
www.allitebooks.com

http://www.allitebooks.org

Oracle SOA Suite
Performance Tuning
Cookbook

Over 100 recipes to get the best performance from
your Oracle SOA Suite 11g infrastructure

Matt Brasier

Nicholas Wright

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle SOA Suite Performance Tuning
Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1040713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-884-0

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Matt Brasier

Nicholas Wright

Reviewers
Sandeep Phukan

Sylvain GROSJEAN

Tumelo Mametsa

Acquisition Editors
Grant Mizen

Antony Lowe

Lead Technical Editor
Susmita Panda

Technical Editors
Pushpak Poddar

Rikita Poojari

Lubna Shaikh

Project Coordinators
Abhishek Kori

Wendell Palmer

Proofreaders
Elinor Perry Smith

Stephen Silk

Indexer
Hemangini Bari

Graphics
Valentina D'silva

Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Matt Brasier is a professional services consultant with 10 years of experience tuning
Enterprise Java applications. He has 9 years of experience working with Enterprise Java
middleware, and has always focused on the performance aspects of application servers
and SOA platforms. Matt has spoken at numerous technical conferences, including
The Serverside Java Symposium and JUDCon.

Matt is the head of consulting at C2B2 Consulting Ltd., an independent middleware
consultancy specializing in SOA and JEE, providing professional services on the leading Java
middleware platforms. C2B2 is an Oracle Gold Partner with Application Grid Specialization.

I would like to thank my partner, Caroline, and our dog, Minstrel, for their
understanding while I was writing this book, my father for encouraging me at
the start, and C2B2 for giving me the time and experience necessary to do it.

Nicholas Wright is a Java middleware consultant and technical evangelist with 9 years
of experience from Embedded C real-time systems to Enterprise Java. He has served on a
Java Community Process Expert Group, and spoken at conferences across the world.

Nick is a senior consultant at C2B2 Consulting Ltd., where he works with a wide range
of commercial and open source JEE and SOA middleware platforms.

I would like to thank my family, friends, and colleagues for whom I have
disappeared off the face of the Earth while working on this book. For your
patience and understanding, I thank you. Mostly I must thank my partner,
Kay Louise, for putting up with my continual slaving over a computer
whenever I have any spare time, love you.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sandeep Phukan has more than 9 years of experience in Integration Technologies and
Java. Sandeep currently works as a Senior Consultant with Anatas Technology Services, Sydney,
a leader in next generation Enterprise Architecture Solutions. Earlier, Sandeep worked as a
Technical Lead for Nokia Siemens Network R&D, Bangalore, assisting on the integration of Next
Generation Unified Convergent Billing Systems based on Oracle Fusion Middleware 11g.

Prior to this, Sandeep worked with Oracle SSI, Bangalore as a Senior Consultant, where
his key involvement was Oracle AIA for Communications (Telco PIP). During this period he
travelled to several countries around the world, aiding customers in developing customizations
for Oracle AIA artifacts.

Sandeep is a certified Java Developer and has a keen interest in Low Bandwidth Transports
and Distributed Algorithms. During his time at Oracle SSI, Sandeep was actively involved with
the SSI Innovation Centre where he created a number of utility extensions to the Oracle SOA
Suite. Sandeep also maintains an open source repository of several SOA utilities in the Google
code repository http://code.google.com/p/soalabs/.

Sandeep is also an avid researcher in the area of SOA Governance. He has published a
number of papers in the Oracle Technology Network (OTN) on technology neutral Designtime
Dependency analysis of SOA Artifacts. One of his inventions on this subject (Graph Based
Designtime Dependency Analysis) has recently been accepted for a Patent in the US Patents
and Trademarks Office (USPTO).

I would like to thank my loving wife Aparupa for her patience during those
late night researches, and my friends and colleagues at Anatas who were
always there whenever I needed them.

www.allitebooks.com

http://www.allitebooks.org

Sylvain GROSJEAN is a principal Oracle Fusion Middleware consultant currently working
as a freelancer in France.

Over the past 12 years, he collaborated with BEA, and then with Oracle Consulting as a
solution architect and trainer helping multiple major French clients (Utilities, Transportation,
Insurance, Healthcare, Telecom).

His primary focus is on Oracle Service Bus, Oracle SOA Suite, Oracle BPM, and ADF.

You can follow Sylvain through his own blog at http://sgrosjean.blogspot.com

Tumelo Mametsa is an Oracle Fusion Middleware expert currently consulting on various
projects in South Africa and other African countries. He has over 10 years of experience in
the Electronics and IT fields, respectively, with increasing level of responsibility. He is currently
providing senior leadership for solutions architecture, enterprise architecture, business process
engineering efforts, including SOA and Open Source Solutions for Africom IT Solutions.

His focus is on engineered systems using various technologies, primarily the Oracle Fusion
Middleware Stack. He also provides training for Oracle on Oracle Fusion Middleware Products.

To my extended, supportive, loving Mametsa family (Mpho, Stlaks, Tshepo,
Nunu, Letsie, Gontse), thanks for always being there for me. Much love
to my darling wife Tsakani and kids, Tumisa, and Seetja. You guys make
everything worthwhile. Thanks to my partners at Africom IT Solutions, you
are the best team to work with by far. Much appreciation to all my friends
(the Zoo) for individually supporting me in your unique ways, without you
guys I would not be able to expertly juggle so many balls.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Identifying Problems 5

Introduction 6
Identifying new size problems with jstat 7
Identifying permanent generation problems with jstat 9
Monitoring garbage collection with jstat 10
Identifying locking issues with jstack 12
Identifying performance problems with jstack 14
Identifying performance problems using VisualVM on HotSpot 16
Identifying performance problems using JRMC on JRockit 21
Using JRockit flight recorder to identify problems 24
Monitoring JDBC connections with the WebLogic console 28
Identifying slow-running database queries 32
Identifying slow-running components with the Enterprise Manager 33

Chapter 2: Monitoring Oracle SOA Suite 35
Introduction 36
Installing the Hyperic server 37
Installing Hyperic agents 42
Configuring Hyperic to monitor SOA Suite 11g 46
Monitoring the SOA Suite server availability 51
Monitoring the JVM memory usage 54
Monitoring the platform CPU usage 58
Monitoring the data source usage 60
Monitoring open sockets 63
Monitoring committed transactions 66
Configuring alerts in Hyperic 69
Monitoring the system using the DMS servlet 72

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Performance Testing 75
Introduction 75
Installing Apache JMeter 77
Creating a web service test using JMeter 78
Running JMeter on multiple servers 81
Checking responses in JMeter tests 84
Monitoring SOA Suite while testing 88
Recording user web sessions with JMeter 92
Designing advanced load tests 94
Running performance tests from the Cloud 98

Chapter 4: JVM Memory 105
Introduction 105
Increasing the JVM heap size 106
Setting Xmx and Xms to the same value 111
Setting the size of the Permanent Generation heap 113
Calculating the total memory used by your application 115
Viewing the memory used using JRMC for JRockit 119
Viewing the memory used using VisualVM for HotSpot 124
Setting the size of the thread stack 130

Chapter 5: JVM Garbage Collection Tuning 133
Introduction 133
Setting the new size 134
Setting the survivor ratio 136
Choosing a garbage collection algorithm in HotSpot 138
Choosing a garbage collection algorithm in JRockit 140
Turning on verbose garbage collection 142
Tuning to reduce the number of full garbage collections 144
Disabling the RMI garbage collector 148
Disabling explicit GC 149

Chapter 6: Platform Tuning 151
Introduction 152
Tuning global transaction timeouts 153
Increasing the HTTP accept backlog 155
Reducing the server logging level 157
Finding out which JVM you are using 159
Using large pages in Linux 160
Increasing the number of file descriptors in Linux 162
Tuning the SOA Suite EJB timeouts 163
Upgrading to a newer JVM 167

iii

Table of Contents

Setting the Linux kernel swappiness to low 169
Using the Oracle JRockit JVM 171
Running your domain in the production mode 173
Creating a boot.properties file 175

Chapter 7: Data Sources and JMS 179
Introduction 179
Setting the data source pool sizes 180
Configuring data source testing 183
Configuring data source growing and shrinking 185
Setting data source connection timeouts 187
Tuning database XA timeouts 188
Tuning connections in the native EIS database adapter 191
Configuring the WebLogic thread pool 194
Using JMS file persistence 197
Tuning JMS connection factories 200

Chapter 8: BPEL and BPMN Engine Tuning 205
Introduction 206
Tuning the dispatcher invoke threads 207
Tuning the dispatcher engine threads 211
Tuning the dispatcher system threads 214
Disabling BPEL monitors and sensors 217
Reducing the audit level 219
Changing a BPEL process to be transient 221
Reducing the completion persist level 223
Disabling persistence on invocation 224
Setting the audit store policy 226
Reducing audit trail size threshold 228
Increasing large document threshold 229
Reducing SOA infra log levels 230
Purging data from the BPEL store 232
Ensuring automatic database statistics gathering is enabled 235
Tuning Oracle database parameters 236
Tuning the Oracle database 239

Chapter 9: Mediator and BAM 247
Introduction 247
Setting Mediator Parallel Metrics Level 248
Setting Mediator Parallel Worker Threads 250
Setting Mediator Parallel Maximum Rows Retrieved 250
Setting Parallel Locker Thread Sleep 251
Using batched delivery in the BAM Adapter 252

iv

Table of Contents

Chapter 10: Rules and Human Workflow 255
Introduction 255
Disabling automatic release timers globally 256
Choosing the correct workflow service client 258
Preventing looping and inefficient rule execution 259
Tuning rule execution 263

Chapter 11: SOA Application Design 267
Introduction 267
Using BPEL process parallelization 269
Using non-blocking service invocations in BPEL flows 271
Turning off payload validation and composite state monitoring 273
Designing BPEL processes to reduce persistence 275
Using parallel routing rules in Mediator components 276
Setting HTTP timeouts for external services 278
Tuning BPEL adapter properties 280

Chapter 12: High Performance Configuration 283
Introduction 283
Configuring a cluster of SOA Suite servers 284
Configuring an OHS load balancer 288
Tuning for deployment on a virtualized infrastructure 290
Using distributed JMS destinations in a cluster 292
Using JMS bridges to improve the enqueue speed 297
Choosing deployment hardware 304

Index 307

Preface
Oracle SOA Suite 11g forms the basis of the SOA infrastructure for many organizations. While
there is a wealth of information on administering SOA Suite applications already available,
there is very little independent information available regarding performance tuning. With the
chief goal of software and hardware vendors being to sell more licenses and hardware, the
topic of getting the most from your existing investment often falls by the wayside. This book
aims to address that by giving clear, concise, and simple recipes that will help you identify
performance bottlenecks in your application, and then resolve them.

We work from the ground up, starting with how to identify common SOA Suite 11g performance
problems and introducing the tools that you need, and working up the stack through JVM tuning
and application server tuning, before covering the BPEL, BPMN, and mediator stacks. Finally,
we have chapters on application design and deployment considerations.

What this book covers
Chapter 1, Identifying Problems, starts out by looking at some of the common performance
problems that can occur in the Oracle SOA Suite applications, and how to identify them. We
look at using a variety of tools to understand what is going on inside the JVM, and to identify
the particular resource bottleneck that is causing poor performance.

Chapter 2, Monitoring Oracle SOA Suite, looks at how we can use the VFabric Hyperic tool
from VMWare to monitor the performance of our SOA Suite infrastructure, and what metrics
we should be keeping an eye on.

Chapter 3, Performance Testing, looks at using the Apache JMeter tool to solve performance
problems, by triggering them.

Chapter 4, JVM Memory, starts right at the bottom of the Oracle SOA Suite 11g stack. We
look at how JVM memory is allocated, and how you can increase and decrease the memory
available to your application, as well as other JVM tuning tips. The low-level areas of Oracle
SOA Suite are often overlooked, so we cover the basics of Java memory management in
enough detail to give those unfamiliar with it sufficient background to understand what they
need to be concerned about.

Preface

2

Chapter 5, JVM Garbage Collection Tuning, teaches us how the Java virtual machine garbage
collector does a very complicated job, and that there are a number of ways of optimizing it
for the kinds of payloads that Oracle SOA Suite 11g usually has to handle.

Chapter 6, Platform Tuning, looks at some of the tuning options available in the operating
system and Oracle WebLogic server that can improve the performance of SOA Suite
11g applications.

Chapter 7, Datasources and JMS, covers tips related to JMS and Datasource tuning that
can improve the performance of resource-intensive SOA Suite applications.

Chapter 8, BPEL and BPMN Engine Tuning, primarily focuses on how we can improve the
performance of the engine itself, including database tuning recipes, and helps those who
find that the bottleneck of their SOA Suite system is the BPEL or BPMN application itself.

Chapter 9, Mediator and BAM, focuses on tuning the Oracle SOA Suite Mediator, and
also includes some information on tuning the BAM Adapter for SOA Suite application
that connects to a BAM service.

Chapter 10, Rules and Human Workflow, focuses on tuning the rules and human-workflow
components, and our recipes focus on how to reduce resource contention.

Chapter 11, SOA Application Design, focuses on design-time recipes that will be of more
interest to architects. We also discuss how design-time decisions can have an impact on
the performance of a SOA Suite application, and covers best practices for designing the
key components.

Chapter 12, High Performance Configuration, takes a higher-level look at the Oracle SOA
Suite-deployment architectures, focusing on how we can use cluster and load balance
to scale our application out to meet performance requirements.

What you need for this book
We obviously assume that you have an Oracle SOA Suite 11g application, and are looking
to tune it. So we expect that you have the necessary software and licenses from Oracle.
In addition to SOA Suite 11g from Oracle, which is used throughout the book, we also make
use of the VFabric Hyperic HQ monitoring tool from VMWare, and the JMeter load-testing tool
from Apache. Both Hyperic and JMeter are freely available from their respective vendors.

Preface

3

Who this book is for
The target audience for this book are Oracle SOA Suite administrators of all levels of
experience. Whether you normally administer databases and have had SOA Suite handed
to you because it has Oracle in the name, or whether you have years of experience in SOA
administration, we are sure you will find something useful in this book. While the primary
audience are the administrators, there is plenty of useful information—to think about when
designing applications—for application architects as well.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Batching_
Limit_Lower determines the minimum number of messages in the batch."

A block of code is set as follows:

HugePages_Total: <number of pages>
HugePages_Free: <number of pages>
Hugepagesize: <page size, in kB>

Any command-line input or output is written as follows:

cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this:

"Set the property Metrics Level to Disabled."

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

4

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website,
or added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

1
Identifying Problems

This chapter looks at some of the tools and techniques that you can use to identify the
areas where any performance bottlenecks are in your SOA Suite application. It covers
the following recipes:

 f Identifying new size problems with jstat

 f Identifying permanent generation problems with jstat

 f Monitoring garbage collection with jstat

 f Identifying locking issues with jstack

 f Identifying performance problems with jstack

 f Identifying performance problems using VisualVM on HotSpot

 f Identifying performance problems with JRMC on JRockit

 f Using JRockit flight recorder to identify problems

 f Monitoring JDBC connections with the WebLogic console

 f Identifying slow running database queries

 f Identifying slow running components with the Enterprise Manager

Identifying Problems

6

Introduction
When asked to look into performance issues with a SOA Suite installation, we commonly start
by collecting log files from the various system components, looking for clues on any errors or
points of contention. The more advanced among us may even have collected Java garbage
collection logs and runtime data, and then reviewed it for the same reasons. We encourage
these actions as a starting point, but what do we do when the information isn't available in
log files? The goal of this chapter is to bridge the gap between knowing there's an issue and
identifying it, by introducing a range of tools and techniques for looking at scenarios, before
thinking about how to take a remedial action.

The remainder of this book contains a number of recipes that will help you improve the
performance of your SOA Suite application by tuning various aspects of the infrastructure, but
the changes will generally only make a difference in the area in which the application is slow.

The first step in being able to performance tune your SOA Suite application is to be able
to identify where the performance bottlenecks are. Performance is always governed by
the availability of resources, and there is always some bottleneck in an application,
which prevents it from performing faster. These resources can include the following:

 f CPU time

 f Network bandwidth

 f Input/Output (IO) time

 f Memory

 f Availability of data to process

Memory is not generally a significant bottleneck on its own, but not having enough memory
available to your SOA Suite application results in excessive Java garbage collection, which is
a CPU-intensive activity, resulting in contention on the CPU. The most common bottlenecks in
SOA Suite applications are IO time (waiting for data to be written to some resource, such as a
disk or the network) and availability of data (waiting for data to be provided by some external
system or user). However, all of the resources mentioned in the preceding list can cause
bottlenecks in a SOA Suite application.

It is worth noting that different use cases can have different bottlenecks, so you need to tune
for a realistic set of use cases; this is something that is discussed in more detail in a later
performance tuning chapter.

We'll start by looking at some tools bundled in the various SOA Suite Java Virtual Machines
for diagnosing Java issues, and look at some other common causes of resource contention in
SOA Suite. The recipes in this chapter offer suggestions on next steps for common issues, but
as mentioned earlier, later chapters will target specific areas of the SOA infrastructure in more
detail, once you get over the hurdle of knowing where to start looking.

Chapter 1

7

Identifying new size problems with jstat
jstat is a Java Virtual Machine (JVM) command-line tool, which shows you a number of
statistics regarding how the JVM is performing. In this recipe, we will use it to understand
how large the new size is, and how frequently it is filling up.

Getting ready
You will need the SOA Suite installed for this recipe, and will need permission to execute the
domain control scripts, as well as the JVM tools. This recipe assumes that your SOA Suite
application is running under a normal load.

The tools jps and jstat are included with both the HotSpot and JRockit JVMs. For brevity,
this recipe assumes that you have the relevant bin directory on your path. If you do not,
simply use the fully qualified paths to the relevant bin directory.

How to do it…
1. Use JPS to determine the process ID of your SOA Suite server.

jps –v

The process ID is the number in the first column. The SOA Suite server can be
identified by the command-line options that the JVM has. If you have multiple SOA
Suite servers running on the same machine, you can identify the relevant server
by the –Dweblogic.Name parameter, as shown in the following screenshot:

2. Use the jstat command to view the sizes of the survivor spaces and Eden:
jstat -gc -h10 <pid> 2000

The metrics we are interested in are S0C, S1C, EC, and OC. These are the sizes
(capacity) of the two survivor spaces, the Eden space and the old generation,
all in KB.

Identifying Problems

8

3. Check that S0C and S1C have values of 10000 or higher.

4. Check that EC has a size of between 20 percent and 50 percent of OC.

How it works…
jstat is a JVM tool that can be used to view a number of runtime statistics regarding the JVM.
More detail on the JVM and its memory layouts is available in the recipes in Chapter 5, JVM
Garbage Collection Tuning. The option -gc prints the statistics about garbage collection,
including the capacity and utilization of each memory pool. In the preceding example, the
parameter –h10 prints the headers every 10 lines, to make the output easier to read, and
2000 is the time in milliseconds between each sample (2 seconds).

What we are looking for are problems caused by the new generation memory spaces (Eden
and the two survivor spaces) having capacities that are too small. This will cause garbage
collection to occur more frequently than necessary, resulting in poor performance. Due
to their nature, SOA Suite applications usually involve a lot of object allocation, but many
of these objects generally do not last very long (the duration of a request), so they can be
collected while they are still in the Eden or one of the survivor spaces. For this reason, we
generally want a SOA Suite application to have an Eden size that is between 10 percent to
33 percent of the total heap size. From our experience, this is a good starting point for an
Eden space that needs to cope with lots of short-lived objects. The survivor spaces should
be large enough to hold the objects generated by one or two large requests, and we have
found that values smaller than 10 MB (around 10000 in jstat) can cause problems.

There's more…
If you have set the new size (or new ratio) and survivor ratio values on the command line,
then the values you see in the output of jstat should match those you specified.

See also
 f The Setting the survivor ratio and Setting the JVM new size recipe in Chapter 5,

JVM Garbage Collection Tuning

Chapter 1

9

Identifying permanent generation problems
with jstat

The permanent generation is a special part of the HotSpot JVM's memory, which stores
"class templates"' for the JVM class loader to use when creating and removing objects.

jstat is a JVM command-line tool, which shows you a number of statistics regarding how
the JVM is performing.

In this recipe, we use jstat to understand the size of the permanent generation.

Getting ready
You will need SOA Suite installed for this recipe, and will need permission to execute the
domain control scripts, as well as the HotSpot JVM tools. This recipe assumes that your
SOA Suite application is running such that we may run jstat against it.

The tools jps and jstat are included with both the HotSpot and JRockit JVMs. For brevity,
this recipe assumes that you have the relevant bin directory on your path. If you do not,
simply use the fully qualified paths to the relevant bin directory.

This recipe assumes you are using HotSpot, as JRockit does not have a permanent generation.

How to do it…
1. Use JPS to determine the process ID of your SOA Suite server; see step 1 of

the Identifying New Size problems with jstat recipe.

2. Use the jstat command to view the sizes of the survivor spaces and Eden:
jstat -gc -h10 <pid> 2000

The metrics we are interested in are PC and PU. PC is the capacity (size) of
the permanent generation (in KB), and PU is the utilization of the permanent
generation (in KB).

3. We want to see that PU is around 80 percent or less of PC.

Identifying Problems

10

How it works…
jstat is a JVM tool that can be used to view a number of runtime statistics regarding the
JVM. The option –gc printsthe statistics about garbage collection, including the capacity
and utilization of each memory pool. In the preceding example, the parameter –h10 prints
the headers every 10 lines, to make the output easier to read, and 2000 is the time in
milliseconds between each sample (2 seconds).

Permanent generation is the section of JVM memory that is used to store classes and other
objects that cannot be represented as Java types. The larger a SOA Suite application is, the
more classes it will contain, and the more permanent generation it will need. If the permanent
generation is too small, classes will need to be unloaded and reloaded in the permanent
generation, causing full garbage collections to occur, and a performance hit. We want
permanent generation to be large enough to hold all the classes in your SOA Suite application,
with a little overhead for other resources, so if the utilization of the permanent generation
is around 80 percent of its capacity, we should have sufficient overhead to prevent classes
needing to be unloaded.

See also
 f The Setting the permanent generation size recipe

Monitoring garbage collection with jstat
jstat is a JVM command-line tool, which shows you a number of statistics regarding
how the JVM is performing. In this recipe, we use jstat to understand the size of the
permanent generation.

Getting ready
You will need the SOA Suite installed for this recipe, and will need permission to execute the
domain control scripts, as well as the JVM tools. This recipe assumes that your SOA Suite
application is running under a normal load.

The tools jps and jstat are included with both the HotSpot and JRockit JVMs. For brevity,
this recipe assumes that you have the relevant bin directory on your path. If you do not,
simply use the fully qualified paths to the relevant bin directory.

This recipe assumes you are using HotSpot, as JRockit does not have a permanent generation.

Chapter 1

11

How to do it…
1. Use JPS to determine the process ID of your SOA Suite server, see step 1 of the

Identifying New Size Problems with jstat recipe.

2. Use the jstat command to view the sizes of the survivor spaces and eden:

jstat -gc -h10 <pid> 2000

The metrics we are interested in are YGCC, YGCT, FGCC, and FGCT. These are
the young garbage collection count, young garbage collection time, full garbage
collection count, and full garbage collection time.

How it works…
jstat is a JVM tool that can be used to view a number of runtime statistics regarding the JVM.
The option –gc prints statistics about garbage collection, including the capacity and utilization
of each memory pool. In the preceding example, the parameter –h10 prints the headers every
10 lines, to make the output easier to read, and 2000 is the time in milliseconds between
each sample (2 seconds).

Since garbage collection is a "stop the world" activity, any time spent garbage collecting is not
the time spent in executing your business logic. We therefore want to minimize the amount of
time spent in performing garbage collection. See the chapter on garbage collection for more
details on what we are looking to achieve with garbage collection tuning.

There's more…
In Chapter 5, JVM Garbage Collection Tuning, we also pass the JVM a startup option to enable
verbose GC logging output, so we can capture this data all the time.

We can then run free tools such as GCviewer (http://www.tagtraum.com/gcviewer.
html) on this data output to visualize the data trends. Later in this chapter, we will introduce
using real-time monitoring tools bundled with the JVM to view this same data.

See also
 f The Identifying performance problems using VisualVM on HotSpot and Identifying

performance problems with jrmc on JRockit recipes

 f The Tuning to reduce the number of major garbage collections and Turning on
verbose garbage collection recipes in Chapter 5, JVM Garbage Collection Tuning

Identifying Problems

12

Identifying locking issues with jstack
As SOA Suite is a heavily multi-threaded Java application, where locks are used to synchronize
resources. If the threads encounter issues sharing these locks, then the impact on
performance can be severe.

jstack is a HotSpot JVM tool that allows you to view thread dumps, which can be a useful way
of identifying locking problems in your application.

Getting ready
You will need SOA Suite installed for this recipe, and will need permission to execute the
domain control scripts, as well as the JVM tools. This recipe assumes that your SOA Suite
application is running, and under a normal load.

The tools jps and jstack are included with the HotSpot JVM. If you're using JRockit, then
see the There's more.. section of this recipe for the alternative command to use. For brevity,
this recipe assumes that you have the relevant JVM bin directory on your command line path.
If you do not, simply use the fully qualified paths to the relevant bin directory.

How to do it…
1. Use JPS to determine the process ID of your SOA Suite server; see step 1 of the

Identifying New Size Problems with jstat recipe.

2. Use the jstat command to create a thread dump for the process. We specify the -l
parameter to display additional information about locks, and redirect the output to a
file, so we can inspect it more easily:
jstack -l <pid> >jstack-output.txt

This will generate a file called jstack-output.txt. Alternatively kill -3 <pid>
can be used on Linux or Ctrl + Break in the console in Windows.

3. Open jstack-output.txt in your favorite text editor. There are two main types
of locking problem we are looking for. The first is a deadlock, where two threads
each own one or more locks, but are both waiting on each other's locks. This will
look something similar to the following screenshot:

Chapter 1

13

Note that each thread is waiting on the lock held by the other thread. If you see
thread deadlocks, this generally requires that you redesign your application to
acquire locks in the correct order.

The second type of problem we are looking for is lock contention. This occurs when
many threads are all waiting to get access to the same lock. When this occurs,
you will see many threads all waiting on the same lock. This usually also requires
application code changes to resolve.

How it works…
The jstack tool comes with the HotSpot JVM, and is used to produce stack dumps for a
running JVM. The output of stack dumps contains information on any locks held by each
thread, which we can use to diagnose common locking-related problems.

Identifying Problems

14

There's more…
There are two ways of performing locking in a Java application. The first is by using the
synchronized keyword, and is the most common. Locks obtained using this method appear
in the thread dumps as threads marked as - locked <object reference>, and threads
waiting to enter a synchronized block that they do not own the lock to are marked as –
waiting on <object reference>. The second mechanism for obtaining locks is using the
java.utilconcurrent.locks package, and locks obtained in this way do not appear in
a standard thread dump. However, by specifying the -l parameter to jstack, we are able to
view the information on which threads hold locks. This information is displayed in the locked
ownable synchronizers section below each thread dump.

Free tools are available to examine lock dumps, but we will not discuss them in this book.

The techniques in this recipe can be replicated on the JRockit JVM with the command jrcmd
<pid> print_threads, where pid can be identified using JRockit's jps in the same way
as with the HotSpot JVM.

Identifying performance problems with
jstack

Jstack is a JVM tool that will generate thread dumps for a running JVM. We can use this as
a way to do some lightweight profiling of our running SOA Suite application, to identify where
performance bottlenecks are.

Getting ready
You will need the SOA Suite installed for this recipe, and will need permission to execute the
domain control scripts, as well as the JVM tools. This recipe assumes that your SOA Suite
application is running under a normal load.

The tools jps and jstack are included with the HotSpot JVM. If you're using JRockit then
see the There's More… section of this recipe for the alternative command to use. For brevity,
this recipe assumes that you have the relevant bin directory on your path. If you do not,
simply use the fully qualified paths to the relevant bin directory.

How to do it…
1. Use JPS to determine the process ID of your SOA Suite server; see step 1 of the

Identifying New Size Problems with jstat recipe.

2. Execute a slow performing use case on your SOA Suite server.

Chapter 1

15

3. While the use case is executing, use the jstat command to create a thread dump
for the process. We redirect the output to a file to inspect it more easily:
jstack<pid> >jstack-output-1.txt

This will generate a file called jstack-output-1.txt. Alternatively, kill -3
<pid> can be used on Linux or Ctrl + Break in the console in Windows.

4. Repeat step 3 a number of times, changing the number of the generated file each
time, to create a sequence of thread dumps. I suggest aiming to create thread dumps
at intervals of one or two seconds, for a period of 30 seconds, or the amount of time
that it takes to execute your slow use case.

5. Open the output files in your favorite text editor.

To identify the poor performing code, we are looking for thread stacks that appear frequently
across the files. These will either be operations that are executed multiple times, or operations
that are executed once but take a long time to complete.

How it works…
A thread dump is a snapshot of what the every thread in the application is doing at a
particular moment in time. By taking multiple thread dumps over a period of time, we can
build up a picture of where the application is spending its time. This approach is essentially
how a sampling profiler works, so we are effectively doing manual profiling of the application.

It is common to find that the cause of poor performance is waiting on data from external
systems, such as a database or web service. In this case, what we will see in our thread
dumps is that there will be many instances where a thread is in JVM code that is reading
data from a socket. This is the thread waiting on a response from the remote system, and
we know that we should target the external system in order to improve the performance.

We can quickly look through large numbers of stacks by noting that, in general, threads of
interest to us will be those that are running the application code. We can identify the threads
of interest, as they will generally have two properties; they will be executing the code from the
packages that are used in your application, and they will have stack traces that are longer
than those of threads that are currently idle.

There's more…
What we are doing here is essentially what a sampling profiler tool would do, although we are
doing it manually. While there may be cases in which a sampling profiler would be a preferable
way of doing this, we have found that doing the profiling manually gives a number of benefits.
Firstly, it uses only tools that already exist on the server—there is nothing that needs installing,
and given that we may be doing this on a live system, this usually means less paperwork.
Secondly, we have more control over how and when we generate the thread dumps, which
helps reduce the overhead on the application.

Identifying Problems

16

If we find this technique is something that we do frequently, it may be worth writing a script
that will generate the thread dumps for us. We have found this to be a good compromise
between using a sampling profiler and manually sampling, using thread dumps.

It is worth noting that WebLogic can report Java threads as "stuck" if they run for a longer
period of time than a configurable timeout. This itself is not indicative of a problem, as
long-running activities (such as database or file polling) can be valid things for application
components to do. Observing thread dumps will tell us definitively whether we need to take
further action.

Generating heap dumps is also a good technique for investigating performance issues, and
free tools such as the Memory Analyzer Toolkit can generate reports on object allocation
and aid with detecting memory leaks. We do not discuss heap dumps explicitly in this book,
because SOA Suite is an Oracle supported application, so issues with the core components
themselves should be raised with Oracle support, but there are plenty of good resources
online to get use this technique if you desire.

See also
 f The Identifying performance problems using VisualVM on HotSpot, Identifying

performance problems using JRMC on JRockit, and Using JRockit Flight Recorder
to identify problems recipes

Identifying performance problems using
VisualVM on HotSpot

VisualVM is a powerful graphical tool that comes with the HotSpot JVM. It has a number of
views, which can be useful for diagnosing performance problems with SOA Suite. This recipe
looks at a number of these features.

Getting ready
You will need SOA Suite installed for this recipe, and will need permission to execute
the domain control scripts, as well as the JVM tools. This recipe assumes that your SOA
Suite application is running under a normal load, or a load sufficient to demonstrate any
performance problems.

Chapter 1

17

The tool jvisualvm is included with the HotSpot JVM, JRockit has a different tool described
in a different recipe. For brevity, this recipe assumes that you have the relevant JVM bin
directory on your path. If you do not, simply use the fully qualified paths to the relevant
bin directory.

How to do it…
1. Use JPS to determine the process ID of your SOA Suite server, see step 1 of the

Identifying New Size Problems with jstat recipe. This will let us identify a target Java
process in a host running multiple JVMs. We're trying to identify the WebLogic admin
server to use with Visual VM.

2. Start VisualVM by using the jvisualvm command:
jvisualvm

If this is the first time you have run VisualVM, it will first perform calibration on your
server. Once the calibration is completed, the VisualVM homepage will open as shown:

www.allitebooks.com

http://www.allitebooks.org

Identifying Problems

18

3. Select the WebLogic process that has the process ID you identified in step 1. Either
double-click on it, or right-click and select Open.

4. VisualVM will open the Overview page for the WebLogic Server instance. You should
check that the server name matches the one you were expecting.

Chapter 1

19

5. Switch to the Monitor tab, which provides an overview of the performance
of the application.

6. There are a number of things that we want to check on this tab:

 � The CPU usage should be relatively low (below 30 percent, ideally) and
the amount of CPU usage spent on the GC activity should also be low.

 � When garbage collection occurs, Used Heap should drop to a
significant amount.

Identifying Problems

20

7. VisualVM contains two profilers that can be used to identify performance problems.
We prefer to use the sampling profiler, which is available on the Sampler tab.

8. Click on the CPU button to begin profiling your application. The table will show
which Java methods are taking the most time.

How it works…
VisualVM hooks into the JVM to read the statistics about memory usage, garbage collection,
and other internals, and displays them graphically for the user. Many of these metrics are
useful in identifying where a performance problem lies.

An application with high CPU usage may be CPU bound, but before just putting it on a host
with more or faster CPUs, we need to identify what it is that is using the CPU. Garbage
collection is a common culprit, so the graph showing the amount of CPU time spent running
the garbage collector is particularly useful. If garbage collection is not the culprit, then
the sampling profiler will show us where the CPU time is being spent. This is essentially
a graphical version of using the jstat and jstack tools mentioned in other recipes.

Chapter 1

21

There's more…
Additional plugins can be installed for VisualVM to display the information in more convenient
ways, or to display additional information.

The Profiler can also be used to profile your application, but it imposes a much higher
overhead, and so is more likely to affect the results.

See also
 f The Identifying performance problems using JRMC on JRockit recipe

Identifying performance problems using
JRMC on JRockit

JRockit Mission Control is a graphical management console for the JRockit JVM, which
comes with SOA Suite 11g. We can use it to help identify a number of performance problems
that we might encounter with SOA Suite when running on JRockit.

Getting ready
You will need SOA Suite installed for this recipe, and will need permission to execute the
domain control scripts, as well as the JVM tools. This recipe assumes that your SOA Suite
application is running, and under a normal load or a load sufficient to demonstrate any
performance problems.

The tool jrmc is included with the JRockit JVM; HotSpot has a different tool described in a
different recipe. For brevity, this recipe assumes that you have the relevant JVM bin directory
on your path. If you do not, simply use the fully qualified paths to the relevant bin directory.

How to do it…
1. Use JPS to determine the process ID of your SOA Suite server; see step 1 of the

Identifying new size problems with jstat recipe. This will let us identify a target Java
process in a host running multiple JVMs. We're trying to identify the WebLogic Admin
server to use with JRockit Mission Control.

2. Launch JRockit Mission Control by executing the command jrmc from the JVM
bin directory:
jrmc

Identifying Problems

22

If this is the first time you have run jrmc, it will open the JRockit Mission Control
Welcome page:

3. Click on X next to the Welcome tab in the top-left to close the welcome screen.
This will display the birds-eye view, which can be selected at any time from the
Window menu.

4. Select the WebLogic instance that you want to connect to, based on the process
ID that you established in step one. Right-click on the instance and select
Start Console.

Chapter 1

23

5. This will display the JRockit Mission Control console for the selected WebLogic instance:

Identifying Problems

24

6. There are a number of things that we are looking for on this page:

 � JVM CPU Usage should be low, not higher than 30 percent ideally.

 � Used Java Heap (%) should increase as memory is used, but should
come down again when garbage collection occurs.

How it works…
JRockit Mission control gathers management metrics made available by JRockit at runtime,
and makes these visible graphically. The Mission Control console gives us an overview of
the CPU and memory usage of the application with graphs of historical data. This gives us
an overview that we can use to determine whether applications are having memory- or CPU-
related performance problems.

Mission Control can also monitor JVMs remotely; refer to the JRockit documentation for
guidelines on achieving this at http://www.oracle.com/technetwork/middleware/jrockit/
documentation/index.html.

See also
 f The Using JRockit Flight Recorder to identify problems recipe

Using JRockit flight recorder to identify
problems

JRockit Flight Recorder is a component of JRockit Mission control that can be used to record
detailed statistics about your application, to be viewed later.

Getting ready
You will need SOA Suite installed for this recipe, and will need permission to execute
the domain control scripts, as well as the JVM tools. This recipe assumes that your SOA
Suite application is running under a normal load or a load sufficient to demonstrate any
performance problems.

The tool jrmc (of which Flight Recorder is a component) is included with the JRockit JVM;
HotSpot has a different tool called VisualVM described in a different recipe. For brevity, this
recipe assumes that you have the relevant JVM bin directory on your path. If you do not,
simply use the fully qualified paths to the relevant bin directory.

Chapter 1

25

How to do it…
1. Start JRockit Mission Control by following steps from 1 through 3 of the Identifying

performance problems using JRMC on JRockit recipe.

2. Select the WebLogic instance that you want to connect to, based on the process ID
that you established in step 1. Right-click on the instance and select Start Flight
Recording. This will display the flight recording settings dialog box.

3. Accept the default Template and Filename settings, and set Name to be something
descriptive. Recording Time should be long enough to encapsulate a use case that
is considered to be slow. Once you are happy with the settings, click on OK and the
recording will begin.

Identifying Problems

26

4. While recording is in progress, you can see the remaining time from the Flight
Recorder Control view at the bottom of the screen.

5. Once the flight recorder finishes recording, it will open the Overview screen as shown:

Chapter 1

27

This screen displays the overview of the recorded data. The event strip at the top of
the screen can be used to select a specific part of the timeline to view. Clicking on
Synchronize Selection will keep the selected time range the same across all the
viewed screens.

6. Select the Memory tab; this tab shows us a number of interesting statistics about the
JVM memory during the runtime. Notice that for more detailed information, you can
select one of the subtabs at the bottom of the screen.

On this page, we want to check a number of things:

 � That the average and maximum Main Pause times are reasonable; for
example, below 10 s

 � That the heap usage comes down by a reasonable amount when garbage
collection occurs, and that it is not just "bouncing around near the top of
the graph"

7. Select the CPU/Threads tab. This tab shows the statistics regarding CPU usage and
threads. We want to check that the Application + JVM CPU usage does not make up
the majority of the total CPU usage, and that the total CPU usage is low (ideally at 30
percent or below).

How it works…
JRockit Flight Recorder collects a large number of detailed statistics about an application
execution, and stores them so that they can be analyzed later. This method allows a more
detailed analysis to be performed then, if you are trying to observe the statistics in real
time, you can go back and "replay" the gathered statistics to focus on certain time periods.
Flight recorder can be executed with a number of profiles; the Normal profile has the lowest
overhead, so is most suitable for use in production environments. The other profiles gather
more information, but have a higher overhead, so are more suitable when you can reproduce
the problem in a test environment. One of the advertised powerful features of JRockit is that
the Normal collection profile adds virtually no overhead to the JVM execution time, as the
collected metrics are used internally by JRockit during execution for runtime optimization.

It can be helpful to take Flight Recorder profiles of healthy systems, so that if a future release
introduces a performance problem, you have a baseline to compare it to. This can make
it much easier to identify the area in which performance is likely to be suffering. With SOA
Suite in mind, it is worthwhile using Flight Recorder when running load tests (see Chapter 3,
Performance Testing) against the WebLogic servers.

See also
 f The Identifying performance problems with JRockit Mission Control recipe

Identifying Problems

28

Monitoring JDBC connections with the
WebLogic console

One of the things that can cause poor application performance is not having enough
connections to the database available. SInce Oracle SOA Suite is a heavily database intensive
application, it can cause significant performance problems, particularly if using lots of
transient SOA BPEL processes (see Chapter 8, BPEL and BPMN Engine Tuning, for more on
this topic). In this recipe, we will look at how to use the WebLogic console to view a number
of available database connections.

Getting ready
For this recipe, you will need to know the URL and login credentials for the WebLogic
administration console that runs on the admin server in your SOA Suite domain. The default
URL for the console is http://<servername>:7001/console. The username and
password will have been specified when you created the domain.

You will need SOA Suite installed and running, and to have loaded it with representative
load or live data, or be able to create a realistic load on the application.

How to do it…
1. Connect to the WebLogic administration console at http://localhost:7001/

console; replace localhost and 7001 with the hostname and port of the server
if it is not running locally on 7001. If this is the first time you have accessed the
WebLogic console since starting the server, WebLogic will first deploy the console
application, which may take a few minutes.

2. Log in to the console by using your administration credentials.

3. Open the Services category on the left-hand navigation pane, and select
Data Sources.

Chapter 1

29

4. This will display a list of all the data sources in the main panel.

5. Select the first of these data sources, which will load its properties page. Select the
Monitoring tab and the Statistics subtab.

Identifying Problems

30

6. This will display the statistics for the data source. If you see nothing on this page,
then it is likely that none of the servers on which this data source exists are running.

7. Click on the Customise this table button, and add the following columns to the
view: Active Connections Current Count, Active Connections High Count, Current
Capacity, Number Available, Waiting for Connection Current Count, and Waiting
For Connection High Count. Click on Apply.

8. Now, when you view the Statistics panel, it should show the following new statistics:

9. Check the statistics for any problems, see the How it Works... secion of this recipe
for more details about what to look for.

10. Repeat steps from 5 through 9 for each data source.

Chapter 1

31

How it works…
The Oracle WebLogic application server exposes management and monitoring metrics using
the JMX standard, and the Oracle WebLogic console makes use of these to display information
on components such as the database connection pool sizes. It is worth noting that most
connection pools have an initial size of zero. So if you view the pool size before the application
has been used, then you will see zero for all of the statistics we are monitoring. If this is the
case, then you should run some load through your application and check back again.

These connection pools are used by SOA Suite components to talk to the database for many
purposes including storing process instance state, restoring state, storing logging information,
and so on. If WebLogic runs out of these connections, then requests have to queue, waiting
for a connection to become available, eventually timing out if no connection becomes
available. By monitoring the number of connections in use, you can increase the maximum
number of connections in the pool, if you notice that they are running out.

We are looking for a number of different things in the connection statistics:

 f Active Connections Current Count equal to Current Capacity, which indicates that
every connection from the pool is currently in use. This means that there are no
free connections. If the Current Capacity is the maximum number of connections
that the pool will hold, then new requests will have to wait for connections.

 f Active Connections High Count equal to Current Capacity, which indicates that at
some point, every connection from the pool was in use. Active Connections High
Count gives the highest value that Active Connections Current Count has had since
the server was restarted (or the statistics reset), so can be useful for diagnosing
the cause of performance problems that happened in the past, and the system
has now recovered.

 f Number Available equal to zero, which indicates that the pool is empty (unless
the pool has not been initialized yet). This will usually occur when all the other
conditions are true.

 f Waiting for Connection Current Count or Waiting for Connection High Count not
equal to zero, indicating that at some point there have been threads waiting to
get a connection from the pool. As threads will only wait for connections if there
are none in the pool, then we would expect to only see this if all of the other
conditions are also true.

These are all indicators of the same underlying problem, which is that there are insufficient
available connections to the database. This is usually caused by one of three things—either
a sudden burst of traffic has used up more than normal, the database is running slower than
normal, or there is a connection leak in the application. To find out which of these is the case,
you should look at the output of the thread dumps and database statistics.

Identifying Problems

32

There's more…
As well as being able to see this information via the WebLogic console, it is also made
available via the JMX standard and via the WebLogic scripting tool, which is based on Jython,
allowing you to use many tools to obtain and process connection pool sizes and more. We will
discuss more about JMX in Chapter 2, Monitoring Oracle SOA Suite, and look at some of the
tools that can be used for obtaining JMX metrics.

See also
 f The Identifying slow-running database queries and Identifying performance problems

with JStack recipes

 f Chapter 2, Monitoring Oracle SOA Suite

Identifying slow-running database queries
SOA Suite applications make heavy use of the database. Identifying the database queries that
are running slowly can allow you to identify areas where performance improvements can be
made by tuning or reducing the amount of database access.

Getting ready
You will need SOA Suite installed and running, and have loaded it with representative load
or live data.

This recipe requires that you are able to log in to the SOA Suite database as an administrator
and are able to execute the necessary SQL statements.

How to do it…
1. Log in to the SQL database as an administrator.

2. Execute the following SQL query:

SELECT * FROM
(SELECT
sql_fulltext,
sql_id,
child_number,
disk_reads,
 executions,
first_load_time,
last_load_time
FROM v$sql

Chapter 1

33

ORDER BY elapsed_time DESC)
WHERE ROWNUM < 10
/

This will return the top 10 recent slowest SQL statements, although statements
eventually get removed from the v$sql table. So, this will contain statements
that have been recently executed.

How it works…
Oracle SOA Suite makes very heavy use of the database, being able to identify the queries
that take the longest time, which allows these to be optimized. The v$sql table in Oracle
is a virtual table that contains the statistics about the recently executed SQL statements,
so it can be used to identify the statements that take the longest to execute.

There are a number of ways of discovering slow-running database queries, but we have
selected the preceding method because it is simple and easy to understand. More complex
statistics can be used to identify exactly what it is that is causing queries to run slowly.

Once you have identified slow-running database queries, the steps you need to take to resolve
them depends upon what the queries are. If they are application-related queries, then you
can focus on changing the application code, but if they relate to Oracle SOA Suite itself, then
you will have to look at things like reducing the amount of logging and persistence in your
application, or rearchitecting it to behave differently.

See also
 f Chapter 7, Data Sources and JMS

Identifying slow-running components with
the Enterprise Manager

We can use Oracle Enterprise Manager Fusion Middleware Control to view the slow-performing
components of our SOA Suite middleware infrastructure, allowing us to target our performance
improvements at those components.

Getting ready
This recipe assumes that you have Oracle SOA Suite installed and running, and are able
to generate sufficient load against it to demonstrate any performance problems.

You must have the Oracle Enterprise Manager component installed in your domain,
and you will need to know the administration username and password for the domain.

Identifying Problems

34

How to do it…
1. Connect to Oracle Enterprise Manager running on the admin server on the

URL http://<hostname>:<port>/em; by default, this will be http://
localhost:7001/em if you are connecting from the same host.

2. Log in to Oracle Enterprise Manager by using your administration credentials.

3. Open Application Deployments, right-click on soa_infra, and select
Performance Summary.

4. Check that request processing time is not high.

How it works…
Oracle Enterprise Manager is an Oracle product that is used to manage and monitor
components of the SOA Suite infrastructure. Some of its features are licensed separately to
Oracle SOA Suite. So, if you are unsure, you should check with your Oracle account manager
to check whether you are licensed or not to use it.

Oracle Enterprise Manager can be used to manage many components within Oracle SOA
Suite, and here we use it to view the performance summary for the SOA infrastructure
components. In this instance, we view the request processing time, which tells us how long
each request is taking to be processed. It is averaged across a large number of components,
so you are really looking to see that it is not higher than usual. This of course requires you to
know what usual is, so like all of these statistics, it is worth understanding how the system
behaves when there are no performance problems.

There's more…
If you get a 404 error when attempting to connect to the Oracle Enterprise Manager Fusion
Middleware Control console, it is likely that you did not add it to your game when you created
your domain. You can add it to your domain subsequently by running the configuration
manager, selecting your current domain, and extending it to add Oracle Enterprise Manager,
although you should be aware that this may overwrite any configuration changes that you
have made to the startup scripts.

2
Monitoring Oracle

SOA Suite

We will cover the following recipes in this chapter:

 f Installing the Hyperic server

 f Installing Hyperic agents

 f Configuring Hyperic to monitor SOA Suite 11g

 f Monitoring the SOA Suite server availability

 f Monitoring the JVM memory usage

 f Monitoring the platform CPU usage

 f Monitoring the data source usage

 f Monitoring open sockets

 f Monitoring committed transactions

 f Configuring alerts in Hyperic

 f Monitoring the system using the DMS Servlet

Monitoring Oracle SOA Suite

36

Introduction
In this chapter, we will look at the importance of monitoring your Oracle SOA Suite application.
The topics covered include how to configure monitoring, what to monitor, and how to interpret
the data that your monitoring tool returns.

Performance monitoring is the key to any successful tuning strategy. In order to improve the
performance, you need to be able to measure before and after any changes you make. This can,
of course, be done with simple performance testing tools, but these only give you the top-level
results. What we want to do is dig deeper down and work out where time is being spent, and
which monitoring tools allow us to do.

The term monitoring covers a wide range of tools and techniques, from simple systems that
just tell us if a process is running or not, through complex user-experience monitoring tools
that break down each user request into component parts, and can show what time and
resources were involved in generating the response. The most value is obtained by tools
that can look inside your SOA Suite application, giving a breakdown of how busy individual
components and services are. These types of monitoring tools are often referred to as
Application Monitoring tools.

The other huge advantage of having good monitoring tools in place is the ability to store
metrics, so that you can go back and look at past figures, to see if performance has changed
over time or whether what you are looking at is something that has always been there.

A lot of the recipes in this chapter use the VFabric Hyperic HQ tool from VMWare. This tool
is part of VMWare's suite of middleware, and is available in the community and enterprise
versions. We have chosen to use Hyperic, because it is the best general-purpose monitoring
suite that we have found, allowing monitoring at all levels of the Oracle SOA Suite stack. It is
also one of the easiest to use, and the enterprise version comes with many powerful features.

There are also many other monitoring tools, which can provide similar features, all of which
would be suitable for monitoring our Oracle SOA Suite 11g applications. If you already have
an existing application monitoring tool that provides the same information that we get here,
then there is no need to replace it. We chose not to use the monitoring features of Oracle
Enterprise Manager for a number of reasons. Firstly, we feel that the monitoring is not as
comprehensive as provided by dedicated application monitoring tools, secondly it does not
provide an extensible framework, and finally the licensing is expensive and restrictive. If you
have a larger budget for monitoring, then the tools by Dynatrace and CA (Introscope) are
excellent tools, but they come at a price that puts them out of the reach of most projects.

Chapter 2

37

The monitoring in this chapter makes use of JMX, which has been a core component of the Java
SE platform since Java 5. JMX provides an API and protocol for exposing management metrics
and operations from Java applications. JMX centers on the concept of the Management Bean,
or MBean, which is a Java Bean responsible for exposing management metrics and operations
for a component or service. MBeans can be written by anyone, and contain any metrics,
operations, or logic that you wish; they just need to implement a simple interface. MBeans are
registered with an MBean Server using a name (their object name), which acts as a directory,
allowing other systems to look up and access the MBeans. Protocol adapters then make the
MBean server and its MBeans available over a variety of protocols. This simple, yet powerful API
has made it very simple to expose management interfaces for Java applications, and nearly all
modern Java infrastructure components will have a JMX interface.

By writing your own MBeans, you can expose management information about the internals of
your own application, and make that information available to monitoring tools, such as Hyperic.

The key thing to take away from this chapter is the type of things that you should be monitoring,
rather than having to use specific tools.

Installing the Hyperic server
Hyperic is a monitoring tool that can be used to collect, store, display, and alert on metrics
from Oracle SOA Suite 11g. It has the server and agent components, and in this recipe,
we will look at installing the server.

Getting ready
You will need a machine on which to install the server, and the permissions to install the
software on it. Since the overhead of running a Hyperic server is noticeable but not huge,
we recommend running it on a dedicated machine, or at least a machine that is not hosting
the critical parts of your infrastructure. The server needs to meet a few requirements, such
as a static IP address for communication with the agents, a Java 1.5 or higher JVM, Linux,
Solaris, Mac OS X or Windows 2003 or a later operating system, a 1 GHz processor with at
least 1 GB RAM (4 recommended), and at least 1 GB of free disk space. For more details on
the requirements, see the documentation at https://support.hyperic.com/display/
DOC/Installation+Requirements.

You will need to download the Hyperic HQ installer (either community or enterprise) from
http://www.hyperic.com/hyperic-open-source-download. This recipe uses the
community (open source) version; so if you are using Hyperic enterprise, you may find a few
differences in the installation process.

www.allitebooks.com

http://www.allitebooks.org

Monitoring Oracle SOA Suite

38

How to do it...
Follow these steps to install the Hyperic server:

1. Extract the Hyperic installer to a temporary location.

2. Run the installer for your platform by using either setup.bat or setup.sh.

Chapter 2

39

3. Select to install both the server and the agent, by entering 1,2 at the prompt.

4. When prompted, specify the installation location for the server. This location must
exist, as the installer will not create it.

5. Specify the SMTP server to be used for sending e-mails, also the e-mail address
to be used for the "from" address, or accept the defaults.

6. Select 1 to use an encrypted database password.

7. Enter a name for the Hyperic admin user, or accept the default. Specify a password
for the user, and finally an e-mail address.

8. Enter a location for the agent to be installed in.

9. The installer will now install the Hyperic server, which may take some time.

Monitoring Oracle SOA Suite

40

10. Once the installer completes, it will display a message telling you to install Hyperic
as a service.

11. After the service is installed, you can start Hyperic by using the hq-server.bat
or hq-server.sh script.
hq-server.bat start

12. Once the server starts, you can connect to it by using the URL provided at the end
of the installation script. This is usually http://localhost:7080/.

Chapter 2

41

13. You can log in with the username and password that you specified during installation,
to see the Hyperic dashboard.

How it works...
Hyperic HQ has an architecture based on a server and agents. The server component consists
of a database, used to store configuration data together with the historical metrics that have
been gathered. The server also provides a web application, which can be used to view the
data and configure the collection of metrics and the creation of alerts.

The server is implemented by using a Tomcat-based web server, and is bundled with a
Java Runtime Environment (JRE) to run it. It also ships with its own embedded PostgreSQL
database for storing configuration data and metrics.

There's more...
In this recipe, we installed the community version of Hyperic, and accepted most of the
default settings. In a production setup, you may want to consider using a more resilient
deployment by using a more reliable database and using real SSL certificates, rather than
the demo self-signed certificates that are distributed with the Hyperic server.

Monitoring Oracle SOA Suite

42

See also
 f The Installing Hyperic agents and Configuring Hyperic to monitor SOA Suite 11g recipes

Installing Hyperic agents
Hyperic agents need to be installed on each machine that you wish to monitor. The agent
will report the metrics back to the Hyperic server. In this recipe, we will learn how to install
a Hyperic agent.

Getting ready
You will need to install the Hyperic agent install ZIP file plus the necessary permissions to
log in, and install the software on the machine that runs your Oracle SOA Suite application.
The Hyperic agent will need to be installed as the same user as Oracle SOA Suite, in order
to detect it properly.

How to do it…
We can follow these steps to install our Hyperic agents:

1. Extract the Hyperic agent ZIP file to the location where you want it to be installed.

2. Navigate to the bin directory:
cd bin

3. Run the install task of the relevant hq-agent script—either hq-agent.sh or hq-
agent.bat:
hq-agent.bat install

4. Run the start task of the relevant hq-agent script—either hq-agent.sh or hq-
agent.bat:
hq-agent.bat start

5. The agent will start up, and start prompting for its configuration.

Chapter 2

43

6. Enter the IP address of the Hyperic server.

7. Answer yes to using a secure communication between the agent and server.

8. If you have not changed the SSL port for your Hyperic Server, accept the default port;
otherwise enter your custom port.

9. Enter the administration username for your Hyperic server.

10. Enter the password for your Hyperic administration user.

11. Accept the default IP for the agent bind address.

12. Accept the default port for the agent port.

13. If you are using the default self-signed SSL certificates, the agent will prompt for
whether you wish to accept these. Enter yes.

Monitoring Oracle SOA Suite

44

14. The agent install will complete.

15. Use your web browser to connect to the Hyperic server console
(usually http://localhost:7080/console):

16. Enter your administration username and password to log in.

17. You will see that the agent has been discovered by the server, and is listed
at the top-right of the dashboard:

18. Click on the Add to Inventory button to accept the agent's request to send
metrics to the Hyperic server.

Chapter 2

45

How it works...
Many monitoring tools, including Hyperic, use a server and agent architecture. In this
architecture, a lightweight agent process runs on each box to be monitored, collecting
metrics and sending them back to the server, where they are processed and stored. An agent
therefore needs to be installed on each machine that is running one of our WebLogic servers
hosting SOA Suite 11g applications.

Hyperic agents are responsible for discovering resources, gathering metrics, and reporting
them back to the Hyperic server. To do this, agents need to be installed on each machine that
has resources to be monitored, which in our case, means WebLogic servers that are running
Oracle SOA Suite.

The agent is implemented as a Java application, and is distributed as a ZIP file that can be
extracted into a location. Scripts are provided for both the Windows and Linux versions of the
agent; the Windows agent is run by installing it as a Windows service, and then starting that
service. When it starts for the first time, it will prompt for its configuration data. This will be
stored, and so the agent will no longer prompt for the configuration data once it has been set
up. The agent is essentially a container for running plugins, with each plugin knowing how to
discover and monitor a specific type of resource (such as a SOA Suite server). The monitoring
of SOA Suite is accomplished by the WebLogic plugin, which uses the Java Management
eXtensions (JMX) interface to connect to WebLogic and retrieve metrics. These metrics are
the ones that the JMX subsystem in WebLogic and SOA Suite is already collecting. So the
overhead of monitoring the platform is limited to that imposed by connecting to WebLogic,
requesting the metrics, and then forwarding them to the Hyperic server. This allows the agents
to have a very small overhead on the boxes they monitor (typically no more than 5 percent),
although the overhead varies according to the number of metrics that are being collected.

When the agent first starts up and communicates with the server, the server places it in a list
of resources that have been discovered but not yet added to the inventory. We need to log in
to the server and accept the agent and its discovered resources into the inventory before any
monitoring will occur.

There's more...
In these sections we have installed the Hyperic server and agent to use the default self-signed
SSL certificates for secure communication. For a production deployment, it is recommended
that these certificates are not used, and that you use real SSL certificates, or generate your
own set of self-signed certificates.

See also
 f The Installing the Hyperic server and Configuring Hyperic to monitor SOA Suite

11g recipes

Monitoring Oracle SOA Suite

46

Configuring Hyperic to monitor SOA Suite
11g

Once the Hyperic server and agents have been installed, there are a few more steps that
are needed to get the Hyperic server to monitor the WebLogic server instances that run
your Oracle SOA Suite 11g application.

Getting ready
You will need to have the Hyperic server installed and configured, and the Hyperic agent
installed and imported into the inventory. You will also need your WebLogic server instances
running for Hyperic HQ to be able to discover them. You will also need read and write access
for both the Oracle SOA Suite and VMWare Hyperic installations.

How to do it...
The following steps will configure your Hyperic server and agents to monitor WebLogic and
SOA Suite 11g:

1. Navigate to the WebLogic server lib directory:
cd MIDDLEWARE_HOME/wlserver_10.3/server/lib

2. Execute the jar builder tool to create a wlfullcient.jar file:
java –jar ../../../modules/com.bea.core.jarbuilder.1.7.0.0.jar

3. Copy the generated wlfullclient.jar file into the bundles/agent-4.6.6\lib
directory of your Hyperic agent.

4. Edit the file HQ_AGENT_DIR/bundles/agent-4.6.6/bin/hq-agent.bat
or hq-agent.sh. Locate the section that sets the agent classpath, and add
wlfullclient.jar to it.

Chapter 2

47

5. Edit the file HQ_AGENT_DIR/conf/agent.properties, and set the weblogic.
installpath property to the location of the wlserver_10.3 directory in your
middleware home location.

Monitoring Oracle SOA Suite

48

6. Restart the Hyperic agent by using the script in HQ_AGENT_DIR/bin:
hq_agent.bat start

hq_agent.bat stop

7. Log in to the Hyperic console by using your administration username and password.

8. Navigate to the relevant platform that hosts your SOA domain Administration server
from the Resources tab and select Browse. Click on the Tools menu, and select
New Auto-Discovery.

Chapter 2

49

9. Select the checkbox for Select All Server Types and scroll to the bottom of the page.
Enter the relevant details for the drives to scan, and click on Ok. This will start the
agent running a new auto-discovery on the platform.

10. The auto-discovery will discover the Admin Server resources; you can add them to
the inventory by going to Dashboard, selecting them in the Auto-Discovery portlet,
and selecting Add to Inventory.

Monitoring Oracle SOA Suite

50

11. Select Resources and then Browse, and select the platform that hosts the SOA
domain administration server. You will notice that in the Resources panel, the
WebLogic AdminServer resource has a gray question mark next to it. We need to
configure it with the correct username and password. Click on AdminServer in the
Resources panel, and you will see a message appear telling you that Configuration
Properties need to be set. Click on the words Configuration Properties to go to the
configuration page.

12. Enter the correct configuration properties. The ones you probably need to change
are the password and the JVM Runtime setting.

13. Scroll to the bottom of the page and click on Ok; the configuration properties will
be updated, and Hyperic will start collecting the metrics.

14. The plugin will automatically discover the managed servers that are defined in the
domain and start monitoring these too.

Chapter 2

51

How it works...
The Hyperic HQ agent contains a plugin to allow it to discover the WebLogic server instances;
it discovers the admin server by finding the running process, and then interrogates the admin
server to find each managed server in the domain. Before the agent can discover WebLogic,
we need to make a few configuration changes to allow the agent to talk to the WebLogic
server instance. These include setting the weblogic.installpath property and placing
wlfullclient.jar on the classpath. These changes are needed to allow the agent to
communicate with the WebLogic administration server.

Once the agent has discovered the WebLogic administration server, we need to go into the
Hyperic console to provide the password necessary for the agent to communicate with the
server. The agent will then automatically discover the managed servers and add them to
the relevant platforms, and then any resources underneath the servers will be added.

There's more...
In order to associate the managed servers with platforms that are managed by Hyperic, the
agent uses the listen address of the managed server to match against a platform name. This
means that the listen address of the managed server needs to be set to the hostname of the
platform, as returned by the hostname command. If the listen address is set to an IP address
or is empty (to bind to all network interfaces), the managed server will not be added to the
inventory, as the plugin will be unable to work out which platform to associate the server with.

See also
 f The Installing the Hyperic server and Installing Hyperic agents recipes

Monitoring the SOA Suite server availability
One of the most obvious things to have Hyperic HQ monitor for you is whether your servers are
available; that is, whether they are running and responding to requests. In this recipe, we will
learn how to view the availability information for our SOA Suite 11g instances.

Getting ready
You will need to install Oracle SOA Suite and the Hyperic HQ server and agents for this recipe.
Both Hyperic HQ and Oracle SOA Suite will need to be running. You will also need the login
credentials for the Hyperic HQ console.

Monitoring Oracle SOA Suite

52

How to do it...
These steps show us how to monitor system availability with Hyperic:

1. Log in to the Hyperic HQ console.

2. Open the Resources menu, and select Browse.

3. Select the platform that has the server you want to monitor, which should be one
of your SOA Suite managed servers.

Chapter 2

53

4. On the Resources panel on the left-hand side, select the WebLogic managed server
that you wish to monitor.

5. The Availability track is shown at the top of the center panel, with red dots indicating
periods when the server was not available.

6. Use the time settings at the top of the graph panel to select the time period you are
interested in.

Monitoring Oracle SOA Suite

54

How it works...
The Hyperic agent determines the availability, which lets us know whether it can connect to
the WebLogic server; if the agent can get a response from the server, then it is considered to
be available. The availability metric data is sent by the agent to the Hyperic HQ server, which
stores it in its database and makes it available via the Web console.

There's more...
All resources that are monitored by Hyperic have availability data associated with them,
including the platform itself. We have found that the most useful of these to monitor are the
WebLogic server instances that run your SOA Suite applications, but monitoring the platform
availability can also be useful.

The availability track uses a sequence of dots to show the availability of the resource during
the selected time period. A green dot indicates that the resource was 100% available during
the time period that the dot represents. A red dot indicates that the resource was less than
100% available for the time period.

See also
 f The Installing the Hyperic server, Installing Hyperic agents, and Configuring Hyperic

to monitor SOA Suite 11g recipes

 f The Monitor garbage collection using jstat recipe in Chapter 1, Identifying Problems

Monitoring the JVM memory usage
Many of the common causes of performance problems have their roots in memory
management, so monitoring the memory usage of the servers in your SOA Suite domain can
alert you to many performance problems before they become problematic. In this recipe, we
will see how we can view graphs of the current and historical memory usage of our SOA Suite
11g application.

Chapter 2

55

Getting ready
You will need to install Oracle SOA Suite and the Hyperic HQ server and agents for this recipe.
Both Hyperic HQ and Oracle SOA Suite will need to be running. You will also need the login
credentials for the Hyperic HQ console.

How to do it...
Follow these steps to monitor the memory usage of our SOA Suite 11g application.

1. Log in to the Hyperic HQ console.

2. Open the Resources menu, and select Browse.

3. Select the platform that has the server you want to monitor, which should be one
of your SOA Suite managed servers.

Monitoring Oracle SOA Suite

56

4. On the left-hand side of the Resources panel, select the WebLogic managed server
that you wish to monitor.

5. The graph pane in the center of the page contains the graph for the JVM Free
Memory metric.

6. Use the time settings at the top of the graph panel to select the time period you
are interested in.

Chapter 2

57

7. Click on the graph title to view a more detailed graph.

How it works...
The Hyperic HQ agent periodically connects to the WebLogic server instances that are in
its inventory, and uses the JMX service to obtain metrics on a number of measurements,
including the JVM free memory. It reports this data back to the server, which stores it in its
database. We can then view this collected data by using the Hyperic console.

JVM free memory is an interesting metric to monitor, although one that is hard to set up
alerting on, because of the nature of JVM memory management; memory will be used up
until there is none free, and then the garbage collector will kick in and free up a large chunk.
This gradual use of memory, and then a sudden freeing up results in the familiar saw tooth
pattern of JVM memory graphs, which are described in other chapters. This does not mean
that monitoring the free JVM memory is useless, as we can identify memory leaks by the fact
that the saw tooth pattern frees up less and less memory each time the garbage collector
is run.

Monitoring Oracle SOA Suite

58

There's more...
Since memory usage patterns can change a lot depending upon the usage of the application,
it is very useful to have an understanding of what the graph of JVM free memory looks like
during normal use. If you know what the usage typically looks like on a Monday morning,
you are in a much better position to identify an abnormally high or low memory usage on
a particular Monday morning.

See also
 f The Installing the Hyperic server, Installing Hyperic agents, and Configuring Hyperic

to monitor SOA Suite 11g recipes

 f The Monitor garbage collection using jstat recipe in Chapter 1, Identifying Problems

Monitoring the platform CPU usage
In this recipe, we are going to learn how to view the CPU usage of the platforms running SOA
Suite 11g. CPU usage is one of the key areas where bottlenecks can occur, and knowing that
our CPU is running at 100 percent allows us to focus our efforts into working out what is using
the CPU.

Getting ready
You will need to install Oracle SOA Suite and the Hyperic HQ server and agents for this recipe.
Both Hyperic HQ and Oracle SOA Suite will need to be running. You will also need the login
credentials for the Hyperic HQ console.

How to do it...
These steps will show us how to monitor the CPU usage of our SOA Suite platforms:

1. Log in to the Hyperic HQ console.

2. Open the Resources menu, and select Browse.

Chapter 2

59

3. Select the platform that has the server you want to monitor, which should be one of
your SOA Suite managed servers.

4. The CPU usage will be displayed in the graph area in the center of the screen.

5. Use the display range settings at the top of the graph pane to select the time period
you are interested in.

How it works...
The Hyperic agent uses the SIGAR library to collect metric data related to operating systems,
including the CPU usage. This data is sent by the agent to the Hyperic server, which stores it
in the database. We can then use the Hyperic console to browse this information.

When monitoring the CPU usage, we obviously look to ensure that the system is not running at
100 percent CPU usage, which implies that there is a performance problem somewhere in the
system. CPU usage is a good metric to set alerts on, because it should not be high in normal
circumstances, and it is always worth investigating the incidents of high CPU usage.

Monitoring Oracle SOA Suite

60

There's more...
As with monitoring JVM memory usage, having a good understanding of what your CPU
usage pattern usually looks like can be very useful for diagnosing an abnormal behavior.
For example, many organizations have an anti-virus or batch process that runs overnight
or during quiet periods, which can use significant amount of the CPU when running. If you
are not aware that this is a normal behavior, it can be easy to mistake it for the cause of a
performance problem, and waste significant time looking for a CPU bottleneck, where the
true performance bottleneck is elsewhere.

See also
 f The Installing the Hyperic server, Installing Hyperic agents, and Configuring

Configuring Alerts in Hyperic recipes

Monitoring the data source usage
Oracle SOA Suite applications make a very heavy use of database connections, so if the
connection pools get exhausted, then performance can suffer dramatically. By monitoring
the data source usage, you can ensure that the number of available connections is sufficient.

Getting ready
You will need to install Oracle SOA Suite and the Hyperic HQ server and agents for this recipe.
Both Hyperic HQ and Oracle SOA Suite will need to be running. You will also need the login
credentials for the Hyperic HQ console.

How to do it...
By following these steps, we can monitor the data source usage:

1. Log in to the Hyperic HQ console.

2. Open the Resources menu, and select Browse.

Chapter 2

61

3. Select the platform that has the server you want to monitor, which should be one
of your SOA Suite managed servers.

4. On the left-hand side of the Resources panel, select the WebLogic managed server
that you wish to monitor.

5. Select the data sources entry in the Resources pane on the left-hand side.

6. Select the data source you are interested in from the Resources pane on the
left-hand side.

Monitoring Oracle SOA Suite

62

7. The graph pane will now display the metrics for the data source, including the number
of active connections.

8. Use the display range settings at the top of the graph pane to select the time period
you are interested in.

How it works...
The Hyperic HQ Agent periodically connects to the WebLogic server instances that are in
its inventory, and uses the JMX service to obtain metrics on a number of measurements,
including the data source usage. It reports this data back to the server, which stores it in
its database. We can then view this collected data by using the Hyperic console.

The metrics we are interested in are the individual metrics for each data source, rather
than the aggregate metrics that Hyperic also provides. These individual metrics allow us to
see which data sources are getting low on available connections, and do something about
it before they run out. Because connection pools should not usually be running near their
maximum limits, this is a good candidate for configuring alerting.

There's more...
A common problem with data sources is the application code that leaks connections, which
occurs when there is a use-case within the application that results in a connection being
taken from the pool, but never returned. This is usually found in edge-cases because it is
often quickly spotted in testing in the main use-cases. The symptoms of a connection leak
are that the baseline number of active connections keeps rising, giving the appearance of
something similar to a set of steps.

Chapter 2

63

See also
 f The Installing the Hyperic server, Installing Hyperic agents, and Configuring

Configuring Alerts in Hyperic recipes

Monitoring open sockets
Sockets and file handles are resources that are limited by the operating system, and can
get exhausted in busy SOA Suite applications. This recipe shows us how to monitor the
open sockets.

Getting ready
You will need to install Oracle SOA Suite and the Hyperic HQ server and agents for this recipe.
Both Hyperic HQ and Oracle SOA Suite will need to be running. You will also need the login
credentials for the Hyperic HQ console.

How to do it...
By following these steps, we can monitor the open sockets:

1. Log in to the Hyperic HQ console.

2. Open the Resources menu, and select Browse.

Monitoring Oracle SOA Suite

64

3. Select the platform that has the server you want to monitor, which should be one
of your SOA Suite managed servers.

4. On the left-hand side of the Resources panel, select the WebLogic managed server
that you wish to monitor.

Chapter 2

65

5. Scroll down the available graphs to find the display of the number of open sockets.

6. Use the display range settings to view the time period you are interested in.

How it works...
The Hyperic HQ agent periodically connects to the WebLogic server instances that are in
its inventory, and uses the JMX service to obtain metrics on a number of measurements,
including the number of open sockets. It reports this data back to the server, which stores
it in its database. We can then view this collected data by using the Hyperic console.

The number of open sockets can give an indication of how busy the system is, and as sockets
are a resource that is often limited, this can cause a number of performance problems, as
sockets are needed for much of the internal and external communication that goes on with
an SOA Suite 11g application. Running out of available sockets can cause some very strange
behavior that can be hard to diagnose if we don't realize the underlying cause.

There's more...
In Linux and Unix operating systems, each open socket uses a file descriptor, and the number
of file descriptors available to a particular user is controlled by the operating system. As
threads and open files also use file descriptors, and Oracle SOA Suite uses a lot of all the
three resources, then running out of file descriptors can be a common cause of performance
problems on Linux- or Unix-based operating systems, For this reason, it is especially important
to monitor the number of open sockets on these environments.

See also
 f The Installing the Hyperic server, Installing Hyperic agents, and Configuring

Configuring Alerts in Hyperic recipes

 f The Increasing the number of file descriptors in Linux recipe in Chapter 6,
Platform Tuning

Monitoring Oracle SOA Suite

66

Monitoring committed transactions
The number of committed transactions on a server gives a good indication of how busy it is,
so this can be a good indicator of the user load on a system. This recipe will show us how to
view the Hyperic charts and metrics related to the Java Transaction API subsystem.

Getting ready
You will need to install Oracle SOA Suite and the Hyperic HQ server and agents for this recipe.
Both Hyperic HQ and Oracle SOA Suite will need to be running. You will also need the login
credentials for the Hyperic HQ console.

How to do it...
Follow these steps to monitor the number of committed transactions:

1. Log in to the Hyperic HQ console.

2. Open the Resources menu, and select Browse:

3. Select the platform that has the server you want to monitor, which should be one
of your SOA Suite managed servers.

Chapter 2

67

4. On the left-hand side of the Resources panel , select the WebLogic managed server
that you wish to monitor.

Monitoring Oracle SOA Suite

68

5. Select the JTA resource from the Resources pane on the left-hand side.

6. The graph pane will show a number of resources related to JTA transactions,
including the number of transactions committed per minute.

7. Use the display range settings to view the time period you are interested in.

How it works...
The Hyperic HQ agent periodically connects to the WebLogic server instances that are in
its inventory, and uses the JMX service to obtain metrics on a number of measurements,
including the JTA transaction statistics. It reports this data back to the server, which stores
it in its database. We can then view this collected data by using the Hyperic console.

The number of committed JTA transactions are a very good indicator of how busy a system
is. We can therefore use it to detect when an abnormally high load affects our system, to be
aware of the potential performance problems that this may cause.

There's more...
WebLogic server does have a limit on the number of concurrent JTA transactions that can
be going on at any one time, so this metric can be a useful indicator of whether our system
is reaching that limit.

Chapter 2

69

See also
 f The Installing the Hyperic server, Installing Hyperic agents, and Configuring

Configuring Alerts in Hyperic recipes

Configuring alerts in Hyperic
Monitoring an application provides information on how that application is behaving, and it
can be compared to the old data to understand when an application is behaving abnormally,
but if all we have is graphical monitoring, we need someone to sit and watch the metrics
looking for abnormal behavior. Alerting allows us to have the monitoring framework notify us
when a metric breaches some boundary condition, meaning we can receive an e-mail or other
notification when something needs looking at, and don't have to sit looking at the metrics.

Getting ready
You will need to install Oracle SOA Suite and the Hyperic HQ server and agents for this recipe.
Both Hyperic HQ and Oracle SOA Suite will need to be running. You will also need the login
credentials for the Hyperic HQ console. Hyperic will need to be configured with working e-mail
settings to be able to send out alert e-mails.

How to do it...
We can set up alerts in Hyperic by following these steps:

1. Log in to the Hyperic HQ console.

2. Open the Resources menu, and select Browse.

Monitoring Oracle SOA Suite

70

3. Select the platform that has the server you want to set an alert on, which should be
one of your SOA Suite managed servers.

4. Navigate to the relevant resource, click on the name of the metric on the graph pane
in the center of the screen; this will show the detailed graph:

5. Click on Define New Alert on the menu at the top-right of the graph.

6. This will take you to the alert definition window. Enter the details such as the name,
priority, and description, and then set the condition that you wish the alert to fire on.
Finally, set whether you wish the alert to fire once, or every time the condition is true,
or be damped for a time after it fires.

Chapter 2

71

7. Click on Ok; this will take you to the alert summary screen:

8. At the bottom of the summary screen is the notifications section. Click on Notify
Other Recipients and then Add To List…. This will allow you to enter the e-mail
addresses of everyone you wish to be notified when the alert condition is true.

Monitoring Oracle SOA Suite

72

How it works...
Alerts are generated by the server when it receives metrics from agents. It filters the stream
of incoming metrics and checks whether any will cause an alert to fire. So, depending upon
how frequently agents are gathering metrics and reporting them to the server, it may take a
few minutes before an alert is fired. When an alert is triggered, the associated actions are
processed, which will normally involve sending e-mails to users or mailing lists, and possibly
notifying Hyperic HQ users via their dashboards.

In this recipe, we configured a simple e-mail notification, although it is possible to have
more complex actions, especially if you wish to write a custom action plugin. One of the
most common actions to perform is to raise an SNMP event to a corporate-level incident
management system, which can be accomplished by using the OpenNMS action. Hyperic
has a plugin-based architecture, so it is possible to produce almost any other notification
methods if you wish.

There's more...
The fact that alerts are generated on the server side means you need to give yourself
sufficient time to be able to react to a condition, although it is still necessary to avoid
false positives. This means that setting the alert thresholds can be quite a complex task,
which may require several iterations to get it correct.

In addition setting alerts on metric conditions, it is also possible to set them up for
configuration changes or errors being logged to a log file.

For more information about configuring alerts, see the Hyperic documentation at
https://support.hyperic.com/display/DOC/Defining+Alerts.

See also
 f The Installing the Hyperic server, Installing Hyperic agents, and Configuring

Hyperic to monitor SOA Suite 11g recipes

Monitoring the system using the
DMS servlet

The DMS Spy servlet provides access to information from the Oracle Dynamic Monitoring
System. It is not strictly a monitoring tool, as it does not display historical metrics or trends,
but has a wide range of metrics, so is nevertheless useful.

Chapter 2

73

Getting ready
You will need to have your WebLogic SOA Domain administration server running, and will
wneed to know the administration credentials for this recipe.

How to do it...
These steps show us how to use the DMS servlet:

1. Open a web browser, and point it at http://servername:port/dms/Spy.
For example, http://localhost:7001/dms/Spy.

2. A login dialog box will pop up; enter your domain administration credentials.

3. The DMS Spy servlet will open, displaying a list of available metrics:

4. Select the metric you want from the available categories on the left, and it will be
displayed in the main pane.

Monitoring Oracle SOA Suite

74

How it works...
The Oracle Dynamic Monitoring System (DMS) is a library that pulls together metrics from a
number of different sources, and exposes them in a common way. This does not only include
JMX metrics from the servers, but also other metrics. In fact, you can add your own metrics to
the DMS by adding sensors into your Oracle SOA Suite application. We recommend doing this
if you wish to track performance metrics from within your application processes.

The DMS Spy servlet provides a simple way to view the metrics made available by the DMS,
and is deployed by default on the administration server in a SOA Suite domain. On its own,
it is not very powerful, but the simple format of the pages means that you can build simple
"screen scraping" tools that will pull the metrics from the DMS servlet and make them available.

There's more...
A majority of the information available via the DMS servlet is also exposed via JMX, which
is a much easier way of accessing it, and because you can also expose your own metrics
over JMX, we have not seen many organizations that make use of the DMS servlet.

As JMX is a standards-based protocol, with many tools available for retrieving metrics
(such as Hyperic, discussed elsewhere in this chapter), we would recommend using this
over DMS if you wish to expose your own monitoring information about your application.
Having said that, the DMS servlet can be a useful tool in identifying performance problems,
and the fact that it is deployed by default in SOA domain environments makes it worth
mentioning here.

3
Performance Testing

In this chapter, we will look at some ways in which we can test the performance of our
SOA Suite applications. We will look at the following recipes:

 f Installing Apache JMeter

 f Creating a web service test using JMeter

 f Running JMeter on multiple servers

 f Checking responses in JMeter tests

 f Monitoring SOA Suite while testing

 f Recording user web sessions with JMeter

 f Designing advanced load tests

 f Running performance tests from the Cloud

Introduction
The goal of performance testing is to load the system sufficiently so that we can be confident
that we will not face any issues in production. This also goes hand-in-hand with monitoring;
testing in a representative environment will give us an indication as to how the system will
behave. We can then monitor the production environment for the same behaviors, and will
be better placed to describe the patterns we see. Load testing should not be performed as
a "success or fail" activity, but should be used to develop a deeper understanding of how
user requests use up the resources available to the SOA Suite application. It is important
that any monitoring performed on a testing system does not interfere with its performance,
but we strongly advocate having comprehensive monitoring in your production environment.
Replicating this monitoring in the test environment should be sufficient to give you all the
metrics that you need.

Performance Testing

76

When designing a set of tests, it is important to ensure that the tests match the real life
pattern of use as much as possible; this includes parameters such as the following:

 f Number of requests per second

 f Size of requests

 f Pattern of requests

While testing, we want to monitor the behavior of the test system, looking at things such
as the following:

 f CPU usage

 f Free memory

 f Resource usage (database connections, JMS connections, and file handles)

 f Disk usage

For more information on the metrics refer to Chapter 2, Monitoring Oracle SOA Suite.

SOA Suite comes bundled with a set of testing tools; the soa-infra web application allows
you to fire http requests on composites (go to http://our-soa-server-1-ip:7001/
soa-infra, and give it a whirl), and Enterprise Manager Fusion Middleware Control will
allow us to test the flow of a SOA composite, and ensure that all of the components are
available and linked together. However, this leaves us with a gap—how can we apply sufficient
levels of load to be confident that our composite will stand up to the production load? While
Enterprise Manager provides a basic end-to-end testing framework, it is not primarily a testing
framework; it can affect how your application behaves and its results are not always reliable.
So in this chapter, we'll focus on using the open source tool Apache JMeter. We will start
with how to create simple performance tests for your SOA application, and then move on
to designing a suite of tests that will enable us to simulate a realistic user load.

When performance testing a system, our goal is to measure the performance of the system
under test, not the performance testing framework itself, and we want to minimize any
overhead that the performance testing and monitoring frameworks have on the system. It is
therefore important that we ensure we have sufficient load generating capacity, so that when
we say that the limit of the system is 5000 requests per second, we are sure that it is the limit
of our SOA Suite application, and not the load testing framework; that is 5000 requests per
second. For this reason, we have recipes in this chapter on using multiple boxes to generate
load for testing, and on using Cloud servers, such as EC2, to generate the load.

Chapter 3

77

Installing Apache JMeter
To enable our performance testing, we'll install the open source tool Apache JMeter.

Getting ready
You'll need to install Java JDK Version 6 or higher on a machine to follow this recipe.

How to do it…
Follow these steps to complete the installation of Apache JMeter:

1. Navigate to http://jmeter.apache.org/download_jmeter.cgi, and
select the latest binary version for download. If you're on Windows, it will be
easier to proceed with the ZIP file.

2. The next step will assume that you've selected the ZIP version, or that you know
what you're doing with the tar.gz file. Unzip the downloaded file. On Windows,
you can right-click and select Extract All; on Linux, you can use the unzip or
gunzip commands.

3. Place the extracted contents in a suitable location. The rest of the recipe will use
the location C:\performance-testing\apache-jmeter-2.8.

4. Within the bin directory, run jmeterw.cmd on Windows, or jmeter.sh on
Linux (if using the ZIP bundle, remember to set the file as executable first via
the chmod command).

5. We now have JMeter installed and are ready to use.

Performance Testing

78

How it works…
JMeter is simply a series of JAR files that are bootstrapped by wrapper scripts. There are no
complicated installers or dependencies to maintain; all we need is an installation of Java to
get going! This methodology extends into the rest of JMeter, so don't be put off if some of
the recipes in this chapter don't seem glamorous; this is a powerful tool.

See also
 f The Creating a web service test by using JMeter recipe

Creating a web service test using JMeter
In this recipe, we'll create a JMeter test for a SOA composite.

Getting ready
You'll need to complete the Installing Apache JMeter recipe. We've provided a composite
to use in this recipe that is available on the book's website. You can use your own, but the
steps will follow the example recipe.

How to do it…
Follow these steps to create a simple web service test:

1. Start JMeter as per step 4 of the Installing Apache JMeter recipe.

2. You'll be presented with the JMeter GUI. In the window pane on the left, right-click
on the Test Plan flask icon and select Add | Threads | Thread Group. Name the
Thread Group as Test Users by changing the text in the name box as shown:

3. Set Thread Properties so that Number of Threads is 10 and Ramp-Up Period is 15.

Chapter 3

79

4. Right-click on the Test Users thread group and select Add | Sampler | WebService
(SOAP) Request.

5. Depending upon how the composite to test is loaded on the system, the WSDL
location will be different. If you've deployed the test composite for this chapter
to a SOA server on the local machine, it will be located at something like
http://127.0.0.1:8001/soa-infra/services/default/Project1/
bpelprocess1_client_ep?WSDL. Place this in the WSDL URL textbox and
select Load WSDL. In the Web Methods drop-down box, select Process, and
click on Configure. Finally, set Timeout to a suitable value such as 2000
milliseconds. The JMeter GUI should appear as follows:

6. Place the following text into the Soap/XML-RPC Data box:
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/">
<soap:Body>
 <ns1:process xmlns:ns1="http://xmlns.oracle.com/
SOAApplication1/Project1/BPELProcess1">
 <ns1:input>1</ns1:input>
 </ns1:process>
</soap:Body>
</soap:Envelope>

Performance Testing

80

7. Ensure that the Options section has the Read SOAP Response checkbox selected,
as follows:

8. Right-click on the Test Users thread group and select Add | Listener | View
Results Tree.

9. Select File | Save, and give the plan a suitable name.

10. Click on the green run arrow or go to Start | Run to start the test. Click on the
View Results Tree item to browse the test result, and data sent and received is
in the Request and Response data tabs. If all goes well, you should see a green
icon next to Web Service Request, as follows:

Chapter 3

81

How it works…
JMeter uses the concept of samplers, controllers, and listeners to control the sending and
capturing of data to and from endpoints. Thread groups then encapsulate the load element
of the test, allowing us to control volumes and the rate at which they escalate.

In this recipe, we created a single thread test, which executed only once. We used a SOAP
sampler to make it send a SOAP XML test to our SOA Suite composite, by parsing the WSDL
exposed by our composite and firing a static SOAP envelope at its exposed address.

We then added a listener to capture the response from the composite, and validated that
we received a HTTP 200 response.

There's more…
If you had issues publishing data to your composite, then a good alternative to create a single
SOAP message test is to use the Fusion Middleware Control Enterprise Manager application
to generate the test SOAP message. To do this, click on the Test button within the composite
view. This can give you the exposed WSDL address, endpoint invoked, and request and
response information that you can place within JMeter, ensuring that all of the values are
correct. Enterprise Manager has a useful, single execution test option, however, this is
not suitable for load testing. SOA Infra app exposes a test application, however, this is
a beta JavaScript stub and is not suitable for large scale, distributed load testing.

There are a lot of other samplers and elements that we can add to a test plan; of particular
use is the ability to save test results for later analysis. The JMeter documentation is the best
place to learn about what they can do and how they work.

Running JMeter on multiple servers
In this recipe, we'll extend the Creating a web service test using JMeter recipe to run our
JMeter test from multiple locations.

Getting ready
You will need to install Oracle SOA Suite 11g for this recipe.

You'll need to have completed the Installing Apache JMeter recipe for a single machine,
and have the SOAP composite test configured and working correctly from the Creating a
web service test using JMeter recipe.

You'll need network access to the SOA Suite server hosting your composite, and the machine
hosting the first JMeter installation.

We'll refer to the installation folder for JMeter as $JMETER_HOME for this recipe.

Performance Testing

82

How to do it…
By following these steps, we can configure JMeter to use multiple machines to generate load
on your application:

1. Follow the steps in the Installing Apache JMeter recipe to install JMeter on the second
machine. Ensure that you install the same version of JMeter on the second machine.
We'll refer to the original instance of JMeter, which hosts the saved test plan from the
Creating a web service test using JMeter recipe, as JMeterServer1, and the new
installation as JMeterServer2.

2. Determine the IP of JMeterServer2. On Windows, you can do this from the
command line by using the ipconfig command, as follows:

3. On JMeterServer2, open a command-line terminal and change the directory to
$JMETER_HOME.

4. Run bin/jmeter-server.bat on Windows. On Linux, run bin/jmeter-server.
sh.

5. On JMeterServer1, within the folder $JMETER_HOME/bin, open the file jmeter.
properties, edit the line starting with remote_hosts=127.0.0.1 and add a
comma, then the IP for JMeterServer2.
remote_hosts=127.0.0.1,192.168.106.128

6. On JMeterServer1, start JMeter with $JMETER_HOME/bin/jmeterw.cmd on
Windows, or jmeter.sh on Linux.

7. Open the saved plan from the Creating a web service test using JMeter recipe.
In the WebService(SOAP) request step, we need to ensure that the IP for the request
points at the SOA suite server and not localhost, otherwise JMeterServer2 will not
be able to communicate with it. Alter the Server Name or IP box to add your server's
IP as shown:

Chapter 3

83

8. In the JMeter GUI, select JMeterServer2's IP from Run | Remote Start.

9. Ensure that the test results are valid by examining the command-line output
from the JMeter server program on JMeterServer2, and the GUI result listener
on JMeterServer1:

10. On JMeterServer1, run $JMETER_HOME/bin/jmeter-server.bat on
Windows; $JMETER_HOME/bin/jmeter-server.sh on Linux.

11. The test can now be run across all available nodes from the GUI by selecting
Run | Remote Start All.

12. If the test is successful, there will be two valid SOAP test requests—one for each
JMeterServer that ran the test.

Performance Testing

84

How it works…
JMeter is capable of running in a "headless" mode, where Java processes act as load test
agents, which are then orchestrated by a command process. In this recipe, we ran the JMeter
GUI as the command process and two agents; one agent ran on the same host as the JMeter
GUI and we ran another agent on a remote host.

The JMeter GUI process sends the test plan to the agents over the RMI. When the tests are
complete, they are sent back to the GUI process and processed for visualization. Note that
each JMeter agent runs the whole test plan; the total load is not distributed across them.

We have now initialized a multi-node load test environment that we can scale (by adding
more hosts running JMeter), to place increasing loads on our SOA composites.

There's more…
There are some limitations on the network relationships between agents and the JMeter
command node. The JMeter website has details on the things to consider for increasing
the scale of distributed load test. See http://jmeter.apache.org.

See also
 f The Checking responses in JMeter tests and Running performance tests from the

Cloud recipes

Checking responses in JMeter tests
In this recipe, we'll use some techniques to validate JMeter test results rather than just
checking manually for an HTTP 200 response code.

Getting ready
You will need to install Oracle SOA Suite 11g for this recipe.

This recipe assumes that you have a loaded test plan. You can complete the Creating a web
service test using JMeter and Running JMeter on multiple servers recipes, in order to have
access to a working test plan against a composite. Alternatively you can use these steps
with your own working test plan.

Chapter 3

85

How to do it…
By following these steps, you can use assertions to check that the responses contain the
correct data.

1. In the test plan, right-click on the Test Users thread group, and select
Add | Assertions | Response Assertion.

2. In Assertion, ensure that the checkboxes Main sample only, Test Response,
and Contains are selected.

3. Click on Add in Patterns to Test in the textbox, and enter <result>2</result>.
Your test plan should look similar to the following screenshot:

4. In step 3, we've purposely added an assertion that will fail for the input to our test
composite. Run the test by clicking on the green run icon, and navigate to Result
Listener Tree View.

Performance Testing

86

5. Expand the error result tree and view the assertion error. We can see why our
response check failed—there was no result of 2 in the response.

6. Change the assertion to check that it matches the expected result. Do this by
double-clicking on the pattern to test for in Response Assertion, and change
it to <result>1</result>.

7. Run the test again and view the response listener; it will now contain our valid
web service test result as well as the one for which the assertion failed.

8. Response assertions are Perl 5 style regular expressions; we'll add another pattern
to test for a <result> element that contains any number. Click on Add, and in the
Patterns To Test box, add the following:
 (?i)<result>\d</result>

9. Run the test again, and the result should contain no errors if the pattern is correct.

Chapter 3

87

How it works…
Assertions can be used in JMeter to check the responses in our tests. In the event that an
assertion fails, we can determine the cause of the failure in a results listener. We purposefully
set an incorrect assertion to begin with, and saw this in action. Assertions are relatively
intensive for JMeter to process, so they should be used sparingly, checking for key text that
you expect to be in a successful response, rather than trying to perform complex regular
expressions or analysis on the returned data. If you use assertions, be sure to monitor
the CPU usage of the host running JMeter; if it maxes out, your tests are limited by the
performance of the testing host, rather than the SOA Suite host. If this happens, you should
add extra JMeter hosts to increase the load, or save the response data and run assertions
after the test by using scripting or some other framework.

The assertion type that you can add to JMeter tests can interrogate responses in one of
the two ways. Selecting the Contains or Matches checkboxes enables the use of Perl5-style
regular expressions. Choosing Equals or Substring will match plaintext only, and will do so
in a case-sensitive way.

For the assertions added in this recipe, we not only exclusively used the Contains checkbox,
but also used both plaintext and regular expressions—this is perfectly valid.

If you want to use Matches and Contains response checks, you can do this by using a
second assertion test element.

There's more…
There are a large number of assertion elements that can be added to our JMeter tests;
they are documented at http://jmeter.apache.org/usermanual/component_
reference.html#assertions. Of particular note are XML schema assertions, which
check that a response conforms to a DTD or XML schema. XPath assertions can also be
used to extract values from our SOAP responses, and BSF assertions that can use a scripting
language, such as groovy, to check the returned data. These complex assertion types should
be used sparingly and with care, as they are very CPU-intensive.

See also
 f The Running JMeter on multiple servers recipe

www.allitebooks.com

http://www.allitebooks.org

Performance Testing

88

Monitoring SOA Suite while testing
In this recipe, we'll look at tying together running tests that generate larger loads with starting
points for monitoring SOA composite performance.

Getting ready
You will need to install Oracle SOA Suite 11g for this recipe with the Enterprise Manager
Fusion Middleware Control console.

You'll need to complete the Installing Apache JMeter recipe, deploy the test composite
available from the book website to a SOA Suite server, have a working test plan as in
the Creating a web service test using JMeter recipe, and have access to the Enterprise
Manager and WebLogic web consoles.

How to do it…
These steps will show you some basic monitoring that can be performed on SOA Suite
while tests are running:

1. Load the sample JMeter for this chapter (or create your own). In the JMeter test,
select Test Users Thread Group. Set Number of users (Threads) to a higher value
than 1. As a guide, if the host running this test is powerful, then try 100, otherwise
start with a value around 50. We only want a small value to start with.

2. Set Ramp-Up Period (in seconds) to a value similar to the number of users.
Set Loop Count to a value of around 50, so that threads will loop and generate
a sustained load.

Chapter 3

89

3. Log in to Enterprise Manager on http://admin-server-host:<admin-port>/
em (the default port is 7001).

4. In the toolbar on the left of the screen, expand the Weblogic Domain folder, expand
the domain running your composite, and right-click on the server under test. Select
Performance Summary.

5. Click on the Show Metric Palette button, and select metrics to monitor. Good starting
candidates are JVM Heap, Memory Usage, SOA Composite Errors, and Incoming
Message Throughput. Finally, in the Server Overview folder, there is a summation
of the JDBC connections Open JDBC Connections.

6. In another tab, log in to the WebLogic Administration Console http://admin-server-
host:<admin-port>/console and under Environment | Servers | SOA Server to
monitor | Monitoring | JDBC, you'll see a breakdown view of the JDBC connections.
Click on Customize this table, and ensure that Prep Stmt Cache Current Size and
Active Connections Current Count are added to the chosen list.

7. Now, run the test JMeter load test a few times, gradually increasing the number of
users (thread) in each test, and monitor the output in Enterprise Manager and the
WebLogic admin console.

Performance Testing

90

8. Try to observe any limiting factors within the SOA suite server being monitored. In
the following screenshot, we can see that we're approaching a large amount of CPU
consumption on this host, but the throughput is steady and the JDBC connection
pools are not yet at capacity:

9. Use the WebLogic console to monitor the breakdown of connections:

Chapter 3

91

How it works…
In this recipe, we looked at the main way to control and vary user load in JMeter; by controlling
the thread group that represents concurrent user load. There are other ways to form this load
by using looping controllers that we did not explore here.

We looked at the results in a new JMeter listener. Whilst JMeter can give us information on
the interaction profile with our SOA composites, the view of results it presents ends at the
entry point of our SOA infrastructure.

We need to combine the information in Chapter 2, Monitoring Oracle SOA Suite, to guide
us on where to begin analyzing the SOA Suite components, to identify bottlenecks and
candidates for tuning.

In this section, we looked at creating an overview page in the Enterprise Manager Fusion
Middleware Control tool available with SOA Suite. This tool gives us a short term component
metric view; not every system will have the same performance choke points, so the dashboard
components we've used in this recipe should be altered to the needs of the system under test.

We also leveraged the WebLogic tool to give us a further breakdown of the internal metrics
for the WebLogic SOA Server's JDBC connection pool. We can use this to further decompose
points of contention in our system.

There's more…
Unfortunately, Enterprise Manager Fusion Middleware Control only allows for a short window
of monitoring until the browser session times out. It is good practice to record metrics in a
permanent store of information, for posterity and tallying of test results with system changes.
Chapter 2, Monitoring Oracle SOA Suite, contains many recipes to set up monitoring of your
Oracle SOA Suite application. If you configure this monitoring in your testing environment,
you will have a large amount of monitoring data available to work with.

See also
 f The Monitoring JVM memory usage and Monitoring platform CPU usage recipes

in Chapter 2, Monitoring Oracle SOA Suite

Performance Testing

92

Recording user web sessions with JMeter
In this recipe, we'll look at simply configuring JMeter to capture user web activity for replaying
in a load test.

Getting ready
You'll need to complete the Installing Apache JMeter recipe.

We'll be using a website in this recipe, so you'll need access to a webpage to test.

You'll also need to know how to change your browser's proxy settings.

How to do it…
By following these steps, you can record a browser web session to replay as a JMeter test:

1. Start JMeter with $JMETER_HOME/bin/jmeterw.cmd on Windows, or jmeter.sh
on Linux.

2. Right-click on the test plan and select Add | Threads | Thread Group.

3. Right-click on the thread group and select Add | Config Element | HTTP Request
Defaults. In Server Name or IP section, enter www.c2b2.co.uk or the hostname
of the server you will be making requests to.

4. Right-click on the Workbench item under the test plan, and select Add | Non
Test-Elements | HTTP Proxy Server.

5. Right-click on HTTP Proxy Server, select Add | Listener | View Results Tree.
This is to allow us to observe the recording in flight.

6. Left-click on HTTP Proxy Server. In Global Settings, select a port that is not in use
on that host; 8080 is the default. In URL patterns to exclude add .*\.ico, .*\.gif,
.*\.jpg, .*\.png to prevent our test capturing the image requests.

7. In HTTP Proxy Server, click on Start at the bottom of the control pane to
begin recording.

Chapter 3

93

8. Next, on any machine with network access to the host running the JMeter proxy,
configure a browser or host to utilize the JMeter proxy server. In Firefox, this is
achieved by going to Tools | Options | Advanced. Select the Network tab and
click on Settings. Select the Manual Proxy Configuration checkbox, and enter
the host and port for JMeter:

9. Generate some traffic by going to www.c2b2.co.uk. All of the requests going
through the proxy can be monitored in View Results Tree under HTTP Proxy Server.

10. The recorder will add the requests that match your include and exclude patterns
under your thread group in the test plan. These can then be saved to a test a plan
for replay at a later date.

Performance Testing

94

How it works…
JMeter contains a built-in proxy that can be used to capture user HTTP requests, and store
them straight into a test plan, which can then be replayed at a later date.

In this test, we configured a proxy and recorded a test plan that can be replayed directly,
or modified to add parameterized URLs to substitute values and user per-thread cookies.
This gives us a powerful way to capture traffic from tools such as the Enterprise Manager
test console, to use in load tests.

Designing advanced load tests
In this recipe, we'll look at the ways in which you can create more varied tests that we can
use to more closely replicate realistic user loads.

Getting ready
You will need to install Oracle SOA Suite 11g for this recipe.

You'll need to complete the Installing Apache JMeter recipe . We'll also be reusing the JMeter
test from the Creating a web service test using JMeter recipe, which you can reload for this
recipe. We'll use a CSV dataset, which you can get from the book's website, or you can create
your own.

How to do it…
These steps will demonstrate some of the more advanced features of JMeter testing:

1. Start JMeter with $JMETER_HOME/bin/jmeterw.cmd on Windows, or jmeter.sh
on Linux.

2. Open the saved test plan from the Creating a web service test by using JMeter
recipe, or load the sample provided with the book source code. Modify the test,
if required, to use the correct hostname and port information in the
WebService(SOAP) Request.

3. Right-click on Response Assertion and click on Remove.

4. Right-click on the test plan, and select Add | Config Element | CSV Data Set Config.

Chapter 3

95

5. In the CSV dataset config, set Filename to point to the location of the CSV file
load-test-data.csv. Set Variable Names to RequestValue, ResponseValue.

6. In the Webservice(SOAP) Request element, change the request value to be loaded
by the CSV, by using the parameter ${RequestValue}. Also, in the Options section,
disable the Memory Cache checkbox as shown:

7. In the Test Users element, set the number of threads to 10 and Ramp-Up Period
(in seconds) to 40.

Performance Testing

96

8. Right-click on Test Users and select Add | Listener | Graph Results. In the graph
settings, set the display interval to 1000, and click on Apply Interval.

9. Right-click on Test Users and select Add | Logic Controller | Loop Controller.
Set Loop Count to 3.

10. Left-click on WebService(SOAP) Request, and drag it onto Loop Controller.
Select Add as Child.

11. Right-click on Loop Controller, and select Add | Timer | Constant Timer.
Set the value to 300.

12. Run the test by clicking on the green start icon; when completed, view the
test results by clicking on Response Time Graph, and selecting the Graph tab.

Chapter 3

97

How it works…
In this test, we mutated the base test developed in an earlier recipe to add data substitution
on the fly, a looping element, and a simple graphing element. The test composite provided with
this book will have responded by providing an increase in the response time after the fifth input
change from the dataset, which is viewable in the listeners; in particular, the graph we plotted.
This is the sort of information we hope to distil from systems, by providing mutating data.

We created the test data in advance of the test. This prevented JMeter from having to
perform expensive randomizations mid-test, which allows it to focus on simply performing
the test actions.

We added a looping element to each iteration to ensure that each execution's response
time was not a one off. We could increase the distribution of these randomizations and
vary the looping mechanisms, to test only certain parts of the application based on
conditions specified in the "if" controllers.

This will help us to design a variety of different load generating tests that we can use
in conjunction with monitoring tools, to gather information on the performance of our
SOA composites.

Performance Testing

98

There's more…
There are a large number of variations available in these sorts of tests. A number of types of
randomizations are available in the pause controllers. SOAP messages can be pre-created
and loaded from a folder, and operating system samplers can execute commands on systems
to collect data to graph at a later date. It's best to experiment with the wide range of options
available by using the knowledge gained in this chapter, to determine the best way to replicate
more advanced load profiles.

Running performance tests from the Cloud
In this recipe, we'll use Amazon Elastic Cloud Compute (EC2) instances to allow us to
put large loads on the system under test, and simulate realistic user traffic from
multiple locations.

Getting ready
You will need to install Oracle SOA Suite 11g for this recipe.

You'll need to have access to an Amazon web services account to create a Cloud test server;
at the time of writing this is free for the resources we need in this recipe.

You'll need to complete the Installing Apache JMeter, Creating a web service test by using
JMeter, and Running JMeter on multiple servers recipes to be comfortable with setting up
the test servers.

For ease of use, we'll use JMeter in command-line mode. We'll make use of the test plan
created in the Creating a web service test recipe.

How to do it…
Follow these steps to configure a JMeter server running on Amazon Elastic Compute Cloud:

1. Log in to AWS at https://console.aws.amazon.com/ec2, and select EC2
from the main menu if prompted.

2. Click on Launch Instance.

Chapter 3

99

3. In the new instance wizard, select Quick Launch. Name the instance
JMeterCloudServer1 in the Name Your Instance textbox. In the Choose a Key
Pair section, choose Create New, and click on the Download button. If you're on
Windows, you'll need to use a remote shell, such as Putty to perform some extra
steps with the key file you download; these are detailed in the AWS user guide at
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html.

4. Select Amazon Linux AMI. Ensure that the instance selected has Free tier eligible
written next to it. Ensure that the instance is a micro type.

Performance Testing

100

5. Click on Edit Details and add a security group to allow access on a port between
the hosts. You need to add ports for 2159, 1099, 4445, and 22. Details on creating
security groups are available in the Amazon AWS documentation.

6. Launch the instance by clicking on the final Launch button. Right-click on the
instance in the EC2 console, and click on Connect to get connection instructions
for Putty or an SSH terminal.

7. Repeat steps 1 to 6 to create another instance, and call it JMeterCloudServer2.
Ensure that the already created key and security groups are reused.

8. The Amazon Linux AMI has OpenJDK Java pre-installed. If you selected another EC2
instance type, install Java.

9. Install JMeter as shown in the Installing Apache JMeter recipe. Use wget from the
command line with the link to the JMeter download binary distribution, from the
download page at http://jmeter.apache.org/download_jmeter.cgi, and
then extract JMeter with the command tar zxvf apache-jmeter-2.8.tgz. In
the rest of the recipe, we'll assume you've installed JMeter in /home/ec2-user/
apache-jmeter-2.8/, and refer to this as $JMETER_HOME.

Chapter 3

101

10. On JMeterCloudServer1 in $JMETER_HOME/bin, edit jmeter.properties,
and set the following parameters:

 � remote_hosts to be the hostname of JMeterCloudServer2

 � Uncomment client.rmi.localport=2159, and set this to be 2159
(client.rmi.localport=2159)

 � Uncomment server.rmi.localport, and set this to be 2159 (server.
rmi.port=2159)

11. Create a file called test-plan.jmx, and upload the test plan created in the
Creating a web service test recipe. Edit the test plan to match your public IP and
port that can be accessed from the Cloud; in our test plan, this is set in the properties
HTTPSampler.domain, HTTPSampler.port, and WebserviceSampler.wsdl_
url. We have placed a template test plan with the properties set to $CHANGE_ME
in this chapter's source download.

12. On JMeterCloudServer1, run the test plan by using the following command:
java -jar ApacheJMeter.jar -n -t test-plan.jmx -l my-test-log.txt

13. Check the result log for a result, as follows:
<sample t="207" lt="0" ts="1358983533714" s="true"
lb="WebService(SOAP) Request" rc="200" rm="OK" tn="Test Users 1-1"
dt="text" by="573">
 <assertionResult>
 <name>Response Assertion</name>
 <failure>false</failure>
 <error>false</error>
 </assertionResult>
</sample>

rc=200 indicates that the HTTP response was successful, and assertionResult
<error>false</error> tells us that the assertion was successful.

14. On JMeterCloudServer2 in $JMETER_HOME/bin, edit jmeter.properties
by setting server.rmi.localport=2159.

15. Start JMeter on JMeterCloudServer2, by running $JMETER_HOME/bin/jmeter-
server.sh. You should see output similar to the following code snippet:
[ec2-user@ip-10-226-115-140 bin]$./jmeter-server

Using local port: 2159

Created remote object: UnicastServerRef [liveRef:
[endpoint:[10.226.115.140:2159](local),objID:[-
2c446135:13c69f551bd:-7fff, 9050801633329340775]]]

Performance Testing

102

16. On JMeterCloudServer1, run the following JMeter command to send the test plan
to the agent on server 2 to execute:
java -jar ApacheJMeter.jar -n -t test-plan.jmx -l my-test-log.txt
-R 10.226.115.140

You should see output similar to the following:

Created the tree successfully using test-plan.jmx

Configuring remote engine for 10.226.115.140

Using remote object: UnicastRef [liveRef:
[endpoint:[10.226.115.140:2159](remote),objID:[-
2c446135:13c69f551bd:-7fff, 9050801633329340775]]]

Starting remote engines

Starting the test @ Thu Jan 24 20:30:17 UTC 2013

Remote engines have been started

Waiting for possible shutdown message on port 4445

Tidying up remote @ Thu Jan 24 20:30:19 UTC 2013

... end of run

17. Check the agent command line on JMeterCloudServer2 for an equivalent
execution message:
Starting the test on host 10.226.115.140 @ Thu Jan 24 21:03:38 UTC
2013 (1358975018304)

Finished the test on host 10.226.115.140 @ Thu Jan 24 21:03:39 UTC
2013 (1358975019169)

18. Check the log file on JMeterCloudServer1 for the test response for 200 success
code and no errors:

<sample t="382" lt="0" ts="1358975019724" s="true"
lb="WebService(SOAP) Request" rc="200" rm="OK" tn="Test Users 1-1"
dt="text" by="573">
 <assertionResult>
 <name>Response Assertion</name>
 <failure>false</failure>
 <error>false</error>
 </assertionResult>
</sample>

Chapter 3

103

How it works…
To enable new users to test drive EC2 for free, Amazon lets you create and start a free server
instance on their Cloud infrastructure. In this recipe, we leveraged this capability to allow you
to create and upload a test plan to the Cloud (you can learn more about setting this up at
http://aws.amazon.com/free/).

We downloaded and installed JMeter onto two Cloud servers, tested our composite remotely,
and then configured JMeter from the command line to run in a distributed mode in the Cloud.
We can now add multiple agents as remote targets to JMeterCloudServer1 via the -R
command-line flag; these would run the test loads and send the results back.

There are some limitations to consider, however. There must be sufficient processing power on
the master node to cope with the number of agents streaming data to it. Memory and network
bandwidth will also need to be monitored if heavy load tests are to be used.

There's more…
We can now stretch our imagination to think of scenarios, such as running multiple, different,
concurrent types of load tests across multiple hosts in the Cloud.

To add business value, these distributed tests should be enhanced to output their data to
file for aggregation and posterity. Try adding this functionality via listeners!

See also
 f The Recording user web sessions with JMeter and Monitoring SOA Suite while

testing recipes

4
JVM Memory

This chapter looks at some of the things we can do to tune the memory settings of the
Java Virtual Machine (JVM). We will look at how to perform the following actions:

 f Increasing the JVM heap size
 f Setting Xmx and Xms to the same value
 f Setting the size of the Permanent Generation heap
 f Calculating the total memory used by your application
 f Viewing the memory used using JRMC for JRockit
 f Viewing the memory used using VisualVM for HotSpot
 f Setting the size of the thread stack

Introduction
JVM manages memory for us so that we can focus on writing our applications. It is pretty good
at it too, but it cannot fully optimize its behavior while running programs. To help it, we can
give it explicit rules to follow as well as hints on how to operate. Unfortunately, the number of
options available for these hints and rules is wide ranging and not always fully documented.

In this chapter, we will explore some of the options available to us and look at how we can
monitor the effect they have on your SOA Suite installation. This will allow us to analyze its
behavior at runtime and monitor the effect of our applied tuning options. We will look at options
for the HotSpot and JRockit JVMs (for more details on making a selection between the two, see
the Using the Oracle JRockit JVM recipe in Chapter 6, Platform Tuning end parenthesis.

Memory management is a combination of art and science—more is not always better, and so,
selecting your memory settings should always be performed as part of a tuning exercise (which
is why we covered identifying problems, monitoring, and testing in our initial chapters). Our goal
is to ensure that the application has enough memory to handle as much data as it is provided
with, but not so much that garbage collection takes a long time (see Chapter 5, JVM Garbage
Collection Tuning).

JVM Memory

106

Increasing the JVM heap size
The Java heap contains all of the objects (instances of classes) that the JVM is currently,
or was recently working with. It is therefore the memory space that the JVM uses for storing
and working with data. Increasing the heap size for the JVM allows more objects to exist in the
heap space. Getting the heap sized optimally will reduce the chance that full "stop the world"
garbage collections will occur, thus increasing the processing time available (what we call
JVM throughput).

Getting ready
For this recipe, you will need to have Oracle SOA Suite 11g installed on a server. This
requirement is the same whether you're using the Hotspot or the JRockit JVM. Note that you
will need to perform the following steps on each machine that runs SOA Suite instances.

How to do it…
Follow these steps:

1. Navigate to the domain's home directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

Replace soa_domain with the relevant domain.

2. Within the bin folder you will see a number of scripts. Depending on your platform,
you will need to edit a different file—setSOADomainEnv.cmd on Windows,
setSOADomainEnv.sh on Linux. Note that it is a good idea to make a backup
of these files before editing them.

Chapter 4

107

3. Open the file and locate the following section:

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

4. In DEFAULT_MEM_ARGS and PORT_MEM_ARGS, set the value of Xmx to your new
value. A good rule of thumb is to stick to powers of 2, with 1.5 MB as a good starting
value. This give us 1,536 as a new JVM maximum heap size.

JVM Memory

108

5. Start the server and view the output to verify your change. Here, I set Xmx to 1280 in
order to show a change from the default value on a 32-bit machine.

6. Be careful—if you set it too large, you will see a message, similar to the one
given here:

Error occurred during initialization of VM

Could not reserve enough space for object heap

Could not create the Java virtual machine.

How it works…
Why do we set both USER_MEM_ARGS and PORT_MEM_ARGS? The scripts configure the
environment to start the Java process. When they do this, they check a flag JAVA_USE_64BIT
to see if your environment is 64-bit enabled. If the flag is set then the value of DEFAULT_
MEM_ARGS is used for your memory settings, if not then it is presumed that you are in a 32-bit
environment and PORT_MEM_ARGS is used instead. This allows you to write portable scripts
that will work across heterogeneous environments that have different memory settings. As
we didn't follow the variable naming convention, we apologize for their confusing names.

Setting the correct flag in the startup scripts increases the maximum size of the Java heap.
This best maximum size should be determined by testing, but for a busy application running
on a 64-bit JVM, 4 GB is a good starting point. Because the operating system and other
processes also need to make use of the system memory available on the box, we would
recommend setting Xmx to no more than 75 percent of the total system memory.

Note that by default the flag JAVA_USE_64BIT is set to false in %WL_HOME%\common\
bin\commEnv.cmd.

If you are not using a 64-bit JVM, but want to use heap sizes larger than 32 bits (or take
advantage of some of the other performance enhancements in the 64-bit JVM), you can
follow the instructions given here:

1. Navigate to the Oracle website to download a 64-bit JVM. The quickest way here is
to search for JRockit 64 bit download. Choose the appropriate JVM for your
platform from the given list. As I'm on Windows, this will be Windows x86-64 binary;
for Linux, this would be Linux x86-64 binary.

Chapter 4

109

2. Follow the installation instructions for the downloaded file. As we'll be using this JVM
only for our WebLogic domain, for convenience we recommend installing it in the
Oracle installation directory %MIDDLEWARE_HOME%.

3. Now we can use this JVM in SOA Suite. Navigate to the domain's home directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

Replace soa_domain with the relevant domain, as required.

4. Within the bin folder, you will see a number of scripts. Depending on your
platform, you will need to edit a different file—setDomainEnv.cmd on Windows;
setDomainEnv.sh on Linux. Note that it is a good idea to make a backup of these
files before editing them.

5. Open the file and locate the following section:

6. Edit BEA_JAVA_HOME to be the location of your 64-bit JVM. As per the installation
screen in step 2, I set mine to be:
C:\Oracle\WebLogic10_36\jrockit-jdk1.6.0_33-R28.2.4-4.1.0

7. Finally, we will edit a 64-bit toggle for this domain. Open the commEnv.cmd file
on Windows or commEnv.sh on Linux, located in the MIDDLEWARE_HOME%\
wlserver_10.3\common\bin directory.

Locate the following section and change the value to true:

8. Now, start the domain with the startWeblogic.cmd command on Windows
or the startWeblogic.sh command on Linux. If the change to 64 bit has been
successful, you will see a message similar to the one in the following screenshot for
Jrockit (note the x86_64 in the JVM name, and that the maximum heap size is now
happily beyond the 4 GB 32-bit limit):

JVM Memory

110

If you have been performing these steps with the Hotspot JVM, the only change is
to set SUN_JAVA_HOME, and you will see the following message (note the 64-Bit
in the JVM name, and that the maximum heap size is now happily beyond the 4 GB
32-bit limit):

There's more…
There are more flags to set the fine-grain heap-sizing options in the setDomainEnv.cmd
or setDomainEnv.sh file, but you would need to set these yourself in the final memory-
argument string as they are overridden in the SOA Suite startup script by a check against
the USER_MEM_ARGS flag. It is also possible to set the memory arguments and JVM
start parameters by specifying remote start parameters in the WebLogic console. These
parameters will only take effect when the WebLogic node manager is used to start and
stop servers, so we don't discuss it in detail here (although it is the recommended way of
configuring memory parameters for your server in a production environment). You can find
instructions for configuring the node manager in the WebLogic Server documentation, at
http://docs.oracle.com/cd/E21764_01/apirefs.1111/e13952/taskhelp/
machines/BindToProtectedPortsOnServersStartedByNodeManager.html.

The properties that you configure to set memory parameters are the same as the ones
you configure when using the node manager; you just enter them via the WebLogic console
rather than in the scripts.

Because large heaps are not always better and because modern hardware often comes with
tens of GBs of memory, many SOA Suite systems will run multiple WebLogic Server instances
on each host, each with a smaller heap (for example, on a box with 16 GB RAM, running 3
WebLogic Server instances, each with 4 GB RAM). For more details on configuring domains
with multiple servers, see Chapter 12, High Performance Configuration.

See also
 f The Setting Xmx and Xms to the same value recipe

 f The Setting the size of the Permanent Generation heap recipe

 f The Calculating the total memory used by your application recipe

 f The Configuring a cluster of SOA Suite servers and Choosing deployment
hardware recipes in Chapter 12, High Performance Configuration

Chapter 4

111

Setting Xmx and Xms to the same value
Setting the Xmx and Xms parameters configures the maximum (mx) and minimum (ms) sizes
of the heap; setting them to the same value fixes the heap to a pre-determined size.

Getting ready
You will need to have Oracle SOA Suite 11g installed for this recipe. This command is the
same whether you're using the Hotspot or the JRockit JVM.

How to do it…
To configure your Xmx and Xms parameters, perform the following steps:

1. Navigate to the domain's home directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

Replace soa_domain with the relevant domain, as required.

2. Within the bin folder, you will see a number of scripts. Depending on your platform,
you will need to edit a different file—setSOADomainEnv.cmd on Windows;
setSOADomainEnv.sh on Linux. Note that it is a good idea to make a backup
of these files before editing them.

3. Open the file and locate the following section:

4. In DEFAULT_MEM_ARGS and PORT_MEM_ARGS, set the value of Xms and Xmx
parameters to your new value. A good rule of thumb is to stick to powers of 2,
with 1.5 MB as a good starting value. This gives us 1,536 as a new JVM Maximum
heap size.

5. Start the server and view the output to verify your change. Here, I set Xms and Xmx
to 1280 in order to show a change from the default value on a 32-bit machine):

JVM Memory

112

How it works…
By setting both Xmx and Xms to the same value, you are preventing the JVM from expanding
its heap dynamically. This can be a good thing as it will prevent pauses when the JVM hits its
memory ceiling, which, if these were different values, would cause a potentially lengthy memory
allocation by the operating system. The swapping of memory pages to disk, or multi-tenant
virtualized environments are good examples of instances where the operating system might
take some time to achieve this allocation. Furthermore, the process of expanding memory up
to the value of Xmx will happen incrementally, based on the application's memory needs. Each
time an expansion happens, a potentially lengthy full garbage collection will be triggered.

On the downside, hitting the memory ceiling will not always cause a full "stop the world"
garbage collection to occur, which introduces pauses during the execution of our code.

We usually find that it's better to give the garbage collector the overhead room to operate
rather than wait for memory allocations by the operating system to complete.

There's more…
The maximum memory that you can allocate by using the Xmx and Xms parameters
depends on the system and JVM that you are using. On 32-bit JVMs, the limiting factor is the
requirement that all of the JVM's memory be contiguous (one big block). This contiguous block
is used for heap, stack, native, permanent, and all other classes of memory used by the JVM.
This means that, in practice, on a 32-bit JVM on Windows (which can only allocate around 2
GB of contiguous memory), the maximum is around 1.5 GB for Xmx. On other platforms, such
as Linux, the limit is a little higher, but still not much more than 2.5 GB.

With a 64-bit JVM, you can address much more memory. So you can specify much larger
heap sizes, although doing so is not necessarily a good idea (due to the duration of time
garbage collection takes). In practice, heaps much above 8 GB become difficult for the
garbage collector to work with. We have seen SOA Suite applications using heaps of up
to 64 GB—garbage collection pauses were in tens of seconds, which caused significant
problems for the application.

We discuss memory sizing in detail in Chapter 5, JVM Garbage Collection Tuning.

See also
 f The Setting the maximum heap size recipe

 f The Setting the size of the Permanent Generation heap recipe

 f The Calculating the total memory used by your application recipe

Chapter 4

113

Setting the size of the Permanent
Generation heap

Permanent Generation (PermGen) is a special part of the Java heap that contains the class
templates for all of the Java classes on your classpath. The size of the Permanent Generation
heap can be controlled via the -XX:PermSize and -XX:MaxPermSize flags. Note that this
is not a feature of the JRockit JVM (which stores its classes in the heap)—as such this recipe
does not apply if you have chosen that JVM.

Getting ready
You will need to have Oracle SOA Suite 11g installed for this recipe. This command is the
same whether you're using the Hotspot or JRockit JVM.

How to do it…
Perform the following steps to configure the size of the Permanent Generation heap:

1. Navigate to the domain's home directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

Replace soa_domain with the relevant domain, as required.

2. Within the /bin folder, you will see a number of scripts. Depending on your
platform you will need to edit a different file—setSOADomainEnv.cmd on Windows;
setSOADomainEnv.sh on Linux. Note that it is a good idea to make a backup of
these files before editing them.

3. Open the file and locate the following section. Note that I have manually placed the
@REM comment; your file will not contain this line:

4. In DEFAULT_MEM_ARGS and PORT_MEM_ARGS, set the value of -XX:PermSize and
-XX:MaxPermSize to your new values. A good rule of thumb is to stick to powers of
2, with 256 MB as the minimum and 1,024 MB as the maximum starting values.

JVM Memory

114

5. Start the server and view the output to verify your change. Here, I set the minimum to
256 MB and maximum to 640 MB in order to show a change from the default values
on a 32-bit machine.

How it works…
The Permanent Generation heap space (PermGen) is a feature of the Hotspot JVM, designed
to prevent the bloat of the Tenured (Old) Java heap space, and thus allows the garbage
collection routines to ignore these classes during their main execution runs.

However, there is a problem with this design—the PermGen space forms a part of the total
memory required by the Java process. In other words, you must add this to the XMX maximum
heap space (and other values; see the Calculate the total memory used by your application
recipe) to determine the full memory usage of your application. Setting the PermGen space
to large values, especially on 32-bit machines, subtracts from the total memory available for
your applications objects. This explains why PermGen is, by default, set to a small value.

So why increase it? And what's a java.lang.OutOfMemoryError: PermGen space
exception? The answers to these questions are to do with class loading in Java, which is a
deep subject, beyond the scope of this chapter. It should suffice to say that there are two
main points to consider when setting these values:

 f Large applications with a large number of classes will require more PermGen
space to store their class templates. SOA Suite is a large application, hence our
recommendation to increase the value.

 f Every time you redeploy an application, a new class loader is used. This will load
all the classes in that application in isolation. Thus, if you are redeploying a large
application, you effectively have two instances of each of your classes in the
PermGen memory space until the old application is un-deployed (and sometimes
not even then, but that's another topic!). SOA Suite itself is not redeployed regularly,
so this is less of an issue for us here.

The recommendation is to set this value high enough for SOA Suite to run smoothly but not
so high that you are wasting memory that could be used for your heap objects.

See also
 f The Calculating the total memory used by your application recipe

Chapter 4

115

Calculating the total memory used by your
application

The Java process consumes more memory than simply the maximum heap size. This recipe
will show you how to determine the expected native memory size based on the arguments
you supply in the startup arguments, and your knowledge of the application.

Getting ready
For this recipe, we'll be using the administration server of the SOA Suite server. Note that
the arguments we use in this recipe are for demonstration purposes only; your production
requirements may be higher! We'll need to have the administration server running so that
we can make some measurements using standard Java tooling before we can make any
changes. We'll also be using the Hotspot JVM.

How to do it…
Follow these steps to calculate the memory used by your application:

1. We'll set appropriate values for the SOA Suite administration server by modifying
the stock startup scripts. Navigate to the domain's home directory:
%MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

Replace soa_domain with the relevant domain, as required.

2. Start the administration server by running the startWeblogic.cmd script.

3. Within the bin folder, open the setSoaDomainEnv.cmd file. We'll edit the file
shortly, but first we'll study the values we wish to set.

4. We'll set the maximum and minimum Java heap sizes to the same value. This sets
the heap memory size to a predefined static value so it cannot grow or shrink.
-Xms1024m –Xmx1024m

5. Add to the 1,024 MB heap a predefined Permanent Generation memory size,
which we'll set at 128 MB. Our total is now 1,152 MB.
-XX:PermSize=128m -XX:MaxPermSize=128m

6. Set the JIT code cache size to 16 MB using. This gives us a total of 1,168 MB.
-XX:ReservedCodeCacheSize=16m

JVM Memory

116

7. Set the thread stack size to a known value. We'll use 128 KB as a starting value. SOA
Suite makes heavy use of threads to service your business logic requests; as such we
can't just add this value to our running memory count
-Xss128k

8. In order to calculate the total amount of memory used by the threads in the JVM,
we need to determine the number of threads in the WebLogic administration server
process. We can do this using the jconsole application, which we'll start on the
same machine as the administration server (so that we do not have to set up any
remote access policies). Within the %MIDDLEWARE_HOME%/your_hotspot_jdk_
version/bin directory, open jconsole.exe

When jconsole is running, attach it to the administration server by selecting
the process from the list and clicking on Connect

Within jconsole, select the mbean tab, and then open the java.lang folder and
the Threading package. Select Attributes'; you'll see a ThreadCount attribute

Chapter 4

117

We multiply this by our new Thread Stack Size value (128 KB) to give us a value
of 5.504 MB. This gives us a running total of 1,173 MB.

9. Finally, make the changes to the file and run the program. Here are the complete
changes we make in the setSoaSuiteDomainEnv.cmd file:

set JAVA_OPTIONS=%JAVA_OPTIONS%

set DEFAULT_MEM_ARGS=-Xms1024m -Xmx1024m -Xss128k

set PORT_MEM_ARGS=-Xms1024m -Xmx1024m -Xss128k

@REM This section will only run on a non JRockit VM

if "%JAVA_VENDOR%" == "Oracle" goto OracleJVM

set DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m
-XX:MaxPermSize=128m -XX:ReservedCodeCacheSize=16m

set PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m
-XX:MaxPermSize=128m -XX:ReservedCodeCacheSize=16m

JVM Memory

118

How it works…
Our Java processes use more memory than the object memory heap space alone. Internally,
the memory layout is as shown in the following diagram:

JVM Memory

Heap

Thread
StacksOld/Tenured Generation

New Generation

Survivor Survivor

Perm
Gen

N
a
t
i
v
eEden

Unfortunately, it can be hard to determine exactly how an operating system natively handles
the memory of our Java process. However, there are options that we can use to control the
JVM's memory allocation.

The total native memory size of the Java process is calculated by adding together
the following:

 f Maximum Object Heap Size (Xmx): The area of memory used for holding our
Java objects.

 f The PermGen Memory Size (XX:MaxPermSize): The area of memory to hold
Java class templates.

 f The Thread Stack Size (multiplied by the number of runtime threads)
(XX:ThreadStackSize or Xss): This configures the maximum thread call
stack depth.

 f The JIT Code Cache Size (XX:ReservedCodeCacheSize): This is the area
of memory reserved for optimizations performed by the JVM in response to
your code paths.

 f Native memory: The native memory from the JVM itself, plus any native libraries
that are being used (look up JNI on the Internet).

We can now make a much closer approximation of the total memory size of our Java process.
This will allow us to size our JVMs according to the available native memory on a physical
or virtual host.

You can see from the recipe that our final native memory calculation is nearly 150 MB higher
than the maximum heap space, which is not a small change if you're trying to co-locate JVMs
onto a host.

You can monitor native memory using tools such as Process Explorer on Windows, the top
command on Linux, or the ps and prstat commands on Solaris.

Chapter 4

119

Viewing the memory used using JRMC
for JRockit

JRockit Mission Control (JRMC) is a visualization and management tool for the JRockit JVM.
This recipe will show how to connect to local and remote JRockit JVMs to view this information.

Getting ready
For this recipe, you will need to have the JRockit JVM installed on a local machine. We'll use
the JRMC application bundled with the JRockit release.

We'll attach JRockit to the WebLogic administration server to visualize its memory usage
at runtime. To do this, you can use the recipe in the previous chapter to change the start-up
script to use JRockit.

We will extend the recipe by connecting to a remote JRockit VM to show the steps required
to view remote JVM data.

How to do it…
Perform the following steps to use JRockit to monitor your JVM memory:

1. Navigate to the domain's home directory:
%MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

Replace soa_domain with the relevant domain, as required.

2. Start the administration server by running the startWeblogic.cmd script.

3. Navigate to the JRockit JVM directory within the middleware home directory:
%MIDDLEWARE_HOME%/your_jrockit_jdk_version/

Replace your_jrockit_jdk_version with the relevant version number,
as required.

4. Within the bin folder, you will see a number of programs and some native
libraries. Open jrmc.exe on Windows; on Linux, this would simply be the jrmc
executable file.

JVM Memory

120

5. When booted for the first time, you may be presented with the welcome Start page.
Click on x in the tab to close this and we'll see the local Java processes to which we
have permission to attach JRMC; it will even note the different JVM types. We can see
that here we have a WebLogic instance and the JRMC instance that we can load into
JRMC, as well as our custom piece of code (which you can download from the book
site) that simply loops around, allocating and releasing memory.

6. Load the WebLogic process (by right clicking and selecting Start Console).
You'll see the default dashboard with the default CPU dials and memory graphs:

Chapter 4

121

7. More information is available for our dashboards. We can add a chart to the display
by clicking on the Add Chart button:

This will add a blank dashboard as shown in the following screenshot:

8. We can now add metrics of interest that are available in the JVM. Click on the Add
button and use Attribute selector to determine appropriate metrics. Here, we select
metrics on garbage collections.

9. JRMC will then collect and graph the data for us.

JVM Memory

122

10. The runtime view and Memory tab show us details on the memory consumption of
the program as follows:

How it works…
JRockit contains a bundled application called Mission Control, an application based on the
Eclipse platform. This allows collation of instrumentation collected by JRockit at runtime by
default. The upshot of this is that the only overhead on the JRockit JVM when using Mission
Control is in the transmission of these metrics to the monitoring platform.

JRockit leverages the Eclipse platform to allow the user to dynamically alter the view palettes
to display the information of interest to your operation teams.

Chapter 4

123

There's more…
JRMC has lots of powerful tooling, such as flight recording to allow capture and replay
of JRockit behavior, and a built-in memory leak detector. See the documentation for
more details, at http://www.oracle.com/technetwork/middleware/jrockit/
documentation/index.html.

While JRMC is very useful for diagnosing and monitoring problems in operational systems,
its use as a day-to-day monitoring tool should be discouraged because its overhead is higher
than other available tools, and it does not automatically store historical data.

If you are going to expose remote access to JRockit in production, we recommend securing
remote access as described in the JRockit documentation, by at least securing the data with
passwords and enforcing encryption over external links.

Connecting to a remote JRockit JVM
By default, JRockit does not allow JRMC connections from remote hosts. This can be
changed to allow a remote instance of JRMC to monitor metrics. We will show the required
change to enable this here using the code used in Chapter 2, Monitoring Oracle SOA Suite
as an example.

Follow these steps:

1. The following parameter needs to be added as a start-up parameter to your WebLogic
Server, or a similar one, with ports for your environment:
-Xmanagement:ssl=false,authenticate=false,port=7099

2. Run the start script as normal. If successful, you will see a line like this in the
console output:

3. We can now connect via JRMC by right-clicking on Connectors and selecting New
Connection, as shown in the following screenshot. Enter the details of the host
and the port we have exposed of 7099. Right-click and select show console, as
demonstrated in the local connections section:

JVM Memory

124

Viewing the memory used using VisualVM
for HotSpot

The VisualVM application lets you view real-time JVM data such as memory and thread usage
and garbage collection cycles. This recipe will show how to connect to local and remote JVMs
in order to view this information.

Getting ready
For this recipe, you will need to have the Hotspot JVM installed on your local machine. We'll
use the VisualVM application built in to the JDK 6 release so there is no need to download
the available, standalone VisualVM distribution.

We'll attach VisualVM to the WebLogic Administration server to visualize its memory usage
at runtime. To do this, you need to ensure that the Administration server is configured to start
with the Hotspot JVM.

We will extend the recipe by connecting to a remote Hotspot VM to show the steps required
to view remote JVM data.

How to do it…
Perform the following steps to view the memory used by Hotspot, using VisualVM:

1. Navigate to the domain's home directory:
%MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

Replace soa_domain with the relevant domain, as required.

2. Start the administration server by running the startWeblogic.cmd script.

3. Navigate to the Hotspot JVM directory within the middleware home directory:
%MIDDLEWARE_HOME%/your_hotspot_jdk_version/

Replace your_hotspot_jdk_version with the relevant version number,
as required.

Chapter 4

125

4. Navigate to the bin directory and open jvisualvm.exe. The following screenshot
shows this for a Windows machine:

5. When booted for the first time, we'll see the local Java processes to which we have
permission to attach VisualVM. If you don't see your process then ensure that you are
running VisualVM as a user with privileges to access the WebLogic process. We can
see in the following screenshot a WebLogic instance and the VisualVM instance to
which we can connect VisualVM:

6. If you don't see this view, click on the Applications button on the left gutter to display it.

JVM Memory

126

7. We'll install a plugin to visualize the GC cycles and memory usage. Go to Tools |
Plugins. In Available Plugins, select Visual GC as shown in the following screenshot,
and then click on Install:

8. After accepting the license agreement, restart VisualVM to enable the plugin.

9. Double-click on the test program or right-click on it and select Open.

Chapter 4

127

10. Now you are able to move between tabs to view visual data on the JVM. Let's look
at the tab for our new plugin, the Visual GC tab:

11. On the left are presented the current memory size snapshots; on the right,
GC's timings are graphed on a timeline showing JVM area memory sizes.

How it works…
VisualVM is a tool bundled with the JDK download package that lets you view detailed
information on the internal mechanics of JVM. You can run heap dumps, thread stack listings
or, as we did in this recipe, load in one of the many plugins and extrapolate the runtime data to
interpret how your program is running on the existing JVM. This is a powerful tool for tuning your
application as you can see how the memory is being managed in response to your application
code and JVM tuning flags. For instance, the VisualGC plugin that we loaded graphed JVM
young and tenured memory sizes going back in time. These were plotted alongside JVM
Just In Time (JIT) compilation and GC timings; this is a good indicator of how frequently
your garbage collector has to run.

JVM Statistics Monitoring Tool Daemon (jstatd) is a powerful mechanism for exposing
Java processes. But bear in mind that there is no native authentication in this application.
Firewall-access policies are recommended to supplement securing your machine.

JVM Memory

128

There's more…
Instead of using jstatd, we could have used Java management extensions (JMX) to
remotely access individual processes, which is arguably more secure. It depends on
your security needs and environment. JMX usages with VisualVM details are available
at http://visualvm.java.net/jmx_connections.html.

Connecting to a remote Hotspot JVM
On the host running your Java process, you need to enable jstatd. This provides a remote
interface to access the JVM over an RMI server. The server requires a security policy file
to run, which can aid in securing this process. This is described in this section.

Note that jstatd must be running with the same user credentials as the Java process that
you wish to monitor.

1. Within %MIDDLEWARE_HOME%, browse to the Hotspot installation location:
%MIDDLEWARE_HOME%/your_hotspot_jdk_version/

Replace your_hotspot_jdk_version with the relevant version number,
as required.

2. Within the bin folder, create a file named jstatd.policy. Add the following
content to the file:
grant codebase "file:${java.home}/../lib/tools.jar" {
 permission java.security.AllPermission;
};

3. Now start a command-line terminal, navigate to the bin folder and run the
following command:
jstatd -J-Djava.security.policy=jstatd.policy

If started correctly, there will be no response from the program, it will just sit there.

4. We can now connect via VisualVM from a remote host by navigating to File | Add
Remote Host:

Chapter 4

129

5. You will be able to open all of the processes that jstatd has permission to access
on the remote machine.

JVM Memory

130

Setting the size of the thread stack
Every thread in your Java process has its own stack. The size of this stack can be controlled
via the -Xss setting.

Getting ready
You will need to have Oracle SOA Suite 11g installed for this recipe. This command is the
same whether you're using the Hotspot or the JRockit JVM.

How to do it…
Perform the following steps to configure the size of the thread stack:

1. Navigate to the domain's home directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

Replace soa_domain with the relevant domain, as required.

2. Within the bin folder, you will see a number of scripts. Depending on your platform
you will need to edit a different file—setSOADomainEnv.cmd on Windows;
setSOADomainEnv.sh on Linux. Note that it is a good idea to make a backup
of these files before editing them.

3. Open the file and locate the following section. Note that I have manually placed
the @REM comment; your file will not contain this line:

4. At the end of the DEFAULT_MEM_ARGS and PORT_MEM_ARGS lines, add the
parameter -Xss[n]k where [n] is your stack size in KB. You can also specify a
stack size in MB but this is not recommended on 32-bit machines. After the edit,
your line will look like this, with 128 KB as my example value:

Chapter 4

131

5. Start the server and view the output to verify your change:

How it works…
The JVM is a multi-threaded application, and WebLogic and SOA Suite are built to take
advantage of this, using threads (essentially, parallel sequences of instructions) to allow multiple
tasks or requests to be processed at the same time. In most operating systems, threads are a
service provided by the operating system, and so when the application requests new threads,
the JVM looks to the operating system to provide the resources. This can take some time, so
modern application servers create many threads at startup and keep them idle, giving them
tasks to do as and when requests come in. This means that even an idle SOA Suite application
will have many threads. Threads can communicate with each other by the use of variables and
locks, which prevents multiple threads from accessing the same data at the same time.

Java thread stack size is used for storing information on the chain of methods (signatures,
parameters, and return addresses) that are called in the thread, along with local variables.
This has a default value depending on the JVM type, and whether you're running a 32 or a 64-bit
version. Defaults for each JVM can change across releases, so we will not discuss them here.

Having a stack size that is too small for normal operations will prevent the thread from
calling the chain of functions that it is requesting; you will encounter a java.lang.
StackOverflowError if the stack cannot handle the method-call chain. Setting this
value to a higher number will allow the method chains to complete successfully.

There's more…
There are VM-specific options of this command, such as -XX:ThreadStackSize=[n] for
Hotspot, where [n] is the size in KB.

You need to be careful when setting this value. Each thread will use an amount of the native
operating system's memory equal to the size of the thread stack; this is in addition to the
process's maximum Java heap size. These will add to the Java heap size on your machine,
which may explain why the Java process memory value returned by your operating system
is higher than you expect. Also, operating systems can round this value off to quite coarse
numbers. Typically, 64 KB is the least amount of stack space allowed per thread.

The JVM operating system defaults are usually sensible values, which we recommend starting
with, and setting them only if you see issues or want explicit control of native memory size.

JVM Memory

132

See also
 f The Calculating the total memory used by your application recipe

5
JVM Garbage

Collection Tuning

In this chapter, we will cover the following recipes:

 f Setting the new size

 f Setting the survivor ratio

 f Choosing a garbage collection algorithm in Hotspot

 f Choosing a garbage collection algorithm in JRockit

 f Turning on verbose garbage collection

 f Tuning to reduce the number of major garbage collections

 f Disabling the RMI garbage collector

 f Disabling explicit GC

Introduction
Poorly tuned garbage collection (GC) is one of the most common causes for interruptions in
Java applications, and this includes Oracle SOA Suite 11g. This chapter is devoted to looking
at some techniques that will help you tune the garbage collector in your JVM.

Garbage collection is the process and set of techniques by which the JVM frees up memory
that holds the data which is no longer relevant, making it available to applications again.
By removing the burden of tracking (when allocated memory is no longer needed) from the
developer, Java increased the productivity of application developers, and because many
application bugs are caused by memory leaks and other memory problems, the stability of
applications also improved. However, the process of tracking which memory allocations are
no longer needed is non-trivial; a method that works well on one set of circumstances may
not work well in another.

JVM Garbage Collection Tuning

134

There are a large number of settings related to the JVM garbage collector that can be
tweaked. This chapter looks at some of the ones that you are most likely to tune.

Setting the new size
Getting the new size correct is probably the single biggest thing that can be done to prevent
poor garbage collection performance.

Getting ready
This recipe assumes that you are starting WebLogic using the startWebLogic or
startManagedWebLogic scripts. If you are using the node manager or some other
mechanism, simply apply the startup parameter to the relevant place. You will need the
file system permissions to edit the WebLogic start scripts for this recipe.

This recipe assumes that you are using the HotSpot JVM, and if you are using JRockit,
see the There's more… section of this recipe, for the parameter you need.

How to do it...
To set the HotSpot heap memory's new size, perform the following steps:

1. Navigate to the domain's bin directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/bin

2. Open the setSOADomainEnv.cmd or setSOADomainEnv.sh script in a text editor.

3. Locate the following lines for a Windows system:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

Or the equivalent on a Linux or a Unix system.

4. Edit the previous lines to add the parameter -XX:NewSize=256m
-XX:MaxNewSize=256m:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m -Xmx1024m –XX:NewSize=256m –XX:MaxNewSize=256m

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m –XX:NewSize=256m –XX:MaxNewSize=256m

5. Save the file.

Chapter 5

135

6. Start WebLogic with the startWebLogic and startManagedWebLogic scripts,
depending on whether this is a managed server.

How it works...
The new size is the amount of memory allocated to the new spaces in the JVM, where
new objects are allocated. The new space is a part of the total heap (so the value must
be less than the total heap), so in our experience we have found that a value between
one quarter and one-third of the total heap works best for Oracle SOA Suite. Modern Java
garbage collectors are all generational collectors; memory is split into a number of different
generations, with objects being initially created in the new generation, and once they have
survived a number of garbage collections, they are then promoted to the old generation. The
new generation itself is split into an Eden space, where new objects are created, and two
survivor spaces, where objects live until they are promoted to the old generation. Each time
the Eden generation fills up, it is garbage collected along with the active survivor space, and
any object that survives is moved into the other survivor space. This copy style of garbage
collection is fast, but leaves memory segments unused. Thus, it is not space efficient:

JVM Memory

Heap

Thread
StacksOld/Tenured Generation

New Generation

Eden Survivor Survivor

Perm
Gen

N
a
t
i
v
e

We have set two parameters here: -XX:NewSize is the initial new generation (Eden plus two
survivor spaces) and -XX:MaxNewSize is the maximum size that it can grow to. By setting
these two values to the same amount, we are forcing the new size to be an exact size, thus
preventing the JVM from pausing in order to resize it.

The objective of tuning the new size is to ensure that minor garbage collections do not occur
too frequently, and that there is still plenty of space for the old generation to hold objects that
are long lived.

There's more...
JRockit uses different garbage collection algorithms and methods as compared to HotSpot,
but still has concepts similar to HotSpot. Just like HotSpot, it uses a new part of the heap,
which it calls the "nursery," and an old heap to which long-lived objects are promoted after
a garbage collection. The JRockit nursery size can be set by using the –Xns256m command-
line parameter.

JVM Garbage Collection Tuning

136

See also
 f The Setting Xmx and Xms to the same value recipe in Chapter 4, JVM Memory

 f The Setting the survivor ratio recipe

 f The Tuning to reduce the number of full garbage collections recipe

Setting the survivor ratio
Survivor ratio determines the size of the survivor spaces, as a ratio of the total new space,
and can be tuned to ensure that the survivor spaces are large enough to hold all the objects
that survive "young" garbage collections.

Getting ready
This recipe assumes you are using the HotSpot JVM. JRockit manages memory differently
and does not have an equivalent parameter.

For more details, refer to the Getting ready section of the Setting the new size recipe.

How to do it...
To set the heap survivor ratio for the HotSpot JVM, perform the following steps:

1. Navigate to the domain's bin directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/bin

2. Open the setSOADomainEnv.cmd or setSOADomainEnv.sh script in a text editor.

3. Locate the following lines:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

Or the equivalent on a Linux or a Unix system.

4. Edit the previous lines to add the parameter -XX:SurvivorRatio=8:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m -Xmx1024m –XX:SurvivorRatio=8

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m –XX:SurvivorRatio=8

Chapter 5

137

5. Save the file.

6. Start WebLogic using the startWebLogic and startManagedWebLogic scripts.

How it works...
The survivor spaces are a part of the new generation area of the JVM heap. Objects are
allocated in Eden, and when a minor garbage collection occurs, live objects (if any) are copied
from Eden and the active survivor space, and pasted into the passive survivor space. The
passive survivor space is then marked as active, and the now-empty survivor space, which
was previously active, becomes passive. The entirety of the Eden space can now be considered
empty (because all the live objects were moved) and available to have new objects allocated
into it (refer to the figure in the How it works... section of the Setting the new size recipe).

The survivor ratio determines the size of each of the survivor spaces, as a ratio of the total
new size. A survivor ratio of 1:8 means that each survivor space is one-tenth of the new total
size, because there are two survivor spaces. We have found that 8 is a good starting point
for tuning, but you should benchmark your application to determine the best value for you.
The following screenshot shows how only one survivor space is in use at a time:

See also
 f The Setting the new size recipe

 f The Setting Xmx and Xms to the same value and Viewing the memory used using
VisualVM for HotSpot recipes in Chapter 4, JVM Memory

JVM Garbage Collection Tuning

138

Choosing a garbage collection algorithm
in HotSpot

Choice of garbage collection algorithm can have a huge impact on the performance of an
application, which is why HotSpot provides a number of choices. This recipe explains how to
set the garbage collection algorithm for HotSpot, and then discusses the trade-offs between
the algorithm choices at a high level.

Getting ready
This recipe assumes you are using the HotSpot JVM. There is a separate recipe
covering JRockit.

For more details, refer to the Getting ready section of the Setting the new size recipe.

How to do it...
To set the HotSpot garbage collector for a WebLogic Server, perform the following steps:

1. Navigate to the domain's bin directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/bin

2. Open the setSOADomainEnv.cmd or setSOADomainEnv.sh script in a text editor.

3. Locate the following lines:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

Or the equivalent on a Linux or a Unix system.

4. Edit the previous lines to add the parameter –XX:+UseParallelGC:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m –XX:+UseParallelGC

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m –XX:UseParallelGC

5. Save the file.

6. Start WebLogic using the startWebLogic.cmd or startWebLogic.sh scripts.

Chapter 5

139

How it works...
The setSoaDomainEnv script sets up a number of parameters, including memory-related
parameters that are passed to the JVM when starting WebLogic. It is also possible to set
the memory arguments and the JVM startup parameters—by specifying remote startup
parameters in the WebLogic console. These parameters will only take effect when the
WebLogic node manager is used to start and stop servers, and so we don't discuss it in
detail here, although it is the recommended way of configuring memory parameters for
your server in a production environment.

You can find the instructions for configuring the node manager in the
WebLogic Server documentation at http://docs.oracle.com/cd/
E21764_01/apirefs.1111/e13952/taskhelp/machines/
BindToProtectedPortsOnServersStartedByNodeManager.html.

HotSpot provides a number of garbage collection algorithms, and you can choose one among
them by setting the relevant flags on the command line at start-up. We recommend starting
out with the parallel garbage collector, using the -XX:UseParallelGC flag.

There's more...
As we have mentioned, there are multiple choices for garbage collection algorithm, depending
on your application, you may find that one of the algorithms works better for you. The following
algorithms are available:

 f Concurrent mark sweep: It is set by using the -XX:+UseConcMarkSweepGC flag.
This is a low pause garbage collector, best used for real-time or fat-client applications,
where subsecond response times are important. While low pause times are
important, this algorithm can perform badly under heavy load, so we do not normally
recommend it for the SOA Suite.

 f Parallel garbage collection: It is set by using the -XX:UseParallelGC flag.
This algorithm uses multiple cores to perform garbage collection, and is the default
algorithm for server-class machines. We have found it to be the best performing
algorithm for the majority of SOA Suite installations, so we recommend it as a
starting point.

 f Garbage first: It is set by using the -XX:+UseG1GC flag. This is a new garbage
collector intended as a replacement for concurrent mark sweep, for use in
applications that need large heaps and low pause times. As it is still new, we have not
had much chance to investigate how well it works in real life SOA Suite deployments.

See also
 f The Choosing a garbage collection algorithm in JRockit recipe

JVM Garbage Collection Tuning

140

Choosing a garbage collection algorithm
in JRockit

Choice of garbage collection algorithm can have a large impact on the performance of an
application, JRockit provides you with two options to specify whether performance or pause
times are more important to your application.

Getting ready
This recipe assumes you are using the JRockit JVM. There is a separate recipe for using the
HotSpot JVM.

For more details, refer to the Getting ready section of the Setting the new size recipe.

How to do it...
To set the JRockit garbage collector for a WebLogic Server, perform the following steps:

1. Navigate to the domain's bin directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/bin

2. Open the setSOADomainEnv.cmd or setSOADomainEnv.sh script in a text editor.

3. Locate the following lines:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

 Or the equivalent on a Linux or a Unix system.

4. Edit the previous lines to add the parameter -Xgcprio:throughput:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m -Xgcprio:throughput

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m -Xgcprio:throughput

5. Save the file.

6. Start WebLogic using the startWebLogic.cmd or startWebLogic.sh scripts.

Chapter 5

141

How it works...
The setSoaDomainEnv script sets up a number of parameters, including the memory-related
parameters that are passed to the JVM when starting WebLogic.

JRockit allows you to choose either throughput or pause time as the priority for runtime
execution. Throughput priority will cause JRockit to self-optimise its settings to try and get
the most out of your application—that is to spend as little time as possible collecting garbage.
Pause time priority focuses on reducing the impact of each individual garbage collection
by keeping pause times down. This will usually result in more frequent but faster garbage
collections, with a higher total amount of time spent in garbage collection. Pause time
priority is normally most appropriate for "fat-client" style applications and real-time systems,
because its performance degrades rapidly if it is unable to keep up with the rate that garbage
is created.

To set pause time priority, you would use the parameter -Xgcprio:pausetime rather than
-Xgcprio:throughput.

There's more...
JRockit and HotSpot have very different ways of selecting the garbage collection algorithm,
because JRockit makes a dynamic decision to select the garbage collection algorithm it
uses based on your priorities, whereas HotSpot allows you to directly specify the garbage
collection algorithms.

We have found that the JRockit approach works well for organizations that want to specify
the general behaviors of the garbage collector without having to understand the details of
garbage collection algorithms, and their uses. If you wish to specify an algorithm directly,
there are a number of legacy garbage collectors available, and you can specify them with
the following flags:

 f -Xgc:parallel for parallel garbage collection

 f -Xgc:gencon for generational concurrent garbage collection

 f -Xgc:singlecon for a concurrent and non-generational garbage collector

See also
 f The Choosing a garbage collection algorithm in HotSpot recipe

JVM Garbage Collection Tuning

142

Turning on verbose garbage collection
Verbose garbage collection is a feature that writes log files detailing when garbage collection
occurred, how long it took, and what was collected. While we would not recommend having
it permanently turned on in a live system, it can be useful when trying to debug garbage
collection related problems.

Getting ready
This recipe assumes you are using the HotSpot JVM, if you are using JRockit, see the
There's more… section of this recipe for the parameter you need.

For more details, refer to the Getting ready section of the Setting the new size recipe.

How to do it...
To enable verbose garbage collection logging, perform the following steps:

1. Navigate to the domain's bin directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/bin

2. Open the setSOADomainEnv.cmd or setSOADomainEnv.sh script in a text editor.

3. Locate the following lines:

SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

Or the equivalent on a Linux or a Unix system.

4. Edit the previous lines to add the parameter -verbose:gc –Xloggc:gc.log:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m -Xmx1024m –verbose:gc –Xloggc:gc.log

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m –verbose:gc –Xloggc:gc.log

If you already have additional parameters on these lines, then leave them in place.

5. Save the file.

6. Start WebLogic using the startWebLogic.sh and startManagedWebLogic.sh
scripts.

Chapter 5

143

How it works...
We set two parameters in this recipe: -verbose:gc enables verbose garbage collector
output, and -Xloggc:gc.log sends the output to a file called gc.log in the root of the
domain directory. You can specify a different file name, or even a path to a location, by
specifying a different location after –Xloggc:. In a system that is performing well, the
overhead of outputting garbage collection timings is not high (because there should not be
many garbage collections occurring), and the information that is contained can be useful. The
garbage collection log file indicates the type of garbage collection that occurred (minor or full),
the starting and ending sizes, and the time that the garbage collection took.

The format of the output is as follows:

{time}: [{GC Type} {Starting size}->{Final size}({Amount freed}), {time
taken} secs]

 f Time: It is the time in seconds since the JVM started

 f GC Type: It is either GC (minor) or Full GC (full)

 f Starting size: It is the size of the heap before garbage collection

 f Final size: It is the size of the heap after garbage collection

 f Amount freed: It is the difference between the final and starting sizes

 f Time taken: It tells how long, in seconds, the garbage collection took

This information is useful when tuning garbage collection, because we can see how much
memory gets freed up by minor and full collections, and how long they take.

On a Linux or a Unix environment, the time taken is further split into system, user, and real
time, so you can understand where any potential bottleneck is.

JVM Garbage Collection Tuning

144

There's more...
JRockit also supports verbose garbage collection output, using the parameter
-Xverbose:gc.

See also
 f The Viewing the memory used using VisualVM for HotSpot recipe in Chapter 4,

JVM Memory

 f The Tuning to reduce the number of full garbage collections recipe

Tuning to reduce the number of full
garbage collections

The objective of garbage collection tuning in an SOA Suite application is to reduce the
overhead of garbage collection. This chapter looks at how we do that at a high level.

Getting ready
This recipe discusses the process of tuning garbage collection for an application in the SOA
Suite; as such it uses a number of techniques described elsewhere in the book. This recipe
assumes that you are using the HotSpot JVM, and if you are using the JRockit JVM, the same
principals apply. The starting parameters suggested are based on using a 64 bit JVM. If you
are using a 32-bit JVM, you will need to reduce these. This recipe also assumes that you are
starting servers using the startWebLogic and startManagedWebLogic scripts. If you are
using a different mechanism to start servers, such as the node manager, you should make
the changes elsewhere.

You will need the file system permissions to edit the WebLogic startup scripts for this recipe.

How to do it...
We now perform the following steps to set JVM parameters, and use command-line tools to
evaluate the number of JVM garbage collections:

1. Navigate to the domain's bin directory, as shown in the following command line:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/bin

2. Open the script setSOADomainEnv.cmd or setSOADomainEnv.sh in a text editor.

3. Locate the following lines:
SET DEFAULT_MEM_ARGS=-Xms=512m –Xmx=1024m

Chapter 5

145

SET PORT_MEM_ARGS=-Xms=512m –Xmx=1024m

 Or the equivalent on a Linux or a Unix system.

4. Set Xms and Xmx to the same value:
SET DEFAULT_MEM_ARGS=-Xms=1536m –Xmx=1536m

SET PORT_MEM_ARGS=-Xms=1536m –Xmx=1536m

5. Locate the following lines:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

6. Set the following parameters to reduce the occurrence of events that cause
a major garbage collection:

 � -XX:+UseParallelGC

 � -XX:+DisableExplicitGC

 � -XX:NewSize=384m -XX:MaxNewSize=384m

 � -XX:PermSize=384m

SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=384m –
XX:MaxPermSize=512m –XX:+UseParallelGC –XX:+DisableExplicitGC –
XX:NewSize=284m –XX:MaxNewSize=384m

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=384m –
XX:MaxPermSize=512m –XX:+UseParallelGC –XX:+DisableExplicitGC –
XX:NewSize=284m –XX:MaxNewSize=384m

7. Save the file.

8. Start WebLogic using the start scripts.

9. Start jstat and monitor garbage collections (see the Identifying new size problems
with jstat recipe in Chapter 1, Identifying Problems, for instructions on using this tool).

10. Use your performance-testing framework to load the application with a normal load
(see the Designing advanced load test recipe in Chapter 3, Performance Testing, for
an example on using JMeter).

11. Use jstat to monitor the garbage collection performance; in particular, you want
to check the frequency of full garbage collections (FGCC) and their duration (FGCT
divided by FGCC), and the cause of those garbage collections (GCC and LGCC).

You are aiming for full garbage collections to occur every few hours under normal
load, and take a few seconds. If they occur more frequently, try increasing your
heap size or your new generation size.

JVM Garbage Collection Tuning

146

12. Use your performance testing framework to place an extreme load on the application.

13. Use jstat again to monitor the garbage collection performance, looking for the
same things as in step 11.

How it works...
When the JVM runs the garbage collector, it is what is called a "stop the world event", that
is, everything stops while the garbage collector runs, and this includes all of your application
code. No requests will be received or responded to; no processing occurs. It is therefore
obvious that we want to reduce the number of times that this occurs, but more importantly
for a SOA Suite application to reduce the amount of time spent collecting garbage as a
percentage of total application time, which is called throughput.

This trade-off between tuning for reduced pauses and tuning for throughput is often a source
of confusion for people who are not familiar with garbage collection tuning; it means there
are no "best" garbage collection settings that work for everything, because all applications
have different requirements. In general, SOA Suite applications are best tuned to improve
throughput. A 2-second pause every few hours while a full garbage collection is performed
is usually preferable to a pause of a few hundred milliseconds every few seconds, because
more "work" gets done overall.

Regardless of whether we decide to tune for throughput or for low pause times, reducing the
number of full garbage collections is always a key goal, because the full garbage collections
take significantly longer than minor garbage collections. In order to reduce the number of
collections, we need to understand what can cause a full garbage collection to occur. The
following list provides the main causes:

Chapter 5

147

 f Allocation failure: The JVM wanted to allocate some space for an object, but not
enough space was available. This can occur in the Eden generation when creating a
new object, or in another generation when moving an object as part of generational
garbage collection.

 f System.gc: Application code invoked the garbage collector directly, which is usually
not a good thing.

 f A change to the JVM heap size: If you have not set Xmx and Xms to the same
value, then when the JVM grows its heap towards Xmx, a full garbage collection
will be triggered.

So, to reduce the number of full garbage collections, we need to work to reduce how
frequently these triggers occur. The first two causes can be prevented altogether by disabling
explicit GC, and setting Xmx and Xms to the same value. Once we have set both of these
parameters, we focus our efforts on reducing the occurrence of allocation failures.

Allocation failures happen when an attempt is made to allocate space for an object, but there
is insufficient space in the relevant memory space. This can happen in a number of different
spaces, listed as follows:

 f Failure to allocate a new object in Eden

 f Failure to move an object from Eden to a survivor space or from one survivor space
to another, during a minor GC

 f Failure to move an object from a survivor space to the old generation

 f Failure to find space in the permanent generation to store the definition of a class
file (HotSpot only)

The fourth point can be dealt with by correctly sizing the permanent generation based on
your application size, whereas the other three points come down to correctly tuning the
size of your total heap, and the Eden and survivor spaces within that.

See also
 f The Setting the new size recipe

 f The Setting the survivor ratio recipe

 f The Choosing a garbage collection algorithm in HotSpot recipe

 f The Turning on verbose garbage collection recipe

 f The Choosing a garbage collection algorithm in JRockit recipe

 f The Viewing the memory used using VisualVM for HotSpot recipe in Chapter 4,
JVM Memory

 f The Viewing the memory used using JRMC for JRockit recipe in Chapter 4,
JVM Memory

JVM Garbage Collection Tuning

148

Disabling the RMI garbage collector
The RMI garbage collector is a task that periodically runs an explicit garbage collection in order
to free up objects involved in remote method calls. By default, this runs once per minute, which
is very frequent for a system where most RMI objects are going to be quite long-lived.

Getting ready
For more details, refer to the Getting ready section of the Setting the new size recipe.

How to do it...
To disable the RMI garbage collector, consider the following steps:

1. Navigate to the domain's bin directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/bin

2. Open the script setSOADomainEnv.cmd or setSOADomainEnv.sh in a text editor.

3. Locate the following line:
SET EXTRA_JAVA_PROPERTIES=%EXTRA_JAVA_PROPERTIES% -Dums.oracle.
home=%UMS_ORACLE_HOME%

 Or the equivalent on a Linux or a Unix system.

4. Edit the previous line to add the following properties:

 � -Dsun.rmi.dgc.client.gcInterval=3600000

 � -Dsun.rmi.dgc.server.gcInterval=3600000

SET EXTRA_JAVA_PROPERTIES=%EXTRA_JAVA_PROPERTIES% -Dums.oracle.
home=%UMS_ORACLE_HOME% -Dsun.rmi.dgc.client.gcInterval=3600000
-Dsun.rmi.dgc.server.gcInterval=3600000

If you already have additional parameters on these lines, then leave them in place.

5. Save the file.

6. Start WebLogic using the startWebLogic.sh and startManagedWebLogic.sh
scripts.

How it works...
Remote Method Invocation (RMI) is the low-level framework that Java uses to allow
code running in one JVM to call code running in another JVM. Because developers are not
responsible for tracking unused memory in Java, it then falls to the JVM to track which objects
might be still being used by a remote JVM, and this is the task of the RMI garbage collector.

Chapter 5

149

In a SOA Suite application, most of the code that is accessed by a remote JVM will be the code
that provides services, and therefore will be relatively long-lived, and will not become available
for garbage collection very often. By reducing the frequency of the RMI garbage collector,
we can reduce the number of RMI garbage collections, and keep the CPU overhead of this
relatively intensive task down. The interval is specified in milliseconds, and the default interval
is 60 seconds, but we would suggest trying a value like 1 hour (the value of 3,600,000
seconds and above).

See also
 f The Disabling explicit GC recipe

Disabling explicit GC
Garbage collection is a very CPU-intensive activity; while it is occurring, no application logic
can be executed. While the Java API provides a method of invoking the garbage collector
from application code, it is best practice to let only the JVM decide when to perform
garbage collection. If an application contains explicit calls to System.gc(), then these can
significantly impact performance. Luckily, Java includes a flag that allows us to disable calling
the garbage collector programmatically.

Getting ready
This recipe assumes you are using the HotSpot JVM, if you are using JRockit, see the There's
more… section of this recipe for the parameter you need.

For more details, refer to the Getting ready section of Setting the new size recipe.

How to do it...
To disable explicit programmatic garbage collection, perform the following steps:

1. Navigate to the domain's bin directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/bin

2. Open the setSOADomainEnv.cmd or setSOADomainEnv.sh script in a text editor.

3. Locate the following lines:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m

Or the equivalent on a Linux or a Unix system.

JVM Garbage Collection Tuning

150

4. Edit the previous lines to add the parameter –XX:+DisableExplicitGC:
SET DEFAULT_MEM_ARGS=%DEFAULT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m -Xmx1024m –XX:+DisableExplicitGC

SET PORT_MEM_ARGS=%PORT_MEM_ARGS% -XX:PermSize=128m –
XX:MaxPermSize=512m –XX:+DisableExplicitGC

If you already have additional parameters on these lines, then leave them in place.

5. Save the file.

6. Start WebLogic using the startWebLogic.sh and startManagedWebLogic.sh
script.

How it works...
In a Java application, it is possible to programmatically invoke the garbage collector using a
call to System.gc(). This call will cause the JVM to make its best effort to run the garbage
collector before control returns to the application. In practice, this means that a full garbage
collection will be run, which is a time-consuming and CPU-intensive operation. While it might
make sense to programmers to attempt to clean up objects when they're no longer needed
in application code, in reality, the JVM has a much clearer view on how much memory is
used, and how much it should be able to reclaim, and can do a much better job at deciding
when to perform garbage collections. Because of the "stop the world" nature of a full garbage
collection, and the fact that calls to System.gc() can cause more full garbage collections
to run, this often causes worse performance rather than an improvement.

By disabling calls to System.gc(), the calls are ignored and the JVM performs its
garbage collection when memory thresholds are reached. If the developers of the SOA Suite
application you are using have tried to be helpful by calling the garbage collector for you,
you can often improve performance by disabling explicit garbage collection calls.

There's more...
In JRockit, the flag to be used is –XXnoSystemGC, which has the same effect.

See also
 f The Tune to reduce the number of full garbage collections recipe

 f The Disable the RMI garbage collector recipe

6
Platform Tuning

In this chapter, we will look at the following recipes:

 f Tuning global transaction timeouts

 f Increasing the HTTP accept backlog

 f Reducing the server logging level

 f Finding out which JVM you are using

 f Using large pages in Linux

 f Increasing the number of file descriptors in Linux

 f Tuning the SOA Suite EJB timeouts

 f Upgrading to a newer JVM

 f Setting the Linux kernel swappiness to low

 f Using the Oracle JRockit JVM

 f Running your domain in the production mode

 f Creating a boot.properties file

Platform Tuning

152

Introduction
This chapter looks at some of the things you can do to tune the underlying platform on which
the SOA Suite runs. SOA Suite is an enterprise Java application, and therefore runs on top of
a stack consisting of hardware, operating system, JVM, and application server. Each of these
layers builds upon resources provided by the layers below them, and can be tuned to improve
the performance of Oracle SOA Suite.

SOA Suite
(BPEL, BPMN, Mediator, Rules)

Application Server
(Connection pooling, Thread pooling, Transactions,

Messaging, Logging, Persistence, Security)

JVM
JVM Threads, IO, Memory, Garbage Collection)(

OS
(Task scheduling, IO, Memory, OS threads)

Hardware
(CPU, Memory, Thread model, Storage, Networking)

The previous diagram shows the layers in the SOA Suite stack, and examples of the services
that they provide to the layer above it. This chapter gives some of the key techniques for
tuning the operating system, the application server, and selecting a JVM. JVM memory
and garbage collection tuning are such key concepts that they get their own chapters.

Performance gains obtained by tuning the underlying platform components can be significant
because they impact all of the layers above it; so platform tuning is one of the most important
aspects when tuning an Oracle SOA Suite 11g installation.

Chapter 6

153

Tuning global transaction timeouts
The global transaction timeout, set at the application server level, defines how long a
transaction has to complete before it is terminated by the application server. If this value
is set too low, then performance can suffer.

Getting ready
For this recipe, you will need to know the URL and login credentials for the WebLogic
administration console that runs on the admin server in your SOA Suite domain. The default
URL for the console is http://<servername>:7001/console. The username and
password will have been specified when you created the domain.

If your domain is in the production mode, or does not have Automatically Acquire Lock and
Activate Changes, then you will need to acquire the domain configuration lock before making
these changes, and apply the changes after saving.

How to do it…
To tune global transaction timeouts, perform the following steps:

1. Connect to the WebLogic administration console at http://localhost:7001/
console. Replace localhost and 7001 with the hostname and port of the server,
if it is not running locally on 7001. If this is the first time you have accessed the
WebLogic console since starting the server, WebLogic will first deploy the console
application, which may take a few minutes.

2. Log in to the console using your administration credentials.

3. Click on the name of your domain at the root of the navigation tree in the
left-hand pane; for example, soa_domain is at the root of the tree, as shown
in the following screenshot:

Platform Tuning

154

4. Select the JTA tab under the Configuration tab in the main pane.

5. Increase the value of TimeoutSeconds to a value that ensures that the slowest
external systems you talk to will complete in time. We would recommend a setting
of at least 120.

6. Scroll down to the Max Transactions field, and increase this to 100000:

7. Scroll to the top of the page and click on Save.

How it works…
The global Java Transaction API (JTA) timeout sets the time that WebLogic will wait for
transactions to complete. In the SOA Suite, this affects how long we wait for external systems
to return data, which in a large SOA environment can sometimes take longer than 30 seconds.
By increasing this timeout slightly, we reduce the chances that these calls will fail due to
a slow external system. Failed transactions are usually retried by the originating system,
meaning that we create additional load on an already heavily loaded system.

The Max Transactions setting determines the maximum number of concurrent transactions
that can be in progress at a time. In a busy SOA Suite system, it is not difficult to reach
the default, out-of-the-box limit of 10000 transactions, which can cause calls to fail, often
requiring that they are replayed, and generating additional load on an already busy system.

Chapter 6

155

See also
 f The Setting datasource connection timeouts recipe in Chapter 7, Data Sources

and JMS

 f The Tuning connections in native eis db adapter recipe in Chapter 7, Data Sources
and JMS

 f The Tuning SOA Suite EJB timeouts recipe

Increasing the HTTP accept backlog
The HTTP accept backlog determines how many HTTP requests can be queued by the
WebLogic server if there are not enough threads available to service them.

Getting ready
For details on this, refer to the Getting ready section of the Tuning global transaction
timeouts recipe.

How to do it…
To increase the HTTP accept backlog, consider the following steps:

1. Connect to the WebLogic administration console at http://localhost:7001/
console. Replace localhost and 7001 with the hostname and port of the server
if it is not running locally on 7001. If this is the first time you have accessed the
WebLogic console since starting the server, WebLogic will first deploy the console
application, which may take a few minutes.

2. Log in to the console using your administration credentials.

3. Navigate to Environment, and then Servers on the left-hand navigation pane.

4. Select the server with the SOA infrastructure deployed (if there are multiple servers
with the SOA infrastructure deployed, you need to follow steps 4-x for each of them).
Out-of-the-box, this will be a server called soa_server1.

Platform Tuning

156

5. Navigate to the Tuning tab under the Configuration tab:

6. Scroll down, and set the parameter Accept Backlog to 1000, or a value
determined by your performance testing:

7. Scroll to the top of the page and click on Save.

8. Repeat the steps from 3 through 8 for each server that has the SOA Suite
infrastructure deployed.

How it works…
The accept backlog setting determines how many TCP requests will be queued up when
there are no idle threads available to service the requests, and applies to requests on both
the servers' normal and SSL ports. The default value is 300, so once 300 requests are
queued up, any additional requests are refused, and the calling system or user receives a
Connection Refuse response. This can cause performance problems because it often
results in the calling system retrying the request from the start, placing more load on an
already heavily loaded server.

There's more…
While you are on this page, you may also want to take a look at some of the other settings
here. In particular, you may want to increase the Stuck Thread Time if your system has
blocking calls to external systems that take a long time to respond.

Chapter 6

157

Reducing the server logging level
While logging information to the files is useful, it generates a lot of disk I/O, which has a huge
performance impact on the application. Reducing the amount of logging done by the servers
can improve performance noticeably.

Getting ready
For details on this, refer to the Getting ready section of the Tuning global transaction
timeouts recipe.

How to do it…
To reduce the server logging level, perform the following steps:

1. Connect to the WebLogic administration console at http://localhost:7001/
console.Replace localhost and 7001 with the hostname and port of the server
if it is not running locally on 7001. If this is the first time you have accessed the
WebLogic console since starting the server, WebLogic will first deploy the console
application, which may take a few minutes.

2. Log in to the console with your administration credentials.

3. Navigate to Environment, and then Servers on the left-hand navigation pane.

4. Select the server with the SOA infrastructure. Out-of-the-box, this will be a server
called soa_server1.

5. Navigate to the General tab under the Logging tab.

6. Scroll down to the bottom of the page, and expand the Advanced options.

Platform Tuning

158

7. Use the Minimum severity to log dropdown to set the severity as Warning.

8. Scroll to the top of the page and click on Save.

9. Repeat steps from 3 through 9 for each server with the SOA Suite
infrastructure deployed.

How it works…
Writing log messages to disk requires a considerable amount of file I/O, which is often a
synchronous operation, and as most disks are slow compared to the speed of the CPUs
and the memory, this slows down the entire application. By increasing the logging severity
to Warning, only messages at Warning and Error will be written to the server logs,
which can provide a significant performance improvement, especially under heavy load.

There's more…
After setting the minimum severity to log to Warning, I would recommend setting the
Severity level of the Domain log broadcaster to Error. This can be done further down
on the same page, and will ensure that only error logs get sent to the domain log file.

See also
 f The Reducing SOA Infra log levels recipe in Chapter 8, BPEL and BPMN Engine Tuning

Chapter 6

159

Finding out which JVM you are using
Knowing which JVM you are using is a prerequisite to be able to pick one that might
perform better.

Getting ready
You need to have installed WebLogic and the SOA Suite for this, and have access to
the startWebLogic script.

How to do it…
To find out which JVM you are using, perform the following steps:

1. Navigate to the domain home directory.

2. Execute the startWebLogic script for the operating system you are using. This will
be startWebLogic.sh on Linux/Unix environments, and startWebLogic.cmd
on Microsoft Windows environments.

3. Look at the first few lines of the output from the script to see the JVM vendor
and version:

How it works…
The startWebLogic script executes the command java –version before starting the
server, which prints out the JVM version and vendor. There are two JVMs that ship with
Oracle SOA Suite 11g. HotSpot is the JVM originally developed by Sun Microsystems, and
the descendent of the original Sun JVM. Oracle acquired this JVM with the purchase of Sun
Microsystems. The second JVM is JRockit which was acquired by Oracle with its purchase
of BEA Systems. JRockit was originally designed as a server-side JVM for application servers,
and historically the two JVMs have sought to outperform each other in terms of benchmarks
with each release.

Platform Tuning

160

There's more…
There are plans to merge the two JVM implementations into a single JVM called
HotRocket, but work on this is ongoing. For now, you need to decide which JVM best suits
your application, and our testing has shown that JRockit is usually faster, but we suggest
running your own performance tests against the application to decide for yourself.

See also
 f The Upgrading to a newer JVM recipe

 f The Using the Oracle JRockit JVM recipe

Using large pages in Linux
Using large pages allows the JVM and the operating system to manage memory more
efficiently, having to page memory in and out less frequently.

Getting ready
You need to have Oracle SOA Suite 11g installed on a Linux server for this recipe, and to
have enabled HugePages in the operating system. This recipe assumes that you are starting
WebLogic using the startWebLogic or startManagedWebLogic scripts, and if you are
using the node manager or some other mechanism, simply apply the startup parameter to
the relevant place. You will need the file system permissions to edit the WebLogic start script
for this recipe.

This recipe assumes you are using the Sun (HotSpot) JVM, and if you are using JRockit, the
parameter is different (for more information on this, see the There's more... section at the
end of this recipe).

How to do it…
To use large pages in Linux, perform the following steps:

1. Check if HugePages support is enabled in the kernel:
cat /proc/meminfo | grep Huge

You are looking for the following lines:
HugePages_Total: <number of pages>

HugePages_Free: <number of pages>

Hugepagesize: <page size, in kB>

Chapter 6

161

2. Navigate to the domain's home directory:
cd %MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

Replace soa_domain with the relevant domain as required.

3. Navigate to the bin directory.
cd bin

4. Edit the startWebLogic.sh if you are on a Linux/Unix environment
or the startWebLogic.cmd if you are on Microsoft Windows.

5. Go to the bottom of the file, and locate the section that starts the JVM:

6. Insert the startup arguments -XX:+UseLargePages after the %MEM_ARGS%
or $MEM_ARGS parameter, as shown in the following screenshot:

7. Save the file.

8. Start WebLogic using the startup scripts already mentioned in the Getting
ready section.

How it works…
Large or huge pages are a feature of the operating system that allow for more efficient
management of memory by the operating system, but to get the best out of the feature,
the application allocating the memory, needs to allocate memory to large pages. By setting
this flag, you are telling the JVM that you are running on an operating system that supports
large pages, and that it should use large pages for its memory management.

If you set this setting on an operating system that does not support large pages, an error
is printed and the JVM starts without large page support.

Platform Tuning

162

There's more…
You can also set the parameter -XX:LargePageSizeInBytes=<size> to set the large
page size to the same as the HugePage size in Linux. Remember to convert between the
value reported by Linux (in KB), and the value used by the JVM in bytes.

If you are using the JRockit JVM, the parameter is -XlargePages rather than
-XX:UseLargePages.

Increasing the number of file descriptors in
Linux

As a multiuser operating system, Linux limits the number of file descriptors available to each
user, with a default of 1024. As all access to files, sockets, threads, and others requires file
descriptors, this limit is too low for a production SOA Suite application. Increasing the limit
improves performance and stability.

Getting ready
You will need root access to the Linux server on which SOA Suite is installed for this recipe.

How to do it…
To increase the number of file descriptors in Linux, perform the following steps:

1. Connect to the Linux server as the user that runs the SOA Suite.

2. Verify that the current limit is 1024 by using the following command:
$ ulimit –n

1024

3. Now, log out.

4. Connect to the Linux server as root.

5. Edit the file /etc/security/limits.conf.

6. Scroll down the file and find the section that looks like this:
#<domain> <type> <item> <value>

#

Chapter 6

163

7. Add limits for the user that runs your SOA Suite applications like this:
#<domain> <type> <item> <value>

#

weblogic soft nofile 65535

weblogic hard nofile 65535

Substitute weblogic with the username of the user that runs your SOA Suite server.

8. Save the file.

9. Again, log out.

10. Connect to the Linux server as the user that runs the SOA Suite.

11. Verify that the current limit is now 65535:

$ ulimit –n

65535

How it works…
Linux uses the limits.conf file to set soft (default value) and hard (maximum value) limits for
a number of resources that need to be managed in a multiuser environment. The default value
of 1024 is very low, and is based on a system where resources need to be carefully managed.
Modern servers have many more file descriptors available, and most servers running SOA Suite
are not likely to have large number of users logged in and trying to do other things.

The value of 65535 we chose is an example of a large number that should be big enough for
our purposes, but any other large value could be used.

Tuning the SOA Suite EJB timeouts
Increasing the timeouts above the default values for a number of key SOA Suite EJBs will
reduce the number of timeouts that may occur under heavy load. These timeouts can result in
poor performance, as they cause requests to be retried on an already heavily loaded system.

Getting ready
For details on this, refer to the Getting ready section of the Tuning global transaction
timeouts recipe.

Platform Tuning

164

How to do it…
To tune the SOA Suite EJB timeouts, perform the following steps:

1. Connect to the WebLogic administration console at http://localhost:7001/
console. Replace localhost and 7001 with the hostname and port of the server
if it is not running locally on 7001. If this is the first time you have accessed the
WebLogic console since starting the server, WebLogic will first deploy the console
application, which may take a few minutes.

2. Log in to the console with your administration credentials.

3. Select Deployments in the left-hand navigation pane.

4. In the main pane, locate the soa-infra deployment, and click on the + icon before
it to expand it.

Chapter 6

165

5. Scroll down the EJBs, and select the EJB called BPELActivityManagerBean.

6. Click on the bean, and then select the Configuration tab.

7. Scroll down to the bottom of the properties, and increase the Transaction
Timeout from 300 to 600 seconds.

Platform Tuning

166

8. Click on Save.

9. If this is the first bean you have changed the timeout for, you will be prompted to
create a deployment plan. We suggest creating it in the domain's home directory.

10. Once you have selected the location for the deployment plan, click on OK.

11. Repeat the steps 3 through 8 for the following EJBs:

 � BPELServerManagerBean

 � BPELDeliveryBean

 � BPELInstanceManagerBean

 � BPELEngineBean

 � BPELProcessManagerBean

 � BPELDispatcherBean

 � BPELSensorValuesBean

 � BPELFinderBean

Chapter 6

167

How it works…
Under heavy load, some of these EJBs can take a while to respond, and may eventually time
out. If the request times out, it is likely that the originator of the request will retry, increasing
load on an already heavily loaded system. By increasing the transaction timeout for these
beans, you increase the amount of time that they will wait before a timeout occurs, giving
them longer time to complete their task.

There's more…
Our value of 600 is just a starting point, if you see timeouts occurring on these beans,
you might want to increase the value further above 600.

Upgrading to a newer JVM
Each new JVM release usually includes a large number of performance improvements, as the
vendors constantly vie for the top spot on the performance benchmarks. By upgrading to the
latest available JVM, you can take advantage of the latest performance improvements.

Getting ready
For this recipe you need to have installed SOA Suite, and have edit access to the start scripts
for your domain. You also need to have downloaded and installed a newer JVM (the JDK
version, not the JRE).

This recipe assumes that you are starting WebLogic using the scripts in the domain bin
directory. If you are using another method such as the node manager, you should make the
changes to JAVA_HOME via the relevant method (for the node manager, this is the WebLogic
administration console).

How to do it…
To upgrade to a newer JVM, perform the following steps:

1. Navigate to the domain's bin directory, as shown in the following command line:
cd %MIDDLEWARE_HOME%/user_projects/soa_domain/bin

2. Edit the file setDomainEnv.cmd or setDomainEnv.sh. If you are using a
newer version of HotSpot, add the line set JAVA_VENDOR=Sun or set JAVA_
VENDOR=Sun, depending on whether you are on Microsoft Windows or Linux,
respectively. If you are using a newer release of JRockit, you should set the Java
vendor to Oracle.

Platform Tuning

168

3. Comment out the line set SUN_JAVA_HOME=… (or the line set ORACLE_JAVA_
HOME=… if you are using JRockit). If you are using Linux, the line is just SUN_JAVA_
HOME=….

4. Add a line set SUN_JAVA_HOME=<JDK path> where <JDK path> is the fully
qualified pathname of your JDK. If the path contains spaces, then this must be
in quotes as shown.

5. Save the file.

6. Start WebLogic by running startWebLogic.sh or startWebLogic.cmd.

7. Check that the output lists the new Java version.

Chapter 6

169

How it works…
The setDomainEnv script sets up a number of parameters that are used when starting the
WebLogic servers, including the JDK that is used. By default this script selects between one of
the two JDKs installed with the SOA Suite. By changing the value of SUN_JAVA_HOME you can
point to a different HotSpot JDK, and the server will use this to start up. It is important to set
the value of JAVA_VENDOR correctly because HotSpot and JRockit have a number of different
parameters that are passed in by the script.

You could also use a newer version of JRockit, if you set the JAVA_VENDOR and ORACLE_
JAVA_HOME variables appropriately.

There's more…
This file is created by the domain creation wizard, so if you make any changes to the domain
with the wizard after you have edited the file, changes to the file will be lost.

While Oracle will only provide support if you are running on one of their supported JVMs,
there is nothing that stops you from using a newer JVM in production, you will just have
to replicate issues using an older JVM before raising support cases with Oracle.

See also
 f The Using the Oracle JRockit JVM recipe

 f The Finding out which JVM you are using recipe

Setting the Linux kernel swappiness to low
The swappiness level of the Linux kernel determines how likely it is to swap memory pages
out. Setting a low value can improve the performance of Oracle SOA Suite.

Getting ready
You will need to be running Oracle SOA Suite 11g on a Linux box, and have root or sudo
access in order to change the kernel settings.

Platform Tuning

170

How to do it…
To set the Linux kernel swappiness to low, perform the following steps:

1. Log in to the box as root.

2. Check the current swappiness setting as follows:
$ cat /proc/sys/vm/swappiness

60

3. Edit the file /etc/sysctl.conf, and set the property vm.swappiness to
a lower value. We suggest starting with 0 if you have plenty of physical memory
on the machine.

4. Save the file.

5. Restart your Linux server for the change to take effect.

6. Check if the swappiness setting has been applied, like this:

$ cat /proc/sys/vm/swappiness

0

How it works…
The vm.swappiness property of the Linux kernel determines how likely the kernel is to swap
a page out of memory. Swappiness is set as a value between 0 and 100, with 0 being a strong
preference to avoid swapping pages out, and 100 being a strong preference to swap a page
out whenever possible. The memory that is freed up by swapping pages out can be used by the
kernel for a number of things. If there are multiple applications running on the system, and the
memory is oversubscribed, it can be allocated to another process; otherwise it can be used to
cache files in order to improve the file system performance. When a memory page is swapped
out by the kernel, it must be swapped back in before it can be accessed by an application, and
so the application must wait while the operating system performs this task. Java Application
Servers generally run on dedicated servers, which have sufficient physical (or virtual) memory
to allow the operating system and the JVM to exist in the memory at the same time without
any pages being swapped out. The best performance is usually achieved by configuring a low
swappiness value, preferring that existing pages are kept in the memory wherever possible.

Chapter 6

171

See also
 f The Increasing the number of file descriptors in Linux recipe

 f The Using large pages in Linux recipe

Using the Oracle JRockit JVM
JRockit is a JVM specifically designed for high performance application servers, and can often
deliver better performance than HotSpot. This recipe explains how to switch to the JRockit
JVM if you are not already using it.

Getting ready
This recipe assumes that you are starting WebLogic using the startWebLogic or
startManagedWebLogic scripts, and if you are using the node manager or some other
mechanism, you will need to specify the new JVM home location through the console or
another mechanism.

How to do it…
To use the Oracle JRockit JVM, perform the following steps:

1. Navigate to the domain bin directory, as shown in the following command line:
cd %MIDDLEWARE_HOME%/user_projects/soa_domain/bin

2. Edit the file setDomainEnv.cmd or setDomainEnv.sh, add the line set JAVA_
VENDOR=Oracle or set JAVA_VENDOR=Oracle, depending on whether you are
on Microsoft Windows or Linux.

Platform Tuning

172

3. Save the file.

4. Start WebLogic by running startWebLogic.sh or startWebLogic.cmd.

5. Check that the output lists JRockit as the JVM implementation (highlighted in
the following screenshot):

How it works…
The setDomainEnv script sets up a number of parameters that are used to start WebLogic,
including selecting between the two JVMs that ship with SOA Suite 11g. The script checks for
the presence of a variable called JAVA_VENDOR. If it is set to the value Oracle, then JRockit
is used. If the value is not Oracle, or the variable is not set, then the variable is set to Sun,
and HotSpot is used.

There's more…
This file is created by the domain creation wizard, so if you make any changes to the domain
with the wizard after you have edited the file, changes to the file will be lost.

There are a number of other ways that you could achieve the same thing. You could set the
JAVA_VENDOR variable in your shell before calling the startWebLogic script, or you could
directly set the JAVA_HOME variable either in the setDomainEnv script or in your shell.

See also
 f The Upgrading to a newer JVM recipe

 f The Finding out which JVM you are using recipe

Chapter 6

173

Running your domain in the production mode
WebLogic domains can run in either the production or the development mode. The
development mode is optimized for environments where application development is taking
place and resources are scarcer. The production mode is optimized for running in an
operational environment with more resources and higher performance requirements.

Getting ready
For details on this, refer to the Getting ready section of the Tuning global transaction
timeouts recipe.

How to do it…
To run your domain in the production mode, perform the following steps:

1. Connect to the WebLogic administration console at http://localhost:7001/
console. Replace localhost and 7001 with the hostname and port of the server,
if it is not running locally on 7001. If this is the first time you have accessed the
WebLogic console since starting the server, WebLogic will first deploy the console
application, which may take a few minutes.

2. Log in to the console with your administration credentials.

3. Click on the name of your domain in the left-hand navigation pane.

Platform Tuning

174

4. Ensure that the General tab under the Configuration tab is selected.

5. Scroll down to the property Production Mode, and ensure that it is checked.

6. Scroll to the top of the page and click on Save.

7. Restart your WebLogic servers.

How it works…
Changing the production mode settings affects all the servers in the domain, and needs the
admin server to be restarted to pick up the change. You may find that once you apply the
production mode, you need to enter the WebLogic administration username and password
to start the server. You can prevent this by creating a boot.properties file (described in
the Creating a boot.prperties file recipe).

In the production mode there are a number of things that change their default values,
including the following:

 f The default JDBC connection pool size is increased from 15 to 25

 f The default JVM is JRockit

 f Hot deployment is disabled

 f Server log file rotation is enabled

 f Using demo SSL certificates logs a warning

For more details on the production mode, see the Oracle WebLogic
documentation at http://docs.oracle.com/cd/E23943_01/
web.1111/e13814/wls_tuning.htm#PERFM177.

Chapter 6

175

There's more…
Production mode changes the default values for a number of settings, but we talk about
overriding many of them individually in other recipes in this book. There are some settings,
such as hot deployment, that cannot be individually turned off, and therefore can only be
changed by switching to the production mode.

While production mode selects JRockit as the default JVM, you can override this if you wish
to use Hotspot or a different JVM. As usual, we recommend benchmarking with a number
of different JVM versions and implementations to find out which one works best for you.

Once the production mode is enabled on a domain, it cannot be disabled from the console,
and you will need to directly edit the config.xml file if you want to change a domain in
the production mode back to the development mode.

See also
 f The Creating a boot.properties file recipe

 f The Setting the data source pool sizes recipe in Chapter 6, Data Sources and JMS

 f The Upgrading to a newer JVM recipe

 f The Using the Oracle JRockit JVM recipe

Creating a boot.properties file
In the production mode, the server will prompt for your administration username and
password when you start the server. While this does not directly impact performance, it
means that server restarts cannot be performed automatically, possibly reducing the number
of running servers and impacting performance that way. This recipe looks at how you can
create a boot.properties file which will allow servers to be restarted without prompts.

Getting ready
You will need to be able to log on to the host running your WebLogic servers as the user
that owns the domain files.

Platform Tuning

176

How to do it…
To create a boot.properties file, perform the following steps:

1. Navigate to the directory %DOMAIN_HOME%/servers/AdminServer/security
as shown in the the following command line:
cd %DOMAIN_HOME%/servers/AdminServer/security

2. Create a new file called boot.properties, with two properties defined, username
and password.

3. Save the file.

4. Start WebLogic using the following command:
cd %DOMAIN_HOME%/

./startWebLogic.sh

5. Check that the boot.properties file has been updated with the encrypted values.

How it works…
In the production mode, WebLogic will check for a file called boot.properties in the
%DOMAIN_HOME%/servers/AdminServer/security directory. If this file exists, it will read
two properties from the file, username and password. This username and password is used to
start the admin server. If the file content is plain text, then once the server has been started,
the values are encrypted using the domain encryption credentials, and saved back to the file.

Chapter 6

177

There's more…
While the file is updated with the encrypted values, this should not be considered as secure,
as it is likely that if a user can read the boot.properties file, they can also read the files
that contain the decryption keys. It therefore provides little in the way of actual security. This,
unfortunately, is the "chicken and egg" scenario of the automated server restarts—if the server
is to be started automatically, then all the material that it needs to start, including encryption
key material, has to be available to the process starting the server.

See also
 f The Running your domain in the production mode recipe

7
Data Sources and JMS

This chapter looks at some of the things you can do to tune the SOA Suite data sources,
backing a database, and JMS resources. We will look at the following topics:

 f Setting the data source pool sizes

 f Configuring data source testing

 f Configuring data source growing and shrinking

 f Setting data source connection timeouts

 f Tuning database XA timeouts

 f Tuning connections in the native EIS database adapter

 f Configuring the WebLogic thread pool

 f Using JMS file persistence

 f Tuning JMS connection factories

Introduction
In this chapter, we'll look at the aspects of SOA Suite that can be tuned when interacting with
the backing database. Recipes for tuning the database itself can be found in Chapter 8, BPEL
and BPMN Engine Tuning.

Data Sources and JMS

180

As we scale SOA Suite to cope with application load, it is likely that the underlying database
will become a performance bottleneck. SOA Suite makes heavy use of the database, storing
both the metadata for process instances as well as their payloads. Much of the tuning for the
BPEL, BPMN, Mediator, and other components, which we discuss in later recipes, is based
around reducing the amount of database I/O that happens. The primary use of the database
by SOA Suite is for its "Dehydration Store," which is a phrase used to describe how process
instances can be persisted to the database in order to be loaded at a later time. This can be
done for a number of reasons: it allows process instances to persist across restarts of the
server, and can allow long-running processes that are waiting for responses to be removed
from memory, and re-loaded when the response comes back. This concept applies across
all the components in SOA Suite (BPM, BPEL, Rules, Workflow, and Mediator) and so can
be a source of contention for busy applications. In this chapter, we are focusing on making
sure that when SOA Suite does need to connect to the database, it can do so quickly and
efficiently. Large amounts of BPEL process execution for an instance can generate a large
I/O demand on the database tables that back SOA Suite.

We'll also look in this chapter at the use of WebLogic JMS by SOA Suite, but we'll only be
scratching the surface here. WebLogic JMS is a wide-ranging subject with lots of options;
we'll focus on some important ones for using SOA Suite.

Setting the data source pool sizes
Datasource pooling is a critical feature in Java containers, allowing resource sharing among
deployed components and applications. This recipe will show you how to control the pool sizes
in WebLogic.

Getting ready
You will need to have Oracle SOA Suite 11g installed on a server for this recipe,
as we'll be accessing the default data source used by SOA Suite.

How to do it…
Follow these steps to set your datasource pool sizes:

1. Open the SOA Suite WebLogic administration console and log in as administrator.
If you have issues locating the console, see steps 1 and 2 in the Tuning global
transactions recipe in Chapter 6, Platform Tuning. A default administration screen
is shown here:

Chapter 7

181

2. Navigate to the Data Sources section by performing either of the following actions:

 � Click on the Data Sources link under the Services drop-down list in the
Domain Structure box located on the left of the screen

 � In the Home Page box in the center of the screen, under Services in
Domain Configurations, select Data Sources

3. In the Data Sources screen, select SOADataSource. Within the Connection Pool tab,
locate the pool capacity section.

Data Sources and JMS

182

4. Reduce the waiting time for new connection requests, by setting the Initial Capacity:
and Minimum Capacity: fields to a value that is suitable for our database. A good
example starting value is 20.

5. The Maximum Capacity: field controls the maximum number of connections this
pool can grow to. In other words, the maximum number of concurrent connections
that can be sustained by SOA Suite to the database. As this will be used by multiple
threads, a good starting value is 50, if our database can support it.

6. Click on the Save button located at the bottom of the page.

How it works…
Pooling, sharing, and reuse of database connections is a powerful feature of Java Application
Servers. However, the default settings for WebLogic are to values that are quite low. Under
heavy load, we can expect the datasource pools to reach their maximum capacity fairly
quickly. We set the Maximum Capacity: to a higher value to accommodate this.

To prevent cold startup delays on new initial-connection requests, we set the Minimum
Capacity: value. Be careful with the value in the Initial Capacity: field as WebLogic will allocate
these many connections to the database as soon as it boots; this can overload busy production
databases with connection requests if many servers start up in a short space of time.

Note that the datasource pool sizes will apply to each running instance of WebLogic,
so ensure that your database can stand up to a number of connections equal to:

(Pool Maximum Capacity) x (Number of Targets that the
 data source is applied to)

There's more…
There are many data sources in use by SOA Suite; the use of these vary, depending on the
components you are utilizing in your application.

The tuning options available to you by default will yield maximum effect on the
SOADataSource, SOATxDataSource, and mds-soa data sources. It is best to monitor
the data sources to determine the options that are right for your usage footprint. For detailed
information on data-source monitoring, see the Monitoring the data source usage recipe in
Chapter 2, Monitoring Oracle SOA Suite. It is also possible to get a basic monitoring of the
datasource pool size by clicking on the Monitoring tab in the WebLogic console, when on the
page for a data source. By customizing the table, you can add a number of columns that give
detailed monitoring information about the data source.

Also, controlling the size of the prepared statement cache can increase throughput on the
database connections—a big win if you're performing lots of hydration and dehydration via
the use of BPEL, for instance.

Chapter 7

183

See also
 f The Tuning global transactions recipe in Chapter 6, Platform Tuning

 f The Configuring data source testing recipe

 f The Configuring data source growing and shrinking recipe

 f The Setting data source connection timeouts recipe

 f The Monitoring the data source usage recipe in Chapter 2, Monitoring Oracle
SOA Suite

Configuring data source testing
Database connections that are pooled can be configured to be tested by WebLogic as part
of the managed-connection lifecycle. This recipe will show you how to configure testing
of connections.

Getting ready
For this recipe, you will need to have Oracle SOA Suite 11g installed on a server as we'll
be accessing the default data source used by SOA Suite.

How to do it…
By following the steps given here, we can configure data-source testing:

1. Open the SOA Suite WebLogic administration console and log in as administrator.
If you have issues locating the console, see steps 1 and 2 in the Tuning global
transactions recipe in Chapter 6, Platform Tuning.

2. Navigate to the Data Sources section by performing either of the following actions:

 � Click on the Data Sources link under the Services drop-down list in the
Domain Structure box located on the left of the screen

 � In the Home Page box in the center of the screen, under Services in
Domain Configurations, select Data Sources

3. In the Data Sources screen, select SOADataSource. Within the Connection Pool tab,
click on the Advanced link at the bottom of the page.

Data Sources and JMS

184

4. Click on the Advanced option to display the advanced options:

5. We need to set the Test Table Name: field to an appropriate test table in our
database. SQL SELECT 1 FROM DUAL is valid for Oracle.

6. With Test Table Name set, we can now enable connection testing by ticking the
Test Connections on Reserve checkbox.

7. Set Test Frequency: to a suitable value, such as 300 seconds.

8. Click on the Save button at located the bottom of the page.

How it works…
Connection testing allows the application server to validate that connections (that are created
to the database) are valid and that they remain valid after a period of time.

Before adding database connections to the data-source connection pool, they are tested by
executing the SQL we entered into the Test Table Name box. It should go without saying that
this will add extra overhead on the creation of connections, both when the pool is first created
and when growing its number of connections.

Setting the Test Frequency period adds an interval after which idle pool connections are
tested. This helps to ensure that we do not have stale connections in the pool, which we could
potentially allocate to a requested SOA Suite application thread. You can disable this with the
value of 0 seconds.

Chapter 7

185

Note that connections that fail the test will either not be added to the pool or will be removed
from the pool, depending on whether this is a creation or frequency test. If connections
continually fail then the pool will enter a suspended state, requiring administrative intervention.

Testing our connections adds to the overhead on the database; it must satisfy test queries
in conjunction with concurrent production load.

There's more…
The Test Connections On Reserve value can also be set to ensure that connections are
tested prior to handing them over to application threads, but adds even more query-based
overhead on the database!

Another setting is available to further optimize testing of connections: setting Seconds to
Trust an Idle Pool Connection to a nonzero value creates a window for the duration for which
the connection will be trusted after a connection test passes. This enables periodic checks,
and checks on reserve to be skipped prior to handing a connection to a requesting thread.

Configuring data source growing and
shrinking

Data sources can dynamically alter their size to cope with changes in application load.
This recipe will show you how to alter these settings.

Getting ready
You will need to have Oracle SOA Suite 11g installed on a server as we'll be accessing
the default data source used by SOA Suite.

How to do it…
We can configure how data sources grow and shrink, by performing the following steps:

1. Open the SOA Suite WebLogic administration console and log in as administrator.
If you have issues locating the console, see steps 1 and 2 in the Tuning Global
Transactions recipe in Chapter 6, Platform Tuning.

Data Sources and JMS

186

2. Navigate to the Data Sources section by performing either of the following actions:

 � Click on the Data Sources link under the Services drop-down list in the
Domain Structure box located on the left of the screen

 � In the Home Page box in the center of the screen, under Services in
Domain Configurations, select Data Sources

3. In the Data Sources screen, select SOADataSource. Within the Connection Pool
tab, locate the pool capacity section.

4. Click on the Advanced option to display the advanced options.

5. This section contains two settings that are of interest for this recipe, Maximum
Capacity and Shrink Frequency:

6. Setting Maximum Capacity controls the maximum number of connections
that WebLogic will allow to exist for this connection pool.

7. Set Shrink Frequency to a non-zero value such as 300 to shrink a pool that
has expanded.

8. Click on the Save button located at the bottom of the page.

How it works…
The data source's connection pool will grow in size incrementally from the values in Initial
Capacity / Minimum Capacity, in response to incoming demand. We set the ceiling for this
growth, using the Maximum Capacity field. Note that there is no way to control the rate
at which connections are created, or to specify a step value to create a fixed number of
connections at a time.

When the load being applied to your application falls, the number of connections will stay
at the maximum number created until Shrink Frequency expires. This time interval begins
from the time the pool first incrementally increases beyond the number specified in Initial
Capacity / Minimum Capacity. It will repeat periodically until the pool reaches the value
in Minimum Capacity.

Chapter 7

187

Setting data source connection timeouts
WebLogic data sources' pools can be configured to prevent "leakage"—the process whereby
connections are perceived as being in use when in reality the thread has stopped using it. Over
time, this will cause the pool to be exhausted. In this case, it is said to have leaked connections!

This recipe will show how to configure WebLogic to mitigate against this scenario and reclaim
these leaked connections.

Getting ready
You will need to have Oracle SOA Suite 11g installed on a server as we'll be accessing
the default data source used by SOA Suite.

How to do it…
The following steps will allow us to set the data-source connection timeouts:

1. Open the SOA Suite WebLogic administration console and log in as administrator.
If you have issues locating the console, see steps 1 and 2 in the Tuning Global
Transactions recipe in Chapter 6, Platform Tuning.

2. Navigate to the Data Sources section by performing either of the following actions:

 � Click on the Data Sources link under the Services drop-down list in the
Domain Structure box located on the left of the screen

 � In the Home Page box in the center of the screen, under Services in
Domain Configurations, select Data Sources

3. In the Data Sources screen, select SOADataSource. Within the Connection Pool
tab, locate the Properties: box:

4. The value oracle.net.CONNECT_TIMEOUT is configurable to set the timeout on the
JDBC driver in milliseconds. A value of 10 seconds has been set here, which is quite
low. A value of 30 seconds allows a little more grace on busy production systems.

Data Sources and JMS

188

5. Still within the Connection Pool tab, click on the Advanced link located at the bottom
of the page. Locate the Inactive Connection Timeout: box:

6. Set the Inactive Connection Timeout: value to 600. WebLogic will return inactive
connections to the pool if idle for 600 seconds.

How it works…
Setting the Inactive Connection Timeout: value acts as a protection against applications that
might leak connections. Should an application not call the close method on their database
connection, perhaps because they have thrown an exception, this timeout will cause the
connection to be closed by WebLogic and returned to the connection pool.

Note that setting Inactive Connection Timeout: to a low value will potentially cause WebLogic
to reclaim connections that are in use by an application thread, which will have a destructive
impact on the thread (which expects an open connection). A good starting point is a value of
10 minutes; this provides some insulation for long-running in-memory processes, while still
enabling resource clean-up.

Tuning database XA timeouts
Database connections that are pooled can be configured to enable distributed transactions,
with an associated timeout if other resources in the transaction do not complete in time.
This recipe will show you how to set and configure this.

Getting ready
You will need to have Oracle SOA Suite 11g installed on a server as we'll be accessing the
default data source used by SOA Suite.

We'll set XA timeouts on the default SOA datasource.

How to do it…
Follow the steps given here to tune XA timeouts:

1. Open the SOA Suite WebLogic administration console and log in as an administrator.
If you have issues locating the console, see steps 1 and 2 in the Tuning global
transactions recipe in Chapter 6, Platform Tuning.

Chapter 7

189

2. Navigate to the Data Sources section by performing either of the following actions:

 � Click on the Data Sources link under the Services drop-down list in the
Domain Structure box located on the left of the screen

 � In the Home Page box in the center of the screen, under Services in
Domain Configurations, select Data Sources

3. In the Data Sources screen, select SOADataSource. Within the Transaction tab,
check the Set XA Transaction Timeout checkbox and enter a value of 3600
(or a value determined by your testing) in the timeout value box:

4. Click on Save and restart the server for the changes to take effect.

Data Sources and JMS

190

How it works…
An XA transaction is a transaction that involves a number of different transactional resources,
where those resources need to work together to complete the work. For example, it might
involve multiple databases, or a database and a JMS queue. The XA transaction timeout
determines how long WebLogic will wait for all of those resources to complete their work
before timing out and rolling back the transaction. In this recipe, we have increased the
timeout to a higher value, allowing resources more time to complete their work before the
timeout occurs and the transaction rolls back. It might also be the case that you would want to
reduce the timeout to cause the transaction to rollback faster. This scenario is not particularly
common though, because rolling back the transaction usually returns an error to the calling
system, which will often immediately retry in case it's a transient error. We suggest that you
experiment with various values to find the one that suits your system best. Remember that
you need to set the Oracle database settings to matching values, for this to work correctly.

There's more…
In order for this mechanism to not fail in your environment, you will need to ensure that the
database's distributed timeout value (known as distributed_lock_timeout) is greater than
the timeout set in WebLogic's XA timeout value, otherwise the database will timeout and rollback
our transactions while WebLogic is in the middle of utilizing them. To view the value on our
Oracle database, we can run (or ask the database administrator to run) the following command:

SQL>SHOW PARAMETER DISTRIBUTE_LOCK_TIMEOUT;

 NAME TYPE VALUE
 -------------------------------- ---------------- -------------
 distributed_lock_timeout integer 60

We can update this value using the following command:

SQL>ALTER SYSTEM SET DISTRIBUTE_LOCK_TIMEOUT=3600 SCOPE=SPFILE;

And then restart the database for the changes to take effect:

SQL>SHUTDOWN TRANSACTIONAL

SQL>STARTUP

…

SQL>SHOW PARAMETER DISTRIBUTE_LOCK_TIMEOUT;

 NAME TYPE VALUE
 -------------------------------- ---------------- -------------
 distributed_lock_timeout integer 3600

Chapter 7

191

Ensure that this is performed on each node that houses your SOA Suite database instances
(such as RAC cluster nodes).

We can set this for the other SOA Suite data sources as we need them to participate in XA
transactions, such as EDNDataSource and mds-soa, but this really should be done based
on the system usage. We recommend monitoring the database usage of these items for XA
resource issues.

Tuning connections in the native EIS
database adapter

SOA Suite enables interaction with database tables in BPEL processes, using database
adapters. In this recipe, we will show you how to tune the stock DbAdapter.

Getting ready
You will need to have Oracle SOA Suite 11g installed on a server as we'll be tuning the
default DbAdapter deployed to WebLogic when installing SOA Suite.

How to do it…
These steps show us how to tune the connections in the EIS adapter:

1. Open the SOA Suite WebLogic administration console and log in as administrator.
If you have issues locating the console, see steps 1 and 2 in the Tuning global
transactions recipe in Chapter 6, Platform Tuning.

2. Navigate to the Deployments section by performing either of the following actions:

 � Click on the Deployments link in the Domain Structure box located on the
left of the screen

 � In the Home Page box in the center of the screen, under Your Deployed
Resources in Domain Configurations, select Deployments

3. Select the DbAdapter deployment.

Data Sources and JMS

192

4. Within the Configuration tab, select the Outbound Connection Pools sub-tab.
Select the eis/DB/SOADemo instance.

5. Select the Connection Pool tab and set the Initial Capacity: field to 10 and
Max Capacity: to 500.

Chapter 7

193

6. Click on Save for your configuration changes and we'll be prompted to create
a deployment plan to apply our changes permanently to the adapter via a
deployment configuration for this domain.

How it works…
SOA Suite enables native access to resources such as file systems and databases, using
JCA-compliant resource adapters.

SOA Suite packages a number of predefined resource adapters for interaction with database
tables and the consumption of Oracle AQ message. For ease of configuration, we can tune
these deployed artifacts using the WebLogic Administration console.

We can control the minimum and maximum sizes, which will help prevent delays when
processing load and prevent the adapter from saturating the container's finite resources.
We can also configure them to automatically "shrink" down in size when lesser load is
being placed on the system.

When we make changes to these deployments, WebLogic allows us to apply these alterations
on server restarts, using a deployment plan that is saved automatically for us, on the file
system local to the WebLogic instance.

Data Sources and JMS

194

There's more…
As an alternative to using the WebLogic Administration console to configure resource adapters,
we can manipulate the adapter archive files (.rar) manually on disk by modifying the
weblogic-ra.xml configuration file. Note that this requires us to extract the archive, make the
file change, and re-archive the .rar file; WebLogic must be restarted for changes to take effect.

We can also manually create new resource adapters using the JDeveloper tool.

Configuring the WebLogic thread pool
Application threads in SOA Suite are pooled in the underlying WebLogic container. In this
recipe, we'll configure the main thread pool for a SOA Suite server instance.

Getting ready
You will need to have Oracle SOA Suite 11g installed on a server as we'll be accessing
the default thread pools used by WebLogic for SOA Suite.

How to do it…
Follow these steps to configure our WebLogic thread pool:

1. Open the SOA Suite WebLogic administration console and log in as administrator.
If you have issues locating the console, see steps 1 and 2 in the Tuning global
transactions recipe in Chapter 6, Platform Tuning.

2. Navigate to the Servers section by performing either of the following actions:

 � Click on the Servers link under the Environment drop-down list in the
Domain Structure box located on the left of the screen

 � In the Home Page box in the center of the screen, under Environment
in Domain Configurations, select Servers

3. Select the Administration server. Click on the Monitoring tab and then the
Threads sub-tab.

Chapter 7

195

4. Here we can see that the total threads currently set to the Self-Tuning Thread Pool
for this server is represented by the Execute Thread Total Count column. Our pool
size is 5, with 4 active threads.

5. To reconfigure the default pool sizes, we need to add some Java –D properties to
the command line. Navigate to the domain's home directory:
%MIDDLEWARE_HOME%/user_projects/domains/soa_domain/

Replace soa_domain with the relevant domain, as required.

6. Within the bin directory, open the setSOADomainEnv.cmd file on Windows
(setSOADomainEnv.sh on Linux) and locate the following section:

7. At the end of both the DEFAULT_MEM_ARGS and PORT_MEM_ARGS parameters,
add both of the following –D parameters:
-Dweblogic.threadpool.MinPoolSize=15
-Dweblogic.threadpool.MaxPoolSize=25

Data Sources and JMS

196

8. Restart the instance of WebLogic and browse to the Server's Thread Monitoring
sub-tab again. You'll see that our Execute Thread Total Count value has changed
to reflect the configured minimum size:

How it works…
In order to process incoming application requests, SOA Suite leverages WebLogic's thread
pool to acquire a thread resource. WebLogic utilizes a self-tuning thread pool that dynamically
determines exactly how many threads are required to service the present load. This pool is
shared among all hosted applications and services.

The server throughput is sampled at intervals of two minutes, based on internal algorithms.
If the same throughput can be achieved with fewer threads, WebLogic will shrink the pool.
Conversely, if throughput can be improved, it will increase the pool size.

By default, the pool size is unlimited. We can control the maximum thread pool size to prevent
over-allocation of resources from the hosting machine to a WebLogic instance. We can also
insulate against "cold starts" by preventing the thread pool from shrinking below a certain
minimum size. This will ensure that the server will always have a buffer of resources to handle
incoming requests.

Chapter 7

197

There's more…
WebLogic has a powerful mechanism for managing its shared thread pool, called Work
Managers. These can be configured to check on the number of threads to run an application
or service with, or to add service-level agreements on things such as component response time.

Using JMS file persistence
JMS is a candidate SOA Suite endpoint destination, either for consumption or production
of messages. WebLogic also provides JMS resources for SOA Suite Event Delivery Network,
reliable Web Service Messaging, or for bridging to SOA Suite service hosting tiers such
as Oracle Service Bus.

In this recipe, we'll configure WebLogic's JMS resources to use file-based persistence
over database persistence.

Getting ready
You will need to have Oracle SOA Suite 11g installed on a server as we'll be working in
the area configured for the default JMS Persistence Stores used by SOA Suite.

How to do it…
The following steps will allow us to configure JMS persistence to use a file store:

1. Open the SOA Suite WebLogic administration console and log in as administrator.
If you have issues locating the console, see steps 1 and 2 in the Tuning global
transactions recipe in Chapter 6, Platform Tuning.

2. Navigate to the Persistent Stores section by performing either of the following
actions:

 � Click on the Persistent Stores link under the Services drop-down list
in the Domain Structure box located on the left of the screen

 � In the Home Page box in the center of the screen, under Services in
Domain Configurations, select Persistent Stores

3. Click on New and select Create FileStore.

Data Sources and JMS

198

4. Now, select a location on disk for the JMS persistent store.

5. In the Name box, it is a good idea to give the store a descriptive name, with the
targeted JMS Server as a part of it.

6. In the Target box, select the primary WebLogic Managed Server instance on which
to host the JMS persistent store.

7. In the Directory box, enter a directory that exists on the target Managed Server host.
You can omit an entry, and a folder named after the persistent store will be created
dynamically under the domain folder in your %MIDDLEWARE_HOME% location, but
we think it's best to explicitly state a location manually.

8. Finally, within the Messaging section, select a JMS Server to utilize our new
file-based persistent store and use its configuration tab to select the store.
This server must be targeted to the same Managed Server as the store.

How it works…
JMS messages that are marked as being durable are stored before being delivered by
WebLogic. Database message stores are slower than local disk-based stores for two reasons:

 f A network hop is involved in streaming the message contents through
a JDBC connection

Chapter 7

199

 f The RDBMS schema validation and record index updates in the database messaging
table add overhead to the message-consumption process

By writing messages to file locally, we are omitting both of these overheads. WebLogic applies
intelligent file-offset policies to enable it to track message locations, and also maintains a
local index within the persistent store that allows rapid lookup and manipulation of messages
within the store.

The File Store-write policy can have a big impact on messaging performance in high-throughput
systems; Direct-Write-With-Cache leverages a local cache to help speed up the store's
performance and will scale better than Direct-Write.

There's more…
JMS File Persistence stores can use WebLogic's native libraries to automatically apply values,
which help speed up disk access on a host operating system. Where these libraries are not
available, you can configure these values and other settings under the Persistent Store
Configuration tab by clicking on the Advanced tab.

Here, we can control a number of things:

 f IO Buffer Size: This value changes depending on the store write policy. Typically,
it should be greater than the largest store write value.

 f Maximum File Size: This is not the size of the store, but the maximum size of
individual files that comprise the store. A small number of large files is best;
1 GB is a good starting value.

 f Block Size: There's lots of information on tuning this. Generally, it is best to have
this larger than your message type so as to prevent splitting. Detailed information
is available at http://docs.oracle.com/cd/E12839_01/web.1111/e13814/
storetune.htm#CACDDHIB.

 f Initial Size: The value in this field can help prevent file-expansion pauses at runtime,
which can occasionally add small delays.

Data Sources and JMS

200

JMS resources in WebLogic can be configured to be migratable. This means that should a
SOA cluster of WebLogic Server instances determine that a WebLogic-managed server is
unreachable, then its JMS resources will be recreated in another existing instance of WebLogic.

A JMS persistent store must be designated as being migratable in order for this to succeed. This
is achieved by targeting at a migratable WebLogic Managed Server. However, local persistent
store messages cannot be streamed to the new hosting server as there may be a large archive
of undelivered messages. In order for this to work effectively, the persistent store must be
located on a slice of networked, shared storage. If this is correctly configured then the JMS
Server will be migrated to a new host and message delivery will resume using the same JMS
message store.

There is a potential performance trade-off in placing messaging stores on a network drive,
however, as the native WebLogic file drivers need to be compatible with the drive location in
order to leverage the faster access policies such as Direct-Write-With-Cache.

Tuning JMS connection factories
JMS is a candidate SOA Suite endpoint destination, used for either consumption or production
of messages. WebLogic also provides JMS resources for SOA Suite Event Delivery Network,
reliable Web Service Messaging, or for bridging to SOA Suite service hosting tiers such as
Oracle Service Bus.

In this recipe, we'll change settings to tune the WebLogic JMS connection factories that
dispense connections for our JMS destinations.

Getting ready
You will need to have Oracle SOA Suite 11g installed on a server as we'll be working in the
area configured for the default JMS persistence stores used by SOA Suite.

How to do it…
Follow the steps given here to tune our JMS connection factory:

1. Open the SOA Suite WebLogic administration console and log in as administrator.
If you have issues locating the console, see steps 1 and 2 in the Tuning global
transactions recipe in Chapter 6, Platform Tuning.

2. Navigate to the JMS Modules section by performing either of the following actions:

 � Click on the JMS Modules link under the Messaging drop-down list under
Services in the Domain Structure box located on the left of the screen

 � In the Home Page box in the center of the screen, under Services in
Domain Configurations, select JMS Modules

Chapter 7

201

3. Choose the SOAJMSModule JMS module. In the list of resources, choose a
JMS connection factory to tune. In the following screenshot, we've chosen
B2BEventQueueConnectionFactory:

4. Navigate to the Default Delivery tab. Set the Default Redelivery Delay: field
to 10,000 milliseconds. Set the Send Timeout: field to 5,000 milliseconds.

Data Sources and JMS

202

5. Click on Save.

6. Navigate to the Flow Control tab and set the Flow Maximum: messages setting
to 250.

7. Set the Flow Minimum: field's value to 5.

8. Click on Save.

How it works…
The default connection factories provided by WebLogic JMS are not tunable. However,
working with custom factories in our JMS modules opens up a host of tuning options.

We can set default delivery parameters (such as flow control) and message properties,
which clients can override. Transaction, load balancing, and security can also be configured
for connections used by inbound clients.

Chapter 7

203

In this recipe, we have configured some of the default delivery options. Setting the Send
Timeout: field to a higher value allows us to give a JMS Destination that is over a specific size)
or a resource quota of 5,000 milliseconds to free up space to accommodate our message
before an error is thrown. This allows for less message redelivery at the cost of some slight
blocking on connections. Setting a redelivery delay can further help this process by waiting
a certain period of time before resuming the delivery process for this message.

Furthermore, we set the flow control options that the connections from SOA Suite JMS clients
are bound to obey; this instructs them to rate-limit their messages on demand from the SOA
Suite WebLogic Managed Servers. JMS Destinations (Queues, Topics, and Distributed Queues)
can be configured to expose Quotas and high/low watermarks, which when breached engage
flow control to limit messaging throughput (which we have not explored here). Understanding
these with our application requirements can help to control and optimize the system throughput.
Our changes now require that when flow control conditions are triggered, no more than 250
messages can be sent per producer per second. If a producer is sending less than 5 messages
a second, it will not be controlled.

There's more…
If you have lots of large messages that are not bytes or serialized objects, you may gain
performance by setting a low KB value for the message compression value. This will reduce
the amount of upstream and downstream network transmission on message delivery.

If you have a cluster of SOA Suite instances you can gain significant performance
improvements by using distributed JMS destinations to spread the processing load.

JMS Destinations (Queues, Topics, Distributed Queues) also, by default, contain a notion
of batching messages into groups, which can reduce the overall server throughput as
separate per-message sends are not required. The trade-off with doing so is that pauses
are introduced while building up a collection of messages to send, and retries involve
larger number of messages.

8
BPEL and BPMN

Engine Tuning

In this chapter, we will look at the following recipes:

 f Tuning the dispatcher invoke threads

 f Tuning the dispatcher engine threads

 f Tuning the dispatcher system threads

 f Disabling BPEL monitors and sensors

 f Reducing the audit level

 f Changing a BPEL process to be transient

 f Reducing the completion persist level

 f Disabling persistence on invocation

 f Setting the audit store policy

 f Reducing audit trail size threshold

 f Increasing large document threshold

 f Reducing SOA infra log levels

 f Purging data from the BPEL store

 f Ensuring automatic database statistics
gathering is enabled

 f Tuning Oracle database parameters

 f Tuning the Oracle database

BPEL and BPMN Engine Tuning

206

Introduction
The BPEL and BPMN engines are the heart of most Oracle SOA Suite 11g applications, and so
the tuning suggestions here are relevant to most of the users of SOA Suite. While tuning lower
down, the stack is focused on identifying and removing bottlenecks; tuning the BPEL and BPMN
engines is much more of a trade-off between performance and reliability or the fault-tolerance
of the system. So, these tuning recommendations should not be applied without carefully
considering the consequences.

If you do some online research into the tuning options for SOA Suite, you may see references
to tuning the internal business process engine. These engines are the runtime components
that deal with executing the business processes in response to the user input. However, in our
experience, this advice tends towards cases of setting parameter X to value Y and hoping for
the best.

In this chapter, we want to expose the tuning options for SOA Suite's execution engines. In
addition to showing you how to configure them, we'll talk about the motivating scenarios for
doing so, and what outcomes you can expect.

We have found that the process engine tuning typically only comes into people's minds in
production scenarios, where heavy load processing is required and throughput is not high
enough; in other words, composites are not being as performant as they need to be. Gaining
benefit from tuning the process engines really is dependent on the types of services you want
to offer and the loads you expect to generate on them. Hopefully, by the end of this chapter,
you'll have a good grasp on the things that can be controlled and how this feeds back into
composite design.

The recipes in this chapter are directly used in Chapter 11, SOA Application Design, where
we think about composite design and bring a number of the recipes together to suggest
performant configurations.

Whilst this chapter's title references the BPEL and BPMN engines separately, SOA Suite 11g
actually has largely merged the runtimes of these engines. Most of the recipes in this chapter
affect the engine that executes both runtimes. Where a recipe only affects one runtime, we
will mention that this is the case.

When trying the recipes in this chapter, we heavily recommend having a test environment
where you can experiment with load in a controlled fashion and monitor the results.

Chapter 8

207

Tuning the dispatcher invoke threads
The runtime SOA engine deals with composite execution. In this recipe, we'll tune one of its
internal components—the BPEL Dispatcher Invoke thread pool size.

This recipe applies to the BPMN engine too; settings need to be applied to each engine
individually. See the There's more... section at the end of this recipe.

Getting ready
You will need to install SOA Suite with the Enterprise Manager Fusion Middleware Control
component to follow this recipe.

How to do it...
Follow these steps to set the Dispatcher Invoke Thread pool size:

1. Navigate to the Enterprise Manager Fusion Middleware Control homepage
by pointing your browser to the URL hosted on the IP of the SOA Suite domain
administration server, on the admin server's listen port below http://SOA_SUITE_
ADMIN_SERVER_IP:7001/em.

2. Log in with the administration server credentials. These are the same as supplied
for the admin user on the SOA Suite administration server when installing the domain.
If you're unsure what these are, consult your domain administrator.

BPEL and BPMN Engine Tuning

208

3. Expand the SOA folder in the left-hand pane and right-clicking on the soa-infra
instance, then select SOA Administration and BPEL Properties. If you don't see a
SOA folder, try checking if you're managed SOA servers are enabled and visible by
the admin server.

4. In Dispatcher Invoke Threads box, enter a new value. The default is 20. If your
application sees high numbers of composites created, then increasing the number
of threads can provide improvement, a good starting value is in the region of 50 to
100 threads.

Chapter 8

209

5. Click on Apply in the top-right corner to persist these changes to the SOA domain.

How it works...
We started with this BPEL/BPMN Engine tuning option as it makes sense when you consider
the lifecycle of a composite's execution. The Dispatcher Invoke thread pool is the entry
point to SOA composite execution. In response to the requests from external systems to your
composite, internal in-memory messages will be generated and consumed by threads in this
pool. In turn, these threads will spawn instances of the required composites, to deal with the
inbound requests.

The default of 20 threads means that we are limited to creating at the most 20 new
composite instances at any one time. Typically, this is ample, but in scenarios where we have
a lot of composite instantiations (especially those that execute only in memory and return
synchronously to the client), we can increase the throughput on the server instance by setting
a higher number of threads in this pool.

You will need to be mindful of the memory allocated to the SOA-managed server instances in
your domain, and the thread stack size in the JVM settings, to ensure that you have enough
memory for the required number of threads. If the SOA Server is executing lots of threads
concurrently, then the CPU on the host may be forced to switch thread contexts a lot, which
will degrade performance.

There's more...
Settings that tune the BPEL/BPMN engines are a trade-off between different types of
composite execution. We cannot always guarantee how external systems will send requests
into our domain, and thus that the runtime engine will be asked to run the same type of
composite in one style of execution (synchronous, asynchronous, and so on). Depending
upon the types of composites deployed, this may not be an issue.

It may be the case that the best way to tune your engine is to actually fragment the engines
and host them across multiple domains, with each one tuned for the style of throughput
required. This gets into the realm of architecture and design, however, which is beyond the
scope of this book, but is worth considering if single engine performance is not enough for
your needs.

BPEL and BPMN Engine Tuning

210

To change the settings for the BPMN engine, you must select the properties from by right-
clicking on the Administration dialog box on the soa-infra application. By default, this does
not appear without a BPMN application, but it can still be accessed by configuring SOA system
MBeans from the Enterprise Manager application:

1. From the BPEL Service Engine Properties page in step 2, select More BPEL
Configuration Properties.

2. Click on the green filter icon in the following screenshot:

Chapter 8

211

3. Change the MBean name to name=bpmn.

4. You can now set the Dispatcher Invoke Threads value by using the Web form.

See also
 f The Tuning the dispatcher engine threads and Tuning the dispatcher system

threads recipes

 f The Setting the thread stack size and Increasing the JVM Heap size recipes in
Chapter 4, JVM Memory

Tuning the dispatcher engine threads
The runtime SOA engine deals with composite execution. In this recipe, we'll tune one of its
internal components—the BPEL Dispatcher Engine thread pool size.

This recipe applies to the BPMN engine too; settings need to be applied to each engine
individually. See the There's more... section at the end of this recipe.

Getting ready
You will need to install SOA Suite with the Enterprise Manager Fusion Middleware Control
component to use this recipe.

BPEL and BPMN Engine Tuning

212

How to do it...
Follow these steps to set the Dispatcher Engine Thread pool size:

1. Follow steps 1 to 3 in the Tuning SOA engine dispatcher invoke threads recipe,
to get to the BPEL Service Engine properties page.

2. Set Dispatcher Engine Threads to a value for your system depending upon the
number of asynchronous callbacks you process. We recommend starting at a value
in the range of 80 to 150.

3. Click on Apply in the top-right corner to persist these changes to the SOA Domain.

How it works...
In this recipe, we changed the BPEL Engine configuration for the Dispatcher Engine thread
pool. This pool of threads is used to process a composite when it receives an asynchronous
callback. When a composite calls to an external system using an asynchronous call, it is
dehydrated to the SOA database to save its state for future use. When this composite needs
to be loaded into memory for processing, either because a response from the external system
has been received, an alarm is triggered (onAlarm) or a message is sent to it (onMessage),
then an internal in-memory message is created in the SOA engine targeted at this composite.
This thread pool processes these messages.

The default of 30 threads means we are limited to rehydrating at most 30 composites
instances for execution at any one time. This may not be high enough, especially in systems
that have a "bursty" style of execution, or for composites that have many dehydration points.
We can increase the throughput on the server instance by setting a higher number of threads
in this pool. If there is one engine parameter that usually gets the biggest increase, it is
this one.

Chapter 8

213

You will need to be mindful of the memory allocated to the SOA-managed server instances in
your domain, and the thread stack size in the JVM settings, to ensure that you have enough
memory for the requisite number of threads. If the SOA server is executing lots of threads
concurrently, then the CPU on the host may be forced to switch thread contexts a lot, which
will degrade the performance. These are the trade-offs that need to be considered when
increasing the threads for the engine parameters.

There's more...
To change the settings for the BPMN engine, you must select the properties by right-clicking
on the Administration dialog box on the soa-infra application. By default, this does not
appear without a BPMN application, but it can still be accessed by configuring SOA system
MBeans from the Enterprise Manager application.

1. From the BPEL Service Engine Properties page in step 2, select More BPEL
Configuration Properties.

BPEL and BPMN Engine Tuning

214

2. Click on the green filter icon in the following screenshot:

3. Change the MBean name to name=bpmn.

4. You can now set the Dispatcher Engine Threads value by using the Web form.

See also
 f The Tuning the dispatcher invoke threads and Tuning the dispatcher system

threads recipes

 f The Setting the thread stack size and Increasing the JVM Heap size recipes
in Chapter 4, JVM Memory

Tuning the dispatcher system threads
The runtime SOA engine deals with composite execution. In this recipe. we'll tune one
of its internal components—the BPEL Dispatcher System thread pool size.

This recipe applies to the BPMN engine too; settings need to be applied to each engine
individually. See the There's more… section at the end of this recipe.

Chapter 8

215

Getting ready
You will need to install SOA Suite with the Enterprise Manager Fusion Middleware Control
component to use this recipe.

How to do it...
Follow these steps to set the Dispatcher System thread pool size:

1. Follow steps 1 to 3 in the Tuning SOA engine dispatcher invoke threads recipe, to get
to the BPEL Service Engine properties page.

2. Set Dispatcher System Threads to a higher value for your system. We recommend
starting at a value of 5.

3. Click on Apply in the top-right corner to persist these changes to the SOA Domain.

How it works...
In this recipe, we changed the BPEL Engine configuration for the Dispatcher System thread
pool. This pool of threads is of lower importance in improving the process throughput as
compared to the other two Dispatcher pools mentioned in the previous recipes. It is used to
process in-memory messages that instruct when to perform internal housekeeping tasks on
the stateful components, such as EJBs, that provide the SOA Suite functionality. Increasing the
size of the Invoke and Engine thread pools means there will potentially be more load on the
system, so we increase the maintenance pool to help clean up resources as they are freed.

BPEL and BPMN Engine Tuning

216

There's more...
To change the settings for the BPMN engine, you must select the properties from by
right-clicking on the Administration dialog box on the soa-infra application. By default,
this does not appear without a BPMN application, but it can still be accessed by configuring
the SOA system MBeans from the Enterprise Manager application.

1. From the BPEL Service Engine Properties page in step 2, select More BPEL
Configuration Properties.

2. Click on the green filter icon in the following screenshot:

Chapter 8

217

3. Change the MBean name to name=bpmn.

4. You can now set the Dispatcher System Threads value by using the Web form.

See also
 f The Tuning the dispatcher engine threads and Tuning the dispatcher invoke

threads recipes

 f The Setting the thread stack size and Increasing the JVM Heap size recipes
in Chapter 4, JVM Memory

Disabling BPEL monitors and sensors
In this recipe, we will change a global control to control monitoring components that can
affect the throughput.

Getting ready
You will need to install SOA Suite with the Enterprise Manager Fusion Middleware Control
component to use this recipe.

BPEL and BPMN Engine Tuning

218

How to do it...
Follow these steps to control the BPEL sensors and monitors:

1. Follow steps from 1 through 3 in the Tuning SOA engine dispatcher invoke threads
recipe to get to the BPEL Service Engine properties page.

2. Select the Disable BPEL Monitors and Sensors checkbox as shown in the
following screenshot:

3. Click on Apply in the top-right corner to persist these changes to the SOA domain.

How it works...
BPEL sensors are a part of the deployed composites that are evaluated at runtime by
the BPEL engine. They are targeted at sections of the composite and can be fired around
or within the composite in a number of ways, depending upon how the composite is behaving.
When fired, they can trigger the further publishing of events and actions that add extra
processing burden and database load to our production deployment. It is not uncommon
for BPEL sensors, designed for development functional diagnosis, to be deployed unmodified
to production.

In this recipe, we altered a global setting that disables processing of BPEL sensors completely.
This can be useful for helping improve the throughput in environments, where there are
high numbers of composites deployed, but is a big change that may impact monitoring and
integration with external monitoring systems.

Chapter 8

219

There's more...
It is possible to disable sensors on a per-composite basis if you know which composite you
wish to make this change to. Use the Enterprise Manager console to view a composite, and
click on the Settings button to make the change.

It is also possible to disable the BPMN sensors via the properties page or engine MBeans;
see the There's more… section in the Tuning Dispatcher Invoke Threads recipe, to see how
to get to the MBean tree for the BPMN engine.

Reducing the audit level
In this recipe, we'll look at controlling the level of auditing performed by the BPEL engine
when executing our processes.

Getting ready
You will need to install SOA Suite with the Enterprise Manager Fusion Middleware Control
component to use this recipe.

How to do it...
Follow these steps to control the audit level:

1. Follow steps 1 to 3 in the Tuning SOA engine dispatcher invoke threads recipe,
to get to the BPEL Service Engine properties page.

2. Set Audit Level to a lower value, such as Minimal:

3. Click on Apply in the top-right corner to persist these changes to the SOA domain.

BPEL and BPMN Engine Tuning

220

How it works...
BPEL processes that execute in the runtime engine generate logging events that allow
inspection in the Enterprise Manager console; these writes to the database are synchronous
and blocking. Typically, it is rare that the operations teams will want to comb through every
execution of a composite in production, if it is running successfully. This information is only
made available in the Enterprise Manager console, so it is a candidate for removal if you are
not using this facility.

The audit level controls the level of details collected, as the composite works though it's flows.
This directly affects the number of items in the AUDIT_TRAIL database table backing SOA
Suite. The levels of note are as follows:

 f Off: No information is collected. This is likely to be the setting, which will really improve
the concurrent BPEL performance, as no database audit logging is performed.

 f Minimal: Logging of the composite flow still occurs, but no request/response
(payload) information is sent to the database. This can help improve performance if
the payloads involved are large, or many stages are involved in the composite flow.

 f Production: All audit information is collected including payloads at all stages of the
composite flows, with the exception of BPEL process "assign" activities. This is the
default value.

 f Development: We don't recommend running this in production. It captures the state
of the composite at every flow stage.

Unless you are experiencing issues in production we recommend tuning the engine to the
minimal setting. This will help reduce the overhead involved in communication with the
database at the cost of detailed flow execution data.

There's more...
The Payload Validation setting on the BPEL engine properties page will add extra
processing to the composite execution. The Capture Composite Instance State value
will also require more database storage operations for the composite execution. These
are both off by default, as shown in the following screenshot, but may be enabled when
composites are under development:

Chapter 8

221

Combining reducing audit logging with changing the completion persist policy and
inMemoryOptimization settings can reduce the simultaneous number of database round
trips required by executing composites. This can have a big impact on the performance at the
cost of composite execution insight.

See also
 f The Disabling persistence on invocation and Changing a BPEL process to be

transient recipes

Changing a BPEL process to be transient
In this recipe, we'll disable some of the persistence that occurs by default on processes
executed in the BPEL engine.

Getting ready
You'll also need a composite loaded into JDeveloper for this recipe. We have provided one
with this chapter's source code available from the book's website.

How to do it...
Follow these steps to make a BPEL process transient:

1. Load the composite into JDeveloper and open the composite.xml file.

2. Locate the <component> section and add a property element, as follows:
<property name="bpel.config.inMemoryOptimization">true</property>

BPEL and BPMN Engine Tuning

222

3. The file should look similar to the following output:

How it works...
BPEL processes are, by default, persisted to the underlying SOA database at a number of
stages during the flow execution; this process is known as dehydration. We call these processes
durable, as they are resilient against outages in the server runtime. However, certain types
of processes can be configured in such a way that the BPEL engine will execute them entirely
in-memory, making them transient. This has the potential to speed up the execution of our
processes. We have to satisfy some conditions to execute entirely in memory, however:

 f A process must not contain a receive point (beyond the initial invocation)

 f The process must be of a synchronous type

 f onMessage items but not be present

 f There must be no wait items

Any of the preceding conditions enforces dehydration as a part of the BPEL engine's internal
logic – there's no way to optimize it presently. For this reason short-lived, synchronous
processes are good candidates for setting this memory optimization flag. This is a good option
that we recommend setting if your requirements are compatible.

If set, the completion persist level is used to determine at which points process dehydration
occurs. See the next recipe for options on setting this flag.

There's more...
BPEL processes will still be saved on initial invocation; see the Disabling persistence on
invocation recipe, to prevent this and improve the throughput even more.

See also
 f The Disabling persistence on invocation and Reducing the audit level for messages

written to disk recipes

Chapter 8

223

Reducing the completion persist level
In this recipe, we'll change conditions that can govern when dehydration is performed by the
BPEL engine upon process completion.

Getting ready
You'll also need a composite loaded into JDeveloper for this recipe. We have provided one with
this chapter's source code, available from the book's website.

You'll also need to have set the in inMemoryOptimization flag; see the Changing a BPEL
process to be transient recipe for instructions on doing this.

How to do it...
Follow these steps to reduce the BPEL completion persist level:

1. Load the composite into JDeveloper and open the composite.xml file.

2. Locate the <component> section, and add a property element, as follows:
<property name="bpel.config.completionPersistPolicy">faulted</
property>

3. The file should look similar to the following output:

How it works...
When we mark a process as being transient (executed totally in-memory), we can control
when the completed process data is persisted to the database, if ever. Our options for this
setting are:

 f On: This is the default value. The completed instance is saved as a part of the process
lifecycle. This is a synchronous operation, so it adds to the total processing time.

 f Deferred: The process state is saved asynchronously by a separate thread to the
one which ran the process. This offers a small performance increase, as the process
thread can return quicker in exchange for a small risk.

BPEL and BPMN Engine Tuning

224

 f Faulted: This is a recommended setting. The instance state is only saved when the
process errors. If most instances are expected to succeed, this will have a lot of
impact on overall database utilization.

 f Off: No instance data is saved. Whilst the fastest, we also lose any state information.

If your non-functional requirements allow it, for faster execution of BPEL processes, we
recommend a faulted completion persist policy alongside a lower audit message level.

See also
 f The Changing a BPEL process to be transient, Disabling persistence on invocation,

and Reducing the audit level for messages written to disk recipes

Disabling persistence on invocation
In this recipe, we'll look at how we can speed up the BPEL execution by using memory queuing.

Getting ready
You'll also need a composite loaded into JDeveloper for this recipe. We have provided one with
this chapter's source code available from the book's website.

How to do it...
Follow these steps to disable the BPEL process persistence when invoked:

1. Load the composite into JDeveloper, and open the composite.xml file.

2. Locate the <component> section and add a property element with the name bpel.
config.oneWayDeliveryPolicy and value async.cache as follows:
<property name="bpel.config.oneWayDeliveryPolicy">async.cache</
property>

3. The file should look similar to the following output:

Chapter 8

225

How it works...
The BPEL engine, by default, saves inbound requests to a database table named dlv_
message (delivered messages). From this table, the threads in the BPEL engine populate
the in-memory queue used to instantiate processes. This default setting is represented by
a value of sync on the property bpel.config.oneWayDeliveryPolicy.

By setting the value to async.cache, we remove the intermediary call to the database,
placing invocations only in a memory queue ready to be run as BPEL processes. This will
prevent us from being able to restart the process at a later date, but removes a database
roundtrip. Furthermore, if we have too many inbound requests, the queue can fill up causing
server memory errors; so exercise caution, if enabling this setting. A monitoring solution is
recommended for keeping a track of request counts, if you change this setting.

Another possible value for this property is sync, which will remove the invoke queue
completely from the processing chain; threads that accept calls will synchronously invoke
the process to completion. This removes the asynchronous decoupling, and can improve
the throughput in some use cases, where we have fast-executing, synchronous processes.
Coupling this with inMemoryOptimization can give big improvements. However, if high
loads are possible within a short space of time, this increases the risk that the system will
not have sufficient resources to service inbound requests and that calling components will
be made to wait.

The optimum tuned setting depends upon the types of things in your composite, but usually
a setting of async.cache will help the throughput in environments that make heavy use of
the database.

There's more...
If database I/O is causing contention, see the Changing a BPEL process to be transient and
Reducing the audit level recipes, which can optimize a lot of the dehydration persistence out
of the composite execution.

See also
 f The Changing a BPEL process to be transient and Reducing the completion persist

level recipes

BPEL and BPMN Engine Tuning

226

Setting the audit store policy
Audit records are normally written to the database synchronously, which imposes a
significant performance overhead on the application. By switching to writing audit information
asynchronously, we can get a large performance improvement.

Getting ready
You will need to install SOA Suite with the Enterprise Manager Fusion Middleware Control
component to use this recipe.

How to do it...
Follow these steps to set the Audit storage policy:

1. Follow steps from 1 through 3 in the Tuning SOA engine dispatcher invoke threads
recipe to get to the BPEL Service Engine properties page.

Chapter 8

227

2. This will open the BPEL properties page; click on the More BPEL Configuration
Properties link to see the advanced properties:

3. Locate the Audit Store Policy property, and set its value to async, as shown.

4. Save the changes.

How it works...
The audit store policy determines how audit messages are persisted to the database. The
default is for audit messages to be persisted to the database in the same transaction as the s
instance data. By persisting messages asynchronously on a different thread, we can improve
the performance, with a slight risk that the audit record might not get written if the system
fails at exactly the wrong time.

In addition to the default value of syncSingleWrite and async, there is another option,
which is syncMultipleWrite. This option will use the same thread, but write the audit
message in a different transaction. This has the advantage that if the process instance
transaction is rolled back for any reason, the audit record is still written.

BPEL and BPMN Engine Tuning

228

There's more...
When using the async audit store policy, there are two additional parameters that we can
tune, which affect how frequently the asynchronous audit events are written to the database.
These are AuditFlushByteThreshold, which is the number of bytes after which the audit
messages are flushed, and AuditFlushEventThreshold, which is the number of audit
events. By tuning these, it is possible to further reduce the number of times that SOA Suite
talks to the database, but with the additional risk of possible data loss of audit events.

See also
 f The Reducing audit trail size threshold recipe

Reducing audit trail size threshold
The bodies of messages are normally saved to the AUDIT_TRAIL table in the database, with
larger messages being stored in AUDIT_DETAILS. By decreasing the threshold for messages
to be saved in AUDIT_DETAILS, we can prevent a large amount of payload data from being
loaded in the AUDIT_TRAIL table, which can improve performance.

Getting ready
You will need to install SOA Suite with the Enterprise Manager Fusion Middleware Control
component to use this recipe.

How to do it...
Follow these steps to set the Audit trail size threshold:

1. Follow steps from 1 through 2 of the Setting the audit store policy recipe to navigate
to the Advanced BPEL Configuration page.

2. Locate the AuditDetailThreshold property, and decrease its value.

3. Save your changes.

Chapter 8

229

How it works...
The audit trail size threshold determines how large audit messages have to be before their
content is stored in the AUDIT_DETAILS table rather than in the AUDIT_TRAIL table. By
decreasing this value, we can make processing of the data in AUDIT_TRAIL faster when
audit details are viewed in the Enterprise Manager console, because it does not need to load
as many large audit message bodies. The larger details are still available in AUDIT_DETAILS,
if required.

See also
 f The Setting the audit store policy and Increasing large document threshold recipes

Increasing large document threshold
By default, documents larger than 100 k are saved to the database, and the key for the
document is passed around the server. If we have sufficient memory in our application, then
increasing this threshold above 100 k will prevent frequent trips to the database.

Getting ready
You will need to install the SOA Suite with the Enterprise Manager Fusion Middleware Control
component to use this recipe..

How to do it...
1. Follow steps from 1 through 2 of the Setting the audit store policy recipe to navigate

to the Advanced BPEL Configuration page.

2. Locate the LargeDocumentThreshold property, and increase its value.

3. Save your changes.

BPEL and BPMN Engine Tuning

230

How it works...
The large document threshold is the size above which the document body is saved in the
database, and a key to the body is passed between process instance components. If you have
sufficient memory, you can increase this value to allow larger document bodies to be passed
around in-memory, saving trips to the database, and increasing performance.

You should note, however, that if your BPEL process has any dehydration points (as discussed
in the Changing a BPEL process to be transient recipe), then the message will be stored
regardless of this setting when the process is dehydrated. It is possible to make the process
transient (in-memory only), which speeds up the processing at the cost of recovery from
system failure.

See also
 f The Reducing the audit trail size threshold and Changing a BPEL process to be

transient recipes

Reducing SOA infra log levels
Oracle SOA Suite 11g writes log information to log files, and by reducing the amount of
file I/O that logging performs, we can improve the performance of the entire SOA Suite
11g infrastructure.

Getting ready
You will need to install the SOA Suite with the Enterprise Manager Fusion Middleware Control
component to use this recipe.

How to do it...
Follow these steps to configure the SOA Suite SoaInfra application's log levels:

1. Follow steps from 1 through 2 in the Tuning SOA Engine dispatcher invoke threads
recipe to get to the BPEL Service Engine properties page.

2. Navigate to Logs and Log Configuration, as shown in the following screenshot:

Chapter 8

231

3. Set all the log levels to SEVERE.

BPEL and BPMN Engine Tuning

232

How it works...
By reducing the amount of file I/O that occurs from logging, it is possible to improve
the performance of the application, but with the trade-off that the log information is
not available if you have a problem. In a stable system, where you do not expect frequent
outages, it is worth setting the log levels so that only critical errors are reported in the
log files.

There's more...
In this recipe, we set all the log levels to SEVERE. If you don't want to turn off logging
for all the components, you can selectively set the log levels for different components
and subsystems. The + icons next to each category can be expanded to allow the levels
to be set at a finer level, or to allow specific components to continue to log less severe
messages if required.

See also
 f The Reducing the audit threshold recipe

 f The Reducing server logging level recipe in Chapter 6, Platform Tuning

Purging data from the BPEL store
In this recipe we will remove old BPEL dehydration data and state from the SOA
infrastructure database.

Getting ready
You will need to have access to the database on which the SOA_INFRA schema is hosted.
In this recipe, we'll be using a command line local to the host on which we installed
the database.

You'll also need access to the SQL scripts bundled with SOA Suite. If you have SOA Suite
installed on the host running the database, you can find them under MW_HOME/SOA_
ORACLE_HOME/rcu/integration/soainfra/sql/soa_purge.

If the database is running on a separate host, you can simply copy the soa_purge directory
from the WebLogic administration server to a directory on the database host; we'll be using
e:\soa_purge for this purpose.

Chapter 8

233

How to do it...
Follow these steps to run the soa_purge scripts:

1. First, log in to sqlplus as a user with sysdba privileges, and grant the following
permissions to the dev_soainfra user, then exit the shell:
sqlplus / as sysdba
SQL> GRANT EXECUTE ON DBMS_LOCK TO DEV_SOAINFRA;
SQL> GRANT CREATE ANY JOB TO DEV_SOAINFRA;
SQL> exit

2. In the command line, it's easiest to change the directory to the location of the SOA
Suite purge_sql folder. So, do that now and then log in as the dev_soainfra user:
cd e:\soa_purge
SQL> sqlplus DEV_SOAINFRA/your_soainfra_password
Now execute the SQL script, this will load generate lots of
output. If successful this will end with 'procedure completed
successfully'.
SQL> @soa_purge_scripts.sql
...
Procedure created.
Type created.
Type body created.
PL/SQL procedure successfully completed.

3. Enter the following, substituting the creation dates as appropriate:

SQL> DECLARE
 2
 3 max_creation_date timestamp;
 4 min_creation_date timestamp;
 5 retention_period timestamp;
 6 BEGIN
 7
 8 min_creation_date := to_timestamp('2012-10-01','YYYY-MM-
DD');
 9 max_creation_date := to_timestamp('2013-01-30','YYYY-MM-
DD');
 10 retention_period := to_timestamp('2010-02-01','YYYY-MM-
DD');
 11
 12 soa.delete_instances_in_parallel(
 13 min_creation_date => min_creation_date,
 14 max_creation_date => max_creation_date,
 15 batch_size => 10000,

BPEL and BPMN Engine Tuning

234

 16 max_runtime => 60,
 17 retention_period => retention_period,
 18 DOP => 3,
 19 max_count => 1000000,
 20 purge_partitioned_component => false);
 21
 22 END;
 23 /

PL/SQL procedure successfully completed.

How it works...
SOA Suite comes bundled with maintenance scripts that allow us to perform housekeeping on
the underlying database tables. As these tables are used for each invocation, dehydration and
audit tasks over time can fill up to large sizes, which hamper the database performance.

In this recipe, we copied the SOA Suite SQL procedures within the WebLogic Admin server
referenced by MW_HOME/SOA_ORACLE_HOME (on our host, this was E:\Oracle\Oracle_
SOA1) to the database host containing the SOA schema. We granted suitable privileges to
the dev_soainfra user to allow the user to run the task, and then set some parameters for
the scripts. We set a start and end date for composite creation of min_creation_date and
max_creation_date, and set a cutoff date for the last modification time of a composite
(retention_period). Any composite that was created in the min/max date bounds, and
was last modified before retention_period , will be deleted by this script invocation.

We instantiated the delete instances procedure (soa.delete_instances_in_parallel)
that runs in parallel. This will speed up the deletion of composite data. The DOPS parameter
determines how many parallel invocations will be started. A looping script is also available.

A number of parameters exist; we recommend setting max_runtime to prevent the script
from hanging when running, or from users thinking that a long running process has hung.
The full list of parameters is available at http://docs.oracle.com/cd/E29505_01/
admin.1111/e10226/soaadmin_partition.htm.

There's more...
Out-of-the-box, there are limitations on the purge scripts, such as not purging the LOB
segments in the SOA DEV_SOAINFRA schema. As such, these scripts can be used as a
starting point to build out purge scripts targeting your environment.

The purge script can be changed to target only certain composites, or alternatively other
SOA Suite repositories, such as BAM and Mediator.

Chapter 8

235

Separately, the SOA Suite database tables support partitioning to allow for the DEV_
SOAINFRA schemas to be hosted across multiple databases, splitting the storage costs and
reducing the processing times. Partitioning databases is beyond the scope of this book and
the expected skills of the reader; a database administrator can consult the Oracle Fusion
Middleware documentation for more information.

See also
 f The Tuning Oracle database parameters and Tuning the Oracle database recipes

Ensuring automatic database statistics
gathering is enabled

As with many SOA Suite components, the BPEL and BPMN engines make a lot of use of
the database. Ensuring that the database statistics are updated regularly, will ensure
that the optimizer picks the correct plan for accessing the underlying database tables.

Getting ready
You will need database administration access to the database being used for your
Oracle SOA Suite 11g applications.

How to do it...
Follow these steps to ensure the database statistics generation task is enabled:

1. Log in to the database, and open an SQL prompt.

2. Execute the following SQL query:

exec dbms_auto_task_admin.enable;

How it works...
The database optimizer uses the most recent database statistics to determine its plan (index
lookup, table scan, and so on) for each SQL statement that is executed. Having up-to-date
statistics is therefore vital to ensure that the correct plan is selected, and that the database
operates as fast as possible. Oracle recommends that automatic statistics gathering is used
for databases that run SOA Suite 11g applications. By default, automatic statistics gathering
is enabled, but the preceding steps will enable it if it has been disabled for any reason.

BPEL and BPMN Engine Tuning

236

The automatic statistics generation looks for tables or schemas where the content has
changed by more than 10 percent, and reruns the statistics generation procedures over
these. You can see the database statistics in the USER_TAB_MODIFICATIONS table.

There's more…
It is possible to manually update the database statistics, and to disable automatic statistics
updates. This might be appropriate if the usage of the database changes drastically over the
course of a day. To manually gather statistics, you should first disable automatic statistics
gathering, by executing the following query:

exec dbms_atuo_task_admin.disable;

Then, schedule tasks to execute the GATHER_SCHEMA_STATS and GATHER_TABLE_STATS
procedures on a periodic basis.

See also
 f The Purging data from the BPEL store recipe in this chapter

 f The Tips on tuning data sources recipe in Chapter 7, Data Sources and JMS

Tuning Oracle database parameters
In this recipe, we'll tune the database schema that backs our SOA Suite processes. We'll also
make some changes to the global database parameters.

Getting ready
We'll need access to the backing SOA Suite Oracle database, which needs to be Version 11g
r2 or higher. To execute commands, we'll need to be able to log in with the SYSDBA role.

How to do it…
Follow these steps to set global database parameters. Before proceeding, ensure that the
database is not processing production load:

1. Navigate to the database install location (known as $ORACLE_HOME), and log in
to the database:
bin/sqlplus / as sysdba

Chapter 8

237

2. You will see an output similar to the following code snippet:
SQL*Plus: Release 11.2.0.1.0 Production on Sun Jan 6 12:38:37 2013

Copyright (c) 1982, 2009, Oracle. All rights reserved.
Connected to:

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production

With the Partitioning, OLAP, Data Mining and Real Application
Testing options

3. Run the following commands:
ALTER SYSTEM SET SGA_TARGET=15G SCOPE=SPFILE;

ALTER SYSTEM SET SGA_MAX_SIZE=15G SCOPE=SPFILE;

ALTER SYSTEM SET PGA_AGGREGATE_TARGET=5G SCOPE=SPFILE;

ALTER SYSTEM SET PROCESSES=2500 SCOPE=SPFILE;

ALTER SYSTEM SET SESSIONS=3772 SCOPE=SPFILE;

ALTER SYSTEM SET TRANSACTIONS=4150 SCOPE=SPFILE;

ALTER SYSTEM SET OPEN_CURSORS=1500 SCOPE=SPFILE;

ALTER SYSTEM SET CURSOR_SHARING='SIMILAR' SCOPE=SPFILE;

ALTER SYSTEM SET SHARED_POOL_SIZE=300 SCOPE=SPFILE;

ALTER SYSTEM SET SESSION_CACHED_CURSORS=750 SCOPE=SPFILE;

ALTER SYSTEM SET AQ_TM_PROCESSES=1 SCOPE=SPFILE;

How it works…
This recipe is focused on fundamental changes to the whole database, which is quite a
far-reaching change. Our aim is simply to ensure that there is enough memory and network
connections available to service all of the concurrent threads within WebLogic that represent
our SOA Suite processes executing database queries, as each one will require a session in
the database.

SGA_TARGET represents all buffered memory available to the system for caching, streaming
of data, connections to Java middleware, and so on. It is recommended to set this to a high
value to support the concurrent nature of SOA Suite components. A good starting value is
around 45 percent of system memory. On the 32-GB test system used in this recipe, it is
around the 15-GB mark.

BPEL and BPMN Engine Tuning

238

The SGA_MAX_SIZE value should be set to the same value as SGA_TARGET, so we set it to
match the 45 percent of available system memory to start with.

PGA_AGGREGATE_TARGET is a parameter that tells the database memory manager how
much memory across all running processes should be shared. This helps the database
to keep only so much memory private to each running process. A good starting value is a
third of the SGA_TARGET (5 GB), but check with the database administrator before
changing this further!

The PROCESSES value is changed to a higher number, as this correlates to the number
of processes that can connect to the database. We change this value to 2500 as a
starting value, but note that there will need to be sufficient memory to create these on
demand. Changing the value of PROCESSES alters the default value of SESSIONS and
TRANSACTIONS also.

SESSIONS correlates directly to the number of users that can log in at one time. It is derived
from the number of PROCESSES. The default value is a good starting value—it is calculated
as the value of PROCESSES multiplied by 1.6 added to 22. So, we set it to 3772. Along with
PROCESSES, a higher value consumes more SGA memory.

TRANSACTIONS should be modified to reflect the expected number of in-flight concurrent
database transactions. By default, this is the number of SESSIONS multiplied by 1.1—as this
allows some overhead for nested transactions. We leave this value to tally with the default,
which calculates to be 4150, but if you expect a large number of transactions, this is a
candidate to increase. Note that this will consume memory from the SGA area.

The OPEN_CURSORS parameter determines how many active SQL statements can be active
at any one time. If there are calls using the EIS DB adapter, AQ message processing, BPEL
processes, or component trace of logging, then each of these will require a cursor. We
changed the default from 300 to 1500, which is quite an increase. This will allow a significant
number of concurrent connections; tally this number with the connections allowed in the
adaptors and data source connection pools.

Setting CURSOR_SHARING to similar from the default of exact allows SQL statements
to re-use similar cursors rather than having to match exactly. This reduces cursor contention,
allowing more in-memory at one time. The trade-off for this more efficient memory usage is
that there will be greater CPU utilization on the database, as it spends more time marshaling
data in and out of the cursors that are being re-used. Observe whether the application is CPU
bound at the database before making this change.

SHARED_POOL_SIZE controls the amount of memory used for storing the Oracle library
cache; it is important for caching stored procedures and in systems that make high use of
shared cursors. Increasing this can help SOA Suite if composites repeat the same SQL often
in different threads. A good starting value is to increase the default from 84 MB to 300 MB.

Chapter 8

239

Increasing SESSION_CACHED_CURSORS from 50 to 750 will also help composites that
repeatedly call the same SQL, as the database cursor that represents the parsed query
will more likely be held in-memory. Note that this will require sufficient SGA memory.

Finally, if you are using AQ messaging, it is important to force that the parameter AQ_TM_
PROCESSES is enabled by setting it to 1. By default, this is set to 1 when using AQ streams,
but setting the initialization value from the default of 0 prevents confusion, as this value
will always be honored. This parameter allows the database to auto-tune the number of
processes that monitor and control the processing of AQ messages.

It is important to determine a suitable amount of resource that is required at the database
level to support the peak loads of each set of deployed SOA Suite components. A good
approach is to measure the database memory usage during load testing and revise your
settings by using the method in this recipe. Do not take the values in this tip as applicable
to all situations!

We do need to caveat this tip; Oracle database tuning is an intricate and broad subject.
These changes should be supplemented with knowledge and expertise from your DBA.
Do not simply apply them without measuring for improvement!

Tuning the Oracle database
This recipe looks at tuning advanced database options that affect its global behavior.
We'll cover changing two items, namely undo space and redo logs.

Getting Ready
You will need access to the backing SOA Suite Oracle database, which needs to be Version
11g r2 or higher. To execute commands, you'll need to be able to log in with the SYSDBA role.

How to do it…
This recipe is split into two parts. First, follow these steps to alter the undo space.
Before proceeding, ensure that the database is not processing the production load:

1. Navigate to the database install location (known as $ORACLE_HOME) and log
in to the database:
bin/sqlplus / as sysdba

BPEL and BPMN Engine Tuning

240

2. You will see an output similar to the following code snippet:
SQL*Plus: Release 11.2.0.1.0 Production on Sun Jan 6 12:38:37 2013

Copyright (c) 1982, 2009, Oracle. All rights reserved.
Connected to:

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production

With the Partitioning, OLAP, Data Mining and Real Application
Testing options

3. Determine the maximum time a transaction has taken to complete:
SQL> select max(maxquerylen) from v$undostat;

 MAX(MAXQUERYLEN)

 942

4. Set this to be the UNDO_RETENTION period, adding on a buffer for headroom,
we'll use 1000 as a starting value. Restart the database for this to take effect:
SQL> alter system set UNDO_RETENTION = 1000 scope = spfile;
SQL> shutdown immediate
SQL> startup

5. Before changing the undo space size for reference, check the current undo space
file size and utilization:
SQL> select data_file.tablespace_name, sum(data_file.bytes)/
(1024*10240) "Allocation (MB)", sum(s.bytes)/(1024*10240) "Usage
(MB)" from dba_data_files data_file, dba_segments s where data_
file.tablespace_name like 'UNDO%' and data_file.tablespace_name =
s.tablespace_name group by data_file.tablespace_name;
TABLESPACE_NAME Allocation (MB) Usage (MB)
------------------------------ ---------------
UNDOTBS1 470 5.64375

6. Change undo space to be an extending tablespace with an initial size of 2 GB,
which grows in increments of 256 MB and has a fixed ceiling value of 20 GB:
SQL>create undo tablespace UNDOTBS2 datafile '/opt/oracle/
database/oradata/orcl/undotbs2_01.dbf' size 2048m autoextend on
next 256m maxsize 20480m;
Tablespace created.

7. Swap undo space to the new file:
SQL> alter system set undo_tablespace= UNDOTBS2 scope=both;
System altered.

Chapter 8

241

8. Remove the old undo tablespace file:
SQL> drop tablespace UNDOTBS1 including contents;
Tablespace dropped.

If this command fails, you will need to wait until transactions running in the old
undo tablespace are removed.

9. Observe the change:

 SQL> select data_file.tablespace_name, sum(data_file.bytes)/
(1024*10240) "Allocation (MB)", sum(s.bytes)/(1024*10240) "Usage
(MB)" from dba_data_files data_file, dba_segments s where data_
file.tablespace_name like 'UNDO%' and data_file.tablespace_name =
s.tablespace_name group by data_file.tablespace_name;

TABLESPACE_NAME Allocation (MB) Usage (MB)
--------------- --------------- ----------UNDOTBS2
2048 .125

Secondly, perform the following steps to set the redo log size. Before proceeding, ensure that
the database is not processing the production load:

1. Investigate the number of redo logs presently on the system. On the following system,
there are thee; others will likely have a different amount:
SQL> select GROUP#, member from v$logfile;

GROUP# MEMBER

4 /opt/oracle/database/oradata/orcl/redo04.log
5 /opt/oracle/database/oradata/orcl/redo05.log
6 /opt/oracle/database/oradata/orcl/redo06.log

2. In this step, I have another disk on mount point /mnt/t1; we'll use this to host my
new redo logs. If your system does not have an external disk, you can use a local
folder location:
SQL>alter database add logfile group 1 '/mnt/t1/oradata/orcl/
redo01.log' size 500M reuse;
Database altered.
SQL>alter database add logfile group 2 '/mnt/t1/oradata/orcl/
redo02.log' size 500M reuse;
Database altered.
SQL>alter database add logfile group 3 '/mnt/t1/oradata/orcl/
redo03.log' size 500M reuse;
 Database altered.
SQL>alter database add logfile group 7 '/mnt/t1/oradata/orcl/
redo07.log' size 500M reuse;
Database altered.

BPEL and BPMN Engine Tuning

242

3. Check that they are added correctly:
SQL> select GROUP#, member from v$logfile;

GROUP# MEMBER

/mnt/t1/oradata/orcl/redo01.log
4 /opt/oracle/database/oradata/orcl/redo04.log
5 /opt/oracle/database/oradata/orcl/redo05.log
6 /opt/oracle/database/oradata/orcl/redo06.log
/mnt/t1/oradata/orcl/redo02.log
3 /mnt/t1/oradata/orcl/redo03.log
7 /mnt/t1/oradata/orcl/redo07.log

4. Check if they are accessible (the group numbers match the entries in v$logfile):
SQL>select GROUP#, BYTES, ARCHIVED, STATUS from v$log;

GROUP# BYTES ARC STATUS
---------- ---------- --- ----------------
524288000 YES UNUSED
 2 524288000 YES UNUSED
 3 524288000 YES UNUSED
 4 367001600 NO INACTIVE
 5 367001600 NO CURRENT
 6 367001600 NO INACTIVE
 7 524288000 YES UNUSED

5. Rotate the logs four times to bring the unused ones online (by making them active):
SQL>alter system switch logfile;
System altered.
SQL>alter system switch logfile;
System altered.
SQL>alter system switch logfile;
System altered.
SQL>alter system switch logfile;
System altered.

Chapter 8

243

6. This is shown by repeating the select on the log view:
SQL>select GROUP#, BYTES, ARCHIVED, STATUS from v$log;

GROUP# BYTES ARC STATUS
---------- ---------- --- ----------------
 1 524288000 NO ACTIVE
 2 524288000 NO ACTIVE
 3 524288000 NO ACTIVE
 4 367001600 NO INACTIVE
367001600 NO ACTIVE
 6 367001600 NO INACTIVE
 7 524288000 NO CURRENT

7. Force a checkpoint to write all contents to data files:
SQL>alter system checkpoint;

8. Drop the old log files:
SQL>alter database drop logfile group 4;
SQL>alter database drop logfile group 5;
SQL>alter database drop logfile group 6;

9. Check the changes:

SQL> select GROUP#, BYTES, ARCHIVED, STATUS from v$log;

GROUP# BYTES ARC STATUS
---------- ---------- --- ----------------
 1 524288000 NO INACTIVE
 2 524288000 NO INACTIVE
 3 524288000 NO INACTIVE
 7 524288000 NO CURRENT

BPEL and BPMN Engine Tuning

244

How it works…
An Oracle database will use a marked area of the database for ensuring data consistency.
This is important in SOA Suite, where we use multiple concurrent transactions with the
potential for timeouts and rollbacks in communications with disparate systems. The database
calls this area undo space (it is actually a tablespace for those who want to know more about
Oracle naming conventions). In this area is stored all of the information required for recovery
and rollback of database transactions (it is also for the Flashback feature of the Oracle
database, but this is beyond the scope of this book). Data is retained in the undo space for
long enough to "undo" inconsistencies, or until the undo data expires. In the first half of this
recipe, we altered this to be much bigger for SOA Suite.

Dependent on the load that we wish to apply in terms of concurrent processing, we might need
a larger undo space to store all of this concurrent information (synchronous BPEL with logging is
particularly heavy on database writes, therefore has more transactions). Since Oracle database
version 11g, undo space is, by default, automatically managed for us; if undo space is too small,
it will automatically extend but will never automatically shrink! The V$UNDOSTAT database view
contains the statistics on undo space that serve as a guide to automatic tuning, and we can
manually access this information. Typically, to ensure data consistency, the retention time for
undo data is set to be the longest transaction time. As this will be applied to all undo data, we
can imagine that if even only one of our transactions is long-running, we will unfortunately need
a large amount of space to cope with lots of concurrent transactions.

Sizing undo space manually prevents slowdown should we run out of undo space. By default,
undo space will automatically increase in size. We also apply a maximum size to prevent it
from growing larger than our system can handle (which could prevent logins to the database
host). Further to that, we increased the increment to use when growing, to prevent lots of
small increases in the undo space file size. A good starting point for undo space is to start
with a large value and shrink it down to a suitable value. This requires that we monitor the
undo space utilization to ensure that the sizes are relevant to your production SOA Suite load.
We can now monitor the utilization by using the query in this recipe.

In the second part of this recipe, we altered the redo log sizes. Redo logs are used by the
Oracle database to capture all the changes that occur in our data in-flight. This allows the
database to rebuild our data content in the event of a system crash.

Chapter 8

245

Typically, the database writes to a list of log files, completely filling a log file marked as
current, before moving on to the next file in the list of "active": files. When the active list
is exhausted, it returns to the first active element, always marking the current log as the
one currently in use (note that it is possible to have inactive logs in the list, but they will not
be used). When logs are rotated, a check pointing system is engaged to ensure data is not
lost; this can be costly in terms of time for applications, causing timeouts and retries of user
inputs. For these reasons, there are two items of importance when ensuring there is adequate
redo log capacity for our system—file size and number of redo log files.

In this recipe, we placed our redo logs on a separate disk; this can greatly help with
concurrent disk I/O on busy systems, but may not be applicable in all environments. Do this
if possible, or just use a local disk. We also added a series of files that were both larger in
size and larger in number than the previous list of redo logs. Larger files will help with system
capacity, as more can now happen in between checkpoint operations.

There's more…
Redo logs can be set to a checkpoint and rotated on a time-based frequency. Enlist a DBA to
check this as it can incur extra overhead when switching between logs.

If you're working with an Oracle RAC instance, then ensure you check with an Oracle DBA how
to configure the steps in the recipe across all the nodes. Bear in mind the following points:

 f Each node has its own redo log (typically referred to as a redo thread). These work
in much the same way as in a RAC instance, even when you only have one database
being presented by all the nodes. This model allows for the removal of a single point
of contention that would exist if we only had one redo log.

 f Each node will also have its own undo space.

There are a lot of other changes that can be made to improve the performance of SOA Suite,
such as indexing the content and compressing/purging old data. An Oracle DBA will be able
to aid us with these settings on standalone instances and RAC nodes.

See also
 f The Ensuring automatic database statistics gathering is enabled and Tuning Oracle

database parameters recipes

 f The Tuning database XA timeouts recipe in Chapter 7, Data Sources and JMS

9
Mediator and BAM

In this chapter, we will look at the following recipes:

 f Setting Mediator Parallel Metrics Level

 f Setting Mediator Parallel Worker Threads

 f Setting Mediator Parallel Maximum Rows Retrieved

 f Setting Parallel Locker Thread Sleep

 f Using batched delivery in the BAM Adapter

Introduction
The Mediator engine and the Business Activity Monitoring (BAM) connector are used less
frequently than the BPMN and BPEL engines, but there are still performance considerations
when using these technologies. The Mediator engine is a relatively simple component, yet
it works in quite a complex way, giving us only a few options for tuning it. These options are
all focused on the execution of parallel routing rules, as sequential routing rules run on a
single thread, and keep that thread until the rule has completed executing. Parallel rules,
on the other hand, are executed by retrieving a list of requests from the database, and then
processing each request using a set of worker threads. These threads allow the requests
to be processed in parallel.

The BAM Adapter does not have many properties that can be tuned, but we do look at one
improvement here that can improve performance.

Mediator and BAM

248

Setting Mediator Parallel Metrics Level
If you make use of DMS (discussed in Chapter 2, Monitoring Oracle SOA Suite), then collecting
the DMS metrics from the Mediator engine adds an unnecessary overhead.

Getting ready
You will need to know the administration credentials for your SOA Suite 11g domain, and the
URL for the Enterprise Manager console.

How to do it...
To set the Parallel Metrics Level property, perform the following steps:

1. Log in to the Enterprise Manager.

2. Expand the SOA section in the left-hand pane, and right-click on soa-infra.

3. Now, select SOA Administration | Mediator Properties.

Chapter 9

249

4. You will now see the SOA properties page.

5. Set the Metrics Level property to Disabled.

How it works...
By default, the Mediator engine will collect metrics from the execution of composite instances,
and make them available via the DMS. If you do not make use of these metrics, then there is
little point collecting them, and by removing them, performance can be improved.

See also
 f The Monitoring the system using the DMS servlet recipe in Chapter 2, Monitoring

Oracle SOA Suite

Mediator and BAM

250

Setting Mediator Parallel Worker Threads
By increasing the number of parallel worker threads, environments with large workloads
can process more requests at the same time.

Getting ready
For more details, refer to the Getting ready section of the Setting Mediator Parallel Routing
Rules recipe.

How to do it...
To set the Parallel Worker Threads property, perform the following steps:

1. Follow the steps from 1 through 3 from the Setting Mediator Parallel Metrics
Level recipe.

2. Set the property Parallel Worker Threads to a larger value, such as 10.

How it works...
The Parallel Worker Threads property determines the number of threads available
for processing parallel routing rules. If you have many parallel routing rules defined in your
application, then the default value of 4 may not be sufficient; so you can increase the
number of threads to allow more parallel rule requests to be processed concurrently.

See also
 f The Setting Parallel Locker Thread Sleep recipe

 f The Setting Mediator Parallel Maximum Rows Retrieved recipe

Setting Mediator Parallel Maximum Rows
Retrieved

By increasing the number of rows retrieved from the Mediator store table, performance
can be improved in high demand systems.

Getting ready
For more details, refer to the Getting ready section of the Setting Mediator Parallel Metrics
Level recipe.

Chapter 9

251

How to do it...
The following steps will allow us to set the Parallel Maximum Rows Retrieved property:

1. Follow the steps from 1 through 3 from the Set Mediator Parallel Metrics Level recipe.

2. Set the property Parallel Maximum Rows Retrieved to a larger value,
such as 500.

How it works...
The Parallel Maximum Rows Retrieved property determines how many rows are read
from the Mediator store database when loading pending parallel rule execution requests. By
loading more rows at a time, the number of trips to the database can be reduced, improving
performance; however, this will only have an effect if there are usually multiple requests
waiting to be processed. The default is 200 rows, so you will need to have a busy system with
lots of parallel Mediator rules, in order to see any improvement from increasing this value.

See also
 f The Setting Parallel Locker Thread Sleep recipe

 f The Setting Mediator Parallel Worker Threads recipe

Setting Parallel Locker Thread Sleep
By reducing the amount of time that the engine sleeps between checking for parallel
composite instances that need executing, performance can be improved.

Getting ready
For more details, refer to the Getting ready section of the Setting Mediator Parallel Metrics
Level recipe.

How to do it...
To set the Parallel Locker Thread Sleep time, perform the following steps:

1. Follow the steps from 1 through 3 from the Set Mediator Parallel Metrics Level recipe.

2. Set the Parallel Locker Thread Sleep property to 1.

Mediator and BAM

252

How it works...
While parallel routing rules do allow for truly asynchronous processing in the Mediator, the
way that they are processed is not intuitive. A daemon thread is used to check the Mediator
store database for requests to be processed, and checks each parallel rule in turn. If there
are requests to be processed for a rule, then exactly one request will be processed for that
rule using a Mediator worker thread. After it has checked all the parallel rules (and executed
one request for each that has pending requests), the thread will sleep for a period of seconds
defined by the Parallel Locker Thread Sleep time. By default this value is 2 seconds,
but performance can be improved if you are using parallel routing rules by decreasing this
to 1 second (the lowest value allowed). Note that the daemon thread does not execute the
requests; it is just used to check which rules have pending requests, and assign them to
worker threads.

This seemingly strange approach is used to prevent a very busy parallel rule from hogging
all of the worker threads, thus starving other rules of the threads they need, and potentially
causing performance bottlenecks.

See also
 f The Setting Parallel Mediator Maximum Rows Retrieved recipe

 f The Setting Mediator Parallel Worker Threads recipe

Using batched delivery in the BAM Adapter
By altering the batching settings for the BAM Adapter, you can make fewer calls out to
the Active Data Cache Server, which can save bandwidth and improve performance.

Getting ready
This recipe is only useful if your domain makes use of the BAM Adapter. You will need write
access to the files in your SOA Suite domain for this recipe.

The configuration files are not created until the server is first started, so you will need to
start the server before you are able to edit the files.

Chapter 9

253

How to do it...
The following steps will help us enable batched delivery for the BAM Adapter:

1. Edit the following file:
ORACLE_HOME/user_projects/domains/$DOMAIN_NAME/config/
fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/
config/BAMCommonConfig.xml

2. Locate the BAM batching properties at the top of the file, and increase their values.

We suggest trying the following values:

Property Default Value Tuned Value

Batching_Limit_Lower 1000 2500

Batching_Limit_Upper 5000 10000

Batching_Timeout 50 100

3. Save the file, and restart your BAM server.

How it works...
The BAM Adapter sends data to the Active Data Cache server in batches. If you are making
heavy use of the BAM Adapter in your SOA Suite application, you can improve performance
by increasing the size of these batches. The three properties we tune here are the key ones
used to determine the batch size. They can be explained as follows:

 f Batching_Limit_Lower: It determines the minimum number of messages in
the batch.

 f Batching_Limit_Upper: It determines the maximum number of messages in
the batch.

 f Batching_Timeout: It determines how long we have to wait before sending the
batch if we have not reached either of the other two limits.

Mediator and BAM

254

There's more...
The BAM Adapter batching system has retry logic built into it that will attempt to resend
batches of messages if the Active Data Cache server is down, or some other failure occurs
when sending a batch of messages. These properties can also be tweaked in order to
configure this retry behavior, including changing the time between retries, and determining
the number of pending batches before calls to the BAM Adapter start blocking. These
properties are discussed in more detail in the Oracle BAM Adapter configuration guide at
http://docs.oracle.com/cd/E23943_01/admin.1111/e10226/bam_config.
htm#SOAAG9931. As the retry logic is focused primarily on resilience rather than
performance, we will not discuss it in detail here.

10
Rules and Human

Workflow

In this chapter, we will cover the following recipes:

 f Disabling automatic release timers globally

 f Choosing the correct workflow service client

 f Preventing looping and inefficient rule executions

 f Tuning rule execution

Introduction
The rules and the human workflow components of the SOA Suite provide fewer options for
tuning than some of the other components such as BPEL and BPMN, but there are still
a number of things to be aware of to ensure that you get the best performance possible.
This chapter looks at some of the options available for these components.

Both the human workflow component and the rules component of the Oracle SOA Suite are
built on top of the WebLogic server application stack, and the Java virtual machine. This
means that for general performance problems, your first step should be to diagnose and
resolve any problems that are occurring at the JVM or WebLogic layers, before looking at the
recipes in this chapter that focus on tuning the human workflow and the rules components.

The workflow components in particular can make a lot of use of the underlying database
schema, and as such, the recipes in Chapter 8, BPEL and BPMN Engine Tuning, relating
to the schema tuning also apply here.

Rules and Human Workflow

256

As with the other recipes that deal with the higher level SOA Suite services, performance
improvements in the workflow and the rules engines often come with a trade-off, so care should
be taken when deciding how to use them. A number of the recipes in this section reference
specific features of the SOA Suite, or provide guidance on how to best use a specific feature, and
these recipes are obviously useful only if your application already makes use of these features.

Disabling automatic release timers globally
Automatic release timers release workflow items assigned to groups or roles. This can impose
an overhead for your application if they are used heavily. Globally disabling them can provide
a performance improvement.

Getting ready
You will need to know the administration credentials for your Oracle SOA Suite WebLogic
domain, and have access to the Oracle Enterprise Manager console.

How to do it...
To disable the automatic release timers, perform the following steps:

1. Log in to the Enterprise Manager.

2. Open the SOA tab, right-click on soa-infra, and select Administration | System
MBean Browser.

Chapter 10

257

3. This will open the System MBean Browser window in the main panel. Expand the
tree to find WorkflowConfig.TaskAutoReleaseConfiguration in Application Defined
MBeans | oracle.as.soainfra.config | Server: soa_server1 | WorkflowConfig |
human-workflow.

4. In the main panel, change the value of DefaultDuration to P0D, which represents
0 days, or off.

Rules and Human Workflow

258

5. Click on Apply, and a message should indicate that the change was made
successfully, as shown in the following screenshot:

How it works...
Each claimed task has a timer within which it must be completed before it is released back to
the group. If you have many of these tasks, the checking and firing of these timers can create
an overhead in both the database and the application server, so disabling them can improve
performance, but this means that the tasks are not automatically released.

Priority for each task can be set independently by entering a value of PxD, where x is the
number of days after which you wish the task to be released if it has not been completed.
Setting a value of P0D, which represents zero days, will disable the timer.

Choosing the correct workflow service
client

There are a number of options available when choosing how your client code makes calls
to the human workflow service. This recipe discusses some of the trade-offs between them.

How to do it...
The following guidelines are used when selecting a strategy for creating a client that interacts
with the workflow service:

1. If an application is not implemented in Java, or connects over a WAN or a LAN,
then using the SOAP client will be your only option.

2. If you are connecting using Java, either from within the same or from a remote JVM,
then using the Remote EJB client will be the best option.

Chapter 10

259

How it works...
The workflow service can be accessed using one of three clients: the SOAP client, the remote
EJB client, and the local EJB client. The SOAP client uses SOAP over HTTP as its access
protocol, so it is perfect for situations where you are talking to a non-Java client, or where you
need a protocol that will work through a firewall. The local EJB client can be used when you
are using the workflow service from within the same JVM, but cannot be used from an external
application. Because of the call optimizations in the remote EJB layer, there is no performance
improvement when using the local client above the performance available in the remote EJB
client, so we recommend using the remote client. This will mean that if you ever decide to split
the client code into a separate application, it will still work correctly.

Any application that queries the workflow for management purposes can have its
performance improved by purging obsolete runtime data from the underlying database
tables WF_ITEMS, WF_ITEM_ATTRIBUTE_VALUES, WF_ITEM_ACTIVITY_STATUSES, and
WF_NOTIFICATION_ATTRIBUTES. Oracle provides scripts and further guidance on doing
this in a note on workflow purging in a metalink. Furthermore, grouping workflows under roles
and users efficiently will allow for less work to be done when retrieving active workflow lists,
helping to reduce the impact when the number of active items increases.

Preventing looping and inefficient rule
execution

This recipe gives guidance on how to avoid rule executions that will loop, potentially
indefinitely! We'll use an inbound XML and a local RL (Rule Language) fact as an example.

Getting ready
You'll need access to an SOA composite containing an Oracle Business Rules component
in JDeveloper to apply this recipe. We'll assume that you have an XSD schema with an input
RequestInput containing two strings called input and bonus, and an output ResponseOutput
containing a string called output. These aren't efficient, but will serve as an example.
We'll step through adding a rule to a composite and creating an RL fact.

Rules and Human Workflow

260

How to do it...
To remove potential circular references, perform the following steps:

1. Open the SOA composite. Right-click on the project, and select Business Rules
(Service Components); use the search box if it is not immediately available.

2. Give the rule a name, and click on the green plus (+) icon to add RequestInput
to the Input and ResponseOutput to the Output types.

3. In the rules designer, select Facts, and then select the RL Facts tab. Click on
the green plus (+) icon, then right-click on RLFact1 and select Edit.

Chapter 10

261

4. Name the RL fact Customer Account, and click on the green plus (+) icon to add a
property. Name the property Role, and set its type to String. Add another property
called Reward of type int.

5. Select Ruleset1 and click on the green plus (+) icon to create a rule.

6. In the IF test, set the condition to select RequestInput.input>="200".

7. Set the THEN action to assert new CustomerAccount(Role:"GOLD").

Rules and Human Workflow

262

8. Click on the green plus (+) icon in the ruleset to add a second rule. In the IF
condition set CustomerAccount.Role=="GOLD".

9. In the IF action, set modify CustomerAccount.Reward=150.

10. In the THEN action, set modify CustomerAccount.Role="SILVER".

11. To complete the ruleset so that it will compile, add a third rule to assign a high
value to the output of Customer.Account (if it is GOLD), and a fourth rule to
set it to low value otherwise.

How it works...
In this example, we created a ruleset with rules that checked input XML facts and modified
RL facts appropriately before assigning a response to an output XML fact.

While the assignment in step 11 may seem odd, it illustrates an important facet of the rule
execution. When actions alter a value that is checked in another condition, in this case
CustomerAccount.Role, then a rule loop occurs. These loops can occur across a single
rule and a decision table, or multiple rules and decision tables in the same ruleset. It would
be easy for a business user to inadvertently create a logic pattern that caused this looping
by applying an inefficient pattern such as a reward scheme in our example. The loops created
by these patterns have the potential to continue indefinitely, ultimately preventing further
composites from being able to execute in the rule context.

To avoid this scenario, we should construct our rule logic to try and prevent these scenarios
from occurring. Runtime monitoring is helpful in identifying these items when testing.

There's more…
Due to the way in which the rules engine builds its plan and executes rules at runtime, rules
may be executed more than once. As such we should avoid performing operations in actions
that we don't want to be executed more than once. This particularly holds true if using Java
Beans as facts in which it is easy to perform such operations, for instance, calls that perform
blocking operations (on database, or disk activity) should be avoided.

See also
 f The Configuring Hyperic to monitor Oracle SOA Suite recipe in Chapter 2, Monitoring

Oracle SOA Suite

 f The Designing Advanced Load Tests recipe in Chapter 3, Performance Testing

Chapter 10

263

Tuning rule execution
We can control rule ordering execution, which can help improve rule evaluation efficiency
or reduce memory.

Getting ready
You'll need access to an SOA composite containing an Oracle Business Rules component
in JDeveloper to apply this recipe. For simplicity, we'll presume that the component is empty
for this recipe.

How to do it...
To add some rules and tune their configuration, perform the following steps:

1. Open the rules component for editing.

2. Next to the Rulesets title on the left, click on the green plus icon (+) to add a
new ruleset. Name it Ruleset2. This will be the second ruleset in the stack.

3. In Ruleset2, add two rules by clicking on the green plus (+) icon, as shown
in the following screenshot. You can leave the rule logic blank for this recipe.

Rules and Human Workflow

264

4. Click on the blue double down arrow icon to show the advanced settings for each
rule. In Rule2, set the Priority in the selection box by typing in an integer value
of 1001, as shown in the following screenshot:

5. In Rule1, set the Priority to Medium.

How it works...
Rules belong to a unit of execution called a ruleset. Multiple rulesets are executed in the
order determined by the stacking of the rulesets, which is called the rule flow. Finally, within
a ruleset, rules fire according to the priority associated with each individual rule. Rules with
the same priority can fire in an indeterminate order.

In this recipe we created two rulesets: Ruleset1 and Ruleset2 (note that Ruleset1 will
fire first due to the stack ordering). For rules in Ruleset2, the priority setting of 1001 will
cause Ruleset2 to fire before Ruleset1. This is because Medium priority has a value of 0,
and higher integer priorities will be evaluated sooner by the engine (the full range of numerical
priority equivalents is in the SOA Suite documentation, and at the time of writing, the highest
was 3000, and stepped down in increments of 1000, to the lowest at -3000).

When thinking about the ordering of your rules, there are two main things to consider,
as follows:

 f If we order rules such that facts that do not change frequently are evaluated first,
then we can have the greatest potential for fast rule execution.

 f If we order rules such that the most restrictive sets of facts are matched first, then
this can reduce the memory used during rule evaluation, and in some cases improve
throughput.

Chapter 10

265

There's more…
These guidelines also apply to the tests and fact evaluations within individual rules,
so careful consideration of what you're evaluating is the key to performance gains here.

In our experience, there is not a great deal of mileage gained by trying to write compact
decision tables over rulesets that contain multiple if/else clauses, as these are executed
in the memory. The main improvement with choosing a decision table is in its readability.

11
SOA Application Design

This chapter looks at the ways in which you can design your application for high performance.
The topics that will be covered are:

 f Using BPEL process parallelization

 f Using non-blocking service invocations in BPEL flows

 f Turning off payload validation and composite state monitoring

 f Designing BPEL processes to reduce persistence

 f Using parallel routing rules

 f Setting HTTP timeouts for external HTTP services

 f Tuning BPEL adapter properties

Introduction
In this chapter, we'll focus on recipes for designing high performance SOA Suite 11g
applications. These recipes look at how you can design your applications for high performance
and scalability, where high performance is defined as providing low response times even under
load, and scalability is defined as the ability to expand to cope with large numbers of requests.

While many of the recipes in other chapters can be applied after the application has been
designed and written, those in this chapter need to be applied while the application is being
written, and may require that your application is implemented in a certain way. Designing an
application with performance as a requirement from the start is much easier than trying to
add performance to an application that is already live. So, the recipes in this chapter provide
some of the best value for money in terms of getting the most performance out of your SOA
Suite infrastructure. However, while this book focuses on decisions that should be made
during the design stages of a development process, this chapter is not a list of general
SOA Suite design patterns.

SOA Application Design

268

As for many of the recipes in other chapters, a lot of the focus in this chapter is on reducing
the amount of time your application spends waiting on external services and the SOA Suite
database tables.

There are many aspects to the performance of a SOA Suite application, and the design
guidelines depend very much on the particular business problems that your application is
designed to solve. Factors such as payload size, number of external systems being orchestrated,
data transformation complexity, and persistence requirements, all have an impact on the
performance of your application. Performance is a relative term, with each application and
use-case having its own requirements, but there are a number of basic principles that can
help ensure that your application will have a good chance of meeting its goals.

 f Design for peak loads, not average loads. Average loads can be very misleading;
there are many situations in which the average load of a system is not a good
indicator of the expected load. A good example of this would be a tax return system,
where the usage for most of the year is very low, building into a peak in 30 or so
days before people's tax returns are due.

 f Smaller payloads are faster. When designing your application, try and limit the
amount of payload data that goes through your composites and processes. It is often
better to store the data in a database and send the key and metadata through the
processes, only going to retrieve data when required.

 f Understand your transaction boundaries. Many applications suffer performance
problems because their transactions boundaries are in the wrong places, causing
work to be redone unnecessarily when failures happen, or leaving data in an
inconsistent state.

 f Understand what causes your application to access the database, and why. Much
of the performance overhead of Oracle SOA Suite applications is in repeated trips
to the database. These trips add value by persisting state between steps or within
processes, but the overuse of steps that cause database persistence is a common
cause of performance problems.

 f Follow standard web service design patterns, such as using asynchronous callbacks
and stateless invocations, where you are using web services.

Chapter 11

269

Using BPEL process parallelization
By having your BPEL process execute steps in parallel when there are no dependencies, you
can increase the performance by spending less time waiting for external systems to complete.

Getting ready
You will need JDeveloper installed, and have an open BPEL project.

How to do it...
Follow these steps to use BPEL process parallelization:

1. Expand the BPEL Constructs section in the component palette.

2. Drag Flow from the palette onto the process.

3. Click on the + icon next to the flow to expand it.

SOA Application Design

270

4. Populate the flow with the process steps.

How it works...
If you have a number of tasks that do not have dependencies on each other, you can improve
performance by executing the preceding tasks in parallel. This is most effective with partner
links, where you know you are waiting on an external system to produce a response. The
default behaviors of these flows is still to use a single thread to execute the branches
if external systems are invoked. See the Using non-blocking service invocations in BPEL
recipe to learn how to execute flows that contain partner links in parallel.

There's more…
It is possible to include a limited amount of synchronization between branches of a flow,
so that tasks on one branch will wait for tasks on another branch to complete before
proceeding. This is best used with caution, but it can provide benefits, and allow tasks
that would not otherwise easily lend themselves to parallelization to be run in parallel.

See also
 f The Using non-blocking service invocations in BPEL flows recipe

Chapter 11

271

Using non-blocking service invocations in
BPEL flows

We can reduce the latency of forked external service invocations in a BPEL process to the
longest flow's execution time if we assign a thread to each flow, making it multi-threaded.

Getting ready
You'll need a composite loaded in JDeveloper to execute this recipe. This composite will
need a flow that makes calls to a partner link external service.

How to do it...
Follow these steps to use non-blocking service invocations:

1. Right-click on each partner link that is being executed in your BPEL process flow,
and select Edit.

2. In the Property tab, select the green + icon and add nonBlockingInvoke as a
property name. In the Value box at the bottom, enter true.

SOA Application Design

272

How it works...
This recipe causes flow branches to be executed in parallel, with a new thread to be used
for each branch flow.

For multiple service invocations that each have a high latency, this can greatly improve the
total BPEL execution time. For example, assume we have a BPEL process that calls two web
services, one that takes four seconds to execute, and one that takes six seconds to execute.
Applying this change will prevent the BPEL process making the calls serially, which would
take 10 seconds in total, and enforce parallel service calls in separate threads, reducing the
execution time to just over six seconds, or the latency of the longest call plus time to collate
the results in the main BPEL process execution thread.

While it may sound like a silver bullet performance improvement, this recipe is actually not
necessarily going to improve the execution time of our BPEL process! Consider that we may
now be at the mercy of greater thread context switching in the CPU; for every invocation of
our process, we now have a larger number of threads that will be spawned. If each service
invocation has a low latency, the overhead of creating threads and collating callbacks might
actually be greater than the cost of invoking the services in a single thread. Our example in
this explanation is contrived, so ensure to test the response time of your composite and the
profile of your application, when placed under operational load (which may result in lots
of threads spawning), as these may well be different with the configuration applied.

There's more…
This recipe used an alternative way of setting property values to that which we've used
elsewhere in the book. Previously, we've edited composite files directly; here, we used
the JDeveloper BPEL graphical editor to achieve the same end result. If you check the
composite.xml source, you'll see a property added with a name, such as partnerLink.
[your service name].nonBlockingInvoke for each service added.

See also
 f The Using BPEL process parallelization recipe

 f The Changing a BPEL process to be transient recipe in Chapter 8, BPEL and BPMN
Engine Tuning

Chapter 11

273

Turning off payload validation and
composite state monitoring

Payload validation checks all inbound and outbound message data thus adding an overhead,
especially for large message types. Composite state monitoring allows for administrators to
view the results of all instance invocations. We can disable these to improve performance.

Getting ready
You will need to know the administration credentials for your Oracle SOA Suite WebLogic
domain, and have access to the Oracle Enterprise Manager console.

How to do it...
By following these steps, we can turn off payload validation:

1. Log in to Enterprise Manager.

2. Open the SOA tab, and right-click on soa_infra, select SOA Administration
and Common Properties.

SOA Application Design

274

3. Un-tick the checkbox for Payload Validation to disable this feature.

4. Un-tick the checkbox for Capture Composite Instance State.

How it works...
In this recipe, we globally disabled payload validation. This instructs SOA Suite to not check the
inbound and outbound message payloads against the schemas associated with our services.
This can be particularly useful, not only if the payload is coming from a trusted source, but
even if the source is untrusted. A common alternative to payload validation is to add steps to
manually validate the payloads at the point that we first receive the request, while not validating
those that have come from internal or trusted sources.

There are a number of levels of granularity for payload validation; it can be applied at the SOA
Engine (BPEL) and composite levels to allow for fine-grained application of this property. You
can access these properties via the enterprise manager console right-click menu on the SOA
engines and deployed composites. For performance, I would recommend disabling this in all
environments above development.

Composite state management is responsible for tracking and representing the health of
our running composites. This is a powerful administration feature, but costs a lot in terms
of performance. Anecdotal testing shows that this can be responsible for up to 30 percent
of processing time. As such, for high throughput applications, the value of this feature should
be considered.

There's more…
See the recipes on audit logging to further control composite recording activities at runtime.

Ensure that you check the payload validation at the Engine and Composite levels to ensure
that they meet your performance requirements.

Chapter 11

275

Designing BPEL processes to reduce
persistence

Every step in a BPEL process adds an overhead. In this recipe we'll suggest some design
options to consider when deciding how to construct your processes.

Getting ready
You will need an understanding of SOA Suite programming concepts.

How to do it...
The following steps cover some of the techniques for reducing process persistence:

1. If you have lots of variable assignment steps, consider a call out to a Business
Rules component to check and set multiple values in response to the user input.

2. If complex logic is required, consider embedding a call to a Java class in the
composite if this can reduce the number of steps.

How it works...
By default, the BPEL composite design will consist of adding steps to a process until the
business logic can be satisfied. This can make it easy to end up with monolithic processes
that have too many steps. For example, processes which make decisions and then fork on
the results, require an increasing number of steps to deal with varying logic flows.

While it sounds easy to recommend simply reducing the number of steps, in practice this
requires careful analysis of the composite requirements and consideration of where process
dehydration will occur. SOA Suite offers two powerful options that can be leveraged to reduce
the persistence between BPEL process steps.

Using business rules will transfer the process execution to an in-memory evaluation of
the business logic. This can help with speeding up, forming and mutating the composite
output payload.

Embedding calls to Java programs can help deal with replacing forking processes, as we can
reduce multiple BPEL process steps to a number of if/else blocks in a program method. Note
that to keep the execution speed high, we should resist the urge to perform slow external logic
in the method, such as blocking calls to external databases.

SOA Application Design

276

See also
 f The Disabling BPEL monitors and sensors, Changing a BPEL process to be transient

and Reducing the completion persist level recipes in Chapter 8, BPEL and BPMN
Engine Tuning

Using parallel routing rules in Mediator
components

Mediator routing rules can be set to parallel or sequential execution. Using parallel execution
can improve performance.

Getting ready
You will need to have JDeveloper, and have a good understanding of SOA Suite
programming concepts.

How to do it...
These steps show us how to configure parallel routing rules:

1. Using JDeveloper, open the Mediator file that contains the rules that you wish
to execute in parallel.

2. If the routing rules are not visible, click on + to expand them:

Chapter 11

277

3. From the drop-down list, select Parallel.

4. Save the file.

How it works...
The Mediator can execute routing rules either in parallel or sequentially. Parallel rules are
executed at the same time in separate threads, using an algorithm that ensures that no
rule can use up all of the threads, and starve another rule from executing. Each parallel
rule is initiated in a new transaction, and that transaction is committed (or rolled back)
by the Mediator process, once the rule has executed.

There's more…
You can set the priority of a parallel routing rule to a value between zero and nine. Higher
priority rules will take precedence when threads are checking whether any parallel routing
rules need executing.

The Oracle SOA Suite Mediator component is the old Oracle Enterprise Service Bus (OESB),
which is being gradually replaced by Oracle Service Bus (OSB). OSB provides many more
tuning options, and is often more efficient than the Mediator; so, for new SOA applications,
we would recommend using OSB to perform the process mediation role, rather than the
SOA Suite Mediator component.

SOA Application Design

278

See also
 f The Setting Mediator Parallel Metrics Level, Setting Mediator Parallel Worker

Threads, Setting Mediator Parallel Maximum Rows Retrieved, and Setting Parallel
Locker Thread Sleep recipes in Chapter 9, Mediator and BAM

Setting HTTP timeouts for external services
Composite services often call out to external HTTP web services. If these external services
are not available, or are slow to respond, then it can impact the application performance.
By tuning the timeout to a lower or higher value, performance can be improved.

Getting ready
You will need to be familiar with SOA application development principals for this recipe.

How to do it...
These steps will set the timeout for an external HTTP service:

1. Open the composite.xml file in JDeveloper.

2. Select the source view at the bottom of the main pane.

3. Locate the <reference> section for the external service that you want to set
the timeout for.

Chapter 11

279

4. Inside the <binding> tags, add the property oracle.webservices.
httpReadTimeout of type xs:string with a value high enough to allow the
service to respond, such as 60000 (60 seconds).

5. Add the property oracle.webservices.httpConnTimeout with a type
xs:string, and a low value, such as 5000 (5 seconds).

6. Save the composite.

7. Deploy the application.

How it works...
When calling external services over HTTP, the application will need to wait for a response
before it can continue. If the external service is slow to respond, and Oracle SOA Suite gives
up too soon, then the request will fail and roll back to the most recent transactional save
point. This is often compounded by retry logic, which will cause the request to be retried,
increasing the load on an already busy system. By setting the read timeout to a high value,
we can ensure that we give plenty of time for an external application to respond. In the
preceding steps, we use a value of 60000 (60 seconds), but you can increase this value
if you have a service that takes longer.

If the external service is not available, then waiting for a response is not going to work, and
in fact we will usually be completely unable to establish the initial connection. By setting the
connection timeout to a low value (we use 5000 or 5 seconds), we can return a fault quickly
to the SOA Suite application and not wait for a response that will not arrive.

By tuning both of these parameters, it should be possible to come up with settings that will fail
quickly if the server is not there, but will wait long enough for a response if the service is busy,
while still timing out if the external service has stopped responding completely.

See also
 f The Increasing the HTTP accept backlog recipe in Chapter 6, Platform Tuning

SOA Application Design

280

Tuning BPEL adapter properties
Each of the SOA Suite adapters has a number of properties that can be tuned depending
upon your application requirements. This high-level recipe describes some of the options
available, and how to tune them for your application.

Getting ready
You will need a good understanding of SOA Suite programming principles for this recipe.

How to do it...
The following steps explain how to tune the properties of the commonly used BPEL adapters.

1. Tune inbound FTP and file adapters to use a dedicated thread pool, by setting the
ThreadCount property to a positive value, such as 10. If your file adapter is only
being used to detect the arrival of a file, then setting UseHeaders to true can
prevent the whole file payload being passed into the process. If the files do not arrive
frequently, then PollingFrequency can be increased to above the default of one
minute. If multiple, small files arrive, then MaxRaiseSize can be used to increase
the number of files that are read in at a time.

2. Tune the outbound FTP and file adapters by setting the ConcurrentThreshold
property to a higher value (for example, 50), and setting the UseStaging property
to false.

3. Tune the JCA adapter by ensuring that it uses a connection pool to manage the
connections, rather than setting up and tearing down a connection for each request.

4. For socket adapters, ensure that KeepAlive is set to true.

5. For JMS adapters, increase the value of adapter.jms.receive.threads property
to 5.

6. For Oracle AQ adapters, set the adapter.aq.dequeue.threads property to 5.

7. Tune the Oracle MQ adapter by setting the InboundThreadCount property to 5.

How it works...
The preceding sets of recipes are the basics of configuring the adapters available in Oracle
SOA Suite. There are many other properties that can be tuned, but their effectiveness is
situational, so we have chosen to focus on the ones that we feel give improvement for
the most projects.

Chapter 11

281

The ThreadCount property on the FTP and file adapters controls the number of threads that
are used to poll for new files and process them. It defaults to -1, which causes the default
thread pool to be used, rather than a dedicated pool. This can lead to situations where the
FTP and file adapters are starved of threads to process new files. It can also be set to 0,
which causes the behavior to be the same as the Single Thread Model, where files are not
placed on an in-memory queue between processing steps.

For outbound FTP and file adapters, ConcurrentThreshold controls the maximum number
of translation activities for a particular scenario that can be occurring at any one time. Because
translation is CPU-intensive, having very large numbers of concurrent translations can use up
all of the available CPU cycles. So it is sensible to limit the number that can occur, however
the default of 20 is a bit low, given the increased parallelization available in modern CPUs.

The UseStaging property for file and FTP adapters determines whether an intermediate file
is written between the translation of a file and later processing steps. The default is true,
but if sufficient memory is available, this can be set to false to improve performance.

Setting KeepAlive to true on socket adapters will ensure that the TCP socket connections
are kept open for multiple requests, rather than closing and reopening connections for each
request. This can improve performance, as setting up and tearing down TCP connections is
a high overhead.

The adapter.jms.receive.threads, adapter.aq.dequeue.threads, and
InboundThreadCount properties set the number of threads available for processing JMS,
AQ, and MQ messages. The default value for these is 5, and performance can be improved
by using more threads to dequeue messages from these providers.

There's more…
See http://docs.oracle.com/cd/E14571_01/core.1111/e10108/adapters.htm
for more information on tuning the BPEL adapter properties.

12
High Performance

Configuration

In this final chapter, we will look at some of the ways in which you can design your deployment
architecture to improve performance. The topics that we will cover are:

 f Configuring a cluster of SOA Suite servers

 f Configuring an OHS load balancer

 f Tuning for deployment on virtualized infrastructure

 f Using distributed JMS destinations in a cluster

 f Using JMS bridges to improve the enqueue speed

 f Choosing deployment hardware

Introduction
While it is important to squeeze maximum performance out of every component in your
application, true performance is an architectural concern. In this chapter, we are going to look
at some of the ways in which you can design a deployment architecture that supports your
performance requirements, and we are mostly going to do this by looking at the ways in which
you can scale out your application.

As we discussed earlier in the book, performance limits are always caused by the limited
availability of resources needed by the application, whether this is CPU cycles, storage (RAM or
disk), network bandwidth, or availability of an external service, such as a database connection.
Since it is not possible to keep adding more RAM or faster CPUs to your server for ever, there
comes a time when the best way to increase your application's capacity is to add more instances
of the application, and for a SOA Suite application, this normally means using the clustering
features of the underlying WebLogic application server. We therefore focus most of our effort in
this chapter on explaining how to configure WebLogic clustering and get the most out of it.

High Performance Configuration

284

Configuring a cluster of SOA Suite servers
Configuring a SOA Suite cluster is the first step in allowing your application to scale out to
support more users. This recipe explains how to create a new domain that contains a cluster.

Getting ready
This recipe creates a new domain with a cluster of SOA Suite servers. You will therefore need
the Oracle SOA Suite software installed on all the servers that you wish the cluster to run on,
and will need permissions to run the WebLogic configuration wizard on the server which will
run the admin server.

How to do it…
Follow these steps to configure a SOA Suite cluster:

1. Start the Oracle Fusion Middleware Configuration wizard, select the Create a new
WebLogic domain option, and click on Next.

2. Select the necessary components for a SOA Suite and BAM domain with Enterprise
Manager, as shown in the following screenshot, then click on Next.

Chapter 12

285

3. Enter a name for the domain in the Domain Name box, and the location you want it to
be installed to. This can be any path on a local system. Click on Next.

4. Enter a name for the administrative user and a domain password, then click on Next.

5. Select Production Mode for the domain and click on Next, leaving the default JVM
choice if this is suitable.

6. Obtain the database username and password from the database administrator,
enter the database connection details, and click on Next.

7. The wizard will now test the connections. If the database is not up, or the repositories
have not been created, the tests will fail, but the domain can still be created. Click
on Next.

8. Select that you wish to edit the managed servers, clusters, and machine
configurations, and click on Next.

9. Add additional managed servers, up to the number in your cluster design, give them
the listen addresses and ports that you wish them to run on, and click on Next.

High Performance Configuration

286

10. Create two clusters—one for SOA servers and one for BAM servers. Select multicast
as the cluster protocol (assuming your network supports it; if not then select unicast),
and enter the cluster address as a comma-separated list of the hosts in the cluster.
Click on Next.

11. Allocate the servers to the clusters, then click on Next.

12. Create a machine for each host in your cluster, then click on Next.

13. Allocate the WebLogic server instances to the machines that you wish them to
run on, as in the following example screenshot, then click on Next.

14. Review the domain configuration, then click on Next.

15. Wait while the wizard creates the domain. Once it has finished, you can select
the box if you wish to immediately start the admin server, then click on Close.

How it works…
It is worth starting by explaining the terminology used by Oracle for WebLogic clustering:

 f A domain is a group of WebLogic servers that share the same configuration
repository. The configuration repository is the config.xml file on the admin
server. There can only be one admin server per domain.

Chapter 12

287

 f A server is an instance of the WebLogic server.

 f An admin server is the WebLogic server instance that is used to administer the
domain. It stores the master copy of the configuration files, and runs the WebLogic
administration console application and Enterprise Manager SOA Suite component.

 f A managed server is any WebLogic server instance that is not the admin server.
Managed servers are used to run applications such as the SOA Suite components.

 f A cluster is a group of WebLogic servers that all have the same configuration and
application components on them. Clusters can share some state between the servers
in the cluster, so some stateful operations can be performed on any cluster member.
Resources can be targeted at a cluster, which will deploy them on each server in the
cluster.

 f A machine is the logical representation of a host, and is used by Oracle WebLogic
to know which host a particular server should be started on.

When running the configuration wizard, we stepped through the normal process of creating
a domain, then selected to customize the domain and add additional servers, clusters, and
machines. These changes get written to the config.xml file that contains the domain's
configuration. When we create the clusters and assign soa_server1 and bam_server1
to them, the configuration wizard is smart enough to know that it should deploy the relevant
resources to the cluster, rather than to the individual servers.

In this domain setup, we also selected multicast as the cluster communication mechanism
over unicast. Multicast is more efficient as updates are sent to a single address rather than
distributed at the network tier, reducing network communication. Unicast on the contrary will
create a connection between each cluster node, which is more work for the servers when
sending updated cluster information. Unicast can sometimes be more efficient in very small
clusters (for example, two to three nodes), because the networking infrastructure will often
drop multicast packets first in order to preserve its QOS; unicast traffic can avoid this pitfall.

There's more…
It is possible to extend an existing domain to add the clustering functionality. There are a
number of ways of doing this, including extending the domain with the configuration wizard,
using the WebLogic scripting toolkit, or using the administration console. I recommend
that you use the administration console (or the scripting toolkit WLST) rather than the
configuration wizard, as it is less likely to lose any changes that you have made to your
domain configuration.

See also
 f The Configuring an OHS load balancer, Choosing deployment hardware,

and Tuning for deployment on a virtualized infrastructure recipes

High Performance Configuration

288

Configuring an OHS load balancer
Oracle HTTP server is an Apache httpd-based Web server that can be used to load balance
requests across your SOA Suite cluster. This recipe looks at how to install it.

Getting ready
You will need to download the installer for the Oracle Fusion Middleware Web tier, and have
the necessary filesystem permissions on the box on which you wish to install it. Your SOA
Suite domain WebLogic admin server will need to be running, and you will need to know
its administration credentials.

How to do it…
Follow these steps to install OHS on a target server:

1. Extract the installer archive, navigate to the Disk1 folder, and execute the
setup installer. It will open the welcome screen; click on Next to continue.

2. Select whether you wish to search for updates, and how you want them to
be installed, then click on Next to continue.

3. Select that you wish to install and configure the server, then click on Next
to continue.

4. The installer will now validate that your system meets the pre-requisites for
the install; once it has done this, click on Next to continue.

5. Enter the details of the install location; we have selected e:\Oracle\
MiddlewareHome, then click on Next to continue.

6. Select if you wish to receive security updates, then click on Next to continue.

7. Select that you only wish to install the HTTP server component, and that you
wish to associate it with a WebLogic domain, then click on Next to continue.

Chapter 12

289

8. Specify the connection details for the WebLogic administration server. In domain host
name, set the IP of the administration server (if targeting the OHS server on the same
server as the administration server, we can set localhost), for the domain port no.
Set the administration server's port, then enter the administration user's credentials
in username and password, then click on Next to continue.

9. Accept the default details for the Oracle HTTP Server instance, then click on Next
to continue.

10. Accept the default port configuration, then click on Next to continue.

11. The installer will show a summary of what it is about to do; click on Next and it will
start installing:

12. Once the installation is complete, the installer will configure the WebLogic domain
and OHS instance. Click on Next to continue once this is done.

The installer will display a summary screen, detailing all of the changes it has made.

How it works…
Oracle HTTP Server is an Apache httpd-based Web server that can be used to forward
requests to a WebLogic server or cluster of servers. It contains a plugin that will proxy
requests from OHS to the WebLogic servers, and since this plugin is specifically designed
for Oracle WebLogic domains, it understands the nuances of clusters and how to balance
load across them. It is dynamically updated by the cluster to contain an up-to-date topology
as nodes leave and join.

As OHS will then be the client facing facet of a WebLogic domain, it is prudent to have more
than one instance to prevent the introduction of a single point of failure. The worker counts
should then be monitored to ensure that they are capable of providing enough throughput for
your client traffic. It is a common practice to front a number of OHS instances with a hardware
load balancer or component, such as Oracle Traffic Director This helps to ensure that should
an instance fail or become too busy, then traffic can be redirected to OHS nodes with capacity.

High Performance Configuration

290

By using OHS, you can provide a common URL for your Web services that resolve to the
OHS server, and the OHS server will then distribute the load across your servers based
on session cookies. This allows you to scale your application outwards to meet your
performance requirements.

See also
 f The Configuring a cluster of SOA Suite servers and Choosing deployment

hardware recipes

Tuning for deployment on a virtualized
infrastructure

This recipe looks at some of the tuning you can perform on a virtualized infrastructure
to improve the performance of your SOA Suite application.

Getting ready
This recipe assumes that you are using VMWare ESX as your virtualization environment,
but the principles still apply if you are using another virtualization product. You will need
the necessary permissions to make changes to the configuration of your virtual machine.

How to do it…
Consider the following items for your virtualized SOA Suite infrastructure:

1. We recommend that you run one instance of Oracle SOA Suite per virtual machine.
We have found that this gives the best options for tuning each machine and the
best scalability.

2. The second step is to select the number of vCPUs that will be allocated to each
server. It is not best practice to allocate vCPU cycles that are not used, as then they
cannot be used elsewhere. However, it is also not good to have insufficient vCPUs
available to a machine. We suggest starting with two vCPUs per instance, and
increasing this if you find that you are bottlenecking on CPU availability.

3. Next, we need to create a memory reservation for the server. You should create
a memory reservation large enough to hold the total memory used by the JVM
(not just the heap) plus 20 percent.

4. Finally, since virtual servers can suffer from significant clock drift, we recommend
that you configure an NTP time source, to keep the servers in sync.

Chapter 12

291

How it works…
Virtualization hypervisors have many significant optimizations and tricks that they use to
allow over allocation of resources, however many of these do not work well with the way
that application servers, such as WebLogic, are designed to work.

The largest issue is that of memory management. In general, it is considered best practice
to over allocate the memory on a virtualized environment, on the theory that applications will
not always need all of the memory allocated to them. However, this does not work well with
Java applications, where the way garbage collection works causes large chunks of memory
to become free at once, and then it all gets slowly used again until there is none free. When
large chunks of memory become free, the VMWare balloon memory hypervisor assumes this
is because an application just closed, so it will reclaim the memory from the virtual machine
and allocate it to another server. When the JVM then wishes to use it again, the hypervisor has
to find more memory to allocate to it, which can result in lengthy pauses. Creating a memory
allocation stops this from occurring and ensures that the JVM always has sufficient memory.

The other large problem is clock drift. Since virtual servers only have a virtual hardware
clock, its ticks are not as reliable as those of a physical server, resulting in significant clock
drift on virtual servers. Since WebLogic clusters rely on timing information to maintain their
consistency, and because many timeouts in SOA Suite components are measured in seconds,
it is important to configure an NTP source to prevent this drift.

There's more…
In addition to these basic changes, VMWare has a number of recommendations for running
Java application servers in a virtualized environment. See the VMWare documentation for
more detail on these.

See also
 f The Choosing deployment hardware and Configuring an OHS load balancer recipes

 f The Calculating the total memory used by your application recipe in Chapter 4,
JVM Memory

High Performance Configuration

292

Using distributed JMS destinations in
a cluster

A distributed JMS destination is a JMS queue or topic where the messages are spread across
multiple servers in a cluster. They are used to have multiple JMS destinations across different
servers that share a JNDI name.

Getting ready
You will need administrative access to the WebLogic domain that hosts your SOA Suite
applications, and will need to have created a cluster already. If you already have a JMS
queue using the JNDI name in your domain, you should delete this before creating the
distributed destination.

How it works…
A distributed JMS queue allows you to have JMS queues with the same name on each node
in a cluster. This allows the load to be distributed across multiple servers, with each server
consuming off its own JMS queue and processing locally. A uniformly distributed destination
is one in which the WebLogic Server creates the individual member queues on each server
for you, rather than you having to do it yourself.

When configuring the producers and consumers for a distributed destination, the producers
should usually be configured to produce to the distributed destination itself, and the local
consumers should be configured to consume from the individual member queues created
by WebLogic.

How to do it…
Follow these steps to configure a distributed JMS:

1. Connect to your WebLogic Server administration console, and log in with your
administration credentials. By default, the administration console is available
at http://<adminserverhost>:<adminserverport>/console.

Chapter 12

293

2. In the left-hand navigation pane, expand Services, Messaging, and then
JMS Modules.

3. In the main pane, click on New to create a new JMS module.

High Performance Configuration

294

4. Enter a name for your JMS module, then click on Next.

5. Target your JMS module to either the SOA or BAM server, depending upon where
it is needed, then click on Next.

Chapter 12

295

6. The final screen will ask if you wish to create JMS resources for the new module;
select that you do, then click on Finish.

7. Click on the New button, as shown in the following screenshot, to create a new
JMS resource.

High Performance Configuration

296

8. Select Distributed Queue as the type of resource, then click on Next.

9. Enter the name and JNDI name for your distributed queue, then click on Finish.

You can also create distributed topics, which work in exactly the same way. To do so, follow
the instructions in this recipe, but select a unified, distributed topic rather than a unified,
distributed queue.

Chapter 12

297

Using JMS bridges to improve the
enqueue speed

In situations where you have one WebLogic server enqueuing a JMS message to a JMS
queue on a remote WebLogic server, you can improve both the performance and resilience,
by creating a bridged JMS queue. This recipe explains how to do that.

Getting ready
This recipe assumes that the JMS queue already exists on the remote JMS server, and that
you wish to create a bridge to it from your local WebLogic server. You will need to know the
administration credentials for your WebLogic server instance, to be able to create the bridges.

This recipe assumes you have created a local JMS queue with the same name as the remote
JMS queue, and wish to bridge messages between them.

How to do it…
Follow these steps to create a JMS bridge:

1. Connect to your WebLogic Server administration console, and log in with your
administration credentials. By default, the administration console is available
at http://<adminserverhost>:<adminserverport>/console.

2. In the left-hand navigation pane, expand Services, Messaging, and then Bridges,
as in the following screenshot:

High Performance Configuration

298

3. This will display a summary of any existing JMS bridge destinations. Click on the New
button to create a new bridge destination.

4. This will be the local end of the JMS bridge; give it a descriptive name and enter the
connection details such as the URL for the local server, whether you wish the bridge
to use XA or be non-transactional, and the JNDI name of the JMS connection factory
to use. Click on Ok when you are done.

5. You will now be returned to the summary of bridge destinations, but should see your
new bridge destination in the list. Click on New again, and create the remote end of
the bridge.

Chapter 12

299

6. Enter the connection details for the remote end of the JMS bridge, then click on Ok.

7. Navigate to the Bridges section of the Messaging services in the left-hand
navigation pane:

High Performance Configuration

300

8. This will give you the summary screen, showing you all of your existing JMS bridges,
which will probably be none if you have not created any yet. Click on New to create
the bridge.

9. Enter the properties for the JMS bridge including its name. Select the checkbox
to ensure that the bridge is started when you have finished creating it, then click
on Next.

10. Select the JMS bridge destination that represents the local side of your JMS bridge,
then click on Next.

Chapter 12

301

11. Select the adapter type, which should be WebLogic Server 7 or higher, then click
on Next.

12. Select the JMS bridge destination that represents the remote JMS destination,
then click on Next.

13. Select the adapter type for the remote destination, which is probably WebLogic
Server 7 or higher, then click on Next.

High Performance Configuration

302

14. Select the targets for the bridge, which should be the servers on which the JMS
producers are running, then click on Next.

15. Review the information about the changes needed to remote domains,
then click on Finish.

Chapter 12

303

How it works…
A JMS bridge consumes messages from one JMS queue and enqueues them onto a different
JMS queue. While it might sound like doing this would reduce the performance, it has a
number of benefits. Firstly, it means that the component producing JMS messages does not
need to make a network call to a remote server; it can instead enqueue the message locally
with no network overhead, then continue processing. The bridge will ensure that the message
reaches the intended JMS queue. Secondly, it means that poor performance on the remote
JMS server (for example, if it is overloaded with messages) will not result in poor performance
on the JMS producer. This decoupling from the external service can allow you to make
performance guarantees for your services when you have external systems that you have
little or no control over.

A second advantage of JMS bridges is resilience. If your SOA Suite application is enqueuing
messages onto a remote JMS server, then if that remote server goes down and you are unable
to enqueue messages, your application will fail. With a bridge between the two servers, you
can still enqueue messages locally, and when the remote server comes back up, the bridge
will reconnect and send any pending messages to the remote server.

There's more…
An alternative to using a JMS bridge where you want to enqueue a JMS message to a remote
WebLogic server in the same domain is to use a store-and-forward JMS destination. These
are WebLogic-specific features that use the internals of the WebLogic JMS infrastructure
to store a JMS message until it can be transactionally enqueued onto the remote server.

Store and Forward Agents (SAF) are another JMS feature within WebLogic that offer a similar
functionality to JMS bridges, however, in our experience, they are not as performant, are less
reliable, and no easier to configure than a JMS bridge.

See also
 f The Configuring distributed JMS destinations recipe

High Performance Configuration

304

Choosing deployment hardware
Selection of deployment hardware is the key in ensuring that your application can support
its required non-functional requirements.

Getting ready
You will need to have an understanding of computer hardware to follow this recipe,
and be familiar with your expected user load and other non-functional requirements
for your application.

How to do it…
Consider the following items when choosing the underlying deployment hardware:

1. The first decision is whether you are going to deploy into a physical or virtual
environment. In our experience, Oracle SOA Suite runs better on physical servers,
because it is quite demanding in terms of hardware performance, but we have
seen many successful large-scale deployments on virtual servers. For this recipe,
we will assume that you are deploying on physical hardware.

2. The second thing to decide is the number of application server instances that you
wish to run on each machine, and how much memory you give to application server
instances. As a starting point, consider running with two application servers per
machine, with each application server running with a 4 GB heap. You can then
calculate the approximate amount of memory needed on each machine with the
following formula:
Required memory (in GB) = 2 + (n * (1.25 * m))

Here, n is number of instances, and m is their memory footprint.

3. To calculate the approximate number of CPUs that you need on the box (based on
a standard Intel type x86 64-bit CPU), use this formula:
Required CPUs = (n*8)/c

Here, n is the number of instances, and c is the number of cores per CPU.

4. Having determined the number of required CPUs and amount of memory, we just
need to calculate how many machines we need. As we already have performance
profiled our application, we know how many single users an application server can
deal with and so we can use the following formula:

Required machines = (1.5*e)/s

Here, e is the estimated number of users, and s is the number of users a single
application server can deal with.

Chapter 12

305

How it works…
In this recipe, we have seen three formulae, and they could do with a little more explanation.
These formulae have all been derived based on the experience of our consultants working out
in the field on SOA Suite applications; as such, they are guidelines rather than mathematically
proven rules.

The first formula is used to derive the amount of memory needed on a machine. It assumes
that each application server has a 25 percent overhead for memory usage (hence the
1.25*m), and that the operating system will require around 2 GB memory.

The second formula is used to derive the number of CPUs that you will use. The value of 8
comes from our experience that 8 cores per SOA Suite instance is about the minimum you
can get away with in a live system.

The final formula calculates the number of machines needed, and uses a factor of 1.5 times
the expected load, as it is important to plan in contingency to cope with failures or unexpected
load increases.

These formulae together should allow you to calculate the approximate amount and size
of hardware that you will need to host your live SOA Suite application.

There's more…
The preceding guidelines work equally as well for virtual servers, but there are a number
of other concerns to think about. These are discussed in the Tuning for deployment on
a virtualized environment recipe based on tuning for a virtualized environment. In a
virtualized environment, it is normal to run with only one application server per machine.

It is also worth considering deployment on non-Intel x86 architectures, such as some of
the Sparc platforms.

See also
 f The Tuning for deployment on a virtualized environment recipe

 f The Calculating the total memory used by your application recipe in Chapter 4,
JVM Memory

Index
A
admin server 287
advanced load tests, JMeter

designing 94-96
working 97

alerts, Hyperic
configuring 69-72

Amazon Elastic Cloud Compute (EC2) 98
Apache JMeter

about 76
advanced load tests, designing 94
downloading 77
installing 77
performance tests, running from

Cloud 98-102
responses, checking in tests 84-87
running, on multiple servers 81-84
used, for creating web service test 78-80
used, for recording user web sessions 92-94
working 78

Application Monitoring tools 36
audit level

levels of note 220
reducing 219, 220

audit store policy
setting 226, 227
working 227

audit trail size threshold
reducing 228, 229

automatic release timers
about 256
disabling 256-258

B
BAM 247
BAM Adapter

batched delivery, enabling 252-254
batched delivery

enabling, for BAM Adapter 252-254
Batching_Limit_Lower 253
Batching_Limit_Upper 253
Batching_Timeout 253
boot.properties file

creating 175, 176
BPEL adapter properties

tuning 280
BPEL/BPMN engines

about 206
audit level, reducing 219, 220
audit store policy, setting 226, 227
audit trail size threshold, reducing 228, 229
BPEL process transient, making 221, 222
BPEL sensors and monitors, disabling 217
completion persist level, reducing 223
data, purging 233
dispatcher engine threads, tuning 211, 212
dispatcher invoke threads, tuning 207, 208
dispatcher system threads, tuning 214
global database parameters, setting 236,

237
large document threshold, increasing 229,

230
Oracle database, tuning 239, 240
persistence, disabling on invocation 224, 225
SOA infra log levels, reducing 230
tuning 206

308

BPEL process
changing, to transient 221, 222
designing, for reducing process

persistence 275
BPEL process parallelization

using 269, 270
BPEL process persistence

disabling, on invocation 224, 225
BPEL sensors and monitors

disabling 218
Business Activity Monitoring. See BAM

C
Cloud 103
cluster 287
committed transactions, SOA Suite 11g

monitoring 66, 68
completion persist level

reducing 223
composite state

monitoring 274
concurrent mark sweep 139
correct workflow service client

selecting 258, 259

D
data

purging, from BPEL store 232, 234
database parameters

setting 236-239
database statistics generation task

enabled, ensuring 235
database XA timeouts

tuning 188-190
data source connection timeouts

setting 187
data-source pooling 180
data source pool sizes

setting 180-182
data sources grow

configuring 185, 186
data sources shrink

configuring 185, 186

data source testing
configuring 183, 184

data source usage, SOA Suite 11g
monitoring 60-62

dehydration 222
deployment hardware

selecting 304
development mode, WebLogic domains 173
dispatcher engine threads

tuning 211, 212
working 212

Dispatcher Invoke thread pool 209
dispatcher invoke threads

tuning 207-211
dispatcher system threads

tuning 214
working 215, 216

distributed JMS destination
about 292
configuring 292-296
using, in cluster 292

DMS servlet
about 74
used, for monitoring system 72
working 74

DMS Spy servlet 72
domain 286

E
EIS adapter connections

tuning 191-194
explicit GC

disabling 149, 150

F
file descriptors

increasing, in Linux 162, 163

G
garbage collection

about 133
evaluating 144-147

309

explicit GC, disabling 149, 150
monitoring, jstat used 10, 11
new size, configuring 134, 135
RMI garbage collector, disabling 148
survivor ratio, configuring 136, 137
verbose garbage collection, enabling 142,

143
garbage-collection algorithm

concurrent mark sweep 139
garbage first 139
parallel garbage collection 139
selecting, in HotSpot 138
selecting, in JRockit 140, 141

garbage first 139
GC. See garbage collection
GCviewer

URL 11
global transaction timeouts

about 153
tuning 153, 154

H
HotRocket 160
HotSpot

garbage-collection algorithm,
selecting 138, 139

HTTP accept backlog
about 155
increasing 155, 156

HTTP timeouts
setting, for external services 278, 279

HugePages 160
human workflow component 255
Hyperic

about 36
alerts, configuring 69-71

Hyperic agents
about 42
installing 42-44
working 45

Hyperic HQ installer
downloading 37

Hyperic server
about 37
configuring, for SOA Suite 11g monitoring

46-51

installing 37-41
working 41

J
Java 1.5 37
Java application

locking, performing 14
Java management extensions (JMX) 128
Java Management eXtensions (JMX)

interface 45
Java Runtime Environment (JRE) 41
Java thread stack size. See thread stack size
Java Virtual Machine. See JVM
JDBC connections

monitoring, with WebLogic console 28-32
JMeter. See Apache JMeter
JMS bridge

creating 297-302
working 303

JMS connection factories
tuning 200-203

JMS file persistence
about 199
configuring 197, 198

JMS persistent store 200
JMX 37
JRMC

about 119
features 123
used, for identifying performance

problems 21
JRockit

garbage-collection algorithm, selecting 140
used, for monitoring memory 119

JRockit flight recorder
used, for identifying problems 24-27
working 27

JRockit Mission Control. See JRMC
about 21
working 24

jstat
about 7
used, for identifying locking issues 12, 13
used, for identifying performance problems

14-16

310

used, for identifying permanent generation
problems 9, 10

used, for identifying problems 7
used, for monitoring garbage

collection 10, 11
working 8

JVM
about 7, 37, 105
upgrading 167, 168

JVM free memory
monitoring 57

JVM heap size
increasing 106-110

JVM implementations
finding out 159

JVM Just In Time (JIT) 127
JVM memory

heap size, increasing 106-110
memory usage, calculating 115-118
memory usage, viewing using JRMC for

JRockit 119-122
memory usage, viewing using VisualVM for

HotSpot 124-127
Permanent Generation heap size, configuring

113, 114
thread stack size, configuring 130, 131
Xmx and Xms parameters, setting to same

value 111, 112
JVM memory usage

monitoring 54-56
JVM Statistics Monitoring Tool Daemon

(jstatd) 127

L
large document threshold

increasing 229, 230
large pages

using, in Linux 160, 161
Linux

about 37
file descriptors, increasing 162, 163
large pages, using 160, 161

Linux kernel swappiness level
setting to low 169, 170

locking issues
identifying, jstat used 12, 13

M
machine 287
managed server 287
MBean 37
Mediator engine 247
Mediator Parallel Maximum Rows Retrieved

setting 250, 251
Mediator Parallel Metrics Level

setting 248, 249
Mediator Parallel Worker Threads

setting 250
Memory Analyzer Toolkit 16
memory management 105
memory usage

calculating 115-118
viewing, JRMC used for JRockit 119-122
viewing, VisualVM used for HotSpot 124, 125

Mission Control 122
monitoring 36

N
new size, garbage collection

configuring 134, 135
new size problems

identifying, jstat used 7
non-blocking service invocations

using, in BPEL flows 271, 272

O
OHS load balancer

configuring 288
installing 288, 289
working 289

OPEN_CURSORS parameter 238
open sockets, SOA Suite 11g

monitoring 63-65
Oracle database

tuning 239-244
Oracle Dynamic Monitoring System

monitoring, DMS servlet used 72-74
Oracle Enterprise Service Bus (OESB) 277
Oracle JRockit JVM

using 171, 172
Oracle Service Bus (OSB) 277

311

Oracle SOA Suite application
monitoring 36
performance monitoring 36

Oracle SOA Suite Mediator component 277

P
parallel garbage collection 139
Parallel Locker Thread Sleep

setting 251, 252
parallel routing rules, mediator components

configuring 276, 277
pause time priority 141
payload validation

disabling 273, 274
Payload Validation setting, BPEL engine 220
performance 6
performance bottlenecks, SOA Suite

application
about 6
garbage collection, monitoring with

jstat 10, 11
JDBC connections, monitoring with WebLogic

console 28-30
locking issues, identifying with jstack 12, 13
new size problems, identifying with jstat 7, 8
performance problems, identifying using

JRMC on JRockit 21-24
performance problems, identifying using

VisualVM 16-20
performance problems, identifying with

jstack 14, 15
permanent generation problems, identifying

with jstat 9, 10
problems, identifying using JRockit flight

recorder 24-27
slow running components, identifying with

Enterprise Manager 33, 34
slow running database queries, identifying

32, 33
performance problems

identifying, JRMC using on JRockit 21-24
identifying, jstat used 14-16
identifying, VisualVM using on HotSpot 16-20

performance tests, JMeter
running 98-102

Permanent Generation. See PermGen

Permanent Generation heap
size, configuring 113

permanent generation problems
identifying, jstat used 9, 10

PermGen
about 113, 114
working 114

platform CPU usage, SOA Suite 11g
monitoring 58, 59

potential circular references
removing 260

production mode, WebLogic domains
about 173
working 174

Profiler 21

R
redo thread 245
remote Hotspot JVM

connecting to 128
remote JRockit JVM

connecting to 123
responses

checking, in JMeter tests 84-87
RMI garbage collector

about 148
disabling 148
working 148

rule execution
looping, preventing 259-262
tuning 263, 264

rules component 255
ruleset 264

S
server 287
server logging level

reducing 157, 158
setSoaDomainEnv script 139, 141
SIGAR library 59
slow running components

identifying, with Enterprise Manager 33, 34
slow running database queries

identifying 32, 33
SOA infra log levels

reducing 230-232

312

SOA Suite
monitoring, while testing 88-91

SOA Suite 11g
committed transactions, monitoring 66, 68
data source usage, monitoring 60-62
memory usage, monitoring 55, 56
open sockets, monitoring 63-65
platform CPU usage, monitoring 58, 59

SOA Suite application
performance bottlenecks 6

SOA Suite cluster
configuring 284-286

SOA Suite EJB timeouts
tuning 163-167

SOA Suite Java Virtual Machines 6
SOA Suite Server availability

monitoring 51-54
SOA Suite stack

layers 152
Solaris 37
startManagedWebLogic script 134
startWebLogic script 134
Store and Forward Agents (SAF) 303
survivor ratio, garbage collection

configuring 136, 137

T
thread stack size

configuring 130, 131

U
user web sessions

recording, with JMeter 92-94

V
verbose garbage collection

about 142
enabling 142

VFabric Hyperic HQ tool 36
virtualized SOA Suite infrastructure

deployment, tuning 290, 291
VisualVM

about 127
used, for identifying performance

problems 16-20
working 20, 127

W
WebLogic 45
WebLogic console

used, for monitoring JDBC connections 28-31
WebLogic domains

development mode 173
production mode 173
running, in production mode 173, 174

WebLogic server
monitoring 46

WebLogic thread pool
configuring 194-196

web service test
creating, JMeter used 78-81

Work Managers 197

X
Xmx and Xms parameters

setting, to same value 111, 112

Thank you for buying
Oracle SOA Suite 11g Performance Tuning Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle SOA Suite 11g R1
Developer's Guide
ISBN: 978-1-849680-18-9 Paperback: 720 pages

Develop Service-Oriented Architecture Solutions with the
Orcale SOA Suite

1. A hands-on, best-practice guide to using and
applying the Oracle SOA Suite in the delivery of
real-world SOA applications

2. Detailed coverage of the Oracle Service Bus,
BPEL PM, Rules, Human Workflow, Event Delivery
Network, and Business Activity Monitoring

3. Master the best way to use and combine each of
these different components in the implementation
of a SOA solution

Getting Started With
Oracle SOA Suite 11g
R1 – A Hands-On Tutorial
ISBN: 978-1-847199-78-2 Paperback: 482 pages

Fast track your SOA adoption — Build a Service-Oriented
composite Application in just hours!

1. Offers an accelerated learning path for the much
anticipated Oracle SOA Suite 11g release

2. Beginning with a discussion of the evolution
of SOA, this book sets the stage for your SOA
learning experience

3. Includes a comprehensive overview of the Oracle
SOA Suite 11g Product Architecture

4. Explains how Oracle uses standards like Services
Component Architecture (SCA) and Services Data
Object (SDO) to simplify application development

Please check www.PacktPub.com for information on our titles

Oracle SOA Suite
Developer's Guide
ISBN: 978-1-847193-55-1 Paperback: 652 pages

Design and build Service-Oriented Architecture Solutions
with the Oracle SOA Suite 10gR3

1. A hands-on guide to using and applying the
Oracle SOA Suite in the delivery of real-world
SOA applications.

2. Detailed coverage of the Oracle Service Bus,
BPEL Process Manager, Web Service Manager,
Rules, Human Workflow, and Business Activity
Monitoring.

3. Master the best way to combine / use each of
these different components in the implementation
of a SOA solution.

Oracle SOA Suite 11g
Developer's Cookbook
ISBN: 978-1-849683-88-3 Paperback: 346 pages

Over 65 high-level recipes for extending your Oracle SOA
applications and enhancing your skills with expert tips
and tricks for developers

1. Extend and enhance the tricks in your Oracle
SOA Suite developer arsenal with expert tips
and best practices

2. Get to grips with Java integration, OSB message
patterns, SOA Clusters and much more in this
book and e-book

3. A practical Cookbook packed with recipes for
achieving the most important SOA Suite tasks
for developers

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Identifying Problems
	Introduction
	Identifying new size problems with jstat
	Identifying permanent generation problems with jstat
	Monitoring garbage collection with jstat
	Identifying locking issues with jstack
	Identifying performance problems with jstack
	Identifying performance problems using VisualVM on HotSpot
	Identifying performance problems using JRMC on JRockit
	Using JRockit flight recorder to identify problems
	Monitoring JDBC connections with the WebLogic console
	Identifying slow-running database queries
	Identifying slow-running components with the Enterprise Manager

	Chapter 2: Monitoring Oracle
SOA Suite
	Introduction
	Installing the Hyperic server
	Installing Hyperic agents
	Configuring Hyperic to monitor SOA Suite 11g
	Monitoring the SOA Suite server availability
	Monitoring the JVM memory usage
	Monitoring the platform CPU usage
	Monitoring the data source usage
	Monitoring open sockets
	Monitoring committed transactions
	Configuring alerts in Hyperic
	Monitoring the system using the
DMS servlet

	Chapter 3: Performance Testing
	Introduction
	Installing Apache JMeter
	Creating a web service test using JMeter
	Running JMeter on multiple servers
	Checking responses in JMeter tests
	Monitoring SOA Suite while testing
	Recording user web sessions with JMeter
	Designing advanced load tests
	Running performance tests from the Cloud

	Chapter 4: JVM Memory
	Introduction
	Increasing the JVM heap size
	Setting Xmx and Xms to the same value
	Setting the size of the Permanent Generation heap
	Calculating the total memory used by your application
	Viewing the memory used using JRMC
for JRockit
	Viewing the memory used using VisualVM for HotSpot
	Setting the size of the thread stack

	Chapter 5: JVM Garbage
Collection Tuning
	Introduction
	Setting the new size
	Setting the survivor ratio
	Choosing a garbage collection algorithm
in HotSpot
	Choosing a garbage collection algorithm
in JRockit
	Turning on verbose garbage collection
	Tuning to reduce the number of full
garbage collections
	Disabling the RMI garbage collector
	Disabling explicit GC

	Chapter 6: Platform Tuning
	Introduction
	Tuning global transaction timeouts
	Increasing the HTTP accept backlog
	Reducing the server logging level
	Finding out which JVM you are using
	Using large pages in Linux
	Increasing the number of file descriptors in Linux
	Tuning the SOA Suite EJB timeouts
	Upgrading to a newer JVM
	Setting the Linux kernel swappiness to low
	Using the Oracle JRockit JVM
	Running your domain in the production mode
	Creating a boot.properties file

	Chapter 7: Data Sources and JMS
	Introduction
	Setting the data source pool sizes
	Configuring data source testing
	Configuring data source growing and shrinking
	Setting data source connection timeouts
	Tuning database XA timeouts
	Tuning connections in the native EIS database adapter
	Configuring the WebLogic thread pool
	Using JMS file persistence
	Tuning JMS connection factories

	Chapter 8: BPEL and BPMN
Engine Tuning
	Introduction
	Tuning the dispatcher invoke threads
	Tuning the dispatcher engine threads
	Tuning the dispatcher system threads
	Disabling BPEL monitors and sensors
	Reducing the audit level
	Changing a BPEL process to be transient
	Reducing the completion persist level
	Disabling persistence on invocation
	Setting the audit store policy
	Reducing audit trail size threshold
	Increasing large document threshold
	Reducing SOA infra log levels
	Purging data from the BPEL store
	Ensuring automatic database statistics gathering is enabled
	Tuning Oracle database parameters
	Tuning the Oracle database

	Chapter 9: Mediator and BAM
	Introduction
	Setting Mediator Parallel Metrics Level
	Setting Mediator Parallel Worker Threads
	Setting Mediator Parallel Maximum Rows Retrieved
	Setting Parallel Locker Thread Sleep
	Using batched delivery in the BAM Adapter

	Chapter 10: Rules and Human Workflow
	Introduction
	Disabling automatic release timers globally
	Choosing the correct workflow service client
	Preventing looping and inefficient rule execution
	Tuning rule execution

	Chapter 11: SOA Application Design
	Introduction
	Using BPEL process parallelization
	Using non-blocking service invocations in BPEL flows
	Turning off payload validation and composite state monitoring
	Designing BPEL processes to reduce persistence
	Using parallel routing rules in Mediator components
	Setting HTTP timeouts for external services
	Tuning BPEL adapter properties

	Chapter 12: High Performance Configuration
	Introduction
	Configuring a cluster of SOA Suite servers
	Configuring an OHS load balancer
	Tuning for deployment on a virtualized infrastructure
	Using distributed JMS destinations in a cluster
	Using JMS bridges to improve the enqueue speed
	Choosing deployment hardware

	Index

