBinding.toValue() method is called to serialize the data.

4.	 The binary value gets written to the store along with the schema identifier.

The following sequence of events occurs when the application needs to read a
value from the key-value store (the deserialization process):

1.	 The binary value is read from the store.

2.	 A client application chooses a schema from the list of available schemas
and this schema is called the “reader” schema.

3.	 A binding is created based on the schema chosen to deserialize.

4.	 AvroBinding.toObject() is called to deserialize the data.

To further explain the concept of schema evolution, let’s take a look at the previous
JSON schema that was designed to store user profile information, and evolve it by
adding a gender type, as shown in bold:

{
 "type" : "record",
 "name" : "facebookProfiles2",
 "namespace" : "com.facebook.profiles",
 "fields" : [{"name" : "FullName","type" : "string"},
 {"name" : "UserName","type" : "string"},
 {"name" : "age","type" :"int","default":18},
 {"name" : "gender","type" :"string","default":"unspecified"}
]
}

07-ch07.indd 159 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

160   Oracle NoSQL Database

You should be familiar with the following two scenarios when a new field
is added:

■■ Client uses old schema to write and new schema to read. Because the field
was written with the old schema, it could not have stored the new element
(i.e., gender), so you use the default value of the new field
(i.e., unspecified), and the read succeeds.

■■ Client uses new schema to write and old schema to read. Because the new
schema is used to write, the new field is also written to the key-value store;
however, because the reader schema does not need this field, this field value
is simply ignored when reading. It is important to note that when inserting
values with the new schema, all field values must be supplied even though
the new field has a default value. Default values are only used for readers.

Now, let’s see what happens when you delete existing fields from the Avro schema.
Consider that you have modified the JSON schema (again) from the previous example
and removed the age field:

{
 "type" : "record",
 "name" : "facebookProfiles2",
 "namespace" : "com.facebook.profiles",
 "fields" : [{"name" : "FullName","type" : "string"},
 "name" : "UserName","type" : "string"},
 "name" : "gender","type" :"string","default":"unspecified"}
]
}

You should be familiar with the following two scenarios when a field is deleted.

■■ Client uses old schema to write and new schema to read. Because the
deleted field is not present in the read request, the request is satisfied by
dropping the deleted field and the data is returned.

■■ Client uses new schema to write and old schema to read. In this case, the
deleted field is not written to the key-value store, but the reader schema
needs this field when reading so the default value (as defined by the old
schema) is added and the read request is satisfied.

07-ch07.indd 160 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  161

General Rules for Schema Evolution
There are a few general rules to follow when modifying schemas. From the previous
example, you have seen that when adding a new mandatory field, it is best to provide
a default value so that for applications reading an older version of data when the field
did not exist alongside the new version of the schema when the field exists, the default
value could be returned and the request still satisfied without an error.

There are a few modifications that you can safely perform and a few that will
result in an error or rejection of the new schema. Removing, adding, or changing
non-mandatory attributes of a field will typically not result in an error. The following
are some examples of changes to non-mandatory attributes:

■■ A field’s doc attribute is changed, added, or removed.

■■ A field’s order attribute is changed, added, or removed.

■■ Field or type aliases are added or removed.

The following are some examples of modifications to the schemas that are
permitted by the system:

■■ A field with a default value is added.

■■ A field that was previously defined with a default value is removed.

■■ A field’s default value is added or changed.

■■ A non-union type may be changed to a union that contains only the original
type, or vice versa.

The following are other best practices to follow so that you can avoid errors
while adding the schema to the key-value store:

■■ Do not rename an existing field. Use an alias instead.

■■ While adding a new field, always provide a default value.

■■ Do not change a field’s data type. If it has to be done, add a new field with
the new data type.

07-ch07.indd 161 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

162   Oracle NoSQL Database

Managing Avro Schemas
The Avro schemas may need to be managed on an ongoing basis. You can create or
add a new schema, or modify, disable, or delete existing schemas. The following
sections describe the basic commands for managing Avro schemas.

Create/Add a Schema
Now that you understand the different parts of an Avro schema and the ways of
defining it, it’s important to learn how to create it and use it in Oracle NoSQL
Database to validate the “value” part of the key-value pair. The steps needed to
accomplish that are:

1.	 Create the Avro schema (usually done in a text editor such as Notepad) and
store it as a text file.

2.	 Add the Avro schema to the NoSQL data store.

3.	 Create a file called userProfile-simple.avsc with the simple schema
that follows. We have intentionally inserted errors into the schema so we can
explain the concept of debugging and adding the schemas.

{

 "type" : "record",

 "name" : "userProfiles",

 "namespace" : "com.user.profiles",

 "fields" : [{"name" : "FullName","type" : "string"},

 {"name" : "UserName","type" : "string"},

 {"name" : "age","type" :"int","default":"hello"}

}

4.	 Make sure the key-value store (or KVLite) is running before executing the
runadmin command. The runadmin command is used to start the CLI
prompt in which you can run administration commands. Start the CLI by
executing the following command:

$>java -jar lib/kvstore.jar runadmin -port 5000 -host kc-PC
kv->

5.	 Add the schema by using the ddl add-schema command, as shown here:

kv-> ddl add-schema -file userProfile-simple.avsc

07-ch07.indd 162 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  163

		 The preceding command results in the following error because there is a
missing square bracket (]).

org.codehaus.jackson.JsonParseException: Unexpected close marker '}': expected ']'

(for ARRAY starting at [Source: java.io.StringReader@4a710a3e; line: 4, column: 37])

 at [Source: java.io.StringReader@4a710a3e; line: 8, column: 2]

		 You fix the error by adding the square bracket and then try to add the
schema again.

kv-> ddl add-schema -file userProfile-simple.avsc

		 The schema was not added because one error and two warnings
were detected.

		 To override warnings, specify -force. Errors cannot be overridden
with -force.

		 This time you should see an error and two warnings. The error occurs because
of a mismatch between the field type and the type of the default value assigned
to it. The warnings result because of the missing default values on a few fields.
Once the errors are fixed, only the warnings remain:

kv-> ddl add-schema -file userProfile-simple.avsc

		 The schema was not added because two warnings were detected.
To override the warnings, specify -force.

		 This may create some issues if your schema needs to evolve. If you have a
strong business reason not to provide a default, then continue to add the
schema by suppressing the warnings. To suppress these warnings and still
add the schema, you need to use the -force option.

kv-> ddl add-schema -file userProfile-simple.avsc -force

6.	 Make sure your schema was successfully added by listing the available
schemas. Even though the command prints all the schemas available in
your key-value store, make sure that your schema was successfully added
by listing the available schemas via the show schemas command.

kv-> show schemas

Change/Evolve a Schema
The process of modifying the schema is quite simple. You start by updating the schema
definition file, and then run the CLI command to add the updated schema as a new

07-ch07.indd 163 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

164   Oracle NoSQL Database

schema to the Avro catalog. The CLI command ddl add-schema is used with the
–evolve flag.

The following example adds the gender type to the previous userProfiles schema.
Start by opening the schema source file you used earlier for adding the first version
of the schema, and then add a new field to make it look like the following:

{
 "type" : "record",
 "name" : "userProfiles",
 "namespace" : "com.user.profiles",
 "fields" : [{"name" : "FullName","type" : "string"},
 {"name" : "UserName","type" : "string"},
 {"name" : "age","type" :"int","default":18},
 {"name" : "gender","type" :"string","default":"unspecified"}
]
}

Now let’s add the new schema to the key-value store by using the following
command. Notice the option -evolve, which indicates that the same schema has
evolved that was already present in the key-value store.

kv-> ddl add-schema -file userProfile-simple.avsc -evolve -force

Added schema: com.user.profiles.userProfiles.11
2 warnings were ignored.

To ensure that you have added a new version of the schema, run the show
schemas command as follows:

kv-> show schemas

The preceding command should show that there are two versions of the same
schema and that it has evolved.

Enable/Disable a Schema
There may be instances where a particular schema needs to be disabled because of
an error in its definition of one or more fields. You can disable a schema as follows:

kv-> ddl disable-schema -name com.user.profiles.userProfiles.11

Status updated to DISABLED

07-ch07.indd 164 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  165

Show the List of All Schemas
After disabling the preceding schema because of the incorrect name, the name has
been corrected and a new schema has been added. To show the list of all the available
schemas, execute the following command:

kv-> show schemas

To list all the schemas, including the schemas that have been disabled in the
previous steps, execute the following command:

kv-> show schemas -disabled

Avro Bindings
In the context of programming, a binding is defined as the technique of connecting
two elements together. Avro bindings bind the schemas (that contain the structure of
the data) to the data (the value part of the key-value pair). As you have already learned,
the value part is stored in a space-efficient binary format in the key-value store. The
Avro bindings are used during the storage (serialization) of Java objects into the
space-efficient binary format and during the retrieval (deserialization) of the binary
data into the computer’s memory as Java objects. Avro bindings are stored in the
Avro catalog in the key-value store along with the Avro schemas.

There are different types of Avro bindings and each type provides a different
mechanism of handling the Avro data format. The data format itself does not change no
matter what type of bindings are used. Also, whether or not you use Avro bindings for
reading the key-value pairs, the APIs for performing CRUD (Create Update and Delete)
operations do not change.

Oracle NoSQL Database provides four different kinds of Avro bindings:

■■ Specific bindings  A simple solution providing type safety and specifically
designed for an Avro schema when the schemas are known ahead of time.

■■ Generic bindings  A binding solution without type safety and designed for
situations when the schemas are not known ahead of time.

■■ JSON bindings  A binding solution suitable when interoperability with other
applications in the web world involving JSON objects is desired.

■■ Raw bindings  An advanced binding solution that uses low-level Avro APIs
for serializing and deserializing the data. RawAvroBinding specifies the
Avro binary data as a byte array. It provides the least amount of safety and is
the most difficult to use.

07-ch07.indd 165 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

166   Oracle NoSQL Database

Application architects choose to use a particular type of binding based on the
characteristics of the real-world application. Table 7-2 compares the different aspects
of the commonly used bindings and provides a reference to choose the right bindings
based on the business use case.

The following methods may be used for retrieving specific, generic, and JSON
bindings from the Avro catalog.

■■ Single-schema binding  A single-schema binding provides type checking,
which is considered a safe programming practice. In the case of specific
binding, a single-schema binding provides compile-time type checking, and
in the case of generic and JSON bindings, it provides runtime type checking.

■■ Multiple-schema binding  A multi-schema binding is much more useful
when reading key-value pairs of different types as it does not enforce type
checking. All the different schemas that you may need to deal with in your
application are added into the HashMap, which is a parameter that gets
passed when obtaining the bindings from the catalog.

Records are read from the key-value store by first choosing the type of binding
and then obtaining the binding using the single-schema or multi-schema binding
methods. The type of the record that gets returned needs to be identified so that it
can be displayed to the end user. If the key is built according to the application-
specific knowledge and you know the type of value that it is going to hold, then you
can use multi-schema bindings and the resulting records you obtain can be typecast
based on knowledge of the application. If the keys are not built according to the
application-specific knowledge, then it is safe to use a single-schema binding.

Attribute Generic Binding JSON Binding Specific Binding

Value handled as Generic record JSON record Specific record

Type safety handled No No Yes

Need to know schemas at
compile time

No No Yes

Need to know schemas at
run time

Yes Yes No

Can be described in one
phrase as

Simple and easy
to use

Popular in the
web world

Type safety

TABLE 7-2.  Key Attributes of Different Bindings

07-ch07.indd 166 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  167

The type of the record returned from a query operation can be identified using
the schema name or the class name of the returned object. The schema name can
be used in the context of both generic and specific bindings, but the class name can
only be used in the context of specific bindings because in the case of generic bindings
the class name returned is always “generic record” irrespective of the schema name.
If it is a specific record, you can typecast to that class and obtain the parameters using
the specific getter and setter methods. If it is a generic record, then you get the
individual values of properties based on strings and typecast them to the corresponding
type to get the values.

Specific Bindings
Specific bindings can be defined as a binding solution designed individually for a
specific schema in the key-value store. It is the easiest and safest binding to use
among the different binding choices available. Specific bindings are used when the
schemas are known ahead of time during application development or during compile
time. The specific bindings make use of POJO (plain old Java objects) classes generated
using Avro compiler tools that can be invoked from the Apache ANT build system.
One or more POJO files are generated for every schema that you want to use the
specific bindings for. The generated classes will have setter and getter methods for
individual fields in the schema.

Programmatically, the specific bindings treat the value in the key-value pair as a
specific record. Avro is relatively easy to use once the classes have been generated
because you do not need to typecast the results, and you use the getter methods to
get a particular value and setter methods to set a particular value for a field. The
methods describe the fields (first name, last name, and so on) that you are
setting and also specify the types (for example int, string, and so on) of the
values. This provides type safety because you can only set a particular type of
value into the method. The methods listed in Table 7-3 are the different ways of
obtaining the specific bindings.

TABLE 7-3.  Methods for Obtaining the Specific Bindings

Binding Type Method on Avro Catalog

Single-schema bindings AvroCatalog.getSpecificBinding()

Multiple-schema binding AvroCatalog.getSpecificMultiBinding()

07-ch07.indd 167 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

168   Oracle NoSQL Database

Generate Specific Java Files
You can generate the specific Java classes for the Avro schemas in different ways:

Directly Invoke the Avro-Tools Jar File  After manually downloading the avro-tools
jar file, it can be directly invoked to generate code as follows:

java -jar /path/to/avro-tools-1.7.5.jar compile schema <schema file> <destination>

To generate the specific classes for your simple schema, run the following
command:

java -jar C:/NOSQL/kv-2.0.26/bookExamples/avro/generate-specific-libs/
  avro-tools-1.6.3.jar compile schema ../userApps.avsc

Once the command is run, the schema is compiled and the required classes are
generated in the destination folder using a directory structure that is based on the
namespace of the schema.

Use a Build Tool such as ANT  You need to install a build tool such as ANT (version
1.6.0 or later) and create an ANT script file that will download the required jar files.
The script then calls the SchemaTask tool, which is a Java class available through the
avro-tools jar file; its namespace is org.apache.avro.compiler.specific
.SchemaTask.

 <target name="generate" depends="retrieve-libs">
 <taskdef name="schema"
 classname="org.apache.avro.compiler.specific.SchemaTask">
 <classpath refid="lib-classpath" />
 </taskdef>
 <schema destdir="${output.dir}" stringType="${stringType}">
 <fileset dir="${input.dir}">
 <include name="*.avsc" />
 </fileset>
 </schema>
 </target>

The ANT script and the schema AVSC files are placed in the same directory, and the
ANT script is invoked. Once you invoke the ANT tool, it uses the ANT script and
picks up all the Avro script files in the local directory. It downloads many open source
jar files, which are required for the specific binding creation. The jar files that are
downloaded include the following:

■■ ANT

■■ Avro

■■ Avro compiler

07-ch07.indd 168 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  169

■■ Avro tools

■■ Commons

■■ Jackson

■■ Snappy

■■ Velocity

■■ Sl4j

One Java class file per Avro schema is created if it defines a simple record. Multiple
Java files are created for an Avro schema file if it defines embedded records. The tool
creates the Java files in the same directory as the AVSC file when no namespace is
used. Java files are created in the innermost directory of the specified namespace in
the AVSC file if a namespace is used for the schemas.

NOTE
Use a build tool such as Maven that will download
the required jars and invoke the avro-tools jar
file. Note that if you are using the Avro Maven
plugin, there is no need to manually invoke the
schema compiler; the plugin automatically performs
code generation on any .avsc files present in the
configured source directory.

Specific Bindings Example
To illustrate the concept of specific bindings let’s use the example of storing user
profiles and usage data for trend analysis. You have already created the schema and
also added it to the key-value store. You then generated the Java classes using the
ANT-based Java class generation technique. Because this particular schema is based
on a record with two more embedded records, a total of three Java POJOs will be
created. The following high-level steps are performed in the sample program.

■■ Insert a simple key-value pair into the key-value store.

■■ The value is based on the Avro schema with the namespace

com.user.profiles.userProfilesDetailed.

■■ Specific Bindings are used to insert and extract data from the key-value store

07-ch07.indd 169 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

170   Oracle NoSQL Database

In the following code, the handle to the Avro catalog is obtained and a specific
Avro binding based on our POJO is declared. You need to ensure that the Java class
is imported into the eclipse project for it to be available to use.

final AvroCatalog catalog = store.getAvroCatalog();
final SpecificAvroBinding<userProfilesDetailed> sbinding;
sbinding = catalog.getSpecificBinding(com.user.profiles.userProfilesDetailed.class);

In the following code, an object of type userProfilesDetailed is created
and the different variables are set using the setter methods you have in the generated
Avro classes for the different properties.

userProfilesDetailed profileToInsert = new userProfilesDetailed();
profileInformation pi = new profileInformation();
usageInformationLastMonth ui = new usageInformationLastMonth();

userProfilesDetailed profileRead = new userProfilesDetailed();

pi.setAge(25);
pi.setEducation("Graduate");
pi.setPhone("469-525-6725");
pi.setProfession("Lawyer");

ui.setAvgNumberOfLikes(45);
ui.setAvgNumberOfLoginsPerDay(5);
ui.setAvgNumberOfMinutesSpentPerDay(130);
ui.setAvgNumberOfShares(3);
ui.setNumberOfPostingsOnWall(2);

profileToInsert.setUserName("tsmith");
profileToInsert.setFullName("TanyaSmith");
profileToInsert.setProfileDetails(pi);
profileToInsert.setUsageDetails(ui);

The user profile object created is serialized using Binding.toValue() so that
it can be written to the key-value store. The serialized value is passed on as the
value parameter for the store put() method. Let’s assume here that a store handle
and a key are already created:

Key myKey = Key.createKey("tsmith");
store.put(myKey, sbinding.toValue(profileToInsert));

07-ch07.indd 170 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  171

Once inserted, you retrieve the key-value pair and read the content using the
specific bindings you have created. You do not have to typecast values as you do in
the case of generic bindings because you have specific getter functions for each
property in the Avro schema.

vv = store.get(myKey);
if (vv != null) {
profileRead = sbinding.toObject(vv.getValue());

The value that is obtained from the get method is deserialized using the
Binding.toObject() method. This returns a specific record of type
userProfilesDetailed object. You do not have to typecast the values as you
had to in generic bindings because you have specific getter functions for each of the
properties of the Avro schema object.

System.out.println("The content read from the key-value store using specific bindings
 is the following:");
System.out.println("Facebook UserName:"+profileRead.getUserName());
System.out.println("Facebook user Full Name:"+profileRead.getFullName());
System.out.println("Facebook Avg Number of Likes in Last Month:"+profileRead
  .getUsageDetails().getAvgNumberOfLikes());
System.out.println("Facebook User Education Level:"+profileRead.getProfileDetails()
 .getEducation());

The following is the console output of the program:

The content read from the key-value store using specific bindings is the following:
Facebook UserName:tsmith
Facebook user Full Name:TanyaSmith
Facebook Avg Number of Likes in Last Month:45
Facebook User Education Level:Graduate

This concludes the sample program to help you understand the use of specific
bindings for a single schema.

How to Manage Multiple Schemas in Case of Specific Bindings
In the previous section, you learned that specific bindings can be obtained from the
key-value store catalog either for a single schema or for multiple schemas. Also, in
the previous example, you obtained bindings for one class or schema. The following
example demonstrates how to obtain specific bindings for multiple schemas. When
an ANT script is used for generating classes, they are generated for all the schemas
available in the directory from where the ANT script is invoked. In our example, the
Java classes (POJOs) were generated for userProfilesDetailed schema and
also the userApps schema. userApps schema stores the details for the different
applications available in the user app store.

07-ch07.indd 171 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

172   Oracle NoSQL Database

The schema definition is as follows:

{
"type" : "record",
"name" : "userApps",
"namespace" : "com.user.profiles",
"fields" : [{"name" : "AppName",
"type" : "string"},
{"name" : "AppDesc",
"type" : "string"},
{"name" : "AppDetails",
"type" : {
"type" :"record",
"name" : "ApplicationInformation",
"fields" : [
{"name" : "Genre",
"type" : "string",
"default":"NONE"},
{"name" : "NumberOfUsers",
"type" : "int",
"default":0},
{"name" : "Publisher",
"type" : "string",
"default":"NONE"},
{"name" : "AvailableOn",
"type" : "string",
"default":"iphone,ipad,facebook.com,android"}
]
}
}
]
}
final AvroCatalog catalog = store.getAvroCatalog();
final SpecificAvroBinding<SpecificRecord> binding;
SpecificRecord specificRec;
binding = catalog.getSpecificMultiBinding();

The Avro catalog is obtained from the store and the specific multiple-schema
bindings are obtained from the catalog. The keys are created and values inserted
for the userProfilesDetailed and the userApps objects in much the same
way as the previous example of single-schema specific binding.

Key myUserKey = Key.createKey("myUserProfile");
Key myAppKey = Key.createKey("myAppProfile");

store.put(myUserKey, binding.toValue(profileToInsert));
store.put(myAppKey, binding.toValue(appToInsert));

07-ch07.indd 172 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  173

The real key difference, in handling the single-schema binding and multiple-
schema binding, lies in reading the values from the key-value store. The different
steps followed are

■■ Use the key to obtain a ValueVersion.

■■ Use the toObject method on the binding to assign it to an instance of
a specific record.

■■ Compare the schema full name to the intended class name and typecast
it accordingly.

vv = store.get(myUserKey);

if (vv != null) {

 specificRec = binding.toObject(vv.getValue());

if(specificRec.getSchema().getFullName()

 .equals("com.user.profiles.userProfilesDetailed"))

 {

 profileRead = (userProfilesDetailed)specificRec;

 }

System.out.println("The content read from the KVStore using specific

 bindings for the user profile details schema is the following:");

System.out.println("username:"+profileRead.getUserName());

System.out.println("user Full Name:"+profileRead.getFullName());

System.out.println("Profession:"+profileRead.getProfileDetails()

 .getProfession());

System.out.println("Number Of Likes:"+profileRead.getUsageDetails()

 .getAvgNumberOfLikes());

The piece of code that follows shows that the same binding can be used for the
different schema, and after checking the type of the specific record and typecasting
it, you can obtain its values and print it out.

vv = store.get(myAppKey);
if (vv != null) {

 specificRec = binding.toObject(vv.getValue());
 System.out.println("The class of the specific record is "+specificRec
 .getClass().toString());
 if(specificRec.getSchema().getFullName()
 .equals("com.user.profiles.facebookApps"))
 {
 appReadFromStore = (facebookApps)specificRec;
 }
System.out.println("The content read from the KVStore using specific bindings for
 the user App Schema is the following:");
System.out.println("user App Name:"+appReadFromStore.getAppName());
System.out.println("user App Genre
 Name:"+appReadFromStore.getAppDetails().getGenre());

07-ch07.indd 173 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

174   Oracle NoSQL Database

The output of the console is as follows:

The content read from the key-value store using specific bindings for
the user profile details schema is as follows:

username:wsmith
user Full Name:WillSmith
Profession:technical
Number Of Likes:14

The class of the specific record is class com.user.profiles.userApps.
The content read from the key-value store using specific bindings for
the user App Schema is as follows:

user App Name:Farmville
user App Genre Name:Games

This concludes the sample program, and you should now have a better
understanding of specific bindings that are based on multiple schemas.

Generic Bindings
Generic bindings are a solution for multiple schemas and provide a wide range of
support for Avro data types. Generic bindings treat the value in a key-value pair as a
“generic record” and are useful when the schemas are not known ahead of time.
Values are inserted into the fields by specifying them using the string name of the
field and by using generic get and set methods. There are no specific methods, as
there are with specific bindings, and type safety needs to be carefully handled for
generic bindings. The object fields and methods are not known during the development
of the Java client programs or during compile time.

To explain the concept of generic bindings better, let’s consider the hypothetical
use case of building a web application for exploring the different apps in the app
store of the social networking website. Assume that the descriptions of every app are
unique and are to be stored in the key-value store. The number of apps, the variation
in the apps, and also the speed at which the apps get created are all high. The velocity,
variety, and volume with which the new apps get added to the store are high and
the schemas of the apps are constantly evolving with customer needs. So you cannot
use specific bindings in this case because the classes have to be generated every time
there is a change in the schema of the particular app. Also, many new apps may be
created after the completion of the development of this application explorer. So the
best possible solution for this situation is to use generic bindings.

07-ch07.indd 174 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  175

As you look at the same example of the app explorer, assume that two new games,
Autoville and Scrubsville, with different schemas, have been added to the user app
store. We’ll use these two games to explain the following aspects of generic bindings:

■■ Single-schema generic bindings (using Autoville)

■■ Multiple-schema generic bindings (using Autoville and Scrubsville)

Table 7-4 details the important methods that we will look into as part of the
sample programs.

Single-Schema Binding Example
We explore single-schema bindings with the Autoville app schema. In the sample
program, we insert a key-value pair into the key-value store based on the Autoville
app schema using generic bindings and then read it back. The simple schema looks
like this:

{
"type" : "record",
"name" : "autoville",
"namespace" : "com.user.appProfiles.games",
"fields" : [{"name" : "ApplicationDescription","type" : "string"},
{"name" : "MaxNumberOfplayers","type" : "int","default":5},
{"name" : "NumberOfFreeLevels","type" : "int","default":0},
{"name" : "AgeRestriction","type" : "string","default":"NONE"}
]
}

Once we create the schema, we add the schema to our key-value store and
verify that it is added by using the show schemas command:

kv-> ddl add-schema -file facebookApps-Autoville.avsc -force
Added schema: com.facebook.appProfiles.games.autoville.15
1 warning was ignored.

TABLE 7-4.  Methods for Obtaining the Generic Bindings

Binding Type Method on Avro Catalog

Single-schema bindings AvroCatalog.getGenericBinding()

Multiple-schema binding AvroCatalog.getGenericMultiBinding()

07-ch07.indd 175 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

176   Oracle NoSQL Database

The schema parser reads the Avro schema file in the local machine:

final Schema.Parser parser = new Schema.Parser();

try{
 parser.parse(new File("C:/NOSQL/kv-2.0.26/bookExamples/avro/userApps-Autoville
 .avsc"));
 }catch(IOException e){e.printStackTrace();}

final Schema appSchema =
 parser.getTypes().get("com.user.appProfiles.games.autoville");

The Avro catalog is obtained from the key-value store, after which the generic
bindings for the schema are obtained. We create a generic record based on the
schema so that we can initialize it and then insert the generic record into the value
portion of the key-value pair.

final AvroCatalog catalog = store.getAvroCatalog();
final GenericAvroBinding binding = catalog.getGenericBinding(appSchema);

final GenericRecord appInfo = new GenericData.Record(appSchema);

appInfo.put("ApplicationDescription", "This is a game with
activities surrounding an auto body shop");
appInfo.put("MaxNumberOfplayers",10);
appInfo.put("NumberOfFreeLevels",3);
appInfo.put("AgeRestriction","Yes");

Now to write this generic record into the key-value store as the value portion of
a key-value pair, we need to serialize this information using the toValue() function
of the generic binding handle we obtained. A simple key is created so that we can
try to insert the key-value pair.

Key myKey = Key.createKey("autoville");
store.put(myKey, binding.toValue(appInfo));

We use the same key to obtain the value from the key-value store as a
valueversion object. We deserialize the value into a generic record object.
We typecast the values we obtain because we are using the generic bindings. The
string input gets stored as UTF8 so we cast them back to a UTF8 object. We print
the values that we obtained to the console to verify the contents. Finally, as a best
practice, we close the key-value store.

final GenericRecord member;
Utf8 appDesc;
int numberOfPlayers;
ValueVersion vv=null;

07-ch07.indd 176 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  177

vv = store.get(myKey);
if (vv != null) {

member = binding.toObject(vv.getValue());

// we are type casting the values we obtain since we are using the generic bindings
// which we do not know the type

appDesc = (Utf8) member.get("ApplicationDescription");
numberOfPlayers = (int) member.get("MaxNumberOfplayers");

System.out.println("Autoville Schema desc: "+appDesc);
System.out.println("Maximum number of players allowed: "+numberOfPlayers);

}

store.close();

The console output of the previous program is as follows:

Autoville Schema desc: This is a game with activities surrounding an auto body shop
Maximum number of players allowed: 10

This example has demonstrated how to use the single-schema generic
binding method.

Multiple-Schema Binding Example
Now let’s look at the use of multiple-schema binding by adding the Scrubsville app
schema. We use a hash map to organize our schemas and we also create the bindings
using the getGenericMultiBinding method. The new schema is as follows:

{
"type" : "record",
"name" : "scrubsville",
"namespace" : "com.user.appProfiles.games",
"fields" : [{"name" : "Description","type" : "string"},
{"name" : "numberOfPlayers","type" : "int","default":10},
{"name" : "trialPeriodInMonths","type" : "int","default":0},
{"name" : "minAgeRequirement","type" : "string","default":"NONE"}
]
}

Now the schema is added to the key-value store:

kv-> ddl add-schema -file facebookApps-Scrubsville.avsc -force

Added schema: com.facebook.appProfiles.games.scrubsville.14
1 warning was ignored.

07-ch07.indd 177 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

178   Oracle NoSQL Database

Now we are going to access information of two schemas: Autoville and
Scrubsville. We present the key parts of our sample code to explain the concept of
genericMultiBindings. A hash map is created to store all the schemas
available in the store that need to be read from and written into.

HashMap<String, Schema> multiSchemas = new HashMap<String, Schema>();
final Schema.Parser parser = new Schema.Parser();

try {
parser.parse(new File("C:/NOSQL/kv-2.0.26/bookExamples/avro/
userApps-Autoville.avsc"));
} catch (IOException e) {
e.printStackTrace();
}

final Schema autovilleSchema = parser.getTypes()
.get("com.user.appProfiles.games.autoville");
multiSchemas.put(autovilleSchema.getFullName(), autovilleSchema);

try {
parser.parse(new File("C:/NOSQL/kv-2.0.26/bookExamples/avro/
userApps-Scrubsville.avsc"));
} catch (IOException e) {
e.printStackTrace();
}

final Schema scrubsvilleSchema = parser.getTypes()
.get("com.user.appProfiles.games.scrubsville");
multiSchemas.put(scrubsvilleSchema.getFullName(), scrubsvilleSchema);

The parser obtains the schemas and puts them in the hash map we created
previously. The Avro catalog handle is obtained from the key-value store and the
bindings are obtained by the genericMultiBindings method, which enables
us to handle the multiple schemas using the same bindings:

final AvroCatalog catalog = store.getAvroCatalog();
final GenericAvroBinding binding = catalog.getGenericMultiBinding(multiSchemas);

We create a generic records for the Autoville app data and the Scrubsville app
data and insert them into the key-value store. To verify, we obtain the value from the

07-ch07.indd 178 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  179

key-value store using the same key and print out the contents. We use the toValue
and the toObject methods of the bindings to serialize and deserialize.

final GenericRecord avilleData = new GenericData.Record(autovilleSchema);

avilleData.put("ApplicationDescription", "This is a user game with activities
 surrounding an auto body shop");
avilleData.put("MaxNumberOfplayers",10);
avilleData.put("NumberOfFreeLevels",3);
avilleData.put("AgeRestriction","Yes");
 	
Key myKey = Key.createKey("autovilleKey");

store.put(myKey, binding.toValue(avilleData));

Now that we have inserted the Autoville app data, let’s insert the key-value pair
for the second app:

final GenericRecord svilleData = new GenericData.Record(scrubsvilleSchema);

svilleData.put("Description", "This is a user game with activities surrounding an auto
 body shop");
svilleData.put("numberOfPlayers",10);
svilleData.put("trialPeriodInMonths",3);
svilleData.put("minAgeRequirement","Yes");
 	
Key myKey1 = Key.createKey("scrubsvilleKey");

store.put(myKey1, binding.toValue(svilleData));

We have already inserted data using generic bindings, but the most important
part of using the genericMultiBindings is reading the data from the key-value
store. The data is read in the following way:

final GenericRecord avilleReadFromStore;
ValueVersion vv = store.get(myKey);
if (vv != null) {
 avilleReadFromStore = binding.toObject(vv.getValue());
 System.out.println("class:"+avilleReadFromStore.getClass().toString());
 System.out.println("schema:"+avilleReadFromStore.getSchema().getFullName());

The following is the console output for the two print statements:

class:class org.apache.avro.generic.GenericData$Record
schema:com.facebook.appProfiles.games.autoville

The only parameter that needs to be passed to the get method to read from
the key-value store is the key. When you read from the key-value store based on
genericMultiBindings you get a generic record back. The generic record can be of

07-ch07.indd 179 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

180   Oracle NoSQL Database

any specific type corresponding to the different schemas present in the schema map
based on which we obtained the bindings from the catalog. The following are the
different ways of identifying the type of the generic record:

■■ The key structure passed to read from the key-value store should be based
on some application-specific knowledge so that we can identify the type
from that.

■■ The schema name from the generic record object helps us identify the type
of the generic record.

The class name is not helpful because it always gives the same result (as the
preceding console output), and it does not help us identify what type the generic
record holds from among the multiple schemas. Once we have identified the schema,
then we can read and typecast based on the information from the schema.

Print code:

System.out.println("Autoville Description:
 +(Utf8)avilleReadFromStore.get("ApplicationDescription"));
System.out.println("Autoville Maximum Players Allowed:
 +avilleReadFromStore.get("MaxNumberOfplayers"));
System.out.println("Autoville Free Levels:
 +avilleReadFromStore.get("NumberOfFreeLevels"));
System.out.println("Autoville Is there Age Restriction:
 +(Utf8)avilleReadFromStore.get("AgeRestriction"));
}

Console output:

Autoville Description: This is a facebook game with activities
surrounding an auto body shop
Autoville Maximum Players Allowed: 10
Autoville Free Levels: 3
Autoville Is there Age Restriction: Yes

The second schema of Scrubsville can also be read in a similar way.
This concludes the example to explain the multiple-schema generic bindings.

How to Manage Multiple Schemas
when You Do Not Know How Many
In the previous example, we were able to handle two different schemas because we
knew that two different schemas existed. However, in the fast-paced business data
environment of today, we may not know how many schemas exist ahead of time or
when new schemas get added. The previous strategy of using a hash map to store all
the schemas may require a lot of rework whenever a new schema is added. So as a

07-ch07.indd 180 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  181

remedy to the problem, we have the getCurrentSchemas() method available on
the AvroCatalog object which will give us all the current schemas available.

final AvroCatalog catalog = store.getAvroCatalog();
final GenericAvroBinding binding = catalog.
getGenericMultiBinding(catalog.getCurrentSchemas());

The rest of the process does not change, so for the sake of brevity we move to
the next topic.

JSON Bindings
JSON bindings is an effective Avro binding solution when JSON objects are involved.
JSON (JavaScript Object Notation) is a collection of name/value pairs. In the web
application world, JSON is popular. JSON objects might be directly provided to your
NoSQL client application, and they need to be stored in the Oracle NoSQL key-
value store.

To facilitate this, Oracle NoSQL has provided the JSON bindings so that you can
serialize the JSON objects and store them directly into the key-value store. Using a
JSON binding may be convenient for those applications that publish JSON objects
to their clients and wish to streamline the return of objects directly from the key-
value store. JSON bindings treat the value in a key-value pair as a JSON record. For
example, applications that expose REST interface–based APIs tend to return data as
JSON strings so they are a great use case for JSON bindings.

In a real-world scenario, the JSON objects may need to be written to your
key-value store based on a call from another web service or web application, but in
order to explain the concept in our sample program, we simply read the JSON
object from the local file system. JSON bindings are very similar to the generic
bindings, in the sense that they do not provide type safety. The schemas need not be
known ahead of time at compile time. The JSON Avro binding has APIs to support
single-schema binding and multi-schema binding. Table 7-5 lists the different
methods of obtaining the JSON bindings.

Binding Type Method on Avro Catalog

Single-schema bindings AvroCatalog.getJsonBinding()

Multiple-schema binding AvroCatalog.getJsonMultiBinding()

TABLE 7-5.  Methods for Obtaining the JSON Bindings

07-ch07.indd 181 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

182   Oracle NoSQL Database

The following sample program includes step-by-step information so you
understand how JSON bindings are used to deal with values in the key-value pairs.

1.	 We use a parser to get the schema and this schema determines the
JSON object:

final Schema.Parser parser = new Schema.Parser();
try {
parser.parse(new File(
"C:/NOSQL/kv-2.0.26/bookExamples/avro/gPersonSimple.avsc"));
} catch (IOException e) {
e.printStackTrace();
}
final Schema personNameSchema = parser.getTypes()
.get("avro.PersonName");

2.	 Obtain the Avro catalog and get the JSON bindings from the instance for
the schema you obtained in Step 1:

final AvroCatalog catalog = store.getAvroCatalog();
final JsonAvroBinding binding = catalog
.getJsonBinding(personNameSchema);

3.	 Read the JSON object from filesystem and create a JSON record based on
the object and the schema:

try {
final BufferedReader r = new BufferedReader(new FileReader("C:/
NOSQL/kv-2.0.26/bookExamples/avro/authors.json.txt"));
final StringBuilder buf = new StringBuilder(10000);
String line;
while ((line = r.readLine()) != null) {
buf.append(line);
buf.append("\n");
}

final ObjectMapper jsonMapper = new ObjectMapper();
final JsonNode jsonObject = jsonMapper.readTree(buf.toString());
final JsonRecord jsonRecord = new JsonRecord(jsonObject,
personNameSchema);

4.	 Serialize and create a value based on JSON bindings; create a key and store
it in the key-value store:

final Value value = binding.toValue(jsonRecord);

Key myKey = Key.createKey("tennisStar");

store.put(myKey, value);

ValueVersion vv = null;

07-ch07.indd 182 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 7:  Advanced Programming Concepts: Avro Schemas and Bindings  183

5.	 Obtain the value version based on the key, and by deserializing with the JSON
bindings, create a JsonRecord and print out the value for verification:

vv = store.get(myKey);
if (vv != null) {

JsonRecord jr = binding.toObject(vv.getValue());

ObjectNode on = (ObjectNode) jr.getJsonNode();

System.out
.println("The toString() value obtained from the JSON record
read from the KVStore is "
+ on.toString());

		 The output from the console looks like this:

The toString() value obtained from the JSON record read from the
KVStore is {"FirstName":"Andy","LastName":"Murray"}

This section has provided a deeper understanding of JSON bindings using the
sample code.

How to Manage Multiple Schemas
when You Do Not Know How Many
In the above example, we have obtained JSON bindings for a single schema. We can
also handle multiple schemas using the getJsonMultiBinding method. To address
the situation of many schemas that are not known ahead of time, we have a method
available called the getCurrentSchemas() on the AvroCatalog object which
will give us the map of all the current schemas available in the catalog. This schema
map can be passed to the getJsonMultiBinding method to get the JSON bindings.

final AvroCatalog catalog = store.getAvroCatalog();
final JSONAvroBinding binding = catalog.getJsonMultiBinding(catalog
 .getCurrentSchemas());

The rest of the process for reading the key-value pairs does not change, so for
the sake of brevity we conclude this topic.

07-ch07.indd 183 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

184   Oracle NoSQL Database

Summary
The value portion in a key-value pair may need to be based on a particular format
and rules. The format and rules are described by the use of an Avro schema. An Avro
schema is represented using a JSON object. You apply a schema to the value portion
of the key-value pair using Avro bindings. The different kinds of bindings available
are generic, specific, JSON, and raw. Different bindings have different characteristics
which make them suitable to use in different real-world scenarios. Oracle NoSQL
provides a rich set of APIs to enable the application programmer to effectively use
Avro schemas and bindings.

07-ch07.indd 184 11/12/13 4:06 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

CHAPTER
8

Capacity Planning
and Sizing

08-ch08.indd 185 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

186   Oracle NoSQL Database

An essential step before installing Oracle NoSQL Database in a datacenter is
to first understand the Oracle NoSQL Database application requirements and
    use this information to properly size and configure the underlying hardware.

This ensures that the database can not only support the performance throughput
required by the application, but also provide the right levels of availability and
reliability, as these characteristics are heavily influenced by the choice and capacity
of the hardware. This chapter discusses the best practices of capacity planning and
sizing an enterprise-level Oracle NoSQL Database deployment.

Capacity planning is not an absolute science, and the process of estimating the
sizing numbers is dependent on certain assumptions, such as the characteristics of
the application workload, database disk space requirements, and high availability
requirements. The assumptions help simplify the underlying estimation models (formulas
and calculations) so they are generalized to work with a wide range of application
requirements. Otherwise, you would be overwhelmed with complex formulas and
theories, and might even consider dropping the capacity planning steps altogether.

Note that the sizing numbers obtained from this exercise are estimates at best,
and are only as accurate as the inputs supplied and the estimation models used for
the calculations. Therefore, these numbers should only be used as the basis for
initial sizing, and should be validated by following proper performance and load
testing methods, preferably under simulated or real-world workloads. The initial
numbers may then be refined if necessary, which indicates that the capacity planning
process is a bit iterative. The key here is to ensure that the findings are in line with the
assumptions made earlier in the process, and, if not, you may need to adjust the
assumptions accordingly.

NOTE
Microsoft Excel spreadsheets are provided by Oracle
to assist you with sizing Oracle NoSQL Database.
The spreadsheet takes input parameters such as the
replication factor, disk capacity, key-value pair size,
application performance requirements, and so on,
and provides approximate sizing numbers. Refer to
the Oracle NoSQL Database installation directory
and the Oracle NoSQL Database manuals for
further information.

Gather Sizing Requirements
One of the very first steps of capacity planning is the application discovery process,
in which key metrics related to the characteristics of Oracle NoSQL Database
application and the specifications of the available or reference hardware are

08-ch08.indd 186 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 8:  Capacity Planning and Sizing   187

captured. These metrics are later input into the sizing models and the topology of
the Oracle NoSQL Database is architected.

Some of the metrics such as the Input/Output Operations per Second (IOPS) and
the application hot data size (explained later) are difficult to estimate, as there are
no standard, plug-and-play formulas available. However, there are industry standard
best practices that can be followed to estimate such metrics, which are the focus of
this section. Also keep in mind that the best practices are usually generic, and the
initial estimates you may come up with by following them may be approximate and
sometimes even a bit off, and not applicable to the specific type of workload you
are dealing with. Therefore, testing and validating the sizing numbers and, if required,
revising them iteratively to get the desired results, should be considered normal.

The following sections provide instructions on capturing application
characteristics and the hardware specifications.

Application Characteristics
While it is relatively easy to capture the characteristics of existing NoSQL Database
applications (both Oracle or non-Oracle), it is always tricky for brand-new applications
because the application characteristics are not readily available and you have to work
with estimates and heuristics at best.

For existing applications or systems undergoing a technology or a hardware refresh
and moving to Oracle NoSQL Database, you can capture their characteristics using a
variety of readily available tools and techniques. For example, transaction throughput,
response times, and latency can be measured by using application workload metrics,
and I/O performance, memory, and CPU utilization can be measured using OS utilities.
You will also have a good idea of a reference hardware configuration utilized by the
previous database, which can also serve as an initial baseline configuration for testing.

The intent of this section is to assist you with estimating the application
characteristics of brand-new applications. Application characteristics of interest are
mainly the key-value pair storage capacity requirements, the application performance
metrics, and the replication factor to ensure high availability.

Key-Value Pair Size
The data stored within Oracle NoSQL Database is primarily a set of key-value pairs.
In order to estimate the Oracle NoSQL Database storage requirements, determine
the average size of a key-value pair (in UTF-8 bytes) and the total number of key-
value pairs to be stored in the database. Multiply these two estimates to get the total
size of the key-value store.

To accurately estimate the key-value size, it is important to understand the
underlying design of its components. As you may recall, key-value pairs have a key
component and a value component; keys in turn can consist of a major key and a
minor key, and keys can be small or large. Basically, this means that the key storage
requirements could be quite variable and depend mostly on the key design, the

08-ch08.indd 187 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

188   Oracle NoSQL Database

application access patterns, and the specific use case. Obviously, larger keys have
bigger storage needs. Once you have determined a key design, estimate the average
size in bytes of both the major and the minor keys, averaged over the total estimated
number of key-value pairs in the store.

Similarly for the value component, estimate the average size of data in bytes,
kilobytes, or megabytes for all the values to be stored in the database. Values are
much larger than keys as they store the actual data, versus the path to get to the data,
as keys do. Finally, estimate the total number of key-value pairs, as earlier indicated.

The database growth requirements over time would also need to be factored into
these calculations. You would not want to be in a position where you have used up all
the allocated hardware in only a few weeks or months after going live in production.
Growth can be both planned and unplanned, and you can usually form a good
estimate by speaking with the key stakeholders and data owners, and evaluating their
past experiences and historical patterns.

For an example of estimating Oracle NoSQL Database key-value storage
requirements, consider a scenario where the average key size is 32 bytes, the average
value size is 1KB, and the total estimated number of records is 1 billion for the first
year, with a 20 percent yearly growth projection. To estimate the Oracle NoSQL
Database storage requirements for the next two years, use the following equation:

 (Avg. key size + avg. value size) * (Total records + Estimated growth)

= (32 + 1024) * (1,000,000,000 + (20% × 1,000,000,000))

= 1,267,200,000,000 bytes or 1.15TB

NOTE
Keep in mind that the preceding number is the user
data capacity and not the raw disk capacity. You will
compute the raw disk capacity later in this chapter.

Performance Requirements
Typical workload characteristics of NoSQL Database applications follow patterns
similar to that of OLTP systems. Therefore, the application performance metrics
of interest are OLTP workload–specific, such as memory requirements and I/O
throughput capacity requirements. More specifically, you can capture metrics such
as latency, block size, IOPS, read-to-write ratio, and the cache-hit ratio, which are
a common measure of OLTP application performance.

■■ Latency is the time for data travel from point A to point B, for example from
hard disk platters to application memory buffers. Latencies from memory to
memory are usually 100,000 times faster from disk to memory. This metric

08-ch08.indd 188 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 8:  Capacity Planning and Sizing   189

will help you decide if the latencies of hard disk are acceptable to the
application, or if you need to consider flash disks or cache data in memory
(DRAM). Just to give you an idea, hard disk latencies are on the order of
10–20 milliseconds, whereas latency of flash memory and DRAM are 2–4
milliseconds and 100 nanoseconds, respectively.

■■ Block size is defined by the application and is a minimum unit of moving
data between the storage and application buffers. The larger the block size,
the longer it takes to move data. Typical block sizes used for measuring I/O
performance by vendors vary between 4KB and 32KB. This should not be
confused with the OS block size, which is defined at the OS level and is
much smaller than the application block size (typically 512 bytes).

■■ IOPS (Input/Output Operations per Second) is the rate of measure of small
I/O reads/writes per second. The objective of measuring IOPS is to see how
fast the storage is capable of writing (or reading) transactions that span a
small number of disk blocks, usually of size 1 block size. IOPS numbers
are primarily dependent on random seek time of storage devices, although
rotational speed and latency also play an important role. IOPS can be
measured for reads, writes, or a mix of read/write transactions, with a typical
4KB or 8KB block size.

	 Retrieval operations of key-value records are translated to short I/Os or
random I/Os, a key characteristic of OLTP workloads. Short I/Os are quick
reads (and generally writes as well) of small chunks of data, where the
chunk is defined using the block size.

■■ Read-to-write ratio is the ratio of the total read I/O requests issued by the
application to the total I/O requests (reads + writes). For example, a read-to-
write ratio of 60:40 indicates that three read I/Os are issued by the workload
for every two write I/Os.

	 A typical OLTP workload contains a combination of reads and writes. It is
important to estimate the read-to-write ratio of the application workload as
they each have different performance characteristics. Reads can be cached
in a faster memory such as DRAM, if the workload periodically issues
repeated reads on the same data (hot dataset, discussed next), and cache
access is much faster than the hard disk.

	 Oracle NoSQL Database write I/O requests, on the other hand, are usually
much faster than the read I/O requests because the underlying engine of
Oracle NoSQL Database can batch multiple writes in memory and issue
one sequential write I/O per batch to the disk. This behavior occurs because
of the log file–based write methodology used by the underlying Oracle
Berkeley DB Java Edition, and will be discussed later in the chapter.

08-ch08.indd 189 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

190   Oracle NoSQL Database

■■ When sizing memory requirements, it is important to know the size of the
hot dataset and the cache-hit ratio. The data access pattern of typical OLTP
applications is usually concentrated over a small subset that is frequently
read or updated the most when compared to the rest. This active subset
is commonly referred to as the hot dataset (also called the working set),
whereas data that is infrequently or rarely accessed is referred to as the
warm or the cold dataset. Hot, warm, and cold datasets are key aspects of
all OLTP workloads.

	 Estimating the size of the hot dataset of the application is an important factor
for estimating its memory and I/O performance needs. Several studies suggest
that hot datasets in OLTP systems as a rule of thumb are approximately
20 percent of the total database size. Just imagine if you were able to cache
this 20 percent data in a faster memory such as the DRAM or flash; the I/O
performance achieved could be multiple orders of magnitude greater than
the performance of hard disks.

■■ Cache-hit ratio is the ratio of reads or writes from the cached dataset to
reads or writes from the hard disk (physical I/O). The cached dataset could
be the complete or a partial hot dataset. The cache-hit ratio plays a crucial
part in sizing the application for performance, as you will see later in this
chapter, so it is essential that you spend time to accurately estimate this
metric to the best of your ability and knowledge.

NOTE
Sizing for CPU capacity is also critical for
the capacity planning exercise. However, by
following the best practices of balanced hardware
configurations, CPU bottlenecks can be avoided
especially when the application workload is I/O
bound. The balanced configuration eliminates
bottlenecks in the I/O path during the movement of
data from the disk to memory, via the network, disk
controllers, and CPU. If the workload is CPU-bound,
then essential steps need to be followed to ensure
that CPU capacity is also properly sized. CPU sizing
is beyond the scope of this book.

Determine the Replication Factor
Oracle NoSQL Database contains one or more shards, and each shard contains one
or more Replication Nodes. The shards can internally store multiple copies of the
key-value pairs by specifying a storewide replication factor (RF). The RF specifies

08-ch08.indd 190 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 8:  Capacity Planning and Sizing   191

the total number of RNs contained in the shard. Also, one of the RNs within the
shard is designated as the master node, and the remaining RNs are the replica
nodes. For example, a replication factor of three indicates that each shard will have
three RNs, out of which one RN is a master and two RNs are replicas.

A master node can handle read and write requests of key-value pairs, whereas
a replica node can handle only read requests. The master node propagates the
write requests to all replicas, so at any given point in time (or eventually at some
point in time, based on the durability guarantees), all RNs within the shard will
be synchronized to contain the same key-value pair data.

NOTE
If a master node is lost, a master election process
is initiated using the industry standard set of Paxos
protocols, and one of the existing replicas is elected
as the new master.

There are several benefits to having a higher replication factor. First, the data
availability is increased when you store multiple copies of the same data in different
RNs. The key-value pairs are still available (albeit performance to retrieve them
could be slow) to the application as long as there is one surviving Replication Node
per shard, thereby providing a tolerance of (RF−1) failures within a shard.

Second, the higher the replication factor, the faster the read I/O performance as
multiple RNs are available to serve application read requests. The Oracle NoSQL
Database client driver directs the read request to the least busy Replication Node
with the intent of getting the fastest response for the request.

Third, the total read I/O throughput capacity for the shard is also increased when
the replication factor is increased. For example, if one RN has a capacity of 500 IOPS
and the application requires a read throughput of 1500 IOPS, then a replication
factor of 3 can satisfy the 1500 IOPS requirement. By having more RNs, you also get
more disks that work in parallel to serve multiple I/O requests.

There are a few drawbacks to configuring a high replication factor as well. The
write I/O performance does not scale by adding more Replication Nodes. In fact, it
may degrade because the writes need to be synchronized across as many Replication
Nodes as there are in the shard. You can configure durability guarantees in the
application to propagate the changes asynchronously, but as far as the disks are
concerned, all changes on the master will be pushed to all replicas, either sooner or
later. Also, a higher replication factor results in a higher number of Storage Nodes
needed for deploying Oracle NoSQL Database, thereby increasing the hardware cost.

As a best practice, you should configure a replication factor of 3 for Oracle
NoSQL Database. You may consider a higher replication factor if the application
read I/O performance dictates the need to go beyond 3. Keep in mind that the write
performance may be affected with the increase as mentioned earlier.

08-ch08.indd 191 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

192   Oracle NoSQL Database

A replication factor of 2 is generally discouraged for the following reasons. First,
a single failure will result in too few Replication Nodes remaining to elect a new
master, leaving the shard vulnerable to the possible loss of write availability. Second,
the shard throughput capacity drops 50 percent when only one node fails, which is
not ideal for any production-grade SLAs. Finally, as the shard node failure tolerance
is limited to only one node, the risk of losing data runs high in your deployment.

A replication factor of 1 is definitely not recommended for any production-grade
Oracle NoSQL Database deployment, as there is no inherent protection from data
loss. A loss of a single disk or a node would warrant a recovery from a backup.

Hardware Specifications
Capturing the specifications of the available hardware is essential for calculating
the shard I/O throughput capacity and the disk storage capacity, which are key
elements in determining the total number of Storage Nodes required for Oracle
NoSQL Database.

If the hardware has not yet been procured for the project, you may start with a
baseline specification of a reference hardware normally used for projects of such
types. It is important to start with a baseline; otherwise, it would be impossible to
determine the Oracle NoSQL Database topology without knowing the individual
configuration of the Storage Nodes.

Note that the hardware specifications may need to be revised once you undergo
the capacity planning exercise and learn of the new sizing numbers. For example,
you may start with a reference machine of 16GB of memory and three hard disks of
1TB capacity, and determine after the capacity planning exercise that to best satisfy
the cost and performance requirements, it may be feasible to have a machine with
32GB of memory and six hard disks of 3TB capacity.

As mentioned previously, Oracle NoSQL Database application workloads follow
typical OLTP access patterns. The IOPS is the most common metric for measuring
OLTP performance; therefore, capturing the raw IOPS performance capacity of hard
disks is important. The IOPS numbers will be used later for estimating the shard I/O
throughput capacity. Other factors that may influence the choice of hardware are
the availability and reliability requirements, and the total hardware cost.

NOTE
This section assumes that you have dedicated
disks on the Storage Nodes for the key-value store.
Although you may also use shared storage arrays
such as SAN and NAS, dedicated disks are believed
to provide better performance and are cost effective
for deploying Oracle NoSQL Database.

08-ch08.indd 192 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 8:  Capacity Planning and Sizing   193

Capture the following hardware specifications of the Storage Nodes:

■■ The total number of disks per machine dedicated for the key-value store.

■■ The total usable storage capacity of each disk. This specification along with
the total number of disks is used to calculate the maximum number of key-
value pairs that can be stored in the shard.

■■ The disk IOPS capacity. This information is typically available in the disk
specification sheet as the number of sustained random I/O operations-per-
second capacity of the disk.

NOTE
If the disk IOPS capacity is not specified by the
manufacturer, you can easily derive it from the other
specifications such as the rotational speed, average
latency, and average seek time, using the best
practice formula 1/(Average latency in ms + Average
seek time in ms). Alternatively, you may refer to
external sources that publish averaged observed
IOPS values for a variety of different types of disks.

Capacity Planning and Sizing
Now that you have the application requirements and the hardware specifications
captured, the next step is to size Oracle NoSQL Database. Sizing is mainly a three-
step process:

1.	 Determine the storage and I/O throughput capacity of a representative shard.
The inputs to this step are the application characteristics and the hardware
specifications. Memory considerations for caching frequently used objects
are also included in this step.

2.	 Determine the total number of shards using the capacity number of a
representative shard obtained from Step 1, and the storewide application
requirements. Use the representative shard as a blueprint for this estimation.

3.	 Determine the Oracle NoSQL Database topology. This includes the total
number of Storage Nodes and the number of partitions.

Once you have performed each of the preceding steps, you should test your
installation under a simulated workload and refine the configuration as necessary.
Testing is an essential step prior to placing Oracle NoSQL Database in a production
environment.

08-ch08.indd 193 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

194   Oracle NoSQL Database

Size a Representative Shard
The best practice of capacity planning and sizing the Oracle NoSQL database, or any
database for that matter, is to first size for performance and I/O throughput capacity,
and then for storage capacity. Most people leave out the “performance” part from
sizing, as it tends to be complicated, especially for brand-new deployments, because
you do not have a clear idea about the workload characteristics or the requirements.
Omitting this important step will land you in trouble sooner or later, especially when
the database chokes under production-level workloads and the application service
level agreements (SLAs) get missed.

By now you should have a rough idea about the storage and performance
requirements of your Oracle NoSQL Database. Application sizing metrics such as the
read IOPS and write IOPS, read-to-write ratio, cache-hit ratio, replication factor, and
the average key-value pair size should be readily available. Hardware specifications
such as the total number of disks, disk storage capacity, and disk I/O throughput
capacity must have been captured as well.

The process for sizing a representative shard includes the following:

■■ Estimating the maximum key-value pairs per shard

■■ Estimating the I/O throughput capacity per shard

■■ Memory considerations

■■ Network considerations

Estimate the Maximum Key-Value Pairs per Shard
It is important to remember that the storage capacity in the shard is the storage
capacity of only one Replication Node (that is, the master node). The remaining
Replication Nodes in the shard (the replicas) store the same data as the master. Thus,
the maximum number of key-value pairs that can be stored in a shard is calculated
by using the total disk capacity available per Replication Node, minus disk space
overheads (described shortly), divided by the average size of a key-value pair,
including a rough estimation of B-tree storage overhead per key-value pair. The
following formula may be used for such calculations.

(Total disk capacity per shard − Cleaner utilization − Safety margin)

(Key-value pair size + B-tree overheads)

The variables used in the preceding calculation are described next.

Total Disk Capacity  The total disk capacity is the total capacity of the disk storage
available to the shard for storing the key-value pairs. For the purposes of this
chapter, we will assume that the disk space required for the operating system and

08-ch08.indd 194 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 8:  Capacity Planning and Sizing   195

other software and utilities, including the Oracle NoSQL Database software, is
separate—that is, residing on a separate disk or a partition.

The storage manufacturers specify disk storage capacity using the SI (International
System of Units) interpretation of storage units such as gigabyte (GB) or terabyte
(TB). The SI interpretation of 1GB is equivalent to 1 billion bytes, i.e. 1000 × 1000 ×
1000 bytes, and that 1TB is equivalent to 1 trillion bytes, i.e. 1000 × 1000 × 1000 ×
1000 bytes. However, computer memory (RAM) is measured using the binary
interpretation of these units in which 1GB is equal to 230 bytes, i.e. 1024 × 1024 ×
1024 bytes, and 1TB is equal to 240 bytes, i.e. 1024 × 1024 × 1024 × 1024 bytes.

As you are going to move data between storage and memory, it is essential to
standardize your calculations using a common measure, and the preferred practice
used by operating systems and the mathematics within computer software is to
use the binary interpretation of GB or TB. This means you need to translate the SI
interpretation of GB or TB to the binary interpretation. For example, if you have one
disk of size 1TB (SI interpretation) the binary equivalent is equal to

1000 × 1000 × 1000 × 1000
= 931GB (0.9095TB)

1024 × 1024 × 1024 × 1024

Cleaner Utilization  In order to better to understand cleaner utilization, it is essential
to first understand the storage internals of Oracle NoSQL Database.

The underlying engine of Oracle NoSQL Database is the Oracle Berkeley DB
Java Edition (JE). JE uses a series of log files to store the key-value pairs in an append-
only mode. When new records are inserted or existing records updated or deleted,
the log files are appended at the end of the log file with the new or latest data. This
means that you may find stale as well as active records in the log files.

If the space used by stale records is not reclaimed from the JE log files, Oracle
NoSQL Database will always be growing and never shrink, even if you have deleted
all records. Therefore, to ensure a periodic cleanup of stale records, a process called
the cleaner thread takes charge of cleaning and compacting the log files and
reclaiming the disk space.

The cleaner thread is a background process that wakes up periodically and
checks for the cleaner utilization threshold, a parameter that specifies the percentage
of log file space to be utilized by active records. The cleaner thread picks a log file
with the smallest number of active records, scans each record, and if the record is
no longer active in the database B-tree structures, the record is skipped; if the record
is still active, then the cleaner copies the record forward to a new log file. Once all
the active records are copied to the new log file, the cleaner thread deletes the old
log file, or, optionally, it can simply rename the old log file, in which case it will be
manually cleaned up at a later time.

To illustrate the usable disk space you may have remaining after factoring the
space for cleaner utilization, consider an example where you have one disk with

08-ch08.indd 195 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

196   Oracle NoSQL Database

1TB capacity dedicated for key-value storage and have set a 60 percent cleaner
utilization. This means that you may potentially waste a maximum of 40 percent of
the total disk space due to stale records. Therefore, in this example, the total space
available for storing active key-value pair records is 60 percent of 931GB (binary
interpretation of 1TB), which is equal to 559GB. The default cleaner utilization
threshold used by the Oracle NoSQL Database JE engine is 40 percent, and can be
modified to suit your requirements.

Safety Margin  A small percentage of disk space should be reserved for miscellaneous
overhead such as temporary log storage when a replica node is down, and when the
cleaner thread is running behind and needs to catch up. Typically, the best practice
to follow is to reserve 10 percent of the total disk space to accommodate such
scenarios. This overhead needs to be accounted for before the cleaner utilization
overhead.

For example, consider applying a safety margin overhead of 10 percent to the
961GB disk from the previous example. The total disk capacity available before
accounting for cleaner utilization would be:

(100 – Safety margin percent) × Total disk capacity
= 90% × 931GB = 838GB

The total space available for storing key-value pairs after accounting for a 60 percent
cleaner utilization overhead would be 60 percent of 838GB, which is equal to
503GB. Note that we started off with 1TB (SI interpretation) of raw disk capacity
and ended up with 503GB (binary interpretation), which is roughly half of what we
originally started with.

B-Tree Overheads  Key-value pairs stored in Oracle NoSQL Database are internally
organized as a B-tree structure. B-tree is a tree-like node structure comprising
internal nodes (INs) and leaf nodes (LNs), with each node storing a portion of the
key-value data. The internal nodes store the key portion of the pair, whereas the leaf
nodes store the value portion. When database records are created, modified, or
deleted, the modifications are represented in the B-tree’s leaf nodes and sometimes
also in the internal nodes. The B-tree data structure provides optimal data storage
and retrieval mechanisms, and mainly because of this, it has been in use for many
years as the storage structure of choice by many relational database management
systems, including Oracle Database 12c.

Although minimal it may be, the internal nodes have an overhead for storing the
metadata to speed up B-tree lookup operations, and this overhead should be reflected
in your key-value pair sizing calculations. Discussing the internals of such metadata is
beyond the scope of this book, so just keep in mind that you may want to add an
additional 8 bytes to the average key size for storing a “prefix” to the key in the
internal nodes. This prefix is used internally by the B-tree to speed up lookups.

08-ch08.indd 196 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 8:  Capacity Planning and Sizing   197

Recall the example from the previous section. We started with a hard disk of
1TB raw capacity, and after factoring all overheads, we obtained a usable disk space
of 503GB upon which the key-value pairs can be stored. Furthermore, consider that
you have estimated the average key size as 32 bytes, and an average value size of
1KB. Using the formula provided earlier, and substituting the cleaner utilization,
safety margin, and the B-tree overheads, the maximum number of key-value pairs
that can be stored in this shard is approximately

(503 × 1024 × 1024×1024)/(1024 + 32 + 8) = 507,605,392 pairs

Estimate the I/O Throughput Capacity per Shard
The I/O throughput capacity of a shard is the sum of logical read I/Os and logical
write I/Os supported by the shard. Logical I/Os are the total I/O requests originating
from the application for which an actual physical I/O to the disk may or may not be
required. For example, if a read I/O is issued by the application and the requested
data was previously cached in memory, the data will be fetched from the memory
instead of the disk, and a physical I/O can be avoided, thereby considerably
increasing the throughput capacity of the read I/Os.

Similarly, for logical write I/Os occurring in Oracle NoSQL Database, the data is
first written to memory buffers (depending on write durability guarantee settings), and
the memory buffers are flushed to disk periodically in a batch and a single sequential
I/O is issued for the whole batch. Sequential I/Os (Large I/Os) are much quicker than
short I/Os (when transferring the same amount of data), which means that write I/Os
are faster than read I/Os in most scenarios for Oracle NoSQL Database.

The logical read and write I/O capacity of the shard can be calculated using the
Replication Node hardware specifications such as the total number of disks and
the raw disk IOPS, and the application characteristics such as the replication factor,
the read-to-write ratio, and the cache-hit ratio. Other factors such as latency and I/O
batch size will also matter but they are beyond the scope of our discussion.

NOTE
To simplify the I/O throughput capacity estimations,
the following assumptions have been made: I/O
batch size is assumed to be for small I/O (4KB–
32KB); random I/Os are measured using IOPS; IOPS
are the main measure of short I/O performance, not
latency; I/Os originating from background processes
such as cleaner reads/writes and checkpointer
writes are ignored; application read consistency is
not ABSOLUTE; write durability guarantee setting is
NO_SYNC and SIMPLE_MAJORITY.

08-ch08.indd 197 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

198   Oracle NoSQL Database

The procedure outlined next for estimating the total logical I/O capacity of a
shard takes a reverse approach in calculating the logical I/Os. In other words, given
the application workload, it first calculates the percentage of total I/Os that translate
to physical I/Os for the mix of read and write operations. It then extrapolates the
total possible logical I/Os when the disk is pegged to its maximum, i.e. scaled up to
100 percent.

Use the formula that follows to calculate the percentage of total logical I/Os
(reads + writes) that will require a physical I/O from the disk.

Total logical I/Os = Physical read I/Os + Physical write I/Os

= [Read-to-write ratio * (100 – Cache-hit ratio)] +
[RF * (100 – Read-to-write ratio)/Write batch size]

Note that the ratios are expressed as a percentage to simplify the calculations.
The formula uses the read-to-write ratio to estimate the percentage of read requests
from the total requests. The first part of the formula calculates the total percentage of
I/O requests that translate to physical I/Os because of read operations, whereas the
second part calculates the total percentage of I/O requests that translate to physical
I/Os due to write operations.

The physical read I/Os are calculated by eliminating any logical read I/Os that
would be satisfied by the cache or memory using the cache-hit ratio. For example,
consider each Replication Node in the shard containing one hard disk with a
capacity of 300 IOPS, a replication factor of 3, a read-to-write ratio of 50 percent
(i.e. one read I/O for every write I/O), and a cache-hit ratio of 10 percent. Using
these assumptions, the total percentage of physical I/Os issued per Replication Node
due to read requests is calculated using the previous formula as follows:

50% * (100 – 90%) = 45%

As you can see from the preceding calculation, 45 percent of all I/Os originating
from the application are translated into physical I/Os. Keep in mind that we have not
yet accounted for any write I/Os.

When it comes to estimating the physical write I/Os for the workload, the
calculation can be a bit complicated. However, considering that the write operations
in Oracle NoSQL Database are performed in batches via sequential I/Os, very few
physical I/Os are initiated when compared to the read operations.

A good estimate for the number of physical write I/Os is to divide the total logical
write I/Os by the write batch size, which is the number of writes that are batched
before being written to disk. Each batch is considered a single disk write operation
for this estimation. The batching depends upon factors like write durability, FS cache
dirty flush parameters, and JE buffer sizes (discussed later). A write batch size of 100
is a reasonable constant for a wide variety of conditions (refer to Oracle NoSQL
Database documentation for details), which means that there would be 1 physical
write I/O for every 100 logical write I/Os issued by the application workload.

08-ch08.indd 198 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 8:  Capacity Planning and Sizing   199

The writes also need to be multiplied by the replication factor (RF) of the shard
because the writes will eventually propagate to all the replicas. If an RF of 3 is used,
each write operation will result in a total of three write operations in the shard.
Using these assumptions, the total percentage of physical I/Os in the shard due to
the write requests is calculated from the previous formula as follows:

(100–50)/100 * 3 = 1.5%

The sum of the percentage of physical read I/Os and the percentage of physical
write I/Os represents the percentage of logical operations that actually result in disk
operations. From the preceding example, the total percentage of physical I/Os per
Replication Node is calculated as

45% + 1.5% = 46.5%.

The total logical I/O throughput per shard can now be extrapolated from the
physical I/O throughput of each Replication Node using the following formula:

(Disk 10PS capacity × RF)

(Total percentage of physical 10s per RN)

If you substitute into the preceding formula a replication factor of 3, disk IOPS
capacity of 300, and the total percentage of physical I/Os per Replication Node
computed earlier, you get the total logical I/O throughput per shard as

(300 × 3)
= 1935 10PS per shard

 (46.5%)

NOTE
The preceding formula does not work well under
pure insert or pure update workloads (when reads
are zero). In such cases, a thorough analysis on the
impact of batched writes (sequential I/O) under
varying block sizes and write batch sizes, and the
cleaner writes, will be required.

Memory Considerations
The amount of memory allocated to Replication Node (RN) processes will also
affect the performance of Oracle NoSQL Database. The RN process, a Java-based
engine behind Oracle NoSQL Database, resides on the Storage Nodes (SN) and is
based on the Berkeley DB Java Edition (JE). The RN process runs within a JVM (Java
Virtual Machine) and requires an optimal allocation of memory for JVM structures,
mainly Java heap and Java cache. Java heap is the area of JVM memory dedicated to
storing Java objects in order to enhance object sharing and reuse between multiple

08-ch08.indd 199 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

200   Oracle NoSQL Database

threads. Java cache holds a copy of frequently accessed data that is otherwise
expensive to re-fetch or compute.

RNs internally use B-tree data structures to hold the key-value pairs. When the
key-value pairs are fetched from disk, they are first stored in the Java cache and then
transferred to the user process. Repeated reads on the cached key-value pairs can be
fetched very quickly from memory, and costly disk I/Os can be avoided. The more
fetches from memory, the better the performance of Oracle NoSQL Database.

It helps to understand the internal B-tree storage structures and their contents so
that the memory can be optimally allocated to Java cache. The B-tree structures
consist of internal nodes (INs) and leaf nodes (LNs). The INs contain the key portion
of the key-value pair and the LNs contain the value portion. Caching the B-tree
structures in the Java cache means caching the INs and the LNs. But as the LN size
is very large compared to the IN size, you need a very generous allocation of
memory to cache them both, which is impractical.

Therefore, the best practice for sizing the Java cache and also the default
configuration used by the Oracle NoSQL Database RN is to size the Java cache at least
as big to cache all INs in memory (not LNs). This would speed up key navigation and
lookup operations, but the value portion may still need to be fetched from the disk (or
the operating system disk cache as you will see later). The benefit of this setup is that
you can size the Java cache much smaller and still benefit with fast key navigations.

Estimating the Java Cache Size  Improper sizing of the cache leads to performance
issues; therefore, it is important to optimally size the Java cache and speed up access
to key-value pairs, and hence improve performance. However, estimating the size of
B-tree internal nodes and leaf nodes of a key-value store can be quite complicated.
Thankfully, a utility called DbCacheSize is provided by the Oracle NoSQL Database
installation to help you in estimating the size of INs and LNs, given the key-value pair
sizing metrics.

The DbCacheSize utility requires the total number of records and the size of
your keys as the input, and optionally you may also supply the projected data size
(i.e., the value size). The utility then displays the minimum and the maximum cache
size required for holding the INs and LNs in memory.

The main item of interest from the output of DbCacheSize is the information
corresponding to the “internal nodes only” row from the “Database Cache Size”
section. This row displays the minimum and maximum cache size required to hold
the internal nodes in memory, along with a small overhead to account for B-tree
optimizations; the estimates in the “Internal Node Usage by B-Tree Level” section
do not include any overheads.

The information corresponding to the “internal nodes and leaf nodes” row
includes the minimum and maximum cache size to hold both the internal nodes
and the leaf nodes (i.e. the data of key-value pairs) in memory. As discussed earlier,
this information is not used to size the Java cache for Replication Nodes.

08-ch08.indd 200 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 8:  Capacity Planning and Sizing   201

To determine the JE cache size for an environment consisting of 100 million
records, with an average key size of 12 bytes and an average value size of 1000
bytes, invoke DbCacheSize, as shown in the following example.

java -d64 -XX:+UseCompressedOops -jar je.jar DbCacheSize -key 12
-data 1000 -records 100000000
=== Environment Cache Overhead ===
3,156,253 minimum bytes
To account for JE daemon operation and record locks, a significantly
larger amount is needed in practice.
=== Database Cache Size ===
Minimum Bytes Maximum Bytes Description
--------------- --------------- -----------
2,888,145,968 3,469,963,312 Internal nodes only
107,499,427,952 108,081,245,296 Internal nodes and leaf nodes
=== Internal Node Usage by Btree Level ===
Minimum Bytes Maximum Bytes Nodes Level
--------------- --------------- ---------- -----
2,849,439,456 3,424,720,608 1,123,596 1
38,275,968 44,739,456 12,624 2
427,512 499,704 141 3
3,032 3,544 1 4

Default Memory Allocations of Replication Node JVM  It is important to know the
default memory allocation of the Replication Node JVM. The default configuration
of Oracle NoSQL Database allocates 85 percent of the total server memory to the
Replication Node JVM. And within the JVM memory, 70 percent is allocated to the
Java cache and 30 percent to the Java heap. The defaults can be very easily overwritten
using various parameters. As a best practice, remember to use the DbCacheSize
utility to estimate (at least) the size of the internal nodes, and configure the Java cache
to hold the internal nodes in memory.

Role of Operating System Disk Cache  Operating system kernels store data on disk
in multiple chunks called pages. The OS transparently caches frequently accessed
pages in main memory in order to speed up reads and writes to disk, in an area
reserved in RAM called the disk cache (a.k.a. page cache or file system cache).
Applications benefit from the OS disk cache in a transparent fashion, when its data
access patterns favor a subset of key-value pairs over others, i.e. the hot dataset of
OLTP systems discussed earlier. The one characteristic that sets the OS disk cache
apart from the Java cache is that the application cannot influence or control the pages
that need to be cached. The frequently accessed pages as determined by the OS kernel
are the primary beneficiaries of this cache and they will be paged out depending on
the LRU (Least Recently Used) policies, without taking any application-specific
patterns into consideration.

08-ch08.indd 201 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

202   Oracle NoSQL Database

By now, you know that the OS disk cache speeds up reads and writes to disk
when the application workloads are focused on the hot dataset, by caching
frequently used data in a faster memory and benefiting from cache hits. The benefit
of the OS disk cache over the Java cache is that the disk cache could contain both
INs and LNs. Also, there are no Java object overheads in disk cache as there are in
Java cache, which leads to better memory utilization. These features of a disk cache
make it a popular caching mechanism and could help increase I/O throughput and
reduce average read and write latencies.

NOTE
Disk controllers on most enterprise-grade servers also
provide a caching mechanism commonly referred to
as the disk buffer or the controller cache. The disk
buffers are separate from the OS disk cache, and can
further assist transparently in enhancing read and
write I/O performance, using features such as read-
ahead and write acceleration.

Network Considerations
A typical NoSQL Database deployment consists of multiple Storage Nodes with
each node running a set of Replication Node (RN) processes. The RN processes
need to communicate with the other RN processes in the cluster, and also the clients
(applications) need to communicate with the Storage Nodes. To facilitate this
communication, the NoSQL Database requires a reliable network that has a low
and predictable latency, and is free of bottlenecks induced by other applications that
do not access the key-value store.

Having a low latency network is more important than any other network
performance metric. The goal of Oracle NoSQL Database inter-node communication
is mostly to synchronize the replicated data between the Replication Nodes. The
higher the latency, the longer the time it takes for the synchronization, assuming the
bottleneck is on the network and not other components such as the disk. The client
applications could end up waiting until the changes are synchronized across all
replicas, in which case the application performance is impacted. However, the mode
for synchronization can be configured by the client applications using durability
guarantee settings, as you have seen in the earlier chapters.

The best practice for sizing the network for Oracle NoSQL Database is to ensure
that the network capacity is at least 1 gigabit Ethernet and free of external bottlenecks.
While a dedicated network is not a requirement from an installation standpoint, it
would definitely help to eliminate “unknowns” due to third-party applications, which
could induce unpredictable latencies to Oracle NoSQL Database applications. Also,
as VLANs are becoming a popular choice for network administrators, it is okay to
configure them as long as proper QoS (Quality of Service) settings are in place to
ensure that Oracle NoSQL Database processes are allocated the required bandwidth.

08-ch08.indd 202 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 8:  Capacity Planning and Sizing   203

Determine the Total Number
of Shards and Partitions
So far in the earlier sections, we have estimated shard-level capacity metrics. Using
these metrics, you can compute the total number of shards required to satisfy the
application workload characteristics such as the I/O throughput capacity, and the
storage requirements such as the total key-value pairs, using the estimation models
provided in this section.

Total Number of Shards
The following are the inputs required to estimate the total number of shards:

■■ Application requirements captured using the best practices outlined in the
“Application Characteristics” section earlier in this chapter:

■■ The maximum number of the key-value pairs to be stored in the key-value
store as determined by the application requirements (Max key-value pairs
per KVStore)

■■ The maximum transaction I/O throughput capacity (read IOPS + write
IOPS) of the key-value store obtained by analyzing the application
workload characteristics (Max IOPS per KVStore)

■■ The shard-level capacity calculated using the best practices outlined in the
section “Size a Representative Shard”:

■■ Shard-level I/O throughput capacity for the mix of read and write
transactions, taking into account the read-to-write ratio and the cache-
hit ratio (Max IOPS per shard)

■■ Shard-level storage capacity (Max key-value pairs per shard)

The total number of shards is calculated using two different estimation models.
The first model computes the number of shards required to satisfy the key-value store
storage requirements (Shards Required for Storage), using the following formula:

Shards required for storage = (Max key-value pairs per KVStore)/(Max key-value
pairs per shard)

The second model computes the required number of shards to satisfy the
application I/O throughput requirements (Shards required for throughput), using the
following formula:

Shards required for throughput = (Max IOPS per KVStore)/
(Max IOPS per shard)

08-ch08.indd 203 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

204   Oracle NoSQL Database

The final number of shards will be the maximum of the two numbers obtained
from the two models (Total number of shards). This number is sufficient to satisfy
both the total storage and I/O throughput requirements of the application.

Total number of shards = Max (Shards for storage, Shards for throughput)

Total Number of Partitions
Oracle NoSQL Database employs a two-level partitioning approach with the first
level being the shard and the second level, a partition. One-to-many key-value pairs
are allocated to partitions, and each shard contains one-to-many partitions.

NOTE
The terms “shard” and “partition” are often used
interchangeably when referring to database software,
but in the context of Oracle NoSQL Database, they
are associated with somewhat different (yet similar)
concepts.

The key-value pairs are allotted to a partition based on a hash-based partitioning
scheme. A hashing function is applied on the key portion of the key-value pair data
to determine the partition to which the key-value pair would belong. All subsequent
read and write operations on the key-value pair are directed to the appropriate
shard/partition that holds the key-value pair. The hash function ensures that the keys
are evenly distributed into the specified number of partitions and keeps the store
well balanced during its lifetime when additions and deletions occur.

The total number of partitions in Oracle NoSQL Database is defined at the time
of database creation, and cannot be changed and remains permanent for the life of
the key-value store. The number of shards, on the other hand, can be increased or
decreased. Changing the number of shards would initiate a process called rebalancing
the store, which moves the partitions (and its associated data) to a different shard,
followed by addition or deletion of shards. Although there is not a direct limitation
on the maximum number of shards you can have in the key-value store, there is an
indirect one, and this is equal to the number of partitions defined for the key-value
store. Therefore, it is important to select the right number of partitions and
accommodate any future growth requirements.

Technically speaking, it is possible to have a shard with one partition only, but it
is best to configure the key-value store such that each shard always contains more
than one partition. At a minimum, you need to configure the total number of
partitions equal to the largest number of shards you ever expect Oracle NoSQL
Database to grow. There is also an internal overhead (minimal) for having a very
large number of partitions, but nevertheless it is quite a common practice to
accommodate for future growth.

08-ch08.indd 204 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 8:  Capacity Planning and Sizing   205

As a best practice recommendation, choose the number of partitions to about
100 times the maximum number that you would ever expect your shards to grow
during the lifetime of the database.

Total number of partitions = (Total shards * 100)

Now that you have the estimated the total number of Storage Nodes, the key-value
store partitions, and the replication factor, you may now proceed with deploying the
key-value store. Refer to Chapter 4 for further instructions.

Summary
Capacity planning is an essential step to a successful deployment of Oracle NoSQL
Database in an enterprise datacenter environment. Configuring the correct number of
Replication Nodes, Storage Nodes, and the replication factor ensures that the key-
value store can satisfy the right levels of application performance while guaranteeing
the maximum store availability. The methods and guidelines provided in this chapter
should give you a good place to start with initial sizing and then enable you to refine
the estimates based on further tests.

08-ch08.indd 205 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

08-ch08.indd 206 11/12/13 4:07 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

CHAPTER
9

Advanced Topics

09-ch09.indd 207 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

208   Oracle NoSQL Database

Enterprises have a mix of various technologies deployed in their environment,
each serving a specific set of functional needs. Oracle NoSQL Database,
when deployed in such a heterogeneous environment, has to work alongside

these technologies to provide a complete and seamless integration. Customers
deploy software and hardware solutions to solve their business needs. A technology
that integrates with ease into existing data management infrastructures, and causes
minimal disruptions to the business, leads to an improvement in return on investment
(ROI) and lower total cost of ownership (TCO). In this final chapter, we cover multiple
use cases that highlight how Oracle NoSQL Database can be integrated with Hadoop,
Oracle Database, and Complex Event Processing engines. The chapter also provides
details on the new functionality in Oracle NoSQL Database v2 for the support of
RDF Graph, Avro format, and the new C-API support.

Hadoop Integration
Big Data deployments typically have two key requirements: The first is to be agile
and responsive while receiving large volumes of data in real time; the second is to
be able to analyze a large dataset in batch mode. The real-time capability allows the
Big Data deployment to support a large number of users, sensors, or inputs, while
the batch analysis capability brings the intelligence to make smart decisions for the
Big Data problem at hand. These two requirements of a Big Data deployment are
best explained through an example of an online retailer.

Let’s look at the architecture of a sample online retailer, as shown in Figure 9-1.
Customers access the website of the online retailer either through their mobile or
desktop devices. These requests are routed to a bank of web servers that load balance
these requests to multiple application servers. Fault tolerance and high availability
are built into the application tier so that there is no single point of failure. As customers
fill their shopping carts, the information needs to be quickly persisted so that it can be
available at checkout or on the next visit if the customer does not finish the checkout
process. Oracle NoSQL Database, with its high performance clustered architecture, is
an ideal database to persist this information. Because of the seasonal nature of the
retail business, the amount of customer traffic varies dramatically through the year. It
is important to have a persistent store that can grow and shrink based on the load on
the retailer's website. The elastic clustered architecture support in Oracle NoSQL
Database means that new nodes can be very quickly provisioned, and once the
peak load has passed, the number of nodes can be shrunk in an elastic fashion
without any downtime. The elastic architecture is also relevant for cloud providers
that need to quickly respond to the changing needs of their hosted customers.

Online retailers carry a large variety of products and customers are often lost
in the myriads of choices and options available for each product category. It is
therefore important to provide personalized recommendation of products to buy to
the customers. To achieve this functionality, retailers will periodically send shopping
cart information from their NoSQL database to a Hadoop cluster for further analysis.

09-ch09.indd 208 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 9:  Advanced Topics  209

The analysis provides insight into what products coexist on shopping carts across a
large number of customers, and gives the retailer a good idea of what additional
products to recommend.

In essence, the Hadoop cluster contributes to the building of a statistical model,
which helps ascertain what recommendations to make to the customers; this in turn
helps drive additional sales with each customer. A rules engine could help refine
these recommendations further before sending them over to the application tier for
display on the customer’s browser or mobile application.

Oracle NoSQL Database provides an efficient mechanism to integrate with
Apache Hadoop systems and has the capacity to move data in a bidirectional
fashion. To read data from Oracle NoSQL Database, you use the oracle.kv
.hadoop.KVInputFormat class and then prepare it for insertion into a Hadoop
system. An example is included in the <kvstore>/examples/hadoop directory
of the Oracle NoSQL Database installation, and it shows how one can read from

FIGURE 9-1.  Deployment architecture for an online retailer showing the integration
between NoSQL and Hadoop

http://www

Desktop
Users

Mobile
Users

Apache Hadoop
Cluster

Mapping process

Node 1
Pre-loaded local

input data

Intermediate data
from mappers

Values exchanged
by shuf�e process

Reducing process
generates outputs

Outputs stored
locally

Reducing process

Node 1

Reducing process

Node 2

Reducing process

Node 3

Mapping process

Node 2

Mapping process

Node 3

Recommendation
Engine

Oracle
Database

Oracle NoSQL
Database

Application

Acquire Organize Analyze

NoSQL DB Driver

09-ch09.indd 209 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

210   Oracle NoSQL Database

Oracle NoSQL Database in a Map/Reduce job and count the number of records
for each major key in the store.

public class CountMinorKeys extends Configured implements Tool {

 public static class Map
 extends Mapper<Text, Text, Text, IntWritable> {

 private Text word = new Text();
 private final static IntWritable one = new IntWritable(1);

 @Override
 public void map(Text keyArg, Text valueArg, Context context)
 throws IOException, InterruptedException {

 /*
 * keyArg is in the NoSQL Database canonical Key format described in
 * the Key.toString() method's javadoc.
 *
 * The Output is the NoSQL Database record's Major Key as the
 * Map/Reduce key and 1 as the Map/Reduce value.
 */
 Key key = Key.fromString(keyArg.toString());
 /* Convert back to canonical format, but only use the major path. */
 word.set(Key.createKey(key.getMajorPath()).toString());
 context.write(word, one);
 }
 }

 public static class Reduce
 extends IntSumReducer<Text> {
 }

 @Override
 public int run(String[] args)
 throws Exception {

 @SuppressWarnings("deprecation")
 Job job = new Job(getConf());
 job.setJarByClass(CountMinorKeys.class);
 job.setJobName("Count Minor Keys");

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(KVInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 KVInputFormat.setKVStoreName(args[0]);
 KVInputFormat.setKVHelperHosts(new String[] { args[1] });
 FileOutputFormat.setOutputPath(job, new Path(args[2]));

 boolean success = job.waitForCompletion(true);
 return success ? 0 : 1;

09-ch09.indd 210 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 9:  Advanced Topics  211

 }

 public static void main(String[] args)
 throws Exception {

 int ret = ToolRunner.run(new CountMinorKeys(), args);
 System.exit(ret);
 }
}

In this example, the map() function is passed the key and value for each record
in the store, and it outputs the major path component as the output key and a value of
1. The reduce() step sums the value for each of the records with the same key. More
complex map/reduce jobs can be written based on the needs of the application. To
move data in the reverse, from Hadoop into Oracle NoSQL Database, you would read
data from the Hadoop using the standard mechanisms. The data is then written to
Oracle NoSQL Database using the APIs described in this book.

RDF Graph
With the advent of social networks, enterprises are looking at ways to benefit from the
social and business relationships that customers are maintaining on social media sites
like LinkedIn, Twitter, and Facebook. These relationship graphs and their corresponding
arcs when traversed can unlock a treasure trove of information regarding the influence
and clout of individual customers. Further, you can combine this information with
enterprise content and domain vocabularies to provide a fuller context of your customer
base and potential opportunities. This allows for a targeted outreach based on market
segmentation and a high degree of propensity to buy. For example, if an enterprise
were able to find the top 100 most connected and influential members of its customer
base and through them reach out to prospects, it would have greater success with its
sales campaign.

To store the information described in the preceding scenario, a database that uses
graph structures to store objects as nodes and also captures the relationship between
these nodes is required. The RDF (Resource Description Framework) Graph database
provides a very flexible and efficient mechanism to store and retrieve associative
datasets. RDF has its roots in the semantic web, and it has an abstract syntax that
represents a graph-based data model. Oracle NoSQL Database Enterprise Edition
supports this semantic technology, the SPARQL query language, and a subset of the
Web Ontology Language (OWL), which collectively form the RDF Graph feature of
Oracle NoSQL Database.

RDF represents data as triples, with a subject, predicate, and object, and RDF Graph
supports named graphs by extending this triple. In the triple shown in Figure 9-2, the
lender is the object and “loan products” is the subject. The relationship between the
two is the predicate “is seller of.” This basic paradigm of an RDF triple provides for a
very flexible and intuitive way to store objects and the relationships between them.

09-ch09.indd 211 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

212   Oracle NoSQL Database

Further, as shown in the next paragraph, the capability to traverse RDF Graph can
provide a very effective mechanism to analyze data.

Figure 9-2 also depicts a larger use case with multiple objects and relationships.
This example showcases how RDF Graph can help detect risk liabilities for financial
institutions. In this example scenario, a hypothetical Bank A has gone through mergers
and, in the process, has acquired multiple other banks and lending businesses. Lenders
in turn provide a variety of loans like Auto, Home Mortgage and Secured Loans. If you
further look at the classification of the home mortgage loans, you see both Prime and
Sub-prime loans. These final class of loans could have exposure to the sub-prime
lending crisis that plagued the industry a few years ago. RDF has the capability to
store relationships between entities, and it also provides the mechanism to traverse
different relationships. This capability of RDF gives us a very elegant mechanism to
find the exposure for Bank A to the sub-prime lending risk, something that otherwise
could have been lost in the large amount of unstructured and disjointed data sets that
exist in any large financial institution.

RDF Graph databases lack primary keys, making the relationship between tables
completely arbitrary. The flexible schema evolves easily by adding new relationships
and supports querying and discovery by graph patterns and traversal. Within Oracle
NoSQL Database, to easily separate RDF-related data, the keys are prefixed

FIGURE 9-2.  RDF Graph concepts

Find sub-prime mortgage
exposure for Bank A

Bank A

is owned by

Lending Institution
Lender

CDOs

RMBS

2/28 ARM

Loan Products

Secured LoanMortgage LoanAuto Loan

Sub-prime M

Sub-prime MPrime M

Bank Corp Bank B
Bank

A
Bank

X
Bank

Y

Loan Products
O

bj
ec

t
Pr

ed
ic

at
e

Su
bj

ec
t

RDF Triple

is type of

Is seller of

is type of

is name of

is seller of

Lender

09-ch09.indd 212 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 9:  Advanced Topics  213

specifically for RDF Graph data. In addition to these basic features, the RDF Graph
implementation in Oracle NoSQL Database features various enhancements to support
incremental inserts and for loading large datasets through concurrent bulk loads. The
massively parallel scalability of Oracle NoSQL Database makes it possible to process
petabytes of triples, and run queries aggregating over the entirety of a large graph.
For querying, the RDF Graph feature provides a Java-based interface to store and
query semantic data. Also, web services endpoints such as Jena and Joseki SPARQL
are supported. With the support of Apache Jena, it is possible to use tools for query,
visualization, and ontology engineering. For a detailed diagram of the various RDF
tools and technologies supported, refer to Figure 9-3.

Integration with Complex
Event Processing
One way of viewing the evolution of business intelligence and analytics is by
observing the kinds of BI users that exist today. There are two classes of users: the
casual users who consume dashboards and reports generated by BI architects and

FIGURE 9-3.  The RDF Graph feature of Oracle NoSQL Database

Oracle NoSQL Database Enterprise Edition
RDF Triples and Quads Stored

Oracle RDF Graph for NoSQL

Apache Jena/Joseki APIs

Java Application

SPARQL Queries
Jena Insert/Load APIs

Joseki Endpoint (WS)

SPARQL
Queries/Updates

Pellet Reasoner TrOWL Reasoner

Loading and Querying RDF Graph OWL 2 Inferencing

09-ch09.indd 213 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

214   Oracle NoSQL Database

developers, which are often based on a small set of predefined queries that are run
ahead of time for rapid response; and power users, including business analysts and
data analysts, who need analytic sandboxes in order to run novel, ad-hoc queries.
The queries of power users are very iterative in nature and may need to be rapidly
modified so that they perform the right analysis. Increasingly, power users work on
data generated both inside and outside of the enterprise, much of which is a mix of
structured metadata and unstructured main data.

With the evolution of Big Data, enterprises are making an investment in real-
time analytics, and the speed at which an enterprise can make sense of its database
will rapidly become a major competitive advantage. For example, risk analysis
algorithms are often run by competing financial institutions seeking real-time
information on their investments in order to maintain advantages over competitors.
In this case, data must be analyzed rapidly as it streams in; inefficiencies in these
analyses, even those that only delay a transaction by a few milliseconds, may result
in massive price swings and losses of millions of dollars.

As we have explained in earlier chapters, Oracle NoSQL Database has a strong
capability to quickly store large volumes of data and retrieve records of interest with
speed. For the high-speed, real-time intelligence scenario, customers have been
using NoSQL Database in conjunction with a Complex Event Processing (CEP)
engine like Oracle Event Processing (OEP). Complex Event Processing engines
provide the capability to analyze streams of data as they come in. They are the first
line of defense when it comes to connecting the velocity of Big Data to value. CEPs
can quickly detect patterns, and filter and correlate data. For example, in the case of
detecting fraud in financial systems, the streaming transactions are passed through a
Complex Event Processing engine, and to help detect fraud, the process requires a
low latency lookup of recent transactions and user profiles and combining them
with the output of CEP algorithms. In this scenario, Oracle NoSQL Database may be
used to find recent transactions, authorization requests, account changes, and other
indicators, which can then be analyzed in order to inform investigators and
prosecutors as to whether the events merit further investigation.

Similar applications can be found in healthcare monitoring, where OEP captures
incoming patient monitoring data and looks into Oracle NoSQL Database to find
medical data, test results, monitoring trends, monitoring thresholds, or patient profile
information—all of which contribute to determining whether an alert or notification
should be sent, who should be alerted, and what the most likely treatment, if any,
should be. Utilities sensor monitoring (telecommunications, water, power, and so
on) is very similar. OEP captures incoming sensor data and looks into Oracle
NoSQL Database to find recent sensor history, and alert thresholds, which helps
engineers determine whether action should be taken and, if so, decide the course
of this action.

09-ch09.indd 214 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 9:  Advanced Topics  215

Database External Tables
In Chapter 1, we discussed the use case for online advertisement and highlighted
the stringent requirement of being able to decide which ad to display in less than
75 milliseconds. There are multiple parties involved in the successful rendering of
an advertisement on a mobile device or desktop. To be effective, it is important for
the publisher to track the behavior of its consumers, and with the help of the ad
server make the right decision of which ad to display. A campaign management
system is required to streamline the entire workflow, which includes launching an
ad campaign, serving the advertisements, and reporting for billing purposes. This
helps merchants, agencies, and marketers see the true value of their advertisement
campaigns. The online advertisement scenario requires both Oracle NoSQL Database
and Oracle Database because each fulfills critical functionality, and to be effective
you also need to integrate the two databases.

In addition to the low latency requirements, online display advertising has to
support extremely high data throughput of multimillion requests per second. The
platform has to be highly available, and to maximize revenue it must deliver the
most relevant ads. Oracle NoSQL Database is used in this scenario to store user
cookies and associated behavioral patterns. The behavioral data includes timestamp
and frequency. Also, to optimize ad delivery the recentness and frequency of ad
display is stored.

A relational database such as Oracle Database 12c can be used to store campaign
booking information and real-time business metrics for publishers and advertisers.
Oracle Database also works well in order to store longer-term financials such as
year-to-date revenues, quarter-over-quarter revenue changes, and the like.

Another use case where the two databases need to work together is a multiplayer
online gaming application. Such games have very low latency requirements; player
movements must happen in real time, while being tracked on the server. Popular
games have tens of millions of active users, and have high availability requirements
and heavy workloads. Many of these games also provide the capability for in-game
micro-transactions, such as the purchase of power-ups or more advanced weapons
with an in-game currency. With millions of players performing such transactions,
they represent a major source of revenue for the customer.

Oracle NoSQL Database can be used to track the player movements with low
latency, and can be used to store player usage statistics. For games that allow player
communication via chat, Oracle NoSQL Database is used as a persistent message
store for auditing and COPA compliance. There are various levels of consistency
that the database needs to support in the online gaming scenario; for example,
loose consistency is fine for some interactions such as player proximity sensing,
while ACID transaction support is required for the in-game micro-transactions.
Oracle NoSQL Database, with its flexible and configurable consistency model, is
ideal for this purpose.

09-ch09.indd 215 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

216   Oracle NoSQL Database

For business financials such as tracking credit card transactions, subscription
billing, and payment in the gaming platform, relational databases are used. Oracle
Database can be used as the master data store for all player information and payment
processing. To better analyze usage trends, the combination of this master data with
the micro-transactions stored in Oracle NoSQL Database is required. This could
provide critical business information on which geographies and which in-game
promotions are performing the best, and which product lines are bringing in the
most revenues. The mechanics to do this elegantly is provided in version 2 of the
product, through the use of NoSQL and Oracle Database external tables. This
functionality provides an easy mechanism to access Oracle NoSQL Database as an
external table to Oracle Database. No changes can be made to NoSQL Database
content using this interface.

The next section will provide details on the architecture for NoSQL and Oracle
external tables, as well as an example walk-through of this feature.

The Oracle Database external table feature allows a user to access data that
resides outside of the database as if it were in a table in the database. This flexibility
allows you to run SQL queries against the external dataset, and it provides you the
mechanism to join data across internal and external tables for data analysis purposes.
Oracle has developed functionality to work with Oracle NoSQL Database as an
external source. The NoSQL database is read with the aid of a preprocessor utility.

Multiple steps need to be followed to configure the two databases to work
together.

The first step is to build a PREPROCESSOR for the external table. You then define
the external table with one or more Location Files and the name of the
PREPROCESSOR. Let us assume you name the “publish utility” nosql_stream:

1.	 The next step is to invoke the PREPROCESSOR and have it save the
configuration details in the Location Files specified. The PREPROCESSOR
will need the connection information for Oracle Database and Oracle
NoSQL Database instances, the name of the external table, details on which
NoSQL Database records to process, and the name of any class that needs
to be used to convert the key-value pairs from the NoSQL format to the
external table format.

2.	 For the first time, you manually run the publish utility. After that, you only
need to run the publish utility again if you want to change the way NoSQL
Database is accessed (for example, using a different key prefix, or if you
change the port or the rep nodes where you access the database).

3.	 After the publish utility has been run, you can query the external table in the
same way as you would query any other Oracle database table.

09-ch09.indd 216 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 9:  Advanced Topics  217

Define an External Table
As a first step for the creation of an external table, you will need to specify where
the Location Files reside and where the “publish utility” can be found.

sqlplus / as sysdba
SQL> CREATE DIRECTORY ext_tab AS '<exttab_pathname>';
SQL> CREATE DIRECTORY nosql_bin_dir AS '<bin_pathname>';

In the preceding SQL statements, exttab_pathname is the directory containing
the Location File(s), and bin_pathname refers to the exttab/bin/ directory of
the NoSQL Database installation where the nosql_stream utility is located.

You now need to grant permission to the Oracle user who needs access to the
external table. Let’s name this user nosqluser:

sqlplus / as sysdba
SQL> CREATE USER nosqluser IDENTIFIED BY password;
SQL> GRANT CREATE SESSION TO nosqluser;
SQL> GRANT EXECUTE ON SYS.UTL_FILE TO nosqluser;
SQL> GRANT READ, WRITE ON DIRECTORY ext_tab TO nosqluser;
SQL> GRANT READ, EXECUTE ON DIRECTORY nosql_bin_dir TO nosqluser;
SQL> GRANT CREATE TABLE TO nosqluser;

The next step is to define the external table:

SQL> CONNECT nosqluser/password
SQL> CREATE TABLE nosql_data (email VARCHAR2(30),
 2 gender CHAR(1),
 3 address VARCHAR2(40),
 4 phone VARCHAR2(20))
 5 ORGANIZATION EXTERNAL
 6 (type oracle_loader
 7 default directory ext_tab
 8 access parameters (records delimited by newline
 9 preprocessor nosql_bin_dir:'nosql_stream'
 10 fields terminated by '|')
 11 LOCATION ('nosql.dat'))
 12 PARALLEL;

Table created.

SQL>

Let’s assume that your NoSQL Database is loaded with the necessary data.
For sample datasets, please refer to the Oracle NoSQL Database manual, or the
LoadCookbookData program in the <KVHOME>/examples/externaltables
directory.

09-ch09.indd 217 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

218   Oracle NoSQL Database

Edit the Configuration File
Make a copy of the configuration file in <KVHOME>/examples/externaltables/
config.xml and edit your site-specific values for the oracle.kv.exttab
.connection.url, oracle.kv.exttab.connection.user, oracle.kv
.exttab.connection.wallet_location (optional), oracle.kv.kvstore,
and oracle.kv.hosts properties based on your Oracle Database and Oracle
NoSQL Database installations.

Publish the Configuration
Run the oracle.kv.exttab.Publish utility to publish the configuration to the
external table Location Files:

cd <KVHOME>
java -classpath lib/kvstore.jar:$ORACLE_HOME/jdbc/lib/ojdbc6.jar \
 oracle.kv.exttab.Publish \
 -config <pathname-to-edited-copy-of-config.xml> -publish

If you are using Oracle Wallet as an external password store, then you should
also include $ORACLE_HOME/jlib/oraclepki.jar in your classpath. If the
process executes successfully, there will be no output. If you have read access to the
Location file(s), you can verify the Publish operation by looking inside one to see if
the configuration XML is written there. You will see that two additional properties have
been added to the XML: oracle.kv.exttab.totalExternalTableFiles and
oracle.kv.exttab.externalTableFileNumber. Optionally, you can specify
the -verbose argument to the Publish utility to see more verbose (i.e., debugging)
output.

Test the nosql_stream Script
Edit the <KVHOME>/exttab/bin/nosql_stream script to have the correct
values for PATH, KVHOME, and CLASSPATH when the script is run in the execution
environment of the Oracle Database server. For this example, CLASSPATH should
include the KVHOME/examples directory (in addition to the kvstore.jar).

Test the nosql_stream script by running it in a shell:

$ <KVHOME>/exttab/bin/nosql_stream <exttab_pathname>/nosql.dat

where <exttab_pathname> is the path of the Location Files specified earlier in
the CREATE DIRECTORY command. You should see output similar to the following:

user6@example.com|F|#6 Example St, Example Town, AZ|666.666.6666
user1@example.com|M|#1 Example St, Example Town, AZ|111.111.1111
user9@example.com|M|#9 Example St, Example Town, AZ|999.999.9999
user0@example.com|F|#0 Example St, Example Town, AZ|000.000.0000

09-ch09.indd 218 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Chapter 9:  Advanced Topics  219

user7@example.com|M|#7 Example St, Example Town, AZ|777.777.7777
user8@example.com|F|#8 Example St, Example Town, AZ|888.888.8888
user5@example.com|M|#5 Example St, Example Town, AZ|555.555.5555
user2@example.com|F|#2 Example St, Example Town, AZ|222.222.2222
user4@example.com|F|#4 Example St, Example Town, AZ|444.444.4444
user3@example.com|M|#3 Example St, Example Town, AZ|333.333.3333

Use the External Table to Read Data
from Oracle NoSQL Database
Using sqlplus (as nosqluser or whatever user you created the external table
with), perform a SELECT on the nosql_data external table:

SQL> select * from nosql_data;

EMAIL G ADDRESS PHONE
------------------ ----- ----------------------------------- ----------------
user6@example.com F #6 Example St, Example Town, AZ 666.666.6666
user1@example.com M #1 Example St, Example Town, AZ 111.111.1111
user9@example.com M #9 Example St, Example Town, AZ 999.999.9999
...
SQL>

To improve the performance of your external table queries, consider using
multiple Location Files, as this dictates the degree of parallelism possible when
retrieving data.

Summary
Enterprises typically have a variety of technologies deployed in their data center. The
success of their business is heavily reliant on the ease with which these heterogeneous
technologies work together in a seamless fashion. With emerging technologies like Big
Data, it is all the more important to fit into an existing IT environment. As we have
seen in this chapter, Oracle NoSQL Database with its tight integration with Oracle
Database and a variety of other complementary technologies is an enterprise-grade
database offering for this space.

09-ch09.indd 219 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

09-ch09.indd 220 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

A

ABSOLUTE consistency policy, 115–116,
140–141

ACID (Atomicity, Consistency, Isolation, and
Durability) transactions

data modeling, 110
distributed, 72–74
major key components, 122
properties, 7, 139
support, 28

acknowledgment-based policies,
113–114, 126

acquire phase, 13–14
add-schema command, 162–164
-admin parameter

KVLite, 103
makebootconfig, 84

administration, database, 41–42
Administration Command Line Interface (CLI)

deployment verification, 96–98
starting, 90
working with, 81–82

Administration Console, 46
deployment verification, 96–98
description, 82

Administration Database, 80
Administration Port, 82, 84
Administration Service

creating, 92–93
overview, 80–82

advertising
durability policies, 127
external databases, 215

Alias attribute for JSON objects, 157

ALL policy, 113
All Replicas policy, 126
analytic processing, 6
ANT tool, 168
Apache Avro, 154–155

format, 40
schemas. See Avro schemas

Apache Hive, 14
API

read consistency, 139–146
writing durability, 125–131
writing records, 122–125

application characteristics in sizing,
187–192

army of ants approach, 31
Array value for JSON objects, 157
ArrayList class, 132
attributes for Avro schemas, 161
AuthorizationContext class, 112
automating configuration, 95–96
availability, 6, 33–35

multiple datacenters, 61
replication factor, 59

Avro bindings
generic, 174–181
JSON, 181–183
overview, 165–167
specific, 167–174

Avro schemas
changing/evolving, 163–164
creating/adding, 162–163
enabling/disabling, 164
evolution, 158–161
listing, 165
overview, 154–158

Index

221

10-Index.indd 221 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

222   Oracle NoSQL Database

B

B-tree structures
key caching, 136
in key-value pair calculations, 194
overheads, 196–197
for Replication Nodes, 200

batch processing, 6
big data overview

acquire phase, 13–14
analyze phase, 15–17
approach to, 12–13
characteristics and architectural

trade-offs, 5–6
defined, 2
Hadoop integration, 208–211
Oracle engineered systems, 17–21
organize phase, 14–15
processing types, 6–7
use cases, 10–12

Big Table database, 10
bindings. See Avro bindings
blocks

HDFS, 14
size, 189
storage, 67

boot configuration, 82–87
Bootstrap Administration Service, 81
bottlenecks, CPU, 190
buffers, log, 70–72
business financials, 216

C

cache-hit ratio
I/O capacity estimates, 198
performance effects, 190

caches
Java, 199–201
operating systems, 201–202

cannot-commit messages, 73
CAP Theorem (Consistency, Availability, and

Partition Tolerance), 8
-capacity parameter for makebootconfig, 85
capacity planning and sizing

hardware specifications, 192–193
memory considerations, 199–202
network considerations, 202
overview, 185
process overview, 193
representative shards, 194–197
requirements gathering process,

186–192
shard I/O throughput capacity, 197–199
Storage Nodes, 51–52

total number of partitions, 204–205
total number of shards, 203–204

casual BI users, 213–214
CDH (Cloudera’s Distribution including

Apache Hadoop), 19
CE (Community Edition), 19, 78
CEP (Complex Event Processing), 213–214
change propagation for read consistency, 139
Children only value for Depth parameter, 133
cleaner utilization, 195–196
cleaners, 68
CLI (Command Line Interface)

deployment verification, 96–98
starting, 90
working with, 81–82

Client Driver
overview, 47–50
partition maps, 54–55
version-based consistency, 144

client-server systems, 30, 46
clock synchronization requirements, 77
Cloudera Manager, 19
Cloudera’s Distribution including Apache

Hadoop (CDH), 19
clusters, 26
CODASYL model, 3–4
Codd, Ted, 4
cold datasets, 190
column stores, 9–10
Command Line Interface (CLI)

deployment verification, 96–98
starting, 90
working with, 81–82

commit messages, 73
Community Edition (CE), 19, 43, 78
Complex Event Processing (CEP), 213–214
concurrency control, 5
config.xml file, 83
configuration

boot, 82–87
editing, 218
Oracle NoSQL Database, 87–95

conflicting changes, 34
consistency

in development, 115–118
eventual, 35–36
read, 49, 139–146

Consistency, Availability, and Partition
Tolerance (CAP Theorem), 8

ConsistencyException, 144, 147
constraints, 108–111
correctness constraint, 108
CountMinorKeys class, 209
CPU capacity, 190
customer profile data, 11
Customer Relationship Management (CRM), 7

10-Index.indd 222 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Index  223

D

data
analyze phase, 15–17
big. See big data overview
serialization, 154–155
types, 114

data directory, 78
data distribution, 53–55
data exchange standardization, 154
data modeling, 39–41
Database Administration Service, 80–82
databases, 46

ACID transactions, 72–74
Client Driver, 47–50
configuration, 87–95
durability, 69–72
external tables, 215–219
flexible data model, 63–67
growth requirements, 188
hashing, partitions, and data

distribution, 53–55
high-level architecture and

terminology, 46–47
log-structured storage, 67–69
multiple datacenters, 60–63
overview, 27–29
replication factor, 59–60
shard number, 55–59
Storage Nodes, 50–53
system architectures, 29–31

datacenters
creating, 91–92
multiple, 60–63

datasets, 189–190
DbCacheSize utility, 200–201
ddl command, 82
ddl add-schema command, 162–164
ddl disable-schema command, 164
Default attribute for JSON objects, 157
default timeouts in latency issues,

142–143
defensive coding, 130
defining external tables, 217
delete method, 39, 148
Deleted folder, 109
deleting

records, 147–150
schema fields, 160

deleting data development category, 104
deploy-admin command, 88, 93
deploy-datacenter command, 88, 91
deploy-sn command, 88, 92–94
deploy-topology command, 95
deployment verification, 96–99
Depth parameter for multiget, 133–135

Descendants only value for Depth
parameter, 133

deserialization, 154
developers, 214
development, 102

consistency, 115–118
durability, 113–115
HelloToNoSQLDB program, 105–108
key space modeling, 108–111
on KVLite, 102–105
reading and writing key-value pairs,

111–112
Direction parameter for multiget, 135
disable-schema command, 164
disabling AVRO schemas, 164
disk cache in operating systems, 201–202
disk capacity, 194–195
disk loads in latency issues, 142
display advertising

durability policies, 127
external databases, 215

distributed transactions, 72–74
document stores, 9
done messages, 73
drift, clock, 77
durability

in development, 113–115
permanent changes, 36–38
transactions, 69–72
write API calls, 125–131

DurabilityException, 131
dynamic elasticity, 32–33

E

e-mail services, durability policies for, 127
Eclipse setup, 120–121
editing configuration files, 218
EE (Enterprise Edition), 78
efficiency constraint, 108
efficient access, major key components

for, 122
election mechanism, 26
empty deleted folder control, 148
Enterprise Edition (EE), 78
Enterprise Resource Planning (ERP), 7
Enum value for JSON objects, 157
errors in Avro schemas, 161
eventual consistency, 35–36
-evolve flag for Avro schemas, 164
Exadata Database Machine, 20
Exadata Storage Server Software, 20
exception handling

read operations, 147
write operations, 130–131

10-Index.indd 223 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

224   Oracle NoSQL Database

execute command, 88
executing sequences of operations, 129–130
extensibility in data modeling, 108, 110
external tables, 215–217

capability, 42
configuration files, 218
defining, 217
for reading data, 219
script for, 218–219

F

FaultException, 147
Fields value for JSON objects, 156
file system caches, 201
Fixed value for JSON objects, 158
flexible data model, 63–67
folders

e-mail, 109–110
searching, 110–111

-force flag for schemas, 163
four Vs characterization of big data, 5–6
fsync function, 71
full-rack configuration, 18

G

garbage collection
latency issues, 142
process, 68

gathering process for sizing requirements,
186–192

generic bindings, 165, 174–175
managing, 180–181
multiple-schema example, 177–181
single-schema example, 175–177

generic records, 167
get method, 26, 39, 132–133
getCurrentSchemas method, 181, 183
getCurSeqNum method, 123–124
getGenericBinding method, 175
getGenericMultiBinding method, 175,

177, 179
getJsonBinding method, 181
getJsonMultiBinding method, 181, 183
getNextSeqNum method, 125
getStore method, 107, 111
global transactions, 73
graph stores, 9
graphs, RDF, 211–213
group commit protocols, 69–70
grouping in column stores, 10
growth requirements of database, 188

H

HA Range ports, 84
Hadoop technology, 7

Hadoop Distributed File System, 13–15
integration, 208–211

-hahostname parameter for
makebootconfig, 85

-harange parameter for makebootconfig, 84
hardware specifications, 192–193
hash partitioning, 31
hashing

database architecture, 53–55
schemes, 47–48

HDFS (Hadoop Distributed File System),
13–15

heap in Java, 199
HelloNOSQLDB class, 105–108
HelloToNoSQLDB program, 105–108
-help option in KVLite, 103
hierarchical data model, 3
high availability, 6
high-level architecture and terminology,

46–47
historical perspective, 3–5
Hive technology, 14
-host option in KVLite, 103
hot data size, 187
hot datasets, 189–190
hotspots, 47

I

IDC (International Data Corporation), 12
identifiers

partition, 54
schema, 155
transaction, 73

In-Database Data Mining, 16
In-Database MapReduce, 16
Inbox folder, 109
indexing techniques, 5
InfiniBand network, 18, 21
Input/Output Operations per Second

(IOPS), 187
hardware factor, 192–193
performance effects, 189

Input/Output throughput
capacity per shard, 197–199
replication factor, 191

INs (internal nodes) for B-trees, 200
installation, 76–77

boot configuration, 82–87
Database Administration Service, 80–82
Database configuration, 87–95

10-Index.indd 224 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Index  225
deployment verification, 96–99
software download, 78
software installation, 78–80

integration
Hadoop, 208–211
other products, 42–43

intelligence tools, 20
interactive mode, 81
interactive processing, 6
internal nodes (INs) for B-trees, 200
International Data Corporation (IDC), 12
International System of Units (SI), 195
IO bandwidth, 51–52
IOPS (Input/Output Operations

per Second), 187
hardware factor, 192–193
performance effects, 189

iterators, multiget method with, 134–136

J

Java Edition (JE), 195
Java Management Extensions (JMX), 42
Java programming language, 105

cache, 199–201
file generation, 168–169
heap, 199
requirements, 77
strings, 53

Java Virtual Machines (JVMs), 199, 201
JavaScript Object Notation (JSON)

Avro, 155
bindings, 165, 181–183
schemas, 40–41

JE (Java Edition), 195
JMX (Java Management Extensions), 42
jps (JVM process status) tool, 87
JSON (JavaScript Object Notation)

Avro, 155
bindings, 165, 181–183
schemas, 40–41

JVM process status (jps) tool, 87
JVMs (Java Virtual Machines), 199, 201

K

key-based index lookup, 13
key space modeling, 108–111
key-value pairs

Avro schemas, 154–155, 159, 162
B-tree structures, 200
data modeling, 39–40
generic bindings, 174–176
name, 91
overview, 8–9

partitions, 204
reading and writing, 111–112
records, 63–66
for shards, 194–197
size, 187–188
specific bindings, 167, 171, 174
version-based consistency, 144
writing records, 121–122

KeyRange parameter
multiDelete, 149–150
multiget, 134–135

keys, hashing for, 47–48
kvclient.jar application, 79
KVHOME file system, 77–79
KVLite

Database deployment, 76
developing on, 102–105, 120
sanity checks, 87

KVROOT file system, 77–78
KVStoreConfig class, 107, 111, 115, 132–133
KVStoreFactory class, 107, 111

L

large object support, 40
latency

logs for, 67
networks, 202
performance, 188–189
timeouts for, 142–144

leaf nodes (LNs) in B-trees, 200
Least Recently Used (LRU) policies, 201
licensing, 43
listing AVRO schemas, 165
LNs (leaf nodes) in B-trees, 200
LOB timeouts, 142
log sequence numbers (LSNs), 48–49
log-structured storage, 67–69
-logging option in KVLite, 103
logical I/Os in shard capacity, 197
logs

buffers, 70–72
for throughput, 67

low latency networks, 202
LRU (Least Recently Used) policies, 201
LSN-based consistency, 49
LSNs (log sequence numbers), 48–49

M

major database components, 109
major keys

data modeling, 39–40
Database, 27–28
delete operations, 149

10-Index.indd 225 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

226   Oracle NoSQL Database

major keys (cont.)
key-value size, 187
reading records, 132
records, 63–66
writing records, 121–122

makebootconfig utility, 83–86
map function, 210–211
mapper in MapReduce, 42
MapReduce framework, 7, 14–15, 42
maps, partition, 54–55
Maps value for JSON objects, 158
master nodes in replication factor, 191
masters

client-server systems, 26
for log writing, 71

Maven tool, 169
Max IOPS per KVStore, 203
Max IOPS per shard, 203
Max key-value pairs per KVStore, 203
memory

allocations, 201
considerations, 199–202

-memory_mb parameter for
makebootconfig, 85

migration of partitions, 55–59
migration planner, 56
minor database components, 109
minor keys

data modeling, 39–40
Database, 28
delete operations, 149
key-value size, 187
reading records, 132
records, 63–66
writing records, 121–122

mixed operations category, 104–105
modeling key space, 108–111
Moore’s Law, 2
multi_get function, 65
multi-master architecture, 33–34
multiDelete method, 148–150
multiget method

with iterator, 134–136
parameters, 133–136

MultiGetKeys method, 136–138
MultiGetKeysIterator method, 136–138
multiplayer online gaming

applications, 215
multiple datacenters, 60–63
multiple Location Files, 219
multiple replicas, 37
multiple-schema bindings

description, 166
generic, 175, 177–181
JSON, 181–183
specific, 171–174

N

Name value for JSON objects, 155
names

key-value stores, 91
topology, 94

Namespace value for JSON objects, 155
Network Time Protocol (NTP), 77
networks

capacity planning considerations, 202
latency issues, 142, 202
port requirements, 77
topology, 50–53

No Replicas policy, 126
NO_SYNC policy, 114, 126–127
nodes, 27

B-trees, 200
replication. See Replication

Nodes (RNs)
storage. See Storage Nodes (SNs)

-noexecute parameter for plan, 89
non-mandatory Avro schema attributes, 161
NONE replica policy, 114
NONE_REQUIRED consistency policy,

116–117, 140–141
normalization constraint, 109
nosql_stream utility, 217–219
NoSQL systems overview, 2

big data. See big data overview
characteristics and architectural trade-

offs, 5–6
historical perspective, 3–5
vs. relational databases, 7–8
types, 8–10

NTP (Network Time Protocol), 77
-num_cpus parameter for makebootconfig, 85

O

OBI EE (Oracle Business Intelligence
Enterprise Edition), 16

OEP (Oracle Event Processing), 42, 214
online display advertising

durability policies, 127
external databases, 215

online social gaming sector, durability policies
for, 127

open timeouts, 142
operating systems

disk cache, 201–202
requirements, 76

OperationExecutionExceptionThrown, 131
Oracle Berkeley DB, 24–27
Oracle Big Data Appliance, 17–19
Oracle Big Data Connectors, 15

10-Index.indd 226 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Index  227
Oracle Business Intelligence Enterprise Edition

(OBI EE), 16
Oracle Coherence, 43
Oracle Endeca Information Discovery, 17
Oracle engineered systems, 17–21
Oracle Event Processing (OEP), 42, 214
Oracle Exadata Database Machine, 17, 20
Oracle Exalytics In-Memory Machine,

17, 20–21
oracle.kv.exttab.Publish utility, 218
oracle.kv.hadoop.KVInputFormat

class, 209
oracle.kv.Value class, 107
Oracle NoSQL Database. See databases
Oracle NoSQL Database Administration

Service
creating, 92–93
overview, 80–82

Oracle R Enterprise (ORE), 16
Oracle RF Graph, 42
Order attribute for JSON objects, 157
ordering in folders, 110
ORE (Oracle R Enterprise), 16
organize phase, 14–15
override warnings in Avro schemas, 163

P

packages in Java, 105
pages and page cache, 67, 201
Parent and children value for Depth

parameter, 133
Parent and descendants value for Depth

parameter, 133
partition IDs, 54
partition maps, 54–55
partitions, 31–33. See also shards

database architecture, 53–55
migration, 55–59
total number of, 94, 204–205

performance
Database, 41
requirements, 188–190

physical I/O throughput in capacity
estimates, 199

ping command, 98–99
plain old Java objects (POJO) classes,

167, 170
plan command, 88
plan deploy-admin command, 93
plan deploy-datacenter command, 91
plan deploy-sn command, 92–94
plan deploy-topology command, 95
plans

capacity. See capacity planning
and sizing

configuration, 88–89
migration, 56

player usage statistics, 215
POJO (plain old Java objects) classes, 167, 170
policies

consistency, 115–117, 140
durability, 113–114, 125–127

pool create command, 93
pool join command, 93–94
-port option

KVLite, 103
makebootconfig, 83

ports
administration, 82, 84
network, 77
registry, 83
SNMP, 85

prepare-to-commit messages, 73
PREPROCESSORs, 216
primary keys, 28
properties

ACID, 7, 139
graph store objects, 9

publishing configuration, 218
put method, 26, 39, 122, 170
putIfAbsent method, 122–123, 150–151
putIfPresent method, 122, 124
putIfVersion method, 122, 125

Q

quorum writes, 113

R

R language, 15
random I/O latency, 67
range partitioning, 31
raw bindings, 165
RDBMS (relational database management

systems), 4–5, 7
RDF (Resource Description Framework) Graph

database, 211–213
read operations, 131

consistency, 36, 49, 139–146
exception handling, 147
external tables for, 219
get method, 132–133
multiget method, 133–136
MultiGetKeys and MultiGetKeysIterator

methods, 136–138
overview, 119–120
single key-value pairs, 111–112
StoreIterator method, 138–139
timeout latency issues, 143

10-Index.indd 227 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

228   Oracle NoSQL Database

read-to-write ratio
I/O capacity estimates, 198
performance effects, 189

reading data category, 104
ready-to-commit log records, 73
ready-to-commit messages, 73
real-time processing, 6
rebalancing store processes, 204
Record value for JSON objects, 156
reduce function, 210–211
redundancy, 33
registry ports, 83
rejection of Avro schemas, 161
relational database management systems

(RDBMS), 4–5, 7
relational databases vs. NoSQL databases, 7–8
relationship graphs, 211–213
replicas, 26

acknowledgment-based policies, 113
availability, 33
durability, 37
eventual consistency, 35–36
time lags, 49

replication factor (RF)
changing, 59–60
description, 27
determining, 190–192
I/O capacity estimates, 199

Replication Nodes (RNs)
B-tree structures, 200
Client Driver, 49
consistency, 48–49, 140
CPUs and memory, 85
creating and deploying, 94–95
directory, 86
and Java, 87, 201
multiple datacenters, 62
network considerations, 77, 202
placing, 57
ports, 77, 84
replication factor, 59–60, 190–192
in shards, 46, 50, 194–199
states, 47–48
on Storage Nodes, 50–52
synchronization policy, 117, 128
time-based consistency, 143–144
version-based consistency, 144

representative shard size, 194–197
request timeout latency issues, 143
RequestTimeoutException

latency issues, 142
read operations, 147
write operations, 131

Resource Description Framework (RDF) Graph
database, 211–213

resource managers, 73

-root parameter
KVLite, 103
makebootconfig, 83

runadmin command, 81–82, 90, 162
runExample function, 107

S

safety margins for disk space, 196
sanity checks, 87
scalability, sharding for, 9
scalable e-mail services, 127
schemas. See Avro schemas
script mode, 81–82
searching folders, 110–111
semi-structured systems, 5
Sent folder, 109
sequence of operation execution, 129–130
serialization, 154–155
-servicerange parameter for

makebootconfig, 84
shards, 9, 27, 31–33. See also partitions

database architecture, 50–53
I/O throughput capacity per, 197–199
number of, 55–59
partitions for, 53–55
servers, 46–47
total number of, 203–204

shared-disk systems, 29–30
shared memory systems, 29–30
shared-nothing systems, 29–31
shopping carts, 38
short I/Os, 189
show command, 82
show plans command, 91, 97
show schemas command, 165
show topology command, 92–94, 97
SI (International System of Units), 195
Simple Majority policy, 113, 126
Simple Network Management Protocol

(SNMP), 42
configuration, 85
ports, 85

single-API call transactions, 28
single command mode, 81
single key-value pairs, reading and writing,

111–112
single-master architecture, 33
single points of failure, 47, 61
single-schema bindings

description, 166
generic, 175–177
JSON, 181

sizing. See capacity planning and sizing
Sleepycat Software, Inc., 24

10-Index.indd 228 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

Index  229
SN. See Storage Nodes (SNs)
SNAs (Storage Node Agents), 46–47, 81–83
SNMP (Simple Network Management

Protocol), 42
configuration, 85
ports, 85

social gaming sector, durability policies
for, 127

software binaries, 77
software installation, 78–80
Solid state storage (SSD), 51–52
specific bindings, 165, 167

example, 169–171
Java file generation, 168–169
multiple schemas, 171–174

SQL (Structured Query Language), 4
SSD (Solid state storage), 51–52
standardization of data exchange, 154
start utility, 86–87
state information of Replication Nodes, 47–48
storage

database architecture, 50–53
records, 63–67

Storage Node Agents (SNAs), 46–47, 81–83
Storage Node Pools

creating, 93
topologies, 94

Storage Nodes (SNs), 46–47, 76, 199
adding, 55–59
boot configuration, 83–86
capacity, 51–53
creating, 93–94
datacenters, 91
deploying, 92
description, 50
plans, 88
Replication Nodes on, 50–51
store configuration, 89–90
synchronizing, 77

-storagedir parameter for makebootconfig,
83, 86

-store option for KVLite, 103
StoreIterator method, 138–139
strings, Java, 53
structured data, 5
Structured Query Language (SQL), 4
SYNC policies, 114, 126–127
synchronization-based policies, 114, 126
synchronization requirements, 77

T

tables, external, 215–219
terminology for database architecture, 46–47
threads, cleaner, 195

thresholds
cleaner utilization, 195
exception handling, 130

throughput
logs for, 67
shard I/O, 197–199

time, clock synchronization, 77
time-based consistency, 49

overview, 143–144
policies, 140

Time consistency policy, 116, 140
time lags with replicas, 49
timeouts, 142–144
TimesTen In-Memory Database, 21
toObject method, 159, 171, 173
topology create command, 94–95
total disk capacity, 194–195
total number of partitions, 204–205
total number of shards, 203–204
toValue method, 159, 170, 176
transaction coordinators, 73
transaction ID-based consistency, 36
Transactional data, 15
transactions, 38

ACID and distributed, 72–74
durability, 69–72
identifiers, 73

transient garbage collection, 142
transient network loads, 142
triples, 211
Twitter, 10
two-phase commit protocol, 73
Type value for JSON objects, 155–156
types

data, 114
NoSQL databases, 8–10

U

Union value for JSON objects, 158
unstructured systems, 5
update-in-place architecture, 67–68
updating records, 150–151
use cases for big data, 10–12
users, BI, 213–214

V

values
in data modeling, 39–40
key-value pairs. See key-value pairs

variability in big data, 6
variety in big data, 5–6
velocity in big data, 5–6

10-Index.indd 229 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4

230   Oracle NoSQL Database

Verify Configuration function, 97
verifying deployment, 96–99
version-based consistency, 49

delete operations, 149
overview, 144–146
policies, 16, 140

versions, record updating based on, 150–151
Voldemort database engine, 27
volume in big data, 5

W

-wait parameter for plan, 89
warm datasets, 190
Web Administration Console, 80

deployment verification, 96–98
description, 82

web user profiles, 7
write-ahead-log protocols, 69–70
write batch size in capacity estimates, 198
write function for log buffers, 71
WRITE_NO_SYNC policies,

114, 126–127
write operations

API durability, 125–131
API functionality, 122–125
exception handling, 130–131
overview, 119–122
single key-value pairs,

111–112
writing data category, 104

10-Index.indd 230 11/12/13 4:08 PM

Oracle-Regular /Oracle Database 12c New Features / Freeman / 931-1
Blind folio: 231

10-Index.indd 231 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4
lind folio: 232

10-Index.indd 232 11/12/13 4:08 PM

Oracle-Regular / Oracle Cloud Storage / Vengurlekar & Bagal / 015-2
Blind folio: 233

10-Index.indd 233 11/12/13 4:08 PM

Oracle-Regular /Oracle NoSQL Database / Alam & Muley / 653-4
lind folio: 234

10-Index.indd 234 11/12/13 4:08 PM

Join the Oracle Press Community at

OraclePressBooks.com
Find the latest information on Oracle products and
technologies. Get exclusive discounts on Oracle
Press books. Interact with expert Oracle Press
authors and other Oracle Press Community members.
Read blog posts, download content and multimedia,
and so much more. Join today!

Join the Oracle Press Community today

and get these benefits:

• Exclusive members-only discounts and offers

• Full access to all the features on the site: sample

chapters, free code and downloads, author blogs,

podcasts, videos, and more

• Interact with authors and Oracle enthusiasts

• Follow your favorite authors and topics and

receive updates

• Newsletter packed with exclusive offers and

discounts, sneak previews, and author podcasts

and interviews

@OraclePress

	Cover
	Title Page
	Copyright Page
	About the Authors
	About the Developmental Editor

	Contents at a Glance
	Contents
	Foreword
	Acknowledgments
	Introduction
	Intended Audience

	Chapter 1: Overview of Oracle NoSQL Database and Big Data
	Introduction to NoSQL Systems
	Brief Historical Perspective
	Big Data and NoSQL: Characteristics and Architectural Trade-Offs
	Types of Big Data Processing
	NoSQL Database vs. Relational Database
	Types of NoSQL Databases
	Key-Value Stores
	Document Stores
	Graph Stores
	Column Stores

	Big Data Use Cases
	Oracle’s Approach to Big Data
	Acquire
	Organize
	Analyze
	Oracle Engineered Systems for Big Data

	Summary

	Chapter 2: Introducing Oracle NoSQL Database
	Oracle Berkeley DB
	Oracle NoSQL Database
	Database System Architectures
	Partitioning and Sharding
	Availability
	Eventual Consistency
	Durability—Making Changes Permanent
	Transactions
	Data Modeling
	Performance
	Administration
	Integration with Other Products
	Licensing

	Summary

	Chapter 3: Oracle NoSQL Database Architecture
	High-Level Architecture and Terminology
	Intelligent Client Driver
	Shards, Storage, and Network Topology
	Hashing, Partitions, Data Distribution
	Changing the Number of Shards
	Changing the Replication Factor

	Considerations for Multiple Datacenters
	Storing Records and the Flexible Data Model
	Log-Structured Storage
	Durability
	ACID Transactions and Distributed Transactions
	Summary

	Chapter 4: Oracle NoSQL Database Installation and Configuration
	Oracle NoSQL Database Installation
	Download Oracle NoSQL Database Software
	Software Installation
	Oracle NoSQL Database Administration Service
	Create the Boot Configuration
	Perform Sanity Checks

	Oracle NoSQL Database Configuration
	Plans
	Configuration Steps
	Automating the Configuration Steps
	Verifying the Deployment

	Summary

	Chapter 5: Getting Started with Oracle NoSQL Database Development
	Developing on KVLite
	A Basic Hello World Program

	How to Model Your Key Space
	The Basics of Reading and Writing a Single Key-Value Pair
	Consistency and Durability from the Programmer’s Perspective
	Durability
	Consistency

	Summary

	Chapter 6: Reading and Writing Data
	Development Environment Setup
	Writing Records
	Basic API Functionality
	How to Specify Durability in Write API Calls

	Reading Records
	Read One Record or Multiple Records in Many Ways
	Introduction to API for Enforcing Read Consistency
	Exception Handling for Read Operations

	Deleting Records
	Updating Records Based on a Version
	Summary

	Chapter 7: Advanced Programming Concepts: Avro Schemas and Bindings
	Avro Schema
	Schema Evolution
	Managing Avro Schemas

	Avro Bindings
	Specific Bindings
	Generic Bindings
	JSON Bindings

	Summary

	Chapter 8: Capacity Planning and Sizing
	Gather Sizing Requirements
	Application Characteristics
	Hardware Specifications

	Capacity Planning and Sizing
	Size a Representative Shard
	Determine the Total Number of Shards and Partitions

	Summary

	Chapter 9: Advanced Topics
	Hadoop Integration
	RDF Graph
	Integration with Complex Event Processing
	Database External Tables
	Define an External Table
	Edit the Configuration File
	Publish the Configuration
	Test the nosql_stream Script
	Use the External Table to Read Data from Oracle NoSQL Database
	Summary

	Index

