
www.allitebooks.com

http://www.allitebooks.org

®

Oracle
WebLogic Server 12c
Administration Handbook

www.allitebooks.com

http://www.allitebooks.org

About the Author
Sam R. Alapati is a manager and senior database architect at Cash America
International in Fort Worth, Texas. Earlier, he worked with Miro Consulting, Inc.,
in New Jersey, as a senior technical director, as well as an Oracle database and
Middleware administrator for the Boy Scouts of America, AT&T, and Oracle
Corporation.

Sam has provided Oracle database, Oracle E-Business, and Oracle Fusion
Middleware technology–related consulting services to several organizations,
including some well-known Fortune 500 companies. Sam has worked on several
WebLogic Server projects, including the installation, configuration, and tuning of
production systems. He has also helped clients with architecting and capacity
planning for major Oracle WebLogic Server environments. Sam is the author of
several Oracle database administration books, a book on Java (Java Masterclass:
Java Exceptions, Assertions and Logging), as well as the OCA Oracle Application
Server 10g Administrator Exam Guide (for OCA certification), also published by
Oracle Press.

About the Technical Editor
Scott Gossett is a technical director in the Oracle Engineered Systems organization
with more than 25 years’ experience specializing in Exadata, Oracle RAC,
performance tuning, and high-availability databases. Prior to becoming a technical
director, Scott was a senior principal instructor for Oracle Education for over
12 years, primarily teaching Oracle Internals, performance tuning, RAC, and
database administration classes. In addition, Scott is one of the architects and
primary authors of the Oracle Certified Masters Exam.

Scott has been a technical editor for 13 Oracle Press books and a
coauthor for Oracle Database 11g: The Complete Reference.

www.allitebooks.com

http://www.allitebooks.org

®

Oracle
WebLogic Server 12c
Administration Handbook

Sam R. Alapati

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-182407-1

MHID: 0-07-182407-3

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-182535-1,
MHID: 0-07-182535-5.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate
training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other trademarks are the property of their respective owners, and
McGraw-Hill Education makes no claim of ownership by the mention of products that contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its
affiliates.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included
in this work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained
in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile,
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill Education’s prior consent. You may use the work for your own noncommercial and
personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT IMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error
free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special,
punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

www.allitebooks.com

http://www.allitebooks.org

To Nina, my affectionate daughter and a wonderful person.

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

 1 Installing Oracle WebLogic Server 12c and Using the Management Tools 1

 2 Administering WebLogic Server Instances . 51

 3 Creating and Configuring WebLogic Server Domains . 115

 4 Configuring Naming, Transactions, Connections, and Messaging 175

 5 Configuring the WebLogic Server Environment . 239

 6 Monitoring and Troubleshooting WebLogic Server . 265

 7 Working with WebLogic Server Clusters . 329

 8 Understanding WebLogic Server Application Deployment 371

 9 Managing WebLogic Server Security . 415

 10 WebLogic Server Performance Tuning . 475

 Index . 505

vii

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents

Acknowledgments . xix
Introduction . xxi

 1 Installing Oracle WebLogic Server 12c and Using
 the Management Tools . 1

Oracle WebLogic Server: An Overview . 2
Oracle WebLogic Server 12c Product Set . 2
Terminology . 3

Important WebLogic Server Concepts . 9
Execute Threads and Queues . 9
Implementing the JMX API and MBeans . 10
Development and Production Mode . 11
Listen Ports and Listen Threads . 11
Choosing a JVM . 12
Using Web Server Plug-Ins . 12
Management APIs . 13

Installing Oracle WebLogic Server 12c . 13
Installation Prerequisites . 14
Installation Modes . 14
Installation Procedure . 15
Checking the Installed Features . 18
Reinstalling WebLogic Server . 19
Exploring the Installation Directories . 19

The WebLogic Server Sample Applications . 21
Key Environment Files . 22
Starting the Examples Server . 23
Stopping the Server . 25

Upgrading Oracle WebLogic Server . 26
Upgrade Tools . 26
Upgrade Procedures . 27

ix

www.allitebooks.com

http://www.allitebooks.org

x Oracle WebLogic Server 12c Administration Handbook

Reconfiguring a WebLogic Domain . 28
Using OPatch to Patch Oracle WebLogic Server . 30

Using the Administration Console . 31
Logging In to the Administration Console . 32
Navigating the Administration Console . 33
Using the Change Center . 36
Working with the Administration Console . 40

A Brief Introduction to the Node Manager . 41
Using the WebLogic Scripting Tool (WLST) . 42

Offline and Online WLST . 42
Invoking WLST . 43
Using WLST in Script Mode . 44
Connecting to a WebLogic Server Instance . 45
Disconnecting from the Server . 47
Using the Help Command . 47
Key WLST Command Groups . 48

Summary . 49

 2 Administering WebLogic Server Instances . 51
Managing the Servers . 52

Administration and Managed Servers . 52
Admin Server Failures and the Managed Servers . 53
Selecting the Start Mode for a Server . 53
Configuring Class Caching . 55
Setting the Environment Variables . 55
Configuring Server Instances with the Administration Console 57
Providing User Credentials . 58

Using the Node Manager to Manage Servers . 62
Node Manager Capabilities . 62
Default Node Manager Configuration in WebLogic Server 12c 64
Starting the Node Manager . 65
Stopping the Node Manager . 69
Monitoring the Node Manager Logs . 71
Running the Node Manager as a Windows Service . 72
Configuring the Node Manager . 73
The Node Manager Domains File . 77
Configuring Node Manager Using WLST Offline . 77
Key WLST Node Manager Commands . 78

Lifecycle of WebLogic Server Instances . 80
The STARTING, STANDBY, and RUNNING States . 80
The SHUTDOWN, SUSPENDING, and FAILED States 82
Self-Health Monitoring . 83
How the Server Deals with the FAILED State . 83
Shutdown Command Options . 84

Contents xi

Starting and Stopping WebLogic Server . 85
Server Messages . 85
Server Logs . 86
Using a Startup Script to Start and Stop Servers . 86
Using the java weblogic.Server Command . 89
Configuring Server Attributes with weblogic.Server . 92
Using the Ant Tool to Manage Servers . 93
Managing Servers from the Administration Console . 96
Using WLST Without the Node Manager . 101
Using WLST with the Node Manager . 103

Setting Up a WebLogic Server Instance as a Windows Service 107
Setting Up the Service . 108
Setting Up the Managed Server as a Windows Service 109
Starting and Stopping the Service . 109
Changing Startup Credentials for a Service . 109
Removing a Service . 110

Dealing with WebLogic Server Failures . 110
Starting a Failed Admin Server . 110
Managed Server Independence (MSI) Mode . 112
Deleting Servers . 113

Summary . 114

 3 Creating and Configuring WebLogic Server Domains 115
Structure of a WebLogic Server Domain . 116

WebLogic Server Instances . 117
WebLogic Server Clusters . 118
Domain Resources . 118
Domain Restrictions . 119
Domain Directories . 119

Understanding Domain Configuration Changes . 122
The Domain Configuration File: config.xml . 122
Modifying Domain Configuration . 124
Using the Lock & Edit Mechanism

in the Administration Console . 130
Tracking Changes with Configuration Auditing . 131
Making a Domain Read-Only . 132
Controlling the Logging of Configuration Changes . 133

Creating Domain Templates . 134
Templates Offered by WebLogic Server . 134
Creating a Custom Domain Template . 135
Creating a Custom Extension Template . 137
Using Server Templates . 138
Creating Templates with the pack and unpack Commands 138

xii Oracle WebLogic Server 12c Administration Handbook

Creating a WebLogic Server Domain . 140
Using the weblogic.Server Command . 140
Using the Configuration Wizard to Create a Domain . 142
Extending Domains . 146
Creating a Domain with WLST Commands . 147
Selecting the Startup Mode for the WebLogic Domain 152

Advanced Domain Configuration Options . 153
Configuring the Admin Server . 153
Configuring Managed Servers . 153
Cloning a Managed Server . 154
Configuring Clusters . 154
Assigning Managed Servers to Clusters . 154
Configuring Machines . 154
Targeting Deployments to Clusters or Servers . 155
Configuring a Persistent Store . 156

Configuring Server Environments . 158
Configuring the Network . 158
Configuring WebLogic Server as a Web Server . 161
Setting a Default Web Application . 163
Preventing POST Denial of Service Attacks . 164
Configuring HTTP Logging . 164
Proxying Requests to Other Web Servers . 166
Configuring the WebLogic Server Proxy Plug-Ins . 167
Configuring Virtual Hosts . 170

Protecting Domain Data . 172
Backing Up a Domain’s config.xml File . 172
Backing Up the Security Data . 173

Summary . 173

 4 Configuring Naming, Transactions, Connections, and Messaging 175
JNDI and Naming and Directory Services . 176

JNDI Architecture . 177
Viewing the WebLogic Server JNDI Tree . 177
Using JNDI to Connect a Java Client to a Server . 179
Clustered JNDI . 181

Configuring Transactions . 181
Transactions and the ACID Test . 182
Types of WebLogic Transactions . 182
Transactions and the Two-Phase Commit . 182
Configuring WebLogic JTA . 182
Monitoring Transaction Services . 185
Transaction Logs and Transaction Recovery . 187

Contents xiii

Configuring Database Connections . 188
JDBC Architecture . 189
Enabling XA in the Database . 191
Data Sources . 191
Understanding WebLogic JDBC Configuration . 192
Using a JDBC System Module . 193
Creating a Generic Data Source . 195
Configuring a Multi Data Source . 198
Using a GridLink Data Source . 198
Configuring a JDBC Data Source . 200
Managing Data Sources . 207
Starting and Stopping a Data Source . 208

Configuring Java Messaging Services (JMS) . 208
Message Communication Modes . 208
Structure of a JMS Message . 209
Components of a JMS Messaging Application . 209
WebLogic JMS Architecture . 212
Configuring WebLogic Server JMS . 216
Monitoring JMS Servers . 223
Creating JMS System Modules . 224
System Modules and Subdeployments . 230
Migrating JMS-Related Services . 232
Store-and-Forward (SAF) Service for Reliable Messaging 232
WebLogic Messaging Bridge . 235
Foreign JMS Servers . 235

Configuring WebLogic JavaMail . 236
Creating Mail Sessions . 236
Configuring a Mail Session . 237

Summary . 238

 5 Configuring the WebLogic Server Environment . 239
Optimizing Application Performance . 240

WebLogic Server Thread Pools . 240
Work Managers . 241
Configuring Work Managers . 242
Work Manager Components . 244
Defining a Work Manager Through the Console . 247

Managing Server Work Overload . 249
Throttling the Thread Pool . 250
Handling Overload or Failure Conditions . 250
Limiting Active HTTP Sessions . 252
Dealing with Stuck Threads . 253
WebLogic Server Self-Health Monitoring . 254

xiv Oracle WebLogic Server 12c Administration Handbook

Optimal Network Configuration . 255
Benefits of Using Network Channels . 255
Creating Custom Network Channels . 256
Tunneling . 257
Configuring Network Channels . 258
Designing Network Channels . 260

The Java Connector Architecture (JCA) . 261
Managing Resource Adapters Through the Console . 263
Monitoring Resource Adapter Connections . 264
The WebLogic Tuxedo Connector . 264

Summary . 264

 6 Monitoring and Troubleshooting WebLogic Server . 265
The WebLogic Diagnostic Framework . 266

Using WLDF with the JRockit Flight Recorder . 268
Using the Monitoring Dashboard . 272
Configuring Diagnostic Image Capture . 273
Configuring a Diagnostic Archive . 276
Using a Diagnostic System Module . 278
Configuring Metric Collection . 280
Configuring WLDF Instrumentation . 282
Configuring Watches and Notifications . 290
Accessing the WLDF Diagnostic Data . 294

Monitoring WebLogic Server Instances . 295
Monitoring with the Administration Console . 295
Monitoring with JMX . 298
Using WLST Monitoring Scripts . 302
Monitoring with SNMP . 305

Understanding WebLogic Logging Services . 310
Understanding the Log Files . 311
Anatomy of a Log Message . 312
Viewing Logs . 313
Configuring a Domain Log Filter . 314
Subsystem Logs . 315
Understanding Server Log File Maintenance . 316
Setting Debugging Flags Using the Console . 316
Integrating Application and Server Logging . 317
Controlling Server Log Messages to Log Destinations . 317

WebLogic Server Troubleshooting . 318
Understanding Java Thread Dumps . 318
Collecting a JRockit Thread Dump . 321
JVM Crashes . 324
Generating Logs for Troubleshooting . 325
Using WLST Diagnostic Dump Commands . 326
Out-of-Memory Errors . 327

Summary . 328

Contents xv

 7 Working with WebLogic Server Clusters . 329
Introduction to WebLogic Server Clusters . 330

Relationship Between Clusters and a Domain . 331
Deployment in a Cluster . 332
Cluster Architectures . 332
How Clusters Communicate . 336
Naming Cluster Instances . 336

Creating and Configuring a Cluster . 338
Using the Administration Console . 338
Using the WLST Script . 340
Configuring a Cluster . 343
Creating Dynamic Clusters . 343
The config.xml File and a Cluster . 346

Managing a WebLogic Server Cluster . 347
Starting and Stopping the Cluster . 347
Monitoring a Cluster . 350

Clustering WebLogic Server Services . 351
JNDI Naming Service . 351
JDBC Clustering . 352
JMS and Clusters . 352
Cluster-Targeted JMS Servers . 353

WebLogic Server Load Balancing . 354
Load-Balancing Servlets and JSPs . 354
Load Balancing for EJBs and RMI Objects . 354

Application Failover and Replication . 357
Detecting Application Failures . 357
Handling Servlet and JSP Failures . 357
Failover for EJBs and RMIs . 360

Handling Server and Service Failures . 361
Migratable Servers . 361
Manual and Automatic Service Migration . 361
Migratable Targets . 362
Leasing and Automatic Migration . 362
Migrating JMS-Related Services . 363
Migrating JTA Services . 366
Whole Server Migration . 367
Using WLST to Migrate Services . 369

Summary . 370

 8 Understanding WebLogic Server Application Deployment 371
Introduction to WebLogic Server Deployment . 372

Types of Applications You Can Deploy . 373
Deployment Targets . 373
Deployment Tools . 374
Deployment Descriptors, Annotations, and Deployment Plans 374
Configuring Deployments with Deployment Plans . 376

xvi Oracle WebLogic Server 12c Administration Handbook

Preparing Applications for Deployment . 381
Deploying an Archive File . 381
Deploying an Exploded Archive Directory . 382
Naming the Deployment and the Applications . 383
Storing the Deployment Files . 384
How WebLogic Server Accesses Source Files . 385

Staging Deployment Plans . 386
Deploying Applications . 387

Deployment Order . 387
Using the Administration Console for Deployment . 388
Using WLST to Deploy Applications . 395
Deploying with weblogic.Deployer . 397
Deploying with the wldeploy Ant Task . 402

Reducing Deployment Time During Development . 403
Using the Autodeployment Feature During Development 403
Using FastSwap to Shorten the Development Cycle . 404

Monitoring and Updating Applications . 404
Monitoring Applications . 405
Using Administration Mode to Sanity Test Deployments 406
Updating an Application . 408

Production Redeployment Strategies . 409
Performing a Production Redeployment . 410

Summary . 413

 9 Managing WebLogic Server Security . 415
Java EE Security and OPSS . 416

Java EE Security and WebLogic Server . 416
The Java Security Manager . 417
Oracle Platform Security Services . 417

WebLogic Server Security Basics . 419
WebLogic Server Resources . 419
Security Realms . 420
Security Providers . 420

Managing Security Realms . 422
Creating and Configuring a New Security Realm . 422
Configuring the Security Providers . 425
Exporting and Importing Security Data . 433
Caching Security Information . 435
Configuring Entitlements Caching . 435
Changing the Default Security Realm . 436
Reverting to an Older Security Configuration . 436

Users, Groups, Roles, and Security Policies . 437
Users . 438
Groups . 439
Security Roles . 440

Contents xvii

Configuring Security Policies . 442
Static and Dynamic Security Conditions . 444

Security Models for Web Applications and EJBs . 444
The Deployment Descriptor Only Model . 444
The Custom Roles Model . 445
The Custom Roles and Policies Model . 445
The Advanced Model . 446
Security-Related Deployment Descriptors . 446

Configuring the Embedded LDAP Server . 447
Configuring an RDBMS as the Security Store . 449

Setting Up the RDBMS Security Store . 450
Creating Tables in the RDBMS Store . 451
Setting Up JMS Notifications for Security Changes . 451

Configuring Domain Security . 451
Configuring Domain Security in the Administration Console 451
Enabling Trust Between Domains . 456
Using Connection Filters . 457

Configuring SSL . 458
Configuring Identity and Trust . 458
Setting SSL Configuration Attributes . 465
Using the weblogic.management.username

and weblogic.management.password . 470
Oracle WebLogic Security Best Practices . 471

Use Multiple Administrative Users . 471
Control Access to WebLogic Resources . 471
Avoid Running the Server Under a Privileged Account 471
Enable Security Auditing . 472
Use Connection Filters . 472
Prevent Denial of Service Attacks . 472
Implement Security for Applications . 472

Summary . 474

 10 WebLogic Server Performance Tuning . 475
Tuning WebLogic Server . 476

Thread Management . 476
Tuning the Network I/O . 477

Tuning the JVM . 479
Understanding Memory Management . 479
Understanding Locking . 488

Tuning Messaging Applications . 488
Tuning the Persistent Store . 488
Tuning WebLogic JMS . 490
Tuning WebLogic JMS Store-and-Forward . 493

xviii Oracle WebLogic Server 12c Administration Handbook

Tuning the Applications and Managing Sessions . 493
Tuning Web Applications . 493
Using Oracle Coherence . 495
Tuning EJB Performance . 497
SQL Tuning Best Practices . 499
Managing Sessions . 500
JPA and TopLink . 500

Tuning Data Sources and Transactions . 501
Tuning Data Sources . 502
Tuning Transactions . 504

Summary . 504

 Index . 505

Acknowledgments

I owe the successful completion of this book to the help and contributions offered by
several people. I must first start with Paul Carlstroem, Senior Acquisitions Editor at
McGraw-Hill Education, for his consistent support, encouragement, and uplifting

comments throughout the writing of the this book. Paul is a great motivator who helped me
stay on course through a tough writing process.

Amanda Russell, Editorial Coordinator, has been simply outstanding in the way she has
managed this project from day one. Amanda’s excellent project management skills and her
support and understanding throughout the past several months made for an enjoyable
writing project.

Although they weren’t directly involved in the publication of this book, Tim Green and
Wendy Rinaldi of McGraw-Hill have been extremely supportive and encouraged my writing
projects for many years now. I owe both a deep debt of gratitude—I can repay their support
by writing more books for them!

Scott Gossett did a superb job of carefully tech editing the entire book. Scott—thank
you for all your hard work—as a result of your hard work in going through all the code,
commands, and the screenshots in this book, I know things work as explained in this book!

The biggest personal thanks I owe to my family. I’d like to thank Valerie for all of her
kind support throughout the course of writing this book. The twins, Nina (thank you again
for your help with some of the figures in the book!) and Nicholas, and Shannon have been
just as good as ever while I was busy writing away at home almost throughout this whole
year (2013). Although I don’t see them all the time, Keith, Shawn, and Dale have always
been supportive and I wish to thank them. My biggest supporters and well wishers are my
dear parents and brothers (and their families!), who have been a source of joy and
happiness to me my entire life. I’d like to thank my father, Appa Rao; my mother, Swarna
Kumari; my brothers, Siva Sankara Prasad and Hari Hara Prasad; as well as the rest of my
family, Aruna, Vanaja, Ashwin, Teja, Aparna, and Soumya, for their support, affection, and
kindness throughout my life.

xix

This page intentionally left blank

Introduction

The main purpose of using Oracle WebLogic Server 12c is to deploy web
applications. This book shows you how to install, configure, and manage Oracle
WebLogic Server 12c, as well as how to deploy web applications with it and tune

the performance of those applications. Oracle WebLogic Server 12c is the market-leading
web application server and is fully compliant with the Java EE standards. The Java EE
platform specifies the requirements that enable the building and supporting of scalable,
secure, and robust enterprise Java applications. A Java EE–compliant web server provides all
the necessary enterprise services, such as security and transaction management, to all the
applications hosted by the application server. In addition, the applications must be built and
packaged according to strict specifications to maintain portability across other Java EE–
compliant web application servers. In fact, Oracle WebLogic Server offers several features
beyond those specified by the Java EE standard, enabling you to build powerful enterprise
solutions that make use of the latest technology.

Oracle WebLogic Server 12c, at its simplest, is just a Java program that supports a large
number of essential services for running Java EE–based applications. By taking advantage of
the services offered by the application server, Java applications don’t have to worry about
configuring database access, caching and concurrency, transaction management, security
and messaging, and a bunch of other services necessary to support those applications.
Because WebLogic Server and its various tools are Java programs, they run on all operating
system platforms. In this book, I use a Windows 7 platform to explain how to manage and
administer the Oracle WebLogic Server 12c. I use the Oracle WebLogic Server 12c (12.1.2)
release, which was the latest version available during the writing of this book.

Oracle WebLogic Server 12c is the leading enterprise-ready Java Platform, Enterprise
Edition (Java EE) application server. You can deploy just about any type of distributed
application with WebLogic Server, including applications based on Service-Oriented
Architecture (SOA). WebLogic Server provides a complete implementation of the Java EE 6
specification, which includes a rich set of APIs for creating distributed Java applications that

xxi

xxii Oracle WebLogic Server 12c Administration Handbook

let you access databases, messaging services, and external enterprise systems. WebLogic Server
provides a comprehensive set of services for supporting Java EE applications based on
standardized, modular components. Through its clustering capabilities, WebLogic Server enables
enterprises to deploy mission-critical applications in a scalable and highly available environment.
Oracle WebLogic Server 11g and Oracle WebLogic Server 12c have introduced several new
diagnostic tools that allow system administrators to tune and monitor both the server
environments as well as the deployed applications. Sophisticated security features protect access
to services and secure data, and guard against attacks.

Although installing Oracle WebLogic Server 12c is easy, as is running web applications with
it, at its heart it is an immensely complex application. The Oracle WebLogic Server 12c
documentation is mostly complete and helpful, but it is humongous, and beginning WebLogic
Server administrators often find it difficult to get the information they need to perform various
tasks. The beginning user is often bewildered by the sheer number of new concepts he or she
must assimilate in order to manage Oracle WebLogic Server 12c with confidence. Entire books
can be written on individual topics such as WebLogic Server security. This book aims to clear the
waters and provide the user with a way to understand basic WebLogic Server concepts such as
configuration and administration of the server instances, deployment of web applications,
security, performance, and many others.

Audience for This Book
Many books on architecting Java EE applications and writing Java code are available, but there are
only two or so on configuring and managing Oracle WebLogic Server 12c. This book aims to take
a beginning WebLogic Server user or administrator further than the rest of the books by providing
both a simple explanation of the concepts as well as systematic instructions for performing
numerous tasks that are part of WebLogic Server administration. Although Oracle’s documentation
is definitely a big help to users, having a single volume that explains key concepts and shows
step-by-step procedures for configuring and managing various WebLogic Server services such as
JMS and JDBC will be useful to many administrators and even some developers who need to
manage WebLogic Server instances.

This book is designed primarily for those professionals tasked with managing WebLogic Server
environments. These professionals may include full-time WebLogic Server administrators, other
middleware administrators, or database administrators who are responsible for WebLogic Server
installations. The book shows you how to create domains and deploy and migrate applications to
production, as well as how to optimize the run-time environment. Developers who need to
understand how WebLogic Server works and how to manage it in their environments will also
find this book useful. Experienced WebLogic Server administrators will also find quite a bit of
useful information in this book about newer topics such as the WebLogic Diagnostic Framework
(WLDF).

In addition to providing a guide for WebLogic Server administrators, the book also serves as a
handbook for developers and architects who work with WebLogic Server. For developers, the
most useful topics might be how to manage the WebLogic Server instances, deploy applications,
and configure connections to the database and other resources, whereas for architects, key topics
might be WebLogic Server architecture, clustering, high availability, security, and performance
tuning.

This book doesn’t assume any prior knowledge of WebLogic Server or any other application
server. It starts with the very basics and builds from there. Obviously, if you know a bit of the Java

Introduction xxiii

programming language and something about Java EE applications, you’ll find it easier to work
with middleware such as WebLogic Server.

Unlike normal web servers, a web application server such as Oracle WebLogic Server 12c
hosts business logic for applications. A web application server not only hosts the web applications
and web services you “deploy,” but also provides you with a managed environment that handles
transactions, database connections, messaging, security, and other tasks necessary for applications
to do their jobs.

The book starts by describing basic Oracle WebLogic Server 12c concepts and terminology.
Subsequent chapters explain how to manage WebLogic Server and how to configure domains.
You’ll learn how to configure custom networks, as well as JMS, JDBC, and JTA. You’ll also learn
how to diagnose problems by effectively using the powerful WebLogic Diagnostic Framework.

You’ll learn how to create and manage domains, deploy applications in development and
production environments, and how to secure your applications and the WebLogic Server
environment. The book shows you how to manage the memory allocations to the server and how
to diagnose and troubleshoot server performance issues using various techniques.

WebLogic Server is a huge, complex topic with numerous facets. The goal of this book is to
make the task of WebLogic Server management easier by providing you the essentials of just
about every important concept and technique you need to understand in order to manage
WebLogic Server successfully.

The Background You Need
Because Oracle WebLogic Server deals with the support of Java-based web applications, the more
you know about the Java EE platform, the better. The book doesn’t actually require you to have
any Java EE background—while some web application users may come from programming
backgrounds, others don’t. Therefore, the book assumes no Java programming knowledge on your
behalf. This introduction to the book also provides a brief summary of the key Java EE application
modules and applications that WebLogic Server hosts.

What the Book Covers
This book contains ten chapters, each of which provides a practical, hands-on explanation of a
different facet of Oracle WebLogic Server 12c administration and management. Here’s a synopsis
of the book’s contents:

Chapter 1 shows you how to install Oracle WebLogic Server 12c and provides an introduction to
the main WebLogic Server management tools: the Administration Console, the WebLogic
Scripting Tool (WLST), and the Node Manager.

Chapter 2 shows how to administer WebLogic Server instances and provides examples of the
various ways to start and stop servers, and the different stages of a server’s lifecycle.

Chapter 3 discusses the creation and configuration of WebLogic Server domains.

Chapter 4 introduces crucial WebLogic Server services such as JTA, JDBC, and JMS.

Chapter 5 shows how to configure key WebLogic Server features such as Work Managers and
custom network channels.

xxiv Oracle WebLogic Server 12c Administration Handbook

Chapter 6 introduces the WebLogic Diagnostic Framework and also discusses the various ways
you can monitor and troubleshoot a production system.

Chapter 7 shows you how to configure, create, and manage WebLogic Server clusters. You also
learn how to perform both manual and automatic whole server migration and service migration.

Chapter 8 explains WebLogic Server application deployment concepts, including production
deployment strategies to eliminate downtime during application deployment.

Chapter 9 introduces WebLogic Server security, including application and server security.

Chapter 10 offers a quick review of how to tune both WebLogic Server and the applications you
host on the servers.

To really get what a web application server does, you need to understand the key components
of Java EE applications, which I explain in the next section.

A Quick Introduction to Java EE Applications
You use Oracle WebLogic Server 12c to deploy web applications. Oracle WebLogic Server 12c
implements the Java Platform, Enterprise Edition (Java EE) version 5.0 technologies. Java EE is a
standard platform for developing enterprise Java applications, and all Java EE applications follow a
standardized modular component architecture. WebLogic Server provides supporting services for
these applications, so you don’t have to program these services for each of your applications.
Oracle WebLogic Server 12c supports all the Java EE applications and modules you wish to
develop and run. These could be enterprise applications or web application modules such as
servlets or JavaServer Pages (JSPs). The following sections describe each of the applications and
modules supported by Oracle WebLogic Server 12c.

Web Application Modules
At its simplest, a web application can be just one servlet or JavaServer Page. A servlet is a Java
program frequently used to generate dynamic web pages in response to client requests. JavaServer
Pages are HTML-coded web pages that are translated or compiled into servlets. Note that both
servlets and JSPs may need additional Java code called helper classes, which are deployed with
the application.

Enterprise JavaBean Modules
Enterprise JavaBean (EJB) modules are server-side Java modules that implement business logic.
There are three types of EJBs—session beans, entity beans, and message-driven beans—and they
are defined here:

 � Session beans These are used by a single client to execute a specific task and are
nonpersistent; once they perform the tasks, they simply go away.

 � Entity beans These are persistent beans that represent business objects based on a data
store such as an Oracle database. Multiple clients can use the same entity bean.

 � Message-driven beans These aren’t associated with clients—rather, they handle messages
and, in response to messages, assign instances of themselves to process messages.

Introduction xxv

Connector Modules
Connector modules, also known as resource adapters, enable Java EE applications to access a
remote enterprise information system (EIS). You can use an EJB or a web application module such
as a servlet or JSP to access EIS data and business logic.

Enterprise Applications
An enterprise application consists of one or more EJBs, web application modules, or connecter
modules (resource adapters).

WebLogic Web Services
Web services are, simply put, web applications that deal with other applications, mainly located
in the back end, such as CRM and order-processing applications. They don’t interface with clients
directly, as most web application modules such as EJBs and JSPs do. In the previous section, I
defined an enterprise application as consisting of one or more EJBs, web application modules, or
connector modules. You can also look at web services as another type of web application.

You can view the JSPs and servlets as supporting the presentation layer, and the EJBs and web
services as supporting the business layer. JDBC and Java EE Connectors provide the back-end
layer Java EE programming architectures. I understand that the introduction to web applications
provided here is cursory, but once again, I’d like to remind you that the focus of this book is really
on how to install, configure, manage, secure, and tune WebLogic Server—topics that are all
explained in the following chapters!

This page intentionally left blank

CHAPTER
1

Installing Oracle WebLogic
Server 12c and Using the

Management Tools

2 Oracle WebLogic Server 12c Administration Handbook

The introduction to this book provided a quick outline of the Java Enterprise Edition (Java EE)
and the nature of web applications for which you use Oracle WebLogic Server 12c. Since
the primary goal of this book is for you to understand how to administer Oracle WebLogic

Server 12c, let’s begin by discussing key administration topics such as installing and upgrading
Oracle WebLogic Server and becoming familiar with the administration tools you use day in and
day out to manage the server. There are three major administrative tools that are going to be your
day-to-day companions when managing Oracle WebLogic Server 12c: the Administration
Console, the Node Manager utility, and the WebLogic Scripting Tool (WLST), which is based on
the open source Jython language. This chapter briefly introduces these tools, and you’ll learn how
to use all three of these tools, as well as other WebLogic Server (this term is used as a synonym for
Oracle WebLogic Server 12c throughout the rest of this book) management commands, in later
chapters. In this and the next chapter, I make extensive use of the sample Oracle WebLogic Server
12c applications that you can install to learn various administrative and deployment-related
concepts. This chapter introduces the Oracle WebLogic Server 12c sample domains that host the
sample applications. This and other chapters use the sample domains to explain various Oracle
WebLogic Server 12c management concepts. Before we start reviewing the installation,
upgrading, and management of Oracle WebLogic Server 12c, however, let’s review the Oracle
WebLogic Server 12c product set as well as key terminology and important architectural concepts
that illustrate how Oracle WebLogic Server 12c functions.

Oracle WebLogic Server: An Overview
Before you learn how to install, upgrade, and manage Oracle WebLogic Server, let’s quickly
review the set of Oracle WebLogic Server 12c products. Following that is a brief summary of key
terminology that will help you understand the components of an Oracle WebLogic Server 12c
domain, a collection of Oracle WebLogic Server instances and related resources and services that
are managed together as a single unit.

Oracle WebLogic Server 12c Product Set
Oracle WebLogic Server 12c is a component of Oracle Fusion Middleware 12c, which consists of
several Oracle products that span business intelligence, collaboration tools, content management,
and integration services. The underlying application server supporting these middleware
applications is Oracle WebLogic Server 12c. Products such as Oracle SOA Suite and Oracle
Fusion applications rely on Oracle WebLogic Server 12c to run their code.

Oracle offers three distinct products as part of the Oracle WebLogic Server 12c application family:

 � Oracle WebLogic Server Standard Edition (SE)

 � Oracle WebLogic Server Enterprise Edition (EE)

 � Oracle WebLogic Suite

Oracle WebLogic Server Standard Edition
The Oracle WebLogic Server Standard Edition (SE) is a full-featured application server, targeted for
developers to aid in getting enterprise applications up and running quickly. Oracle WebLogic
Server SE implements all the Java EE standards and offers management capabilities through the
Administration Console.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 3

Oracle WebLogic Server Enterprise Edition
Oracle WebLogic Server EE is the core application server designed for mission-critical
applications that require high availability and advanced diagnostic capabilities. The EE version
contains all the features of the SE version, of course, but in addition supports clustering of servers
for high availability and the ability to manage multiple domains, plus various diagnostic tools.

Oracle WebLogic Suite
Oracle WebLogic Suite integrates the core WebLogic Server application server within the Oracle
WebLogic Suite Java Infrastructure. The Oracle WebLogic Suite offers support for dynamic scale-
out applications with features such as in-memory data grid technology and comprehensive
management capabilities. It consists of the following components:

 � Oracle WebLogic Server EE

 � Oracle Coherence (provides in-memory caching)

 � Oracle Top Link (provides persistence functionality)

This book deals exclusively with the Oracle WebLogic Server EE 12c product. (I refer to it
simply as WebLogic Server in the rest of the book.) You manage WebLogic Server essentially the
same way regardless of the operating system it is running on. This book uses examples run on a
Windows installation of WebLogic Server; however, where necessary or relevant, certain tasks or
commands are also shown for UNIX/Linux-based systems.

NOTE
WebLogic Server uses a configured pool of JDBC connections to
interact with databases. You can use any RDBMS that supports a JDBC
2.0–compliant driver. This includes Oracle, IBM DB2, Microsoft SQL
Server, MySQL, and other databases. The WebLogic Server installation
includes an embedded database called Apache Derby. (Previously,
Oracle shipped a different database by the name of PointBase.)

Terminology
Before we delve into the administration of WebLogic Server, I want to make sure you clearly
understand the key terminology you’re going to encounter throughout the book. Some of the
WebLogic Server terms and definitions are obvious, but others aren’t, such as the concept of a
machine, for example.

WebLogic Server Instance
A WebLogic Server instance is a Java Virtual Machine (JVM) process that runs the Java code. The
instance is the actively working component, receiving client requests and sending them on to
the appropriate components, and sending the processed requests back to the originating clients.
The server instance manages the resources necessary for applications, such as the JTA and JDBC
services, to function. In each domain (to be explained in the following section), one instance
serves as the Administration Server, which is your primary means of managing the domain. The
rest of the WebLogic Server instances in a domain are called Managed Servers. If you have a
domain with just one WebLogic Server instance, as is the case in a development environment, the
single server instance functions as both the Administration Server and the Managed Server. Note
that the terms WebLogic Server and WebLogic instance are often used interchangeably.

www.allitebooks.com

http://www.allitebooks.org

4 Oracle WebLogic Server 12c Administration Handbook

WebLogic Server Domain
A domain is a set of WebLogic Server instances (managed servers) that you manage with the
Administration Server, which itself is nothing but another WebLogic Server instance, albeit a
special one. Any configuration changes you make to a domain will apply to all members of that
domain. Domains offer you ease of administration—for example, you can apply configuration
changes on a domain-wide basis that apply to all the management servers that belong to that
domain. Every domain has exactly one Administration Server, which is used to configure and
manage that domain. In addition to the WebLogic Server instances, a domain also includes the
application components that you deploy, as well as all the services required by the server instances
of that domain. The Administration Server is usually referred to as the Admin Server for short.

A domain offers you the administrative ease you need to manage your WebLogic
environment. A domain encompasses the Admin Server, Managed Servers (including those
configured into WebLogic clusters), machines (servers), and all the services necessary to run your
applications. The fact that a domain includes all the configuration data for the servers,
deployments, and the physical network makes it easy to configure and manage complex,
geographically dispersed WebLogic Server deployments. A domain lets you simultaneously
deploy applications across multiple WebLogic Server instances located on heterogeneous servers
and various networks, with different physical and network descriptions. Administering a domain
makes it possible for you to configure high availability with the help of multiple WebLogic Server
instances and administer various services spread across heterogeneous host servers.

The first step in using Oracle WebLogic Server to deploy applications is to create a domain. As
mentioned earlier, a domain can just consist of a single Admin Server, with no Managed Servers at
all, as is common in a development environment. A production cluster ranges over several physical
machines to provide high availability and failover protection, but you can also configure a cluster
on a single server for testing and development purposes. WebLogic Server stores the configuration
information for a domain in the config.xml file, which is stored on the machine where the Admin
Server runs and serves as the domain’s configuration file. The domain also contains security settings,
log files, and startup scripts for the Admin and Managed Servers that belong to that domain. The
WebLogic Configuration Wizard and the WebLogic Domain Wizard offer you extremely easy ways
to create domains, as well as the servers and clusters that belong to that domain.

NOTE
Each Managed Server contains a local copy of its domain
configuration. Upon startup, it synchronizes its configuration with
the Admin Server. Similarly, when you make domain configuration
changes on the Admin Server, those changes are propagated to the
Managed Server’s configuration.

Administration Server
A server is an instance of WebLogic Server that runs in its own JVM, and the Administration (or
Admin) Server is a special instance of WebLogic Server designed for managing the domain rather
than running applications. There is a one-to-one relationship between domains and the Admin
Server—an Admin Server belonging to Domain A can’t manage Domain B.

You can deploy applications on the Admin Server, but unless you’re operating in a purely
developmental environment, use the Admin Server strictly for performing management tasks, not
for deploying any applications. Although you can deploy applications on the Admin Server in a

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 5

development environment, it’s a best practice not to do so in a production environment. For one
thing, you don’t want application work to compete with administrative work in a production
environment. You also want to firewall the Admin Server separately so external clients can’t access it.

The Admin Server is critical to the functioning of a WebLogic Server domain because it
manages the domain configuration, including the servers that are part of the domain, as well as
all the applications and services you deploy to the various servers. Apart from this management of
the domain configuration information, the Admin Server has all of the functionality of a Managed
Server; in fact, an Admin Server runs the same code and is managed internally the same way as a
Managed Server. The Admin Server hosts the Administration Console, which is a web application
front end used for configuring, monitoring, and managing a domain. You can access the
Administration Console with any supported browser that can access the Admin Server. All
WebLogic system administration tools and APIs interact with the Admin Server. If you install the
optional Node Manager service, the Admin Server communicates with the Node Manager service
on each machine to talk to the Managed Servers running on that machine.

Managed Server
Managed Servers are the workhorses of WebLogic Server. Any additional servers you create after
the creation of the default Admin Server are Managed Servers. The Managed Server contacts the
Admin Server upon startup, to get its configuration and deployment settings. For this reason, you
should always start the Admin Server before you start a Managed Server. Once a Managed Server
starts running, it operates completely independently from the Admin Server.

Although you can deploy a Java EE application to the Admin Server itself, the recommended
approach is to deploy applications to the Managed Servers. In a production environment, it’s
common to run multiple Managed Servers as part of a cluster. A Managed Server hosts your Java EE
applications, as well as all related resources and services such as Java Database Connectivity (JDBC)
connection pools and data sources, Java Transaction API (JTA) transaction services, and Java
Messaging Service (JMS) connection factories that are necessary to support application deployments.
On startup, a Managed Server contacts the Admin Server to retrieve any configuration changes since
the Managed Server was last shut down. A Managed Server can continue to run, however, and it’s
even possible to start it in the absence of an Admin Server. Chapter 2 shows how you can start a
Managed Server without a running Admin Server, in the special Managed Server Independence
(MSI) mode. The MSI mode is enabled by default, and it allows the Managed Server to start using its
locally cached configuration without having to contact the Admin Server for this information.

WebLogic Server Cluster
A WebLogic Server cluster is a group of WebLogic Server instances consisting of multiple
Managed Servers that run simultaneously. The multiple Managed Servers work together to
provide replication services for one another, and the Admin Server isn’t generally a part of any
cluster. Most production deployments use clusters to increase reliability and scalability through
load distribution and high availability. To achieve the high availability capability, you deploy
resources and services in a homogeneous fashion on each of the Managed Servers that are part
of a cluster. Clusters host applications that respond to HTTP requests that are routed to the
cluster through a hardware load balancer. You can also set up load balancing on a WebLogic
Server instance or a third-party web server with the help of plug-ins supplied by WebLogic
Server. The load balancer handles the HTTP requests after the requests pass through a firewall.
Cluster members pass replicated copies of objects such as HTTP sessions among themselves to
provide the failover capability for the cluster.

6 Oracle WebLogic Server 12c Administration Handbook

NOTE
The simplest domain will consist of just one server—the Admin Server. In a
development environment, you can sometimes get by with such a simple
setup and host all applications directly on the Admin Server without using
a Managed Server or a cluster comprising several Managed Servers.

A WebLogic Server domain can consist of multiple Managed Servers that either are or are not
part of a cluster, or it can consist of multiple clusters—just remember that even if you have multiple
Managed Servers in a domain, you can avail yourself of WebLogic Server’s high availability and
load-balancing features only by deploying a cluster of servers. High availability lets you continue
serving clients even when you experience a failure, such as a machine or WebLogic Server failure.
WebLogic Server offers you many powerful features, including replication, failover, and the ability
to migrate services so you have high availability for your system. Clusters provide load-balancing
capabilities by letting you spread requests across the cluster members. Clusters also offer scalability
by letting you easily add additional servers to the cluster to accommodate increased demand for
WebLogic Server services. The important thing to understand here is that the cluster automatically
provides these capabilities, so your users won’t have to experience service disruptions. Each
WebLogic domain may consist of multiple Java EE resources, such as JDBC connection pools and
JMS servers, which the domain makes available to all the applications it hosts. Note that domain
resources, like a JDBC connection pool, aren’t shared across domains—each WebLogic domain
must create its own set of resources. This requirement applies when dealing with clusters as well,
which are treated as domain resources. A cluster’s Managed Servers thus can’t overlap domains and
belong to more than one domain at the same time. Therefore, whenever you perform a failover
within a cluster, you can fail over from one Managed Server to another Managed Server within the
same domain but not to a Managed Server that belongs to a different domain.

How does one design a domain? Once you satisfy the simple requirement that you must
install the same version of WebLogic Server for all the Managed Server instances in a cluster, it’s
easy to design a cluster. Although a WebLogic Server cluster can run entirely on a single machine,
to take advantage of the high availability features, a cluster’s member servers are typically
installed on two or more physical machines. To increase a cluster’s capacity, you can either add
more Managed Server instances to the existing cluster architecture, or you can add more physical
machines to the cluster, with the additional machines hosting new Managed Server instances, of
course. Managed Servers can serve as backups for services such as JTA and JMS that another
Managed Server in the same cluster hosts.

There’s really no hard and fast rule for organizing your domains; one way to organize domains
is to create separate domains to handle different types of work. For example, you can have one
domain dedicated to online shopping and another to support your internal e-business operations. In
general, you design domains based on your service needs, security requirements, and management
considerations. You can also create separate domains for physically separate business locations.

It’s sometimes easy to get confused as to how a cluster relates to a domain. Just remember that
a domain is simply a set of WebLogic Server instances, some of which may be clustered and some
not, and that a domain can contain multiple clusters.

Coherence Cluster
A domain may also include Coherence Clusters, which are groups of cluster nodes that share a
group address to facilitate communication among the nodes. In addition, a WebLogic Server
domain may also include a Managed Coherence Cluster, which is any WebLogic Managed Server
assigned to a Coherence Cluster.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 7

Machine
A machine in the WebLogic Server context is the logical representation of the computer that hosts
one or more WebLogic Server instances (servers). The Admin Server uses the machine definitions
that you create to start remote servers through the Node Managers that run on those servers. A
machine could be a physical or virtual server that hosts an Admin or Managed Server that belongs
to a domain. You’ll see later in the book that you must define a machine first if you want the
Admin Server to use the Node Manager service to monitor, start, and stop the Managed Servers
running on a server. In a sense, a machine in a WebLogic Server environment is more or less
equivalent to an instance of a Node Manager, and this is essentially the concept that a machine
represents. WebLogic clusters make use of the machines you define in order to decide the optimal
way to replicate session data on a different server that is part of a cluster.

Network Channels
Network channels are an optional feature that allows you to separate different classes of network
traffic. You can make use of separate network channels to separate server and client traffic and direct
it to different listening ports or addresses. If you need to allow both secure and nonsecure traffic on
the same server, you can create multiple channels to support the diverse traffic with different
security protocols. You can also use network channels to manage quality of service by using
weighted, value-based priorities for different channels. This enables you to assign high-weighted
values to faster channels that use faster network interface cards and dedicate them to the types of
traffic that require faster throughput, for example. Network channels control all communication-
related aspects such as listen addresses, protocols, and port numbers throughout the domain.

Node Manager
The Node Manager is an optional process that runs on a machine and manages the availability of
all servers that run on that machine. Node Managers help you remotely start, stop, suspend, and
restart Managed Servers. The Node Manager works with the Admin Server using a secure channel
and lets you manage the availability, as well as monitor the health, of all Managed Servers in a
single domain. The Managed Servers that the Node Manager controls can be independent servers
or they can be members of a cluster. The Node Manager monitors remote Managed Servers and is
capable of automatically restarting them when they fail. It also kills Managed Servers that exhibit
unstable behavior. It is recommended that you install a Node Manager service on each machine
that hosts a Managed Server. Managing the servers with Node Manager is actually a key
requirement for configuring automatic server migration in a cluster following a server failure, as
explained in Chapter 7. In Chapter 2, I explain how you can use Node Manager and the
WebLogic Scripting Tool (WLST) together to perform various administrative tasks.

Virtual Host
A virtual host relies on the Domain Name System (DNS) to map hostnames to the IP address of a
single server or a cluster of servers. By doing so, multiple domain names can be hosted on your
server wherein different web applications can be assigned to different virtual hosts, effectively
sharing all resources and being differentiated only by their hostnames.

Work Manager
A Work Manager helps you manage the WebLogic Server instance workload, specifically by letting
you prioritize work execution, which you do by defining request classes and constraints. You can
configure a Work Manager at the domain level (using a global Work Manager) or at the application
or module level.

8 Oracle WebLogic Server 12c Administration Handbook

Services
Following are some of the main services used in a WebLogic environment:

 � JDBC (Java Database Connectivity) enables Java programs to handle database connections
established through connection pools.

 � JMS (Java Messaging Service) is a standard API that enables applications to communicate
through enterprise messaging systems.

 � JTA (Java Transaction API) specifies standard Java interfaces between transaction managers
and the parties in a distributed transaction system.

TIP
You can create Jolt Connection Pools to enable your applications
to connect to Oracle Tuxedo domains. Jolt clients will then manage
requests from your applications to the Oracle Tuxedo Services.

Deployment
When you want to make a Java EE application or a stand-alone application module available to
users, you must first install those applications and modules in a WebLogic domain. Once you
install the applications and modules, you must start those so the applications can begin processing
user requests. Deployment is the process of installing the applications or modules and starting them
so they are available to clients. Developers package applications for delivery to administrators, who
then deploy the applications to WebLogic Server instances or clusters. Chapter 8 shows the various
ways in which you can deploy applications to development and production environments by using
the Administration Console, WLST, and the weblogic.Deployer utility.

NOTE
Oracle WebLogic Server 12c fully supports Oracle Real Application
Clusters (RAC). Chapter 4 shows you how to configure data sources to
connect to Oracle RAC database services.

Security Realm
You use security realms to protect WebLogic Server resources. A security realm is simply a logical
container for your users, groups, roles, security policies, and security providers. It’s the security
realm that authenticates users and determines which resources they can access. WebLogic Server
uses a default security realm named myrealm. In the default security realm, the Admin Server
stores the domain security data in an LDAP server, but you can also choose an RDBMS store for
this instead. The Managed Servers replicate this LDAP server, and when the Admin Server fails, it
can use their copy of the LDAP server for providing security services to the deployed applications.

When you create a domain, the username/password credentials you provide are used by the
Configuration Wizard to seed the security realm myrealm. The username you provide will be the
initial administrative user in myrealm. When you start WebLogic Server, it uses the default security
realm to authenticate usernames. You can configure the server to use other security realms, but
you must always specify one of them as the default security realm.

If these simple definitions of the key WebLogic Server terminology don’t satisfy your curiosity,
not to worry—subsequent chapters discuss all these entities in great detail!

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 9

Important WebLogic Server Concepts
In order to fully comprehend how WebLogic Server works and to get the best performance out of
it, it’s important to understand several concepts. The most significant concepts are discussed in the
following section.

Execute Threads and Queues
Understanding the internal architecture of Oracle WebLogic Server is important, particularly in
terms of knowing how the server performs its work of satisfying user requests. When a client
sends a request to WebLogic Server, the actual work to satisfy that request is performed by a Java
thread called an execute thread. A user can submit work to WebLogic Server using an HTTP-
based request to the servlet engine or a request for Remote Method Invocation (RMI) access to
objects such as Enterprise JavaBeans (EJBs). When a server process starts, it binds itself to a port
and assigns a listen thread to the port to listen for incoming requests. Once the request makes a
connection, the server passes control of that connection to the socket muxer. The socket muxer
reads requests off the socket and places the work requests into the self-tuning execute queue as
they arrive. An idle execute thread will pick up a request from the execute queue and may, in
turn, hand off the job of responding to those requests to special threads. The execute thread
executes the requests and returns the responses.

Oracle WebLogic Server uses socket muxers, which are software modules, to read incoming
requests on the server. Muxers read messages from the network, bundle them into a package of
work, and queue them to the Work Manager, which then finds a thread on which to execute the
work and makes sure the response gets back to the same socket from which the request came.
There are two types of muxers—a Java muxer and a native muxer. A Java muxer uses pure Java to
read data from the sockets, whereas the native muxers use platform-specific native binaries. By
default, Oracle WebLogic Server uses the native muxer. This means that the Enable Native IOP
parameter for the server is set to the value SELECTED. Note that with a native muxer, the server
creates a fixed number of threads to read incoming requests, whereas with a Java muxer you can
configure the number of threads in the Administration Console by modifying the Percent Socket
Readers parameter. The native muxer allocates a certain percentage of the server threads to act as
socket reader threads, which perform the pooling function, while the rest of the server threads are
busy processing client requests. In general, you need to be careful about changing the number of
socket reader threads. In many cases, the best optimization is to set it to 1.

You can tell if you’re using a native muxer or a Java muxer by looking at the messages that
involve the execute thread. If you’re using the native muxer, the server error messages will refer to
it as weblogic.socket.EPollSocketMuxer, whereas if you’re using the Java muxer, you’ll see
weblogic.socket.SocketMuxer instead. Note that the EPollSockerMuxer is associated only with a
JRockit JVM operating on a Linux server. You’ll see the word poll in the case of a native muxer
because it uses a polling mechanism to query a socket for data. Native muxers are seen as
providing superior performance, especially when scaling up to large user bases, because they
implement a nonblocking thread model. When administering WebLogic Server instances, you’ll
frequently encounter the so-called stuck thread situation, which occurs when a thread isn’t
returned to the thread pool within the timeframe you set for it (the default is 10 minutes).
Resolution of stuck threads is a key component of WebLogic Server troubleshooting, and you’ll
notice that Oracle Support often asks for several server thread dumps when you open a service
request. Chapter 6 shows you how to take a thread dump and analyze many performance issues
on your own by identifying the resource contention leading to the stuck thread situation.

10 Oracle WebLogic Server 12c Administration Handbook

Implementing the JMX API and MBeans
WebLogic Server implements the system administration infrastructure with Oracle’s Java
Management Extensions (JMX). Implementing the JMX API involves using Java MBeans (managed
beans) to model system administration tasks. If you understand MBeans and the JMX API, you can
use them to create your own custom management tools. However, all administrative tools, such
as the Administration Console, use the same MBeans and JMX API, so you don’t have to reinvent
the wheel by creating custom management tools. Although a WebLogic Server administrator
doesn’t need to know how to program the JMX API, it helps to understand the different types of
MBeans and how the JMX API interacts with them.

WebLogic Server uses two basic types of MBeans—configuration MBeans and runtime
MBeans—to configure, monitor, and manage the server and its resources.

 � Configuration MBeans contain the configuration information for servers and resources
that is stored in the domain’s configuration files such as the config.xml file and other XML
files. These are persistent MBeans, and the domain’s configuration file, config.xml, stores
the attribute values for these MBeans. Whenever you change a configuration attribute
using a system administration tool such as the Admin Server, those changes persist in the
config.xml file. Configuration values can also be set by modifying the startup scripts and
adding additional arguments via the -D option in the Java startup command. The config.
xml file automatically gets updated when you change any configuration settings. When a
Managed Server starts, it contacts the Admin Server and gets a copy of the configuration
details, which it stores in memory as configuration MBeans. Thus, all server instances in a
domain have the same in-memory representation of the domain’s configuration. Note that
any attributes you change when starting a Managed Server won’t affect the config.xml file,
which is modified only if you change an attribute value on the Admin Server. When you
shut down a server instance, all configuration MBeans hosted by that server are destroyed.

 � Runtime MBeans help you monitor running server instances and contain attributes that
hold run-time information for server instances and applications. Each of the server’s
resources updates the relevant runtime MBean following a change in its state. For
example, the ServerRuntimeMBean is instantiated by the server when it starts and
contains the run-time data for the server. Runtime MBeans consist only of run-time
data and nothing else, and when you shut down the server, the run-time statistics in the
ServerRuntimeMBean are destroyed, as is the case with all the other runtime MBeans.

MBean Servers act as containers for the various MBeans, and the servers create and provide
access to the MBeans. Oracle provides three types of MBean Servers. The Admin Server hosts an
instance of the Domain Runtime MBean Server, which manages the MBeans for domain-wide
services. Both Managed Servers and the Admin Server host an instance of the Runtime MBean
Server, which lets you configure server instances. The Admin Server also hosts the Edit MBean
Server, which manages pending configuration changes. The Admin and the Managed Servers also
can optionally host the JVM’s Platform MBean Server, which controls MBeans that contain
monitoring information for the JDK.

You can change most domain configuration attributes dynamically while the server instances
are running. In cases where dynamic configuration of an attribute isn’t possible, you must restart
the server instance. Run-time values of the attributes you configure will reflect your changes
immediately, and the values are persisted in the config.xml file.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 11

Development and Production Mode
By default, WebLogic Server domains run in development mode using Oracle’s Java Development
Kit (JDK). In this mode, auto-deployment of applications is enabled and the Admin Server creates
a boot.properties file automatically when you start it. You can also use the demo certificates for
Secure Sockets Layer (SSL) without any warnings from WebLogic Server. The development mode
is provided to get developers up and running quickly without having to worry about advanced
deployment, configuration, or security issues.

In production mode, WebLogic Server defaults to using JRockit as the default JDK. In addition,
you can’t use the auto-deployment feature in production, and WebLogic Server issues warnings if
you use the demo certificates for SSL. In production mode, you’re also prompted for usernames
and password when you start the instances.

It’s easy to toggle between development and production modes, and you learn how to in
Chapter 2.

Listen Ports and Listen Threads
Listen ports listen for connection requests, and, as connections come in, the listen thread assigned
by the server to the listen port accepts the connection requests, establishes connections, and
hands the requests over to the socket muxer.

By default, Oracle WebLogic Server uses two listen ports to listen to incoming requests for
connections. The first listen port, which I’ll call a normal listen port, accepts any type of request—
administrative as well as user requests. The normal listen port accepts connections from various
protocols such as HTTP, t3, IIOP, COM, LDAP, and SNMP. When you start a WebLogic Server
instance, it starts listening on two different ports. The first one is a normal plaintext port, and the
second is an SSL listen port that also accepts requests for connections from clients over protocols
such as HTTPS, t3s, IIOPS, COMS, and LDAPS.

The second listen port is called an administration port. When you configure an administration
port, the requests must use SSL, at which point you won’t be able to direct any administrative
requests to the normal port. Here’s an informational message from the server when it starts. The
message shows the two default listen ports in action:

<May 25, 2013 11:05:23 AM CDT> <Notice> <Server> <BEA-002613> <Channel
"Default" is now listening on 192.168.123.113:7001
for protocols iiop, t3, ldap, snmp,http.>
<May 25, 2013 11:05:23 AM CDT> <Notice> <Server> <BEA-002613> <Channel
"DefaultSecure[3]" is now listening on 192.168.232.1:7002 for protocols iiops,
t3s, ldaps, https.>

Although using the administration port is optional, note that you can start a server in the
standby mode only if you use an administration port. In standby mode, the normal port will be
unavailable, so you must use the administration port to manage the server. In addition, having
two separate ports—one for administrative operations and the other for the application traffic—
prevents a conflict between these two types of network traffic. In a production environment, you
can thus ensure that critical administrative operations, such as starting and stopping servers or
deploying applications, don’t compete with the application traffic. The administration port accepts
only secure SSL traffic, so all connections through this port will have to be authenticated. Note
that only administrative users can authenticate on the administration port, and no administrative
traffic is rejected on non-admin ports when you enable the administration port.

12 Oracle WebLogic Server 12c Administration Handbook

Choosing a JVM
To run Oracle WebLogic Server, you need a Java Virtual Machine (JVM). Oracle offers two types of
JVMs for you when you install Oracle WebLogic Server—the Sun HotSpot JVM and the Oracle
JRockit JVM. Oracle recommends that you use the JRockit JVM for production installations
because of the many benefits it offers, including higher performance, increased scalability, and
better manageability when compared to the Sun HotSpot JVM.

You configure the default JVM for a domain when creating a domain with the Configuration
Wizard or with the WebLogic Scripting Tool (WLST). Of course, you can reconfigure the choice of
a default JVM later on as well. If you choose Production Mode on the Configure Server Start
Mode and JDK page during the Configuration Wizard’s domain creation process, the choice of the
JVM will default to the JRockit SDK. If you select Development Mode, on the other hand, your
domain will be configured to use the Sun HotSpot SDK.

Changing the JVM after you create the domain is easy. Just set the JAVA_VENDOR environment
variable in the startWebLogic.cmd script (or the startWebLogic.sh script in UNIX), as shown here:

$ set JAVA_VENDOR=BEA /* For JRockit JVM
$ set JAVA_VENDOR=oracle /* for Oracle JVM

You can also set the value of the JAVA_VENDOR variable to Oracle in order to specify the
JRockit JVM. You can confirm the JVM version the server is using by viewing the command
window output after you start a WebLogic Server instance. Be sure to check the JRockit
documentation for vendor-specific options if you’re new to this JVM. You can use JRockit to run
any applications that were created with the Sun HotSpot JDK.

Using Web Server Plug-Ins
Although WebLogic Server comes with a built-in web server, you can also use a third-party web
server, such as the Apache HTTP Server, for example. Web servers can be used to field requests
for simple, static HTML content; but dynamic content, such as that delivered by Java web
applications developed as JSPs or servlets, are hosted on the WebLogic Server and the web server
routes requests for the dynamic content to WebLogic Server. The web server can use a WebLogic
proxy plug-in or the WebLogic Server–provided servlet named HTTPClusterServlet to direct
servlet and JSP requests to the cluster. You must configure HTTPClusterServlet as the default web
application on the proxy server machine if you want to use this instead of a proxy plug-in.

You can install a WebLogic plug-in on the web server, allowing it to talk to the applications
running on WebLogic Server. Your WebLogic Server installation comes with plug-ins for the
following web servers:

 � Apache HTTP Server

 � Microsoft Internet Information Server

 � Oracle Java System Web Server

You can use a proxy plug-in to proxy requests from the web server to the clustered WebLogic
Server instances to provide load-balancing and failover capabilities for those requests. You can
configure the Secure Sockets Layer (SSL) protocol to secure data exchanged between the Apache
HTTP Server Plug-In and WebLogic Server. Please refer to the Oracle WebLogic Server
documentation on WebLogic Server plug-ins for more details about the various available plug-ins.

Although you can use WebLogic Server for its capabilities in hosting dynamic enterprise-level
applications, you can also use it as a full-fledged web server capable of hosting high-volume web
sites and server-static HTML files, servlets, and JSPs.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 13

Management APIs
All the WebLogic Server administration tools and utilities you’ll use to manage WebLogic Server call on
various WebLogic application programming interfaces (APIs) to perform their tasks. Instead of relying
exclusively on the management tools, you can also make use of the rich offering of WebLogic APIs to
create your own custom management utilities. Here are brief descriptions of the key management APIs:

 � WebLogic Diagnostic Service APIs These APIs support monitoring of the servers and the
access and control of diagnostic data.

 � Java Management Extensions (JMX) JMX is a public standard that you can use for
monitoring and managing applications, devices, system objects, and service-oriented
networks. WebLogic Server uses JMX-based services to manage its resources.

 � Deployment API The deployment API enables the configuration and deployment of
applications.

 � Logging APIs Logging APIs help you write messages to log files and distribute those
messages. WebLogic Server offers both the standard JDK logging APIs as well as the
Jakarta-Log4J Project APIs.

 � Java EE Management API This API enables you to create tools to discover resources such
as connection pools and deployed applications.

Here are some things to note about the various management APIs:

 � They implement and usually extend the relevant Java specification. For example, the
deployment API implements the JSR-88 deployment specification.

 � They enable you to integrate management tasks with other tools that comply with the
same specification.

 � The WebLogic Server administration tools, such as the Administration Console, use these
APIs to perform various management tasks.

Installing Oracle WebLogic Server 12c
This section shows you how to install the latest release of WebLogic Server. As you’ll see, the
installation is remarkably easy. Of course, once you create your WebLogic Server domain, you’ll
need to configure it, and this could take a significant amount of time. Chapter 3 explains
WebLogic Server domain configuration.

Although the installation steps and screenshots pertain to a Windows installation, they’re
similar to the installation steps you need to follow for a UNIX or Linux installation, except for a
few operating system differences. All the scripts provided for starting and stopping the servers, for
example, come in two versions—a Windows and a UNIX version. So the counterpart in UNIX for
the Java Windows command script for starting a Managed Server, startManagedWebLogic.cmd, is
the startManagedWebLogic.sh script.

NOTE
You can download the WebLogic Server installation files from the
Oracle E-Delivery web site (http://edelivery.oracle.com) or from the
Oracle Technology Network (OTN) web site.

14 Oracle WebLogic Server 12c Administration Handbook

Oracle offers Oracle WebLogic Server zip distribution, as in previous releases for development
use, both for Windows and Linux (and Mac OS X) platforms. The zip distribution is intended purely
for WebLogic Server development, and you must not use this in production environments. You can
download both the generic installers and the zip distribution from the Oracle Technology Network
site. Neither the generic installer nor the zip distribution includes a JVM/JDK. You can download
installers with just Oracle WebLogic Server or one with Oracle Coherence and Oracle Enterprise
Pack for Eclipse as well. Although it has a smaller footprint than the full-deployment version, note
that the development-only installation doesn’t come with the web server plug-ins, the Sun HotSpot
or JRockit JDK, the sample applications, or the Derby database.

You can choose one of the following two generic self-extracting installer JARs for installing
Oracle WebLogic Server 12c on any platform:

 � wls_121200.jar Installs WebLogic Server and Coherence

 � fmw_infra_121200.jar Installs WebLogic Server, Coherence, and infrastructure
components for Fusion Middleware product platforms.

Let’s turn to how you install Oracle WebLogic Server on a Windows system.

Installation Prerequisites
The installation procedures explained here are for the Windows platform, and they’re mainly
designed to get a working installation of WebLogic Server up and running so you can play with it.
For example, the prerequisites for a basic installation require just 1GB of RAM and a 1 GHz
processor. As for disk space for the installation, it takes about 2GB for the entire installation
(including Oracle Coherence and Oracle Enterprise Pack for Eclipse). For actual production
implementations, you must refer to the appropriate requirements.

A key requirement is that you must have a Java Development Kit (JDK) installed prior to the
installation.

Installation Modes
There’s more than one way to install WebLogic Server. The first and easiest method is to use the
graphical mode, which is an interactive mode. The console mode is also an interactive mode, but
it is run from the command line. The silent mode is a noninteractive mode of installation, where
you can use a script or a text file when you need to install WebLogic Server on many hosts. The
example that follows uses the graphical mode to install WebLogic Server.

In most operating systems, the installer will also automatically install the Java run-time JDKs.
The two types of JDKs available are the Sun HotSpot JDK and the Oracle JRockit JDK. Oracle
recommends that you use the JRockit JDK in production environments.

In this book, the installer used is named wls_121200.jar. Unlike in the previous release,
WebLogic Server 12c doesn’t include a JDK. Make sure you already have a JDK or download one
from Oracle before you start the installation. You must do the following before you start the
installation of WebLogic Server:

 1. Install the JDK.

 2. Set the JAVA_HOME variable to the path of the JDK you’ve installed.

 3. Update the PATH environment variable to include both the JAVA_HOME and the JAVA_
HOME/bin directories.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 15

Installation Procedure
Follow these steps to install WebLogic Server:

 1. Execute the following command to extract the jar file you’ve downloaded from the Oracle
site and to launch the Oracle Fusion Middleware 12c Installer:

C:\Program Files\Java\jdk1.7.0_40\bin>java -jar c:\downloads\wls _121200.jar
Extracting files...

 2. On the Welcome screen, click Next to proceed with the installation.

 3. The Installation Location Screen lets you enter the location where you want to install
WebLogic Server. In this example, the location is C:\Oracle\Middleware. Click Next.

 4. On the Installation Type screen, you have three choices: the WebLogic Server Installation,
Coherence Installation, and Complete Installation. Select Complete Installation, as shown
here. Note that this also includes the Server Examples, which contain several sample
WebLogic Server domains that help you learn more about WebLogic Server application
development and deployment. In a production environment, do not install the Server
Examples, of course! Click Next.

 5. The Installation Summary shows all the products and features that will be installed. Click
Install once you review the product and feature list.

16 Oracle WebLogic Server 12c Administration Handbook

 6. The Prerequisite Checks page shows the status of the operating system certification check
and the checking of the Java version used to run the installer. Once these two checks are
successful, click Next.

 7. You’ll see the Installation Progress screen next, marking the progress of the installation.
When this screen shows 100% completed, as shown here, click Next.

 8. On the Installation Completed screen, you’ll see the following message at the bottom of
the screen:

Oracle WebLogic Installation Completed Successfully.

Click Finish.

Because you chose to install the WebLogic Server Examples (by selecting the Complete
Installation option), you’ll see an option on the Installation Complete screen to Automatically
Launch The Quick Start Configuration Wizard to configure the WebLogic Server sample domains.
This option is already prechecked, so you don’t need to do anything if you want the sample
domains to be created in the newly installed WebLogic Server installation. In a production
environment, you must uncheck the option to create the sample domains.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 17

For the sample domains, the SSL, Coherence, and Coherence Storage options are
preconfigured and enabled by default and you can’t change them. You must, however, specify the
following settings for the sample domains:

 � Administrative Server username/password

 � Domain and application parent directories

 � Listen port and listen address for the Administration Server

 � SSL listen port and the Coherence listen port (if applicable)

Once the Quick Start Configuration Wizard starts, enter a password for the WebLogic Server
on the first screen (shown here) and click Create.

The Configuration Progress screen that displays next indicates that three example
domains—wl_server, medrec, and medrec-spring—are generated by the Quick Start
Configuration Wizard. Click Next.

The Configuration Success page shows the domain and application home information and the
status for our three sample domains. Once you confirm that the status shows Successful for all
three sample domains, click Finish. The following illustration shows the Configuration Details,
indicating that all three of the sample domains have been successfully created. It also provides
domain and admin location and the connection URL to the Administration Server for each of the
three domains (remember that each WebLogic Server has its own separate Administration Server).

18 Oracle WebLogic Server 12c Administration Handbook

If you don’t use the Quick Start Configuration Wizard by launching it from the installer, you
must run the Configuration Wizard (or WLST) later on to configure the WebLogic sample
domains. If you do this, you must also edit the EXAMPLES_HOME\wl_server\examples\src\
examples.properties file to set the administrator credentials for the sample domains.

The installation of Oracle WebLogic Server 12c is complete at this point. It was easy, wasn’t it?

Checking the Installed Features
Once the installation is completed, the installer places the WebLogic Server icons in the
Windows Start program. Go to Oracle | Oracle Home | WebLogic Server 12c (12.1.2) for Eclipse
| Oracle WebLogic, where you’ll find the newly installed WebLogic Server program components
under Oracle WebLogic. Click WebLogic Server 12c to explore the installed products, which are
summarized next.

Online Documentation
This is a link to the Oracle WebLogic Server 12c documentation, so you have the relevant Oracle
manuals at your fingertips.

Uninstall Oracle WebLogic
The Uninstall Oracle WebLogic option lets you access the Oracle Uninstaller to remove an
existing WebLogic Server installation easily. The Uninstaller removes the entire WebLogic Server
Platform installation with just a single click. On a Windows system, for example, the Uninstaller
removes all files, shortcuts, Windows registry keys, and registry entries related to WebLogic Server.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 19

Tools Under Tools, you’ll find several important wizards. The Configuration Wizard helps you
create a domain or modify and extend an existing domain. The Domain Template Builder helps
you create domain templates that you can use with the Configuration Wizard to easily create new
domains. A domain template provides preconfigured settings that include database components,
services and security, and other environmental options. The Domain Template Builder also helps
you create extension templates that you can use with the Configuration Wizard to update
WebLogic domains. The new Reconfiguration Wizard helps you update an existing WebLogic
Server installation to a new release. Finally, you can use the WebLogic Scripting Tool shortcut to
start WLST; I discuss how to use WLST toward the end of this chapter, in the section titled “Using
the WebLogic Scripting Tool (WLST).”

Reinstalling WebLogic Server
If you need to reinstall an identical version of WebLogic Server in the same location as a
previously existing installation for any reason, first remove the previous installation by clicking the
Uninstall Oracle Middleware shortcut under Start | Oracle| Oracle Home. This invokes the Oracle
Uninstaller wizard, which leads you through the necessary steps to remove an installation. Make
sure you stop all running WebLogic Server instances before you start uninstalling.

You can also manually start the deinstaller by going to the ORACLE_HOME/oui/bin directory
and issuing the following command:

$ deinstall.cmd

Once the deinstaller completes its work, you must manually remove the ORACLE_HOME
directory where you installed Oracle WebLogic Server. You can add new products to an existing
installation, but you can’t reinstall the same WebLogic Server release over an existing WebLogic
Server installation of the same release.

Exploring the Installation Directories
Now that you’ve seen how easy it is to install WebLogic Server, let’s explore the installation
directories a bit. As I mentioned during the installation steps, you have two major home
directories—Oracle Middleware Home and Oracle WebLogic Server Home. The Oracle
Middleware Home directory is where all the WebLogic Server and other middleware product files
are located—it’s the top-level directory for all Oracle Fusion Middleware products, including the
Oracle WebLogic Server. In this example here, there’s only a single middleware product, which,
of course, is Oracle WebLogic Server. During the installation, I chose C:\Oracle\Middleware as
the Oracle Middleware Home directory, denoted by MW_HOME. WebLogic Server creates a
directory called Oracle_Home under C:\Oracle\Middleware to serve as the Oracle Home
directory. Remember, however, that, by default, the Oracle Installer installs WebLogic Server
under the Middleware Home directory, but you are not required to install it here—you can
choose to create the Oracle Home in any directory you choose, including a brand new directory
for which you need only provide the name. The Installer will automatically create that directory
for you. If you’ve installed and removed WebLogic Server earlier, Oracle recommends that you
reuse the same directory for your new installation.

Table 1-1 shows the main directories under the Oracle_Home directory. Note that the last
directory in the table is your WebLogic Server Home directory and that it’s usually denoted by the
environment variable WL_HOME.

20 Oracle WebLogic Server 12c Administration Handbook

Let’s review what’s been accomplished thus far: Following along with this example, you’ve
successfully installed the Oracle WebLogic Server software, located in its Home directory,
C:\Oracle\Middlware\wlserver_12.1. You don’t have a custom domain yet, however, because
you have to create it. The new server does include the three Oracle WebLogic Server sample
domains because you chose to have the Installer create them during the server installation. You
can’t do a whole lot with this installation in terms of deploying applications and so on, until you
create your own WebLogic Server domain. When you create a domain, you’ll automatically have
one Admin Server, and you can also create multiple Managed Servers or clusters to host your web
applications. Chapter 3 is devoted to managing and configuring domains. In that chapter, you
learn how to create domains and configure servers so you can get ready to deploy and run your
web applications through Oracle WebLogic Server.

WebLogic Server Home
The WebLogic Server Home directory is simply the directory where we installed WebLogic Server,
and, by default, it’s located in the MW_HOME\wlserver directory. You refer to this directory as
the WL_HOME directory, distinguished from the Oracle Middleware Home directory, which, in
this example, is C:\Oracle\Middleware. Thus, the complete path of the WebLogic Server Home in
this example is C:\Oracle\Middleware\wlserver.

Under the WebLogic Server Home (WL_HOME), you’ll find the following directory structure:

 � common

 � modules

 � plugins

 � samples (if you chose to install the sample applications)

TABLE 1-1. The Oracle Middleware Home Directory

Directory Contents

coherence Serves as Home directory for Oracle Coherence and contains the
Coherence product files.

inventory Contains information about the components, feature sets, and patches
installed in this Oracle Home directory.

Install Contains the installation-related files and scripts.

cfgtoollogs Contains the installation and configuration log files.

OPatch Contains OPatch, the new patching utility and supported files.

oracle_common Directory that contains binary and library files for Oracle WebLogic Server.

Oui Contains files use by the Oracle Universal Installer, including the
deinstaller program.

user_projects Serves as the standard location for WebLogic Server domains.

wl_server Serves as the WebLogic Server Home directory, also known as
WL_HOME. Contains the WebLogic Server product files.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 21

 � server

 � sip

The bin directory under the WL_HOME server directory contains the startNodeManager
script to start the Node Manager. During the installation of WebLogic Server shown in this
chapter, we chose to create the sample domains offered by Oracle. These are the medrec,
medrec-spring, and wl_server domains. These domains are located under the user_projects
directory, in the domains folder. The next section explores the contents of these domain
directories, all of which have the same structure.

WebLogic Server Domain Directory
Each domain that you create will have the following directory structure, under the Oracle_Home/
user_projects/domains directory:

 � autodeploy

 � bin

 � common

 � config

 � console-ext

 � init-info

 � lib

 � nodemanager

 � security

 � servers

Under the bin directory of each domain is where you’ll find the various scripts to start and
stop the Admin and Managed Servers, such as startWebLogic.cmd and stopWebLogic.cmd. Note
that UNIX versions of these scripts are also located in this directory. The all-important domain
configuration file, config.xml, is stored in the domains/config directory.

For now, it’s enough to be aware of the basic structure of a WebLogic domain. Chapter 3
details how to configure a domain, and I will postpone the detailed examination of a domain
directory’s contents until that point.

The WebLogic Server Sample Applications
To demonstrate the basic features of the Administration Console, I’ll use one of the three sample
domains created during the installation when we chose to install the samples. The code
examples provided by Oracle are located in various domains, all under the Oracle_Home\
user_projects\domains directory. I understand that most readers don’t need to install the sample
applications because they already have a working knowledge of WebLogic Server. For those
new to WebLogic Server, however, the sample applications will help you understand web
applications, and the sample domains will help you learn how to administer and manage
WebLogic Server.

22 Oracle WebLogic Server 12c Administration Handbook

NOTE
All the sample domains that the Configuration Wizard creates for
you during the WebLogic Server installation (if you choose to install
the samples) are located, by default, in the ORACLE_HOME\user_
projects\domains directory (C:\Oracle\Middleware\Oracle_Home\
user_projects\domains directory on my server, since ORACLE_HOME
is defined as C:\Oracle\Middleware\Oracle_Home).You can specify
alternative locations for the domain directories.

The WebLogic Server samples contain two different types of applications to familiarize you
with Java EE applications and to help you understand how Oracle WebLogic Server works. The
first set of applications is part of the domain named wl_server, and the domain’s Admin Server is
named Examples Server. The wl_server domain contains Oracle WebLogic Server API examples
designed to show you how to implement Java EE APIs and related Oracle WebLogic Server
features. Oracle also provides a web application called examplesWebApp, which includes several
of these examples. In addition, there’s a full-blown sample Java EE web application by the name
of Avitek Medical Records as part of the domain named medrec. When you choose to install the
examples, two versions of the Avitek Medical Records application are installed for you. The first
one is the MedRec application designed to demonstrate various features of the Java EE platform.
The second application, called MedRec-Spring, is the same as the MedRec application, but it is
created using the Spring Framework and is part of the medrec-spring domain.

Oracle recommends that you start working with the wl_server domain to understand the basics
of Java EE programming and WebLogic Server. If you’re already familiar with both of these, check
out the Avitek Medical Records and the Avitek Medical Records (Spring) sample applications. Both
of these present realistic examples that show how to develop and deploy full-blown Java EE
applications. The two applications also serve as great learning tools for Java EE developers and for
WebLogic Server administrators who wish to understand application deployment concepts.

Key Environment Files
Let’s take a close look at the key environment files you’ll be using while managing your WebLogic
Server. The two key WebLogic Server environment files in a Windows server are the
setDomainEnv.cmd and the setWLSEnv.cmd files. These two files have similar counterparts in the
UNIX environment, named, for example, WLSEnv.sh and so on.

The DomainEnv.cmd File
There’s a setDomainEnv.cmd file for each domain you create with the Configuration Wizard. This
script sets up the environment correctly so you can start WebLogic Server in a domain.

When you invoke the setDomainEnv.cmd file, it invokes the following variables before calling
commEnv to set the other variables:

 � WL_HOME The home directory of your WebLogic installation.

 � JAVA_VM The desired Java VM to use. You can set this environment variable before
calling this script to switch between Oralce and BEA or just use the default.

 � JAVA_HOME Location of the version of Java used to start WebLogic Server. Depends
directly on which JAVA_VM value is set by default or by the environment.

 � MEM_ARGS The variable to override the standard memory arguments passed to Java.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 23

 � PRODUCTION_MODE The variable that determines whether Weblogic Server is started
in production mode.

 � DOMAIN_PRODUCTION_MODE Determines whether the workshop-related settings
like the debugger, testconsole, or iterativedev should be enabled. You can only set these
using the @REM command-line parameter named production. Specifying the production
command-line parameter forces the server to start in production mode.

 � WLS_POLICY_FILE The Java policy file to use. Set this environment variable to specify a
policy file; otherwise, this script assigns a default value.

Other variables used in this script include

 � SERVER_NAME Name of the WebLogic server.

 � JAVA_OPTIONS Java command-line options for running the server (tagged on to the
end of JAVA_VM and MEM_ARGS).

 � PROXY_SETTINGS Tagged on to the end of the JAVA_OPTIONS variable; however, this
variable is deprecated and should not be used. Use JAVA_OPTIONS instead.

The setWLSEnv.cmd File
The setWLSEnv.cmd script file configures the environment for development with WebLogic Server.
It sets the following variables:

 � WL_HOME The root directory of your WebLogic installation.

 � JAVA_HOME Location of the version of Java used to start WebLogic Server. This variable
must point to the root directory of a JDK installation and will be set for you by the Installer.

 � PATH Adds the JDK and WebLogic directories to the system path.

 � CLASSPATH Adds the JDK and WebLogic jars to the CLASSPATH.

Other variables that setWLSEnv.cmd takes are

 � PRE_CLASSPATH Path style variable to be added to the beginning of the CLASSPATH.

 � POST_CLASSPATH Path style variable to be added to the end of CLASSPATH.

 � PRE_PATH Path style variable to be added to the beginning of the PATH.

 � POST_PATH Path style variable to be added to the end of the PATH.

Starting the Examples Server
The Examples Server is the Admin Server for the wl_server domain. It contains basic web
application examples. To launch the Examples Server, run the following two commands, the first
to set up the environment and the second to start the WebLogic Server instance. Once you
successfully run these two scripts, the Admin Server for the sample domain wl_server is started.

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\bin\setDomainEnv.
cmd
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\bin\startWebLogic
.cmd

www.allitebooks.com

http://www.allitebooks.org

24 Oracle WebLogic Server 12c Administration Handbook

The directory from which we start the Admin Server for the domain wl_server, C:\Oracle\
Middleware\Oracle_Home\user_projects\domains\wl_server is also called the DOMAIN_HOME
(for the serverwl_server).

TIP
Because they’re purely for learning purposes, do not install the WebLogic
Server Examples on your production servers. Leaving them on a production
server introduces vulnerabilities that can be exploited by hackers.

Once the Administration Server starts booting, you can follow the boot sequence in the
command window that pops up. You’ll also see a separate command window that shows the
launching of the Derby database for the Examples Server. Once the Administration Server boots,
you’ll see the following in the command window:

...

. Calling setDomainEnv in this domain
Modifying classpath for the samples
Classpath has successfully been set to:
C:\Oracle\Middleware\Oracle_Home\user_projects\applications\wl_server\
examples\build\serverclasses;C:\Oracle\Middleware\Oracle_Home\
user_projects\applications\wl_server\examples\src;
C:\PROGRA~1\Java\JDK17~1.0_4\lib\tools.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\weblog
…
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\xqrl.jar;
C:\Oracle\Middleware\Oracle_Home\user_projects\applications\
wl_server\examples\build\clientclasses
Script has completed successfully
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>

Once the environment is set, execute the startWebLogic.cmd script to start the server:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>start WebLogic.cmd

JAVA Memory arguments: -Xms256m -Xmx512m -XX:CompileThreshold=8000 -
XX:PermSize=128m -XX:MaxPermSize=256m
…
CLASSPATH=C:\Oracle\Middleware\Oracle_Home\user_projects\
applications\wl_server\

starting weblogic with Java version:
java version "1.7.0_40"
 log file
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\
servers\AdminServer\logs\AdminServer.log is opened. All server side
log events will be written to this file.>
…
<Oct 19, 2013 11:16:27 AM CDT> <Notice> <WebLogicServer> <BEA-000331>
<Started the WebLogic Server Administration Server "AdminServer" for
domain "wl_server" running in development mode.>

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 25

<Oct 19, 2013 11:16:27 AM CDT> <Notice> <WebLogicServer> <BEA-000365>
<Server state changed to RUNNING.>
<Oct 19, 2013 11:16:27 AM CDT> <Notice> <WebLogicServer> <BEA-000360>
<The server started in RUNNING mode.>
$

In addition to the main Windows command console (don’t close it or else your server instance
will promptly die!) that displays the server lifecycle messages throughout the server’s life, you’ll
also see another window that shows that the default Derby database server is also up and ready to
receive requests. (You can change the database server to a different server, say Oracle Database
12c, later on in the process.) Here are the Derby server window’s messages when it starts:

2013-10-19 11.05:00AMCDT: Security manager installed using the Basic server
security policy.
2013-10-19 11.05:00AMCDT: Apache Derby Network Server - 10.6.1.0 - (938214)
started and ready to accept connections on port 1527

Once you see that the WebLogic Server has started in RUNNING mode, the Examples
Server is ready to use. Your browser will automatically launch at this point and display the
Oracle WebLogic Server Samples Introduction Page, which is the gateway to the sample
applications. If, for some reason, the browser doesn’t automatically launch, you can go to the
following URL to see the page:

http://localhost:7001/examplesWebApp/index.jsp

Note that port 7001 must be available for you to access the Administration Console for this
domain. Remember that the default credentials to log into the Administration Console are
weblogic/welcome1.

To launch one of the other sample applications, for example, the Avitek Medical Records Sample
Application, run the following command, which starts the Admin Server for the medrec domain:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains
\medrec\bin\startWebLogic.cmd

This command starts the application and displays the startup page. You can click the Start Using
MedRec button to start the application. You can also start the Administration Console to manage
the MedRec domain by clicking the Start The Administration Console button.

Stopping the Server
You can stop a running server by closing the command window or by pressing CTRL-C in the
command window. In production environments, however, you use a shutdown script to stop the
servers. You can use the following command script to shut down the Admin Server for the sample
domain medrec, for example:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains
\medrec\bin\stopWebLogic.cmd\medrec\bin\stopWebLogic.cmd

Note that you need to point your browser toward a different port number to access the
Administration Console for each of these same servers. By default, the example domains run in
the development mode. You can configure all servers in a domain to run in production mode by

26 Oracle WebLogic Server 12c Administration Handbook

clicking Domain on the Administration Console Home page and checking the Production Mode
box. You must first click the Lock & Edit button in the Change Center to activate the change. You
must also restart the server so it can start in production mode. All servers in this domain will now
run in production mode. Note that you can’t toggle back to development mode once you enable
production mode—you can disable the production mode only at the Admin Server startup
command line by specifying the -Dweblogic.ProductionModeEnabled=false option.

Upgrading Oracle WebLogic Server
The latest version of Oracle WebLogic Server, as of the writing of this book, is the 12.1.2 release.
You can upgrade to this release from earlier versions of WebLogic Server. When you upgrade
Oracle WebLogic Server, not only must you install the new software, of course, but you also have
to upgrade the security providers, the Node Manager, and the existing domains as well as any
remote Managed Servers. If you’re upgrading from WebLogic Server versions prior to WebLogic
Server 10.3.1, you must follow a two-step process to upgrade to version 12.1.2:

 1. First upgrade to WebLogic Server 10.3.6, using the instructions in the Oracle manual
Upgrade Guide to WebLogic Server 10.3.6. As part of this, you must also run the
WebLogic Server 10.3.6 Domain Upgrade Wizard to upgrade the domains.

 2. Upgrade WebLogic Server 10.3.6 to WebLogic Server 12.1.2.

The following sections provide a summary of the upgrade procedures to upgrade from
WebLogic Server installation release 10.3.6 to 12.1.1.

You must upgrade the WebLogic domain when you upgrade to WebLogic Server 12.1.2, by
upgrading the domain directory on each computer in the domain. It’s important to understand,
however, that most Java EE applications, including web applications, EJBs, and so on, can be run
without any modifications in the WebLogic Server 12.1.2 environment.

Before embarking on a major upgrade project, of course, you must verify that all components
in your environment, such as databases, load balancers, and firewalls are compatible with
WebLogic Server 12.1.2.

Upgrade Tools
What used to be called an upgrade of a domain in earlier releases is now called reconfiguring a
domain in Oracle WebLogic Server 12.1.2, and in Oracle WebLogic Server 12c, the new Oracle
Fusion Middleware Reconfiguration Wizard (hereafter called the Reconfiguration Wizard) has
replaced the old Domain Upgrade Wizard. You can reconfigure a WebLogic domain using two
methods:

 � You can run the Reconfiguration Wizard.

 � You can reconfigure a domain from the command line with the WebLogic Scripting Tool.

Oracle provides several reconfiguration templates for Fusion Middleware products to make
upgrading WebLogic Server and Fusion Middleware installations easy. The Wizard applies the
appropriate reconfiguration templates. The templates then update the domain version to the
current version.

Oracle recommends that you use the WLST script to reconfigure a domain when you can’t
run the Reconfiguration Wizard for any reason.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 27

Obviously, you don’t have to use the Reconfiguration Wizard, but as with any GUI wizard,
using it will certainly make life easier for you during an upgrade. You can, for example, manually
upgrade a domain by installing the software for the current release, updating the domain script
files to point to the new installation, and updating the CLASSPATH to remove outdated
information. As you will see, the Reconfiguration Wizard can prevent many headaches with its
automated approach to the upgrade.

Upgrade Procedures
When you upgrade to a newer release of WebLogic Server, in most cases, you don’t have to
upgrade the web applications you deploy. The latest release of WebLogic Server, 12.1.2, will work
with all applications you created on earlier WebLogic Server releases. You do, however, have to
upgrade several server components:

 � Custom security provider

 � Node Manager

 � Domains

 � Remote Managed Servers

In addition, you need to ensure that any external resources WebLogic Server connects to, such
as an Oracle database, for example, are compatible with the new release. The following sections
briefly describe the upgrade procedures. Before you start the actual upgrade process, however, do
the usual due diligence effort, such as verifying the supported configurations and the compatibility
of the various software applications, as well as doing an inventory of your current WebLogic
Server environment. As with any upgrade of a server, back up your applications, shut down all
running servers, and start by installing the new release of the Oracle WebLogic Server software.

As mentioned earlier, you may not have to do much to make your current applications run on
the latest release of WebLogic Server. However, you must upgrade the security providers, the
domain, the Node Manager, and the remote Managed Servers. The following sections briefly
explain each in turn.

Upgrading the Security Provider
When upgrading the security providers, the Reconfiguration Wizard upgrades the JAR files for
security providers so the providers can work under a 12.1.1 environment. If you’re using a custom
security provider in the 7.0 or 8.0 release, the Reconfiguration Wizard can upgrade those
providers to run in a 12.1.1 environment as well.

Upgrading the Node Manager
Upgrade the Node Manager (on all machines where it currently runs) only if you intend to use
any customized versions in the new environment. Otherwise, there’s nothing for you to do here
during an upgrade. Once the upgrade is completed, you must enroll the Node Manager with all
machines, and Chapter 2 shows you how to do this.

Upgrading Existing Domains
Before upgrading any remote Managed Servers, upgrade the domain on the machine where the
Admin Server resides. If you have any Managed Servers on the same server as the Admin Server,
you don’t have to upgrade them. Upgrading the domains updates the config.xml file—the key
domain configuration file—and also updates persistent data in the JMS file stores.

28 Oracle WebLogic Server 12c Administration Handbook

Upgrading the Remote Managed Servers
During an upgrade, you need to upgrade just those Managed Servers that reside on remote
servers. Before upgrading, you must first copy two important files (config.xml and
SerializedSystemIni.dat) from the root directory of the original domain directory of the Admin
Server to the root directory of the remote Managed Server domain.

If there’s no Administration Server on the remote machine, you can use one of two methods to
update the Managed Server domains on the remote machine:

 � You can execute the pack -managed=true command to generate the domain template JAR
and move the JAR to the remote machine, and then use the unpack utility to create the
Managed Server domain (you’ll learn about the pack/unpack commands in Chapter 3).

 � Alternatively, you can use the WLST writeTemplate command to update the Managed
Server domain on the remote machine. The WLST writeTemplate command has been
modified in the WebLogic Server 12c release to work in the online mode, letting you
update domains that run on remote machines using WLST instead of being limited to the
pack/unpack utilities.

Reconfiguring a WebLogic Domain
Back up your domain before running the Reconfiguration Wizard, as the configuration process
can’t be reversed. To return the domain to its original state, you need the backup. The old Domain
Upgrade Wizard automatically backed up the domain before starting the upgrade process, but
with the Reconfiguration Wizard, you must back up the domain yourself.

Reconfiguring a domain is a long drawn-out affair, with multiple configuration screens and
choices. You must consult the Oracle WebLogic Serve 12c documentation for the complete
upgrade procedures. However, a summary of the upgrade process will help you understand the
process, and that’s what I provide next. Let’s first review the domain upgrade process using the
Oracle Middleware Reconfiguration Wizard. After that, you’ll learn how to upgrade a domain
using WLST.

Reconfiguring with the Reconfiguration Wizard
To upgrade a domain using the Reconfiguration Wizard, follow these general steps:

 1. Start the Reconfiguration Wizard with the following command, after moving to the
ORACLE_HOME\oracle_common\common\bin directory as shown here.

$ cd C:\Oracle\Middleware\Oracle_Home\oracle_common\common\bin>
$ C:\Oracle\Middleware\Oracle_Home\oracle_common\common\bin> reconfig.cmd

NOTE
You can also run the Reconfiguration Wizard by going to Programs |
Oracle |Oracle Home | WebLogic Server 12c | Tools | Reconfiguration
Wizard. Once the Oracle Middleware Reconfiguration Wizard starts, it
shows the Select Domain page.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 29

 2. Specify the location of the domain you want to upgrade on the Select Domain page,
shown here:

 Click Next after ensuring that the full path to the domain directory of the domain you
wish to upgrade is selected.

 3. The Reconfiguration Setup Progress page shows the progress of the application of the
reconfiguration templates. When the application of the templates is completed, click Next.

 4. On the Domain Mode And JDK page, select the JDK you want the domain to use. Click Next.

 5. (optional) Depending on your domain configuration, different additional screens may
appear after this point.

 6. On the Advanced Configuration page, check the boxes of all categories for which you
want to perform configuration tasks. Click Next.

 7. On the Configuration Summary page, review and then click Reconfig to complete the
domain reconfiguration.

 8. When you see the Reconfiguration Success page and the message “Oracle WebLogic
Server Reconfiguration Succeeded,” the domain has been updated successfully. Click
Finish to exit the Reconfiguration Wizard.

Reconfiguring a Domain Using WLST
You haven’t yet learned how to use the WLST scripting tool, but you will shortly! You can
reconfigure a domain using WLST in offline mode.

30 Oracle WebLogic Server 12c Administration Handbook

Here’s an example showing how to reconfigure a domain called my _domain with WLST:

 1. Open the domain for upgrade: vb

wls:/offline> readDomainForUpgrade('c:/domains/my_domain')

 2. Save the updated domain:

wls:/offline/my_domain> updateDomain()

 3. Once you’re finished upgrading the domain, close it:

wls:/offline/my_domain> closeDomain()

Complete Node Manager Configuration
Regardless of whether you upgrade a domain with the Reconfiguration Wizard or WLST
commands, you must complete the Node Manager configuration following the domain update.
Here are the steps:

 1. Create a nodemanager directory under the ORACLE_HOME/oracle_common/common
directory of the new WebLogic Server installation.

 2. Copy the nodemanager.properties, nodemanager.domains, and the nm_data.properties (if
there’s one) files from the previous installation to the new nodemanager directory.

 3. Copy the security/SerializedSystemIni.dat file to the same directory under nodemanager
by creating the security directory under nodemanager.

 4. Edit the nodemanager.properties file in the following way:

 � Update DomainsFile to point to
ORACLE_HOME/oracle_common/common/nodemanager/nodemanager.domains file.

 � If the file contains a javaHome property setting, remove it.

 � Update JavaHome to point to the jre directory for the JDK that you’re using for
WebLogic Server 12.1.2.

 � Update NodeManagerHome to point to
ORACLE_HOME/oracle_common/common/nodemanager.

 � Update LogFile to point to
ORACLE_HOME/oracle_common/common/nodemanager/nodemanager.log.

If you’re using your own security certificates, point to the location of those certificates in the
nodemanager.properties file. If you are using the WebLogic Server demo certificate instead, run
Certgen to create a demo keystore for the new installation.

Once you’re all done, run startNodeManager.cmd from the ORACLE_HOME\wlserver\
server\bin directory to ensure that the Node Manager starts.

Using OPatch to Patch Oracle WebLogic Server
In the previous release, you could patch Oracle WebLogic Server software with the Smart Update
utility for both maintenance patches and maintenance packs. In WebLogic Server 12c, Smart
Update isn’t supported. You must use the OPatch utility to apply patches for Oracle WebLogic
Server 12c.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 31

TIP
You can use the Opatch utility to patch not only WebLogic Server
software, but also Oracle Fusion Middleware installations.

You can find the OPatch utility in the ORACLE_HOME/Opatch directory. To view the list of
commands available to you (on a Windows server), run the following command:

$ opatch.bat –help

Patching a WebLogic Server installation using OPatch is extremely simple. Here are the basic
steps you must follow:

 1. Get the patches you need to apply from the Oracle Support site.

 2. Review the README.txt file for the patch to see what you need to do before applying a patch.

 3. Check for any patch prerequisites with the following command:

$ opatch apply /oracle/middleware/oracle_home/wl_server –report

 4. Apply the patch with the apply command:

$ opatch apply /oracle/middleware/wl_server/patches/15221446 /* patch number

You can apply multiple patches with a single command, by specifying the napply option
instead of the apply option.

 5. Verify the patch application with the lsinventory command:

$ opatch lsinventory

 6. You can rollback a patch by using the rollback command:

$ opatch rollback –id 15221446

The nrollback option lets you rollback multiple patches with a single command.

Using the Administration Console
WebLogic Server offers a browser-based Administration Console to help manage a domain. The
Admin Server hosts the Administration Console application, and you can access the Console from
any browser that has network access to the Admin Server.

The Administration Console lets you administer your entire domain—the server instances,
web applications, modules, and all the resources that the applications and modules need to use.
Not only can you configure and monitor the servers, but also you can create new server instances
with the Console. The Administration Console also helps you tune your applications. The Console
makes performing various configuration and management tasks easy, without you’re having to
learn how to use the underlying JMX API, which is what you need to configure the domains
manually. In Chapter 2, you’ll learn the various ways in which you can start and stop WebLogic
Server instances. The easiest, as well as the recommended way to manage your servers is through
the Administration Console. You can even edit and save changes to the domain configuration file,
config.xml, through the console. Throughout this book, you’ll learn how to configure various
aspects of WebLogic Server through the Administration Console.

32 Oracle WebLogic Server 12c Administration Handbook

This seems like the right place to point out that in Oracle WebLogic Server 12c, you can also
manage Weblogic Server through Fusion Middleware Control. You can manage the following
aspects of WebLogic Server through Fusion Middleware Control:

 � Starting up and shutting down servers

 � Clustering servers

 � Managing WebLogic Server services, such as database connectivity (JDBC) and messaging
(JMS)

 � Deploying applications

 � Monitoring server and application performance

TIP
If you’re new to the Administration Console, it pays to check out the
excellent help material you can access by clicking the How Do I link,
where you’ll find crystal clear steps for performing any task within the
Administration Console.

Because the Administration Console is linked to a domain, until you create a domain, the
Administration Console does not exist. When you create a domain, by default, a single Admin
Server is created for you. It’s the Admin Server that runs the web-based Administration Console that
enables you to manage the entire domain. Thus, you must first start the Admin Server before you can
access the Administration Console. Once you create a domain , you can access the Administration
Console at the default port 7001, but you can also assign it any other free port number.

NOTE
You can disable the Administration Console by clearing the Console
Enabled box on the Administration Console’s configuration page for the
Admin Server. If you do this, you can manage the domain only with
management APIs.

Any configuration changes you make through the Administration Console will update the
config.xml, which is the domain configuration file.

Logging In to the Administration Console
Once you’ve created a domain, launch the Admin Server first. Once the Admin Server is in
running mode, you can access the Administration Console and manage the domain. Invoke the
Administration Console by using the following URL:

http://localhost:7001/console

Note that 7001 is the default port that WebLogic Server uses. You can set the port to any valid port
number you choose.

In the following example, as explained in the preceding section, let’s use the Examples Server
(Admin Server for the wl_server domain) provided by the Installer. Launch the Examples Server by
going to Start | Oracle WebLogic | WebLogic Server 12cR1 | WebLogic Server. Because every

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 33

domain will host its own Admin Server, if you are running multiple domains on your machine,
each Admin Server will have to bind to a different port. For example, you can access the
Administration Console for the wl_server domain using this address:

http://localhost:7001/console

Meanwhile, you can access the Administration Console for the medrec-spring domain by entering

http://localhost:7011/console

If you’re using Secure Sockets Layer (SSL) to start your Admin Server, use https instead
of http, as shown here, and note that you use a different port number from that of the
non-SSL port:

https://localhost:7002/console

TIP
If you’ve configured a proxy server, configure your browser so it
doesn’t direct the Admin Server requests to the proxy. If you’re running
both the Admin Server and your web browser on the same server,
make sure the requests are sent to the local host (or IP 127.0.0.1) and
not to the proxy server.

The default administrative username for the Admin Server is weblogic, and the default
password is welcome1. You may also log in later by choosing a username that you granted to a
default global security role. If you grant the default global security role Admin to a user, for
example, that user can perform any task using the Administration Console. If you gave another
user a more limited security role, such as Deployer, Monitor, or Operator, the user won’t be able
to edit the configuration data; these users can only view, not modify, the configuration data.

On the Administration Console login page, shown in Figure 1-1, enter the default username
and password (weblogic and welcome1, respectively), or for a custom domain, use the username
and password combination you chose during domain creation. You can log out of the Console by
clicking the Log Out button at the top of the right pane of the console.

Once you successfully log in to the Administration Console, you’ll see the Home page, as
shown in Figure 1-2. Notice that the Home page of the Administration Console contains two
panes. Resources and servers are listed in the left pane. At the top of the right pane are the Log
Out and Preferences buttons. When you click a server under a domain, the relevant configuration
items will show up on the right; here, you can check or modify the server’s configuration.

Navigating the Administration Console
The tree menu on the left pane of the Home page provides quick access to functionality that
allows you to manage not only the servers and clusters but also the configuration of resources
such as JMS servers and data sources. For example, by expanding wl_server | Services | Data
Sources, you will see a complete list of data sources configured on this domain. At the top of the
left pane, notice the Change Center, which helps you view and modify server configurations.
Right underneath is the Domain Structure section. In this section, there are several key items that
help you manage WebLogic Server. I explain these in the following sections.

34 Oracle WebLogic Server 12c Administration Handbook

FIGURE 1-1. The Oracle WebLogic Server Administration Console login page

FIGURE 1-2. The Administration Console Home page

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 35

Environment
You’ll find the following items under Environment:

 � Servers

 � Clusters

 � Virtual Hosts

 � Migratable Targets

 � Coherence Servers

 � Coherence Clusters

 � Machines

 � Work Managers

 � Startup and Shutdown Classes

For example, if you click Servers, you’ll then see in the right-hand pane the Configuration page
for the lone server in the domain, examplesServer, which is the Admin Server for this domain
(wl_server), as shown in Figure 1-3.

FIGURE 1-3. The Configuration page for the Admin Server

36 Oracle WebLogic Server 12c Administration Handbook

Deployments
This group takes you to the Deployments page, from where you can manage the enterprise
applications or web modules you’ve deployed. You can start, stop, redeploy, or remove an
application or module from this page.

Services
Important resources you can manage include messaging, which consists of Java Messaging
Service (JMS) servers and JMS modules; Java Database Connectivity (JDBC) data sources; and Java
Transaction APIs (JTA).

Security Realms
This group contains all security realms you have configured for this domain. Select a realm from
under Security Realms in the left pane. When you do this, all the subnodes for all the security
providers in a realm appear in the right pane, providing you access to a realm’s users, groups, and
roles. The Administration Console lets you configure any aspect of a security realm.

Interoperability
This group contains features that allow your applications to operate with Tuxedo Services, such as
the WebLogic Tuxedo Connector and Jolt, a Java-based client that manages requests made to
Oracle Tuxedo Services.

Diagnostics
This group contains diagnostic modules and diagnostic images (snapshots) to help manage the
WebLogic Diagnostic Framework (WLDF). You can also configure Simple Network Management
Protocol (SNMP) agents from here.

Using the Change Center
From the Administration Console’s Change Center, you can lock a domain’s configuration while
you’re changing any configuration attributes. By default, the Change Center is always enabled when
you run a server in production mode and disabled in development mode. To make permanent
configuration changes from the Administration Console, you must first obtain a lock, make your
changes, and then activate them. By doing so, other accounts are prevented from making changes
during your edit session, preventing conflicting or overlapping configuration changes.

Instead of making configuration changes piecemeal, you can make multiple changes and
activate them all at once. You can click the View Changes and Restarts button to view all the
pending changes that you have applied but not activated yet. The Change List page shows you all
changes that are saved but not yet activated. By clicking the Restart Checklist tab, you can view the
changes that have been activated but are waiting for a server restart before they become effective.

In development mode, the domain configuration locking feature is disabled by default; that is,
the Automatically Acquire Lock And Activate Changes property is enabled. Automatic locking
means you don’t have to acquire a lock explicitly on the domain configuration before making any
changes to it. In the top-left corner of the Administration Console, you’ll see the following note:
“Configuration editing is enabled. Future changes will automatically be activated as you modify,
add or delete items in this domain.” This means that when you make and save a configuration
change, it’s automatically activated. This is fine for a development environment, but for a production
environment, you should always enable the locking feature. In fact, when you run the server in
production mode, you don’t have the option to set up automatic acquisition of configuration

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 37

locks and activation of changes. The Automatically Acquire Lock And Activate Changes property
is exclusive to servers running in development mode.

You can enable domain configuration locking by going to the right-hand pane of the
Administration Console and clicking Preferences in the menu at the top of the page. At the bottom
of the page, you’ll see the box Automatically Acquire And Activate Changes. You can leave this
box checked for a development domain so you can make quick configuration changes on the fly,
but it should always be unchecked for a production domain. Clear this option and click Save.
Once you click the Release Configuration button in the Change Center, the Lock & Edit button
appears, as shown in Figure 1-4.

Once you enable domain configuration locking, you must use the Lock & Edit button to make
any configuration changes, including editing, adding, or deleting any type of configuration
attributes. The main purpose behind all this is to ensure that other sessions don’t make
configuration changes while you’re trying to make changes. If you don’t click the Lock & Edit
button in the Change Center, the server won’t even let you start the configuration process—the
check boxes for selecting the server or a subcomponent you want to configure will be grayed out.
Once you complete any configuration changes and save them, you must click the Activate
Changes button to make those changes effective. As you’ll see later, some configuration changes
require that you restart the server.

To illustrate how to use the Lock & Edit feature, the following example shows you how to
disable the Administration Console (something you may want to do to prevent access to the

FIGURE 1-4. The Change Center in the Administration Console

38 Oracle WebLogic Server 12c Administration Handbook

Console in a production environment), which is a configuration change you can make from the
Console:

 1. Click Lock & Edit, as shown previously in Figure 1-4. This locks the configuration MBean
hierarchy so you can make changes. Now the Lock & Edit button is grayed out, but the
Release Configuration button becomes clickable so you can back out before you make
your configuration changes.

 2. In the Domain Structure section on the left, click the name of your domain—in the case
of the Examples Server, this would be wl_server.

 3. From the Configuration tab on the right pane of the Console, click the General tab and
then click Advanced at the bottom of the page. Uncheck the Console Enabled option
and click Save. When you click Save, you’ll see the following message (in green)
on the top of the page where you made the change, confirming that the change was
successful:

Settings Updated Successfully

 4. Finally, you’ll see two new buttons in the Change Center: Activate Changes and Undo All
Changes, as shown in Figure 1-5. Click Activate Changes in the Change Center to make
the change effective.

FIGURE 1-5. The Activate Changes button in the Change Center

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 39

After you click the Activate Changes button in the Change Center, you’ll see the following
message (in green) at the top of the right-hand pane:

All changes have been activated. However 1 item(s) must be restarted for the changes
to take effect.

The reason the message states that “1 item(s) must be restarted” is because disabling the Console
is a nondynamic change that requires a server restart.

NOTE
Some configuration changes are dynamic and, therefore, go into effect
right away; other changes are nondynamic and require a server restart.

You’ll also see the following in the command console, following the change you just made:

<Oct 25, 2013 1:37:51 PM CDT> <Warning> <Management> <BEA-141239>
<The non-dynamic attribute ConsoleEnabled on
weblogic.management.configuration.DomainMBeanImpl@d5bf4c12([wl_server])
has been changed. This may require redeploying or rebooting configured entities.>
<Oct 25, 2013 1:37:51 PM CDT> <Warning> <Management> <BEA-141238> <A non-dynamic
change has been made which affects the server examplesServer. This server must be
 rebooted in order to consume this change.>

Once you disable the Administration Console, you can reenable it only through the WebLogic
Scripting Tool (WLST). Once the Admin Server is started, invoke WLST by navigating to Start |
Programs | Oracle | Oracle Home | WebLogic Server 12c | Tools | WebLogic Scripting Tool and
issue the following commands at the WLST command line:

Initializing WebLogic Scripting Tool (WLST)...
Jython scans all the jar files it can find at first startup.
Depending on the system, this process may take a few minutes to complete,
 and WLST may not return a prompt right away.
Welcome to WebLogic Server Administration Scripting Shell
Type help() for help on available commands
wls:/offline>
wls:/offline> connect("weblogic", "welcome1")
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'examplesServer’ that belongs
to domain 'wl_server'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be
used instead.
wls:/wl_server/serverConfig> edit()
Location changed to edit tree. This is a writable tree with
DomainMBean as the root. To make changes you will need to start
 an edit session via
startEdit(). For more help, use help(edit)
wls:/wl_server/edit> startEdit()
Starting an edit session ...
Started edit session, please be sure to save and activate your changes
once you are done.

40 Oracle WebLogic Server 12c Administration Handbook

wls:/wl_server/edit !> cmo.setConsoleEnabled(true)
wls:/wl_server/edit !> save()
Saving all your changes ...
Saved all your changes successfully.
wls:/wl_server/edit !> activate()
Activating all your changes, this may take a while ...
The edit lock associated with this edit session is released
once the activation is completed.

Working with the Administration Console
You already know how to log into the Administration Console. The following sections show how
to log out of the Console and to set Console preferences.

Logging Out of the Console
To log out of the Administration Console, click the Log Out button at the top of the right-hand
pane. Logging out of the Administration Console doesn’t affect the Admin Server. To log back in,
use the URL for the console—http://<hostname>:port/console. When you shut down the Admin
Server from the Administration Console, the Console immediately shuts down and won’t be
available until you manually restart the Admin Server. Once you restart the Admin Server, you can
log back in to the Console by using the now familiar URL:

http://127.0.0.1:7001/console

Setting Console Preferences
You can set Administration Console preferences by clicking the Preferences button at the top of
the right-hand pane. You can select several configuration-related properties from the Preferences
page, including whether the server asks for confirmation of operations. You can also choose your
preference for whether the server issues a warning message when a user logs out with an active
domain configuration lock for a resource in place. Note that when this happens, other users won’t
be able to lock that resource for making their own configuration changes. The lock holder must
either release the configuration changes or activate them first.

Changing the Console’s URL
You can change the Console’s URL (by default, http://localhost:7001/console) to a different URL.
To change the Console’s URL, on the Configuration page for the domain, click General and then
Advanced at the bottom of the page. Enter the context path in the Console Context Path box. If
you specify a new context path named newconsole, for example, you can then use the following
URL to access the Console: http://localhost:7001/newconsole.

Changing the Listen Port and Listen Address
To change the listen port or listen address that you use to access the Administration Console, you
must change those settings for the domain’s Admin Server. You can change the following network-
related configuration attributes from the Administration Console. Go to the Admin Server’s
Configuration page and click General. From this page, you can configure the following network-
related settings:

 � Listen Address This is the IP address or DNS name for the server.

 � Listen Port Enter the default TCP/IP port for listening for non-SSL connection requests.

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 41

 � Listen Port Enabled This lets you enable or disable the default non-SSL listen port.

 � SSL Listen Port Enter the TCP/IP port on which to listen for secure SSL connection
requests.

 � SSL Listen Port Enabled If you haven’t enabled the optional administration port, both
application traffic and administrative traffic will go through the normal listen port and the
SSL listen port. If you’ve enabled the administration port, then the administrative traffic
will only go through the administrative port.

The preceding is a very brief summary of what you can do with the Administration Console.
Throughout this book, you’ll have plenty of chances to review the many capabilities of the
Administration Console, as we discuss topics such as deployment, security, configuration
management, and diagnostics.

A Brief Introduction to the Node Manager
The Node Manager, as mentioned earlier in this chapter, is a purely optional process (or daemon)
that lets you remotely manage both the Admin Server and all Managed Servers within that
domain. If you’re in a production environment with high availability requirements, Oracle
recommends that you use the Node Manager to manage the servers running on different
machines. In Chapter 2, you’ll find a detailed explanation of how to configure the Node Manager
and how to manage servers using WLST and the Node Manager together.

Unlike the Admin Server, of which there’s only a single instance running per domain, you
must run the Node Manager on each of the servers (machines) on which you plan to run the
Admin Server or one of the Managed Servers. You don’t have to install the Node Manager
separately—each installation of WebLogic Server comes with the Node Manager. You just need to
start the Node Manager service or process on each of the machines running WebLogic Server
instances. Thus, if you have WebLogic Server instances running on five different servers, you must
have five Node Manager processes running, one per machine.

Oracle WebLogic Server offers you two types, or versions, rather, of the Node Manager—one
a Java-based and the other a script-based version. Although both versions offer the same
functions, you need to configure them differently. Also, different security considerations apply to
the two versions, with the Java-based version offering you more security features than the script-
based version. You can configure the Java-based Node Manager with the nodemanager.properties
file, as shown in Chapter 2. The Java-based version allows you to use SSL, and the script-based
version offers you the capability to manage servers over an SSH-enabled (or RSH-enabled)
network once you copy the scripts to the remote servers.

You can run the Node Manager as a Windows service or an OS daemon so it automatically
starts when you reboot the server. Chapter 2 shows you how to run the Node Manager as an
operating system service, post installation. The Configuration Wizard gives you the option to
install the Node Manager as an operating system service, which Oracle recommends you do.
When you install the WebLogic Server software, choose the Java-based Node Manager if you’re
working on a Windows or a UNIX platform and wish to run the Node Manager as an operating
system process.

NOTE
The Node Manager isn’t supported on all platforms, so check the
Oracle documentation to ensure it’s supported on your platform.

42 Oracle WebLogic Server 12c Administration Handbook

The script-based Node Manager uses UNIX-style shell scripts, so you can run it only on UNIX
and Linux systems. Oracle recommends that you run this version as an operating system service
to enable automatic restarts.

Choosing between the Java-based and script-based versions of the Node Manager isn’t really
hard. Only the Java-based version works on a Windows system, so your choice on that platform is
already made for you! Throughout this book, I use a Java-based Node Manager, as the examples are
from a Windows environment. As for UNIX/Linux systems, you can use either version, with the
script-based version being easier to configure from the security point of view. Other than this, the
way the Node Manager interacts with server instances is essentially the same under the two versions.

Surprisingly, as critical as the Node Manager is for managing WebLogic Server, you really
don’t access the process directly. You access the Node Manager through either the Admin Server
or the WLST scripting tool—both act as Node Manager clients. When you use the Admin Server
as the client, you do so through the Administration Console. When you are using the Node
Manager from the command line, you do so by first invoking WLST and using it as the interface to
run Node Manager commands. For the script-based Node Manager, you can use an SSH client to
connect to the Node Manager remotely.

You can perform the following functions by connecting with the Node Manager process
through WLST:

 � You can control the Admin Server by starting, stopping, and restarting the server with the
Node Manager.

 � The Node Manager can stop and start as well as suspend any Managed Server. When you
start or stop a Managed Server through the Administration Console, the Admin Server first
accesses the Node Manager, which, in turn, performs the actual task.

 � The Node Manager also monitors the Managed Servers and tries to restart a failed
Managed Server.

This chapter provides a very simple introduction to the Node Manager and its capabilities.
Chapter 2 shows you how to work with the Node Manager to perform various administrative tasks.

Using the WebLogic Scripting Tool (WLST)
Most application servers provide you with a good scripting tool. For example, IBM’s WebSphere
has a scripting tool called wsadmin that is based on Jython, and JBoss has a similar scripting tool.
Oracle WebLogic Server offers you a wonderful scripting tool called WebLogic Scripting Tool
(WLST). WLST is a powerful tool, capable of performing several different types of administrative
tasks for you, including configuration, management, and monitoring of tasks. As you’ll see in
Chapter 2, you can connect to Node Manager through the WLST interface to manage the server
instances. For ease of use, you can use simple Jython scripts as wrappers for WLST commands.

You can use WLST in interactive mode by invoking it at the command line. You can also use it
in batch mode by putting WLST commands in scripts, and you can embed WLST commands in
Java code by importing weblogic.management.scripting.utils.WLSTinterpreter into your Java class.

Offline and Online WLST
You can use WLST in online mode by connecting to an active Admin or Managed Server. When
connected to the Admin Server, you can use WLST to configure a domain. As is the case with the
Administration Console, WLST in online mode acts as a Java Management Extensions (JMX) client

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 43

that manages the domain’s resources by modifying the server’s Configuration MBeans. Thus, WLST
offers you all the domain management configuration capabilities as the Administration Console.

In offline mode, WLST helps you extend a domain, create domain templates, and create
domains with those templates. Because you aren’t connected to an active Admin Server, you
won’t be able to modify domain configuration in offline mode. In offline mode, WLST acts as an
interface to the Node Manager, and you can issue WLST commands to start and stop Managed
Server instances without connecting to the Admin Server. Note that you can’t start and stop
Managed Servers through WLST without the Node Manager, however, as explained in Chapter 2.

CAUTION
Oracle recommends that you not use WLST in the offline mode to
configure an active WebLogic domain. A running server ignores the
offline commands, plus the Administration Console (and WLST online)
can overwrite those commands.

Invoking WLST
In a Windows environment, you can invoke WLST through the Windows Start program and from
the command line. The following sections show how to invoke WLST.

Starting WLST from the Start Program
You can invoke WLST in a Windows environment by simply selecting Start | Programs | Oracle |
Oracle Home | WebLogic Server 12c | Tools | WebLogic Scripting Tool.

Invoking WLST from the Command Line
You can invoke WLST from the command line by using either the java weblogic.WLST command
or the command script wlst.cmd. Before you can run the weblogic.WLST command, you must set
the correct environment by issuing the setDomainEnv.cmd script, which is located in the WL_
HOME\server\bin directory. In my case, this directory is C:\Oracle\Middleware\Oracle_Home\
wlserver\server\bin, because the WL_HOME directory is defined as C:\Oracle\Middleware\
Oracle_Home\wlserver on my Windows server. Once you set up the environment, you can invoke
WLST with the Java command weblogic.WLST, located in the WL_HOME\common\bin directory:

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>setWLSEnv.cmd
…
Your environment has been set.

Once the environment has been set, you are ready to invoke WLST with the Java command
weblogic.WLST:

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>java weblogic.WLST
Initializing WebLogic Scripting Tool (WLST) ...
Welcome to WebLogic Server Administration Scripting Shell
Type help() for help on available commands
wls:/offline>

Note that when you invoke WLST, by default, you’re in offline mode. You can only issue
certain commands in offline mode, such as those that create a new domain or domain template,

44 Oracle WebLogic Server 12c Administration Handbook

for example. In offline mode, you can’t view performance data pertaining to any domain resource
or add and remove users. To issue any online commands, you must first connect to the Admin
Server using the connect command. Once you use WLST to connect to an Admin Server, you can
manage the configuration of the domain and view performance data. Although you can connect
to a Managed Server through WLST, you can’t modify the configuration for a Managed Server.

You can also invoke WLST by issuing the script wlst.cmd (wlst.sh in UNIX), as shown here:

C:\Oracle\Middleware\Oracle_Home\\oracle_common\common\bin> wlst.cmd
CLASSPATH=C:\Oracle\MIDDLE~1\patch_wls1211\profiles\default\
sys_manifest_classpath\weblogic_patch.jar;
C:\Oracle\MIDDLE~1\patch_ocp371\profiles\default\sys_manifest_classpath\
weblogic_patch.jar;
C:\Oracle\MIDDLE~1\JROCKI~1.0-1\lib\tools.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\server\lib\weblogic_sp.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\server\lib\weblogic.jar;
C:\Oracle\MIDDLE~1\modules\features\weblogic.server.modules_12.1.1.0.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\server\lib\webservices.jar;
C:\Oracle\MIDDLE~1\modules\ORGAPA~1.1/lib/ant-all.jar;
C:\Oracle\MIDDLE~1\modules\NETSFA~1.0_1/lib/ant-contrib.jar;
C:\Oracle\MIDDLE~1\utils\config\10.3\config-launch.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\common\derby\lib\derbynet.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\common\derby\lib\derbyclient.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\common\derby\lib\derbytools.jar;
Initializing WebLogic Scripting Tool (WLST)...
Welcome to WebLogic Server Administration Scripting Shell
Type help() for help on available commands
wls:/offline>

Note that you use the wlst.cmd script from the ORACLE_HOME\oracle_common\common\
bin directory and not a directory specific to any particular WebLogic Server domain.

Using WLST in Script Mode
Although you can use WLST in interactive mode to make configuration changes quickly in a
development environment, WLST offers limited scripting language features and is cumbersome to
use in a real-life WebLogic environment. You can use WLST scripts to automate server configuration
and application deployment. A WLST script is a text file with the .py extension, and it includes
WLST commands. WebLogic Server provides online and offline sample WLST scripts. For example,
the Oracle-provided sample WLST script clusterMedRecDomain.py lets you create a WebLogic
cluster with three Managed Servers. Similarly, the sample script named basicWLSDomain.py lets
you create a simple WebLogic domain for development purposes, using the Oracle-supplied Basic
WebLogic Server Domain template. You’ll find both of these scripts and a few others in the
WL_HOME\common\templates\scripts\wlst directory (C:\Oracle\Middleware\Oracle_Home\
wlserver\common\templates\scripts\wlst in my case).

You can invoke a WLST script (.py) by providing the name of the script as an argument to the
java weblogic.WLST command, as shown here:

C:\Oracle\Middleware\wlserver_12.1\samples\domains\wl_server> java weblogic.WLST
C:\Oracle\Middleware\wlserver_12.1\samples\domains\medrec\shutdown.py

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 45

Here are the contents of the shutdown.py script:

import os
if os.environ.has_key('wlsUserID'):
 wlsUserID = os.environ['wlsUserID']
if os.environ.has_key('wlsPassword'):
 wlsPassword = os.environ['wlsPassword']
connect(url='t3://LOCALHOST:7001', adminServerName='examplesServer')
shutdown('examplesServerMedRecServer','Server', ignoreSessions='true')
exit()

Alternatively, you can first invoke WLST and specify the execfile command to execute the
shutdown.py script.

wls:offline>
execfile('C:\MyOra\Middleware\Oracle_Home\wlserver\samples\domains\medrec\shutdown
.py')

If you’re embedding WLST commands in a shell script or a Windows command script, invoke
WLST with the wlst.cmd script (WL_HOME\common\bin\wlst.cmd). Doing this ensures that all
the environment variables are set correctly. WebLogic Server also allows you to write all the
WLST commands you enter during an interactive session to a file that you can later run as a WLST
script. Simply issue the startRecording command to record all your interactive commands and
issue the stopRecording command to stop the capturing of the commands, as shown here:

wls:/test_domain/serverConfig>
startRecording('C:\Oracle\Middleware\wls_12.1\test\test.py')
Started recording to C:\Oracle\Middleware\wls_12.1\test\test.py

Issue the WLST commands you want to capture in test.py. Once you’re done, stop the
recording of the commands by issuing the stopRecording command:

wls:/test_domain/serverConfig> stopRecording()
Stopped recording to C:\Oracle\Middleware\wls_12.1\test\test.py
wls:/test_domain/serverConfig>

You can edit the test.py file and execute it as a WLST script.

Connecting to a WebLogic Server Instance
In the offline mode, you aren’t connected to a running server. Use the connect command to
connect to the Admin Server, as shown here:

wls:/offline> connect()
Please enter your username :weblogic
Please enter your password :
Please enter your server URL [t3://localhost:7001] :
Connecting to t3://localhost:7001 with userid weblogic...
Successfully connected to Admin Server 'examplesServer' that belongs to
domain 'wl_server'.
Warning: An insecure protocol was used to connect to the server.

46 Oracle WebLogic Server 12c Administration Handbook

 To ensure on-the-wire security, the SSL port or Admin port
 should be used instead.
wls:/wl_server/serverConfig>

In the example, you’ll notice a warning because I’m not using a secure port such as the
administration port or an SSL port. Oracle recommends that you use either SSL or the
administration port in a production system. You can ignore this warning in a development
environment.

TIP
To view the help topics, type help at the WLST command line. You
must specify an argument for the help command; for example,
help(connect) will give you information about using the connect
command.

You can also directly specify the administrator’s credentials at the command line, as shown
here:

wls:/offline> connect('weblogic','welcome1','t3://localhost:7001')
Connecting to WebLogic Server instance running at t3://localhost:7001 as
username weblogic...
Successfully connected to Admin Server 'ExamplesServer' that belongs to
domain 'examples'.
wls:/mydomain/serverConfig>

As you can see, I had to supply the user credentials (the same ones used for the Administration
Console) to connect to the Admin Server. Oracle recommends that you do this only when using
WLST in interactive mode. The default behavior is for WLST to see if you have created a “user
configuration file” to store the encrypted credentials and a “key file” with which the server can
decrypt the credentials. If you start WLST from the domain directory from which you started the
Admin Server, it can use the boot.properties file to get the encrypted credentials. (The boot
.properties file is discussed in Chapter 2.)

When you use WLST in scripts, it’s safer not to use the clear text credentials in the script. You
can use the storeUserConfig command to store the credentials in an encrypted form, following
which you can specify the name of the user configuration file instead of the credentials. Here’s
how to do this:

wls:/offline> connect(userConfigFile='C:\Oracle\test\myuserconfigfile.secure',
userKeyFile='C:\Oracle\test\myuserkeyfile.secure')
Connecting to t3://localhost:7001 with userid username ...
Successfully connected to Admin Server 'AdminServer' that belongs to domain
'examples'.
wls:/examples/serverConfig>

In order to use the userConfigFile option, you must first issue the storeUserConfig command to
create a user configuration file and its key file. The configuration file contains the encrypted
credentials, and the key file contains the key the server uses for encrypting and decrypting the
credentials. Here’s an example that shows how to do this:

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 47

wls:/test_domain/serverConfig>
storeUserConfig('C:\MyOra\myuserconfigfile.secure',
'C:\Oracle\test\myuserkeyfile.secure')
Creating the key file can reduce the security of your system if it is not
kept in a secured location after it is created. Do you want to create the
key file? y or n y
Please confirm user config key creation: y or n y
The username and password that were used for this current WLS connection are
stored in C:\MyOra\mysuserconfigfile.secure and
C:\Oracle\test\myuserkeyfile.secure
wls:/test_domain/serverConfrg>

Once you generate the user configuration file and the key file, you can supply the names of
these two files instead of entering administrator credentials on the command line.

Disconnecting from the Server
You disconnect from a server by issuing the disconnect command, as shown here:

wls:/wl_server/serverConfig> disconnect()
Disconnected from WebLogic Server: examplesServer
wls:/offline>

To exit from WLST, use the exit command:

wls:/offline> exit()
Exiting WebLogic Scripting Tool.
C:\MyOra\Middleware\wlserver_10.3\samples\domains\medrec >

By default, the server outputs all WLST messages or output to standard output, that is, to the
screen. You can redirect all the messages to any file you wish by using the redirect command:

wls:/wl_server/serverConfig> redirect
('C:\Oracle\Middleware\wl_server_12.1\logs\wlst.log')

Using the Help Command
WLST has numerous commands that you can use in your daily work. You can check out these
commands and their syntax using the help facility. Here’s a listing of all the help facility commands.

wls:/wl_server/serverConfig> help()
WLST is a command line scripting tool to configure and administer WebLogic
Server. Try:
 help('all') List all WLST commands available.
 help('browse') List commands for browsing the hierarchy.
 help('common') List the most commonly used commands.
 help('control') List commands for controlling the domain/server.
 help('deployment') List commands for deploying applications.
 help('diagnostics') List commands for performing diagnostics.
 help('editing') List commands for editing the configuration.
 help('information') List commands for displaying information.
 help('lifecycle') List commands for managing life cycle.

48 Oracle WebLogic Server 12c Administration Handbook

 help('nodemanager') List commands for using Node Manager.
 help('offline') List all offline commands available.
 help('online') List all online commands available.
 help('storeadmin') List all store admin commands.
 help('trees') List commands use to navigate MBean hierarchy.
 help('variables') List all global variables available.

Key WLST Command Groups
As I mentioned earlier, WLST offers a large number of commands to help perform various
management and programming tasks. Here’s a brief description of the key WLST command types.
Note that you can execute some commands only in offline mode and others in online mode.

Lifecycle Commands
You can use the lifecycle commands to manage the lifecycle of both the Admin and the Managed
Servers. WLST offers the start, startServer, suspend, resume, and migrate commands to control a
server lifecycle. Here are examples showing how to suspend and resume the Admin Server instance:

wls:/wl_server/serverConfig> suspend('examplesServer')
..Server examplesServer suspended successfully.
wls:/wl_server/serverConfig> resume('examplesServer')
Server examplesServer resumed successfully.
wls:/wl_server/serverConfig>

Node Manager Commands
You can use the Node Manager commands to start, stop, and monitor server instances. Before you
can use Node Manager to manage server instances, you must connect WLST to the Node
Manager using the nmConnect command. The nmStart command lets you start a server instance
with the help of the Node Manager. Here’s how you use the nmConnect command to connect to
the Node Manager from WLST. First, make sure that the Node Manager is running; if not, you can
start it from the Windows Start command.

wls:/myserver/serverConfig> nmConnect('weblogic', 'welcome1', 'localhost',
'7011', 'medrec',
'C:\Oracle\Middleware\user_projects\domains\medrec','ssl')
Connecting to Node Manager Server ...
Successfully connected to Node Manager.

Chapter 2 explains other important Node Manager–related commands such as nmDisconnect,
nmEntroll, and nmkill.

Deployment Commands
Deployment commands such as deploy, undeploy, startApplication, and stopApplication enable
you to deploy, undeploy, and redeploy applications; update deployment plans; as well as start
and stop applications. Here’s how you execute the deploy command:

wls:/test_domain/serverConfig/Servers> deploy('myApp',
'C:\Oracle\myApps\demos\app\myApp.ear',targets='ManagedServer1',
planPath='C:\Oracle\myApps\demos\app\plan\plan.xml',timeout=120000)'

Chapter 1: Installing Oracle WebLogic Server 12c and Using the Management Tools 49

In this example, the myApp application is packaged in the form of a Java EAR file, myApp.ear.
The server targets this application to the Managed Server named ManagedServer1 using the
deployment file in C:\Oracle\myApps\demos\app\plan\plan.xml. The server will wait for
120,000 milliseconds for the deployment to finish.

Editing Commands
You can use commands such as get, set, edit, startEdit, stopEdit, save, and activate to view and edit the
MBean domain configuration hierarchy. You can edit and modify a domain’s configuration in both
offline and online modes. Oracle recommends that you change only the Admin Server’s domain
configuration MBeans, and not those of the Managed Servers, to avoid ending up with an inconsistent
configuration. As you may recall, domain configuration changes are synchronized between the
Admin Server and the Managed Server. You can, however, view the hierarchy for the Managed Server
MBeans. Note that you must connect to the Admin Server before editing any of the configuration
beans. Here’s a simple example that shows how to use the startEdit, stopEdit, and activate commands:

wls:/wl_server/edit> startEdit(30000, 60000)
Starting an edit session ...
Started edit session, please be sure to save and activate your changes once
you are done.
wls:/wl_server/edit !> stopEdit()
Sure you would like to stop your edit session? (y/n)
y
Edit session has been stopped successfully.
wls:/wl_server/edit !> activate(200000, block='true')
Activating all your changes, this may take a while ...
the edit lock associated with this edit session is released once the
activation is completed.
Action completed.
wls:/wl_server/edit>

Diagnostic Commands
Diagnostic commands such as exportDiagnosticData and getAvailableCapturedImages help you
work with diagnostic data stored in the WebLogic Diagnostic Framework (WLDF) data stores.
Chapter 6 shows how to use key WLST diagnostic commands.

Summary
This chapter introduced you to key WebLogic Server concepts and terminology. You learned how to
install WebLogic Server, as well as how to upgrade it using the new Oracle Fusion Middleware
Reconfiguration Wizard. The chapter also introduced you to the key WebLogic Server administrative
tools such as the Administration Console, Node Manager, and WLST. WLST is an extremely powerful
tool, capable of assisting with a wide variety of administrative tasks. I’ve attempted merely to
introduce you to the WLST interface in this chapter. Chapter 2 shows you how to use WLST to
manage a server’s lifecycle. Similarly, other chapters show how you can effectively use the many
powerful, yet easy-to-use WLST commands to perform other types of management tasks.

Now that you have a basic understanding of WebLogic Server, let’s learn how to use WLST
and Node Manager commands together to manage servers in the next chapter. Chapter 2 also
explains the various server run states and how to manage them.

CHAPTER
2

Administering WebLogic
Server Instances

52 Oracle WebLogic Server 12c Administration Handbook

The first chapter of this book introduced you to the Administration Console, the WebLogic
Scripting Tool (WLST), and the Node Manager, three very important management tools for
handling day-to-day administrative tasks as well as for performing various server

configuration tasks. This chapter shows you how to manage WebLogic Server using these tools
and other management APIs offered by WebLogic Server. The chapter explains the WebLogic
Server lifecycle, from startup to shutdown. Ant tasks help you perform many management and
configuration tasks. This chapter shows you how to build simple Ant-based scripts to manage
WebLogic Server. The chapter also reviews the Node Manager and WLST tools at a deeper level
and shows you how to configure the Node Manager for use with Managed Servers. You’ll also
learn how to use WLST and the Node Manager together to manage the WebLogic Server lifecycle
efficiently. This chapter also seeks to enhance your understanding of the role of the Administration
Console in WebLogic Server management. Dealing with server failures is, of course, a critical
issue, and the chapter shows you how to handle an Admin Server failure as well as how to run the
Managed Server in the Managed Server Independence (MSI) mode.

Let’s start this chapter with a quick review of both the Admin Server and Managed Servers.

Managing the Servers
You can start, stop, and manage a running WebLogic Server instance using multiple tools—you
can use the Node Manager, WLST, and command-line scripts to start and stop the server
instances. This chapter is devoted mainly to explaining, in detail, the various server management
commands as well as dealing with server failures. To start this chapter off right, let’s review two
basic types of WebLogic Server instances—the Admin Server and the Managed Server.

Administration and Managed Servers
Each WebLogic Server domain has a minimum of one server. If you only have a single server, as is
often the case in development environments, then you use that server for both management purposes
and for deploying applications. In production environments, however the norm is to use multiple
Managed Servers, usually organized into a cluster for providing load balancing, high availability, and
scalability benefits. In the following sections, let’s revisit the two types of servers—the Admin Server
and the Managed Server—that you must manage in a WebLogic Server environment.

Admin Server
Although you can deploy web applications through the Admin Server, its main purpose is to act as
the central command center for managing all domain resources, including the configuration of the
servers. The Admin Server maintains the configuration files for the domain and distributes the
configuration updates to the Managed Servers. When the Admin Server notifies the Managed Servers
of any domain configuration changes, the Managed Servers update their local config directory, thus
ensuring that they always cache a current copy of their configuration. Because you need the Admin
Server to manage the entire domain, in a production environment, you always run the Admin Server
by itself on a separate physical machine and run the Managed Servers on their own machines. In
addition, you protect and secure the Admin Server carefully to ensure that it is up at all times.

As you learned in Chapter 1, you can manage the Admin Server through WLST commands,
the Administration Console, or a custom JMX client.

Managed Servers
The Managed Servers host your web applications, web services, and the resources necessary to
support these applications and services. Although the Admin Server and the Managed Server both

Chapter 2: Administering WebLogic Server Instances 53

maintain copies of the domain’s configuration, you can modify the configuration only through the
Admin Server, not from the Managed Servers.

Upon starting, a Managed Server connects to the Admin Server and synchronizes its domain
configuration document with the Admin Server’s copy of the domain configuration file. The
Managed Server also gets its security data from the Admin Server. If you configure SSL for a
Managed Server, however, it uses its own SSL-related files such as the certificate files.

Admin Server Failures and the Managed Servers
Let’s say you have the Admin Server and multiple Managed Servers all running on the same
physical or virtual machine. What happens to the Managed Servers if the Admin Server fails and
you’re unable to start it for some reason? The Managed Servers will continue to run, despite the
failure of the Admin Server—you just won’t be able to modify the Managed Server’s configuration
because there’s nothing to manage it with! The last section of this chapter shows you how to set
up the Managed Servers to run independently of the Admin Server. If the Managed Servers are
part of a cluster, all the load balancing and high availability features of that cluster remain intact,
even in the absence of the Admin Server.

Can you start a Managed Server if the Admin Server is not running? Turns out that you can—
the Managed Server is said to be in Managed Server Independence (MSI) mode when it runs in
the absence of the Admin Server. The Managed Server, instead of contacting the running Admin
Server for the domain configuration, simply uses its own local copy of the configuration files to
look up the startup configuration. Once it boots, it attempts to connect to the Admin Server at
periodic intervals. Once you bring the Admin Server online, the Managed Server makes contact
with it and synchronizes its configuration files with those of the Admin Server. This is possible
only if the Admin Server and the Managed Server share the domain directory, in which case the
configuration files need not be distributed, or if the Managed Server has already been started once
and has successfully downloaded a copy of the configuration.

Selecting the Start Mode for a Server
Before we start discussing the actual startup and shutdown procedures for a server instance, it’s
important to understand that you can choose to start a server in two different modes—production
or development mode. The default mode is development mode. When you enable production
mode, a number of configuration attributes will have different default values from those in a
server running in development mode. Here’s a summary of how key configuration attributes vary
in a server running in production mode:

 � The servlet engine will not check for servlet changes.

 � When using 8.1 executed threads, the default pool size changes from 15 to 25.

 � Log files roll over at 5MB instead of 5KB.

NOTE
In the current release, when you run a WebLogic server instance
in production mode, by default, the server rotates its server log file
whenever the file grows to 5000 kilobytes in size. WebLogic Server
also sets a threshold size limit of 2,097,152KB before it forces a hard
rotation to prevent the log file from reaching an excessively large size.

54 Oracle WebLogic Server 12c Administration Handbook

 � Log files will not automatically be started in a new file.

 � The server uses a larger memory buffer for the log files.

 � The domain log messages are buffered.

 � SNMP requires MD5 authentication.

 � Server start timeouts go from 30 seconds to 2 minutes.

You can use one of the following methods to select the domain’s startup mode:

 � In the start script for the Admin Server, add the following line:

set STARTMODE=

Set the value of the startmode attribute to true if you want to run a server in production
mode. By default, the server runs in development mode, so you can leave the startmode
attribute blank or specify the value false, if you want to run the server in development
mode. The default start scripts provided by Oracle are the startWebLogic.cmd (Windows)
and startWebLogic.sh (UNIX) scripts; they are located in your domain home directory.
For example, in the case of the wl_server domain, the startup script startWebLogic.cmd
for the domain’s Admin Server is located in the C:\Oracle\Middleware\wlserver_12.1\
samples\domains\wl_server directory. The startup scripts contain commands that allow
you to specify several startup options in addition to the run mode.

 � You can also specify the development or production run mode by setting the
ProductionModeEnabled flag to false or true with the -D option, when starting the server
with the weblogic.Server command:

 java -ms200m -mx200m -classpath $CLASSPATH
 -Dweblogic.Name=myserver
 -Dweblogic.ProductionModeEnabled=false
 -Dweblogic.management.username=myUserName
 -Dweblogic.management.password=myPassword
 weblogic.Server

 � Another method is to enable production mode for all the servers in a domain in the
Administration Console by navigating to Home | Domain | Configuration | General
and checking the Production Mode check box. You must restart the Admin Server after
saving this change. Just remember that you can’t disable production mode from the
Administration Console.

If you find that even after setting the production_mode attribute to the value false in the
setDomainEnv.cmd (or setDomainEnv.sh) file and restarting the servers, the Admin Server
continues to run in production mode, check your config.xml file for the domain and remove the
entry for the production mode. The entry will be in the following format:

<production-mode-enabled>true</production-mode-enabled>

You can make this change directly in the config.xml file or edit the file from the Administration
Console. You can check the mode in which a server started by viewing the output generated by
the server in the command window following a server startup. You’ll see the following lines right
after the server starts:

Chapter 2: Administering WebLogic Server Instances 55

JAVA Memory arguments: -Xms256m -Xmx512m -XX:CompileThreshold=8000 -XX:PermSize=
128m -XX:MaxPermSize=256m
WLS Start Mode=Development

You can find out which JVM the server is using by viewing the messages generated in the
command window by the server as it is starting:

starting weblogic with Java version:
java version "1.6.0_29"
Java(TM) SE Runtime Environment (build 1.6.0_29-b11)
Java HotSpot(TM) Client VM (build 20.4-b02, mixed mode)

Configuring Class Caching
WebLogic Server allows you to use class caching to reduce the search time for classes and thus the
server startup time. You can use class caching only in development mode, however. The server uses an
invisible file to store all class definitions and loads these definitions from the cache file each time you
restart the server. The server invalidates the cache once you make any changes to the system class path.

To enable class caching, first set the CLASS_CACHE environment variable to true in the
startWebLogic.cmd scrip by adding the following to the script:

set CLASS_CACHE=true
if "%CLASS_CACHE%"=="true" (
 echo Class caching enabled...
 set JAVA_OPTIONS=%JAVA_OPTIONS% -Dlaunch.main.class=%SERVER_CLASS%
 -Dlaunch.class.path="%CLASSPATH%"
 -Dlaunch.complete=weblogic.store.internal.LockManagerImpl
 -cp %WL_HOME%\server\lib\pcl2.jar
 set SERVER_CLASS=com.oracle.classloader.launch.Launcher
)

Setting the Environment Variables
Before you can start or stop your WebLogic Server instances, you need to do something else
first—you must set the necessary environment variables for WebLogic Server to run. You must do
this prior to running any WLST or Node Manager commands. On a Windows system, for
example, you can set the environment variables by running setDomainEnv.cmd, as shown here:

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>setWLSEnv.cmd

The setWLSEnv.cmd script is located in the WL_HOME\server\bin directory, and, in my
environment, this translates to C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin.

Every domain has its own copy of the setDomainEnv.cmd script. The Configuration Wizard
creates the setDomainEnv.cmd (and setDomainEnv.sh) file when you create the domain. The
command file sets some required environment variables, such as the WebLogic and Java home
directories, the maximum and minimum memory allocations for the Java heap size, and log file
configuration. For example, here is a list of some key environment variables that are set in the script:

set WL_HOME=C:\Oracle\Middleware\wlserver_12.1
set BEA_JAVA_HOME=C:\Oracle\Middleware\jrockit_160_29_D1.2.0-10

56 Oracle WebLogic Server 12c Administration Handbook

set SUN_JAVA_HOME=C:\Oracle\Middleware\jdk160_29
set JAVA_HOME=%JAVA_HOME%
set SAMPLES_HOME=%WL_HOME%\samples
set DOMAIN_HOME=C:\Oracle\Middleware\wlserver_12.1\samples\domains\wl_server
set DERBY_FLAG=true
set enableHotswapFlag=
set PRODUCTION_MODE=
if "%PRODUCTION_MODE%"=="true" (
 set debugFlag=false
 set testConsoleFlag=false
 set iterativeDevFlag=false
 set logErrorsToConsoleFlag=false
)
if "%JAVA_VENDOR%"=="Sun" (
 set WLS_MEM_ARGS_64BIT=-Xms256m -Xmx512m
 set WLS_MEM_ARGS_32BIT=-Xms256m -Xmx512m
) else (
 set WLS_MEM_ARGS_64BIT=-Xms512m -Xmx512m
 set WLS_MEM_ARGS_32BIT=-Xms512m -Xmx512m
)

Note that the setDomainEnv.cmd file calls commEnv.cmd from the $WL_HOME\common\
bin directory. The commEnv.cmd file contains common environment variables for the WebLogic
environment, such as MW_HOME, which is the common directory for all Oracle Fusion
Middleware installations, as well as COHERENCE_HOME and ANT_HOME, the Ant home
directory.

NOTE
The startWebLogic.cmd script automatically calls the setDomainEnv.cmd
script, as shown by the following line in the startWebLogic.cmd script:

 call "%DOMAIN_HOME%\bin\setDomainEnv.cmd" %*

Thus, you don’t need to set your environment explicitly if you run the
startWebLogic.cmd script directly.

Here’s how you run the setDomainEnv.cmd script from the domain directory for the same
domain medrec:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\medrec\bin\setDomainEnv.cmd

TIP
You can use the commEnv command to configure your environment
for doing simple development, as it will create a class path and
path that allow you access to the version of WebLogic Server you’re
using. From there, you can simply execute the java weblogic.Server
command in an empty directory, and it will create a whole new
domain for you without using any extra tools. You’ll see an example in
Chapter 3.

Chapter 2: Administering WebLogic Server Instances 57

Configuring Server Instances with the Administration Console
When you create a domain with the help of the Configuration Wizard, you can configure several
settings such as the listen address and the port numbers for both the Admin and the Managed Servers.
You can configure administrative access to the server, for example, to a port that is firewalled.

Note that you can choose to use SSL and select an SSL listen port. You can also enable SSL later
through the Administration Console’s Configuration page for the Admin Server. The Configuration
page in the Administration Console lets you configure all properties for an Administration Server,
including the listen address and listen port. You access the Configuration page by selecting the
domain name in the left-hand pane of the console and then clicking the Configuration tab in the
right-hand pane. Figure 2-1 shows the Configuration page for the Admin Server.

For example, in the left-hand pane, click the domain (e.g., wl_server). This takes you to the
settings page for the domain (Settings For wl_server in this example), in which any setting applies
to all Managed Servers hosted on the domain. Here is a summary of some of the key
configuration attributes at the domain level.

Administration Port You can enable SSL for the domain-wide port by selecting that option
here. If you decide to enable the administration port, it will apply to the entire domain, so make
sure you configure SSL for all the Managed Servers as well. Once you enable the administration
port, an administrator can’t log in through the normal port. Also, the administration port allows
only administrative connections and not application connection requests. If you don’t specify the
administration port, you can’t start a server instance in the STANDBY state.

FIGURE 2-1. The Configuration Wizard’s Configuration page for the Admin Server

58 Oracle WebLogic Server 12c Administration Handbook

Production Mode You can choose whether you want to run the domain in production mode.
As shown elsewhere in this chapter, you can specify the start mode on the command line as well.
If you set the start mode through the Administration Console, you must bounce the server for the
change to take effect. Note that setting the start mode at the domain level means that this setting
will be enforced for all Managed Servers in the domain.

Enable Exalogic Optimizations The Enable Exalogic Optimizations attribute is pertinent only
to cases where you are configuring domains for Oracle Exalogic. The optimizations offer superior
thread management and reduced contention for locks. Set this only when running on Exalogic, as
that is the only place that it will provide value. For more information on Oracle Exalogic, go to
www.oracle.com/us/products/middleware/exalogic/index.html.

Enable Cluster Constraints By selecting this configuration option, you’re specifying that any
deployments you target to a cluster will succeed only if all servers in that cluster are running. If
you don’t check this option, by default, deployment is attempted only on the reachable servers
and not all server members of a cluster.

Console Enabled By default, the Admin Server always deploys the Administration Console. By
unchecking this option, you can choose not to deploy it.

Console Session Timeout This attribute sets the timeout interval for the Administration Console.
The default interval is 3600 seconds.

Administration Protocol This option lets you choose the default protocol if you enable the
administration port. If a request through the administration port doesn’t specify a protocol, the
server uses this default protocol.

Chapter 3 provides more information about using the Administration Console to configure
servers.

Providing User Credentials
When you start an Administration Server or when you start a Managed Server with the java
weblogic.Server command, the server prompts you for a username and a password. It doesn’t
prompt you for the credentials when you use the Node Manager to start Managed Servers,
however. To avoid having to specify the username and password credentials each time you start
your servers, Oracle recommends that you use a boot identity file, named boot.properties. The
following section shows how the boot properties file helps you and how to re-create the file.

Creating a Boot Identity File
In the sample domains from Chapter 1, you didn’t have to specify credentials when starting the
Admin Server because, when Oracle Installer created the sample domains, it created a default boot
identity file for you. The same is true for any domain that you create; WebLogic Server automatically
creates a boot properties file for you. For example, for the sample domain wl_server, the boot.
properties file is located under the C:\Oracle\Middleware\wlserver_12.1\samples\domains\wl_
server\servers\examplesServer\security directory. Here are the contents of the boot.properties file:

Generated by Configuration Wizard on Thu Oct 10 12:41:37 CDT 2013
username={AES}Z+r09kKJsfCaNpE/BGQ99uJ/m3mFitBFpPW81we5HUs=
password={AES}yZN3P70IUmo4D1SLNHlPkCX83eeA3FvjAubX7RI5XZw=

Chapter 2: Administering WebLogic Server Instances 59

As you can see, the username and passwords are in an encrypted form—the boot.properties file
contains the encrypted credentials, with the encryption key itself stored in the SerializedSystemIni
.dat file. Apparently the name for this file was chosen with the intention of obfuscating its
contents—however, over time, the contents of the file have become widely known. Note that you
can’t directly substitute these encrypted values with plaintext values to change the user
credentials. There’s a different way to modify the encrypted credentials, as shown in this section.

If your boot.properties file is in place, when you start a server, WebLogic Server doesn’t require
you to input the administrator username and password. If, for some reason, WebLogic Server can’t
see the boot.properties file, it prompts you to provide those credentials before it can start the server:

<Oct 14, 2013 8:37:11 AM CDT> <Info> <Security> <BEA-090065> <Getting boot
 identity from user.>
Enter username to boot WebLogic server: weblogic
Enter password to boot WebLogic server:
<Oct 14, 2013 8:37:42 AM CDT> <Notice> <WebLogicServer> <BEA-000365>
<Server state changed to STARTING.>
<Oct 14, 2013 8:37:42 AM CDT> <Info> <WorkManager> <BEA-002900>
<Initializing self-tuning thread pool.>
…

Once again, the default username is weblogic and the default password is welcome1.
Creating the boot identity file is easy. If the file doesn’t exist, you can simply add the following

two lines in a text file named boot.properties and place it in the directory specified earlier:

username=username
password=password

You must specify the same credentials that are currently in place when you create a boot identity
file. Make sure there are no leading or trailing blanks in the two lines. Save the boot.properties file
and restart the server. The server uses the credentials you specified in the boot.properties file and
automatically overwrites the plaintext credentials with encrypted versions. All you’re doing by creating
the boot.properties file is avoiding the prompts for the credentials when you start a server. Note that
you can only specify current passwords in the boot.properties file you create; you can’t specify a new
set of credentials by simply creating a new boot.properties file. The reason you can’t specify a new set
of values for the username and password directly in the boot.properties file is because those values
must be identical to those of an existing account in the Authentication provider for your default
security realm. Furthermore, the user must have a role that enables the user to start a server.

You can always specify a non-default boot.properties file by providing the location for the file
in the weblogic.Server start command. Add the following to the start command to point to a
location that you wish to specify:

-DWeblogic.system.BootIdentityFile=<filename>

If you are using the startWebLogic script to start the servers, add the following JAVA_OPTIONS
attribute to the script, to point to an alternative location for the boot.properties file:

JAVA_OPTIONS=-Dweblogic.system.BootIdentityFile=C:\temp\boot.properties

What happens if you use a boot.properties file but, for some reason, the server can’t access it,
say because it was accidentally deleted? The server still starts, but it now prompts you for the

60 Oracle WebLogic Server 12c Administration Handbook

username and password. Because the boot.properties file allows you to log in without producing
the administrative credentials, in a production system, there’s a risk of someone being able to start
the servers without the appropriate credentials. To prevent this, you can make the boot.properties
file disappear after you start the server by adding the following to either the weblogic.Server start
command or the startWebLogic.cmd script (as the value for the JAVA_OPTIONS attribute):

-Dweblogic.system.RemoveBootIdentity=true

Logging in Through a New Administrator Account
Suppose you forgot your user credentials and enter incorrect credentials when trying to start the
Admin Server, in this case, through a WLST startserver command. Here’s the error message that
follows:

wls:/offline>
startServer('AdminServer','wl_server','t3://localhost:7001','weblogic','welcome2')
Starting weblogic server ...
WLST-WLS-1371305204890: <Oct 15, 2013 9:06:49 AM CDT> <Notice> <Security> <BEA-
090082> <Security initializing using security realm myrealm.>
WLST-WLS-1371305204890: <Jun 15, 2013 9:06:49 AM CDT> <Critical> <Security> <BEA-
090402> <Authentication denied: Boot identity not valid; The user name and/or
password from the boot identity file (boot.properties) is not valid. The boot
identity may have been changed since the boot identity file was created. Please
edit and update the boot identity file with the proper values of username and
password. The first time the updated boot identity file is used to start the
server, these new values are encrypted.>
WLST-WLS-1371305204890: <Oct 15, 2013 9:06:49 AM CDT> <Critical> <WebLogicServer>
 <BEA-000386> <Server subsystem failed. Reason:
weblogic.security.SecurityInitializationException: Authentication denied: Boot
identity not valid; The user name and/or password from the boot identity file
(boot.properties) is not valid.

You have lost the administrator password, and now you can’t access the system. Not to worry!
You can still log in to the WebLogic Server by creating a new administrator account. The following
steps describe how to add a new WebLogic username and password in the Administrators group:

 1. Shut down the WebLogic Server instance, if it’s running:

stopWebLogic.cmd/* in UNIX, stopWebLogic.sh

 2. Set the environment:

setDomainEnv.cmd /* in UNIX, setDomainEnv.sh

 3. Because it’s a critical file, back up the DefaultAuthenticatorInit.ldift file under the \
security directory. For example:

C:\Oracle\Middleware\oracle_home\user_projects\domains\wl_server\security

 4. Change to the \security directory. For example:

cd C:\Oracle\Middleware\wlserver_12.1\samples\domains\wl_server\security

Chapter 2: Administering WebLogic Server Instances 61

 5. Run the following command:

java weblogic.security.utils.AdminAccount newAdmin newPassword .

For example:

java weblogic.security.utils.AdminAccount weblogic2 welcome2 .

Note that the period (.) at the end of the command is not a typo—you need it. The
command will re-create the DefaultAuthenticatorInit.ldif file.

 6. Change to the following directory (or equivalent), where the LDAP files are located:

C:\Oracle\Middleware\oracle_home\user_projects\domains\wl_server\servers\
examplesServer\data\ldap

 7. Remove the following file:

del DefaultAuthenticatormyrealmInit.initialized

The server will automatically re-create this file when you reboot the Admin Server.

 8. Start the Admin Server and provide the new user credentials:

cd C:\Oracle\Middleware\oracle_home\user_projects\domains\wl_server
startWebLogic.cmd

Once the console login window appears, log in with your new credentials. Once you log in,
you’ll notice that there are two administrative users in the wl_server domain now—weblogic and the
new weblogic2 user. If you’ve lost the password for the weblogic user, you can change it at this point.

Changing the Weblogic User Password Through the Console
You can change the password of any user, including the user weblogic, from the Administration
Console. Here’s an example that shows how to change the password for the user named weblogic,
which is the name for the default administrator for a domain.

 1. In the left-hand pane of the Administration Console, click Security Realms.

 2. In the right-hand pane, on the Summary Of Security Realms page, click the realm
Myrealm, which is the default realm for a server.

 3. Click Users And Groups, and then select the user weblogic.Click Passwords.

 4. Enter a new password and confirm it.

 5. Click Save.

Before you can log into the Administration Console or perform any command-line
administrative tasks with the new password, you must do one more thing—edit the boot.properties
file, as shown earlier, and enter the username (weblogic) and the new password. As mentioned
earlier, WebLogic Server encrypts those credentials for you when you start the server the next
time. You’re now ready to use the new password for the administrative user weblogic.

Managed Servers use the same password as that of the domain’s Admin Server. If you change
the Admin Server password through the Administration Console, that password is automatically
transmitted to all the Managed Servers in the domain.

62 Oracle WebLogic Server 12c Administration Handbook

Using the Node Manager to Manage Servers
Before discussing how to start and stop WebLogic Server instances, let’s review the critical role
the Node Manager plays in administering instances, as well as how to configure the Node
Manager and check its logs. The Node Manager helps you remotely control WebLogic Server
instances. If you connect to the Node Manager through WLST, you can start, stop, and monitor
the Admin Server. It’s important to understand that, unlike the Admin Server, the Node Manager is
not associated with any domain. Because most production WebLogic environments are spread
over multiple machines and servers, the Node Manager utility helps you remotely manage the
servers. If high availability is a requirement, it is strongly recommended that you use the Node
Manager because starting servers with the Node Manager is a prerequisite for certain high
availability operations such as a whole server migration. You install the Node Manager service on
each machine where you have a WebLogic Server instance running. A Node Manager service
running on a machine can manage servers belonging to multiple domains; therefore, you need to
install just one Node Manager service on each machine that runs a WebLogic Server instance.

You can use a Java-based or a script-based Node Manager on a UNIX or Linux system. On a
Windows system, Oracle supports just the Java-based Node Manager. Although the Java-based
Node Manager provides better security than the script-based version, in terms of operational
features, there’s no difference between the two types of Node Managers. The advantage in using
the script-based Node Manager is that it can help you remotely manage the server if you’ve
configured your network to use SSH.

Node Manager Capabilities
You can invoke the Node Manager, which is a Java-based stand-alone tool, explicitly from the command
line as well as implicitly through the Administration Console. As you recall, you must install the Node
Manager (installed automatically when you install WebLogic Server) on each machine that runs the
Admin and Managed Servers. On the server where the Admin Server runs, you can connect to the Node
Manager through WLST, which acts offline as an interface to the command-line Node Manager.

You can use WLST offline commands to start and stop the Admin Server after first connecting
to the Node Manager. In the WLST online mode, you can start Managed Servers and stop server
instances that you had started with the Node Manager. When you use WLST with the Node
Manager, WLST acts as a Node Manager client. The Node Manager can act both as a client of the
Admin Server as well as a service that controls the Admin Server. Here’s a description of the key
Node Manager capabilities:

 � The Node Manager can control the Admin Server because it can start, stop, and monitor
the Admin Server through the WLST interface.

 � The Admin Server acts as a client of the Node Manager when you start or stop Managed
Servers from the Administration Console. To start or stop a Managed Server from the
Administration Console, you access the Node Manager indirectly through the Admin Server.

 � The Node Manager makes remote administration of the Managed Servers through the
Administration Console possible. Once you start a Managed Server with the Node
Manager, you can stop it from the Administration Console. If the Node Manager service is
down, you can’t shut down or restart a Managed Server from the Administration Console.

 � You can start and stop the Managed Servers with the Node Manager, even when the
Admin Server is down for some reason. This default behavior is explained later in this
chapter in the section “Managed Server Independence (MSI) Mode.”

Chapter 2: Administering WebLogic Server Instances 63

 � The Node Manager monitors the health of the servers and kills any servers that report a
health state of “failed.” It also automatically restarts a failed server instance by default.

 � The Node Manager can migrate whole servers in a WebLogic cluster, as explained in
Chapter 7.

 � If you configure service migrations (see Chapter 7), the Node Manager runs a pre-
migration script on the new machine that hosts the server before the service migration
begins and runs the necessary post-migration script from the current location of the
service.

You can use a single Node Manager process on each of a domain’s machines that host one or
more Managed Servers. This is called a per-host configuration of the Node Manager. The default
Node Manager in Oracle WebLogic Server 12c is called a per-domain model. When you use the
Node Manager to start a server, it creates a separate process for that server instance that is identical
to the one created when you execute the startManagedWebLogic.cmd script manually. Because the
Node Manager doesn’t control the Admin Server itself, you won’t need the Node Manager to run
on any machine hosting an Admin Server unless you also have one or more Managed Servers
running on that machine. Remember, a Node Manager isn’t associated with a specific domain—
you can have just a single Node Manager on a machine work with multiple Managed Servers
belonging to different domains.

When you use the per host Node Manager, how does the Node Manager know which
domains to manage? All the domain information is specified in the nodemanager.domains file,
which is located in the Node Manager home directory for a WebLogic Server installation: WL_
HOME\common\nodemanager. When you start a Node Manager service, you can view the
following in the boot sequence:

INFO: Loading domains file:
C:\Oracle\MIDDLE~1\WLSERV~1.1\common\NODEMA~1\nodemanager.domains
<Oct 15, 2013 9:12:32 AM> <INFO> <Loading identity key store:
FileName=C:\Oracle\MIDDLE~1\ORACLE~1WLSERV~1.1\server\lib\DemoIdentity.jks,
 Type=jks, PassPhraseUsed=true>
Oct 15, 2013 9:12:32 AM weblogic.nodemanager.server.SSLConfig loadKeyStoreConfig

The informational message “Loading domains file” shows the boot process reading the
domain information from the nodemanager.domains file, which contains entries that specify the
domain directory for each domain the Node Manager controls.

TIP
It’s a best practice to move the Node Manager configuration file out
of the installation directory in a production environment. Although
WebLogic Server creates the user_projects directory under the
installation directory, you must move that elsewhere as well, as writing
changes to installation directories is never a good idea.

Remember that when you start the Managed Servers through the Administration Console
(recommended), Node Manager automatically restarts those servers when they crash. If you shut
down the Managed Servers yourself through the Administration Console or WLST, the Node
Manager considers this normal and doesn’t attempt to launch the Managed Servers.

64 Oracle WebLogic Server 12c Administration Handbook

Default Node Manager Configuration in WebLogic Server 12c
In Oracle WebLogic Server 12c, Oracle is using, for the first time a per-domain model for Node
Manager. A per-domain model means that, by default, when you create a domain, there’s a
domain-specific version of Node Manager exclusively for that domain.

When you create a domain, WebLogic Server uses the security credentials you supply for the
server (Admin server) to create the nm_password_properties file. This file is created in the
directory ORACLE_HOME\user_projects\domains\domain_name directory. In addition, the
Configuration Wizard also creates the nodemanager.domains file for you under the same
nodemanager directory. Domain-specific scripts to start and stop the Node Manager, as well as
scripts to install Node Manager as a Web Service, are located in the ORACLE_HOME\user_
projects\domains\domain_name (DOMAIN_HOME) directory.

NOTE
The default Node Manager configuration as described here doesn’t
allow you to edit the DOMAIN_HOME\nodemanager contents, which
is the NodeManagerHome location.

When you create a domain using the Configuration Wizard or through WLST offline
commands, you have to choose between a PerDomain or a CustomLocation for the Java-based
Node Manager. The PerDomain configuration is really the same as the default configuration, with
the difference that it lets you choose unique Node Manager credentials. The CustomLocation
option–based Node Manager also runs on a per-domain basis, but you can select a unique
location for the NodeManagerHome variable.

What all this means is that, unlike prior releases of Oracle WebLogic Server, by default, you must
use a domain-specific Node Manager. The old configuration model of a per-host Node Manager is
still available, and all the usual scripts are still in the WL_HOME\server\bin directory (in my case,
this directory is C:\Oracle\Middleware\Oracle_Home\wl_server\server\bin directory). You can’t just
decide that you want to use a per-host Node Manager, however, without some additional work on
your part! To access the Node Manager functionality as in the earlier releases and continue to use the
Node Manager service on a per-host basis, you must explicitly configure it by following these steps:

 1. Create a nodemanager.domains file listing all the domains you want this Node Manager
to control and place it in the ORACLE_HOME\oracle_common\common\nodemanager
directory. Alternatively, you can use WLST’s nmEnroll command to register all the
domains with Node Manager.

 2. You can use the demo Identity and Trust keystores for development and testing purposes, but
you need to create them with the CertGen and the ImportPrivateKey utilities, as shown here:

 a. Set up the environment:

$ WLS_HOME\server\bin\setWLSEnv.cmd

 b. Generate a certificate and a private key:

java utils.CertGen -keyfilepass DemoIdentityPassPhrase -certfile democert
-keyfile demokeyYou can use the fully qualified DN host name by adding the
–cn option to
the previous command:

Chapter 2: Administering WebLogic Server Instances 65

java utils.CertGen -keyfilepass DemoIdentityPassPhrase -certfile democert -keyfile
demokey -cn abc.oracle.com

 c. Import the private key and the certificate generated in the previous step:

java utils.ImportPrivateKey -keystore DemoIdentity.jks -storepass
DemoIdentityKeyStorePassPhrase -keyfile demokey –keyfilepass
DemoIdentityPassPhrase -certfile democert.pem -keyfile demokey. pem –alias
 demoidentity

 d. Finally, you must copy the DemoIdentity.jks keystore to the NodeManagerHome
security directory.

Starting the Node Manager
The following examples show you how to start the Java-based Node Manager in a Windows
environment. You can start this type of Node Manager with the weblogic.NodeManager
executable, as shown here, after first setting the environment:

$ cd C:\Oracle\Middleware\oracle_home\wlserverserver\bin
$ C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>setWLSEnv.cmd
…
Your environment has been set.
C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>java weblogic.NodeManager
C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\bin>startNodeMana
ger.cmd
NODEMGR_HOME is already set to
C:\Oracle\MIDDLE~1\ORACLE~1\USER_P~1\domains\WL_SER~1\NODEMA~1
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\bin>set
 CLASSPATH=.;
C:\PROGRA~1\Java\JDK17~1.0_4\lib\tools.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\weblogic_sp.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\weblogic.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\webservices.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\oracle_common\modules\org.apache.ant_1.7.1/lib/ant-
all.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\oracle_common\modules\net.sf.antcontrib_1.1.0.0_1-
0b2/lib/ant-contrib.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\modules\features\oracle.wls.common.nodemanage
r_1.0.0.0.jar;
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\bin>if not "" ==
"" set CLASSPATH=;.;
C:\PROGRA~1\Java\JDK17~1.0_4\lib\tools.jar;C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\se
rver\lib\weblogic_sp.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\weblogic.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\webservices.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\oracle_common\modules\org.apache.ant_1.7.1/lib/ant-
all.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\oracle_common\modules\net.sf.antcontrib_1.1.0.0_1-
0b2/lib/ant-contrib.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\modules\features\oracle.wls.common.nodemanage
r_1.0.0.0.jar;

66 Oracle WebLogic Server 12c Administration Handbook

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\bin>if not "" ==
"" set CLASSPATH=.;
C:\PROGRA~1\Java\JDK17~1.0_4\lib\tools.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\weblogic_sp.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\weblogic.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\webservices.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\oracle_common\modules\org.apache.ant_1.7.1/lib/ant-
all.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\oracle_common\modules\net.sf.antcontrib_1.1.0.0_1-
0b2/lib/ant-contrib.jar;
C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\modules\features\oracle.wls.common.nodemanage
r_1.0.0.0.jar;;
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\bin>cd
C:\Oracle\MIDDLE~1\ORACLE~1\USER_P~1\domains\WL_SER~1\NODEMA~1
C:\Oracle\MIDDLE~1\ORACLE~1\USER_P~1\domains\WL_SER~1\NODEMA~1>if not "" == "" if
not "" == "" goto runNMWithListenAddressAndPort
C:\Oracle\MIDDLE~1\ORACLE~1\USER_P~1\domains\WL_SER~1\NODEMA~1>if not "" == ""
goto runNMWithListenAddress
C:\Oracle\MIDDLE~1\ORACLE~1\USER_P~1\domains\WL_SER~1\NODEMA~1>if not "" == ""
goto runNMWithListenPort
C:\Oracle\MIDDLE~1\ORACLE~1\USER_P~1\domains\WL_SER~1\NODEMA~1>"C:\PROGRA~1\Java\J
DK17~1.0_4\bin\java.exe" -client -Xms32m -Xmx200m -XX:MaxPermSize=128m -
XX:+UseSpinning -Dcoherence.home=C:\Oracle\MIDDLE~1\ORACLE~1\coherence -
Dbea.home=C:\Oracle\MIDDLE~1\ORACLE~1 -
Dweblogic.RootDirectory=C:\Oracle\MIDDLE~1\ORACLE~1\USER_P~1\domains\WL_SER~1 -
Xverify:none -
Djava.endorsed.dirs=C:\PROGRA~1\Java\JDK17~1.0_4\jre\lib\endorsed;C:\Oracle\MIDDLE
~1\ORACLE~1\oracle_common\modules\endorsed "-
Djava.security.policy=C:\Oracle\MIDDLE~1\ORACLE~1\wlserver\server\lib\weblogic.pol
icy" "-Dweblogic.nodemanager.JavaHome=C:\PROGRA~1\Java\JDK17~1.0_4"
weblogic.NodeManager -v
Java HotSpot(TM) Client VM warning: ignoring option UseSpinning; support was
removed in 7.0_40
<Oct 19, 2013 5:20:32 PM CDT> <INFO> <Loading domains file:
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\nodemanager\nodem
anager.domains>
<Oct 19, 2013 5:20:33 PM CDT> <INFO> <Upgrade> <Setting NodeManager properties
version to 12.1.2>
<Oct 19, 2013 5:20:33 PM CDT> <INFO> <Upgrade> <Saving upgraded NodeManager
properties to
'C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\nodemanager\node
manager.properties'>
<Oct 19, 2013 5:20:33 PM CDT> <INFO> <Loading domains file:
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\nodemanager\
nodemanager.domains>
<Oct 19, 2013 5:20:33 PM CDT> <INFO> <Loading identity key store:
FileName=C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\security
\DemoIdentity.jks, Type=jks, PassPhraseUsed=true>
<Oct 19, 2013 5:20:33 PM CDT> <INFO> <Loaded NodeManager configuration properties
from

Chapter 2: Administering WebLogic Server Instances 67

'C:\Oracle\MIDDLE~1\ORACLE~1\USER_P~1\domains\WL_SER~1\NODEMA~1\nodemanager.proper
ties'>
Node manager v12.1.2

Configuration settings:
NodeManagerHome=C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\n
odemanager
ListenAddress=localhost
ListenPort=5556
ListenBacklog=50
SecureListener=true
AuthenticationEnabled=true
NativeVersionEnabled=true
CrashRecoveryEnabled=false
JavaHome=C:\PROGRA~1\Java\JDK17~1.0_4
StartScriptEnabled=true
StopScriptEnabled=false
StartScriptName=startWebLogic.cmd
StopScriptName=
CoherenceStartScriptEnabled=false
CoherenceStartScriptName=null
LogFile=C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\nodem
anager\nodemanager.log
LogLevel=INFO
LogLimit=0
LogCount=1
LogAppend=true
LogToStderr=true
LogFormatter=weblogic.nodemanager.server.LogFormatter
DomainsFile=C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\nodem
anager\nodemanager.domains
DomainsFileEnabled=true
StateCheckInterval=500
UseMACBroadcast=false
DomainRegistrationEnabled=false
DomainsDirRemoteSharingEnabled=false
RotatedFileCount=7
FileSizeKB=500
NumberOfFilesLimited=false
RotationTimeStart=00:00
RotationType=bySize
FileTimeSpan=24
FileTimeSpanFactor=3600000
ProcessDestroyTimeout=20000
Domain name mappings:

wl_server -> C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server
<Oct 19, 2013 5:20:33 PM CDT> <INFO> <WebLogic Server 12.1.2.0.0 Fri Jun 7
15:16:15 PDT 2013 1530982 WLS_12.1.2.0.0_GENERIC_130607.1100>
<Oct 19, 2013 5:20:33 PM CDT> <INFO> <Secure socket listener started on port 5556,
host localhost/127.0.0.1>

68 Oracle WebLogic Server 12c Administration Handbook

The Java weblogic.NodeManager command accepts optional arguments. You can override
existing properties by specifying the arguments with the -D option, as shown in this example:

java %JAVA_OPTIONS% -D[server_property=value] -D[nodemanager_property=value]
weblogic.NodeManager

Standard Java arguments, such as memory settings, can be passed in the command line. Valid
server_property arguments include bea_home, which points to the Oracle WebLogic Server
home, and java.security.policy, which is the path to the security policy file for a machine. Every
other property is a nodemanager_property, which can be passed on the command line, as shown
in the following example that sets the listen address and listen port:

java -Xms=256m -Xmx=512m
-Djava.security.policy="C:\Oracle\MIDDLE~1\ORACLE_HOMEWLSERV\server\lib\
weblogic.policy"
-Dbea_home="C:\MyOra\MIDDLE~1\WLSERV~1.3" -DListenAddress="localhost"
-DListenPort="5556" weblogic.NodeManager

Any Node Manager property you configured in the nodemanager.properties configuration file
doesn’t need to be specified as a command-prompt argument, as those settings will take effect by
default.

NOTE
The Node Manager not only starts the Managed Servers under normal
conditions, but also starts it under unexpected conditions when the
servers fail. You can configure it to start failed servers automatically.

Instead of using the weblogic.NodeManager executable directly on the command line, you
can simplify matters by using a script that sets the required environment variables before executing
the weblogic.NodeManager command. WebLogic Server provides the startNodeManager.cmd
script (the startNodeManager.sh script in UNIX) for you. You’ll find this script in the WL_HOME\
server\bin directory. Here’s how you invoke startNodeManager.cmd to start the Node Manager
from the command line:

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin> startNodeManager.cmd
…
INFO: Loading domains file:
C:\Oracle\MIDDLE~1\WLSERV~1\common\NODEMA~1\nodemanager.domains
…
Configuration settings:

NodeManagerHome=C:\Oracle\MIDDLE~1\Oracle~1\WLSERV~1\common\NODEMA~1
ListenAddress=
ListenPort=5556
ListenBacklog=50
SecureListener=true
AuthenticationEnabled=true
NativeVersionEnabled=true
CrashRecoveryEnabled=false
JavaHome=C:\Oracle\MIDDLE~1\JDK160~1\jre

Chapter 2: Administering WebLogic Server Instances 69

StartScriptEnabled=true
StopScriptEnabled=false
StartScriptName=startWebLogic.cmd
StopScriptName=
LogFile=C:\Oracle\MIDDLE~1\Oracle~1\WLSERV~1\common\NODEMA~1\nodemanager.log
LogLevel=INFO
LogLimit=0
LogCount=1
LogAppend=true
LogToStderr=true
LogFormatter=weblogic.nodemanager.server.LogFormatter
DomainsFile=C:\Oracle\MIDDLE~1\Oracle~1\WLSERV~1.1\common\NODEMA~1\nodemanager.dom
ains
DomainsFileEnabled=true
StateCheckInterval=500
UseMACBroadcast=false
DomainRegistrationEnabled=false
DomainsDirRemoteSharingEnabled=false
Domain name mappings:
wl_server -> C:\oracle\middleware\oracle_home\wlserver_12.1\common\bin
my_domain -> C:\oracle\middleware\oracle_home\user_projects\domains\my_domain
medrec-spring -> C:\oracle\middleware\wlserver\samples\domains\medrec-spring
medrec -> C:\Oracle\Middleware\wlserver_12.1\samples\domains\medrec
<Jun 15, 2013 9:12:33 AM> <INFO> <Secure socket listener started on port 5556>
Jun 15, 2013 9:12:33 AM weblogic.nodemanager.server.SSLListener run
INFO: Secure socket listener started on port 5556

Oracle recommends that you configure a nondefault port number and listen address for
production environments. The other Node Manager environment variables that you can set at the
command line or in the start file are WL_HOME, PATH, CLASSPATH, and JAVA_HOME.

TIP
You can also launch the Node Manager from WLST if you’re
automating server management.

By default, the Node Manager start script launches the service in the WL_HOME\common\
nodemanager directory, which serves as the working directory for Node Manager. Log files for the
Node Manager service are stored in this directory. You can change the default location of this
directory by setting the value of the NODEMGR_HOME variable in the Node Manager start script.

Stopping the Node Manager
The simplest way to shut down the Node Manager is to just close the command shell in which it
runs. Here’s what you’ll see if you press CTRL-C in a running Node Manager window:

INFO: Secure socket listener started on port 5556
Terminate batch job (Y/N)? y
C:\Oracle\Middleware\wlserver_12.1\server\bin>

You can also invoke the WLST stopNodeManager command in online or offline mode. The
command stops a running Node Manager process. This method won’t work with the scripted

70 Oracle WebLogic Server 12c Administration Handbook

version of Node Manager, however. Here’s an example that shows how to use the
stopNodeManager command in WLST:

C:\Oracle\Middleware\Oracle_Home\wlserver\common\bin>wlst.cmd
CLASSPATH=C:\Oracle\MIDDLE~1\patch_wls1211\profiles\default\sys_manifest_classpath
\weblogic_patch.jar;
C:\Oracle\MIDDLE~1\patch_ocp371\profiles\default\sys_manifest_classpath\weblogic_p
atch.jar;
C:\Oracle\MIDDLE~1\JROCKI~1.0-1\lib\tools.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\server\lib\weblogic_sp.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\server\lib\weblogic.jar;
C:\Oracle\MIDDLE~1\modules\features\weblogic.server.modules_12.1.1.0.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\server\lib\webservices.jar;
C:\Oracle\MIDDLE~1\modules\ORGAPA~1.1/lib/ant-all.jar;
C:\Oracle\MIDDLE~1\modules\NETSFA~1.0_1/lib/ant-contrib.jar;;
C:\Oracle\MIDDLE~1\utils\config\10.3\config-launch.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\common\derby\lib\derbynet.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\common\derby\lib\derbyclient.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\common\derby\lib\derbytools.jar;;
Initializing WebLogic Scripting Tool (WLST) ...
Welcome to WebLogic Server Administration Scripting Shell
Type help() for help on available commands
wls:/offline>
wls:/offline>
nmConnect('weblogic','welcome1','localhost','5556','wl_server','C:\Oracle\Middlewa
re\Oracle_Home\samples\domains\wl_server','ssl')
Connecting to Node Manager ...
<Jun 4, 2013 10:08:53 AM CDT> <Info> <Security> <BEA-090905> <Disabling CryptoJJCE
Provider self-integrity check for better startup performance. To enable this
check, specify -Dweblogic.security.allowCryptoJDefaultJCEVerification=true>
<Jun 4, 2013 10:08:53 AM CDT> <Info> <Security> <BEA-090906> <Changing the default
Random Number Generator in RSA CryptoJ from ECDRBG to FIPS186PRNG. To disable this
change, specify -Dweblogic.security.allowCryptoJDefaultPRNG=true>
Successfully Connected to Node Manager.
wls:/nm/wl_server>
wls:/offline> stopNodeManager()
Stopped Node Manager Process successfully
wls:/offline> NMProcess: Stopped draining NMProcess
NMProcess: Stopped draining NMProcess
wls:/offline>

For the previous stopNodeManager command to work, however, you must have started Node
Manager originally with the startNodeManager command. If you try to shut down the Node
Manager with the stopNodeManager command when you haven’t started the Node Manager with
the startNodeManager command, you’ll get the following error:

wls:/nm/wl_server> stopNodeManager()
Traceback (innermost last):
 File "<console>", line 1, in ?
 File "<iostream>", line 340, in stopNodeManager

Chapter 2: Administering WebLogic Server Instances 71

Use dumpStack() to view the full stacktrace
 at weblogic.management.scripting.ExceptionHandler.handleException
(ExceptionHandler.java:59) at
weblogic.management.scripting.WLSTUtils.throwWLSTException(WLSTUtils.
java:181) at
weblogic.management.scripting.NodeManagerService.nmQuit(
NodeManagerService.java:504)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpljava:39)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
25)
 at java.lang.reflect.Method.invoke(Method.java:597)

weblogic.management.scripting.ScriptException:
weblogic.management.scripting.ScriptException: Error occurred while performing
startNodeManager : Problem stopping the Node Manager. : Disabled command: QUIT
Use dumpStack() to view the full stacktrace
wls:/nm/wl_server>

However, you can successfully stop the Node Manager process, even if you haven’t started the
Node Manager with the startNodeManager command, provided you’ve specified the property
QuitEnabled=true when starting the Node Manager. You can specify the QuitEnabled property
in the nodemanager.properties file. Once you do this, you can start the Node Manager as a
Windows service and stop the service remotely via WLST.

Monitoring the Node Manager Logs
You can view the Node Manager logs directly by examining the log files or using the
Administration Console.

The nodemanager.log File
The Node Manager log file is under the Node Manager home directory (WL_HOME\common\
nodemanager) and is named nodemanager.log. Because you need only a single Node Manager
per machine, this log file contains logs for all the domains managed by the Node Manager on that
machine. Note that the script-based Node Manager doesn’t have an analogous log file. You can
also view the Node Manager logs for a server by using the WLST nmServerLog command. The
command to view the Node Manager logs after connecting to it in WLST is as follows:

wls:/wl_server/serverConfig> nmConnect('weblogic', 'welcome1', 'localhost','5556
','wl_server','C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server','
ssl')
Connecting to Node Manager ...
…
Successfully Connected to Node Manager.
wls:/wl_server/serverConfig> nmLog()
<Oct 15, 2013 9:12:31 AM> <INFO> <Loading domains file:
C:\Oracle\MIDDLE~1\WLSERV~1.1\common\NODEMA~1\nodemanager.domains>

72 Oracle WebLogic Server 12c Administration Handbook

<Oct 15, 2013 9:12:32 AM> <INFO> <Loading identity key store:
FileName=C:\Oracle\MIDDLE~1\WLSERV~1.1\server\lib\DemoIdentity.jks, Type=jks,
PassPhraseUsed=true>
…
wls:/wl_server/serverConfig>

Note that this command won’t work with the scripted version of Node Manager.

Checking the Node Manager Logs from the Administration Console
You can access the Node Manager log files from the Administration Console by navigating to Home
| Machines | (your machine name) | Monitoring | Node Manager Log. This allows you to view the
console output for the Node Manager instance configured for each of the machines in the domain.

Running the Node Manager as a Windows Service
You may want to create the Node Manager as a Windows service so it can restart the Managed Servers
when they crash. Oracle recommends that you create this service. Here are the steps for configuring
the Node Manager as a Windows service if you didn’t do so during the installation process:

 1. Configure the Node Manager properties file (nodemanager.properties).

 Edit the nodemanager.properties file in the WL_HOME/common/nodemanager directory
by setting the following two properties:

 � CrashRecoveryEnabled=true

 � StartScriptEnabled=true

 2. Execute the following Windows command file:

C:\Oracle\Middleware\wlserver_12.1\server\bin>installNodeMgrSvc.cmd
…
Oracle Enterprise Pack for Eclipse NodeManager (C_Oracle_Middleware_wlserver_12.1)
installed.

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>ENDLOCAL
C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>

When you execute this file, Windows creates a new service called “Oracle Enterprise Pack for
Eclipse NodeManager (C_Oracle_Middleware_wlserver_12.1)” In your case, the name of this
service might be different, based on which installation type you chose for WebLogic Server. By
default, Node Manager uses the Windows Local System Account to log in. To enable a different
account to start the Node Manager service, double-click the new Windows service you just
created and click the Log On button. Here, you can provide the credentials for running the Node
Manager service, as shown in Figure 2-2.

Once you create the Node Manager as a Windows service, you can test the service by
invoking the Windows Task Manager and killing the Java processes associated with a Managed
Server. (This is a simulation of a Managed Server failure.) You’ll notice that those Java processes
reappear right away, showing that the Node Manager is indeed restarting them following their
failure. This only works if three conditions are met. The CrashRecoveryEnabled parameter is set
(see the next section); the Managed Server (or Admin Server) was started by the Node Manager;
and the following JVM properties for the Managed Server are set: -Xrs for the Oracle HotSpot VM.
or -Xnohup for Oracle JRockit JVM (see the next section).

Chapter 2: Administering WebLogic Server Instances 73

Oracle recommends that you create a Node Manager Windows service on a Windows system
or run it as an operating system service in UNIX. When you want to configure the Node Manager
to receive requests from a remote system, you must first uninstall the default Node Manager
service by executing the uninstallNodeMgrSvc.cmd script (in the same directory as the
installNodeMgrSvc.cmd script) and specify the listen address and listen port settings.

NOTE
In previous releases of WebLogic Server, the default value for the
startScriptEnabled parameter was false, but it has been changed in the
12c release to true.

On a UNIX server, you can use start and stop scripts to start Managed Servers or to perform
tasks such as unmounting a remote disk at shutdown time, for example. The start and stop scripts
should be placed in the DOMAIN_HOME\bin\service_migration directory. To use a start script to
specify any special startup actions, change the StartScriptEnabled property to true in the
nodemanager.properties file. You can also specify your own start script name by setting the
StartScriptName property in the same file.

Configuring the Node Manager
Although this section reviews the configuration of only the Java-based Node Manager, most of the
discussion applies to the script-based version of the Node Manager as well. You can customize the
Node Manager by editing the nodemanager.properties file, which is the configuration file for the

FIGURE 2-2. Providing credentials for the Node Manager service

www.allitebooks.com

http://www.allitebooks.org

74 Oracle WebLogic Server 12c Administration Handbook

Node Manager. You can also set the configuration properties on the command line when you invoke
the Node Manager. You’ll find the nodemanager.properties file in the WL_HOME/common/
nodemanager directory, which is considered the Node Manager home directory. Note that the Node
Manager is outside any domain and is under the common directory, which is directly underneath the
WL_HOME directory, because a single Node Manager service can serve multiple domains that have
servers running on a given machine. You’ll see the nodemanager.properties file only after starting Node
Manager the first time. Here are the key Node Manager configuration attributes you must be aware of:

 � AuthenticationEnabled If the value is set to true, Node Manager checks the credentials
against the domain credentials (in the example here, weblogic/welcome1).

 � CrashRecoveryEnabled You can enable this property (set it to the value true) to ensure
that the Node Manager automatically restarts servers after a crash. For the Node Manager
to restart the Admin Server or the Managed Server following a crash, you must have started
the Admin Server with the Node Manager and the Managed Servers with the Admin Server
(either through the Administration Console or through the WLST interface). By default,
crash recovery is disabled. If you’re using the script-based Node Manager instead of the
Java-based Node Manager discussed here, you can specify the following line in the Node
Manager script to configure automatic restarts of servers by the Node Manager:

wlscontrol.sh -d domain_name CRASHRECOVERY

 � QuitEnabled If you set this parameter to true, you can stop the Node Manager remotely.

 � DomainFileEnabled If you set the name of the nodemanager.domains file with the
DomainsFile property, Node Manager uses that file to read the names as well as the
domain directories of the domains it must support. If you set the DomainFileEnabled
property to true, the Node Manager reads the file you specified with the DomainsFile
parameter. By default, the Node Manager assumes the domain of the current directory
or that of the WL_HOME directory.

NOTE
The Configuration Wizard automatically creates the nodemanager.
domains file when you create a domain with it, but you can also
manually add a domain to the file. For each domain, there’s an entry in
the file, in the format domain-name=domain-directory.

 � StartScriptName This specifies the name of the script that starts a server, such as
startWebLogic.sh or startWebLogic.cmd.

 � StartScriptEnabled This specifies whether the provided start script will be started after
the reboot of the physical server.

 � LogFile and LogLevel This specifies the location of the log file and the server logging
severity levels.

 � ListenPort By default, the Node Manager uses port 5556, but you can change it to any
port you wish.

By default, Oracle-configured Node Manager startup scripts and install scripts set all the
necessary variables for Node Manager and they set it up to listen on the default address,
localhost. You can edit the nodemanager.properties file to have the Node Manager start listening

Chapter 2: Administering WebLogic Server Instances 75

on a different address. You do this by setting the LISTEN_ADDRESS variable to the host you want
and the LISTEN_PORT variable to the port you want.

Alternatively, you can request that Node Manager start listening on a nondefault server and or
port by passing the server and port values when you start the Node Manager service with the
startNodeManager script, as shown here:

$ startNodeManager.cmd my_server 7777

You can specify the Node Manager properties on the command line or in the nodemanager.
properties file. The values you specify on the command line will override those you specify in the
nodemanager.properties file. By default, this file is created in the directory specified in
NodeManagerHome, where NodeManagerHome usually is designated as ORACLE_HOME\user_
projects\domains\domain_name\nodemanager. If you haven’t defined NodeManagerHome, the
nodemanager.properties file is created in the current directory. Each time Node Manager starts, it
looks for the nodemanager.properties in the current directory and creates the file if it’s not present
in that directory, and you won’t be able to access this file until Node Manager has started at least
once.

You can view the current properties of the Node Manager running on any server by opening
the nodemanager.properties file, as shown here:

#Sat Oct 19 15:26:15 CDT 2013
DomainsFile=C\:\\Oracle\\MIDDLE~1\Oracle~1\WLSERV~1\\common\\NODEMA~1\\nodemanager
.domains
LogLimit=0
PropertiesVersion=10.3
DomainsDirRemoteSharingEnabled=false
javaHome=C\:\\Oracle\\MIDDLE~1\\JOracle~1\\ROCKI~1.0-1
AuthenticationEnabled=true
NodeManagerHome=C\:\\Oracle\\MIDDLE~1\\ORACLE~1\\WLSERV~1\\\common\\NODEMA~1
JavaHome=C\:\\Oracle\\MIDDLE~1\\JROCKI~1.0-1\\jre
LogLevel=INFO
DomainsFileEnabled=true
StartScriptName=startWebLogic.cmd
ListenAddress=
NativeVersionEnabled=true
ListenPort=5556
LogToStderr=true
SecureListener=true
LogCount=1
DomainRegistrationEnabled=false
StopScriptEnabled=false
QuitEnabled=false
LogAppend=true
StateCheckInterval=500
CrashRecoveryEnabled=false
StartScriptEnabled=true
LogFile=C\:\\Oracle\\MIDDLE~1\\ORACLE~1\\WLSERV~1\\common\\NODEMA~1\\nodemanager.l
og
LogFormatter=weblogic.nodemanager.server.LogFormatter
ListenBacklog=50

76 Oracle WebLogic Server 12c Administration Handbook

You must configure the following JVM properties for all Managed Servers in a domain that are
under a Node Manager’s control if you’ve automated the Node Manager startup by configuring it
as a Windows service:

-Xrs for the Sun JVM,
-Xnohup for the JRockit

Now let’s recap all the steps needed to allow the Node Manager to restart a failed Managed
Server automatically:

 1. In the nodemanager.properties file, ensure the CrashRecoveryEnabled property is set to
true as follows:

CrashRecoveryEnabled=true

 For example, the nodemanager.properties file is in the following location in my
installation:

C:\Oracle\Middleware\Oracle_Home\wlserver\common\nodemanager\
nodemanager.properties

 2. For the Managed Server that you want to configure to restart automatically, add the -Xrs
(for Java Hotspot VM or -Xnohup (for Oracle JRockit JVM) arguments to your startup
script. For example, edit the following startup script for the Examples Server:

C:\Oracle\Middleware\Oracle_Home\wlserver\samples\domains\wl_server\bin\
startManagedWebLogic.cmd

 Add the -Xrs (or -Xnohup) argument at the end of JAVA_OPTIONS as follows:

set JAVA_OPTIONS=-Dweblogic.security.SSL.trustedCAKeyStore="
C:\Oracle\Middleware\Oracle_Home\wlserver\
server\lib\cacerts" %JAVA_OPTIONS% -Xrs

 3. Start the Managed Server using the Node Manager, or start it from the Administration
Console. For example, the following commands start the Examples Server, which is
technically an Admin Server, from the Node Manager:

C:\Oracle\Middleware\Oracle_Home\wlserver\common\bin>wlst
wls:/offline> nmConnect('weblogic', 'welcome1', 'localhost', '5556',
'wl_server', '
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server','ssl')
Connecting to Node Manager ...
Successfully Connected to Node Manager.
wls:/nm/wl_server>wls:/nm/wl_server> nmStart('examplesServer')
Starting server examplesServer ...

 4. In the Windows Task Manager, locate the java.exe process with the largest memory, and
manually kill it.

At this point, the process will automatically restart immediately and the Managed Server will fully
start shortly thereafter.

Chapter 2: Administering WebLogic Server Instances 77

The Node Manager Domains File
If you’ve configured a per-host Node Manager instead of the per-domain Node Manager, when
the Configuration Wizard creates various domains on a server, it records that domain information
(the domain name and directory) in the nodemanager.domains file, located under the WL_
HOME\common\nodemanager directory. Here are the contents of the nodemanager.domains file
in my installation, where I have the three sample domains and a domain I’ve created (test_
domain):

#Domains and directories created by Configuration Wizard
#Sat Oct 19 10:58:18 CDT 2013
wl_server=C:\Oracle\Middleware\Oracle_Home\user_projects\\domains\\wl_server
medrec-
spring=C\:\\Oracle\\Middleware\\Oracle_Home\\user_projects\\domains\\medrec-spring
medrec=C\:\\Oracle\\Middleware\\Oracle_Home\\user_projects\\domains\\medrec

When Node Manager starts, it reads the nodemanager.domains file to get the domain name and
domain directory for all domains on that host.

You can also see the domains by reviewing the last part of the output printed to the terminal
when you start Node Manager:

Domain name mappings:

wl_server -> C:\Oracle\Middleware\user_projects\domains\wl_server
medrec-spring -> C:\Oracle\Middleware\user_projects\domains\medrec-spring
medrec -> C:\Oracle\Middleware\user_projects\samples\domains\medrec

<Oct 19, 2013 11:19:46 AM> <INFO> <Secure socket listener started on port 5556>
Oct 19, 2013 11:19:46 AM weblogic.nodemanager.server.SSLListener run
INFO: Secure socket listener started on port 5556

Configuring Node Manager Using WLST Offline
You can use WLST offline commands to configure the following Node Manager configuration
tasks.

 � Set the Node Manager username and password

 � Set Node Manager properties

 � Set the Node Manager type

The following examples show how to use WLST to configure these Node Manager properties:

set the Node Manager listen address and listen port.
cd('/')
cd('NMProperties')
set('ListenAddress','localhost')
set('ListenPort',7001)
Set the Node Manager username and password.
cd('/')
cd('SecurityConfiguration/domain_name')

78 Oracle WebLogic Server 12c Administration Handbook

set('NodeManagerUsername','username')
set('NodeManagerPasswordEncrypted','password')

Set the Node Manager type to custom location type and set the custom location
Node Manager home.
setOption('NodeManagerType','CustomLocationNodeManager')
setOption('NodeManagerHome','C:/mydomains/nodemanager')

Key WLST Node Manager Commands
The Node Manager helps you remotely control WebLogic Server instances. WLST Node Manager
commands help you access the Node Manager features. Following are examples that explain, from a
day-to-day operational standpoint, how to use the most important WLST Node Manager commands.

Connect to Node Manager
Assuming the Node Manager is already running (for example, started from the Windows service),
you need to connect to the Node Manager using the nmConnect command before you run any of
the Node Manager WLST commands. Note that you must specify a domain name (wl_server in
this example) when you connect to the Node Manager.

C:\Oracle\Middleware\Oracle_home\wlserver\common\bin>wlst.cmd
…
Initializing WebLogic Scripting Tool (WLST) ...
Welcome to WebLogic Server Administration Scripting Shell
Type help() for help on available commands
wls:/offline>
wls:/offline> nmConnect('weblogic', 'welcome1', 'localhost', '5556', 'wl_server',
'C:\Oracle\Middleware\Oracle_Home\wlserver\samples\domains\wl_server','ssl')
Connecting to Node Manager ...
Successfully Connected to Node Manager.
wls:/nm/wl_server>

In a production environment, you must first execute the nmEntroll command to enroll the
machine on which the Node Manager is running before executing the nmConnect command to
connect to the Node Manager. By executing the nmEnroll command, you ensure that the Node
Manager credentials are available to the Managed Servers that the Node Manager manages. You
run the nmEnroll command only once on each machine in a WebLogic domain.

NOTE
The nm_password. properties file contains the Node Manager
credentials that WebLogic Server uses to authenticate the connections
between the Node Manager and a client such as the Admin Server.

Check Node Manager Version
You can find the Node Manager version with the nmVersion command:

wls:/nm/wl_server> nmVersion()
The Node Manager version that you are currently connected to is 10.3.
wls:/nm/wl_server>

Chapter 2: Administering WebLogic Server Instances 79

Check Node Manager Connection Status
Invoke the nm command to find out if WLST is currently connected to the Node Manager:

wls:/nm/wl_server> nm()
Currently connected to Node Manager to monitor the domain wl_server.

Start a Server
Execute the nmStart command to start a server in the current WebLogic domain with Node
Manager. Here’s an example:

wls:/nm/wl_server> nmStart()
Starting server wl_server ...
Successfully started server wl_server ...

In this example, the nmStart command was issued without any arguments. You can, however,
specify the serverName argument to indicate the name of the server you want to start. For example,
to start the Managed Server MyManagedServer1, issue the command in the following way:

nmStart('MyManagedServer1')

You can start the Admin Server and the Managed Servers with the nmStart command. Make
sure the boot.properties file exists before you issue this command. You also have the option of
specifying the user credentials with the nmStartprops argument after first connecting to the Node
Manager. Here’s an example:

prps = makePropertiesObject("username=weblogic, password=welcome1")
nmStart("medrecServer", props=prps)

Enroll a Machine
Use the nmEnroll command to enroll the machine on which WLST is running after first
connecting to the Admin Server. WLST doesn’t need to connect to Node Manager to run this
command. The nmEnroll command lets the Node Manager running on a machine manage servers
in a specific domain. Here’s an example:

wls:/nm/wl_server> nmStart()
Starting server myserver ...
Error Starting server myserver: weblogic.nodemanager.NMException:
Exception while starting server 'myserver'
wls:/nm/wl_server> connect()
Please enter your username :weblogic
Please enter your password :
Please enter your server URL [t3://localhost:7001] :
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'examplesServer' that belongs to
domain 'wl_server'.
Warning: An insecure protocol was used to connect to the server. To ensure
on-the-wire security, the SSL port or Admin port should be used instead.
wls:/wl_server/serverConfig> nmEnroll()
Enrolling this machine with the domain directory at

80 Oracle WebLogic Server 12c Administration Handbook

Successfully enrolled this machine with the domain directory at
C:\Oracle\Middleware\Oracle_Home\wlserver\common\bin\..
wls:/wl_server/serverConfig>

You run this command the first time you use the Node Manager—once for every domain. This
command updates the nodemanager.domains file and also downloads the nodemanager
.properties file from the Admin Server.

Disconnect from the Node Manager
Execute the nmDisconnect command to disconnect WLST from the Node Manager session:

wls:/wl_server/serverConfig> nmDisconnect()
Successfully disconnected from Node Manager.
wls:/wl_server/serverConfig>

Lifecycle of WebLogic Server Instances
When you start a WebLogic Server instance, the instance transitions through several distinct
“states.” In most cases, you issue just the simple start command, which brings the instance to a
RUNNING state, where it is ready to accept requests. However, it is possible to bring the server
instance to a state that’s not quite in the RUNNING mode.

So you can clearly understand the various states a server instance can transition through or
remain in, I’ve broken the various states into two different groups and discuss them in the next two
sections.

The STARTING, STANDBY, and RUNNING States
When it’s not running, a WebLogic Server instance is in the SHUTDOWN state. Note that the
various server lifecycle states described here could be transitional or permanent states, based on the
type of startup or shutdown commands you issue. Following a startup command, the server instance
transitions from the SHUTDOWN state through the following states or stages of the server lifecycle:

 � STARTING When you issue any type of startup command (there are three different
startup commands, as you’ll see in the next section), the server instance transitions from the
SHUTDOWN to the STANDBY state. During the STARTING state, the instance reads the
domain configuration data from its config directory. The Managed Servers, however, get their
configuration data from the Admin Server. In this state, the instance starts the basic services
such as the kernel and execute queues, the container service for logging, and the Node
Manager service (not the same as the Node Manager but a service that the Admin Server
uses to talk to the Node Manager). The server also deploys applications during this phase.

 � STANDBY In the STANDBY state, the server instance allows you to issue just two
administrative requests: you can move the server state to either the RUNNING or
SHUTDOWN state. Normally, the server instance automatically transitions through the
STANDBY state to the next state, unless you explicitly start the instance in the standby
mode. When you intentionally start it in the STANDBY mode, the instance stays in the
STANDBY state until you move it into the RUNNING state. You have this option so you can
keep a ready standby server instance on hand to meet your high availability requirements.
Note that all ports are closed in this state, but you can quickly transition to a RUNNING
state from here, so this state could be used to keep a server in a hot STANDBY mode.

Chapter 2: Administering WebLogic Server Instances 81

 � ADMIN The ADMIN state permits only administrative tasks such as deploying
applications, with those applications being able to process requests only from users
with the Admin and AppTester roles. Obviously, you can use this capability following
deployment of an application to test your application one last time, as explained in
Chapter 8. Note that while you can launch the Administration Console at this point, only
requests from clients with the Admin role are entertained. Running a server in the ADMIN
state is also useful when trying to diagnose problems with a troublesome application. You
can move the server to the ADMIN state when things go awry and then connect to it with
JMX (or even a debugger) to see what may have caused the problem.

 � RESUMING This is a purely transitional state that the server instance goes through after
it transitions automatically through the ADMIN state or you issue the resume command
after first placing the instance in the STANDBY or ADMIN state. You can change this state
from the command line or through the Administration Console.

 � RUNNING This, of course, is the final state that the server instance reaches, after you
issue either a startup command or the resume command to move the server out of the
ADMIN or STANDBY state. In the RUNNING state, the server can accept and service
client requests for its services.

Startup Options
You can start a WebLogic Server instance in different modes so the server will reach a different
end state after the startup command. Here are your options:

 � Normal start mode When you issue the normal startup command (startserver or
nmStart, both of which are explained in this chapter), the server instance will transition
through the following stages, which you can observe in your command window:

SHUTDOWN > STARTING > STANDBY > ADMIN > RESUMING > RUNNING

Here are the informational messages following the startup of a server, showing how the
server is transitioning through the various startup transitional stages:

**
starting weblogic with Java version:
java version "1.6.0_29"
Java(TM) SE Runtime Environment (build 1.6.0_29-b11)
Oracle JRockit(R) (build R28.2.0-79-146777-1.6.0_29-20111005-1808-windows-ia32,
compiled mode)
Starting WLS with line:
C:\Oracle\MIDDLE~1\ORACLE~1\JROCKI~1.0-1\bin\java -jrockit
 -Xms512m -Xmx512m –Dweblogic
…
<Oct 15, 2013 11:19:14 AM CDT> <Notice> <WebLogicServer> <BEA-000365>
<Server state changed to STARTING.>
<Oct 15, 2013 11:19:14 AM CDT> <Info> <WorkManager> <BEA-002900>
 <Initializing slf-tuning thread pool.>
<Oct 15, 2013 11:19:29 AM CDT> <Notice> <WebLogicServer> <BEA-000365>
 <Server state changed to STANDBY.>
<Oct 15, 2013 11:19:29 AM CDT> <Notice> <WebLogicServer> <BEA-000365>
 <Server state changed to STARTING.>

82 Oracle WebLogic Server 12c Administration Handbook

<Oct 15, 2013 11:20:29 AM CDT> <Notice> <WebLogicServer> <BEA-000365>
 <Server state changed to ADMIN.>
<Oct 15, 2013 11:20:29 AM CDT> <Notice> <WebLogicServer> <BEA-000365> <Server
state changed to RESUMING.>
<Oct 15, 2013 11:20:30 AM CDT> <Notice> <WebLogicServer> <BEA-000331>
<Started the WebLogic Server Administration Server "examplesServer"
for domain "wl_server" running in development mode.>
<Oct 15, 2013 11:20:30 AM CDT> <Notice> <WebLogicServer> <BEA-000365>
<Server state changed to RUNNING.>
<Oct 15, 2013 11:20:30 AM CDT> <Notice> <WebLogicServer> <BEA-000360>
<The server started in RUNNING mode.>

NOTE
By default, when you issue a startup command, the server starts in
RUNNING mode. You can specify a different state for the startup
command by setting the ServerMBean.StartupMode attribute
through the java weblogic.Server startup command, by using a WLST
command or by configuring it in the Administration Console.

 � STANDBY mode You can also start a server in STANDBY mode, wherein the server will
pass through the following states:

SHUTDOWN > STARTING > STANDBY

You can move to the RUNNING state directly with the startup command, or you can get
there from an ADMIN or STANDBY state by issuing the resume command. Similarly, you
can move to the SUSPENDING (or FORCE_SUSPENDING) state from the RUNNING
state by issuing a suspend (or force suspend) command.

 � Start in ADMIN mode You can start an instance in the ADMIN mode to transition the
instance from the SHUTDOWN to the ADMIN state. The instance goes through the
following states:

SHUTDOWN > STARTING > STANDBY > ADMIN

 � Resume the instance You can issue the resume command from either the STANDBY or
the ADMIN state. The server processes through the following states:

STANDBY > ADMIN > RESUMING > RUNNING

The SHUTDOWN, SUSPENDING, and FAILED States
Just as you use the startup and resume commands to place the server in the final RUNNING state,
you can use a set of commands to shut down or suspend the server. In addition, the server could
also end up in the FAILED state. Here’s a brief description of these server states:

 � SHUTDOWN You can issue either the shutdown or the force shutdown commands
to shut down a server. The server stops accepting any type of requests at this point. The
graceful shutdown command stops the server from accepting new requests and ensures
that it completes processing all outstanding requests. In a clustered environment, the
command will cause the load balancer to redirect requests to the server to other server

Chapter 2: Administering WebLogic Server Instances 83

instances. This leads to the secondary server taking over and finding a new backup server.
This is quite different from server behavior when you use the force shutdown command
to shut down an unresponsive server. The Node Manager in this case may just issue a kill
directive, and requests are not redirected to a different server.

 � SUSPENDING When you issue a shutdown command, the server moves through the
SUSPENDING state after first gracefully suspending several subsystems and services and
then completing all in-flight work. You can also force the server to remain in a suspended
mode by issuing the suspend command. The FORCE_SUSPENDING state is similar to
the SUSPENDING state—the only difference is that the server abandons in-flight work.
The server reaches the FORCE_SUSPENDING transitional state when you issue a force
suspend or a force shutdown command.

 � FAILED Obviously the FAILED state is not something you want to see because it means
there’s a problem, such as inadequate memory or stuck JVM threads, that has caused the
server to go into the FAILED state. In this state, the server can’t, of course, entertain any
requests from clients or administrators. Here’s what you’ll see in your command window,
following a failure:

<Oct 15, 2013 11:49:04 AM CDT> <Notice> <WebLogicServer> <BEA-000365> <Server
 state changed to FAILED.>
<Oct 15, 2013 11:49:04 AM CDT> <Error> <WebLogicServer> <BEA-000383> <A critical
 service failed. The server will shut itself down.>
<Oct 15, 2013 11:49:04 AM CDT> <Notice> <WebLogicServer> <BEA-000365> <Server
state changed to FORCE_SHUTTING_DOWN.>

Self-Health Monitoring
WebLogic Server offers built-in server health monitoring to enhance the availability of a domain’s
servers. Subsystems of a server instance, such as the JMS services, for example, monitor their own
health status, in this case by monitoring the JMS thread pool. Other subsystems monitor both the
WebLogic Server’s internal thresholds as well as any user-defined thresholds and statistics, such
as, for example, the execute thread statistics. When the monitoring system of a server subsystem
such as JMS concludes that it’s not running in a reliable fashion, it designates the server’s status as
“failed.” The server instance continuously monitors the state of all registered subsystems, and
when a critical subsystem shows a FAILED state, the server instance changes its own run status to
FAILED, indicating that it can’t handle critical requests from the applications it hosts.

If you configure the Node Manager on all the machines in your environment, the Node
Manager will try to reboot failed servers automatically, thus enhancing the uptime of your domain
components without your intervention.

How the Server Deals with the FAILED State
How a server instance deals with a FAILED state depends on when exactly the server enters the
FAILED state. Following a failure condition, the server could end up in either the SHUTDOWN or
the ADMIN state. If it reaches the FAILED state before it enters the ADMIN state, the server will
shut itself down (SHUTDOWN state). If you have enabled the administration port, the server will
return to the ADMIN state if it fails after successfully transitioning through the ADMIN state. Note
that you can configure the server such that it always shuts down, even after passing the ADMIN
state, instead of reverting to the ADMIN state following a failure condition.

84 Oracle WebLogic Server 12c Administration Handbook

Shutdown Command Options
As with the startup options, you have several options available to shut down a server instance, as
described here:

 � Normal shutdown When you issue the stopWebLogic.cmd or stopWebLogic.sh
command, the instance will gracefully handle all in-flight work and shut itself down by
passing through the following phases:

RUNNING > SUSPENDING > ADMIN > SHUTTING_DOWN > SHUTDOWN

 � Suspend You issue the suspend command to move a server instance from the
RUNNING to the ADMIN state. All in-flight work is handled properly, and the server
passes through the following phases:

RUNNING > SUSPENDING > ADMIN

 � Force suspend This command will achieve the same result as the suspend command,
but in-flight work will be abandoned.

NOTE
When you start the Admin Server, one of the first things it does is to
start the Node Manager service—this service doesn’t actually start the
Node Manager; it reports all changes in the Admin Server run state to
the Node Manager.

Controlling Graceful Shutdown
When you issue either a normal shutdown or a suspend command, the server gracefully handles
the sessions it’s processing work from. By default, the HTTP sessions can stay alive for one hour
before the sessions time out. You can configure the duration of the shutdown process by setting
the following attributes of the ServerMBean:

 � Ignore sessions during shutdown Following your shutdown or suspend command, all
HTTP sessions are immediately dropped by the instance if you enable this attribute.

 � Graceful shutdown timeout You can specify a duration within which the server will
gracefully shut down, failing which it will perform a forced shutdown.

You can configure both of these attributes through the Administration Console from the Server
Name | Control | Start/Stop page.

NOTE
WebLogic Server uses a lock file to prevent you from starting the server
if it’s already running. Thus, you’ll see the following error when you try
to start an already-running server:

weblogic.management.ManagementException: Unable to obtain lock on C:\Oracle
\Middleware\Oracle_Home\user_projects\domains\wl_server\servers\examplesServer\
vtmp\examplesServer.lok. Server may already be running

Chapter 2: Administering WebLogic Server Instances 85

In this case, your attempt to start the server results in the server shutting itself down in the
FAILED state. This doesn’t impact the server that is already running, however.

Starting and Stopping WebLogic Server
You can start and stop the Admin and Managed Servers in many different ways. You can use

 � A startup and shutdown script

 � A Java command from the command line

 � Ant wl_server tasks

 � The Administration Console

 � WLST by itself

 � WLST in combination with the Node Manager

Regardless of the method you choose to start a WebLogic Server instance, you’re essentially
initializing a JVM within which the Admin Server or the Managed Server will run. Oracle
recommends that you employ the WLST and the Node Manager together to manage both the Admin
and Managed Servers. On a day-to-day basis, you’ll use the Administration Console in most cases,
which makes your life easy. In the following sections, I describe the various start/stop methods in
detail. Before I review the various ways to stop and start servers, let’s review server messages and logs.

Server Messages
When a server instance starts and when it shuts down, it puts out various types of messages. In
fact, these messages are ongoing throughout a server’s lifetime. Many of these messages are
purely informational, in which case they are denoted by the word <Notice>. Certain messages are
intended as cautions, and they include the word <Warning> as part of the message. Both types of
notices also state the relevant area they are dealing with, such as Server, Log Management, or
Security. Here are some examples, showing both types of messages sent by the server instance:

<Oct 15, 2013 10:55:57 AM CDT> <Notice> <LoggingService> <BEA-320401>
<The log file has been rotated to
C:\Oracle\Middleware\wlserver_12.1\samples\domains\wl_server\servers\
examplesServer\logs\access.log00002. Log messages will continue to be logged in
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\servers\
examplesServer\logs\access.log.>

<Oct 15, 2013 10:56:22 AM CDT> <Notice> <WebLogicServer> <BEA-000331>
<Started the WebLogic Server Administration Server "examplesServer"
 for domain "wl_server" running in development mode.>

<Oct 15, 2013 10:56:08 AM CDT> <Warning> <Munger> <BEA-2156203> <A version
attribute was not found in element "web-app" in the deployment descriptor
C:\Oracle\Middleware\Oracle_Home\samples\server\examples\build\mainWebApp/WEB-
INF/web.xml. A version attribute is required, but this version of the WebLogic
Server will assume that the latest version is used. Future versions of WebLogic
Server will reject descriptors that do not specify the Java EE version. To
eliminate this warning, add an appropriate "version=" to element "web-app"
in the deployment descriptor.>

86 Oracle WebLogic Server 12c Administration Handbook

Obviously, you must pay close attention to all the warning messages, although you can generally
safely ignore most of them.

Server Logs
On a Windows server, the server lifecycle messages are shown in the command window that pops
up automatically when you start a server from the Windows Programs button or with a startup
command. Of course, you must keep this command window running because killing the window
will also kill the server instance itself. You can view the entire log file of the server instance in the
WL_HOME\domains\<domain_name>\servers\log directory. In the case of the sample AdminServer
instance in the wl_server domain on my server, the log files are located in the C:\Oracle\
Middleware\Oracle_Home\user_projects\domains\wl_server\servers\AdminServer\logs directory.

WebLogic Server retains older log files by appending a numbered suffix such as 00005 at the
end of the filename. Note that you have separate log files for both the domain and the server. In
addition, subsystems such as JDBC and JMS have their own separate log files. There are two log
files, one named after the domain itself and the other named after the server. Once you restart a
server, the current “live” log file is the one with the highest number at the end, for example,
MedRecServer.log00009. The current log file is the log the server writes to after it rolls over the
previous log file once it exceeds the maximum size set for it. Chapters 3 and 6 contain detailed
explanations of log formats and other aspects of log management.

Using a Startup Script to Start and Stop Servers
You can use startup scripts to start either the Admin or the Managed Servers. In the examples in this
book, during installation, WebLogic Server places scripts to start and stop the Admin and the
Managed Servers under each sample domain it creates. You can use these scripts to manage the server
startup and shutdown out of the box when administering the sample domains used in this book.

Starting the Admin Server with a Startup Script
For any of the sample domains, use the Oracle-provided startWebLogic.cmd script to start the
Admin Server for that domain. The startup scripts for both the Admin and the Managed Servers are
located in the domain directory. Here’s an example that shows how to start the Admin Server for
the sample wl_server domain.

C:\Oracle\Middleware\wlserver_12.1\samples\domains\medrec>\startWebLogic.cmd

TIP
Instead of using commands, you can configure the Admin Server
to start whenever the server launches. Note that I said the Admin
Server specifically, because you can’t start the Managed Server in this
manner. This method might work in many cases, however, because
you really don’t need a separate Managed Server in a developmental
environment—you can deploy your applications directly through the
Admin Server in such an environment.

In a UNIX system, you use a shell script instead, such as startWebLogic.sh to start your
servers. The startWebLogic.cmd (and the startWebLogic.sh) startup script invokes the
setDomainEnv.cmd first to set the environment, and then it invokes another startWebLogic.cmd

Chapter 2: Administering WebLogic Server Instances 87

script under the ~\bin subdirectory, which subsequently executes the java weblogic.Server
command to actually start the server. The java weblogic.Server command launches a JVM that will
run the WebLogic Server instance.

NOTE
You can also create your own custom script for starting an Admin Server.

On a Windows server, you can also start the Admin Server by going to the Start menu and
clicking the Start Admin Server button located under the domain name (Start | WebLogic Server |
User_projects | domain_name | Start Admin Server). Doing this also executes the same weblogic
.Server command that’s run by the startWebLogic.cmd script. When you create a domain through
the Configuration Wizard (explained in Chapter 3), the Wizard adds the command to start the
Admin Server to the Start menu.

Starting the Managed Server with a Script
You can start the Managed Servers in your environment by invoking an Oracle-provided script
that is automatically created when you use the Configuration Wizard to create a Managed Server.
The script name is startManagedWebLogic, and the script doesn’t need the Node Manager. The
script invokes the java weblogic.Server class through a Java command.

NOTE
If you use the Configuration Wizard to create a domain, it ensures that
all the files you need for starting the server are already present.

Although not required, before you start a single Managed Server or a cluster, it is recommended
that you first start the Admin Server. Use the startManagedWebLogic.cmd script in a domain’s bin
directory to start a Managed Server. For a UNIX system, you use the startManagedWebLogic.sh
script instead. Note that on a UNIX server, you must also provide values for the SERVER_NAME
environment variable and, optionally, the ADMIN_URL environment variable, as shown here:

$ startManagedWebLogic.sh SERVER_NAME {ADMIN_URL}

Here’s an example:

$ startManagedWebLogic.sh MyManagedServer1 http://myhost:7001

Note that if you have multiple Managed Servers that are not part of a cluster, you must
execute the startManagerWebLogic.cmd script multiple times, passing the name of a different
Managed Server each time. In the following example, I start the Managed Server ManagedServer1
using the startManagedWebLogic.cmd script:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\test_domain\bin>startManage
dWebLogic.cmd ManagedServer1.JAVA Memory arguments: -Xms256m -Xmx512m -
XX:CompileThreshold=8000 -XX:PermSize=128m -XX:MaxPermSize=256m
WLS Start Mode=Development
CLASSPATH=C:\Oracle\MIDDLE~1\patch_wls1211\profiles\default\sys_manifest_classpath
<Oct 17, 2013 12:53:41 PM CDT> <Notice> <WebLogicServer> <BEA-000365> <Server
state changed to RUNNING.>

88 Oracle WebLogic Server 12c Administration Handbook

<Oct 17, 2013 12:53:41 PM CDT> <Notice> <WebLogicServer> <BEA-000360> <The
server started in RUNNING mode.>

As with the Admin Server, once you see the “Server started in RUNNING mode” message, it
means the Managed Server has completed its boot sequence and is waiting to process requests.
The following message in the Windows command line shows where to find the log file that
contains information about the events that occur during the server’s lifecycle:

<Oct 17, 2013 12:52:57 PM CDT> <Notice> <Log Management> <BEA-170019>
<The server log file
C:\Oracle\Middleware\user_projects\domains\test_domain\servers\ManagedServer1
\logs\ManagedServer1.log is opened. All server side log events will be
written to this file.>

Using Scripts to Shut Down Servers
WebLogic Server also provides the stopWebLogic.cmd and stopWebLogic.sh scripts to help you
shut down the Admin and Managed Servers. These scripts are located in the same directory as the
startup scripts. The stopWebLogic.cmd script, for example, shuts down the Admin Server and, as
the following line in the script shows, calls the WLST script shutdown.py:

%JAVA_HOME%\bin\java -classpath %FMWCONFIG_CLASSPATH% %MEM_ARGS% %JVM_D64%
%JAVA_OPTIONS% weblogic.WLST shutdown.py

When invoking WLST through a script, do so with the wlst.cmd (wlst.sh in UNIX) script file.
This way, the necessary environment variables for WLST are automatically set. You’ll find the wlst
.cmd and the wlst.sh scripts in the WL_HOME\common\bin directory. Note that when you stop
the Admin Server through the stopWebLogic.cmd script, the command invokes WLST:

Stopping Weblogic Server...
Initializing WebLogic Scripting Tool (WLST) ...
Welcome to WebLogic Server Administration Scripting Shell
Type help() for help on available commands
Connecting to t3://MIROPC61:7001 with userid weblogic ...

When you stop a server through the Windows Programs facility, behind the scenes, WebLogic
Server utilizes WLST to stop the server, as shown in the following output when you click the Stop
Examples Server button:

Stopping Weblogic Server...
Initializing WebLogic Scripting Tool (WLST) ...
Welcome to WebLogic Server Administration Scripting Shell
Type help() for help on available commands
Connecting to t3://a6717:7001 with userid weblogic ...
Successfully connected to Admin Server 'examplesServer' that belongs to domain
'wl_server'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used
instead. Shutting down the server examplesServer with force=false while
 connected to examplesServer ...
Disconnected from weblogic server: examplesServer

Chapter 2: Administering WebLogic Server Instances 89

Exiting WebLogic Scripting Tool.
Done
Stopping Derby Server...
Derby server stopped.
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>

You have a similar shutdown script, named stopManagedWebLogic.cmd, for the Managed Servers
as well. Both the Admin and the Managed Servers use the same Python script named shutdown.py.

NOTE
You can embed a WLST script in Ant with the <wlst> Ant task.
This is a great solution for automating server control in testing and
development environments.

Startup and Shutdown Scripts
You can write startup and shutdown scripts to enable the server to perform additional tasks when
starting or shutting down. WebLogic Server invokes the shutdown scripts when you shut down
servers from the Administration Console or with the java weblogic.Server command.

Using the java weblogic.Server Command
If you are dealing with a development environment, you can execute the java weblogic.Server
command directly to start the Admin Server (the weblogic.Server class is the main Java class for
any WebLogic Server instance). You can invoke java weblogic.Server directly on the command
line or incorporate it in a startup script. You can issue the command java weblogic.Server -help to
learn which options you can add to the weblogic.Server command.

NOTE
If you choose a product directory that’s different from the Oracle
Middleware home directory, the java weblogic.Server command
won’t work.

Here are the steps for executing the java weblogic.Server command:

 1. Set up your environment:

WL_HOME\server\bin\setWLSEnv.cmd /* setWLSEnv.sh in UNIX

NOTE
For the remainder of the book, MW_HOME refers to the Middleware
home of your WebLogic Server installation, such as C:\Oracle\
Middleware, and WL_HOME refers to the home directory of your
WebLogic Server installation, such as C:\Oracle\Middleware\
wlserver_12.1.

You can also set the class path for the server by using the -classpath argument in your
startup command. Whether you use the setWLSEnv.cmd or specify the class path in the

90 Oracle WebLogic Server 12c Administration Handbook

startup command, Oracle strongly recommends that you include the following two jar
files in your class path for the JVM:

 � WL_HOME\server\lib\weblogic_sp.jar

 � WL_HOME\server\lib\weblogic.jar

NOTE
You can also use the weblogic.Server command-line option to create
and configure a domain, as discussed in Chapter 3.

 2. Move to the root of the WebLogic Server domain directory:

WL_HOME\samples\domains\wl_server

 3. Start the Admin Server by executing the following command:

$java weblogic.Server

 4. Start a Managed Server by executing the following command. Note that you must add the
option -Dweblogic.management.server to the weblogic.Server command; otherwise, the
command will start the Admin Server.

$java -Dweblogic.Name=managed-server-name
-Dweblogic.management.server=url-for-Administration-Server weblogic.Server

 For example, if your domain name is wl_server and the Managed Server’s name is
examplesManagedServer, enter the following command:

$java -Dweblogic.Name=examplesManagedServer
-Dweblogic.management.server=localhost:7001 weblogic.Server

To start a Managed Server with the java weblogic.Server command, you must first start the
Admin Server.

The default protocol is HTTP. You can specify HTTPS, t3, or the t3s protocol as well. You must
specify the Admin Server’s SSL port after enabling SSL on both the Admin and Managed Servers if
you plan to use the secure ports, t3s, or HTTPS.

NOTE
If you enable the administration port for the domain’s Admin Server,
all Managed Servers must also use SSL. You must then specify a secure
protocol (HTTPS instead of HTTP) and the administration port when
you start any Managed Servers, as shown here:

-Dweblogic.management.server=https://admin_server:administration_port

Chapter 3 shows how to enable the administration port.

In the previous examples, the java weblogic.Server command was issued from the WL_
HOME\samples\domains\wl_server directory to start the Admin and the Managed Server that
belong to that domain. What happens when you issue the java weblogic.Server command without

Chapter 2: Administering WebLogic Server Instances 91

the -Dweblogic.Domain=<value> (WebLogic domain name) option and the -Dweblogic.
Name=<value> (WebLogic server name) option depends on whether there’s a config.xml file in
the <domain_name>\config directory, as explained in the following two sections.

The config.xml File Exists
When you execute the java weblogic.Server command from the domain directory (for example,
WL_HOME\samples\domains\wl_server directory for the wl_server domain) without specifying
the server name, WebLogic Server starts the server instance if that’s the only instance defined in the
config.xml file. If you’ve defined multiple instances in the config.xml file, the search is made in the
following order:

 1. If the config.xml file defines an Admin Server, the command looks for a server with that
name.

 2. If there’s no Admin Server definition in the config.xml file, then the command looks for
the configuration for a server named myserver and starts the myserver instance if it finds
its configuration in the config.xml file.

 3. If the config.xml file contains no reference to a server with the name myserver, the
command gives you an error message.

TIP
Oracle recommends that you use the java weblogic.Server command
only for starting development environments and not production
environments because it won’t run from a directory that is outside the
Middleware home directory. Also, the server run time won’t recognize
any patches

The config.xml File Doesn’t Exist
If the config.xml file doesn’t exist in the directory from which you issue the weblogic.Server
command, WebLogic Server prompts you to find out if you want it to create the file, as shown
here:

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>setWLSEnv
Your environment has been set.
C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>java weblogic.Server
<Oct 15, 2013 11:13:56 AM CDT> <Info> <Security> <BEA-090905> <Disabling CryptoJ
JCE Provider self-integrity check for better startup performance. To enable this
check, specify -Dweblogic.security.allowCryptoJDefaultJCEVerification=true>
<Oct 15, 2013 11:13:56 AM CDT> <Info> <Security> <BEA-090906> <Changing the
default Random Number Generator in RSA CryptoJ from ECDRBG to FIPS186PRNG. To
disable this change, specify -Dweblogic.security.allowCryptoJDefaultPRNG=true>
<Oct 15, 2013 11:13:56 AM CDT> <Info> <WebLogicServer> <BEA-000377> <Starting
WebLogic Server with Java HotSpot(TM) Client VM Version 20.4-b02 from Sun
Microsystems Inc..>
C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin\config not found
No config.xml was found.
Would you like the server to create a default configuration and boot? (y/n): y

92 Oracle WebLogic Server 12c Administration Handbook

When you respond with a Y, WebLogic Server creates a new domain configuration named
mydomain. WebLogic Server does the following when you choose to create the default configuration:

 � Generates a new domain named mydomain and a domain directory under the directory
from which you issued the java weblogic.Server command.

 � Creates an administrative user with the username and password you supply and
stores the user definition and related security data in the domain_name\security
files named DefaultAuthenticatorInit.ldift and DefaultRoleMapperInit.ldift, and in the
SerializedSystemIni.dat file.

 � Stores an encrypted form of your credentials in the boot.properties file so you don’t have
to specify login credentials when the server is instantiated in the future.

 � Creates the startWebLogic.cmd and startWebLogic.sh scripts to manage the startup of the
Admin Server.

 � Boots the Admin Server myserver for the new domain mydomain in development mode.

As the discussion here shows, if you attempt to start the Admin Server or the Managed Server
from an alternate location, WebLogic Server may not be able to find the appropriate configuration
file and thus prompts for the creation of the config.xml file. You can also see how easy it is to
create a new domain just by issuing the java weblogic.Server command.

NOTE
You can start a lightweight WebLogic Server instance without EJBs,
JCA, and JMS by changing to the DOMAIN_HOME\bin directory and
running the following commands:

$setDomainEnv.cmd
$java weblogic.Server -DserverType="wlx"

Configuring Server Attributes with weblogic.Server
In the previous sections, I showed how to execute weblogic.Server from the command line
without really providing any configuration options for the servers. In more real-world cases,
however, you often need to specify some configuration options, and it’s easy to do so with
weblogic.Server. The following sections describe the key server configuration attributes you can
specify with weblogic.Server when you start a server.

Specifying JVM Parameters
You can specify the following options to configure the server’s JVM:

 � Classpath If you haven’t set the environment variable CLASSPATH, the server uses the
value you set for the classpath option. The information you need to provide for this option is
explained earlier in this chapter in the section “Using the java weblogic.Server Command.”

 � -Xms and -Xmx These options enable you to specify the minimum and maximum values for
the Java heap space. To avoid adversely impacting performance due to the frequent resizing
of the Java heap by the JVM, Oracle recommends using the same values for the maximum
and minimum settings, for example, -Xms1024m and -Xmx1024m (set the memory values in
megabytes). Setting these attributes is discussed in greater detail in Chapter 10.

Chapter 2: Administering WebLogic Server Instances 93

Specifying Directories and Domains
You can also use the -D option at the command line to specify the location of various
directories and the domain name. You can do this if you have multiple installations of WebLogic
Server on the same machine. For example, the following option specifies the location of the
WebLogic home directory:

-Dweblogic.home=C:\Oracle\Middleware\wlserver_12.1

Overriding Server Configuration
When invoking the weblogic.Server Java class from the command line, you can use various
options for temporarily overriding a server’s configuration. The server uses these configuration
values only once at startup time but it doesn’t modify config.xml. You’ll also see the older values
in the Administration Console when you check these attributes. Thus, when you restart the server,
it uses the older values stored in config.xml. You’ve already encountered one of these options, the
-Dweblogic.management.server option, which you use when starting a Managed Server. Some of
the other options you can specify at the command line are

 � -Dweblogic.management.username=<username> This option lets you specify
credentials that override those in the boot.properties file. You must ensure that the user
belongs to a proper role with permissions to start servers. The -Dweblogic.management.
password option similarly enables you to specify a password, overriding the values
specified in the boot.properties file.

 � -Dweblogic.home=<WL_HOME> This option lets you specify the WebLogic Server home.

 � -Dweblogic.Domain=<domain> This option lets you specify the domain name (when
creating a domain).

 � -Dweblogic.Stdout=<filename> This option lets you redirect server standard output to a
file.

 � -Dweblogic.security.SSL.ignoreHostnameVerification=true The server will not verify
hostnames when acting as an SSL client, which lets you use the demonstration digital
certificates installed by Oracle. In a production environment, don’t use the demo digital
certificates or turn off hostname verification.

 � -Dweblogic.management.startupMode=<mode> The default running mode for a server
is the RUNNING state. You can specify either STANDBY or ADMIN as the value for this
option.

Remember that any options you specify using the various -Dweblogic.management options
don’t affect the values in the config.xml file. To make your changes persist, you can manually edit
the config.xml file. The recommended approach is to do your edits through the Administration
Console or through WLST, however.

Using the Ant Tool to Manage Servers
Oracle WebLogic Server provides you with the Ant tool and a set of Ant tasks. Ant is a Java-based
tool that provides features similar to the make command in UNIX, and it is used primarily to build
Java applications. In addition, Ant offers several built-in tasks to compile, package, test, and
deploy Java applications. Ant uses XML build files and lets you perform many tasks such as

94 Oracle WebLogic Server 12c Administration Handbook

starting servers; building jar, war, and ear files; and deploying the applications. You can access the
Ant manual at ant.apache.org/manual/index.html. Here are some of the most useful WebLogic
Server Ant tasks:

 � wl_server Lets you start, shut down, or connect to a WebLogic Server instance

 � wlcompile Lets you invoke the javac complier to compile Java applications

 � wlconfig Configures a WebLogic Server domain

 � wldeploy Performs wl.deployer functions

 � wlpackage Packages split development directory applications as ear files that you can
deploy

WebLogic Server offers a predefined WLST Ant task in the version of Ant that ships with
WebLogic. This Ant task lets you run WLST commands or scripts from within an Ant build file. You
can specify WLST commands directly inside the build file by specifying the <script> tags. Here’s a
simple example that shows how to run a WLST command from an Ant script:

<target name="appserver.connect">
 <wlst debug="false" failOnError="true">
 <script replaceProperties="true">
 connect("${wls.username}", "${wls.password}",
 "${wls.admin.url}")
 </script>
 </wlst>
</target>

You can execute this task by typing ant at the command line in the staging directory or by
typing ant appserver.connect. If you want to specify WLST commands within a WLST (Python)
script, use the fileName attribute, as shown here:

<target name="mywlsttest">
 <wlst filename="./mytest.py"
debug="false" failOnError="true">
 </wlst>
</target>

In the short introduction to Ant that follows, I use the wl_server task to show how you can
manage server instances.

Checking to See If Ant Is Installed
Although you can download and install Ant yourself, the WebLogic Server installer does install
Ant by default. To check if Ant exists in your installation, do the following:

 1. Set the environment:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>setDomainEnv.cmd
Modifying classpath for the samples
…
Script has completed successfully

Chapter 2: Administering WebLogic Server Instances 95

 2. Type ant at the command line:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>ant
Buildfile: build.xml does not exist!
Build failed
C:\Oracle\Middleware\Oracle_Home\wlserver\samples\domains\wl_server>

If you see this output, it means Ant is correctly installed and is working correctly on your
system. By default, Ant looks for a file named build.xml—if it finds it, it runs the build.xml file;
otherwise, it returns the “Build failed” message.

Ant Build Files
An Ant build file has one project and at least one target, where targets consist of task elements. A
target is simply the task or tasks you want to execute, and a task is defined as the actual code you
want to execute. You must specify three attributes for a project: the name of the project (name),
the default target (target) to use, and the base directory from which to figure the path (basedir).
You specify properties to customize the build process or to provide shortcuts for frequently used
strings. You specify properties with name/value pairs.

How to Start a Server with an Ant Program
The following examples show how to build simple build.xml files to start a server. In the first
example, I just use the wl_server target with no additional attributes to start the Admin Server for
the sample medrec domain:

<project name="AntExample" >
 <target name="wlserver-default">
 <wlserver/>
 </target>
</project>

Save the build.xml file in the medrec domain directory (C:\Oracle\Middleware\
wlserver_12.1\samples\domains\medrec). Type ant at the command line. (Make sure you’ve run
setDomainEnv.cmd first so you don’t have to point to the Ant installation.)

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\medrec>ant
Buildfile: build.xml

BUILD SUCCESSFUL
Total time: 0 seconds

The “Build Successful” message means that the build.xml file was syntactically correct and that
Ant has successfully executed the commands therein.

The following Ant build.xml file connects to the running server:

<project name=AntExample" >
 <target name=connect-server>
 <wlserver host=localhost" port="7012" username="weblogic" password="welcome1"
action="connect"/>
 </target>
</project

96 Oracle WebLogic Server 12c Administration Handbook

To execute this new target, simply run the following command:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\medrec>ant connect-server
Buildfile: build.xml
connect-server:
BUILD SUCCESSFUL

These simple examples offer merely a flavor of Ant tasks. You can create Ant tasks not only to
connect to a server, but also to perform a wide array of tasks, including deploying your applications.

Managing Servers from the Administration Console
You can’t start the Admin Server from the Administration Console because the Admin Server must
be started before you can access it; however, you can shut down the Admin Server from the
console. When you shut down the Admin Server from the Administration Console, you lose the
connection to the console right away, as shown here on the web page that was hosting the
console prior to the shutting down of the Admin Server:

Server Shutdown
The administration server is shutting down, and the console is no longer
available. You will have to manually start the Administration Server using the
node manager or a command line to continue administering this domain.
Once the server is restarted return to the Home page.

You can start and shut down the Managed Servers from the Administration Console, as
explained in the following sections, but first I’ll show you how to configure a Managed Server to
communicate with the Node Manager. By default, the Node Manager can’t communicate with
the Managed Server, as it does with the Admin Server. To administer Managed Servers remotely
through the Administration Console, you must, of course, first start the Node Manager service on
each machine that hosts a Managed Server. Before you can use the Node Manager to control the
Managed Servers, you must first configure the physical (or virtual) server hosting the Managed
Server(s) as a machine. Second, you must assign each of the Managed Server instances to that
machine. The process is not nearly as hard as it sounds, as the following sections demonstrate.

Configuring the Host as a WebLogic Server Machine
Before you can start using the Node Manager to administer Managed Servers remotely, you must
first configure the physical or virtual server hosting those Managed Servers as a WebLogic Server
machine. Once you do this, you must assign the Managed Servers to that machine. Why do you
need to do this? Because doing so tells WebLogic Server that the Managed Servers are running on
a specific physical (or virtual) server and that it should treat those servers as being under the
control of the Node Manager running on that server or machine. It also allows you to associate
servers and Managed Servers with a specific Node Manager service. Let’s first find out how to go
about configuring a host server as a WebLogic machine; the next section will show you how to
assign various Managed Servers to this machine.

Use the Administration Console to configure the host server as a machine in a WebLogic
Server domain. Here’s how:

 1. In the Change Center of the Administration Console, click Lock & Edit.

 2. In the left-hand pane, expand Environment and select Machines.

Chapter 2: Administering WebLogic Server Instances 97

 3. Click New and enter a name for the machine in the Name field. You can assign any name
you wish to the machine.

 4. Click OK and select the new machine’s name in the Machines table.

 5. Select the Node Manager tab.

 6. You can accept the values that are filled in for the Listen Address (IP address or DNS
name) and Listen Port fields. The Node Manager uses this port to listen for incoming
requests, and, by default, Oracle uses port number 5556.

 7. Click Save.

 8. Activate your changes by clicking Activate Changes in the Change Center.

Now that you’ve completed the process of configuring a specific host as a machine, let’s turn
to how you assign a Managed Server to this machine so the Node Manager can start and stop the
Managed Server.

Assigning WebLogic Server Instances to a Machine
Once you configure the host server as a machine, you then assign the Managed Server instances
to the new machine. Follow these steps.

 1. Click Lock & Edit in the Administration Console’s Change Center.

 2. In the left-hand pane, expand Environment and select Servers. Select the name of a
Managed Server you want to assign to your new machine.

 3. In the right-hand pane, select Configuration | General.

 4. In the Machine field, select the new machine you just created.

 5. Click Save.

 6. Activate your changes by clicking Activate Changes in the Change Center.

TIP
You can also associate a Managed Server with a machine when you
use the Configuration Wizard to create the Managed Server. The
Wizard also lets you configure a machine and set the Node Manager
listen address and listen port.

You’ve completed the two-part process: configuring a server as a machine and assigning Managed
Servers to a machine. Now you’re ready to use the Node Manager to administer the Managed Server.
You can do this through the Administration Console or through WLST Node Manager commands.
Before you run off to administer your Managed Servers with the Node Manager and the Administration
Console, let’s review how to configure the Managed Servers to work with the Node Manager.

Configuring Managed Servers to Work with the Node Manager
Once you’ve set up your machines and assigned all your Managed Servers to those machines, you
need to do one other thing: configure the Managed Servers to work with the Node Manager. First,
you can configure the startup settings for Managed Servers you want the Node Manager to manage
remotely. In the Administration Console, in the left-hand pane, select Environment | Servers and click
the name of the Managed Server you want to configure. In the right-hand pane, click Configuration |

98 Oracle WebLogic Server 12c Administration Handbook

Server Start. Doing this takes you to the startup settings for the Managed Server. From this page, you
can configure the class path, as well as several home directories, as summarized here:

 � Java Home The path to the Java Home directory on the machine running the Node Manager.

 � Java Vendor The Java vendor (Oracle for example) to use when starting a Managed Server.

 � BEA Home The Oracle WebLogic home directory to use when starting this Managed Server.

 � Root Directory By default, the Managed Servers use the domain directory as their root
directory. You can specify an alternative root directory for the Managed Server here.

 � Class Path The Java class path to use when starting this particular Managed Server.

 � Arguments The arguments you wish to specify with the java weblogic.Server command,
such as memory heap, garbage collection, and class path settings for the Node Manager
to use in starting this Managed Server.

 � Security Policy File The security policy file directory and filename on the server hosting
the Node Manager during the startup of this Managed Server.

 � Username/Password The username and password credentials that the Node Manager
uses during server startup. By default, the Domain Wizard uses the name you provided
when creating the domain, and the Administration Console uses the username you used
to log into it. You can provide a different username from the Administration Console.

Configuring How Node Manager Handles Server Failures
In the Settings For <Managed_Server_Name> page, click the Health Monitoring tab. From here,
you can configure how frequently the Node Manager checks the Managed Server’s health, as well
as specify whether the Node Manager automatically restarts a failed Managed Server.
Additionally, you can set the frequency with which the servers themselves perform a self-health
check. Here are the options you can set from this page:

 � Health Check Interval The frequency with which the server checks its own health—if it
perceives a failure, it automatically changes the server run state to FAILED.

 � Auto Kill If Failed Lets you specify whether a Node Manager should automatically kill a
server in a FAILED state.

 � Auto Restart Enables you to configure the automatic restart of a server after a crash.

 � Restart Interval The maximum time interval during which the Node Manager can keep
trying to restart a failed server.

 � Max Restarts Within Interval Number of times the Node Manager can try a restart
operation within the duration specified by the Restart Interval attribute.

 � Restart Delay Se conds The gap between restart attempts.

You can view the current settings for all Node Manager–related properties for a Managed
Server that belongs to a domain, such as my test domain my_domain, by going to the MW_
HOME\user\projects\domains\my_domain\servers\My_ManagedServer_1\data\nodemanager
directory and viewing the startup.properties file for the Managed Server, as shown here (each
Managed Server has one of these startup.properties files):

#Server startup properties
#Sat Oct 19 12:56:49 CDT 2013

Chapter 2: Administering WebLogic Server Instances 99

SSLArguments=-Dweblogic.security.SSL.ignoreHostnameVerification\=false -
Dweblogic.ReverseDNSAllowed\=false
RestartMax=2
RestartDelaySeconds=0
RestartInterval=3600
AdminURL=http\://192.168.56.1\:7001
AutoRestart=true
AutoKillIfFailed=false

When you make configuration changes in the Administration Console, WebLogic Server
writes those changes to the nodemanager.properties file. You can change this file manually, but
the recommended approach is to do it via the Console. When you first start a Managed Server
through the Node Manager, the Node Manager creates several directories for logs and other
things and stores the configuration and boot.properties files therein, as shown here in an excerpt
from the Node Manager’s log file:

<Oct 19, 2013 8:26:41 AM> <INFO> <Secure socket listener started on port 5556>
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1>
<Creating directory
 "C:\Oracle\Middleware\wlserver\common\bin\servers\ManagedServer1\logs">
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Creating directory
 "C:\Oracle\Middleware\wlserver\common\bin\servers\ManagedServer1\security">
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Creating
directory
"C:\Oracle\Middleware\wlserver\common\bin\servers\ManagedServer1\data\
nodemanager">
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Creating directory
"C:\Oracle\Middleware\wlserver\common\bin\servers\ManagedServer1\tmp">
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Creating directory
"C:\Oracle\Middleware\wlserver\common\bin\servers\domain_bak">
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Creating directory
 "C:\Oracle\Middleware\wlserver\common\bin\servers\domain_bak\config_prev">
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Boot identity
properties saved to
"C:\Oracle\Middleware\wlserver\common\bin\servers\ManagedServer1\data\nodemanager\
boot.properties">
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Startup
configuration properties saved to
"C:\Oracle\Middleware\wlserver\common\bin\servers\ManagedServer1\data\nodemanager\
startup.properties">
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Server error log
also redirected to server log>
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Starting WebLogic
server with command line:
C:\Oracle\Middleware\wlserver\common\bin\bin\startWebLogic.cmd >
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Working directory
is 'C:\Oracle\Middleware\wlserver\common\bin'>
<Oct 19, 2013 12:39:29 PM> <INFO> <wl_server> <ManagedServer1> <Server output log
file is 'C:\Oracle\Middleware\wlserver\common\bin\servers\ManagedServer1\logs\
ManagedServer1.out'>My_ManagedServer_1\data\nodemanager\startup.properties">

100 Oracle WebLogic Server 12c Administration Handbook

Starting a Managed Server from the Console
Before you can start a Managed Server from the Administration Console, make sure that you first
start the Node Manager service. If you’re using a Windows server, all you have to do is to click the
Node Manager button under the Start Programs menu in a Windows Server. If the Node Manager
is not running, an attempt to start a Managed Server from the Administration Console will result in
an error. Once you start the Node Manager, follow these steps to start a Managed Server for the
Administration Console:

 1. Select Servers by expanding Environment in the left-hand pane of the console.

 2. Select Control in the right-hand pane.

 3. Select the Managed Server you want to start in the Summary Of Servers page, as shown in
Figure 2-3.

 4. Click Start.

You’ll see the following informational message (in green) at the top of the Summary Of Servers
page: “A request has been sent to the Node Manager to start the selected servers.” The Node
Manager will then boot the selected Managed Server on the machine that hosts the server.

NOTE
You can stop, suspend, and resume a Managed Server from the
Administration Console, provided you have already started the Node
Manager service, configured a machine, and associated the Managed
Server with that machine.

FIGURE 2-3. Starting a Managed Server from the Administration Console

Chapter 2: Administering WebLogic Server Instances 101

Once you click the Start button on the Summary Of Servers page to start a Managed Server,
the server instance starts booting. Wait for a few seconds and check the Managed Server’s status
in the State column of the Server State table or just refresh the page you’re on—you’ll see the State
column transitioning from the initial SHUTDOWN state to STARTING before finally finishing in
the RUNNING state. The Managed Server is now ready and at your command.

TIP
You can start a Managed Server in STANDBY mode only if you’ve
configured a domain-wide administration port. You’ll learn how to
configure the administration port in Chapter 3, which discusses the
creation and configuration of WebLogic domains.

Shutting Down a Managed Server from the Administration Console
To shut down a Managed Server, select the server you wish to shut down from the left-hand
pane of the console under the Servers table. In the right-hand pane (named the Summary Of
Servers page), select Control | Start/Stop, and select the server name from the Server Status
table. You can choose between a graceful shutdown (When Work Completes) and a forced
shutdown (Force Shutdown Now).

You can always shut down the Admin Server from the Administration Console, but this also
makes the Console inaccessible because the Admin Server hosts the Console. You can also kill the
JVM for a WebLogic Server instance by using the kill command after identifying the server process
with the ps command in UNIX or the Task Manager on a Windows system. The WebLogic Server
instance is the Java process that generally uses the most memory.

Using WLST Without the Node Manager
You can’t start or stop a Managed Server with WLST without first connecting to the Node
Manager. However, you can use WLST commands to start the Admin Server without the Node
Manager running. The following example shows how to start the Admin Server for the medrec
domain after invoking WLST with the java weblogic. WLST command. (In a Windows server, you
can simply execute the WebLogic Scripting Tool command from the Start menu.) Make sure you
set the environment by running the setDomainEnv.cmd script before you do this.

C:\Oracle\\Middlewar\Oracle_Home\user_projects\domains\medrec\bin>setDomainEnv.cmd
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>java
weblogic.WLST
wls:/offline>
wls:/offline>
startServer('examplesServer','wl_server','t3://localhost:7001','weblogic',
'welcome1','C:\Oracle\Middleware\wlserver_12.1\samples\domains\wl_server',
'false',60000,jvmArgs='-XX:MaxPermSize=512m, -Xmx512m, -XX:+UseParallelGC')

Starting weblogic server ...
Server started successfully.
wls:/offline> exit ()

Exiting from WLST won’t shut down the Admin Server. In other words, the Admin Server runs
independently of WLST.

102 Oracle WebLogic Server 12c Administration Handbook

Once you start the Admin Server, as shown here, WLST is still in the offline mode because it
hasn’t connected to the server yet—you can connect to the Admin Server with the connect command:

wls:/offline> connect('weblogic','welcome1','t3://localhost:7001')
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'examplesServer' that belongs to
domain 'wl_server'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port
should be used instead.
wls:/wl_server/serverConfig>

Once you’re connected to the Admin Server, you can issue various lifecycle commands to
control the servers. Note that Oracle recommends that you enable the administration port when
issuing any administrative commands. You can issue WLST lifecycle commands to check the
status of the server (state command), suspend the server (suspend command), and resume the
server’s operation (resume command), as shown in the following examples:

 � Check the state of the server:

wls:/wl_server/serverConfig> state('examplesServer')
Current state of 'examplesServer' : RUNNING
wls:/wl_server/serverConfig>

 � Suspend the server:

wls:/wl_server/serverConfig> suspend('MedRecServer', block="true")
Server examplesServer suspended successfully.

 � Check the state of the server after suspending it:

wls:/wl_server/serverConfig> state('examplesServer')
Current state of 'examplesServer' : ADMIN

 � Resume the oper ation of the server:

wls:/wl_server/serverConfig> resume ('examplesServer') ,"block=true")
Server (examplesServer' resumed successfully.

 � Check the state of the server again:

wls:/wl_server/serverConfig> state(' ('examplesServer')) /* check state again
Current state of ' (examplesServer': RUNNING

On occasion, you may encounter an error message such as the following when starting up the
Admin Server:

<Error> <HTTP> <Servlet: AppManagerServlet" failed to
preload on startup in Web Application:consolehelp.
WLST-WLS-1289076763292: java.lang.OutOfMemoryError: PermGen space
WLST-WLS-1289076763292: at java.lang.ClassLoader.defineClass1(Native Method)

The Java permanent generation (PermGen) space stores metadata such as classes and is
independent of the Java heap space. This error usually occurs when resources aren’t released
immediately following a restart of the Admin Server. You’ll find that this error usually doesn’t

Chapter 2: Administering WebLogic Server Instances 103

occur once you switch to the Oracle JRockit JVM implementation from the default Oracle
Java VM.

Stopping Servers with WLST Commands
You can stop an Admin Server through WLST without the Node Manager, as shown here:

wls:/medrec/serverConfig> shutdown()
Shutting down the server examplesServer with force=false while connected to
MedRecServer ...
Disconnected from weblogic server: examplesServer
wls:/offline>

By default, the shutdown command shuts down the server to which it is connected. It is an
online command, so you must first connect to the Admin Server. The WLST shutdown command
lets you shut down any Managed Server instance once you connect to the Admin Server or shut
down even the Admin Server itself. If you connect to a Managed Server, you can shut down only
that particular Managed Server. By default, the shutdown command waits until all in-flight work is
completed, so this is a graceful command. All active sessions must complete before the server
shuts down; however, you can specify the option force=true to shut down the server without
waiting for active sessions to finish their work (the default value is false). You can also use the
shutdown command to shut down a cluster by specifying the value cluster for the entityType
argument (the default value for this attribute is server).

Using WLST with the Node Manager
Although there are multiple ways to start and stop the WebLogic Servers, in practice, you’ll mostly
use WLST and the Node Manager together to manage the server instances. WLST can act as a
client of the Node Manager when you connect it to the Node Manager on a specific host and use
the Node Manager to control the Admin and Managed Servers running on the machine where the
Node Manager is running. WLST can also work as a client of the Admin Server by connecting to
the Admin Server (and not to the Node Manager) to control Managed Servers throughout the
domain. In the latter case, the Admin Server uses the Node Managers running on each of the
machines in the domain to control the Managed Servers running on that machine. Thus, in this
case, there’s an indirect connection between WLST and the Node Manager, which is much
simpler than connecting to each Node Manager running in the domain and also cuts down on the
connection overhead. This approach is generally best, as you can manage the entire domain by
simply connecting to the domain’s Admin Server with WLST—however, if the Admin Server isn’t
running, you need to know how to work with just WLST and the Node Manager.

Using WLST and Node Manager Without the Admin Server
To control the servers on any machine, WLST can directly connect to the Node Manager running
on that machine. This comes in handy when the Admin Server isn’t running for some reason, as
the Admin Server isn’t needed for WLST and the Node Manager to work together to start the
servers. You can also use this technique to start the Admin Server on a remote machine. Here are
the steps to connect WLST to the Node Manager and start servers (the domain name is medrec):

 1. Start WLST:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\medrec\bin>setDomainEnv.cmd
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\medrec>java weblogic.WLST
Initializing WebLogic Scripting Tool (WLST) ...

104 Oracle WebLogic Server 12c Administration Handbook

Welcome to WebLogic Server Administration Scripting Shell
Type help() for help on available commands
wls:/offline>

 2. Start the Node Manager with the WLST command startNodeManager if you haven’t
configured the Node Manager to start automatically with the host computer:

wls:/offline> startNodeManager()
Launching NodeManager
…
NMProcess: INFO: Secure socket listener started on port 5556
Successfully launched the Node Manager.
The Node Manager process is running independent of the WLST process.
Exiting WLST will not stop the Node Manager process. Please refer
to the Node Manager logs for more information.
The Node Manager logs will be under
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\.
Node Manager starting in the background
wls:/offline>

 3. Connect WLST to the Node Manager (the domain name is wl_server) using the WLST
command nmConnect:

wls:/offline> nmConnect('weblogic', 'welcome1', 'localhost', '5556',
'wl_server',
'C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server,''ssl')
Successfully Connected to Node Manager.
wls:/nm/wl_server>

 4. Check the status of the Node Manager again with the nm command if you want to verify
that WLST has connected successfully to the Node Manager:

wls:/nm/wl_server> nm()
Currently connected to Node Manager to monitor the domain medrec.
Successfully Connected to Node Manager.

NOTE
By default, the Node Manager automatically restarts Managed Server
instances that were directly or otherwise killed.

Once you’ve connected to the Node Manager through WLST, use the nmStart command to
start the Admin Server (MedRecServer for the medrec domain) with the Node Manager:

wls:/nm/medrec> nmStart('examplesServer')
Starting server examplesServer ...
Successfully started server examplesServer ...

Check the status of the MedRecServer with the nmServerStatus command:

wls:/nm/medrec> nmServerStatus('examplesServer')
RUNNING
:

Chapter 2: Administering WebLogic Server Instances 105

You can execute the nmKill command to kill either an Admin Server or a Managed Server, as
shown here:

wls:/nm/medrec> nmKill('examplesServer')
Killing server examplesServer ...
Successfully killed server examplesServer ...

Note that you must first run the nmEnroll command before running the nmConnect
command. The nmEnroll command ensures that each Managed Server in the domain has the
correct Node Manager credentials. You must first connect to a running WebLogic Server before
you can execute the nmEnroll command, as shown by this error message:

wls:/offline> nmEnroll('C:/MyOra/Middleware/wlserver_12.1/common/nodemanager')
You will need to be connected to a running server to execute this command

First, connect to the Admin Server with the connect command, and then execute the nmEnroll
command:

wls:/offline> connect('weblogic','welcome1','t3://localhost:7001')
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'examplesServer' that belongs to domain
'wl_server'.
Warning: An insecure protocol was used to connect to the server. To ensure on-the-
wire security, the SSL port or Admin port should be used instead.
wls:/wl_server/serverConfig>
nmEnroll('C:\Oracle\Middleware\Oracle_Home\wl_server\common\nodemanager')
Enrolling this machine with the domain directory at
C:\Oracle\Middleware\Oracle_Home\wl_server\commonnodemanager ...
Successfully enrolled this machine with the domain directory at
C:\Oracle\Middleware\Oracle_Home\wlserver\common\nodemanager.
wls:/wl_server/serverConfig>

You need to run the nmEnroll command only once for each domain. Note that you must run
the nmEnroll command on each machine where the Node Manager runs, and you must also run it
for each domain running on a machine. Once you run the nmEnroll command on a machine, it
creates the nm_password.properties file with the Node Manager username and password. This file
exists under the domain’s DOMAIN_HOME\config\nodemanager directory. These credentials are
not the same as those for the Admin Server. The Node Manager credentials are used only to
authenticate connections between the Node Manager and its clients, such as the Admin Server.
There is a separate nm_password.properties file for each machine, but the credentials can be
different on each machine. Once the nm_password.properties file is created, you can modify the
Node Manager credentials from the Administration Console. You can also edit the credentials
manually in the file, but make sure you restart the Node Manager after you do so.

The Node Manager can use its own properties set in the nodemanager.properties file to start a
Managed Server. These properties are specified in the server startup.properties file in the DOMAIN_
HOME\servers\<server_name>\data\nodemanager directory. The file contains several properties
that enable you to configure the Node Manager to restart automatically failed Managed Servers:

 � RestartMax Sets the maximum number of times the Node Manager attempts to restart a
server

 � RestartDelaySeconds Sets the interval between restart attempts

106 Oracle WebLogic Server 12c Administration Handbook

 � AutoRestart Specifies whether the Node Manager can automatically restart the server
when the server fails

 � AutoKillIfFailed Specifies whether the Node Manager should kill the server if it shows a
FAILED health status

However, to ensure that servers start reliably, you should specify the startup arguments
for Managed Servers in the Administration Console by going to the Servers | <Managed
Server> | Configuration | Server Start page for each of the Managed Servers in your
domain.

You can also start a Managed Server without an Admin Server using WLST and the Node
Manager together. Once you connect to the Node Manager from WLST, issue the nmStart
command and specify the name of the Managed Server you want to start, as shown here:

wls:/nm/wl_server> nmStart('ManagedServer1')

As you can see, you use the same command, nmStart, to start either the Admin Server or a
Managed Server. You can use the nmStart command when you want to restart a Managed Server
in the absence of a running Admin Server. You can kill a server with the nmKill command when
you’re connected to the Node Manager from WLST.

Using WLST and the Node Manager with the Admin Server
When you use WLST as a client of the Admin Server, the Node Manager must be running, but you
don’t connect WLST to the Node Manager with the nmConnect command, as is the case when
WLST runs as a client of the Node Manager. Instead, you connect WLST to the Admin Server
instance and the Admin Server will contact the Node Manager on behalf of WLST. Here are the
steps to start a Managed Server with the Node Manager:

 1. Start WLST:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\medrec>java weblogic.WLST

 2. Start the Node Manager:

wls:/offline> startNodeManager()
Launching NodeManager ...

 3. Start the Admin Server for the domain:

wls:/offline> startServer('MedRecServer','medrec','t3://localhost:7011',
'weblogic','welcome1','C:\Oracle\Middleware\Oracle_Home\user_projects
/domains/medrec','true',60000,'false')
Starting weblogic server ...

 4. Connect WLST to the Admin Server:

wls:/offline> connect("weblogic",'welcome1',"t3://localhost:7011")
Connecting to t3://localhost:7011 with userid weblogic ...
Successfully connected to Admin Server 'MedRecServer' that belongs to domain
'medrec'.

Chapter 2: Administering WebLogic Server Instances 107

 Note that you can also connect by issuing the connect command without any arguments.
You’ll be prompted for the credentials and the URL for the Admin Server you’re
connecting to:

wls:/offline> connect()
Please enter your username :weblogic
Please enter your password :
Please enter your server URL [t3://localhost:7001] :t3://localhost:7011
Connecting to t3://localhost:7011 with userid weblogic ...
Successfully connected to Admin Server 'MedRecServer' that belongs
to domain 'medrec-spring'.

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.

wls:/medrec-spring/serverConfig>

 Note that you must run WLST from the same domain as the one the Admin Server
belongs to.

 5. Start a Managed Server with the WLST start command:

wls:/medrec/serverConfig> start('ManagedServer1')

 The start command shown here starts the Managed Server named ManagedServer1.

You can specify four arguments with the start command: The type argument specifies the
type of server—the default value is server, so you don’t have to specify this when starting a
server. To start a cluster, you specify the value Cluster for the server argument, for example,
start(‘MyCluster’, ‘Cluster’). The optional url argument defaults to t3:\\localhost:7001, so you
must supply the correct listen address and listen port in your own case. The last argument,
block, which has a default value of true, specifies whether WLST should block user interaction
until the server is fully started.

Note that when you connect WLST to the Admin Server, WLST loses the connection to the
WebLogic server if you shut down the Admin Server:

wls:/medrec/serverConfig> WLST lost connection to the WebLogic Server that you
were connected to, this may happen if the server was shut down or partitioned.You
will have to re-connect to the server once the server is available.
Disconnected from weblogic server: AdminServer

Setting Up a WebLogic Server
Instance as a Windows Service
All the examples thus far have shown you how to start the WebLogic Server instances using
various methods so you can familiarize yourself with the startup options. More realistically,
however, you probably want to set up the WebLogic Server instances as a Windows service so the
servers can automatically start up following a reboot of the machine hosting the WebLogic Servers.

108 Oracle WebLogic Server 12c Administration Handbook

Setting Up the Service
Oracle WebLogic Server provides a WebLogic Windows service program called beasvc.exe. You
can execute this program from within a script or call on the master script provided by Oracle for
this purpose. Called the installSvc.cmd script, it is a wrapper for beasvc.exe. Follow these steps to
set up a WebLogic Server instances as a Windows service. This example shows how to start an
Admin Server as a Windows service.

 1. Change to the WL_HOME\server\bin directory.

 2. Create a text file with the following contents and name it createSvc.cmd:

echo off
SETLOCAL
set DOMAIN_NAME=medrec
set USERDOMAIN_HOME=C:\Oracle\Middleware\Oracle_Home\user_projects\domains\medrec
set SERVER_NAME=MedRecServer
set PRODUCTION_MODE=false
set JAVA_VENDOR=sun
set JAVA_HOME=C:\Oracle\Middleware\jdk160_21
set MEM_ARGS=-Xms1024m -Xmx1024m
call """C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin\installSvc.cmd
ENDLOCAL

NOTE:
Once you create a Windows service, WebLogic Server adds a registry
entry in the Windows Registry under HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services, with the server name and startup
options.

 3. Execute the createSvc.cmd script from the WL_HOME\server\bin directory. You should
see the following message, indicating the service was successfully created:

$ beasvc medrec_ MedRecServer installed.

 4. Go to Administrative Services | Services after opening the Windows Control Panel.
You’ll see a new service whose name starts with beasvc (in this case, the name will be
beasvc medrec_medrecserver). Right-click this service, start it, and configure it to run
automatically after a server boot.

The following options in the automatic service creation script you created are purely
optional:

 � JAVA_OPTIONS Sets Java options to the Java arguments you specify for the JVM

 � JAVA_VM Sets the Java Virtual Machine you want to use

 � MEM_ARGS Sets the minimum and maximum memory arguments you want to pass to
the JVM, for example, MEM_ARGS=-Xms1024m -Xmx1024m

Chapter 2: Administering WebLogic Server Instances 109

Setting Up the Managed Server as a Windows Service
The example in the previous section shows how to set up the Admin Server as a Windows service.
You can set up a Windows service for all your Managed Servers as well. However, because you
want your Managed Servers to start after the Admin Server (so they can contact the Admin Server
to retrieve their configuration data), you must add the following arguments to the line that invokes
the beasvc utility in the installSvc.cmd script (:”%WL_HOME%\server\bin\beasvc” …):

-depend: "beasvc medrec_MedRecServer"
-delay: "1600"

The argument -depend refers to the Admin Server that starts before the Managed Server. The
-delay argument specifies the amount of time (in milliseconds) that the Admin Server has to
complete its startup cycle. In this case, after adding our two arguments, beasvc will be invoked in
the following manner by the installSvc.cmd master script:

"%WL_HOME%\server\bin\beasvc" -install
-svcname:"beasvc %DOMAIN_NAME%_%SERVER_NAME%" / * points to the
Managed Server you are starting with this script
-depend: "beasvc medrec_MedRecServer" /* points to the domain Admin Server
-delay: "1600"

Remember that your own script, createSvc.cmd, calls the installSvc.cmd script at the very end of
the script.

The master script provided by Oracle, installSvc.cmd in the WL_HOME\server\bin\ directory,
is similar to the script I used to create a Windows service. Don’t change the master script itself—
instead, write a simple custom script such as the one shown in the preceding example. The only
time you may want to edit the master script is if you’re using a nondefault JVM. In such a case,
you must edit the installSvc.cmd script by setting values for the JAVA_HOME and JAVA_VENDOR
variables to point to the nondefault JVM.

Remember that the previous example set up a service for an Admin Server. You set up a
Windows service for a Managed Server in the same fashion, but with an extra argument to specify
the hostname and listen port for the Admin Server, as shown here:

set JAVA_OPTIONS=-Dweblogic.management.server=http://adminserver:7501

Starting and Stopping the Service
Once you create a Windows service for the server startup, the servers will start automatically
following a restart of the Windows server. You can also stop and restart the service from the
Services Control Panel, which you can access by selecting Start | Settings | Control Panel | Services.
Locate the Windows service name, which takes the format beasvc <domain name>_<Managed
Server name> (for example, beasvc medrec_MedRecServer), and start or stop the service.

Changing Startup Credentials for a Service
When installing a Windows service, you can either configure things such that the service retrieves
usernames and passwords from the boot.properties file or from the Windows registry. In my
example, WebLogic Server encrypts the credentials in the Windows registry. If you need to change
these credentials, you must first uninstall the service (see the following section). Once you do this,

110 Oracle WebLogic Server 12c Administration Handbook

edit the createSvc.cmd script and reset the WLS_USER and WLS_PW directives. Finally, create a
new service by executing the createSvc.cmd script.

To avoid having to remove and reinstall a Windows service each time you need to change
some credentials, use a boot identity file. This lets you change login credentials and bypass the
username/password prompts.

Removing a Service
You can remove a Windows service by calling the uninstallSvc.cmd script, as shown here:

cd C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin
set DOMAIN_NAME=medrec
set SERVER_NAME=MedRecServer
call C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin\uninstallSvc.cmd

You should see a message indicating that the service was successfully removed.

Dealing with WebLogic Server Failures
As with any type of server instance, the Oracle WebLogic Server is susceptible to failures, whether
due to a power failure or a faulty hardware component. Even if you’re running a clustered
environment for high availability, you must expect to deal with the occasional WebLogic Server
failure. WebLogic Server does offer you several ways to monitor application workload and avoid
failures due to an overload caused by either an unexpected spike in web traffic or maxed-out
resources. The built-in overload protection capabilities are explained in Chapter 5. Chapter 7
discusses how to fail over to another server in a cluster following a server failure without
interrupting your service levels. This section shows you how to deal with the occasional failure of
either the Admin Server or the Management Server.

A note on how to interpret server exit codes when trying to restart a failed or stopped server:
When you terminate a server process (Managed or Admin Server), the process terminates with an
exit code of zero. This happens even if you shut down the server forcefully. Sometimes, the server
shuts itself down when it detects stuck threads or a low memory situation, and it will do so with
an exit code greater than 0. You can safely restart the server following such a shutdown. If the
server fails to start normally by not transitioning to the starting state, it issues a negative exit code.
In this case, you must first fix the problem that prevented the server from starting before trying to
restart it.

Note that an Admin Server automatically detects any running Managed Servers and, thus,
following the failure of the Admin Server, you don’t have to reboot the running Managed Servers;
they can happily continue running until you restart the Admin Server, at which time the Admin
Server will resume managing the state of the Managed Servers under the domain that it was
managing prior to its failure (or shutdown). When it restarts, the Admin Server waits for the Managed
Servers to connect again.

Starting a Failed Admin Server
The procedures for starting a failed Admin Server depend on whether you can reuse the same IP
address as that of the failed server or not. The following sections explain how to deal with both
scenarios—when you can reuse the IP address and when you can’t do so. Regardless of the
scenario, the procedure to restart a failed Admin Server is fairly easy.

Chapter 2: Administering WebLogic Server Instances 111

Using the Same IP Address
If the original machine on which the failed Admin Server ran is still available, all you have to do is
restart the Admin Server as usual.

Using a Different IP Address
Sometimes you may not be able to reuse the same IP address following an Admin Server failure. If
you can’t use the original server, you must first install WebLogic Server on a different machine.
Once the installation completes, restore all the application files from a backup or by accessing
storage mounted on a Network File System (NFS). Make sure all the configuration files as well as
the application files are placed in the same directories that they occupied on the original machine.

Restarting a failed Admin Server on a different machine with a new IP address is just about as
easy as when you can reuse the IP address—it requires just one additional step. Perform the same
procedures, as in the case where you reuse the IP address, and update the domain’s config.xml
file with the new IP address. You can do this manually or use WLST offline.

Here’s the config.xml server attribute that you need to change:

<server>
 <name>AdminServer</name>
…
 <listen-address>192.168.0.20</listen-address>
</server>

The listen-address parameter may also be a hostname reference. You can then restart the Admin
Server as usual.

Moving an Access or Network Tier Server to a Different Machine
If you have to restart a server instance on a different machine, you can do so easily as long as you
don’t change your domain configuration. If the network configuration is modified on the new
machine, you must update your domain network configuration through the Administration
Console before restarting the server, as shown here:

 1. Start the configuration session by clicking the Lock & Edit button.

 2. In the left-hand pane, select Environment | Servers.

 3. Choose the name of the server in the right-hand pane.

 4. Modify the listen address and port settings using the Configuration | General tab.

 5. Modify any network channels that you may have configured, from the same location.

 6. Activate your changes by clicking the Activate Changes button.

You can now restart the Managed Servers on the new servers by following the normal steps in
restarting a failed access or network tier server.

How the Managed Servers Handle an Admin Server Failure
When the Admin Server fails, Managed Servers will continue to run without any problem,
servicing the deployed applications as usual. The Managed Servers will frequently attempt to
reconnect to the Admin Server. These connection attempts are made simultaneously on all the
URLs available to the Managed Servers, thus allowing themselves to connect to the Admin Server
regardless of which URL the Admin Server uses to come back online again. Note that if the Admin

112 Oracle WebLogic Server 12c Administration Handbook

Server is restarted with a different IP address, a Managed Server may or may not be able to
connect to it. The Managed Server can connect to the Admin Server successfully only if you’ve
specified a DNS name for the Admin Server URL, which enables the mapping of this URL to more
than one IP address. You must provide this DNS name when starting the Managed Server, as
shown here:

-Dweblogic.management.server=protocol://wlsadminserver:port
or
startManagedWebLogic.cmd managed_server_name protocol://wlsadminserver:port

Just how frequently does the Managed Server attempt to reconnect to a failed Admin Server?
This depends on the setting of the AdminReconnectIntervalSeconds attribute, which is set to 10
seconds by default.

NOTE
You handle Managed Server failures the same way in clustered
environments as you do in nonclustered environments.

Managed Server Independence (MSI) Mode
If a Managed Server goes down while the Admin Server is running, restarting it after fixing the
problem that caused it to shut down is easy. You can use any of the server startup methods I
discussed earlier to start the Managed Server. If the Admin Server is also down, however, what
happens to the Managed Server? You’ll be happy to learn that you can restart a failed Managed
Server, regardless of the status of the Admin Server. When you start or restart a failed Managed
Server in the absence of a running Admin Server instance, you are running the Managed Server in
the Managed Server Independence (MSI) mode. MSI helps you avoid a single point of failure for
the Admin Server, something that is critical in a production environment.

When a Managed Server starts in the MSI mode, it reads its configuration and security
information directly, instead of contacting the Admin Server first. It reads the config.xml file from
its own local config directory and the security-related files, SerializedSystemIni.dat and boot
.properties, from its security directory. In fact, you can even copy these files from the Admin
Server directories to the Managed Server directories if necessary. If the Managed Server is running
on the same machine as the Admin Server, the two servers will share the same root directory,
which, by default, is the directory from where the startup script for the server is executed. In such
a case, the Managed Server will, of course, easily find the necessary files to start in the MSI mode.
If not, you need to make those files available to the Managed Server by copying them from a
backup and placing them in the root directory.

NOTE
Managed Server Independence (MSI) Mode is enabled by default. You
can disable it from the Administration Console.

Once you select the Server for which you want to do this from the left-hand pane, go to the
Configuration | Tuning tab in the right-hand pane. Here, click Advanced, and you can deselect the
Managed Server Independence Enabled option from under the Advanced Options list. When you
opt out of the default MSI behavior, even when all the necessary configuration or security files are

Chapter 2: Administering WebLogic Server Instances 113

available to it, a Managed Server can’t start if the Admin Server is down. Once a Managed Server
starts in the MSI mode, it will run in that mode until it’s successful in connecting to a running
Admin Server again.

Although you can service all deployed applications with the Managed Servers running in MSI
mode, you must be aware of a few things:

 � You can’t change the configuration of the Managed Servers once you start them in MSI
mode.

 � The Managed Servers deploy applications from their staging directories.

 � You can’t use the Node Manager to start a Managed Server running in MSI mode—you
must manually start the Managed Server on the machine that hosts it.

NOTE
You can start a Managed Server in MSI mode only if it has been
started at least once by the Admin Server. The very first time you start
a Managed Server, it must be able to contact the Admin Server.

 � The Managed Server only writes log messages to their local files and not to the domain
log file because there’s no Admin Server to write the forwarded messages from the
Managed Servers to the domain log file.

Deleting Servers
On occasion, you may need to delete an Admin Server and replace it with a different Admin
Server with a different name. You can do this using the Administration Console and WLST
together, as I explain here:

 1. Click Lock & Edit in the Administration Console’s Change Center.

 2. Shut down all Managed Servers. The Admin Server must be running.

 3. Invoke WLST:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\medrec>java weblogic.WLST

 4. Run the following series of commands:

connect()
edit()
startEdit()
cmo.setAdminServerName("newAdminServer")
activate()

shutdown()
exit()

 5. Copy the Admin Server data to the new Admin Server. For example, if the original Admin
Server was called MedRecServer and you renamed it to newAdminServer, copy the
contents from DOMAIN_HOME\servers\MedRecServer to DOMAIN_HOME\servers\
newAdminServer.

114 Oracle WebLogic Server 12c Administration Handbook

 6. Start the new Admin Server after first setting its new name.

set SERVER_NAME=newAdminServer
startWebLogic.cmd

 If you run into startup errors, confirm that there are no references to MedRecServer in
config.xml or setDomainEnv.sh.

 7. Start the Administration Console. The Servers page will now show the name of the new
Admin Server.

Summary
This chapter introduced you to the management of WebLogic Server instances through WLST and
the Node Manager. You also learned about the various server run states and how to transition
through them. The next chapter shows you how to create and configure a WebLogic domain.

CHAPTER
3

Creating and Configuring
WebLogic Server Domains

116 Oracle WebLogic Server 12c Administration Handbook

The first two chapters of this book provided you with an introduction to managing server
cycles using various tools such as the Administration Console, WLST, and the Node
Manager. This chapter explores the concept of a WebLogic Server domain and shows you

how to create domains using various methods. The chapter also explains, in detail, key domain
configuration topics such as how to configure virtual hosts and how to configure a persistent
WebLogic store for saving information such as diagnostic data. The chapter also discusses how to
safeguard critical domain data by backing up the data. In addition, the chapter explains how to
use WebLogic Server as a web server. Oracle WebLogic Server is a huge topic that really includes
not only the configuration of the Admin and Managed Servers and domains but also various
services such as JDBC and JMS. WebLogic Server’s immense functionality and wide array of
supported features mean that you need to understand how to configure a very large set of services
and features. Thus, although formally this is the chapter where I discuss WebLogic Server domain
configuration, you really should consider the entire book to be about Oracle WebLogic Server
configuration.

Structure of a WebLogic Server Domain
Understanding a domain lies at the heart of mastering the use of WebLogic Server. WebLogic
Server uses the concept of domains to organize the WebLogic Server instances into a coherent
group, configure the environment, deploy applications, and implement security across the entire
environment. In a typical enterprise-wide deployment of WebLogic Server, you’ll have multiple
server instances on various hosts, each possibly running on a different network and with a
different configuration. Your domains may have multiple clusters as well as independent Managed
Servers. The hosts may belong to various operating systems, and the applications may have to
traverse diverse networks. Although the Java EE specification provides standard enterprise APIs for
architecting applications, it lets each application server vendor (such as Oracle, for example)
implement its application deployment methods, high availability, failover features, and many
other administrative procedures using proprietary methods. In fact, these value-added capabilities
are how vendors distinguish themselves, and WebLogic Server has the richest set of capabilities
among all application servers.

An Oracle WebLogic Server domain is a set of one or more Oracle WebLogic Server instances
(and other resources) that work together to serve web applications. Each domain must have a
WebLogic Server instance called the Administration Server, or the Admin Server, as it’s usually
called. In addition to the Admin Server, you can have one or more Managed Servers in a domain.
The Admin Server is really meant for configuration purposes only; it is the Managed Servers that
host and run the various web applications. In a development environment, you can keep things
simple by having just one server instance in your WebLogic Server domain—the mandatory
Admin Server, on which you can deploy your applications. In this case, the single server instance
will perform the management and configuration duties, as well as host all the applications. Of
course, in a production setup, you must run with multiple management servers, whose job it’ll be
to host and run the web applications.

A domain is a grouping of instances, and you can have different groupings of instances
depending on the architecture you choose to implement. Just a reminder: WebLogic Server refers
to a running Admin or Managed Server as an instance because that’s really what the servers are.
Each server (Admin or Managed Server) is an instance of the WebLogic Server and runs in its own
Java Virtual Machine (JVM) and with its own configuration.

Chapter 3: Creating and Configuring WebLogic Server Domains 117

NOTE
If you have a single WebLogic Server instance in a domain, that instance
will perform double duty as both an Admin Server and a Managed
Server—that is, you perform all work, including domain configuration
and hosting all of your applications, through this single server.

A domain is a logical construct, consisting of a set of servers, network and application
resources, and related services, as well as security policies. The Admin Server is in charge of the
entire domain configuration, and you perform all administrative tasks for that domain through this
server. Understanding that a domain is not limited to a single physical server is important; in
production environments, domains are usually spread across multiple physical servers. A domain
can also contain one or more clusters, and you can run both clusters of servers and independent
servers as part of the same domain.

All of the following configurations are valid WebLogic Server domains:

 � MyDomain1 Admin Server plus three Managed Servers, each running on a separate
Windows or UNIX server

 � MyDomain2 Admin Server plus one cluster consisting of three Managed Servers, with
the three members of the cluster running on three different Windows or UNIX servers

 � MyDomain3 Admin Server plus three Managed Servers, all running on the same
Windows or UNIX Server

 � MyDomain4 Admin Server plus three Managed Servers running as part of a cluster,
along with two independent (noncluster) Managed Servers

To aid your understanding of WebLogic Server domains, I’ll review the role of a WebLogic
instance, an Admin Server, a Managed Server, and a cluster in the following sections.

WebLogic Server Instances
Each WebLogic Server domain has a single server instance that serves as the Admin Server. The
Admin Server maintains the domain’s configuration information. If you’re working in a development
environment, you don’t need any other server instances besides the Admin Server because you can
deploy all applications on the Admin Server itself. Although you can do the same in a production
environment (that is, use just one Admin Server and nothing else), Oracle strongly recommends that
you use one or more Managed Servers, running on their own or as part of a cluster, to deploy your
applications. Thus, the Admin Server is dedicated to performing configuration and administrative
tasks only and not any deployment functions. You use the Admin Server as the central location from
which you configure and manage all the remaining resources in a domain. Managed Servers are the
actual workhorses in any domain because these servers host applications, web services, and the
necessary resources such as JDBC connection pools to support the applications and web services.

When you create a domain, you automatically have an Admin Server, and when you’re working
in a development environment, you can start deploying your Java EE applications on that single
Admin Server. Remember that although you deploy applications on Managed Servers, you can make
any configuration- or deployment-related actions only through the Admin Server. Each WebLogic
Server domain has its own Admin Server. Thus, if you have multiple domains in your environment, in
order to connect to the Administration Console for a domain, you must use a different port number
for each of the domains because the different Admin Servers can’t use the same port number.

118 Oracle WebLogic Server 12c Administration Handbook

NOTE
Oracle recommends that you create a Node Manager service on each
of the machines that hosts a Managed Server in your environment.
The Node Manager helps administer Managed Servers on remote
machines and can automatically start failed servers. You don’t need
the Node Manager on a machine that runs the Admin Server unless
that server also happens to run one or more Managed Servers.

WebLogic Server Clusters
A WebLogic Server cluster, as explained in Chapter 1, is a set of two or more Managed Servers running
as a single unit to provide scalability and high availability for your applications. Because a cluster has
multiple Managed Servers, the failure of a single Managed Server belonging to a cluster won’t cause
any disruption because the other members of the cluster will continue to serve the web applications
without any problem. In addition to failover, clusters also provide load-balancing capabilities.

Just as an Oracle Real Application Clusters (RAC) setup provides various benefits, such as high
availability for the Oracle Database, a WebLogic Server cluster provides the following key benefits:

 � Scalability by taking advantage of parallel processing of your needs

 � Reliability through replication

 � Availability through redundancy

WebLogic clusters provide application failover by replicating session state and maintaining
copies of objects on all the cluster members. In addition, WebLogic Server provides for the
automatic migration of services such as JMS services and JTA Transaction Recovery Services, which
must always be available. Migration can be configured through the migration of an entire server
(called whole server migration) or by migrating individual services (called service-level migration).

Domain Resources
Configuring a WebLogic Server domain includes configuring various resources for Managed
Servers that are part of the domain, as well as configuring several services that support the
applications you deploy on the Managed Servers. Managed Server resources include the machine
definitions (see Chapter 2), network channels (see Chapter 4), and virtual hosting (see the section
“Configuring Virtual Hosts” later in this chapter). In addition to these server resources, web
applications may use some or all of the following resources and services:

 � Security providers

 � Resource adapters

 � Diagnostic and monitoring services

 � JDBC data sources

 � Database or disk-based file persistent stores

 � Work managers

In addition to the servers, the definition of a domain includes all the Java EE services and
resources to support the applications and services hosted by the Managed Servers. The domain-
wide resources include the machines that host the various servers, as well as any network
channels you may configure. In addition, each domain’s Managed Servers host other resources

Chapter 3: Creating and Configuring WebLogic Server Domains 119

and services, which may be deployed to either individual servers or an entire cluster. These
resources that you can assign to a server or cluster include all the application components, of
course, such as EJBs, enterprise applications, and Java EE connectors. In addition, they include the
JDBC connection pools, JMS servers, and any virtual hosts you may configure.

Domain Restrictions
The following restrictions apply to any WebLogic Server domain you may create:

 � You can’t name your domain “weblogic” because that name is reserved.

 � You can’t name a server, machine, cluster, virtual host, or any other resource the same
name as that of the domain to which it belongs. These are targetable entities, and sharing
names would lead to ambiguity.

 � When naming an Admin or Managed Server, remember that its name must be unique in
each WebLogic Server deployment, even if the server belongs to different domains.

 � Each domain must have its own Admin Server.

 � A cluster has a one-to-one relationship with a domain—it can’t straddle multiple domains.

 � You can’t share a configured resource such as a JDBC connection pool among domains—
each domain must have a complete set of its own resources to support applications.

Domain Directories
When you create a domain, WebLogic Server will create a new domain directory under the WL_
HOME\user_projects\domains directory. Of course, this is the default behavior, which you can
change by specifying a different directory during the domain creation process. For example, if you
create a new domain and name it MyDomain, WebLogic Server will create a new directory
named MyDomain, as shown here:

WL_HOME\user_projects\domains\MyDomain

The directory MyDomain, which contains data and information pertaining to the domain
MyDomain, is called the domain directory.

Although the installer creates the sample domains in the installation directory, the
recommended practice is always to select a different location for a domain directory, a location
that’s not under the installation directory. By doing this, you avoid mixing user data with the
installed products, which is always a bad practice. Selecting a directory that is not in the
installation directory makes backing up these directories and avoiding collisions with other users
on the same machine easier. Creating domains under the installation directory would also make it
difficult to migrate forward your domains as you install later versions of the product.

Following is a brief summary of a domain directory’s contents, which are stored in various
subfolders.

The Domain Root Directory
Each WebLogic Server instance, including the Admin Server, stores a copy of the domain’s
configuration files in a root directory. For the Admin Server, the domain directory always serves as
the root directory as well. You can also let the Managed Servers use the domain directory as their
root directory (the default), or you can specify a different root directory for the Managed Server
instances. If your Admin Server and Managed Servers run on different machines, you’ll have to

120 Oracle WebLogic Server 12c Administration Handbook

create a root directory for the Managed Servers on the machines where those servers are running.
When the Managed Server starts, it writes the configuration information from the domain
directory to its own root directory and will continue to write run-time data to the root directory
throughout the life of the Managed Server.

A domain can have multiple root directories, one for each of the Managed Servers, or you can
choose to use the same root directory for multiple servers. You can configure several WebLogic
Server instances, running on different server machines, to use the same root directory if you wish.
By default, WebLogic Server looks for config.xml in the config directory from which you started the
server. If config.xml is in this directory, the server deems it the root directory. You can ask a server to
use a different directory as the root directory by using a command-line argument, as shown here:

java -Dweblogic.RootDirectory=C:\Oracle\Middleware\wlserver_12.1\user_projects
\domains\MyDomain weblogic.Server

If you don’t supply a root directory for the Node Manager, it creates the following root
directory on each server where it runs:

WL_HOME\common\nodemanager

You can choose to specify a root directory for the Node Manager by navigating to the Environment
| Servers | <server_name> | Configuration | Server Start page in the Administration Console.

The root directory is where a server stores its working copy of the domain configuration files
and run-time data. The Admin Server also stores security resources such as the default embedded
Lightweight Directory Access Protocol (LDAP) server under the root directory. The Admin Server
uses the domain directory as its root directory and so does the Managed Server, but you can
assign a different directory as the root directory for the Managed Server if you wish. If you start a
Managed Server from a machine that doesn’t share a file system with the Admin Server’s host, the
Managed Server will create a root directory on the server it runs by copying the data from the
Admin Server’s host machine.

The location of the Managed Server’s root directory is determined by whether you started the
server with the Node Manager. If you used the Node Manager to start the Managed Server, the server
root directory will be on the same machine where the Node Manager process runs. The server will
use any root directory you might have specified in the Administration Console in the Environment |
Servers | <server-name> | Configuration | Server Start page as the server’s root directory. If no
directory was specified as a root directory in the Administration Console, the server’s root directory
will be WL_HOME\common\nodemanager. If you’ve started the Managed Server directly through a
script (instead of through the Node Manager), unless you specify the root directory by specifying the
Dweblogic.RootDirectory=path option in your startup command, the Managed Server’s root
directory will be the current or working directory from which you started the server.

TIP
Oracle recommends that you do not use the WebLogic Server
installation directory as the server root directory.

Organization of a Domain Directory’s Contents
By default, WebLogic Server creates a domain directory for each domain you create, under the
MW_HOME\user_projects\domains directory. Under each domain’s home directory (domain

Chapter 3: Creating and Configuring WebLogic Server Domains 121

directory), you’ll find several folders, the most important of which are briefly described here.
Figure 3-1 shows the domain files under the domain directory on a Windows server.

 � autodeploy In a development environment, the server will automatically deploy any
applications or modules you place here. You must run the server in development mode
for it to take advantage of the automatic deployment feature.

 � bin Contains the start and stop scripts, such as startWebLogic.cmd (and startWebLogic.sh).

 � common Contains common files.

 � config Contains the key domain configuration file, config.xml. Under the \config
directory, you’ll also find various folders such as security, which contains a security
provider configuration extension for each of the security providers in the domain’s current
realm. The \diagnostics subdirectory contains the system modules for instrumentation
in the WebLogic Diagnostic Framework (WLDF). Similarly, the JDBC folder contains
global JDBC system modules, and the JMS folder contains JMS system modules. The
\deployment subdirectory under the config directory serves as the staging area for
applications deployed in the “staging” mode (see Chapter 8). You shouldn’t directly
handle the applications in this subdirectory—it is meant for the WebLogic deployment
software. The startup directory contains system modules with startup plans, which are
used to generate shell scripts that can be run during the server startup process.

 � console-ext Contains any Administration Console extensions you’ve created.

FIGURE 3-1. A domain’s directory structure

122 Oracle WebLogic Server 12c Administration Handbook

 � configArchive Contains versioned jar files that contain a domain’s previous
configuration. Each time you activate changes, the server changes the pending changes
in a version jar file named config.jar#n, where n is an increasing number. Once the
default number of maximum versions is reached, the server deletes the oldest versioned
archive.

 � init-info Contains the WebLogic domain provisioning files; this is a read-only directory.

 � lib Contains the jar files, which you place in this directory so they are available to all
applications running on the domain’s server instances. Note that jar files placed here are
not distributed to Managed Servers in the same way that applications (WAR, EAR, and
EJB JAR applications) are. Either the \lib directory must be on a shared file system, or the
contents must be copied to each “machine.”

 � pending Temporarily contains any configuration files involved in a configuration change
that has been made but not activated yet. Once you activate the changes, the “pending”
configuration files in this directory are automatically removed by WebLogic. This only
applies when the server is in production mode.

 � security Holds security-related files such as SerializedSystemIni.dat.

 � servers Contains a separate subdirectory for each of the WebLogic instances in
your domain, including both Admin and Managed Servers. For example, if you wish
to examine the logs of the Managed Server My_ManagedServer1, you go to the
DOMAIN_HOME\servers\My_ManagedServer1\logs directory and review the file My_
ManagedServer1.log. In the DOMAIN_HOME\servers\<AdminServer_name>\security
directory, you’ll find the server’s boot.properties file. In the DOMAIN_HOME\servers\
My_ManagedServer1\cache\EJBCompilerCache directory, you’ll find the compiled EJBs
hosted by that server. The DOMAIN_HOME\servers\My_ManagedServer1\data\ldap
directory stores the WebLogic Server’s embedded LDAP database, and the DOMAIN_
HOME\servers\My_ManagedServer1\data\store directory holds the default persistent
store for the Managed Server.

Note that the autodeploy, configArchive, console-ext, and pending directories are only
present for an Admin Server and not for Managed Servers.

Understanding Domain Configuration Changes
The config.xml file is the key domain configuration file for WebLogic Server. The following section
explains the nature of the config.xml file, as well as how to modify it by making configuration
changes through the Administration Console and WLST. This section also introduces you to the
run-time and configuration management beans (MBeans) that enable the management of domain
configuration. You’ll also learn how to record audit information relating to configuration changes.

The Domain Configuration File: config.xml
Each WebLogic Server domain contains a central configuration file called config.xml, which is
stored in the DOMAIN_HOME\config directory. Both the Admin Server and the Managed
Servers derive their run-time configuration information from the config.xml file. In addition to
the config.xml file, there are subsidiary configuration files. Note that each server in a domain

Chapter 3: Creating and Configuring WebLogic Server Domains 123

maintains its own copy of the domain configuration documents. Here are the contents of a
typical config.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
- <domain xsi:schemaLocation="http://xmlns.oracle.com/weblogic/security/wls
…
<name>my_domain</name>
 <domain-version>12.1.1.0</domain-version>
- <security-configuration
xmlns:xacml="http://xmlns.oracle.com/weblogic/security/xacml"
xmlns:pas="http://xmlns.oracle.com/weblogic/security/providers/passwordvalidator">
 <name>my_domain</name>
- <realm>
 <sec:authentication-provider xsi:type="wls:default-authenticatorType" />
- <sec:authentication-provider xsi:type="wls:default-identity-asserterType">
 <sec:active-type>AuthenticatedUser</sec:active-type>
 </sec:authentication-provider>
 <sec:role-mapper xsi:type="xacml:xacml-role-mapperType" />
 <sec:authorizer xsi:type="xacml:xacml-authorizerType" />
 <sec:adjudicator xsi:type="wls:default-adjudicatorType" />
 <sec:credential-mapper xsi:type="wls:default-credential-mapperType" />
 <sec:cert-path-provider xsi:type="wls:web-logic-cert-path-providerType" />
 <sec:cert-path-builder>WebLogicCertPathProvider</sec:cert-path-builder>
 <sec:name>myrealm</sec:name>
- <sec:password-validator xsi:type="pas:system-password-validatorType">
 <sec:name>SystemPasswordValidator</sec:name>
 <pas:min-password-length>8</pas:min-password-length>
 <pas:min-numeric-or-special-characters>1</pas:min-numeric-or-special-characters>
 </sec:password-validator>
 </realm>
 <default-realm>myrealm</default-realm>
 <credential-
encrypted>{AES}oBM/cndX0/ik44E8rDaaNPF0GcoatNLs1T1rieIEZMtV1anGMpBFKeMX4MUyWn0tK/n
kW5iy7U8p9zGLzjzpRxkJcnUM7XmKFUYAWxRk7b0EXAve9TwqWuMndtB/erQe</credential-
encrypted>
 <node-manager-username>weblogic</node-manager-username>
 <node-manager-password-
encrypted>{AES}X2ThzZVpZwyqOrwPVKmY0Ffy9xbdDW+OO2Ry5D66/lw=</node-manager-
password-encrypted>
 </security-configuration>
- <server>
 <name>AdminServer</name>
 <machine>My_Machine_1</machine>
 <listen-address />
 </server>
- <server>
 <name>My_ManagedServer_1</name>
 <machine>My_Machine_1</machine>
 <listen-port>7003</listen-port>
 <listen-address />
 </server>

124 Oracle WebLogic Server 12c Administration Handbook

- <embedded-ldap>
 <name>my_domain</name>
 <credential-
encrypted>{AES}0kqK4xPk1ZPuIJ5Sa1azPEqAajquFwGFL1/xB7KLFLmPhf1QqFR3uacoLEC/pL6G<
/credential-encrypted>
 </embedded-ldap>
 <configuration-version>12.1.1.0</configuration-version>
- <machine>
 <name>My_Machine_1</name>
- <node-manager>
 <name>My_Machine_1</name>
 <listen-address>localhost</listen-address>
 </node-manager>
 </machine>
 <admin-server-name>AdminServer</admin-server-name>
 </domain>

The config.xml file contains information pertaining to two distinct types of configuration data—
environmental and application related. Environmental configuration information pertains to system
resources such as JDBC data sources and network addresses. It’s mostly the WebLogic Server system
administrator’s job to configure the system parameters using the Administration Console, WLST, or
JMX APIs. The responsibility for configuring the application-related configuration information lies
with the application developers. The way the application development team configures the
application components depends on the type of application component. For example, JMS and
JDBC modules are simply handed over to the WebLogic Server administrators for deployment. Other
types of components may contain optional programs and configuration information stored in the
form of Extensible Markup Language (XML)–based descriptors. When an application is deployed in a
domain, the application components are linked to the environment-related resource definitions.

JMS and JDBC are discussed in Chapter 4, so the discussion in the previous paragraph is
probably a bit too early—for now, the most important thing to remember is that two types of
entities are configured: (1) JVMs (server instances and the network endpoint information) and
(2) resources, which are either user applications or the system resources that they use. The latter of
these two mostly exist in external archives and descriptors, and the config.xml file describes how
the latter are mapped onto the former at run time.

Each Managed Server and Admin Server creates an in-memory representation of the
configuration information in the config.xml file. Each Managed Server also keeps a copy of the
domain’s config.xml file, but the Managed Server can’t modify the file. The Managed Servers also
keep a copy of the subsidiary configuration files. An interesting point to remember is that config.xml
is a sparse representation of a server’s configuration. It contains only those configured entities that
have been explicitly changed from their default values. This is important because it allows the
system to evolve in the future if defaults change. As a rule of thumb, you should configure explicitly
only what is absolutely necessary and leave the rest of the parameters at their default values.

Modifying Domain Configuration
You can use either the Administration Console or WLST offline commands to make configuration
changes to a WebLogic Server domain. Although the config.xml file can be modified through XSLT
or an XML parser application, you should instead use the Administration Console or WLST to
modify a domain’s configuration.

Chapter 3: Creating and Configuring WebLogic Server Domains 125

Before I delve into how to make configuration changes and how a domain handles configuration
changes, let’s review how WebLogic Server uses what are known as management beans, or MBeans.

How a Domain Manages Changes
WebLogic Server uses two types of MBeans: runtime MBeans and configuration MBeans.

 � Runtime MBeans These MBeans are read-only and are designed for monitoring a domain.
They contain the configuration created from the config.xml file by a server. The runtime
MBeans are held in memory for the use of the running WebLogic Server instance and contain
information about the run-time state of the server instance and its resources. The runtime
MBeans don’t persist this information in the config.xml file, however. When a server shuts
down, all run-time information about the server contained in the runtime MBeans is removed.

WebLogic Server uses different runtime MBeans to monitor various resources. For
example, it instantiates a ServerRuntimeBean when you start a WebLogic Server instance
and loads it with the current run-time information. Although the runtime MBeans are not
editable, a resource updates the data in these MBeans when the resources change their
state. Thus, runtime MBeans always hold information about the current state of the server
and all of its resources. Runtime MBeans have “operations” performed on them, and this
allows you to control the server’s running state. These run-time operations don’t result in
changing the configuration of the domain, though.

 � Configuration MBeans These are editable MBeans that enable you to modify the
configuration and persist them to the config.xml file. For domain configuration, it’s the
configuration MBeans that are crucial. These beans help configure both servers as well as all
the server resources because they represent the information stored in domain configuration
files such as the config.xml file. Note that the configuration MBeans hold configuration
information for only those services (JDBC, JMS, and so on) that you target at the system
level, but not those services you include as modules within individual applications. The
configuration MBeans provide an in-memory representation of a domain’s configuration.

Lifecycle of MBeans
WebLogic Server instantiates various runtime MBeans, such as the ServerRuntimeMBean, when
you start a new instance. Resources that use these MBeans will subsequently update them with
their current run status. The resources will also destroy the runtime MBeans relevant to their
operation when you shut down the server or the server crashes.

A configuration MBean follows a different lifecycle than that of a runtime MBean. The purpose
of a configuration MBean is to provide an in-memory copy of the domain configuration for each
server that runs in that domain. WebLogic Server uses a set of read-only and a set of editable
configuration MBeans. When you start a Managed Server, it first contacts the Admin Server to get all
the changes that may have occurred while the Managed Server was shut down. It updates its local
copies of the domain configuration files (including the config.xml file) with the new data. Once it
updates the configuration files, the server instantiates the configuration MBeans, which reflect the
data from the config.xml and other configuration files. For example, if the config.xml states that the
listen port is 7002, the configuration MBean will have the same value for its ListenPort attribute.

The Admin Server maintains two sets of configuration MBeans and configuration files. The first
set of configuration MBeans and configuration files are read-only and represent the current
configuration of the domain. The second set of MBeans is editable and relates to a corresponding
set of “pending” configuration files. The configuration MBeans that represent the configuration

126 Oracle WebLogic Server 12c Administration Handbook

information in the config.xml and other configuration files are read-only and thus not editable by
a JMX client. The Admin Server instantiates a set of editable configuration MBeans based on a set
of editable domain configuration files that it maintains in the config\pending directory. When JMX
clients make a configuration change, they actually modify these editable configuration MBeans.
Once a client modifies these editable configuration MBeans, the Admin Server copies the changes
to the pending configuration files in the DOMAIN_HOME\pending directory. Once you click the
Activate Changes button in the Change Center of the Administration Console, for example, the
configuration changes you made are made part of the read-only configuration files and MBeans.

NOTE
You can avoid the potential inconsistency in the configuration of
Managed Servers by disabling the Managed Server Independence (MSI)
mode feature.

One useful way to think of this is that the MBeans provide a JMX view onto the configuration
documents that are stored in the domain configuration. They are, in many ways, even more helpful,
as they provide a complete picture, including the default values that are being used at run time.

MBean Servers
MBean Servers act as containers for MBeans, and the Admin Server’s JVM maintains the following
three MBean Servers:

 � Domain Runtime MBean Server Contains MBeans for providing domain services such
as JDBC data sources and JMS servers, as well as application deployment. For example,
the ServerLifecycle and ClusterLifecycle MBeans allow you to monitor and manage
domain-wide entities.

 � Edit MBean Server Exposes the ConfigurationManagerMBean, which performs the
locking and activating of configuration changes through the Administration Console. The
Edit MBean Server hosts the pending configuration MBeans.

 � Runtime MBean Server Contains MBeans that help with the monitoring and controlling
of running server instances. In the current release, Oracle actually uses the “platform”
MBean Server provided by the JVM as a repository for the runtime MBeans. Because
Oracle uses the platform MBean Server, you can see the standard VM MBeans in the same
location, which makes programming monitoring functionality for a specific VM easier.

There’s a Runtime MBean Server running on every Managed Server as well.
JMX clients interface with the single-service MBean for each of the three servers to gain

access to the MBeans contained in each of the servers. For example, a JMX client uses the
RuntimeServiceMBean as an entry point MBean to access runtime MBeans and active
configuration MBeans. Similarly, the clients access the DomainRuntimeServiceMBean for
accessing the MBeans hosted by the Domain Runtime MBean Server for domain services. Finally,
the EditServiceMBean allows clients access to the editable configuration MBeans managed by the
Edit MBean Server. JMX clients are required to use the credentials of users defined in the domain’s
security realm in order to connect to any of the MBean Servers.

How MBeans Are Organized
WebLogic Server uses a hierarchical system to organize its MBeans inventory. At the top of the
MBean hierarchy is the DomainMBean, which is analogous to the root directory. Underneath this

Chapter 3: Creating and Configuring WebLogic Server Domains 127

root directory are MBean types such as the LogMBean, for example. You can think of MBean types
as subdirectories in the hierarchy of MBeans. You can have the domain as the type or a server as the
type. Under each MBean type, such as the ServerMBean, are MBean instances, which correlate to a
server instance such as an Admin Server or a Managed Server. Under each of the MBean instances
are the actual attributes and operations that you can view or modify with WLST commands. The
hierarchical system of organizing the MBeans means that you can use filesystem commands such as
ls, cd, and pwd to move around in the hierarchy, just as you would in a UNIX or Linux file system.
Note that configuration MBeans are a direct reflection of the XML hierarchy in the config.xml file.

Following is how the WebLogic Server organizes its MBeans in a hierarchy of
types=>instances=>attributes (and operations).

Domain MBean (root)
 |---MBean type (ServerMBean)
 |----MBean instance(My_AdminServer)
 |----MBean attributes and operations (StartupMode)
 |----MBean Instance(Managed_Server1)
 |----MBean attributes and operations (AutoRestart)

You, as an administrator, don’t have to know anything further about how to work with MBeans
and the MBean Servers directly. You can use a JMX client such as the Admin Server or WLST to edit
the configuration MBeans. When you make a configuration change through the Administration
Console, for example, the console, which is a JMX client, modifies the configuration MBeans and
instructs the Admin Server to save those changes. Note that the server doesn’t directly modify the
configuration file, such as the config.xml file—it saves the changes in the pending configuration
files for the domain, which are stored in the domain’s pending directory. The Administration
Console (or any other JMX client you may be using) will then update the read-only configuration
files and configuration MBeans for all servers as part of the change activation process.

Accessing MBeans Through WLST
You can use WLST, which is a JMX client, to interact with a server’s in-memory MBeans. The
MBeans offer a management interface so WLST can manage various server resources. Using
WLST, you can connect to an Admin Server to manage a domain’s configuration and check how
various server resources are performing. You can connect to a Managed Server and view
performance data, but you can’t modify its configuration through WLST. You can view and modify
the configuration data stored in the config.xml file through WLST offline commands (without
connecting to the server); however, Oracle recommends that you don’t do this because if the
server is running and you modify the config.xml file with a WLST offline command, not only will
the running server ignore those changes, but also any changes made through the Administration
Console will overwrite those changes. Also, since WebLogic Server doesn’t store most of the
default configuration values in the config.xml file, you can’t access many management objects
through WLST offline commands.

WLST provides a layer above the standard Jython interpreter, which provides a directory
navigation paradigm that is familiar to most users and especially those administrators who are
used to scripted configuration. You can use WLST online commands to access the hierarchy of a
server’s MBeans. You can use various commands to navigate the MBean hierarchy and query the
runtime MBeans, as well as the editable copies of all domain configuration MBeans. When you
use WLST to connect to a server instance, WLST connects to the DomainMBean, which is the root
of the MBean hierarchy. WLST uses a variable named cmo (configuration management object) to

128 Oracle WebLogic Server 12c Administration Handbook

represent the current management object. You can use the cmo variable to query (get) or modify
(set) a management object’s attributes. The value of the cmo at any given moment is the same as
the current WLST path. You can change directories with the cd command, and this resets the
value of the cmo object to that of the new WLST path. Thus, when you change directories by
moving to the Servers/ManagedServer1 directory, as shown in the following example, the cmo
changes to an instance of the ServerMBean from the previous cmo of the DomainMBean.

wls:/offline> connect('weblogic','welcome1')
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'TestServer' that belongs to domain 'test
_domain'.

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.

wls:/test_domain/serverConfig> cmo
[MBeanServerInvocationHandler]com.bea:Name=test_domain,Type=Domain
wls:/test_domain/serverConfig> cd('Servers')
wls:/test_domain/serverConfig/Servers>
wls:/test_domain/serverConfig/Servers> cd('ManagedServer1')
wls:/test_domain/serverConfig/Servers/ManagedServer1>

wls:/test_domain/serverConfig/Servers/ManagedServer1> cmo
[MBeanServerInvocationHandler]com.bea:Name=ManagedServer1,Type=Server
wls:/test_domain/serverConfig/Servers/ManagedServer1>

You can return to the parent directory (and the parent MBean) by executing the cd command,
as shown here:

wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> cmo
MBeanServerInvocationHandler]mydomain:Name=myserver,Server=myserver,Type=Log
wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> cd('..')
wls:/mydomain/serverConfig/Servers/myserver/Log>
wls:/mydomain/serverConfig/Servers/myserver/Log> cmo
[MBeanServerInvocationHandler]mydomain:Name=myserver,Type=Server

Use the ls command to view the attributes and operations, as well as all child MBeans, from
any directory you happen to be in. Here’s how you execute the command:

wls:/offline> connect('weblogic','welcome1')
wls:/test_domain/serverConfig/Servers> ls()
dr-- ManagedServer1
dr-- TestServer
wls:/test_domain/serverConfig/Servers>

You can view all the directories under a server, say TestServer in this example, by doing the
following (I’m showing only a partial list of directories here):

wls:/test_domain/serverConfig/Servers> cd('TestServer')
wls:/test_domain/serverConfig/Servers/TestServer> ls()

Chapter 3: Creating and Configuring WebLogic Server Domains 129

dr-- Cluster
dr-- CoherenceClusterSystemResource
dr-- DataSource
dr-- DefaultFileStore
dr-- ExecuteQueues
dr-- JTAMigratableTarget
dr-- Log
dr-- Machine
dr-- OverloadProtection
dr-- ReliableDeliveryPolicy
dr-- ServerDebug
dr-- ServerDiagnosticConfig
dr-- ServerStart
…
wls:/test_domain/serverConfig/Servers/TestServer>

The serverRuntime command is a WLST tree command that takes you to the root of the
ServerRuntimeMBean hierarchy. This hierarchy stores all the runtime MBeans for the server to
which you’ve connected with WLST. Here’s how you execute the command:

wls:/test_domain/serverConfig/Servers/TestServer> serverRuntime()
Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.
For more help, use help(serverRuntime)
wls:/test_domain/serverRuntime>

Note that prior to executing the serverRuntime command, you were at the serverConfig
directory, which is the root of the configuration MBean hierarchy. This is the default tree where
you land when you first connect to a running server with WLST. You can issue the ls command to
view the various runtime MBeans:

wls:/test_domain/serverRuntime> ls()
dr-- ApplicationRuntimes
dr-- AsyncReplicationRuntime
dr-- ClusterRuntime
dr-- ConnectorServiceRuntime
dr-- DefaultExecuteQueueRuntime
dr-- EntityCacheCumulativeRuntime
dr-- EntityCacheCurrentStateRuntime
dr-- EntityCacheHistoricalRuntime
dr-- ExecuteQueueRuntimes
dr-- JDBCServiceRuntime
dr-- JMSRuntime
dr-- JTARuntime
…
wls:/test_domain/serverRuntime>

When you issue the serverRuntime command, it places WLST at the ServerRuntimeMBean,
which is the root of the server runtime MBean hierarchy. You can view all the server configuration
attributes when you issue this command. You can also issue the domainRuntime command to go
to the root of the domain-wide management objects, which is DomainRuntimeMBean. Note that

130 Oracle WebLogic Server 12c Administration Handbook

you can execute either the domainRuntime or the serverRuntime command after you connect to
the Admin Server. You can issue only the serverRuntime command after you connect to a
Managed Server.

Note that to connect to the WebLogic MBean Server, a JMX client such as WLST must supply
valid credentials, meaning credentials that are defined in the domain’s security realm. (Security
realms are discussed in Chapter 9.) There are four default global security roles in the security
realm: Admin, Deployer, Operator, and Monitor. Whereas a user with any of the roles can view
all unencrypted attribute values, only a user with the Admin role can modify the attributes (as
well as view encrypted attribute values). These roles also allow for a standard distribution of
responsibilities, where Deployers are allowed to create new deployable entities (application and
system resources) and Operators are allowed to start and stop server instances. Monitors can only
view the system state and report information. An Admin can do any of these and also define and
configure new server instances.

Using the Lock & Edit Mechanism
in the Administration Console
When you make configuration changes through the Administration Console, you’re changing the
editable configuration MBeans. Changing configuration is a two-step process: you must first
obtain a lock on the configuration MBean edit tree by using the Lock & Edit feature in the
Administration Console. The lock ensures that your changes are saved to the config.xml file and
other configuration files in the domain directory. Once you make your changes, you must then
activate the changes. Once you activate the configuration changes, all running servers will update
their own copy of the domain’s config.xml file as well as their read-only configuration MBeans.
This completes the configuration change process.

All this may seem like unnecessary overhead for making domain configuration changes, but
there’s important reasoning behind this. A key feature of the domain configuration process is the
ability to stage and validate groups of changes for your production environment. Most IT
operations require a closely controlled rollout process for introducing updates to the production
environment. Changes to the domain configuration or the introduction of new application
versions require coordinating multiple changes. For instance, when deploying a new application,
you need to configure new server instances, deploy new JDBC connection pools, and deploy one
or more application archives. With WebLogic Server, all of these changes can be staged in the
pending directory with a series of edit/save cycles and then activated at a scheduled time.
WebLogic Server’s configuration mechanism helps you by ensuring that the application of
changes is all or none across the domain.

As you learned in Chapter 2, the Change Center of the Administration Console lets you lock
pending configuration changes so that another user can’t change the configuration while you’re still
in the process of modifying a domain’s configuration. However, after you obtain a configuration
change lock by clicking the Lock & Edit button in the Change Center, you can open a WLST session
to edit that session’s configuration changes.

TIP
You can make unlimited configuration changes by obtaining a single
lock and activate all your changes at once. You can configure a
timeout period to limit the amount of time the Administration Console
holds a lock you placed in the Change Center.

Chapter 3: Creating and Configuring WebLogic Server Domains 131

When you run a server in development mode, the configuration locking feature is disabled—
that is, by default, all the configuration changes you make are automatically activated by the
Console. The feature is automatically enabled in production mode. If you want to use the
configuration locking feature, you must explicitly enable it. Here are the steps to do so:

 1. In the right-hand pane of the Administration Console, click Preferences.

 2. Select User Preferences.

 3. Deselect Automatically Acquire Lock And Activate Changes.

 4. Click Save.

Figure 3-2 shows how to enable the configuration locking feature through the Administration
Console. To enable the Lock & Edit feature, you must make sure to uncheck the Automatically
Acquire Lock And Activate Changes box. Once you enable the locking feature, you must start any
configuration changes by first clicking the Lock & Edit button and then save those changes before
clicking the Activate Changes button to make the changes take effect.

NOTE
Dynamic configuration changes you make through the Administration
Console come into effect right away; nondynamic changes require you
to restart the servers.

Tracking Changes with Configuration Auditing
Whenever you change the configuration of any domain resource on any server, the Admin Server
issues relevant log messages recording those changes, even in cases where the configuration
attempts are unsuccessful. However, the Admin Server writes those changes to its own log file on
the server where it’s running, not to the domain-wide message log. You can set up domain
configuration auditing, consisting of an audit trail of all domain configuration changes, by
enabling the WebLogic Auditing Provider. The Provider will also write the changes as audit events
in its own security log.

FIGURE 3-2. Enabling configuration locking in the Administration Console

132 Oracle WebLogic Server 12c Administration Handbook

Enabling Configuration Auditing with the Administration Console
You can use the Administration Console to set up configuration auditing by following these
steps:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane, select the domain you want to configure (for example, wl_server).

 3. Select Configuration | General.

 4. Click Advanced at the bottom of the General page.

 5. Select from the following four configuration auditing methods:

 � None No auditing of configuration events.

 � Change Log Write configuration events only to the Admin Server log.

 � Change Audit Direct events to the Security Audit Framework and let the Auditing
Provider handle the configuration events.

 � Change Log and Audit Send configuration event information to both the Admin
Server log and the Auditing Provider.

 6. Click Save and activate changes by clicking Activate Changes in the Change Center.

Making a Domain Read-Only
In a production environment, you may wish to ensure that no one can edit the domain
configuration by making run-time changes. You can set the appropriate attributes of the
JMXMBean to disable the WebLogic editing service. The EditMBeanServerEnabled attribute of the
JMXMBean controls whether JMX clients can access the runtime MBeans as well as read-only
configuration MBeans when connecting to a server’s Domain Runtime MBean Server. Here’s how
to use this attribute to disable configuration editing of the Examples Server domain:

 1. Make sure the Admin Server is running.

 2. Open a command prompt, and set the environment with the following command:

C:\MyOra\Middleware\wlserver_10.3\samples\domains\wl_server\bin>setDomainEnv.cmd

 3. Start WLST and connect to the Admin Server:

C:\MyOra\Middleware\wlserver_10.3\samples\domains\wl_server>java
weblogic.WLST
wls:/offline> connect('weblogic','welcome1')

 4. Execute the following commands to start a WLST editing session:

wls:/wl_server/serverConfig> edit()
wls:/wl_server/edit !> startEdit()

 5. Change the directory to the JMX directory:

wls:/wl_server/edit !> cd('JMX/wl_server')

Chapter 3: Creating and Configuring WebLogic Server Domains 133

 6. Set the EditMBeanServerEnabled attribute of the JMXMBean to false:

wls:/wl_server/edit/JMX/wl_server !> set('EditMBeanServerEnabled','false')

 7. Activate the changes you made and exit WLST:

wls:/wl_server/edit/JMX/wl_server !> activate()
wls:/wl_server/edit/JMX/wl_server !> exit()

Following this change, JMX clients, such as the Administration Console and WLST in online
mode, can’t modify the domain configuration. The example here showed how to control the Edit
MBean Server (a type of JMX server); you can control each of the other MBean Servers in the
same way. You can change the domain configuration with WLST offline commands. As stated
earlier, however, Oracle recommends that you do not use WLST offline commands to modify the
domain configuration.

Controlling the Logging of Configuration Changes
You can set several options with the weblogic.Server command to control the way servers log
configuration changes. For example, by setting the following option, you can specify that the
server write the domain configuration auditing messages just to the Admin Server log:

-Dweblogic.domain.ConfigurationAuditType="log"

By default, WebLogic Server saves all server log files in the DOMAIN_NAME\
servers\<server_name>\logs directory. You can change the default server log filename and its
location by following these steps. Figure 3-3 shows the relevant page in the Administration
Console.

 1. Click Lock & Edit in the Change Center.

 2. In the left-hand pane, expand the Environment group and select Servers.

 3. Click the name of the server in the Servers table.

 4. Select Logging | General.

FIGURE 3-3. Configuring the logging settings for a server

134 Oracle WebLogic Server 12c Administration Handbook

 5. Enter the new name for the log file and, if necessary, a new path in the Log File Name field.

 6. Click Save and activate your changes by clicking the Activate Changes button in the
Change Center.

You must also restart the server for it to start writing messages to the new log file.

Creating Domain Templates
A domain template is simply a jar file with all the resources (and applications) you need to create a
WebLogic domain. A domain template is especially handy when you need to create new domains on
a machine that doesn’t share file systems with the servers hosting other WebLogic Server domains. You
can use the Domain Template Builder, a graphic tool, to build or extend a domain. WebLogic Server
uses three types of templates: domain templates, extension templates, and a Managed Server
template. You use the first two to create and extend a domain. The third type of template (the Managed
Server template) is only for use with WebLogic Server’s pack utility when creating a Managed Server
domain on remote machines. The WebLogic Server installation includes several domain-creation as
well as extension templates, including the basic WebLogic Server Domain template, which the
Configuration Wizard uses, by default, when you use the Wizard to create a new domain.

Instead of using the default WebLogic Server templates, you can create your own custom
templates. Creating a custom template isn’t hard—you can use either an existing domain or a
template as the source for your custom templates. For example, you can choose a specific domain
as the basis for a custom template. If you want that domain to serve as a model for other domains
you’re planning to create, you can then use the new custom template for creating additional
domains with the Configuration Wizard, the unpack utility, or WLST commands.

Templates Offered by WebLogic Server
Oracle WebLogic Server provides several predefined domain templates, and you can find them in the
WL_HOME\common\templates\wls directory (in my case, the directory is C:\oracle\middleware\
oracle_home\wl_server\common\tempaltes\wls). For example, the Basic WebLogic Server Domain
template is a simple domain template that helps configure an Admin Server and a default security
realm. You must create and configure all other servers, services, and applications after you create this
domain. The WebLogic Advanced Web Services template, an extension template, includes resources
necessary for advanced web service implementations. If you’re using Fusion Middleware products,
you should know that almost all of them come with WebLogic domain or extension templates, so
you can configure WebLogic Server for each Fusion Middleware product. For example, Oracle
Service-Oriented Architecture (SOA) Suite 12c comes with the Oracle SOA Suite template to help
configure data sources, JMS, the SOA infrastructure, and the Oracle business-to-business (B2B) user
interfaces. Oracle SOA Suite also comes with the Oracle Business Activity Monitoring (BAM)
template to configure the Oracle BAM Server and the Oracle BAM Web Applications tier.

Any template, whether it’s a default Oracle template or one you create yourself, contains at
least two files—config.xml and template-info.xml. In addition, a template usually contains several
other XML files, such as jdbc.xml, jmx.xml, security.xml, and startscript.xml. If you’re using a
Fusion Middleware product template, it will also contain a database.xml file for configuring JCBC
data connections. The config-groups.xml file helps you move functionally related applications and
services in a single move, such as when you’re moving from a topology with a single server to a
cluster. This file contains all the applications, services, and mappings among the various
components of a domain. When you create a domain with any of the templates offered by Oracle,
the template creates all the necessary directories such as bin, config, security, nodemanager, and

Chapter 3: Creating and Configuring WebLogic Server Domains 135

so on. You can review the readme.txt file that’s part of each of these directories to understand
what’s either stored already, or will be stored, in that directory.

The following sections show you how to create a custom domain and a custom extension
template with the Domain Template Builder.

Creating a Custom Domain Template
Follow these steps to create a custom domain with the Domain Template Builder:

 1. Go to the MW_HOME\wl_server_12.1\common\bin directory and start the Domain
Template Builder by executing the config_builder.cmd command (use the config_builder.sh
command in UNIX/Linux environments):

C:\Oracle\Middleware\wlserver_12.1\common\bin>config_builder.cmd

 2. On the Create A New Template screen, select the Create A Domain Template option.
This option allows you to define all a domain’s resources, including servers, services,
applications, environment, and operating systems. Click Next.

 3. On the Select A Template Domain Source screen, shown in Figure 3-4, you must decide
between choosing an existing domain or a domain template as the source for your new
domain. This page has two tabs—the Select A Domain tab and the Select A Template

FIGURE 3-4. Choosing between an existing domain and a domain template

136 Oracle WebLogic Server 12c Administration Handbook

tab—to help you choose between an existing domain and a domain template. Thus,
if you already have a well-configured domain, you can create a custom template that
allows you to re-create this domain. To do this, choose the Select A Domain tab. (You
don’t actually have to click it because it’s selected for you by default.) Domains are
identified by the blue folder icon in front of the domain directory folder name. Click Next
after you select the source domain or a source domain template.

 4. On the Describe The Template screen, enter a name for the domain template and,
optionally, a brief description of the template. Click Next.

 5. On the Specify Template JAR Name and Location screen, you can optionally change the
template JAR name and location. Accept the defaults and click Next.

 6. If you are presented with the Add or Omit Applications screen, this is where you
can choose which applications are included in your custom template. By default, all
applications are selected. Click Next.

 7. In most cases, you don’t have to do anything on the Add Files screen. Because I selected
the domain MyDomain as the source for the new domain template, the Template Builder
Wizard, by default, will include several files automatically. These files include the bin and lib
directories and all files from the root directory with the extensions .cmd, .sh, .xml, .properties,
and .ini. The config.xml file for the source domain for the new template is also part of the file
list. If you select an existing template rather than an existing domain as the source for the new
template, the Wizard picks up all files from the source template automatically. Click Next.

 8. The Add SQL Files screen lets you add optional SQL scripts to the new template. In this
context, SQL scripts refer to any scripts you wish to run in the RDBMS that you choose to
use with the new domain, which you plan to create with this domain template. Click Next.

 9. On the Configure The Administration Server screen, provide listen address and listen port
information for the Admin Server of the domain you’ll later create with this template.
Accept the default and click Next.

 10. On the Configure Administrator User Name and Password screen, enter the credentials for
the default administrator for the new domain you’ll create with the template. Click Next.

 11. On the Specify Start Menu Entries screen, you can optionally specify any Windows Start
Menu options. Note that if you’ve selected an existing template as the source for this
new custom template, the Wizard displays all Start menu options from the template you
chose. In my case, since I’m using an existing domain as the source, I must define the
Start menu entries myself. For example, I can specify the startWebLogic.cmd command
as a Start menu option. If you choose to do so as well, click Add, provide a Shortcut link
name, and then under Program, select startWebLogic.cmd. Click Next.

 12. By default, the Domain Template Builder will replace hardcoded environment variables
in various scripts and files with what are called replacement variables. You can use the
Prepare Scripts And Files With Replacement Variables screen to replace any hardcoded
variables that the Domain Template Builder hasn’t already replaced. The Domain
Template Builder offers replacement variables for any string you want to replace in a file
or script. Some examples of the environment variables for which you may have to choose
replacement variables are JAVA_HOME, SERVER_NAME, and LISTEN_PORT. Click Next.

 13. Review your template configuration in the Review WebLogic Domain Template and click Create.

 14. Click Done on the Creating Template screen once you see the message “Template
Creation Successful.”

Chapter 3: Creating and Configuring WebLogic Server Domains 137

The custom domain template you’ve just created will be stored in a new directory called
user_domains under the MW_HOME directory. (The Domain Template Builder automatically creates
this directory for you when you create your first custom domain. You’ll find a new domain template
named my_domain_12.1.1.0 in this domain.) You can now use this domain template to create a new
domain with the Configuration Wizard. In the Select Domain Source screen (the second screen) of
the Configuration Wizard, choose the Base This Domain On An Existing Template option, browse to
the user_domains directory, and select the custom domain template. Your new domain will be an
exact replica of the source domain on which your custom domain template is based.

Creating a Custom Extension Template
The previous section showed you how to create a custom domain template. You basically follow
the same procedures to create a custom extension template. After you invoke the Domain
Template Builder, on the Create A New Template screen, select Create An Extension Template
instead of Create A Domain Template. On the Select A Template Domain Source screen, pick a
WebLogic domain or an extension template as the source for your new custom extension
template. Figure 3-5 shows the Select A Template Domain page, listing all available domain
templates and extension templates. The remaining steps (4–14) are analogous to the steps
described in the previous section for creating a new domain template.

FIGURE 3-5. The Select A Template Domain Source screen

138 Oracle WebLogic Server 12c Administration Handbook

Using Server Templates
If you have a number of servers with a common set of attributes, you can use server templates to
define the common attributes to apply to different server instances. You use server templates
primarily for creating dynamic clusters, which are explained in Chapter 7.

When you define a server template, you specify the common attributes for a group of server
instances. You can then specify the server template for each server instance in order to specify the
configuration for the server instance. You can always override attribute values in the server
template by directly configuring the server instance. The values you set for any individual server
configuration will override the default values and the values you set in a server template. You can
define macros for any string attributes in a server template.

The following is a brief summary of the steps to create two server instances by specifying their
common attributes with a server template:

 1. Create a server template and name it my-cluster-server-template.

 2. Set all of the common attributes in the server template my-cluster-server-template.

 3. Create server instances my-server1 and my-server2 and assign the my-cluster-server-
template to both the server instances.

 4. Specify any server specific attributes you wish to configure for a server.

Creating Templates with the pack and unpack Commands
As described previously, you can use the Domain Template Builder to create highly customized
templates of your own by using either an existing domain or a template as the source. If you don’t
require a lot of customization, however, there’s an even simpler way to create a template, as well
as domains based on that template. You can use two commands called pack and unpack to create
simple templates and domains quickly from the command line itself. The pack command helps
you create a template, and the unpack command helps you create a domain from the templates
you create with the pack command. The template that the pack command creates contains a .jar
archive file that contains a snapshot of the entire domain or a subset of it. You can use the subset
of a domain to create a Managed Server directory hierarchy on a remote host.

NOTE
You can use the pack and unpack commands to create a full WebLogic
Server domain or a subset of a domain that you can use to create a
Managed Server domain directory on remote machines.

If you create a domain template based on an existing template with the pack command, you
can use the unpack command, the Configuration Wizard, or WLST to create a domain with the
new template. The templates you create with the pack command are mostly useful for taking a
quick snapshot of an existing domain with very few configuration options. If you want a real
custom domain template, consider using the Domain Template Builder.

When you want to migrate a development or test domain to production, the pack and unpack
commands are handy as well. The pack command can also be used to create a Managed Server
template that the unpack command can then use to create a Managed Server domain directory on
a remote machine.

Chapter 3: Creating and Configuring WebLogic Server Domains 139

Using the pack Command
The pack command’s syntax is as follows:

pack -domain=domain -template=template -template_name="template_name"
[-template_author="author"][-template_desc="description"] [-managed=true|false]
[-log=log_file] [-log_priority=log_priority]

Here’s an example that shows how to create a subset of a domain, which you can then use to
create a Managed Server domain directory on a remote machine. Note that I specify the
managed=true option to specify that the template is for creating a Managed Server on a remote
machine. This example shows how to use the pack command to do this. Execute the command
from the WL_HOME\wlserver_12.1\common\bin directory:

C:\Oracle\Middleware\wlserver_12.1\common\bin>pack
-domain=C:\ORACLE\MIDDLEWARE\USER_PROJECTS\DOMAINS\my_domain -
template=c:\oracle\middleware\user_templates\wl_server_12.1.1.0.jar
-template_name="My WebLogic Domain Template"
-managed=true
<< read domain from "C:\Oracle\Middleware\user_projects\domains\my_domain"
>> succeed: read domain from
"C:\Oracle\Middleware\user_projects\domains\my_domain"
<< set config option Managed to "true"
>> succeed: set config option Managed to "true"
<< write template to "C:\Oracle\Middleware\user_tempaltes\wl_server_12.1.1.0.jar"
…

>> succeed: write template to
"C:\Oracle\Middleware\user_templates\wl_server_12.1.1.0.jar"
<< close template
>> succeed: close template

In this example, the pack command saves the template you’ve created, mytemplate.jar, in the
WL_HOME\user_templates directory. The reason for storing the templates here is that, for most
domains, users will need all of the extra start scripts, security, and other files. You need to be
careful when using the pack and unpack commands with domains other than the Fusion
Middleware domains because they can pull in all of the jar files and the like.

Using the unpack Command
Use the unpack command to create a full domain or a subset of the domain to create a Managed
Server domain directory on a remote machine. In addition to using the templates you create with
the pack command, you can use the unpack command to create domains from templates you’ve
created with the Domain Template Builder or WSLT. In fact, you can use the unpack command
with any domain templates, including the default templates that come with the WebLogic Server
installation.

Following is the syntax for the unpack command.

unpack -template=template -domain=domain [-user_name=username]
[-password=password] [-app_dir=application_directory]
[-java_home=java_home_directory] [-server_start_mode=dev|prod] [-log=log_file]
[-log_priority=log_priority]

140 Oracle WebLogic Server 12c Administration Handbook

Here’s an example that shows how to execute the unpack command:

C:\Oracle\Middleware\wlserver_12.1\common\bin>unpack
-template=c:\oracle\middleware\user_tempaltes\wl_server_12.1.1.0.jar -
domain=C:\ORACLE\MIDDLEWARE\USER_PROECTS\DOMAINS\my_domain2
<< read template from "C:\Oracle\Middleware\user_tempaltes\wl_server_12.1.1.0.jar"
>> succeed: read template from
"C:\Oracle\Middleware\user_tempaltes\wl_server_2.1.1.0.jar"
<< set config option DomainName to "my_domain"
>> succeed: set config option DomainName to "my_domain"
<< write Domain to "C:\Oracle\Middleware\user_projects\domains\my_domain2"
...
>> succeed: write Domain to
"C:\Oracle\Middleware\user_projects\domains\my_domain2"
<< close template >> succeed: close template
C:\Oracle\Middleware\wlserver_12.1\common\bin>

The domain you create with the unpack command contains all the application and resource
files for the domain, as well as the start scripts and several security and configuration files. When
you execute the unpack command with a Managed Server template, the Managed Server domain
directory will contain a start script and the config_bootstrap.xml file, which is based on the config.
xml file for the original domain. You’ll see new entries for the domain you created with the unpack
command in both the WL_HOME\common\nodemanager\nodemanager.domains file and a new
domain directory for the domain under the MW_HOME\user_projects\domains directory.

In the Oracle WebLogic Server 12c release, persistent stores aren’t included in a packed
domain. An empty file store directory is created in the target system if a file store is located in the
source domain. The template generated by the pack command will, however, include the
deployment plans located in external directories. The unpack command copies these deployment
plans in the following standard location:

domain_home/config/deployments/deployment_name/plan

Finally, the Node Manager configuration is preserved for both managed and nonmanaged
modes if the Node Manager type is either DomainNodeManager or CustomLocationNodeManager.

Creating a WebLogic Server Domain
As in the case with the configuration and management of a WebLogic Server domain, you can
create a domain using several methods: you can use the WebLogic Configuration Wizard, the WLST
commands, or the command-line utility weblogic.Server to create a domain. You may recall from
Chapter 2 that the weblogic.Server Java class is the main class for a WebLogic Server instance and
that you can invoke this command through scripts, operating system shell commands, or the Node
Manager. Your actual choice of a domain creation tool depends on whether you prefer a graphical
or command-line interface, and whether you need to automate the domain creation process.

Using the weblogic.Server Command
Although you can easily create a WebLogic Server domain by invoking the weblogic.Server
command, you must be aware that this is a limited method in that you can create only a single
server instance with this approach. You can’t create any Managed Servers, nor can you modify an

Chapter 3: Creating and Configuring WebLogic Server Domains 141

existing domain with this command. The following example shows how to create a domain using
the weblogic.Server command:

 1. Run the command setWLSEnv.cmd to set up the necessary environment variables:

C:\Oracle\Middleware\wlserver_12.1\server\bin>setWLSEnv.cmd

CLASSPATH="C:\Oracle\MIDDLE~1\patch_wls1211\profiles\default\sys_manifest_class
path\weblogic_patch.jar;
C:\Oracle\MIDDLE~1\patch_oepe101\profiles\default\sys_manifest_classpath\weblogic_
patch.jar;
C:\Oracle\MIDDLE~1\patch_ocp371\profiles\default\sys_manifest_classpath\weblogic_
patch.jar;
C:\Oracle\MIDDLE~1\JDK160~1\lib\tools.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\server\lib\weblogic_sp.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\server\lib\weblogic.jar;
C:\Oracle\MIDDLE~1\modules\features\weblogic.server.modules_12.1.1.0.jar;
C:\Oracle\MIDDLE~1\WLSERV~1.1\server\lib\webservices.jar;
C:\Oracle\MIDDLE~1\modules\ORGAPA~1.1/lib/ant-
all.jar;C:\Oracle\MIDDLE~1\modules\NETSFA~1.0_1/lib/ant-contrib.jar;"

PATH="C:\Oracle\MIDDLE~1\patch_wls1211\profiles\default\native;C:\Oracle\MIDDLE~
…
Your environment has been set.
C:\Oracle\Middleware\wlserver_12.1\server\bin>

 2. Create a directory with the same name as the domain you wish to create (test_domain in
my example):

C:\Oracle\Middleware\wlserver_12.1\server\bin>mkdir
c:\oracle\middleware\user_projects\test_domain

 3. Change to the new directory and run the following java weblogic.Server command to
create the domain:

C:\Oracle\Middleware\wlserver_12.1\server\bin>cd
c:\oracle\middleware\user_projects\test_domain
C:\Oracle\Middleware\user_projects\test_domain>java -Dweblogic.Domain=test_domain
-Dweblogic.Name=TestServer -Dweblogic.management.username=weblogic -
Dweblogic.management.password=welcome2 -Dweblogic.ListenPort=7022 weblogic.Server

<Jul 2, 2013 10:18:46 AM CDT> <Info> <Security> <BEA-090905> <Disabling Cryp
toJ JCE Provider self-integrity check for better startup performance. To enable this
check, specify -Dweblogic.security.allowCryptoJDefaultJCEVerification=true>
<Jul 2, 2013 10:18:46 AM CDT> <Info> <Security> <BEA-090906> <Changing the default
 Random Number Generator in RSA CryptoJ from ECDRBG to FIPS186PRNG. To disable
this change, specify -Dweblogic.security.allowCryptoJDefaultPRNG=true>
<Jul 2, 2013 10:18:46 AM CDT> <Info> <WebLogicServer> <BEA-000377> <Starting
WebLogic Server with Java HotSpot(TM) Client VM Version 20.4-b02 from Sun
Microsystems Inc..>
C:\Oracle\Middleware\user_projects\test_domain\config not found

No config.xml was found.
Would you like the server to create a default configuration and boot? (y/n): y
<Jul 2, 2013 10:26:09 AM CDT> <Info> <Management> <BEA-140013>
<C:\Oracle\Middleware\user_projects\test_domain\config not found>
<Jul 2, 2013 10:26:12 AM CDT> <Info> <Management> <BEA-141254> <Generating new
 domain directory in C:\Oracle\Middleware\user_projects\test_domain.>

142 Oracle WebLogic Server 12c Administration Handbook

<Jul 2, 2013 10:26:19 AM CDT> <Info> <Management> <BEA-141255> <Domain generation
completed in 7,663 milliseconds.>
<Jul 2, 2013 10:26:20 AM CDT> <Info> <Management> <BEA-141107> <Version: WebLogic
Server Temporary Patch for 13340309 Thu Feb 16 18:30:21 IST 2012
WebLogic Server Temporary Patch for 13019800 Mon Jan 16 16:53:54 IST 2012
WebLogic Server Temporary Patch for BUG13391585 Thu Feb 02 10:18:36 IST 2012
WebLogic Server Temporary Patch for 13516712 Mon Jan 30 15:09:33 IST 2012
WebLogic Server Temporary Patch for BUG13641115 Tue Jan 31 11:19:13 IST 2012
WebLogic Server Temporary Patch for BUG13603813 Wed Feb 15 19:34:13 IST 2012
WebLogic Server Temporary Patch for 13424251 Mon Jan 30 14:32:34 IST 2012
WebLogic Server Temporary Patch for 13361720 Mon Jan 30 15:24:05 IST 2012
WebLogic Server Temporary Patch for BUG13421471 Wed Feb 01 11:24:18 IST 2012
WebLogic Server Temporary Patch for BUG13657792 Thu Feb 23 12:57:33 IST 2012
WebLogic Server 12.1.1.0 Wed Dec 7 08:40:57 PST 2011 1445491 >
<Jul 2, 2013 10:26:21 AM CDT> <Notice> <WebLogicServer> <BEA-000365> <Server
state changed to STARTING.>

Once you answer yes (Y) to the questions whether you’d like to create a default configuration,
WebLogic Server creates the configuration and instantiates the new domain, named MyDomain.
Here’s a summary of the configuration:

 � The config.xml file is created for the new domain.

 � There’s one server—the Admin Server—named NewServer.

 � The domain uses the default security realm, which is named myrealm.

 � There is one admin user named weblogic (password is welcome1).

 � The listen address of the Admin Server is localhost, port 7022. (You can also use the IP
address of the host or the DNS name of the host.)

You can use the boot.properties file to bypass the prompt for a login credential when starting the
server. You can use the startWebLogic.cmd (Windows) and the startWebLogic.sh (UNIX) scripts to
start the server.

Using the Configuration Wizard to Create a Domain
Probably the easiest way to create a domain is through the Configuration Wizard. When you
install WebLogic Server and choose to create the sample applications and domains, the Oracle
Installer invokes the Configuration Wizard to create the various domains. The Configuration
Wizard uses default templates to create or extend an existing domain. If you add a Managed
Server or some other service to a domain, you’ve extended the domain. A template is simply a jar
file that contains the necessary scripts and files WebLogic Server needs to create or extend
domains.

There are three basic types of templates: domain templates that help create an entire domain,
extension templates that add to the functionality of a domain, and Managed Server templates that
help you take a subset of resources from a domain as a model to use in a Managed Server on a
remote server. You can create the first two types of templates with the Domain Template Builder,
and you can create all three types with the pack utility. Regardless of how you create a template,
you can use the Configuration Wizard to create a domain or extend an existing domain. The
Configuration Wizard will, by default, use the set of predefined domain template (the basic
WebLogic Server domain template) and extension templates that comes with the WebLogic Server

Chapter 3: Creating and Configuring WebLogic Server Domains 143

installation. Once you learn how to create your own templates, whether with the Domain
Template Builder or with the pack command, you can substitute those templates for the default
templates. Note that a domain template will enable you to create an Admin Server and define
infrastructure components and general environmental variables for the domain. The Configuration
Wizard uses the extension templates when you extend the basic domain by adding a Managed
Server. You can use the Configuration Wizard to create a domain with just an Admin Server or a
domain that includes additional Managed Servers or even a cluster. In addition, you can
customize a domain by configuring JDBC settings, for example, to point to a different database
rather than the default database (Apache Derby database) used by the domain and extension
templates.

 You can always start the Configuration Wizard in graphical mode on a Windows system. On
a UNIX system, however, not all consoles support a graphical mode Configuration Wizard. If a
UNIX console can’t start the Configuration Wizard in graphical mode, it starts the Wizard in
console mode by default.

 1. The Configuration Wizard can be started in one of two ways on Windows:

 � Click the Windows shortcut at Start | Programs | Oracle | OracleHome | WebLogic
Server 12c | Tools | Configuration Wizard.

 � Change to the following directory at the command prompt and execute the config.cmd
file directly:

cd C:\MyOra\Middleware\wlserver_10.3\common\bin
config

 2. On the Create Domain screen, you can choose to create a new domain or extend one. Because
you’re creating a new domain here, select Create A New Domain, as shown in Figure 3-6.

 3. On the Templates screen, shown in Figure 3-7, you can choose one of the following
two options:

 � Create Domain Using Product Templates

 � Create Domain Using Custom Template

You can select the Create Domain Using Custom Template option if you want to base
the new domain on a custom template instead of letting WebLogic Server choose
its own default domain-creation template. Note that if you’ve already installed other
Oracle Fusion Middleware products, such as the Oracle SOA Suite, you’ll see additional
products from those installations on this screen. Click Next.

 4. Specify the login credentials for this new domain on the Administrator Account screen
and click Next.

 5. On the Domain Mode And JDK screen, shown in Figure 3-8, select the domain startup
mode (development or production), as well as the JDK for the domain startup mode you
choose. You can select one of the JDKs listed by the installer or specify a different JDK of
your own. If you choose your own JDK, you must create the startup scripts for it yourself.
If you choose an installer-offered JDK, the Configuration Wizard creates the server startup
scripts to invoke the JDK. Click Next.

 6. The Configure JDBC Data Sources screen appears only if you have already installed
products such as Oracle SOA Suite 12c. Certain components such as Oracle SOA Suite

144 Oracle WebLogic Server 12c Administration Handbook

need to use the Oracle Fusion Middleware Repository Creation Utility (RCU) to load
database schemas. If your domain contains a product such as Oracle SOA Suite, you
need to configure the database schemas here. If your deployment needs the schemas’
configuration, you must select all the tables and specify the database and service, the
hostname, and the port for connecting to the database where the schemas are stored. You
can choose one or several databases to store the various schemas. You can also specify
the same or a different password for the schema owners. The Configuration Wizard will
test your connections using the schema passwords you’ve chosen if you click the Test
Component Schema button. Click Next when you’ve completed configuring the schemas.

The Configure RAC Multi Data Sources screen appears only if you have already installed
products such as Oracle SOA Suite. If you do configure data sources, you’ll have the
opportunity to test those connections by clicking the Test Connection button. You may
also have to click the Run Scripts button if any products you’ve already installed, such
as SOA, include SQL files that need to be run. Once you finish running the necessary
scripts, click Next.

FIGURE 3-6. Selecting the configuration type in the Configuration Wizard

Chapter 3: Creating and Configuring WebLogic Server Domains 145

 7. If the Configure Keystore Credentials screen appears, a component may require that you
set a keystore password. Enter the passwords that you want to use for the keystore, and
click Next.

 8. On the Advanced Configuration screen, you may perform certain advanced configuration
tasks such as modifying the Admin Server and Managed Server configuration settings
and configuring the Node Manager. For example, you can select a specific Managed
Server and set its listen address, listen port, and SSL listen port, as well as enable SSL
communications for this server. In addition, you can configure an RDBMS as a data
source for security products from this screen. You can also add (or delete) Managed
Servers, clusters, and machines to the domain, as well as add Managed Servers to an
existing cluster. Depending on what options you choose, you will navigate through
additional screens. Select each check box you need and click Next.

 9. The Configuration Summary appears next. You can drill down to an individual item’s
configuration details by clicking that item in the Domain Summary pane on the left side
of the screen. Review the domain configuration settings, and click Create once you’re
satisfied with the settings.

FIGURE 3-7. The Templates page

146 Oracle WebLogic Server 12c Administration Handbook

 10. You’ll see the Configuration Progress screen next, showing you the progress of
the domain creation. Click Next when the domain creation process is completed.
Figure 3-9 shows the Configuration Success screen that follows a successful domain
creation. Click Finish.

Note that by checking the box named Start Admin Server on the Configuration Success page,
you can optionally choose to start the Admin Server for your new domain. If you do so, you can
log into the Administration Console at this point. Selecting this option does not auto-start the
Admin Server every time the machine boots up; it is intended only as a one-time startup after
creating the domain.

Extending Domains
In the previous section, you learned how to configure a new domain with the Configuration
Wizard. Once you create a domain, you can continue to use the Wizard to extend it. Oracle
WebLogic Server uses extension templates to enable the extension of existing domains. The
Wizard automatically accesses the default extension templates, but you can create your own
extension templates with WLST or the pack utility. In addition, Oracle uses special extension

FIGURE 3-8. Selecting the domain startup mode and the JDK

Chapter 3: Creating and Configuring WebLogic Server Domains 147

templates for various Fusion Middleware products. If you want to add more Managed Servers,
add members to an existing cluster, change the JDBC data sources, or change the JMS file
store configuration, use the Configuration Wizard.

To extend a domain using the Configuration Wizard, simply select the Extend An Existing
WebLogic Domain option on the Welcome screen, instead of Create A New WebLogic Domain.
The only new configuration screen you’ll encounter is the third screen, Select Extension Source.
Here, you can choose between using a preexisting Oracle extension template or specify an
existing one. Once you select the extension template, the rest of the screens are identical to those
that you navigate through when configuring a new domain.

Creating a Domain with WLST Commands
You can easily create a domain using the WLST offline command createDomain (preceded by a
couple of other WLST commands, as you’ll see shortly). Recall that a WLST offline command
means you don’t need to connect to a running WebLogic Server instance. You can also choose to
modify existing WebLogic domains using WLST commands. The resulting domains would be the
same as the ones you can create with the Configuration Wizard.

FIGURE 3-9. A successful domain creation

148 Oracle WebLogic Server 12c Administration Handbook

You can use either a domain template or an existing WebLogic domain as the source when
creating a domain with WLST offline commands. The domain template is simply a jar file that
contains the necessary domain configuration files, applications, domain startup scripts, and
security information for the new domain you’ll create.

Follow these steps to create a new domain using WLST offline commands:

 1. Execute the readDomain command, as shown here, to open an existing WebLogic
domain:

wls:/offline>readDomain('C:/Oracle/Middleware/user_projects/domains/base_domain')
wls:/offline/base_domain>

In this example, I show how to create a new domain based on an existing domain—
thus, I start with the readDomain WLST command. This command opens the domain
base_domain for updating. Note that the WLST prompt changes from wls:/offline to
wls:/offline/base_domain—this is the root of the configuration hierarchy for the domain
base_domain.

If you wish to use an existing template instead, use the readTemplate command to read a
template. The readTemplate command takes just one parameter, the name of the template
you want to use:

wls:/offline>
readTemplate('C:/Oracle/Middleware/Oracle_Home/wlserver/common/templates/wls/wls_
starter.jar')
wls:/offline/wls_starter>

In the example shown here, the readTemplate command reads the wls_starter.jar
domain template in order to create a new domain based on this template. Note that
the WLST prompt shows the current location in the configuration hierarchy—in this
case, it’s wls:/offline/wls_starter. This is the configuration bean hierarchy for the domain
template you wish to use, and you can now interact with the configuration MBean
using WLST commands. Remember in Windows, you must use forward slashes or
double backslashes in your directory names; for example, they must either be specified
as C:\\Oracle\\Middleware\\wlserver_12.1\\common\\templates\\domains
\\wls_starter.jar or C:/Oracle/Middleware/wlserver_12.1common/templates/domains/
wls_starter.jar.

Just to reemphasize, I’m creating the new domain using an existing domain as the basis,
not a template. Thus, I’ll have to create a template before I create the domain, as the
following steps explain.

 2. Execute the writeTemplate WLST command to write the current domain configuration to a
specific domain template.

wls:/offline/base_domain>writeTemplate('C:\Oracle\Middleware\
user_templates\MyBaseTemplate.jar')
wls:/offline/base_domain>

WebLogic Server writes the domain configuration to the MyBaseTemplate.jar template.
You can now use this template to create a new WebLogic domain.

Chapter 3: Creating and Configuring WebLogic Server Domains 149

 3. Once you write the domain configuration to your new template MyBaseDomain.jar, you
must issue the following command to close the domain. Otherwise, you’ll receive an
error stating that a domain (or a template) is open.

wls:/offline/base_domain>closeDomain()
wls:/offline>

Similarly, if you’ve issued the readTemplate instead of the readDomain command, you
must issue the closeTemplate command at this stage to proceed to the next step where
you create the domain:

wls:/offline/base_domain>closeTemplate()

NOTE
The writeTemplate command does provide similar functionality as the
pack command, but you only create an Admin Server template with
the writeTemplate command.

 4. Now that you have written the existing domain information to a template, you’re ready to
use that template to create a new domain using the createDomain command. Here’s the
syntax for the createDomain command:

createDomain(domainTemplate, domainDir, user, password)

Domain names must include only alphanumeric characters, hyphens (-), or underscore
characters (_), and must contain at least one letter or digit. Here’s the actual command
for our example:

wls:/offline>
createDomain('C:/Oracle/Middleware/user_templates/wl_server_12.1.2.0.jar','C:/Orac
le/Middleware/user_projects/domains//my_domain1','weblogic','welcome1')
wls:/offline>

This command creates a new WebLogic Server domain using the template you created
earlier and sets the default credentials to weblogic/welcome1. You won’t receive any
confirmation that the domain has been created, but the absence of any error messages means
that the domain was successfully created. If you go to the domain directory you’ve specified for
the new domain (C:\Oracle\Middleware\user_projects\domains\my_domain2), you’ll see a
new domain directory with the name my_domain2. You can start using the new domain now.
Note that the createDomain WLST command works essentially the same as the unpack
command.

At this point, you can start the Admin Server of your new domain by double-clicking
C:\Oracle\Middleware\user_projects\domains\new_base_domain\startWebLogic.cmd (or using
other startup methods discussed in Chapter 2), navigating to the Administration Console at
http://localhost:7001/console, and logging in as the “weblogic” user.

When you create a domain with WLST commands, you can modify the domain configuration
for the domain you’re creating. You can review some of the current configuration settings after you

150 Oracle WebLogic Server 12c Administration Handbook

issue the readDomain command, followed by the ls command, as shown here (in a shortened
form of the actual output):

wls:/offline>readDomain('C:/Oracle/Middleware/user_projects/domains/my_domain2')
wls:/offline/my_domain2>ls()
drw- AnyMachine
…
-rw- Active false
-rw- AdminServerName My_AdminServer
-rw- AdministrationMBeanAuditingEnabled false
-rw- AdministrationPort 9002
wls:/offline/my_domain2>

Using the WLST set Command to Modify Domain Configuration
At this juncture, it’s a good idea to learn how to modify the new domain’s configuration with the
set command and to finalize your updates with the updateDomain command. Here’s a simple
example that shows how to change the listen port of the Admin Server on your newly created
domain with the set command:

wls:/offline>readDomain('C:/Oracle/Middleware/Oracle_Home/user_projects/domains
/my_domain2')
wls:/offline/my_domain2>cd('Server/AdminServer')
wls:/offline/my_domain2/Server/AdminServer>set('ListenPort',7777)
wls:/offline/my_domain2/Server/AdminServer>updateDomain()
wls:/offline/my_domain2/Server/AdminServer>closeDomain()
wls:/offline>

Note that I used the cd command to move to the Admin Server first. I then issued the set
command with the new listen port and finally issued the updateDomain command to update the
config.xml file for this domain. The updateDomain command updates and saves the domain
configuration—the command automatically updates the domain’s config.xml file. You must first
open the domain configuration for editing with the readDomain command before you can issue
the updateDomain command. When you’ve completed editing the domain configuration, issue
the closeDomain command, which closes the domain for editing purposes. If the Admin Server
was running, it must be restarted for the listen port change to take effect. At this point, once
the Admin Server is started, the Administration Console is accessible at the new port on
http://localhost:7777/console.

The WLST set command, when used in the offline mode, sets the value of specific
configuration attributes and writes the new values to the domain’s configuration files. You can
issue multiple set commands in a row to update several configuration attributes, or you can use a
script to execute a series of configuration changes, especially when you want to update a number
of domains. Instead of executing the set command, you can also use the cmo (current
management object) variable to set attribute values, as shown here:

wls:/offline/new_base_domain/Server/AdminServer>cmo.setListenPort(7666)
wls:/offline/new_base_domain/Server/AdminServer>updateDomain()

Chapter 3: Creating and Configuring WebLogic Server Domains 151

The effect of using the set or the cmo.setattrName(value) commands is the same: if you look
in the MW_HOME\user_projects\domains\<domain_name>\config directory, you’ll see that, in
addition to the config.xml file, you now also have a file named backup_config.xml as well.
Whenever you make a change to the config.xml file through WSLT or the Administration Console,
the existing config.xml is saved in a backup file named backup_config.xml, backup_config1.xml,
and so on.

Using the configToScript Command
Instead of using commands such as createDomain and the rest, you can simply use the WLST
command configToScript to re-create domains. The command works with WLST in either the
offline or online mode. The script reads a domain and converts the config directory into an
executable WLST script, producing a Python file (.py) that you can then run on a different server.
Because the script requires a running instance, it automatically starts the instance if it’s not
currently running. Here’s the syntax of the configToScript command:

configToScript([configPath], [pyPath], [overwrite], [propertiesFile],
[createDeploymentScript])

When you execute the configToScript command, it creates a WLST script to re-create the
domain, as well as a properties file that you can edit to update any security-related files
containing encryption and key information.

Here’s an example that shows how to execute the configToScript command. Make sure you
specify the domain directory for the domain you want to use for creating the config.py file—by
default, WLST looks for the config.xml file in the directory from which you started it.

wls:/offline>
wls:/offline>
configToScript('C:\oracle\middleware\user_projects\domains\my_domain')
configToScript is loading configuration from
C:\Oracle\Middleware\Oracle_Home\user_projects\
domains\my_domain\config\config.xml ...
Completed configuration load, now converting resources to wlst script...
Creating the key file can reduce the security of your system if it is not kept
 in a secured location after it is created. Creating new key...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
Using existing user key file...
configToScript completed successfully The WLST script is written to

152 Oracle WebLogic Server 12c Administration Handbook

C:\oracle\middleware\user_projects\domains\my_domain\config\config.py and the
properties file associated with this script is written to
C:\oracle\middleware\user_projects\domains\my_domain\config\config.py.properties
WLST found encrypted passwords in the domain configuration.
These passwords are stored encrypted in
C:/oracle/middleware/user_projects/domains/my_domain/config/c2sConfigwl_server and
C:/oracle/middleware/user_projects/domains/my_domain/config/c2sSecretwl_server.
 WLST will use these password values while the script is run.
wls:/offline>

The command creates the config.py script and saves it in the config directory of the domain.
When you execute the config.py script, WLST connects to a running server and run the
commands in the config.py script to create the server resources. If a server isn’t running, WLST
will start a server using the values in the properties file, run the script commands to create various
resources, and when it finishes, shut down the server.

Selecting the Startup Mode for the WebLogic Domain
You can start the WebLogic domain in either of two modes—development or production.
Development mode doesn’t involve a strict configuration of the domain, whereas production
mode requires a more rigorous configuration of security.

NOTE
If you want to auto-deploy your applications, you must start the
WebLogic domain in development mode.

Here are the key differences between using development mode and production mode:

 � Deploying applications Only development mode lets you automatically deploy
applications, which is done by deploying applications placed in the DOMAIN_HOME\
autodeploy directory. If you start the domain in production mode, you have to use one of
the standard deployment techniques: using the WebLogic server Administration Console,
WSLT, or the weblogic.Deployer command.

 � JDBC system resource Development mode allows you 15 connections by default,
whereas production mode has capacity for 25 connections.

 � SSL In development mode, you can use the demonstration digital certificates and the
demonstration keystores. Using the same under production mode will result in a warning.

 � FastSwap You can use the FastSwap feature, which lets you shorten your application
development cycle only in development mode. Chapter 8 (which covers deploying
applications) explains the FastSwap feature in detail.

 � Rotating log files Each time you restart the WebLogic server instance in development
mode, the server rotates the log file and also renames it once it reaches a size of 500KB.
A WebLogic Server running in development mode can store only a specific number of log
files by default, whereas in production mode the server can create an unlimited number
of log files.

Chapter 3: Creating and Configuring WebLogic Server Domains 153

Advanced Domain Configuration Options
In the previous section, you learned how to create a simple WebLogic domain, mostly with
default values for all servers and services. This section briefly describes how to configure various
settings such as those for the Admin and Managed Servers. It also discusses some important
configuration options, such as creating custom file- and JDBC-based persistent stores that you’ll
need for storing JMS messages, among other things.

Configuring the Admin Server
Following is a brief description of the key configuration parameters for the Admin Server. You’ll
find these options on the Configure The Admin Server screen when creating a domain.

 � Name This mandatory field helps identify the Admin Server, and you must provide a
unique name for it when you have multiple domains.

 � Listen address You can select either All Local Addresses or Localhost as the value for
the listen address parameter. If you want the server instance to be available to both local
and remote processes, choose All Local Addresses as the value for the listen address
parameter. If you want only local processes running on the same server to be able to
connect to the server instance, select Localhost as the listen address. Note that you can
provide either an IP address or a DNS name for the listen address parameter.

 � Listen port The port value you specify for the listen port parameter is for nonsecure
(normal) connections using HTTP and t3. The default value of the listen port is 7001.

 � SSL enabled By checking this box, you can enable the SSL listen port.

 � SSL listen port This option lets you specify a port for secure SSL connections if you
chose to enable SSL connections (see the previous bullet). The default port for SSL
connections is 7002.

NOTE
The range of port numbers for the localhost is 1 to 65000. If you
choose 80 as the value for the localhost port number, you can omit
the port number from the URL used in an HTTP request (http://
localhost:portnumber/test.html).

Configuring Managed Servers
Creating and configuring a Managed Server using the Configuration Wizard is easy. Invoke the
Configuration Wizard (with the config.cmd script) and select the Update An Existing Domain
option on the Configuration Type screen. Click Next twice. Then on the Advanced Configuration
screen, select Managed Servers, Clusters And Coherence. On the Managed Servers screen, click
Next and then select the Add option to create a new Managed Server.

The process for creating a Managed Server is very similar to the one for creating the Admin
Server, which you learned in the previous section, wherein you configure things such as the listen
address, listen port, SSL listen port, and SSL enabled settings, for example.

154 Oracle WebLogic Server 12c Administration Handbook

Cloning a Managed Server
In Oracle WebLogic Server 12c, you can clone a new Managed Server from an existing Managed
Server. Accessing this new cloning function is simple, which you’ll find very handy when you’re
creating multiple Managed Servers in your environment.

You can access the Cloning function through the Configuration Wizard. Once you invoke the
Wizard, select the following options to clone an existing Managed Server:

 1. On the Configuration type screen, select Update An Existing Domain.

 2. On the Advanced Configuration screen, select Managed Servers, Clusters And
Coherence.

 3. On the Managed Servers screen, click the existing server name to activate the Clone
button (when the screen first appears, it’s grayed out).

 4. Click Clone on the Managed Servers screen to create an identical Managed Server as the
existing Managed Server, but with a different listen port, of course.

 5. On the Assign Servers To Machines screen, make sure the new clone Managed Server that
appears in the left pane is moved to the right pane to assign the server to the machine.

In addition to using the Configuration Wizard, you can also use WLST commands to clone an
existing Managed Server.

Configuring Clusters
If you choose to add at least one Managed Server, the Configuration Wizard will show you the
Clusters screen, shown in Figure 3-10, through which you can add, delete, and configure a
cluster. Click Add on the Clusters screen to create a new cluster. Here are the cluster
configuration attributes you must configure:

 � Cluster Name You must select a unique valid name consisting of a character string.

 � Cluster Address You must provide the address of all the Managed Servers in the cluster
using either a DNS name that maps to multiple IP addresses or a comma-separated list of
DNS names (or IP addresses) and ports associated with those DNS names, for example,
prod1:7001,prod2:7001).

Assigning Managed Servers to Clusters
If you choose to create one or more clusters, you’ll see the Assign Servers To Clusters screen. You
can assign Managed Servers to the cluster you select in the Cluster pane of this screen. Note that
you can only assign Managed Servers to a cluster because an Admin Server of a domain is not
part of a cluster. Of course, you can also remove an assigned Managed Server from a cluster on
the same screen.

Configuring Machines
As explained in Chapter 2, you need to first define (create) a machine if you want the Node
Manager to start remote Managed Servers. In addition, the concept of a machine helps WebLogic
Server determine the best servers in a cluster to handle various domain-wide tasks. You must
configure machines for each server where you’re running a Node Manager process. Chapter 2

Chapter 3: Creating and Configuring WebLogic Server Domains 155

also showed you how to create a machine using the Configuration Wizard, in which you select
the Machine tab (Windows) and click Add to add a machine definition. You specify a machine
name, as well as the Node Manager listen address (the default is localhost) and listen port (the
default is 5556). On UNIX servers, there are additional configuration items relating to the UNIX
group ID (UNIX GID). Click Next after you’ve configured the settings.

Once you configure a machine, the next step is to assign the WebLogic Server Managed
Server instances to that machine. Chapter 2 showed you how to assign WebLogic Server instances
to a machine. You must do this for each WebLogic Server instance you want to assign to a
machine.

Targeting Deployments to Clusters or Servers
The Target Deployments To Clusters Or Servers screen appears only if you use a template
you’ve created that contains Java EE applications or libraries. Chapter 8 shows you how to
deploy applications to WebLogic Servers. The next screen, Target Services To Clusters Or
Servers, is similar—you’ll see this during configuration only if your template includes any
Java EE libraries.

FIGURE 3-10. Configuring a WebLogic cluster using the Configuration Wizard

156 Oracle WebLogic Server 12c Administration Handbook

Configuring a Persistent Store
Several WebLogic Server subsystems and services, mainly JMS and the Store-and-Forward (SAF)
service agents, but also JTA and the WebLogic Diagnostic Framework (WLDF), need a persistence
store to save messages on either a temporary or a permanent basis. WebLogic Server lets you
create two types of WebLogic persistent stores to enable the storing of messages by these
subsystems—a file-based store or a JDBC-enabled store, which is persisted in an RDBMS. The
WebLogic Diagnostic Framework (WLDF) can use the persistent store to save logs, events, and the
server metrics it harvests. Each subsystem that uses the persistent store uses a separate connection
ID to access the store. The key benefit of using a persistent store is better performance, as well as
the fact that the store supports transactions. Supporting a transaction in this context means the
store conforms to the standard database transaction properties—atomicity, consistency, integrity,
and durability (ACID). Thus, if the server goes down unexpectedly, the committed transactions
aren’t lost because they will have been stored on disk already—you may lose the uncommitted
transactions, but a transaction won’t be left in an incomplete state.

You only need one persistent store for all your subsystems, provided all the systems are targeted
to the same server instance. WebLogic Server provides a ready-to-use, preconfigured default file-
based persistent store, and you can customize the file-based store or create a separate JDBC store in
a database. If you’re using a cluster, you can migrate the persistent store from one server to another.

You can base your decision between a file-based system and a JDBC store on the following
criteria: A file-based store is self-contained on a server and isn’t connected to external
components, is easy to configure, and is generally faster to use when compared to a JDBC store.
A JDBC store, on the other hand, is innately slower and produces network traffic but is accessible
from different servers. For a file-based store to be shareable, you must configure it on a shared file
system. If you set it up on a shared file system, you can also migrate the disk-based file system, if
necessary, as explained in Chapter 7. Note, however, that storing the file-based store on a shared
disk could impact its performance and reliability.

Creating a Custom File-Based Store
Here are the steps for creating a custom file-based store:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Select Persistent Stores after expanding Services in the left-hand pane.

 3. On the Summary Of Persistent Stores page, click New | Create FileStore.

 4. On the Create A New File Store page, enter the name of the file store you want to create,
the directory where you want the file store to reside (for example, C:\Oracle\Middleware
\user_projects\domains\new_base_domain\servers\AdminServer\data\store\
MyFileStore), and the server where you want to deploy the file store. If you’re targeting
your persistent file store to a migratable target, ensure that all members of the migratable
target can access the directory you specify. Click OK when done.

 5. Click the name of the new persistent store on the Summary Of Persistent Stores page.

(Optional) Specify the following advanced parameters from the File Store | Configuration
page: an optional logical name for the store, as well as Synchronous Write Policy options
to specify how the persistent store writes messages and other data to disk.

 6. Click Save and activate the persistent store by clicking the Activate Changes button in the
Change Center of the Console.

Chapter 3: Creating and Configuring WebLogic Server Domains 157

You need to restart the server only if you’re modifying the configuration of a persistent store,
but not when you initially create it.

Creating a JDBC-Based Persistent Store
The process of creating a JDBC-based persistent store is similar to creating a file-based store, but
there are a few extra steps, such as setting up the connections to the database. Here are the steps:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Select Persistent Stores from Services in the left-hand pane.

 3. Click New | Create JDBCStore on the Summary Of Persistent Stores page.

 4. On the Create A New JDBC Store page, shown in Figure 3-11, enter the name of the
store and the target server for the store. For Data Source, you can select a configured
JDBC data source or a multi data source. For now, select a JDBC data source by clicking
the Create A New Data Source button. Enter a name, a JNDI (for example, jdbc/db/
MyFileStore), and a database type (for example, Oracle). On the next screen, choose a
database driver, such as Oracle’s Driver (Thin) for Service Connections, after which you
will be required to enter your database connection properties, including database name,
hostname, port, database username, and password. You must ensure that all servers in
a migratable target can access this data source if you’re targeting a migratable target.
You can also specify a prefix name to use for table names if you want to use them with
multiple instances. Click OK when you’re done.

FIGURE 3-11. Creating a new JDBC store

158 Oracle WebLogic Server 12c Administration Handbook

NOTE
You must use a JDBC data source that uses a non-XA JDBC driver and
not one that supports global transactions. Subsystems that use the
JDBC store, such as JMS, have the necessary X/Open Architecture (XA)
capabilities. Chapter 4 discusses transactions and JDBC drivers.

 5. From the Summary Of Persistent Stores page, select the JDBC store you’ve just created.
Click the JDBC Store | Configuration tab and update optional advanced parameters such
as the logical name for the JDBC store. You can also select the Create Table From DDL
File option to create the store’s backing store, named WLStore, if there isn’t one. You can
also specify JDBC tuning parameters such as the maximum number of inserts and deletes
per batch, but Oracle recommends that you leave these parameters alone unless Oracle
Support requests that you modify them.

 6. Click Save and then click the Activate Changes button in the Change Center of the Console.

You don’t have to restart the server unless you’ve reconfigured your current JDBC store.

Configuring Server Environments
Deploying enterprise applications through WebLogic Server means you have to configure a bunch of
things after you successfully complete the WebLogic Server installation. This chapter reviews some of
the essential items you must configure, including the network, the configuration of WebLogic Server
as a web server, proxying, and the WebLogic persistent store for using services such as JMX. Later
chapters will show you how to configure other important things such as Work Managers, for example.

Configuring the Network
WebLogic Server comes with a default network channel and allows you to configure a dedicated
administration channel for administrative traffic. In addition, you can configure custom network
channels. Using custom channels, you can configure your network to meet your domain’s needs by
configuring different network interface cards (NICs) and port numbers. You can use these multiple
channels to separate external client traffic from internal server traffic. If you wish, you can configure
the network so that client traffic is handled by a dedicated NIC. All this promotes stability,
performance, and the ability to handle various types of network failures, including the failure of a
NIC. Network channels also enable you to configure different protocols and security requirements
based on web traffic. You can use custom network channels to create complex network configurations
that use different protocols for different listen addresses and ports, all on the same machine.

A network channel simply defines network connections for WebLogic Server instances by
allowing you to specify attributes such as the network protocol, listen address, and listen port, as
well as connection properties. Note, however, that the network channels and their configuration
can have a huge bearing on service levels. Custom network channels certainly are an important
WebLogic Server feature for production environments because you can customize channels for
specific application requirements as well as scheduled and unscheduled maintenance activity.
Custom network channels are discussed, in detail, in Chapter 5.

The Default Network Channel
You only need to configure basic attributes for your development server’s Managed Servers. The
two basic network attributes are the listen address and listen port.

Chapter 3: Creating and Configuring WebLogic Server Domains 159

Every WebLogic Server domain has a default channel that is generated automatically by
WebLogic Server. The default channel provides a single listen address, one port for HTTP
(nonsecure) communication (7001 by default), and one port for HTTPS (secure) communication
(7002 by default). You can configure the listen address and listen port using the Configuration |
General page of the Managed Server in the Administration Console; the values you assign are
stored in attributes of the ServerMBean and SSLMBean.

The default network channel continues to exist, even when you create multiple custom
network channels. However, remember that the default network channel is sufficient only for
development and test servers, and not for a production environment, for various reasons. By
default, WebLogic Server uses the nonsecure default protocol specified for the default channel to
send nonsecure communications relating to session information to members of a cluster. Thus, if
you want to disable the default channel, ensure that you create an alternative custom network
channel that uses a nonsecure protocol. The other alternative is to create a special replication
channel for cluster communications such as these.

The Administration Channel
You can have WebLogic Server create a separate administration channel by enabling an
administration port. By default, the server has only the default channel running on the default
listen port (7001). When you enable the optional administration port, a Managed Server will
subsequently only use this port to communicate with the Admin Server—thus the name
administration channel. You can start a Managed Server in the standby state only if you’ve
configured the administration port. Once you set up an administration port, all administration
traffic will flow through this port, with the other ports handling the application traffic. Thus, you
can separate these two types of traffic by enabling the administration port, thereby letting the
server create the administration channel for you.

The administration port you enable accepts only secure SSL traffic. Also, all connections to
the server via the administration port must be authenticated. Just remember that the
administration port you configure applies to the entire domain and not to any individual members
of the domain. Therefore, when you set the administration port for one Managed Server in a
domain, you must go ahead and enable the port for all other Managed Servers as well.

The Administration Port and SSL Once you enable the administration port, regardless of how
you start a Managed Server, you must connect to the Admin Server through an SSL connection. In
addition, following the enabling of the administration port, you can only connect to the
Administration Console through the administration port. By default, SSL is disabled. You can also
enable it from the Administration Console’s Server | Configuration | General page by checking the
SSL Listen Port Enabled check box. WebLogic Server uses demo certificate files for SSL
communication, but you can configure SSL for production with a different set of security settings.
Once you configure an administration port, you have two default listen ports for each server
instance: the default listen port and the default SSL listen port. You must always keep the default
non-SSL port because the server uses it if it can’t bind to the administration port you’ve configured.

NOTE
Oracle WebLogic Server strongly recommends enabling the administration
port. Besides separating administration and user traffic, the administration
port is a prerequisite if you want to start a server in standby mode.

160 Oracle WebLogic Server 12c Administration Handbook

Configuring the Administration Port Before you enable the administration port, ensure that all
servers in the domain support the SSL protocol. You must also enable (and disable) the
administration port simultaneously for all the servers of a domain as well. Because you can’t
dynamically enable the administration port on a Managed Server, you must restart the Managed
Servers once you enable the administration port for each server in the Administration Console.

Follow these steps to configure a domain-wide administration port:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Shut down all the domain’s Managed Servers.

 3. Under Domain Structure in the left-hand pane, select the domain for which you want to
enable the administration port.

 4. Go to Configuration | General.

 5. Check the Enable Administration Port check box.

 6. Enter the SSL port number for the administration port in the Administration Port field.

 7. Click Save, and activate your changes by clicking the Activate Changes button in the
Administration Console.

 8. Start all the domain’s Managed Servers.

 9. As this is a nondynamic change, restart the Admin Server for the change to take effect.

Remember that you must now use the administration port to connect to the Administration
Console. If you try to connect to the Console using the HTTP port and protocol (for example,
http://localhost:7777/console), you will get the following message in your browser:

Console/Management requests or requests with <require-admin-traffic> specified
to 'true' can only be made through an administration channel

In addition, since Managed Servers must use the administration port now, you must specify the
HTTPS protocol and the new administration port when starting a Managed Server, as shown here:

-Dweblogic.management.server=https://hostname:admin_port

If you aren’t using a start script or command-line option, but instead are using the Node
Manager to start your Managed Servers, you don’t have to change anything: the Node Manager
automatically uses the administration port if it’s enabled.

Once you’ve configured the administration port, your server will have two default ports: a
non-SSL listen port and an SSL listen port. You may disable either of these if you want to do so for
some reason—you just can’t disable both at the same time. To disable (and reenable) the listen
ports, go to the Administration Console’s Environment | Servers | Configuration | General page,
and deselect or select Listen Port Enabled or SSL Listen Port Enabled. You can disable the
verification of hostnames if the hostname in the URL is different from the hostname in an Admin
Server’s certificate by entering the following:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

Note that you’re supposed to use this feature only in a development or testing environment.
Production configurations must use real certificates, but that’s a lot of overhead for setting up a
development or testing environment.

Chapter 3: Creating and Configuring WebLogic Server Domains 161

If you want the Managed Server to use the administration channel during a reboot, use the
following option at the command line when you start a Managed Server:

-Dweblogic.admin.ListenAddress=<addr>

By doing this, you’ll ensure that the Managed Server starts using the administration channel upon
restarting.

Configuring WebLogic Server as a Web Server
By now, you are well aware that Oracle WebLogic Server is a powerful Java EE–compliant
application server capable of supporting multiple web applications by serving dynamic content
through servlets, JSPs, and custom tag libraries. You can also use WebLogic Server as a full-fledged
HTTP server, serving static content such as HTTP pages, applets, and multimedia files, just like a
normal web server. WebLogic Server provides all the standard web server features such as virtual
hosts, which enable a single server or cluster to host multiple web sites, with each logical web
server having a distinct hostname. You use the Domain Name Service (DNS) to map all the virtual
hosts to the same IP address and enable a single web application to use these multiple virtual web
sites. This section shows you how to configure the web server and the HTTP protocol.

Configuring the Listen Port
The default listening port on which the WebLogic Server listens for HTTP requests is port 80.
When using this default port number, HTTP requests can leave out the port number, as in http://
hostname/intro.html, instead of http://hostname:portnumber/intro.html, for example. The issue of
setting port numbers is slightly more complex on a UNIX server than on a Windows server. If you
want to use a port number under 1025 on a UNIX system, you must start the server as a privileged
user, which leaves you vulnerable from a security viewpoint. By setting the weblogic.system
.enableSetGID and the weblogic.system.enableSetUID properties to true, however, you can make
the server switch its UNIX ID to a nonprivileged user account after initially binding to port 80, for
example. WebLogic Server then uses the nonprivileged user account and group by setting the
properties weblogic.system.nonPrivUser and weblogic.system.nonPrivGroup.

Here’s how to configure the listen port through the Administration Console. The Managed Server
can be running or shut down. If it’s shut down, you need to restart it to use the listen port you’ve
configured. Follow these steps in the Administration Console to configure a listen port for a server:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Select Servers from Environment in the left-hand pane.

 3. Click the name of the server for which you want to configure the listen port.

 4. Select Configuration | General.

 5. Enter the value in the Listen Port box for the non-SSL listen port and/or the SSL listen port.

 6. Click Save and then click the Activate Changes button in the Change Center of the Console.

 7. Restart the server(s) for which you’ve changed the listen port number.

These steps work in a Windows installation. If you are running WebLogic Server under a
Linux or UNIX-based operating system, additional steps are required to bind to the operating
system username and group. To do so, in the left-hand pane, expand Environment and click
Machines. If the machine is of type UNIX Machine, then you should select the Enable Post-Bind

162 Oracle WebLogic Server 12c Administration Handbook

UID and Enable Post-Bind GID check boxes, and enter the corresponding Post-Bind UID and
Post-Bind GID to which you want the WebLogic Server web server to bind. By default, this is set
to the UNIX user “nobody” and group “nobody.”

Overriding Network Configuration with Command-Line Options
When starting a server from the command line, you may specify some options to override the
configuration stored on the config.xml file. When you do so, the server will run with the options
you’ve set until you restart the server. Changing any configuration settings (dynamic changes)
through the Administration Console or through WLST won’t affect these options until you restart
the server. When you specify options at the command line by using the -Dweblogic option, the
server instance initializes the configuration MBeans based on the configuration in the config.xml
file, but for the duration of the server’s lifecycle it substitutes the values in the file with those you
manually specify.

When do you specify configuration options at the command line to override the settings in
the config.xml file? You do so when you want to use a different set of values temporarily for
configuration properties for testing or other purposes. For example, if you need to troubleshoot
SSL issues, you may add the -Dssl.debug=true and -Dweblogic.security.SSL.verbose=true
arguments during the course of the troubleshooting. This allows you to make temporary
configuration changes without having to modify the config.xml file.

It’s important to understand that you can’t query the Administration Console to check any
configuration values you’ve set on the command line to override the values in the config.xml file.
Instead, use WLST to find the temporary configuration changes by interrogating the server’s local
configuration MBean. Here’s an example that shows how to verify the attribute values you’ve set
from the command line:

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>java weblogic.WLST
wls:/offline> connect ('weblogic','welcome1','t3://localhost:7003')
Connecting to t3://localhost:7003 with userid weblogic ...
Successfully connected to managed Server 'My_ManagedServer_1' that belongs
to domain 'My_domain'.
wls:/My_domain/serverConfig> cmo.getAdministrationPort()
7001
wls:/My_domain/serverConfig> cd ('Servers/My_AdminServer/Log/My_AdminServer')
wls:/My_domain/serverConfig/Servers/My_AdminServer/Log/My_AdminServer>
cmo.getStdoutSeverity()
'Notice'

The WLST command getStdoutSeverity shows the current severity level of messages that the
server prints to standard output. In this example, it is set to Notice. You can use the logging
settings to change the severity level from the command line temporarily.

You can temporarily override the config.xml file values by setting command line values for
server communications (port and host), SSL, security, messages and logging, clusters, deployment,
and other server configuration options. This section shows some examples of how you can
override the server communication and SSL configuration settings in the config.xml file. Note that
setting configuration options in this way should not be a routine practice in your environment. In
general, individual teams should lay out clear rules about which part of the WebLogic Server
configuration is managed in which configuration artifacts. Moving the configuration to scripts
would make for a great deal of confusion.

Chapter 3: Creating and Configuring WebLogic Server Domains 163

Server Communication Here are a few examples of the options that can be set at the
command line to configure server communications:

 � -Dweblogic.management.server=[protocol://]Admin-host:port /* overrides the
administrator port setting.

 � -Dweblogic.ListenAddress=host /* overrides the host address where the instance listens
for requests.

 � -Dweblogic.ListenPort=portnumber /* overrides the plain-text listen port.

 � -Dweblogic.ssl.ListenPort=portnumber /* overrides the SSL listening port.

SSL Any options that you start with the -Dweblogic.security.SSL option modify the weblogic
.management.configuration.SSLMBean, which is the MBean that represents a server’s SSL
configuration. Here’s an example:

-Dweblogic.security.SSL.ignoreHostnameVerification=true /* disables host name
 verification

You can enable SSL for a server instance named My Server by issuing the following command
when you start that server:

java -Dweblogic.Name=MedRecServer
 -Dweblogic.ssl.Enabled=true weblogic.Server

Note that the Administration Console won’t show you any values that you set at the command
line.

HTTP Tunneling
Normal HTTP connections are stateless and provide a two-way connection between server and
client. HTTP tunneling is a way of allowing direct RMI access via port 80 and the HTTP protocol.
This allows an EJB or JMS client to have access to service interfaces in JNDI without making a
direct t3 connection. HTTP tunneling is commonly used to allow an applet to gain access to such
functionality. You can simulate HTTP tunneling using a t3 protocol to set up a connection to
tunnel through an HTTP connection for supporting stateful connections. By default, HTTP
tunneling is disabled on a server, and you can turn it on in the Administration Console. You do
this by going to Servers | Protocols | General and checking the Enable Tunneling check box. By
doing this, you specify that tunneling should be enabled for this server for the t3, t3s, HTTP,
HTTPS, IIOP, and IIOPS protocols. You can also configure two attributes that control tunneling
behavior: the tunneling client ping attribute and the tunneling client timeout attribute. The
tunneling client ping attribute determines the time within which a server must respond to a client
request. The tunneling client timeout attribute determines how long a server must wait after a
client request before concluding that the client connection is dead and terminating it. Oracle
recommends that you leave these attributes at their default settings.

Setting a Default Web Application
A web application that you designate as a default application will field all HTTP requests that don’t
resolve to another application. The default application doesn’t use its name inside the URL, as
other web applications on the server do. In our sample wl_server domain, for example, the default

164 Oracle WebLogic Server 12c Administration Handbook

application is named DefaultWebApp. For example, if there’s a request for the file stores.jsp under
the document root, the requestor can access it through the URL http://localhost:port/stores.jsp. If a
client request uses a URL that doesn’t resolve to any of your deployed applications, WebLogic
Server forwards the request to your default application.

If you haven’t configured a default application or if the resource isn’t in the default web
application, the user will receive an “HTTP 404, Resource Not Found” error. Setting up a default
web application is simple. Use the context root in the application.xml or weblogic.xml file to set
a web application as a server’s default application. Just set the context root to / and set the
context path in the weblogic.xml descriptor for the default web application as shown here:

<weblogic-web-app>
 <context-root>/</context-root>
</weblogic-web-app>

Of course, you must make sure you have deployed the web application to a server or a virtual host.

Preventing POST Denial of Service Attacks
You can set up the WebLogic Server so it prevents POST denial-of-service requests, which are
designed to overwhelm a web server by sending enormous amounts of data in an HTTP post request
with the intention of causing disruption by overloading the server. You can set the following attributes
in the Administration Console for both normal and virtual servers to prevent these types of attacks.

The PostTimeoutSecs attribute controls the time the server pauses in between the receiving of
chunks of HTTP POST data. The MaxPostTimeSecs attribute sets the maximum time a server may
continue to receive POST data. Finally, the MaxPostSize attribute limits the number of bytes in a
single POST method HTTP request. This can be configured via the Administration Console by
navigating to Server | Protocols | HTTP. Note that Oracle recommends that you leave the default
settings on for all three attributes.

Configuring HTTP Logging
HTTP access logging is highly useful for tracking HTTP transactions conducted by a web server.
By default, WebLogic Server logs are in what is known as the common log format, the syntax of
which is shown here:

host RFC931 auth_user [day/month/year:hour:minute:second
UTC_offset] "request" status bytes

A few observations about the common log format are in order. The RFC931 attribute shows
the IDENTD information returned for remote clients, but WebLogic Server doesn’t support the
identification of users. The auth_user contains a value only if the remote client authenticated with
a user ID. The request attribute shows the first line of the client’s HTTP request, and the status
attribute shows the HTTP status returned by the server, if available.

WebLogic Server also supports the extended log format, which is a new logging standard
specified by the World Wide Web Consortium (W3C). You can customize logging information
with the extended log format by setting various attributes and selecting the exact type and even
order of the logging information. Setting up the extended log format for all logging files is easy.
Simply change the Format attribute to Extended on the HTTP tab in the Administration Console.
You can specify various directives in the extended log format-enabled log file to tell the server
which types of information it should record in the log files.

Chapter 3: Creating and Configuring WebLogic Server Domains 165

TIP
You can specify different logging attributes for each server or for each
virtual host.

In the next section, I show how to enable and configure HTTP logging, specify the location
and names of the log files, and change the way the server rotates the log files.

Configuring the HTTP Logs
By default, WebLogic Server stores all HTTP logs in the directory as server logs in the WL_
HOME\user_projects\domains\<domain_name>\servers\<server_name>\logs directory. Follow
these steps to configure HTTP access logs for a server or virtual host:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Select Servers from the left-hand pane, after expanding the Environment tab.

 3. Click the server name from the Servers table.

 4. Select Logging | HTTP.

 5. Check the HTTP Access Log File Enabled box.

 6. Enter a path and filename for the access log in the Log File Name field. This can be a
relative directory, such as logs\access_log.txt, or a fully qualified directory, such as
C:\Oracle\Middleware\user_projects\domains\base_domain\servers\AdminServer\
logs\access_log.txt.

If you want the server to affix a date and timestamp to the log files it rotates, enter the date
and format variables surrounded by percentage (%) characters, as shown in this example:

access_%yyyy%_%MM%_%dd%_%hh%_%mm%.log

If you don’t specify a date and timestamp, the server simply renames the older rotated
logs with a serial number, such as access.log00099, for example.

 7. In the Rotation File Size field, select the size to which the log file can grow before it’s
rotated by the server—that is, start writing to a new log file after archiving the filled-up (or
timed-out) log file. The new file, meaning the current log file, will always have the simple
name access.log, with no date, timestamp, or serial number.

You can do the following on this page:

 � Choose to limit the maximum number of old log files the server retains by specifying a
value in the Limit Number Of Retained Files check box.

 � Specify that the server not wait until the current log reaches its maximum capacity,
but instead write to a new file after a specific time interval. You can do this by
choosing By Time in the Rotation Type list box and entering the time interval in the
Rotation Interval field.

 � Specify the log archive directory location in the Log File Rotation Directory field.

 8. If you want to specify the extended log format for the log files instead of the default
common log format, click Advanced at the bottom of the page and select the Extended
format in the Format drop-down list. You can specify the fields for the extended log
format by selecting Extended Logging Format Fields on this page.

166 Oracle WebLogic Server 12c Administration Handbook

 9. Click Save and activate the logging changes you made by clicking the Activate Changes
button in the Change Center.

Note that you must restart the server for the logging changes to take effect.

Proxying Requests to Other Web Servers
If you choose to set up the WebLogic Server as your main web server, you can configure it to act
as a proxy for other web servers such as an Apache web server on the same or a different
machine. WebLogic Server can then pass on specified HTTP requests to the other web server
based on the URL of the HTTP request.

Unlike the rest of the web server configuration, you must configure proxying within the web
application itself, not on WebLogic Server. Use the HttpProxyServlet provided by WebLogic
Server and configure it within a web application that you’ve deployed on the WebLogic Server
that you want to proxy HTTP requests. The HttpProxyServlet receives HTTP requests and sends it
to the proxy URL you’ve configured, but the client response is sent through the WebLogic Server.

You must use the default web application on a server instance to set up web server proxying. Note
that you set up proxying by configuring various things in the web application’s deployment descriptor,
named web.xml. (Deployment descriptors are discussed in detail in Chapter 8.) A sample web.xml
extract showing how you actually configure the web application for proxying is included in Listing 3-1.
Follow these steps to set up proxying to a different web server such as an Apache web server:

 1. First, register the proxy servlet HttpProxyServlet in the application’s web.xml file.

 2. Specify the URL of the server to which you want the HTTP requests to be proxied.

 3. By default, the proxy will use one-way SSL. Optionally, set up two-way SSL by
configuring several <keystore> initialization parameters that include the specification of
your certificate and key.

 4. Configure the <servlet-mappng> element to map the HttpProxyServlet to a specific
URL using the <url-pattern> element. Note that you can set this element to “/” so that
WebLogic Server can proxy all requests it can’t resolve to the remote server. If you do
this, however, also map the extensions, such as .jsp, for example.

 5. Finally, deploy the application you’ve configured for proxying to the Managed Server that
will redirect the client requests to the Apache or another web server.

Listing 3-1 shows part of a web.xml file that configures the web application to use the proxy
servlet HttpProxyServlet.

Listing 3-1 Configuring a Web Application for Proxying

<web-app>
 <servlet>
 <servlet-name>ProxyServlet</servlet-name>
 <servlet-class>weblogic.servlet.proxy.HttpProxyServlet</servlet-class>
 <init-param>
 <param-name>redirectURL</param-name>
 <param-value>server:port</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>

Chapter 3: Creating and Configuring WebLogic Server Domains 167

 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>*.jsp</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>*.htm</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>*.html</url-pattern>
 </servlet-mapping>
</web-app>

Configuring the WebLogic Server Proxy Plug-Ins
Although you can, technically speaking, use WebLogic Server itself as a full-featured HTTP server,
remember that its main purpose is to host dynamic web applications. You’re better off using a
dedicated web server for serving the static content and passing requests for JSPs and servlets to the
WebLogic Server. In this type of configuration, a dedicated web server such as Apache HTTP Server,
which serves as your primary HTTP server, is said to act as a proxy for the WebLogic Server instances.
Note that a proxy web server is by no means necessary in your environment—if your applications
mostly serve dynamic content such as JSPs and servlets, you may not need a web server to act as a
proxy. WebLogic Server offers server proxy plug-ins for web servers, including Oracle HTTP Server,
Apache HTTP Server, Microsoft Internet Information Server, and Oracle Java System Web Server. Note
that, in most cases, this is the primary mechanism for managing clusters of HTTP sessions.

The proxy plug-ins give HTTP servers the ability to communicate with WebLogic Server
instances. The plug-ins allow the web server to proxy requests that need dynamic functionality to
the WebLogic Server. When a user directs an HTTP request to the web server, it serves any static
pages that are necessary to satisfy the request and forwards the requests for dynamic pages to
WebLogic Server, which processes those requests using servlets or JSPs. The WebLogic Server
instance doesn’t have to run on the same host as the web server.

The following sections shows you how to install and configure an Apache web server plug-in
to proxy requests to WebLogic Server.

NOTE
By default, the plug-ins don’t support two-way SSL, but you configure
them so they request the client certificate, which they then pass along
to the WebLogic Server instance.

Installing the Apache Web Server Plug-In
When you configure an Apache HTTP Server plug-in, you treat the plug-in like any other Apache
module the web server loads when it starts. You can configure plug-in proxy requests to the
WebLogic Server by proxying requests based on all or part of the request URL (proxying by path),
or on the MIME type of the requested file. You can also specify a combination of the path and the
MIME type, if you wish.

168 Oracle WebLogic Server 12c Administration Handbook

In releases prior to Oracle WebLogic Server 12c, you didn’t have to download the Apache
plug-in separately, as it was bundled with WebLogic Server. WebLogic Web Server Plugins 12.1.2
is now a downloadable option, separate from WebLogic Server. Access the Oracle WebLogic Web
Server Plugins page using the following URL:

www.oracle.com/technetwork/middleware/ias/downloads/wls-plugins-096117.html

The full name for the plug-in is Oracle WebLogic Server Proxy Plug-In 12c for Apache HTTP
Server. Using this plug-in, the Apache HTTP Server proxies incoming HTTP requests to the
back-end WebLogic Managed Servers or clusters.

Because you are installing the plug-in as an Apache module and linking it as a dynamic
shared object (DSO), you don’t have to recompile the Apache web server.

Follow these steps to install the Apache HTTP Server plug-in:

 1. Select the appropriate plug-in shared object file from the downloaded plug-in zip
distribution. For Apache HTTP Server 2.2.x running on Windows 64-bit, locate the
lib\mod_wl_.so file under C:\myhome\weblogic-plugins-12.1.2, which serves as the
PLUGIN_HOME (location where I extracted the plug-in zip file) in my example. The
WebLogic proxy module for Apache HTTP 2.4 is named mod_wl_24.so.

 2. Before you install the mod_wl_.so plug-in, you must ensure the mod_so.c module is
enabled in the Apache server so you can install mod_wl_22.so as a dynamic shared
object. You can verify this by executing this command:

APACHE_HOME\bin\apachectl -l

In the previous command, APACHE_HOME is the directory containing your Apache
HTTP Server installation. In some installations of Apache, you may have to run the
following command instead:

APACHE_HOME\bin\httpd -l

If you don’t see mod_so.c as an enabled module, you must recompile the Apache server
with the appropriate options (by including the -enable-module=so option).

 3. Copy the mod_wl_.so file to the APACHE_HOME\modules directory.

 4. Add the following to the httpd.conf file for the Apache server (you may want to first copy
the current httpd.conf file), located under APACHE_HOME\conf:

LoadModule weblogic_module C:\myhome\weblogic-plugins-12.1.2\lib\mod_wl_so

Optionally, you can define parameters in the Location block (for proxying by path) or the
IfModule block (for proxying by MIME type). Here are examples for both:

<Location /mywebapp>
 SetHandler weblogic-handler
</Location>

<IfModule mod_weblogic.c>
 WebLogicHost wls-host
 WebLogicPort wls-port
</IfModule>

Chapter 3: Creating and Configuring WebLogic Server Domains 169

If you’re using Apache 2.4.x, in the httpd.conf file, the LoadModule line should look like this:

LoadModule weblogic_module C:\myhome\weblogic-plugins-12.1.2\lib\
mod_wl_24.so

Include %PLUGIN_HOME\lib in the PATH, as shown here:

set PATH=c:\myhome\weblogic-plugin-12.1.2\lib:…

Alternatively, you can copy the contents of the lib directory to APACHE_HOME\lib, or you can
edit APACHE_HOME\bin\apachectl to include the PLUGIN_HOME\lib directory in the path.

 5. Check the syntax of the modified httpd.conf file:

APACHE_HOME\bin\apachectl -t

In some installations of Apache, you may have to run the following command instead:

APACHE_HOME\bin\httpd -t

 6. Restart WebLogic Server and the Apache HTTP Server.

You should see the default page you defined for the default web application of your WebLogic
Server instance.

Configuring the Apache Plug-In
Once you install the Apache plug-in, you must configure it so it routes requests to the appropriate
WebLogic Server instance. The previous section described how to install the Apache HTTP Server
plug-in so the Apache server loads the WebLogic plug-in library as an Apache module. Here is
how you configure it:

 1. Go to the APACHE_HOME\conf directory and open the httpd.conf file for editing.

 2. Add the following IfModule block to the bottom of the file to specify which application
requests the module must handle:

<IfModule mod_weblogic.c>
 WebLogicHost myweblogic.server.com
 WebLogicPort 7011
 MatchExpression *.jsp
</IfModule>

 Note that the MatchExpression line in the IfModule block is optional—it specifies that all
MIME type .jsp files must be proxied. Use the IfModule block to specify any parameters
that apply to proxying by MIME type.

 3. Use the Location block to specify parameters that apply to proxying by path. When you
use the Location block, you must also use the SetHandler statement within that block to
specify the handler for the Apache HTTP Server plug-in module. Here’s an example:

<Location /weblogic>
 SetHandler weblogic-handler
 PathTrim /weblogic
</Location>

170 Oracle WebLogic Server 12c Administration Handbook

The PathTrim parameter shows the URL string that’s trimmed from the beginning, before the
Apache web server passes on a request to the Oracle WebLogic Server.

Configuring Virtual Hosts
You use virtual hosting to define multiple hostnames for a server or cluster to use. You can use
DNS to specify multiple hostnames that map to a single IP address of WebLogic Server. You then
designate which virtual host will serve the various web applications. The key here is that, as far as
the browser is concerned, it doesn’t see the individual machines that are behind the firewall or in
the cluster; it sees the “virtual host” that hosts the application. Virtual hosting thus enables you to
maintain multiple hosts on a single machine. Virtual hosts are useful for load balancing purposes,
especially in a clustered environment. You can avail yourself of many more configuration
possibilities by setting up virtual hosts. There’s no limit on the number of virtual hosts you can set
up, and you can specify separate HTTP parameters for each virtual host, settings that will override
the server’s settings. Remember that you can set up virtual hosts for a single WebLogic Server or
for a cluster of servers.

NOTE
If you target a virtual host to a WebLogic cluster, it will apply to all
cluster members.

Setting up virtual hosting in your environment involves, of course, creating the virtual host
itself, but, in addition, there are multiple actions you must take to make applications use that
virtual host. Here are the actions you must perform in order to enable virtual hosting of your web
applications:

 1. Create a virtual host.

 2. Configure HTTP for the virtual host.

 3. Target virtual hosts to servers.

 4. Target the web applications to the virtual host.

The following section shows you, in detail, the steps to take to perform each of these actions
through the Administration Console.

Creating a Virtual Host
Here’s how to create a virtual host:

 1. Select Virtual Hosts from the Environment group in the left-hand pane of the
Administration Console.

 2. Click New.

 3. On the New Virtual Host page, enter the name for the virtual host you want to create.
Click OK.

 4. On the Summary Of Virtual Hosts page, select the virtual host you created.

 5. On the Configuration | Logging page, follow the same steps from here on as you did
when configuring a regular server for logging (see the earlier section “Configuring
HTTP Logs”).

Chapter 3: Creating and Configuring WebLogic Server Domains 171

Configuring HTTP for the Virtual Host
The next step is to configure the HTTP settings for the virtual host. The settings are similar to what
you would configure for a real host:

 1. Select Virtual Host from the Environment tab in the left-hand pane of the Administration
Console.

 2. On the Virtual Hosts page, select the virtual host you want to configure.

 3. Select Configuration | HTTP and set the following attributes: Post Timeout, Max Post Time,
Max Post Size, Enable Keepalives, Duration, HTTPS Duration, and Accept Context Path In
Get Real Path. You’ll find explanations for each of these attributes on the Console page.
Figure 3-12 shows the HTTP settings page for the new virtual host. Click Save when done.

Targeting Virtual Hosts to Servers
Servers must be assigned to virtual hosts to take advantage of virtual hosting capabilities. Here is
how to target virtual hosts to servers:

 1. Select Virtual Hosts by expanding the Environment group in the left-hand pane of the
Administration Console.

 2. Select the name of the virtual host on the Summary Of Virtual Hosts page.

FIGURE 3-12. Configuring HTTP settings for a virtual host

172 Oracle WebLogic Server 12c Administration Handbook

 3. Select Targets and choose either independent servers or clusters. This is where you want
to deploy your new virtual host. If you select a cluster, the virtual host is enabled for all
servers that are part of that cluster, but you can specify only a subset of those clusters if
you wish.

 4. Click Save.

Targeting Web Applications to the Virtual Host
Now that you’ve targeted the virtual host to the WebLogic Server instances, you’re ready to target
your deployed web applications to the virtual host:

 1. Select Deployments in the left-hand pane of the Administration Console.

 2. On the Summary Of Deployments page, select the web application.

 3. Select Targets and select the name of the virtual host to which you want to deploy the
application.

 4. Click Save.

Protecting Domain Data
This chapter has covered several WebLogic Server domain configuration topics. I would be remiss
if I didn’t also discuss how to protect critical domain configuration data. Protecting the domain
data is really simple—all you need to do is to ensure that you’re frequently backing up key server
configuration and security files (and directories). Without an Admin Server, you can’t manage
your running Managed Servers. You must, therefore, protect all critical domain configuration data
so you can recover it in the event of server failures. You must periodically archive the domain
configuration and save it to disk or tape. You can also copy all domain configuration data to a
different “standby” server, which can act as a backup server. Chapter 2 showed you how to restart
an Admin Server on a different machine following a server failure. You need access to the
machine where the Admin Server was running to get the configuration files. If the machine itself is
unreachable, then you can only restart the Admin Server by restoring good backups of the
configuration and security files on the new server(s). Thus, a good backup policy for the domain
configuration files is highly critical. The following sections explain the various configuration and
security files that you must back up regularly.

You must protect a domain’s configuration files by specifying a backup scheme for your
WebLogic Server configuration files. You’ll need the backups if your configuration files get
corrupted for some reason. The configuration files also come in handy when you decide to return
to an older configuration after testing some configuration changes. You can use either WLST or the
Administration Console to specify the archiving of the configuration files.

Backing Up a Domain’s config.xml File
By default, WebLogic Server backs up the critical config.xml file and renames it to a different
name, such as backup_config1.xml, backup_config2.xml, and so on. This way, if you ever have to
revert to an older configuration state, you can simply rename the appropriate backup_config#.xml
file to config.xml and restart the Admin Server. If you make a series of configuration changes and
make a mistake somewhere along the way, your Admin Server may not boot up the next time.

Chapter 3: Creating and Configuring WebLogic Server Domains 173

You can simply restore the domain to its last known good configuration by using the
automatically backed up configuration files. To provide additional security, you can make
your own backups of the backed-up configuration files and save them to tape or disk.

Backing Up the Security Data
If you don’t have the security data, you can’t restart the Admin Server on a different machine. In
addition to the config.xml file, you must also back up the boot.properties file. If you aren’t using
an RDBMS for storing the security data, WebLogic Server stores the security realm and other
settings in the default embedded LDAP server. The Admin Server acts as the master for the LDAP
data, and the Managed Servers read the security data when they initially connect to the Admin
Server. A server’s LDAP data is in the MW_HOME\user_projects\domains\<domain_name>\
servers\<AdminServer_name>\data\ldap directory. By default, WebLogic Server backs up the
LDAP data into a zip file named EmbeddedLDAPBackup.zip and stores it in the \ldap\backup
subdirectory. The server creates a new zip file with the LDAP data whenever you change any
security-related data. You can use this backup file for restoring the contents of the default LDAP
server, but backing up the ldap directory in its entirety on a periodic basis is advisable. WebLogic
Server automatically propagates all security changes to the Managed Servers when you make
those changes through the Administration Console. Therefore, you don’t have to back up the
security data on the Managed Servers separately.

TIP
If you want to return to the initial default security settings, all you have
to do is remove the security directory. When you restart the Admin
Server, it automatically creates a new security directory and creates
new security files with the default security settings.

You must also include the security directory (MW_HOME\user_projects\domains\<domain_
name>\security) in all your backups of WebLogic Server because that directory includes the
critical SerializedSystemIni.dat file, which the Admin Server requires for startup. In addition,
backing up all security certificates, keys, and keystores is a good idea if you’ve configured your
servers with SSL. Once you have an effective backup policy in place, you can easily restore failed
servers. Please refer to Chapter 2 for details about restoring a failed Admin Server and how to run
a Managed Server in the absence of the Admin Server.

You can use utilities such as jar, copy, and xcopy to back up domains. However, the pack and
unpack commands are also useful for performing quick backups and restores. As you know by
now, the template archives that the pack command creates can contain either an entire domain or
part of it. Once you create a domain’s archives with the pack command, you can use the unpack
command to re-create a domain or part of it on another machine.

Summary
This chapter showed you how to create a domain using different methods. You also learned how
to configure a domain, create virtual hosts, and backup domain data. With this background, it’s
time now to start looking at how to configure WebLogic Server resources such as JDBC, JMS, and
JTA, which are the main topics in the next chapter.

CHAPTER
4

Configuring Naming,
Transactions, Connections,

and Messaging

176 Oracle WebLogic Server 12c Administration Handbook

M iddleware products such as Oracle WebLogic Server 12c provide multiple services
to help perform various enterprise business functions. These services include the
following:

 � Naming Finding a resource by name instead of location

 � Transactions Support for transactional Java applications

 � Database connectivity The ability to access an RDBMS such as the Oracle Database

 � Messaging Sending and receiving messages among applications

In addition to these services, there are other services such as security, for example, which is
discussed in Chapter 9. This chapter focuses on the four main middleware services: naming and
directory services, transaction support, database connectivity services, and messaging services. For
naming services, WebLogic Server uses the Java Naming and Directory Interface (JNDI) protocol. For
transaction services, WebLogic Server implements (and extends) the Java Transaction API (JTA). You
configure database connectivity by configuring JDBC data sources and then targeting those resources
to the servers in a domain. For messaging, WebLogic Server implements the Java Messaging Service
(JMS) API. The loose coupling of the WebLogic Server in a three-tier system with various application
components in the provisioning of the persistence services enhances the reliability of the
middleware server by limiting the impact of individual service failures on the various tiers.

NOTE
The chapter describes the most important JNDI, JTA, JDBC, and JMS
concepts. Although this chapter shows you how to configure several
aspects of these services, a complete discussion of all the configuration
attributes for each of the numerous configurable topics is outside
the scope of this book. Please refer to the Oracle WebLogic Server
documentation for complete configuration details for a specific item.

This chapter strives to provide you with a basic understanding of how Oracle WebLogic Server
uses JNDI, JTA, JDBC, and JMS to make it easy for clients to find objects based on their given
names and provide reliable database connections, transaction support, and messaging services for
enterprise applications. Each of these is a huge topic by itself. Although the sheer number of
configuration options for each of these major services might, at times, be overwhelming, this
chapter shows you how to configure the most important components of these services. It also
shows you how to monitor JTA, JDBC, and JMS services. The chapter ends with a brief review of
how to configure WebLogic Server JavaMail.

JNDI and Naming and Directory Services
The first concept you must grasp with regard to the configuration of database connections or
messaging services is the Java Naming and Directory Interface (JNDI). JNDI is part of the Java
platform. It provides a standard interface to connect to various naming and directory services such
as DNS and LDAP. Java applications use naming services to find objects in data sources and the
JMS. It’s much easier for applications to find objects based on meaningful JNDI names rather than
using the actual resource names. WebLogic Server JNDI lets clients access the WebLogic Server
naming services to access and retrieve various objects such as data services from that namespace.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 177

JNDI permits any service provider implementation to plug into its framework because it is
independent of specific implementation of a directory or naming service. JNDI is implemented
through the javax.naming, javax.naming.directory, javax.naming.ldap, and javax.naming.event
core JNDI packages. Oracle WebLogic Server 12c’s implementation of JNDI makes objects
accessible and retrievable in the WebLogic namespace and also allows clients access to
WebLogic Server naming services.

JNDI Architecture
JNDI provides the main naming and directory service used by all Java EE resources, applications, and
clients. Not only can developers use JNDI to locate the various objects and services registered in
various Java EE services, but also they can register their own objects with the JNDI tree. JNDI is a
standard Java EE mechanism that clients can use to publish, locate, and retrieve objects to access
naming and directory servers. In order to locate various objects, you first bind them to a distributed
directory service using JNDI. Clients then locate and retrieve those objects from the JNDI tree. For
example, when you deploy an EJB, it’s bound to a JNDI name and made available in the global JNDI
tree. The same is true of any services such as a JDBC data source. Java clients use these JNDI names to
gain access to the resource. You can bind all Java EE resources such as JTA transactions, JDBC data
connections, JMS connection factories, and Remote Method Invocation (RMI) objects in the JNDI tree.

JNDI is hierarchical in structure—it represents a hierarchy of context objects. Objects are
bound into and retrieved from a specific context in that hierarchy. The root of that hierarchy for a
given user is InitialContext and is acquired in a context-sensitive way.

JNDI uses an open architecture that allows different implementations of directory services. These
implementations map JNDI calls to their implementation of the directory services. JNDI offers a standard
interface for these directory services, and Oracle WebLogic Server 12c offers a powerful implementation
of JNDI that lets you use naming and directory features for any type of Java EE application.

Note that the JNDI framework in a clustered environment is common to all the cluster members.
The JNDI tree is applicable to the entire cluster, and it holds the information for all objects that use
the JNDI bindings. WebLogic Server’s implementation of JNDI transparently replicates the cluster-
wide JNDI tree to each cluster member, with each cluster member holding a local copy of the JNDI
tree, but to the client, the cluster-wide tree appears as a single global tree. Although the JNDI tree is
replicated over the cluster, you can, however, add bindings for specific resources to the local JNDI
tree of a cluster member, making those resources available to only a specific cluster member.
WebLogic Server JNDI supports two types of objects (and services)—replicated and pinned objects.
A pinned object is available to the entire cluster but is bound to just one member of the cluster,
whereas a replicated JNDI object is replicated to all members of a cluster.

Oracle WebLogic Server 12c implements RMI to complement its JNDI implementation. The RMI
framework is a standard Java EE technology that lets Java clients access remote objects through the use
of stubs. The stubs proxy requests to the remote objects and return necessary values. You can create
your own RMI stubs, such as cluster-aware RMI stubs for a WebLogic cluster, for example. Because
these stubs are cluster aware, they provide transparent load balancing and failover capabilities to the
clients. The key point here is that when an object is registered in JNDI, the WebLogic implementation
often replaces it with a stub that is “cluster aware.” When retrieving the object, the client gets that
stub along with information that help it find its replicated backup in the event of a failure.

Viewing the WebLogic Server JNDI Tree
Every WebLogic Server has a local JNDI tree, to which you bind Java EE resources such as the
JDBC data sources, JMS connection factories, and so on. When you deploy a Java EE application,
WebLogic Server automatically creates a JNDI name for the application and binds it to the JNDI

178 Oracle WebLogic Server 12c Administration Handbook

tree of the server. You can load various Java EE services such as JDBC data sources, EJBs, and JMS
in the JNDI tree through the Administration Console. All you have to do is provide a name in the
JNDI Name attribute field when you create any Java EE service or component. Once you load the
object, JNDI provides a path to this object, and you can view the object in the JNDI tree.

You can view the local JNDI tree for a server from the Administration Console. Use the
following steps to view the JNDI tree:

 1. In the left-hand pane, click Servers after expanding the Environment group.

 2. In the right-hand pane, click the name of the server whose JNDI tree you wish to view.

 3. In the Settings For <Server Name> (for example, Settings For examplesServer) page,
you’ll see a link named View JNDI Tree at the top of the page. Click this link.

The JNDI tree for this server will appear in a new tree, as shown in Figure 4-1.
You can navigate to the JNDI tree from the left panel of the JNDI Tree window. For example,

you can click JDBC and then click the data source name to see the data source’s bindings in the
JNDI tree. Figure 4-1 shows the details for the bound object named examples-dataSource-
demoPool. The binding name of an object in the JNDI tree shows the location of the data

FIGURE 4-1. The WebLogic Server JNDI tree

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 179

source in the JNDI tree. By default, the name of the data source is the same as its JNDI name
(JNDI path). An application that looks up the JNDI path gets the java.sql.DataSource instance
that corresponds to that data source.

Using JNDI to Connect a Java Client to a Server
Before a client can use JNDI to access various WebLogic Server resources such as data sources,
you must load those objects into the server’s JNDI tree. JNDI services enable the applications to
access service providers, such as a naming or directory service or an LDAP directory. Applications
use a context as a sort of link to a JNDI service provider. For a Java client to access the WebLogic
Server JNDI tree, it needs to get an object reference for a remote object by first establishing an
initial context (using the javax.naming.InitialContext class) that represents the context root of the
server. The client uses the initial context to specify various environmental properties to identify the
server and the connection for logging into WebLogic Server. Using this context, the client can
then look up the named object in the JNDI tree.

Using InitialContext to get a WebLogic Context Reference
WebLogic Server provides an InitialContext implementation through its JNDI Service Provider
Implementation (SPI) to enable connections from remote Java clients. Developers can set the
environment properties for client application connections to customize the InitialContext, either
by using a hash table or the set methods of the environment objects. Here are the properties that
the developer must use to customize the InitialContext by defining various environmental
properties (there are several additional optional properties as well) that specify how the
WLInitialContextFactory creates the context:

 � Context.INITIAL_CONTEXT_FACTORY Specifies the fully qualified name of the class
to be used in the JNDI context. To access the WebLogic JNDI tree, you must specify the
class name weblogic.jndi.WLInitialContextFactory.

 � Context.PROVIDER_URL Specifies the URL of the WebLogic Server where the JNDI tree
is located. The default is t3://localhost:7001.

 � Context.SECURITY_PRINCIPAL Specifies the user defined in a WebLogic Server
security realm. The default is the guest user if the thread isn’t associated with a WebLogic
Server user already.

 � Context.SECURITY_CREDENTIALS Specifies the password for the user defined in the
Context.SECURITY_PRINCIPAL property.

It should be noted here that, when creating the InitialContext, you are establishing a network
connection to the server/cluster and that the connection and any objects that are acquired from
JNDI in this case are associated with the SECURITY_PRINCIPAL property.

You can also specify additional properties to determine how objects bind to a cluster-wide
JNDI tree. Some bindings may not be replicated across each server within the cluster.
Developers can create a context with a hash table that specifies the environment properties by
passing the hash table as a parameter to the constructor for javax.naming.InitialContext class.
Here’s an example that shows how to obtain a WebLogic initial context by using the javax
.naming.InitialContext class:

import javax.naming.*;
private static InitialContext ctx = null;

180 Oracle WebLogic Server 12c Administration Handbook

public static InitialContext getInitialContext() throws NamingException {
 if (ctx == null) {
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 env.put(Context.PROVIDER_URL,
 "t3://testserver:7001");
 ctx = new InitialContext(env);
 }
 return ctx;
}

Alternatively, you can use a WebLogic environment object implemented by the helper class
weblogic.jndi.environment to create a context. For example, you can create an InitialContext with
default values for all properties, as shown here:

Environment env = new Environment();
Context ctx = env.getInitialContext();

And here’s how you create the security context with the JNDI environment object:

weblogic.jndi.Environment environment = new weblogic.jndi.Environment();
environment.setInitialContextFactory(
 weblogic.jndi.Environment.DEFAULT_INITIAL_CONTEXT_FACTORY);
environment.setProviderURL("t3://myhost:7001");
environment.setSecurityPrincipal("guest");
environment.setSecurityCredentials("guest");
InitialContext ctx = environment.getInitialContext();

Using InitialContext to Look Up Values in the JNDI Tree
Once an application obtains the initial context, it can look up objects that are bound in that
context. Here’s an example that shows how to look up a data source and user transaction and use
them to create JDBC connections to a data source:

javax.naming.Context ctx = null;
javax.transaction.UserTransaction tx = null;
javax.sql.DataSource ds = null;
java.sql.Connection con = null;
try {
 ctx = new InitialContext(env) ;
 //Look up the TxDataSource
 ds = (DataSource) ctx.lookup("myTxDs");
 //use the JNDI tree to initiate a new JTA transaction
 tx = (UserTransaction) ctx.lookup("java:comp/UserTransaction");
 //initiate the transaction
 tx.begin();
 con = ds.getConnection();
 //perform your JDBC updates here. . .
 //commit the transaction
 tx.commit();

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 181

}
catch (Exception e) {
 // exceptions code goes here
}
finally {
 try {
 if (ctx ! = null) ctx.close();
 //release other JDBC resources here
 }
 catch (Exception ignored) {}
 }

In general, you don’t access JDBC connections and the transaction manager from a remote
client. In most cases, those are retrieved from a local InitialContext that is created when an EJB or
servlet is initialized. Note that the local lookups from JNDI have now commonly been replaced
by “injecting” references with annotations.

Clustered JNDI
WebLogic Server provides cluster-wide JNDI services to support deployment of objects in a
clustered environment. Whenever you add a WebLogic Server instance to a cluster, the server’s
JNDI tree is merged with that of the cluster and the merged JNDI tree is propagated automatically
to all members of that cluster. To reduce the potential network traffic due to the replication and
synchronizing of the JNDI tree, WebLogic Server lets developers specify which objects of the JNDI
tree the server must replicate to the cluster JNDI tree. You can do this by specifying the REPLICATE_
BINDINGS property for the initial context factory, weblogic.jndi.WLInitialContextFactory. Of
course, the fewer the objects you specify for replication, the fewer load balancing and failover
capabilities the server will have.

WebLogic Server also uses RMI stubs to decrease the network traffic due to the replication of
the JNDI tree across a cluster. Instead of replicating the actual objects, the server replicates the
RMI stubs, which are very compact, thus reducing the network traffic. However, large custom
objects must be replicated completely to the cluster members. To reduce the network traffic for
replicating large custom objects, developers can write RMI proxies for the custom objects or pin
the custom object to one of the cluster’s servers. They can also deploy the custom object separately
to each cluster member. It’s important to note here that most of the time the replication happens
implicitly when you deploy an EJB or an RMI object to a cluster. The WebLogic Server machinery
takes care of the replication on behalf of the user.

Configuring Transactions
Enterprise applications use the concept of a transaction to enforce transactional integrity. In a
distributed environment that depends on the interconnections among numerous components such
as servers, networks, databases, and application servers, a failure in any component can
potentially mess up the business logic embedded in the Java applications. Fortunately, developers
don’t have to program all the transactional details. Because WebLogic Server supports the well-
known Java Transaction API (JTA), all the developer has to do is use transactional commands to
control transactions from the Java applications. Note that a transaction is defined as any logical
set of operations and thus can apply to a JDBC database operation, a JMS messaging operation, or
any similar set of operations that involves the use of transactions.

182 Oracle WebLogic Server 12c Administration Handbook

Transactions and the ACID Test
A transaction is simply a set of operations that together comprise a logical unit of work. If all the
operations succeed, the results of the transaction are committed or written to the database. If any
of the operations fail, the operation as a whole fails, and the results are rolled back and not
recorded in the data store. It’s common to describe the characteristics of a transaction by referring
to the well-known ACID properties of transactions. Here’s what the ACID acronym stands for:

 � Atomic All operations must succeed or fail as one unit.

 � Consistent Regardless of the fate of the transaction (success or failure), the database
must be left in a consistent state.

 � Isolated Multiple transactions must not “step” on each other by adversely affecting each
other’s work.

 � Durable All successful transactional changes must be recorded permanently in the database.

Types of WebLogic Transactions
There are two types of transactions: local or global. A local transaction involves a connection to
just a single resource such as a JDBC database connection or a JMS queue. The javax.transaction
package implements JTA for local transactions. A global, or distributed, transaction involves
multiple resources, not all of which need to be of the same type. For example, a global
transaction may include several database resources, or it can include one database resource and a
JMS resource. Both of these are global transactions because they involve multiple resources. The
Java package javax.transaction.xa contains the API for managing distributed transactions. A local
resource needs just a resource manager, whereas a global transaction requires a transaction
manager as well. Thus, the JTA architecture looks like the following:

Java App=>Transaction Manager=>Resource Manager=>Resource

Transactions and the Two-Phase Commit
A global (distributed) transaction uses the so-named two-phase commit protocol to handle
transactions that involve multiple resources. During the first phase, changes to a resource
are transmitted to the resources and written to a transaction log file. During the second phase,
the transaction manager asks all resources to commit the changes, provided all resources have
assured the transaction manager that they can successfully complete their portion of the
transaction. If any of the resources reports that it can’t successfully complete its part of the
transaction, the transaction manager rolls back the entire transaction. WebLogic Server uses the
well-known XA interface to implement the two-phase commit mechanism.

Configuring WebLogic JTA
Configuring the JTA properties for Oracle WebLogic Server 12c is easy. Simply select the default
Oracle Thin (XA) driver when you create a data source. The Oracle Thin (XA) driver supports
global transactions. It should be noted that XA transactions are fairly expensive when compared
to localized transactions. They are an important part of some applications that require accessing
multiple resources but should only be used when really necessary.

When you configure the transaction properties for a data source, you’re actually configuring
the WebLogic JTA properties. You can configure WebLogic Server transactions by setting options

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 183

at the domain level or at the server level. Domain-level options, which include most of the key
JTA configuration choices, apply to all servers in a domain. Any settings you specify for
monitoring and logging will apply to individual servers. In the following section, let’s briefly
review the configuration options for WebLogic JTA at the domain level.

Configuring Domain JTA Options
You can configure a domain’s JTA configuration options through the Administration Console by
following these steps:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane, under Domain Structure, click the domain name (wl_server in my
example).

 3. On the Settings For wl_server page, click JTA (you are already in configuration mode).

 4. On the transaction Configuration page, shown in Figure 4-2 (not all options can be seen),
you can set various domain-level transactions options. Here are the key domain-level
transaction options:

 � Timeout Seconds Specifies the maximum amount of times a transaction can remain
in the first phase of a two-phase commit transaction. Once this time limit is reached,
the server rolls back the transaction. The minimum value is 1 second, and the default
is 30 seconds.

 � Abandon Timeout Seconds Specifies the maximum time period for which the
transaction manager will attempt the completion of the second phase of the two-
phase commit transaction. The server abandons the transaction and rolls it back once
it exceeds the timeout interval.

 � Max Transactions Specifies the maximum number of active transactions on a single
server. The minimum is 1 transaction, and the default is 10000 transactions.

 � Enable Two Phase Commit Lets you select the two-phase commit protocol for
transactions spanning multiple resource managers (a database and a JMS queue, for
example). This option is already selected in my example since I chose the XA-enabled
driver earlier.

Once you configure WebLogic JTA, the system manages transactions using the JTA API and
the WebLogic JTA extensions. Following are some of the important points to keep in mind
regarding the configuration of JTA options.

 � The configuration settings for JTA (transactions) are applicable at the domain and cluster
level:

 � At the domain level, the attributes you set will apply to all servers in a domain. These
settings are superseded by any settings at the cluster level.

 � At the cluster level, attribute settings apply to a cluster within a domain. These settings
supersede any settings at the domain level.

 � Monitoring tasks for JTA are performed at the server level.

 � Configuration settings for participating resources (such as JDBC data sources) are on a per
configured object basis and apply to all instances of a particular object.

184 Oracle WebLogic Server 12c Administration Handbook

Configuring the Default Persistent Store
If you haven’t configured a custom persistent store (see Chapter 3 for details about configuring a
custom file-based and a JDBC-based persistent store), the JMS server uses the default persistent
store for the Managed Server to support persistent messaging. The JMS server stores the critical
transaction logs that the server uses for recovering in-flight transactions in this persistent store. You
don’t really need to configure this default persistent store; however, in a clustered environment,
you must enable the migration of the Transaction Recovery Service to handle a server failure.
Migrating the Transaction Recovery Service involves specifying a location on a shared storage
system available to all the cluster members.

Configuring Transaction Options for Data Sources
Transaction protocols for JDBC data sources control how WebLogic Server handles connections during
transactions. You can configure transaction options for JDBC data sources by following these steps:

FIGURE 4-2. Setting domain-level options for JTA

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 185

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane, expand Services and select Data Sources.

 3. Select the data source name on the Summary Of JDBC Data Sources page.

 4. Click the Transaction tab.

 5. The Settings For <data source-name> page lets you define transaction options for this
JDBC data source. By default, the Supports Global Transactions option is enabled, which
is what you want. Because my data source uses an XA JDBC driver, connections will
automatically support the two-phase commit protocol. If you use a non-XA JDBC driver,
you can select from three transaction processing options: Logging Last Resource, Emulate
Two-Phase Commit, and One-Phase Commit. Since I chose an XA JDBC driver, none
of these transaction options are available; the transactions will automatically use the
two-phase commit protocol. If you use a non-XA JDBC driver for your data source and
the data source supports global transactions, you need to select one of the transaction
protocols I mentioned earlier. Even if you aren’t using an XA-aware JDBC driver, select
the Supports Global Transactions option because this allows non-XA transactions
participating in a JTA transaction to get the appropriate transactional semantics. Both the
Emulate Two-Phase Commit and the Logging Last Resource transaction options ensure
that non-XA JDBC connections can participate in global transactions. The One-Phase
Commit option restricts applications to just a database resource (no JMS).

NOTE
It should be noted that the Logging Last Resource (LLR for short) is a
very important optimization for many applications, especially those that
combine JMS and JDBC. This approach allows the user to turn what
would be an XA transaction into one that is local to a single database
and get the same transaction guarantees much more efficiently.

Monitoring Transaction Services
You can monitor all server transaction activity from the Administration Console. You can check on
the total number of active transactions as well as the number of transactions that were committed
or rolled back, transactions that were abandoned, and similar details about current server
transactions. You can also find the average commit time for transactions from the Console, and
you can also roll back or commit active transactions.

To view a summary of all transaction information for all the resources running on a specific
WebLogic Server instance, click the server in the left-hand pane of the console and select
Monitoring | JTA in the right-hand pane. Figure 4-3 (not all options appear in the figure) shows the
JTA Monitoring page for a server, and the important monitoring information is explained here:

 � Transactions Total Count Shows the total number of processed transactions since server
startup and includes committed as well as any rolled-back transactions.

 � Transactions Committed Total Count/Transactions Rolled Back For Timeout Total
Count Shows the total number of committed and rolled-back transactions since server
startup. You can also view the number of transactions rolled back due to transaction
timeouts, resource errors, system errors, and application errors.

186 Oracle WebLogic Server 12c Administration Handbook

 � Abandoned Transactions Total Count Number of transactions abandoned since server
startup.

 � Transaction Two Phase Committed Total Count Shows the number of transactions with
multiple resources that successfully used the two-phase commit protocol.

The previous monitoring properties show transactions at an aggregate server level. You can also
view the statistics for a specific transaction by selecting Environment | Servers | Monitoring | JTA |
Transactions By Name. The resulting page shows all the named transactions being managed by the
server. The name of a transaction is the name defined by the application that starts a transaction.
Each transaction also has a transaction ID that’s assigned by the transaction manager. For each
named transaction in the table, you can view information such as total commits and rollbacks,
application rollbacks, system rollbacks, timeout rollbacks, resource rollbacks, and the number of
abandoned transactions.

FIGURE 4-3. The JTA monitoring page

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 187

NOTE
The server message log contains just the information about the
operation of the server instance. You won’t find JMS messages
and JTA transactional messages in the server message log. You use
separate log files for these messages. You can configure the JMS log
files by going to Services | Messaging | JMS Servers | <JMS Server
Name> | Logging. The JMS log file has a name such as jmsServers/
MedRecJMSServer/jms.messages.log.

Transaction Logs and Transaction Recovery
WebLogic Server maintains transaction logs (referred to as tlog files), but these are quite different
from normal server logs. The server uses the transaction logs to track all current transactions.
WebLogic Server only records information about uncommitted transactions in the transaction log.
When a server restarts after a failure, it uses the information in the transaction log to recover
transactions. When you restart an instance, the server uses the transaction log files to perform the
second phase of a two-phase commit transaction that was interrupted by the server failure. Using
the transaction information from the transaction logs, the server makes an attempt to complete all
in-flight, uncommitted transactions from the time the server failed.

WebLogic Server creates transaction logs for each server in a domain and stores the logs in the
following directory: WL_HOME\<domain-name>\server\<server_name>\logs. The transaction
logs are named in the following format: <server-name>.nnnn.tlog, for example, myserver.0009.
tlog. You can’t inspect the transactions log directly, as they aren’t readable by humans. WebLogic
Server automatically deletes the transaction logs when it deems them unnecessary—of course, you
must leave the transaction logs strictly alone! If a transaction is corrupted, however, you may have
to delete the transaction logs (online) to remove the phantom transactions. If you set too high a
transaction timeout value, the transaction logs tend to be large. If you see many transaction log
files, it’s because there are many transactions that are still running in the server. In order to ensure
that the highly critical transaction logs are protected, you must first make sure there’s plenty of free
space in the file system holding the transaction logs and you must try to store the log files on
highly available file systems such as a storage area network (SAN) storage system.

Because the transaction logs aren’t in a directly readable format, WebLogic Server provides a
tool that helps you decrypt the log files. You can find this in the modules directory (MW_HOME/
modules) in the module named com.bea.core.tranasaction_3.0.0.0.jar. To use this tool, execute
the following command from the location of the log files:

WL_HOME\<domain-name>\server\<server_name>\logs> java weblogic.transaction
.internal.TransactionLoggerImpl <server-name>

Note that the transaction log file keeps track of the XA transaction IDs for all of the outstanding
transactions and which external resources were involved. The process of recovery involves reconnecting
to all of those managed resources and telling them what to do with each of the outstanding requests.

The transactions you need to worry about are the ones that were “in flight” when the server
went down. Let’s say that the server was updating a record for a particular user in the database. If
that record is locked, it will remain locked until that server (or an alternate server that also has
access to the associated transaction log) can be brought up to verify its state.

Note also that in certain architectures transactions can easily span multiple service instances.
Say, for example, there is a web application tier sitting in front of a services tier that is represented
by EJBs or web services or that hosts a JMS queue connected to an MDB. Each of these servers

188 Oracle WebLogic Server 12c Administration Handbook

will have its own transaction log containing information about the transactions it was executing.
The “coordinator” of the transaction is the server on which the transaction was first started, and
the crashed server must coordinate with that server to make sure everything is consistent—that is,
that the ACID properties of the transactions are maintained.

When you reboot a server after a crash, WebLogic’s Transaction Recovery Service automatically
recovers any pending transactions that are logged in the transaction log. The transaction manager
tries to commit or roll back all transactions that were ready to commit or roll back prior to the
server crash. The service abandons a transaction only if the transaction timed out. If you can’t
restart the server quickly, you can copy and move the transaction logs to the new server so it can
process the in-flight transactions that are recorded in the log. If this is a clustered server, you can
migrate the Transaction Recovery Service to a different member of the cluster, where that server will
then try to commit or roll back the in-flight transactions.

Configuring Database Connections
WebLogic Server uses a standard JDBC API to enable connections to a relational database. The
JDBC specification supports transactions, statement caching, connection pooling, and many other
features. WebLogic’s services such as the Java Persistence API (JPA), container-managed entity beans,
persistent messages, and others rely on the JDBC API. JDBC drivers provide an implementation of
the standard JDBC API and enable the actual connectivity to a relational database.

In order to configure database connectivity to an Oracle (or any other) database, you first
configure a JDBC data source. Once you do this, you can deploy the JDBC resource to one or more
servers in a WebLogic domain, which allows all applications deployed to that server to have access
to this data source. For clusters, you can create a multi data source and deploy it to the cluster. Multi
data sources are used when you need load balancing or failover protection—in fact, you must specify
either load balancing or failover as a choice when configuring a multi data source. Multi data sources
contain more than one data source, and they are bound to the JNDI tree just as a single data source
is. In addition to the simple data sources (called generic data sources) and multi data sources, you
can also create a GridLink data source. Note that GridLink data sources are specific to Oracle RAC.

When you start the server that already contains a data source or when you create a new data
source instance, a pool of database connections is created for each data source you’ve
configured. Applications then request a database connection by looking up the data source in the
JNDI tree. Once an application is finished with the database connection, it terminates its
connection by calling the connection.close method, following which that connection is returned
to the connection pool of that data source. The preceding describes the traditional way of
obtaining a data source object by looking up the JNDI tree of the server. In most new
applications, the data source is injected by the container, as shown here:

// inject data source
@Resource(mappedName="jdbc/MyDataSource")
Private javax.sql.DataSource datasource;

NOTE
In the case of JPA, the data source is referenced in the persistence.xml
file. In most cases, the taking and releasing of the connection is taken
care of by the container, using resource injection.

Each JDBC connection generally represents a separate network connection to the database
that must be established and authenticated. This is a very expensive proposition, and the whole

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 189

point of the connection pool is to avoid having to pay this cost on every operation. The downside
is that there’s some cost in maintaining each connection to the database (in terms of using up
database resources and bumping up against the maximum number of processes limit in a database),
memory overhead in the server, network overhead to support unused connections, and so on.
The connection pool is a shared resource, and, for many applications, this can become a
bottleneck because it limits the number of concurrent requests.

Another advantage of maintaining connection pools is to control the number of connections
to the database; otherwise, a large number of connections can overload and freeze the database if
your front-end application has a sudden spike in activity that the database can’t handle.

JDBC Architecture
WebLogic Server’s JDK provides JDBC version 4. JDBC is implemented with the help of two core
packages: java.sql, which is the Core API, and javax.sql, which is the optional package API. These
two packages enable JDBC to provide low-level RDBMS access to Java classes and interfaces. The
java.sql package contains the classes and interfaces that let you make database connections and
run SQL commands, whereas the javax.sql package contains the classes and interfaces that let you
use data sources, pooled connections, and distributed transactions.

Using WebLogic JDBC Drivers
Before you configure database connectivity, you must ensure you have the necessary JDBC
drivers. A JDBC driver manages the exchange of information between Java programs and an
RDBMS such as Oracle, which come with built-in network libraries that help communicate with
the database over a network. The network libraries, which are shipped as dynamic link libraries
(DLLs) on a Windows platform, offer superior performance when working with a specific RDBMS
because they’re optimized for that individual database. However, directly accessing the network
libraries of a specific RDBMS means that you’ll have to rewrite the database connectivity–related
code for each database because it’s custom tailored for each database.

Database drivers abstract the network functionality by using a high-level API that works with
the lower level network library APIs. A developer can thus use the same application with multiple
types of RDBMSs by employing the appropriate database drivers. JDBC is analogous to the
well-known ODBC standard and is designed to help Java developers work with relational
databases in the same, consistent manner. JDBC is exclusive to Java applications.

There are four types of JDBC drivers, and they are briefly explained here:

 � Type 1 driver The Type 1 drivers are also called JDBC-ODBC bridges because they connect
Java applications and ODBC drivers. These drivers offer slower performance than the other
drivers because of the multiple driver layers, but they allow Java applications standardized
access to ODBC resources such as Microsoft SQL Server and Microsoft Access.

Java App⇔Type 1 Driver⇔ODBC Driver⇔Network Libraries⇔RDBMS

 � Type 2 driver The Type 2 drivers bypass the ODBC layer and thus offer better performance
than Type 1 drivers. You must install them on the server where WebLogic Server runs.

Java App⇔Type 2 Driver⇔Network Libraries⇔RDBMS

 � Type 3 driver When you use Type 3 drivers, you install them on the middleware server,
which lets you avoid having to install the drivers on the client machines.

Java App⇔Type 3 Driver⇔Middleware Interface⇔Database Driver⇔RDBMS

190 Oracle WebLogic Server 12c Administration Handbook

 � Type 4 driver Also referred to as “thin” drivers. These are vendor (database) specific and
don’t require any network libraries. Type 4 drivers offer the best performance but aren’t
portable—you need to use the appropriate Type 4 driver for each database.

Java App⇔Type 4 Driver⇔RDBMS

JDBC Drivers Offered by WebLogic Server
WebLogic Server comes preinstalled with several JDBC drivers. Oracle ships the following types
of data drivers with WebLogic Server:

 � Oracle Thin driver (XA and non-XA)

 � Oracle Type 4 JDBC drivers from DataDirect for the DB2, Informix, Microsoft SQL Server,
and Sybase

 � Third-party JDBC drivers for MySQL (non-XA)

Because WebLogic Server already comes with drivers for Oracle Database, you don’t have to
install any special drivers for Oracle databases. You don’t have to specify any of these drivers in the
server’s classpath either since they’re part of the weblogic.jar manifest file, which is used for starting
the server. However, if you install other third-party drivers to enable connections to other RDBMSs,
you need to modify your WebLogic Server startup scripts so the system classpath includes the
JDBC driver libraries. The Oracle Type 4 JDBC drivers are optimized for Java and offer top-notch
performance for the four databases listed here. Oracle automatically installs the Type 4 JDBC
drivers when you perform a complete (instead of a custom) installation of WebLogic Server. The
Type 4 drivers are located in the WL_HOME\server\lib folder (the files have the prefix DDJDBC).
The Oracle Thin driver (ojdbc6.jar), also a Type 4 driver, which I use in this book, is installed
automatically as well, in the WL_HOME\server\lib directory. You’ll also find copies of the Oracle
and MySQL Thin drivers in the WL_HOME\server\ext\jdbc\oracle (and mysql) directories.

TIP
You can replace the default Thin drivers for Oracle and MySQL with
any different driver by simply replacing the driver file (for example,
ojdbc6.jar for the Oracle Thin driver) in the WL_HOME\server\lib
directory. Alternatively, you can just add the name of the new driver
file to your CLASSPATH variable when starting the server.

You can use the Oracle Thin driver in debug mode by adding the ojdbc6_g.jar (for JDK 6)
at the beginning of the CLASSPATH. You’ll find the two files in the WL_HOME\server\ext\jdbc
\oracle\12c folder.

Both Type 2 and Type 4 drivers allow Java applications to directly connect to a database;
however, for a Type 2 database, you must also install client-side network libraries. You use JDBC
drivers mostly to make a direct connection to a database from Java applications deployed on
WebLogic Server. You can use third-party JDBC drivers, but you must ensure the drivers are
thread-safe and support JDBC transactions.

Transactions
As mentioned earlier, a transaction consists of one or more database operations that form a
logical unit of work. A transaction is successful only if all the operations that comprise that
transaction are successful. If any operation within a transaction fails, the entire transaction is

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 191

deemed a failure and is rolled back; that is, the transaction isn’t committed to the database. The
database will only record the results of a successful transaction.

Statements
You issue a SQL statement to either query the database or to add, delete, or modify data stored in
the database tables. In order to issue a SQL statement from a Java program, you create a statement
object from an open connection. You can execute simple SQL statements using a basic statement
object through the java.sql.Statement interface. You can also execute prepared statements through
the java.sql.PreparedStatement interface for processing precompiled SQL statements. Once you
create either a simple statement object or a PreparedStatement object, you call the object’s
methods to define your SQL statements, execute them, and retrieve the results.

ResultSets and RowSets
You use the java.sql.ResultSet interface to retrieve the results of a SQL statement. You can navigate
only once over the contents of a ResultSet. However, you can use a RowSet to traverse a set of
results multiple times, in any order you please. A RowSet combines connections, statements, and
ResultSets with a single interface—the RowSet—and is thus easier to use.

Enabling XA in the Database
You must perform some special steps to enable recovery of Oracle resources following a reboot
after a crash. Although the database handles XA database transactions fine, you must perform
these steps to enable the WebLogic Server transaction manager to perform a crash recovery of an
XA resource. Here are the steps:

 1. Log in to the Oracle database as the user sys:

SQL> connect sys/<password> as sysdba

 2. Execute the following script:

SQL> @$ORACLE_HOME/rdbms/admin/xaview.sql

 3. The xaview.sql script creates the necessary views to perform a recovery scan of prepared
statements. Execute the following commands to grant various permissions on the views:

SQL> grant select on v$xatrans$ to public;
SQL> grant select on pending _trans$ to public;
SQL> grant select on dba_2pc_pending to public;
SQL> grant execute on dbms_system to <user>;

Data Sources
WebLogic Server maintains a pool of reusable physical database connections to minimize the
overhead involved in connecting to a database. All the connections in a pool connect to the same
database and use the same username and password for the connections. In order for a Java
application to talk to a database, it must first open a connection to the database. Java programs
open a connection by using the java.sql.Connection interface. Once the application opens a
connection, it can then create statement objects and manage transactions. Clients obtain a
Connection object when they request a connection from the connection pool. A Connection
object is a logical representation of the actual physical database connection. WebLogic maintains
the pooled connections as a collection of PooledConnection objects. Behind the scenes
WebLogic associates the client’s Connection object to a PooledConnection object.

192 Oracle WebLogic Server 12c Administration Handbook

You can create a direct connection to a database directly from within the application code.
However, this isn’t recommended since the application will then be responsible for closing the
connections after completing its work and too many open connections can exhaust the number of
processes the database can handle.

WebLogic Server data sources help separate database connection information from your
application code. Data sources make applications portable and offer an easy way to configure and
secure database connections. A data source is a Java EE standard approach to connecting to a database
and represents a pool of database connections. The data source is simply a mapping of a logical name
to the connection pool and thus offers a way for requests to access the underlying connection pool
easily. Applications don’t have to know the underlying database setup or the actual connection
properties because the data source abstracts all those connection details. When you deploy a data
source through an application module, target a data source, or start an instance, WebLogic Server
creates the pool of database connections specified by the data source. Java applications perform a
lookup of the JNDI tree to find the data source and request database connections using the
getConnectionMethod. Once the application finishes using that connection, the connection goes back
to the data source’s connection pool. As a WebLogic administrator, you must configure JDBC data
sources and target or deploy these JDBC resources to various servers in a domain.

Once you configure a data source, the connections will be automatically active when you
start the server. You can configure the server to launch a specific number of connections each
time it starts. WebLogic Server will always maintain this minimum number of database
connections for applications to connect to databases. WebLogic Server uses the WebLogic Pool
Driver to maintain the pool of database connections. This Pool Driver is compatible with all
WebLogic and third-party JDBC drivers. Applications or server-side components such as EJBs and
servlets request a new connection from the WebLogic Pool Driver and not from the JDBC driver.
It’s the Pool Driver’s job to open new connections (up to the maximum number that you
configured) and to return unused connections to the connection pool.

WebLogic Server offers three main types of data sources that you can configure:

 � Generic data source Lets you configure basic connection pools.

 � Multi data source You can create a multi data source by combining multiple generic data
sources, so as to provide load balancing and failover capabilities. When an application
looks up the JNDI tree and requests a database connection, the multi data source determines
which specific (generic) data source to assign to that connection. You can configure the
selection of the individual data sources by choosing a load balancing or failover algorithm.

 � GridLink data source This type of data source is designed to offer failover support for an
Oracle RAC–based connection.

You can use the Administration Console to create and configure each of these three types of
WebLogic Server data sources.

Understanding WebLogic JDBC Configuration
An interesting thing to note about JDBC resources is that both system administrators and developers
can create a JDBC resource, but the deployment and management (how to modify it) depends on
who creates the resource. A system administrator can create a JDBC module, called a system module,
using the Administration Console or WLST. A developer can also create a JDBC module, called an
application module, with a tool that allows the creation of the necessary XML descriptor file and add
the JDBC module to the packaged application, which is then deployed by the administrator.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 193

The choice of how a resource is scoped is mostly a decision about whether the resource and its
connection pool are to be shared across multiple applications. Note that this has implications for
whether XA is used as well. For a self-contained application where there are multiple modules using
the same data source, it often makes sense to keep the connection information together with the
application. This saves the administrator the extra step of having to configure and deploy it separately.

If you’re deploying multiple applications and each of those applications needs to manipulate
different tables in the same database or manipulate tables that are storing JMS messages, then
deploying a system resource probably makes the most sense. Conveniently, the format is the same
for both system and application modules. Note that SOA code that takes advantage of data sources
must have that data source preconfigured on the server. It cannot be bundled with the code.

XML files store the JDBC configuration details and conform to the jdbc-data-source.xsd
schema. If you’re creating multiple JDBC data sources, each of these data sources is represented
by a separate XML file. A multi data source needs only a single XML file. The application JDBC
modules are similar to Java EE modules and can be included in a Java EE application as any other
module or deployed separately by themselves.

Using a JDBC System Module
When a WebLogic Server administrator creates a JDBC resource, WebLogic Server creates a JDBC
module in the domain directory and updates the config.xml file with a JDBCSystemResource
element that points to the new JDBC resource. As you can see in the extract from the config.xml
file shown in the following listing, the <jdbc-system-resource> element includes the name of the
JDBC XML file, MedRec-jdbc.xml, within the <descriptor-file-name> element. The <target>
element shows the server (MedRecServer) to which the JDBC resource is targeted:

<jdbc-system-resource>
 <name>MedRecGlobalDataSourceXA</name>
 <target>MedRecServer</target>
 <descriptor-file-name>jdbc/MedRec-jdbc.xml</descriptor-file-name>
</jdbc-system-resource>
<jdbc-system-resource>
 <name>JDBC Data Source-0</name>
 <target>MedRecServer</target>
 <descriptor-file-name>jdbc/JDBC_Data_Source-0-3407-jdbc.xml</descriptor-file-
name>
</jdbc-system-resource>

And here’s the actual XML file, MedRec-jdbc.xml, that contains the JDBC connection attributes,
such as the JDBC driver parameters, connection pool parameters, and data source parameters:

<?xml version='1.0' encoding='UTF-8'?>
<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
xmlns:sec="http://xmlns.oracle.com/weblogic/security"
xmlns:wls="http://xmlns.oracle.com/weblogic/security/wls"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/jdbc-data-source
http://xmlns.oracle.com/weblogic/jdbc-data-source/1.0/jdbc-data-source.xsd">
 <name>JDBC Data Source-0</name>
 <jdbc-driver-params>
 <url>jdbc:oracle:thin:@miropc61.miro.local:1521:orcl1</url>
 <driver-name>oracle.jdbc.xa.client.OracleXADataSource</driver-name>

194 Oracle WebLogic Server 12c Administration Handbook

 <properties>
 <property>
 <name>user</name>
 <value>hr</value>
 </property>
 </properties>
 <password-
encrypted>{AES}9JbZiiRt0l2Dq7GWYngvIxsykaTqhZnnzNbVGO8Ed88=</password-
encrypted>
 </jdbc-driver-params>
 <jdbc-connection-pool-params>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 </jdbc-connection-pool-params>
 <jdbc-data-source-params>
 <global-transactions-protocol>TwoPhaseCommit</global-transactions-protocol>
 </jdbc-data-source-params>
</jdbc-data-source>

When an administrator creates a JDBC module, that module is available to all servers and
clusters of that domain, and therefore, you can consider the system module a global module. Any
application you deploy on the same server targets (Managed Servers, clusters) will have the JDBC
module available for its use. The system administrator has full control over the system modules—
the administrator can delete or modify them without hindrance. When a JDBC application module
is available, it must always be targeted to specific servers. A JDBC application module can be
added as a packaged module to an enterprise application. You can bundle the packaged module
with an EAR (or exploded directory) and refer to them in a deployment descriptor such as weblogic-
application.xml. Application scoping of JDBC resources can make things easier in situations where
the resources are associated with only one application. You can also deploy a JDBC application
module to a specific server or cluster, and the module is called a stand-alone module.

Earlier you saw how the config.xml file maps the JDBCSystemResource element to the
JDBC XML file. This file shows how to configure a single data source. Let’s examine the JDBC
XML file closely in order to understand how to specify values of all the elements in that file. Each
<jdbc-data-source> element in a JDBC XML file includes values for the driver, connection pool,
XA, and connection parameters. If you’re configuring a multi data source JDBC connection, you
also need to include the algorithm type and data source list parameters, as you’ll see when I show
how to configure a multi data source JDBC connection.

The example shown earlier described the basic configuration elements of a data source,
which could have been created by a system administrator or a developer. The JDBC application
module and system module are similar XML files that contain configuration information for a
single or multi data source. What are the advantages of using a system module? If a developer
creates a JDBC system module, he or she can include the module as a package module inside an
Enterprise Application Archive (EAR) file or as part of an exploded EAR directory. The developer
decides if the JDBC module is specific to only a certain application or if it can be used by all
applications. Here are the advantages to using a system module:

 � You can ensure that your application always has access to the necessary data sources.

 � It makes migrating applications to various environments easier, as you do not need to
reconfigure JDBC when you move between environments.

 � The administrator can modify configurations but can’t delete an application JDBC module.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 195

When you use a packaged JDBC module, the modules are deployed along with the main
enterprise application, but you can also deploy a stand-alone JDBC module, where you make the
module available to a specific target. Stand-alone JDBC modules make it easier to move the JDBC
configuration among various domains. Note, however, that if you deploy a stand-alone JDBC
application module, you must use the Administration Console or a JSR-88–compliant tool to
update the configuration of the module—you can’t use WLST to modify or reconfigure the
application module.

Creating a Generic Data Source
This section first shows you how to create a generic data source using the Administration Console.
You can also create data sources with WLST scripts. Several configuration aspects are similar for a
generic data source, a multi data source, and a GridLink data source. Once we finish creating a
generic data source, I’ll explain the relevant features that you need to configure for the GridLink
and the multi data sources.

 1. In the Change Center of the Administration Console, click Lock & Edit.

 2. In the left-hand pane of the console, expand Services and select Data Sources.

 3. On the Summary Of JDBC Data Sources page, click New. You’ll see a drop-down list with
three options: Generic Data Source, GridLink Data Source, and Multi Data Source, as
shown in Figure 4-4. Select Generic Data Source.

 4. On the Create A New JDBC Data Source page, in the Name box, enter a name for the new
JDBC data source. In this example, the name of the data source is MyDataSource1. Also enter
a JNDI name in the JNDI Name box, such as examples-dataSource-demoPool, for example.
Select the RDBMS you want to connect to in the Database Type drop-down list. I chose
Oracle because I want to set up a data source to connect to an Oracle database. Click Next.

 5. On this page, you need to select the database driver to connect to the database. I chose
the Oracle Driver (Thin XA), which is the default driver. Figure 4-5 shows how to select
the database driver. If you select a third-party JDBC driver that doesn’t come with the
WebLogic Server installation, you must first install that driver before you can select it on
this page. Click Next.

 6. On the Transaction Options page, I didn’t need to do anything because I chose an
XA driver earlier. The Oracle XA JDBC driver I chose automatically supports global
transactions and uses the two-phase commit protocol. For this driver, you can’t configure
any other options, such as Logging Last Resource, for example—those options are only
shown if you choose a non-XA JDBC driver. Click Next.

 7. On the Connection Properties page, shown in Figure 4-6, you enter the database name,
host name, port, and database user credentials. Select the database username that you
want to use to connect to the database. You can test the database connection on the Test
Database Connection page by clicking Test Configuration at the bottom of the page. The
Console tests the connection using the default query “select 1 from dual” (for Oracle
databases) and shows the message “Connection Test Succeeded” at the top of the page if
your connection test works. Click Next.

 8. On the Select Targets page, you’ll see a list of all the servers in that domain. Select the
server or cluster to which you want to deploy your new data source. You can choose not
to deploy the data source at this point and instead deploy it at a later time. In the case of

196 Oracle WebLogic Server 12c Administration Handbook

FIGURE 4-5. Selecting the database driver for the data source

FIGURE 4-4. Selecting a data source type

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 197

a cluster, you can choose to target a data source separately to each Managed Server in
that cluster or target it directly to the cluster. In the latter case, the data source is aware of
the cluster and redirects client requests for database connections to one of the Managed
Servers in that cluster. Click Finish.

 9. Activate the changes (even if you’re not deploying the data source right now) by clicking
Activate Changes in the Change Center of the Console.

FIGURE 4-6. Setting connection properties for the data source

198 Oracle WebLogic Server 12c Administration Handbook

When you deploy a data source to a single server, WebLogic Server creates an instance of the
data source, including the connection pool, on the server. If you deploy to a cluster instead, the
server creates an instance of the data source on each of the server’s members.

NOTE
You can set a value for the JDBCLoginTimeoutSeconds attribute on the
ServerMBean, to prevent the server from “hanging” indefinitely when
it’s starting if the database is unavailable or unreachable.

Configuring a Multi Data Source
Because a multi data source provides failover and load balancing among multiple data sources,
you must first create the generic data sources that will comprise the multi data source. Once you
create the generic data sources, target them to the same target where you want to configure and
deploy a multi data source. The multi data source can then provide failover and load balancing
among the multiple generic data sources you’ve created.

Once you create multiple generic data sources, create a JDBC multi data source by following
these steps:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane of the Console, expand Services and select Data Sources.

 3. Click New and select Multi Data Source on the Summary Of Data Sources page.

 4. In the Configure The Multi Data Source page, enter a unique name for the new multi data
source and a JNDI name (i.e., the JNDI path), where the data source will bind in the JNDI
tree. Finally, select an algorithm type by choosing between two options: Failover and Load
Balancing. This algorithm determines the primary purpose of the multi data source. The
Failover option sends connection requests to the database by trying each data source in
the ordered list of data sources sequentially, starting with the first data source. You must
enable the Test Reserved Connections option on the data source if you choose the failover
algorithm. The server knows which connection the multi data source will use by testing the
connections. The Load Balancing option, on the other hand, evenly distributes connection
requests among all the individual data sources, using a round-robin scheme. Click Next.

 5. On the Select Targets page, select the servers (or clusters) where you want to deploy the
multi data sources. You must have previously deployed the individual data sources to the
same targets. Click Next.

 6. On the Select Data Source Type page, select XA Driver and click Next.

 7. On the Add Data Sources page, shown in Figure 4-7, select all the data sources you
created earlier. Click Finish. Doing this deploys the new multi data source definition to
the targets you’ve specified in the previous steps.

 8. Activate the changes by clicking the Activate Changes button in the Change Center of the
Console.

Using a GridLink Data Source
A GridLink data source lets you provide connectivity between WebLogic Server and an Oracle
RAC database service, which is targeted to an Oracle RAC cluster. Database services are
abstractions for workloads with common characteristics. A GridLink data source is independent of

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 199

the number of nodes in a RAC cluster. You can use Oracle Single Client Access Name (SCAN)
addresses to configure both the Transparent Network Substrate (TNS) and Oracle Notification
Service (ONS) listeners. Using a SCAN address means that you don’t need to change anything
when you add or remove nodes from the RAC configuration.

GridLink data sources offer the following benefits:

 � Load balancing A GridLink data source uses Fast Application Notification (FAN)
events issued by the database to implement run-time load balancing by distributing
database connection requests to the Oracle RAC instances. Run-time load balancing
helps balance work among the various RAC instances, enhancing both performance
and scalability.

 � Fast connection failover GridLink data sources use the Oracle RAC Fast Connection
Failover feature to rapidly detect instance failures. Using ONS, a GridLink data source
can quickly remove invalid data connections from the connection pool, thus ensuring
that the remaining connections are all valid.

 � Graceful handling of database outages GridLink data sources let the application server
gracefully handle both planned and unplanned outages. If the outage is planned, the data
sources allow all current transactions to complete. If the outage is unplanned, the data
sources roll back the transactions that are in the midst of execution.

Creating a GridLink data source is essentially similar to how you create a generic data source,
with some additional steps to configure the connection properties and ONS client configuration
details. Here are the additional steps you must follow to create a GridLink data source:

 1. GridLink data source connection Properties Options page On this page, enter either
the complete JDBC URL or let the assistant generate the URL based on the host and port

FIGURE 4-7. Adding a JDBC data source to the new multi data source

200 Oracle WebLogic Server 12c Administration Handbook

pairs you provide. Whether you provide the complete JDBC URL or WebLogic Server
creates it for you, it has the following format:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=dbhost1)(PORT=1521))(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost2)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost3)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=orcl)))

You can alternatively enter a SCAN address such as the following:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=dbhost.myCompany.com)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME=orcl)))

 2. ONS Client Configuration page Here you can choose to subscribe to Oracle FAN
events by selecting Fan Enabled. Under ONS Nodes, you can provide a comma-separated
list of ONS listener addresses and ports for handling ONS-based Oracle FAN events.

Configuring a JDBC Data Source
In the preceding sections, you learned how to create a generic data source, a multi data source,
and a GridLink data source. This section shows you how to configure JDBC data source properties
through the Administration Console. Following are the configuration pages you need to use when
configuring JDBC data sources via the Administration Console:

 � General

 � Transactions

 � Connection Pool

 � Diagnostics

 � Identity

 � Targets

 � Security

The following sections explain how to configure each of these areas. Note that to configure
the various options for a JDBC data source, you must follow these steps:

 1. Expand Services in the left-hand pane of the Administration Console and select Data Sources.

 2. On the Summary Of JDBC Data Sources page, select the specific data source you’d like to
configure, for example, examples-dataSource-demoXAPool.

 3. You’ll then view and configure the general configuration options for this data source
on the Settings For examples-demoXA page. You can click the various tabs such as
Connection Pool, Transaction, Diagnostics, Security, and so on, to configure each of these
for the data source you’ve selected.

Here are the key data source configuration options for each of the areas listed earlier.

Configuring General Options
General configuration options for a data source (accessed by clicking the General tab on the
Settings For <data source-name> page) include the following:

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 201

 � Name This is the name for the data source and is a required parameter.

 � JNDI Name The JNDI name is identical to the JDBC name, but you can specify multiple
JNDI names on separate lines, as a list. This is a required parameter.

 � Row Prefetch Enabled Selecting this option lets the server send multiple rows to the client
during each server access—obviously, you want to enable row prefetching to enhance
database access performance. Remember, though, that when you run the client and WebLogic
Server in the same JVM, row fetching isn’t enabled. Row prefetching is disabled by default.

 � Row Prefetch Size Of course, you only need to worry about the size of the rows that
you want to prefetch if you’ve enabled row prefetching. Using this parameter, you can
set the number of rows to prefetch for each server access by an external client. You can
accept the default value or raise it using a trial-and-error process to settle on a size that
maximizes performance. The default value of this parameter is 48 rows.

 � Stream Chunk Size Enables you to specify the data chunk size (in bytes) for streaming data
types that are sent in sized chunks by the server to clients. The default value is 256 bytes.

Figure 4-8 shows the the General configuration page for data source properties. Note that a
change to any of these general configuration parameters will be effective only after a server restart
or after module redeployment.

Configuring Transactions
Earlier in this chapter, you learned about the two types of WebLogic transactions—local and
global. A global or distributed transaction uses the two-phase commit protocol for its transactions.

FIGURE 4-8. Configuring general data source properties

202 Oracle WebLogic Server 12c Administration Handbook

WebLogic Server supports both local and global transactions. Note that you must configure an
XA-aware data source if your application uses EJBs that support container-managed transactions
(such as CMP entity beans). You must also make data sources XA-aware if your applications use
JTA to update multiple databases within the same transaction or if they use multiple resources
such as a database and a JMS service, for example, within the span of a single transaction.

You can create an XA-aware data source by choosing an XA-aware database driver, as I’ve
done here (Oracle Thin XA Driver). When I created a data source earlier, I chose the Global (XA)
Transaction Protocol, so this protocol will control the database connections during a transaction.
You can also choose to use a non-XA–supporting database driver, in which case, for transactions
that span multiple JDBC or JMS connections, you need to specify the (default) transaction option,
Supports Global Transactions, during the configuration of a data source through the Administration
Console. Once you choose the Supports Global Transactions option, you must select either the
Emulate Two Phase Commit or Logging Last Resource option to indicate the protocol for the server
to use during global transactions. The Logging Last Resource protocol option performs better and
offers greater data safety than the Emulate Two Phase Commit protocol option.

By default, the following four transaction options are preselected when you choose to use an
XA JDBC driver:

 � Use XA Data Source Interface Specifies that the XA interface of a JDBC driver must be
used to create database connections.

 � Keep XA Connection Until Transaction Complete Specifies that the server must use the
same database connection until a global transaction completes.

 � Keep Connection After Local Transaction Lets the server keep the physical database
connection open, instead of closing it following a local transaction commit.

 � Resource Health Monitoring Selecting this property enables JTA resource health
monitoring for the data source. If an XA resource fails to respond within the time set by
MaxXACallsMillis, the server marks the data source as unhealthy and won’t accept new
calls for connecting to that data source.

In addition, there are other transaction-related configuration properties, some of which I
summarize here:

 � Set XA Transaction Timeout Lets you set a transaction branch timeout based on the
values you set for the XA Transaction Timeout property. You set this timeout if you have
transactions that exceed the default value on the XA resource.

 � XA Transaction Timeout Sets the transaction branch timeout, in seconds. In case you
set this parameter, its value must be greater than or equal to the global WebLogic Server
transaction timeout. If you set the value to 0, WebLogic Server uses the global WebLogic
transaction timeout period.

 � XA Debug Level You can specify the level of debugging for the XA driver with this parameter.
The minimum value is 0, which means no logging, and the maximum value is 100.

Configuring the Connection Pool
When the WebLogic Server starts or when you deploy a data source to a new target, the
connection pool is registered with the server, meaning that the connection pool and its connections
are created at that time. You can configure various settings to control the connection pool size
and the way the pool can shrink and grow.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 203

Following are the key connection pool properties that you can configure for a data source.
Note that you have to click the Advanced button at the bottom of the page in order to configure
some of the properties listed here:

 � Initial Capacity Lets you specify the minimum number of database connections to create
and keep available in the connection pool. The connection pool size never goes below the
setting you specify for the Initial Capacity attribute. The minimum value is 0 connections,
and the maximum is 2,147,483,647. If you set the initial capacity to 1, only one physical
connection is available when you initialize the connection pool. As client requests grow,
new connections have to be created on the fly, which will affect your server’s performance. It
is common to set the initial capacity to a value that handles your estimated average, but not
necessarily the maximum number of connections to the database. Ideally, you want to make
sure that you have enough initial connections to match the number of concurrent requests
that you expect to have running on any given server instance. To be on the safe side, you can
set the initial capacity to the same value as the maximum capacity—this way, the connection
pool will have all the physical connections ready when the pool is initialized.

TIP
Set the initial capacity of the connection pool to the same value as
the maximum capacity to avoid a performance hit for creating new
connections to service client requests.

 � Maximum Capacity Specifies the maximum number of physical connections for this
connection pool. The default maximum number of connections is 15 for a development server
and 25 for a production server. The maximum should be considered as a mechanism for
handling periods of heavy load and configured to allow some expansion during those periods.

 � Capacity Increment Specifies the number of new connections created by WebLogic
Server when it creates additional connections (beyond those you specified with the Initial
Capacity parameter) to satisfy connection requests up to the maximum capacity defined.
The default is 1 connection.

 � Statement Cache Type Specifies whether WebLogic Server should use the least recently
used (LRU) or the FIXED algorithm to maintain prepared statements in the statement
cache. The LRU algorithm removes the oldest prepared statements from the cache to
make room for new prepared statements. The FIXED algorithm always caches a specific
number of prepared statements in the statement cache.

TIP
Statement caching is enabled by default.

 � Statement Cache Size Specifies the size of the statement cache—a larger cache can
cache more prepared statements and help improve performance. If you set the cache size
to 0, the server won’t cache any prepared or callable statements in the cache. Statement
caching enables WebLogic Server to cache the compiled version of a prepared statement,
also known as a callable statement. Since the server doesn’t have to recompile the
prepared statement when it’s reused (the server uses the cached compiled statement), it
improves the performance of your applications. The default value for the Statement Cache

204 Oracle WebLogic Server 12c Administration Handbook

Size parameter is 10, and the maximum value for this parameter is 1024. You must set
this parameter following some experimentation in your own environment.

Note that the statement caching described here is explicit statement caching. There’s also
statement caching in the Oracle Thin driver that can be configured separately. When you call a
close method on an OracleCallableStatement or OraclePreparedStatement, the Oracle driver
automatically caches the statement unless you disable caching for that statement. By default, all
callable and prepared statements are automatically cached. Experimentation is key with regard to
the use of implicit statement caching as well. Although implicit caching only retains the metadata,
explicit statement caching retains data, state, and metadata and thus performs better than implicit
caching. As to whether to use explicit or implicit statement caching, answering this question in a
general way is not easy; the answer depends on your particular situation.

NOTE
Normally the same connection pool is targeted to all of the Managed
Servers on which the application is deployed.

Pool connections may sometimes not be valid after a time, so have the server automatically
test the connection periodically, and restart any connections that have failed. Following are
additional parameters you can specify to configure a connection pool by clicking the Advanced
button. These connection pool settings let you specify how WebLogic Server tests a connection
before passing it to a client:

 � Test Table Name If you specify a Test Frequency parameter and enable Test Connections
On Reserve, you must specify the name of a test table to test a database connection.
Select a table that has few or no rows so the connection test can return fast results. Also
make sure that the table is accessible to the database user used in testing the connection.
For example, a common test on an Oracle database may be

SQL SELECT 1 FROM DUAL

In Oracle WebLogic Server 12c, you can improve connection testing performance of a
data source by setting the Test Table Name attribute to SQL PINGDATABASE.

 � Init SQL Specifies the SQL statement the server executes to initialize a new database
connection. You can use the Init SQL parameter to specify the SQL to be executed when a
new connection is created. This helps prime the JDBC connection when it’s initially created.
The SQL string you specify must begin with SQL, as shown in the following example:

SQL SET LOCK MODE TO WAIT

Make sure the Init SQL table exists in the database and also that it contains few or zero
rows, to optimize connections.

 � Test Connections On Reserve Specifies that the server test a connection before handing
the connection to a client, thus ensuring that the connection is valid. The downside to
selecting this option is that there’s going to be a slight delay in conducting the connection
test, as well as some overhead in testing the connections. If you’re configuring a multi
data source with the failover algorithm, this test is required. By default, connections aren’t
tested by the server.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 205

 � Test Frequency Specifies the delay between consecutive tests of idle connections (in
seconds). If a connection fails this test twice, the server closes the connection. You can set
this parameter to the default value of 0 to disable the tests.

 � Seconds To Trust An Idle Pool Connection During a heavy workload, you can turn off
connection testing to improve performance. This parameter lets you specify the length of
time for which the server “trusts” that an idle connection is still good.

 � Maximum Waiting For Connection Sets the maximum number of connections that can
wait for reserving connections from the connection pool of this data source. If you set this
parameter to 0, connection requests won’t wait.

 � Ignore In-Use Connections Lets the server shut down the data source even if some
database connections are still active.

By default, the server doesn’t test connections before handing them to a client. The server will
test connections if you’ve configured the Test Table Name parameter and set the test frequency
with the Test Frequency parameter. Note that there’s a price to pay for testing connections since
connections are delayed slightly while they’re being tested by the server. The server issues an
exception if a connection test fails following a client request to reserve a connection.

By default, WebLogic Server waits for 10 seconds for a connection test result to return, before
deciding that the test has failed. Once the assigned period expires, the server closes all
connections and disables the connection pool by blocking new connection reservation attempts.
The server automatically reenables the pool when it can reconnect to the database. You can
change the wait time for the connection test to a nondefault value such as 30 seconds by
specifying the following flag at the command line when you execute the startWebLogic.cmd (or
startWebLogic.sh) script to start the WebLogic Server instance:

-Dweblogic.resourcepool.max_test_wait_secs=30

If you set the wait time to 0 seconds, the server waits indefinitely for a connection test to complete.
When a client requests a new connection, WebLogic Server returns a connection if there are

available connections in the pool. If no connections are available, the server will increase the pool
size by creating the number of new connections specified by the Capacity Increment setting and
returns one of those connections to the client. Note that the server can create new connections only
up to the maximum connection limit set by the Maximum Capacity parameter. If the server has
reached the maximum capacity limit for connections, it forces the client to wait for a connection, with
the wait time determined by the value of the Connection Reserve Timeout parameter. If you’ve set the
Maximum Waiting For Connection parameter to 10, for example, a maximum of 10 requests can wait
for a connection. If a new connection becomes available before the client’s wait time expires, the
server will hand that connection to one of the waiting clients. If not, the client’s connection request
will fail. In the case of a cluster, this results in the request being attempted on a secondary server.

By default, a connection request from a client times out after 10 seconds. You have to be
careful when setting the Maximum Waiting For Connection parameter value because too many
waiting connection requests could hurt server performance, predominantly by causing the latency
and response times to increase.

When you lose database connectivity, even temporarily, some connections become defunct,
and WebLogic Server, during its connection testing process following requests for database
connections, tries to replace the defunct connections. This testing of dead connections may lead
to long delays on occasion, and to minimize the delays, WebLogic Server data sources consider

206 Oracle WebLogic Server 12c Administration Handbook

all connections in a data source as dead if a specific number of connection tests fail
consecutively. Following this, the data source closes all connections, and when it allocates new
connections to satisfy requests, it doesn’t have to test for dead connections.

The Test Frequency setting for a data source determines the number of test failures that can
occur before WebLogic Server closes all connections:

 � If the Test Frequency setting is greater than 0, the number of test failures before closing all
connections is set to 2.

 � If the Test Frequency setting is set to 0 (periodic testing disabled), the number of test failures
before closing all connections is set to 25 percent of the naximum capacity for this data source.

You can set a connection pool’s CountOfTestFailuresTillFlush attribute in order to minimize
the delay that occurs during the testing of dead database connections on the connection pool. In
addition, you must set the Test Connections On Reserve attribute to true.

When a database is unavailable for some reason, data sources keep testing the connection and
try to replace the dead connections in their attempt to satisfy new connection requests expeditiously.

Although this behavior is beneficial while the database is up and running, when the database
is actually down, it could cause a long delay for clients before they are sent the failure message.

To minimize the delay that occurs for client applications while a database is unavailable, you
may want to set the CountOfRefreshFailuresTillDisable attribute (default value is 2). For this to
work, you must also set the Test Connections On Reserve attribute to true and also ensure that the
Initial Capacity attribute’s value is greater than 0.

Configuring Identity Options
You can specify two security identity options when you map WebLogic Server credentials to
database user credentials.

 � Set Client ID On Connection Lets the server set a client ID for the database connection
based on a map of database IDs.

 � Enable Identity Based Connection Pooling This option lets the server create a database
connection with the requested database username based on a map of database IDs and
WebLogic Server user IDs. You must specify a credential mapping of the server user IDs
to database user accounts.

Database Resident Connection Pooling
Oracle WebLogic Server 12c has introduced Database Resident Connection Pooling (DCRP),
which lets you configure multiple web-tier and mid-tier data sources to pool database server
processes and sessions that are resident in an Oracle database. The key thing to remember is that
DCRP must be designed to return connections to the connection pool when the sessions complete
their work with the database connection. Otherwise, configuring DCRP doesn’t do you any good!

Configuring a Data Source for DCRP You can configure a data source to support DCRP by
doing one the following:

 � When creating a new data source on the Connection Properties tab of the data source
configuration wizard, under Additional Configuration Properties, enter the DCRP
connection class in the oracle.jdbc.DCRPConnectionClass field.

 � When you’re editing an existing data source, select the Connection Pool tab:

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 207

 � Change the URL to include a suffix of :POOLED or (SERVER=POOLED) for service URLs.

 � Update the connection properties to include the value/name pair of the DCRP
connection class. For example: oracle.jdbc.DRCPConnectionClass=myDCRPclass.

 � When creating or editing a data source with a text editor or using WLST, change the
URL element to include a suffix of :POOLED or (SERVER=POOLED) for service URLs.
For example: url>jdbc:oracle:thin:@host:port:service:POOLED</url>. Also update the
connection properties to include the value/name pair of the DCRP connection class.

Configuring a Database for DCRP Configuring your applications to use DCRP, as shown in the
previous section, is only the first step to using DRCP. The next step is for your database administrator to
configure the Oracle database to support DRCP.

You can enable DRCP in an Oracle database by executing the following Oracle supplied procedure:

SQL> EXECUTE DBMS_CONNECTION_POOL.START_POOL();

You must also configure the following parameters for the server pool:

 � MAXSIZE The maximum number of pooled servers in the pool. The default value is 40.
You may consider setting the maximum size to the same value as the largest WebLogic
connection pool using the DRCP.

 � INACTIVITY_TIMEOUT The maximum time, in seconds, the pooled server can stay idle
in the pool. After this time, the server is terminated. The default value is 300.

 � MAX_THINK_TIME The maximum time of inactivity, in seconds, for a client after it
obtains a pooled server from the pool. The default value is 120.

Managing Data Sources
You can use the Administration Console or WLST scripts to manage the JDBC data sources in a
domain. Probably the most important management tasks are the testing of data source connections
and the management of the statement cache for a data source. You can regularly test database
connections to avoid connection issues. You can configure automatic connection testing when you
create a data source or by configuring it afterward. You can use the JDBC Data Sources | Monitoring
| Testing page in the console to test database connections manually. You can clear the statement
cache for the data source by clicking the Clear Statement Cache button on the Console’s Control
page for the data source. You can also clear the cache for individual connections programmatically.

Here are some of the important connection pool management tasks you can perform from the
Console’s Control page for a data source:

 � Shrinking a connection pool You can shrink a connection pool after a busy period to
free up connections that are no longer needed so you can optimize database and system
usage. You can also enable automatic shrinking of the connection pool.

 � Resetting connections When dealing with faulty data source connections, it may be a
good idea to reset a connection pool, especially after you restart a database.

 � Suspending and resuming a connection pool You can use either the Suspend or the Force
Suspend options to suspend a data source. The normal Suspend option is for a graceful
suspension of the pool, and the Force Suspend option will destroy all pool connections and roll
back running transactions. You can use the Resume option to reenable a suspended data source.

208 Oracle WebLogic Server 12c Administration Handbook

Starting and Stopping a Data Source
You can start or stop a data source from the Administration Console in the following manner:

 1. In the left-hand pane of the Console, expand Services and select Data Sources.

 2. Click the data source you want to start or stop by selecting the data source on the
Summary Of JDBC Data Sources page.

 3. Click the Control tab.

 4. On the Control page, select the data source you want to start or stop.

 5. In the Deployed Instances Of This Data Source table, select the server where the data source
is deployed. You have two choices here, depending on the current state of the data source:

 � If the data source is in a shutdown state, click the Start button to start the data source
and then click Yes.

 � If the data source is in a running state, click the Shutdown button to shut down a data
source. The Shutdown button offers two options: Shutdown and Force Shutdown. If the
data source is healthy and there are active database connections, the normal Shutdown
command will fail. You must specify the Force Shutdown option to shut down a data
source with active connections. Click Yes to confirm the shutdown action.

In addition to starting and shutting down a data source, the Control page for a data source
also lets you shrink, reset, suspend, and resume a data source. You can also clear the statement
cache from this page.

Configuring Java Messaging Services (JMS)
Oracle WebLogic Server provides messaging services based on the JMS API. A message is simply
data exchanged between applications or systems that can consist of queued, transformed, and
transmitted messages between these applications or systems. Note that in a two-tier implementation
(server and client only), the client communicates directly with the data tier, with no real messaging
capabilities. In three-tier architectures, however, the middle tier will often include messaging
services as part of the application server’s capabilities. In many cases, JMS is used to simply queue
requests originated from the web tier to the services tier asynchronously.

WebLogic Server implements and extends the standard JMS APIs through the WebLogic JMS
messaging system. As mentioned earlier, a message is simply an exchange of information among
processes and could include a request, event, or report. JMS offers a standard API to enable Java
applications to create, send, and receive messages. WebLogic Server is compliant with the JMS 1.1
specification. Using the JMS API means that developers can avoid writing low-level code to process the
messages at the infrastructure level, and it enables you to use Java to send and receive messages easily.

WebLogic Server supports message persistence, guaranteed delivery, redelivery, expiry,
paging, and numerous other services to support enterprise messaging. Clustered JMS
implementations help create portable JMS applications that can be migrated across servers.

Message Communication Modes
Messages can use two different communication modes: synchronous and asynchronous. A
synchronous communication mode is one where the sender of a message has to wait for a response
before proceeding. For example, when you swipe a credit card for completing a transaction, the

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 209

machine dials the authorizing computer and has to wait until it receives an “approved” or “rejected”
message. Note that synchronous messaging requires that both parties are active in order to complete
the message transaction. With asynchronous communication, the sender of a request doesn’t need
to wait for a response and goes on about its business without any confirmation of the receipt of the
message. E-mail messages are good examples of asynchronous communication because you don’t
have to wait for any confirmation once you send an e-mail message. Asynchronous messages don’t
require that both parties to a messaging transaction be active—the messages can typically survive
hardware and network failures. Asynchronous communication is preferred when a high volume of
messages is expected because the responses don’t have to be sent immediately after the messages
are sent. JMS uses synchronous messaging in only a very limited number of cases—in general, you
can handle that type of synchronous messaging better with a direct call to an EJB. Thus, for all
practical purposes, you are concerned only about asynchronous JMS messaging.

Structure of a JMS Message
A JMS message always has a header, which is a required component. In addition, a header may
optionally include two other components—properties and a message body.

JMS message header fields include the information that identifies and routes messages. Here
are some examples:

 � JMSMessageID

 � JMSDeliveryMode

 � JMSPriority

 � JMSExpiration

The JMS API allows you to include message properties to further clarify the information in the
header fields. Properties can be of various types, such as Boolean, float, int, long, string, and so
on. You can use the properties and the header field to filter and route messages.

A message body contains the actual information the message is relaying and can have the
following formats:

 � BytesMessage

 � MapMessage

 � ObjectMessage

 � TextMessage

 � StreamMessage

Components of a JMS Messaging Application
A JMS messaging application consists of the following components.

JMS Provider
The JMS provider communicates with the JMS applications and provides the infrastructure for
processing messages. WebLogic Server is the JMS provider in our case.

210 Oracle WebLogic Server 12c Administration Handbook

Administered Objects
These are objects created by an administrator, and there are two types: destination and
connection factory. The destination objects contain the configuration information that’s provided
by the JMS provider, in this case, the Oracle WebLogic Server. Clients use the destination object
to specify the destination for sending and receiving messages. JMS messages can follow one of
two different message models. The point-to-point (PTP) message model supports one-to-one
messages, and the publish-subscribe model supports one-to-many message types. For a point-to-
point model, you use a queue, and for a publish-subscribe model, a topic.

You must first create a JMS application before you can send and receive messages. Essentially, you
must first look up the connection factory (the second type of objects managed by the administrator) in
the JNDI tree for a given destination and use that destination to get a physical connection to the
messaging system that’s anchored by the JMS server. A ConnectionFactory object encapsulates a set of
connection configuration parameters that you define and clients use it to create connections with a
JMS provider. You can create a set of JMS destinations that will be hosted by the JMS server through
the Administration Console. Figure 4-9 shows the steps you must follow to create a JMS application.

In addition to the connection component, there’s a separate session component, which is
responsible for the actual processing of messages. A session creates a MessageProducer object to
send messages to a destination, which could be either a queue or a topic. When creating the
MessageProducer object, you can specify the default delivery mode (persistent or nonpersistent),
the message priority, and the expiration time for the message.

A session also creates the MessageConsumer object to receive the sent messages, and it can
do so in either of two modes: synchronous or asynchronous. To process messages in asynchronous
mode, you also need to implement a MessageListener interface. Clients can also specify a
MessageSelector object to filter out messages that don’t adhere to a specific format, by comparing
the message to a string expression.

Sessions coordinate the sending and receiving of messages between message publishers and
subscribers. After a subscriber finishes processing a message or set of messages, it notifies the JMS
provider that it may delete that message or set of messages. A JMS session lets the subscriber send
a message acknowledgment to the JMS provider. There are three distinct acknowledgment modes,
as described here:

 � AUTO_ACKNOWLEDGE Messages are automatically acknowledged one by one by the
JMS provider, but because this involves some delay, duplicate messages can be sent.

 � DUPS_OK_ACKNOWLEDGE The JMS provider acknowledges messages a few messages
at a time and leaves open the possibility of sending duplicate messages.

Step 1. Look up the
connection factory in JNDI

Step 2. Create a connection
using the connection factory

Step 3. Use the connection
to create a session

Step 4. Look up queues
and topics in the JNDI tree

Step 5. Create message
producers and message
consumers using the session
and the queues/topics

Step 6. Start the
connection

FIGURE 4-9. Setting up a JMS application

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 211

 � CLIENT_ACKNOWLEDGE Under this mode, clients are responsible for explicitly
acknowledging the consumption of all messages in the current session using the
acknowledge() method in a message.

Instead of using message acknowledgment, an application can use a transaction session to
process groups of messages at once. When a transaction session commits or rolls back its work, it
automatically handles message acknowledgment.

Clients
JMS clients are any Java applications that send and receive messages.

JMS Messages
JMS messages contain information exchanged between different applications. As mentioned
earlier, JMS supports two basic types of messages—point-to-point and publish-subscribe. The two
messaging models are briefly described in the following sections.

Point-to-Point Messaging Under the point-to-point messaging model, the message producer
sends messages on a one-to-one basis. The JMS server sends the messages to a destination, also
called a queue. The messages in the queue are processed on a first-in, first-out basis, with each
available consumer or subscriber processing a message exactly once. The message recipient can
browse through the queue but can’t process recipients in a different order (other than on the
first-in, first-out basis). Note that the use of message selectors changes the default behavior, which
is for an application to be notified of every message delivered to it. A message selector, which can
be defined by a SQL statement or XML code, is used to filter out unwanted messages to improve
performance by minimizing network traffic. Message selectors thus allow clients to take messages
off of the queue in a different order than the order in which they are added.

Following are the steps to process a point-to-point message:

 1. Use a JNDI lookup to obtain the QueueConnectionFactory object.

 2. Use the QueueConnectionFactory object to obtain the QueueConnection object to the
provider.

 3. Obtain a QueueSession object with the provider.

 4. Use a JNDI lookup to obtain the queue.

 5. Use the QueueSession interface to create a QueueSender or QueueReceive object for the
obtained queue.

 6. Send or receive the message.

 7. Close the QueueConnection object.

Point-to-point messages can be persistent or nonpersistent. Persistent messages stay in the
message queue until a consumer processes the message or until the message expires or is deleted.
Nonpersistent messages don’t survive a server failure or shutdown, whereas persistent messages
can be sent even after a server failure or shutdown.

Publish-Subscribe Messaging Applications can use the publish-subscribe messaging model to
send and receive messages on a one-to-one or a one-to-many basis. You use the publish-subscribe
model to send a message to multiple consumers (also called subscribers) simultaneously, such as
sending stock prices to multiple traders in a stock exchange, for example. Instead of using a

212 Oracle WebLogic Server 12c Administration Handbook

message queue, under the publish-subscribe messaging model, the message producer publishes
messages to a destination called a topic. A subscriber must subscribe to a topic in order to receive
the message—each subscriber to a topic gets an identical copy of a published message.

A subscriber can use a durable or a nondurable subscription model. A durable subscription
model means that messages are stored when a subscriber isn’t online, as is the case when you log
off your e-mail service; new messages accumulate in the inbox and are available to you when you
reconnect to the service. In a nondurable subscription model, on the other hand, if the subscriber
isn’t connected, the message is still published but is also destroyed afterward, before the
subscriber gets a chance to receive the message.

A publish-subscribe mode of communication follows these steps:

 1. Use a JNDI lookup to obtain the TopicConnectionFactory object.

 2. Use the TopicConnectionFactory object to obtain a TopicConnection object to the provider.

 3. Obtain a TopicSession object with the provider.

 4. Use a JNDI lookup to get the topic.

 5. Create a TopicPublisher or a TopicSubscriber object for the topic.

 6. Send or receive messages and close the TopicPublisher/TopicSubscriber session and connection.

The JMS provider saves the messages until all consumers process the messages or until the
message expires or the topic is deleted. Durable subscriptions end when the subscriber
unsubscribes, and nondurable subscriptions end when a subscriber’s JMS connection ends.

WebLogic JMS Architecture
WebLogic Server JMS architecture includes the use of JNDI for lookup purposes, a JMS server,
JMS configuration modules, and persistent storage. Of course, the architecture includes client JMS
applications that produce and consume the messages. Earlier in this chapter, you already
reviewed how JNDI helps locate various services provided by WebLogic Server.

A WebLogic Server administrator must understand each of these components and learn how to
configure them. There are both domain-dependent and domain-independent configuration items that
relate to JMS. Some of the JDBC-related resources, such as JMS servers and persistent stores, are
classified as environment configuration, and they are unique to each domain. Environment
configuration details are stored, as is the case with the other domain configuration information, in the
domain’s config.xml file. You can configure these through the Administration Console or using WLST
commands. The WebLogic Server administrator must also configure the following additional JMS-related
resources as domain configuration resources so they can be used by JMS servers and JMS modules:

 � Persistent stores

 � JMS store-and-forward (SAF)

 � Path service

 � Messaging bridges

NOTE
Session pools are older mechanisms for processing messages and
don’t support JTA transactions. Message-driven beans (MDBs) have
superseded session pools.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 213

Persistent Stores
WebLogic Server uses a persistent store for two purposes: storing persistent JMS messages and
temporarily storing messages sent by a store-and-forward agent. You have some choices regarding the
type of persistent store you want to set up. Oracle provides a default file-based persistent store that you
can start using right away. Note that this default persistent store isn’t just for storing JMS messages—it’s
for any WebLogic Server subsystem that needs a default storage mechanism. You can also create your
own custom file-based or JDBC store for your JMS persistent messages. Chapter 3 explains how to
create both a file-based and a JDBC-based persistent store. You must create a custom persistent store
on each WebLogic Server instance where you’re going to host a JMS server. You can use the default
WebLogic Server persistent store to store JMS messages, but creating your own custom stores allows
for more flexibility, configuration, and tuning. Also, you can’t migrate a default persistent store. If you’re
setting up a migratable server (more on this in Chapter 7), you must use a custom persistent store.

JMS Store-and-Forward (SAF)
The JMS store-and-forward service is a highly available service that lets the WebLogic Server send
messages to distributed destinations. That is, local JMS message producers running on one
WebLogic instance can reliably send messages to destinations such as JMS queues or topics
running on a remote server. If the remote destination isn’t available, the local server saves the
messages and forwards them to the remote destinations once they’re available. This provides a
means for ensuring that an application is not blocked in the event that the hosting server is not
available. If a web application were to store an order and then queue a message to a remote
server, the application would return to the user even in the event that the back-end system was
temporarily unavailable. SAF services are explained in more detail later in this chapter.

Path Service
The WebLogic Server path service maps groups of messages to a messaging resource by pinning
messages to a distributed queue member. The path service also pins messages to a store-and-
forward path.

Messaging Bridges
The WebLogic messaging bridge is a forwarding mechanism for JMS-based messaging products
and offers interoperability between WebLogic JMS and other messaging services. Messaging
bridges are discussed toward the end of this chapter.

In addition to the environment configuration, there is other application-related (but not
domain-dependent) configuration information that you could include either in a system or an
application JMS module. Let’s look at the rest of the JMS architectural components in more detail
in the following sections.

JMS Servers
The JMS server implements all the WebLogic JMS messaging services. A JMS server serves as the
management container for the queues and topics in JMS modules that are targeted to the server.
A JMS server hosts destination resources (queues and topics) on a single WebLogic Server instance
that are used by the clients that connect to the JMS server. The JMS server provides services to the
destination that are targeted to it. The JMS server maintains information on the stores that are to be
used for the persistent messages handled by a queue or a topic. The server also maintains statuses
of the durable subscribers on the destinations. You can configure and target multiple JMS servers
to a WebLogic Server instance. Client applications use the JNDI tree or a naming context to look

214 Oracle WebLogic Server 12c Administration Handbook

up a connection factory and use it to connect to the JMS server. A connection factory contains
connection properties that apply to all connections that connect to the server.

Each JMS server supports all the requests for various JMS modules that you target to that
server. The JMS server receives client requests for queues and topics and forwards them to the
appropriate instance. You can control how many messages the JMS server can store in its memory
as well as specify thresholds that trigger the storing of messages to the persistent store. You can
throttle the rate at which messages are produced when the messages reach a threshold condition.
The administrator can also block producers from sending messages, as well as pause destinations
such as queues and topics.

TIP
Use either automatic whole server or service migration to handle
failovers, instead of migrating the JMS services manually. Chapter 7
explains both server and service migrations.

JMS servers are at the heart of JMS messaging, and the JMS server must be available at all times
so the queues and topics for which it acts as a container are also available. You can use two different
failover mechanisms to automatically fail over a JMS server. When a WebLogic Server instance fails
due to a machine failure, you can use whole server migration to restart the entire WebLogic Server
instance on a different machine. You can also use service migration to migrate a JMS server and
related JMS services to a different WebLogic instance in a cluster. To support high availability, you
need to set up a migratable target list for the JMS server, which is simply a list of the WebLogic
Server instances in a cluster to which you can migrate the JMS server (and all of its destinations).
Clusters can also provide load balancing for JMS connections by sending client requests for JMS
connections to cluster members that host a connection factory. You’ll learn how to perform both
whole server and service migration in Chapter 7, when WebLogic clusters are discussed.

JMS servers support both user-defined WebLogic file-based stores and JDBC stores for storing
persistent messages. Although JDBC stores are easier to manage, file stores often offer better
performance. The choice between the two types of stores is largely a matter of what you have
available for local storage and the capacity of your database.

JMS clients connect to remote WebLogic Servers by using JNDI and JMS APIs. The WebLogic
Server JMS implementation supports the use of Java, C, and .NET clients, but only the Java clients
will support the JTA transaction API. In addition, Java clients support the store-and-forward
feature, which allows a client to send messages despite a connection failure.

JMS Modules
While the main function of a JMS server is to keep track of the persistent store for supporting JMS
messaging, JMS modules contain the actual configuration of JMS components such as queue and
topic destinations, and connection factories. You can configure and manage a system module as a
global resource, and you store it as a standard Java EE module.

The WebLogic Server system administrator creates the system modules through the
Administration Console. Once created and deployed to a server or cluster, the system modules
are available to all applications deployed on that server or cluster. Application modules, on the
other hand, are usually available only to the application in which the developer defines them.
Although it’s easier to package the application modules and move them across environments, it’s
also easy to mess up a deployment through nondefault targeting of application modules. Also,
when you undeploy an application, the JMS destinations are removed and you must redeploy the

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 215

application to use the administration modules. System modules support all JMS resources,
whereas application modules support only some of the resources. Because application modules
aren’t configurable via JMS, you can’t use the Administration Console to configure them. Because
of all these drawbacks in using application modules, in production systems, Oracle recommends
using JMS system modules rather than JMS application modules.

Each of the following JMS resources is created and stored as a JMS system module:

 � Connection factory This resource defines connection parameters that enable JMS clients
to create a JMS connection. Applications look up the connection factory in the JNDI tree
to send and receive messages.

 � Queue This is a point-to-point destination that allows an application to send messages
to another application. A distributed queue is a set of JMS queues that is available as a
single logical queue to clients distributed across various servers in a cluster.

 � Topic This is a publish-subscribe destination that allows an application to send the same
message to multiple applications. A distributed topic is a single set of topics available as a
single, logical topic to clients spread across the members of a cluster.

 � SAF imported destinations These are collections of imported store-and-forward queues
or topics representing JMS destinations in a remote server or cluster.

 � Destination sort key This resource specifies the sorting order for messages when they
arrive on various destinations.

 � Foreign server These are third-party JMS providers that allow local servers to reach
remote JNDI providers, thus allowing foreign connection factories and destination objects
to be available on a single JNDI directory tree.

 � Quota This resource lets you specify the allocation of system resources to various
destinations.

 � JMS template Templates let you easily define queues and topic destinations with
preconfigured settings.

You define the JMS modules in an XML document, either as a system or as an application
module. When you create a system module, WebLogic Server creates the module file in the
config\jms directory under the domain directory and adds a reference to the XML file that
represents the JMS module in the domain’s config.xml file. You can also use JMS application
modules to represent JMS component configuration by including them in a packaged application,
such as a jar or ear file, or as a globally available stand-alone JMS module. The key difference
between a system and an application module is this: the (WebLogic) server administers the system
modules, and they’re available to all the applications you deploy in a domain. The application
developers, on the other hand, own the application JMS modules, and the modules are usable
only by the applications with which the JMS modules are packaged.

TIP
Use system JMS modules instead of application modules in a
production system.

Developers can include application information as descriptors in XML files that are part of
various ear, war, or jar files, or JMS modules. Unlike the environment configuration items,

216 Oracle WebLogic Server 12c Administration Handbook

application-related configuration isn’t stored in the domain itself. Rather, it’s stored in the
module descriptor files, which are XML files. When you, as an administrator, deploy any such
prepackaged applications, in effect, you assign various resources to manage the application
components supplied by the developers because the application configuration only specifies
the actual JMS configuration resources, such as queue and topic destinations, and doesn’t
specify things such as the JMS server definition. For example, you determine which WebLogic
persistent store to use for storing JMS messages based on your environment’s configuration of
the JMS resources.

TIP
You can’t dynamically add or remove an application JMS module as you
can with a system JMS module—you must redeploy the entire application.

WebLogic Distributed Destinations
A distributed destination is a logical representation of a set of destinations (queues or topics) that
is available as a single destination to a client. Because a distributed destination is transparent to a
client, the client uses the distributed destination just as any normal JMS destination. Distributed
destinations help make JMS destinations highly available, in addition to providing load-balancing
capabilities. You can use distributed destinations only in a WebLogic clustered environment. You
must create a JMS server and a custom persistent store on each member of a cluster in order to
use distributed destinations.

Configuring WebLogic Server JMS
Configuring WebLogic Server encompasses the configuration of all components of the JMS
architecture, such as JMS servers, JMS modules that include destinations, and the persistent store
for storing messages. You may also need to configure the JMS store-and-forward mechanism,
depending on your architecture. Let’s start with creating and configuring the JMS server.

Creating a JMS Server
A JMS server is a container for JMS queue and topic destinations in the JMS modules deployed to
the WebLogic Server. It’s the JMS server that actually implements the JMS messaging services. It’s
important to note the following things about a JMS server:

 � A JMS server belongs to a single WebLogic Server instance, and the same instance can
host multiple JMS servers.

 � You can target multiple JMS modules to each JMS server.

 � You must configure the JMS server to use a persistent store and target the JMS server to
the same target as that for the persistent store.

 � Multiple JMS servers can share the same persistent store.

Follow these steps to create a JMS server:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane of the console, expand Services and click Messaging. Select JMS Servers.

 3. Click New on the JMS Servers page.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 217

 4. On the Create A JMS Server page, enter a name for the new JMS server. You also must
choose either an existing JDBC store or a custom file-based repository for the Persistent
Store parameter. In our case, there’s no custom store of any kind, so the Persistent Store
drop-down box shows the value “(none)”. Note that multiple JMS servers can use the
same persistent store, whether it’s a database or a file-based store. You can choose to
leave the Persistent Store box unfilled, in which case the JMS server will use the server
instance’s default file-based store. In this example, you want to learn how to create your
own store, so click the Create A New Store button.

TIP
When you target a JMS server to a migratable target, it won’t be able
to use the WebLogic Server–provided default store; you must create a
custom store and target it to the migratable target.

 5. On the Create A New Store page, you must choose between a JDBC data store and a file-
based store. Select File Store and click Next.

 6. On the File Store Properties page, you must enter three things: a name for the new file
store, the server to which you want to target it, and the actual directory in which you
want WebLogic Server to create and store the file store. If the directory is new, you must
create it before clicking Next.

 7. Once the file store has been created, you’re brought back to the Messages - JMS
Server Properties page (you’ll also see the message “File store created successfully”
at the top of this page), where you were before you chose to create the new custom
file-based store. Now, you can select your new file store from the drop-down list
(remember that it showed a value of none before). Figure 4-10 shows the Create A
New JMS Server page, with the new file store name (FileStore-1) in the Persistent Store
field. Click Next.

 8. On the Select Targets page, select the WebLogic Server instance to which you want to
target the new JMS server. Click Finish.

 9. Activate the changes by clicking Activate Changes in the Change Center of the Console.

Oracle recommends that you target JMS servers to a migratable target. Once you do this,
WebLogic Server can automatically migrate a JMS server from a crashed or even an unhealthy
instance to a good instance.

You’ll now see your new JMS server in the Summary Of JMS Servers page. This section
showed you how to create a bare-bones JMS server, but there’s a lot to configuring a JMS server,
including setting message thresholds and quotas, logging, and many other properties. The
upcoming section “Configuring a JMS Server” explains all the JMS configuration options.

Configuring JMS isn’t a trivial exercise—it’s a labor-intensive and repetitive process. I
strongly recommend that you consider recording the session as a WLST script or using the
domain generation as a WLST script and then using Jython, with loops and the like, to make
life easier.

The following section describes the basic steps involved in creating JMS servers and JMS
system resources through WLST, and it shows a sample script that follows these steps to create the
JMS servers and resources.

218 Oracle WebLogic Server 12c Administration Handbook

Creating JMS Servers and System Resources Through WLST
To create JMS resources with WLST, first start an edit session. You must create a JMS system module
that contains systems resources such as queues, topics, and connection factories. You must also
create the necessary JMS server resources. Following is a list of the steps you must perform:

 1. Retrieve the WebLogic Server MBean object for the JMS server.

 2. Create the JMS system resource.

 3. Target the JMS system resource to a server instance.

 4. Get the system resource object.

 5. Create JMS resources (topics, queues, connection factories) for the JMS system module.

 6. Configure the JMS resource attributes (names for the queues, topics, and connection
factories, for example).

 7. Create a subdeployment name for the JMS system resources.

FIGURE 4-10. The Create A New JMS Store page in the Administration Console

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 219

 8. Create a JMS server.

 9. Target the JMS server to a WebLogic Server instance.

 10. Create a subdeployment object using the subdeployment name from Step 7. This will
associate a JMS module’s system resources to a subdeployment element in the config.xml file.

 11. Target the subdeployment to a JMS server instance, Managed Server, or cluster.

Listing 4-1 shows a sample WLST script that performs all the steps listed here to create JMS
resources. The script creates a JMS server and targets it to a server instance. The script also creates a
JMS system module and uses subdeployments to target the queues that are part of the JMS system.

Listing 4-1 Sample Script to Create JMS Resources

import sys
from java.lang import System

myJmsSystemResource = "CapiQueue-jms"
factoryName = "CConFac"
jmsServerName = "MyJMSServer1"
queueName = "CQueue"

url = sys.argv[1]
usr = sys.argv[2]
password = sys.argv[3]

connect(usr,password, url)
edit()
startEdit()

servermb=getMBean("Servers/MedRecServer")
 if servermb is None:
 print '@@@ No server MBean found'

else:
 jmsMySystemResource = create(myJmsSystemResource,"JMSSystemResource")
 jmsMySystemResource.addTarget(servermb)

 theJMSResource = jmsMySystemResource.getJMSResource()

 connfact1 = theJMSResource.createConnectionFactory(factoryName)
 jmsqueue1 = theJMSResource.createQueue(queueName)
 connfact1.setJNDIName(factoryName)
 jmsqueue1.setJNDIName(queueName)
 jmsqueue1.setSubDeploymentName('DeployToMyJMSServer1')
 connfact1.setSubDeploymentName('DeployToMyJMSServer1')
 jmsserver1mb = create(jmsServerName,'JMSServer')
 jmsserverlmb.addTarget(servermb)

 subDep1mb = jmsMySystemResource.createSubDeployment('DeployToMyJMSServer1')
 subDep1mb.addTarget(jmsserver1mb)

220 Oracle WebLogic Server 12c Administration Handbook

Configuring a JMS Server
You can configure various properties for a JMS server once you create the server. Use the
Administration Console for the JMS server configuration. Here’s what you need to do to configure
each of the configuration attributes for a JMS server:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane of the Console, expand Services | Messaging and select JMS
Servers.

 3. On the Summary Of JMS Servers page, click the JMS server you’d like to configure.

 4. On the Settings page (Settings For examplesJMSServer, in this example), you’ll see several
tabs and subtabs—General, Logging, Targets, Monitoring, and Thresholds And Quotas.
Click the appropriate tab to configure each area. Figure 4-11 shows the Settings For
examplesJMSServer page in the console.

 5. Once you complete your configuration change, click Activate Changes in the Change
Center of the Console so the server can save the changes.

The following sections summarize the key configuration properties for a JMS server.

FIGURE 4-11. The JMS server Configuration settings page

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 221

TIP
It’s a good idea to configure message quotas on each JMS server
to prevent out-of-memory conditions. Assume that, on average, a
message will require 512 bytes of memory.

Configuring General JMS Server Properties Here are the key general configuration properties
for a JMS server:

 � Paging Directory Specifies where the server should write the message bodies when
they exceed the message buffer size (this is called message paging). Once the JMS server
writes the message bodies to disk, it removes them from the message buffer. By default,
the server writes these to the DOMAIN_HOME\servers\<server-name>\tmp directory
of the host server. You can instead specify a separate directory for this, because the \tmp
directory can fill up if there are too many large JMS messages.

 � Message Buffer Size Specifies the amount of memory (in bytes) dedicated to storing
message bodies in memory. By default, the message buffer size is one third the maximum
heap size of the JVM or 512MB, whichever is larger. The JMS server uses the concept
of paging to move messages temporarily from memory to persistent storage when it’s
faced with too many messages in memory. The server will retrieve the stored messages
back into memory when they’re needed. WebLogic chooses the lesser of two evils in this
case because, although paging increases server overhead, storing to disk also impacts
system performance. When the message buffer is full, the JMS server moves messages to
persistent storage (disk). Since WebLogic Server keeps both persistent and nonpersistent
messages in memory, paging applies to both types of messages.

 � Hosting Temporary Destinations Specifies whether the JMS server can host temporary
destinations. By default, this field is already enabled, and any temporary destinations that
are created will use the default destinations. Disabling this field means that the JMS server
won’t host any temporary destinations.

 � Temporary Template Name Refers to the configured JMS template that the JMS server
uses to create temporary destinations. You can’t specify this property if you don’t enable
the Hosting Temporary Destinations field. If you leave this field unchecked, the server will
use default destination values.

NOTE
You must reboot the WebLogic Server instance after modifying the
configuration of an existing JMS server. You don’t have to reboot the
server instance after you initially create and configure a new JMS server.

Configuring Thresholds and Quotas You can configure upper and lower message thresholds
for destinations targeted to a JMS server. Exceeding these thresholds will trigger log messages.
Quotas specify the upper limits for memory usage, message size, and the number of messages a
JMS server can host. You can access the Thresholds And Quotas configuration page by clicking
the Configuration | Thresholds And Quotas tab in the JMS server Settings page in the
Administration Console. This section covers the key configuration properties related to
thresholds and quotas.

222 Oracle WebLogic Server 12c Administration Handbook

When you configure high and low thresholds for messages, WebLogic Server triggers two types of
events: log messages, indicating that a high or a low threshold has been reached, and events related to
flow control. For example, if a high message threshold is reached, the JMS server requests that message
producers decrease the flow of their messages. For configuring thresholds, set the following properties:

 � Bytes Threshold High and Bytes Threshold Low These two properties specify upper and
lower thresholds for the number of bytes stored on the JMS server.

 � Messages Threshold High and Messages Threshold Low These two properties specify
upper and lower thresholds for the number of messages stored on the JMS server.

The following are the configuration properties for setting message quotas:

 � Bytes Maximum and Messages Maximum These two properties let you specify the
maximum number of bytes or messages that a JMS server can store.

 � Blocking Send Policy Specifies how a JMS server determines whether it should send
smaller messages before larger ones when a destination reaches its quota for messages.
You have two choices here: the FIFO (first-in, first-out) option specifies that the JMS
server deliver messages in the order they were received, regardless of their size—so small
messages don’t get preference over larger messages. The Preemptive option lets the JMS
server send smaller messages before larger messages when it’s faced with a situation
where destinations have exceeded their message quota.

 � Maximum Message Size Specifies the maximum size of a message.

JMS producers are forced to wait for a specified time interval when the message quota is
reached to see if space is freed up. If not, a timeout occurs, and the producers will receive a Java
exception. You must always set quotas to prevent the server from running out of space for storing
messages, either in the memory space for the JMS server or in the persistent store. You can set
message quotas on individual destinations, such as a queue or topic, or on the entire JMS server.
JMS server-level quotas apply only to destinations that don’t use named message quotas.

Configuring Message Log Rotation JMS server logs provide useful information relating to the
production and consumption of messages. You can configure how the server rotates these logs
once you enable server logging on the destinations in the various JMS modules that you target to a
JMS server. To configure message logging, click the Logging tab in the JMS server Settings page.
You can set the following logging properties on this page:

 � Log File Name and Log File Rotation Directory Specify the name of the file to store the
JMS server log messages and the directory for storing rotated log files.

 � Rotation Type You can choose among three criteria for rotating old logging messages to a
new file. Select By Size to specify that the server rename the current log file after it reaches a
certain size, By Time to base log rotation on a time interval, and None to indicate that logs are
rotated neither by size nor by time. The default value for the Rotation Type is By Size; however,
WebLogic Server rotates the log file by default once it reaches a threshold size of 500KB.

 � Rotation File Size By default, once the JMS server log file reaches 500KB, the server
automatically renames the current log file and starts logging events to a new file if
Rotation Type is configured to By Size. If you wish, you can specify a much larger value
for this attribute.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 223

 � Limit Number Of Retained Files Specifies the number of log files a JMS server retains
before it starts overwriting the oldest log file.

 � Rotate Log File On Startup Specifies whether the server rotates the log files during
startup and in production mode; the default setting is false.

By default, WebLogic Server bases its logging on the Java logging APIs that are part of the JDK.

Configuring Message Logging Once you create a JMS destination such as a queue or a topic,
you can enable the logging of message information into a JMS message log file. Make sure you
configure JMS server message log rotation, as explained in the previous section, before
configuring message logging.

You follow identical steps to configure message logging for a queue or a topic. Here are the
steps for configuring message logging for a queue:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane of the console, expand Services | Messaging | JMS Modules.

 3. In the JMS Modules list, click the JMS module you want to configure. In my example, the
JMS system module name is examples-jms.

 4. The Settings For examples-jms page shows all the JMS resources that have been created
for this system module. These resources include queue and topic destinations, connection
factories, distributed destinations, foreign servers, and store-and-forward parameters.
Select the name of the specific JMS resource for which you want to configure logging. In
this example, I chose the queue named exampleQueue.

 5. In the Settings For examplesQueue page, shown in Figure 4-12, click the Configuration
| Logging tab. This page allows you to configure message lifecycle logging options for a
destination.

 6. On the Logging configuration page, you can configure the following logging properties:

 � Enable Message Logging Lets you specify whether to log lifecycle messages for this
queue (if this were a topic resource, for a topic instead of a queue).

 � All Headers Specifies the inclusion of all JMS Header logs in the log file. You can
alternatively choose to log only a subset of the header fields by using the Available
and Chosen columns that list the JMS header fields.

 � All Properties Lets you include all properties in the log file. Alternatively, you can
select specific properties from the list of available properties (User-defined Properties)
shown underneath this property box.

Monitoring JMS Servers
You can monitor running JMS servers from the Administration Console. Not only can you monitor
the active connections, transactions, and destinations, but also you can kill or pause selected
active JMS servers from the Console. To monitor a JMS server, navigate to Services | Messaging |
JMS Servers and click the JMS server you want to monitor. Click the Monitoring tab on the top of
the page. From here, you can monitor various JMS server data such as the following:

 � Active Destinations You can view statistics for all active JMS destinations such as queues
and topics. You can also “pause” and “resume” a destination for troubleshooting purposes.

224 Oracle WebLogic Server 12c Administration Handbook

 � Active Transactions You can view all active JMS transactions and commit or roll back a
transaction by force.

 � Active Connections You can see all active JMS connections for a domain. You can kill a
connection by selecting the connection and clicking the Destroy button.

TIP
Because migratable targets offer the restart-in-place capability, Oracle
recommends that you use them. Because only a cluster supports a
migratable target, you can simulate a cluster by using a cluster of size
one to use the migratable targets feature. This also helps you plan for a
future migration from a single server to a cluster.

Creating JMS System Modules
As you know by now, you can create various types of JMS system modules to represent JMS resources
such as queues, topics, and connection factories. Regardless of the specific system module, you follow
the same procedures to create the system module. Of course, after creating the system module, the
configuration aspects for that module will vary, based on the JMS resource the module represents. In
this section, I show you how to create a simple system module for a JMS queue, which defines a

FIGURE 4-12. The Logging configuration page for a JMS queue destination

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 225

destination for a point-to-point message. The JMS system module creation procedures first let you create
a generic JMS system module, with no resources. Once you create the generic system module, you are
asked to add resources to that module. In the following example, I’ll add a JMS queue resource because
I’m creating a module to represent that queue. Here are the steps to create a JMS system module:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane, go to Services | Messaging | JMS Modules.

 3. On the JMS Modules page, click New.

 4. On the Create JMS System Module page, select a name for the new JMS system module.
Optionally, you can also specify a descriptor filename and the location where you want
to place the descriptor file. If you don’t choose any descriptor filename or a location
for it, WebLogic Server will use default values for both of these. The server will also
automatically add a jms.xml extension to the descriptor filename. Click Next.

 5. On the Targets page, select the WebLogic Server or cluster to which you wish to deploy
the new JMS system module. Click Next.

 6. On the Add Resources To The JMS System Module page, check the Would You Like To
Add Resources To This JMS System Module? check box because, in this case, you want to
add the JMS queue resource to the new generic system module. Click Finish.

 7. On the Configuration page, click New.

 8. The Create A New JMS System Module Resource page appears next. Since we want to create
the queue resource in our new JMS system module, select Queue, and then click Next. The
configuration pages that appear next are unique for the queue resource you’re adding to the
new JMS system module. Other resources may offer different configuration pages.

 9. On the JMS Destination Properties page, enter a name as well as a JNDI name for the new
queue you’ve associated with the new JMS system module, MySystemModule1. Click Next.

 10. On the next page, you can optionally choose a subdeployment to which to assign the
new system module resource by clicking the Create A New Subdeployment button. A
subdeployment is when you target a JMS resource to a specific server instance or cluster
(or a SAF agent). If you don’t choose the subdeployment option, the new system module
resource will be targeted to all servers. For now, just click Finish.

 11. You’ll see a message at the top of the page stating that the new JMS queue was
successfully created. Save the changes by clicking the Activate Changes button in the
Change Center of the Administration Console.

You can view the various resources that are part of a JMS system module by viewing the
Settings page for a JMS module.

You can always come back and configure various properties for the new JMS queues (or any
other type of JMS resource) later. Note that once you deploy the JMS server that owns the
destination (a queue in this case), the destination becomes available in the server’s JNDI tree.

Configuring a JMS System Module
You must configure each JMS module that you target to a server, such as system modules for queue
and topic destinations, connection factories, and so on. Since I showed you how to create a JMS
system module to include a queue resource, let me show you how to configure some of its properties

226 Oracle WebLogic Server 12c Administration Handbook

as well. If you need to create multiple queues, you may find it advantageous to create a JMS template
to create multiple queues easily. I’m going to briefly summarize the configuration options for a JMS
queue, one of the two types of destinations you can configure, with the other being a topic:

 � General Queue Parameters Lets you specify a JMS template to configure multiple queues.

 � Advanced Queue Credentials Lets you choose to attach the credentials of message senders.

 � Queue Thresholds And Quota Lets you define upper and lower thresholds based on the
bytes stored in the destination or the number of messages in a queue. You can specify
the maximum number of messages (quota) that can be stored in this queue. You can also
specify the maximum size of a message from a producer that this queue will accept.
Finally, you can enable message paging on the queue to temporarily swap message
bodies out of memory when the queue’s message load hits a threshold.

 � Message Delivery Overrides Lets you override values such as message priority that are
set by the producers of messages.

 � Queue Message Logging Configures the logging of messages into the JMS message log file.

 � Queue Message Delivery Failure Options Lets you configure values such as message
redelivery limits and message expiration policies.

Note that you can always temporarily stop a queue from functioning by “pausing” the queue
at the server restart time, or dynamically anytime, in case you have a problem with the way a
queue is functioning. You can delete a queue by going to the JMS Modules page in the
Administration Console and clicking the Delete button under the Summary Of Resources table
(after selecting the queue you want to delete).

Using a Connection Factory
JMS clients use a connection factory, which is an object that enables the creation of JMS
connections, to obtain a JMS connection to a destination such as queue or a topic. Connection
factories contain the configuration details for JMS connections and are hosted on the same
server (or cluster) as the actual JMS destinations. Applications access JMS by looking up a
connection factory in the JNDI tree and creating a connection from there so they can establish
communication with a JMS server. Once created, the connection will have all the attributes of
the connection factory through which the connection was created. The client’s connection
factory instance tracks all active servers in a cluster that have a connection factory. Once the
client connects successfully to a specific connection factory, it retains the same host for the
duration of that connection. Because a connection factory allows concurrent usage, multiple
threads can access the object at the same time. In order to access a JMS destination such as a
queue or a topic, messages pass from the client through the connection factory and finally to
the actual JMS destination instance that’s managed by the JMS server (or SAF agent).

WebLogic Server comes with two default connection factories. You can also create your own
custom connection factories. The two default connection factories have the following JNDI names:

weblogic.jms.Connectionfactory
weblogic.jms.XAConnectionFactory

Note that the default connection factories are hosted on all members of a cluster, whereas you
can host a custom connection factory on all or a subset of servers that you specify in a cluster.
You can create multiple connection factories, each with a different set of connection attributes.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 227

When the WebLogic Server instance starts, it binds all connection factories targeted to that server
to the server’s JNDI tree. Although you can just use the two default connection factories, the
preconfigured settings of these connection factories may or may not be appropriate for your
environment. Thus, one of the important decisions you need to make is whether you want to
configure your own connection factories.

TIP
You can’t tune the default WebLogic connection factories. Create
custom connection factories for JMS connections.

Targeting a Connection Factory You can target a connection factory to one or more
Managed Servers or to all or some of the servers in a cluster. You can also target a connection
factory to one or more JMS servers, along with destinations such as a JMS queue or a topic.
You can create a group with a connection factory and related stand-alone queues or topics
and target it to a JMS server to enhance performance. The grouping also helps during the
migration of a JMS server because you can migrate the connection factory along with all the
JMS server’s destinations such as queues and topics.

Creating a Connection Factory A connection factory is contained in a JMS system module.
Therefore, you create a JMS module on which you can configure the connection factory resource.
This section explains how to create a connection factory in a system module using the Administration
Console. Several of these steps are similar to how you create other system modules such as the one to
hold queues described earlier in this chapter.

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane, expand Services and select Messaging | JMS Modules.

 3. On the Module Settings page, click New in the Summary Of Resources table.

 4. On the next page, select a name for your new connection factory and click Next.

 5. Select a WebLogic Server instance or cluster to which you want to target the new system
module. Click Next.

 6. Check the Would You Like To Add Resources To This JMS Module check box, and click
Finish.

 7. Once you see the message stating that the JMS module was successfully created,
click New in the Summary Of Resources table so you can add the connection factory
resource to the new JMS system module you’ve just created. The Create A New
JMS System Module page allows you to select the type of JMS resource you want to
add to the system module, such as queues, topics, or connection factories. Select
Connection Factory and click Next.

 8. On the Connection Factory Properties page, you can assign a name and a JNDI name for
the connection factory. In addition, you can configure the following properties for the
new connection factory:

 � Subscription Sharing Policy Controls which subscribers can access new
subscriptions. You can choose the Sharable policy if you want to allow subscribers
created using this connection factory to share subscriptions with other subscribers.

228 Oracle WebLogic Server 12c Administration Handbook

If you select Exclusive as the value for this parameter instead, subscribers won’t share
subscriptions with other subscribers.

 � Client ID Policy Specifies whether multiple JMS connections can use the same
client ID. If you’re sharing durable subscribers, Oracle recommends that you set this
parameter to the value Unrestricted.

 � Maximum Messages Per Session Specifies the maximum number of messages that
can be queued for an asynchronous session before the messages are passed along to
the message listener.

 � XA Connection Factory Enabled Determines whether this connection factory
can create JTA-aware transactions as well as XA queues and topics. By default, this
parameter is enabled.

 9. Click Next. You can target the new connection factory to one of the WebLogic Server
instances or click the Advanced Targeting tab at the top of the page if you want to use the
subdeployment mechanism.

 10. Click Finish.

Configuring a Connection Factory Now that you’ve created a new connection factory, you
must configure several important properties for it. Here’s how to go about configuring the
connection factory:

 1. In the left-hand pane of the Administration Console, expand Services and select
Messaging. Click JMS Modules in the right-hand pane.

 2. In the JMS Modules table, click the JMS module you created to contain the connection factory.

 3. On the next page, click the connection factory in the Summary Of Resources table.

 4. On the connection factory Configuration (Settings For ConnectionFactory-0 in this
example) page, shown in Figure 4-13, you’ll see several tabs where you can configure

FIGURE 4-13. The connection factory configuration settings page

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 229

various the attributes of a connection factory, such as Default Delivery, Client,
Transactions, Flow Control, Load Balance, Security, and Subdeployment. Several of these
configuration attributes affect JMS message delivery, such as throttling messages, for
example. The key connection factory configuration items are summarized here:

 � Default Delivery You can set attributes such as Default Priority, Default Time To Live,
and Default Delivery Time to specify message delivery options. The Default Delivery
Mode option lets you specify a persistent or nonpersistent delivery mode for all
messages sent by a producer through this connection factory.

 � Transactions You can set transaction parameters such as the time-out value for a
transaction created with a JMS connection factory.

NOTE
You can configure some connection factory options dynamically—the
changes you make only affect new messages and not stored messages.

 � Flow Control You can configure various message flow control parameters to control
the creation of messages by producers. For example, you can throttle message
production when you determine that the messages are overloading the system. By
default, flow control is enabled, which means that message producers will be slowed
down automatically if the JMS server reaches its threshold settings, which can be
set either on the basis of the number of bytes or messages. You can set parameters
such as Flow Maximum and Flow Minimum to control the number of messages per
second for a producer that is undergoing a message threshold condition. You can also
configure the One-Way Send Mode parameter, which lets producers send one-way
messages without waiting for a confirming message from the JMS server. You do this
to improve the performance of nonpersistent, nontransactional messages. By default,
this feature is disabled.

Note that although you configure flow control through settings in a producer’s
connection factory, both JMS servers and destinations also have flow control
attributes. However, the default thresholds on JMS servers and destinations are, in
effect, disabled, so the connection factory flow control settings are what determine
how the server throttles messages. Both flow control and paging are defensive
measures used to control message flows, but the best way to ensure that message
producers and consumers are in sync is by planning for proper message flow in the
application design itself.

 � Load Balance You can specify load balancing parameters to determine how multiple
clients distribute their work to the servers. You can choose Server Affinity Enabled to
specify that load balancing will be attempted across any other physical destinations
that are running on the same server instance. You can also turn off load balancing by
clearing the Load Balancing Enabled box. This setting specifies whether load balance
messages are sent to a queue or topic on a per-call basis.

TIP
By default, both load balancing and server affinity are enabled.

230 Oracle WebLogic Server 12c Administration Handbook

Note that you can set message delivery attributes such as Time To Live, Priority, Time To Deliver,
and Delivery Mode by setting them in the connection factory, but any settings a developer specifies
in the application itself will override the connection factory settings. The message settings you specify
in the destination itself, however, such as when you configure a queue, will trump the message
delivery settings of the connection factory and even those made through the application code.

System Modules and Subdeployments
You must target a JMS system module to a Managed Server or cluster. In addition, you must target the
JMS resources you define in a system module to the JMS server or WebLogic Server instances that are
within the scope of the system module’s targets. To provide a loose coupling of JMS resources in a
domain, you can group the targetable JMS resources in a system module into subdeployments.

When you’re configuring the JMS resources in a system module through the Administration
Console, you can accept the preselected targets for a resource type, or select an existing
subdeployment, or create a new subdeployment from the Advanced Targeting page. When targeting
JMS resources, you need to understand what types of targeting are valid. Although you can target a
system module to several instances, you can only target a stand-alone topic or queue to a single
JMS server. You can, however, target connection factories to one or more server instances or to a
cluster. If a member of a subdeployment such as a connection factory is targeted to a cluster
hosting JMS servers, you can’t associate a stand-alone queue or topic to that subdeployment.

You can collocate a connection factory and a stand-alone queue or topic on a specific JMS
server to reduce network traffic. This typical, simple subdeployment strategy also ensures that the
connection factory and its connections are migrated along with the JMS server’s destinations
when the targeted JMS server is migrated to another Managed Server. You must, however, ensure
that the connection factory isn’t targeted to multiple JMS servers because you can’t collocate the
stand-alone queues and topics with the connection factory.

The following example shows a system module named jmssysmod-jms.xml that has two
configured JMS servers: myjmsserver1 and myjmsserver2. If you want to always keep a set of two
queues and a connection factory together on just one of the JMS servers (for example, myjmsserver1),
you can do so by placing the two queues and the connection factory in a subdeployment.

<weblogic-jms xmlns="http://www.bea.com/ns/weblogic/91">
 <connection-factory name="connfactory1">
 <sub-deployment-name>myjmsserver1group</sub-deployment-name>
 <jndi-name>cf1</jndi-name>
 </connection-factory>
 <queue name="queue1">
 <sub-deployment-name>myjmsserver1group</sub-deployment-name>
 <jndi-name>q1</jndi-name>
 </queue>
 <queue name="queue2">
 <sub-deployment-name>myjmsserver1group</sub-deployment-name>
 <jndi-name>q2</jndi-name>
 </queue>
</weblogic-jms>

NOTE
You can use the Subdeployment management pages in the Administration
Console to manage subdeployments for a system module.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 231

The subdeployment targeting to myjmsserver1group would be defined in the domain’s
config.xml file, in which a system module is specified within the jms-system-resource element,
as shown here:

<jms-system-resource>
 <name>jmssysmod-jms</name>
 <target>wlsserver1</target>
 <sub-deployment>
 <name>myjmsserver1group</name>
 <target>myjmsserver1</target>
 </sub-deployment>
 <descriptor-file-name>jms/jmssysmod-jms.xml</descriptor-file-name>
</jms-system-resource>

The following are the components of the jms-system-resource element (MBean):

 � name The name of the JMS system module.

 � target The target (server, cluster, or a migratable target) to which you’ve targeted the
system module. (Chapter 7 discusses migratable targets in detail.) In the preceding
example, the target is the JMS server myjmsserver1.

 � sub-deployment The name of the subdeployment to which you’re targeting a group of
JMS resources (connection factories, queues, and topics). The subdeployment name is the
name of the subdeployment you have created earlier—myjmsserver1group.

 � descriptor-file-name Location and name of the JMS system module, which is
jmssysmod-jms.xml in the preceding example.

By default, Oracle targets connection factories to the module and not to the subdeployment.
The connection factory will then inherit the module’s target.

JMS Server Targeting
You can target a JMS server to an independent WebLogic Server instance or to a migratable target.
A migratable target is relevant only to a clustered environment and consists of a set of WebLogic
server cluster members that can potentially host the JMS server in case of a failure of the primary
WebLogic instance that hosts the JMS server.

Oracle recommends that you avoid default targeting and choose advanced targeting, which
involves subdeployment targeting instead. Furthermore, you must make sure that the subdeployment
references only JMS servers or SAF agents, regardless of whether the destinations are distributed,
nondistributed, or imported. You can use a subdeployment to selectively target a subset of a
module’s resources. Oracle recommends the following best practices when you use subdeployments
to deploy JMS resources:

 � Target one JDBC module per each homogeneous set of targets, which is defined as a
uniformly configured set of clusters, a set of Managed Servers in a cluster, or a single
WebLogic Server instance.

 � Create one subdeployment per JMS module and target it to the set of JMS servers on the
server instance where you targeted the JMS module.

 � Target all destinations, such as queues and topics, to the subdeployment.

232 Oracle WebLogic Server 12c Administration Handbook

Oracle recommends that you avoid default targeting (as well as WebLogic Server targeting
and cluster targeting) because other applications or third-party products can introduce new JMS
servers or SAF agents. Also, over time, your application may require a different set of destinations
or JMS servers and SAF agents to simplify administration or for scaling up.

Migrating JMS-Related Services
JMS services run on only a single server in a cluster and not on all server instances. The JMS
services are pinned to a single server for data consistency purposes. However, this leaves JMS
services vulnerable to a single point of failure. A migratable target lets you avoid this by
building in high availability for JMS services. A migratable target is one that can move from
one server in a cluster to another, taking all the services you host on that target to a different
server.

You can configure automatic migration of JMS services with the help of WebLogic Server’s
Health Monitoring feature. You can also manually migrate JMS services following a server failure
or for maintenance purposes. Migratable JMS services include the JMS server, the store-and-
forward service, the path service, and custom persistent stores (both JDBC stores and disk-based
file stores). Since JMS requires all these services to function, you can treat the JMS-related services
as a single group for migration purposes. Chapter 7, which deals with the management of
WebLogic clusters, will explain how to configure manual as well as automatic migration of
JMS-related services.

TIP
Migratable JMS services can’t use the default persistent store.

Store-and-Forward (SAF) Service for Reliable Messaging
JMS messages can fail to be delivered for a number of reasons, such as a network or server failure,
a quota failure on a receiving server, or a security denial. WebLogic Server offers the SAF service
for reliably delivering messages between distributed applications running on different WebLogic
Server remote instances. The reliability is provided through a mechanism whereby the local server
saves any messages it can’t successfully send to remote JMS queues or topics. Instead of
discarding the messages, WebLogic Server saves the messages on the local server instance and
redelivers them automatically to the remote server when it becomes available again. SAF services
can forward messages to another server, whether it’s part of a cluster or not. The service can also
forward messages to servers that are part of a different domain.

You can use SAF services with both JMS messages as well as messages that use Web Services
Reliable Messaging (WSRM). WSRM uses SAF agents on both the sending and the receiving
instances, and guarantees the delivery of messages according to predetermined delivery
assurances. If the messages can’t be sent, WSRM raises an error. Client applications don’t need to
be aware of WSRM APIs; they can continue to use normal JMS APIs for sending messages to
remote destinations.

WebLogic Server uses SAF service agents to process the storing and forwarding of
messages. You configure the SAF service by configuring the SAF service agents. WebLogic
applications that send JMS messages, in effect, become SAF clients. When the SAF client
encounters a problem on a remote JMS destination due to an issue such as a network failure,
the client is disconnected from the remote destination. SAF agents store the messages sent by
their clients and forward them to the remote JMS queues or topics once the client is able to

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 233

reconnect to those remote destinations. The SAF agents work both on the local (sending) side
and the remote (receiving) side. You can configure SAF agents to have either sending and
receiving capabilities, or just one of the two. The sending agent is used both for JMS messages
and WSRM messages. The sending agent stores messages locally before forwarding them to the
remote site. It’s also responsible for retransmitting messages when the remote server doesn’t
acknowledge them within the set timeframe. The receiving agents are used only for WSRM and
not for JMS messages. These agents eliminate duplicate messaging and ensure the delivery of
messages to the intended destinations. For JMS messages, the JMS server takes care of
eliminating duplicate messages.

You can configure SAF agents to manage message persistence, paging parameters, thresholds,
and queues, just as you would for a JMS server. Note the following about configuring a SAF
service before you implement the service in your domain.

 � You must configure a SAF agent on the sending-side server instance (or cluster). You can
do this through WLST or the Administration Console.

 � If you’re using WSRM, you must configure a SAF agent on the receiving-side server
instance (or cluster).

 � You can use the server’s default store or create a dedicated store for the SAF messages.

Configuring Store-and-Forward Services
You can set various configuration options for SAF agents, such as the message time-to-live
duration and a message delivery failure policy. You can also set the delivery retry attempts for
forwarding messages. SAF agents store persistent messages on the local instance until they can
forward these messages (or get an acknowledgment) to the receiving side. If the local WebLogic
instance reboots for some reason, the SAF agent will attempt to send all messages by retrieving
them from the persistent store unless the messages have expired. SAF agents don’t store
nonpersistent messages that are waiting to be forwarded—these are held in memory on the local
instance. Thus, if the remote server isn’t available for a lengthy period of time, the local instance
could run out of memory due to many nonpersistent messages being stored in memory. You can
set message quotas, thresholds, and paging to prevent such a situation. You configure these
options similarly to the way you configure them for the JMS server.

Once you configure JMS SAF services, the SAF sending agents start forwarding and
retransmitting messages when they don’t receive acknowledgement from the receiving side in
the specified time. If a failure requires the storing of messages, the SAF agents temporarily store
the messages in the persistent store and will attempt sending those messages when connections
are restored. You can configure SAF resources just as you would any other JMS configuration
resources, such as a connection factory, by using either a system or an application module.
The configuration is stored outside the domain in module descriptor files. The following are the
key SAF resources that you must configure in order to use SAF services:

 � Imported SAF destinations SAF agents use local representations of remote
destinations such as a queue or topic. These local representations of the remote
destinations use an identical JNDI name as the remote destination. All JMS destinations
on the remote server are automatically imported, and the set of imported destinations
are called SAF-imported destinations. When JMS producers send messages to SAF
destinations, the SAF agent stores the messages on the imported SAF destination for
forwarding them to the remote side.

234 Oracle WebLogic Server 12c Administration Handbook

 � Remote SAF context This represents the URL of the remote server from which the JMS
destinations are imported. A remote SAF context can also define a remote cluster from
where the local server will import destinations.

 � SAF error handling These are optional configuration options that determine how the
SAF service handles a failure in forwarding messages to the remote destination. The error
handling policy can be configured to discard expired messages both with and without
logging information about the messages or move them (using the Redirect option) to an
“error destination” you can define for the imported SAF destinations. You can also specify
the Always-Forward option to forward messages even after they expire.

NOTE
Because SAF stores nonpersistent messages in memory and not in the
persistent store, a server crash can mean the loss of all those messages.

Creating JMS SAF Resources
You can create SAF resources to forward JMS messages to remote destinations through WLST or
the Administration Console. Creating and configuring JMS resources involves several steps,
which are summarized here. You can find the detailed steps in the Administration Console Help
documentation.

 1. Create a SAF sending agent on the local sending domain.

 2. Create JMS system modules on both the sending and receiving servers to store the JMS
destinations.

 3. Configure a remote SAF context in the sending-side JMS module so the local JMS agents
can import the remote queue or topic.

 4. Optionally, configure SAF error handling on the sending side to handle SAF service
failures.

 5. Configure a SAF-imported destination in the sending-side JMS module. Following this, you
must associate this destination with the remote SAF context and the SAF error-handling
resources that you’ve created in the previous two steps in the new JMS system module.

 6. You must now create a SAF queue and a SAF topic in the SAF-imported destination to
represent the remote queues and topic.

The SAF service always uses the exactly once quality-of-service (QOS) level to forward
persistent messages. For nonpersistent messages, you can, in addition to the exactly once mode,
configure the at-least-once or the at-most-once mode to specify how many times a message is
forwarded by SAF to the remote destinations.

SAF is a pinned JMS service, meaning that it’s hosted on a single physical server in a cluster.
You can configure automatic or manual migration of SAF agents to a different server in a cluster
when the server hosting the SAF service fails. You can set up automatic service-level migration to
a migratable target, which is a group of JMS services such as JMS servers, persistent stores, and
SAF agents. You can use WebLogic Server’s Health Monitoring system to decide when to migrate a
set of JMS services automatically to a healthy server. You can also manually migrate all pinned
services hosted by a migratable target.

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 235

WebLogic Messaging Bridge
You can configure a WebLogic messaging bridge to integrate your messaging applications. A messaging
bridge lets multiple JMS implementations work together, including messaging products other than
WebLogic JMS. The main purpose in creating a messaging bridge is to provide high availability for
remote messaging destinations. You can configure a messaging bridge between two WebLogic JMS
services from different domains or between the WebLogic JMS implementation and a third-party JMS
product such as Oracle JMS or IBM’s MQSeries, for example. Oracle JMS is actually JMS queues in the
Oracle Database, with Oracle Advanced Queuing (AQ) as its underlying technology.

The WebLogic Server messaging bridge uses a Java EE Connector Architecture (JCA) resource
adapter to communicate with source and target destinations. The messaging bridge instance
forwards messages between the two destinations. Let’s briefly review the components of a
WebLogic messaging bridge:

 � Resource adapters The JCA resource adapters must be present on both the source and
target servers, and you configure the adapter JNDI names in the deployment descriptor
for a resource adapter (.rar file). You must link the source and target JMS destinations with
the resource adapter on their server in order for the messaging bridge to communicate
with them. You can find the Oracle-provided resource adapters in the WL_HOME\server\
lib directory, in a zipped format.

 � Source and target bridge destinations You must configure a source and target JMS
bridge destination instance for each destination you wish to map to a messaging bridge.
The messaging bridge connects the two destinations. The bridge destination instance
defines the name of the adapter to use in communicating with that destination, as well as
properties such as the connection URL and the connection factory JNDI name that it must
pass to the resource adapter.

 � Messaging bridge instance You must configure a separate messaging bridge instance for
each mapping you create between a pair of source and target destinations. The messaging
bridge instance defines the message filtering selector as well as the quality of service
parameters.

You can create a WebLogic messaging bridge through the Administration Console by
following this general procedure:

 1. Create the source and target bridge destinations.

 2. Deploy the resource adapter. (The Console can deploy the appropriate adapter.)

 3. Create a messaging bridge instance.

 4. Target the messaging bridge.

You can monitor messaging bridges, configure their default execution thread pool size, and
suspend and restart them from the Administration Console.

Foreign JMS Servers
A WebLogic messaging bridge links a local destination with a remote destination and forwards
messages sent to the local destination to the target destination. Using the WebLogic messaging
bridge, however, isn’t the only way to connect WebLogic JMS with other JMS providers. You can
also set up a foreign JMS server instead of the messaging bridge and make foreign connection

236 Oracle WebLogic Server 12c Administration Handbook

factories and destinations directly available to JMS clients. You can make your applications direct
clients to a remote JMS server by mapping the connection factories and destinations on the remote
JMS server to your local JNDI tree. WebLogic server takes care of the remote JMS connection
factory and destination lookups when an application looks up the foreign JMS object in the local
JNDI tree. WebLogic Server can use this concept of a foreign JMS server to look up objects owned
by a remote third-party JMS provider or another WebLogic JMS server in a different domain.

Foreign JMS providers are outside the WebLogic JMS server, and you can create and configure
them in a system module. The foreign server has the necessary information that lets the local
WebLogic server instance reach the remote JMS providers. Using foreign JMS providers enables
you to create multiple WebLogic messaging bridge destinations since connection configuration
details aren’t necessary. You just provide the foreign connection factory and destination JNDI
names for the objects. Both the foreign connection factory and a foreign destination queue or
topic in a JMS module contain the destination JNDI name of the connection factory or destination
located in the remote JMS provider. The module also contains the JNDI name that the foreign
connection factory and destination are mapped to on the local JNDI tree. Thus, lookups for a
foreign destination object on the local server will result in a lookup on the remote JNDI tree in
order to return the object from the remote server.

Configuring WebLogic JavaMail
JavaMail APIs provide applications and modules with access to the Internet Message Access
Protocol (IMAP) and Simple Mail Transfer Protocol (SMTP) mail servers on the Internet or within
your own network. JavaMail APIs offer developers a generic interface for mail network servers,
irrespective of the specific mail protocol used by the servers. JavaMail is implemented in the javax
.mail, javax.mail.internet, and javax.activation packages. Following are the three most commonly
used mail transport protocols:

 � Simple Mail Transfer Protocol (SMTP) Mail clients use this protocol to send messages to
a mail server. Mail servers also use this protocol to send messages among themselves.

 � Post Office Protocol (POP) Mail clients use this protocol to retrieve incoming messages
from mail servers.

 � Internet Message Access Protocol (IMAP) This protocol is similar to the POP protocol,
and mail clients use this protocol to retrieve messages from mail servers. The protocol
also allows for clients to review, manage, and delete messages before downloading them.

JavaMail requires access to a mail server. You configure JavaMail by configuring a mail
session. Mail sessions in WebLogic Server enable the use of the JavaMail APIs. You can configure
mail sessions for a domain through the Administration Console, as explained in the next section.

Creating Mail Sessions
To enable developers to code the sending and receiving of messages, the WebLogic Server
administrator must first configure WebLogic JavaMail. You do this by creating and configuring
mail sessions. Mail sessions contain global mail-related properties that control the mail accounts
and network behavior. You can, for example, configure the transport protocols of the mail session
and the particular POP server that it must use. Developers can programmatically override the
configuration you set up for a mail session. A mail session enables applications to access a

Chapter 4: Configuring Naming, Transactions, Connections, and Messaging 237

preconfigured javax.mail.Session object through JNDI. You can create multiple mail sessions to
enable different types of applications to connect to multiple mail servers.

Here’s how to create a mail session through the Administration Console:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Go to Services in the left-hand pane and click Mail Sessions.

 3. Click New on the Summary Of Mail Sessions page.

 4. On the Mail Session Properties page, you must enter a JNDI name for the mail session,
such as MyMailSession, as well as define the mail properties in the JavaMail Properties
box, as described in the next section. Click Next.

 5. On the Mail Session Targets page, specify the server instance or the cluster to which you
want to attach this mail session. WebLogic Server makes available the mail sessions you
create in its JNDI tree. Once it’s there, a client session can use the mail session in order to
interact with the JavaMail API. Client sessions look up the mail session in the JNDI tree,
access the mail session, and use it according to the JavaMail API. Click Finish.

 6. Save the changes by clicking the Activate Changes button in the Change Center of the Console.

 7. You’ll see the new mail session in the Summary Of Mail Sessions page. The next section
shows you how to configure a mail session.

Configuring a Mail Session
There are only a couple of things that you need in order to configure a mail session. Click the
mail server name you want to configure on the Summary Of Mail Sessions page. You can
configure the mail settings in the Settings For <MailServer_Name> page (Settings For
MailSession-0 in our example), shown in Figure 4-14.

You must first configure a name to identify a mail session. The applications actually use the JNDI
name, which you must provide in the JNDI Name box. Most important are the properties you must
specify in the JavaMail Properties box. WebLogic Server uses these properties when it returns an instance
of this mail server. The mail session uses the configuration options and user credentials you provide here
to talk to a mail server. If you don’t specify any values here, WebLogic Server uses the default values
defined by the JavaMail API Design Specification. You must specify each mail property as a name=value
pair, as shown here, and separate multiple properties on the same line with a semicolon (;).

mail.host=mail.mycompany.com
mail.user=sam

Here are the key JavaMail configuration properties that you can specify:

 � mail.store.protocol Defines the protocol to be used for retrieving mail. The default is
IMAP.

 � mail.transport.protocol Specifies the protocol to be used for sending mail. The default
is SMTP.

 � mail.host Defines the address of the mail server. The default is localhost.

 � mail.user Defines the mail host for a specific protocol. This is the value of the username
Java property.

238 Oracle WebLogic Server 12c Administration Handbook

 � mail.from Specifies the return address of the e-mail. This attribute is required.

 � mail.debug Enables the outputting of debug information to the console. (Set the value to
true if you want the debug information to be output to the console.) The default value is false.

Summary
This chapter provided you an introduction to the key WebLogic Server services—JTA, JDBC, and
JMS. You also learned about configuring the JNDI naming services. All these services are going to
be highly critical for the performance of your deployed applications. WebLogic Server
performance tuning, in fact, involves a great deal of time spent tuning services such as JDBC and
JMS, as I explain in Chapter 10.

FIGURE 4-14. The Settings For MailSession-0 Configuration page in the Administration Console

CHAPTER
5

Configuring the WebLogic
Server Environment

240 Oracle WebLogic Server 12c Administration Handbook

This chapter starts off with a description of how WebLogic Server manages its run-time
performance. The concept of server thread pools is fundamental to understanding how the
server manages requests. Understanding how the server manages overload and how it

performs a self-health check is crucial to managing production servers. You’ll learn the role Work
Managers play in scheduling requests and how to configure them. WebLogic Server lets you
create custom network channels for managing complex application needs. This chapter shows
you how to create and configure custom channels, as well as how to design them.

WebLogic Server uses Java EE Connector Architecture (JCA) to provide connectivity between
enterprise applications and enterprise information systems (EISs). This chapter introduces the
WebLogic JCA architecture that uses resource adapters to provide two-way connectivity between
web applications and EISs and shows how an administrator can configure resource adapters.
While the discussion of JCA in this chapter may seem somewhat unconnected with the rest of the
topics, there are several good corollaries in the configuration of JCA and Work Managers. Although
these two topics are by no means directly related, this is why JCA is included in this chapter.

Optimizing Application Performance
Understanding how WebLogic Server handles requests by assigning them execute threads is
critical to learning how to manage server workloads. In the following sections, let’s investigate
WebLogic Server thread pools and how the server uses the concept of Work Managers to provide
you with a way to control thread utilization. Understanding how the server handles “stuck
threads” is also crucial to helping prevent degradation in server performance, and this section
discusses stuck thread behavior. You can also configure the server’s self-health check mechanism
to control how the server handles an overload situation in a production environment.

WebLogic Server Thread Pools
When a client connects to a WebLogic Server instance, the server (actually the socket muxer)
places the request in the execute queue, along with the request’s security and transaction details.
Once a request joins the execute queue, an idle thread will execute the request and return the
response to the client. If part of an application, such as an EJB component, blocks an execute
thread for a long time, the server has no mechanism to kill that execute thread. If the application
blocks many execute threads for any reason, the entire server execute queue slows down and will
be unable to accept and process new client requests. The server simply runs out of free execute
threads to assign to new requests.

The dedicated socket reader threads will read enough of the message to determine which
application component should handle the message. The socket reader thread then schedules that
work to a Work Manager. The Work Manager uses a shared internal thread pool manager either to
directly execute that work or to queue it up for later processing.

In earlier releases (Release 8.1 and earlier), WebLogic Server used the concept of either a
default or user-created execute queue and a thread pool with a fixed number of threads. You
could create multiple execute queues, and the server assigned work to different queues based on
priority and ordering requirements. Each execute queue had a queue manager, which handed an
available thread from its thread pool to a request in the queue using a first-in, first-out criterion.
As a system administrator, you controlled how the server used threads by setting the number of
threads in WebLogic Server’s default queues. You could also create your own queues to ensure
applications had enough execute threads. The execute threads from the older releases are often
referred to as “8.1-style execute threads.” In most cases, the threads were assigned to the queue

Chapter 5: Configuring the WebLogic Server Environment 241

based on the “dispatch policy” that was defined in the WebLogic Servers–pecific application
descriptor and not so much based on priority.

Starting with WebLogic Server 9.0 and continuing with WebLogic Server 12c, you can
configure Work Managers to manage the application workload. The server uses just a single
self-tuning execute queue, which assigns threads to new requests based on either explicit or
implicit work priorities. The queue is self-tuning because it changes its size (in number of threads)
automatically based on workload to maximize the server throughput. The server tunes the number
of threads up or down, based on changing workloads, with the goal of maximizing the
throughput. The server assigns a priority to each new request that it adds to the execute queue,
based on one of two things: the current server performance and throughput or the parameters you
explicitly define with a Work Manager. Setting a priority for a request means that the server
doesn’t execute requests according to the traditional first-in, first-out fashion. Rather, the server
places a request with a higher priority at the head of the request queue, thus making sure it
assigns that request a thread ahead of requests with a lower priority.

Since the 9.x release, the goal has been to eliminate, or at least minimize, the need for special
thread pool tuning. The introduction of a self-tuning Work Manager in the 9.x release has greatly
simplified the process of managing thread pools. Since then, there has been a single dynamically
sized shared pool of threads to which work is distributed to maximize throughput. Tuning is now
a matter of providing hints to the server based on higher-level concepts such as “fair share” and
specific application targets such as “response time.”

NOTE
Older releases of WebLogic Server let you create thread pools
(execute queues) to manage the server workload. WebLogic Server
12c supports execute queues, but strictly for compatibility reasons.
You should use Work Managers instead of execute queues for more
efficient thread management. If you enable execute queues, you lose
the functionality of thread self-tuning and all Work Managers are
disabled.

The server changes the size of the thread pool continuously based on its monitoring of current
throughput. This means administrators don’t need to configure and tune custom execute queues
any longer.

Work Managers
Work Managers control the number of threads in the execute queue and the priorities that the
server must assign to new and pending requests. Each Work Manager controls the scheduling of
requests by the WebLogic Server, by letting you specify a set of request classes and thread
constraints. You can specify named Work Managers for applications, web application modules,
EJBs, and RMI applications to control how the server manages their work requests. You can create
global Work Managers at the domain level, as well as application- or module-level Work Managers.

You may configure Work Managers to assign similar priorities for sets of requests that share
common performance and availability requirements. Work Managers let you specify the
maximum number of requests from a particular request class that will be allowed to enter the
execute queue. If you set the number of maximum requests at the Work Manager level, the server
honors either the maximum number of requests you set there or the server’s global thread pool
value, whichever is lower.

242 Oracle WebLogic Server 12c Administration Handbook

As a server’s workload increases, for example, the Work Managers demand more threads to
be made available to the execute queue. Work Managers are essentially a set of guidelines to the
server as to how it should prioritize work. How many Work Managers should you define? The
answer depends on the nature of applications that you host. If you have multiple applications
running on the server and each of them has a different workload profile, you may need to
configure multiple Work Managers. On the other hand, if all the applications share a similar work
profile, you may need just a single Work Manager.

WebLogic Server has a default Work Manager, and all applications for which you don’t
specify a Work Manager (in the deployment descriptor) will use the default Work Manager. The
default Work Manager uses a default fair share of 50; that is, it assigns equal priority for all
requests. You can re-create the default Work Manager by configuring a global Work Manager and
naming it default. Create custom Work Managers if you want to assign a higher priority to one
application over others and if you want to implement a response time goal.

NOTE
All applications and modules use the default Work Manager if you
don’t assign them a custom Work Manager.

Configuring Work Managers
You can configure Work Managers at the domain or the application level either by modifying the
appropriate configuration files or through the Administration Console. Here’s a summary of the
various levels and the relevant configuration file that you need to modify:

 � Web application level: weblogic.xml

 � Module level: weblogic-ejb.xml or weblogic.xml

 � Application level: weblogic-application.xml

 � Domain level: config.xml

A domain-level Work Manager is also called a global Work Manager, and you can create it
with the Administration Console. A global Work Manager applies to all modules and applications
in a domain, so you must be careful before creating one of these Work Managers. Note that each
application or module implements a separate Work Manager instance to avoid any adverse
impact on the thread management of various applications.

As the following section explains, a Work Manager contains components called request
classes and constraints. You can choose to specify one or more components of a Work Manager,
such as request class or a constraint, directly in the application’s deployment descriptor.
Alternatively, you can first define a Work Manager with a specific set of request classes and
constraints and then reference the Work Manager in the application’s deployment descriptor. In
either case, you map a Work Manager, request class, or constraint in the deployment descriptor to
a module or an application. Here’s an example showing how to define a Work Manager:

<work-manager>
 <name>highpriority_workmanager</name>
 <fair-share-request-class>
 <name>high_priority</name>
 <fair-share>100</fair-share>

Chapter 5: Configuring the WebLogic Server Environment 243

 </fair-share-request-class>
 <min-threads-constraint>
 <name>MinThreadsCountFive</name>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

In this example, the element <work-manager> specifies the name of the Work Manager and
defines its components, which include request classes and constraints. In this example, the Work
Manager’s name is highpriority_workmanager. This Work Manager has two components: a request
class named fair-share-request-class and a constraint named min-threads-constraint. Together,
these two Work Manager components specify how the server should assign a priority to requests
from any application that references this Work Manager in its deployment descriptor.

Let us consider what this case of setting the priority to 100 would mean in the real world. Let’s say
you have two applications deployed on a server where one of the applications is using the default Work
Manager (application A), with a priority of 50, and the other is configured to use the “high-priority
Work Manager” (application B), with a priority of 100. In this case, we are expecting that 2/3 (100/150)
of the requests will be for application B and 1/3 (50/100) for application A. By telling the system this,
we are giving it the opportunity to schedule requests for application B at a higher priority. This will help
keep it from getting behind in processing and potentially experiencing greater latency. The decision to
make such a change would likely be based on the observation that the response time for application B
is suffering (or would suffer) due to the simultaneous processing of application A’s requests.

Following is an example that shows how an application component such as a servlet or a JSP
references the highpriority_workmanager by specifying the Work Manager’s name within the
initialization parameter in the web application’s deployment descriptor, the web.xml file:

<init-param>
 <param-name>wl-dispatch-policy</param-name>
 <param-value>highpriority_workmanager</param-value>
</init-param>

In this example, a web application component, say a servlet, specifies that it will use the Work
Manager named highpriority_workmanager. To specify a Work Manager for the entire application,
you must specify the name of the Work Manager in the deployment descriptor for the application,
which is the weblogic.xml file. Following is a summary of how a Work Manager becomes
applicable to an application or a component based on which deployment descriptor or domain
file you use to define the Work Managers:

 � config.xml Because this is a domain-wide file, you can assign the Work Manager to any
application or component.

 � weblogic-application-xml You can define application-level Work Managers, as well as
assign the Work Manager to a component of an application.

 � weblogic-ejb-jar.xml or weblogic.xml You can use this deployment descriptor for
component-level Work Manager assignment.

 � weblogic.xml You can specify application-level Work Manager assignment within this
deployment descriptor.

You can specify the Work Managers directly in any of these files, but it’s easier to do so
through the Administration Console. Note that multiple applications can share the same global

244 Oracle WebLogic Server 12c Administration Handbook

Work Manager, but the total number of requests among the applications can’t exceed the
constraints you specify for the Work Manager at the server level.

In addition to request classes and constraints, you can also define a stuck thread component
to specify how the Work Manager handles a stuck thread situation. Stuck threads are discussed
later in this chapter, in the section “Dealing with Stuck Threads.”

Work Manager Components
You can use two basic components—request classes and constraints—to define and use in a Work
Manager. The following sections explain the two components.

Request Classes
A request class helps to determine the priority the server should assign to a specific request. You
use request classes to specify a higher priority to important components of the application’s
workload. You assign the same request class to similar applications that have the same
performance and availability requirements. A request class isn’t something that categorizes
requests into rigid priority classes, however. A request class is merely a guideline that the server
will try to use in determining how it assigns priorities to various requests, but there’s no guarantee
that the server will, in every single instance, follow the guidelines you specify. A Work Manager
can specify one or more request classes, each defining a guideline to the server in assigning
priorities for executing requests. You can think of this as giving the algorithm more information
about the needs of your application so that it can make better decisions.

There are three basic types of request classes: the fair-share-request-class, the response-time-
request-class, and the context-request-class. Note that the request classes and the values you
specify for them really come into play only if the number of requests exceeds the number of
available threads. If the number of available threads is enough to handle all requests, there’s no
need to prioritize work—the server can handle the workload simultaneously, without having to
keep any requests waiting. The request classes are discussed here:

 � fair-share-request-class This request class is based on thread usage and specifies how the
server assigns thread-usage time among modules. The default value for this request class is
50, which means that if there are two modules that are competing for threads, the server
allocates 50 percent of the thread-usage time to each of the modules. The server uses the
values you set for the fair-share-request-class to determine how it allocates server time to a
request from a class. It is important to understand that the fair-share values are relative; that
is, they determine how the server allocates time to one class compared to other classes.
Let’s say you configure two request classes, MyRequestClass1 and MyRequestClass2, and
assign a fair share value of 20 to the first and 40 to the latter class. In this case, the server
will assign a thread to MyRequestClass1 33 percent of the time (20/60). Similarly, the
MyRequestClass2 request class will have a 66 percent (40 out of 60) chance of service.

Here’s an example that shows how to specify the fair-share-request-class in a Work Manager:

<work-manager>
 <name>highpriority_workmanager</name>
 <fair-share-request-class>
 <name>high_priority</name>
 <fair-share>100</fair-share>
 </fair-share-request-class>
 <min-threads-constraint>
 <name>MinThreadsCountFive</name>

Chapter 5: Configuring the WebLogic Server Environment 245

 <count>5</count>
 </min-threads-constraint>
</work-manager>

 � response-time-request-class This request classes uses response time (in milliseconds) as
the criterion on which the server assigns available threads to requests. The server schedules
requests such that the average waits for requests within a certain request class are proportional
to the request class’s response-time goal. The server will always try to keep the average
response times for each request class in the same ratio as their response-time goals. For
example, you can create two request classes with a response-time goal of 2000 ms and 4000
ms and assign the first request class to module A and the second to module B. The server will
then schedule requests to these two modules such that their average response time is always in
the ratio of 1:2 (2000 ms to 4000 ms).

Here’s an example that shows how to define a Work Manager that uses a request class
based on response time:

<work-manager>
 <name>responsetime_workmanager</name>
 <response-time-request-class>
 <name>my_response_time</name>
 <goal-ms>2000</goal-ms>
 </response-time-request-class>
</work-manager>

You want to use this request class, for example, when you are perhaps executing both
synchronous work (such as web applications) and asynchronous work (such as JMS). By
setting a response-time goal for the web application work, you are providing a hint that
the one type of work is latency sensitive and the server should schedule it at a higher
priority. Doing this allows a JMS queue to back up temporarily and then be cleared out
once the number of web requests decreases. Web users would continue to get good
response times during this period because they would get a higher scheduling priority.

 � context-request-class This is a hybrid class that maps a request’s context to either the
response time– or the fair share–based request class. That is, the server assigns a request
class to a request simply based on the request’s properties, such as the user or group names.

Here’s an example that shows how to define a context-based request class. Note that the
<context-case> element specifies the type of context, in this case the client’s username.
The context request class named test_context specifies that the server assign all requests
executed by the user system the high_fairshare request class. It also specifies that the
users belonging to the group everyone be assigned the low_fairshare request class.

<work-manager>
 <name>context_workmanager</name>
 <context-request-class>
 <name>test_context</name>
 <context-case>
 <user-name>system</user-name>
 <request-class-name>high_fairshare</request-class-name>
 </context-case>
 <context-case>
 <group-name>everyone</group-name>

246 Oracle WebLogic Server 12c Administration Handbook

 <request-class-name>low_fairshare</request-class-name>
 </context-case>
 </context-request-class>
</work-manager>

Constraints
Constraints are numerical restrictions on threads. For example, you can specify the maximum
number of concurrent threads that can execute requests from a specific application component.
Here are the various types of constraints you can specify:

 � max-threads-constraint Specifies the maximum number of concurrent threads that the
server can allocate for requests from a specific work set. Once a request type reaches the
maximum number for threads, the server won’t schedule any more requests from that
request type. The server will then use the default or user-specified fair-response time, or it
will use a response-time goal to assign threads to this request type.

Here’s how to specify the maximum-threads constraint in a deployment descriptor:

<work-manager>
 <name>slow_response_time</name>
 <max-threads-constraint-name>j2ee_maxthreads</max-threads-constraint-name>
 <response-time-request-class>
 <name>slow_response_time</name>
 <goal-ms>5000</goal-ms>
 </response-time-request-class>
</work-manager>

In this example, the <goal-ms> element specifies the maximum number of threads to
allocate to a web application. Note that you could also specify the name of a data source
instead of the number of concurrent threads. You can set either value to ensure that
requests that query database connections don’t wait for a connection. If you specify a
data source instead of the number of maximum threads, the maximum thread value can
change based on changes to the database’s connection pool.

TIP
A constraint is a type of hint to the server. This type of hint should be
used very sparingly. A constraint that uses the connection pool is the
one that is the most important and the one you are most likely to use.
The other possibility is when you have a nonstandard application that
is connecting to a resource that you know has some known limitation
that cannot be otherwise represented (such as opening a direct
connection to a socket with a nonstandard protocol).

 � min-threads-constraint Specifies the minimum number of threads the server will assign
to a request. The default is zero. The minimum value you set here determines the minimum
number of threads the server will allocate to resolve deadlocks during server-to-server
callbacks. Here’s an example that shows how to specify the minimum threads constraint:

<work-manager>
 <name>minthreads_workmanager</name>
 <min-threads-constraint>

Chapter 5: Configuring the WebLogic Server Environment 247

 <name>MinThreadsCountFive</name>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

You normally don’t need to specify a value for the min-threads-constraint unless you
notice server deadlocks due to server-to-server callbacks.

 � capacity Sets the limit for all types of requests from a specific work set. The server rejects
all new requests once it reaches the capacity threshold (or when the server reaches its global
capacity threshold that you set by limiting the maximum queue length, as explained later in
this chapter). Note that the capacity constraint takes into account both queued and running
requests. The default value for the capacity constraint is –1, which means that WebLogic
Server automatically determines the limit for queues or running requests from an application.

Once the server hits the capacity limit, it returns an HTTP 503 error (“Service Unavailable”
due to the server being overloaded) to requests or returns exceptions to RMI calls to enable those
requests to failover to a different cluster member.

Defining a Work Manager Through the Console
Earlier, you saw how to define Work Managers, request classes, and constraints in various deployment
descriptors. You can configure Work Managers just as you would configure any environmental objects
such as servers, clusters, virtual hosts, and machines. You can define Work Managers, request classes,
and constraints at a global level through the Administration Console. Here are the steps:

 1. Click Lock & Control in the Change Center of the Administration Console.

 2. In the left-hand pane, expand Environment and click Work Managers.

You’ll see the Summary Of Work Managers page, as shown in Figure 5-1. This page
shows all global Work Managers, request classes, and thread constraints that are defined
for this domain. Click New.

 3. On the Create A New Work Manager Component page, shown in Figure 5-2, you can
choose to create a new Work Manager, request class, or thread constraint. In this example,
let’s create a new request class first. Select Fair Share Request Class and click Next.

FIGURE 5-1. The Summary of Work Managers page in the Administration Console

248 Oracle WebLogic Server 12c Administration Handbook

 4. On the Fair Share Request Class page, specify a name for this request class. In my
example, it’s MyFairShareReqClass1. More importantly, select a value for Fair Share. The
default is 50, which means that the server will treat all requests equally. Choose a value
such as 75 for this example. Click Next.

 5. On the Select Deployment Targets page, select the WebLogic Server instance to which
you want to target this new request class. Click Finish.

 6. Your new request class, MyFairShareReqClass1, appears in the Summary Of Work
Managers page now. To associate this request class to a new Work Manager, click New
again on the Summary Of Work Managers page.

 7. On the Select Work Manager Definition Type page, select Work Manager as the new
component you want to create. Click Next.

 8. Type MyWorkManager1 as the name for the new Work Manager on the Work Manager
Properties page and click Next.

 9. On the Select Deployment Targets page, select the server instance and click Finish.

 10. You’ve created a new Work Manager, but you haven’t yet associated any request classes
or thread constraints to it. To associate the new request class (MyFairShareReqClass1) to
the new Work Manager MyWorkManager1, click the new Work Manager in the Summary
Of Work Managers page.

 11. On the Settings For MyWorkManager1 page shown in Figure 5-3, you can associate
request classes and thread constraints with a Work Manager. Because you want to

FIGURE 5-2. Creating a new Work Manager component

Chapter 5: Configuring the WebLogic Server Environment 249

associate a request class in this example, select the request class MyFairShareReqClass1
in the Request Class box. Click Save. Don’t forget to activate your configuration changes
in the Change Center.

This section showed how to create an “empty” Work Manager and then associate a request
class with it. You could, of course, associate the Work Manager with a thread constraint as well if
you want. However, you can also choose to create a Work Manager and directly associate a
request class or thread constraint with it. To do this, select a new, “empty” global Work Manager
on the Summary Of Work Managers page. The resulting Configuration tab allows you to configure
the request class and the three thread constraints—minimum, maximum, and capacity. Note that,
initially, all of the request classes and constraints show the value “(None configured)” against their
names because you’re dealing with a brand new Work Manager.

Managing Server Work Overload
When a long-running request or faulty application logic blocks execute threads for long
periods, new requests could queue up in the server’s single self-tuning execute queue. Even if
the server starts catching up with the queued requests, you could see degradation in
performance and you’ll notice a slowdown in the response times of applications. When a
WebLogic Server instance is overloaded, as happens when the server reaches its capacity,
applications won’t perform properly. Under extreme circumstances, the server might even
seem totally unresponsive because of the high number of blocked execute threads. WebLogic
Server administrators can configure various things to minimize the adverse impacts of heavy
workloads. The following sections briefly explain the most important things you need to do to
handle an “unhealthy” server state.

FIGURE 5-3. The Settings for a Work Manager page

250 Oracle WebLogic Server 12c Administration Handbook

Throttling the Thread Pool
Since the server utilizes only a single thread pool, you can throttle this pool by setting a
maximum length for the request queue length. Once the server exceeds the maximum queue
length, it will reject all new web application requests. You throttle the thread pool (set a
maximum limit) by setting the Shared Capacity For Work Managers attribute in the
Administration Console. You can set the maximum queue length through the Administration
Console by following these steps:

 1. Click the Lock & Edit button in the Change Center of the Administration Console.

 2. Expand Environment and select Servers | <server_name> | Configuration | Overload.

 3. On the Overload configuration page, set a value for the Shared Capacity For Work
Managers option to set the maximum number of requests the server can maintain in the
queue. By default, the length of the queues is 65536 requests. Note that the maximum
capacity you set here includes the maximum number of requests, which includes both
the currently executing requests as well as those waiting in the queue. Once the server
reaches the request limit you set here, it issues a response such as HTTP 503 to indicate
that the server is too busy to handle new requests.

TIP
The maximum number of requests you set with the Shared Capacity
For Work Managers option includes both requests in the queue and
those that the server is already executing.

 4. Click Save and click the Activate Changes button in the Change Center of the Console.

Once the server reaches the limit of its request capacity, it handles requests with a higher
priority differently from requests with a lower priority. The server will give preference to higher-
priority requests over lower-priority ones by executing higher-priority requests first, even if the
latter have more seniority in the queue. The server also rejects new lower-priority requests and
keeps them from entering the queue.

Note that when a server exceeds the maximum queue length, it rejects web application
requests, but it won’t reject any JMS and transaction-related requests because they’re managed by
the JMS system and the WebLogic Transaction Manager.

There’s a relationship between this global thread value that you can set and the maximum
requests for particular request classes that you define through Work Managers. The server will start
rejecting requests when it reaches either the global thread limit or the maximum request limit you
set through a Work Manager.

Handling Overload or Failure Conditions
In addition to setting the maximum queue length, there are a number of things an administrator
can do to handle overload or server failure conditions. WebLogic Server’s self-health monitoring
mechanism marks a server as failed when it traps a critical failure condition. You can configure
various options as to how the server should react to a failed state. You can access the server
overload management page in the Administration Console by going to Environment | Servers |
<server_name> | Overload. Figure 5-4 shows this page. You have already learned how to set the

Chapter 5: Configuring the WebLogic Server Environment 251

maximum queue length from this page. Here are the other configuration options you can set on
this page to handle overload and server failures:

 � Failure Action This option lets you specify what actions the server must take when it
encounters a failure condition. You have three possible values you can specify for this option:

 � Ignore, Take No Action This is exactly what it means—the server ignores the failure
condition.

 � Force Immediate Shutdown Of This Server The server marks itself as failed when it
detects a fatal failure. You can restart the server with the Node Manager.

 � Suspend This Server For Corrective Action This option lets you avoid a complete
shutdown of the server by merely suspending it. You can correct the situation that led
to the server failure condition and resume the server through the resume command
explained in Chapter 2. One really good reason for doing this is that, in the case
of stuck threads, it is often difficult to determine what is going wrong with your
application. By causing the server to suspend in this way, it is possible to connect
with a tool such as the Administration Console or WLST to get thread dumps or, in
extreme cases, even to connect with the debugger to try to diagnose the problem.

 � Panic Action You can choose between the Ignore, Take No Action and the Exit The
Server Process option. When should you choose the Exit The Server Process option?
When the server experiences an unhandled out-of-memory exception. For example,

FIGURE 5-4. Configuring the overload and failure responses of the server

252 Oracle WebLogic Server 12c Administration Handbook

the server state tends to be unstable, and it’s a good idea to restart the server through
the Node Manager. You can select this choice to ensure that the server quits when it
encounters an out-of-memory exception. In the config.xml file, you’ll see the following
elements when you configure this option:

<overload-protection>
 <panic-action>system-exit</panic-action>
</overload-protection>

 � Free Memory Percent High Threshold The amount of free memory (in percentage terms)
that the server must have before it clears a server overload condition. Normal execution
resumes once the server clears an overload condition.

 � Free Memory Percent Low Threshold If the free memory falls below the threshold set by
this parameter, the server declares a server overload condition.

 � Max Stuck Thread Time Here, you specify how long a thread can work on a particular
request before the server classifies it as a stuck thread. The default value is 600 seconds.
Here’s the server message when a thread bumps against the Max Stuck Thread Time value
that you set:

<Error> <WebLogicServer> <BEA-000337>
<[STUCK] ExecuteThread: '5' for queue: 'weblogic.kernel.Default
(self-tuning)' has been busy for "649" seconds working on the request
"weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl@30532a9",
which is more than the configured time StuckThread MaxTime) of
"600" seconds. Stack trace:Thread-61 "[STUCK] ExecuteThread:
'5' for queue: 'weblogic.kernel.Default (self-tuning)'" <alive,
in native, suspended, priority=1,
…

 � Stuck Thread Count Specifies the maximum number of stuck threads after which to
mark the server state as FAILED. The default for this property is zero, meaning that a
server will continue to run regardless of how many threads are struck. If you specify a
value for this property, the server can suspend and shut itself down once it transitions into
a FAILED state.

Limiting Active HTTP Sessions
An administrator can limit the number of active HTTP sessions based on the detection of a low
memory condition. This is useful in avoiding out-of-memory exceptions. Once the server reaches
the maximum number of active HTTP sessions, it won’t accept new requests to create an HTTP
session. You can configure single server instances to redirect refused requests to other servers. In a
cluster, the server redirects those requests to another member of the cluster. You can configure the
maximum number of HTTP sessions a Managed Server can handle by specifying the session limit
in the deployment descriptor of the application, as shown here:

<session-descriptor>
 <max-in-memory-sessions>12</max-in-memory-sessions>
</session-descriptor>

Chapter 5: Configuring the WebLogic Server Environment 253

Dealing with Stuck Threads
WebLogic Server considers a thread to be a “stuck thread” when the thread takes more than a
specified amount of time to process a single request. The default threshold for marking a thread as
stuck is 10 minutes (600 seconds). When the server encounters a stuck thread situation, it may shut
itself down or shut down the Work Manager. It may also switch the application to administrator
mode. If you set the IGNORE_STUCK_THREADS=TRUE flag, the server won’t ever deem a thread
as being stuck. Normally, you would not instruct the server to ignore stuck threads unless you know
from experience that specific applications hold execute threads for a long duration as part of their
normal behavior. To avoid too many stuck thread alarms, you can tell the server to ignore the stuck
threads in such a situation.

Note that, in general, the default threshold for marking a thread as stuck (10 minutes) is far
too long. If you are experiencing problems with requests that are getting stuck, you will want to
reduce this to a much smaller number (on the order of a few seconds). Stuck threads primarily
occur in cases such as the following:

 � Unresponsive back-end services such as connector resources

 � Lockups in the database due to database triggers executed from application logic

 � Deadlocks in the application code based on some shared class in the application or a
framework library that the application is using

You can specify a shutdown trigger in a Work Manager definition to tell the server that it
should shut down the Work Manager once a certain number of threads executing with this Work
Manager are in stuck thread status. The following example shows how the Work Manager named
stuckthread_workmanager uses the maximum stuck thread time you specify within the <work-
manager-shutdown-trigger> element to shut down the Work Manager when two threads exceed
the maximum time specified by the <max-stuck-thread-time> attribute:

<work-manager>
 <name>stuckthread_workmanager</name>
 <work-manager-shutdown-trigger>
 <max-stuck-thread-time>30</max-stuck-thread-time>
 <stuck-thread-count>2</stuck-thread-count>
 </work-manager-shutdown-trigger>
</work-manager>

The previous example specifies that the Work Manager should be shut down if 2 threads are
stuck for longer than 30 seconds. You can also specify an admin trigger by including the
<application-admin-mode-trigger> element in an application’s deployment descriptor, the
weblogic-application.xml file. Instead of shutting down the Work Manager, the admin trigger will
place the application in administrative mode once it reaches a certain number of stuck threads.

Note that a single stuck thread could stop an entire application dead in its tracks once the
server hits the threshold for declaring that a thread is struck (default value 600 seconds). You can’t
kill a stuck thread, but you can avoid a potential stuck thread situation by setting the Stuck Thread
Max Time parameter. You probably should also take a thread dump when you encounter a stuck
thread situation to dig deeper into why the thread was stuck. There are several ways to take a
thread dump, including through the Administration Console, and thread dumps are discussed in
Chapter 6.

254 Oracle WebLogic Server 12c Administration Handbook

WebLogic Server Self-Health Monitoring
You can use WebLogic Server’s self-health monitoring capability to monitor the health status of
the server. In addition, subsystems such as JMS and JTA monitor their own health status.
Subsystems such as JTA and RMI specify whether the server should deem those subsystems critical
for the operation of the server when those subsystems register with the server instance at startup
time. The server bases its own determination of server health based on the health of the
subsystems. The server continuously monitors each of the critical subsystems, and when any of
these fail, the server puts itself in the FAILED health state. You can access the WebLogic self-health
monitoring page in the Administration Console by going to Environment | Servers | <server_
name> | Configuration | Health Monitoring. Figure 5-5 shows the server’s Health Monitoring
page. The following list briefly describes the various self-health monitoring options you can
configure, such as how frequently the server runs an automatic health check and whether the
Node Manager should automatically restart a server that reaches a failed health state.

 � Health Check Interval Sets the frequency (in seconds) with which the server polls each
of the critical subsystems to check their health. By default, the server checks the status
of all critical subsystems every 3 minutes (180 seconds). If it finds that any of the critical
subsystems have a FAILED state during the health check, the server’s state goes into the
FAILED category as well.

 � Auto Kill If Failed Specifies whether the Node Manager should automatically kill a
Managed Server whose health state goes into the FAILED category.

 � Auto Restart Determines whether you want the Node Manager to automatically restart
a server following a crash.

FIGURE 5-5. Configuring a server’s self-health monitoring

Chapter 5: Configuring the WebLogic Server Environment 255

 � Restart Interval Specifies the maximum time interval (in seconds) within which the
Node Manager can restart a Managed Server.

 � Max Restarts Within Interval Specifies how many times the Node Manager can restart a
Managed Server (within the time interval you specified for the Restart Interval property).

 � Restart Delay Seconds Sets the number of seconds the Node Manager must wait before
restarting a server. The delay ensures that the system has released the ports the server was
using when the Node Manager killed the server instance.

Optimal Network Configuration
A network channel defines the attributes of network connections to the WebLogic Server. Each
network channel is a unique combination of a port, a listen address, and a connection protocol (for
example, t3 or HTTPS). Each WebLogic Server instance has its own network channels for clients to use
to communicate with the server. Earlier chapters described how to configure basic WebLogic Server
network channels. All you’ve had to do to set up a basic network channel is to specify a listen address
and listen port for it. WebLogic Server comes with two standard network channels for each Managed
Server in a domain: a preconfigured default channel and an administration channel, provided you
configure a domain-wide administration port. You’ll also remember that the network channel and the
corresponding network traffic generated are only for administrative requests, and you should configure
SSL for this channel. Although the use of an administration channel is purely optional, if you do
enable the connection you must use it for all administrative traffic—you won’t be able to use the
default network channel for administrative traffic once you configure the administration channel.

The default network, consisting of a single port number (another one for secure communications)
and a single listen address, works fine for development and test environments. It’s also the best way
to go if you use just a single network interface card (NIC), and the default port numbers are enough
for segmenting network traffic. You can use different network protocols, such as HTTPS and t3s, with
the same listen port and listen address combination. In addition to the port address, listen address,
and connection protocol attributes, you can define the connection protocols, various connection
properties such as the maximum message size, options such as tunneling, and whether the channel
can communicate with other server instances in the WebLogic domain. Although you can assign a
channel to only a single WebLogic Managed Server instance, you can configure multiple network
channels in addition to, or in place of, the default network channel, as long as you configure each of
those channels with unique listen addresses, ports, and protocol combinations. You can configure as
many network channels as you need for your environment. You can also assign a custom channel to
an EJB by first creating the network channel and then specifying it in the <network-access-point>
element in the EJB’s deployment descriptor, the weblogic-ejb-jar.xml file.

TIP
Network channels can share the same listen port and listen address, so
long as they use a different communication protocol.

Benefits of Using Network Channels
In a production environment, the default network channel isn’t sufficient to take care of the
complex network traffic requirements, and you’ll find that you need additional network channels
to support complicated production network requirements. Custom network channels provide

256 Oracle WebLogic Server 12c Administration Handbook

several benefits, including the ability to separate different types of network traffic. Multiple
custom channels also enable you to specify different connection protocols, such as secure and
nonsecure protocols, to meet the needs of different types of applications and their network traffic.
You can also create a custom network channel to handle cluster communications.

Generally, you use network channels in conjunction with network router configuration to
implement a demilitarized zone (DMZ). A good example of this is to configure RMI connections
(used by EJB, JMS, and JMX) on a separate port that is not accessible through the firewall. This
means that only web container requests are accessible from outside your internal network. (Make
sure to disable HTTP tunneling in this case.)

TIP
You can also create a custom administration channel that uses the
admin protocol in cases where you may want to bind the channel to
different IP addresses.

Creating Custom Network Channels
You can create custom network channels through the Administration Console. Again, although
you can create multiple channels for a single server, you can’t assign the same network channel to
multiple Managed Servers. In addition, SSL and nonsecure network channels must use unique
combinations of the listen address and listen port. This section shows you how to create and
configure a custom network channel for a stand-alone server instance. To create a custom network
channel after enabling the Lock & Edit feature, go to Environment | Servers | <server-name> |
Protocols | Channels. Figure 5-6 shows the Network Channels page in the Administration
Console. On this page, you can view the protocol, listen address, listen port, and allowed
connection protocols for all the network channels that are configured for this server.

 1. Click Lock & Control in the Change Center of the Administration Console.

 2. Click New in the Network Channels table.

FIGURE 5-6. The Network Channels page

Chapter 5: Configuring the WebLogic Server Environment 257

 3. On the Create A New Network Channel page, select a name for the new channel, as well
as a protocol, such as t3, t3s, HTTP, or HTTPS, for example. The complete set of protocols
you can choose from includes HTTP, HTTPS, t3, t3s, COM, SNMP, LDAP, and LDAPS. In
addition, for a cluster, you also have the cluster-broadcast and cluster-broadcast-secure
protocols. The server uses the HTTP and HTTPS protocols mainly for handling client
requests from a web browser. WebLogic Server uses the t3 and t3s protocols for internal
and external communications with other servers. WebLogic Server also uses the t3
protocol for RMI. WebLogic clusters route unicast-based cluster messages among cluster
members using the cluster-broadcast protocol. The secure version of this protocol is
cluster-broadcast-secure. Click Next.

NOTE
All the network protocols are multiplexed over connections that share
the same listen address and listen port. That is, you can have both a t3
and an HTTP protocol configured to use the same port and hostname.
Clients simply use different protocols to talk to the server. This chapter
shows how you can use this capability to separate different types of
network traffic.

 4. On the Network Channel Addressing page, specify a listen port and listen address for the new
network channel. You can optionally specify two other values here: External Listen Address
and External Listen Port. WebLogic Server uses these attributes when communicating with
clients through channels that support network address translation (NAT) firewalls. Click Next.

 5. On the Network Channel Properties page, specify properties such as Tunneling Enabled,
Outbound Enabled, and HTTP Enabled. Click Next.

 6. On the Secure Network Channel page, you must specify the security configuration for the
new channel—you have two options here: Two Way SSL Enabled and Client Certificate
Enforced. By default, every server is configured with the Demo Identity and Demo Trust
certificates.

 7. Click Finish. You’ll now see the new network channel in the Network Channels table.

Once you create a network channel, the server starts the channel automatically and you’ll see
the following in the command console:

<Jul 23, 2013 7:21:21 AM CDT> <Notice> <Server> <BEA-002613> <Channel
"MyNetworkChannel1" is now listening on 192.168.80.100:7001 for protocols
t3,http.>

Tunneling
Let’s say you want to specify the t3 protocol for some types of client traffic. You may run into a
problem where your network requires that all client traffic must come through a protocol-filtering
firewall that supports just the HTTP protocol. What do you do? You can tunnel the t3 connection
requests over the HTTP connections. Tunneling enables a client request using a certain protocol
to be sent over a different protocol. In this case, the client traffic using the t3 protocol is tunneled
over (or under!) the HTTP protocol. Of course, tunneling will result in slower network
communications because of the overhead of HTTP for communicating a client’s request.

258 Oracle WebLogic Server 12c Administration Handbook

You can configure tunneling when you select a network protocol, as shown in the previous
section, by specifying a value for the Tunneling Enabled property on the Network Channel
Properties page. If you enable tunneling, you can specify both a client ping and a client timeout
option to control how the server handles tunneling client connections.

Configuring Network Channels
When you create a custom network channel, you specify the listen port and listen address (as well
as an external listen address and external listen port, if necessary). You also specify the connection
protocol, of course. However, there’s a lot more to configuring a network channel than merely
specifying the listen port, listen address, and protocol. After you specify these, your new network
channel is configured to use the default network settings. This section explains the main network
configuration attributes you can then set.

To configure a network channel, go to Environment | Servers | <server_name> | Protocols |
Channels. In the Network Channels table, click the network channel you’d like to configure. On
the network Configuration page, the top portion shows the settings for the listen address, listen
port, and protocol that you’ve already selected for this channel. You can change the settings or
even disable a network channel from this page. Note that the Enabled property is checked, by
default, meaning that all network channels are started automatically when you start the
WebLogic Server instance. This can be helpful when used in conjunction with a load balancer
and when a physical machine has multiple physical network devices. You can use various
approaches to assigning each server instance to a particular network device to minimize the
context switching that might otherwise occur.

TIP
Each network channel you configure for a server must have a unique
combination of host, port, and protocol. You can assign different port
numbers on a server the same protocol if you’re running multiple
Managed Servers on a single machine.

Scroll down to the bottom and click Advanced. Here are the main Advanced Network
Channel options you can configure in the Administration Console:

 � Outbound Enabled Lets you specify whether the server can use this channel for server-
to-server communications. A server that needs to make EJB calls to another server will use
the channel for communicating with the remote server unless you disable the Outbound
Enabled setting—by default, this is enabled for all admin channels, meaning the server
supports internal server-to-server communications. You can make use of this property to
separate external (client) traffic and internal (server) traffic. If your server has multiple
NICs, you can dedicate a channel for client traffic on one NIC and use another NIC to
support server-to-server communications.

In a cluster, you’ll use internal channels for communications among the cluster members,
so you can leave this option unselected.

 � Cluster Address Specifies the address for RMI communications within a cluster. By
default it is false, and you should select it only if you’re using this channel for RMI
communications.

Chapter 5: Configuring the WebLogic Server Environment 259

 � Accept Backlog Specifies how many backlogged TCP connection requests the network
channel allows. The default value is 300 backlogged connections.

 � Maximum Backoff Between Failures Specifies the maximum backoff time between
failures in the acceptance of client connections.

 � HTTP Enabled For This Protocol Specifies whether HTTP is enabled. Select this option,
as binary protocols use HTTP for downloading various resources.

 � Login Timeout Specifies the maximum time (in milliseconds) the channel waits for a
connection before timing out. You can leave it at the default value of 5000 seconds. You
can disable the network channel login timeouts by setting a value of 0.

 � Complete Message Timeout Specifies the maximum amount of time the channel waits
to receive a complete message. This attribute is critical because disabling it (by setting
it to 0) means that a denial of service attack that launches long messages to the channel
could succeed. The default value is –1, and the maximum is 480.

 � Idle Connection Timeout Specifies the maximum amount of time in seconds that
a connection can stay idle before being closed. The minimum value is 0, meaning
connections won’t time out. Set a value for this parameter or use the default value of –1.

 � Tunneling Enabled Specifies whether the server should enable tunneling via HTTP for
this channel.

 � Maximum Message Size Sets the maximum message size in a message header. This
attribute helps you protect the server against the launch of a denial of service attack,
wherein a request tries to use up a vast amount of the server’s memory to keep it from
servicing other requests. The default value is 100MB, which is also the maximum value
for this attribute. You must base the value for this attribute on your application’s needs. If
the channel is supporting an application sending small HTTP requests that are sized, say,
2KB on the average from a web site, you can set a small value such as 4KB (the minimum
value is 4096 bytes). On the other hand, if the channel is supporting web services that are
transmitting large requests, go for the default setting instead.

TIP
By configuring the optional administration channel, you can
indirectly disable the default network channel. Once you create the
administration channel, you must use it for all administrative tasks.

 � Channel Weight This attribute lets you set a weight or priority for this channel when
creating server-to-server connections. You can specify a value between 1 and 100, and
the default is 50, meaning that this channel is as equally preferred as any other channel.
When a server initiates a connection to another server for the purpose of server-to-server
communication, it selects the network channel with the highest weight. It will pick a
channel with a lower channel weight if the channel with the highest weight is unavailable
owing to a network failure. Thus, the Channel Weight property lets you configure
properties for network channels during server-to-server communications. If the server has
multiple NICs, you can create multiple channels with different channel weights based on
the speed of the channel’s NIC.

260 Oracle WebLogic Server 12c Administration Handbook

Designing Network Channels
Real-life implementation of network channels depends on the type of network traffic you
anticipate, both for client work and cluster communication needs. You must design network
channels to separate the different types of user traffic, as well as your internal traffic. Let’s use
some simple examples to show how to configure custom network channels. Assume you’ve
already configured an administration channel for the Admin Server, as explained in Chapter 3.
Typically, you’ll need to configure some custom network channels for satisfying different
application needs, as well as a couple of internal network channels for clusters (one to handle the
unicast cluster messages and another for replication). Note that you must create each network
channel that you configure on each Managed Server in the cluster.

As far as the protocol goes, you must decide among the choices such as HTTP, t3, and so on,
based on what that channel supports. If a channel supports just HTTP requests by proxying
requests from a web server, you need to use the HTTP protocol. If a network channel supports
Java client applications that communicate with the cluster through RMI, you must use the t3 or
IIOP protocols. If secure communications are required, you must use the secure versions of the
protocol, such as HTTPS, t3s, etc.

For a cluster, to create an internal channel for supporting unicast cluster messages, create a
channel with the cluster-broadcast protocol. The SSL version of this is the cluster-broadcast-secure
protocol. You can also create replication channels for clusters to force replication traffic to a
dedicated channel. Each Managed Server in the cluster must have a separate replication channel in
this case. You must consider creating custom network channels if your Managed Servers are running
on separate servers. You can also use custom network channels if your Managed Servers are running
on the same machine, as long as the machine is multihomed and the server has multiple NICs.
Following are some common criteria to use when designing custom network channels.

Separating Network Traffic
You can separate different types of traffic by assigning different protocols to different ports. For
example, you can create a channel that assigns HTTP traffic to port 7011 and t3 traffic to port
8011. This setup separates the t3 and HTTP requests and maintains separate queues for the two
protocols. Separating network traffic in this manner offers you quite a bit of flexibility. In this case,
you are only exposing the HTTP protocol externally, because that’s the channel you dedicated to
external HTTP requests.

NOTE
You must configure the same custom network channels on all
Managed Servers that are part of a cluster.

To implement this configuration of separate network channels, you can set the listen address
for the default channel to 192.168.1.10, for example, with a listen port of 8011. You only need a
single custom network channel dedicated for the HTTP traffic. You can create a network channel
that uses the HTTP protocol with a port setting of 80. Note that the default and custom channels
both use the same IP address, 192.168.1.10—that is, they share the same NIC.

Physically Separating Network Traffic
In the previous network setup, you separated network traffic using two different ports for two
different types of traffic. However, only a single NIC is handling all the network traffic. You may

Chapter 5: Configuring the WebLogic Server Environment 261

add additional NICs to the machine and physically separate the network traffic based on the NIC.
You achieve the separation of traffic by assigning different protocols to different NICs.

Let’s say you have three NICs on a server, each with a different IP address such as 192.168.1.10,
192.168.1.11, and 192.168.1.12. You can configure a default channel with the listen address of
192.168.1.10 for handling t3 traffic. You can then create two custom network channels and assign
them the 192.168.1.11 and the 192.168.1.12 IP addresses. You can assign all HTTP traffic to the
channel with the 192.168.1.11 address and all secure (HTTPS) traffic to the 192.168.1.12 IP address.

Separating Internal and External Traffic
You can also physically separate the internal server traffic and the external client traffic to
provide better security, as well as improve performance. By physically separating network traffic
with the help of multiple NICs, you enhance the throughput of both internal and external
network traffic. To separate internal server network traffic from external client traffic, use
different NICs on the server with a different IP address for each NIC. Configure the two network
channels in the following manner.

 � You can configure the default channel with the NIC hosting the IP address 192.168.1.10
and enable the Outgoing Enabled attribute (by setting it to true) so the server can use this
channel to communicate with other servers.

 � Create a custom network channel using the second NIC with the IP address of
192.168.1.11. Because this channel is dedicated to servicing external traffic, you can
disable the Outgoing Enabled property for this channel. This means the server can’t use
this channel for server-to-server communications—it uses the default network channel for
the internal communications.

Creating an SNMP Network Channel
When you configure SNMP monitoring for a server (see Chapter 6), you’ll need to configure an SNMP
agent, which requires two channels: one for UDP traffic and the other for TCP traffic. By default, the
TCP traffic uses the server’s listen port (the default is 7001), but you can separate the SNMP traffic
from your business traffic by configuring a custom network channel for SNMP communications. If you
decide to create a custom SNMP network channel, you must do so on each Managed Server that
hosts an SNMP agent. Configure an SNMP network channel is simple. Navigate to Server |
Configuration | Protocols. When you invoke the Create A New Network Channel Assistant, select
“snmp” from the protocol list. Once you do this, any SNMP agent you target to this server instance
will use the custom SNMP network channel.

The Java Connector Architecture (JCA)
Just as a JDBC driver provides connectivity to a database, resource adapters provide connectivity to
an enterprise information system (EIS), which can be an enterprise resource planning (ERP) system
or a legacy database or mainframe transactional database. WebLogic Server implements the Java
EE Connector Architecture (JCA) to provide connectivity between the applications you deploy to
WebLogic Server and an EIS. In a way, JCA is somewhat like JDBC, which lets a developer write a
single set of code to talk to any database using the JDBC API. Similarly, instead of writing custom
code to communicate to each of the corporate back-end systems, developers can simply write
code that talks to the connectors, which, in turn, will talk to the back-end systems.

262 Oracle WebLogic Server 12c Administration Handbook

Web application components such as EJBs communicate with the resource adapters through
the Common Client Interface (CCI), which provides a generic connector implementation. This
interface doesn’t provide any security management, transaction management, or even connection
management. WebLogic Server interfaces with the resource adapter to provide these management
services. JCA uses the concept of system contracts to manage the transactions and connections
between WebLogic Server (or any application server) and the back-end system. Here are the three
system contracts that ensure the two systems properly negotiate with each other, thus
guaranteeing the integrity of the data the two systems exchange between themselves:

 � Connection management contract Connection management relies on the use of a
connection pool and enables the resource adapter to provide a connection factory
and connection interfaces that enable JDBC drivers to align with JCA architecture with
minimal impact on existing JDBC APIs. You can create a minimum and maximum
number of connections to WebLogic Server.

 � Transaction management contract Provides transaction support, which includes both
support for XA (global) transactions and local transactions.

 � Security management contract The Connector API propagates the security context from
WebLogic Server to the resource adapter.

There are two important types of JCA resource adapters: WebLogic Integration (WLI) resource
adapters and WebLogic Server resource adapters. You can deploy the WebLogic Server resource
adapters to any Java EE–compliant application server. This section discusses the implementation
and deployment of the WebLogic Server resource adapters, which don’t use any WLI extensions.
There are three types of WebLogic Server resource adapters:

 � Outbound resource adapter Allows applications to initiate a connection to an EIS.

 � Inbound resource adapter Allows an EIS to initiate contact with an application. Oracle
recommends that the resource adapter use Work Managers to process work instead of
creating a thread directly.

 � Bidirectional resource adapter Allows either the application or the EIS to initiate
communications.

In addition, a resource adapter may provide three different transaction levels. The
XATransaction level lets a resource adapter participate in distributed transactions managed by the
WebLogic Server Transaction Manager. Connections using the LocalTransaction level can
participate only in local transactions and not in transactions involving the two-phase commit
protocol. A NoTransaction setting prevents the resource adapter from participating in local or
distributed (global) transactions.

Although WebLogic Server fully supports both the Java EE 1.0 and 1.5 Connector
Architectures, the discussion in this chapter assumes a Java EE 1.5 Connector Architecture.

NOTE
WebLogic Server supports the development of resource adapters
under both the Java EE 1.0 Connector Architecture and the Java EE 1.5
Connector Architecture. The Java EE 1.5 Connector Architecture offers
more capabilities, such as outbound and inbound communications to
and from multiple systems.

Chapter 5: Configuring the WebLogic Server Environment 263

Oracle WebLogic Server 12c uses a Connector container to deploy a resource adapter. For an
outbound connection, this container contains the resource adapter and one or more connection
pools for the outbound connections. It also contains managed connection objects that represent
outbound physical connections to the EIS, as well as the connection handles returned to the
application component from the resource adapter’s connection factory. For inbound connections,
the container includes external message sources such as an EIS that talks to WebLogic Server, as
well as a message factory (MessageEndPointFactory). It also contains a message endpoint
application such as a message-driven bean (MDB), which receives the inbound messages through
the resource adapter.

Managing Resource Adapters Through the Console
Once you deploy a resource adapter, you can modify configuration elements of the adapter
through the Administration Console. Some changes require a redeployment of the resource
module (.rar), and others don’t. In general, you can dynamically configure JNDI-related
properties, such as JNDI names and the creation and deletion of outbound connection pools. In
addition, you can configure the following WebLogic Server–specific connection pool parameters
(in the weblogic-ra.xml file) without having to redeploy the resource adapter:

 � initial-capacity

 � max-capacity

 � capacity-increment

 � shrink-frequency-seconds

 � highest-num-waiters

 � highest-num-unavailable

 � connection-creation-retry-frequency-seconds

 � connection-reserve-timeout-seconds

 � test-frequency-seconds

You can also dynamically configure the following logging parameters for a resource module:

 � log-filename

 � file-count

 � file-size-limit

 � log-file-rotation-dir

 � rotation-time

 � file-time-span

WebLogic Server persists any resource adapter properties that you modify through the
Console in the deployment plan for that adapter.

Follow these steps to configure a resource adapter through the Administration Console:

 1. Click Lock & Edit in the Change Center of the Console.

 2. Select Deployments in the left-hand pane.

264 Oracle WebLogic Server 12c Administration Handbook

 3. On the Summary Of Deployments page, click the name of the resource adapter you want
to configure.

 4. On the Settings page for the adapter, expand Configuration | Properties.

 5. Modify the resource adapter properties shown in the Resource Adapter Bean Properties
table.

 5. Target the resource adapter to a Managed Server or a cluster.

 6. Click Save. Click Activate Changes in the Change Center of the Console. The server
modifies the deployment plan for the adapter to mark your configuration changes.

In this example, you learned how to configure an existing Java EE connector module. You can
also configure a new connector for deployment using the Console by deploying the RAR file for
the resource adapter.

Monitoring Resource Adapter Connections
Use the Administration Console to monitor connections made through a resource adapter. You can
do this by going to Environment | Deployment | Connector Modules in the left-hand pane of the
console. You can then click the Monitoring tab, followed by the Resource Adapters tab to view
statistics for all the resource adapters that you’ve deployed on this server, such as active and idle
connections. You can also close a connection from the Console if it’s safe to do so—that is, if the
connection isn’t part of an active transaction and if it has exceeded its maximum idle time limit.

The WebLogic Tuxedo Connector
You can establish connectivity among web applications, Oracle Tuxedo services, and Tuxedo
clients through the WebLogic Tuxedo Connector (WTC). You can access WTC by going to
Environment | Interoperability in the left-hand pane of the Administration Console. You can also
configure Jolt connection pools to enable applications to connect to Oracle Tuxedo domains. Jolt
is a client API that manages requests from the applications to Oracle Tuxedo services.

Summary
This chapter introduced you to WebLogic Server Work Managers, which help applications
prioritize their work based on rules that you define and the server’s run-time performance. Work
Managers thus help you to optimize application performance and maintain your service-level
agreements. You also learned how to create custom network channels to meet various
applications’ needs. Finally, the chapter introduced the Java Connector Architecture and
explained how to configure a resource adapter.

CHAPTER
6

Monitoring and
Troubleshooting

WebLogic Server

266 Oracle WebLogic Server 12c Administration Handbook

WebLogic Server offers a powerful diagnostic framework called the WebLogic Diagnostic
Framework (WLDF), which consists of diagnostic components that let you instrument
diagnostic capture at the server or application level and configure automatic notifications

to monitor log messages, instrumented events, and harvested server and subsystem metric data.
WLDF also offers a diagnostic archive feature that allows you to store historical diagnostic data.
This chapter introduces you to all the important components of WLDF, including the Monitoring
Dashboard, which lets you monitor server performance easily. You’ll also learn about the integration
of WLDF with the JRockit Flight Recorder for run-time or post-incident analysis of diagnostic data.

One of the key tasks for a WebLogic Server administrator is to monitor production
environments. WebLogic Server provides several ways for you to monitor a running server instance.
You can use the Administration Console, the JMX framework, and the Single Network Management
Protocol (SNMP) to monitor servers. This chapter reviews how to monitor running server instances
using all these methods The chapter also describes how to configure WebLogic Server to write
server, domain, and subcomponent logs and how to view those logs. Dealing with server crashes
and with slow-performing applications is, of course, a critical part of any administrator’s job
responsibilities. You’ll also learn how to generate and interpret a thread dump.

The WebLogic Diagnostic Framework
In the latter part of this chapter, you’ll learn how to access monitoring information through the JMX
interface (directly or through the Administration Console), as well as how to set up SNMP
monitoring. You’ll be pleasantly surprised to discover that WebLogic Server also offers a powerful and
robust monitoring and diagnostic framework called the WebLogic Diagnostic Framework (WLDF).
WLDF makes your diagnostic work and analysis of run-time performance of servers and applications
much easier by offering you several diagnostic components that allow you to collect, analyze, and
archive diagnostic data from the server and deployed applications.

When you configure WebLogic Server with the JRockit JVM, you can use WLDF to access the
diagnostic information from the JRockit flight recording file.

NOTE
You need to download and install the JRockit JVM separately—it’s not part
of the Oracle WebLogic Server 12c installation. You can download it from:
www.oracle.com/technetwork/middleware/jrockit/overview/index.html.
Once you download JRockit, install it in your Oracle Middleware
home directory. The actual JRockit product I’ve downloaded is named
Oracle JRockit JDK 28.2.7 and JRockit Mission Control 4.1.

Oracle Fusion Middleware’s Diagnostic Framework automatically collects WLDF server image
dumps and is well integrated with several WLDF features. It integrates with the Watch and
Notification as well as the Diagnostic Image Capture component of WLDF.

Following are the major WLDF components:

 � Monitoring Dashboard Displays both the current and historical states of the server and
the applications it hosts by exposing critical run-time performance metrics and tracking
changes to those metrics. The Diagnostic Archive component stores the collected metrics
that you can view through the dashboard to get an idea about the history of the operating
state. You must configure the Harvester component to capture the metrics you want to
view from the Diagnostic Archive. In addition to the Monitoring Dashboard, you can

Chapter 6: Monitoring and Troubleshooting WebLogic Server 267

also use the Diagnostics Request Performance page in the Administration Console to
examine real-time and historical views of method performance information. To view this
information, you must configure the WLDF Instrumentation component.

 � Diagnostic Image Capture Helps create diagnostic snapshots of server performance that
you can use to analyze server failures. You can capture diagnostic images on demand by
issuing commands from the Administration Console, WLST scripts, or JMX applications.
You can also configure image notifications, which automatically capture diagnostic
images when a harvester, log, or instrumentation watch rule is triggered.

 � Diagnostic Archive Stores logs and metrics from both the server and the deployed
applications. In addition, the archive stores historical data from the WLDF Instrumentation
and Harvester components.

 � Harvester Captures metrics from the (harvestable) runtime MBeans and provides a
historical record of the metrics.

 � Watch and Notification Enables the observation of specific diagnostic states and
automates the dispatch of monitoring notifications sent based on various rules you
configure, called watches.

 � Instrumentation Provides ways to embed diagnostic code (called monitors) at various
well-defined points inside applications and server instances.

 � Data Accessor You can use the JMX-based access service to access diagnostic data
in a running server. You can also use WLST diagnostic commands, and you can export
archived data to an XML file so you can access diagnostic data at a later time.

The standard logging features offered by WebLogic Server under the umbrella of the
WebLogic Server Logging Services are also technically a part of WLDF. Each of the WLDF
components functions at the server level and stores diagnostic data on a per-server basis. For
each of the WLDF resources listed here, the server creates an MBean that you can access
through JMX or WLST. Although the WLDF architecture and its components seem daunting at
first, the way it all works is straightforward: you determine the type and quantity of diagnostic
data the server generates by configuring the Harvester, Instrumentation, Diagnostic Image Capture,
and Watch and Notification components, which together harvest the diagnostic data and trigger
various actions and notifications. The Archive component helps store the diagnostic data, and you
retrieve the data with the help of the Data Accessor component.

Here are the main benefits of using the WLDF:

 � It is designed for efficient operation with minimal impact on the running server.

 � It doesn’t require separately starting WLST scripts or JMX programs to interrogate the server.

 � It is especially efficient in collecting historical data.

 � It properly handles the storing of historical data so you can get to it even after there are
problems and a server has been restarted.

The WLDF is also integrated into server components such as the WebLogic Monitoring
Dashboard so an administrator can view historical data prior to accessing it. You can configure
WLDF using the Administration Console, as you’ll see in this chapter. In addition, you can also
use WLST scripts to configure WLDF. As with most WebLogic Server configuration tasks, you can
also use JMX to programmatically configure WLDF.

268 Oracle WebLogic Server 12c Administration Handbook

TIP
Although you can easily configure WLDF by editing the XML
configuration files, Oracle recommends that you do not do this.

You can configure the Diagnostic Image Capture and a Diagnostic Archive at the server level,
and when you do so, the server adds the configuration settings to the domain’s config.xml file. You
configure the Harvester, Watch and Notification, and Instrumentation components as part of a
diagnostic system module that you deploy to a Managed Server or a cluster. The configuration
settings for these components are not part of the config.xml file; rather, they are stored in a
diagnostic resource descriptor file that you target to a Managed Server or cluster.

Using WLDF with the JRockit Flight Recorder
The JRockit JVM contains a built-in performance monitoring and profiling tool called the JRockit Flight
Recorder (JFR). JFR stores diagnostic and profiling data in a file called the JRockit flight recording file,
which allows you to access the diagnostic data even after a system crash. The JFR file contains JVM
events and events from the WebLogic Server, as well as the various Java programs such as servlets that
are running in the JVM. The recent integration of WLDF with JFR is a huge step forward in simplifying
WebLogic Server diagnostic capabilities, and it greatly reduces the burden of having to configure
manually various WLDF modules to capture diagnostic data. Starting with the WebLogic Server 10.3
release, the ability to control the use of instrumentation through the simple setting of the diagnostic
volume should be the starting point for those who want to take advantage of WLDF.

WLDF is well integrated with the JFR, and the overhead for configuring the JFR is very low,
thus making it a valuable diagnostic tool in production systems. Although your mileage may well
vary, Oracle’s internal testing with default settings indicate less than a 1 percent performance
impact when you use the JFR.

The JFR uses the concept of an event to capture diagnostic data, with an event being something
that happens in an application at a specific point in time. In addition to the name and time of an
event, JFR captures a payload for each event that contains details about the event. For example, for
an event that signals a blocked thread, the payload would include the lock holder’s ID. You can
control the data the JFR captures by both limiting the type of events and setting thresholds for
events. For example, you can specify that the JFR collects event information only if the event lasts
for a specific length of time—this way, you keep the JFR from capturing too many short-term events
that are unimportant. JFR writes event diagnostic data to a circular in-memory buffer first and writes
the contents of the buffer to disk when the buffer fills up, thus minimizing expensive disk writes.

JFR data provides the following benefits for problem diagnosis and profiling:

 � It is useful for profiling applications by using information such as lock profiles and
garbage collection details and by tracing the execution of the Java programs.

 � You can use the JFR as a diagnostic store that you can examine after a server crash, for
example, just as experts examine the contents of a cockpit “black box” after a plane crash.

 � You can use the JFR as a source of data for Oracle Support during diagnostic work.

The JRockit Mission Control Client
You can manage the JFR data collection with the JRockit Mission Control (JRMC) client. The JRMC
client minimizes performance overhead involved in monitoring, managing, and profiling memory
leaks in Java applications. Using the JRMC Client, you can view JVM recordings and run-time
parameters as a set of tables that are groupings of performance data. The JRMC client shows the

Chapter 6: Monitoring and Troubleshooting WebLogic Server 269

performance event data in the form of various dials, charts, and tables. You can also use the
JRockit Memory Leak Detector to analyze the causes of memory leaks in Java applications.

TIP
In addition to the JRMC, you may also want to try out third-party
application performance monitoring tools such as CA Wily Introscope.

You access the JRMC client by issuing the following command:

 � If the JROCKIT_HOME/bin directory is part of your system path, start the JRockit Mission
Control Client by entering jrmc at the command prompt.

 � If the JROCKIT_HOME/bin directory is not part of your system path, enter the full path to
the executable file:

Windows: JROCKIT_HOME\bin\jrmc.exe

Linux: JROCKIT_HOME/bin/jrmc

 � On Windows servers, you can also start the JRockit Mission Control Client from the Start menu.

Figure 6-1 shows the Overview page, which is the JRockit Mission Control (4.1) home page.
You use the Event Types view to select the events you want to analyze. The information the JRockit
GUI displays will change as you select different items from the Event Types browser available in

FIGURE 6-1. The JRockit Mission Control home page

270 Oracle WebLogic Server 12c Administration Handbook

the Event Types view. For each event type, such as the Servlet event, you can view the events
logged by that event by selecting the Log tab.

You can record and view JFR data through the JRMC client, and, in most cases, this is the easiest
way. You can start the Flight Recorder from within the JRockit Mission Control client to record the
behavior of the JVM process during a specific time period. The JRockit Flight Recorder creates a file
to store the recorded data and opens it automatically after completing the recording. Alternatively,
you can do the same from the command line. The following sections show the different ways in
which you can configure, start, stop, and view JFR event data. An operative set of events is a set of
events that you define in the JRockit Mission Control. Once you define an operative set of events,
you can analyze the run-time system activity caused by this event set.

Enabling Default Recording By default, the JFR is turned off, but you can configure default
recording by setting the default recording option to true at the command line:

-XX:flightRecorderOptions=defaultrecording=true

By default, JFR stores the JFR file in the path specified by the java.io.tmpdir property. You can
specify a different location with the repository=<path> parameter. Similarly, you can specify the
maxsize parameter to specify the maximum disk space that JFR can use. You can specify maxsize
in KB, MB, or GB. If you want to specify that the JFR must save event data for a specified
maximum time before discarding older data, you can do so with the maxage parameter. You can
specify the maxage in seconds, minutes, hours, or days. Here’s an example that shows how to
specify various attributes for the default recording:

-XX:flightRecorderOptions=defaultrecording=true disk=true repository=
/var/log/jfr maxage=1d

This example turns on automatic, continuous JFR recording and stores the JFR file in the /var/log/
jfr directory. JFR will retain the data for the past one day (1d) in the JFR file.

Recording JFR Data Through the JRMC Client You start and stop JFR event data recording
through the JRMC client by following these steps:

 1. Start the client, as shown here:

JROCKIT_HOME\bin\jrmc.exe

In my case, the JROCKIT_HOME directory is C:\Oracle\Middleware, so I look under the
C:\Oracle\Middleware\bin directory for the jrmc executable.

 2. In the JRockit Mission Control GUI, under the Discovered folder, right-click on WebLogic
Server. Select Start Flight Recording from the context menu.

 3. Specify parameters for event recording in the Start Flight Recording dialog box. You must
select a recording template (prebuilt or custom) and specify a recording time duration.
You can specify continuous recording of events, but if you do so, you must specify a
value for the maximum size in terms of disk space.

 4. To start event recording, click OK. The Remaining column in the Flight Recorded Control
view at the bottom shows how much time is left for the recording to complete.

 5. You can terminate the recording before the recording time limit you specified by selecting
Stop after right-clicking on the recording.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 271

When the recording completes or when you stop it manually, the recording data will appear
in the JRockit Mission Control home page.

Recording Data from the Command Line You can start a JFR recording from the command line
in two different ways: you can start a recording when you start the JVM or in a running JRockit
instance. You can invoke a JFR recording from the command line when you start the JVM, as shown
here:

-XX:StartFlightRecording=duration=1h,filename=myjfrrecording.jfr

You can use multiple options when you start a recording from the command line.
To start a recoding in a running JVM instance, use the jrcmd utility (jrcmd.exe), which is in the

same directory as the jrmc executable that I used earlier to invoke the JRockit Mission Control
client. You need the PID of the JVM instance to issue the jrcmd command. Here’s an example:

jrcmd <pid> start_flightrecording duration=1h filename=testrecording.jfr

This command enables JFR to collect diagnostic data for a period of 1 hour. Alternatively, you can
omit the duration parameter, in which case the recording will continue indefinitely until you stop
it with the stop_flightrecording command, as shown here:

jrcmd <pid> stop_flightrecording recording=1

To check the status of a running recording, issue the following command:

jrcmd <pid> check_flightrecording

Integrating WebLogic Server Data with the JFR
A Diagnostic Image Capture through WLDF automatically includes the JFR file. You must make sure
that you enable the JRockit Flight Recorder in order to generate diagnostic data in the JFR diagnostic
image. By using WLDF together with the JRockit Mission Control, you can examine the diagnostic
data generated during the occurrence of an event to understand what was happening in the server at
that time. Since every Diagnostic Image Capture created through an image notification automatically
contains the JFR file, you can examine the captured JFR file to perform real-time diagnosis of
problems. To reiterate, the server must be using Oracle JRockit, and you must enable the JFR to do this.

You can specify the amount of server event data that the JFR file records by configuring the
WLDF diagnostic volume. That is, you can control the generation of diagnostic data by WLDF that
is captured by a JFR flight recording for various WebLogic Server events from components such as
web applications; EJBs; web services; and JDBC, JTA, and JMS resources. After you ensure that JFR
flight recording is enabled in JRockit (it’s enabled by default), set the appropriate WLDF diagnostic
volume. You can configure the diagnostic volume by selecting one of four diagnostic volume
levels (Off, Low, Medium, or High) by going to Environment | Servers | <server_name> |
Configuration | General and setting that option for the Diagnostic Volume attribute. The default
value for Diagnostic Volume is Low. By selecting Medium or High as the value, you can make the
server generate more diagnostic data. Of course, if you select the Off setting for the WLDF
diagnostic volume, no WLDF-related data is captured in the JFR diagnostic image.

The server automatically throttles the number of requests it selects for event generation and the
recording of that information into the JRF file. As the number of incoming requests changes, the
server automatically adjusts the throttling factor by sampling fewer or a larger number of requests
to keep the overhead down while providing you with an accurate view of the server activity.

272 Oracle WebLogic Server 12c Administration Handbook

You can use any of the WLST Diagnostic Image Capture commands to obtain the JFR file
because the Diagnostic Image Capture automatically includes the JFR file if one is available.
Once you retrieve the JFR file from a Diagnostic Image Capture (see the section titled “Using
WLST for Capturing Diagnostic Images” later in this chapter), you can view it in the JRockit
Mission Control.

Now that you’ve learned how to integrate WLDF with the Oracle JRockit Flight Recorder, it’s
time to look into the various components of WLDF itself.

Using the Monitoring Dashboard
Oracle WebLogic Server 12c offers you a GUI tool called the Monitoring Dashboard for viewing
diagnostic information. You can access the Monitoring Dashboard by going to http://hostname:port
/console/dashboard. Figure 6-2 shows the Monitoring Dashboard home page. You can view both
current and historical performance metrics and how those metrics have changed over time through
the Monitoring Dashboard. The dashboard presents run-time server instance information in the
form of built-in views, a collection of charts that display various performance metrics. In the
explorer panel of the Monitoring Dashboard, you can access both the set of built-in views and any
custom views you’ve created. You can also use the Metric Browser to specify the MBean instance
attributes whose values you want the dashboard to display in a chart.

The Monitoring Dashboard displays diagnostic data that shows either the current or historical
values of runtime MBean attributes. Any value of a runtime MBean attribute that belongs to a runtime
MBean instance is called a metric. The Monitoring Dashboard shows both real-time polled metrics,
which are values of active runtime MBean instances, and collected metrics from the diagnostic
archive, which are the metrics collected by the Harvester component. Thus, you must first configure

FIGURE 6-2. The Monitoring Dashboard home page

Chapter 6: Monitoring and Troubleshooting WebLogic Server 273

the Harvester component, as shown later in this chapter, if you wish to view any collected metrics
from the archive. In order to keep the overhead of metric collection to a minimum, the dashboard
polls runtime MBean instances only once during each interval to collect the polled metrics.

In addition to the Monitoring Dashboard, WLDF provides another web page to view
diagnostic data. This is the Diagnostics Request Performance page of the Administration Console,
which requires that you configure WLDF instrumentation first. You can then use this page to view
the real-time and historical method performance information captured through WLDF
instrumentation. The page shows information about requests that flow through code you’ve
instrumented. The server generates instrumentation events when a request executes an
instrumented method. The event information is displayed on the Diagnostics Request Performance
page. Each request is identified by a unique ID, the name of the application, and the top-level
method executed by the request. You can also view the execution time of the request in
comparison with other requests at the same level of method calls.

Before you can request performance data through the Diagnostics Request Performance page, you
must configure WLDF instrumentation to use a specific diagnostic action called ElapsedTimeAction,
because only data from this action is presented in the Performance page. The section “Creating
Request Performance Data,” later in this chapter, shows you how to configure instrumentation to
enable the use of the Diagnostics Request Performance page in the Administration Console. Once
you do this and enable instrumentation, you can configure request performance data by following
these steps:

 1. In the left-hand pane of the Administration Console, select Diagnostics | Request Performance.

 2. On the Diagnostics Request Performance page, select the server name.

 3. Next, you select a time interval for obtaining request data.

You can choose to display information about specific requests and method invocations. Before
you delve into the three main WLDF components (Instrumentation, Harvester, and Watch and
Notifications), you need to learn how to use the Diagnostic Image Capture capability and the
Diagnostic Archives facility offered by WLDF.

Configuring Diagnostic Image Capture
You can use the Diagnostic Image Capture component of WLDF to get a snapshot of what was
happening inside the server and its subcomponents (such as JDBC and JMS) when a failure
occurred. You capture the diagnostic images for troubleshooting by Oracle Support personnel.
A diagnostic image packages the internal run-time server state information into a convenient
diagnostic image file. Diagnostic Image Capture is helpful in performing an analysis of what led
to a failure, and it makes it easy for you to send Oracle Support a single zip file that captures all
the data necessary to facilitate troubleshooting. You can capture diagnostic images through the
Administration Console, using a WLST command, or by configuring a Watch notification. The
section “Configuring Notifications,” later in this chapter, shows how to configure a notification
that captures a diagnostic image, but first this section shows you how to capture a diagnostic
image through the Administration Console.

NOTE
If you’ve configured your server with Oracle JRockit and have also
enabled the JRockit Flight Recorder, Diagnostic Image Capture will
capture the flight recorder data as well as the server state information.

274 Oracle WebLogic Server 12c Administration Handbook

Follow these steps to configure the capturing of diagnostic images through the Administration
Console:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane, go to Diagnostics | Diagnostic Images.

 3. Select the server on which you want to save the diagnostic image file.

 4. In the Destination Directory field of the Settings For <server_name> page, enter the
details for the directory you want to use for storing the diagnostic image files. The server
creates the directory if it doesn’t exist. The destination you specify here will be the default
location for all diagnostic image captures, but you can specify a different destination for a
specific diagnostic image capture. The default directory is logs\diagnostic_images.

 5. In the Timeout field, specify the interval between diagnostic image captures. You can use
the timeout value to control the frequency of diagnostic image capturing when there are
multiple server failure events.

 6. Click Save and then click the Activate Changes button in the Change Center of the
Console.

The volume or level of diagnostic data that a diagnostic image contains is something that you
configure at the server level. Once you create the destination and the timeout for the diagnostic
image captures, you must specify the WLDF diagnostic volume settings at the server level by
following these steps.

 1. In the left-hand pane, go to Environment | Servers.

 2. Select the name of the server instance.

 3. Select Configuration | General.

 4. On the Servers | Configuration | General page, choose one of the following Diagnostic
Volume settings:

 � Off This setting doesn’t mean that no diagnostic data is captured. Rather, it specifies
that no diagnostic data be captured for JRockit Flight Recorder diagnostic images.

 � High This setting provides detailed error information.

 � Medium This setting provides additional information in addition to the basic
diagnostic information.

 � Low This is the default diagnostic level setting, and it captures basic information for
messages with the EMERGENCY, ALERT, or CRITICAL level.

 5. Click Save.

Once you configure the Diagnostic Image Capture component, as shown here, the server’s
config.xml file will show the diagnostic capture configuration within the <server-diagnostic-config>
element, which is a subelement of the <server> element. Here’s an example:

<server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs\diagnostic_images</image-dir>
 <image-timeout>2</image-timeout>

Chapter 6: Monitoring and Troubleshooting WebLogic Server 275

 </server-diagnostic-config>
</server>

Now that you’ve configured the destination, and the diagnostic volume settings, you’re ready to
capture a diagnostic image. To capture a diagnostic image, go to Diagnostics | Diagnostic Images
and select the server for which you want to capture the image. Once you select the server, you can
click the previously grayed out Capture Image button and then click OK. WebLogic Server captures
the current server configuration data and state and stores it in the directory you’ve specified. You’ll
see the following message in the Console while the image capture process is running:

Name=>State=>Start Time=>Duration(ms)=>Remaining(ms)=>Identifier
 WLDFDiagnosticImageRecording_medrec-spring_MedRecServer_Running=>8/15/13
 10:10:34 AM 473ms=>N/A=>N/A=>1

If you’ve configured the JRockit Flight Recorder, you can view the server diagnostic data in the
JRockit Mission Control.

The Diagnostic Image Files
When you capture the diagnostic image for a server, the server puts the captured diagnostic image
file in that server’s logs\diagnostics directory. For example, for the sample server MedRecServer,
the file will be in the following format:

diagnostic_image_MedRecServer_2013_08_16_20_43_56.zip

The diagnostic image file is actually a zipped file containing several files within it, each for a
server subcomponent such as configuration, the JDBC data store, the persistent store, a cluster,
deployments, and so on. The diagnostic image contains server state information pertaining to the
JVM, Work Managers, JNDI, and the most recently harvested diagnostic data. You can view most
of these files, though not all, in a text editor. Here, for example, is the image file component for
Work Managers, located in the WORK_MANAGER.img file:

Total thread count : 17
Idle thread count : 0
Standby thread count: 13
Mean throughput : 4.970178926441352
Requests accepted : 223717
Requests started : 223717
Requests Completed : 223716

And here’s a chunk of the diagnostic file for the persistent storage, located in the
PERSISTENT_STORE.img file:

<Statistics>
 <NumObjects>45</NumObjects>
 <Creates>4</Creates>
 <Reads>27</Reads>
 <Updates>35</Updates>
 <Deletes>2</Deletes>
 <PhysicalWrites>40</PhysicalWrites>
 <PhysicalReads>27</PhysicalReads>
</Statistics>

276 Oracle WebLogic Server 12c Administration Handbook

You can examine the JDBC image file, located in the JDBC.img file, for details about the
server’s data sources, as the following excerpt shows:

Dumping Resource Pool:MedRecGlobalDataSourceXA
Resource Pool:MedRecGlobalDataSourceXA:dumpPool Current Capacity =
Dumping Resource Pool:MedRecGlobalDataSourceXA complete
Dumping Resource Pool:JDBC Data Source-0
…
Dumping Resource Pool: JDBC Data Source-0 complete

You’ll notice that some of the captured diagnostic files are in a binary format and that you
can’t open them in a text editor. Oracle Support uses a special tool called the WLDF Browser to
review the diagnostic information from a troubled server. One site where you can download this
browser is http://weblogicserver.blogspot.com/2010/02/wldf-browser.html.

Using WLST for Capturing Diagnostic Images
Earlier, you learned how to set up diagnostic image capturing through the Administration Console.
You can also use WLST to generate and download diagnostic images.

Generating an Image Capture with WLST Instead of using the Administration Console, you
can also use the following set of WLST commands to generate an image capture by including
them in a .py file:

url='t3://localhost:7011'
username='weblogic'
password='welcome1'
server='MedRecServer'
timeout=120
connect(username, password, url)
serverRuntime()
cd('WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image')
argTypes = jarray.array(['java.lang.Integer'],java.lang.String)
argValues = jarray.array([timeout],java.lang.Object)
invoke('captureImage', argValues, argTypes)

Downloading a Diagnostic Image Capture You can use the following WLST diagnostic
commands to download diagnostic image captures from a server:

 � getAvailableCapturedImages Gets the list of diagnostic images stored on a server.

 � saveDiagnosticImageCaptureFile Gets a specific diagnostic image capture file.

 � saveDiagnosticImageCaptureEntryFile Gets a specific entry such as the JRockit Flight
Recorder diagnostic data for viewing in the JRockit Mission Control.

Configuring a Diagnostic Archive
WLDF offers a diagnostic archiving capability to enable the server to store all the events, logs,
and metrics that it collects. You can access the data offline or online using WLST commands. You
can configure either a file-based (default) store or one that uses database tables to store the
archived data.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 277

If you wish to use a file-based store, you must configure a WebLogic Server persistent store, as
explained in Chapter 3. When you choose a file-based store for archiving, WebLogic Server uses a
file, of course, to record the data and, by default, uses the <domain_name>\servers\<server_name>
\data\store\diagnostics directory. In the config.xml file for the server, a file-based store is represented
as follows under the base element <server>:

<server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive</diagnostic-data-archive-type>
</server-diagnostic-config>

In the previous example, the <diagnostic-data-archive-type> element has the attribute
FileStoreArchive, indicating that the server is using a file-based repository for archives. If you
choose a database for storing the archives, the attribute will have the value JDBCArchive instead.
If you want to specify a database as the repository, you must create two tables—the wlst_events
table for storing instrumentation data and the wls_hvst table for storing Harvester-generated
diagnostic data. You must also configure a valid JDBC data source for the database that hosts the
repository.

You can configure the periodic deletion of older diagnostic data from the archives by
setting automatic removal of data from the archives, either based on the size of the data or its
age. You can set a maximum preferred size for the data store by specifying the <preferred-
store-size-limit> element within the <server-diagnostic-config> element. You can also specify
the removal of older data based on how long the data was in the store. Here’s a snippet from
a config.xml file showing how to specify both the size- and time-based deletion of diagnostic
data:

<server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive</diagnostic-data-archive-type>
 <data-retirement-enabled>true</data-retirement-enabled>
 <preferred-store-size-limit>120</preferred-store-size-limit>
 <store-size-check-period>1</store-size-check-period>
 <wldf-data-retirement-by-age>
 <name>HarvestedDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>HarvestedDataArchive</archive-name>
 <retirement-time>1</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>45</retirement-age>
 </wldf-data-retirement-by-age>
</server-diagnostic-config>

Note that the ability to configure the automatic removal of data from the archives is useful in
systems where administrative data might be stored on a shared storage device, in order to
separate it from the run-time data for the server.

Let’s now turn to the configuration of the three major WLDF components: Instrumentation, the
Harvester, and Watch and Notification. Before you learn how to configure these three major
WLDF components, however, you first need to learn how to create diagnostic system modules, as
you will use these modules for each of these WLDF components.

278 Oracle WebLogic Server 12c Administration Handbook

Using a Diagnostic System Module
Three WLDF components—the Harvester, Watch and Notification, and Instrumentation—require
that you use a diagnostic system module to hold their configuration details. You can create
multiple diagnostic system modules for a domain, but you can target only one module to each
server or cluster. The system module is of the format DIAG_MODULE.xml, where DIAG_MODULE
is the name of the module. You can optionally provide a name for the descriptor file, an XML file
that the server creates, by default, in the <domain_name>\config\diagnostics directory.

Once you create a new diagnostic module through the Administration Console or WLST, the
server adds a reference to the new diagnostic module in the server’s config.xml file within the
<wldf-system-resource> element. Here’s an example showing how the config.xml file refers to a
diagnostic module named myDiagnosticModule1. Note that the descriptor file for this module is
named myDiagnosticModule1-1111.xml in the example:

<wldf-system-resource>
 <name>MedRecWLDF</name>
 <target>MedRecServer</target>
 <descriptor-file-name>diagnostics/MedRecWLDF.xml</descriptor-file-name>
</wldf-system-resource>
<wldf-system-resource>
 <name>myDiagnosticModule1</name>
 <descriptor-file-name>diagnostics/myDiagnosticModule1-1111.xml
</descriptor-file-name>
 <description>A diagnostic module with the Harvester, Watch and Notification
 and Instrumentation components.</description>
</wldf-system-resource>

The configuration of myDiagnosticModule1 is stored in its descriptor file,
myDiagnosticModule1-1111.xml, part of which looks like the following:

<wldf-resource>
 <name>myDiagnosticModule1</name>
 <watch-notification>
 …
 </watch-notification>
 <harvestor>
 …
 </harvestor>
 <instrumentation>
 …
 </instrumentation>
</wldf-resource>

NOTE
You can only include the Instrumentation component in a diagnostic
application module, as opposed to a diagnostic system module, wherein
you can also include the Harvester and the Watch and Notification
components. You configure application-scoped instrumentation in the
weblogic-diagnostics.xml descriptor file, which you package in the
application archive.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 279

Note that the <wldf-resource> element in the preceding example contains all three possible
WLDF components—the Harvester, Watch and Notification, and Instrumentation—which you can
place in the descriptor file, DIAG_MODULE.xml. However, you may configure just one of these three
components, in which case you need to include in the file only the component you are configuring.

Creating a Diagnostic System Module
This section describes how to create a generic diagnostic system module. Note that you don’t
need to create separate diagnostic modules for Instrumentation, Watch and Notification, and the
Harvester—you can configure all three WLDF components in the same diagnostic system module.
Here are the steps:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane, go to Diagnostics | Diagnostic Modules.

 3. Click New on the Summary Of Diagnostic Modules page.

 4. On the Create A Diagnostics System Module page, enter a name such as
myDiagnosticModule1, for example, and optionally enter its description in the
Description box. Click OK.

 5. You’ll get a “Module Created Successfully” message and will be taken back to the
Summary Of Diagnostic Modules page. Click the new module’s name, which is
myDiagnosticModule1 in this example.

 6. In the Settings For myDiagnosticModule1 page, you can select the following options from
the tabs at the top of the page:

 � Collected Metrics (for the Harvester)

 � Watches and Notifications

 � Instrumentation

 7. Once you finish configuring some or all of the three WLDF components named here (the
following sections in this chapter explain how to configure each of these components),
click Save.

 8. Click Targets to select the Managed Servers or clusters where you’d like to deploy your
new diagnostic system module. Click Save.

 9. Click the Activate Changes button in the Change Center of the Console.

Managing a Diagnostic System Module
You can target only one diagnostic module to a server or cluster, although you can create multiple
diagnostic system modules to use at different times. You can then choose which module you want
to target to a server or cluster at a specific time. You can target the same module to multiple
servers or clusters.

Using Built-In Diagnostic System Modules
In Oracle WebLogic Server 12c, you have the option of using a set of built-in diagnostic system
modules for performing basic health and performance monitoring. The built-in WLDF diagnostic
system modules collect data from runtime MBeans that monitor the server components, such as
JVM, JDBC, JMS, WebLogic Server run time, and store the data in the Diagnostic Archive.

280 Oracle WebLogic Server 12c Administration Handbook

A built-in diagnostic system module is enabled, by default, in each server instance in
WebLogic domains configured to run in production mode. The built-in diagnostic system
modules are disabled, by default, in domains running in development mode. You can enable or
disable these modules dynamically, using either the WebLogic Server Administration Console or
WLST.

You can clone and customize the built-in diagnostic system modules to fit your needs, say by
removing or adding individual metrics. These modules come with a set of nonactivated watches
and notifications. You can either activate these watches and notifications as they are, or customize
them. You can access the data collected by the built-in diagnostic system modules using the
Metrics Log table in the Administration Console or the Monitoring Dashboard, as well as through
JMX or WLST.

There are three built-in diagnostic system module types:

 � Low Captures the most important data from key WebLogic Server runtime MBeans
(enabled by default in production mode).

 � Medium Captures additional attributes from the WebLogic Server runtime MBeans
captured by Low, as well as data from additional runtime MBeans.

 � High Captures more verbose data from attributes on the WebLogic Server runtime MBeans
than that captured by Medium, and also includes data from additional runtime MBeans.

You can configure a built-in diagnostic system module through the Administration Console by
following these steps:

 1. On the Administration Console home page, select Built-In Diagnostic Modules in the
Diagnostics area.

 2. On the Summary Of Built-in Diagnostic Modules page, select the server for which you
want to configure the built-in diagnostics module.

 3. In the Settings For <server_name> page, select the built-in diagnostic system module type
you want to configure: Low, Medium, or High.

Once you select a built-in diagnostic system module for a server instance, it is automatically
activated and begins collecting the data in the Diagnostic Archive. You can deactivate the module
on the Summary Of Built-in Diagnostic Modules page by setting it to None.

Targeting Multiple Diagnostic Modules to a Server/Cluster
In earlier releases of WebLogic Server, you could target only a single diagnostic system module to
a server or cluster. You couldn’t have two files in the DOMAIN_HOME/config/diagnostics
directory with an identical target server or cluster. In Oracle WebLogic Server 12c, you can target
multiple diagnostic system modules to a server or cluster instance.

Configuring Metric Collection
Server MBeans such as the ServerRuntimeMBean contain metrics that are helpful in monitoring
system performance. Metrics are various simple types of attributes of the server MBeans that
the Harvester component of WLDF can collect at a sampling rate that you specify. To “harvest”
the metric data, you must configure the harvestable data first. When you start the WebLogic
Server instance, the server instantiates all runtime MBean types and thus becomes eligible for
the harvesting or collecting of metrics. You can configure the Harvester for collecting server

Chapter 6: Monitoring and Troubleshooting WebLogic Server 281

metrics through the Administration Console, WLST, or JMX. You can configure metric
harvesting to capture some or all of the harvestable attributes of a named MBean type. For
example, if you want to track the number of JDBC connections, you can do so by configuring
the Harvester to collect the metrics for the ActiveConnectionsCurrentCount attribute of the
JDBCDataSourceRuntimeMBean. You can also configure harvesting for all or some instances
of the specified entity type.

Before you can configure the Harvester, first create a diagnostic system module, as shown
earlier in this chapter, for holding the Harvester configuration. Make sure you also target the
system module to the server you want to monitor.

NOTE
You can create metrics to monitor all or some attributes of an MBean
type, and you can also monitor specific instances or all instances of an
MBean type.

Configuring metric collection really means that you must specify which MBeans and
which attributes of the MBeans you wish to monitor. Each server metric is based on an
attribute value of the MBeans you select. You can configure metric collection through the
WLDF Harvester component. As explained earlier, you must first configure a diagnostic system
module before configuring the metric collection. Once you create (or select) a previously
created module, on the Settings For <module_name> page, select Configuration | Collected
Metrics. Here, you can specify the MBeans you want to monitor and specify the individual
attributes of the MBeans.

For the MBean server location, Oracle recommends that you select the ServerRuntime MBean
server rather than the DomainRuntime MBean server, which is the other available option. You can
choose to collect metrics for all or some of the metrics, and you can create new metrics as well.
You can enable or disable metric collection for an individual metric.

To collect metrics, you must configure the Harvester inside a diagnostic module. The
following example shows part of the Harvester configuration elements in the myWLDF.xml file.
Note that this configuration harvests metrics from two different runtime MBeans.

<wldf-resource>
<name>myWLDF</name>
 <harvester>
 <enabled>true</enabled>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime
 </harvested-attribute>
 </harvested-type>
 </harvester>
<!-- ----- Other elements ----- -->
</wldf-resource>

282 Oracle WebLogic Server 12c Administration Handbook

Following is a brief explanation of the key elements you need to configure for the Harvester:

 � <sample-period> Sets the sample period for the Harvester, in milliseconds.

 � <harvested-type> You can include one more of these elements to specify the type
of data to harvest, with each element specifying an MBean type. In our example,
metrics are harvested from two runtime MBeans; the ServerRuntimeMBean and the
WLDFHarvesterRuntimeMBean.

 � <harvested-instance> An optional element, you specify this to limit metric harvesting to
a specific instance of a specific type. You can specify the instance by using its JMX object
name in JMX canonical form or by using pattern matching. An MBean server interacts
with all MBeans registered with the server by using the MBean object names. Once an
MBean is registered with an MBean server, the object name is passed to all MBean server
methods pertaining to this MBean. An object name consists of a domain name and the
key property list in key=value format. For example, a LogMBean at the domain level
manages the domain-wide log, and the LogMBean at the server level manages a server
message log. You can indicate scope by specifying the instance of a specific type in the
MBean’s object name, as shown here:

Medrec: Name=MedRecServer, Type=Log, Server=MedRecServer

If you don’t specify an instance, all instances of the specific type will be harvested.

 � <harvested-attribute> An optional element that specifies that the server must collect
metrics only for certain attributes of the specified type.

Configuring WLDF Instrumentation
You can use the WLDF Instrumentation component to insert a diagnostic code into both the server
instances and the applications you deploy. Application-scoped instrumentation lets you configure
instrumentation at the server level and within the applications you deploy.

The concept of instrumentation is analogous to aspect-oriented programming, which allows
generating additional byte code into the application. The term instrumentation is often used to
refer to the addition of code that uses System.out.println to help diagnose functional problems.
For performance, System.out.printIn is often paired with timing code that takes the
currentTimeMillis method both before and after an operation is completed and prints out the time
to complete the operation. The WLDF Instrumentation component allows an administrator to
integrate such timings into the code without having to go back to the development team and
request that they incorporate the instrumentation in their code. It’s a powerful tool for dynamically
adding code that can quickly help evaluate various issues.

WLDF Instrumentation includes three major features—diagnostic context, diagnostic
monitors, and diagnostic actions—and they are described in the following sections.

Diagnostic Context
The diagnostic context lets you control when a monitor triggers a diagnostic action. The context is
information pertinent to a specific request, such as the IP address or user from where the request
originates. The context identifier correlates a request through its entire journey. That is to say that
the diagnostic context correlates the events generated by a request that starts in a servlet as a web
service, uses multiple EJBs, and queues a JMS message, for example.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 283

Diagnostic Monitors
Diagnostic monitors are the actual diagnostic code that you insert into an application or the
server instance at specific locations. The definition of a monitor can have a server-wide scope or
an application scope. When defining a monitor, you must describe both where you want the code
to be injected and what you want that code to do. The following terms are derived from aspect-
oriented programming and are how you can describe a specific location in the code:

 � Join point This is a specific location within a class, such as the entry or exit point of a
method.

 � Pointcut Specifies a set of join points (locations in the code) that generally describe
a particular class of work. The join points are generally described in terms of a method
signature pattern, which may include wild cards.

 � Diagnostic location Given that a pointcut defines a method signature, the diagnostic
location tells the framework whether the code injection is to take place before, after, or
around a particular invocation.

There are three types of diagnostic monitors: standard, delegating, and custom. You can use a
standard or delegating monitor at the server or application level, but you can only use the custom
monitors for application-level instrumentation. Here’s a brief explanation of the three types of
diagnostic monitors:

 � Standard There are two built-in monitors that have predefined behavior and that can
only be enabled or disabled. DyeInjection is the only server-scoped standard diagnostic
monitor, and HttpSessionDebug is the only application-scoped standard diagnostic
monitor.

 � Delegating These monitors come preconfigured with their scope and locations, but they
require that you specify the action that the monitor will perform. Some interesting code
locations where actions can be inserted include getting a JDBC connection from a pool,
executing an SQL statement, invoking an EJB, or queuing a JMS message. The full set of
delegating monitors along with the actions they can perform are documented with the
product as part of the WLDF Instrumentation Library.

 � Custom These monitors allow you to leverage the full power of the WLDF
instrumentation capabilities in your own application code. They are the most flexible
type of monitors and allow you to define all aspects of instrumentation.

Diagnostic Actions
For each delegating or custom monitor, you must associate an appropriate diagnostic action. A
diagnostic action refers to the specific action that a diagnostic monitor will take when the server
triggers a diagnostic monitor. Here are some examples of diagnostic actions that you can attach to
a delegating or custom monitor:

 � TraceElapsedTimeAction Generates events before and after the execution of an
associated join point and computes the elapsed time. This allows you to time specific
container or application code without modifying the code itself.

 � TraceMemoryAllocationAction Similar to TraceElapsedTimeAction, traces the number
of bytes allocated by a thread during a method call.

284 Oracle WebLogic Server 12c Administration Handbook

 � StackDumpAction Generates an instrumentation event at the affected location to
capture a stack dump. This action is useful when trying to track down the context in
which a particular code path is being executed. Imagine a case in which you know
that a particular routine is being invoked, but you can’t determine the circumstances
in which that is happening. Defining a custom monitor in your application and
associating it with a StackDumpAction would allow you to obtain this information
without modifying your application code to introduce a print stack trace into the
code.

A monitor can be classified into one of three types, depending on when it can be called: a
before monitor is triggered before the application code is called; an after monitor fires after the
application code is called; and an around monitor is triggered both before and after the
application code is called. You can, for example, create a monitor named Servlet_Around_Service
and associate it with the diagnostic action TraceElapsedTimeAction. You can also specify a
diagnostic location with the <location-type> element, with two “around” locations—before and
after. The diagnostic actions will be TraceElapsedTimeAction-Before and TraceElapsedTimeAction-
After for those diagnostic monitors.

Configuration Files
You can configure instrumentation at the server or application level, or at both levels
simultaneously. A system-level configuration file is stored in the <domain_name>\config\
diagnostics directory within a diagnostic descriptor file (DIAG_MODULE.xml). For each file, you
choose the diagnostic monitor to use and the diagnostic actions you want to associate with that
monitor. You can create multiple DIAG_MODULE.xml files, but you must deploy just one of these
files at any given time. Because you can dynamically add and remove monitors as well as enable
and disable them, you gain flexibility by configuring multiple DIAG_MODULE.xml files to meet
different monitoring needs. The <instrumentation> element in the server diagnostic module
(DIAG_MODULE.xml file) contains the instrumentation configuration, within the parent element
<wldf-resource>, as shown here:

<wldf-resource>
 <name>MyDiagnosticModule1</name>
 <instrumentation>
 <enabled>true</enabled>
…
 <instrumentation>
</wldf-resource>

You include an application-level instrumentation configuration in an application’s
archive, inside the weblogic-diagnostics.xml file, located under the META-INF directory.
Make sure that you enable server-level instrumentation first, because you can’t instrument
application-level instrumentation without enabling instrumentation at the server level. You
configure application-level instrumentation using the same <instrumentation> element and
the <wldf-instrumentation-monitor> subelement within the weblogic-diagnostics.xml
descriptor file. The <instrumentation> module will be identical to that shown for a server-
level instrumentation. You can update the configuration of application-level modules through
the Administration Console, and you can dynamically update the configuration by using a
deployment plan.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 285

NOTE
You must enable instrumentation at the server level before you can
enable it at the application level.

Creating Request Performance Data
Once you configure a server or application-scoped instrumentation, you can view the
performance data captured by the Instrumentation component on the Request Performance page
in the Administration Console. Make sure that you create and configure a WLDF system resource
and target it to the server first. You can use either the Console or WLST commands to do this. You
must also enable the Instrumentation component. In addition, an application instrumentation
descriptor must use the TraceElapsedTimeAction diagnostic action attached to an Around type
diagnostic monitor, as shown here:

<instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>Connector_Around_Inbound</name>
 <action>TraceElapsedTimeAction</action>
 </wldf-instrumentation-monitor>
</instrumentation>

You can make instrumentation changes to a deployed application if you enable the “hot swap”
feature before deploying the application and if you use a deployment plan. If you haven’t enabled hot
swap or if you aren’t using a deployment plan, you must redeploy the newly instrumented application.

Configuring System-Level Instrumentation
You can configure system-level instrumentation for a WebLogic Server instance through the
Administration Console. The first step is to configure a system-level diagnostic module, as
explained earlier in this chapter. Once you have done so, you’re ready to configure instrumentation.
The next two sections outline the steps you must follow to configure system-level instrumentation.

Adding a Diagnostic Monitor Once you have a diagnostic system module ready, you need to
add a diagnostic monitor to that module. When the server invokes a certain location in the server
or application code, the diagnostic monitor will execute specific diagnostic actions that you
configure. Here are the steps for adding a diagnostic monitor to a diagnostic module:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Go to Diagnostics | Diagnostic Modules.

 3. Choose the module in the Summary Of Diagnostic Modules page.

 4. Select Configuration | Instrumentation in the Settings For <module_name> page.

 5. Add a diagnostic monitor by clicking the Add/Remove button.

 6. Select one or more of the predefined diagnostic monitors from the Available list, and
select the attributes for the monitors by the moving them to the Chosen list. Click OK.

 7. Click Activate Changes in the Change Center of the Console.

You have the diagnostic monitor now, but you need to configure it, as the next section explains.

286 Oracle WebLogic Server 12c Administration Handbook

Configuring a Diagnostic Monitor This section shows you how to configure system-scoped
instrumentation in a diagnostic system module. Here are the steps:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Go to Diagnostics | Diagnostic Modules.

 3. Click the name of the diagnostic module in the Summary Of Diagnostic Modules page.

 4. Select Configuration | Instrumentation in the Settings For <module_name> page.

 5. Click the name of the diagnostic monitor you wish to configure from under the
Diagnostic Monitors heading in this module section.

 6. Use the Settings For <diagnostic monitor> page to configure system-level instrumentation.
Note that you can add just the predefined diagnostic monitors with their predefined
actions for system-level instrumentation. To instrument applications, use the Deployments
| <application> | Settings for <app_modulename> | Configuration | Instrumentation
instead. Here, you can create a custom diagnostic monitor or just use a predefined
monitor. Here are the configuration options for both system- and application-level
diagnostic monitors:

 � Enabled Enables instrumentation for this diagnostic module.

 � Name Name of the diagnostic module.

 � Type You can specify a standard or delegating diagnostic monitor. Note that
application-level instrumentation can’t specify a standard diagnostic monitor.

 � Actions Specifies the diagnostic action for this monitor, such as ThreadDumpAction
and TraceAction, for example. Again, standard monitors have actions, but they’re
fixed. You can only specify diagnostic actions for delegating and custom diagnostic
monitors.

 7. Click Save and then click Activate Changes in the Console.

Configuring a DyeInjection Diagnostic Monitor
One of the challenges with using the diagnostics framework on a loaded production system is
dealing with the sheer volume of data that is generated. DyeInjection is one of the key tools that
WLDF provides for classifying and filtering this mass of diagnostic data. The key idea behind this
is to reduce the volume of diagnostic data to a manageable amount, making it easier to classify
and correlate the data. The Instrumentation component of WLDF lets you follow request
processing as the request flows through the system. A diagnostic context lets you uniquely identify
a request by attaching a diagnostic context to a request using request characteristics such as the
username or the IP address from which the request originates. You configure a DyeInjection
monitor to manage a diagnostic context. The diagnostic context is simple: it consists of a unique
context ID and a 64-bit dye vector. The unique context ID lets you determine the specific events
and log entries for a request as the request vends its way through the system. The dye vector
contains flags that help identify the diagnostic context of the request. Let’s say a client makes an
HTTP request. As soon as the HTTP request enters the system, the server tags (dyes) the request
with diagnostic context and maintains that context through the entire lifecycle of the request,
regardless of thread boundaries.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 287

Although the context ID uniquely identifies a request, it’s the 64-bit dye vector that lets you
capture the request’s attributes. Each of the bits in a dye vector is a flag (dye flag) that can be
either set or unset to indicate the presence or absence of a specific request attribute. Each dye flag
is set if the diagnostic context for a request of the attribute is present—otherwise, that dye flag
isn’t set. You configure a DyeInjection monitor by assigning specific values to each of the dyes in
the 64-bit dye vector. Any dyes you don’t explicitly assign values to will simply remain unset, with
the exception of the PROTOCOL dye flags. For example, you must assign values for dye flags such
as USERn and ADDRn, but the server will automatically inject the appropriate protocol dye for
flags such as PROTOCOL_HTTP, PROTOCOL_SSL, or PROTOCOL_T3. For example, the server
injects all requests that use the SSL protocol with the PROTOCOL_SSL dye. Here are some of the
important dye flags that the DyeInjection monitor supports:

 � ADDR1, ADDR2, ADDR3, ADDR4 Specify the IP address of clients making requests.

 � USER1, USER2, USER3, USER4 Specify the usernames of clients making requests to the
server.

 � THROTTLE A special dye that determines how often the server dyes a request. The
THROTTLE dye is set in a diagnostic context if the DyeInjection monitor’s THROTTLE_
INTERVAL and/or the THROTTLE_RATE properties are satisfied.

Let’s say you configure the dye flag ADDR1 to represent the originating client IP address of
127.0.0.1 and the flag USER2 to reflect the user admin@mycompany.com. When the admin user
from mycompany.com sends a request from the IP address 127.0.0.1, the dye vector for this
request will have the USER2 and ADDR1 flags set. The USER1, USER3, USER4, ADDR2, ADDR3,
and ADDR4 flags will remain unset. The same goes for the rest of the dye flags.

To create a diagnostic context for requests, you must configure and enable a DyeInjection
monitor. To configure a DyeInjection monitor, you follow the same procedures shown earlier for
configuring a diagnostic monitor. That is, you must first create a diagnostic system module and then
enable instrumentation for that module. When you enable instrumentation in a diagnostic system
module, the DyeInjection monitor is automatically enabled and it creates a diagnostic context for all
requests made to the server. Create a new diagnostic monitor and follow the steps listed earlier in
this chapter for configuring a diagnostic monitor. Once you enable your new DyeInjection monitor,
specify the attributes you want to capture in the diagnostic context by specifying values for the
various dye flags. For each dye, you must specify a name/value pair, such as the one shown here:

ADDR1=127.0.0.1
USER2=admin@mycompany.com

NOTE
If you disable the DyeInjection monitor, the server will not create a
diagnostic context for an incoming request.

If you don’t set any properties for the DyeInjection monitor, it will contain the unique context
ID and the dye vector will have a dye flag set for one of the implicit PROTOCOL dyes.

TIP
You can enable only one DyeInjection monitor at any time for a
diagnostic system module.

288 Oracle WebLogic Server 12c Administration Handbook

Once you configure the DyeInjection monitor, the DIAG_MODULE.xml file will show the
following:

<instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <enabled>true</enabled>
 <dye-mask xsi:nil="true"></dye-mask>
 <properties>ADDR1=127.0.0.1
 USER2=admin@mycompany</properties>
 </wldf-instrumentation-monitor>
</instrumentation>

When you enable instrumentation in a diagnostic module, the server turns on all diagnostic
monitors, including the DyeInjection monitor (unless you’ve disabled the monitor individually).
The DyeInjection monitor creates a diagnostic context for each request to the server as soon as
the request enters the system. You can disable the creation of the diagnostic contexts by disabling
the DyeInjection monitor.

Restricting the Triggering of Monitoring
WebLogic Server lets you configure dye filtering to restrict the automatic triggering of a delegating
or custom diagnostic system monitor. The way you do this is by specifying a dye mask for a
delegating monitor to specify a selection for dyes from the DyeInjection monitor. This means that
you must first create and enable a DyeInjection monitor in order for a custom or delegating
monitor to use dye filtering. Dye filtering enables delegating and custom monitors to inspect the
dyes injected into the diagnostic context by the DyeInjection monitor and execute diagnostic
actions only when the dye vector matches the dye mask. This lets the server proceed with
diagnostic actions only for the specific requests that you configure.

You configure dye filtering when you create a custom or delegated diagnostic system monitor
or at any time later on. Simply select the diagnostic monitor for which you want to restrict the
triggering of monitoring. Check the Enable Dye Filtering check box in the Dye Mask section to
turn on dye filtering. Once you do this, select the dye masks from the table.

TIP
You can’t add dye filtering to a DyeInjection monitor.

Here’s a typical server-scoped instrumentation configuration, described in the DIAG_
MODULE.xml file that shows a DyeInjection monitor and a custom monitor named Connector_
Before_Work, which uses dye filtering:

<wldf-resource>
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <description>Inject USER2 and ADDR2 dyes</description>
 <enabled>true</enabled>
 <properties>USER2=weblogic

Chapter 6: Monitoring and Troubleshooting WebLogic Server 289

 ADDR1=127.0.0.1</properties>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Connector_Before_Work</name>
 <enabled>true</enabled>
 <action>TraceAction</action>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <dye-mask>USER2</dye-mask>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

Thus far, you’ve been looking at server-scoped diagnostic monitors. Configuring an
application-scoped diagnostic monitor is similar. You define the application-scoped monitors in
the weblogic-diagnostic.xml file, and a chunk of that file is shown here:

<wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <enabled>true</enabled>
 <properties>ADDR2=127.0.0.1 USER2=admin@mycompany.com</properties>
</wldf-instrumentation-monitor>
<wldf-instrumentation-monitor>
 <name>Servlet_Around_Service</name>
 <dye-mask>ADDR2 USER2</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceElapsedTimeAction</action>
</wldf-instrumentation-monitor>

The WLDF monitor library provides the Servlet_Before_Service and the Servlet_Around_Service
diagnostic monitors.

Controlling the Volume of Instrumented Events
You can configure the special dye THROTTLE to limit the number of requests a single diagnostic
monitor can process. You can configure the THROTTLE dye by setting the following two
properties:

 � Throttle Interval Specifies the time (in milliseconds) that the DyeInjection monitor must
wait before it dyes a new request with THROTTLE. If you set the THROTTLE_INTERVAL to
0, the monitor won’t dye any requests with THROTTLE.

 � Throttle Rate Specifies the frequency with which the DyeInjection monitor dyes new
requests with the THROTTLE dye. If you set the Throttle Rate to 10, every tenth request
will be dyed with the THROTTLE dye.

Note that you need to assign a positive value to only one of the two throttle properties, in
order for the server to dye a request with the THROTTLE dye.

NOTE
Dye masks and dye filtering enable you to specify which requests the
server can pass to the delegating and custom diagnostic monitors.

290 Oracle WebLogic Server 12c Administration Handbook

Configuring Watches and Notifications
Because you need to configure the Watch and Notification component of WLDF through a
diagnostic system module, you must first create a new diagnostic system module. If you already
have a diagnostic system module, you can also use that module to configure the Watch and
Notification component.

A watch is any event that you want to monitor by analyzing the logs, data events, and metrics
of a running server. You can specify watch rules in the form of alarm settings or expressions to let
the server know which event or situation should trigger a notification. A notification is the action
the server must take when a watch rule expression comes true or the server reaches the threshold
of an alarm setting. The server can send notifications through e-mails (SMTP), through JMX, JMS,
or SNMP, or through diagnostic images. You configure watches and notifications separately, but
you must associate a watch with a notification in order for the server to react to a critical
diagnostic event by, say, sending the WebLogic Server administrator e-mails when the server
crashes. Watches and notifications offer great flexibility since you can associate a watch with
multiple notifications and a single notification with multiple watches.

To set up any type of notification, such as a JMS notification, you must first create one or more
watch rules. Watch rules are logical expressions that you specify with the WLDF query language.
Each watch rule specifies an event that the watch must detect. For example, here’s a watch rule
for a log watch (one of the watch types) that detects all server messages with the severity level
Critical and a specified message ID:

(SEVERITY = 'Critical') AND (MSGID = 'BEA-149618')

The Watch and Notification system can monitor quite a few events in a running server:

 � Log watches trigger notifications when they spot a specific message, severity level, or
string in the logs.

 � Instrumentation watches, also called event watches, trigger notifications when an
Instrumentation service generates a specific event.

 � Harvester watches trigger a notification when a watch rule identifies a performance issue,
such as memory usage beyond a specified threshold.

In order to configure a Watch and Notification system, you must specify settings for both
watches and notifications in the DIAG_MODULE.xml file, which is the WLDF system resource
descriptor file. Note that regardless of which WLDF component you’re using, such as the
Harvester, Instrumentation, or Watch and Notification, you must specify it with the <wldf-
resource> element. Under the <wldf-resource> element, the base element will be the
<watch-notification> element if you’re configuring watches and notifications. You define each
watch within a <watch> element. Note that each <watch> element is followed by one or more
notifications within the appropriately named element, such as <jmx-notification> for JMX
notifications and <image-notification> for image watches. The following example shows the
structure of the DIAG_MODULE.xml file configured with watches and notifications:

<wldf-resource>
 <watch-notification>
 <watch>
 <!-- A watch rule -->
 </watch>

Chapter 6: Monitoring and Troubleshooting WebLogic Server 291

 <watch>
 <!-- A watch rule -->
 </watch>
 <snmp-notification>
 </snmp-notification>
 <image-notification>
 </image-notification>
 </watch-notification>
</wldf-resource>

Configuring Notifications
Following are the five types of diagnostic notifications that you can configure with a watch. When
a watch rule evaluates to true, the server will trigger the notification. Note that the first four
notification types are based on the delivery mode (that is, SMTP, JMX, JMS, or SNMP).

 � SMTP notifications These are e-mail messages that the server sends when an associated
watch is triggered. You must first configure an SMTP mail session, as shown in Chapter 4,
before using an SMTP notification. In the DIAG_MODULE.xml file, the SMTP mail
session you’ve configured will use the <mail-session-jndi-name> element. You can specify
the appropriate values for the <subject>, <body>, and <recipients> subelements. Of
these three, only the subelement <recipients> is mandatory—you must provide at least
one e-mail recipient’s name for receiving the SMTP notification e-mail message.

 � JMX notifications WLDF issues a JMX notification when an associated watch rule
evaluates to true. The element <jmx-notification> identifies this type of notification.

 � JMS notifications The server posts the messages to the JMS queue or topic you specify
in the <destination-jndi-name> element. You must also specify the connection factory
with the <connection-factory-jndi-name> element. The base element of a JMS notification
is <jms-notification>.

 � SNMP notifications The server posts SNMP traps when an SNMP notification is triggered.
To use an SNMP notification, you must first configure SNMP. Specifying an SNMP
notification is easy—all you have to do is provide a notification name, as shown here:

<watch-notification>
 <watch>
 </watch>
 <snmp-notification>
 <name>mySNMPNotif</name>
 </snmp-notification>
</watch-notification>

 � Image notifications An image notification lets you create a Diagnostic Image Capture,
which is a snapshot of the system state, in response to an event or error. Since a
Diagnostic Image Capture automatically includes the JRockit Flight Recording (JFR) file, it
is particularly effective in diagnosing fluctuations in application and server performance,
as well as occasional errors.

You can enable each individual watch and notification that you configure. You may also turn
all watches and notifications on and off. By default, the watches and notifications that you

292 Oracle WebLogic Server 12c Administration Handbook

configure and target to a server are enabled and thus will have the <enabled>true</enabled>
value in the DIAG_MODULE.xml file.

Configuring Watches
You can configure three types of watches: harvester, log, and instrumentation watches. The
harvester and log watches trigger notifications based on real-time server events, whereas the
instrumentation watches wait for the harvest cycle to complete before triggering notifications.
Harvester watches harvest monitoring information from the runtime MBean server, whereas log
watches monitor the server log messages. The third watch type, instrumentation watches, monitor
the events generated by the WLDF Instrumentation component.

Note that you can enable and disable watches at the individual or global watch level. If you
disable watches at the global level, this overrides the settings for individual watches so the server
disables all watches.

You configure each of the three types of watches in a similar fashion by setting the following
configuration options:

 � Severity options By default, a watch is set to a severity level of Notice when it triggers
a notification. You can set the severity value to be passed to a notification by using the
subelement <severity> when configuring a watch.

 � Notifications When a watch condition becomes true, the watch triggers a notification.
You specify the notifications in the <notification> element. The preceding section of this
chapter, “Configuring Notifications,” offers details about the various configuration options
for notifications.

 � Watch rule expression You specify the events the watch must trap by defining a watch
rule expression inside the <rule-expression> element. You use the WLDF query language
to specify a logical expression that specifies when this watch must trigger a notification.
Here’s a log event watch rule that looks for server messages with the severity level Critical
and ID BEA-149618:

(SEVERITY = 'Critical') AND (MSGID = 'BEA-149618')

A watch rule can monitor harvestable runtime MBeans and trigger notifications when
a runtime MBean attribute shows a performance issue such as high memory usage, for
example. Watch rules can also monitor the messages logged to the server log, as well as
events generated by the WLDF Instrumentation component.

 � Alarm options You can specify whether a watch triggers a notification just once or
multiple times using the <alarm-type> element. If you set the value of the <alarm-type>
element to its default value of None, the watch will trigger a notification whenever it’s
possible to do so. Specify the value ManualReset if you want the watch to fire only once.
You can also specify the value AutomaticReset to configure multiple notification triggers.

Creating a Watch You can create a watch through the Administration Console, but first you
must create a diagnostic system module as described earlier in the chapter. Follow these steps to
create a watch:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Go to Diagnostics | Diagnostic Modules and click the name of the system module.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 293

 3. Select Configuration | Watches and Notifications | Watches and click New.

 4. On the Create Watch page, name the watch you’re configuring. Select a watch type from
the Watch Type list. Select Collected Metrics to set a harvester watch, Server Log to set a
log watch, and Event Data to set an instrumentation watch.

 5. You can enable the watch at this point by selecting the Enable Watch box. (You can also
disable the watch from here later.) Click Next.

 6. Construct a watch rule. Click Add Expressions to create an expression or click Edit and
manually enter the watch rule. Click Next when done.

 7. Select an alarm option on the Create Watch page. The alarm option you set determines
when the server reevaluates a watch expression after it evaluates to true the first time.
You can specify Don’t Use An Alarm, for example, if you want the server to continue to
evaluate the watch expression automatically. Click Next.

 8. You can assign one or more notifications for your new watch by moving the notifications
from the Available list to the Chosen list. The “Configuring Notifications” section earlier
in this chapter shows how to configure notifications.

 9. Click Finish and activate the watch configuration by clicking Activate Changes in the
Console.

Watch Examples Here are simple examples that show the configuration of different types of
watches. Here’s a typical log watch:

<watch>
 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>
 <severity>Info</severity>
 <notification>myMailNotif1</notification>
</watch>

And here’s an example that shows how to configure an instrumentation watch:

<watch-notification>
 <watch>
 <name>myInstWatch</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (PAYLOAD > 100000000) AND (MONITOR = 'Servlet_Around_Service')
 </rule-expression>
 <alarm-type xsi:nil="true"></alarm-type>
 <notification>mySMTPNotification</notification>
 </watch>
 <smtp-notification>
 …
 </smtp-notification>
</watch-notification>

294 Oracle WebLogic Server 12c Administration Handbook

Here’s an example that shows a watch that monitors stuck threads and triggers a notification:

<August 13, 2013 7:55 AM > <Notice> <Diagnostics> <BEA-320068> <Watch
'StuckThread' with severity 'Notice' on server 'AdminServer' has triggered at
 June 26, 2011 7:55 AM. Notification details:
WatchRuleType: Log
WatchRule: (SEVERITY = 'Error') AND ((MSGID = 'WL-000337') OR (MSGID = 'BEA-
000337'))
WatchData: DATE = August 13, 2013 7:55 AM SERVER = AdminServer MESSAGE = [STUCK]
 ExecuteThread: '1' for queue: 'weblogic.kernel.Default (self-tuning)' has been
 busy for "600" seconds working on the request
"weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl@121008b4", which is more
than the configured time (StuckThreadMaxTime) of "600" seconds. Stack trace:
Thread-23 "[STUCK] ExecuteThread: '1' for queue: 'weblogic.kernel.Default (self-
tuning)'" <alive, in native, suspended, priority=1, DAEMON> {

Accessing the WLDF Diagnostic Data
Thus far, you’ve seen how to configure the collection of various types of diagnostic data using
WLDF components. How do you access all this data? Fortunately, WLDF stores data on a per-
server basis and offers the Data Accessor component to provide access to those data stores.
The Data Accessor component helps you access diagnostic data (metrics) from harvesters that
you configure as well other server log and event records. You can use the WLDF query
language to query the Diagnostic Archive through a JMX accessor interface. The Data Accessor
can retrieve data from data store types such as HTTP_LOG, SERVER_LOG, EVENTS_DATA_ARCHIVE,
and HARVESTED_DATA_ARCHIVE. The Administration Console displays the collected data in
the Summary Of Log Files page. You can programmatically access the data through the WLDF
AccessRuntimeMBean. However, WLST offers commands that let you easily access diagnostic
data, both offline and online. Following are some of the WLST diagnostic commands you
can use:

 � exportDiagnosticData This is a WLST offline command that lets you capture a specific
log file’s contents to an XML file:

wls:/offline> exportDiagnosticData(logicalName='ServerLog', logName='myserver.
log', exportFileName='myExport.xml')

Input parameters: {logicalName='ServerLog', logName='myserver.log',
logRotationDir='.', storeDir='../data/store/diagnostics', query='',
exportFileName='myExport.xml', elfFields='', beginTimestamp=0L,
endTimestamp=9223372036854775807L}
Exporting diagnostic data to myExport.xml ...
< August 13, 2013 9:23:44 PM EDT> <Info> <Store> <BEA-280008>
<Opening the persistent file store "WLS_DIAGNOSTICS" for recovery:
directory=C:\Oracle\Middleware\Oracle_Home\wlserver\common\data\store\
diagnostics requestedWritePolicy="Disabled" fileLockingEnabled=true
driver="wlfileio3".>
< August 13, 2013 9:23:44 PM EDT> <Info> <Store> <BEA-280009>
<The persistent file store "WLS_DIAGNOSTICS" (83d8fc7e-f122-4383-aef8-
d9bd15b189ce) has been opened:blockSize=512 actualWritePolicy="Disabled(single-
handle-non-direct)" explicitIOEnforced=false records=0.>
Exported diagnostic data successfully.
wls:/offline>

Chapter 6: Monitoring and Troubleshooting WebLogic Server 295

 � exportDiagnosticDataFromServer This is an online command that lets you retrieve
exported WLDF data and save it to an XML file, as shown in this example:

wls:/medrec-spring/serverRuntime>
exportDiagnosticDataFromServer(logicalName="HTTPAccessLog",
 exportFileName="myExport.xml")
Connecting to http://MIROPC61:7011 with userid weblogic ...
Exported diagnostic data to myExport.xml
wls:/medrec-spring/serverRuntime>

 � saveDiagnosticImageCaptureFile This is an online command that lets you download a
specific diagnostic image capture, as shown here:

wls:/medrec-spring/serverRuntime> images=getAvailableCapturedImages()
Connecting to http://localhost:7011 with userid weblogic ...
wls:/medrec-spring/serverRuntime> saveDiagnosticImageCaptureFile(images[0])
Retrieving diagnostic_image_MedRecServer_2013_08_15_21_43_56.zip to local path
 diagnostic_image_MedRecServer_2013_08_15_21_43_56.zip
Connecting to http://localhost:7011 with userid weblogic ...
wls:/medrec-spring/serverRuntime>

In addition to the WLST commands shown here, in Oracle WebLogic Server 12c, WLDF
has added the following WLST commands:

 � listSystemResourceControls() Lists all available diagnostic system modules.

 � enableSystemResource() Activates a diagnostic system module.

 � disableSystemResource() Deactivates a diagnostic system module.

 � createSystemResourceControl() Creates a diagnostic system module on-the-fly using a
specified descriptor file.

 � destroySystemResourceControl() Destroys a diagnostics system module previously
created on-the-fly.

 � dumpDiagnosticData() Dumps the diagnostics data from a harvester to a local file.

Monitoring WebLogic Server Instances
Monitoring a WebLogic server production instance involves much more than the monitoring of a
server’s run-time events. To manage your deployed applications effectively, you must monitor all
the following: the server, the JVM, the JDBC connection pool, the connectors (to EIS systems),
JMS, JTA, the network channels, and the EJBs. You can use the Administration Console as well as
WLST commands that interrogate various runtime MBeans to perform your monitoring tasks. The
following sections introduce you to the various WebLogic Server monitoring techniques.

Monitoring with the Administration Console
Thus far in this book, you’ve learned how to use the Administration Console to configure various
aspects of a WebLogic Server environment. For a WebLogic Server administrator, the console is
equally indispensable for monitoring running server instances, including the various subsystems
such as security, JTA, and JDBC. Let’s quickly review the most important server monitoring
features that you can access through the Administration Console.

296 Oracle WebLogic Server 12c Administration Handbook

To access the main monitoring page for a domain, go to Environment | Servers and click the
Admin Server link. In the Settings For <server_name> page, click the Monitoring tab. The main
Monitoring page shows the general runtime information for the server, such as WebLogic Home,
Java Version, and OS Version. It also provides a table that shows all the services such as the JDBC
and JMS services that are running on this server. You can monitor all aspects of a running server
instance by clicking the various subtabs on this page, such as JDBC, JMS, JTA, SAF, and so on, to
drill down to the individual services. Following is a brief explanation of the key pages you can
reach from the main monitoring page.

Threads
The Threads page shows the thread activity, including the status of the thread pool, the execute
queue backlog, the throughput of requests, and details for individual threads. Figure 6-3 shows the
Threads page. There are two tables on this page: the first table shows a summary of the Self-Tuning
Thread Pool (there’s only one of these per server), including the number of total execute threads
and the active execute threads. In Figure 6-3, the execute Queue Length is 0, meaning there are
no waiting requests because this is a test server—on a production server, you may not find this to
be true! You can also check the Completed Request Count and the Pending User Request Count to
get an idea about how busy the thread activity is right now. You can also check Throughput
numbers and the current Health status (it must be OK).

The second table on the Threads page shows details about individual threads in the thread
pool. For each thread, you can find the current request that the thread is handling, as well as
whether the thread is in the Idle, Stuck, or Standby status.

FIGURE 6-3. The Threads Monitoring page in the Administration Console

Chapter 6: Monitoring and Troubleshooting WebLogic Server 297

You can click the Dump Thread Stacks button at the top of this page to display the thread
stack for each thread. Here’s an excerpt from the thread dump:

Current thread stacks for server examplesServer
This page displays the current stacks for each thread.

 "[ACTIVE] ExecuteThread: '10' for queue: 'weblogic.kernel.Default
(self-tuning)'" RUNNABLE native
 java.net.PlainSocketImpl.socketConnect(Native Method)
 java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:351)
java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:213)
 java.net.PlainSocketImpl.connect(PlainSocketImpl.java:200)
 java.net.SocksSocketImpl.connect(SocksSocketImpl.java:366)
 java.net.Socket.connect(Socket.java:529)
 java.net.Socket.connect(Socket.java:478)
 java.net.Socket.<init>(Socket.java:375)
 java.net.Socket.<init>(Socket.java:189)
… "main" waiting for lock weblogic.t3.srvr.T3Srvr@d2b2ce WAITING
 java.lang.Object.wait(Native Method)
 java.lang.Object.wait(Object.java:485)
 weblogic.t3.srvr.T3Srvr.waitForDeath(T3Srvr.java:983)
 weblogic.t3.srvr.T3Srvr.run(T3Srvr.java:490)
 weblogic.Server.main(Server.java:74)

Performance
The Performance page shows details about the JVM performance by showing performance
statistics on the following:

 � Heap Free Current The current memory that’s available in the Java heap.

 � Heap Size Current Also called “heap size,” this is the amount of memory currently
allocated to the JVM’s heap.

 � Heap Size Max The maximum memory configured for this JVM.

 � Heap Free Percent The percent of memory that’s free.

Figure 6-4 shows the Administration Console’s Performance Monitoring page. You can force
garbage collection of unused resources by clicking the Garbage Collect button. You can also do a
thread stack dump by clicking the Dump Thread Stacks button. The resulting output shows the
current stacks for each thread.

Security (User Lockout)
The Security Monitoring page isn’t really about WebLogic Server security itself—rather, it’s about
monitoring the user lockout management statistics for the server. Here are the main user lockout
statistics you can monitor:

 � Locked Users Shows the current number of locked users (due to too many
authentication failures).

 � User Lockout Total Count Shows the total number of user lockouts.

 � Total Invalid Logins Shows the invalid login count.

298 Oracle WebLogic Server 12c Administration Handbook

 � Total Login Attempts While Locked Shows the total number of attempted invalid logins
in the server instance while a user was locked.

 � Invalid Logins High Shows the highest number of users with outstanding invalid login
attempts.

 � Total Users Unlocked Shows the number of times the server’s users have been unlocked.

In addition to the main Monitoring pages described here, you can access Monitoring pages
for any subsystem you want to monitor. For example, under each data source’s Monitoring tab,
you can view the database connection pool run-time statistics. You can monitor the value of
parameters such as Active Connections High Count, Active Connections Current Command, and
Active Connections Average Count from this page to find out how well the JDBC subsystem is
functioning. If these parameters show a high value, you may enlarge the database connection
pool. The JDBC Monitoring page is quite helpful in analyzing potential contention issues for
database connections. Similarly, the JTA Monitoring tab lets you monitor transactions, including
active transactions. The JMS Monitoring tab allows you to monitor JMS servers and destinations.
You can monitor the Bytes Threshold Time and the Messages Threshold Time to determine how
well the JMS server is functioning.

Monitoring with JMX
JMX is the foundation for everything you can do from the Administration Console. However, one
can programmatically monitor WebLogic Server by using the JMX interface directly in a Java
program or by writing scripts using a tool such as WLST. Programmers can invoke WebLogic

FIGURE 6-4. The Performance Monitoring page in the Administration Console

Chapter 6: Monitoring and Troubleshooting WebLogic Server 299

Server’s JMX managed beans (MBeans) to monitor various server statistics. MBeans are part of
WebLogic Server’s implementation of Java Management Extensions (JMX). JMX offers
programmatic access to a server’s management data, and each run-time MBean represents server
management data and operations.

Because this book is primarily for WebLogic Server system administrators and not for Java
developers, I won’t go into the details of programmatic monitoring through the JMX interface.
Let’s go through a few examples, however, that show the power of the JMX interface in helping
you monitor a server instance. The following example shows how to use the WLST command
threadDump to get a thread stack dump:

wls:/wl_server/serverConfig> threadDump()
Thread dump for the running server: examplesServer
…
The Thread Dump for server examplesServer
has been successfully written to Thread_Dump_examplesServer.txt
wls:/wl_server/serverConfig>

In the offline mode, WLST lets you interrogate the configuration MBeans. The configuration
MBeans represent configuration information stored in the XML configuration documents. Runtime
MBeans contain information about the current run state of the server and the services it runs. The
data in the MBeans isn’t persisted—when you shut down the server, the run-time statistics and
metrics from the MBeans are destroyed. In the online mode, WLST can interrogate the WebLogic
Server runtime MBeans. You can query for information about server properties such as the server
state and health. You can, of course, use the Administration Console to do the same, but WLST
scripts provide an easy way to automate server monitoring.

The runtime MBeans are organized hierarchically. Once you connect to the Admin Server
instance through WLST, you can issue the ServerRuntime or domainRuntime commands to access
the runtime MBean hierarchy. The domainRuntime command will take you to the root of the
hierarchical tree of domain-wide runtime MBeans, the DomainRuntimeMBean. You can execute
the domainRuntime command only for the Admin Server. For any server, the serverRuntime
command places you at the ServerRuntimeMbean, which is the root of the runtime MBeans for
that server. The ServerRuntimeMBean offers methods to retrieve a server instance’s run-time
information, as well as for transitioning a server’s state. There’s also a ClusterRuntime MBean
that represents a server’s view of its cluster. Similarly, the JMSRuntime, JVMRuntime, and
JDBCServiceRuntime MBeans, as well as many others like them, get you run-time information
about the appropriate subsystem or service. Use the cd command to navigate to any child MBean
and the ls command to display the server and domain runtime MBeans. For example, you can cd
from the domain run time to the ServerRuntimeMBean and use the ls command to view all the
“running” servers in that domain. Note that you can’t edit any runtime MBeans.

The DomainRuntimeMBean provides a federated view of all the running JVMs in a WebLogic
administrative domain. The DomainRuntimeMBeans’s attribute AppRuntimeStateRuntimeMBean, for
example, lets you determine the state of applications throughout the domain. Here’s a simple script
that shows how to get the status of all the servers by iterating the ServerLifeCycleRuntimesMBean,
which is a child MBean under the domainRuntimeMBean:

cd domainRuntime()
slcs = cmo.getServerLifeCycleRuntimes()
for slc in slcs:
 print slc.getName(), slc.getState()

300 Oracle WebLogic Server 12c Administration Handbook

You can use the AppRuntimeStateRuntime MBean to check the status of any application. For
example, to check the status of an application named myApp, deployed on the server
MyAdminServer, use the following commands:

wls:/wl_server/serverConfig> domainRuntime()
Location changed to domainRuntime tree. This is a read-only tree with DomainMBean

 as the root.
For more help, use help(domainRuntime)
wls:/wl_server/domainRuntime>
cd('AppRuntimeStateRuntime/AppRuntimeStateRuntime')
wls:/base_domain/domainRuntime/AppRuntimeStateRuntime/AppRuntimeStateRuntime
> cmo.getCurrentState('myApp','MyAdminServer')
'STATE_ACTIVE'
wls:/base_domain/domainRuntime/AppRuntimeStateRuntime/AppRuntimeStateRuntime>

While we’re on this topic, a few notes about Python iteration syntax. The for statement starts
with a header line that specifies an assignment target or targets, along with the object that you
want to iterate. The block of statements you want to repeat follows the header. Here’s the general
format of a for statement:

for target in object:
 statements
else:
 statements

When working interactively with WLST, adding () to the end of the ls, cd, and get commands
is annoying at times. The undocumented easeSyntax command lets you type in ls instead of ls()
and enter commands such as get SessionTimeoutSecs instead of get(‘SessionTimeoutSecs’). Once
you turn on easeSyntax (by typing easeSyntax() in the WLST online mode), you can also just type
cd instead of cd(‘..’) each time you have to navigate back to a parent MBean.

Here are a couple of examples that show how to obtain server run-time statistics stored in the
runtime MBeans by using WLST navigational commands. When you connect to a server from
WLST, you are at the configuration MBean hierarchy (serverConfig). To interrogate the runtime
MBeans, you must move to the domain run-time hierarchy (domainRuntime), or the server
run-time hierarchy (ServerRuntime), as shown here:

wls:/wl_server/serverConfig> domainRuntime()
Location changed to domainRuntime tree. This is a read-only tree with DomainMBean

as the root.
For more help, use help(domainRuntime)
wls:/wl_server/domainRuntime> ls()
dr-- AppRuntimeStateRuntime
dr-- CoherenceServerLifeCycleRuntimes
dr-- ConsoleRuntime
dr-- DeployerRuntime
dr-- DeploymentManager
dr-- DomainServices
dr-- LogRuntime

Chapter 6: Monitoring and Troubleshooting WebLogic Server 301

dr-- MessageDrivenControlEJBRuntime
dr-- MigratableServiceCoordinatorRuntime
dr-- MigrationDataRuntimes
dr-- PolicySubjectManagerRuntime
dr-- SNMPAgentRuntime
dr-- ServerLifeCycleRuntimes
dr-- ServerRuntimes
dr-- ServerServices
dr-- ServiceMigrationDataRuntimes
-r-- ActivationTime Tue Aug 06 08:12:56 CDT2013
-r-- MigrationDataRuntimes null
-r-- Name wl_server
-rw- Parent null
-r-- ServiceMigrationDataRuntimes null
-r-- Type DomainRuntime
-r-x preDeregister Void :
-r-x restartSystemResource Void :
WebLogicMBean(weblogic.management.configuration.SystemResourceMBean)
wls:/wl_server/domainRuntime>

When you move (cd) to the ThreadPoolRuntime directory tree and issue the ls command, you
get run-time thread count information, throughput, and many other useful server run-time details.
Here is an example:

wls:/medrec-spring/domainRuntime/ServerRuntimes/MedRecServer/>
cd('ThreadPoolRuntime/ThreadPoolRuntime')
wls:/medrec-
/domainRuntime/ServerRuntimes/MedRecServer/ThreadPoolRuntime/ThreadPoolRuntime>
ls()
-r-- CompletedRequestCount 35308
-r-- ExecuteThreadIdleCount 1
-r-- ExecuteThreadTotalCount 6
-r-- HealthState
Component:threadpool,State:

HEALTH_OK,MBean:ThreadPoolRuntime,ReasonCode:[]
-r-- HoggingThreadCount 0
-r-- MinThreadsConstraintsCompleted 299
-r-- MinThreadsConstraintsPending 0
-r-- Name
ThreadPoolRuntime
-r-- PendingUserRequestCount 0
-r-- QueueLength 0
-r-- SharedCapacityForWorkManagers 65536
-r-- StandbyThreadCount 4
-r-- Suspended false
-r-- Throughput 3.494757863205192
-r-- Type
ThreadPoolRuntime

302 Oracle WebLogic Server 12c Administration Handbook

TIP
If you’ve created a WLST file that you are likely to use frequently, you
can simply add the set of commands to WLST by storing the .py file
in the WL_HOME\common\wlst\lib folder. Let’s say you create a file
named myLib.py and define a function called myCmd within that file.
You can then simply call your command from WLST, as shown here:
wlst:/offline>myLib.myCmd.

You can get details about the JVM by moving to the JVMRuntime tree and issuing the ls
command:

wls:/medrec-spring/domainRuntime/ServerRuntimes/MedRecServer> cd('JVMRuntime')
wls:/medrec-spring/domainRuntime/ServerRuntimes/MedRecServer/JVMRuntime> ls()
dr-- MedRecServer
wls:/medrec-spring/domainRuntime/ServerRuntimes/MedRecServer/JVMRuntime>
cd('MedRecServer')
wls:/medrec-spring/
domainRuntime/ServerRuntimes/MedRecServer/JVMRuntime/MedRecServer> ls()

-r-- AllProcessorsAverageLoad 0.06555242479356185
-r-- GCHandlesCompaction true
-r-- GcAlgorithm Dynamic GC, current strategy
-r-- HeapFreeCurrent 247618928
-r-- HeapFreePercent 46
-r-- HeapSizeCurrent 536870912
-r-- HeapSizeMax 536870912
-r-- Incremental false
-r-- JavaVendor Oracle Corporation
-r-- JavaVersion 1.6.0_22
-r-- LastGCEnd 1299949113365
-r-- LastGCStart 1299949111793
-r-- TotalGarbageCollectionCount 77
-r-- TotalGarbageCollectionTime 6204
…

You can redirect WLST information and error messages from the screen to a file by using the
redirect command after connecting to a server through WLST. Here’s an example:

wls:/medrec-spring/serverConfig> redirect('../../logs/wlst.log','false')

The redirect command shown here will send the WLST output to the ../../logs/wlst.log file,
relative to where you started WLST. The false option disables output from being sent to standard
out. To stop redirecting output to the file, issue the stopRedirect command.

Using WLST Monitoring Scripts
Entering WLST commands at the command line to monitor various server run-time statistics is
tedious. In addition, you certainly want to automate the run-time monitoring. WLST scripts offer a
great way to reduce the tedium as well as enable you to schedule monitoring scripts to run at

Chapter 6: Monitoring and Troubleshooting WebLogic Server 303

frequent intervals. You can easily create WLST monitoring scripts, which you can run as Python
files. There are two basic ways to execute WLST scripts:

 � Include the script in the command that invokes WLST and execute the script. You can
either specify the full path to the script or execute the script from the directory where it’s
located, in which case you need to specify just the name of the script. Here’s an example
that shows how to run a script by specifying it with the java weblogic.WLST command:

java weblogic.WLST
C:\Oracle\Middleware\wl_server_12.1\common/templates\scripts\wlst\
distributedQueues.py

Note that the downside to this approach is that you need to make a connection for each
script you run, which is fairly expensive.

 � The second way to run a WLST script is to first invoke WLST, issue the execfile command,
and specify your script name within the command, as shown here:

wls:offline>
execfile('C:/MyOra/Middleware/wlserver_10.3/common/templates/scripts/wlst/
distributedQueues.py')

TIP
Be careful about indenting code in a Python script. A Python function
does not use curly braces to indicate where a function’s code begins
and ends. The colon (:) and the code indentation itself serve as
delimiters. Any code blocks such as functions, for and while loops,
and if statements must be defined by their indentations. You start a
code block by indenting it and end the block by unindenting it. Thus,
white space is significant in a Python script! Be consistent with your
code indentation. Wrong indentation results in a syntax error.

WLST scripts can help you monitor virtually any server activity, including various services
such as JTA, JMS, JDBC, and the server state itself. Here’s a script that helps you quickly find out
the current status of all running servers in a domain:

username = 'weblogic'
password = 'welcome1'
URL='t3://localhost:7011'
connect(username,password,URL)
domainRuntime()
cd('ServerRuntimes')
servers=domainRuntimeService.getServerRuntimes()
for server in servers:
 serverName=server.getName();
 print '---\n'
 print serverName
 print '--\n'
 print ' Server Status :', server.getState()
 print ' Server Health State :', server.getHealthState()

304 Oracle WebLogic Server 12c Administration Handbook

Note that there’s a significant difference between the ServerRuntime and ServerLifeCycleRuntimes
MBeans. The ServerLifeCycleRuntimes MBean is there even when the server is not running.

Save the script shown previously in a file called getServerStatus.py in the C:\Oracle\
Middleware\wlserver_12.1\common\templates\scripts\custom directory, and execute it as
follows:

C:\Oracle\Middleware\wlserver_12.1\server\bin>setWLSEnv.cmd
C:\Oracle\Middleware\wlserver_12.1\server\bin>java weblogic.WLST
C:\Oracle\Middleware\wlserver_12.1\common\templates\scripts\custom\
getServerStatus.py

Initializing WebLogic Scripting Tool (WLST) ...
Welcome to WebLogic Server Administration Scripting Shell
Type help() for help on available commands
Connecting to t3://localhost:7011 with userid weblogic ...
Successfully connected to Admin Server 'MedRecServer' that belongs to domain
'medrec'.
Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.
Location changed to domainRuntime tree. This is a read-only tree with
DomainMBean as the root.
For more help, use help(domainRuntime)
--
MyManagedServer1
--
 Server Status : RUNNING
 Server Health State : Component:ServerRuntime,
State:HEALTH_OK,MBean:MyManagedServer1,ReasonCode:[]

MedRecServer
--
 Server Status : RUNNING
 Server Health State : Component:ServerRuntime,
State:HEALTH_OK,MBean:MedRecServer,ReasonCode:[]
C:\Oracle\Middleware\wlserver_12.1\common\bin>

In this example, first WLST connects to the Admin Server and gets the list of servers from the
domainRuntime MBean. It then iterates through a loop to get the state of each server by
interrogating the ServerRuntime MBean. In this example, you learned how to get the server status
and health state from this MBean, but you can query other server attributes as well. For example,
if you want to print out the listen addresses for all the servers, you can use the ListenAddress
attribute in the server iteration, as shown here:

print server.getname(), 'Listen Address = ', server.getListenAddress()

The following script gets you the JMS performance information for a server:

connect('weblogic','welcome1','t3://localhost:7011')
servers = domainRuntimeService.getServerRuntimes();

Chapter 6: Monitoring and Troubleshooting WebLogic Server 305

if (len(servers) > 0):
 for server in servers:
 jmsRuntime = server.getJMSRuntime();
 jmsServers = jmsRuntime.getJMSServers();
 for jmsServer in jmsServers:
 destinations = jmsServer.getDestinations();
 for destination in destinations:
 print ' BytesCurrentCount ' ,
destination.getBytesCurrentCount()
 print ' BytesHighCount ' ,
destination.getBytesHighCount()
 print ' ConsumersTotalCount ' ,
destination.getConsumersTotalCount()
 print ' '
disconnect()

The example shown here uses cleartext administrator credentials. In a production
environment, you should encrypt the credentials when running WLST in an interactive or
script mode. Chapter 1 shows how to generate a user configuration file with the help of the
storeUserConfig command. This command generates both the user configuration file and a
key file to encrypt the credentials. Once you do this, you can simply specify the user
configuration file (UCF in the following example) and the user key file (UKF in the following
example) as follows at the beginning of the script:

UCF='/app/scripts/userConfigFile.sec'
UKF='/app/scripts/userKeyFile.sec'

As you can see, WLST scripts help you immensely by getting information from all the servers in a
domain with a single script. As explained earlier in this book, you can also run WLST scripts by
embedding them within Ant build files.

Monitoring with SNMP
The SNMP protocol is commonly used to send monitoring data to enterprise management
systems. The popular Nagios network monitoring tool is SNMP based, as are several other
monitoring tools. SNMP-based monitoring helps orchestrate interactions with other SNMP-
based devices such as load balancers. You can use the SNMP protocol by installing SNMP
agents on each of the Managed Servers or systems to transmit data to the management system.
The SNMP agents collect the information from the WebLogic Server MBeans. The SNMP
management system can poll the SNMP agents for monitored information, or you can configure
traps whereby the SNMP agents automatically send data to the managers upon reaching a
threshold when the server shuts down unexpectedly, for example. WebLogic Server provides
some built-in traps, and you can define custom traps as well. You can configure SNMP agents
on both the Admin and the Managed Servers to collect and transmit data to the third-party
SNMP managers.

You can configure SNMP agents just on the Admin Server or on all Managed Servers.
Configuring the SNMP agents on just the Admin Server means that the server might sometimes be
overwhelmed with SNMP messages. In addition, if the Admin Server crashes, you’re going to lose
the SNMP messages. Therefore, some environments may configure the SNMP agents on all servers
in the domain and not just on the Admin Server. A better approach for most environments,

306 Oracle WebLogic Server 12c Administration Handbook

however, is to minimize management overhead in the Managed Servers by configuring the SNMP
agents on just the Admin Server and letting the Admin Server do all the administrative work.

NOTE
An SNMP agent can automatically communicate with the managers
using the SNMPv3 protocol, but you can configure the agent to
support the SNMPv1 and SNMPv2 protocols as well.

Note that in addition to responding to a manager’s request for information, SNMP agents are also
capable of monitoring log messages and sending out notifications to the SNMP managers on their own
when a managed resource reaches a threshold for a monitoring threshold or condition. The SNMP
agents also automatically inform the SNMP manager when any server instances start or shut down.

The MIB Module
The server uses a management information base (MIB) module to specify the managed resource
types and the notification types. The MIB is named BEA-WEBLOGIC-MIB.asn1, and the WebLogic
Server installer places it in the WL_HOME\server\lib directory. The MIB module is hierarchical
and contains two distinct hierarchies, one for run-time monitoring of data and the other for
configuration data. Here’s part of the BEA-WEBLOGIC-MIB.asn1 file, showing how a server
shutdown is represented as an SNMP trap:

wlsServerShutDown NOTIFICATION-TYPE
 OBJECTS {trapTime, trapServerName}
 STATUS current
 DESCRIPTION "This trap is generated when the server has been shut down."
 : : = { wls 0 70 }

WebLogic Server uses tabular objects such as domainTable and serverTable. Each of the tabular
objects refers to a collection of scalar objects, which contain the variables that describe the actual state
of a managed resource. For example, the serverDeployments scalar object is part of the serverTable
object and describes the attributes of all deployed applications. The serverDeployments object
contains variables to represent each of the deployed applications. For each of the managed objects,
the MIB assigns a unique object identifier (OID) consisting of a set of integers in a sequence. This
sequence uniquely identifies the location of the object in the MIB tree. The server appends additional
sets of numbers to an object’s ID to identify the variables (object instances). You can view the contents
of the WebLogic Server’s MIB module by using a third-party MIB browser or a web browser.

You can configure multiple SNMP agents in a domain, and an SNMP agent can also forward
or proxy requests to other SNMP agents. Because all agents use the same MIB root, you can’t use
an SNMP agent as a proxy for agents in other domains. You can create custom MBeans and
register them, following which the SNMP agent will send information from those MBeans to
satisfy requests from an SNMP manager.

Configuring SNMP Monitoring for a Server
You can configure SNMP monitoring for a server by performing the following steps:

 1. Load the WebLogic MIB in the SNMP manager. The WebLogic MIB must be available
to both the third-party SNMP manager and WebLogic SNMP agents. The agents already
have access to the MIB module, following the installation of the WebLogic Server.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 307

 2. Create an SNMP agent.

 3. Create a trap destination.

I explain steps 2 and 3 in the following sections.

Creating an SNMP Agent
You can create an SNMP agent by going to Domain Structure | Diagnostics | SNMP in the
Administration Console. Click New on the Summary Of SNMP Agents page. You can provide
a name for the new SNMP agent and click OK. You can now configure the agent by clicking
the agent’s name in the Server SNMP Agent’s page. Here are some of the key configuration
items:

 � UDP Port Specifies the port number on which the SNMP agent listens for UDP
requests from SNMP managers. The SNMP agent uses two ports: a port for UDP traffic
and another port for TCP traffic. By default, the SNMP agents can use the server’s TCP
listen port (the default is 7001). Chapter 5 shows how to create a dedicated SNMP
network channel to separate SNMP traffic from other types of traffic. If you assign
an SNMP agent to multiple Managed Servers on a host, the server automatically
increments the SNMP UDP port value by 1 for the agent on each of the Managed
Servers. Thus, if you choose 190 as the UDP port for the agent and you assign the agent
to three Managed Servers, WebLogic Server automatically assigns the ports 190, 191,
and 192 for the three Managed Servers. Note that the server doesn’t configure the UDP
ports on a permanent basis—the port allocations may vary, depending on the order in
which you start the server instances.

TIP
The SNMP agent uses UDP port 162 as the default port to send
notifications.

 � Community Based Access Enabled Specifies support for SNMP versions 1 and 2. If you
disable it, the SNMP agent can process only SNMP version 3 requests.

 � Community Prefix Specifies the community name or password for the SNMP agent
to use during its communication with the SNMP manager to secure SNMPv1 or v2
communications with SNMP managers. If you’re using SNMPv1 or v2, you must use
community names.

NOTE
Oracle recommends that you set a community prefix value to
something other than public when using the SNMPv1 or v2 protocols
in order to secure access to WebLogic Server attributes.

 � Trap Version Specifies the SNMP notification version.

 � Send Automatic Traps Enabled Specifies whether the agent sends automatically
generated notifications to the SNMP managers. The SNMP agent generates the automatic
notifications when the server instance starts or stops or when the server hosting the SNMP
agent starts. Note that the SNMP agent on the Admin Server sends notifications when any

308 Oracle WebLogic Server 12c Administration Handbook

server in that domain starts or stops, whereas an agent on a Managed Server notifies only
the Managed Server’s status. The default value is true.

 � Engine ID Identifies the SNMP agent. You must specify this ID when configuring the
SNMP manager if you’re using SNMPv3.

 � Authentication Protocol Applies only for the SNMPv3 protocol. You can ensure
message integrity by using the authentication protocol. The available options are None,
MD5, and SHA. To use the authentication protocol, you must configure the security level
of the trap destinations. In order to use the protocol when receiving a manager’s request,
you must first configure credential mapping in the server’s security realm.

Creating a Trap Destination
To send notifications to an SNMP manager, the SNMP agent requires information about the
manager, and a trap destination contains the information the agent needs. Here is how you create
a trap destination.

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane, go to Domain Structure | Diagnostics | SNMP.

 3. Select the name of the SNMP agent on the Summary of SNMP Agents page.

 4. Click the Trap Destinations tab at the top of the SNMP Agent: Configuration page.

 5. Click New under the SNMP Trap Destinations table.

 6. Enter a name for the new trap destination on the Create A New SNMP Trap Destination
page.

 7. Here are the configuration options you must specify for the SNMP agent:

 � Community Refers to the password or community name that the agent sends to the
SNMP manager when sending notifications based on the SNMPv1 or v2 protocol.

 � Host Refers to the IP address (or DNS name) for the computer where the SNMP
manager is located.

 � Port Refers to the SNMP manager’s UDP port number.

 � Security Name Refers to the username the agent uses when utilizing the SNMP
version 3 notifications. You must also create a credential map containing a password
in the server security realm for this username, and the credentials must match those
required by the SNMP manager for this destination.

 � Security Level Specifies the security protocol to be used for SNMPv3 notifications.

 8. Click the Activate Changes button in the Change Center of the Console.

Using the SNMP Command-Line Utility
WebLogic Server itself doesn’t have an SNMP manager—the SNMP agents you configure allow
WebLogic to log messages to a third-party SNMP-based enterprise system. However, WebLogic
Server does offer an excellent command-line utility that you can use to test the SNMP agents you
create.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 309

In order to test SNMP agents, of course, you must first create the SNMP agent as well as a trap
destination, as explained in the previous sections. Once you have the SNMP agent in place, run
the following command to set the environment:

WL_HOME\server\bin\setWLSEnv.cmd

Invoke the SNMP command-line utility by issuing a command such as the following:

weblogic.diagnostics.snmp.cmdline.Manager SnmpWalk -m BEA-WEBLOGIC-MIB -M
weblogic/diagnostics/snmp/mib applicationRuntimeObjectName

In this example, I issued the SnmpWalk command to get all managed objects below the node
specified in the MIB. The MIB is specified with the —m flag (BEA-WEBLOGIC-MIB), and the —M
flag specifies the resource classpath of the compiled MIB. The applicationRuntimeObjectName
option specifies that the command must retrieve the names of all deployed applications in a domain.

You can get the usage information for any command, such as the SnmpWalk command in the
previous example, by using the following command:

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>java weblogic.diagnostics
.snmp.cmdline.Manager SnmpWalk -?
 USAGE
 SnmpWalk [-?|options] <objectID> [terminationOID]
 DESCRIPTION
 Performs a basic Snmp MIB walk operation starting with the given
 MIB variable and terminating on the specified termination OID.
 If no termination OID is provided, the program will walk all
 MIB nodes contained by the one objectID provided.

 OPTIONS

 -v1|v2[c]|v3 : snmp version [v1]
 -c[ommunity] <community>: snmp community to use [public]
 -h[ost] <host> : snmp agent host [localhost]
 -p[ort] <port> : snmp agent port [161]
 -r[etries] <retries> : # of retries [3]
 -t[imeout] <millis> : message timeout in millis [3000]
 -maxvbs <max_vbs> : max # of varbinds in a single req.[no-max]
 -metadata <filename> : metadata file to load [mib-2]
 -m[ibs] <mib-list> : list of MIBs to load from mibdirs [mib-2]
 (def: SNMPv2-MIB:IF-MIB:TCP-MIB)
 -M|mibdirs <dir-path> : directories of precompiled MIBs [default]
 -list : list available MIBs [false]

 -log <logfile> : logfile to store debug output [none]
 -d[ump] : dump debug info to stdout [off]
 (note: will not work with -log)
 -pkts : display data packets [off]
 -O outopts : display output options [i]
 n: print OIDs in numeric format
 l: print OIDs with resolved labels
 i: print OIDs with formatted indexes

310 Oracle WebLogic Server 12c Administration Handbook

 -tcp : use TCP rather than UDP [false]

 -nocompat : disable compatibility mode [enabled]
 NOTE: You may include a 'dsnmp.conf' file in your classpath or
 filesystem containing default values for the following:
 mibs=<mib-list>
 mibdirs=<dir-path>
 retries=<retries>
 timeout=<timeout-millis>
 host=<default-host>
 port=<default-port>
 community=<default-community>
 This 'dsnmp.conf' file may be located in any of the following
 directories or JAR file packages:

 .
 /
 /monfox/toolkit/snmp/conf
 /monfox/toolkit/snmp/appl
 /etc/dsnmp/conf
 /etc/dsnmp
 SNMPv3 OPTIONS
 -u[ser] <security-user> : USM username [none]
 -A <auth-passwd> : Authentication password [none]
 -a <auth-protocol> : Authentication protocol (MD5|SHA) [MD5]
 -X <priv-passwd> : Privacy password [none]
 -x <priv-protocol> : DES | AES128 | AES192 | AES256 [DES]
 -l <security-level>: noAuthNoPriv|authNoPriv|authPriv [authNoPriv]
 -e <sec-engine-id> : security engine id [none]
 -n <context-name> : context name to use [""]
 -E <context-eng-id>: context engine id [none]
 -Z <boots>,<time> : engine boots, engine time [none]
 -crypto <provider> : security provider class name [...SunJCE]
C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>

Understanding WebLogic Logging Services
WebLogic Server maintains multiple logs to capture both server run-time and application event
information, to help you troubleshoot server failures and error conditions, and to help debug
applications before cutting over to production. In a domain, the applications, subsystems, and
server instances all produce their own separate log messages. Server instances also write log
messages to standard out, which is the Console. WebLogic logging services help produce, filter,
and view those log messages. Following are the various types of log files a domain generates:

 � Domain log files consolidate all the instance logging messages into one domain-wide
message log.

 � Server logs for each of the WebLogic Server instances.

 � Subsystem (JTA, JDBC, etc.) log files.

Note also that standard web server access logs are created on a per-server basis.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 311

NOTE
The domain log provides a consolidated view of the entire domain’s
status because it contains log messages generated on all the Managed
Server instances that are part of the domain.

By default, WebLogic Server utilizes a message catalog to generate log messages and
distributes the messages with the Java Logging APIs. An application can send messages to the
server log in multiple ways. Application developers can use the message catalog framework to
send application messages to the server log. Alternatively, developers can incorporate logging
messages directly in the code without using the message catalog. Finally, developers can use
the Server Logging Bridge to have the application redirect messages to the WebLogic logging
services.

Understanding the Log Files
A WebLogic Server instance maintains a server log (the <server_name>.log file in the <domain_
name>\servers\<server_name>\logs directory), where it records all messages from each of the
subsystems as well as all the applications deployed on that server. It simultaneously sends some
of these messages to the domain log file (<domain_name>.log, which is located, by default, in the
<domain_name>\servers\<AdminServer_name>\logs directory). The server never broadcasts
messages with the DEBUG severity level. By default, all servers send messages of severity level
NOTICE or higher to the domain log. Later in this chapter, in “Controlling Server Log Messages to
Log Destinations,” you’ll learn how to control which log messages a server writes to its domain
log file by configuring custom log filters to override the default filter.

The server log provides you with a wealth of information about run-time events, including the
server run-time status, application deployment, and subsystem failures. The log messages are the
first thing you check when troubleshooting system performance or a subsystem or server failure.
The details provided in the log messages make monitoring or getting to the root of a problem
easy. You can also create applications to automatically send e-mails to you if they trap messages
regarding serious server conditions such as the failure of the JMS subsystem, for example.

The following output shows how WebLogic Server outputs the server log information on the
Console where the server is running.

<Aug 18, 2013 3:00:50 PM CDT> <Notice> <LoggingService> <BEA-320400> <The log file
C:\Oracle\Middleware\Oracle_Home\user_projects\wl_server\servers\examplesServer\
logs\examplesServer.log will be rotated. Reopen the log file if tailing has stopped.
This can happen on some platforms, such as Windows.>
<Aug 18, 2013 3:00:50 PM CDT> <Notice> <LoggingService> <BEA-320401> <The log file
has been rotated to
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\servers\examples
Server\logs\examplesServer.log00019. Log messages will continue to be logged in
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\servers\examples
Server\logs\examplesServer.log.>
<Aug 18, 2013 3:00:50 PM CDT> <Notice> <Log Management> <BEA-170019> <The server
log file
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\servers\examples
Server\logs\examplesServer.log is opened. All server side log events will be
written to this file.>

312 Oracle WebLogic Server 12c Administration Handbook

Besides viewing the server log files through a text editor on the machine where a server runs
or through the Administration Console, you can also create applications that automatically send
out e-mail messages to system administrators on occasions such as a subsystem failure. You most
likely noticed that when you start an Admin Server there are multiple messages in the command
window—these are some of the messages that the server writes to the server log file. By default,
the server prints messages with a severity level of NOTICE or higher to the standard out, but you
can control this behavior by making the server print messages of a higher or lower severity. You
can also redirect the standard out to a different location. If you start a Managed Server through
the Node Manager, the server will not output messages to standard out. However, you can view
the logs through the Administration Console or in the <server_name>.out file in the <domain_
name>\servers\<server_name>\logs directory, where <server_name>is the name of the server.

Anatomy of a Log Message
In the server log file, each log message contains various attributes, each of which is surrounded by
a pair of angle brackets. Here’s an example:

####< August 13, 2013 3:03:48 AM EDT> <Info> <Server> <MIROPC61> <MedRecServer>
 <[ACTIVE] ExecuteThread: '5' for queue: 'weblogic.kernel.Default
(self-tuning)'> <<WLS Kernel>> <> <e762881ebb876ea1:-63b9f5c8:12edf6f124b:-8000-
00000000000005ad> <1300863828641> <BEA-002635> <The server
"MyManagedServer1" connected to this server.>
####< August 16, 2013 3:03:51 AM EDT> <Warning> <Diagnostics> <MIROPC61>
<MedRecServer> <[ACTIVE] ExecuteThread: '7' for queue: 'weblogic.kernel
.Default (self-tuning)'> <<WLS Kernel>> <> <> <1300863831309> <BEA-320111>
<The elapsed time since the last Harvester cycle (1,250 milliseconds) is
unacceptably short. Skipping this cycle in order to smooth out the responses.>

Note that the server log contains all attributes of a log message. The same messages are also
shown in the command window (without the #### prefix), but the message includes the message
text attribute, which describes the event or condition. The standard out messages don’t output
attributes such as the server name, machine name, username, transaction ID, or thread IDs.

A server log message contains the following attributes, in this order:

 � Timestamp Gives you a locale-formatted timestamp that indicates the time and date
when the message originated.

 � Severity Shows the severity of the events reported by the message, such as a WARNING
or CRITICAL severity level.

 � Subsystem Tells you which subsystem, such as JMS, originated the message.

 � Machine name/server name/thread ID Identify the origins of the message.

 � User ID Indicates the user ID with which the event was executed.

 � Diagnostic context ID Shows the context information that helps identify messages
coming for a request or application.

 � Message ID A six-digit message identifier that starts with BEA and is in the range
0–400000.

 � Message text Describes the event that generated the message.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 313

Administrators most commonly use a combination of UNIX shell commands (cut, awk, sed)
or a Perl script for working with server logs. Of all the message attributes, message severity is, of
course, the most important because it shows the potential impact of the error condition or
event. Following are the severity levels of log messages listed in decreasing order of seriousness:

 � EMERGENCY Indicates a severe system failure or panic. When you see this message, it
means the server is in an unusable state.

 � ALERT At least one service is an unusable state, and the administrators need to fix it
because the server can’t automatically repair the subsystem.

 � CRITICAL This could indicate a system or service error that either leads to a loss of a
service or a performance degradation. The system can potentially recover from this by
itself.

 � ERROR This is most likely a user or application error that doesn’t impact the state of the
system or services.

 � WARNING This is usually caused by a configuration setting or an operation, but the
setting or operation doesn’t impact the server or service availability.

 � NOTICE This is a high-level informational message.

 � INFO This is a low-level informational message.

In addition, a DEBUG severity level indicates that the server has generated a debug message.
DEBUG is an additional severity level that the applications can use with the WebLogic
logging services. If you enable diagnostic instrumentation of server and application classes,
any messages from the Diagnostic Action Library will have the TRACE severity level appended
to them.

By default, WebLogic Server publishes all log messages to a log destination, starting with the
severity level INFO, which is the most basic severity level for messages. You can configure the
server to send messages from any severity level you choose by configuring the Minimum Severity
To log property in the Administration Console. You do this by going to Settings For <server_name>
| Logging | General in the Console.

Viewing Logs
You don’t have to view the logs by manually opening each of the server, domain, or subsystem
log files on the machine where WebLogic Server stores them. The Administration Console
provides you with the ability to view the logs through the browser. To view the logs, follow these
steps:

 1. Expand Diagnostics and select Log Files.

 2. On the Summary Of Log Files page, shown in Figure 6-5, select the name of the log you
want to view.

 3. Click View.

For example, when you select ServerLog, you’ll see the latest contents of the server log. You can
view the most recent logs at the top of the page. You can search for older log entries by scrolling
down and clicking Next at the bottom of the page.

314 Oracle WebLogic Server 12c Administration Handbook

Similarly, you can view the domain log file as well without having to log into the host
computer. The Domain Log page shows up to 500 log entries, but you won’t be able to view any
messages once they have been archived, which is done when the server rotates the log files. You
can customize the Server Log and Domain Log pages to show only log entries for a specific time
interval. You can also filter the messages so the page shows, for example, only the messages from
the JDBC subsystem. You can also select a set of message attributes other than the default set. You
do this by clicking the Customize This Table link.

Configuring a Domain Log Filter
By default, server instances use a default log filter that sends messages of severity level NOTICE or
higher to the Admin Server, which, in turn, logs those messages to the domain log file. You can
control the types of messages sent by a server instance to the domain-wide log by configuring a
domain log filter. A log filter is a directive to the server to control the messages the server sends to
the domain log by specifying a filtering expression. To create a domain log filter from the
Administration Console, click the active domain name under Domain Structure in the left-hand
plane. Go to Configuration: Log Filters and select New to create a log filter. Enter a name such as
myLogFilter1 and click OK. You’ll see a message stating that the log filter was successfully
created, as well as the name of the new log filter in the Settings For <server_name> page.

FIGURE 6-5. The Summary of Log Files page in the Administration Console

Chapter 6: Monitoring and Troubleshooting WebLogic Server 315

NOTE
Managed Servers will continue writing to their local log files even
when the Admin Server is unavailable. When the Admin Server
becomes available again, the Managed Servers will send the messages
stored in their local log files to the Admin Server, which writes the
messages in the domain log.

Subsystem Logs
In addition to the generation of server log messages in the domain log file and local server log files,
most of the WebLogic server’s subsystems, such as the JMS and JDBC services, maintain their own
log files for monitoring run-time events and error conditions, as well as to enable performance
auditing. Here is a summary of the important subsystem log files:

 � HTTP logs Each server and virtual host maintains a log of all HTTP transactions in the
HTTP access log.

 � JDBC logs These are log messages pertaining to the JDBC subsystem, such as JDBC
connections and SQL error messages. You can enable the debugging of JDBC data sources
at various scopes by setting any of the following four configuration attributes to true:

 � DebugJDBCSQL Shows information such as arguments, return values, and thrown
exceptions for all the JDBC methods that were invoked.

 � DebugJDBCConn Shows all connection-related information, such as data source
connection reservation and release operations and requests for getting or closing
connections.

 � DebugJDBCRMI Shows the same information as the DebugJDBCSQL attribute but at
the RMI level.

 � DebugJDBCDriverLogging Enables JDBC driver-level logging.

You can enable JDBC debugging through the command line, the Administration
Console, or WLST. For example, here’s how you enable debugging at the
DebugJDBCSQL scope through the command line:

-Dweblogic.debug.DebugJDBCSQL=true
-Dweblogic.log.StdoutSeverity="Debug"

Note that you can do this only at startup time, and you can’t turn off the debugging
dynamically.

 � JMS logs JMS server log files record information on message lifecycle events, and the
log is located in the jms.messages.log file at the following location:

<domain_name>\servers\<server_name>\logs\jmsServers\<jms_server_name>.

You must enable JMS logging on the message destinations specified in the JMS modules first.
You can configure JMS log file rotation through the Console. You should consider the enabling of
JMS logging carefully, as it is a debugging-level feature that comes with a great deal of overhead.

Note that most of the time the subsystems generate few critical messages and several INFO
messages; you can configure the message level for any subsystem you wish.

316 Oracle WebLogic Server 12c Administration Handbook

Understanding Server Log File Maintenance
In a server running in production mode, the server automatically rotates the server log file when
it reaches 500KB in size. When you restart a server running in production mode, it doesn’t rotate
the local server log. A server running in development mode, however, automatically rotates
the log file each time you start the server, as well as when the server log file reaches the 500KB
size limit. By default, the server renames log files by attaching a sequentially increasing suffix to
the log file. Chapter 3 shows how you can use the Administration Console to change the
maximum log file size, as well as the time interval for rotating log files. Check the “Rotate log
files” topic in the Administration Console’s Help section for the details.

You can use the LogRunTime.forceLogRotation command to immediately rotate a server log
before it reaches its maximum size limit, as shown here:

wls:/offline> connect('weblogic','welcome1','t3://localhost:7001')
wls:/medrec-spring/serverConfig> serverRuntime()
wls:/medrec-spring/serverRuntime> cd('LogRuntime')
wls:/medrec-spring/serverRuntime/LogRuntime> cd('MedRecServer')
wls:/medrec-spring/serverRuntime/LogRuntime/MedRecServer> cmo.forceLogRotation()

The preceding command immediately rotates the server log for the server MedRecServer. You can
also change the location for the older log files through the Console or by specifying the location
at server startup time, as shown here:

java -Dweblogic.log.LogFileRotationDir=C:\foo
-Dweblogic.management.username=weblogic
-Dweblogic.management.password=welcome1 weblogic.Server

As mentioned earlier, servers running in production mode don’t rotate log files on startup. You can
also go to the Console (Settings For <server_name> page | Logging | General) and set the Rotate Log
File On Startup property to true (the default value is false) to configure the automatic rotation of server
log files on startup. On this page, you can also configure the maximum size of a log file (before the
server rotates the file), the log file directory, and the number of log files the server must retain by clicking
Advanced at the bottom of the page. Chapter 3 shows how to configure various logging properties.

NOTE
By default, the WebLogic Server logging implementation is based on
the Java Logging API.

Setting Debugging Flags Using the Console
You can set various server debug settings from either the Administration Console or through
WLST. Here’s how you define the debug scope and attributes from the Console:

 1. Go to Environment | Servers.

 2. On the Summary Of Servers page, select the server for which you want to configure
debugging.

 3. Select the Debug tab.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 317

 4. To enable/disable debug for the entire scope, check either the default or weblogic scope,
or both, and click the Enable or Disable button. This effectively enables/disables debug
for all attributes within that scope.

 5. To enable/disable debug for one or more attributes within a scope, click + to expand
either scope and enable or disable any of the attributes by checking the box for that
attribute and then clicking the Enable or Disable button.

By default, attributes inherit the debug setting of the scope unless they are manually modified.
You can configure applications to generate the DEBUG severity level messages, but the server

doesn’t forward those messages to the domain log.

Integrating Application and Server Logging
Server logs record just the server instance run-time data and not the application logs. Application
developers can integrate their application logging with WebLogic logging services to simplify
application log management. By integrating application logging with the WebLogic Server logging
services, you can view your application logs through the Administration Console, filter the logs,
and set the log files for automatic archiving and rotation, just as you do for any server log file.
Developers can create custom log message catalogs that they can embed in the application code.
The server will integrate these application messages with the normal WebLogic Server run-time
log messages. Developers have several ways to integrate application log messages with WebLogic
logging services:

 � Build custom log message catalogs that applications can invoke to generate log messages.
Applications generate log messages by invoking the methods of the Java APIs associated
with their custom log message catalogs.

 � Use the noncatalog logger to generate messages by placing log messages directly in the
code.

 � Alternatively, developers can enable servlet logging by using the log method in the javax
.servlet.ServletContext.

TIP
Don’t use Log4j or any other logging mechanism in DEBUG mode in a
production environment—you’ll be logging too much information!

If developers don’t use any of the previous three options for application logging, they can use
either Log4j or the Commons API to produce and distribute log messages. They can also use Java
Logging APIs to generate log messages. If you use Java Logging, you must use the Server Logging
Bridge Handler to redirect log messages to the WebLogic logging services. Similarly, if you use
Log4j, you must define your own loggers and appenders to redirect the log messages to WebLogic
Server. You can use Log4j loggers with WebLogic Server logs. WebLogic Server offers built-in
bridges to redirect the standard logging-based mechanisms into WebLogic Server logs.

Controlling Server Log Messages to Log Destinations
WebLogic Server instances send messages to the following four destinations: the server log file,
standard output, the domain log (through the Domain Log Broadcaster), and finally the memory
buffer. You can configure message filtering, such as by specifying a threshold severity level of, say,

318 Oracle WebLogic Server 12c Administration Handbook

WARNING, to control which messages go to each of these four locations. There are several
loggers in a WebLogic Server instance, with the root logger being the main one. The first step in
configuring message filtering is to create a message filter.

You can configure log message filtering through the Administration Console by navigating to
Environment | Servers | <server_name> | Logging | General. You must click Advanced on this
page to configure message filtering. Here are the key settings you can configure on this page:

 � Logging Implementation Specifies the logging implementation. The default logging is
standard Java Logging (JDK), and you can configure the server to use Log4j logging.

 � Minimum Severity to Log Specifies the minimum server level for the root logger, which
serves as the default severity level of all loggers.

 � Redirect Stdout Logging Enabled Redirects standard out from the JVM to any of the four
log message destinations.

 � Logger Severity Properties Specifies the properties for any logger to override the
settings of the root logger.

 � Filter Specifies filtering for messages going to the four log message destinations based
on various criteria. Note that you can’t forward messages with a severity level of DEBUG
to the domain log.

 � Buffer Size Specifies the log message buffer size, which buffers the log messages on the
Managed Server and broadcasts them to the domain log in batch when it is full.

NOTE
To reduce performance overhead involved in sending frequent
message broadcasts to the domain log, Oracle recommends that you
specify at least a value of 10 for the log message buffer in a server
running in production mode.

WebLogic Server Troubleshooting
Troubleshooting WebLogic Server instances starts with an analysis of the log files and often a
thread dump, as described in this chapter. When contacting Oracle Support for help, be sure to
collect enough diagnostic information about the server instances. Probably the most important
information will be in the Managed Server’s log files. In a clustered environment, the server log
files help in diagnosing deadlocks and cluster freezes. The diagnostic image dump is the key
artifact that should be used when working with Oracle Support.

Understanding Java Thread Dumps
Java thread dumps play a crucial role in troubleshooting server performance. A thread dump is a
list of all threads and the full stack trace of code running in each of those threads. It also reveals
the state and name of the threads. Thus, a thread dump captures exactly what’s happening in the
server at an instant in time—it’s a snapshot of the current server activity. The stack trace is a dump

Chapter 6: Monitoring and Troubleshooting WebLogic Server 319

of the current executing stack, and it shows the method calls running in that thread. For example,
here is an example of a stack trace for a thread:

"ExecuteThread: '2' for queue: 'weblogic.socket.Muxer'" daemon prio=1
tid=0x0938ac90 nid=0x2f53 waiting for monitor entry [0x80c77000..0x80c78040]
at weblogic.socket.PosixSocketMuxer.processSockets(PosixSocketMuxer.java:95)
- waiting to lock <0x8d3f6df0> (a weblogic.socket.PosixSocketMuxer$1)
at weblogic.socket.SocketReaderRequest.run(SocketReaderRequest.java:29)
…

The key thing to understand about a stack trace is that you read it from the bottom up. Thus,
in the stack trace being discussed here, the weblogic.kernel.ExecuteThread.run method (not
actually shown in the output) initialed a call to a method right above it, and so on. Also, the
currently running (or waiting) method is always at the top—in this example, the method weblogic
.socket.PosixSocketMuxer.processSockets is currently waiting on a lock.

These are the threads WebLogic Server has created that are responsible for reading data off
the client sockets and translating it into work that is then executed on a worker thread. You will
generally see one or two of these always waiting for its turn to execute a select call.

The threads in a thread dump include the JVM’s threads for performing tasks such as handling
signals and garbage collection, as well as the application threads. Thus, if your application is
running slowly, taking repeated thread dumps during this time will reveal exactly where the
application is stuck. You must take thread dumps while the application is running—your thread
dumps won’t affect server or application performance. Note that a stuck thread is a thread that the
server has not returned to the thread pool for a specific period of time, which is 10 minutes by default.

TIP
When you are troubleshooting a stuck server, take multiple thread
dumps at intervals of 10 to 15 seconds so you can capture the
underlying problem.

When you take a thread dump, the individual threads could be in various states:

 � RUNNABLE In a Sun JVM, the RUNNABLE state means the thread is running or will run
once it gets its CPU. In a JRockit thread dump, this state is referred to as ACTIVE. Here’s
an example:

"[ACTIVE] ExecuteThread: '2' for queue: 'weblogic.kernel.Default
(self-tuning)'" daemon prio=1 tid=0x082e1950 nid=0x2f9d runnable

 � WAITING ON MONITOR The thread is sleeping or waiting for notification from
another thread. You’ll notice the waitForRequest keyword in a thread when it’s waiting.

 � WAITING FOR MONITOR ENTRY A thread is waiting to lock an object, but some other
thread is holding the lock. You’ll also see the “Waiting to lock” message when this happens.

Analyzing a thread dump helps you resolve issues such as poor application response times, a
stuck application, and an application crash.

TIP
Collect multiple thread dumps in the server log file for diagnosing problems.

320 Oracle WebLogic Server 12c Administration Handbook

When you are troubleshooting application performance, you need to identify the thread pool
that the application code is running in and analyze those threads in the thread dump. You can
check the threads marked weblogic.kernel.Default to find out what’s running in the server. Here’s
an example:

"[ACTIVE] ExecuteThread: '12' for queue: 'weblogic.kernel.Default
(self-tuning)'" daemon prio=1 tid=0x091962f8 nid=0x2f95 in Object.wait()
[0x7cd75000..0x7cd75ec0]
 at java.lang.Object.wait(Native Method)
 - waiting on <0x8ed19d28> (a weblogic.work.ExecuteThread)
 at java.lang.Object.wait(Object.java:474)
 at weblogic.work.ExecuteThread.waitForRequest(ExecuteThread.java:156)
 - locked <0x8ed19d28> (a weblogic.work.ExecuteThread)
 at weblogic.work.ExecuteThread.run(ExecuteThread.java:177)

In this example, the waitForRequest keyword means that a thread is idle and waiting to process a
request. This is fairly typical and indicates that, at the current time, more threads are available
than are required to process your workload. The server often allocates threads to handle bursts of
work. When work settles back into a normal pace, it holds these threads in reserve so it can more
efficiently handle the next round of work. This self-tuning behavior constantly attempts to find the
proper amount of concurrency to attain the best possible performance.

If the top line of a thread dump is doing a “socket read,” it means that it is waiting on data to
come through the network. If you’re finding most of the execute threads in a server waiting on socket
reads, it usually indicates a bottleneck of some type. For example, inefficient SQL code, a missing
index, or insufficient memory allocation to an Oracle database can lead to these kinds of socketRead
bottlenecks. The threads could also be waiting on the connection pool for a connection. In general,
waiting for any application object indicates contention for that object. The following example shows
how a lock caused by a JDBC connection shows up in the top line as a socketRead issue:

"[ACTIVE] ExecuteThread: '20' for queue: 'weblogic.kernel.Default
(self-tuning)'" daemon prio=1 tid=0x082e1950 nid=0x2f9d runnable
[0x7c96d000..0x7c96dec0]
 at java.net.SocketInputStream.socketRead0(Native Method)
 …
 - locked <0x8a5b7b38> (a weblogic.jdbc.oracle.OracleConnection)
at jsp_servlet.__my_test._jspService(__my_test.java:108)

TIP
You can redirect the standard output of a thread dump to a file.

Here’s an example of an error thrown by a deadlock:

DEADLOCK DETECTED:
==================

[deadlocked thread] [ACTIVE] ExecuteThread: '12' for queue:
'weblogic.kernel.Default (self-tuning)':
Thread '[ACTIVE] ExecuteThread: '12' for queue: 'weblogic.kernel.Default
(self-tuning)'' is waiting to acquire lock

Chapter 6: Monitoring and Troubleshooting WebLogic Server 321

Deadlocks commonly occur when two resources must be acquired under lock (that is, using
the synchronized keyword in Java or one of the java.util.concurrent classes), and the locks aren’t
always acquired in the same order. In such cases, the two code paths can deadlock as each is
holding the resource the other is waiting on. Correcting this means fixing the application code to
always obtain the locks in the same order. These locks can be extremely difficult to track down, as
they can sometimes occur at infrequent and unpredictable intervals.

If you see the “java.net.SocketException: Too many open files” warning or error message, it
means that the server is running out of file descriptors such as sockets. A thread dump will come
in handy in analyzing this issue because it can tell you if a backlog of requests has caused a spike
in requests for sockets.

Collecting a JRockit Thread Dump
The easiest way to get a thread dump is to use the jrcmd command, which was discussed earlier
in this chapter. Another important technique is to trigger a diagnostic image dump or thread dump
using the WLDF Watches and Notifications component. You can easily write a watch that is
triggered when a thread gets “stuck” and automatically trigger a diagnostic image dump that will
include the stack trace and generate an e-mail to the administrator. Tracking hogging threads is
also a useful thing to configure. You can easily add a watch that will track the hogging thread
count and generate an image dump when it exceeds a certain count.

You can also generate a JRockit JVM thread dump using any one of the following methods:

 � You can easily generate a dump through the Administration Console: Go to Server |
Monitoring | Threads and click Dump Thread Stacks.

 � Use the JRockit Management Console if you’ve enabled the management server by
starting the JVM with the Xmanagement option.

 � Use the WLST threadDump command.

 � Use the kill -3 <PID> command, where PID is the ID of the root of the process tree. You
can execute the kill -3<PID> syntax to kill the session. If the PID is 999, for example, kill
that session with this command:

$ kill -3 999

The server generates a thread dump in the server standard out when you kill the session.

On a Windows server, you can get the process ID (PID) by going to Task Manager | View |
Select Columns and checking the PID (Process Identifier) box. You can then get the PID of the
java.exe process on the Processes tab.

You can also use the JStack utility to take a thread dump. You do this by running the JStack
executable from the JAVA_HOME\bin directory, as shown here:

$ jstack -l <PID>

The best way to view the thread dumps is by using the JRockit Mission Control, which lets you
see what’s going on inside the JVM at any time. However, the JRockit command-line tool jrcmd
lets you access remote systems through the command line when you can’t use the JRockit Mission
Control. You can use jrcmd to get information about running JVMs and also control the JVM’s
run-time behavior. You can use the jrcmd utility to create thread stack dumps, but you can also do

322 Oracle WebLogic Server 12c Administration Handbook

things such as enabling the management console and using the command line to start the JRockit
JVM. Because jrcmd is a command-line utility, you can incorporate it in an operating system
script. The jrcmd tool also lets you execute multiple commands at once by listing those
commands one after the other in a file and passing the filename to the jrcmd command, along
with the process ID of the JVM, as shown here:

jrcmd [pid] -f myfile.txt

All you have to do to get a thread dump through jrcmd is issue a simple command, without
having to do a kill -3 or CTRL-BREAK. Following is a quick introduction to jrcmd that also shows you
how to get a thread dump with that command:

 1. Go to the directory where JRockit is installed and type in jrcmd after moving to the bin
directory.

 2. You can first see the available options for the jrcmd executable by typing the following:

C:\Program Files\Java\jrockit-jdk1.6.0_45-R28.2.7-4.1.0\bin>jrcmd -h

Usage: <pid | main class> [<command> [<arguments>]] [-l] [-f file]
 or: -p
 or: -h
 <command> is a valid JRockit command. Try "help".
 If the pid is 0, commands will be sent to all JRockit processes.
 The main class argument will be used to match (either partially
 or fully) the class used to start JRockit.
 If no options are given, lists JRockit processes (same as -p).
 -l display the counters exposed by this process. These counters
 are for internal use by Oracle and are not officially
 supported or documented.
 -f read and execute commands from the file
 -p list JRockit processes on the local machine
 -h this help
C:\Oracle\Middleware\bin>

 3. You can then type the following command to list all the JRocket processes running on the
local machine.

C:\Program Files\Java\jrockit-jdk1.6.0_45-R28.2.7-4.1.0\bin>jrcmd -p
7112 jrockit.tools.jrcmd.JrCmd -p
11160 com.jrockit.mc.rcp.start.MCMain
10652 weblogic.WLST
4024 weblogic.Server
9280 weblogic.WLST
8020 weblogic.NodeManager -v
11860 org.apache.derby.drda.NetworkServerControl start
$

 4. When you issue the jrcmd command, it prints out all the currently running JVMs. The
command lists the process ID for each running process and the name of the main class.
You can view all the available commands for a process by issuing the help command

Chapter 6: Monitoring and Troubleshooting WebLogic Server 323

with the process ID as an argument. The process ID for one of the JRockit processes in
this example is 4140, so you issue the following command to get all the commands
available for that process:

C:\Program Files\Java\jrockit-jdk1.6.0_45-R28.2.7-4.1.0\bin>jrcmd help
4140:
The following commands are available:
 kill_management_server
 start_management_server
 print_object_summary
 memleakserver
 print_class_summary
 print_codeblocks
 dump_codelayout
 dump_codelist
 dump_codemap
 print_codegenlist
 exception_trace_filter
 print_vm_state
 print_utf8pool
 check_flightrecording
 dump_flightrecording
 stop_flightrecording
 start_flightrecording
 print_properties
 hprofdump
 print_threads
 datadump_request
 runsystemgc
 runfinalization
 heap_diagnostics
 oom_diagnostics
 print_exceptions
 version
 timestamp
 command_line
 sanity
 verbosity
 set_filename
 help
 print_memusage
 set_vmflag
 list_vmflags
For more information about a specific command use 'help <command>'.
Parameters to commands are optional unless otherwise stated.
C:\Program Files\Java\jrockit-jdk1.6.0_45-R28.2.7-4.1.0\bin>

 5. The print_threads command is the one that prints a thread dump. You can view the
various options for the print_threads command by issuing the following command:

C:\Program Files\Java\jrockit-jdk1.6.0_45-R28.2.7-4.1.0\bin>jrcmd 4140 help
print_threads

324 Oracle WebLogic Server 12c Administration Handbook

4140:
Print all threads with stacktraces.
 nativestack - include native frames in the stacktrace (bool,
 false)
 javastack - print java stack frames (bool, true)
 monitors - print lock information (bool, true)
 jvmmonitors - include the jvm internal monitors (bool, false)
 internal - print JRockit internal threads (bool, true)
 concurrentlocks - print java.util.concurrent locks (bool, false)
 compact - print all threads with the same stacktrace together
 (will not print nativestack or monitors) (bool,
 false)
C:\Program Files\Java\jrockit-jdk1.6.0_45-R28.2.7-4.1.0\bin>

 6. To get a thread dump with all the options, just issue the print_threads command without
any options. If you take a few thread dumps a minute or so apart, you can figure out if the
threads are stuck somewhere in your application code:

C:\Program Files\Java\jrockit-jdk1.6.0_45-R28.2.7-4.1.0\bin> jrcmd 4140
print_threads > C:\temp\mythreaddump1

C:\Program Files\Java\jrockit-jdk1.6.0_45-R28.2.7-4.1.0\bin> jrcmd 6480
print_threads > C:\temp\mythreaddump2

The two commands shown here redirect the thread dump output to a directory that you
specify. You can now examine the thread dumps and find out what the threads are doing.

If you’d rather view the thread dump in the Console itself, just issue the command jrcmd
<process id> print_threads. If you don’t specify the process ID for any jrcmd command, the
command will apply to all running processes. If you want to get a thread dump for both a client
and server that are running on the same machine, you can do so by executing the command
jrcmd 0 print_threads.

If you ever wondered about it, no, you can’t kill a stuck thread! Earlier Sun Java specifications
offered you ways to stop or suspend a thread, but those methods are deprecated. Thus, when
confronted by a stuck thread situation, you can just wait for the thread to finish its work or kill the
server—that’s it. The best thing always is to generate a JVM thread dump when you encounter a
stuck thread. As Chapter 5 shows, you can configure a Work Manager to ignore stuck threads.

JVM Crashes
A JVM crash can occur for any number of reasons, including an inefficient garbage collection
policy (more on this in Chapter 10), low memory, extensive code optimization, and so on. When
the JVM crashes, the operating system usually (but not always) generates a core dump, usually a
large file that may reach several gigabytes in size and that is, of course, in a binary format, just as
any operating system core dump. Core dumps contain the errors and exceptions that crashed the
JVM, along with the threads associated with the crash. In a UNIX server, you often find the core
dump in the /tmp directory or in the directory from where you started the server. Core dumps
usually are specific to an operating system, so you must send those files for investigation by the
operating system support personnel, who can analyze those dumps with specialized tools.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 325

When a JVM crashes, it often generates a text file along with the core dump file. In the case of
the JRockit JVM, the file is named *.dump, and for the Oracle (formerly Sun) JDK, the text
filename is hs_err_pid<WebLogicPID>.log.

You can get the server to generate a thread dump before it crashes by specifying the
-XX:+ShowMessageBoxOnError option for Sun HotSpot JVMs. This option is more appropriate for
a development environment. You can use the —XX:OnError option for a production environment,
wherein you can specify a set of commands or a script for the server to execute when it
encounters a fatal error. Similarly, you can specify the JVM option —Djrockit.waitonerror for the
JRockit JVM. Doing so will make the JVM prompt you before it crashes, giving you the
opportunity to generate a thread dump for the crash event.

You can specify the —XX:+HeapDumpOnOutOfMemoryError command-line option to
instruct the HotSpot JVM to generate a heap dump when it encounters a Java heap or permanent
generation memory error. You can use this in a production system, as there’s no overhead to
specifying this option. The heap dump you’ll get will be in the HPROF binary format, and you can
use the Jhat tool to perform a basic analysis of the dump.

% java -XX:+HeapDumpOnOutOfMemoryError -mn256m -mx512m ConsumeHeap
java.lang.OutOfMemoryError: Java heap space
Dumping heap to java_pid1212.hprof ...
Heap dump file created [491428128 bytes in 11.142 secs]
Exception in thread "main" java.lang.OutOfMemoryError:
…

The default location for the heap dump file is the JVM working directory, and the default file
name is java_pid<pid>.hprof. You can specify an alternative filename or directory with the
—XX:HeapDumpPath option.

Generating Logs for Troubleshooting
You can redirect standard error and standard output to integrate thread dump information with
server error messages to produce a more useful log for troubleshooting purposes. A thread dump
displays the current stack in an active thread. Here are the steps for collecting a more useful log
with thread dump information to send to Oracle Support personnel:

 1. Stop the server and back up the current log files.

 2. Restart the server with the following command:

% java -ms64m -mx64m -verbose:gc -classpath $CLASSPATH
-Dweblogic.domain=mydomain -Dweblogic.Name=clusterServer1
-Djava.security.policy==$WL_HOME/lib/weblogic.policy
-Dweblogic.admin.host=localhost:7011 weblogic.Server >> logfile.txt

The previous startup command turns on the verbose garbage collection switch and
redirects all standard error/output to the server’s log file. The —verbose:gc argument
provides a heap image profile that indicates how often the full garbage collection is
occurring. During a full garbage collection, the memory heap is compacted to maximize
the contiguous free memory in a heap. Chapter 10 provides details about tuning the JVM
garbage collection process.

326 Oracle WebLogic Server 12c Administration Handbook

 3. Run the cluster (or server) long enough to reproduce the problem.

 4. Use the kill -3 command, or CTRL-BREAK, to create thread dumps if the server hangs. Repeat
this multiple times on each Managed Server, at intervals of about 5–10 seconds, to
diagnose potential deadlocks.

You can send these log files to Oracle Support for diagnosis.

Using WLST Diagnostic Dump Commands
WLST offers several commands to manage diagnostic dumps. Here’s a brief summary of the
commands:

 � describeDump Describes a specified diagnostic dump.

 � executeDump Executes a specified diagnostic dump.

 � listDumps Displays all diagnostic dumps that can be executed.

Earlier in this chapter, you learned how to use the threadDump command to display a thread
dump for a specific server. By default, the threadDump command saves the dump in a file with
the format Thread_Dump_<server_name>.txt, as shown here:

wls:/medrec-spring/serverConfig> threadDump()
Thread dump for the running server: MedRecServer
===== FULL THREAD DUMP ===============
Sun Oct 20 10:44:22 2013
.
.
.
.
.
.
===== END OF THREAD DUMP ===============

The Thread Dump for server MedRecServer
has been successfully written to Thread_Dump_MedRecServer.txt
wls:/medrec-spring/serverConfig>

If you don’t wish to save the thread dump information to a file, specify the writeToFile=‘false’
option, as shown here:

wls:/medrec/serverConfig> threadDump(writeToFile='false',
serverName='MedRecServer')

TIP
When reviewing attributes such as “execution time high” and
“execution time low,” the unit of time is in milliseconds—thus, if a
servlet’s average invocation time is 5000 ms, it means the average
response time is 5 seconds.

Chapter 6: Monitoring and Troubleshooting WebLogic Server 327

Out-of-Memory Errors
Out-of-memory exceptions are some of the most common errors you come across when
troubleshooting any JVM. Each Java process uses a memory area called the Java heap, and you set
the maximum heap size using the JVM parameter -Xmx (MaxHeapSize). An out-of-memory error
in Java heap condition occurs when the server runs out of memory to allocate for a Java object.
This may happen for a number of reasons, such as setting too low a value for the MaxHeapSize
parameter, memory leaking, or an inappropriate garbage collection strategy.

The following list tells you what the different heap components mean when you’re monitoring
the JVM memory:

 � Allocated Java Heap The total memory available to the JVM for placing Java objects and
compiled classes.

 � Free Java Heap Shows the amount of memory the server has available for placing new
objects.

 � Used Java Heap Shows how much memory is taken up by Java objects and classes
currently in memory.

If you use a large number of JSPs, you may run into the native out-of-memory condition
when the JVM can’t allocate enough memory for code optimization and for class and library
loading. You’ll also see the native out-of-memory errors when you set too small a StackSize
(—Xss parameter) or if the operating system is running low in free memory or swap space. The
StackSize is the area the JVM allocates to individual threads in its memory. Here’s how the error
appears:

Exception in thread "main" java.lang.OutofMemoryError: unable to create new
native thread …

You must analyze the file x.dump (JRockit) and the hs_err_pid.log (Sun JDK) to analyze the
causes of the native out-of-memory errors.

The JVM allocates classes and methods in a non-heap area called the Permanent Generation
(PermGen) area. You’ll see the out-of-memory error in the PermGen area sometimes when
deploying very large applications with numerous classes or when garbage collection doesn’t
clean up the classes of applications that you’ve redeployed using the auto deployment method.
Setting too low a value for Maximum PermGen Memory (XX:MaxPermGen) is also a potential
cause of the PermGen out-of-memory errors.

Here’s what a PermGen out-of-memory error message looks like:

Exception in thread "ExecuteThread: '1' for queue:'
Weblogic.kernel.Default (self-tuning) '"java.lang.OutofMemoryError PermGen
Space

If you notice an out-of-memory error in Java heap condition, you can include the following
Java options in your startup scripts to get details about the garbage collection process:

-verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails
-loggc:/u01/app/gclogs/gc.log

328 Oracle WebLogic Server 12c Administration Handbook

You can instruct the server to generate a heap dump by using the following Java option during
startup:

XX:+HeapDumpOnOutOfMemoryError

The section “JVM Crashes” earlier in this chapter explains how to use the JHat tool to analyze
heap dumps.

If you’re working with a cluster, check the garbage collection on all the Managed Servers in
the cluster. Long garbage collection times for a Managed Server may result in that server failing to
inform the rest of the cluster members that it’s running. If you find that a server is taking longer
than 10 seconds for garbage collection, check the heap allocation parameter.

Summary
This chapter reviewed the essential components of the Weblogic Diagnostic Framework (WLDF),
which is a great way to monitor server performance and capture diagnostic information. In
addition, you learned how to monitor the database using the Administration Console, JMX, and
SNMP. The chapter also discussed the WebLogic Server logging framework, how to troubleshoot
server performance, and how to get thread dumps to analyze JVM performance issues.

CHAPTER
7

Working with WebLogic
Server Clusters

330 Oracle WebLogic Server 12c Administration Handbook

Although you can develop and test all your applications using a single WebLogic Server instance,
in a production setting, you’re more likely to use a WebLogic Server cluster—a grouping of
WebLogic Servers that work together to provide scalability, high availability, and failover

capabilities. This chapter introduces you to WebLogic Server clustering. You’ll learn about the various
recommended architectures such as the basic combined tier, multitier, and proxy tier architectures.
The chapter shows you how to create a cluster using different methods, including a sample WLST
script provided by Oracle. You’ll learn how to configure a cluster, manage the cluster lifecycle, and
monitor a running cluster. The chapter explains how WebLogic Server provides load balancing and
discusses the various load-balancing algorithms you can use. Clusters provide application failover for
various clustered objects such as EJBs, RMI objects, servlets, and JSPs. The chapter shows how
WebLogic Server performs failover at the application level. To provide high availability, WebLogic
Server can automatically migrate an entire server or just the key services that a cluster hosts. The
chapter discusses both automatic and manual whole server migration, as well as service migration.

Introduction to WebLogic Server Clusters
When you create a domain with multiple Managed Servers, all those servers function
independent of each other. A cluster, on the other hand, is a group of WebLogic Server instances
that work as a single instance from the point of view of a client. The reason you use a cluster is to
increase scalability and reliability by taking advantage of a cluster’s workload balancing and
failover capabilities that you can’t have with a single server instance. You manage clustered server
instances the same as any nonclustered instance. Of course, to avail yourself of the load-
balancing and failover capabilities of a cluster, you must configure a few other things as well.

You use clusters to achieve two important goals: high availability and scalability. High
availability includes support for both the failover of applications as well as the failure of a server
or an essential service such as a JMS service. A cluster maintains copies of application
components (objects), so if a component becomes unavailable, the cluster uses the failed object’s
copy to complete the processing of the task. WebLogic Server uses session replication to fail over
servlets and JSP. Similarly, it uses replica-aware stubs to maintain information about the state of
application components such as EJBs and RMIs. Replication allows the copies of the failed objects
to finish the job when an application component fails. WebLogic Server also provides for both
automatic and manual migration of an entire clustered server instance to a different machine
following a server failure. You can use this capability manually for administrative purposes as well.

You can cluster objects such as servlets, JSPs, EJBs, RMI objects, JMS destinations, and JDBC
connections. WebLogic Server replicates the HTTP session data for clustered servlets and JSPs.
The server uses replica-aware stubs for EJBs and RMI objects to provide load-balancing and
failover support for those objects. When you cluster JDBC connections, clients automatically
request alternative connections when the initial connection fails. A pinned service is one that is
active on only one instance at a given time, although it is deployed on all members of a cluster.
WebLogic Server maintains only a single copy of a pinned object within the cluster. Certain RMI
objects, the JMS servers, and the JTA Transaction Recovery Service are pinned services. WebLogic
Server provides for both automatic and manual migration of these services during failures.

Clusters let you scale up easily, either by enabling you to add additional server instances to
the cluster on the same set of machines or by adding additional machines to the cluster. A cluster
also allows the load balancing of the workload by letting you cluster objects on multiple server
instances, thus allowing the cluster to maintain copies of those objects. By clustering EJBs on

Chapter 7: Working with WebLogic Server Clusters 331

multiple WebLogic Server instances, for example, you let the cluster distribute the requests for the
EJBs among the various members of the cluster. You can specify a load-balancing algorithm to
control how the cluster balances the workload. The following points summarize how clustering
provides application failover and scalability:

 � State management Applications often include some state in the middle tier. In web
applications, this most often takes the form of an HTTP session state. For EJB-based
applications, this often takes the form of a stateful session bean. WebLogic clustering works
with either a load balancer or a web server to make sure that a second copy of any such
state is maintained, so if a primary server either fails or is intentionally taken down, the user
request will be automatically redirected, and the user will not see a disruption in service.

 � Seamless failover of idempotent requests For a stateless service bean (SSB) that is
idempotent (executing the operation twice gives the same result as executing it once),
an RMI stub will simply retry the request on the secondary server and the caller will not
even be aware that the initial request failed. This allows a client (potentially a server in
one tier calling another server) to be unaware of these details.

 � Scaling of asynchronous services Asynchronous services such as JMS are built on
WebLogic Server clustering, making it possible to balance the queuing and processing
of messages across a group of server instances that can grow and shrink dynamically
without having to change the application code.

You can deploy an application to a cluster even when one or more of the cluster members are
unavailable. The cluster will initiate the deployment of the application to any unreachable servers
once they become available again. You can, however, enforce consistent deployment to all cluster
members, if you wish. By doing this, you adopt an all-or-nothing approach to deployment—either
the application will be deployed to all the cluster members or it won’t be installed to any
member. A key concept in clustering is the “homogeneity” of the server instances. This means that
all of the servers in a cluster must have access to the same resources and be running the same
application code. The WebLogic Server deployment infrastructure is designed with this in mind
and performs additional checking to ensure consistency in the cluster.

Relationship Between Clusters and a Domain
Beginning WebLogic Server users sometimes find the relationship between a cluster and a domain
a bit confusing. Here are the important points you need to remember about how clusters and
domains relate to each other:

 � You always want to configure three WebLogic Server instances in order to create a two-
node cluster, with the extra instance being the Admin Server, which should not be part
of a cluster. You use the Admin Server only for managing the other instances, and if the
Admin Server goes down, the cluster will continue running fine—you just need to start
a new Admin Server instance. Once you restart the Admin Server, it will automatically
discover all the cluster members during its startup.

 � A cluster always belongs to a single WebLogic Server domain—you can’t create a cluster
that spans multiple domains.

 � A WebLogic Server instance (Managed Server) can belong only to a single cluster.

 � You can’t use a configured resource such as a JDBC connection pool for multiple domains.

332 Oracle WebLogic Server 12c Administration Handbook

 � You must run the same version of WebLogic Server on all machines that are part of the
cluster, except when you do a rolling upgrade from one service pack to another.

 � Each of the machines must have a static IP address. You must not assign IP addresses
dynamically to a cluster member through DHCP because the members may not be able
to communicate with each other if an address changes. This can work in the short term for
testing applications locally, but it is not something you would do in a production deployment.

You can build a simple cluster for developing applications by creating a domain with an
Admin Server and two nodes (a cluster member is called a node), all running on the same physical
machine. In a production environment, however, you must deploy the Admin Server and the
Managed Servers on different machines for failover purposes.

If a domain has multiple clusters, you use the domain’s Admin Server to configure and manage
the various clusters. As mentioned earlier in this chapter, it is recommended that you don’t include the
Admin Server as part of any cluster. The Admin Server manages a domain’s configuration, including
the configuration of all the Managed Servers in the cluster. Cluster members need the Admin Server to
be up so they can connect to it and get the domain configuration information. For stronger security,
the Admin Server must be in the same demilitarized zone (DMZ) as the cluster. You start the Admin
Server first and start the cluster members after that. Even if the Admin Server fails for some reason, the
cluster continues to work fine—all load-balancing and failover capabilities will remain intact.

Deployment in a Cluster
Chapter 8 explains WebLogic Server application deployments in detail. In this chapter, I explain
some cluster-specific deployment details. WebLogic Server deploys applications in two phases: in
the first phase, it distributes applications to targets and validates the deployment. Once the
validation process is complete, the second phase of the deployment begins, in which the
applications are deployed on the server instances and made available to the clients. Check to
ensure that all cluster members are running and that you can reach them with the Admin Server
before you start the deployment process.

WebLogic Server allows you to deploy applications to a partial cluster, when one or more
members of the cluster are unavailable. When these servers become available again, WebLogic
Server automatically initiates deployment to the servers. However, by setting the property
ClusterConstraintsEnabled to true, you can specify that the deployment should succeed only if all
the cluster members are reachable.

CAUTION
Although you can do so, targeting a pinned service (a service such as JTA
Transaction Recovery Service) to multiple cluster members is not advisable.

Cluster Architectures
Understanding WebLogic Server cluster architecture is easier once you understand the various
application tiers that you host on the cluster. Tiers refer to the various ways you can demarcate an
application’s logical services, such as the presentation and processing of the business logic. The
most common application tiers are the following:

 � Web tier Runs a web server such as Apache, serves static HTML content, and is usually
the main interface between the clients and the web application.

Chapter 7: Working with WebLogic Server Clusters 333

FIGURE 7-1. The recommended basic cluster architecture

WLS Cluster

Load
Balancer

HTTP

JSP/servlet
EJB

HTTP

JSP/servlet
EJB

HTTP

JSP/servlet
EJB

Database

 � Presentation tier Provides dynamic content such as servlets and JavaServer Pages (JSP).

 � Object tier Provides the business logic through Java objects such as EJBs.

A Java EE application often covers all three tiers. With the advent of JPA and Java EE 5 and 6, these
tiers are commonly deployed together.

You can have all three of the application tiers running on the same machine if you want, but
in enterprise deployments, they are usually hosted on different physical servers. There are no hard
and fast rules regarding how to configure a cluster. It all depends on the design of your
application, your security requirements, and your business needs. Oracle recommends three
types of architectures: the first is a basic architecture, the second is a multitier architecture, and
the third is a proxy architecture where you use a bank of web servers to provide static HTTP
content and use one or two WebLogic clusters for hosting the presentation and object tiers.

You can combine all tiers of your application in a single cluster, or you can create a separate
cluster for each of the tiers. You can use either a third-party load balancer or WebLogic Server’s
proxy plug-in for that purpose. Proxy plug-ins also contain information about a client’s session
state to help during failover of an application. You also must decide how you’re going to configure
the DMZ in your network, an area of the network consisting of untrusted outside sources that
external browser-based clients can access. Again, there are no rules regarding how many firewalls
you can use with your DMZ—you may decide one firewall is enough, or you may use two
firewalls, one on either side of the DMZ.

Basic Architecture
The basic recommended architecture is one where you combine all three tiers in a single cluster.
In this architecture, also called a combined tier architecture, you deploy clustered objects such as
EJBs in all the WebLogic Server instances in the cluster. Figure 7-1 shows the recommended basic
cluster architecture, with the single cluster running all three tiers (web, presentation, and object

334 Oracle WebLogic Server 12c Administration Handbook

FIGURE 7-2. The recommended multitier architecture

WLS Cluster WLS Cluster

Load
Balancer

EJB
HTTP

JSP/servlet

HTTP

JSP/servlet

HTTP

JSP/servlet

EJB

EJB

Database

tiers) of the web application. If most of your presentation-tier objects, such as servlets or JSPs,
access EJBs or other objects from the object tier, this architecture works well and even offers
better performance than a multitier architecture. It has the benefit of being easy to configure and
administer to boot. This architecture allows load balancing and failover between the external
clients and the cluster, so it serves the main reason for setting up a cluster.

The disadvantage to using the basic combined architecture is that because you deploy clustered
objects such as EJBs to all the WebLogic Server instances in the cluster, you can’t load balance
the method calls to the EJBs. WebLogic Server simply selects the local EJB object instance to optimize
method calls to clustered EJBs, a strategy called a collocation strategy. In order to load balance the
method calls to EJBs, you must configure a different architecture, with the presentation and object tiers
on different physical clusters as offered by a multitier architecture, which is explained in the following
section. From a high availability point of view, if one of the WebLogic Server instances in the cluster
goes down, it takes away not only the ability to call the EJBs, but also the application’s ability to serve
static HTTP and servlet content, which is adversely affected. This type of situation usually occurs in
the case of applications where one team owns the entire application from front to back.

Multitier Architecture
In the Oracle-recommended multitier architecture, you use a separate cluster for the presentation
and object tiers, with the first cluster serving static HTML content and servlets and the second
cluster serving clustered EJBs. Figure 7-2 shows the recommended multitier architecture. If your
goal is high availability, you should consider using the multitier architecture, as it has fewer single
points of failure. For example, if one of the instances in the object-tier cluster goes down, your
web application can still continue to serve static content (through HTML and servlets) because
this content is served from the presentation tier cluster. You can also provide better security to the
object tier by placing just the presentation cluster in the DMZ.

A multitier architecture enhances availability by eliminating the bottleneck of using a single physical
server and also increases the scalability of the system. A multitier architecture can’t take advantage of
the collocation strategy and thus there’s the additional overhead of calls to clustered EJBs. However, if

Chapter 7: Working with WebLogic Server Clusters 335

FIGURE 7-3. A two-tier proxy cluster architecture

Web Servers WLS Clusters

JSP/servlet
EJB

JSP/servlet
EJB

JSP/servlet
EJB

HTTP Server

HTTP Server

HTTP Server

Proxy Plug-In

Firewall

Proxy Plug-In

Proxy Plug-In

Database

your applications access only a few clustered EJBs, this may not be a concern. Another motivation for
such a deployment is when there is a natural division of the application by departments or teams. For
instance, you may have two applications that provide different views onto the same back-end data. For
example, a sales web application and an order-processing application that both reference the same set
of back-end data and services would allow each of these to be sized and versioned independently.

Proxy Architecture
In proxy architectures, the web servers aren’t part of the WebLogic Server clusters. The web server
bank uses either a proxy plug-in or the simple HttpClusterServlet to act as a front end to the
WebLogic Server clusters that host the presentation and object tiers, as shown in Figure 7-3. Thus,
the web tier acts as a proxy cluster consisting of a group of proxy servers that route requests for
dynamic content to the WebLogic clusters that host the dynamic content. Users access the web
servers directly, and the web servers, in turn, access the presentation and object tiers to respond
to the user requests. The web server tier thus merely passes along the servlet and JSP requests to
the WebLogic Server cluster. The web tier can use any of the following setups:

 � Weblogic Server with the HttpClusterServlet

 � Apache or Oracle HTTP Server with the WebLogic Server plug-in

 � Microsoft Internet Information Services (IIS) or Netscape Enterprise Server with the
appropriate WebLogic Server proxy plug-in.

WebLogic Server proxy plug-ins know which WebLogic Server instances host a clustered
servlet or JSP, and they forward requests on a round-robin basis. The plug-ins additionally provide

336 Oracle WebLogic Server 12c Administration Handbook

failover support by locating the replica of a client’s HTTP session when a server instance fails.
Using a proxy architecture with a client-facing web tier, you can combine your presentation and
object tiers into one WebLogic cluster (similar to the basic architecture). Alternatively, in addition
to the web tier, you can configure two separate WebLogic clusters, one for hosting the presentation
tier (servlets) and the other for hosting the object tier (EJBs). You can use the same physical machine
or two separate physical machines for hosting the presentation and object tiers.

How Clusters Communicate
The WebLogic Server instances that make up a WebLogic cluster communicate directly with one
another so as to coordinate their activities. When each server is started, it advertises that fact to all
the other members of the clusters, commonly referred to as “peers.” Each of the cluster members
keeps track of all of the other cluster members, and they all try to ensure that they have a consistent
view of which servers are up and which are not. The members of the cluster combine the cluster
configuration information as well as information about the current state of the cluster to negotiate
who is the backup for whom. The members of a cluster constantly monitor one another with
heartbeats. They use this information to determine when the primary server for a particular piece of
state has become unavailable and whether its data needs to be replicated to some other instance.

Instances within a cluster communicate through IP sockets using IP unicast or IP multicast.
WebLogic Server cluster members use IP sockets for communicating with other members of the
cluster, such as for transferring messages and data between two applications. For example, a
clustered instance uses the IP sockets for replicating HTTP session states between a primary and a
secondary server. IP unicast or IP multicast messaging is for communications among the cluster
members, to announce the availability of services and to broadcast heartbeat messages to show
they’re alive. IP multicast messaging is offered for backward compatibility—if you’re creating a
new cluster, use unicast for intra-server messaging. Multicast messaging lets multiple applications
listen for messages by subscribing to a given IP address and port number. Multicast messaging
requires hardware configuration, whereas unicast messaging doesn’t. You also don’t have to
configure cross-network configuration for unicast messaging. Use multicast messaging only if you
have older versions of Weblogic Server clusters. Because you can’t mix multicast and unicast, in
that case, all servers must use multicast messaging.

For IP sockets, you can use either a pure Java or a native socket reader implementation.
Oracle recommends that you use the more efficient native socket reader implementation. By
default, each server instance creates three socket reader threads, and you can increase this
number to handle peak loads.

NOTE
You can’t mix multicast and unicast messaging for the members of the
same cluster.

Naming Cluster Instances
When you create a cluster, you must provide the location information for all Managed Servers and
the Admin Server. You can use either DNS names or IP addresses for naming the servers. Each of
the Managed Servers must have a unique listen address and listen port combination. If your cluster
nodes are all on the same server, they can, of course, use the listen address, but you must assign a
different listen port to each Managed Server. Oracle recommends that you use DNS names for

Chapter 7: Working with WebLogic Server Clusters 337

production environments, as the firewalls may cause translation errors when you use IP addresses.
You must use the ExternalDNSName attribute of a server instance to define its external DNS name
if its internal and external DNS names aren’t identical. If remote processes need to access the
server instance, you must leave the listen address attribute blank instead of specifying the address
as localhost. The server will automatically determine the address of the machine when you don’t
specify a value for the listen address attribute. Also, avoid using localhost as the listen address.

When you leave the listen address blank, the server will detect all the available network
interfaces on the machine and attempt to create a listener on the listen port on all of them. When
you are configuring a cluster that is having requests directed to it through a load balancer or web
server, it is best to keep things clear and simple. In that case, you create a fixed or static IP that is
configured in DNS to map to one particular network interface on that machine. That name in
DNS is then used when defining the listen address for the server and when defining load
balancing through round-robin DNS or in the web server proxy.

Cluster Address
You can either define the cluster address during the creation of a cluster or let WebLogic Server
generate the cluster address for each request. The dynamic cluster addresses that WebLogic Server
generates are in the following format:

listenaddress1:listenport1,listenaddress2:listenport2

Each of the listen address and listen port combinations in the cluster address belongs to the
particular Managed Server to which the server directs a new request. Note that the requests may
be received on a Managed Server’s default network channel or a custom network channel. By
default, the number of listen address/port combinations you can include in the cluster address is
set to 3. You can change the number of combinations by setting the value of the Number Of
Servers In Cluster Address setting in the Environment | Clusters | Cluster Name | Configuration |
General page of the Administration Console.

NOTE
The listen address/listen port combination for different requests will
appear in a randomly chosen order in the cluster address.

In a production environment, use a DNS name for the cluster address. The DNS name must
map to the IP address or DNS names of the cluster members. When you specify the cluster
address as a DNS name, each cluster member must have the same listen port number. Instead of
simply relying on a DNS round robin, WebLogic Server uses a cached list of addresses, which
enables the server to remove unreachable addresses. You can define the cluster address as a list
containing the DNS name or the IP address and the listen port of each cluster member:

DNSName1:port1,DNSName1:port2,DNSName1:port3
IPaddress1:port1,IPaddress2:port2,IPaddress3:port3

NOTE
Since you must not include the Admin Server in a cluster, don’t
include its IP address in the cluster’s DNS name.

338 Oracle WebLogic Server 12c Administration Handbook

Creating and Configuring a Cluster
You can use the WebLogic Configuration Wizard, the Administration Console, or WLST
commands to create and configure clusters. Oracle recommends that you use the Configuration
Wizard to create and configure a cluster. Chapter 3 offers a brief discussion of how to create a
domain and configure it using the Configuration Wizard. The Configuration Wizard is a good way
to start creating a cluster, but you will almost certainly need to modify the cluster configuration.
In this chapter, you learn how to create and configure clusters employing other methods,
including using the Oracle-provided WLST script cluster_creation.py for quickly getting a cluster
up and running in a development environment. Once you learn how to create a basic cluster and
are familiar with managing cluster lifecycles and the monitoring of clusters, you can explore the
configuration aspects of cluster management, which I describe later in this chapter in the section
“Managing a WebLogic Server Cluster” after a review of the cluster creation methods next.

Using the Administration Console
To build a cluster through the Administration Console, you first configure the Managed Servers
that are going to be the nodes in the new cluster and then configure the cluster itself. If you are a
developer looking to create a simple cluster to test your applications, you can create the entire
cluster on a single machine. The basic principles of configuring a cluster are the same whether
you use one or many machines. Let’s simply use one of the WebLogic Server sample domains
(wl_server) to learn how to build a simple cluster whose members are all on a single machine.

You can create a cluster and its members at the same time through the Clusters page. You
can also create your Managed Servers separately and then configure them as members of a
cluster. You already have an Admin Server for the wl_server domain—let’s create two Managed
Servers (nodes) and configure them into a cluster.

Creating the Cluster Members
To create a simple two-node cluster, you must first create two Managed Servers and configure
them into a cluster. Creating the two new Managed Servers is simple. Click Servers in the left-
hand pane of the Administration Console and click New. On the Create A New Server page, you
must configure just two settings for each of the two Managed Servers: Server Name and Server
Listen Port. Type MyManagedServer1 as the server name for the first Managed Server. You can
specify any listen port except the one already used by the Admin Server. Specify 7003 as the listen
port for the first server, MyManagedServer1. At the bottom of the page, select the “No, this is a
stand-alone server” option, because you don’t yet have a cluster. Click Next and after reviewing
your choices in the next page, click Finish. Repeat this for the second Managed Server: name it
MyManagedServer2, and assign it a different listen port, 7005.

TIP
You can clone an existing cluster through the Administration Console’s
Summary Of Clusters page.

Creating the Cluster
Once you create the second Managed Server (MyManagedServer2), you can configure a cluster in
one of two ways. The first method is to choose the Create A New Cluster option at the bottom of
the Create A New Server page. Alternatively, you can select Environment | Clusters to go to the

Chapter 7: Working with WebLogic Server Clusters 339

FIGURE 7-4. The Create A New Cluster page in the Administration Console

Summary Of Clusters page and click New to create a new cluster (you actually get to choose
between a normal Cluster and a Dynamic Cluster. Just choose Cluster for this example). Either
way, you get the Create A New Cluster page, as shown in Figure 7-4, which lets you configure
various cluster configuration options.

Adding Nodes to the Cluster
The previous two sections showed you how to create the cluster members and the cluster itself.
However, the cluster doesn’t know about the two Managed Servers you created because they’re
still stand-alone servers. You must now make the two Managed Servers members of your new
cluster, MyCluster1, by assigning the two servers to it. Once you create a new cluster, the cluster
name appears in the Summary Of Clusters page. Clicking the cluster name (MyCluster1) takes you
to the Settings For MyCluster1 page.

Initially, you’ll be on the General section of the Settings for MyCluster1 page, On this page,
click the Servers subtab to add servers to the new cluster. Figure 7-5 shows the Servers page. The
Servers page lets you configure servers that you want to assign to a cluster. The server table is
initially empty because the cluster doesn’t have any members yet. Click Add twice (at the bottom
of the page, inn the Servers table) to add your two Managed Servers to the new cluster
MyCluster1. The resulting Add A Server To Cluster page is shown in Figure 7-6.

On the Add A Server To Cluster page, you must identify the Managed Servers you want to add
to the new cluster. Choose the Select An Existing Server, And Add It As A Member Of This Cluster
option. You’ll notice the first Managed Server, MyManagedServer1, in the Select A Server box.

340 Oracle WebLogic Server 12c Administration Handbook

FIGURE 7-5. The Servers page (Settings for MyCluster1) in the Administration Console

Click Next. You’ll be taken back to the Settings For MyCluster1 page. Click Add again. In the
Select A Server box, you will now see the name of your second Managed Server,
MyManagedServer2. Click Finish.

Optionally, you can select the Create A New Server And Add It To This Cluster option to create
and add nodes to the cluster. If you now click the Servers tab in the Settings For MyCluster1 page,
you’ll see both cluster members.

Using the WLST Script
Note that you can quickly create a cluster in a development or test environment by using a script such
as the cluster_creation.py online WLST script provided by Oracle. The cluster_create.py script is
located in the C:\Oracle\Middleware\Oracle_Home\user_projects\applications\wl_server\
examples\src\examples\wlst\online directory. This directory contains a few other useful WLST online
scripts as well. The script contains commands that connect WLST to the domain’s Admin Server, start
an edit session, and create a set of ten Managed Servers. The script then creates one or more clusters

Chapter 7: Working with WebLogic Server Clusters 341

FIGURE 7-6. The Add a Server to Cluster page in the Administration Console

and assigns the Managed Servers to the cluster or clusters. Of course, you can customize this script to
your heart’s content. Here’s an example that shows how to use the cluster_creation.py script to create
a cluster. You need to connect to a running Admin Server to execute this command:

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin> setWLSEnv.cmd
C:\Oracle\Middlware\Oracle_Home\wl_server\common\bin>java weblogic.WLST
wls:/offline> connect()
Successfully connected to Admin Server 'examplesServer' that belongs to domain
wl_server'.
wls:/wl_server/serverConfig/Servers>
execfile('
C:\Oracle\Middleware\Oracle_Home\user_projects\applications\wl_server\examples\src
\examples\wlst\online\cluster_creation.py')
starting the script
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'examplesServer' that belongs to
domain wl_server'.
Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.
Location changed to edit tree. This is a writable tree with DomainMBean
as the root. To make changes you will need to start
an edit session via startEdit().
For more help, use help(edit)
Starting an edit session ...

342 Oracle WebLogic Server 12c Administration Handbook

Started edit session, please be sure to save and activate your
changes once you are done.

creating cluster cluster1
MBean type Cluster with name cluster1 has been created successfully
creating cluster cluster2
MBean type Cluster with name cluster2 has been created successfully
MBean type Server with name managed3 has been created successfully.
creating managed server managed3
MBean type Server with name managed2 has been created successfully.
creating managed server managed2
MBean type Server with name managed1 has been created successfully.
creating managed server managed1
MBean type Server with name managed5 has been created successfully.
creating managed server managed5
MBean type Server with name managed4 has been created successfully.
creating managed server managed4
MBean type Server with name managed10 has been created successfully
creating managed server managed10
MBean type Server with name managed9 has been created successfully.
creating managed server managed9
MBean type Server with name managed8 has been created successfully.
creating managed server managed8
MBean type Server with name managed7 has been created successfully.
creating managed server managed7
MBean type Server with name managed6 has been created successfully.
creating managed server managed6
Saving all your changes ...
Saved all your changes successfully.
Activating all your changes, this may take a while ...
The edit lock associated with this edit session is released
once the activation is completed.
Activation completed
Disconnected from weblogic server: examplesServer

Check the status of your new cluster with the state command:

wls:/offline> connect()
wls:/wl_server/serverConfig> state('cluster1','Cluster')
There are 5 server(s) in cluster: cluster1
States of the servers are
managed1---SHUTDOWN
managed2---SHUTDOWN
managed3---SHUTDOWN
managed4---SHUTDOWN
managed5---SHUTDOWN

The cluster creation script cluster_creation.py creates the clusters and the Managed Servers that
you specify and assigns the Managed Servers to the clusters, but the script doesn’t automatically start
the Managed Servers in the cluster or clusters you create with the script. Use the start command to start
the cluster, as shown in the section “Starting and Stopping Clusters with WLST Commands,” later in this

Chapter 7: Working with WebLogic Server Clusters 343

chapter. You can use the cluster_deletion.py script to remove a cluster from the domain configuration.
Alternatively, you can delete a cluster from the Administration Console Clusters home page.

Configuring a Cluster
When you create a cluster, you can specify just the name for the cluster as well as the Managed
Servers that belong to that cluster, as shown in the cluster creation examples earlier in this
chapter. However, you can configure several other cluster attributes. You can configure the
new cluster by going to Environment | Clusters and clicking the name of the cluster you want
to configure. Following are the key attributes you can configure from the Settings For
<cluster_name> page:

 � Cluster Address Clients use the cluster address to connect to the cluster. You can
provide either a DNS hostname that maps to multiple IP addresses or a comma-separated
list of hostnames or IP addresses. If you don’t define the cluster address, WebLogic Server
will dynamically generate the cluster address for each new request. It’s administratively
simpler to let the server handle the cluster address because there’s no overhead involved,
even in a production environment. The format of the listen address is as follows:

listenaddress1:listenport1,listenaddress2:listenport2

 � Default Load Algorithm WebLogic Server uses the algorithm you specify for load
balancing between replicated services if you haven’t specified an algorithm for any of
the services. You can choose among the round-robin, weight-based, or random load-
balancing algorithms.

 � WebLogic Plug-In Enabled You must set this attribute to true if your cluster receives
requests from a proxy plug-in or the HttpClusterServlet.

 � Service Age Threshold This is the time, in seconds, by which two services must differ in
order for the server to classify one of the services as the older service.

 � Member Warmup Timeout Cluster members normally synchronize with other members
within 30 seconds. You can specify the maximum time (in seconds) that a cluster will wait to
synchronize with the other cluster members. If you set this attribute to its minimum value of 0,
the servers will not try to discover any of the running cluster members during their initialization.

While you can certainly use the Administration Console to create and configure the cluster,
the Configuration Wizard is the recommended tool for doing this. You can then use the Console
for additional configuration and monitoring purposes.

Creating Dynamic Clusters
In the Oracle WebLogic Server 12.1.2 release, you can create dynamic clusters, which are based
on a shared server template. A dynamic cluster contains dynamic servers, which are server
instances that you don’t individually configure, but instead get their configuration from a server
template. You use the server template to specify the configuration of the cluster members, thus
avoiding having to configure each cluster separately when creating or expanding a cluster.

Configuring a dynamic cluster lets you configure a set of server instances to keep ready for
peak load times. When you need additional server capacity, you can easily start the new servers,
without having to manually configure each server instance separately and adding it to the cluster.

344 Oracle WebLogic Server 12c Administration Handbook

Creating Dynamic Clusters Through the Administration Console
You can create a dynamic cluster through the Administration Console or through WLST. Follow
these steps to create a dynamic cluster in the Administration Console:

 1. In the Change Center of the Administration Console, click Lock & Edit.

 2. In the left pane of the Console, select Environment | Clusters.

 3. In the Clusters table, click New and select Dynamic Cluster.

 4. On the Specify Cluster Identity And Properties page, set the following options:

 � Name Enter a unique name for your new dynamic cluster.

 � Messaging Mode Select the messaging mode you want to use for this cluster.

 � Unicast Broadcast Channel If you are using the unicast messaging mode, enter
the unicast broadcast channel. This channel is used to transmit messages within the
cluster. If you do not specify a channel, the default channel is used.

 � Multicast Address If you are using the multicast messaging mode, enter the
multicast address of the new dynamic cluster. A multicast address is an IP address in
the range from 224.0.0.0 to 239.255.255.255. The default value used by WebLogic
Server is 239.192.0.0. This address must be unique to this cluster and should not be
shared by other applications.

 � Multicast Port Enter the multicast port for the new dynamic cluster. The multicast
port is used by cluster members to communicate with each other. Valid values are
between 1 and 65535. Click Next.

 5. On the Specify Dynamic Server Properties page, set these options:

 � Number Of Dynamic Servers Enter the number of servers you need at peak load.

 � Server Name Prefix Specify the naming convention you want to use for the dynamic
servers in your cluster.

 6. Select either Create A New Server Template Using Domain Defaults or Clone An Existing
Server Template For This Cluster. If you choose to clone an existing template, select the
template in Server Template To Clone. If you don’t already have a configured server
template, WebLogic Server will automatically generate a template for you. Click Next.

 7. On the Specify Machine Bindings page, select the method you want to use to distribute
the dynamic servers in your cluster across machines. Click Next.

 8. On the Specify Listen Port Bindings page, select how the dynamic servers should be
bound to listen ports. Click Next.

 9. On the Review Your Cluster Configuration page, check the configuration details for your
new dynamic cluster to make sure they are correct. Click Finish.

Once you activate the change, the new dynamic cluster appears in the Clusters table. If you
did not apply a previously existing server template, a new server template is automatically created
with the naming convention you specified. The Administration Console also displays a message
indicating that the cluster was created successfully.

When you create a dynamic cluster by using a server template and specifying the number of
server instances, WebLogic Server calculates values for the following attributes:

Chapter 7: Working with WebLogic Server Clusters 345

 � Server Name Server names use the specified prefix followed by the index number, as in
dyn-server-1, dyn-server-2, and so on.

 � (Optional) Listen Ports (cleartext and SSL) You can set the configuration for the listen
ports in the server template or indicate that the default listen ports be used.

 � (Optional) Machines or Vrtual Machines You can specify the machines to be used for
the dynamic servers, and if you don’t, all machines in the domain are selected, and the
Managed Servers are assigned to those machines using a round-robin algorithm.

 � (Optional) Network Access Point Listen Ports Same as listen ports.

Creating a Dynamic Cluster Using WLST
Use the following general steps to create a dynamic cluster using WLST:

 1. Create a server template with the server attributes you require.

 2. Create a dynamic cluster and specify the desired cluster attributes.

 3. Set the server template for your dynamic cluster.

 4. Set the maximum number of server instances in the new dynamic cluster.

Here’s an example that shows how to create a dynamic cluster using WLST:

connect()
edit()
startEdit()

Create the server template for the dynamic servers and set the attributes for
the dynamic servers. #
dynamicServerTemplate=cmo.createServerTemplate("dynamic-cluster-server-template")
dynamicServerTemplate.setAcceptBacklog(2000)
dynamicServerTemplate.setAutoRestart(true)
dynamicServerTemplate.setRestartMax(10)
dynamicServerTemplate.setStartupTimeout(600)

Create the dynamic cluster and set the dynamic servers.

dynCluster=cmo.createCluster("dynamic-cluster")
dynServers=dynCluster.getDynamicServers()
dynServers.setMaximumDynamicServerCount(10)
dynServers.setServerTemplate(dynamicServerTemplate)

dynServers.setServerNamePrefix("dynamic-server-")

Listen ports and machines assignments will be calculated. A round-robin
algorithm is used to assign the 10 dynamic servers to all machines in this
domain.

dynServers.setCalculatedMachineNames(true)
dynServers.setMachineNameMatchExpression("dyn-machine*")

346 Oracle WebLogic Server 12c Administration Handbook

activate the changes

activate()

And here’s the config.xml file for our new dynamic cluster:

<server-template>
 <name>dynamic-cluster-server-template</name>
 <accept-backlog>2000</accept-backlog>
 <auto-restart>true</auto-restart>
 <restart-max>10</restart-max>
 <startup-timeout>600</startup-timeout>
</server-template>

<cluster>
 <name>dynamic-cluster</name>
 <dynamic-servers>
 <server-template>dynamic-cluster-server-template</server-template>
 <maximum-dynamic-server-count>10</maximum-dynamic-server-count>
 <calculated-machine-names>true</calculated-machine-names>
 <machine-name-match-expression>dyn-machine*</machine-name-match-expression>
 <server-name-prefix>dynamic-server-</server-name-prefix>
 </dynamic-servers>
</cluster>

Limitations When Using Dynamic Clusters
A few important limitations apply to the use of dynamic clusters. Whole server migration and
service migration are not supported with dynamic clusters. Because dynamic clusters don’t allow
targeting to an individual dynamic server instance, you won’t be able to use the following with
dynamic clusters:

 � Deployments that cannot target to a cluster. This includes migratable targets.

 � Configuration attributes that refer to individual servers, including JTA migratable targets,
constrained candidate servers, user preferred server, all candidate servers, and hosting server.

 � Server-specific configuration attributes, including replication groups, preferred secondary
groups, and candidate machines (server level).

In addition, there are a few JMS-related limitations on the use of dynamic clusters.

The config.xml File and a Cluster
The config.xml file for a domain with a cluster is similar to one without a cluster, except that the
<server> elements will show the cluster name as well as other information if the servers are
designated as migratable targets for pinned services. Here’s the cluster-related information from
the config.xml for the wl_server domain in my environment:

<cluster>
 <name>MyCluster1</name>
 <cluster-messaging-mode>unicast</cluster-messaging-mode>
</cluster>

Chapter 7: Working with WebLogic Server Clusters 347

<cluster>
 <name>Mycluster1</name>
</cluster>
<cluster>
 <name>Mycluster2</name>
</cluster>

The <server> element for each Managed Server in a domain will contain the cluster name, as
shown here:

<server>
 <name>MyManagedServer1</name>
 <listen-port>7003</listen-port>
 <cluster>MyCluster1</cluster>
</server>

Managing a WebLogic Server Cluster
Managing a cluster is, in many ways, similar to managing single WebLogic Server instances. The
following sections show how to start and stop clusters, as well as how to monitor them.

Starting and Stopping the Cluster
You can start a cluster in several ways. You can start it with the WLST start command, provided the
Node Manager is running. Alternatively, you can start each of the cluster members independently,
after first starting the domain’s Admin Server. You can start the cluster’s member Managed Servers
from the Administration Console as well, provided you use the Node Manager—this is exactly
how you’d manage individual nonclustered servers. The same thing applies to shutting down a
cluster—you can either use the WLST shutdown command or bring down each of the cluster
instances one by one, just as you would any nonclustered WebLogic Server instance.

Note that unlike in the case of nonclustered Managed Servers, for which there’s both a
Configuration and a Control button on the Summary Of Servers page, the Summary Of Clusters
page lets you do only three things—create a cluster, clone an existing cluster, or delete a cluster. You
can’t stop or start an entire cluster from the Administration Console—you must control the lifecycle
of the cluster’s member servers by managing them directly from the Summary Of Servers page.

Starting and Stopping with Scripts
Because the Managed Servers are assigned to a cluster, even when you start them one by one, all
the cluster members will join the cluster following startup. If you want to start the cluster members
individually, you can create start scripts for each server and call them from a cluster startup script.
In our examples for the wl_server domain, in the WL_HOME\samples\domains\wl_server\bin
directory, you’ll find a generic startManagedWebLogic.cmd command file (Windows) and a
startManagedWebLogic.sh script (UNIX/Linux). Make copies of this file and name them something
like startMyManagedServer1.cmd and startMyManagedServer2.cmd. You must customize the
generic startup command script for each of the Managed Servers. For example, for the Managed
Server named MyManagedServer1, you must specify the following values for these attributes:

set DOMAIN_NAME=wl_server
set SERVER_NAME=MyManagedServer1

348 Oracle WebLogic Server 12c Administration Handbook

set ADMIN_URL=http://localhost:7001
set WLS_USER=weblogic
set WLS_PW=welcome1

Note that the server name is the name of the cluster member. The ADMIN_URL must specify
the port number for the Admin Server (7001 in our case) and not the listen port for the Managed
Server. The reason for this is that the ADMIN_URL is the Admin Server’s URL, to which the two
Managed Servers will connect once they start. You must specify the same username and password
credentials as those you use for the Admin Server. If you don’t specify the credentials in the
Managed Server startup scripts, the startup process will prompt you for those—placing the
credentials here will keep you from typing in the credentials in the command window.

Once you edit the command scripts (one for each Managed Server), just run the scripts in
separate command windows. The two Managed Servers will start and automatically join the
cluster MyCluster1. Here’s the output from the second cluster member’s startup process:

<Aug 18, 2013 12:22:35 PM EDT> <Notice> <Cluster> <BEA-000197> <Listening for
announcements from cluster using unicast cluster messaging>
< Aug 18, 2013 12:22:35 PM EDT> <Notice> <Cluster> <BEA-000133> <Waiting to
synchronize with other running members of MyCluster1.>
< Aug 18, 2013 12:22:47 PM EDT> <Notice> <Cluster> <BEA-000142> <Trying to
download cluster JNDI tree from server MyManagedServer1.>
< Aug 18, 2013 12:22:47 PM EDT> <Notice> <Cluster> <BEA-000164> <Synchronized
cluster JNDI tree from server MyManagedServer1.>
< Aug 18, 2013 12:22:347PM EDT> <Notice> <WebLogicServer> <BEA-000365> <Server
state changed to ADMIN>
< Aug 18, 2013 12:22:47 PM EDT> <Notice> <WebLogicServer> <BEA-000365> <Server
state changed to RESUMING>
…
< Aug 18, 2013 12:22:49 PM PM EDT> <Notice> <Server> <BEA-002613> <Channel
"Default[11]" is now listening on fe80:0:0:0:8b9:1ace:e3d5:ea9a:7005
for protocols iiop, t3, CLUSTER-BROADCAST, ldap, snmp, http.>

Starting and Stopping a Cluster from the Administration Console
You can also start and stop a cluster by starting and stopping the Managed Servers that belong to a
cluster directly from the Administration Console. Just make sure you first configure a machine and
associate the Managed Servers with the machine, as explained in Chapter 2. You must first configure
the Managed Server to communicate with the Node Manager and also make sure to start the Node
Manager on the machine that hosts the Managed Servers. To start and stop a cluster member, go to
Environment | Clusters | Cluster Name | Control. From the Control page, you can start, shut down,
resume, and suspend any cluster member. As with a freestanding Managed Server, you must
configure the domain-wide administration port to start the server in the standby startup mode.

Starting and Stopping Clusters with WLST Commands
Use the WLST start command to start a cluster, after making sure the Node Manager is running.
You don’t have to connect to the Node Manager, but you must connect to the Admin Server, as
this is a WLST lifecycle command. The WLST start command (you use this to start a Managed
Server as well) has the following syntax:

start(name, [type],[url],[block])

Chapter 7: Working with WebLogic Server Clusters 349

At a minimum, you must provide the name of the cluster and the value “cluster” for the type
argument—the default value of the type argument is Server, meaning it will start a single
Managed Server that you name. The url argument defaults to t3://localhost:7001, and you can
provide appropriate listen address and listen port values here. The block argument specifies
whether WLST should keep you from interacting with it until the cluster is started. The default
value is true, meaning you can’t interact with WLST until it starts the cluster.

Here’s an example that shows how to start a cluster with the start command. (Note that you
don’t need to use the ls and cd commands shown here—they are here just to show how you can
find out the name of the cluster from WLST.)

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin\setWLSEnv.cmd
C:\Oracle\Middleware\Oracle_Home\wlserver\common\bin> wlst.cmd
wls:/offline> connect()
wls:/wl_server/serverConfig> cd('Clusters')
wls:/wl_server/serverConfig/Clusters> ls()
dr-- MyCluster1
dr-- cluster1
dr-- cluster2

wls:/wl_server/serverConfig/Clusters> cd('/')
wls:/wl_server/serverConfig> start('MyCluster1','Cluster')
Starting the following servers in Cluster, MyCluster1:
MyManagedServer1,MyManagedServer2
...
All servers in the cluster MyCluster1 are started successfully.
wls:/wl_server/serverConfig>

Note that the cluster start time may be quite long on servers where you don’t have plenty of RAM
and/or have a lot of other resource-intensive processes running.

If you check the status of the cluster MyCluster1, you should see that all two Managed Servers
are in the RUNNING state—you’re in business!

wls:/wl_server/serverConfig> state('MyCluster1','Cluster')
There are 2 server(s) in cluster: MyCluster1
States of the servers are
MyManaged1---RUNNING
MyManaged2---RUNNING
wls:/wl_server/serverConfig>

You can use the WLST command shutdown to shut down a cluster. Here’s the syntax of the
shutdown command:

shutdown([name],[entityType],[ignoreSessions],[timeout],[force],[block])

To shut down a cluster, you need to specify at least the attributes name and entityType.
The name attribute refers to the name of the cluster you’re shutting down, of course, and

you must specify the value Cluster for the entityType argument. Note that this WLST command
also works with a single Managed Server. If you connect to a Managed Server with WLST, you
can issue the shutdown command without any arguments because the name attribute defaults
to the Managed Server you connected to and the entityType argument’s default value is Server.

350 Oracle WebLogic Server 12c Administration Handbook

The ignoreSessions, timeout, force, and block attributes are optional. Here’s what these
arguments allow you to do:

 � The ignoreSessions argument specifies whether all HTTP sessions should be terminated
immediately when you issue the shutdown command or if the sessions should be allowed
to complete or time out. The default value for this argument is false, meaning the HTTP
sessions are allowed to complete or time out.

 � The timeout argument specifies the time that WLST waits for a subsystem to complete its
ongoing work before shutting down the server. The default value of this argument is 0,
meaning there’s no timeout period after you issue the shutdown command.

 � The force argument specifies whether WLST should wait for active sessions to complete
before terminating the server instance. The default value is false, meaning active sessions
are allowed to complete before the server is shut down.

 � The block argument specifies whether user interaction is blocked until the server is
shut down. The default value of the argument is false, meaning user interaction is not
blocked—WLST returns control to the user once the shutdown command is issued.

Here’s an example showing how to shut down a cluster with the shutdown command:

wls:/wl_server/serverConfig> shutdown('MyCluster1','Cluster')
Shutting down the cluster with name MyCluster1 ...
Shutdown of cluster MyCluster1 has been issued, please
refer to the logs to check if the cluster shutdown is successful.
 Use the state(server-name) or state(cluster-name,Cluster)
 to check the status of the server or cluster
wls:/wl_server/serverConfig>

Starting and Stopping a Dynamic Cluster
You can start and stop a dynamic cluster the same way as you do any other cluster. You can use
the Administration Console, WLST, Node Manager, or a start script to start the cluster. Specify the
calculated name of the server when starting the server.

Now that you know how to start and stop a cluster, the following section shows you how to
monitor a running cluster.

Monitoring a Cluster
To monitor the cluster, go to Environment | Clusters and click the name of the cluster you want to
monitor, in this case the cluster MyCluster1. In the Settings For MyCluster1 page, click the
Monitoring tab. The Cluster Monitoring page, shown in Figure 7-7, lets you monitor the status of
all members in a cluster, whether they’re running or not.

You can configure health monitoring for a cluster, from the Health Monitoring page, by
clicking the Health Monitoring tab in the Settings For <cluster_name> page. The idea behind
configuring self-health monitoring is to improve the reliability and availability of the clusters.
Following are the main configuration options that you can set from the Health Monitoring page:

 � Inter-Cluster Comm Link Health Check Interval You can set this attribute to control
how often a trigger will run to see if the cluster link is restored after it fails. You specify the
duration (in milliseconds), and the default is 30,000 ms.

Chapter 7: Working with WebLogic Server Clusters 351

FIGURE 7-7. The Cluster Monitoring page in the Administration Console

 � Health Check Interval Specifies the interval (in milliseconds) for the migratable servers
and cluster masters to prove they are alive.

 � Health Check Periods Until Fencing Specifies the maximum number of periods a cluster
member will wait before timing out a cluster master. It also specifies how many periods
the cluster master waits before timing out a migratable server.

 � Fencing Grace Period The amount of time for which the cluster master will wait before
declaring a server dead and migrating the server to another server or service during an
automatic whole server or service migration.

You can control how the cluster reacts to an overload or failure condition by clicking the
Configuration | Overload tab in the Settings For <cluster_name> page. The overload and failure
attributes you can configure are the same as those you’d set for a nonclustered server. Specifically,
you can set attributes such as Shared Capacity For Work Managers, Panic Action, Failure Action,
and Stuck Thread Count from the Overload page. Please see Chapter 5 for an explanation of the
overload and failure attributes you can configure for a server.

Clustering WebLogic Server Services
Java EE services such as JNDI and JDBC work the same way in a cluster, with a few key differences.
The following sections review the nature of a cluster-wide JNDI tree and the JDBC service.

JNDI Naming Service
The big difference between a single instance JNDI naming service and the cluster-wide JNDI tree
is that the latter also stores the names of services offered by clustered objects such as EJBs that are
hosted on other servers in the cluster. The key to a cluster-wide JNDI naming service is the use of

352 Oracle WebLogic Server 12c Administration Handbook

replica-aware stubs for objects. Replica-aware stubs help replicate an object’s bindings across the
cluster. Clients obtain a replica-aware stub for an object when they access that object. The replica-
aware stub contains the list of servers that host implementations of the clustered object and the
load-balancing logic for the object. Server instances in a cluster use a cluster-wide JNDI tree to
enable clients to access objects and services. Cluster members continuously monitor the unicast
(or multicast) address to detect new services offered by other members. Whenever a cluster
member binds a service into its local JNDI, it sends the object’s stub to the other cluster members.

The replica-aware stub that a client obtains is continuously updated to reflect the servers that
currently have bound an implementation of that object in their local JNDI tree. When you start a
cluster, the clusters communicate via unicast or multicast addresses about the services they are
offering. Once all the cluster members receive the broadcast messages, each member of the
cluster ends up with an identical local JNDI tree. Similarly, when you undeploy a clustered object
such as an EJB for a server instance, that instance communicates to the rest of the cluster
members that it no longer provides that service. Following this, the other members of the cluster
update their local JNDI tree. To avoid JNDI naming conflicts and potential overloading of
processing on some members of the cluster, Oracle recommends that you deploy all replica-
aware objects uniformly to all cluster members.

The following excerpt for a server’s startup sequence shows how a cluster member downloads
the cluster-wide JNDI tree from the other servers in the cluster so it can synchronize its own JNDI
tree with that cluster-wide JNDI tree:

<Aug 18, 2013 12:12:45 PM EDT> <Notice> <Cluster> <BEA-000133> <Waiting to
synchronize with other running members of MyCluster1.>
< Aug 18, 2013 12:12:45 PM PM EDT> <Notice> <Cluster> <BEA-000142> <Trying to
download
cluster JNDI tree from server MyManagedServer1.>
< Aug 18, 2013 12:12:46 PM PM EDT> <Notice> <Cluster> <BEA-000164> <Synchronized
 cluster JNDI tree from server MyManagedServer1.>

JDBC Clustering
You can cluster JDBC data sources and multi data sources for high-availability purposes. When you
configure the data sources, you must target them to the entire cluster instead of targeting them to
some members of the cluster. Once you do this, the data sources are cluster-aware and the server
creates an instance of the data source on all members of the cluster. WebLogic Server handles
external and server-side client connections differently. WebLogic Server doesn’t automatically fail
over JDBC connections when a server instance dies. When the server instance fails, the JDBC
connection will die as well and the applications must restart their in-flight transactions. However, by
configuring the cluster-aware JDBC multi data source, you can make the server automatically
retrieve an alternate data source when a client’s current database connection fails. Note that if
you’re using Oracle RAC databases, you can configure the GridLink data sources.

JMS and Clusters
JMS queues and topics aren’t really clustered objects because they’re pinned to a specific WebLogic
Server instance. Thus, WebLogic Server can’t fail over the queues and topics. You can, however,
deploy connection factories for a queue or topic on several cluster nodes, thus allowing the load
balancing of requests for the queue or topic. You can alternatively create JMS servers on all cluster

Chapter 7: Working with WebLogic Server Clusters 353

members and create copies of the queue or topic on those nodes, after which you can target the
connection factory to the cluster.

You can also create a distributed destination, which represents a set of destinations, such as
queues or topics that a client can access as a single destination. With a cluster, the members of the
set of destinations are usually distributed among the various JMS servers, with each member
belonging to a different JMS server. Using multiple JMS servers, WebLogic JMS provides load
balancing and failover for distributed destination members that you target to a cluster. The best
option here is to set up automatic service migration for all pinned services, including JMS services.
Key to the automatic migration of services is the configuration of the optional migratable targets,
targets that can migrate from one cluster member to another. Pinned services such as the JMS-
related services (JMS servers, SAF Agents, path services, and persistent stores) can be configured
into a group and deployed to a migratable target, so these services can be moved together. When
the migratable target migrates, all services hosted to that target are automatically migrated.

Cluster-Targeted JMS Servers
In Oracle WebLogic Server 12c, you can use cluster-targeted JMS servers to simplify the
configuration of JMS resources by avoiding the individual configuration of JMS services to each
server in a cluster. You can, instead, directly assign the JMS servers and persistent stores directly to
a cluster. Using this feature, you can also dynamically scale JMS resources in a dynamic cluster.

WebLogic Clustering Options for JMS
In Oracle WebLogic Server 12c, a cluster may contain individual servers, dynamically generated
servers, or a mix of both. The following is a summary of the cluster types you can have:

 � Configured A cluster where each member server is individually configured and
individually targeted to the cluster.

 � Dynamic A cluster where all the member servers are created using a server template.
These servers are referred to as dynamic servers.

 � Mixed A cluster where some member servers are created using a server template
(dynamic servers) and the remaining servers are individually configured (configured
servers).

Simplified JMS Cluster Configuration
The clustered JMS servers feature gives you the capability to target a JMS server (and its
persistent store if it has one) to the same cluster. When you start the cluster, the cluster starts an
instance of the JMS server on each cluster member. When targeting JMS to a dynamic or a mixed
cluster, you can also dynamically scale the JMS resources available to the cluster by adjusting
the Maximum Number Of Servers attribute on the Clusters | Configuration | Servers tab for the
cluster configuration.

Limitations of Using Clustered JMS
Be aware of the following key limitations when considering the use of dynamic clusters and
cluster-targeted JMS servers.

 � Cluster-targeted JMS servers don’t support automatic service migration.

 � Whole server migration (WSM) isn’t supported.

354 Oracle WebLogic Server 12c Administration Handbook

 � Unit-of-order and unit-of-work aren’t supported.

 � Store-and-Forward (SAF) Agents cannot be targeted to a dynamic or mixed cluster.

WebLogic Server Load Balancing
WebLogic Server tries to balance the workload evenly among the cluster instances. Load
balancing works similarly for servlets and JSPs for the most part, and WebLogic Server uses the
default round-robin method as the load-balancing algorithm. For EJBs and RMI objects, you have
more load-balancing options. Let’s briefly review load balancing for these two types of objects.

Load-Balancing Servlets and JSPs
You can configure load balancing either with an external load balancer or by using the WebLogic
Server proxy plug-in. You can use the simple HttpClusterServlet that comes with WebLogic Server
as a proxy plug-in for WebLogic Server. The plug-in maintains a list of server instances that host a
clustered servlet or JSP, and it forwards HTTP requests to each cluster member on a round-robin
basis. You can use the appropriate proxy plug-in for other HTTP servers. For example, you can use
the Apache Server plug-in for Apache Server. To configure advanced load-balancing strategies, you
can configure an external load balancer. An external load balancer must support passive or active
cookie persistence, as well as SSL persistence. Here’s the role played by the three mechanisms
involved in maintaining session state:

 � Passive cookie persistence The load balancer writes session state information to a
cookie stored on the client.

 � Active cookie persistence The load balancer adds its own cookies to a client session.

 � SSL persistence The load balancer is responsible for encrypting and decrypting data
flowing between the cluster and the clients.

Load Balancing for EJBs and RMI Objects
Load balancing is more complex for EJBs and RMI objects. For one thing, instead of being limited
to the default round-robin load-balancing algorithm, as in the case of servlets and JSPs, you have
a choice of multiple load-balancing algorithms. When you cluster an EJB or an RMI object,
WebLogic Server deploys instances of those objects on all cluster members and uses replica-
aware stubs to invoke clustered EJBs and RMI objects. Replica-aware stubs that represent an RMI
or EJB object can find all the instances of those objects within a cluster. When you send a bean
that has a cluster-aware deployment descriptor to the EJB compiler, it automatically generates a
replica-aware stub for that bean. You can explicitly create replica-aware stubs for RMI objects
during the compilation of the object instance, using command-line options with rmic, the
WebLogic RMI compiler. The term replica-aware “stub” is a misnomer because the stub is
actually a representation of a set of replicas, with each replica representing an object instance.

When a client requests a clustered EJB, for example, the server replaces the EJB’s
implementation with a replica-aware stub and sends the stub to the client. Replica-aware stubs
provide failover capability by automatically sending an object call to a different replica (object
instance) when a run-time failure occurs. Similarly, the replica-aware stubs provide load
balancing since they’re aware of where all the instances of an object are located. The stub uses

Chapter 7: Working with WebLogic Server Clusters 355

the load-balancing algorithm built into it to select the specific replica from the multiple replicas
located in the cluster.

NOTE
The replica-aware stub is capable of locating an EJB or RMI class on all
cluster members where you deployed those objects.

The replica-aware stub maintains the load-balancing algorithm for each clustered object. Thus,
when there’s a call to the object, the replica-aware stub determines which replica (instance of the
object) to call based on the load-balancing algorithm you specify. WebLogic Server uses the
round-robin algorithm, by default, for load balancing clustered EJBs and RMI objects. The round-
robin algorithm isn’t very efficient when one of the servers is much slower than the other cluster
members because the algorithm blindly assigns requests to the cluster members one by one,
without regard for the actual load. You can specify any of the load-balancing algorithms discussed
in the following section for EJBs and RMI objects. You can specify a different load-balancing
algorithm by going to Environment | Clusters and selecting an alternative load-balancing
algorithm for the Default Load Algorithm setting. Note that you can use the random load-
balancing algorithm only for EJBs and RMI-clustered objects and not for servlets and JSPs.

NOTE
You can’t specify a weight-based load-balancing algorithm for objects
that use the RMI/IIOP protocol to communicate.

All RMI objects, including JMS objects and stateless EJB remote interfaces, can also use the
three load-balancing algorithms that provide server affinity: round-robin-affinity, weight-based-
affinity, and random-affinity.

Load-Balancing Algorithms
WebLogic Server offers three load-balancing algorithms:

 � Round-robin The round-robin algorithm load balances requests by simply assigning them
to each server instance in a cluster in order. This is the default load-balancing algorithm.

 � Weight-based This algorithm assigns requests proportionately to server instances based
on a weight you assign to each server. For example, by assigning a weight of 50 to server A
and 100 to server B, you can make Server A carry only half as much as the load carried
by Server B. If all servers in a cluster are homogenous, of course, it doesn’t make any
sense to use a weight-based load-balancing algorithm. If the processing capacity of some
servers in a cluster is different from that of the other servers, however, you can use a
weight-based algorithm to advantage.

 � Random The random algorithm simply specifies that the cluster randomly routes
requests to the servers in the cluster. If you have only a few requests, probabilistically
speaking, the allocation among servers could be quite uneven. However, as you progress
to a large number of requests, the allocation is more or less even among all the members
of the clusters. Make sure that all your servers are configured similarly in terms of
processing power if you’re going to specify the random load-balancing algorithm.

356 Oracle WebLogic Server 12c Administration Handbook

By default, WebLogic Server uses the round-robin load-balancing algorithm. You can
configure a load-balancing algorithm with server affinity for JMS objects by configuring the
algorithm for the entire cluster. For JDBC connections, you can choose load balancing when
configuring a multi data source. If you don’t configure load balancing for data sources, the first
data source in the ordered list of data sources is always tried; if you load balance the JDBC
connections, the server assigns data sources in a round-robin fashion.

Server Affinity
To minimize the opening of IP sockets between server instances and external Java clients,
WebLogic Server uses the concept of server affinity, which, in essence, turns off load balancing.
Note that server affinity only turns load balancing off after the initial request is made. This just
means that the state that is required is more likely to be available on the server that the request is
directed to. Instead of load balancing requests, the client prefers its current connection to an
instance to determine the instance from which it accesses objects. For example, if you configure
an RMI object such as a JMS object for load balancing, the client-side RMI stub will attempt to
choose a server instance to which it’s already connected. When WebLogic Server uses a server
affinity algorithm, it doesn’t use load balancing for external client connections. Server affinity
seeks to keep opened IP sockets between Java clients and the cluster’s servers to a minimum.
WebLogic Server, however, still uses load balancing for server-to-server connections because
server-to-server connections aren’t as expensive as external connections in terms of socket usage.
Server affinity is always used in combination with one of the three load-balancing methods. Thus,
you have a choice among the following types of server affinity:

 � Round-robin-affinity

 � Weight-based-affinity

 � Random-affinity

In each of these three algorithms, server affinity determines the connections with external Java
clients, and the load-balancing algorithm specifies how the cluster handles connections among
the members. For example, the round-robin-affinity algorithm uses the standard round-robin load-
balancing algorithm to assign requests.

NOTE
Server affinity doesn’t affect load balancing for server-to-server
connections. It turns off load balancing for Java clients, however.

Collocation Strategy
When a server instance in a cluster hosts an EJB, not only do other server instances keep a replica-
aware stub of that EJB, but the primary instance will also keep a replica of that object. This replica is
called a collocated copy of the EJB. It makes more sense to use this local collocated copy of the EJB
rather than send the client’s requests to the other instances hosting a copy of that object through the
network. Thus, collocation optimization doesn’t load balance every method call made to the
clustered EJB (or other clustered object such as an RMI object). In a single cluster, even though the
replica-aware stubs contain a load-balancing algorithm, collocation trumps that and forces the use of
the local copy of the clustered object. You must configure multitier cluster architectures to force load
balancing of all method calls to an object from a client. To further optimize the choice of the object

Chapter 7: Working with WebLogic Server Clusters 357

replicas, WebLogic Server employs a transactional collocation strategy by always using the
collocated object’s replicas of all objects involved in a transaction. Transactional collocation
strategies are even more efficient than the nontransactional usage of local collocated replicas
because they lower the network overhead both by avoiding having to send requests back and forth
to other servers and by avoiding using a multitier JDBC connection.

Application Failover and Replication
WebLogic Server offers failover capabilities when an application component such as an EJB or
servlet fails during the processing of a task. Because a cluster maintains a cluster-wide JNDI tree
that provides information about the availability and location of all clustered objects, WebLogic
Server uses a copy of the failed object located on a different server to complete the processing
that was left incomplete due to the component failure. Making use of an alternate copy of a failed
object is called application failover. How does WebLogic Server know the state of the job that
failed? It uses two types of replication techniques to identify the state of the incomplete job—
session replication for servlets and JSPs, and replica-aware stubs to find out where exactly it needs
to resume processing of a failed object such as an EJB.

Application failover is competently different from a migration, of which there are two types:
server migration and service migration. With server migration, you can configure the automatic
migration of an entire server to a different machine following a server (machine) failure. You can
also manually migrate the server for maintenance reasons. Service migration occurs when
WebLogic Server migrates a pinned service (a service that can run only on one server at any given
time), such as a JMS server or the JTS transaction recovery, when the server that hosts a pinned
service fails. This chapter discusses server and service migration in the section “Handling Server
and Service Failures.”

Detecting Application Failures
Cluster members use IP sockets to detect failures—when a socket suddenly closes during data
transmission, the server is marked as “failed” and all the services offered by the server are removed
from the JNDI tree. When servers aren’t actively communicating via open sockets, WebLogic Server
detects failures by monitoring the server heartbeats, which, by default, are sent every ten seconds by
every cluster member. Cluster members use the IP unicast (or multicast) to broadcast and revive the
heartbeat messages. Once a server misses three heartbeats from a peer server, it marks the status of
the other server as failed and updates its local JNDI tree by removing the failed server’s services.

In the following sections, let’s review how WebLogic Server handles failures of various types
of objects, including servlets and JSPs as well as EJBs and RMI objects. The failover of servlets and
JSPs depends on the replication of HTTP session state, and the failover of EJBs and RMI objects
relies on the cluster-aware stubs.

Handling Servlet and JSP Failures
In order to understand how a cluster manages servlet and JSP failures, you must first understand
how WebLogic Server replicates HTTP session state following a failure of one of these components.

Replicating HTTP Session State
You can set up two different ways of handling application failures. You can use a third-party load
balancer, or use a proxy plug-in or the HttpClusterServlet with a WebLogic instance functioning as

358 Oracle WebLogic Server 12c Administration Handbook

a web server. Regardless of whether you use a load balancer or a proxy plug-in (or the
HttpClusterServlet), WebLogic Server uses two basic methods to replicate HTTP session state in a
cluster. You can configure either a file or JDBC-based persistence of HTTP session state information.
Alternatively, you can configure an in-memory replication method without persistence, wherein
WebLogic Server creates and maintains secondary replicas of session state to use in case a servlet
or JSP fails midway through its processing. The following discussion pertains to in-memory
replication of HTTP server state.

In-Memory Replication You can configure either a WebLogic proxy plug-in or load-balancing
hardware for in-memory replication. If you’re using a proxy plug-in, the plug-in doesn’t direct the
client requests to an alternate server; it simply redirects the client request to a server that has the
replicated HTTP session state information. The proxy plug-in knows all the server instances that
host a clustered servlet or JSP, and it uses a round-robin strategy to forward the client HTTP
requests. You can use WebLogic Server with the HttpClusterServlet or a third-party HTTP server
such as Apache or Microsoft IIS, with the appropriate WebLogic Server plug-in. For replication to
work, you must configure the WebLogic proxy plug-ins the same way on all web servers.

NOTE
In-memory replication and JDBC persistence aren’t your only options
for replicating the session state of HTTP objects. If your application
is undergoing memory problems because it can’t keep up with
large HTTP session state objects, you can optionally use Oracle
Coherence*Web to maintain the session state information.

Regardless of whether you use a third-party web server or the WebLogic Server proxy plug-in,
the failover process for requests that are proxied to a clustered servlet or JSP is identical. Let’s say
you configured proxying through the HttpClusterServlet on a WebLogic Server instance. The
WebLogic Server instance, which is functioning as the web server, will forward (proxy) servlet
requests to the cluster through the HttpClusterServlet. If the primary server is not reachable due to
a network failure, for example, the HttpClusterServlet knows which server to send the request to
because it maintains a list of all the servers in the cluster. When the client makes the next HTTP
request to the unreachable server, the HttpClusterServlet automatically redirects the request to the
second server, with the switching of servers transparent to the client. By default, WebLogic Server
depends on client-side cookies to track the servers hosting the session state, but if a client browser
isn’t using cookies, WebLogic Server uses URL rewriting (using the information in the HTTP
request itself) to track primary and secondary servers that maintain the session state.

By default, WebLogic Server chooses a different machine to replicate the session state than the
one that hosts the primary session state. However, you can configure replication groups to influence
the choice of the alternate machine. WebLogic Server always picks the preferred server you
configured in the replication group, regardless of whether it is on the same or a different machine.

If you set up a hardware load balancer instead of a proxy plug-in following the failure of a
servlet or JSP, there’s no automatic redirection of HTTP requests to a failed server—it is the load
balancer that redirects the client request to any of the available servers in the cluster. Note that you
must satisfy the following requirements if you want to use a hardware load balancer for replication:

 � All session data must be serializable—that is, WebLogic Server must be able to convert
the data into a serial form to facilitate its transmission.

Chapter 7: Working with WebLogic Server Clusters 359

NOTE
Large objects may suffer a performance penalty when serializing
session data in order to replicate it.

 � If your web application uses multiple frames, session attributes could be corrupted or the
application’s link to an instance could be reset during replication. Oracle advices you to
ensure that only one frame manages session data in any frameset.

JDBC-Based Replication You can also set up JDBC-based persistence for maintaining servlet or
JSP HTTP session state in a file or a database. Although this is an alternative to in-memory session
state replication, JDBC (database) persistence is a requirement for configuring HTTP session state
replication in a wide area network, as explained in the next section. To configure file-based
replication, in the weblogic.xml deployment descriptor file, the element session-descriptor lets
you specify server properties for JDBC session persistence. Set the persistent-store-type parameter
in the session-descriptor element to the value file if you want to use file-based replication. For
storing session state data in a database table, set the session-descriptor element to the value jdbc.
You must also specify the name of the connection pool for the persistent-store-pool parameter.
You can configure the maximum time the database should wait for a JDBC connection to load
session data by setting a value for the jdbc-connection-timeout-secs parameter.

Once you configure the session state persistence properties, you must also create a table
named wl_servlet_sessions to configure JDBC-based session state persistence. Here’s the DDL for
creating the wl_servlet_sessions table in an Oracle database:

create table wl_servlet_sessions
 (wl_id VARCHAR2(100) NOT NULL,
 wl_context_path VARCHAR2(100) NOT NULL,
 wl_is_new CHAR(1),
 wl_create_time NUMBER(20),
 wl_is_valid CHAR(1),
 wl_session_values LONG RAW,
 wl_access_time NUMBER(20),
 wl_max_inactive_interval INTEGER,
 PRIMARY KEY (wl_id, wl_context_path));

When the client makes a read-only request, WebLogic Server doesn’t update the database
table to modify the HTTP session state. However, after each non-read-only request, the server
updates the session state so other cluster members can access the database and retrieve an
up-to-date session state for a request following a failover. The cache-size parameter of the
session-descriptor element in the weblogic.xml file controls how many recently used sessions the
server instance must keep in its own cache. By getting session state from its own cache, WebLogic
Server can avoid going to the database to retrieve the session state for each request.

Replicating Session State Across Multiple Clusters
You saw how you can configure a session state replication for HTTP requests within a cluster, but
what if an entire cluster is unreachable for some reason? For improved fault tolerance, you can
configure clusters spread across different geographical regions or even Internet service providers
to provide cross-cluster replication capabilities. You must use two load balancers for setting up
cross-cluster replication: You configure a global load balancer to balance HTTP requests across

360 Oracle WebLogic Server 12c Administration Handbook

different clusters (inter-cluster replication) and a local load balancer to balance HTTP requests
within a cluster (intra-cluster replication). You must also configure a special cross-cluster
replication channel, similar to a regular network channel, which the servers in the cluster use
exclusively to facilitate replication traffic among (not within) clusters.

You can configure both metropolitan area network (MAN) and wide area network (WAN)
session state replication. You must use a hardware load balancer to provide failover in a MAN/
WAN environment. WebLogic Server’s MAN/WAN failover capability allows failover to occur
over large geographical areas as well as across multiple domains. When an entire cluster fails, the
local load balancer has no members available to which it can direct an HTTP request, so the local
load balancer directs the request to the global load balancer, which then sends the request along
to a different local load balancer configured to work with another cluster. From here on,
everything works the same way as with intra-cluster replication.

To configure cross-cluster replication, you must specify the value man or wan for the
subelement cluster-type under the cluster element in the config.xml file. When configuring
cross-cluster replication, you can either let WebLogic Server take care of the session state
replication or use a third-party replication product. Configure both the jdbc-pool and the backup-
cluster-address properties if you’re using WebLogic Server to persist data to the remote database
instead of locally. If you’re configuring a WAN environment, you must configure a JDBC multi
data source to store the session state information; this requires creating the special database table
named wls_wan_persistence.

NOTE
You must use a JDBC data source to configure WAN cross-cluster
replication.

Failover for EJBs and RMIs
Whereas HTTP session replication helps failover of servlets and JSPs, it is the replica-aware stubs
that do the trick for EJBs and RMIs. When a clustered object fails, the replica-aware stub picks up
the client calls to that object and redirects them to a replica of that object on another server. The
big requirement for failover to occur in this manner is that the object be idempotent, meaning
you can call any of the object’s methods multiple times with the same effect as calling it once.
EJBs work differently from RMI objects here in that they can offer load balancing and failover at
two different levels because an EJB can generate two replica-aware stubs, once each for the
EJBHome interface and the EJBObject interface. A client performs a lookup of an EJB object
through the EJBHome stub, and the stubs make method calls through the EJBObject interface.
You can specify a home interface for a stateless or stateful session bean, as well as an event bean.
A home interface finds or creates bean instances, and you can cluster these interfaces with the
home-is-clusterable element in the weblogic-ejb-jar.xml file.

An EJBObject replica-aware stub knows about all available instances of an EJB in the cluster.
How the EJBObject stub routes requests for EJBs depends on the type of bean:

 � Stateless session beans If the bean is written with idempotent methods, the stub
automatically fails over in the case of a failure. Because there’s no state to maintain, the
stub can route the call to any of the servers that host the stateless session bean.

Chapter 7: Working with WebLogic Server Clusters 361

 � Stateful session beans The server handles these the same way it handles replication
of HTTP session state—that is, by replicating the state of the primary bean instance to
a secondary server. When a failure occurs, the client’s EJB stub redirects requests to the
secondary WebLogic Server. The secondary server uses the replicated state data to create
a new EJB instance.

 � Entity beans Failover for an entity bean depends on whether it’s a read-only or read-
write bean. Read-only entity beans don’t automatically fail over. However, read-write
beans fail over at the home level.

Handling Server and Service Failures
WebLogic Server can fail over most services transparently, but it’s unable to do the same when
dealing with pinned services. Services such as JMS and JTA are considered pinned services.
They’re hosted on individual members of a cluster and not on all server instances. You can have
high availability only if the cluster can ensure that these pinned services are always running
somewhere in the cluster. When a WebLogic Server instance hosting these critical pinned services
fails, WebLogic Server can’t support their continuous availability and uses migration instead of
failover to ensure that they are always available. A whole server migration occurs automatically
when a server hosting pinned services is migrated to a different machine with all its services. You
can also perform this type of migration manually. In addition, WebLogic Server provides ways to
migrate these services through what’s known as service-level migration, wherein just the pinned
services such as JTA and JMS-related services are migrated to a different instance in the cluster. A
migratable server is automatically migrated when it becomes unavailable or if it can’t be restarted
on the same server.

The following sections review key concepts pertaining to service-level and whole server
migration, including how to configure automatic migration and perform manual migrations.

Migratable Servers
A migratable server is a Managed Server that is eligible for whole server migration. Although a
migratable server can host any clustered services, it’s really the pinned services the server hosts
that make it a migratable server. Both automatic and manual whole server migration depend on
the existence of a migratable server, so the first step in configuring whole server migration is to set
up migratable servers. By default, WebLogic Server creates all Managed Servers in a cluster as
migratable servers. Note that a migratable server uses a floating IP address, which it needs during
a whole server migration.

The key point to remember with regard to a migratable server and whole server migration is
that all of the resources available to the server need to be available on the machine the server is
going to be restarted on. That means the server transaction information and the persistent stores
all need to be on shared storage and that it must be possible to “migrate” the network interface to
the new machines with some sort of OS-level scripting.

Manual and Automatic Service Migration
You can configure automatic service migration or manually migrate any of the migratable
services—JMS-related services, the JTA Transaction Recovery Service, and user-defined singleton
services. Note that manual service migration can be in response to a failure or can be for

362 Oracle WebLogic Server 12c Administration Handbook

maintenance purposes as well. Manual service migration is the default mode—you must explicitly
configure automatic service migration in order for services to be automatically migrated from one
server to another when prompted by the cluster’s health monitoring system.

Migratable Targets
The concept of a migratable target is crucial to understanding service migration. To configure a
JMS or JTA service for migration, you must deploy or target it not to the server as you normally do,
but to a migratable target. A migratable target is really a logical concept and lets you specify
services that should be migrated together. A migratable target specifies one or more servers that
can host the target, and only one cluster member can host the migratable target at any given time.
Migratable servers ensure that critical services such as the JMS and JTA services are always
available. For example, a JMS queue is always available as long as the migratable target is hosted
to any cluster member.

A migratable target is a grouping of JMS-related services, namely JMS servers, SAF Agents,
path services, and custom stores; and it can be active on only one cluster member. When the
original server fails, the JMS server, its destinations, and its persistent store automatically move
with their migratable target to a different server. You can configure automatic migration for the
migratable target, or you can manually migrate it. By default, when you create a cluster, Oracle
creates a default migratable target, as shown in the following excerpt from the config.xml file:

<migratable-target>
 <name>MyManagedServer1 (migratable)</name>
 <notes>This is a system generated default migratable target for a server. Do not
delete manually.</notes>
 <user-preferred-server>MyManagedServer1</user-preferred-server>
 <cluster>MyCluster1</cluster>
</migratable-target>

You must configure and target the default migratable target shown here for the cluster to make
use of it.

Leasing and Automatic Migration
WebLogic Server ensures that singleton services such as JMS services run only on a single server in a
cluster any time by using the concept of leasing, which ensures that only one instance in the cluster
owns a service. The key point about a lease is that the owner must periodically renew the lease.
Failure to renew the lease allows someone else to “take it over.” When the original owner comes
back on line, it will, in turn, try to “renew” the lease but will find that someone else now owns it.
This is how leasing ensures that only one virtual machine (JVM) is running the service at a time.

There can only be a single lease owner for a resource, and the lease can fail over during a
failure, ensuring that the pinned services are always available. Both automatic whole server
migration and automatic service migration use leasing. In a whole server migration, the running
cluster members use leasing to select a cluster master, which is responsible for monitoring other
members of the cluster and restarting failed cluster members. The cluster master is always running
on one server, and once you enable automatic whole server migration, all servers periodically
contact the cluster master to renew their leases. Note that the cluster master need not be a
migratable server—any server in the cluster can perform as the cluster master. A migratable server
will take over as the cluster master when it notices that the cluster master is not sending regular

Chapter 7: Working with WebLogic Server Clusters 363

heartbeat messages. For automatic service migration, leasing helps migratable targets perform
automatic service migration. When you configure automatic whole server migration or service
migration, you must choose between two types of leasing:

 � Consensus leasing Servers maintain the leasing information in the server’s memory.
This requires that you associate a Node Manager for all the servers because it’s the Node
Manager that monitors the necessary health information to initiate failovers.

NOTE
You can only configure one type of leasing in any WebLogic Server
installation.

 � Database leasing You must configure a JDBC data source for this type of leasing and
create a table in the database to store the leasing information. When you use database
leasing, you are not required to associate the Node Manager with each Managed Server.
The database that stores the leasing information must be highly available so cluster
members can always connect to the database and renew or update their leases. Therefore,
database leasing is an ideal strategy if you already have an Oracle RAC database in place.
You configure database leasing by creating a leasing table in the database. The leasing
table consists of information that associates machines to servers. Execute the Oracle-
provided script leasing.ddl, located in the WL_HOME\server\db\<db_name> directory,
to create this table (the table name is ACTIVE). Ideally, you must assign a separate
tablespace and a separate schema for creating the leasing table. You can reset the leasing
table by simply rerunning this script.

NOTE
In both manual and automatic service migration, the JTA Transaction
Recovery Service can’t be migrated from a server when the JTA
subsystem reports that it’s in an unhealthy state.

Migrating JMS-Related Services
JMS services don’t run on all cluster members. Rather, to preserve data consistency, they run on a
single service and are thus singleton services. JMS services include the JMS server, the Store-and-
Forward (SAF) Service, the path service, and the custom persistent store. For example, when a JMS
component such as the persistent store fails, the server notifies the health monitoring subsystem.
The server starts the automatic migration of the store from the current server, called the
user-preferred server (UPS), to an alternate server in the candidate server list. Note that as long as
the server itself is in a healthy running state, the migration framework tries to restart a service and
migrates the service to a candidate server only if the server is unhealthy.

For a migratable JMS-related service, you must create a custom persistent store instead of
using the default store. You must, in addition, target the persistent store to the same migratable
target as the JMS server and the SAF Agent. Oracle recommends that you create a separate
migratable target for the path service, with its own custom store.

364 Oracle WebLogic Server 12c Administration Handbook

FIGURE 7-8. The Summary Of Migratable Targets page in the Administration Console

Configuring Automatic Migration of JMS Services
You can configure automatic migration of JMS services hosted by a migratable target by following
these steps:

 1. Go to Environment | Clusters in the Domain Structure tree.

 2. Select the cluster in the Summary Of Clusters page and click the name of the cluster you
want to configure for automatic migration of JMS services.

 3. On the Configuration | Migration page, specify choices for the Migration Basis field. If
you’ve created a table in a highly available database that the Managed Servers can use for
storing the leasing information, select Database. If all the migratable servers have a Node
Manager associated with them, select the Consensus option.

Each server generates a default migratable server automatically. You can see the list of
migratable targets in the Administration Console by going to Environment | Migratable Targets and
viewing the Summary Of Migratable Targets page, which is shown in Figure 7-8. The migratable
targets are named serverName (migratable). However, you’ll need to configure and target these
default migratable targets.

You can also create a new migratable target and configure it, as shown here:

 1. Go to Environment | Migratable Targets in the Domain Structure tree.

 2. Click New on the Summary Of Migratable Targets page.

 3. On the Create A New Migratable Targets page, enter a name for the migratable target and
select a cluster for it. Click Next.

 4. In the User Preferred Server box, select the preferred server (the best server) with which
you want to associate this migrated server.

Chapter 7: Working with WebLogic Server Clusters 365

 5. In the Service Migration Policy drop-down list, specify the type of automatic migration
you want the migratable target to support:

 � Manual Service Migration Only This is the default value, but you don’t want to
choose it because you want to configure automatic service migration.

 � Auto-Migrate Exactly-Once Services This option guarantees that the JMS service
will be active on some server that’s in the candidate list, as long as at least one of the
candidate Managed Servers is running.

 � Auto-Migrate Failure Recovery Services This option specifies that the JMS service
should start only if the user-preferred server starts. If the user-preferred server fails, the
JMS service will migrate to an alternative candidate server.

 6. Restart the Admin Server and the Managed Servers whose migration policies were
modified to get ready for automatic service migration.

The cluster’s JMS path service should use members in the entire cluster as the candidate servers,
but for other services that use the exactly-once-services migration policy, limit the candidate servers to
no more than three servers. Once the migratable target is created, you can also optionally specify
whether you want to provide scripts for running before and after the migration to unmount and mount
the custom file store. Oracle provides sample scripts in the DOMAIN_HOME\<domain_name>\bin\
service_migration directory.

Once the original primary server is back up again, you must manually migrate the
automatically migrated JMS services. However, WebLogic Server automatically migrates back the
JTA Transaction Recovery Service.

Manually Migrating JMS-Related Services
Even if you’ve configured automatic migration of JMS services, you still have to manually
migrate those services back to the primary server. The steps for configuring manual service
migration are essentially the same as for the automatic migration of services, with the following
differences:

 � Migration Basis You don’t need to configure this attribute (leasing type), as this is only
necessary during automatic migrations.

 � Service Migration Policy For this attribute, you can just select the default option,
Manual Service Migration Only.

You must first configure a migratable target to host the JMS-related services, as shown in the
previous section, before you can manually migrate the services. You can migrate the targets
individually or all at once. You can manually migrate the JMS services either for maintenance
purposes or in response to a server failure. Here are the steps to migrate JMS services manually:

 1. Go to Environment | Migratable Targets in the Domain Structure tree.

 2. On the Summary Of Migratable Targets page, click the Control tab.

 3. Select the migratable targets you want to migrate and click Migrate.

 4. Select a new server for the migratable target by using the New Hosting Server drop-down
list. Click OK.

366 Oracle WebLogic Server 12c Administration Handbook

Migrating JTA Services
Migrating JTA services is critical when a server fails because transactions may be holding locks on
resources, and this adversely affects the performance of your applications. You can migrate a JTA
service manually or configure automatic migration. Automatic migration of JTA services will
migrate the Transaction Recovery Service (TRS) to a backup server by choosing one from the
configured candidate servers. The backup server releases its lease on the TRS once it completes
transaction recovery for the failed server. If the backup server itself fails before completing the
transaction recovery, its lease expires. In this case, you must manually migrate the TRS to an
alternative backup server for the configured list of servers. If you can successfully start the primary
server before the backup server completes recovery of the transactions, the backup server will
gracefully hand over the lease to the revived primary server.

Regardless of whether you are manually migrating the TRS or configuring it for automatic
migration, you must configure the default persistent store. The recommended approach is to
use a highly available shared storage solution such as a storage area network (SAN) so the
store is accessible to any machine. The reason for this is that the backup server must be able to
access the transaction log of the failed server. You can guarantee access to these records,
stored in the persistent store, by placing the store on a shared storage system that’s highly
available as well.

Configuring Automatic Migration of JTA Services
To configure automatic migration of JTA services, you follow procedures that are very similar to
those for the automatic migration of JMS-related services. To do this, go to Environment | Servers |
Configuration | Migration and select Automatic JTA Migration Enabled in the JTA Migration
Configuration section. You must also configure the Migration Basis field for the cluster to specify a
database or consensus leasing and enable an automatic migration option by choosing one of the
options for Service Migration Policy. Optionally, you can specify pre- and post-migration scripts,
just as in the case of automatic JMS-related service migration.

Both manual and automatic JTA service migrations require you to configure the default
persistent store on a shared system accessible to all candidate machines. The Node Manager is a
prerequisite for consensus leasing, but if you’re using database leasing, you’ll need the Node
Manager only if pre- and post-migration scripts aren’t defined.

When the server health monitoring subsystem indicates a primary server failure, the TRS is
automatically migrated to the backup server.

Manually Migrating the Transaction Recovery Service
If you’re unable to restart a crashed server, you must migrate the Transaction Recovery Service to a
backup server so it can take care of the incomplete transactions. Here are the steps to migrate the
TRS from a failed cluster member:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. In the left-hand pane, expand Environment and select Servers.

 3. Shut down the server if it’s not already down.

 4. Select the server from which you want to migrate the TRS.

 5. Select Control | Migration.

 6. Click Advanced.

Chapter 7: Working with WebLogic Server Clusters 367

 7. Under JTA Transaction Recovery Service Migration, select the server to which you want to
migrate the TRS of the failed server.

 8. Click Save.

Whole Server Migration
The Node Manager is the critical player in a whole server migration. You must use the Node
Manager to start the migratable servers, and you must use it to shut down the servers as well.
While the Node Manager does all the actual work during an automatic whole server migration, it
is the cluster master that actually invokes the migration. Note that the Admin Server invokes the
Node Manager during a manual whole server migration.

Prerequisites for Automatic Whole Server Migration
You must satisfy several prerequisites before configuring automatic whole server migration,
including the following:

 � All Managed Servers must use the same subnet mask.

 � If the operating systems hosting the cluster members are different, configure ifconfig
identically on all the servers.

 � You can’t create custom network channels with a different listen address on a migratable
server. You must have a single network channel per server.

 � Ideally, you must use a highly available shared storage system, and if you don’t have this,
you must copy the DOMAIN_HOME\bin directory to each machine.

 � You must use the nmEnroll command to copy the Node Manager security files to all machines.

Configuring Automatic Whole Server Migration
Configuring automatic whole server migration involves first configuring the availability of floating
IP addresses (a unique address and port combination) for all the servers and facilitating
communication through Secure Shell (SSH). Before configuring the server, make sure you perform
the following tasks:

 � Node Manager The Node Manager can automatically restart a failed server, along with
its services, on a different machine. Therefore, you must ensure that the Node Manager
is running and that you’ve configured it for server migrations. Here are the typical Node
Manager properties you must configure in the nodemanager.properties file:

Interface=eth0
NetMask=255.255.255.0
UseMACBroadcast=true

 � IP addresses Transferring IP addresses from one machine to another is a key part of
whole server migration. You must get floating IP addresses for all Managed Servers in the
cluster for which you want to enable whole server migration.

 � Privileges WebLogic Server uses the wlsconfig.sh script (UNIX) or the wlsconfig.cmd
script (Windows) to transfer IP addresses during whole server migration. In UNIX, make

368 Oracle WebLogic Server 12c Administration Handbook

sure you grant super user privileges to this script (sudo), so it can invoke ifconfig. You can
do this by adding the following line to the sudoers file in the /etc directory:

oracle ALL=NOPASSWD: /sbin/ifconfig

 � Path In addition, you must ensure that the machine’s PATH includes the wlsconfig.sh
(or wlsconfig.cmd), wlscontrol.sh, and nodemanager.domains files. The first two files are
in the WL_HOME\common\bin directory and the last is in the WL_HOME\common\
nodemanager directory.

 � SSH If you’re using the SSH version for the Node Manager in a UNIX/Linux
environment, make sure that you establish SSH connectivity among the servers.

You can configure automatic restart of a cluster member on another machine by following
these steps:

 1. Go to Environment | Clusters in the Domain Structure tree.

 2. Select the cluster on the Summary Of Clusters page and click Migration. Enter values for
the following attributes to configure whole server migration:

 � Candidate Machines For Migratable Servers This is the list of machines on which
Node Manager can restart a failed server, and it requires you to enable the servers for
automatic migration. You can specify the machines where the Node Manager can restart
the migratable servers by moving the servers from the Available list to the Chosen list.
You can also specify the order in which the Node Manager will start the failed servers.
You can specify a maximum of three machines on which a server can restart.

NOTE
You must enable each of the candidate servers for automatic
migration.

 � Migration Basis You can select the machines for server migration. You can select
Database to specify that a database table will store the leasing information. You
can also select the Consensus option to store the leasing information in a cluster
member’s memory instead of using a database.

 � Data Source For Automatic Migration This option specifies the JDBC multi data
source or GridLink data source the servers will use during the migration. Make sure to
configure all cluster members to use this database.

 � Auto Migration Table Name This is the name of the table to be used for server migration.

 � Member Discovery Timeout This option is the maximum amount of time a server
waits during startup to discover other cluster members.

 � Leader Heartbeat Period This option specifies the interval for the sending of
heartbeats by the cluster leader to transmit cluster-related information to other
members for synchronizing purposes.

 � Additional Migration Attempts This option specifies the number of times WebLogic
Server attempts to bring up a migratable server. If you set the value of this attribute
to –1, the server keeps trying the migration until it succeeds. If you have a two-node

Chapter 7: Working with WebLogic Server Clusters 369

cluster and use the default value of 2 for this attribute, the server makes a total of four
migration attempts.

 � Pause Time Between Migration Attempts Here, you set the interval between
migration attempts.

Suppose you have a two-node cluster and you configure both Managed Servers as migratable
servers and run the Node Manager on a third server—a backup machine that you configure as an
available host for a migratable server. You must also run the Node Manager on the machines
hosting the two-cluster members. When you start the cluster, the Node Manager running on the
two primary machines will start the Managed Servers. The first server to start will become the
cluster master. When one of the two cluster members fails, the cluster master first attempts a
restart of the failed server. If it can’t restart the failed server, the cluster master instructs the Node
Manager running on the backup machine to restart the failed Managed Server on that machine.
The failed server will now restart on the backup server and cache its configuration after it first
contacts the Admin Server to get its configuration information. Note that the Admin Server doesn’t
really play any role in starting the server except to let the migrated server cache retrieve the
configuration with which it originally started.

NOTE
You must start a migratable server with the Node Manager for it to be
migratable.

When the machine that failed is back in service, the migrated Managed Server isn’t
automatically started back there. You must first shut down the migrated server on the backup
machine and restart the Node Manager and the Managed Server. The clients using the failed
server may have to reconnect both times—once during the migration and later when you migrate
the server instance back to the original machine.

Performing a Manual Whole Server Migration
You may want to perform a manual whole server migration either following a server failure or as
part of a planned outage. The following steps tell you how to perform the migration:

 1. Stop the migratable server.

 2. In the Administration Console, associate the target machine with the migratable server.

 3. Place the target machine at the top of the list of candidate servers for migration.

 4. Verify that the target machine is the one you’ve selected by going to Servers | Control |
Migration.

 5. Start the server—it should now start on the target machine.

Using WLST to Migrate Services
You can use the WLST command migrate to migrate specified services such as the JMS and JTA
services to another cluster member. The command can also migrate a migratable server from one
machine to another machine. You must be connected through WLST to the Admin Server in order
to issue the migrate command. You can issue the WLST command help(‘migrate’) to learn about
this command and see its syntax and a usage example.

370 Oracle WebLogic Server 12c Administration Handbook

You can specify the following arguments for the migrate command:

 � sname Specifies the name of the server from which you’re migrating the services.

 � destinationName Specifies the name of the server or machine to which you’re migrating
the services.

 � sourceDown Specifies whether the source server is running. The default value is true.
For JTA services, the source server must be down.

 � destinationDown Specifies whether the destination server is running. The default
value is false. The destination server will activate the JMS services once it starts. For JTA
services, the target server starts the recovery services once it starts.

 � migrationType Specifies the services that you want to migrate. The default value is all,
and it migrates both the JTA and JMS services. You can specify the values jms or jta to
migrate only the JMS or the JTA services.

Here’s the syntax for the migrate command, with the all option for migrating both the JMS and
JTA services:

wls:/mydomain/edit !> migrate('server1','server2', 'true', 'false', 'all')
wls:/mydomain/edit !> migrate('server1','machine1', 'true', 'false', 'server')

Summary
This chapter introduced WebLogic Clusters, including their design, creation, and management.
You learned how load balancing works in a cluster and how the cluster manages application
failures. You also learned how automatic migration works and how to perform a server as well as
a service migration. Understanding cluster management and learning how to handle server and
service failures sets the stage for exploring application deployment, which is the subject of the
next chapter.

CHAPTER
8

Understanding WebLogic
Server Application

Deployment

372 Oracle WebLogic Server 12c Administration Handbook

The primary purpose of using a web application server such as Oracle WebLogic Server 12c is
to deploy enterprise applications. So far you have learned about configuring the various
services that the application server provides to make it easier to write applications. In this

chapter, you learn how to run the code that you develop in the WebLogic Server application server.
Deployment is the process through which you make your application available to users (and, in
some cases, other systems or applications). Once you develop a complete application or a Java EE
module, you need to make it available to users. The deployment process involves the packaging and
distribution of enterprise applications, web applications, or other modules. The Java EE specification
requires you to archive different deployment modules such as EJBs and web applications.

Oracle WebLogic Server 12c offers multiple ways of deploying applications—some of these
methods are more suitable for development purposes and others for production deployments. You
can use the Administration Console to perform any type of deployment and redeployment or to
undeploy applications. The same functionality is also available through the weblogic.Deployer
command-line tools as well. In addition, developers can use the wldeploy Ant task, which is
equivalent to using the weblogic.Deployer utility—actually, wldeploy is the Ant task version of
weblogic.Deployer. As with most things involving WebLogic Server administration, you can use
WLST commands to deploy applications as well. Developers can also take advantage of the
autodeploy feature to deploy applications automatically, cutting short the development and
testing cycle.

This chapter shows how to deploy, undeploy, and update enterprise applications. Note that
the same deployment methods apply to the deployment of a web application or an EJB module.
You’ll also learn production strategies for updating applications that allow you to simultaneously
run two versions of an application to avoid downtime or a service interruption.

Introduction to WebLogic Server Deployment
To deploy a WebLogic Server application is to make the application available to users. When we
talk about deployment, we usually have production servers in mind, but all environments,
including test and development environments, also have applications deployed to them.
WebLogic Server offers several ways to deploy applications, and you can employ the various
deployment techniques in any environment. However, you can use less stringent deployment
methods for your development instances.

During development and testing, applications change more frequently, and WebLogic Server
provides alternative deployment tools that minimize the time to redeploy. Developers typically use
fewer servers and work with integrated development environments (IDEs). Capabilities such as
exploded archive formats, split directories, and fast swap are meant to help with this. Production
environments, on the other hand, require greater stability and reliability. Capabilities such as two-
phase deployment, archive distribution, and deployment plans are designed to meet these needs.

WebLogic Server implements the required JSR-88 Service Provider Interface, which is a
requirement for complying with the Java EE 5 deployment specification. WebLogic Server
implements the standard deployment specification API (JSR-88) by generating WebLogic Server
configurations and storing them in a deployment plan. The Java EE 5 deployment API offers a
standardized way to configure an application with any application server that conforms to Java
EE 5, such as the Oracle WebLogic Server 12c. More importantly, it provides a mechanism by
which application archives can be transitioned between different environments without the need
to disturb the integrity of the original archive and offers a way to define cleanly areas that require
customization.

Chapter 8: Understanding WebLogic Server Application Deployment 373

Types of Applications You Can Deploy
The Java EE specification outlines how to organize a Java EE application or a standard Java EE
module such as an EJB. Each Java EE application (enterprise or web) or Java EE module is called a
deployment unit, and for each such deployment unit, the Java EE specification states the required
files you must include with that unit, as well as where you must place those files in the web
application or Java EE module structure. Here’s a brief description of the various types of
deployment units:

 � Enterprise applications (.ear) These consist of one or more web applications, EJB
modules, client applications, and resource adapter modules, with web applications and
EJBs being the most common. You can deploy an enterprise application as an exploded
EAR directory or as a jar file, with the .ear extension, as in myapp1.ear. Enterprise
applications may include the optional applications.xml deployment descriptor. An EAR
represents an assembly of other modules together for ease of deployment.

 � Modules that contain code These are modules such as web applications and EJBs that
host the code you develop. They are the modules packaged in an EAR. Web applications
provide a web interface for an application or web service and include servlets or
JSP pages (along with helper classes), the optional web.xml, and the weblogic.xml
deployment descriptor files. Web applications are denoted by the suffix .war, as in
myapp1.war. Enterprise JavaBeans (EJBs) are reusable Java components that implement
your business logic and are packaged as archive files, usually in exploded archive
directories. EJB modules are denoted by the suffix .jar, as in myapp1.jar.

 � Resources that are packaged as part of an EAR As you can recall from the discussion
in earlier chapters, WebLogic administrators create and deploy system modules, but
developers own the application modules. You can deploy a JMS, JDBC, or WLDF module
as part of a specific application or as a stand-alone module. A stand-alone module is
available to all applications you deploy in your domain.

 � Java EE libraries These are used to augment applications and share classes and libraries.
They are stand-alone Java EE modules registered with the Java EE application container as
a shared library. Java EE libraries allow multiple enterprise applications to share a Java EE
module without actually adding the module to each application. Each application references
the shared module in its weblogic-application.xml descriptor file and receives a copy of the
shared Java EE library at deployment time. These modules aren’t deployed as part of an EAR;
instead they are dynamically bound into an application at deployment time by reference.

The most common modules that are part of an enterprise application are web applications
and EJB modules.

Deployment Targets
You deploy a deployment type such as an enterprise or web application, for example, to a
deployment target. Deployment targets are the servers and clusters to which you deploy the
applications and modules. There are four types of deployment targets, as listed next:

 � A single WebLogic Server instance (a Managed Server). The single instance can also be an
Admin Server in a development environment.

 � A cluster

374 Oracle WebLogic Server 12c Administration Handbook

 � A virtual host (Chapter 3 shows how to configure a virtual host.)

 � A JMS server

Although you can deploy any of the deployment units described in the previous section
(enterprise applications, web applications, EJB modules, resource adapters, Java EE libraries, and
JMS, JDBC, and WLDF modules) to a single-server instance or to a cluster, you can only deploy
web applications to a virtual host. Of course, you can deploy only a JMS queue or topic defined
within a JMS module to a JMS server. You can, however, target a stand-alone JMS application
module to a server, cluster, or virtual host target.

The process of deployment simply involves describing which application components are
associated with which targets. When deploying an application or a module to a cluster, by
default, the deployment is targeted to all cluster members. This type of deployment, called a
homogeneous deployment, is recommended in general. However, you can deploy a module only
on select individual servers of a cluster in special circumstances such as when dealing with
pinned services, which can only be operative on a single server.

Deployment Tools
WebLogic Server provides multiple tools to help package and deploy applications. These tools
include the weblogic.Deployer utility; the Administration Console; WLST commands; and
wldeploy, an Ant version of weblogic.Deployer. The functionality of the various deployment tools
is similar for the most part, but each of the tools is suited for a different purpose. Let’s look at the
functionality of each of these tools:

 � weblogic.Deployer You can use this utility to perform command-line deployment tasks.
You can also use it to perform deployment tasks that the Console doesn’t support.

 � Administration Console You can deploy all types of deployment units through the
Administration Console. You can change the deployment status of applications, as well as
modify the values of deployment descriptors while the application is running.

 � WLST The WebLogic Scripting Tool (WLST) lets you automate application deployment.

 � wldeploy This is an Ant version of weblogic.Deployer that is designed for automating
deployment tasks by developers.

 � WebLogic Maven plug-in This plug-in helps developers deploy applications built using
Maven directly from the Maven environment.

Deployment Descriptors, Annotations,
and Deployment Plans
Once a developer has written the classes that contain the presentation and services that are the heart
of the application, the next step is to provide information to the application server container as to how
to interpret those classes. The deployment descriptors and annotations provide these mechanisms.

A deployment descriptor contains environment configuration information as well as product-
specific configuration details. You can define the deployment descriptor values necessary for a
deployment in a domain in several ways: Java EE deployment descriptors, which are historical
mechanisms based on external XML files and date back to the origins of Java EE; WebLogic Server
deployment descriptors; and a WebLogic Server deployment plan.

Chapter 8: Understanding WebLogic Server Application Deployment 375

In the deployment process, four primary categories of information are specified. The first
involves declaring which classes are the main entry points to your application. The second provides
the containers with hints about how to interpret the application components. The third involves
declaring the relationships among the various components, often referred to as “wiring them up.”
The fourth and final category of information involves container and environment-specific details.

Java EE 5 and Java SE 5 introduced annotation-based programming, which makes it easier for
developers to specify application component behavior in the Java class itself instead of developers
having to spend time and effort creating deployment descriptors. Older versions of applications
(J2EE 1.4 and earlier) required deployment descriptors, but they are optional in Java EE applications.
It’s important to understand, however, that annotations are not a problem-free alternative. The best
strategy is to use annotations wherever possible, ensuring that doing so is not going to reduce the
portability of the application. For example, hard-coding environmental configuration details, such
as IP addresses, by annotating them in code will affect the application’s portability. You can specify
any environment-specific information such as IP addresses in a deployment descriptor.

You can use a deployment plan to override information specified in the deployment
descriptors or through annotations. Deployment plan values override as well as supplement
descriptor values in the deployment descriptor files and in annotations, and let you customize a
deployment to various environments.

In WebLogic Server, the process of preparing an application for deployment logically involves a
three-step process. First, the application descriptors are parsed and read into the document in
memory. Next, that information is combined with information stored in the Java EE 5 annotations and
applied to the document. Finally, the information specified in the deployment plan is applied to the
resulting data structures. The combined descriptors are then used in the application’s deployment.

The standard application.xml and web.xml deployment descriptors are optional with Java EE
annotations, which are used for web containers such as EJBs, JSPs, servlets, and web applications.
Annotations are an alternative to deployment descriptors and allow the developer to specify the
behavior of the application component in the container directly within the Java class. Annotations
simplify development of application components, and deployment descriptors can still override
values you specify through annotations.

An annotation on a field or method declares that the fields or methods need injection.
Dependency injections, made possible through annotations, allow components to declare
dependencies on external resources and configuration parameters. Once the container reads the
annotations, it injects the appropriate external resources or environmental variables into the
application components. Thus, dependency injection offers an easier programming alternative to
using traditional JNDI APIs to looking up resources.

The WebLogic Server utilities appc and Appmerge process applications or modules as inputs
and produce an output application or module. These applications and modules will contain
deployment descriptors with annotation information when used with the writeInferredDescriptors
option for appc. This offers a great way to get a handle on what’s actually being deployed.

NOTE
Deployment plans help customize deployments to various
environments but require the existence of deployment files.

A deployment descriptor is an XML file that contains the deployment configuration for an
application or module. The deployment descriptors describe the contents of the jar or war files, as
well as deployment configuration settings. A standard Java EE deployment descriptor, as defined in

376 Oracle WebLogic Server 12c Administration Handbook

the Java EE specification, is required for each Java EE application or module. WebLogic Server also
has its own deployment descriptors that supplement the default Java EE deployment descriptors. The
WebLogic Server deployment descriptors are used to define the tuning parameters and resource
dependencies in the WebLogic Server environment. Table 8-1 describes the Java EE deployment
descriptor for each deployment unit and the corresponding WebLogic Server deployment descriptor.

The standard application.xml descriptor file for an enterprise application contains basic
configuration and deployment information for an application, such as the name and location of each
module in the enterprise application and application-wide security roles. The module definitions section
of the application.xml file contains subelements such as <ejb> and <web> under the <module> element
to distinguish the various types of modules in an application. The corresponding weblogic-application
.xml file includes information such as the custom startup and shutdown classes, Work Manager settings,
and the configuration of WebLogic Server application-scoped JDBC, JMS, and WLST modules.

The standard application.xml deployment descriptor is optional, and Java EE annotations can
provide all of the information. Unless you happen to use any WebLogic Server extensions, the
WebLogic-specific application deployment descriptor, weblogic-application.xml, is also optional. In the
absence of the application.xml descriptor file, the container knows the module type (EJB or web
application, for example) by looking at the name of the module, which has to follow a convention. For
example, a web application should have the .war extension, and an EJB module the .jar extension. The
EJB module must also contain a META-INF\ejb-jar.xml descriptor or a class with an EJB jar connotation.

Configuring Deployments with Deployment Plans
One of the biggest challenges in developing and deploying Java EE applications is in the transition
from development to testing and into production. Each of these environments has its own unique
demands and requirements. Fortunately, WebLogic Server provides a sophisticated scheme for
isolating the places where customization is needed and defining the environment-specific details.

Developers create Java EE and WebLogic deployment descriptors for configuring applications
for the development environment. Developers can export the deployment configuration of an
application to a deployment plan when they release an application for testing, staging, or
production deployment, though this isn’t mandatory. The deployment plan, which is an XML-
formatted file named plan.xml, consists of all or some of the configuration properties contained in
the deployment descriptor files. Using a deployment plan makes it easy to configure changes
before deploying the application into a different target environment.

Ideally, a deployment plan should include all configuration properties that change in the new
environment, such as a testing or production environment. The WebLogic Server administrator

Deployment Type Java EE Deployment
Descriptor

WebLogic Server Deployment
Descriptor

Enterprise application application.xml weblogic-application.xml

Web application web.xml weblogic.xml

EJB ejb-jar.xml weblogic-ejb-jar.xml

Resource adapter ra.xml weblogic-ra.xml

Web service None web-services.xml

Client application application-client.xml client-application-runtime.xml

TABLE 8-1. Java EE and WebLogic Server Deployment Descriptors

Chapter 8: Understanding WebLogic Server Application Deployment 377

can update the deployment or replace it with a different deployment plan after the deployment of
the application to a different target environment such as moving from a development to a
production environment.

A deployment plan can override properties you’ve specified in a WebLogic Server deployment
descriptor or even provide completely alternative versions of specific descriptors. You can also
specify deployment properties in a deployment plan that you haven’t specified in a deployment
descriptor. You store the deployment plan for an application in a dedicated directory separate
from that used for the application archive or exploded archive directory. Oracle recommends that
you create a separate plan subdirectory in the application’s root directory to store the plan.xml
file. You can specify WebLogic Server tuning parameters in a deployment plan, but this is not
mandatory. If neither the deployment plan nor the deployment descriptors define the tuning
parameters, WebLogic Server simply uses default values for these parameters.

The WebLogic Server administrator must ensure that the deployment plan for production
deployments reflects the production environment. The administrator must ensure that all external
resource references in the deployment plan are valid. For example, you must replace all references
in the plan.xml file to a development or testing data source with an appropriate production data
source. Administrators can use the deployment plan created by the developers, modify it, or even
use a custom deployment plan. You can also redeploy currently deployed applications with a new
deployment plan or update existing deployment plans and redeploy them. The bottom line in all
this is that your deployment plan must be valid for the target environment—all external resource
references must refer to available resources in the target environment.

You can use either a single master deployment plan or multiple deployment plans. If your
environment has only a few target environments, you’re better off with a single deployment plan.
The application team generally owns the single deployment plan. The master plan must define
null variables for resource names that are different among environments, and it’s the
administrator’s job to replace these empty variables with valid resource names before deploying
the application. You can leave all valid configuration values alone while updating the deployment
plan. If you’re dealing with a large number of environments with frequent changes, you should
use multiple deployment plans. In these types of situations, you’ll find it harder to maintain a
single master deployment plan that suits all environments. When using multiple deployment
plans, the administrator usually generates custom deployment plans for each target environment
instead of depending on the single deployment plan generated by the development team.

Developers can create custom deployment plans and provide those plans to the administrator
along with the application deployment files. The main reasons to export an application’s
deployment configuration to a custom deployment plan are to:

 � Specify external resources as null variables in the deployment plan so the deployer can
replace the null variables with appropriate values for the deployment environment.

 � Expose tuning parameters as variables that the deployer can modify to suit the
deployment environment.

You can use the weblogic.PlanGenerator tool to create a template deployment plan with null
variables for an entire class of deployment descriptors. WebLogic Server deployment descriptor
properties fall into four categories:

 � Nonconfigurable properties You can’t change properties such as ejb-name, for example.

 � Dependency properties These are properties that resolve resource dependencies such as
data sources, which are defined in the Java EE deployments.

378 Oracle WebLogic Server 12c Administration Handbook

 � Declaration properties These define resources such as the JNDI name for an EJB which
other resources can use.

 � Configurable properties These include all configurable properties other than the
dependency and declaration properties. Configurable properties usually define
features and tuning parameters specific to WebLogic Server. Any property other than a
nonconfigurable property can be dynamic or nondynamic. You can change the dynamic
properties without redeploying the application.

NOTE
You can only remove a value or set a null value for a variable
manually; you can’t perform these actions thorough either the
Administration Console or using the weblogic.PlanGenerator tool.

Here’s an example that shows how to use the weblogic.PlanGenerator tool to create a
deployment plan:

java weblogic.PlanGenerator -root C:\deploy_dir\prod\testApp\Ver1

This command creates the plan.xml file in the installation root directory. If you haven’t created such
a directory, you can specify the location and filename for the plan by specifying the plan option
with the weblogic.PlanGenerator command. If you don’t specify a location, WebLogic Server
creates the plan.xml file in the temporary directory for your environment. By default, the command
will create a deployment plan with null variables for all properties that involve external resources
the application uses. Oracle recommends that developers use the weblogic.PlanGenerator tool just
for exporting resource dependencies to minimize the variables in the deployment plan. The
administrator can then take this template deployment plan and, using the Administration Console,
configure the correct resource names and tuning properties for all the null variables. This allows
the administrator to validate the custom deployment plan before deploying the application into a
different environment. Note that when you make changes to any deployment properties defined as
variables, the changes are stored in a new version of the plan.xml file.

NOTE
Oracle recommends that you store custom deployment plans in a
source control system.

Automatically Generating a Deployment Plan
You can automatically generate a deployment plan by creating a plan subdirectory under the
application root directory. For example, if your application root directory is C:\deploy_dir\prod\
testApp and the current version of the application is Version 1, create two subdirectories under the
\Ver1 directory named app and plan. You’ll thus end up with the following directory structures:

C:\deploy_dir\prod\testApp\Ver1\app
C:\deploy_dir\prod\testApp\Ver1\plan

When you install an application from the app directory using the Administration Console,
WebLogic Server automatically creates a plan.xml file in the plan subdirectory of the application

Chapter 8: Understanding WebLogic Server Application Deployment 379

root directory. Following is the deployment plan that was generated for the sample application
testApp1, whose installation is described later in this chapter:

<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan
http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd" global-
variables="false">
 <application-name>testApp1</application-name>
 <module-override>
 <module-name>jspExpressionEar.ear</module-name>
 <module-type>ear</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-application</root-element>
 <uri>META-INF/weblogic-application.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>application</root-element>
 <uri>META-INF/application.xml</uri>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 </module-descriptor>
 </module-override>
 <module-override>
 <module-name>jspExpressionWar</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 </module-descriptor>
 </module-override>
 <config-root>C:\deploy_dir\prod\testApp\Ver1\plan</config-root>
</deployment-plan>

The key element in a deployment plan is the <module-override> element. It shows the module and
deployment descriptor whose values the deployment plan overrides. The <module-descriptor>
subelement under the <module-override> element shows the deployment descriptor (such as weblogic
.xml) whose properties the plan will override. The <module-override> element may have one or more
<variable-assignment> elements that show where a variable is applied to a deployment descriptor.

Using a deployment plan, you can change the value of a deployment descriptor that is inside
an ear file at deployment time. If you have archives that passed through your test and QA process,
you can modify the deployment descriptors without having to modify the already tested ear file by
using a deployment plan. Deployment plans help you fully externalize application settings and
help you override those settings.

380 Oracle WebLogic Server 12c Administration Handbook

If you would rather use an existing deployment plan, you can do so by placing it in the plan
subdirectory before installing the application through the Administration Console. When you
install the application through the Administration Console, it picks up the plan.xml file you placed
in the plan subdirectory of the application root directory. Note that the Administration Console
can only identify the plan.xml file you place in the plan subdirectory. If your application uses
multiple plans, you must place each deployment plan in its own plan directory (such as \plan1
and \plan2) and update the config.xml file for the domain with the subdirectory information so
the Console can identify them.

Modifying a Deployment Plan
You can modify an existing deployment plan for an application through the Administration
Console. Follow these steps to reconfigure the deployment plan for an application:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Click Deployments in the left-hand pane of the console.

 3. Click the application (in this example, the application name is testApp1) for which you
want to modify the deployment plan.

 4. In the Settings For testApp1 page, select Deployment Plan.

 5. To update tuning parameters, select Tuning Parameters. To update resource dependencies,
select Resource Dependencies.

 6. Edit the values for the configuration attributes and Click Save.

 7. Click Activate Changes in the Change Center.

You can also manually edit the plan.xml file to remove a variable or to assign a null value to a
generated variable. To remove a variable from the deployment plan, remove the variable
definition from the <variable-definition> stanza and the <variable-assignment> elements under the
<module-override> element that refer to the variable you’ve deleted. You can assign a null value
to a variable by changing the value in the <value> subelement of the <variable> element to the
following: <value xsi:nil=”true”></value>.

In order to change the value of a deployment descriptor, first define the variable in the
deployment descriptor, as shown here:

<variable-definition>
 <variable>
 <name>SessionDescriptor_timeoutSecs_12870427304900</name>
 <value>24000</value>
 </variable>
</variable-definition>

Once you define the deployment descriptor, you can then change the value of the deployment
descriptor by specifying the name of the deployment descriptor (session timeout) using the <variable-
assignment> element within the <module-override> element, as explained earlier in this chapter.

You can use a deployment plan to deploy the same EJB services with alternate JNDI
registrations that point to alternative JDBC connection pools. For example, you can add the
following variable definition to a deployment plan to point the data source to the new data
source, jdbc/newDS, instead of the original data source, jdbc/myDS:

Chapter 8: Understanding WebLogic Server Application Deployment 381

<variable-definition>
 <variable>
 <name>datasource-jndi-name</name>
 <value>jdbc/newDS</value>
 </variable>
</variable-definition>

To use a deployment plan to override the values of elements defined in a deployment
descriptor such as weblogic-ejb-jar.xml, you must set the new values for the <variable>, <variable-
assignment>, and <operation> elements in the deployment plan. You must set the value of the
<operation> element to replace in order for the <variable-assignment> element to replace the
values defined in the deployment descriptor.

Validating a Custom Deployment Plan
When you install a new application through the Administration Console, it automatically validates
the deployment configuration. If you export the deployment configuration to create a custom
deployment plan, you can validate the plan from the Deployments page. Select Deployment Plan |
Resource Dependencies, and verify the validity of the configuration on the Dependencies page.

Preparing Applications for Deployment
You can deploy an enterprise application, which consists of web applications and EJBs, as a
stand-alone module by directly deploying the EJBs and web applications. There are several
disadvantages to going this route, however, including the fact that the server loads each module
with its own application class loader, making it difficult to manage the class loaders in a large
deployment. In addition, there’s additional overhead to process communications between
multiple independent modules. Deployment order of the independent modules is also an issue. In
light of these considerations, deploying enterprise application modules directly to the server as
stand-alone independent applications is not a recommended approach.

An enterprise or web application consists of several Java classes, static files, and deployment
descriptor files, which all must be deployed together. Therefore, before you can deploy the application,
you must package all the application or module’s components. You can package an application in two
ways: you can package it as an archived file or use an exploded archive directory. Both the archive file
and the exploded archive directory will contain identical files and directories. If you package the various
application modules into an enterprise directory, you use the exploded directory deployment method or
you can package the modules into an .ear file, which you deploy to the server as a single unit.

Both of these methods of packaging applications for deployment have advantages and
disadvantages, as you’ll learn in the following sections. The recommended method is to package
deployment files in an archive format when distributing applications to different environments.

Deploying an Archive File
WebLogic Server administrators commonly receive the applications from the developers in an archived
format consisting of a single file containing all the classes, directories, and deployment descriptor
files. The jar utility is used to package the various deployment files into a single deployable file. The
jar tool bundles the application or module files in a directory into a single Java ARchive (JAR) file,
while maintaining the structure of the application directory. The Java class loader searches a jar file in
the same manner it searches a directory. Thus, both the “exploded directory” format and a jar file are
equivalent when it comes to deploying modules and applications. The jar files are compact and

382 Oracle WebLogic Server 12c Administration Handbook

convenient for packaging and copying, and make distributing applications easier. They also have an
additional advantage over exploded directory deployments because the Administration Console can’t
copy exploded directories to Managed Servers. According to the Java EE specification, you must
package an enterprise application as an .ear file archive. The file extension of the jar file produced by
the jar utility may have the same or a different file extension, such as .jar, .war, or .rar, depending on
the type of application. Here are the file extensions for each type of deployment unit:

Web applications .war

Enterprise applications .ear

EJBs and client archives .jar

Resource adapters .rar

Web services .war if implemented by Java classes and .jar if implemented
by EJBs

Client applications .jar

The jar utility is in the bin directory of your JDK. The command works similarly to the UNIX
tar command. The general syntax for creating a jar file is the following:

jar cf jar-file input-file(s)

This jar command will create a jar file named jar-file that contains the files that you list with the
input-file(s) attribute. If you specify a directory instead of a set of files, the jar command adds all
the files within that directory (including files in its subdirectories) to the jar file. So, if you want to
create an Enterprise Archive (EAR) file for an enterprise application, you first copy the web
archives (war files) and the EJB archives (jar files) to your staging directory. You can then create the
ear file for the application by invoking the jar command in the following way:

jar -cvf myapp.ear -C staging_dir

To create a war file instead, replace myapp.ear with myapp.war. Deploying applications using
an archive file is the recommended deployment mode for production environments. Note that
you don’t have to use a deployment descriptor (META-INF\application.xml) for an archived file
deployment, as long as you specify the appropriate type of extension for the archived file.

TIP
You can use either an application’s archive jar file (.ear) or the
exploded directory structure as an argument when using a deployment
tool such as weblogic.Deployer.

Deploying an Exploded Archive Directory
In addition to the ability to package applications into .ear archive files, WebLogic Server supports the
deployment of archived applications, and this is called an exploded archive directory deployment.
Using the archive directory deployment method doesn’t require that you prepare a single archive file
for deployment. Rather, you simply store the files and directories on your file system and make that

Chapter 8: Understanding WebLogic Server Application Deployment 383

directory structure accessible to WebLogic Server. Deploying through the exploded archive directory
is ideal when you may have to update an application partially after the deployment or the
application contains static files such as html files, image files, and css files that you need to update
frequently. In both of these cases, you avoid the need to re-create the archive file by simply using the
exploded directory deployment method. This approach is most commonly used during development
and is ideal for both development and unit testing environments. As explained later in this chapter in
the section “Using FastSwap to Shorten the Development Cycle,” the FastSwap feature allows the
immediate reloading of recompiled classes without having to redeploy an application. FastSwap is a
development mode–only feature and works only with an exploded archive directory deployment.

The Java EE specification requires the deployment of archived .ear files without deployment
descriptors. To satisfy the requirement, if you need to override the defaults you must use annotations
instead of deployment descriptors. WebLogic Server not only supports this requirement but also
allows the deployment of exploded EAR directories without using deployment descriptors. In the
absence of any deployment descriptors, the tools you use for deploying applications should be able
to find the application and web modules. You do this by naming the directories with the .ear, .war, .
jar, or .rar suffix, depending on the type of deployment unit the exploded directory contains.

You can deploy an archive file as an exploded archive directory by using the jar utility to
unpack the archive file, as shown here:

mkdir /myapp
cd /myapp
jar xvf /dist/myapp.ear

You should dedicate the myapp directory for a single purpose—to serve as the root
installation directory for the myapp application. Note that you must create an application.xml
deployment descriptor file to specify the order in which you want to deploy the various modules
if the exploded enterprise application doesn’t contain a META-INF\application.xml descriptor.

You can use the wlcompile Ant task to compile your application’s Java components in a split
development directory, as shown here:

<wlcompile srcdir="${src.dir}" destdir="S{dest.dir}"/>,

In this example, <srcdir> is the source directory and <destdir> is the build/output directory.
The wldeploy task lets you easily deploy an application directly from the split development
directory. In order to deploy from a split development directory, all you need to do is to identify
the build directory as the location for the deployable files, as shown in the following example:

<wldeploy user="${user}" password="${password}"
 action="deploy" source="S{dest.dir}"
 name="myAppEar"

Naming the Deployment and the Applications
Naming a deployment makes it easy to redeploy or undeploy an application. This is especially
true when your WebLogic Server domain contains multiple servers. If you don’t specify a name
for your deployment, the deployment tool names the application after the archive file. For
example, if you name an enterprise application’s archive file newapp.ear, the deployment is, by
default, named newapp. In an exploded archive directory deployment, weblogic.Deployer uses
the name of the top-level directory for the deployment as the deployment name.

384 Oracle WebLogic Server 12c Administration Handbook

The application names must adhere to certain naming conventions: you can use only
alphanumeric characters, underscores, hyphens, and periods. Version strings are optional but
highly recommended, especially in production environments. The developers provide the version
string in the manifest file for the application.

Storing the Deployment Files
Whether you are deploying via an archived file or through an exploded archive directory, always
create a special installation directory for the application to make your (and the web app server’s)
life easier. The purpose behind the creation of the application installation directory is to separate
the configuration files from the core application files. The Administration Console will identify
your application-related files easily if you create an installation directory. Once you receive all the
necessary application files for deploying on the production WebLogic Server, simply create an
application installation directory and place all the files there—do this whether you’re using the
archived format or exploded archive directory method to deploy the application.

NOTE
Oracle recommends that you move all deployments into an
application installation directory before deploying them.

Here’s an example showing how to create an application directory to store application files
under the top-level directory C:\deploy_dir\prod:

 1. Create a deployment directory named C:\deploy_dir\prod. This top-level directory must
be separate from the domain directory and must be accessible by the Admin Server and
all the Managed Servers.

 2. Create a subdirectory under the top-level directory:

mkdir C:\deploy_dir\prod\newApp

 3. Create another directory under the newApp directory to mark the version of the
application you’re about to deploy:

mkdir C:\deploy_dir\prod\newApp\Ver1

 The Ver1 directory is the version subdirectory, which serves as the installation root directory.

 4. You must now create two directories under the Ver1 directory, one for storing the
application files and the other for placing the plan.xml file(s):

mkdir C:\deploy_dir\prod\newApp\Ver1\app
mkdir C:\deploy_dir\prod\newApp\Ver1\plan

 5. The final step is to copy the source application files into the app directory and the
deployment plan files (plan.xml files), if you have any, into the plan directory, as shown here:

copy C:\backup\newApp.ear C:\deploy_dir\prod\newApp\Ver1\app
copy C:\backup\Plans\plan1.xml C:\deploy_dir\prod\newApp\Ver1\plan

Note that the plan directory should mirror the app directory and that for each module there
can be a directory that contains descriptors that augment or override the files in the application

Chapter 8: Understanding WebLogic Server Application Deployment 385

archive. The previous example shows how to copy the archive file newApp.ear into the installation
root directory, app. If you’re using an exploded archive directory instead, simply copy the entire
exploded archive directory into the installation root directory, as shown here:

copy -r C:\backup\newApp C:\deploy_dir\prod\newApp\Ver1\app

Note that the creation of the dedicated application installation directory, as shown here, is
only useful if you’re deploying your application through the Administration Console. The
weblogic.Deployer utility doesn’t permit you to specify an application installation directory.

How WebLogic Server Accesses Source Files
The staging mode specifies how the server copies the deployment files from a source on the
Admin Server to the Managed Server’s staging area during the deployment’s preparation phase.
You can choose to make the deployment files available to the target servers in three different
staging modes: stage, nostage, and external_stage. In the stage mode, the Admin Server distributes
the deployment source files for applications to staging directories on each of the target servers.
Staging the application files works best when you’re dealing with small-sized applications. When
dealing with large applications that you’re deploying to several targets, you can use the nostage
option, which requires all servers to use the same physical copy of the application file or files. You
must ensure that both the Admin Server and the Managed Servers can access the physical files
and reference them with the same declared path on all server instances. You can use shared
storage or a networked directory so all targets can access the deployment files.

The nostage mode also works well in cases in which you’re using an exploded archive
directory and wish to redeploy changed applications regularly.

NOTE
Managed Servers use the staging mode, by default, when you
distribute or deploy applications to them.

The external_stage mode is less frequently employed than the stage and nostage modes. In
this mode, a target does use its own copy of the deployment files, but you must manually copy
those files to the staging directory of each server that’s part of the deployment. This is typically
accomplished on UNIX environments with scp or is often the case when using an external
document management system to distribute content. The Admin Server will still keep a copy of
the deployment files for validation purposes, but it doesn’t validate the deployment file copies
that reside in the staging directories of the target servers.

When dealing with large application migration to multiple servers, use the external_stage
mode of deployment if you can’t use the nostage mode for some reason and you also don’t have a
shared file system. If you leave out the stage, nostage, and external_stage options when executing
the weblogic.Deployer command, the server staging mode determines the default deployment
mode for a server. You can modify the current staging mode of a server by following this sequence
in the console: Environment | Servers | <Server_Name> Configuration | Deployment. Figure 8-1
shows the Deployment page for a Managed Server. You can configure three things from this page:

 � Staging Mode (select the stage, nostage, or external_stage mode)

 � Staging Directory Name (on the Managed Server)

 � Upload Directory Name (on the Admin Server)

386 Oracle WebLogic Server 12c Administration Handbook

The default server staging mode is stage, so you don’t have to specify the stage option when
you use weblogic.Deployer to deploy an application or module. If you want to use one of the
other two staging modes, you need to specify the staging mode with the appropriate option
(nostage or external_stage) when you issue the weblogic.Deployer command, as shown here:

java weblogic.Deployer -adminurl http://localhost:7001 -username weblogic
 -password welcome1 -name testApp1
 -nostage
 -targets MyCluster1
 -deploy
 C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear

Replace -nostage with -external_stage if you want to use the external stage mode instead.

Staging Deployment Plans
In Oracle WebLogic Server 12c, you can stage an application’s deployment plan independently of
the application archive. This gives you the option of staging a deployment when the application
itself isn’t staged.

You have three options for staging deployment plans:

 � planstage Copies the deployment plan to target servers’ staging directories.

 � plannostage Doesn’t copy the deployment plan to target servers, but leaves it in a fixed
location.

 � planexternal_stage Doesn’t copy the deployment plan to target servers. You are responsible
for manually copying the plan (or using a script to do so) and ensuring the deployment plan
is copied to the appropriate subdirectory in the target server’s staging directories.

FIGURE 8-1. Configuring a server’s file deployment settings

Chapter 8: Understanding WebLogic Server Application Deployment 387

By default, a deployment plan uses the value you specify for application staging if you don’t
specify a staging mode for the plan. For example, if application staging is set to stage, the
deployment plan staging mode is, by default, set to planstage.

If neither the deployment plan nor the application staging is specified, the server setting is
used as the default application staging mode. For example, if the server setting is to not stage,
then the deployment plan staging mode is set to plannostage. In this case, you must explicitly
specify the deployment plan staging if it’s required.

Deploying Applications
Although the various deployment tools are functionally equivalent, administrators use the
Administration Console, weblogic.Deployer, or WLST scripts to deploy applications. Developers
can use the Administration Console for deployment in a single-server environment, but wldeploy
is a good alternative for developers because they don’t have to go through multiple deployment
steps, as required when using the Console. The following sections show how to deploy
applications through the Administration Console, WLST, weblogic.Deployer, and wldeploy. Make
sure you start all the WebLogic Server services such as JDBC data sources—some applications
may deploy fine even if you haven’t started the services, but others will fail to deploy. You also
must create any necessary users and groups in the domain’s security realm.

Before you start reviewing the various deployment tools, you should understand the order in
which WebLogic Server deploys applications and resources upon starting.

Deployment Order
When you are deploying an application on WebLogic Server in development or for the first time
in production, you’ll necessarily do it in an order in which you deploy resources and applications
that are your building blocks first and deploy the dependent resources and applications later. If
you are using JMS to communicate between two applications, you deploy the JMS queues and
topics first and the applications next. This ordering must somehow be preserved when starting a
server instance. As a general rule, there is a well-known order that covers which groupings of
deployable entities are deployed in what order. In general, the WebLogic Server deploys
applications and resources in the following order:

 1. JDBC system modules

 2. JMS system modules

 3. Java EE libraries and optional packages

 4. Applications and stand-alone modules

 5. Startup classes

Within the categories of “applications and stand-alone modules” and “startup classes,” the
Deployment Order attribute controls the order in which each server deploys each deployment unit.
You can specify the deployment order in the application.xml deployment descriptor or as a parameter
when you use the deployment tools. Each deployment unit has a default Deployment Order value of
100. When you boot a server, it first initializes the dependent subsystems and then deploys each
deployment unit according to its Deployment Order value. You can change the Deployment Order
attribute from the Administration Console. On the Deployments page, click the module for which
you want to change the deployment order. In the Settings For <module_name> page, enter a new

388 Oracle WebLogic Server 12c Administration Handbook

numeric value in the Deployment Order field and click Save. You must first obtain a lock and activate
the changes. When the server restarts, the module is deployed in the order you specify. If multiple
modules have the same Deployment Order, the server deploys them in alphabetical order.

When the server boots up, it starts everything in the following sequence:

 1. The server initializes the JMS and JDBC services.

 2. It deploys applications and modules.

 3. It performs custom startup tasks (runs the startup classes).

Startup and shutdown classes refer to custom Java programs that the server executes
automatically when you start a server or shut it down gracefully to provide system services for the
applications you deploy. You can load the same or different startup classes on each cluster member.
The server loads the shutdown classes and runs them before a graceful shutdown. Any other server
shutdown modes don’t let the server run the shutdown classes. To use a startup or shutdown class,
you must configure the classes and assign them to a server or cluster. The examples.jms.startup API
code shows how to establish a JMS message consumer from a WebLogic startup class.

You can create, configure, and alter the startup sequence of startup classes through the
Administration Console. Expand Environment in the left-hand pane of the Console and select
Startup And Shutdown Classes.

If you want to modify the default startup behavior by, say, having the server execute the
startup classes after the JDBC connection pools are activated but before the applications and EJBs
are deployed, you can do so by selecting the class name and checking the Run Before Application
Deployments check box in the Administration Console. If you want the server to execute the
startup tasks after it starts the JMS and JDBC services but before it activates the applications and
EJBs, select the class name and the Run Before Application Activations check box in the
Administration Console. The server loads and runs the startup classes before it starts the
deployment prepare phase. The default behavior is for the server to load the startup classes after
the deployment enters the ADMIN state.

Using the Administration Console for Deployment
You can use the Administration Console to deploy applications even if you aren’t sure of the target
servers or where the various application deployment files are located. The following section shows
how to install an enterprise application. The deployment steps are similar when you deploy a web
application or an EJB module. In the example, let’s install the enterprise application in a domain
that’s running in production mode. In a production environment, you must perform two distinct
steps to deploy an application through the Administration Console: First, install the application,
and then start it. Installing the application lets the WebLogic Server access the application files
(archived file) or directory (exploded archive directory) and validate the deployment files. Starting
the application makes it available to users. In development mode, when you install an application
or module, it automatically starts running if the installation is successful, thus installation and
deployment are synonymous in development mode, unlike in production mode.

NOTE
Although you can deploy a Java EE application or a Java EE, JMS, JDBC,
or WLDF module to a single server (an Admin or Managed Server) or a
cluster, you can only deploy a web application to a virtual host.

Chapter 8: Understanding WebLogic Server Application Deployment 389

Installing an Enterprise Application
Installing an enterprise (or any) application means making WebLogic Server aware of the physical
archive file or the exploded archive directory under which all the application’s files and classes
are located. As explained in the section “Types of Applications You Can Deploy,” earlier in this
chapter, you can install an enterprise or web application as an archived file or as an exploded
archive directory. In this example, let’s install the application as an archived ear file. Follow these
steps to install an enterprise application:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Select Deployments in the left-hand pane of the console.

 3. On the Deployments page, click Install.

 4. The Install Application Assistant will guide your installation actions. Locate the
application or module in the Install Application Assistant and click Next. You can select
a file path that represents an archive file, an application root directory, or an exploded
archive directory. If you specify a directory, the server will install all the components
in that directory. Note that you must click the radio button to the left of the application
name before the Install Application Assistant can proceed. Figure 8-2 shows the
deployment location page.

 5. On the Choose Targeting Style page, select “Install This Deployment As An Application.
Figure 8-3 shows this page. You can also choose to install the application as a library.
Click Next.

 6. On the Select Deployment Targets page (you’ll see this page only if you have one or
more Managed Servers or a cluster in the domain), select a cluster or Managed Server(s)
from the Available Targets table. In this example, I chose the cluster named MyCluster1.
Note that, by default, the server installs the deployment files on all the Managed Servers
in a cluster, but you can choose to install the application on only some of the cluster
members. Click Next.

 On the Optional Settings page, shown in Figure 8-4, name the deployment (ajaxJSF1 in
this example). You can also select a security model, which is a combination of security
roles and policies. Select the default option for the security model, which is DD Only:
Use Only Roles And Policies That Are Defined In The Deployment Descriptors. You can
also choose to use roles and policies that are defined in the Administration Console.

FIGURE 8-2. The deployment location page

390 Oracle WebLogic Server 12c Administration Handbook

FIGURE 8-3. Selecting the deployment targets

FIGURE 8-4. The Optional Settings page

Chapter 8: Understanding WebLogic Server Application Deployment 391

 7. In the Source Accessibility section, you must choose how you want to make the
application’s source files available to the targets. You have three choices:

 � Use The Defaults Defined By The Deployment’s Targets

 � Copy This Application Onto Every Target For Me

 � I Will Make The Deployment Accessible From The Following Location

 Selecting the option Copy This Application Onto Every Target For Me will automatically
copy the application files to all the Managed Servers to which you target the application.
Note that this is equivalent to setting the staging mode to stage. If you choose the last
option (“I Will Make The Deployment Accessible From The Following Location), make
sure that all targets can reach this directory—usually this is a shared directory. This choice
is the same as the nostage staging mode. Click Next.

 8. In the Additional Configuration section on the next page, shown in Figure 8-5, you can
choose to configure the application at this point by selecting the “Yes, Take Me To The
Deployment’s Configuration Screen option. You can skip that step for now by selecting
the No, I’ll Review The Configuration Later option. Click Finish. You’ll see the following
message in the Console: “The deployment has been successfully installed.”

 9. To activate the installation changes you made, click Activate Changes in the Change
Center of the Administration Console.

FIGURE 8-5. Additional Configuration options

392 Oracle WebLogic Server 12c Administration Handbook

If you follow the Oracle-recommended deployment directory structure (by creating an application
root directory with the subdirectories app and plan under it), WebLogic Server automatically creates a
deployment plan in the plan directory if there’s one there already. If you already have a deployment
plan in the plan directory, you’ll see the following message in the console:

“A deployment plan was found for this application at C:\test_dir\plan\Plan.xml. These
deployment plan files have been included in this deployment.”

Once the installation has finished, you are returned to the Summary Of Deployments page,
and you’ll now see your new deployment’s name, ajaxJSF-1, under the Name column in the
Deployments table, which is shown in Figure 8-6. The Type column shows that the application is
an enterprise application.

Under the State column, before you activate the changes in the Change Center by clicking the
Activate Changes button in step 10, you’ll see DISTRIBUTE INITIALIZING (in the case of a
single-server deployment, the state will be DEPLOY INITIALIZING instead). Once you activate the
changes, the value of the State column changes to PREPARED, indicating that the server has
validated the application’s deployment files. The value for the State column will change to ACTIVE
once you start the application.

FIGURE 8-6. The Summary of Deployments page

Chapter 8: Understanding WebLogic Server Application Deployment 393

When you deploy an application or an EJB module, the deployment goes through three
distinct phases:

 � Prepare The deployment files and the plan.xml file are validated.

 � Admin The server passes through the admin phase before it fully activates the application.
However, you can start an application in ADMIN mode for testing the application.

 � Activate The server starts accepting connection requests for the application.

Once the deployment is completed, the domain’s config.xml file will show the deployment
information for the new enterprise application (myApp1 in this example), as shown here:

<app-deployment>
 <name>testApp1</name>
 <target>MyCluster1</target>
 <module-type>ear</module-type>
 <source-path>C:\test_dir\app\testApp1.ear</source-path>
 <security-dd-model>DDOnly</security-dd-model>
</app-deployment>

Note the <target> element shows that this application is deployed to the entire cluster MyCluster1.
Deleting an application is easy. On the Summary Of Deployments page, select the application

you want to delete from the Deployments table. Click Delete. You must first stop the application
before you can undeploy it. If you try to undeploy a running application, you’ll receive the
following error messages in the console:

“The application testApp1 is currently running and may not be deleted.
All of the Deployments selected are currently in a state which is incompatible with this
operation. No action will be performed.”

When you deploy an application to a target (or targets), the state of the deployment in the
Deployments table will show NEW until all the targets are fully started. Once you deploy an
application fully by installing and starting it, you don’t have to do anything further when you
restart the servers. The application will automatically start running after each restart of a target
server. You need to start the application only once—the very first time you install it. After that,
the application will automatically start when you restart the server.

Starting and Stopping the Application
You can start an application so it goes into an ACTIVE state and starts accepting client
connections or start it in administration mode. When you shut down an application, you can
either shut it down immediately or bring it down in a graceful manner. The following sections
describe the various startup and shutdown options.

Starting an Application Installing an application or module doesn’t make that application or
module available to the server clients. To make an application available to users, you must start
the application, by following these simple steps.

 1. Select Deployments in the Administration Console.

 2. Select the check box that belongs to the application you want to deploy.

394 Oracle WebLogic Server 12c Administration Handbook

 3. Click Start to make the application available to users. When you click the Start button
after checking the application’s name, you’ll see a drop-down list with two choices:

 � Servicing All Requests

 � Servicing Only Administration Requests

 4. Select one of the two options to start the application—the first option lets the application
start servicing user requests immediately. The second start option will start the server
in administration mode so you can test things before releasing an application into the
production environment. If you start an application in administration mode, its state in
the Deployments table is shown as ADMIN.

You can also start an application by using weblogic.Deployer, as shown here:

java weblogic.Deployer -adminurl http://localhost:7001 -username weblogic -
password welcome1 -name mymodule1 -start

Stopping an Application You can stop an application through the Console, as explained
earlier, or with the weblogic.Deployer tool by specifying the stop command, as shown here:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1 -name mymodule1-stop

You can also take an application offline for maintenance reasons or for troubleshooting by
placing the running application into administration mode. Once you place the application in
administration mode, you must connect to it using a configured administration channel. Use the
stop command with the adminmode option to place an application in administration mode:

java weblogic.Deployer -adminurl http://localhost:7001 -username weblogic
 -password welcome1 -name mymodule -stop -adminmode

The stop command, as shown here, will terminate the application without waiting for pending
HTTP sessions to complete their work. If you want the server to wait for in-process work to
complete, specify the graceful option:

java weblogic.Deployer -adminurl http://localhost:7001 -username weblogic
 -password welcome1
 -name mymodule
 -stop -adminmode -graceful

Once you complete your testing or maintenance work, open the application back up to client
requests by using the start command, as explained earlier. By default, the server stops the active
version of an application if you’ve deployed more than one version of an application. If you want
to stop a version other than the active version, specify the version number of the application with
the appversion option.

Note that stopping an application is purely an administrative function: it doesn’t affect an
application’s deployment status; it just makes the application unavailable to service client
requests. If you undeploy an application, however, the server removes all deployment files
generated by WebLogic Server from the domain.

Chapter 8: Understanding WebLogic Server Application Deployment 395

You can stop a running application from the Administration Console by following these steps:

 1. Click Stop on the Summary Of Deployments page after first checking the application you want
to shut down. You must pick one of the following options when you shut down an application:

 � When Work Completes Performs a clean shutdown, where the server waits for the
application to finish all pending work and also waits for all currently connected users
to disconnect.

 � Force Stop Now Stops the application immediately.

 � Stop, But Continue Servicing Administration Requests Stops the application
once it finishes ongoing work and puts it in administration mode, where only an
administrator can access the application.

 2. Click Yes to confirm your choice to stop the application.

When you shut down an application, it goes into the PREPARED state before shutting down.

Deploying Internal Applications
WebLogic Server deploys several internal applications, such as the Administration Console, that
display a user interface. The server can deploy these internal applications at server startup time or
on demand. The on-demand deployment is also called deployment on first access. When you run
the server in development mode, the internal applications are deployed on demand, and in
production mode, they are deployed at server startup time. Starting the internal applications at
server startup requires more memory and CPU and leads to a longer server startup time. You can
avoid this by configuring the internal applications to start only on demand. Follow these steps to
configure this option from the Administration Console:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Go to the Domain | Configuration | General page.

 3. Select the Enable On-Demand Deployment Of Internal Applications check box.

 4. Click Save and then click Activate Changes.

Configuring the Enable On-Demand Deployment Of Internal Applications property ensures
that internal applications, such as the Administration Console, uddi, wlstestclient, and
uddiexplorer, are not deployed automatically during server startup. On-demand deployment is the
default in development mode, and you need to configure this for production mode servers in
cases where you know you aren’t using any of these applications.

Using WLST to Deploy Applications
You can use WLST when you want to automate deployment tasks through scripts. Because the
WLST deploy command is an online command, you must first connect to the Admin Server.
Also, make sure you have the Node Manager running if you are deploying or undeploying from a
Managed Server or cluster.

Deploying an Application
The following example shows how to deploy an enterprise application to a target using an archive file:

wls:/wl_server/serverConfig>
 deploy('testApp1','C:\deploy_dir\prod\testApp\app\testApp1.ear')

396 Oracle WebLogic Server 12c Administration Handbook

Deploying application from C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear to
targets (upload=false) ...
<Sep 6, 2013 6:15:22 AM EDT> <Info> <J2EE Deployment SPI> <BEA-260121>
 <Initiating deploy operation for application, testApp1 [archive:
C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear], to examplesServer .>

.Completed the deployment of Application with status completed
Current Status of your Deployment:
Deployment command type: deploy
Deployment State : completed
Deployment Message : no message
wls:/wl_server/serverConfig>

You can specify several arguments with the deploy command, but only two of them are
mandatory: appName and path. If you don’t specify a value for the target argument, by default,
the application is deployed to the Admin Server.

Note that in the examples shown here, the deployment will take the archive file’s name
(without the .ear or .war extension, of course). If you want to name your deployment differently,
specify the name option with the deploy command. If you wish to deploy multiple applications,
you can simplify things by using a simple WLST script such as the following:

connect ('weblogic',welcome1','t3://localhost:7001')
 Target='MyManagedServer1'
f=open(r'./appList.txt','r')
print t
for i in range(3):
 line=f.readline()
 line1=line[:-1]
 appName='./'+line1
 print '#######################' +appName
 edit()
 startEdit()
 deploy(appName=line1,path=appName,targets=target)
 save()
 activate()
 f.close()

You can also use WLST in offline mode to deploy an application, but the process is more
complex. Here are the steps:

 1. Create an application template using the Domain Template Builder.

 2. Open the newly created application template using the readDomain command:

wls:/offline>
readDomain('C:\Oracle\Middleware\wlserver_12.1\samples\domain\medrec')
wls:/offline/medrec>
readTemplate('C:\Oracle\Middleware\wlserver_12.1\common\templates\domains\
wls_medrec.jar')

Chapter 8: Understanding WebLogic Server Application Deployment 397

 3. Add the template to the domain:

wls:offline/medrec>
addTemplate('C:\Oracle\Middleware\wlserver_12.1\common\templates\applications\
DefaultWebApp.jar')

 4. Save and close the domain using the updateDomain and the closeDomain commands:

wls:offline/wlwmedrec>updateDomain()
wls:offline/wlwmedrec>closeDomain()

One excellent benefit of using a WLST script is that it allows you to automate the creation of
servers and resources along with the deployment of the application. Developers can create a
simple script embedded in Ant that re-creates a domain for development. Saving that domain as a
template for handing off to QA and production is a good use of offline WLST scripts (and the
Configuration Wizard).

Undeploying an Application
Use the WLST undeploy command to remove a deployed application, as shown in the following
example:

wls:/wl_server/serverConfig> undeploy('testApp1',timeout=60000);
Undeploying application testApp1 ...
<Sep 6, 2013 8:12:34 AM EDT> <Info> <J2EE Deployment SPI> <BEA-260121>
<Initiating undeploy operation for application, testApp1 [archive: null],
to MyManaged1 .>
..Completed the undeployment of Application with status completed
Current Status of your Deployment:
Deployment command type: undeploy
Deployment State : completed
Deployment Message : no message
wls:/wl_server/serverConfig>

If the application testApp1 is deployed to a cluster instead of a single Managed or Admin Server,
the undeploy command is still issued the same way as shown here for a single-server
deployment.

Deploying with weblogic.Deployer
The weblogic.Deployer tool is the ideal way to deploy applications in a production environment.
The weblogic.Deployer tool lets you incorporate deployment commands in shell scripts and batch
processes, as well as in administrative environments that use Ant. An important thing to remember
before you can start working with weblogic.Deployer is that you must configure SSL on the
machine where you’re executing the weblogic.Deployer command if you’re accessing the Admin
Server through an administration channel. The weblogic.Deployer tool offers you all the
functionality of the Administration Console and lets you easily integrate deployment commands
within shell scripts and batch files.

The following sections show you how to deploy and undeploy an application, as well as
perform other deployment-related tasks with the weblogic.Deployer tool.

398 Oracle WebLogic Server 12c Administration Handbook

Deploying an Enterprise Application
You use the deploy option to deploy an application to a WebLogic Server, whether it be an Admin
Server, a Managed Server, or a cluster. Here’s an example that shows how to deploy to a WebLogic
Server cluster. Make sure that you set the environment first with the setDomainEnv.cmd script:

C:\>
Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server\bin\setDomainEnv.cmd
C:\Oracle\Middleware\Oracle_Home\domains\wl_server>java weblogic.Deployer
-username weblogic -password welcome1 -name testApp1 -deploy -targets MyCluster1
C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear
weblogic.Deployer invoked with options: -username weblogic -name testApp1 -deploy
-targets MyCluster1 C:\deploy_dir\prod\testApp\app\testApp1.ear
<Sep 6, 2013 7:12:27 AM EDT> <Info> <J2EE Deployment SPI> <BEA-260121> <Initiating
deploy operation for application, testApp1 [archive:
C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear], to MyCluster1 .>
Task 15 initiated: [Deployer:149026]deploy application testApp1 on MyCluster1.
Task 15 completed: [Deployer:149026]deploy application testApp1 on MyCluster1.
Target state: deploy completed on Cluster MyCluster1

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>

It’s important to understand that the deploy option doesn’t merely make the application files
available to the target servers—it actually makes the application available to the users. In other
words, the command doesn’t stop at the PREPARED stage by installing the deployment files and
validating them—it also starts the application. Note that weblogic.Deployer doesn’t use a
deployment plan, even if there’s one in the deployment directory. You can make it use a
deployment plan by specifying one with the plan option.

You can use weblogic.Deployer to deploy a module or a set of modules that are part of an ear
file. Why would anyone want to package all the modules into a single ear file and then deploy
only specific modules to a server? The purpose behind this strategy is that it simplifies the
packaging and distribution of complex applications. Note that deploying specific modules from
an ear is rare. The normal motivation for doing this is where there’s a two-tier application with the
web server in the front tier and EJB or web services in the back tier. In such cases, you can have a
single ear file and target only parts to various Managed Servers or clusters. Again, this is a pretty
unusual case. The following example shows how to deploy three modules, named module1,
module2, and module3, respectively, to three separate servers:

java weblogic.Deployer -adminurl http://localhost:7001 -username weblogic
 -password welcome1 -name testApp1
 -targets module1@server1,
 module2@server2,module3@server3
 -stage
 -deploy
C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear

You can deploy to one or more Managed Servers by specifying the Managed Servers with the
targets argument, as shown here. This example also shows how to deploy to a virtual host:

java weblogic.Deployer -adminurl http://localhost:7001 -username weblogic
 -password welcome1

Chapter 8: Understanding WebLogic Server Application Deployment 399

 -deploy
 -targets MyManagedServer1,MyManagedServer2
C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear

In the following example, myHost is the name of a virtual host you’ve configured:

java weblogic.Deployer -adminurl http://localhost:7001 -username weblogic
 -password welcome1
 -deploy -targets myHost
C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear

None of these three examples uses a deployment plan. If your deployment includes a deployment
plan, specify the plan option along with the deploy option.

When you deploy an application to a WebLogic Server cluster, the deployment must succeed
on all active members of the cluster or the deployment will fail. However, if one of the members
of a cluster is shut down while you’re deploying an application, the inactive member will deploy
automatically when it’s restarted. This is the default behavior. You can override this behavior by
specifying the ClusterConstraintEnabled option when you start a WebLogic Server domain. Doing
this ensures that a cluster-wide deployment fails if any members are unreachable due to a
network issue, for example, or even because you brought down an instance for maintenance
work. Of course, as explained earlier, a cluster deployment will also fail if you can’t deploy the
entire set of application files to all the members of the cluster—active or inactive.

Adding a New Module
You can add a new application module to a deployed application without having to redeploy the
application. The following example shows how to add a new module named newmodule.war to
the testApp1.ear module, which is already in deployment:

java weblogic.Deployer -username weblogic -password welcome1
 -name testApp1
 -deploy
 -targets newmodule.war@myserver
 -source C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear

This command will deploy just the newmodule.war application, without affecting other
components in the testApp1.ear enterprise application.

Deleting Files from a Deployment
You can delete static content from a deployment by using the delete_files option with
weblogic.Deployer, but only if you have deployed the web application through an exploded archive
directory. Here’s an example that shows how to delete the file test.html that’s part of the exploded
archive directory named testApp1:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1
 -name testApp1
 -delete_files testApp1/test.html

Handle the delete_files option with great care. Oracle recommends that you don’t use the
delete_files option in production because it could delete all files in the exploded archive directory
if you don’t specify a file.

400 Oracle WebLogic Server 12c Administration Handbook

NOTE
A deployment name is associated with the application’s deployment
files and lets you easily deploy, redeploy, and undeploy applications.

Undeploying an Application
Undeploying an application or a module removes both the deployment name and the application
or module’s deployment files from a domain. Use weblogic.Deployer with the undeploy
command, as shown in the following example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1
 -name mymodule -undeploy

You can undeploy an application or a module from specific targets by issuing the command
with the targets option:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1
 -name mymodule
 -undeploy
 -targets MyManagedServer1

If you don’t specify the targets and submoduletargets options, the server will remove the
application from all targets. It also detargets the JMS submodules.

Whereas the Administration Console doesn’t undeploy a running application (when you
“delete” an application), the default behavior of the weblogic.Deployer undeploy command is to
terminate client connections immediately. When you’re undeploying an application in a
production setup, you may use the graceful option with the undeploy command, as shown here:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1
 -name mymodule
 -undeploy -graceful

The graceful option undeploys the application after waiting for the HTTP clients to complete their work.
When you undeploy an application or module, the server doesn’t remove the application’s

source files—it merely deletes the deployment configuration and all deployment files that the
server copied during deployment. For example, if you used the stage mode during deployment,
the server copies the deployment files. Once you undeploy an application, you must perform a
complete deployment process to return the deployment files, create a deployment name, and
assign targets for the deployment.

Canceling a Deployment
You can cancel an ongoing deployment by specifying the cancel command with weblogic.Deployer.
Specifying a task identifier helps identify your deployment. You can specify a task identifier with the
id option, as shown in the following example:

java weblogic.Deployer -adminurl http://localhost:7001 -username weblogic -
password welcome1

Chapter 8: Understanding WebLogic Server Application Deployment 401

 -deploy -targets MyCluster1
 C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear
 -id testDeployment

You can then cancel the deployment by specifying the deployment’s ID:

java weblogic.Deployer -username weblogic
 -password welcome1
 -cancel
 -id testDeployment

Listing All Deployments
Use the listapps option to view the deployment names for all application standalone modules
deployed in a domain, as shown in the following example:

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>java weblogic
.Deployer
-username weblogic -password welcome1 -listapps
weblogic.Deployer invoked with options: -username weblogic -listapps
 pubsub [LibSpecVersion=1.0,LibImplVersion=1.6.0.0] <ACTIVE VERSION>
 asyncServletEar
 SamplesSearchWebApp
 xmlBeanEar
 examplesWebApp
 mainWebApp
 weblogic-sca [LibSpecVersion=1.1,LibImplVersion=1.1.0.0] <ACTIVE VERSION>
 ejb30
 jspSimpleTagEar
 ejb20BeanMgedEar
 stockEar
 webservicesJwsSimpleEar
 extServletAnnotationsEar
 testApp1
 apache_xbean.jar
 jdbcRowSetsEar
Number of Applications Found : 16
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>

As you’ll learn in the “Production Redeployment Strategies” section, later in this chapter, the
listapps command is very helpful in finding the version number of an application.

Using the update Command
The update command doesn’t update the application; it also doesn’t distribute or deploy the
application. Rather, it redistributes the deployment plan file and reconfigures the application
according to the new plan. Here’s an example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1
 -update

402 Oracle WebLogic Server 12c Administration Handbook

 -name myTestDeployment
 -plan
C:\deploy_dir\prod\testApp\Ver1\plan\myNewPlan.xml

The production application can remain online for certain types of applications while you’re
reconfiguring its configuration.

Deploying with the wldeploy Ant Task
You can best put the wldeploy tool to use when you’re deploying applications in a development
environment. However, if your environment uses Ant tasks rather than shell scripts, you can use
wldeploy instead of the weblogic.Deployer tool—the functionality is the same. The wldeploy task
is primarily for developers to use in their environments. Because this book is primarily for
WebLogic Server administrators, I won’t discuss the wldeploy Ant task in great detail, but you
execute it the same way as you execute the wlserver and wlconfig tasks.

Here are the steps to run the wldeploy Ant task:

 1. Set the environment:

WL_HOME\server\bin\setWLSEnv.cmd

 2. Create an Ant build file (the default name is build.xml) with a target that includes a call to
wldeploy.

 3. Type ant at the command prompt in the staging directory to execute the Ant task:

ant

Here’s an example that shows a target that deploys an application to the Admin Server
(development environment):

<target name="deploy">
 <wldeploy
 action="deploy" verbose="true" debug="true"
 name="TestDeployment" source="deploy/testdeploy.ear"
 user="weblogic" password="welcome1"
 adminurl="t3://localhost:7001" targets="examplesServer" />
</target>

You can undeploy the application by just specifying the deployment name:

<target name="undeploy">
 <wldeploy
 action="undeploy" verbose="true" debug="true"
 name="TestDeployment"
 user="weblogic" password="welcome1"
 adminurl="t3://localhost:7001" targets="examplesServer"
 failonerror="false" />
</target>

Chapter 8: Understanding WebLogic Server Application Deployment 403

Reducing Deployment Time During Development
WebLogic Server offers a couple of highly useful techniques to simplify development deployments.
The first is the autodeploy feature, which lets you deploy applications or modules by placing the
deployment files in a specific directory. The FastSwap feature also helps cut back on development
time because it allows in-place recompilation of Java classes without the need for redeployment of
the application or module. Let’s review these two features in the following sections.

Using the Autodeployment Feature During Development
WebLogic Server offers a quick way to deploy applications through its autodeployment option,
wherein all you have to do to deploy an application is simply place the application in the
domain_name\autodeploy directory of the Admin Server. The Admin Server automatically notices
any applications you place in the autodeploy directory and deploys them. You can’t autodeploy
applications through the Managed Servers.

Following are the key things you must understand about the autodeployment feature:

 � You can autodeploy an application either as an archived file or through the exploded
archive directory method. If you use an archived file, just place it in the domain_name
\autodeploy directory. If you want to deploy an exploded archive directory, place the
entire exploded directory in the domain_name\autodeploy directory.

 � If you want to redeploy an application that you’ve autodeployed, place the new version
of the archive file over the application file in the domain_name\autodeploy directory.

 � If the Admin Server is running, the deployment is immediate, and if it’s not, the
application will deploy when you start the Admin Server.

 � You can’t set up any roles or security policies, nor can you specify a deployment plan for
an autodeployed application.

 � The Admin Server won’t be aware of any applications you remove when the server is shut
down. To ensure that your domain tree remains in sync, remove an application from the
domain_name\autodeploy directory only while the Admin Server is in the RUNNING
state.

 � You can remove an autodeployed application anytime by simply deleting the application
from the domain_name\autodeploy directory.

TIP
If you switch from development to production mode, any applications
that you autodeployed will remain deployed—you must undeploy the
applications manually if you don’t want them to continue to remain
deployed.

Although automatic deployment may seem to be a great way to deploy applications quickly,
the best way to deploy applications during development is to use wldeploy instead. Use
autodeployment sparingly, for instance, to check a test application or when you’re working in a
temporary environment.

404 Oracle WebLogic Server 12c Administration Handbook

Using FastSwap to Shorten the Development Cycle
While developing a web application, a developer is continually modifying, deploying, and testing
applications. To speed up this development cycle, WebLogic Server offers the FastSwap deployment
feature. You can add new methods to a class at run time and test the result immediately by using
FastSwap.

NOTE
The FastSwap deployment feature is disabled in production mode.

The FastSwap feature lets you deploy new application versions without affecting running
applications. WebLogic Server makes this possible by dynamically redefining class definitions,
thus avoiding the time consumed in the reloading of the classes by the class loader. This is
particularly handy when you are debugging the implementation of a class and re-creating the
state is time-consuming. With FastSwap, the application is not reloaded, so even the contents of
data members remain intact. Using this feature, the developer can make a change while the
application is running and let the application recompile on the fly without redeploying the
application. The following limitations apply to the FastSwap deployment method:

 � You can use FastSwap deployment only in a development environment, not in a
production environment.

 � You can only deploy applications in the exploded archive directory format (not as
archived files)—the feature only picks up the changes you make to class files in exploded
archive directories. You must modify Java classes that are in the WEB-INF directory, not
the archived jar files in the WEB-INF\lib directory.

 � Because FastSwap doesn’t compile Java classes, Oracle recommends that you set the
compile-on-save option in your IDE.

Besides these, there are additional limitations that apply when using the FastSwap feature, such as
the nonsupport of adding or removing annotations.

The FastSwap feature isn’t turned on by default, but it’s very easy to turn it on. Ensure that
you’re running the WebLogic Server in development mode. If the application you deployed is an
EAR file, add the <fast-swap> element to the weblogic-application.xml file, as shown here:

<fast-swap>
 <enabled>true</enabled>
</fast-swap>

If your application is deployed as a war file instead, you must place the <fast-swap> element
in the weblogic.xml file. Once you set up the FastSwap feature in your application, when a new
request comes in to the application, the FastSwap agent will search all directories in the class path
for modified classes.

Monitoring and Updating Applications
Once you deploy an application, you need to manage them and, on occasion, update them. The
following sections show how to monitor and manage deployed applications, as well as how to
sanity test deployments by running an application in administration mode first to ensure the

Chapter 8: Understanding WebLogic Server Application Deployment 405

application is performing well before letting external clients access the application. Finally,
you’ll learn how to update applications.

Monitoring Applications
The Administration Console helps you monitor and manage deployed applications. On the
Summary Of Deployments page, click Monitoring. You’ll see several tabs under Monitoring.
Click the Workload subtab. Figure 8-7 shows the Workload page for all deployed applications
and modules in a domain. You can view Work Manager statistics and the constraints you’ve
configured for the deployed applications. This page also lists the pending and completed requests
for each deployed application or module.

Clicking the EJB tab will show you statistics for deployed EJBs, including the total count of
timeouts and the total number of accesses to the EJBs. By default, the Console shows the statistics for
stateless beans, but you can click the Stateful and Entity tabs to view statistics for the other two types
of beans.

Clicking the Web Applications subtab shows a wealth of information about all deployed web
applications in the domain, including the following:

 � State of the web application (active or not)

 � Current number of sessions

 � Maximum sessions on any server

 � Total sessions for each web application

FIGURE 8-7. The deployment Workload page

406 Oracle WebLogic Server 12c Administration Handbook

FIGURE 8-8. The Web Applications page

The Web Applications page, shown in Figure 8-8, displays monitoring information for all web
applications that are deployed to this domain. The monitoring information includes whether the web
application is active or not; the current, high, and total number of sessions for each web application;
the actual files (war or exploded archive directory) that implement the application; and so on. The
statistics displayed are an aggregate of all the targets to which these web applications are deployed.
Target-specific statistics are available on the monitoring pages for each specific web application.

Using Administration Mode to Sanity Test Deployments
Examples in this chapter showed you how to use the deploy option to deploy applications or
modules with the weblogic.Deployer tool. When you specify the deploy option, the applications are
fully deployed to the running server—in other words, the server automatically makes the application
available to clients. However, deploying an application to production doesn’t mean that you have to
make the application immediately available to users. You can choose to test the application first,
without allowing clients to access the application by starting the application in administration
mode. Once an application is in administration mode, you can access it only through the
administration channel; external clients will, therefore, be unable to access the application.

To deploy an application in a two-step sequence, use the distribute command with weblogic.
Deployer, instead of the deploy command. The distribute command distributes the files to all the
targets you specify and validates those files, but doesn’t make the applications available to users
(or to administrators) because it doesn’t start the applications. You must use the start command to
start an application that you’ve distributed. You can start a distributed application in administration
mode by specifying the adminmode option when starting an application with the start command.

Chapter 8: Understanding WebLogic Server Application Deployment 407

The following steps show how to first distribute an application and then start it in
administration mode.

 1. Distribute the application to the target servers (or a cluster):

C:\Oracle\Middleware\Oracle_Home\user_projects\\domains\wl_server>java
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.Deployer -adminurl
t3s://localhost:9002 -username weblogic -password welcome1 -name testApp1
-distribute -targets MyCluster1
C:\deploy_dir\prod\testApp\app\testApp1.ear
weblogic.Deployer invoked with options: -adminurl t3s://localhost:9002 –username
weblogic -name testApp1 -deploy -targets MyCluster1
C:\deploy_dir\prod\testApp\app/testApp1.ear
…
Task 5 initiated: [Deployer:149026]distribute application testApp1 on MyCluster1
.
Task 5 completed: [Deployer:149026]distribute application testApp1 on MyCluster1
.
Target state: distribute completed on Cluster MyCluster1
C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>

Note the following about the weblogic.Deployer command in this example:

 � I specified the SSL argument -Dweblogic.security.TrustKeyStore=DemoTrust because
I’ve enabled the domain-wide administration port. Specifying this SSL attribute makes the
server trust the demo CA certificates in the demonstration trust keystore (the DemoTrust.
jks file in the WL_HOME\server\lib directory). The Admin Server for this domain is using
the demo identity and certificates. However, in a production environment, you must not
use it. Instead, specify the following pair of SSL arguments in a production environment:

-Dweblogic.security.CustomTrustKeyStoreFileName=filename
-Dweblogic.security.TrustKeystoreType=jks

When you supply the two SSL arguments, weblogic.Deployer trusts the CA certificates
in the keystore located in the directory specified by filename. You must use both the
SSL arguments in this case.

 � Because the administration port is secured by SSL, you must use either https or t3s, as
these are secure protocols. The example specifies the t3s protocol.

 � The administrator user credentials must ideally be stored in a configuration file using
the WLST storeUserConfig command. This tells weblogic.Deployer to use the stored
user credentials instead of using plaintext passwords in scripts and on the command
line. You must also specify the userKeyFile option, in this case, to specify the location
of the key file to be used for encrypting and decrypting the administrator credentials.

 � If you check the status of the application in the Administration Console, it will show
as PREPARED, meaning the deployment files are validated and the application is
ready to be started.

 2. Start the application in administration mode:

java weblogic.Deployer -start -adminmode -name testApp1

408 Oracle WebLogic Server 12c Administration Handbook

TIP
The Java weblogic.Deployer tool’s deploy command will distribute the
application and start it, even on a server running in production mode.
Use the distribute option instead to just distribute the application files.
You can start the application in administration mode by specifying
the adminmode option with the start command first to sanity test the
application before opening up the application to users.

Once you start an application in administration mode, as shown in the example, you can test
the application through an administration channel, which you configure by configuring a domain-
wide administration port. Once you configure the administration port, WebLogic Server will
automatically configure an administrative channel for each of the Managed Servers in a domain.
Once you’re satisfied with the results of your testing, you can allow your clients to access the
application by issuing the weblogic.Deployer command with just the start option:

java weblogic.Deployer -start -name testApp1

Updating an Application
You update an application by redeploying the application. You update an application when you
do any of the following:

 � You make changes to the application that you want to make available to the clients.

 � You change the deployment plan for the application.

 � You want to redeploy a new archive file in a different location.

You can choose to redeploy the original archive file or exploded archive directory, or you can
specify a new archive file or exploded archive directory. In addition, you may change the
deployment plan for the application. When you update an application, you need to redeploy the
application—in essence, you perform another deployment of the application. You can choose
either to deploy the old archive file (or exploded archive directory) or deploy a new archive file.
You also can modify the original deployment plan during redeployment. In addition, you can
update an application if you want to provide the deployment files from a different location.

Follow these steps to update an application:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Select Deployments in the left-hand pane and select the check box beside the application
name from the Deployments table.

 3. Click Update.

 4. On the Locate New Deployment Files page, click the Change Path button if you want to
change the deployment files or the deployment plan.

 5. Click Next.

 6. Click Finish.

 7. Click Activate Changes in the Change Center.

Chapter 8: Understanding WebLogic Server Application Deployment 409

Production Redeployment Strategies
When an application is updated, administrators have to redeploy it. You can do this in a development
environment by simply using the redeploy option, which immediately undeploys the running
application, replaces its deployment files with the updated files, and restarts it. The server immediately
replaces the application’s class files and libraries in this case. Replacing a running application’s
deployment files with updated files of either an application or a stand-alone Java EE module is called
in-place redeployment. In-place redeployment makes the application unavailable until the
redeployment is complete, and it will disconnect all existing user connections to the application.

You can schedule an in-place redeployment of a production application during a time when
clients don’t access the application or during a preannounced downtime period. If you have an
alternate set of servers to host the application, you can temporarily point all client connections to
the second set of servers. To redeploy the application, issue the following command after placing
the new application deployment files in the directory specified by the source option:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1
 -redeploy
 -source
 C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear
 -name prodApp

If you want to redeploy the application to only some targets, instead of the entire domain,
issue the following command:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1
 -redeploy
 -source
 C:\deploy_dir\prod\testApp\Ver1\app\testApp1.ear
 -name prodApp
 -targets server1,server2

Note that you can’t redeploy an application only to some members of a cluster if the active
application has been deployed to the entire cluster. Although the application won’t be available
during the redeployment process, you can keep the user sessions intact by setting the
save-sessions-enabled property to true in the weblogic.xml descriptor file.

The in-place redeployment strategy described here has severe drawbacks in a production
environment, where you are often required to keep applications available around the clock. If you
can’t find the downtime window to update applications in order to support a 24 × 7 environment,
you’ll be forced to deploy newer versions of applications to an alternate WebLogic Server
environment. You also will have to deal with clients accessing multiple application versions and
decide when and how you’re going to pull the plug on the older version of the application.

Fortunately, WebLogic Server offers a production deployment strategy, which lets you deploy
new versions of applications in a production environment without affecting the service levels,
because you don’t have to stop the application first. This strategy provides a seamless way to deploy
new versions of applications by letting you run both the old and new versions simultaneously side
by side. The new version is termed “active” because it actively receives new connection requests.

410 Oracle WebLogic Server 12c Administration Handbook

The old version continues to run, but it doesn’t accept new connections any longer; it merely
continues processing current client connections and is called the “retiring” application.

You neither have to perform an in-place deployment, nor do you have to undeploy the older
application before putting the new version in place. When you deploy the new version under this
strategy, the server doesn’t interrupt any existing client connections to the old application. The
server allows those clients to continue their work without any interruption, and the administrator
doesn’t have to worry about managing connections to both application versions. Once you
redeploy the application, the server redirects all connections to the new version. When all
existing connections to the old application complete their work, or when a configurable timeout
period is over, the server retires the old version of the application.

In the following sections, let’s review how you perform production redeployment and when
you can and can’t use this strategy.

Performing a Production Redeployment
You must ensure that both the original version that you’re retiring and the new version that’s
replacing it have a version number. This is very important because you can’t perform a side-
by-side deployment if either of the applications is nonversioned. Once you version the
applications, you can deploy both versions simultaneously until you switch the old version
with the new one. You can simultaneously deploy only two versions of an application,
however.

Assigning a Version Identifier
You can assign a version identifier to an application by specifying the appversion option when
deploying or redeploying an application. Because both the old and new versions need to be
versioned, issue the weblogic.Deployer command as follows when you deploy any application
into production:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1
 -deploy -name myTestDeployment
 -source C:\deploy_dir\prod\myApplication\1Beta
 -targets myCluster -stage -appversion 1Beta

Note that you’ll have to specify the appversion option only if the application’s manifest file
(MANIFEST.MF) doesn’t specify a version string. Otherwise, the version number you specify will
be ignored. You can confirm the version number of an application by specifying the listapps
command, as explained earlier in this chapter. The listapps command shows the deployed
application names and their versions (<ACTIVE VERSION>). Alternatively, you can find the
version number by looking at the MANIFEST.MF file, as shown here for a sample WebLogic Server
application with version v920.beta:

Manifest-Version: 1.0
 Created-By: 1.4.1_05-b01 (Sun Microsystems Inc.)
 WebLogic-Application-Version: v920.beta

WebLogic Server has strict programming conventions that you must follow when specifying
version numbers for production deployments.

Chapter 8: Understanding WebLogic Server Application Deployment 411

Redeploying a New Version
Because you can’t deploy more than two versions of the same application, first make sure you
have only one version deployed to a target. Oracle recommends that you place application files
from different versions in separate directories under the application’s root directory.

When redeploying an application, you must be especially careful if you’re specifying the
nostage mode to provide the deployment files to the server. The same applies when you
specify the external_stage mode, because of the potential to overwrite the old deployment files
with the new ones. If you deploy with the stage mode, you don’t have to worry about
accidentally overwriting older application files during a redeployment. WebLogic Server will
create a dedicated directory for the new version of the application in the server’s staging
directory. The server will also remove the deployment files from the staging directory once the
old version is completely retired and undeployed. By default, WebLogic Server uses the
server_name\staging subdirectory under the domain directory as the staging directory for
application source files.

You’re now ready to perform the production redeployment of the application. Following is an
example that specifies the redeploy command to perform a redeployment of the new application
version:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1 -redeploy -name myTestDeployment
 -source C:\deploy_dir\prod\myApplication\1Beta
 -retiretimeout 300

Note that in this example there’s no need to specify the appversion option with the redeploy
command, since the new version number is listed in the MANIFEST.MF file. As mentioned earlier,
you don’t have to specify the version number at redeployment time in such a case. The
retiretimeout option (specified in seconds) is optional. By default, WebLogic Server waits for all
existing client connections to close before it retires that application. You can set the maximum
time the server should wait to retire the application. In the example, the retiretimeout option
specifies that the server should retire the application after waiting for five minutes for all
connections to close, regardless of whether there are connected clients who are processing work.
If you omit the retiretimeout option, the server will only retire applications gracefully after existing
connections complete their work.

Forcing Retirement of an Application
When you deploy an application, WebLogic Server automatically retires the older version of the
application. When you find that an older version is stuck in the RETIRING state for some reason,
you can forcibly undeploy the application by executing the undeploy command and specifying
the application’s version number. Following is an example that undeploys the application with the
version number 1Beta:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1 -undeploy -name myTestDeployment
 -appversion 1Beta

Note that you must take care to specify the version number with the appversion option. If you
don’t specify the appversion option, the server will deploy not only the older application that is in
the process of being retired but also the newer version of the application.

412 Oracle WebLogic Server 12c Administration Handbook

Reverting a Production Redeployment
If you encounter unexpected problems, you can put the older version back in production by
issuing the same redeploy command, but this time, you specify the version number of the older
version, as shown here:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
 -password welcome1 -redeploy
 -name myTestDeployment
 -source C:\deploy_dir\prod\myApplication\1Beta

The redeployment process works exactly the same as when you redeployed a new version.
This time around, however, the newer version will be the one that retires, and the old application
will be in the ACTIVE state now.

Redeploying in Admin Mode
Using the redeploy option starts the new application immediately and opens it to new client
connections. To minimize potential problems, you can redeploy an application by first starting it
in admin mode. Because the redeploy option doesn’t give you a chance to put the application in
admin mode, use the distribute option instead to redeploy your updated version of the application.
Once you distribute the application files, you can start the application in administration mode
first. Once you finish your testing, you can start the application in the normal mode. Of course,
you can also undeploy the application if your testing warrants it. Once you start the application
without the adminmode option, the new version becomes the active application and the server
starts retiring the existing application.

The big difference between using the redeploy command and the -distribute -start -adminmode
sequence is that the server won’t automatically undeploy the retired application—you must do so
yourself.

Undeploying vs. Redeploying
Production redeployment lets you avoid stopping a production application and redeploying it.
Although production redeployment is a great strategy, if you need to do any of the following, you
can’t use a production redeployment:

 � Change the security model of the application.

 � Change the deployment targets.

 � Modify the persistent store settings.

Note that in these cases you must first undeploy the application.

When In-Place Deployment Is Safe
You can use in-place redeployment when you change graphics files, static HTML files, or JSPs.
The server starts serving the new versions immediately. If you modify any dynamic properties in a
deployment plan, the application is updated but retains its version number. If you modify any
nondynamic properties, the server creates a new version of the application and retires the active
version using a production redeployment strategy.

Chapter 8: Understanding WebLogic Server Application Deployment 413

Summary
This chapter provided an introduction to deploying applications and modules in a WebLogic
Server environment. You learned about the exploded archive directory and archive file modes of
deployment. You learned the role played by deployment descriptors and annotations and the
purpose of a deployment plan. The chapter showed you how to deploy applications using various
tools such as the Administration Console, WLST, and the weblogic.Deployer and wldeploy
utilities. The chapter also described how to undeploy and redeploy applications and how to start
an application. Developers can benefit from the autodeployment and the FastSwap features,
which are designed to shorten application development cycles. You also learned how to use the
Administration Console to monitor and manage the applications you deploy. Finally, you learned
how to use production deployment strategies that use multiple application versions to avoid
application downtime.

CHAPTER
9

Managing WebLogic
Server Security

416 Oracle WebLogic Server 12c Administration Handbook

The common philosophy behind security in Java, Java EE, and WebLogic Server is to
separate security from the implementation of the application itself. The goal is that, when
building an application for deployment in WebLogic Server, the developer does not

include the logic to authenticate the user or determine which users have access to certain web
pages or service methods. The security aspects of the application are delegated to the container
and managed using a separate and specially designed set of tools that are “plugged in” to the
container. The result is a more secure and flexible approach to application security.

This chapter explains how Java security fits in with WebLogic Server security and introduces the
Java Security Manager. The chapter reviews Oracle Platform Security Services (OPSS), which
provides a standards-based, portable, integrated enterprise security framework for Java applications.
The WebLogic Security Service uses a multilayered approach to control access to various WebLogic
Server resources such as the administrative resources, server resources, and JNDI, JMS, and JDBC
resources. This chapter introduces various WebLogic security topics such as security realms, security
providers, and the use of security roles and security policies to control access to domain resources.

Creating users and groups, security roles, and security policies are critical day-to-day
WebLogic security administration activities. The chapter explains how to create users and groups
and how to use the default WebLogic security roles and policies. You’ll also learn how to configure
security role and security policy conditions for fine-grained security of WebLogic Server resources.

Security realms are at the heart of WebLogic security management. This chapter shows how to
create and configure security realms, and how to manage the embedded LDAP server, as well as
how to configure an RDBMS store for storing the user, group, role, and policy information. You’ll
learn how to export and import security data from one security realm to another. The chapter also
explains how to configure two key WebLogic Server security providers—the Authentication and
the Auditing provider.

WebLogic Server supports the standard Java EE application model that controls access to web
applications and EJBs through the specification of roles and policies in deployment descriptors,
but it also offers more flexible application security models. The chapter reviews both the Java EE
and WebLogic Server–specific application security models.

You’ll learn how to set up various domain-level security features, including cross-domain
security, to enable secure communications between local and remote domains. You’ll also learn
the basics of SSL configuration and how to create custom keystores to store private keys and
security certificates. The chapter concludes with a brief review of key Oracle-recommended
WebLogic Server security best practices.

Java EE Security and OPSS
Although the focus of this chapter is on WebLogic Server security, it’s important to understand
how WebLogic Server security fits in with Java EE security. Oracle Platform Security Services
(OPSS) is a self-contained security framework designed for securing Oracle Fusion Middleware
and is the common security platform for Oracle WebLogic Server 12c as well as all Oracle Fusion
Middleware components. Let’s briefly review Java EE security and OPSS in the following sections.

Java EE Security and WebLogic Server
WebLogic Server supports using Java EE security to protect the web, EJB, and Connector
components. The Connector specifications let you specify additional security policies by using the
<security-permission> tag, and WebLogic Server extends the Connector model. The Connector

Chapter 9: Managing WebLogic Server Security 417

model supports using the <security-permission> tag in the Connector-related rar.xml file, but
WebLogic Server allows you to specify the tag in the weblogic.xml and the weblogic-ejb-jar.xml
files, thus extending the Connector model to both web applications and EJBs.

The Java Security Manager
You have the option of using the Java Security Manager to provide extra security for resources
running in a JVM. You won’t normally need to use the Java Security Manager, but it is useful when
you’re running untrusted classes or when untrusted third parties are using the server. The Java
Security Manager uses a Java security policy file that lets you restrict the run-time behavior of the
JVM by allowing or disallowing key run-time operations by setting permissions on classes. The Java
security file lets you set default security policies for servlets, EJBs, and Java EE Connector resource
adapters based on the type of application. You can also set security policies for specific servlets,
EJBs, and resource adapters by adding a security policy to the deployment descriptor of the
application. You specify the security policies in weblogic.xml for servlets, in weblogic-ejb-jar.xml
for EJBs, and in rar.xml for resource adapters.

WebLogic Server provides a sample Java security policy file named weblogic.policy that’s
located in the WL_HOME\server\lib directory. You enable the Java Security Manager by specifying
the following attributes when starting the server:

java...-Djava.security.manager \
 -Djava.security.policy==C:\weblogic\weblogic.policy

The -Djava.security.policy argument directs the JVM to use a security policy file, and it
specifies the security policy location and name. If you don’t specify the security policy file with
this argument, WebLogic Server uses the java.policy file (located in the $JAVA_HOME\jre\lib\
security directory), which contains default security policies.

Oracle Platform Security Services
In multitiered environments, security must be implemented at various levels, such as authenticating
requests at the user interface level and providing secure access to databases by the application
server. Externalizing security by taking it out of applications lets you centrally manage security, and
to modify it you don’t have to modify or redeploy applications. Java SE and Java EE do provide
server security application programming interfaces and libraries, including Java Authentication
and Authorization Service (JAAS). However, these security APIs and libraries are too low level for
application developers, they lack management tools, and they don’t address the application’s
lifecycle.

OPSS provides developers and system integrators with a standards-based, portable,
comprehensive, enterprise-level security framework for Java applications. OPSS does this by
building on Java SE and Java EE security and by providing an abstraction layer to keep developers
away from the details of implementing security. OPSS is an independent security framework that
provides security for Oracle Fusion Middleware. It offers standards-based APIs for security services
such as authentication, credential and policy management, authorization, and cryptography.
Developers can use OPSS for both Oracle and third-party environments. The goal is to remove
security from applications and centralize it into an external security system that administrators
can manage. As with the other components of Oracle Fusion Middleware such as Oracle SOA,
Oracle WebCenter, and the Oracle Application Development Framework (ADF), the middleware
underlying all these components (Oracle WebLogic Server 12c) also uses the OPSS framework.

418 Oracle WebLogic Server 12c Administration Handbook

OPSS is integrated with ADF as well as with all the management tools of Oracle Fusion
Middleware to help implement and monitor the security policies for the identity management
infrastructure.

OPSS combines BEA System’s internal security framework used in Oracle WebLogic Server 12c
and the Oracle Entitlements Server (OES) with Java Platform Security (JPS), which is Oracle Fusion
Middleware’s security platform. Note that JPS was formerly known as Java AuthoriZatioN (JAZN).

Developers build security into their applications while building Oracle ADF task flows because
OPSS is integrated with Oracle JDeveloper. JDeveloper provides a security wizard for creating the
security configuration and also provides an authorization editor to enable the creation of
authorization policies. Developers usually first deploy applications to a domain embedded within
JDeveloper. They then deploy them to a remote domain using Oracle Enterprise Manager Fusion
Middleware Control. Since OPSS is integrated with the Fusion Middleware Control, security
policies and credential migration are easily managed during application deployment. Developers
can also manage security policies after deployment through Fusion Middleware Control, without
making changes to the application. OPSS also provides migration tools to move security policies to
a production domain from a test environment.

Following are the key security services offered by OPSS:

 � Authentication OPSS is integrated with WebLogic Server security for container-
managed authentication, which is ideal for many applications.

 � Single Sign-On OPSS provides a Single Sign-On (SSO) framework and provides support
for Oracle Access Manager and WebLogic Server integration through the Security Service
Provider Interface (SSPI).

 � Authorization OPSS provides support for both code-based and subject-based
authorization through a Java policy provider. You can use logical, application-specific
roles or an advanced policy model that includes elements such as Resource Type and
Entitlement that allow the provision of complex authorization policies. You can use
either Fusion Middleware Control or the WebLogic Scripting Tool (WLST) to manage an
application’s authorization policies.

 � Audit OPSS offers an internal audit framework that allows the use of the OPSS API
to maintain audit policies outside the application. You can also view the prebuilt audit
reports using the Oracle Business Intelligence Publisher.

 � Credential Store Framework OPSS provides this framework to allow applications to
store credentials to access various services such as databases, directories, web services,
and web sites. Applications can use this framework to manage credentials without
changing any application code.

 � Cryptography A set of Java libraries called Oracle Security Developer Tools provides
cryptography services that allow developers to include security in applications.
Developers can use standards-based APIs to secure message envelopers, public key
infrastructure (PKI), Security Assertion Markup Language (SAML), XML Key Management
Specification (XKMS), and Web Services Security (WS-Security).

 � Security providers OPSS offers several security providers that support various identity
stores for authentication, including Oracle Internet Directory, Oracle Virtual Directory,
Microsoft Active Directory, IBM Tivoli Directory, and Open LDAP.

Chapter 9: Managing WebLogic Server Security 419

 � Security stores OPSS uses a single logical store for storing both policies and credentials,
allowing it to support XML, LDAP, and database-based security stores without application
code changes. You can start with an XML-based store and migrate to an LDAP store
without any changes and without redeploying your applications.

WebLogic Server Security Basics
Let’s start the WebLogic Server security implementation by discussing the various WebLogic
Server resources that the WebLogic Security Service protects. It’s important to realize that you will
be protecting two distinct categories of resources. One category applies to the various entities that
make up the administrative domain. For these, WebLogic Server provides a complete set of groups
and policies. The second category of resources includes the ones you introduce when you deploy
your application. Although controlled with the same set of tools, these sets of resources are quite
distinct, and unless you keep this distinction in mind, it’s easy to get confused. Following that, this
section provides a quick introduction to how a security realm helps you manage security for a
domain. You’ll also learn about the default WebLogic security providers that help you manage
various aspects of WebLogic security, such as authentication, authorization, and auditing.

WebLogic Server Resources
When I talk about WebLogic Server security, I’m talking primarily about securing WebLogic
Server resources. A WebLogic Server resource is not limited to entities such as a server instance—
it also includes actions such as starting a server, for example. You secure the various WebLogic
resources from unauthorized access by assigning each resource a security policy—that’s why
these are called “protected resources.” Following are the main WebLogic resources the security
infrastructure is designed to secure:

 � Administrative resources are entities such as the Administration Console and WLST, and
they include the domain and server logs.

 � Server resources are operations that control the state of a WebLogic Server instance. This
group of services is not made visible outside the server, so you can lock them down.
This includes the execution of the weblogic.Server and Node Manager commands.
Other server resources are JNDI resources such as the nodes in a server’s JNDI tree; JMS
resources, including JMS modules in an application, JMS destinations, and operations
within the JMS destinations; and JDBC resources, including JDBC system and application
modules, data sources, and methods within a data source.

 � JMX resources are MBean attributes or operations—the attributes are read or written, and
the operations are invoked. JMX resources generally relate to the manageability of the
server.

 � The final set of WebLogic Server resources are those for which access for end users needs
to be controlled. These include enterprise applications, web applications, or stand-alone
Java EE modules, including JDBC modules and EJB resources. They also include web
service resources, URL resources (servlets, JSPs, and EISs), which are the system-level
software drivers that WebLogic Server uses to connect to an EIS.

420 Oracle WebLogic Server 12c Administration Handbook

TIP
In a production environment, don’t select the option to install the
Server Examples component when installing WebLogic Server. You
must also delete development tools such as the Configuration Wizard
unless you must have them. Also, delete the demo database (the
Derby database server) in a production environment.

Security Realms
A security realm is a logical container for the various WebLogic Server security entities such as
users, groups, security roles, security policies, and security providers. The security realm provides
the authentication, authorization, auditing, credential, and role-mapping services to a WebLogic
Server deployment. You can have more than one security realm in a domain, but only one of the
realms can be the active (default) realm. A security realm is the mechanism WebLogic Server uses
to protect its resources. All resources belong to a security realm, and you must define a user in the
active security realm in order for that user to be able to access a WebLogic Server resource. The
security realm contains the configuration for all security providers, users, groups, security roles,
and security policies. An LDAP server or an RDBMS acts as the actual repository for all the
security information. (WebLogic Server comes with its own embedded LDAP server, and you can
use external LDAP servers as well.) For each attempt to access a resource, the server checks the
user’s security role in the realm and the security policy of the resource the user is accessing. If the
user has the correct role and the security policy of the resource permits access to this role (or
group), the server authenticates and authorizes the user.

The security realm persists security data for all the security providers. For example, it persists
user and group data for the WebLogic Authentication provider and security policies for the
Extensible Access Control Markup Language (XACML) Authorization provider and security roles
for the XACML Role Mapping provider.

Security Providers
Security providers are components that handle specific security functions, such as authorization
and authentication. You can use the default security providers that are part of the default security
realm, third-party custom security providers, or a mix of the two. Following is a brief description
of the WebLogic security providers you can use:

 � An Authentication provider lets the server validate the identity of users or system processes,
and you must have one of these in the active security realm for the domain. You can
configure more than one Authentication provider to configure access to a different data
store such as an RDBMS or to a different LDAP server other than the embedded LDAP
server. WebLogic Authentication providers offer username and password authentication,
certificate-based authentication through WebLogic Server, and HTTP certificate–based
authentication proxied through an external web server. The login module inside the
Authentication provider performs the authentication tasks. Each Authentication provider
also relies on a helper provider—the Principal Validation provider—which provides
additional security protection by signing and verifying the authentication of the principals.
You can configure multiple Authentication providers in a domain with a separate Principal
Validation provider for each of the Authentication providers. WebLogic Server configures
the Principal Validation providers for you.

Chapter 9: Managing WebLogic Server Security 421

NOTE
A principal is a user, group, or system process.

 � An Authorization provider controls access to WebLogic resources based on the security
roles granted to a user or group and on the security policy associated with a specific
WebLogic resource. You must have at least one Authorization provider in a security
realm.

 � The Identity Assertion provider performs perimeter authentication using client-supplied
tokens. Once the Identity Assertion provider validates and maps a token to a username,
the provider’s login module converts the username to a principal, which can be a user, a
group, or a system process.

 � The Role Mapping provider retrieves the roles granted to a user or group for a specific
WebLogic resource and assists the Authorization providers in determining whether a user or
group should be granted access to a WebLogic resource secured with role-based security.

 � The Adjudication provider acts as an umpire by settling authorization conflicts among
multiple Authorization providers. You need this provider only if you’ve configured
multiple Authorization providers.

 � The Credential Mapping provider maps local user credentials to remote system
credentials, thus enabling the server to log into remote systems on behalf of previously
authenticated users or groups. It provides a mechanism for securely storing and using
those credentials.

 � The Auditing provider does exactly what its name indicates—it stores the audit
information for all security requests, successful or otherwise. You can also set up
configuration auditing to monitor changes in the server configuration through the
Auditing provider.

NOTE
WebLogic Server also supports the Extensible Access Control Markup
Language (XACML), which is used to specify authorization and role
assignments. The WebLogic Server XACML Authorization provider and
the WebLogic Server XACML Role Mapping provider implement the
XACML 2.0 Core Specification. You can create XACML documents and
add them to a security realm if you want to create complex security
roles or policies. You can also use the XACML documents to export
and import a realm’s security roles and policies.

WebLogic Server provides a default security configuration with the WebLogic Adjudication,
Authentication, Identity Assertion, Credential Mapping, CertPath, XACML Authorization, and
XACML Role Mapping providers as the security providers in the default security realm myrealm. If
you create a new security realm, you must configure the following security providers for that
realm to be valid:

 � Authentication

 � Authorization

422 Oracle WebLogic Server 12c Administration Handbook

 � Credential Mapping

 � Role Mapping

 � CertPath Builder

The Adjudication provider is required only if you have multiple Authentication providers. In
addition to the required security providers, you can optionally configure the Identity Assertion,
Auditing, and Certificate Registry providers. The Certificate Registry provider is a security provider
that lets you register the trusted certificates allowed to access WebLogic Server. If you configure
the Certificate Registry provider in the security realm, the only certificates that are deemed valid
are those registered in the Certificate Registry. The embedded LDAP server stores the Certificate
Registry. You can also use custom security providers, in addition to the default WebLogic security
providers.

Managing Security Realms
As explained earlier, security realms contain all the users, groups, security roles, and security
policies, as well as the security providers. Thus, understanding how to manage security realms is
critical to securing WebLogic Server resources. The following sections explain how to create and
configure security realms, as well as how to configure key WebLogic Server default security
providers.

Creating and Configuring a New Security Realm
The default security realm myrealm contains all the required WebLogic security providers and the
embedded LDAP server in which the security providers store their security data. To start using the
default security realm, all you have to do is define your users, groups, and security roles for the
security realm and create security policies to control access to the WebLogic Server resources. In
most environments, all you ever use is the default security realm.

You need to change the default security configuration by performing the following types of
operations when you want to add new custom security providers or modify existing providers:

 � Replace or configure new security providers.

 � Add an Auditing provider to the default security realm.

 � Modify the configuration of the default security providers.

 � Configure an Authentication provider that doesn’t use the embedded LDAP server and
stores the user and group information in either an RDBMS or an external LDAP server.

So you can easily go back to the default security configuration after performing these types of
operations, Oracle recommends that you create a new security realm and make it the new default
security realm, instead of customizing the default realm. Once you create a new realm, configure
the necessary security providers for that realm and export user and group data from the current
default realm to the new realm.

Creating a new security realm is an easy matter—configuring it takes some effort. Following
are the steps to follow to create a new security realm:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Select Security Realms in the left-hand pane under the Services group.

Chapter 9: Managing WebLogic Server Security 423

 3. Click New in the Realms table.

 4. On the Create A New Realm page, enter the name of the new security realm. Click OK.

 5. Click Activate Changes in the Change Center.

Once you create a security realm, you must perform the following configuration tasks:

 1. Although a security realm can remain without any security providers, you won’t be
able to set the new security realm as the default security realm without the mandatory
security providers. For the new security realm to be valid, you must configure an
Authentication provider, an Authorization provider, an Adjudication provider, a
Credential Mapping provider, a CertPath Builder, and a Role Mapping provider. You can
also define Identity Assertion, Auditing, and Certificate Registry providers, but it’s not
mandatory.

 2. Several of the security providers use the embedded LDAP server, so you must configure
the LDAP server settings to enable the new security domain to function.

 3. Create users and groups, roles, and security policies in the new security realm. Alternatively,
you can export all the security data from the current security realm to a file and import
that data to the new security realm. You can also set the lockout attributes to protect user
accounts from dictionary attacks.

 4. Specify the new security realm as the domain’s default security realm in the domain’s
Security page in the Administration Console.

Various sections in this chapter describe how to perform each of these realm configuration
tasks. First, you must confirm some basic security attributes for the security realms, such as the
default options for securing web applications and EJB modules. Let’s review the basic
configuration of a security realm next.

Configuring the Security Realm
Once you create a security realm, you can configure several properties to control how that realm
handles security for applications. Selecting a security realm and clicking it on the Summary Of
Security Realms page automatically takes you to the Configuration page for that realm, as shown
in Figure 9-1.

NOTE
If you use Java Authorization Contract for Containers (JACC) to
implement security, you must use the DD Only security model.

Following are the key configuration attributes you can specify on the Configuration page for a
security realm:

 � Name This attribute provides a name for the security realm.

 � Security Model Default This attribute lets you specify the default security model to be
applied to the web applications and EJBs that you deploy in this domain. You normally
specify the security model for an application or EJB at deployment time, and the security
model you specify at that time will override the default security model for the domain.

424 Oracle WebLogic Server 12c Administration Handbook

You can select one of the following security models, all of which are described later in
this chapter in the section “Security Models for Web Applications and EJBs”:

 � Deployment Descriptor Only (DD Only)

 � Customize Roles Only (Custom Roles)

 � Customize Roles and Policies (Custom Roles and Policies)

 � Advanced (Advanced)

Note that you choose a security model for each web application or EJB, and the security
model you choose at deployment time will remain in force until you redeploy the
application or EJB with a different security model.

 � Combined Role Mapping Enabled This attribute determines the interaction among the
role mappings in the enterprise application, web application, and EJB containers, and the
setting affects only those web applications and EJBs that use the Advanced security model.

 � Use Authorization Providers To Protect JMX Access This attribute enables the MBean
servers to use the security realm’s Authorization provider to enforce access to MBean
attributes and operations by JMX clients. By default, the MBean servers allow access to
the four default security roles—Admin, Deployer, Operator, and Monitor—to the extent
allowed by the domain’s default security settings.

 � Check Roles And Policies This attribute determines when the security service checks
for authorization to access web applications and EJBs. The setting applies only for web
applications and EJBs that use the Advanced security model.

FIGURE 9-1. The security realm Configuration page

Chapter 9: Managing WebLogic Server Security 425

 � Deployable Provider Synchronization Enabled If the Authorization and Role Mapping
providers do not support simultaneous modification of roles and policies, the server
can force the synchronization between the work of the two providers by queuing the
applications and modules and deploying them sequentially.

 � Deployable Provider Synchronization Timeout If you set the previous attribute to true,
you can set the timeout value for the security provider synchronization operations with
this attribute.

Now that you’ve created a new security realm and have configured the basic attributes of the
realm, it’s time to turn to the configuration of the security providers, export and import of user
data, user security, and other related aspects of a functioning, active security realm.

Configuring the Security Providers
The default WebLogic security providers come preconfigured, but you may have to configure a
provider yourself when you create a new security realm. In addition, you must configure a
specific security provider when you perform a change in your security realm that affects the
security provider. For example, when you want to audit login activity or configuration changes in
the security realm, you must configure a WebLogic (or custom) Auditing provider. Similarly, if you
want to use an LDAP server (other than the embedded LDAP server), you must configure an LDAP
Authentication provider. Note that for most internal applications, users are going to connect the
domain to their company’s LDAP server. For most commercial production applications, users are
going to want to manage users and credentials either in a database or in a third-party LDAP
server. For most of the WebLogic security providers, the default configuration is adequate.
However, the WebLogic Auditing provider and the WebLogic Authentication provider involve
more configuration work than the other security providers. In the following sections, let’s review
how you configure these two WebLogic security providers.

Configuring the WebLogic Auditing Provider
The WebLogic Auditing provider logs various auditing events such as authentication events,
authorization attempts, and the locking of user accounts due to too many invalid login attempts. It’s
the Auditing provider’s job to provide an electronic trail of activity. The Auditing provider also audits
WebLogic Server configuration changes. The default security realm myrealm doesn’t have an
Auditing provider configured, although WebLogic Server does include the Auditing provider
DefaultAuditor as the WebLogic Auditing provider. You can configure this WebLogic Auditing
provider or develop a custom Auditing provider. Either way, you need to add the Auditing provider
to the security realm in order to audit events and configuration changes. To add the DefaultAuditor
provider, go to Security Realms | Realm Name | Providers | Auditing and click New in the Auditing
Providers table. On the Create A New Auditing Provider page, you must provide the name for the
Auditing provider. The Type property for the new auditing provider is DefaultAuditor. Once you
create the new Auditing provider, its name shows up in the Auditing Providers table.

Once you configure the Auditing provider, it starts auditing events (and configuration changes,
if you want) and stores the auditing data in the DefaultAuditRecorder.log file in the DOMAIN_
HOME\<server_name>\logs directory by default. Whereas the default WebLogic Server Auditing
provider writes audit events to its own log file, a third-party or custom provider can write audit
events to an LDAP server or RDBMS as well. Each server in the domain records auditing data in
its own log file. In order to configure the Auditing provider, click its name in the Auditing

426 Oracle WebLogic Server 12c Administration Handbook

Providers table. You can define provider-specific settings for the Auditing provider by selecting the
Configuration | Provider Specific page for the provider.

Exercise caution with the Auditing providers, as the default Auditing providers are
synchronous and, therefore, can potentially introduce serious resource contention for high load
applications. The auditing output has the potential to be very verbose, and you should be aware
of that. However, certain customers and applications, such as those in the financial services
industry, need to adhere to very stringent auditing requirements, so this capability of the Auditing
provider to provide detailed audit messages can be an answer to their compliance needs.

Figure 9-2 shows the Settings page for the Auditing provider you added to the security
domain. You can set the following configuration options for the Auditing provider:

 � Active Context Handler Entries Each audit event includes a ContextHandler that has
entries pertaining to various objects or information. By default, the provider doesn’t audit
any entries in the ContextHandler. However, you can select the ContextHandler entries

FIGURE 9-2. Configuring the Auditing provider

Chapter 9: Managing WebLogic Server Security 427

you want to audit from the list of active ContextHandler entries. For example, you can
select the context element com.bea.contextelement.servlet.HttpServletRequest to audit a
servlet access request of a SOAP message through HTTP.

 � Rotation Minutes Specifies the time after which the provider rotates the audit log file by
beginning the writing of events to a new log file.

 � Severity You can specify five severity levels to specify the initiation of an audit event,
with each severity level ranked in increasing order of severity:

 � Severity Level 1: INFORMATION

 � Severity Level 2: WARNING

 � Severity Level 3: ERROR

 � Severity Level 4: SUCCESS

 � Severity Level 5: FAILURE

By default, setting a severity level means that the provider will audit at all lower levels.
For example, if you set the Severity Level 5 (FAILURE), the Auditing provider will log all
information, warning, error, and success events as well. To avoid this kind of excessive
audit logging, you can also set the Custom severity level to specify a specific security level.

 � Information Audit Severity Enabled Lets the provider generate auditing records for
events with a severity level of INFORMATION, provided you set the Severity value to
Custom.

 � Warning Audit Severity Enabled Lets the provider generate auditing records for events
with a severity level of WARNING, provided you set the Severity value to Custom.

 � Error Audit Severity Enabled Lets the provider generate auditing records for events with
a severity level of ERROR, provided you set the Severity value to Custom.

 � Failure Audit Severity Enabled Lets the provider generate auditing records for events
with a severity level of FAILURE, provided you set the Severity value to Custom.

 � Success Audit Severity Enabled Lets the provider generate auditing records for events
with a severity level of SUCCESS, provided you set the Severity value to Custom.

 � Begin Marker Indicates the beginning of the audit record.

 � End Marker Marks the end of the audit record.

 � Field Prefix A character that marks the beginning of a field in an audit record.

 � Field Suffix A character that marks the end of a field in an audit record

You can modify the default directory for the audit file (the domain-name directory) to a
different directory by specifying the location as an option during server startup, as shown here:

-Dweblogic.security.audit.auditLogDir=C:\audit

Following this, the server will start storing the audit file in the following location:

C:\audit\<server_name>\logs\DefaultAuditRecorder.log

428 Oracle WebLogic Server 12c Administration Handbook

Enabling Configuration Auditing
Once you enable the WebLogic Auditing provider, you can configure the Admin Server to log all
configuration events for domain resources to an additional security log, separate from the
domain-wide message log. You can enable configuration auditing by setting one of the following
Java options in the weblogic.Server command when you boot the Admin Server:

-Dweblogic.domain.configurationAuditType="audit"
-Dweblogic.domain.configurationAuditType="log"
-Dweblogic.domain.configurationAuditType="logaudit"

The “audit” option only emits the audit events, and the “log” option only writes configuration
audit messages to the Admin Server log file. The “logaudit” option does both.

You can also enable configuration auditing through the Administration Console by performing
the following steps:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Select Domain | Configuration | General and click Advanced at the bottom of the Settings
For <auditing_provider> page.

 3. Specify the method for auditing configuration change events in the Configuration Audit
Type field. You can choose from among the following four auditing criteria:

 � None This is the default auditing criterion and specifies that no configuration events
will be written or sent to the Security Audit Framework.

 � Change Log The server will write the configuration events to the server log.

 � Change Audit The server will send the configuration events to the Security Audit
Framework.

 � Change Log And Audit The server will write the configuration events to its log as well
as send them to the Security Audit Framework.

 4. Click Save and then click Activate Changes in the Change Center.

After setting up configuration auditing, the Auditing provider will log audit messages
whenever a configuration change is successful or when the attempted change fails due to
incorrect user credentials or an internal error. WebLogic Server tags each configuration audit
message with an ID between the range of 159900 and 159910. For example, when an
unauthorized user attempts to create a resource, the server generates a message with the message
ID 159901 and the following message text that identifies the unauthorized WebLogic Server user:

USER username CREATED MBean-name
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace

Configuring Additional WebLogic Authentication Provider Types
The job of an Authentication provider is to verify if a user’s credentials exist in the provider’s data
store. There are many types of Authentication providers you can choose based on the type of data
store the provider uses. WebLogic Server provides the WebLogic Authentication provider, called
the DefaultAuthenticator, which uses the embedded LDAP server as its store. Here are some of the

Chapter 9: Managing WebLogic Server Security 429

important types of Authentication providers you can use—several, but not all of them, are LDAP
Authentication providers.

 � Oracle Internet Directory Authentication provider for accessing users and group
information stored in the Oracle Internet Directory (LDAP version 3).

 � Oracle Virtual Directory Authentication provider for accessing users and groups in Oracle
Virtual Directory (LDAP 3).

 � LDAP Authentication provider configured for Open LDAP, Sun iPlanet, Microsoft Active
Directory, and Novell NDS LDAP servers.

 � RDBMS Authentication providers—there are three RDBMS Authentication providers: SQL
Authenticator, Read-Only SQL Authenticator, and Custom RDBMS Authenticator.

 � An Authentication provider that authenticates users based on Security Assertion Markup
Language (SAML) 1.1 assertions. SAML is a language for propagating identity, and Oracle
WebLogic Server 12c supports both SAML 1.1 and SAML 2.0.

If you use multiple Authentication providers in a security realm, you must set the JAAS control
flag in the Administration Console. The values you set for it determine the order in which the
various Authentication providers are used during the login sequence. You can configure the settings
for the JAAS control flag by going to Security Realms | Realm Name | Providers | Authentication
and clicking the name of the provider you want to configure (for example, DefaultAuthenticator).
Select Configuration | Common and set the Control Flag attribute. There are four possible values
you can set for the Control Flag attribute, and the default value is REQUIRED. Here’s what each of
the four values means:

 � REQUIRED The login module must succeed—if it fails, the authentication process
proceeds to the next configured Authentication provider.

 � REQUISITE This login module must succeed for the authentication process to proceed
down the list of other configured Authentication providers. If it fails, control is returned to
the application.

 � SUFFICIENT The login module is not required to succeed. If it fails, the authentication
process continues with the other configured Authentication providers.

 � OPTIONAL The login module doesn’t have to succeed. Authentication proceeds down
the list of other configured providers whether the login module succeeds or fails.

When you make a mistake during the configuration of an Authentication provider, the server
may not start due to authentication failure (the administrative user can’t be authenticated) if the
control flag is set to REQUIRED or REQUISITE. Setting the control flag to OPTIONAL or SUFFICIENT,
on the other hand, will allow you to start the server in spite of the failure of the Authentication
provider and gives you a chance to fix the problem. Therefore, always set the control flag to the
OPTIONAL or SUFFICIENT setting until you are sure you’ve correctly configured the new
Authentication provider. For instance, if you configure a new Authentication provider and connect to
the corporate LDAP server, it’s important that you change the control flag on the DefaultAuthenticator
and on the newly configured provider to either SUFFICIENT or OPTIONAL. If you leave it as
REQUIRED, a failure to find the user in the embedded LDAP server will cause the login to fail.

430 Oracle WebLogic Server 12c Administration Handbook

Let’s briefly review the configuration steps for an LDAP Authentication provider. The actual
configuration details vary, depending on the LDAP Authentication provider you choose. Follow
these steps to configure an LDAP Authentication provider:

 1. Create an instance of the LDAP Authentication provider in the security realm.

 2. Configure the attributes for the LDAP Authentication provider.

 3. Configure communication between the LDAP server and the LDAP Authentication provider.

 4. Configure options that specify how the provider searches the LDAP directory.

 5. Specify the location of the users and groups in the LDAP tree.

 6. Specify how the provider locates the members of a group.

 7. Specify the name of the global universal identifier (GUID).

 8. Specify the timeout value for the LDAP connections. The default timeout value is zero, but
Oracle recommends that you set it to a positive value for enhanced server performance.
You can set the timeout value in the config.xml file, as shown here:

<wls:connect-time>60</wls:connect-time>

 9. Specify the performance options for the LDAP server cache.

The default WebLogic Authentication provider (DefaultAuthenticator) comes preconfigured,
and you need to configure this only if you want to use this provider in a new security realm. Note
that the user and group names are case sensitive. You must also specify a minimum length for user
passwords. You can also set user attributes such as displayname and employeenumber, which
conform to the user schema for the inetOrgPerson LDAP object calls, as per RFC 2798.

Let’s discuss how to configure the DefaultAuthenticator provider through the Administration
Console. In the Administration Console, go to Security Realms | myrealm. On the Settings For
myrealm page, select Providers | Authentication. Select DefaultAuthenticator in the Authenticator
Providers table. In the Settings For DefaultAuthenticator page, you can set the JAAS Control Flag
to specify how the server uses this provider during the login sequence. Click the Provider Specific
tab to configure other properties for the DefaultAuthenticator. Figure 9-3 shows the configuration
options for this provider, which I summarize here:

 � Keep Alive Enabled Specifies whether LDAP connections can time out.

 � Propagate Cause for Login Exception Specifies whether the Authentication provider
must propagate the cause of login exceptions.

 � Enable Password Digests Lets you specify the storage of passwords in an encrypted form
to support digest authentication algorithms.

 � Use Retrieved User Name As Principal Specifies whether the provider should use the
usernames stored in the embedded LDAP server as the principal.

 � Minimum Password Length Specifies the minimum length of passwords.

 � Group Membership Searching Specifies whether recursive group memberships should
be limited.

 � Max Group Membership Search Level Specifies the levels of group membership to be
searched, provided you’ve set the GroupMembershipSearching attribute to unlimited.

Chapter 9: Managing WebLogic Server Security 431

Defining Server Stop and Start Policies
You can use the Server | Security | Policies page to edit security policies that determine who can
change the lifecycle state (booting and stopping) of a server. This page has three sections:

 � Providers The Providers section lets you specify the Authentication provider you want
to use. The default Authentication provider in the security realm myrealm is named
XACMLAuthorizer.

 � Methods You can specify the actions an administrator is allowed to take to modify a
server’s lifecycle state. You can specify that an administrator is allowed to take one of the
following actions:

 � Boot

 � Shut down

 � Lock

 � Unlock

 � All

 � Policy Conditions You can specify various policy conditions in this section to control access
to the server administrative resources. The default policy is the Admin or the Operator role.

FIGURE 9-3. Configuring the Authentication provider

432 Oracle WebLogic Server 12c Administration Handbook

The Password Validation Provider
The Authentication provider for a realm automatically invokes the Password Validation provider if
you configure one. The Password Validation provider checks the passwords you supply for new
users in order to ensure they satisfy the various password composition rules. You can configure
various password composition rules for the Password Validation provider, including the following:

 � Password length policies, including minimum and maximum length

 � Username policies, such as whether a password can contain the username

 � Character policies, such as the number of alphabetic or numeric characters required
in a password

NOTE
Oracle recommends that you configure the Password Validation
provider in the security realm.

The Password Validation provider serves the same purpose as the commonly used CrackLib
employed in most UNIX password management tools. CrackLib is a library that checks to ensure
that passwords can’t be cracked easily. It does so by ensuring that passwords aren’t based on
simple character patterns or on a dictionary word.

You can configure the Password Validation provider through the Administration Console by
navigating to Security Realm | Realm Name | Providers | Password Validation. In the Password
Validation Providers table, click the name of the provider. For the default security realm myrealm,
the password validator is named SystemPasswordValidator. In the Settings For Password Validation
Provider page, click the Provider Specific subtab. Figure 9-4 shows the configuration page where
you set attributes for the Password Validation provider.

You can configure Password Validation attributes such as username policies, password length
policies, and policies that govern how you can specify characters within passwords. You can
configure the Password Validation provider with the WebLogic Authentication provider or other
Authentication providers. The Authentication provider automatically invokes the Password
Validation provider to make sure the passwords meet the requirements you’ve configured.
Configure the Password Validation provider immediately after you create a new domain.

Improving LDAP Authentication Provider Performance
You can improve the performance of any LDAP Authentication provider, including the WebLogic
Authentication provider, through the Configuration | Performance page. You can speed up
subsequent searches mainly by configuring the caching of the LDAP subtrees retrieved during a
membership lookup. Here are the performance options you can configure on this page:

 � Enable Group Membership Hierarchy Caching Lets you specify whether the provider
should cache group membership subtrees found during a recursive membership lookup.

 � Max Group Hierarchies In Cache Specifies the maximum size of the Least Recently
Used (LRU) cache for storing group membership hierarchies. The default is 100.

 � Group Hierarchy Cache TTL Specifies the maximum time for which group membership
subtree entries remain valid in the cache. The default is 60 seconds.

Chapter 9: Managing WebLogic Server Security 433

Exporting and Importing Security Data
When you create a new realm or a new security provider, you can use existing security data in the
current default realm instead of re-creating everything, such as users, groups, roles, security policies,
and credential maps. To use the current security data, you can export the data from a security realm
and import it into another security realm. You can also perform the export and import of security
data at the security-provider level instead of the realm level. For WebLogic Server security providers,
you export data from the embedded LDAP server. For example, you can export only the users and
group data if you want to export data just for the WebLogic Authentication provider. The only
requirement for migrating data from one security provider to another is that both providers must use
the same data format. One of the main motivations for doing this is so you can incorporate the
WebLogic administrative security roles and policies into an existing corporate LDAP store,
eliminating the need for the embedded LDAP server. To do this, you copy the schema and policies
using ldif and then assign administrative roles and policies to the users.

FIGURE 9-4. Configuring the Password Validation provider

434 Oracle WebLogic Server 12c Administration Handbook

While the ability to migrate security data comes in handy when creating a new realm or
replacing a security provider, you can also use the migration capability to move security
configurations from one domain to another.

NOTE
You can export security data only from the WebLogic security
providers and import the data only into WebLogic security providers.

When you move from the embedded LDAP store to an RDBMS security store, Oracle
recommends that you create a new domain. Once you create the domain with an RDBMS
security store, export the security data to the domain’s security realm. During the import, by
default, the security data for all security providers that use the RDBMS security store will be
automatically loaded into the RDBMS tables. By default, any providers that don’t use the RDBMS
store will have their data imported into their default store, which could be an LDAP server.
Although you can migrate the security data for each security provider separately, Oracle
recommends that you export the entire security realm’s data at one time.

To be able to export and import data, the data must be in supported formats—formats that
both security providers can understand. Each WebLogic Server security provider has a set of data
formats that it supports. You can also specify a list of constraints that restrict the type of security
data that’s exported or imported. For example, when exporting data from the WebLogic
Authentication provider, you can specify constraints that export the users but not the groups.
Similarly, you can specify that an Authentication provider (actually the LDAP server or another
database) can’t import the security policies. Passwords are exported in encrypted format by
default. Because the target domain or security provider may use a different encryption method,
you can specify a constraint such as passwords=cleartext in order to export the passwords in clear
text. The export process writes security data to an export file in the specified format. The import
process uses the export file to read the security data. This file is called the import file after you
migrate it.

NOTE
Because some of the data formats for the WebLogic Server security
providers are unpublished, you can’t migrate the data in these formats
to a custom security provider.

As mentioned earlier, you can export security from all security providers in a security realm or
you can export specific security data from an individual security provider. The following example
shows how to export the users, groups, and roles from the default Authentication provider in the
security realm myrealm. The export writes the security data to a file, which you can use to import
the data into another security provider in a different domain.

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Select Security Realms in the left-hand pane. On the Summary Of Security Realm page,
select the name of the security realm from which you want to export security data. (In this
example, the security realm is myrealm.)

 3. Click the Providers tab and then the Authentication tab.

 4. In the Authentication Providers table, click DefaultAuthenticator.

Chapter 9: Managing WebLogic Server Security 435

 5. On the Settings For DefaultAuthenticator page, select Migration.

 6. You can specify various things on this page to control the export of security data from the
Authentication provider’s database to a file:

 � Export Format Specifies the format of the exported security data—this must be
compatible with the import format.

 � Export File On Server Specifies the full path to the file where you want the server to
store the exported data.

 � Overwrite Specifies whether the server should overwrite a preexisting export file.

 � Supported Export Constraints All users, security rules, and security policies will be
exported by default—you can specify that only a subset of the security data be exported
by listing the constraints to be applied during the export (users, roles, and policies).

 � Export Constraints Specifies the constraints that apply to the import of the data in a
key=value format.

 7. Click Save and then click Activate Changes in the Change Center.

The import process is very similar to the export process—it takes the export file and loads the
security data into the DefaultAuthenticator’s data store. You can also use WLST commands to
export and import security provider data (but not all of the security realm data) by accessing the
run-time MBean for a provider and using the bean’s exportData and importData operations.

Caching Security Information
You can cache security principal information in the security realm to let the security framework
perform faster. You can configure security information caching by selecting the Performance tab
on the Settings For myrealm page. Following are the two key caching-related configuration
parameters:

 � Enable WebLogic Principal Validator Cache Enabling the Principal Validator Cache lets
the server cache all WebLogic principal signatures. By default, this option is checked.
Oracle-supplied and custom Authentication providers can use the Principal Validator.

 � Max WebLogic Principals In Cache Sets the size of the cache in terms of the number of
WebLogic principal signatures—by default, the server caches 500 principal signatures.

Configuring Entitlements Caching
Both the DefaultAuthorizer (Authorization provider) and the DefautRoleMapper (Role Mapping
provider) perform better when they cache roles and resource data during entitlement lookups.

NOTE
You can’t configure the cache for the XACML Authorization and Role
Mapping providers.

The WebLogic Authorization and Role Mapping providers maintain three caches: the roles, the
predicates, and the resources cache. For example, the default number of items stored in the roles
cache is 2,000 items. The predicate cache default value is more than enough to cache the predicates

436 Oracle WebLogic Server 12c Administration Handbook

of the two security providers. The resources cache stores the name of the resources (with their
security policies) that the two providers have already looked up. You only need to increase the size of
the caches when a server instance uses more than the default number of roles or resource lookups.

To raise the cache values from their default values, pass the following system properties in the
Java startup command when starting the instance:

-Dweblogic.entitlement.engine.cache.max_role_count=4000
-Dweblogic.entitlement.engine.cache.max_resource_count=3200

The max_role_count and max_resource_count attributes specify the maximum number of roles or
resources the server must cache. It’s a good idea to reduce the initial lookup of the entitlement data by
specifying that the server instance must load the cache during its startup cycle. If you don’t do this and
you raise the cache size to a high number, the initial lookup of the entitlement data will take a longer
time. You specify the preloading of the cache in the following way when starting a server instance:

-Dweblogic.entitlement.engine.cache.preload=true

Changing the Default Security Realm
WebLogic Server provides a default security configuration in which the realm named myrealm acts as
the default security realm in every WebLogic Server domain. The default security realm also contains
the WebLogic Authentication, Adjudication, Identity Assertion, XACML Authorization, Credential
Mapping, XACML Role Mapping, and CertPath providers as the default security providers, with the
embedded LDAP server acting as the data store for the providers. Sometimes you may need to
change the default security realm. Following are the steps for changing the default security realm:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Go to the domain’s Settings page | Security | General.

 3. If you have created and configured security realms, you’ll be able to select one of them as
the new default security realm. Click Save. Note that if you have not configured the required
security providers for a new security realm, the realm won’t appear in the pull-down menu.

 4. Click Activate Changes in the Change Center.

 5. To set the new realm as the default security realm, restart the server.

You’ll now see that in the Realms table the new default security domain has the default realm
set to true.

Reverting to an Older Security Configuration
If you make a mistake while configuring a security provider or a new security realm, you won’t be
able to start the Admin Server. You can, however, restore the original configuration files to return
to the previous security realm configuration and start the server without a problem. It’s nice to
know you don’t have to back up the previous security configuration—the Admin Server does this
for you automatically. The Admin Server saves the last five versions of the security configuration
files in the <domain_name>\configArchive directory. The jar file with the highest number (ranging
from 1 to 5) is the file that contains the configuration for the most recent version of the security
realm. In order to revert the security realm to a previous security configuration, copy the config.jar
file with the highest number to the <domain_name>\config\security directory. While reverting to

Chapter 9: Managing WebLogic Server Security 437

the previous security realm reinstates the configuration of the security providers and the security
realm, the users, groups, role, and security policy information is always stored in the embedded
LDAP server (or a different LDAP server or RDBMS store).

Users, Groups, Roles, and Security Policies
A WebLogic Server user is any entity that needs to be authenticated, so this could include the
administrators and other users, as well as clients such as a Java client. To authenticate to the
server, you must provision the users with unique identities in a security realm. Although you can
manage users individually, you’ll find it’s far easier to handle large numbers of users by assigning
them to groups. A group is scoped to the entire domain. A security role grants an identity to a
user, but unlike a group, a user can be scoped to a specific resource. A security policy specifies
which user, group, or role can access a WebLogic resource based on conditions that you specify,
such as the time of day (time constraints) or membership in a group or role (for example, a user
that belongs to a group within the Admin role).

Although you can assign a security policy directly to a user, you must not do so because it’s
not practical to manage a large number of users directly without allocating them into meaningful
groups based on job role or function. Here’s a simple methodology that helps create and assign
security policies to protect key WebLogic resources:

 � WebLogic Server provides a default security schema to control access to server,
administrative, and JMX resources. Default security policies grant various types of
administrative and server access to the set of eight default security roles such as the Admin
and Deployer roles. WebLogic Server also has a set of eight default groups, each of which
is assigned one or more of the eight default security roles. All you need to do is assign users
to the default groups so they automatically have one or more of the default security roles.

 � You can use the standard Java EE security model, where developers define role mappings
and policies in the deployment descriptors to control access to web applications and
EJBs. Alternatively, you can create security policies and security roles through the
Administration Console.

 � You must create custom security policies to control access to all other types of resources
that you deploy as part of an enterprise application or module. You also need to determine
if you need to create root-level or scoped policies for protecting those resources.

 � You should assign your administrative users to one of the eight default global roles.

 � You should create custom groups and security roles to allow users access to resources for
which you’ve defined custom security policies.

The connection among users, groups, roles, and security policies is as follows:

 � You should (you don’t have to, but it’s highly recommended) assign individual users to groups.

 � You should (again, you don’t have to, but it’s a good practice) create security roles specifying
the conditions under which a user, group, or another role should be granted the security role.

 � You must create security policies to determine the conditions under which a specific role
can access a WebLogic resource. You can simply say, for example, that a user with the
Admin role can access an administrative resource. However, you can also specify that a
user with a certain role can access a specific resource only during a specific period.

438 Oracle WebLogic Server 12c Administration Handbook

 � During run time, the WebLogic Security Service performs a role-mapping process to
determine whether a user or group should be granted a security role based on the
security role’s conditions.

 � At run time, the WebLogic Security Service determines whether a user, group, or security
role can access a specific WebLogic resource.

As you’ll see later in this chapter, the simplest way to configure a security policy is to use a
Role condition—the security policy applies to all users and groups with a role such as the Admin
role, for example. Using a Role condition makes managing multiple users and groups easy, and
Oracle recommends that you use one wherever possible.

In the following sections, let’s discuss users, groups, and roles in detail.

NOTE
You can add groups to another group.

Users
A user can be a person such as an end user, a client application, or even another instance of the
WebLogic Server. To access the server, users must provide credentials in the form of a password, a digital
certificate, or an equivalent means of ascertaining their identity. The Authentication provider of the realm
receives the user security credentials through a JAAS login module and associates the user’s identity
(principal) with a thread for that user to use to execute work. To authorize the user to perform the work,
the server checks the security policy of the resource the user is accessing. You can associate an individual
user directly with a security role, but the preferred way is to do the association through groups.

Creating a User
You can create users through the Administration Console or WLST. Any users you create through
the Administration Console or WLST can only be stored in the WebLogic embedded LDAP server
that’s configured with the WebLogic Authentication provider or in a database configured with a
valid SQL Authentication provider. If you want to use an external LDAP server, you must use the
LDAP server’s user creation tools instead of the Console or WLST. You can also import users and
groups into the embedded LDAP server.

Here’s a summary of the steps to follow to create a user through the Administration Console:

 1. Select Security Realms in the left-hand pane of the Administration Console.

 2. Select the realm in which you want to create the user from the Settings For <realm_name>
page.

 3. Select Users And Groups | Users on the Settings For <realm_name> page.

 4. Click New to access the Create New User page.

 5. Enter the name of the user in the Name field. The username must follow the naming
conventions.

CAUTION
If you create a username with either a pound sign (#) or with double
quotations, you may corrupt the domain configuration.

Chapter 9: Managing WebLogic Server Security 439

 6. You can enter a description of the user, such as the user’s full name, in the Description field.

 7. If you’ve configured multiple Authentication providers, you must select an Authentication
provider for the user in the Provider drop-down list.

 8. Enter a password in the Password field and reenter it in the Confirm Password field.

 9. Click OK to save the user configuration.

You’ll now see the username in the User table. In the User table, select the name of the new
user to set the user attributes. In the Settings For <username> page, select Attributes, and for each
attribute therein, enter a string in the Values column.

Setting User Attributes
When you create a user through the Administration Console, you’re defining that user in the
WebLogic Authentication provider. Once you create the user, you can set one or more attributes for
that user. When you set the value for an attribute, that attribute is added to the user. You can only
choose from the list of attributes offered by WebLogic Server; you can’t customize them. You can
delete an attribute from a user’s definition at any time. Following are some of the user attributes:

C: two letter country code
displayname: preferred name for the user
l: name of the locality, such as the city or county
Employeetype: shows the relationship between the employer and the
employee

Groups
A group consists of a set of users who share something, such as members of a department within
a company, for example. WebLogic Server defines several groups in the default realm myrealm.
Any users you assign to a default group will inherit the default global role corresponding to that
default group. Here are the default groups in a realm with preconfigured users:

 � Administrators Contains the administrative user whose information you have to provide
during the domain configuration process. A user you add to this group will be granted the
Admin role by default. Oracle recommends that you add at least one user to this group,
in addition to the administrative user created at domain configuration time. Having a
second user is helpful if the default administrative user is locked out, for example.

 � OracleSystemGroup Contains the default user OracleSystemUser with the default role
OracleSystemRole.

WebLogic Server also uses two run-time groups that are not visible through the Administration
Console: Users and Everyone. The group Everyone contains all users, both anonymous and
authenticated, whereas the Users group contains the authenticated users. You can’t manage these
two groups by adding and deleting users, like the default groups. The server dynamically adds
users to these two groups during run time.

Creating a Group
You can create groups with either the Administration Console or WLST, but as with users, you’re
limited to the creation of groups in the embedded LDAP server or in an RDBMS. To create groups
in external LDAP servers, you must use tools specific to that LDAP server.

440 Oracle WebLogic Server 12c Administration Handbook

Creating a group through the Console involves steps that are very similar to those for creating
users. Just select Users And Groups | Groups on the Settings For <realm-name> page and follow
the instructions. Once you create a group, you can add users to that group by going to Users And
Groups | Users to select the user you want to add to a group and then selecting Groups in the
Settings For <username> page to add the user to a group (or groups). Note that you can also add a
group to one or more groups.

Default Groups
WebLogic Server offers a set of eight default groups. With the exception of the Administrators
group and the OracleSystemGroup, all groups are empty by default. Each default group is
associated with a default security role; thus, when you assign a user to a group, that user will
automatically be granted the default role associated with that group. Following is a list of the eight
default groups and the roles associated with each group:

 � Administrators Contains the default administrative user—this user is the same as
the username you provide the Configuration Wizard (for example, weblogic, with the
password welcome1) when you configure a new domain. Default security role is Admin.

 � Deployers Default security role is Deployer.

 � Operators Default security role is Operator.

 � Monitors Default security role is Monitor.

 � AppTesters Default security role is AppTester.

 � CrossDomainConnectors Default security role is CrossDomainConnector.

 � AdminChannelUsers Default security role is AdminChannelUser.

 � OracleSystemGroup Contains the user OracleSystemUser. Default security role is
OracleSystemRole.

Security Roles
A security role is a privilege (or an identity) that the server dynamically grants to a user or group
based on specific conditions such as username, group membership, or time of day. The security
roles are privileges the server grants to a user or group based on some conditions. Roles restrict
access just like groups, but the big difference between a group and a role is that roles are granted
dynamically at run time. In addition, you can scope a role to a specific resource, whereas a group
is simply a grouping of users that have similar characteristics. A user or group can have more than
one role at the same time. Security policies use roles to determine who can access a WebLogic
resource. A security role grants defined access privileges to a user or group, as long as the user or
group continues to have the security role. During run time, the Security Service dynamically
performs a role mapping process to grant roles to users and groups. The Authorization provider
then helps make the decision as to whether the user or group can perform a specific operation on
a resource.

NOTE
You can certainly grant an individual user a role, but best practice is to
create groups and assign roles to the groups.

Chapter 9: Managing WebLogic Server Security 441

There are two types of security roles:

 � Global roles The server can use these with any security policy. You can use the default
global roles or create your own.

 � Scoped roles Security policies can use a scoped role just for a specific instance of a
resource such as an EJB method containing sensitive business logic, for example. You can
use scoped roles to restrict access to EJBs.

If you have a conflict between a goal and a scoped role, a role with the smaller scope will
override the role with the larger scope.

Role mapping is the process of comparing groups against role conditions to determine
whether a group and its users should be granted a specific security role.

Default Global Roles
In each security realm, the server defines a number of default global roles, and the default role
conditions include one or more WebLogic default groups in each role. The default security
policies grant a set of privileges to each global role. Here are the main global roles, the default
groups included in the roles by the default role conditions, and the privileges granted to each role
by the default security policies.

 � Admin The default security policies allow the user or group with the Admin role to view
and modify server configuration (including encrypted attributes), deploy applications,
and control the server instances (start/stop/resume). The Administrators group is in the
Admin role by default.

 � Anonymous All users are granted this role. The default group Everyone is part of this
role.

 � Deployer This role permits the following:

 � View server configuration (encrypted attributes limited to deployment attributes)

 � Change web applications and edit deployment descriptors

 � Change startup and shutdown classes

 � Modify JDBC data pool connections

The Deployer role includes the default group Deployers.

 � Operator This role allows viewing of the server configuration (no encrypted attributes)
and starting, stopping, and resuming the server. Includes the Operator group.

 � Monitor This role allows viewing of the nonencrypted configuration attributes through
the Console, WLST, and MBean APIs. Includes the Monitors group.

 � AppTester This role allows access to applications running in administration mode.
Includes the AppTesters group.

 � CrossDomainConnector This role is used to enable interdomain messaging when you
enable “trust” between multiple domains. Includes the CrossDomainConnectors group.

 � OracleSystemRole This role is for users whose WS-Security tokens have been
authenticated. Includes the OracleSystemGroup.

442 Oracle WebLogic Server 12c Administration Handbook

Note that, by default, each of these default roles is linked to one or more of the default groups
described in the previous section. Thus, if you assign a user to the Operators group, that user
automatically gets the Operator role.

Security Role Conditions
A role contains one or more conditions to determine when a group or user is assigned that role at
run time. The server uses default role conditions to assign a default group to a role. For example,
the global role Admin’s default conditions include the group Administrators—the server
automatically places the Administrators group in the Admin role at run time. Following are the
various types of built-in role conditions:

 � Basic These are simple role conditions such as user or group, which add the specified
user or group to the role. For example, you may create a group called PermEmployees
and specify that only users in that group be granted the SecretInfo security role. The other
basic role conditions are

 � Server is in development mode Tells the server to add a user or group to a role only
when a server is running in development mode.

 � Allow access to anyone Specifies that all users and groups must be added to a role.

 � Deny access to everyone Specifies that the role not be assigned to any user or group.

 � Date and time A date and time role condition grants a security role to all users for any
date and time you specify. For example, you can specify the Access Occurs Between
Specified Hours condition to add a user or group to a role only during a specific time. There
are different date and time role conditions. You can add other role conditions to a date and
time role condition to restrict the users or groups to which you want to grant a security role.

 � Context element This type of role condition adds a principal to a role based on the
presence of a specific parameter or attribute, or on the value of that parameter or
attribute. The attributes and values refer to HTTP Servlet Request attributes and HTTP
Session attributes. The parameters refer to EJB method parameters.

Configuring Security Policies
You can’t consider any WebLogic Server resource a protected resource until you create a security
policy for it. A security policy associates a WebLogic resource with a user, group, or security role
in order to restrict access to that resource. A security policy helps you control access to WebLogic
Server resources by specifying which user, group, or security role can access a specific resource
and under what conditions. The WebLogic Security Service uses the roles and policies you create
to control access to resources.

By default, no WebLogic resource is protected by a security policy. You can secure multiple
resources with a single security policy. To protect a set of resources with a single policy, you can
control access to protected resources based on the type of resource or use security policies that
protect a hierarchy of resources. The following sections explain the two strategies.

Security Policies Based on Resource Type
You can create a security policy to protect all WebLogic resources of a certain type, such as
resources of the Web Service type. These types of security policies are also called root-level
security policies, and they provide you a way to configure a single, homogeneous security policy

Chapter 9: Managing WebLogic Server Security 443

for all resources that belong to the same resource type. For example, you can create a security
policy that applies to all JMS resources in a domain. The default security realm myrealm comes
with a set of default root-level security policies, some of which are described in the following list,
with each policy designed to control a specific type of WebLogic resource. Here are some of the
important WebLogic resource types and the security policies that protect them:

 � Administrative resources A root-level security policy grants access based on
membership in the default global role Admin.

 � Application resources These contain no default security policies.

 � EJB resources A root-level security policy grants access based on membership in the
default group Everyone.

 � JDBC, JNDI, and JMS resources A root-level security policy grants access based on
membership in the default group Everyone.

 � Server resources A root-level security policy grants access based on membership in the
default global role Admin or Operator.

Note how certain default root-level security policies grant access to resources based on
membership in a group or role.

Hierarchical Security Policies
Whereas a root-level policy applies to all instances of a specific resource type, you can also create
a security policy that applies to a specific instance of a WebLogic resource. The security policy you
create for a specific instance applies to the hierarchy of the resources included in that instance.
You can specify a security policy at any level in the hierarchy of resources, such as the following:

 � An enterprise application (EAR)

 � An EJB jar file that contains multiple EJBs

 � A specific EJB within an EJB jar file

 � A single method within a specific EJB

If you create security policies at multiple levels, the policy at the lower level will override
policies at the higher level. For example, a security policy for an EJB will override any security
policies you specify at the EAR level.

Security Policy Conditions
When you create a security policy, the WebLogic Security Service evaluates the policy “conditions” to
determine who can access a protected resource. For example, a security policy for a resource may
have a condition based on roles, such as the Admin global role, which means that any user that has the
Admin role can access that resource. WebLogic Server Authorization providers use three kinds of built-
in security policy conditions: basic, date and time, and context element policy conditions. These three
types of conditions work the same way as the corresponding role conditions discussed earlier in this
chapter in the section titled “Security Role Conditions.” The basic policy conditions are more extensive
than the basic role conditions. Here’s a brief description of the basic security policy conditions:

 � User Allows a user access to a WebLogic resource.

 � Group Allows a group access to a resource unless a User security policy condition
denies the access.

444 Oracle WebLogic Server 12c Administration Handbook

 � Role Allows all users or groups in a specific security role to access a resource. However,
a User or Group security policy condition can override access privileges granted by a
role, including the Admin role.

 � Server is in Development Mode Allows the user or group to access a resource only if
the server that hosts the resources runs in development mode.

 � Allow Access to Everyone Allows access to all users, groups, and roles.

 � Deny Access to Everyone Denies access to all users, groups, and roles.

 � Element Requires Signature by Controls access only to a Web Service resource. A Web
Service operation is allowed only if a specific element in the SOAP request has been
digitally signed by the user who you specify as the value for this condition.

 � To Create an Element Requires Signature by Specifies whether a group or user is
required to sign the SOAP element. You must specify the user or group name, as well as
the name of the SOAP message element.

Static and Dynamic Security Conditions
As you’ve learned in this chapter, both roles and security policies can dynamically evaluate a set
of conditions at run time. You can specify a security policy that allows access to a resource
through a specific role, and you can dynamically assign users these roles as necessary. When you
do this, you’re controlling authorization based on which user or group can access the resource.
Alternatively, you can define a static role and create a dynamic security policy that allows access
to the static role depending on the time of day, for example. By adding conditions to a security
policy, you’re controlling access to a resource based on the resource itself rather than the roles
that are allowed to access the resource. For example, you can create a security policy that
dynamically grants a user a security role for a specific time (or during a specific period) without
adding that user to a different group.

Security Models for Web Applications and EJBs
A security model for an application determines where you specify the roles and security policies
and when exactly the server actually performs the security checks (for example, when a client
requests a certain URL). In addition to supporting the standard Java EE security model that lets you
define role mappings and security policies in a deployment descriptor for the web application or
EJB, WebLogic Server offers more flexible security models of its own. Both the Java EE security
model and the WebLogic security models are appropriate under various scenarios, as explained
in the following sections. Note that once you deploy a web application or EJB, the security model
can’t be changed unless you redeploy the application or EJB.

The Deployment Descriptor Only Model
The Deployment Descriptor Only (DD Only) security model, which is another name for the
standard Java EE security model, only uses the groups, roles, and security policies defined in the
web.xml, weblogic.xml, ejb-jar.xml, and weblogic-ejb-jar.xml deployment descriptors. Developers
define the roles and security policies in the deployment descriptors. The developer maps the
EJBs and web URLs to roles and maps the roles to principals (users or groups). The administrator
ensures that the roles and groups exist and that they are mapped correctly in the realm. Under

Chapter 9: Managing WebLogic Server Security 445

the DD Only security model, the security framework performs a security check only when
clients request a URL or EJB method that is protected by policies specified in the deployment
descriptor.

The key thing to understand here is scoping. If the developer doesn’t define a role in the
deployment descriptor for the application (application-scoped role), the EAR will not have any
application-scoped roles—the administrator can’t modify the application-scoped roles through
the Administration Console under this model. The administrator can, however, create non-
application-scoped roles as well as application-scoped policies (not roles) for the EAR.

When you use deployment descriptors to grant the security roles and define the security
policies, the server loads the role and policy information into the Authorization and Role
Mapping providers when you boot the server instance. To enable the server to use the security
information defined in the deployment descriptors, you must configure at least one Authorization
provider to implement the DeployableAuthorizationProvider Security Service Provider Interface
(SSPI) and one Role Mapping provider to implement the DeployableRoleProvider SSPI. The two
SSPIs let these two providers store information from the deployment descriptors instead of having
to retrieve them each time they need to authenticate or perform role mapping. Both the WebLogic
Authorization and Role Mapping providers implement the SSPIs mentioned here, so you don’t
have to configure them if you are using these two providers.

The Custom Roles Model
The DD Only security model is probably fine if role mappings are fairly static and developers and
administrators work closely together to set up application security. However, in an environment
where you need to change role mappings frequently or where developers and administrators work
independent of each other, the DD Only security model opens the door to many potential
problems, including the need to redeploy the application frequently following a remapping of
roles. The Custom Roles security model is better able to handle security in such as environment.
Under this model, the developer defines the security policies in the deployment descriptors by
mapping the EJBs and URLs to roles in the deployment descriptors. The administrator (or a
deployer) is responsible for defining the security roles and mapping them to the principals. You
still need to redeploy the application when developers modify the security policies in the
deployment descriptors, but the administrator can change the role mappings in the Administration
Console without having to redeploy the web application or EJB.

The big advantage of the Custom Roles method is that it offers the ability to configure fine-
grained control of specific URL patterns or EJB methods by letting the developer specify these in
the deployment descriptors.

You can’t create application-scoped security policies for EJBs and URL patterns. The
administrator can create application-scoped policies for other resources such as an EAR. Under
the Custom Roles security model, the server uses only the security policies in the deployment
descriptors for EJBs and URL patterns. If the developers specify any roles in the DDs, the security
model ignores them. The administrator is responsible for role mapping.

The Custom Roles and Policies Model
The Custom Roles and Policies security model goes beyond the Custom Roles model by letting
the administrator create all roles, security policies, and role mappings, and completely ignores
any security definitions in the deployment descriptors. This is a more streamlined approach to
managing security, as the administrator defines all security requirements including the roles,

446 Oracle WebLogic Server 12c Administration Handbook

security policies, and role mappings centrally through the Administration Console. This
centralization of application security configuration makes updating security definitions much
easier than in the DD Only or Custom Roles security models.

The drawback with this security model is that it doesn’t provide fine-grained security checks
based on a client accessing a specific URL or EJB method—the server checks the security
permissions following each client request for a URL or EJB method, leading to additional
overhead.

The Advanced Model
The Advanced Model is offered primarily for backward compatibility with releases prior to
WebLogic Server 9.0. This model lets the server perform security checks for just those URLs and
EJB methods the developer has specified in the deployment descriptor or for all URLs and EJBs.

Security-Related Deployment Descriptors
When deploying an application into the WebLogic Server environment, an administrator or
security administrator may need to know how to interpret the security configured in an
application in order to provide the correct binding to roles in LDAP or in the database. Web
application developers can programmatically set up security through annotations or do so
declaratively with the help of deployment descriptors. However, many security-related elements
in a web application deployment descriptor can’t be set through annotations. For this reason,
using deployment descriptors for security is more or less a necessity, although Oracle
recommends that you use annotations where possible, so it’s important for the administrator to
understand the basics of how security is configured in Java EE deployment descriptors.

A Java EE deployment descriptor lets you express roles, access control, and authentication
rules external to the application. Security-related elements are used in both the web.xml and
weblogic.xml files. In a web.xml file, the deployment descriptor for web applications, the
<web-app> element, contains the security-related elements, which are summarized as follows:

 � <security-role> Contains the security role’s definition and, optionally, includes the
description and name of the security role.

 � <security-role-ref> Contains the declaration of security role references in the web
application code. You specify the same security “role name” here as the security role
name coded in the servlet logic, the goal being to configure servlets without changing
their code.

 � <security-constraint> Defines the privileges to access a set of resources defined by the
<web-resource-collection> element.

 � <web-resource-collection> Specifies a subset of resources and HTTP methods on those
resources to which a security constraint applies. This is an optional element.

 � <user-data-constraint> Specifies how to secure data passed between the client and
the server. Under this element, the <transport-guarantee> element is required. You can
specify a value of INTEGRAL for the <transport-guarantee> element to ensure that the
data can’t be changed in transit. By setting a value of CONFIDENTIAL for this element,
you can prevent other entities from reading the transmitted data. The server establishes an
SSL connection if the user authenticates with the INTEGRAL or CONFIDENTIAL value for
<transport-guarantee>.

Chapter 9: Managing WebLogic Server Security 447

The weblogic.xml file includes the following security-related elements under the <weblogic-
web-app> element:

 � <externally-defined> Lets you specify that the security roles you define with the
<role-name> element in the web.xml deployment descriptor should use the role
mappings you specified in the Administration Console. This element is used within the
<security-role-assignment> element.

 � <security-role-assignment> Specifies the mapping between a security role and a
principal (or principals) in the security realm. The following example shows how to use
this element in the weblogic.xml file:

<weblogic-web-app>
 <security-role-assignment>
 <role-name>PayrollAdmin</role-name>
 <principal-name>Nina</principal-name>
 <principal-name>Sam</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>
</weblogic-web-app>

 � <run-as-role-assignment> Maps the role name specified by the <role-name> element in
the web.xml file to a valid username.

 � <run-as-principal-name> Specifies the principal’s name to use for a security role
specified by the <run-as> element in the web.xml file. This element is used within the
<run-as-role-assignment> element, as shown here:

<weblogic-web-app>
 <run-as-role-assignment>
 <role-name>runasrole</role-name>
 <run-as-principal-name>sam</run-as-principal-name>
 </run-as-role-assignment>
</weblogic-web-app>

Configuring the Embedded LDAP Server
The WebLogic security providers such as the default Authentication provider use the embedded
LDAP server as the database for storing users, groups, roles, and security policies. In addition, all
of the WebLogic security providers, except the Adjudication and Auditing providers, use the
embedded LDAP server to store registered end certificates. You can use the embedded LDAP
server as a development and testing environment from which you can export security data to an
external LDAP server. You can use an LDAP browser to export security data from the embedded
LDAP server. If you have a small set of users and groups, you can even use the embedded LDAP
server in a production environment because it’s a full-fledged LDAP server. The embedded
LDAP server lets you access and modify entries, and it grants read and write access to the
WebLogic security providers.

The embedded LDAP server stores user, group, security roles, security policies, and
credential maps with default values for each attribute. If you use any one of the WebLogic
default Authentication, Authorization, Credential Mapping, and Role Mapping providers in a

448 Oracle WebLogic Server 12c Administration Handbook

new security realm, you may have to modify the default configuration of the LDAP server. The
Admin Server maintains the master LDAP server, and each Managed Server maintains a
replicated LDAP server. The master LDAP server replicates changes to the embedded LDAP server
running on the Managed Servers. You can configure the refresh properties for replicated data, as
well as other configuration properties through the Administration Console, by going to Domain
| Security | Embedded LDAP to get to the LDAP server configuration page (see Figure 9-5). Here’s
a description of the configuration attributes you can set for the embedded LDAP server:

 � Credential Sets the password to connect to the embedded LDAP server. WebLogic
Server uses a default password if you don’t specify a value for the Credential attribute.
You must specify a value for this attribute if you want to connect to the embedded LDAP
server using an LDAP browser and the administrator account (cn=Admin).

FIGURE 9-5. Configuring the embedded LDAP server

Chapter 9: Managing WebLogic Server Security 449

CAUTION
If you specify a value for the Credential attribute, the clear-text
password remains in the JVM memory until it’s flushed by garbage
collection.

 � Backup Hour By default, the server backs up the LDAP directory once daily. The
Backup Hour value (together with the value you specify for the Backup Minute attribute)
tells the server when it should back up the embedded LDAP server’s data files to a zipped
file in the WL_HOME\domains\<domain_name>\servers\<server_name>\data\ldap\
backup directory.

 � Backup Minute Specifies the minute at which the server should back up the embedded
LDAP server.

 � Backup Copies Specifies the maximum number of backup copies that can be made for
the embedded LDAP server. The maximum value is 65,534 copies!

 � Cache Enabled Specifies whether the server should enable a cache for the master LDAP
server from which the Managed Servers can read (or write) the LDAP data.

 � Cache Size Specifies the size of the LDAP server cache in kilobytes.

 � Cache TTL Specifies the time-to-live period for the cache.

 � Refresh Replica At Startup Specifies whether the Managed Server should download the
entire replica of the configuration from the Admin Server at boot time. By default, the
Managed Servers get incremental updates from the master LDAP servers. You can change
the default setting to avoid the sending of individual changes one by one by the Admin
Server if you’re rebooting the Managed Server after it’s been offline for a long time.

 � Master First Specifies that the Managed Server should connect to the master LDAP
server on the Admin Server instead of the local LDAP server on the Managed Server.

 � Timeout By default, there’s no limit on the amount of time to wait for the LDAP server
to send results back (timeout=0), but you can specify a timeout duration with this
attribute.

 � Anonymous Bind Allowed Lets you specify whether the LDAP server should permit
anonymous connections.

The embedded LDAP server’s database is in the WL_HOME\domains\<domain_name>\
servers\<server_name>\data\ldap directory. The directory consists of the backup, ldapfiles, conf,
log, and replicadata subdirectories. The backup directory contains the daily backups (in zipped
format), such as EmbeddedLDAPBackup.4.zip. The LDAP server data files are in the ldapfiles
directory, and the replicadata directory holds the LDAP data replicated to the Managed Servers.

Configuring an RDBMS as the Security Store
You can use an RDBMS instead of an LDAP server as the security store for the Authorization, Role
Mapping, Credential Mapping, and Certificate Registry providers. Oracle strongly recommends
configuring an RDBMS security store when using SAML 2.0 services in a cluster. If you create an
RDBMS security store in a domain, security providers such as the XACML Authorization provider,
the XACML Role Mapping provider, SAML 1.1 and SAML 2.0 Identity Assertion and Credential

450 Oracle WebLogic Server 12c Administration Handbook

Mapping providers, and the WebLogic Credential Mapping provider will use this store rather than
the embedded LDAP server.

In the following sections, let’s review the main things you must do in order to configure an
RDBMS security store.

Setting Up the RDBMS Security Store
You can use the Administration Console to set up a new RDBMS store easily for a security realm.
Go to Services | Security Realms | <realm name> | RDBMS Security Store to configure the
RDBMS Security Store for a security realm. Figure 9-6 shows the Configuration page for the
RDBMS Security Store for a security realm.

On this page, the configuration option RDBMS Security Store Enabled specifics whether a
subset of the WebLogic security providers uses an RDBMS as its data store. Following are the
security providers who may store their security data in the external RDBMS:

 � XACML Authorization and Role Mapping providers

 � WebLogic Credential Mapping provider

 � PKI Credential Mapping provider

 � SAML 1.1 providers: SAML Identity Assertion provider V2 and SAML Credential Mapping
provider V2

 � SAML 2.0 providers: SAML 2.0 Identity Assertion provider and SAML 2.0 Credential
Mapping provider

 � Certificate Registry

By choosing RDBMS Security Store Enabled on this page, you’re specifying that any of the
security providers shown in the preceding list will use the RDBMS security store as their
repository for security information, instead of the embedded LDAP server. Your choice has no
impact on any security providers not in the list. For instance, the Weblogic Authentication
provider will use the embedded LDAP server instead of the RDBMS that you’ve configured as the
security store for a security realm.

FIGURE 9-6. Configuring the RDBMS Security Store

Chapter 9: Managing WebLogic Server Security 451

Creating Tables in the RDBMS Store
Once you set up the database store and test the connection, the Oracle (or other database)
administrator must execute a SQL script that creates necessary tables in the RDBMS Security
Store. Scripts for all supported databases are in the WL_HOME\server\lib directory. For the
Oracle 9i, 10g, 11g and 12c databases, for example, you execute the rdbms_security_store_
oracle.sql script. The script creates tables in which the security providers will store the security
data. You can remove these tables by executing the corresponding rdbms_security_store_oracle_
remove.sql script.

NOTE
Oracle recommends that you create a new domain configured with
an RDBMS Security Store versus upgrading an existing domain, if
you want to use the RDBMS Security Store instead of the embedded
LDAP server.

Setting Up JMS Notifications for Security Changes
Although the final step in configuring an RDBMS Security Store—the configuration of a JMS topic
for the use of the store—isn’t mandatory, Oracle recommends that you set it up to facilitate the
synchronization of security data among the various instances in a domain, including cluster
members. Doing this helps you avoid the potential need to reboot the domain’s servers to ensure
consistency when you make any security configuration or security policy changes. When you set
up JMS messaging for the RDMBS store, the WebLogic Security Service notifies all WebLogic
Server instances with JMS messages whenever a security provider changes its security data. The
WebLogic Security Service running on the server instance synchronizes its local caches with the
changes in security data. You can configure JMS notifications for security data updates by going
to the Security Realms | realm_name> || RDBMS Security Store page in the Administration
Console. To do this, you must specify attributes such as JMS Topic, Notification Properties, and
JNDI User Name.

Configuring Domain Security
Configuring domain-level security involves setting general domain security properties such as the
default security realm, specifying whether anonymous, read-only access to WebLogic Server
MBeans should be allowed, and specifying the Node Manager and domain credentials. Domain
security configuration may also include enabling trust between a local and a remote domain,
enabling connection filters, and protecting user accounts and passwords. Let’s review the main
domain security features in the following sections.

Configuring Domain Security in the Administration Console
You can configure domain security in the Administration Console by going to Domains | Security.
Several tabs on this page enable you to configure various aspects of a domain’s security. Let’s
review the key elements of domain-level security that you can configure on the various security
configuration pages in the Console.

452 Oracle WebLogic Server 12c Administration Handbook

General Security Page
When you select Security on a domain’s home page, you’ll be on the General security configuration
page, shown (part of the page) in Figure 9-7. You can define general security settings for the domain
from this page. Following is a review of the general security configuration options for a domain.
Except for the first four options, all options can be seen only by clicking the Advanced tab at the
bottom of the General security configuration page. Following is a description of the key security
options you can configure on this page:

 � Default Realm Specifies the security realm that should act as the default or security realm
for the domain. You must configure at least an Authentication provider, an Authorization
provider, an Adjudication provider, a Credential Mapping provider, and a Role Mapping

FIGURE 9-7. The General security page for the domain

Chapter 9: Managing WebLogic Server Security 453

provider for a new security realm before the realm shows up in the menu of security
realms. Otherwise, this box is grayed out (with the name of the current default realm).

 � Anonymous Admin Lookup Enabled Specifies whether the server should allow
anonymous, read-only access to WebLogic Server MBeans from the MBean API.
By default, anonymous viewing of MBean attributes is not allowed. You must
leave anonymous access to MBeans disabled, but you may enable it for backward
compatibility.

 � Cross Domain Security Enabled Lets you enable trust between domains by enabling
cross-domain security. The section “Enabling Trust Between Domains,” later in this
chapter, explains cross-domain security in detail. By default, cross-domain security is not
enabled.

 � Excluded Domain Names Specifies the remote domain names excluded from cross-
domain checks.

 � Security Interoperability Mode Specifies the security mode of the channels used for
XA calls between servers participating in a global transaction. There are four different
security interoperability modes:

 � Default If you enable the administration channel, the transaction coordinator makes
the XA calls over that channel—otherwise, it makes calls using anonymous.

 � Performance The transaction coordinator always uses anonymous, which leaves the
door open for man-in-the-middle attacks.

 � Compatibility The transaction coordinator makes calls over an insecure channel,
which potentially could allow an attacker to gain control of the administration
channel through the insecure channel. Oracle recommends that you not use this
setting unless you have very strong network security controls.

 � Credential This is the credential assigned to this domain during domain creation.
When you enable global trust between domains, you must specify the credential in
the local and remote domains.

 � NodeManager Username Specifies the username used by the Admin Server to
communicate with the Node Manager—the default username is weblogic.

 � NodeManager Password Specifies the password used by the Admin Server during
communications with the Node Manager. When you specify a password, the server
encrypts the value and sets the value of the NodeManagerPasswordEncrypted attribute
to the encrypted value. However, the unencrypted password remains in the JVM memory
until it’s removed through garbage collection. To prevent the exposure of the password,
Oracle recommends that you use NodeManagerPasswordEncrypted instead.

 � Web App Files Case Insensitive You can set the URL pattern-matching behavior for
servlets, virtual hosts, and others in the webapp container and in external security
policies. You can set this attribute to os, true, or false (the default value is false). Setting
this attribute to os means that pattern matching is case insensitive on all platforms except
Windows.

 � Enforce Strict URL Pattern Specifies whether the server should enforce a strict URL
pattern (“/”) to represent an entire web application.

454 Oracle WebLogic Server 12c Administration Handbook

 � Downgrade Untrusted Principals Specifies whether to downgrade to anonymous
principals that can’t be verified. You can consider setting this option when dealing with
communications between untrusted domains.

 � Allow Security Management Operations If Non-dynamic Changes Have Been Made If you
make a nondynamic change in the Console, certain security management operations are
disabled until you restart the Admin Server—the security pages for those operations won’t be
available to you until you restart the server. You can make those security pages available by
enabling this option.

Connection Filter Page
The Filter page under Security lets you configure connection filter settings for a domain. The
section “Using Connection Filters,” later in this chapter, explains WebLogic connection filtering.
You can set the following attributes on the Filter page:

 � Connection Logger Enabled Specifies whether the domain should log all accepted
connections.

 � Connection Filter Specifies the name of the Java class that implements a connection
filter. A null value means that the domain won’t use a connection filter for connections.

 � Connection Filter Rules Specifies the connection rules for the filter in the Connection
Filter Rules box. Use if you specified a connection filter. The format for the connection
filter rules is target localAddress localPort action protocols.

Unlock Users
In order to protect the user accounts from attacks, the server uses several configuration options
that limit things such as the maximum number of login attempts a user can make before the user
account gets locked. You can alter the default configuration options by selecting Configuration |
User Lockout on the Settings For Realm Name page. You can configure the following user lockout
options:

 � Lockout Enabled Specifies whether the server should lock out users after a set number
of invalid login attempts.

 � Lockout Threshold Sets the maximum number of failed login attempts before the server
locks out a user. Once the server locks a user account, the administrator must unlock the
user or the user must wait until after the end of the lockout duration before logging in
again. The default lockout threshold is five failed login attempts.

 � Lockout Duration Specifies the number of minutes a user account remains locked out
(without the administrator manually intervening by unlocking the user). The default value
is 30 minutes. If you don’t want a locked user account to be automatically reenabled, set
this option to 0.

 � Lockout Reset Duration Specifies the duration (in minutes) within which multiple
consecutive invalid login attempts cause the server to lock the user account.

 � Lockout Cache Size Specifies the maximum number of invalid login records the server
can cache. There’s no default for this—the range is 0–99999 records.

Chapter 9: Managing WebLogic Server Security 455

 � Lockout GC Threshold Specifies the maximum number of invalid login records the
server stores in its memory. Once the server reaches this threshold, the server’s garbage
collection (GC) purges expired records. An invalid login record expires when the user
account is either automatically or manually unlocked.

By default, the user lockout feature is enabled. Be careful not to turn off the user account
security configuration options or make the settings too liberal, as that may increase the
vulnerability of your user accounts. The Lockout Threshold configuration option sets the number
of invalid login attempts a user can make before that account is locked out.

NOTE
If a user is locked out of the Administration Console, that user is not
necessarily locked out of applications hosted by the Managed Servers.
This also applies in reverse; a user locked out of a Managed Server may
still be able to log into the Administration Console. The reason for this
is that WebLogic Server manages user lockouts on a per-server basis.

By selecting Unlock Users on the Security page, you can unlock any user who has been
locked out due to too many failed login attempts (that is, more login attempts than you’ve
configured). If a user gets locked out of one server instance in a cluster, the user account is
automatically locked on all nodes of a cluster. The user lockout attributes you configure apply to
the entire security realm and thus to the default Authentication provider as well. If you’re using a
custom Authentication provider that manages user account locking on its own, you must disable
the Lockout Enabled feature.

Once a user’s account has been locked due to too many failed login attempts, use the
following steps to unlock the user account:

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Select Security | Unlock User.

 3. Enter the name of the user account you want to unlock.

 4. Click Save.

You can set the user lockout settings at the domain level by configuring the domain’s default
security realm. Go to the Summary Of Security Realms page and select the name of the security
realm. In the Settings For Realm Name page, select Configuration | User Lockout to configure user
locking attributes such as enabling user lockout after a set number of failed login attempts.

Protecting User Passwords
The SerializedSystemIni.dat file holds the private key used for hashing passwords and signing
subjects. If this file is lost, the server cannot verify a password supplied by the user against those in
the store. When a subject is created in WebLogic Server, it is “signed” so when two servers in the
same domain communicate, they can be assured that the credentials used have not been modified.
For example, when a servlet makes a call to an EJB on another server, the signed subject is sent
over the wire. The subject is validated with information from the SerializedSystemIni.dat file. The
need for cross-domain security comes about because the two domains do not share the same
secret and cannot vouch for one another’s subjects. In the old days, you could create both domains
with the same secret and get the same effect. If this file is corrupted or removed by mistake, you

456 Oracle WebLogic Server 12c Administration Handbook

have to reconfigure the domain. Therefore, you must protect the SerializedSystemIni.dat file by
restricting permissions on this file and making frequent backups of it.

Embedded LDAP Server
The Embedded LDAP Server security page lets you configure the embedded LDAP server for a
domain. The section “Configuring the Embedded LDAP Server,” earlier in this chapter, explains
how to configure the embedded LDAP server.

Roles
The Roles page enables you to create new domain-scoped security roles and edit the conditions
of the roles. You can use these domain-scoped roles only within the security policies you create
on the domain’s Security | Policies page.

Policies
The Policies page lets you configure various security policy conditions that control access to
various WebLogic resources. Here’s the list of resources for which you can stipulate security
policy conditions by clicking the appropriate tabs on this page:

 � User Lockout Manage the user lockout policies from this page. The security policy
conditions control access to the Domain Administrative User Lockout resource.

 � Configuration Manage the configuration security of the domain. The security policies
determine access to the Domain Administrative Configuration resource.

 � File Upload (and File Download) Manage the domain’s File Upload and File Download
security policies. These policy conditions control access to the Domain Administrative
File Upload (and File Download) resource.

 � View Log Specify the domain’s administrative view log policies on this page. The policy
conditions control access to the Domain Administrative View Log resource.

 � Identity Assertion Manage the domain’s Identity Assertion security policy. The security
policies control access to the Domain Administrative Identity Assertion resource.

Enabling Trust Between Domains
Sometimes a remote domain needs to interact with a local domain. You enable principals in one
WebLogic domain to make calls in another domain by setting up trust between (or among)
WebLogic domains. Previously, you could enable trust through something known as global trust, a
feature that’s still available in Oracle WebLogic Server 12c. When you set up global trust between
two domains, you set up the same domain credential for two domains. Once you do this,
principals from one domain are accepted as principals in the other domain. Global trust can lead
to several problems, however, including authorization problems. In addition, logins to other
domains aren’t validated. Global trust is transitive, so if you establish global trust between domains
A and B and between domains B and C, you’re also establishing trust between domains A and C—
obviously this could lead to potential problems. In a production setting especially, you must
ensure that you have strong firewall protection or a dedicated communication channel to protect
against man-in-the-middle attacks when you enable global trust.

Oracle recommends that you establish trust between two domains by enabling what is called
cross-domain security. The WebLogic Credential Mapping security provider stores the credentials

Chapter 9: Managing WebLogic Server Security 457

for the cross-domain users. JMS, JTA, MDB, and WAN replication can authenticate and relay the
cross-domain credentials. You grant cross-domain users (users who need access to another
domain) the CrossDomainConnector role and configure credential role mapping. The following
discussion shows how to do this.

To configure cross-domain security, you must first enable it by going to Security | General and
checking Cross Domain Security Enabled. You can also enter the names of domains for which you
haven’t enabled cross-domain security in the Excluded Domain Names field on the same page.
The default group CrossDomainConnectors is assigned the default role CrossDomainConnector.
You must create a user and add it to the CrossDomainConnectors group so the user can inherit
the CrossDomainConnector security role.

After you enable cross-domain security and create the users with the CrossDomainConnector
role, you must configure credential mapping for cross-domain security. Credential mapping specifies
the credential the user must use in the remote domain that you want the local domain to trust.

Follow these steps to configure cross-domain security credential mapping:

 1. In the left-hand panel of the Administration Console, click Security Realms.

 2. Select Credential Mappings | Default.

 3. Click New.

 4. On the Creating The Remote Resource For The Security Credential Mapping page, select
Use Cross-Domain Protocol.

 5. Enter the name of the remote domain in the Remote Domain field. Click Next.

 6. In the Create A New Security Credential Map Entry page, enter the following values:

 � Local User The cross-domain

 � Remote User The name of the user in the remote domain that you want to authorize
for interactions with the local domain

 � Password The password for the remote user

 7. Click Finish.

Using Connection Filters
Network connection filters allow you to control access to individual servers or an intranet.
Connection filters work similar to the way firewalls work because you can configure them to control
access based on IP address, protocol, and DNS names. Although the network is your primary
protection against attackers, you can further tighten access to administrative resources such as the
administration port by specifying that you can access the administration port only through specific
servers inside the firewall. You can create custom connection filters or simply use the default
connection filter provided by WebLogic Server, named weblogic.security.net.ConnectionFilterImpl.
You can configure the default (or custom) connection filter by specifying connection filter rules in
the Administration Console.

To specify connection filters through the Console, go to Domain | Security | Filter and select the
Connection Logger Enabled check box to enable the logging of successful messages. In the Connection
Filter field, specify either the default connection filter (weblogic.security.net.ConnectionFilterImpl) or,
for a custom connection filter, the class that implements the connection filter. Make sure that you
specify this class in the CLASSPATH for WebLogic Server. Finally, in the Connection Filter Rules field,
specify the connection filter rules syntax.

458 Oracle WebLogic Server 12c Administration Handbook

Configuring SSL
SSL connectivity offers security through both authentication and encryption. You can have both
one-way SSL and two-way SSL. In one-way SSL, the server presents a trusted security certificate to
the client and the client authenticates the server. In two-way SSL, the server presents a certificate
to the client and vice versa. Both the server and the client verify each other’s identity. In addition
to authentication, the data transmitted over the network is also encrypted. By default, WebLogic
Server supports SSL on the default port 7002. Thus, if you want to connect to the Admin Server
through the SSL listen port, you must use the HTTPS protocol, as in https://localhost:7002.
Oracle recommends that you always use SSL in production environments.

Before you can establish either one-way or two-way SSL in a production environment, you must
first configure identity and trust, which involves obtaining private key and digital certificates, as well
as certificates of trusted certification authorities, and then create the identity and trust keystores
(databases to save the keys and certificates—this could be a file in your file system) for storing the
private keys and trusted certificates. A keystore helps secure and manage private keys and digital
pairs (identity), as well as trusted CA certificates (trust). You can create a keystore and load private
keys and trusted CA certificates at the same time when you’re creating the keystore. You must then
configure the keystores for WebLogic Server before you can set up one-way or two-way SSL.

In the following sections, let’s review each of the steps involved in setting up SSL in a
WebLogic Server environment.

Configuring Identity and Trust
To establish and verify server identity and trust, SSL uses private keys, digital certificates, and
certificates issued by trusted certification authorities. A certificate is a digitally signed statement
from an entity such as a company that states that the public key (or some other information) of
another entity has a particular value. When the certificate is digitally signed, the signature is
verified to check the integrity of the data in the certificate and authenticate it. Integrity, in this
context, means that the data has not been tampered with, and authenticity means that the data
came from whoever claimed to have created and signed it.

Two concepts—identity and trust—are at the heart of SSL connectivity. Here’s what the two
things mean:

 � Identity SSL uses public key encryption, which requires both a public encryption key and
a private key for a server. The public and private keys should correspond to each other. You
can decrypt data encrypted with a public key only with a corresponding private key and
vice versa. The public key is embedded in a digital certificate. The digital certificate also
includes information related to the owner of the public key. Together, the private key and
digital certificate pair (containing the public key) provide the identity for a server.

 � Trust A well-known certificate authority (CA) such as VeriSign verifies the digital
certificate and digitally signs it with the CA’s digital certificate, thus establishing trust for
the server’s digital certificate.

Private keys have two formats: digital certificates and certificates from trusted CAs. The
Distinguished Encoding Rules (DER) format can be used only for a single certificate, whereas a
certificate in Privacy Enhanced Mail (PEM) format can be used for multiple certificates. The
preferred format is PEM. The PEM format starts with a BEGIN CERTIFICATE line and ends with an
END CERTIFICATE line. You can select from several formats for the keystores, but the preferred
format is Java KeyStore (JKS).

Chapter 9: Managing WebLogic Server Security 459

If your company is acting as its own CA, you can use the trusted CA certificates with WebLogic
Server, provided the CA certificates are in PEM format. If the trusted CA certificates are in other
formats, you must convert them into PEM format before storing the certificates in the keystore.

Before you can configure SSL in a production environment, you must do four things:

 1. Obtain private keys and digital certificates from a reputable CA such as VeriSign.

 2. Create identity and trust keystores. WebLogic Server is configured with the following
identity and trust keystores by default, but you should not use these keystores in a
production environment:

 � DemoIdentity.jks This is the default identity keystore. It contains a demo private key
for WebLogic Server and also establishes identity for WebLogic Server.

 � DemoTrust.jks This is the default trust keystore. It contains a list of CAs trusted by
WebLogic Server and also establishes trust for WebLogic Server.

In addition to the two default keystores, WebLogic Server also trusts the CA certificates
in the JDK cacerts file. Both of the default keystrokes are located in the WL_HOME\
server\lib directory. You don’t have to configure these keystores for a test or development
environment since they are ready for your use. You must configure separate identity and
trust keystores for a production environment, however, because the digital certificates
and CA certificates in the demo keystores are signed by a WebLogic demo CA and,
therefore, will trust any other WebLogic Server using the demo keystores. Every person
who downloads the WebLogic Server software from Oracle has the private keys for the
demo digital certificates!

NOTE
Do not use the default demo keystores provided by WebLogic Server
in a production environment.

 3. Load the private keys and trusted CAs into the keystores you’ve configured.

 4. Using the Administration Console, configure the identity and trust keystores.

The following sections describe how to perform each of these steps.

Obtaining Private Keys and Certificates
To configure SSL, the server needs the following keys and certificates to establish identity and trust:

 � A private key

 � A digital certificate with a public key that matches the private key

 � A certificate from at least one trusted CA

You can obtain the private keys, digital certificates, and trusted CA certificates using the
following sources:

 � The CertGen utility for the demo and testing environment.

 � The keytool utility.

 � The demo key and certificates in the WL_HOME\server\lib directory. (The demo keys
and certificates are generated with the CertGen utility.)

460 Oracle WebLogic Server 12c Administration Handbook

Using CertGen You must use CertGen to generate keys and digital certificates only in a
development or testing environment. By default, the digital certificates you generate with CertGen
contain the hostname of the server on which you generate the keys and certificates and not the
fully qualified DNS name. If you use the demo digital certificate (CertGenCA.der) and the demo
private key file (CertGenCAKey.der), you don’t need to specify any CA files on the command line
when using this tool. Here’s an example that shows how to generate certificate and private key
files using the CertGen utility:

C:\MyOra\Middleware\wlserver_10.3\server\bin>java utils.CertGen -
keyfilepass
mykeypass -certfile testcert -keyfile testkey
...... Will generate certificate signed by CA from CertGenCA.der file
...... With Domestic Key Strength
...... Common Name will have Hostname testkey
......
 Issuer CA name is CN=CertGenCAB,OU=FOR TESTING ONLY,O=MyOrganization,
L=MyTown,ST=MyState,C=US
C:\MyOra\Middleware\wlserver_10.3\server\bin>

In this example, the CertGen command did not specify any CA files on the command line and
thus, by default, CertGen looks for the CertGenCA.der (CA root certificate) and the
CertGenCAKey.der files in the WL_HOME directory.

You can use the demo public certificate and the demo private key created by the CertGen utility
in a development environment. Because the CertGen utility uses the hostname and not the fully
qualified DNS name in the common name (CN) field, SSL connections may fail due to hostname
verification issues. To avoid these failures, you can disable hostname verification, as shown here:

Set JAVA_OPTIONS=%JVA_OPTIONS% -
Dweblogic.security.SSL.ignoreHostnameVerification=true

You should not use demo certificates in a production environment anyway, however, and that
means you don’t have to turn off hostname verification.

NOTE
Oracle recommends not turning off hostname verification in
production environments.

Using Keytool Keytool is a key and certificate management utility that stores cryptographic keys
and trusted certificates in a keystore. You can use this utility to administer your own public and
private key pairs, as well as the associated certificates for self-authentication or data integrity and
other authentication services using digital signatures. You can also use the utility to cache the
public keys of communicating peers in the form of certificates and administer the secret keys used
in symmetric encryption and decryption, such as the Data Encryption Standard (DES). Keytool
handles X-509 certificates. You can use it to generate a private key, a self-signed digital certificate,
and a Certificate Signing Request (CSR). You can submit a CSR to a CA to obtain a digital
certificate and use it to update your self-signed digital certificate. You can also use Keytool to
configure trust and identity in a production environment.

Chapter 9: Managing WebLogic Server Security 461

Keytool treats the keystore location you pass to it at the command line as a filename and
converts it into a FileInputStream to load keystore information. You can view the various Keytool
command-line options by typing keytool (or keytool -help) on the command line. Following are a
couple of examples to illustrate the Keytool utility.

To create a keystore for managing your public and private key pairs and certificates, you can
use the -genkeypair option. The option creates a keystore (if you don’t have one already) and
generates the key pair:

keytool -genkeypair -dname "cn=Sam Alapati, ou=marketing, o=mycompany,
c=US"
 -alias regional -keypass mykeypass -keystore C:\identity\mykeystore
 -storepass mystore999 -validity 180

Make sure you type any Keytool commands on a single line. The command shown here creates a
keystore (if one doesn’t exist already) named mykeystore in the C:\identity directory and assigns it
a password. It generates a public and private key pair for the entity whose distinguished name (dn)
has the common name (cn) of Sam Alapati, the organizational unit (ou) of marketing, the
organization (o) of mycompany, and the two-letter country code (c) of US. By default, Keytool
creates keys that are 1024 bits long, using the default Digital Signature Algorithm (DSA).

The command also creates a self-signed certificate that includes the published key and other
relevant information pertaining to the distinguished name. The certificate will be valid for 180 days.
The certificate is associated with the private key, with the password mykeypass, and the private key
is stored in the keystore entry with the alias regional.

The importcert command, whose syntax is shown here, updates a self-signed digital certificate
with a certificate signed by a trusted CA:

keytool -importcert -alias aliasforprivatekey
-file privatekeyfilename.pem
-keyfilepass privatekeypassword
-keystore keystorename -storepass keystorepassword

Note that, by default, Keytool uses DSA as the key-pair generation and signature algorithm.
Since WebLogic Server 12c doesn’t support DSA, you must specify a different algorithm.

Creating Keystores and Loading Keys and Certificates
For WebLogic Server to use the keys and certificates you create to verify identities, you must make
the private keys, digital certificates, and trusted CA certificates accessible to the server. You do this
by configuring identity and trust keystores for the server. Keystores provide secure storage and
easy management of private keys and trusted CAs.

You can use a single keystore for both identity and trust, but Oracle recommends that you use
two different keystores—an identity keystore and a trust keystore—because identity and trust have
different security requirements. The identity component includes private key and digital certificate
pairs, which are classified as sensitive data that you must protect against viewing and modification
by unauthorized users. The security component contains only certificates and not private keys, so
you configure a less stringent security model for it.

You can create a keystore with either the WebLogic ImportPrivateKey utility or the Keytool
utility. Although both utilities let you create new keystores and load security data into them, the
Keytool utility lets you generate new private keys and digital certificates and add them to a

462 Oracle WebLogic Server 12c Administration Handbook

keystore (or create a keystore if one doesn’t exist already). It doesn’t allow you to import existing
private keys into the keystore. Keytool does allow you to import trusted CA certificates from a file
into a keystore, however.

The previous section showed how to create new private keys and add them to a new or
existing keystore. Let’s learn how to use the WebLogic ImportPrivateKey utility to create a new
keystore and load private keys into it:

 1. Generate a certificate file named testcert with the private key file named testkey:

C:\Oracle\Middleware\Oracle_Home\wlserver\server\bin>java
utils.CertGen -keyfilepass
mykeypass -certfile testcert -keyfile testkey
Generating a certificate with common name MIROPC61 and key strength
1024
issued by CA with certificate from
C:\MyOra\MIDDLE~1\WLSERV~1.3\server\lib\
CertGenCA.der file and key from
C:\MyOra\MIDDLE~1\WLSERV~1.3\server\lib\CertGenCAKey.der file

 2. Convert the certificate file to the PEM format:

C:\MyOra\Middleware\wlserver_10.3\server\bin>java utils.der2pem
CertGenCA.der

 3. Concatenate the testcert certificate you’ve generated with the root CA file:

C:\MyOra\Middleware\wlserver_10.3\server\bin>copy testcert.pem
CertGen.pem >>
newcerts1.pem

 4. Create a new keystore named mykeystore and load the private key from the testkey.pem file:

C:\Oracle\\Middleware\Oracle_Home\wl_server\server\bin>java
utils.ImportPrivateKey
-keystore mykeystore -storepass mypasswd -keyfile mykey -keyfilepass
mykeyfilepass
-certfile newcerts1.pem -keyfile testkey.pem -alias passalias
No password was specified for the key entry
Key file password will be used
<Oct 26, 2013 1:52:51 PM EDT> <Info> <Security> <BEA-090906> <Changing
the default
Random Number Generator in RSA CryptoJ from ECDRBG to FIPS186PRNG. To
disable
this change, specify -Dweblogic.security.allowCryptoJDefaultPRNG=true>
…
C:\Oracle\\Middleware\Oracle_Home\wl_server\server\bin

The preceding command imports the private key testkey.pem and the certificate newcerts1.pem
into the keystore you’ve created, mykeystore. Now you can configure this keystore in the
Administration Console, as explained in the next section.

Chapter 9: Managing WebLogic Server Security 463

Configuring Identity and Trust Keystores
As mentioned earlier, you don’t have to configure either the demo identity or the demo trust
stores, but you must configure any identity and trust keystores you plan to use in a production
environment. Once you configure the two keystores, you can configure SSL for the server. The
server’s SSL configuration attributes include information about the location of the identity and
trust keystores, as you’ll see in the next section “Setting SSL Configuration Attributes.”

NOTE
When configuring SSL, the deprecated Files Or Keystore Providers
option lets you specify either files or the WebLogic Keystore provider
for backward compatibility.

You can configure the identity and trust keystores by completing the following steps in the
Administration Console (note that you define properties for the identity and trust keystores in
separate sections).

 1. Click Lock & Edit in the Change Center of the Administration Console.

 2. Go to Environment | Servers and select the name of the server.

 3. Select Keystores from the Configuration page. Figure 9-8 shows the Configuration page
for keystores.

In the Keystores field, by default, you’ll see the demo identity and trust keystores. You
can change the server’s keystores by clicking the Change button. You can select from the
following four options:

 � Demo Identity And Demo Trust These are the two demo keystores for use in a
development environment.

 � Custom Identity And Java Standard Trust Choose this option if you want the server
to use a custom identity keystore for identity and use the trusted CAs defined in the
cacerts file in the JAVA_HOME\jre\lib\security directory.

 � Custom Identity And Custom Trust Choose this option if you want the server to use
custom identity and trust stores.

 � Custom Identity And Command Line Trust Choose this option if you want the server
to use your custom keystore. You can specify the command-line argument to specify
the trust keystore location.

 4. In the Identity section, specify the attributes for the identity keystores you chose in the
Keystores field. Of course, you need to specify these attributes only if you choose a Keystores
option with Custom Identity in step 3. Here are the attributes you must specify here:

 � Custom Identity Keystore The full path to the custom identity keystore.

 � Custom Identity Keystore Type The default type is Java KeyStore (JKS), and you can
retain this.

 � Custom Identity Keystore PassPhrase The passphrase for the keystore. (The passphrase
for the Demo Identity Keystore is DemoIdentityKeyStorePassPhrase.) Because the
passphrase is exposed as plaintext and retained in the Java memory until garbage
collection, you should use CustomIdentityKeyStorePassPhraseEncrypted instead.

464 Oracle WebLogic Server 12c Administration Handbook

 5. Define properties for the trust keystore in the Trust section.

If you choose Java Standard Trust as your keystore, you must specify the password you
specified when creating the keystore. If you choose Custom Trust, you must supply the
path, keystore type (Java KeyStore, or jks for short), and the keystore passphrase, just as
you did for the identity keystore.

 6. Click Save and then click Activate Changes in the Change Center.

FIGURE 9-8. Configuring the Identity and Trust keystores

Chapter 9: Managing WebLogic Server Security 465

Setting SSL Configuration Attributes
When you enable the administration port for a domain, you must configure SSL for all servers in
the domain since the port uses SSL. Because all servers in a domain must enable or disable the
administration port at the same time, you must configure the default administration port settings at
the domain level. Once you configure the administration port, a command to start any Managed
Server in the domain must specify a secure communication protocol such as HTTPS, as well as
the administration port, for example:

-
Dweblogic.management.server=https://<admin_server>:<administration_port>

NOTE
You can find a complete working SSL authentication example in the
WL_HOME\samples\server\examples\src\examples\security\sslclient
directory. In this directory, you’ll find examples that demonstrate how
to make an outbound SSL connection and two-way SSL connections
from a WebLogic Server that is acting as a client to another WebLogic
Server or a different application server.

In the following example, the specification of the SSL attribute -Dweblogic.security.
TrustKeyStore=DemoTrust makes the server trust the demo CA certificates in the demo trust
keystore (located in the DemoTrust.jks file in the WL_HOME\server\lib directory):

C:\Oracle\Middleware\Oracle_Home\user_projects\domains\wl_server>java
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.Deployer -
adminurl
t3s://localhost:9002
-username weblogic -password welcome1 -name testApp1 -distribute -
targets
MyCluster1

The Admin Server for this domain is using the demo identity and certificates in this case. In a
production environment, however, you must specify the following pair of SSL arguments instead:

-Dweblogic.security.CustomTrustKeyStoreFileName=filename
-Dweblogic.security.TrustKeystoreType=jks

In a development environment, once you enable SSL for the domain, the domain uses the
two default keystores for looking up the keys and certificates. As the previous section of this
chapter explained, in a production environment, you must generate digital certificates, private
keys, and trusted CA certificates using the CertGen or Keytool utility or by acquiring them from a
trusted vendor such as VeriSign or Entrust. Following this, you must create custom identity and
trust keystores and load the keys and certificates in the two keystores. Once you complete the
configuration of the two keystores, you’re ready to set SSL configuration attributes for the domain
through the Administration Console. As you’ll learn, the procedures for configuring one-way and
two-way SSL are very similar.

466 Oracle WebLogic Server 12c Administration Handbook

To set SSL configuration attributes through the Administration Console, go to Environment |
Servers and select the server for which you want to configure SSL properties. Note that you must
configure SSL properties at the server level, so you must do this for each server instance. On the
Configuration page, select SSL. Figure 9-9 shows the SSL settings page. You can then configure the
following SSL attributes on this page:

 � Identity And Trust Locations Retrieves the server’s identity (private key and certificate)
and trust (trusted CA) from the identity and keystores you configured earlier. You must set
the value to Keystores to make this happen. The Files Or Keystores option is deprecated.
WebLogic Server domains from version 8.1 on default to Keystores.

FIGURE 9-9. Configuring SSL attributes

Chapter 9: Managing WebLogic Server Security 467

 � Private Key Location Defines the private key file location.

 � Private Key Alias Defines the alias for the server’s private key. (The default value is
DemoIdentity.)

 � Private Key Passphrase Specifies the passphrase for retrieving the server’s private key.

 � Certificate Location Specifies the keystore attribute that has the location of the trusted
certificate. (The default value is Demo Identity Keystore.)

 � Trusted Certificate Authorities Defines the location of the certificate authorities. (The
default value is Demo Trust Keystore And Java Standard Trust Keystore.)

You can also set several advanced configuration attributes in this section, including whether
you want to enable two-way SSL:

 � Hostname Verification Hostname verification ensures that both the hostname in the
client URL and the hostname sent back by the server in the digital certificate match. By
default, hostname verification is enabled, and Oracle recommends enabling this in a
production environment to prevent man-in-the-middle attacks.

 � Custom Hostname Verifier You can specify a custom hostname identifier if you
have one—this is the name of the class that implements the weblogic.security.SSL.
HostnameVerifier interface.

 � Export Key Lifespan Here, you can specify the number of times the server can use an
exportable key between a server and an exportable client. The default value is 500—you
can lower this if you want to force the server to generate a new key more often to make
the key more secure.

 � Use Server Certs This option determines whether clients should use the server
certificates and key as the client’s identity when connecting through HTTPS.

 � Two Way Client Cert Behavior This attribute has three possible values:

 � Client Certs Not Requested This default value, which implies one-way SSL.

 � Client Certs Requested But Not Enforced This value implies two-way SSL, without
requiring clients to present a certificate.

 � Client Certs Requested And Enforced This value also implies two-way SSL, but
clients must present a certificate. If the client fails to present a certificate, the server
terminates the client’s SSL connection request.

 � Cert Authenticator You can ignore this attribute, as this is a deprecated field meant for
compatibility security only.

 � SSL Rejection Logging Enabled This attribute specifies whether the server should log
warning messages in its log when SSL connections are rejected. By default, SSL rejection
logging is enabled.

 � Allow Unencrypted Null Cipher This attribute tests to see if AllowUnEncryptedNullCipher
is enabled. A cipher suite is an SSL encryption method that consists of the algorithms
for key exchange, symmetric encryption, and secure hashing. An SSL client with
incorrect SSL configuration can potentially specify a cipher suite with null ciphers,
which means the data is transmitted in clear text over the network, defeating the
purpose of setting up SSL. By default, this control is unset, meaning null ciphers are

468 Oracle WebLogic Server 12c Administration Handbook

disallowed on this server. The SSL handshake fails when an SSL client wants to use the
null cipher suite.

CAUTION
Don’t allow unencrypted null ciphers.

 � Inbound Certificate Validation If you’re using two-way SSL, this property allows you to
set client validation rules for inbound SSL. The two values are Builtin SSL Validation Only
and Builtin SSL Validation And Cert Path Validators.

 � Outbound Certificate Validation This attribute works the same as the previous attribute,
but for outbound connections.

Once you configure any SSL attributes, the corresponding SSL server or the channel server
restarts with the new configuration settings, but existing server connections continue to run with
the previous SSL configuration. If you want all SSL connections to follow the new SSL configuration,
you must reboot the server. When you make any changes to the keystore files, you must restart the
SSL listen sockets so keystore changes will take effect. You can do this by going to Environment
| Servers | Control and clicking the Restart SSL button after selecting the server from the Server
Status table.

You can test the SSL configuration by accessing the Administration Console at https://<server_
name>:<server_port/console>. If you can successfully log into the console, you’ve configured SSL
correctly.

By default, WebLogic Server rejects digital certificates that don’t have the CA’s Basic
Constraint extension. That is, by default, the server uses the following setting when starting:
-Dweblogic.security.SSL.enforceConstraints=true. Don’t set this option to false because it will
disable the strict enforcement of security constraints on digital certificates by the server.

You can view the current SSL configuration option values through WLST, as shown in the
following example:

C:\Oracle\Middleware\Oracle_Home\wlserver\common\bin>wlst
wls:/offline> connect()
wls:/wl_server/serverConfig> cd('Servers')
wls:/wl_server/serverConfig/Servers> cd('examplesServer')
wls:/wl_server/serverConfig/Servers/examplesServer>
wls:/wl_server/serverConfig/Servers/examplesServer> cd('SSL')
wls:/wl_server/serverConfig/Servers/examplesServer/SSL>
cd('examplesServer')
wls:/wl_server/serverConfig/Servers/examplesServer/SSL/examplesServer>
ls()
wls:/wl_server/serverConfig/Servers/examplesServer/SSL/examplesServer>
ls()

-r-- AllowUnencryptedNullCipher false
-r-- CertAuthenticator null
-r-- Ciphersuites null
-r-- ClientCertificateEnforced false
-r-- Enabled true
-r-- ExportKeyLifespan 500

Chapter 9: Managing WebLogic Server Security 469

-r-- HostnameVerificationIgnored false
-r-- HostnameVerifier null
-r-- IdentityAndTrustLocations KeyStores
-r-- InboundCertificateValidation
BuiltinSSLValidationOnly
-r-- JSSEEnabled false
-r-- ListenPort 7002
-r-- LoginTimeoutMillis 25000
-r-- Name examplesServer
-r-- Notes null
-r-- OutboundCertificateValidation
BuiltinSSLValidationOnly
-r-- PeerValidationEnforced 0
-r-- SSLRejectionLoggingEnabled true
-r-- ServerCertificateChainFileName server-
certchain.pem
-r-- ServerCertificateFileName server-cert.der
-r-- ServerKeyFileName server-key.der
-r-- ServerPrivateKeyAlias null
-r-- ServerPrivateKeyPassPhrase ******
-r-- ServerPrivateKeyPassPhraseEncrypted ******
-r-- TrustedCAFileName trusted-ca.pem
-r-- TwoWaySSLEnabled false
-r-- Type SSL
-r-- UseServerCerts false
-r-x freezeCurrentValue Void :
String(attributeName)
-r-x isSet Boolean :
String(propertyName)
-r-x unSet Void :
String(propertyName)

wls:/wl_server/serverConfig/Servers/examplesServer/SSL/examplesServer>

You configure hostname verification to ensure that the hostname in the client URL matches
the hostname in the digital certificate sent back by the server during an SSL connection. If the
hostname in the certificate matches the local machine’s hostname, the verification of hostnames
will pass if the URL specifies the default IP address of the local machine—localhost or 127.0.0.1.

Hostname verification is performed when a WebLogic Server instance acts as an SSL client. By
default, hostname verification is enabled for WebLogic Server (with production mode enabled), and
Oracle recommends leaving verification on in a production server. You can confirm whether hostname
verification is enabled by verifying that the Hostname Verification field is set to BEA Hostname Verifier
in the Advanced configuration options on the SSL configuration page (explained earlier in this section).
If you don’t want to use the default verifier, you can configure a custom hostname verifier.

Note that for some of the SSL configuration options, a “secure value” is configured. For
example, for the Cert Authenticator option, the secure value is weblogic.security.acl.
CertAuthenticator. This class maps the digital certificate of a client to a WebLogic Server user.
Similarly, for the Custom Hostname Verifier property, the weblogic.security.SSL.HostnameVerifier
class verifies whether the server should allow a connection to the host with the hostname from

470 Oracle WebLogic Server 12c Administration Handbook

the URL. You can use JMX or the WLST man command to view the secure values for a
configuration option, as shown here:

wls:/wl_server/serverConfig/Servers/examplesServer/SSL/examplesServer>
man('HostnameVerifier')
com.bea.defaultValueNull : true
com.bea.description : <p>The name of the class that implements the
<code>weblogic.security.SSL.HostnameVerifier</code> interface.</p>
<p>This class
verifies whether the connection to the host with the hostname from URL
should be
allowed. The class is used to prevent man-in-the-middle attacks.
The <code>weblogic.security.SSL.HostnameVerifier</code> has a
<code>verify()</code> method that WebLogic Server calls on the client
during the
SSL handshake.</p>
com.bea.dynamic : false
com.bea.secureValue : weblogic.security.SSL.HostnameVerifier
descriptorType : Attribute
displayName : HostnameVerifier
Name : HostnameVerifier
wls:/wl_server/serverConfig/Servers/examplesServer/SSL/examplesServer>

Using the weblogic.management.username
and weblogic.management.password
Oracle has deprecated the bootname and password system properties weblogic.management.
username and weblogic.management.password in the WebLogic Server 12.1.1 release. In future
releases, you won’t be able to use these credentials to start WebLogic Server in production mode.

Oracle recommends that instead of using these credentials, you use the boot.properties file
to specify the boot username and password for WebLogic Server. In a development mode
domain, the Configuration Wizard creates a boot identity file (boot.properties) in the security
directory of the Administration Server’s root directory. The boot identity file contains an encrypted
version of the username and password. In production domains, the server prompts you to enter
user credentials on the command line when booting the server.

Following is a summary of how WebLogic Server uses a boot identity file during startup.

 � By default, it looks for the boot.properties file in the server’s security directory, and if
there’s a boot.properties file there, it uses it.

 � You can specify a different location for the boot.properties file by specifying the following
argument in the startup command:

-Dweblogic.system.BootIdentityFile=filename

You can specify this argument in the startWebLogic script by adding the argument
Dweblogic.system.BootIdentityFile as a value of the JAVA_OPTIONS variable. For example:

set JAVA_OPTIONS=-
Dweblogic.system.BootIdentityFile=C:\Oracle\user_domains\mydomain\myid
entity.prop

Chapter 9: Managing WebLogic Server Security 471

 � You can include the following options in the weblogic.Server startup command if you
don’t want the server to use a boot identity file during startup:

-Dweblogic.management.username=username
-Dweblogic.management.password=password

When you add these options, the server ignores the boot identity file.

Since the previous method means that you store unencrypted passwords in a startup
script, Oracle recommends that you use it only when invoking weblogic.Server from the
command line.

 � If the server is unable to access the boot identify file during startup, it displays the
username and prompts the user for the password and also writes a message to the log file.

Oracle WebLogic Security Best Practices
Oracle provides several WebLogic Server security best practices. Many of these are somewhat
obvious, such as using firewalls, applying the latest security patches, separating development from
production environments, and not using unencrypted passwords on the command line. A few key
recommendations deserve a close look, however, and this section highlights several of them.

Use Multiple Administrative Users
In a production environment, create an additional system user in addition to the default
administrative user created during domain creation. This way, when the first administrative user
can’t log in for some reason such as a user lockout or a dictionary or brute-force attack, for
example, you can still administer the domain by logging in as the alternative system administrator.

Control Access to WebLogic Resources
On each WebLogic host computer, create a special operating system user account to run
WebLogic Server–related commands. You must grant strict privileges on the server to this OS user
and limit the user’s access privileges to the middleware Home directory (the default is Oracle\
Middleware), the WebLogic Server installation directory (the default is Oracle\Middleware\
wlserver_10.3), and the WebLogic domain directories (for example, Oracle\Middleware\user_
project\domains\mydomain). You must also protect sensitive data stored in files such as the JMS
SAF files by restricting both read and write access to the files.

Avoid Running the Server Under a Privileged Account
You must not run WebLogic Server as a privileged user. Because UNIX systems don’t allow
nonprivileged users (users other than root) to bind to ports with a value less than 1025, you must
use a strategy to bypass the restriction. However, it’s not a good idea to let long-running processes
such as those belonging to WebLogic Server run with unnecessary privileges. If you need access
to a port lower than 1025, such as port 80, for example, start the server instance as a privileged
user, but once the instance binds to the privileged port, change the user ID to a nonprivileged
user account. You can start the Node Manager only as a privileged user (root in UNIX systems);
therefore, you must configure the Node Manager to accept requests only on a secure port, from a
single known host.

472 Oracle WebLogic Server 12c Administration Handbook

You can set the weblogic.system.enableSetUID and, optionally, the weblogic.system.
enableSetGID property to true to enable WebLogic Server to switch to a nonprivileged UNIX user
account after binding to port 80 as root. The properties weblogic.system.nonPrivUser and
weblogic.system.nonPrivGroup identify the nonprivileged user account and group name under
which WebLogic Server will run. You can also switch to the UNIX account “nobody,” which is a
nonprivileged user present in most systems, or create a special account for running WebLogic
Server. Just make sure that the nonprivileged user you create has the necessary permissions to
access the WebLogic classes and other files such as log files.

Enable Security Auditing
Oracle recommends that you enable audit logging to trace unsuccessful login attempts as well as
file access policy violations. Make sure you’ve allocated sufficient space for the audit log, which
could get pretty large in some circumstances.

Use Connection Filters
Oracle recommends using connection filters in addition to network firewalls. Connection filters
act as an additional way to restrict network traffic on the basic protocols and IP addresses.
Connection filters are especially helpful when servers in a domain don’t have to pass through a
network to access other servers in that domain.

Prevent Denial of Service Attacks
To reduce the possibility of denial of service (DoS) attacks, Oracle recommends that you
configure the “message timeout” parameter for the server. By default, the server waits for
60 seconds to receive the complete message—the timeout duration is set to a high level to
accommodate slow connections. You must lower the message timeout parameter to the lowest
possible setting.

Another best practice to prevent DoS attacks is to restrict the size of the message (the default
is 10MB) and the message timeout (the default is 480 seconds) on external channels. You can also
limit the number of sockets allowed for a server by setting the Maximum Open Sockets option on
the server configuration page.

Implement Security for Applications
The following is a summary of some of the best practices that concern application security.

Set the FrontEndHost Attribute
Because it’s possible to spoof the host header, set the FrontEndHost attribute on the WebServerMBean
or the ClusterMBean. When a request on a web application is redirected to an alternate location, the
server uses the host you specify through the FrontEndHost attribute instead of accepting the hostname
contained in the original request.

Use JSP Comment Tags
If comments in JSP files contain sensitive data, use the JSP syntax for comments instead of HTML
syntax, as the JSP style comments disappear after the JSP is compiled.

Chapter 9: Managing WebLogic Server Security 473

Use Precompiled JSPs
Consider precompiling JSPs and installing them on the server instead of installing the source code,
which opens a security hole. Precompiling JSPs also helps you spot compile-time errors before
you deploy the JSPs. Using precompiled JSPs reduces the deployment time. To precompile the JSP
files, enable the precompile parameter in weblogic.jar. You must set pageCheckSeconds to –1 to
disable run-time page check and recompilation. You can precompile JSPs and EJBs before their
deployment by using weblogic.appc (wlappc), as shown in this example:

java weblogic.appc JSP_Example.war

Precompiling the JSPs using weblogic.appc, placing them in the WEB-INF\classes folder, and
archiving them in a .war file will help prevent the recompilation of the JSPs during server reboots.

By default, JSPs aren’t precompiled. You can turn precompilation on by specifying it in the
weblogic.xml deployment descriptor, as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<wls:weblogic-web-app>
…
<wls:weblogic-version>10.3</wls:weblogic-version>
 <wls:context-root>JSP_Precompilation</wls:context-root>
 <wls:jsp-descriptor>
 <wls:precompile>true</wls:precompile>
 <wls:precompile-continue>true</wls:precompile-continue>
 </wls:jsp-descriptor>
</wls:weblogic-web-app>

Setting the precompile option to true in the <jsp-descriptor> element of weblogic.xml, as
shown here, precompiles all of your JSPs when you deploy or redeploy a web application, or
when the server reboots. One other way to ensure that JSPs stay precompiled and keep the server
from recompiling them is to use the JSPClassServlet instead of the JSPServlet. You must also place
the precompiled JSPs in the WEB-INF\classes directory to keep them from being recompiled by
the server. This way, you remove all JSP source code from the application after the recompilation.
The following example shows how to add the JSPClassServlet to the web.xml file of the web
application:

<servlet>
 <servlet-name>JSPClassServlet</servlet-name>
 <servlet-class>weblogic.servlet.JSPClassServlet</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>JSPClassServlet</servlet-name>
 <url-pattern>*.jsp</url-pattern>
</servlet-mapping>

Use HTML Entity or Character References
To avoid the well-known cross-site scripting attacks, scan user data for HTML special characters
and replace any HTML security characters with their HTML entity or character references to
prevent the browser from executing malicious user-supplied data as HTML code.

474 Oracle WebLogic Server 12c Administration Handbook

Perform JMS Authorization Checks
You must perform an authorization check for all actions performed on a JMS resource by setting
the weblogic.jms.securityCheckInterval to 0.

Summary
This chapter provided an introduction to various aspects of WebLogic Server security. You learned
how to configure the default security realm and how to export security data to a realm. The
chapter discussed the role played by security providers and showed you how to configure the
Authentication and Auditing security providers. You also learned how to configure SSL in your
environment. Finally, the chapter reviewed several key Oracle security best practice
recommendations for WebLogic Server.

CHAPTER
10

WebLogic Server
Performance Tuning

476 Oracle WebLogic Server 12c Administration Handbook

WebLogic Server performance tuning ranges over an extremely broad area and includes the
tuning of the operating system, the JVM, the WebLogic Server instances, databases,
transactions, and JMS. It also includes tuning the web applications and web services that

WebLogic Server hosts. This chapter is by no means a thorough and complete discussion of the
various elements that affect WebLogic Server performance. Topics such as database tuning, operating
system tuning, and network configuration are best left to the specialists in that area. The goal of this
chapter is to provide a brief summary of the key areas a WebLogic Server administrator should focus
on to achieve and maintain high levels of application performance.

This chapter covers the key configuration aspects of WebLogic Server that affect application
performance, such as thread management and various aspects of network I/O tuning. Tuning the
JVM is a big part of tuning WebLogic Server performance. The chapter explains how the JVM
manages memory and how you can tune garbage collection and the compacting of the Java heap
to ensure optimal performance. Tuning the JMS container, JMS store-and-forward, and the
WebLogic message bridge is critical when dealing with messaging applications. This chapter
discusses several ways to tune messaging, such as dealing with large message backlogs, defining
quotas, and blocking message senders when quota thresholds are reached. It also shows how to
control the flow of messages to JMS servers and destinations. The chapter also reviews key Oracle
recommendations for optimizing the performance of JDBC data sources and transactions.

Tuning SQL performance is often a key to improving server performance and the chapter
offers several guidelines for improving the performance of SQL statements. You’ll also learn about
how Oracle’s TopLink implements JPA, which is the current standard persistence mechanism for
Java EE and SE. The chapter introduces Oracle Coherence, which is a core component of Oracle
WebLogic Server that provides a distributed data grid solution to enable the scalability of mission-
critical applications.

Tuning WebLogic Server
Two critical areas that relate to the tuning of WebLogic Server are thread management and the
tuning of the network communications between clients and servers. The following sections offer a
brief explanation of these two tuning areas.

Thread Management
In previous releases of WebLogic Server, the server had a much more static notion of thread
scheduling than in Oracle WebLogic Server 11c and 12c. Previous versions required the user to
define separate pools of threads that were defined when the server was configured. Tuning the
correct sizes of these thread pools was a time-consuming matter of trial and error. In WebLogic
Server releases 9.0 and above, there was only a single, dynamically sized pool of threads. The
“self-tuning” Work Manager from the 11g release has greatly simplified the effort that it takes to get
to the proper number of threads. In certain cases, it may be necessary to configure Work Managers
and provide the system with additional hints so that it can achieve optimal results. The general rule
is to start with no specific tuning and then configure Work Managers only to address specific
problems that might arise. Aggressively configuring Work Managers for a specific environment can
end up hurting performance when your application, workload, or underlying system changes.

Chapter 10: WebLogic Server Performance Tuning 477

There are a few common use cases for which Work Manager configuration is indicated:

 � If your application is heavily bound by the database and is spending little time in rendering,
then you will likely want to create a constraint that is bound to the JDBC connection pool.

 � In cases where you have a mixed workload that includes high-priority response time
sensitive work alongside batch or queued messaging work, it is often helpful to use
“response time” request classes to guarantee responsiveness or “fair share” request
classes to lower the priority of background work.

 � If your code is using a shared resource other than a connection pool for which you
know there is a hard limit, then you can consider using a MaxThreadsConstraint to avoid
overscheduling.

Tuning the Network I/O
You can configure several things to speed up the network communications between clients and
servers. Following are the key network I/O–related aspects that you can configure.

Tuning the Muxers
As you learned in Chapter 1, muxers read incoming requests on a server. There are two types of
muxers: native muxers and Java muxers. WebLogic Server recommends using the native muxer,
which is the default muxer type. You can configure the server to use native muxers by going to
Environment | Servers | Configuration | Tuning and selecting the Enable Native IO check box.
If you’re using native muxers, you do not need to configure the number of socket readers—the
server takes care of that for you. If you happen to select Java muxers, you can configure the
number of socket readers for an instance by going to Configuration | Tuning and changing the
Socket Readers setting. The Socket Readers setting determines the percentage of execute threads
the server can use as socket readers. The default value is 33 percent, and you can go as high as
50 percent. Note that changing the percentage of execute threads is useful only with the Java
socket muxer and is really only for use when tuning for Java clients.

In general, the server will determine the correct type of muxer to use and will use the native
muxers by default without your having to make any specific tuning changes. A newer type of
muxer implementation that uses the standard java.nio package definitely offers better performance
on Linux, and you can specify the NIO socket muxer on the command line as follows:

-Dweblogic.MuxerClass=weblogic.socket.NIOSocketMuxer

The only other option that is generally used is to set explicitly the number of socket readers
using the following command-line option:

-Dweblogic.SocketReaders=<N>

where N refers to the number of socket readers. The main reason to do this is that in some
releases the number of readers is set, by default, to the number of CPUs available on the system.
On some types of hardware, this results in as many as 128 reader threads, which is not so good.
In most cases, 3 or 4 reader threads are plenty to get the job done. In some circumstances,

478 Oracle WebLogic Server 12c Administration Handbook

not having enough readers will result in work not being read from the sockets quickly enough for
the server to process. You must approach all changes with caution and well document the
changes you make.

Using Multiple Network Channels
WebLogic RMI is designed such that when a single client JVM makes multiple connections to a
single WebLogic Server, all of the requests are carried over a single socket. Although this is
generally optimal, there are cases where each thread of a multithreaded client can issue large
requests that can cause that socket to become a bottleneck. You can work around such a network
bottleneck by configuring multiple custom channels and allowing the multithreaded client to
communicate over multiple connections. In order to do this, you must first create multiple custom
network channels. You can then configure the client to use multiple network channels by using
the JNDI URL pattern that points to multiple network channels. For example:

t3://<ip1>:<port1>,<ip2>:<port2>

On many multicore systems, multiple network interfaces are also available. In such cases, it is
common practice to configure each server to listen on a particular network device and, on NUMA-
capable systems, to bind each server to a particular socket in order to minimize context switches.

Tuning the Chunk Parameters
Both the server and client network layers use memory allocated in chunks to read and write data.
The server maintains a chunk pool to minimize the cost of allocating the memory chunks. The
default chunk size is 4KB, and if requests in your application handle large amounts of data, you
can increase the value of the chunk size parameter on both the server and the client. Following
are the properties you can configure to control the chunk size and the chunk pool size:

 � weblogic.Chunksize If request sizes are large, you can increase the value of this
attribute. You must set this attribute to the same size on the server and the client.

 � weblogic.utils.io.chunkpoolsize You can increase the size of the chunk pool with this
attribute (the default value is 2048 bytes).

 � weblogic.PartitionSize By default, the server uses four pool partitions. The more
partitions there are, the less lock contention there is for those partitions.

The use of memory chunks in WebLogic Server is designed to give the server a cushion that
minimizes garbage collection when bursts of network traffic occur. The buffers that are used read
incoming requests and are kept in a pool to generate responses. Changing these parameters can
be tricky, and the only way to know that you have the right values is to have a reliable benchmark
for your application that can help you gauge the impact. Of the three options, the one that is most
likely to be useful is the partition size attribute (weblogic.PartitionSize). In more recent releases,
the number of pools is determined by the number of processors on the machine. This generally
eliminates most possibilities for contention, making it less likely you will need to configure the
number of pools. The server uses an overflow pool, which takes the form of soft references that can
sometimes impact garbage collection. If you see issues in this area, sometimes it can be helpful to
increase the pool size. Soft references allow an application to tell the garbage collector that
certain objects should be kept around unless memory gets too tight. The garbage collector collects
the softly reachable objects only when it really needs the additional memory. The JVM throws an
OutOfMemory error only after it clears all soft references.

Chapter 10: WebLogic Server Performance Tuning 479

Tuning Connection Backlog Buffering
The server uses a Transmission Control Protocol (TCP) wait queue that holds the connection
requests received by the TCP stack as they await acceptance by the server. You can control the
number of TCP connections that can be buffered in the wait queue by setting the Accept Backlog
parameter. Once the server accepts the number of connection requests you specify with this
parameter, it stops accepting further connections. If the client connections are dropped or refused
without corresponding error messages on the server, it means this parameter’s value is set too low.
If you’re getting “connection refused” errors when trying to access the server, increase the value of
this parameter from its default by about 25 percent. Continue raising it by the same amount (by
25 percent each time) until the messages disappear. You can configure the Accept Backlog
parameter from the server’s Configuration | Tuning tab.

Tuning the JVM
The JVM executes the byte codes in Java class files, so tuning the JVM significantly affects the
performance of applications you deploy on a server. Oracle recommends that, on a Windows or
Linux platform, you use the Sun JDK with the HotSpot Client JVM for development work and the
Oracle JRockit JDK for production use, owing to its superior performance. You can switch to a
different JVM by simply specifying different values for the JAVA_HOME and JAVA_VENDOR
variables and restarting the server. The JAVA_HOME variable points to the top directory of the JDK
you want to use. You set the JAVA_VENDOR variable to the value Oracle if you’re using the
JRockit JDK and to Sun if you’re using the Sun JDK. In the following sections, you’ll learn how you
can tune the JRockit JVM.

It’s important to understand that most of the JVMs have really good mechanisms for figuring
out the best strategies for managing the heap. You should never really try to proactively tune
garbage collection. That is to say you should try to explicitly configure the heap only when you’re
trying to correct a problem you’ve identified through analysis with a tool such as JRockit Mission
Control (JRMC). In such cases, the main options you should tune are the minimum and maximum
heap sizes.

Understanding Memory Management
Java objects live in an area called the heap. The heap is not the same as the memory used by the
JVM—in addition to the heap, the server uses memory for Java methods, thread stacks, and JVM
internal data structures. This is why the virtual size of the process reported by the operating system
is different from the number you get when you ask the JVM how much heap it is using. The JVM
creates the heap when it starts, and the heap size varies while applications are running.
Applications written in Java are less prone to memory leaks because they rely on the JVM to
manage their memory for them. When Java developers write their programs, they do not explicitly
free the memory; instead, they simply stop using it and the JVM is smart enough to detect this.
Garbage collection is the process of making room for the allocation of new objects to the heap by
removing unused objects from the heap. The server performs garbage collection periodically to
remove the unused objects. Without garbage collection, all of the server’s memory will be used
up and the JVM won’t be able to allocate memory to new objects. The problem with Java is that it
can even move around the locations of objects the program is referencing. To do this, it “pauses”
the application for brief periods. Different applications may benefit from different approaches to
garbage collection, emphasizing either short pauses that spread out the work or long pauses that

480 Oracle WebLogic Server 12c Administration Handbook

just get it all done in one shot. Each JVM has its own set of garbage collection schemes, and once
you understand the nature of your application’s workload, in some cases, you’ll find it helpful to
configure garbage collection to suit your needs.

In all modern JVMs, the heap is generally divided into multiple areas, also called generations.
Garbage collection strategies that use generations are called generational garbage collection
strategies. Because most objects are short lived and can thus be removed by garbage collection
soon after their allocation, splitting the heap into generations improves performance. The first
generation is called the nursery or young space, and the second generation is simply called the
old space. The nursery part of the heap is for new objects, and when it gets full, a special garbage
collection called a young collection will promote the new objects to the old space. This is the
moving around of objects that I mentioned earlier. The basic idea is that once an object gets old,
it is likely to continue to stick around and, therefore, you don’t have to check on it quite as often.
This type of garbage collection is designed to make room for new objects in the nursery. There is
also a garbage collection process called an old collection. Note that a young collection is much
faster than an old collection and is also faster than garbage collection in a heap that isn’t split into
two areas. The JVM uses a keep area to store the most recently allocated objects in the nursery.
This keep area does not become part of the garbage collection until the next young collection.

The JRockit JVM distinguishes between small and large objects. Generally, a small object is
between 2KB and 128KB. The JVM handles the object allocation differently for small and large
objects. Java threads are granted an exclusive thread local area (TLA), a chunk of reserved area in
the heap. TLAs are part of the nursery if there is one. The benefit of the TLA is that for very
short-lived objects there is no contention for allocating them from the heap, especially if they
don’t escape the scope of that thread. The Java thread allocates small objects in its TLA and
maintains them independently from the TLAs of the other threads. The JVM allocates large objects
directly in the heap if you split the heap into two generations. Allocating large objects, since it’s
done directly in the heap, requires synchronization among the Java threads.

Garbage Collection
Garbage collection is the process of freeing up space in the heap by removing unused objects
from the heap. JRockit uses a garbage collection model called the mark and sweep model. Under
this model, the JVM first marks the objects reachable from Java threads as “active,” with the rest of
the objects marked as “garbage.” During the sweep phase, the JVM finds free spaces between
objects that are active and makes those spaces available for allocation to new objects.

NOTE
Garbage collection reclaims memory no longer referenced by objects.

You can choose between two versions of the mark and sweep model—concurrent mark and
sweep and parallel mark and sweep.

Concurrent Mark and Sweep The (mostly) concurrent mark and sweep model, also called
concurrent garbage collection, allows the active Java threads to keep running during most of the
garbage collection process, with only a few pauses for synchronization. The concurrent part
means that garbage collection is running “concurrently” with your application code.

Parallel Mark and Sweep The parallel mark and sweep strategy requires the Java threads to be
paused during the entire garbage collection process. This method uses all the available processing

Chapter 10: WebLogic Server Performance Tuning 481

power of the server to minimize the time for garbage collection. The parallel part means that as
many threads as possible are running in “parallel.”

Dynamic (Adaptive) vs. Statically Configured Garbage Collection
You can configure JRockit to use dynamic or static garbage collection strategies. In the dynamic
mode, the JVM selects the optimal garbage collection strategy for a specified goal and adjusts it
over time, whereas a static mode lets you specify the garbage collection strategy. The following
sections discuss the three dynamic garbage collection modes.

Throughput Under the throughput garbage collection mode, garbage collection is optimized
for maximum application throughput and uses minimal CPU resources during garbage collection.
Throughput is the percentage of total time the JVM doesn’t spend performing garbage collection.
The JVM follows a parallel garbage collection strategy that stops the Java application while
garbage collection is on and employs all the available CPUs to complete the garbage collection
in the least time possible. If your application requires a high throughput and can withstand
occasional long pauses for garbage collection, choose the throughput mode. This type of
application is usually a batch-type application or one that is processing requests asynchronously
via JMS. You can enable the server to start in the throughput mode by using the following option:

java -Xms1024m -Xmx1024m -XgcPrio:throughput

Pause Time Mode Under this mode, garbage collection is optimized for short (and even) pause
times for the JVM threads during garbage collection. A pause is the time during which the JVM
seems to be unresponsive because it’s busy performing garbage collection. This mode tries to keep
the garbage collection pauses below a pause target that you specify while maintaining the highest
possible throughput. A low pause time means the garbage collection will take longer to complete.
As you realize by now, the big tradeoff in memory management is between maintaining the
responsiveness of your applications by keeping pause times brief, on the one hand, and
maintaining throughput, on the other. If your application requires fast response times, you must
keep the pause times short. The pause time mode chooses between the mostly concurrent garbage
collection strategy and the parallel garbage collection strategy. Here’s how you enable the pause
time mode and specify a pause time target in milliseconds:

java -Xms1024m -Xmx1024m -Xns256m -XgcPrio:pausetime -XpauseTarget:200ms

The command starts the JVM with the pause time garbage collection mode enabled, with a
pause target of 200 ms. Note that the XpauseTarget command option lets you tune garbage
collection per your service-level agreements. You can use the pause time mode for applications
that can’t tolerate long latencies.

Deterministic Mode The deterministic mode ensures very short pause times and limits the total
pause time within a target time period, which is referred to as the pause target. This mode is
available only as part of Oracle JRockit Real Time, the industry’s leading solution that delivers
superior latency and performance, such as microsecond response performance and guaranteed
(“five nines guarantee”) maximum garbage collection latency on the order of one millisecond.
JRockit Real Time is ideal for environments that are extremely latency sensitive, requiring minimal
configuration for instantaneous improvement in performance. Under the deterministic mode, the

482 Oracle WebLogic Server 12c Administration Handbook

JVM uses a special, mostly concurrent garbage collection strategy to minimize pauses during
garbage collection. You can enable the deterministic mode in the following way:

java -Xms1024m -Xmx1024m -Xns256m -XgcPrio:deterministic -XpauseTarget:40ms

This command starts the JVM with the deterministic garbage collection mode and sets a pause target
of 40 ms. Note that the shorter the pause target, the more overhead there will be on the memory
system. Try to set the pause target to the target period your application will allow. You can control both
the maximum pause time as well as the number of pauses within a set time window. Deterministic
garbage collection offers fully predictable and short pause times, with minimal manual tuning. Real-
time applications that need microsecond latency benefit from the deterministic garbage collection
strategy by taking advantage of the guaranteed maximum latency due to garbage collection pauses.

JRockit uses a dynamic garbage collection mode that maximizes application throughput by
default. You can select a dynamic garbage collection mode by setting the command-line option
-XgcPrio:<mode>, with throughput and pausetime being the possible values for the mode
parameter. If you use JRockit Real Time, you can use the value deterministic, as explained earlier.

Static Garbage Collection Strategies Unlike dynamic garbage collection strategies, static
garbage collection strategies don’t change during run time. You use static strategies if you want
predictable behavior from the JVM. You can choose from four static garbage collection strategies,
some with one generation and the others with two generations:

 � singlepar Parallel garbage collection with a single generation. Uses multiple threads
and causes longer pause times but provides better throughput for applications with few
short-lived objects.

 � genpar Parallel garbage collection with two generations. Uses multiple threads and
causes longer pause times but provides better throughput for applications with many
short-lived objects.

 � singlecon Concurrent single-generation garbage collection. Performs a concurrent
(not parallel) garbage collection using a single thread and minimizes pause times, but
throughput is lower because application threads are stopped during garbage collection.

 � gencon Concurrent multigeneration garbage collection. Uses multiple threads for the
nursery and a single thread for the old generation. This strategy results in more frequent
pauses than the singlecon garbage collection strategy, and it’s an ideal strategy for
applications that need higher throughput but are able to handle short pauses.

Choosing among the static garbage collection strategies is a matter of your application
sensitivity to long garbage collection pauses. For example, if long pauses are causing transactions
to timeout, you must select a parallel garbage collection strategy such as singlepar or genpar. If
your application isn’t sensitive to long pauses, you can select one of the two parallel garbage
collection strategies. If your application uses many temporary objects, choose a two-generation
strategy rather than a single-generation strategy. You specify a static garbage collection strategy
with the command-line option -Xgc:<strategy>, with the possible values for the strategy parameter
being singlepar, genpar, singlecon, and gencon.

You can’t change the garbage collection mode for an active server if you’ve specified the static
singlepar strategy or the dynamic deterministic mode. You can change all other garbage collection
strategies during run time by choosing a different strategy from the JRockit Management Console’s
Memory tab.

Chapter 10: WebLogic Server Performance Tuning 483

Tuning Garbage Collection
The JVM performs a garbage collection whenever the heap memory becomes nearly full. Frequent
long-running garbage collections mean that your application response times will get longer.
You can use the verbose JVM command-line options or tools such as jstat and the JRockit Mission
Control to gather detailed heap information during a garbage collection. For example, the JRockit
command -Xverbose:gc,gcpause,memdbg produces detailed information about the start of the
mark and sweep phases and the pause times. Similarly, you can issue the following jstat
command for the JRockit JVM to get detailed output for the heap size, nursery size, used heap size,
and garbage collection times:

jstat -gc <pid> 1 1

Oracle JRockit Mission Control, the Management Console for JRockit JVM, offers several
nonintrusive monitoring and diagnostic tools that help you diagnose and tune garbage collection
and the heap size, with minimum overhead of roughly 0.5 percent when you’re actively running
the tools. JRockit Real Time includes the JRockit Mission Control. Note that you tune several
memory-related JVM settings without restarting the server by using the Console. Here’s a summary
of the main tools offered by JRockit Mission Control:

 � JRockit Management Console Shows details about real-time CPU usage, memory
usage, and garbage collection. You can tune the heap size and the garbage collection
strategy dynamically through the Console.

 � JRockit Memory Leak Detector Lets you track memory leaks and identify the causes for
those leaks.

 � JRockit Flight Recorder (formerly the JRockit Runtime Analyzer) Lets you get
recordings of JVM run-time behavior, which shows detailed information about garbage
collection and object usage.

 � JRockit Latency Analyzer Uses the Flight Recorder recordings to show all latency-
related information such as threads blocked due to locking, for example. The Latency
Analyzer tool can resolve the source of application latency in nanoseconds.

You can influence the garbage collection frequency and the length of garbage collection time
by adjusting the heap size. If you leave the various heap size options alone and choose to use the
default values, the heap generation defaults may not turn out to be appropriate for your application.
To optimize garbage collections and keep pause times low, you must set the heap size options
based on the nature of your application. Caching objects rather than re-creating them will also
reduce the need for frequent garbage collection.

Manually Requesting Garbage Collection
You can manually request garbage collection through the Console by navigating to Environment |
Servers and selecting the server instance from the Summary Of Servers page. Once you select the
server, navigate to Monitoring | Performance and click Garbage Collect. Be careful with
requesting a garbage collection, as the JVM may have to check every active (“live”) object in the
heap. Note that depending on the JVM implementation, your manual request may or may not
actually trigger garbage collection.

484 Oracle WebLogic Server 12c Administration Handbook

You must also remember that requesting a garbage collection like this is usually pointless
because on a running system the JVM is running garbage collections frequently. If the system is
loaded and you’re thinking about running a garbage collection, it has probably run a few in the
time it takes you to navigate to the page and push the button! The number of garbage collection
threads depends on the number of available CPUs. If the number of garbage collection threads is
too low, garbage collection takes very long and the JVM may have to resort to an emergency
garbage collection, with the resulting high pause times. To avoid this, you can increase the
number of garbage collection threads as shown here:

-XgcThreads:12

Compacting Memory
Following a garbage collection, the heap may become fragmented, with numerous small chunks
of free space interspersed with “live” objects. The JVM can’t use any free chunks smaller than the
TLA size. Thus, if the heap becomes too fragmented following multiple garbage collection cycles,
the JVM may be unable to allocate contiguous memory to a large object, resulting in an
out-of-memory error, even though there is plenty of free memory overall. To reduce fragmentation,
the JVM compacts the heap during the sweep phase (of the mark and sweep model), when all
Java threads are paused. Compaction, by defragmenting the heap, pushes objects close to each
other down in the heap, clearing up contiguous areas at the top of the heap.

After a garbage collection, the heap gets more fragmented because the unreachable objects
removed by the garbage collection process don’t occupy contiguous space in the heap. If the
free space is smaller than the TLA size, the JVM can’t use the space until a future garbage
collection removes adjacent space to make the chunk of free space at least as large as the TLA.
The JRockit JVM compacts part of the heap during garbage collection to create larger chunks of
free space at the top of the heap. As mentioned earlier, this occurs during the sweep phase while
the Java threads are paused. JRockit uses external compaction to move objects in the
compaction area down the heap. The JVM also uses an internal compaction method to move
objects within the compaction area itself in order to move objects closer to each other. In order
to reduce pause times, only a part of the heap is compacted at any time since the threads that
want to access the objects the JVM is moving around have to wait until the compaction is
completed. The compaction method the JVM chooses at any given time depends on the current
garbage collection mode. The JVM uses sliding windows to traverse through the whole heap in
order to compact the entire heap.

In the throughput garbage collection mode, the compaction area size remains constant. In all
other garbage collection modes, the JVM attempts to keep the compaction times equal by
adjusting the compaction area based on its position. The time it takes to compact the heap
depends on the number of objects the JVM needs to move and the number of references to those
objects. If the object density is high in certain parts of the heap or the amount of references to
objects in that area is high, the compaction area will be smaller. Since object density is higher
toward the bottom of the heap, the compaction areas are smaller in the bottom half of the heap
when compared to compaction areas in the top half of the heap.

Because the JVM performs a partial compaction during the garbage collection process, this
may increase the pause times for garbage collection because all Java threads are paused during
compaction. If the JVM doesn’t compact enough space in the heap, fragmentation will keep
increasing over time, forcing the JVM to perform a full compaction of the heap, which could lead

Chapter 10: WebLogic Server Performance Tuning 485

to long garbage collection pauses. The JVM chooses to perform a full compaction when the heap
is heavily fragmented—otherwise, the JVM will throw an OutOfMemoryError exception. A
fragmented heap makes it harder for the JVM to allocate new objects, forcing it to fully compact
the heap during garbage collection. Therefore, you will see steady degradation in application
performance over time until the JMV fully compacts the heap. Of course, you pay for this full
compaction with longer garbage collection pauses.

To avoid fluctuations in application performance due to fragmentation, you must keep
fragmentation at a constant level and keep heap fragmentation under control. Instead of
depending on the compaction ratio used by the server, you can tune it to reduce garbage
collection pauses. Here are the ways to tune the compaction of the JVM heap:

 � Set a compaction ratio If the heuristics-based compaction ratios used by the JVM are
inadequate, you can set a fixed compaction ratio to instruct the JVM to always compact
a specific percentage of the heap during each garbage collection. Use the command-line
option -XXCompactRatio to adjust the compaction ratio from the JVM’s default values. The
-Xverbose:memory=debug option shows the current compaction ratio. You rarely have to
adjust the compaction ratio because JRockit does this dynamically.

 � Set the compact set limit Once the JVM compacts the heap, it must update all
references from objects outside the compaction area to objects within the compaction
area. Since a larger number of object references leads to higher garbage collection pause
times, you can limit the number of references the JVM must update—if there are more
references than the limit you set, the JVM aborts the compaction. Use the command-
line option -XXcompactSetLimit:<references> to limit the number of object references.
To reduce pause times, you must decrease the compact set limit. If the JVM is canceling
too many compactions, the current compact set limit is too low and you must increase it.
Note that you can’t adjust the compact set limit when the JVM is using the deterministic
or pause time garbage collection mode.

 � Turn off compaction Although it’s unlikely that your application never needs any
compaction, you can turn off compaction entirely with the -XXnoCompaction command-
line option.

 � Run a full compaction You can manually perform a full compaction if the JVM is not
performing garbage collection frequently and you want to increase performance between
garbage collections. Remember that this may take a few seconds to complete if the heap
is large and contains many objects. Use the command-line option -XXfullCompaction to
perform a full compaction.

Setting the Thread Local Area Size
To enhance application throughput, you can also tune the object allocation by setting the thread
local area (TLA) size. The TLA, as mentioned earlier, is a chunk of free space from the heap or the
nursery that the JVM assigns to a thread for exclusive use by the thread. A large TLA enables the
thread to allocate large objects in the TLA, but the downside is that it prevents small chunks of
free space in the heap from being utilized. Of course, this increases heap fragmentation. JRockit
JVM R27.1 and later dynamically adjusts the TLA size based on the chunks of free space available

486 Oracle WebLogic Server 12c Administration Handbook

in the heap. The TLA size could be anywhere between a minimum size and a preferred size. Here
are some helpful guidelines for configuring the TLA size:

 � A higher minimum and preferred TLA size allows the allocation of large objects to the
nursery when you’re using a two-generation garbage collection strategy.

 � You must always set the preferred TLA size to less than 5 percent of the nursery size.

 � If threads allocate many objects, setting a larger preferred TLA size is useful. If threads
allocate few objects, you do not need a large TLA and you can decrease the preferred
TLA size to increase performance.

 � If the application uses a large number of threads, decrease the preferred TLA size, since
each of the individual threads won’t be able to use up the TLA before the next garbage
collection.

 � Lowering the minimum TLA size reduces the impact of fragmentation.

 � Because the JVM ignores free chunks smaller than the minimum TLA size, lowering the
minimum TLA size reduces the pause times during garbage collection.

Generally, a minimum TLA size of 2– 4KB and a preferred TLA size of 16 –256KB work well
for most applications. You can adjust the TLA size with the following command-line option when
you start the JVM:

-XXtlaSize:min=<size>,preferred=<size>

The following example sets the minimum TLA size to 1KB and the preferred TLA size to
512KB:

-XXtlaSize:min=1k,preferred=512k MyApplication

This starts the JVM with a minimum TLA size of 1KB and a preferred TLA size of 512KB.

Configuring the JVM Heap Size
Your goal is to minimize the time the JVM spends in performing garbage collection, ideally
keeping it to a very small part of the total execution time. The key determinant of how long the
JVM takes to perform garbage collection is the JVM heap size. If you set the heap size too
high, the garbage collection is slower but it needs to be performed less frequently. A smaller
heap size requires less time for garbage collection to complete, but the garbage must be
collected more frequently. When tuning the heap size, you want to minimize the garbage
collection time while ensuring that the heap can store the number of objects necessary for
supporting the maximum number of clients for the server. Also, remember that if you set the
heap size too high, you could run into swapping and paging issues on the server if you run out
of free memory. Therefore, you must base the heap size settings on the available memory on
the server.

Monitoring Garbage Collection to Determine Heap Size Use the -verbosegc option to turn
on verbose garbage collection output. This lets you determine the time and resources used by

Chapter 10: WebLogic Server Performance Tuning 487

garbage collection during maximum application workloads. Here’s the syntax for specifying the
verbose garbage collection option:

java -ms32m -mx200m -verbosegc -classpath $CLASSPATH
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\Oracle\Middleware"
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy" weblogic.Server
>> logfile.txt 2>&1

The previous command will redirect both the standard error and standard output to the log file
named logfile.txt.

Note that if you are using JRockit, it is much, much easier simply to collect a JFR or JRA
profile and view that in JRockit Mission Control. Reading through garbage collection logs is
somewhat of an unpleasant exercise that should be used primarily when running with HotSpot.

Once you collect the verbose garbage collection output, check the timestamps for garbage
collection to see how often the JVM is collecting garbage and how long each garbage collection
is taking. Ideally, each garbage collection should take less than 3–5 seconds. If the duration is
much longer than this, consider reducing the heap size to reduce the garbage collection duration.
Check the free space in the heap after each garbage collection. If the free space is 90 percent or
higher after each garbage collection, you can probably lower the heap size safely.

Setting the Heap Size The size of the JVM heap is critical in determining the speed with which
the JVM can assign new objects to the heap, as well as the frequency and duration of garbage
collection. As long as you don’t set the heap size high enough to cause paging and swapping, the
extra overhead involved in maintaining a larger heap size is preferable to more frequent garbage
collection with a smaller heap size.

The key thing to do when setting heap sizes for production systems generally is to look at the
entire system to see how many server instances you are planning to run on a particular piece of
hardware. (This is where you get into paging and swapping.) Generally, you want to use up all of
the memory available on your physical server and divvy it up across the processes. Enabling large
pages on 64-bit hardware is also a really big winner.

You can set the heap size with the parameters -Xms and -Xmx, with the first parameter setting
the initial and minimum heap size and the second parameter setting the maximum heap size. The
-Xmx parameter indicates the total memory reserved for the JVM, and the -Xms parameter shows
the memory immediately committed to the JVM. You don’t have to make the minimum and
maximum heap sizes equal, but Oracle recommends doing so in order to avoid having the JVM
frequently grow and shrink the heap.

If you want the heap to maintain two generations, specify the nursery size with the -Xns
parameter. An optimal size for the nursery area of the heap ensures more garbage collection
through a young collection than an old collection. In general, you should set the nursery size to
no more than half the size of the heap. By default, the keep area is 25 percent of the nursery,
but you can change it using the command-line option -XXkeepAreaRatio:<percentage>. The
-XXkeepAreaRatio parameter sets the size of the nursery’s keep area as a percentage of the nursery
size. The keep area keeps new objects from being promoted too quickly to the old generation.

488 Oracle WebLogic Server 12c Administration Handbook

Here’s an example that shows how to start the JVM with a heap size of 1024MB:

java -Xns:20m -Xms:1024m -Xmx:1024m

The minimum and maximum heap sizes are set to 1024MB, and the nursery size is set to 20MB.
In Chapter 6, you learned how to use the jrcmd command-line utility. You can use jrcmd’s

heap_diagnostics command to get detailed information about how the JVM is using the heap.
Note that this command starts a full garbage collection and gives you information about the
available memory and heap usage, detailed heap statistics, and information about referenced
objects such as how many were reachable and how many were unreachable, making them
candidates for garbage collection. You can use the jrcmd hprofdump command to output a heap
dump to a text file.

Understanding Locking
The JVM uses two types of locks: thin locks that are helpful for brief periods and fat locks that are
held when there’s contention for resources. Threads sleep during a fat lock and spin during a thin
lock, thus making fat locks less resource-intensive because spinning uses up CPU cycles. You can
use the command -Xverbose:locks to view information about the JVM locks. You can enable
locking instrumentation by using the following command:

-XX:UseLockProfiling=true

The preceding command shows details about the number and types of locks held by the JVM. You
can enable the collection of locking information by the JRockit Runtime Analyzer using the
following option at startup time:

-Djrockit.lockprofiling=true

Using Lock Profiling can be fairly expensive, so be careful when using this on production
systems and make sure you adjust the load accordingly by running the profiling option during off
times or by adding capacity in the form of additional server instances.

Tuning Messaging Applications
If you use messaging services such as JMS, you can tune several areas to improve performance.
These include the tuning of the persistent store, the WebLogic JMS, and the JMS store-and-forward
service.

Tuning the Persistent Store
As the earlier chapters in this book explain, WebLogic Server subsystems such as JMS use the
persistent store to save their data, such as JMS messages. You can use the default, preconfigured,
file-based persistent store, or you can use a custom file store or JDBC store. In addition, each JMS
server uses an implicitly created file-based paging store to page persistent as well as nonpersistent
messages. Oracle recommends that you share a single persistent store among all the subsystems
instead of maintaining a dedicated store for each subsystem.

If you use a file store, you want to make sure you are using a fast disk, because high availability
is impacted by your choice. The ability to migrate JMS to a different machine means that the store
has to be available at all times. If you place the file store on a network drive, this can impact

Chapter 10: WebLogic Server Performance Tuning 489

performance. In cases where the JMS messages are relatively simple and the operations are
updating a database anyway, the use of the JDBC store actually can be fairly efficient.

Compacting the File Stores
File stores throw exceptions when the disk on which they’re located gets full. However, the store
resumes functioning once you clear up space in the disk. You can use Java commands through the
persistent store administration utility, storeadmin, to perform persistent store administration tasks,
including compacting the store to reduce its size. Here’s how you invoke the storeadmin utility:

C:\Oracle\Middleware\Oracle_Home\wl_server>java weblogic
.store.Admin
Type "help" for available commands
storeadmin->

The weblogic.store.Admin command works only on a store that’s currently opened by a running
WebLogic instance. You can execute the command from WLST or from the Java command line,
as shown in the previous example.

You can compact and defragment the space used by a file store by issuing the compact
command:

storeadmin->compact -dir C:\stores\mystores -tempdir C:\tmp

The -dir parameter specifies the location of the directory that holds the persistent store. The
-tempdir parameter specifies the temporary directory with enough space to handle the
contents of the uncompacted file store. After compacting of the persistent store, the server will
store the original persistent store in a uniquely named directory under the C:\tmp directory.

You can view all the available store administration commands, usage, and examples by
issuing the help command with the storeadmin utility. You mostly use the store administration
utility for compacting a file store when it gets too large. You can also use the utility for dumping a
JDBC file store’s contents (using the dump command) to an XML file for troubleshooting. If you
just want the statistics for an active JMS store, you can get them by using the persistent store’s
JMX MBeans.

Tuning the Synchronous Write Policy
You can use any of three transitional safe synchronous write policies:

 � Direct-Write-With-Cache

 � Direct-Write

 � Cache-Flush

In addition, there’s a Disabled synchronous write policy, but it’s not safe for transactions.

NOTE
Oracle suggests that the Disabled synchronous write policy, although
it enhances performance, also makes transactions unsafe and could
lead to data loss following a system failure.

490 Oracle WebLogic Server 12c Administration Handbook

The goal of the store is to provide a persistent backup in case of a process or machine failure.
The trade-off is that a request to send a message must wait until the server actually writes the
message to the store. By trading off some level of consistency, it is possible to get dramatically
improved results.

The Direct-Write policy is the default policy, and it offers better performance than the Cache-
Flush policy. However, Direct-Write-With-Cache offers the best performance of the three of those.
Oracle recommends using the Direct-Write-With-Cache synchronous write policy, as it offers the
best balance between performance and transactional safety of the disk writes. Note that the
Direct-Write-With-Cache policy uses two sets of files: the first is called the primary set and is
stored in the location you specify for the Directory attribute when configuring a persistent file
store. Temporary cache files are located in the directory you specify with the CacheDirectory
attribute. Note that you must locate the cache directory on a local file system (the default location
is the temp directory) because it’s meant for enhancing performance. The primary set of files is for
availability purposes, and you should store it remotely for safety. In production environments, the
server maintains the cache files automatically.

To improve persistent store native memory usage, you can configure the parameters
MaxWindowBufferSize and IOBufferSize. You can increase the initial size of a store with the
InitialSize attribute, and you can increase the maximum file size for a single file in the store with
the MaxFileSize tuning attribute. Oracle recommends that you set the persistent store block size to
match the block size of the OS file system.

You can check both the current synchronous write policy for the persistent store as well as its
block size by viewing the server log.

Tuning WebLogic JMS
You can configure various messaging properties to improve JMS messaging performance.
Following is a quick summary of the main areas you should be looking at.

Tuning Large Messages
You can tune large messages by defining message quotas and tuning the maximum message size,
as explained in the following sections.

Defining Quotas on Destinations
Oracle recommends that you always configure message count quotas to prevent message logs
from using up all of a server’s memory. By default, there’s no quota on message counts. Messages
continue to consume memory even after they’re paged out because paging removes the message
bodies, but doesn’t page out the message headers. Oracle recommends that you assume each
current JMS message consumes roughly 512 bytes of memory. A quota is a JMS module resource
and defines the maximum number of messages (and bytes) a destination can have. You can set the
following quota parameters in the Administration Console by first going to Services | Messaging |
JMS Modules and selecting the JMS module. Once you select the module, click New in the
Summary Of Resources table and select Quota on the Create A New JMS System Module page
and then click Next. On the JMS Quota Properties page, you can configure the following
properties:

 � Name Creates a name for the quota.

 � Bytes Maximum Sets the maximum number of bytes that can be stored in the
destination using this quota.

Chapter 10: WebLogic Server Performance Tuning 491

 � Messages Maximum Sets the maximum number of messages that can be stored in the
destination using this quota.

 � Policy Specifies whether smaller messages can be sent out before larger messages
once the destination hits its message quota (rather than in the default first-in-first-out
sequence).

 � Shared Specifies whether this quota is shareable among destinations.

If you don’t set a quota for a destination, it will share the quota of the JMS server. You can
block the sending of messages during quota conditions by defining a send timeout on the
connection factory or by specifying a blocking send policy on the JMS server. The send
timeout policies specify the length of time message producers must wait until space becomes
available on a destination. The blocking send policy on the server determines the priority the
server should accord to smaller versus larger messages when a destination exceeds its
message quota.

Tuning the Maximum Message Size You can tune the message backlog between the JMS
server and its clients by setting the MessageMaximum setting for the connection factory. Oracle
recommends that you set this attribute to double the number of acknowledgments or commits.
Note that a very high message maximum could potentially lead to exceptions due to large
packets. WebLogic Server limits the maximum message size for most protocols to 100MB. If
you’re receiving “packet too large” exceptions, you must tune the maximum message size on
the server for all supported protocols for each of the network channels. You can also set the
maximum message size on a client by specifying the -Dweblogic.MaxMessageSize command-
line property.

Controlling the Message Flow
WebLogic Server uses a flow control mechanism that lets a JMS server or destination slow down
message producers when they reach overload conditions. The basic purpose behind the flow
control mechanism is to limit the message flow of the producers when the JMS server destination
exceeds a threshold set in terms of bytes or number of messages. You can specify a flow maximum
and minimum to control the message flow of producers. Message producers adjust their message
flow toward the flow minimum when the number of bytes or messages exceeds the value set by
the Bytes/Messages Threshold High attribute you set. Similarly, the producers adjust their message
flow toward the flow maximum when the number of bytes or messages falls below the Bytes/
Messages Threshold Low attribute. You can also configure a flow interval, which determines the
period of time within which producers must adjust their message volume from the flow maximum
to the flow minimum and vice versa.

Using Unit-of-Order
WebLogic Server lets message producers group messages into a single unit called a Unit-of-Order
(UOO) based on their processing order. UOO requires sequential processing of messages in the
order in which the messages were created. In applications that have strict message-ordering
requirements, UOO can help improve performance.

492 Oracle WebLogic Server 12c Administration Handbook

Tuning Topics
Oracle recommends the following to tune JMS topics:

 � Convert singleton topics to distributed topics.

 � Leverage MDBs to process topic messages.

 � Disable server affinity if messages are not being load balanced evenly among the
members of a partitioned distributed topic.

Tuning Distributed Queues
Use the following strategies to tune distributed queues:

 � Disable server affinity to improve load balancing among the distributed queue members.

 � Oracle also recommends the use of MDBs for evenly balancing the load and
recommends the following if you can’t leverage MDBs:

 � Force the consumers to perform fresh load balancing by closing and re-creating
consumers periodically.

 � Configure the distributed queue to enable forwarding.

Using One-Way Message Sends
Messages from producers are usually called two-way sends because they include an internal
request as well as an internal response. Producers must wait for the JMS server’s response before
applications make further send calls. A one-way send mechanism doesn’t involve any waiting.
You can configure one-way sends for nonpersistent, nontransactional messages. You can configure
both queue senders and topic publishers for one-way message sends. Following are some
important things you should keep in mind when using one-way message sends:

 � The default two-way send mode offers better QOS (quality of service) than a one-way
send mode for topic publishers.

 � If the JMS consumer applications are the bottleneck, one-way message sends aren’t going
to improve performance.

 � To accommodate the increased batch size of sends, you may have to increase the JVM
heap size on either or both the server and the client.

 � Sending applications may not receive quota exceptions because the server deletes the
one-way messages that exceed the quota without throwing an exception to the client.

Configuring Message Performance Preferences
By default, JMS destinations don’t batch messages for delivery to consumers by pushing out
messages to consumers as soon as the messages become available. You can use the Messaging
Performance Preference option on a destination to set the length of time for which the destination
must wait before grouping batches of messages for delivery. This is an advanced option that you
must set with great care in cases where the message consumer doesn’t require fast response times.
Setting it increases the wait times but requires fewer sends, which improves performance.

Chapter 10: WebLogic Server Performance Tuning 493

Tuning WebLogic JMS Store-and-Forward
JMS store-and-forward (SAF) capability offers high-performance message forwarding to remote
destinations. SAF services allow WebLogic Server to deliver messages reliably among applications
deployed across multiple server instances. If a remote message destination isn’t available for some
reason such as a network failure, the local server instance saves the messages and forwards them
to the remote destination once it becomes available. However, Oracle recommends using SAF
only in situations where the remote destinations aren’t highly available. Following are the key
SAF-related performance best practices:

 � Share a single persistent store between subsystems for increased performance.

 � In order to load balance messages among the SAF agents, target imported destinations to
different SAF agents.

 � If your application uses small messages, increase the default value for the JMS SAF Window
Size option, which is set to a low value of 10 messages. You can’t set a window size for
distributed queues, whose batch size is set internally to 1 message.

 � By default, SAF agents forward messages immediately after the messages arrive. You can
configure the Window Interval value to a positive value (500 milliseconds, for example)
rather than leave it at its default value of 0. By doing this, you ensure the messages are
forwarded in batches, which improves throughput and reduces CPU and disk usage. You
can’t configure the Window Interval attribute for a distributed destination.

Tuning the Applications and Managing Sessions
You can follow several Oracle best practices to tune the web applications and manage sessions.
The following sections summarize the best practices for tuning web applications, Oracle
Coherence, EJBs, and sessions.

Tuning Web Applications
Application developers can do several things to enhance web application performance, as
described in the following sections.

Disable Page Checks
You can disable servlet and JSP page checks by setting Production Mode to true. By default, this
sets the page-check-seconds and servlet-reload-check-secs parameters to a default value of –1.

Manage HTTP Sessions Efficiently
Be judicious about what you store in your HTTP session: the less memory you require for each
active session, the less heap memory you will consume and the less information that will need to
be replicated if you are using high availability. Be careful about indirectly referencing large data
structures that will then take up a lot of heap and require extra bandwidth during replication.

Coherence*Web is built on top of Oracle Coherence (introduced later in this chapter) and
offers a more efficient way to manage HTTP session state in a WebLogic Server cluster than using
WebLogic Server’s in-memory HTTP session state replication services. You can install the
Coherence*Web session management module in WebLogic Server by using the Coherence*Web
Service Provider Interface (SPI)–based installation. Coherence*Web manages sessions by using the

494 Oracle WebLogic Server 12c Administration Handbook

Coherence caches for storing and managing management services data. You may want to consider
using Coherence*Web instead of WebLogic Server’s built-in session state management services if
you’re dealing with one of the following situations:

 � You’re using a Coherence data grid and want to offload HTTP session management to it.

 � You want to share session state data across multiple applications.

 � Your application handles large HTTP session state objects.

 � Storing HTTP session data is leading to memory issues.

Coherence*Web translates Oracle Coherence data grid’s scalability, availability, and
performance capabilities to in-memory session management. Coherence*Web lets you take
advantage of the various caching features available in Oracle Coherence, such as replicated,
partitioned, near caching and read-through, write-through, and write-behind caching. It supports
the use of fine-grained session and session attribute scoping through the use of pluggable policies.
Coherence*Web also allows storing session data outside the server, thus saving on heap usage,
and enables a server restart without losing session data. If you’re dealing with a large number of
clustered production servers, Coherence*Web can provide linear scalability for managing HTTP
session data.

Use Custom JSP Tags
You can use the three Oracle-provided JSP tags—cache, repeat, and process—by including the
custom tags within your web applications to make processing faster. You must explicitly reference
the tag library description in the web.xml’s <taglib> element. You use the tag library .jar file
named weblogic-tags.jar to package the three custom tags. To use the three custom tags, follow
these steps:

 1. Copy the weblogic-tags.jar file to the WEB-INF/lib directory of the web application that
contains the JSPs.

 2. Specify the tag library descriptor (TLD) in the <taglib> element of the web.xml file:

<taglib>
 <taglib-uri>weblogic-tags.tld</taglib-uri>
 <taglib-location>
 /WEB-INF/lib/weblogic-tags.jar
 </taglib-location>
</taglib>

 3. Finally, use the taglib directive to reference the tag library in the JSP:

<%@ taglib uri="weblogic-tags.tld" prefix="wl" %>

The cache tag caches work done within the body of the custom tag. Here’s an example that
shows how to use the cache tag:

<wl:cache key="request.ticker" timeout="1m">
<!--get current price for whatever is in the request parameter ticker
 and display it, update it every minute-->
</wl:cache>

Chapter 10: WebLogic Server Performance Tuning 495

The process tag lets you control the execution of statements specified between the
<wl:process> and </wl:process> tags. The repeat (<wl:repeat>) tag lets you iterate over different
types of sets, such as Enumerations and Collections.

Precompile JSPs
To avoid having to recompile JSPs upon a server reboot or an application deployment and
redeployment, precompile the JSPs by setting the precompile parameter to true in the weblogc.xml’s
<jsp-descriptor> element. Even better, when you put applications into production, you should run
weblogic.appc on them so all of the required artifacts are in place. Chapter 9 shows how to
precompile JSPs before and during deployment.

Disable Access Logging
You can reduce the logging overhead and thus increase throughput by disabling access logging.
You do this by setting the access-logging-disabled element.

Some large applications that also include jar files are packaged within the WEB-INF directory.
These can take a long time to unpack and perform deployment time processing. If you are
deploying into production on a shared device, you can avoid significant processing by creating an
“exploded” version of the application, running the WebLogic Server utility appc (or its Ant
equivalent wlappc) on the directory, and deploying in the nostage mode. The appc utility
processes an application or module and produces an output application or module. Normally,
with annotations, understanding what’s in the jar, war, and ear files isn’t easy. If you use appc with
the -writeInferredDescriptors flag, the output application or module will include the deployment
descriptors with annotation information. That is, the tool will generate the equivalent deployment
descriptors. Because this will write the metadata-complete flag into the replaced descriptors, it
eliminates the need to preprocess the annotations at deploy time. Here’s how you use the
weblogic.appc utility:

java weblogic.appc -writeInferredDescriptors -output output.war input.war

Using Oracle Coherence
The Oracle WebLogic Suite includes Oracle Coherence, a core component of Oracle WebLogic
Server. Oracle Coherence is a JCache-compliant, in-memory, distributed data grid solution for
clustered applications and application servers. It enhances scalability of your mission-critical
applications by providing fast access to frequently accessed data. In addition, it dynamically
partitions data in memory among multiple servers, thus ensuring continuous availability of data as
well as transaction integrity, even during a server failure. It provides the partitioned data
management and caching services on the foundation of a reliable and scalable peer-to-peer
clustering protocol. It also performs real-time data analysis and in-memory grid computations, as
well as parallel transaction and event processing. Coherence is deployed by many large financial,
telecom, logistics, and media companies that require the highest levels of scalability, near-zero
latency, and high reliability. If your environment requires very high throughput, high scalability,
reliability, and continuous availability, Oracle Coherence is probably going to be of great help.

Coherence is especially useful for large-scale computing grids such as financial trading system
grids, where the bottleneck is in loading data and making it available to all the application
components. Coherence can potentially speed up aggregate data throughput that is thousands of
times faster than what the data sources can provide by themselves. The Coherence data fabric

496 Oracle WebLogic Server 12c Administration Handbook

allows you to maintain large data sets in memory and feed the data at extremely fast speeds to all
computing nodes.

Oracle Coherence helps you get the most out of your WebLogic clusters by providing the
following capabilities:

 � Clustering of data and objects Oracle Coherence ensures that all of an application’s
objects and data that are delegated to it by the applications are accessible to all
cluster members and that no data is lost when servers fail. Data is synchronously
replicated across a cluster, and the clustering protocol used by Coherence detects server
failures quickly. Each server is aware of where a replica for a piece of data exists and
automatically redirects data access requests to the replicas. Because each data operation
is executed in a once-and-only-once mode, executing operations during a server failure
won’t be accidentally repeated or lost.

 � Automatic management of cluster membership Coherence automatically adds servers
to a cluster when they start and records their departure from a cluster due to a failure or
shutdown. Applications can sign up to receive event notifications when members join or
leave a cluster. Coherence tracks all services provided by and consumed by each server,
using this information to provide load balancing of data and service resiliency in the
cluster following server failures.

 � Providing a data grid Coherence helps create a data grid (also called a data fabric)
using its partitioned data management service and also provides the infrastructure for
applications that use a data grid. If you have large amounts of data spread across many
servers in a grid, you can use Coherence to manage that data with near-zero latency.
Coherence automatically partitions data across the data fabric, increasing the efficiency
of database and EIS connectivity. Its read-ahead and write-behind capabilities reduce
latency to a near-zero level and protect your applications from database and EIS failures.

 � Delivering change events Coherence uses the JavaBean event model to cache events,
making it easy to receive events for changes occurring in the cluster. It provides a once-
and-only-once guarantee for processing external events. It also uses continuous querying
to bring real-time event handling to a server or desktop.

The data fabric architecture of Oracle Coherence, which uses automatic data partitioning and
load balancing, ensures that the aggregate data throughput, in-memory data capacity, and
aggregate I/O throughput are linearly proportional to the number of servers in a cluster. The high
throughput is made possible by the following capabilities of the in-memory data grid:

 � A superior clustering protocol that achieves “wire speed” throughput on each server

 � Load balancing data management by partitioning the data, thus letting each server handle
its fair share of the total data

 � Routing all read and write requests directly to the server that manages that portion of the
data

 � Execution of parallel queries, transactions, and computations against large sets of data,
using all servers in the data grid

If your application processes an extremely high number of transactions, the database may
become a bottleneck if the application needs to persist the changes. Coherence can eliminate

Chapter 10: WebLogic Server Performance Tuning 497

those bottlenecks by making transactions highly efficient—it batches a large number of small
changes to various application objects into a single transaction.

You get higher resiliency with Coherence because each server in the data fabric bears only
1/nth of the total failover responsibility for a data fabric. When you use Coherence, you don’t
have a single point of failure—when a server crashes or becomes unavailable, Coherence
automatically fails over and redistributes its clustered data management services among the
servers. Similarly, when you add a new server or restart a failed server, Coherence transparently
fails over services to the new server, thus ensuring that the cluster load is redistributed among all
the cluster members. Coherence, therefore, always synchronizes and keeps up to date the data in
the various nodes of the data fabric. It also lets each server back up a small portion of data from
multiple servers, spreading the impact of a server failure across the data fabric. Coherence also
includes network fault tolerance capabilities and allows servers to heal themselves with the
transparent soft restart capability.

Tuning EJB Performance
Oracle provides several recommendations for tuning WebLogic Server EJBs. Following is a quick
summary of the main recommendations pertaining to the tuning of EJBs and the EJB cache.

Tuning EJBs
It is best to keep state in the middle tier to a minimum. Oracle recommends using stateless
session beans where possible instead of stateful session beans because the server doesn’t have to
maintain state information.

The EJB specification requires that EJB calls are not passed by reference for consistency. As
such, in WebLogic Server 8.1 and higher, call-by-reference is turned off by default. You must set
call-by-reference to true when EJBs call one another within the same application. This also applies
when an EJB is called by a servlet or JSP from the same application. Setting call-by-reference to
true eliminates serialization and the overhead it entails. This is consistent with most modern
application development styles that use local JavaBeans.

Choosing the right default transaction properties for beans and methods is an important
opportunity to improve performance. The most common case is the one where a servlet will
obtain access to an EJB and then make a series of fine-grained getter calls. If a transaction isn’t
already in process and the RequiresNew or Required transaction property is set, a new transaction
will be started and stopped for each method call, resulting in a great deal of overhead, including
the allocation of new database connections. Carefully reviewing these methods and disabling
transactions where they are not needed or initiating one wrapping transaction is the best
approach.

In a clustered environment, you should deploy all of your EJBs to all available cluster members.
A cluster in which you deploy your EJBs in this manner is called a homogeneous cluster, and it
offers better performance than a heterogeneous cluster when all EJBs aren’t deployed on all cluster
members. If a single transaction needs to use multiple EJBs, there’s less network traffic if WebLogic
Server finds all the EJB instances on a single server instance rather than having to use EJBs from
multiple servers.

Tuning EJB Caches
You must tune the stateful session bean cache and the entity bean cache to maximize performance,
as explained in the following sections. Note that this discussion is targeted at EJB 2.1-style
applications.

498 Oracle WebLogic Server 12c Administration Handbook

Stateful Session Bean Cache To maximize performance, you should set the max-beans-in-cache
parameter in the weblogic-ejb-jar.xml file to the number of concurrent users. The EJB container will
cache in memory the number of stateful session beans you specify.

Entity Bean Cache By default, an entity bean is retrieved from the cache once it’s loaded from
the database. However, an entity bean’s persistent state isn’t cached between transactions. You
can enable the persistent caching of entity beans between transactions by setting the cache-
between-transactions parameter to true. Whether caching the state between transactions is safe
depends on the concurrency strategy you specify for an entity bean, as described in the following
section. You set the size of the entity bean cache by adjusting the value of the deployment
descriptor parameter max-beans-in-cache. Your objective when setting the cache size is to
maximize cache hits. You can instruct the cache not to maintain ready instances of beans if the
entity beans have a high cache miss ratio. You can do this by setting the disable-ready-instances
attribute in the <entity-cache> element of the entity-descriptor for an entity bean.

CMP Entity Beans
Container-managed persistence (CMP) defines the entity bean instance lifecycle. Entity beans
depend on container-managed persistence to generate methods that access persistent data for the
entity bean instances. Although you can achieve the greatest performance gain by caching entity
beans, you can’t do so beyond a particular transaction’s scope. You can configure the following
EJB container features, however, to minimize the interaction with the database:

 � Eager relationship caching This allows the container to load related entity beans using a
single SQL join statement.

 � JDBC batch operations By default, JDBC batch operations are turned on in the
container, which means the server uses batching to reduce the number of multiple round
trips to the database for similar operations.

 � Tuned updates The EJB container updates the database with only the fields that have
changed, which means there’s no need for a database call if a bean isn’t modified.

 � Field groups You can group commonly used fields into a single group. Once you do this,
if one field of the group is accessed by an application or EJB, the server loads all the fields
in the group with a single SQL statement, thus reducing the number of database calls.

 � Concurrency strategy You can use the <concurrency-strategy> deployment descriptors
to specify how the EJB container should handle a situation where multiple threads in a
server instance want to access the same entity bean simultaneously. The most commonly
used value for <concurrency-strategy> is database, which means the database handles
concurrency control and determines whether concurrent access to an EJB should be
allowed. The value exclusive ensures that all concurrent transactions serially access a
single instance of an EJB. Because concurrent access is not possible with the exclusive
setting, use this only if the EJB is used infrequently. The optimistic concurrency strategy
assumes that an EJB is rarely modified. Using this strategy along with caching between
transactions could improve performance significantly for such EJBs. The ReadOnly
concurrency strategy assumes the EJB is nontransactional and turns on caching between
transactions, thus improving performance.

Chapter 10: WebLogic Server Performance Tuning 499

You can view EJB run-time performance statistics from the Administration Console by clicking
the Monitoring tab for a specific EJB. You can view statistics for things such as the cache miss ratio
from this page.

SQL Tuning Best Practices
Although efficient use of statement caching is going to improve performance, the key driver for
improved performance is to ensure that you’re using efficient SQL queries. Developers must also
seek to remove most SQL from the middleware and move it to the back-end database tier, where
it belongs. Here are some guidelines for improving SQL performance (mostly generic, but some
recommendations pertain specifically to the Oracle database):

 � Use stored procedures Using stored procedures rather than individual SQL statements
is much more efficient in most cases. You can often achieve dramatic performance
improvements by taking individual SQL statements out and making them part of a
procedure.

 � Use prepared statements with bind variables Using prepared statements improves
performance significantly, and the more complex the query, the greater the performance
benefit.

 � Tune the database memory allocation Ensure that the database administrators have
allocated enough memory for the database so it can hold all the prepared statements
your application generates.

 � Collect efficient statistics Every database depends on a set of optimizer statistics to
figure out the best query execution plan. Make sure the database objects have fresh
statistics and that the statistics are accurate.

 � Avoid expensive queries If your application includes even one or two bad queries such
as the following, your application will be in trouble. Pulling large amounts of data from
the database server could lead to a stuck thread situation.

SELECT DISTINCT colWithNoIndex from LargeTable;
SELECT * FROM LargeTable ORDER BY colWithNoIndex;

If you suspect that some of the application queries are not very efficient, you can ask the DBA
to trace the query performance using Oracle’s DBMS_MONITOR package. The DBA can also run
other types of traces, such as the Oracle 10053 event trace, which tracks the optimizer’s execution
plan. The DBA or the developer can also generate an explain plan to trace the query’s execution
plan without actually executing the query. This can help you (or the database team) generate
better-performing queries by using some basic performance-improving techniques such as the
following:

 � Use appropriate indexes Although everyone knows indexes speed up data retrieval,
less well understood is the appropriate use of indexes. Make sure the column in a query’s
WHERE clause is part of the index key.

 � Use the right join order The right join order among a query’s tables can make a big
difference in performance. Using trace data or an explain plan, developers can improve
the query by changing the join order among tables.

500 Oracle WebLogic Server 12c Administration Handbook

 � Perform sorts in memory Performing sorts in memory as opposed to doing them on
disk leads to dramatic performance improvements. The DBAs can allocate memory to
appropriate database memory components to ensure memory sorts.

 � Use optimizer hints The SQL developer can insert appropriate “hints” to override the
cost optimizer’s choices, such as the use or nonuse of an index, for example.

The suggestions made here are just some of the ways in which the database team can
enhance query performance to decrease the load carried by the middleware. The takeaway for
WebLogic Server administrators should be that when faced with frequent stuck thread issues and
a slow-performing system, often the underlying reasons can be traced to poorly performing SQL
statements. Working with the database teams to resolve these performance issues can go a long
way toward improving WebLogic Server performance.

Managing Sessions
The key performance goal when configuring session management is to make the server do the
least amount of work to handle sessions and session persistence. Following is a summary of the
key session management strategies:

 � Manage session persistence You can configure various session persistence mechanisms
to suit your application needs, such as reliability, session failover, and the HTTP session
size. If your application requires session failover, you can maintain replicated sessions or
JDBC-based sessions. If you have a clustered environment, you can use replicated session
persistence, which offers better performance than JDBC-based session persistence.
However, you can use JDBC persistence in a single-server environment without a cluster.
You can improve JDBC session persistence by configuring the database, JDBC driver, and
JDBC connection pool.

 � Minimize sessions Minimizing sessions is critical to tuning application performance
because maintaining a large number of sessions decreases the ability of the server to
scale up. In general, do not use sessions for storing state information such as usernames,
which you’re better off storing on the client. Another strategy you can use to minimize
sessions is to store frequently used values in local variables.

 � Aggregate session data You can avoid serialization, deserialization, and network
overhead by separating frequently changing session data and read-only session data into
separate session attributes.

JPA and TopLink
The Java Persistence API (JPA) is a Java specification for persisting and managing data between
Java objects and classes, and a relational database. JPA is part of the EJB 3.0 specification, is
intended to replace the EJB 2 CMP entity bean specification, and is a current industry standard for
object-relational mapping (ORM). You can choose from open source and commercial JPA
implementations, and a Java EE 5 application server such as Oracle WebLogic Server supports the
use of JPA.

Unlike the EJB 2 CMP specification, JPA allows you to define object-relational mappings
through standard annotations or XML. JPA includes the object-level query language JPQL to allow
the querying of objects from a relational database. It also defines a run-time EntityManager API for

Chapter 10: WebLogic Server Performance Tuning 501

processing queries and transactions on objects. JPA offers a more portable and less complex
persistence standard than EJB 2 CMP.

Oracle’s TopLink implements JPA, which is the current standard persistence mechanism for
Java EE and SE. JPA 2.0 standardizes advanced ORM features, and EclipseLink is its reference
implementation. EclipseLink is open source, whereas TopLink is an Oracle commercial product
that offers all the features of EclipseLink along with additional features for integrating with
WebLogic Server and the Oracle SOA Suite. TopLink lets you integrate persistence and object
transformation in your applications, and it facilitates the building of high-performing applications
that store persistent object-oriented data in an RDBMS. TopLink provides an advanced object-
persistence and object-transformation layer that supports the following data sources and formats:

 � Relational data Persists Java objects to a relational database using Java Database
Connectivity (JDBC) drivers.

 � Object-relational data types Persists Java objects in a structured data source
representation for storage in an object relational database (such as the Oracle database).

 � Enterprise information systems (EISs) Uses a JCA adapter to persist Java objects to a
nonrelational data source.

 � XML data Converts in-memory, nontransactional data between Java objects and XML
Schema Document (XSD)–based XML documents.

TopLink supports EJB 3 in Java EE and Java SE environments and lets you easily capture and
define object-to-data source and object-to-data representation mappings. The TopLink run time
lets applications exploit the captured mapping metadata through a simple session façade,
providing strong support for data access, querying, transactions, and caching. TopLink lets you
take advantage of the best features of object technology and specific data sources by addressing
the differences between Java objects and data sources (and seamlessly managing the relational,
object-relational data type, EIS, and XML mappings). Since TopLink offers a clear object-
oriented view of data sources, you can easily use it even without a strong knowledge of SQL
or JDBC.

TopLink provides a flexible, nonintrusive metadata-based architecture that supports Plain Old
Java Objects (POJOs), CMP, JPA, and web services provided by EclipseLink. It’s optimized for high
performance and concurrency, and it offers numerous performance-tuning options and
comprehensive object-caching support. It also offers extensive query capability, including JPQL,
Enterprise Java Beans Query Language (EJB QL), and native SQL. Finally, it offers optimistic and
pessimistic locking options.

Tuning Data Sources and Transactions
As far as tuning the database is concerned, the best policy is to work with the database
administrators to ensure that they understand your requirements and configure the database
accordingly. Database configuration is a vast topic, and configuration parameters may change
over time in new releases. For example, if you let the database administrator know the amount of
simultaneous users you expect, they can configure the appropriate initialization parameter. Once
the database is configured appropriately, you can focus on the configuration of data sources and
transactions.

502 Oracle WebLogic Server 12c Administration Handbook

Tuning Data Sources
Following is a summary of the best practices when tuning data sources.

Configuring the Connection Pool
To avoid connection delays due to on-demand creation of connections, Oracle recommends you
set the value of the Initial Capacity parameter to the value of the Maximum Capacity parameter
when configuring a connection pool. You can estimate the value of the Maximum Capacity
parameter through load-testing exercises. However, beware of oversimplifying and making your
application deployment too tightly bound to one particular configuration.

You can use the <pool-name> mechanism for setting a <max-threads-constraint>, as shown in
the following example, which shows part of a weblogic-ejb-jar.xml file:

</weblogic-ejb-jar>
…
<work-manager>
 <name>test_resource</name>
 <max-threads-constraint>
 <name>pool_constraint</name>
 <pool-name>testPool</pool-name>
 </max-threads-constraint>
</work-manager>

<work-manager>
 <name>test_appscoped_resource</name>
 <max-threads-constraint>
 <name>appscoped_pool_constraint</name>
 <pool-name>AppScopedDataSource</pool-name>
 </max-threads-constraint>
</work-manager>
</weblogic-ejb-jar>

This example demonstrates a weblogic-ejb-jar.xml file that defines a Work Manager for an EJB
with a connection pool–based maximum threads constraint. The EJB will get as many threads as
there are instances of a connection pool (or application-scoped connection pool).

Using JDBC Resources Efficiently
Because JNDI lookups are expensive, you must cache any objects that initialize database
connections. You can maximize the reuse of connections to eliminate the performance hit
involved in the repeated opening and closing of database connections. You can also return
connections as soon as you complete the work to minimize the use of resources. The modern way
to avoid the lookup of JDBC resources such as connection pools is to use annotations to resolve
references to connection pools where possible.

Using the Test Connections On Reserve Feature
If you enable the Test Connections On Reserve feature (see Chapter 4), the server executes a
SQL test query to check each connection. In a busy system, you can speed up the creation of
connections by telling the server to skip the SQL test if the client successfully connected
within a specific time window. The longer the window you specify, the fewer tests the server
will make.

Chapter 10: WebLogic Server Performance Tuning 503

Caching Prepared Statements
There are two steps to completing a SQL request: compiling the SQL statement and executing
it. By using prepared statements (java.sql.PreparedStatement), you can reduce unnecessary
compilation, saving time. A prepared statement contains SQL statements that have already
been compiled, thus making their execution faster. If you’re going to use a SQL statement
more than once, you should use a prepared statement. However, when you use a prepared
statement or a callable statement (a callable statement object provides a way to call stored
procedures in a standard way for all RDBMSs) in an application, there’s additional overhead
due to the need for communication between WebLogic Server and the database. To reduce
resource consumption, you can configure WebLogic Server to cache prepared and callable
statements. Caching eliminates a lot of unnecessary work for the database server, reduces CPU
use on the database server, and could dramatically improve the statement’s performance.
When an application or EJB calls a statement stored in the cache, WebLogic Server simply
reuses the statement. Any executable statements the server executes repeatedly, such as those
inside a loop, benefit from statement caching. The statement cache caches statements from a
specific physical connection.

You can enable two types of statement caching: implicit JDBC caching and explicit caching.
Implicit statement caching is performed when JDBC automatically caches prepared and callable
statements using standard connection object and statement object methods. Implicit statement
caching doesn’t cache plain SQL statements—that is, it caches only OraclePreparedStatement
and OracleCallableStatement objects, not OracleStatement objects. The JDBC driver automatically
searches the cache for a matching statement when you create an OraclePreparedStatement or
OracleCallableStatement object. Whereas implicit statement caching retains only metadata,
explicit statement caching retains both statement data (and its state) as well as metadata.
Although explicit statement caching is more effective performance-wise, use caution with this
type of caching because the data and state are from an earlier execution of a SQL statement, and
you don’t know for sure what those are. Note that if the JDBC driver doesn’t find a statement in
the cache, under explicit statement caching the JDBC driver returns a NULL value, whereas
under implicit statement caching the driver creates a statement automatically.

The JDBC Data Source Monitoring page in the Administration Console shows various run-time
statistics associated with each JDBC data source. Included there are the following statistics related
to the use of prepared statements:

 � Prep Stmt Cache Access Count The total number of times the statement cache was
accessed

 � Prep Stmt Cache Add Count The total number of statements added to the statement
cache for all connections

 � Prep Stmt Cache Current Size The number of prepared and callable statements
currently cached in the statement cache

 � Prep Stmt Cache Hit Count The running count of the number of times the server used a
statement from the cache

 � Prep Stmt Cache Miss Count The number of times a statement request couldn’t be
satisfied by a statement from the cache

504 Oracle WebLogic Server 12c Administration Handbook

Increasing the Database Listener Timeout
To avoid database listener timeouts in a heavy workload environment, you must increase the
listener timeout interval. For example, in an Oracle database you can do this by setting the
INBOUND_CONNECT_TIMEOUT parameter in the listener.ora and tnsnames.ora files.

Tuning Transactions
The server incurs additional overhead during two-phase transactions that perform database
inserts, updates, and deletes. Two-phase, or X/Open Architecture (XA), transactions in a JMS
application involve both the JMS server and the database server. To reduce this overhead, Oracle
strongly recommends using the Logging Last Resource (LLR) optimization, as explained in
Chapter 4. LLR is a major optimization, and according to Oracle, it can double performance
when compared to a nonoptimized XA transaction. In particular, LLR is quite efficient in cases
where a transactional JMS destination is used in conjunction with a JDBC resource. LLR uses a
table in the same database to turn this into a one-phase transaction and greatly reduce the
overhead. Note that this performance improvement is for transactions that perform inserts,
deletes, and updates. For transactions that use only SELECT statements, the LLR option generally
reduces performance.

Summary
This chapter provided an introduction to various aspects of Oracle WebLogic Server performance
tuning. Tuning the JVM is a critical part of WebLogic Server performance memory management
and garbage collection. The chapter explained the key concepts that underlie memory allocation,
garbage collection, and memory compaction, all of which play a critical role in JVM performance.
You learned key memory management concepts, including the logging of low memory conditions
and the setting of the heap sizes.

The chapter also explained how to tune the persistent store, JMS messaging, and data sources
and transactions. It also reviewed the best practices for tuning web application session
management. The chapter introduced Oracle Coherence and Coherence*Web. You also learned
how to tune EJB performance and reviewed key SQL tuning best practices. Finally, the chapter
provided a short review of JPA and TopLink.

Index

A

access logging, disabling, 495
ACID, 182
active cookie persistence, 354
Adjudication providers, 421, 422
Admin role, 441
Admin Server. See Administration Server
ADMIN state, 81, 82
administration channel, 159–161
Administration Console, 5

assigning instances to a machine, 97
Change Center, 36–40
changing the console’s URL, 40
changing the listen port and listen

address, 40–41
changing the user password, 61
checking Node Manager logs, 72
configuring domain security, 451–456
configuring the host as a WebLogic

Server machine, 96–97
configuring how Node Manager

handles server failures, 98–99
configuring Managed Servers to work

with Node Manager, 97–98
configuring server instances, 57–58
creating clusters, 338–340
creating dynamic clusters, 344–345
defining a Work Manager, 247–249

deploying an application, 388–395
deployment, 374
enabling configuration auditing, 132
enabling Exalogic optimizations, 58
Lock & Edit, 130–131
logging in, 32–33
logging out, 40
managing resource adapters, 263–264
managing servers from, 96–101
monitoring applications, 405–406
monitoring instances, 295–298
monitoring transaction services,

185–187
navigating, 33–36
overview, 31–32, 96
setting debugging flags, 316–317
setting preferences, 40
shutting down a Managed Server, 101
starting a Managed Server, 100–101
starting and stopping clusters, 348
throttling the thread pool, 250

administration mode, 406–408
redeploying in, 412

administration ports, 11, 57, 159
configuring, 160–161

Administration Server, 4–5, 52
configuring, 153
deleting, 113–114
failures, 53

505

506 Oracle WebLogic Server 12c Administration Handbook

Administration Server (Cont.)
logging in through a new

administrator account, 60–61
starting a failed Admin Server, 110–112
starting with the java weblogic.Server

command, 89–92
starting with a startup script, 86–87
using WLST and the Node Manager

with, 106–107
Advanced Model, 446
annotation-based programming, 375
Anonymous role, 441
Ant

build files, 95
checking to see if Ant is installed, 94–95
overview, 93–94
starting a server with, 95–96
wldeploy, 372, 374, 402

Apache plug-in
configuring, 169–170
installing, 167–169

APIs, management, 13
application failover and replication, 357

detecting application failures, 357
in-memory replication, 358–359
JDBC-based replication, 359
replicating HTTP session state, 357–359
replicating session state across

multiple clusters, 359–360
application modules, 192
applications

deploying internal applications, 395
deploying using Administration

Console, 388–395
forcing retirement of an

application, 411
production redeployment strategies,

409–412
starting, 393–394
stopping, 394–395
tuning, 493–494
undeploying, 397, 400
updating, 408
See also deployment

archive files, deploying, 381–382

asynchronous communication, 208–209
asynchronous services, scaling of, 331
audit, 418
Auditing Provider, 131–132, 421, 422

configuring, 425–428
enabling configuration auditing, 428

authentication, 418
Authentication providers, 420, 422

configuring, 428–431
improving LDAP Authentication

provider performance, 432
authorization, 418
Authorization providers, 421
autodeployment, 403

B

backing up
config.xml file, 172–173
security data, 173

beasvc.exe, 108
bidirectional resource adapters, 262
boot identity files, creating, 58–60

C

caching entitlements, 435–436
caching prepared statements, 503
caching security information, 435
CertGen, 460
Certificate Registry providers, 422
channel weight, 259
chunk parameters, tuning, 478
class caching, configuring, 55
cluster master, 362–363
clustered JMS servers, 353–354
clusters, 5–6, 118

adding nodes, 339–340
architecture, 332–336
assigning Managed Servers to, 154
cluster address, 337
collocation strategy, 334
combined tier architecture, 333–334
configuring, 154, 343

Index 507

and config.xml file, 346–347
creating using the Administration

Console, 338–340
creating using WLST script, 340–343
deployment in a cluster, 332
dynamic clusters, 343–346, 350
how clusters communicate, 336
JDBC clustering, 352
and JMS, 352–353
and JNDI, 351–352
monitoring, 350–351
multitier architecture, 334–335
naming cluster instances, 336–337
overview, 330–331
proxy architecture, 335–336
relationship with domains, 331–332
starting and stopping, 347–350
targeting deployments to clusters

or servers, 155
CMP entity beans, 498–499
Coherence Clusters, 6

See also clusters
Coherence*Web, 493–494
collocation strategy, 334, 356–357
common log format, 164
compacting memory, 484–485
concurrent garbage collection, 480
concurrent mark and sweep, 480
configToScript command, 151–152
configuration auditing, 131–132
configuration MBeans, 10, 125
Configuration Wizard, 19

creating domains, 142–146
extending domains, 146–147
starting, 143

config.xml file, 4, 91–92, 122–124
backing up, 172–173
and clusters, 346–347

connection factories, 226–230
connection filters, 457, 472
connection management contract, 262
connection pool

configuring, 202–206, 502
Database Resident Connection

Pooling (DCRP), 206–207

shrinking, 207
suspending and resuming, 207

consensus leasing, 363
constraints, 242–244, 246–247
context-request-class, 245–246
core dumps, 324–325
Credential Mapping providers, 421
credential store framework, 418
credentials

changing startup credentials for a
Windows service, 109–110

cross-domain security credential
mapping, 457

providing, 58–61
cross-domain security, 456–457
cryptography, 418
custom extension templates, 137

See also domain templates
custom file-based stores, creating, 156–157
Custom Roles and Policies security model,

445–446
Custom Roles security model, 445

D

data sources, 188, 191–192
configuring a JDBC data sources,

200–207
configuring for DCRP, 206–207
managing, 207
starting and stopping, 208
tuning, 502–504
See also generic data sources;

GridLink data sources; multi
data sources

database connectivity, 188–189
enabling XA in the database, 191

database leasing, 363
database listener timeouts, 504
database outages, graceful handling of, 199
Database Resident Connection Pooling

(DCRP), 206–207
databases, configuring for DCRP, 207–208
deadlocks, 321
debugging flags, 316–317

508 Oracle WebLogic Server 12c Administration Handbook

dependency injections, 375
Deployer role, 441
deployment, 8

API, 13
autodeployment, 403
canceling a deployment, 400–401
dependency injections, 375
deploying an archive file, 381–382
deploying an exploded archive

directory, 382–383
descriptors, 374, 375–376, 446–447
how WebLogic Server accesses

source files, 385–386
of internal applications, 395
listing all deployments, 401
naming the deployment and

applications, 383–384
order, 387–388
overview, 372
preparing applications for, 381–386
redeployment strategies, 409–412
reducing deployment time, 403–404
sanity testing deployments using

administration mode, 406–408
staging modes, 385
storing deployment files, 384–385
targeting deployments to clusters or

servers, 155
targets, 373–374
tools, 374
types of applications you can

deploy, 373
using Administration Console, 388–395
using FastSwap, 404
using WLST, 395–397
with weblogic.Deployer, 397–402
with wldeploy Ant task, 402

Deployment Descriptor Only (DD Only)
security model, 444–445

deployment plans, 375, 376–378
automatically generating, 378–380
modifying, 380–381
staging, 386–387
validating a custom deployment

plan, 381

deployment units, 373
deterministic mode, 481–482
development mode, 11
diagnostic actions, 283–284
diagnostic context, 282
diagnostic dump commands, 326
diagnostic location, 283
diagnostic monitors, 283

adding, 285
configuring, 286
configuring a DyeInjection diagnostic

monitor, 286–288
diagnostic system modules, 278–280
distributed destinations, 216
distributed transactions, 182
Domain Runtime MBean Server, 126
Domain Template Builder, 19, 135–137, 142
domain templates, 19

creating custom domain templates,
135–137

creating custom extension
templates, 137

creating with pack and unpack
commands, 138–140

offered by WebLogic Server, 134–135
overview, 134
server templates, 138
types of, 142

domains, 4
accessing MBeans through WLST,

127–130
assigning Managed Servers to

clusters, 154
cloning a Managed Server, 154
configuration file, 122–124
configuring the Admin Server, 153
configuring clusters, 154
configuring machines, 154–155
configuring Managed Servers, 153
configuring a persistent store,

156–158
controlling logging of configuration

changes, 133–134
creating using the Configuration

Wizard, 142–146

Index 509

creating using the weblogic.Server
command, 140–142

creating with WLST commands,
147–152

directories, 119–122
enabling trust between, 456–457
extending, 146–147
how domains manage changes, 125
how MBeans are organized, 126–127
lifecycle of MBeans, 125–126
making domains read-only, 132–133
MBean Servers, 126
organization of a domain directory’s

contents, 120–122
reconfiguring, 28–30
resources, 118–119
restrictions, 119
root directory, 119–120
sample domains, 22
selecting the startup mode for, 152
structure of, 116–117
targeting deployments to clusters

or servers, 155
upgrading, 27
using the WLST set command to

modify domain configuration,
150–151

durable subscription model, 212
dye filtering, 288–289
dye masks, 288
dynamic clusters, 343–346

starting and stopping, 350
 See also clusters

dynamic servers, 353

E

Edit MBean Server, 126
EJBs

failover for, 360–361
load balancing for, 354–357
tuning, 497
tuning EJB caches, 497–498

Enterprise Edition, 3
entitlements caching, 435–436

entity bean cache, 498
entity beans, 361
environment variables, setting, 55–56
errors

out-of-memory errors, 327–328
See also troubleshooting

Exalogic, 58
Examples Server, 23–25
execute queues, 9
execute threads, 9
exploded archive directory deployment,

382–383
exporting security data, 433–435
extended log format, 164

F

FAILED state, 83
failures, 110–114

configuring how Node Manager
handles server failures, 98–99

handling failure conditions,
250–252

starting a failed Admin Server,
110–112

See also application failover and
replication

fair-share-request-class, 244–245
fast connection failover, 199
FastSwap, 404
fat locks, 488
file stores, compacting, 489
flow control, 229
foreign JMS servers, 235–236
FrontEndHost attribute, 472

G

garbage collection, 480–481
dynamic vs. statically configured,

481–482
manually requesting, 483–484
monitoring to determine heap size,

486–487
tuning, 483

510 Oracle WebLogic Server 12c Administration Handbook

generational garbage collection
strategies, 480

generic data sources, 188, 192
creating, 195–198

global roles, 441–442
global transactions, 182
GridLink data sources, 188, 192

using, 198–200
groups, 437–438, 439–440

H

heap, 479–480
configuring JVM heap size, 486–488
monitoring garbage collection to

determine heap size, 486–487
setting heap size, 487–488

HTML entity or character references, 473
HTTP logging, 164–166
HTTP sessions

limiting active HTTP sessions, 252
managing efficiently, 493–494

HTTP tunneling, 163, 257–258

I

idempotent requests, seamless failover
of, 331

Identity Assertion providers, 421, 422
identity options, 206
image notifications, 291
IMAP, 236
importing security data, 433–435
inbound resource adapters, 262
InitialContext, 177, 179–181
in-memory replication, 358–359
in-place redeployment, 409, 412
installation

checking the installed features, 18–19
directories, 19–21
modes, 14
overview, 13–14
prerequisites, 14
procedure, 15–18

reinstalling WebLogic Server, 19
tools, 19
See also uninstalling

installing an enterprise application, 389–393
installSvc.cmd script, 108
instances, 3, 117–118

assigning instances to a machine, 97
configuring with the Administration

Console, 57–58
force suspend, 84
graceful shutdown timeout, 84
ignore sessions during shutdown, 84
lifecycle of, 80–85
monitoring with Administration

Console, 295–298
monitoring with JMX, 298–302
monitoring with SNMP, 305–310
monitoring with WLST scripts, 302–305
normal shutdown, 84
normal start mode, 81–82
resuming the instance, 82
shutdown command options, 84–85
STANDBY mode, 82
starting in ADMIN mode, 82
suspend, 84

instrumentation, 282
See also WebLogic Diagnostic

Framework (WLDF)
internal applications, deploying, 395

J

jar utility, 381–382
Java Connector Architecture. See JCA
Java Database Connectivity. See JDBC
Java Development Kit. See JDK
Java EE Management API, 13
Java EE security, 416–417

See also security
Java Management Extensions. See JMX
Java Messaging Service. See JMS
Java Naming and Directory Interface.

See JNDI
Java Persistence API. See JPA

Index 511

Java Security Manager, 417
See also security

Java thread dumps, 318–321
Java Transaction API. See JTA
Java Virtual Machines. See JVMs
java weblogic.Server command, 89–92
JavaMail, 236

configuring mail sessions, 236–238
creating mail sessions, 236

JCA, 261–263
JCA resource adapters, 235, 262

managing through the Administration
Console, 263–264

monitoring connections, 264
JDBC, 8

architecture, 189–191
clustering, 352
configuration, 192–193
configuring a JDBC data sources,

200–207
creating JDBC-based persistent stores,

157–158
system modules, 193–195
using JDBC resources efficiently, 502

JDBC-based replication, 359
JDK, 11
JFR. See JRockit Flight Recorder
JMS, 8

administered objects, 210–211
architecture, 212–216
authorization checks, 474
clients, 211
clustered JMS servers, 353–354
and clusters, 352–353
configuring a JMS server, 220–223
configuring message log rotation,

222–223
configuring message logging, 223
configuring message performance

preferences, 492
configuring thresholds and quotas,

221–222
connection factories, 226–230
creating a JMS server, 216–218

creating JMS servers and system
resources through WLST,
218–219

creating system modules, 224–230
distributed destinations, 216
foreign JMS servers, 235–236
general JMS server properties, 221
message communication modes,

208–209
messaging bridges, 213, 235
migrating JMS-related services, 232,

363–365
modules, 214–216
monitoring JMS servers, 223–224
one-way message sends, 492
overview, 208
path service, 213
persistent stores, 213
point-to-point messaging, 211
provider, 209
publish-subscribe messaging,

211–212
servers, 213–214
store-and-forward (SAF) service, 213,

232–234, 493
structure of JMS message, 209
system modules and subdeployments,

230–232
targeting a JMS server, 231–232
tuning, 490–492

JMS notifications, 291
JMX, 13

implementing the API, 10
monitoring instances, 298–302

JMX notifications, 291
JNDI

architecture, 177
clustered JNDI, 181
and clustering, 351–352
connecting a Java client to a server,

179–181
overview, 176–177
using InitialContext to get a WebLogic

context reference, 179–180

512 Oracle WebLogic Server 12c Administration Handbook

JNDI (Cont.)
using InitialContext to look up values

in the JNDI tree, 180–181
viewing the WebLogic Server JNDI

tree, 177–179
join points, 283
Jolt Connection Pools, 8
JPA, 188, 500–501
JRockit, 11

thread dumps, 321–324
JRockit Flight Recorder

enabling default recording, 270
integrating WebLogic Server Data

with JFR, 271–272
recording data from the command

line, 271
recording JFR data through the JRMC

client, 270–271
using WLDF with, 268–272

JRockit Mission Control (JRMC) client,
268–271

JSP comment tags, 472
custom JSP tags, 494–495

JTA, 8
migrating JTA services, 366–367

JVMs
choosing, 12
configuring JVM heap size, 486–488
crashes, 324–325
specifying JVM parameters, 92–93
tuning, 479–488

K

key files, 46–47
keystores, 461–464
Keytool, 460–461

L

LDAP server, configuring, 447–449
leasing, and automatic migration,

362–363
listen address, 153

listen ports, 11, 153
changing, 40–41
configuring, 161–162

listen threads, 9, 11
load balancing, 199, 229, 354

algorithms, 355–356
collocation strategy, 356–357
for EJBs and RMI objects, 354–357
server affinity, 356
servlets and JSPs, 354

local transactions, 182
Lock & Edit, 130–131
locking, 488
log filters, 314–315
logging

APIs, 13
controlling logging of configuration

changes, 133–134
generating logs for troubleshooting,

325–326
See also HTTP logging

logging services, 310–311
anatomy of a log message, 312–313
configuring a domain log filter,

314–315
controlling server log messages to log

destinations, 317–318
HTTP logs, 315
integrating application and server

logging, 317
JDBC logs, 315
JMS logs, 315
log file maintenance, 316
setting debugging flags, 316–317
subsystem logs, 315
understanding the log files, 311–312
viewing logs, 313–314

logs, 86

M

machines, 7
assigning instances to a machine, 97
configuring, 154–155

Index 513

Managed Server Independence mode,
112–113

Managed Servers, 5, 52–53
assigning to clusters, 154
cloning, 154
configuring, 153
configuring Managed Servers to work

with Node Manager, 97–98
how Managed Servers handle an

Admin Server failure, 111–112
setting up as a Windows service, 109
shutting down from the

Administration Console, 101
starting from the Administration

Console, 100–101
starting with a startup script, 87–88
upgrading remote Managed Servers, 28

management information base (MIB), 306
managing sessions, 500
max-threads-constraint, 246
MBean Servers, 10, 126
MBeans, 10, 125

accessing through WLST, 127–130
how MBeans are organized, 126–127
lifecycle of, 125–126

memory, compacting, 484–485
memory management, 479–488
messages, 85–86
messaging bridges, 213, 235
metric collection, configuring, 280–282
migratable servers, 361
migratable target list, 214
migratable targets, 232, 235, 362
migrate command, 369–370
migration, 118

leasing and automatic migration,
362–363

manual and automatic service
migration, 361–362

migrating JMS-related services, 232,
363–365

migrating JTA services, 366–367
migrating services using WLST,

369–370
See also whole server migration

min-threads-constraint, 246–247
monitoring applications, 405–406
MSI mode, 112–113
multi data sources, 188, 192

configuring, 198
multicast messaging, 336
muxers, 9

tuning, 477–478
MyDomain, 119
myrealm, 8

See also security realms

N

naming and directory services. See JNDI
native muxers, 9
network channels, 7

benefits of using, 255–256
configuring, 258–259
creating custom network channels,

256–257
creating a SNMP network channel, 261
default network channels, 158–159
designing, 260–261
optimal network configuration, 255
separating network traffic, 260–261
using multiple channels, 478

network interface cards (NICs), 158
networks, configuring, 158–161
NICs, 158
Node Manager

capabilities, 62–63
checking logs from the Administration

Console, 72
checking Node Manager connection

status, 79
checking Node Manager version, 78
configuration, 30
configuring, 73–76
configuring how Node Manager

handles server failures, 98–99
configuring Managed Servers to work

with Node Manager, 97–98
configuring using WLST offline, 77–78
connecting to Node Manager, 78

514 Oracle WebLogic Server 12c Administration Handbook

Node Manager (Cont.)
default configuration, 64–65
disconnecting from, 80
domains file, 77
enrolling a machine, 79–80
monitoring the logs, 71–72
nodemanager.log file, 71–72
overview, 7, 41–42, 62
PerDomain configuration, 64
per-host configuration, 63
running as a Windows service, 72–73
starting, 65–69
starting a server, 79
stopping, 69–71
upgrading, 27
using WLST with, 103–107
WLST commands, 78–80

nondurable subscription model, 212
notifications, 290

configuring, 291–292
setting up JMS notifications for

security changes, 451
nursery, 480

O

object tier, 333
old collection, 480
one-way message sends, 492
OPatch, 30–31
Oracle Coherence, 495–497
Oracle Fusion Middleware Reconfiguration

Wizard. See Reconfiguration Wizard
Oracle Notification Service (ONS), 199
Oracle Platform Security Services (OPSS),

417–419
See also security

Oracle Thin driver, 181
Oracle Tuxedo Services, 8, 264
Oracle WebLogic Server Enterprise Edition, 3
Oracle WebLogic Server Standard Edition, 2
Oracle WebLogic Suite, 3
Oracle_Home directory, 19–20
outbound resource adapters, 262

out-of-memory errors, 327–328
overload, handling, 250–252

P

pack command, 138–139
page checks, 493
parallel mark and sweep, 480–481
passive cookie persistence, 354
Password Validation providers, 432, 433
passwords

changing through the Administration
Console, 61

protecting user passwords, 455–456
patching Oracle WebLogic Server, 30–31
pause time mode, 481
performance, monitoring, 297
PermGen space, 102–103, 327
persistent stores, 213

configuring, 156–158
configuring the default, 184
tuning, 488–490

pinned services, 330
plug-ins, 12
pointcuts, 283
point-to-point messaging, 211
policies, 456
POP, 236
POST denial-of-service attacks,

preventing, 164
precompiled JSPs, 473, 495
presentation tier, 333
Principal Validation providers, 420
production mode, 11, 58
production redeployment strategies, 409–412
protecting domain data, 172–173
proxy plug-ins, configuring, 167–170
proxying requests to other web servers,

166–167
publish-subscribe messaging, 211–212

Q

quotas, 490–491

Index 515

R

read-only domains, 132–133
Reconfiguration Wizard, 19, 26–27

reconfiguring a domain, 28–29
reconfiguring a domain, 26–27

Node Manager configuration, 30
overview, 28
with the Reconfiguration Wizard,

28–29
using WLST, 29–30

redeploying an application, vs.
undeploying an application, 412

redeployment strategies, 409–412
 See also deployment

reinstalling WebLogic Server, 19
 See also installation; uninstalling

request classes, 242–246
resource adapters, 235, 262

managing through the Administration
Console, 263–264

monitoring connections, 264
resources, 419–420
response-time-request-class, 245
ResultSets, 191
RESUMING state, 81, 82
RMI objects

failover for, 360–361
load balancing for, 354–357

Role Mapping providers, 421
roles, 437–438, 440–442, 456
RowSets, 191
RUNNING state, 81
Runtime MBean Server, 126
runtime MBeans, 10, 125

S

sample domains, 22
SCAN addresses, 199
security

backing up the config.xml file, 172–173
backing up security data, 173
best practices, 471–474
caching security information, 435

configuring domain security, 451–457
configuring entitlements caching,

435–436
configuring an RDBMS as the security

store, 449–451
connection filters, 457, 472
cross-domain security, 456–457
defining server stop and start

policies, 431
deployment descriptors, 446–447
exporting and importing security

data, 433–435
Java EE security, 416–417
Java Security Manager, 417
LDAP server configuration, 447–449
monitoring, 297–298
Oracle Platform Security Services

(OPSS), 417–419
protecting domain data, 172–173
resources, 419–420
reverting to an older security

configuration, 436–437
setting up JMS notifications for

security changes, 451
static and dynamic security

conditions, 444
security management contract, 262
security models, 444–447
security policies, 437–438

based on resource type, 442–443
conditions, 443–444
configuring, 442–444
hierarchical, 443

security providers, 418, 420–422
configuring, 425–433
upgrading, 27

security realms, 8, 420
changing the default, 436
configuring, 423–425
creating, 422–423

security roles, 440–442
security stores, 418

configuring an RDBMS as the security
store, 449–451

self-health monitoring, 83, 254–255

516 Oracle WebLogic Server 12c Administration Handbook

server affinity, 356
server logs, 86
server messages, 85–86
server migration, 357
server templates, 138

See also domain templates
servers

configuring a JMS server, 220–223
configuring WebLogic Server as a

web server, 161–162
creating a JMS server, 216–218
deleting, 113–114
foreign JMS servers, 235–236
JMS, 213–214
managing server work overload,

249–255
migratable servers, 361
monitoring JMS servers, 223–224
selecting a start mode, 53–55
stopping, 25–26
targeting deployments to clusters or

servers, 155
service migration, 357

manual and automatic, 361–362
service-level migration, 118, 361
services, 8
set command, 150–151
setDomainEnv.cmd file, 22–23
setWLSEnv.cmd file, 23
SHUTDOWN state, 82–83
shutting down servers, with scripts, 88–89
Single Sign-On, 418
SMTP, 236
SMTP notifications, 291
SNMP

command-line utility, 308–310
configuring SNMP monitoring for a

server, 306–307
creating an SNMP agent, 307–308
monitoring instances, 305–310
trap destinations, 308

SNMP notifications, 291
socket muxers, 9
SSL, 458

CertGen, 460

configuring identity and trust, 458–464
keystores, 461–464
Keytool, 460–461
obtaining private keys and

certificates, 459
persistence, 354
setting configuration attributes, 465–470

stack trace, 318–319
stand-alone modules, 194
Standard Edition, 2
STANDBY state, 80, 82
starting and stopping servers

overview, 85
server logs, 86
server messages, 85–86
startup scripts, 86–89

STARTING state, 80
startup scripts, 86–89
state management, 331
stateful session bean cache, 498
stateful session beans, 361
stateless session beans, 360
static garbage collection strategies, 482
store-and-forward (SAF) service, 213,

232–233
configuring, 233–234
creating JMS SAF resources, 234
tuning, 493

stuck threads, 253
SUSPENDING state, 83
synchronous communication, 208–209
synchronous write policy, tuning, 489–490
system modules, 192

configuring JMS system modules,
225–226

creating JMS system modules, 224–230
diagnostic system modules, 278–280
JDBC system modules, 193–195
and subdeployments, 230–232

T

targeting a JMS server, 231–232
Test Connections on Reserve feature, 502
thin locks, 488

Index 517

thread dumps
Java thread dumps, 318–321
JRockit thread dumps, 321–324

thread local area (TLA), 480
setting the size of, 485–486

thread management, 476–477
thread pools, 240–241

throttling, 250
threads, monitoring, 296–297
throttle interval, 289
throttle rate, 289
throughput, 481
tlog files, 187–188
TopLink, 501
transaction management contract, 262
Transaction Recovery Service, 187–188
transactions, 181

and the ACID test, 182
configuring, 201–202
configuring WebLogic JTA, 182–185
logs, 187–188
monitoring transaction services,

185–187
recovery, 187–188
tuning, 504
and the two-phase commit, 182
types of WebLogic transactions, 182

Transparent Network Substrate (TNS), 199
trap destinations, 308
troubleshooting

collecting a JRockit thread dump,
321–324

generating logs for, 325–326
Java thread dumps, 318–321
JVM crashes, 324–325
out-of-memory errors, 327–328
using WLST diagnostic dump

commands, 326
tuning

best practices, 499–500
chunk parameters, 478
connection backlog buffering, 479
data sources, 502–504
distributed queues, 492
garbage collection, 483

JMS topics, 492
JVMs, 479–488
large messages, 490
muxers, 477–478
network I/O, 477–479
persistent stores, 488–490
synchronous write policy,

489–490
thread management, 476–477
transactions, 504
WebLogic JMS, 490–492

tunneling, 163, 257–258

U

undeploying an application, 397, 400
vs. redeploying an application, 412

uninstalling, 18
See also installation; reinstalling

WebLogic Server
Unit-of-Order, 491
unlocking users, 454–455
unpack command, 138, 139–140
update command, 401–402
updating applications, 408
upgrading

existing domains, 27
Node Manager, 27
overview, 26
procedures, 27–28
the security provider, 27
tools, 26–27

URL rewriting, 358
user configuration files, 46–47
user credentials, providing, 58–61
users, 438–439

unlocking, 454–455

V

version identifiers, assigning, 410
virtual hosts, 7

configuring HTTP for, 171
creating, 170

518 Oracle WebLogic Server 12c Administration Handbook

virtual hosts (Cont.)
overview, 170
targeting to servers, 171–172
targeting web applications to, 172

W

watches, 267, 290
configuring, 292
creating, 292–293
examples, 293–294

web applications
setting a default, 163–164
targeting to a virtual host, 172
tuning, 493–494

web servers
configuring WebLogic Server as a

web server, 161–162
proxying requests to other web

servers, 166–167
web tier, 332
WebLogic Diagnostic Framework (WLDF)

accessing diagnostic data, 294–295
built-in views, 272
collected metrics, 272
configuring metric collection,

280–282
Data Accessor, 267
Diagnostic Archive, 267, 276–277
Diagnostic Image Capture, 267,

273–276
Harvester, 267
Instrumentation, 267, 282–289
Monitoring Dashboard, 266–267,

272–273
overview, 266–268
polled metrics, 272–273
using diagnostic system modules,

278–280
using with JRockit Flight Recorder,

268–272
Watch and Notification, 267,

290–294
WebLogic Diagnostic Service APIs, 13
WebLogic Maven plug-in, 374

WebLogic Scripting Tool. See WLST
WebLogic Server domain directory, 21
WebLogic Server, editions, 2–3
WebLogic Server Home directory, 20–21
WebLogic Tuxedo Connector (WTC), 264
weblogic.Deployer, 372, 374, 397

adding a new module, 399
canceling a deployment, 400–401
deleting files from a deployment,

399–400
deploying an enterprise application,

398–399
listing all deployments, 401
undeploying an application, 400
using the update command, 401–402

weblogic.management password, 470–471
weblogic.management.username, 470–471
weblogic.Server, 89–92

configuring server attributes with,
92–93

creating domains, 140–142
overriding server configuration, 93

whole server migration, 118, 214, 367–369
 See also migration

Windows services
changing startup credentials for,

109–110
removing a service, 110
setting up, 108
setting up Managed Servers as, 109
starting and stopping, 109

WL_HOME directory, 20–21
wldeploy, 372, 374, 402
WLDF. See WebLogic Diagnostic

Framework (WLDF)
WLST, 19

accessing MBeans, 127–130
configuring the default JVM for a

domain, 12
configuring Node Manager offline,

77–78
connecting to an instance, 45–47
creating clusters, 340–343
creating domains, 147–152
creating dynamic clusters, 345–346

Index 519

creating JMS servers and system
resources through WLST, 218–219

deploying an application, 395–397
deployment, 374
deployment commands, 48–49
diagnostic commands, 49
disconnecting from the server, 47
editing command, 49
help command, 47–48
invoking from the command line,

43–44
lifecycle commands, 48
migrating services using, 369–370
monitoring scripts, 302–305
Node Manager commands, 48
offline and online, 42–43
overview, 42
reconfiguring a domain, 29–30
starting and stopping clusters with

scripts, 347–348
starting and stopping clusters with

WLST commands, 348–350
starting from the Start program, 43
stopping servers with WLST

commands, 103
troubleshooting using diagnostic

dump commands, 326

undeploying an application, 397
using in script mode, 44–45
using the set command to modify

domain configuration, 150–151
using with the Node Manager,

103–107
using without the Node Manager,

101–103
WLST Node Manager commands,

78–80
Work Managers, 7, 241–242

configuring, 242–244
constraints, 242–244, 246–247
defining through the Administration

Console, 247–249
request classes, 242–246

work overload, 249–255

X

XA, enabling XA in the database, 191
XA driver, 181

Y

young collection, 480
young space, 480

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 123022

You Need an Oracle ACE
Oracle partners, developers, and customers look to
Oracle ACEs and Oracle ACE Directors for focused
product expertise, systems and solutions discussion,
and informed opinions on a wide range of data center
implementations.

Their credentials are strong as Oracle product and
technology experts, community enthusiasts, and
solutions advocates.

And now is a great time to learn more about this
elite group—or nominate a worthy colleague.

For more information about the
Oracle ACE program, go to:
oracle.com/technetwork/oracleace

Need help? Need consultation?
Need an informed opinion?

Stay Connected

oracle.com/technetwork/oracleace

 oracleaces

 @oracleace

 blogs.oracle.com/oracleace B

Reach More than 700,000 Oracle Customers
with Oracle Publishing Group

Connect with the Audience
that Matters Most to Your Business

Oracle Magazine
The Largest IT Publication in the World
Circulation: 550,000
Audience: IT Managers, DBAs, Programmers, and Developers

Profit
Business Insight for Enterprise-Class Business Leaders to
Help Them Build a Better Business Using Oracle Technology
Circulation: 100,000
Audience: Top Executives and Line of Business Managers

Java Magazine
The Essential Source on Java Technology, the Java
Programming Language, and Java-Based Applications
Circulation: 125,000 and Growing Steady
Audience: Corporate and Independent Java Developers,
Programmers, and Architects

For more information
or to sign up for a FREE
subscription:
Scan the QR code to visit
Oracle Publishing online.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 113940

	Cover
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	1 Installing Oracle WebLogic Server 12c and Using the Management Tools
	Oracle WebLogic Server: An Overview
	Oracle WebLogic Server 12c Product Set
	Terminology

	Important WebLogic Server Concepts
	Execute Threads and Queues
	Implementing the JMX API and MBeans
	Development and Production Mode
	Listen Ports and Listen Threads
	Choosing a JVM
	Using Web Server Plug-Ins
	Management APIs

	Installing Oracle WebLogic Server 12c
	Installation Prerequisites
	Installation Modes
	Installation Procedure
	Checking the Installed Features
	Reinstalling WebLogic Server
	Exploring the Installation Directories

	The WebLogic Server Sample Applications
	Key Environment Files
	Starting the Examples Server
	Stopping the Server

	Upgrading Oracle WebLogic Server
	Upgrade Tools
	Upgrade Procedures
	Reconfiguring a WebLogic Domain
	Using OPatch to Patch Oracle WebLogic Server

	Using the Administration Console
	Logging In to the Administration Console
	Navigating the Administration Console
	Using the Change Center
	Working with the Administration Console

	A Brief Introduction to the Node Manager
	Using the WebLogic Scripting Tool (WLST)
	Offline and Online WLST
	Invoking WLST
	Using WLST in Script Mode
	Connecting to a WebLogic Server Instance
	Disconnecting from the Server
	Using the Help Command
	Key WLST Command Groups

	Summary

	2 Administering WebLogic Server Instances
	Managing the Servers
	Administration and Managed Servers
	Admin Server Failures and the Managed Servers
	Selecting the Start Mode for a Server
	Configuring Class Caching
	Setting the Environment Variables
	Configuring Server Instances with the Administration Console
	Providing User Credentials

	Using the Node Manager to Manage Servers
	Node Manager Capabilities
	Default Node Manager Configuration in WebLogic Server 12c
	Starting the Node Manager
	Stopping the Node Manager
	Monitoring the Node Manager Logs
	Running the Node Manager as a Windows Service
	Configuring the Node Manager
	The Node Manager Domains File
	Configuring Node Manager Using WLST Offline
	Key WLST Node Manager Commands

	Lifecycle of WebLogic Server Instances
	The STARTING, STANDBY, and RUNNING States
	The SHUTDOWN, SUSPENDING, and FAILED States
	Self-Health Monitoring
	How the Server Deals with the FAILED State
	Shutdown Command Options

	Starting and Stopping WebLogic Server
	Server Messages
	Server Logs
	Using a Startup Script to Start and Stop Servers
	Using the java weblogic.Server Command
	Configuring Server Attributes with weblogic.Server
	Using the Ant Tool to Manage Servers
	Managing Servers from the Administration Console
	Using WLST Without the Node Manager
	Using WLST with the Node Manager

	Setting Up a WebLogic Server Instance as a Windows Service
	Setting Up the Service
	Setting Up the Managed Server as a Windows Service
	Starting and Stopping the Service
	Changing Startup Credentials for a Service
	Removing a Service

	Dealing with WebLogic Server Failures
	Starting a Failed Admin Server
	Managed Server Independence (MSI) Mode
	Deleting Servers

	Summary

	3 Creating and Configuring WebLogic Server Domains
	Structure of a WebLogic Server Domain
	WebLogic Server Instances
	WebLogic Server Clusters
	Domain Resources
	Domain Restrictions
	Domain Directories

	Understanding Domain Configuration Changes
	The Domain Configuration File: config.xml
	Modifying Domain Configuration
	Using the Lock & Edit Mechanism in the Administration Console
	Tracking Changes with Configuration Auditing
	Making a Domain Read-Only
	Controlling the Logging of Configuration Changes

	Creating Domain Templates
	Templates Offered by WebLogic Server
	Creating a Custom Domain Template
	Creating a Custom Extension Template
	Using Server Templates
	Creating Templates with the pack and unpack Commands

	Creating a WebLogic Server Domain
	Using the weblogic.Server Command
	Using the Configuration Wizard to Create a Domain
	Extending Domains
	Creating a Domain with WLST Commands
	Selecting the Startup Mode for the WebLogic Domain

	Advanced Domain Configuration Options
	Configuring the Admin Server
	Configuring Managed Servers
	Cloning a Managed Server
	Configuring Clusters
	Assigning Managed Servers to Clusters
	Configuring Machines
	Targeting Deployments to Clusters or Servers
	Configuring a Persistent Store

	Configuring Server Environments
	Configuring the Network
	Configuring WebLogic Server as a Web Server
	Setting a Default Web Application
	Preventing POST Denial of Service Attacks
	Configuring HTTP Logging
	Proxying Requests to Other Web Servers
	Configuring the WebLogic Server Proxy Plug-Ins
	Configuring Virtual Hosts

	Protecting Domain Data
	Backing Up a Domain’s config.xml File
	Backing Up the Security Data

	Summary

	4 Configuring Naming, Transactions, Connections, and Messaging
	JNDI and Naming and Directory Services
	JNDI Architecture
	Viewing the WebLogic Server JNDI Tree
	Using JNDI to Connect a Java Client to a Server
	Clustered JNDI

	Configuring Transactions
	Transactions and the ACID Test
	Types of WebLogic Transactions
	Transactions and the Two-Phase Commit
	Configuring WebLogic JTA
	Monitoring Transaction Services
	Transaction Logs and Transaction Recovery

	Configuring Database Connections
	JDBC Architecture
	Enabling XA in the Database
	Data Sources
	Understanding WebLogic JDBC Configuration
	Using a JDBC System Module
	Creating a Generic Data Source
	Configuring a Multi Data Source
	Using a GridLink Data Source
	Configuring a JDBC Data Source
	Managing Data Sources
	Starting and Stopping a Data Source

	Configuring Java Messaging Services (JMS)
	Message Communication Modes
	Structure of a JMS Message
	Components of a JMS Messaging Application
	WebLogic JMS Architecture
	Configuring WebLogic Server JMS
	Monitoring JMS Servers
	Creating JMS System Modules
	System Modules and Subdeployments
	Migrating JMS-Related Services
	Store-and-Forward (SAF) Service for Reliable Messaging
	WebLogic Messaging Bridge
	Foreign JMS Servers

	Configuring WebLogic JavaMail
	Creating Mail Sessions
	Configuring a Mail Session

	Summary

	5 Configuring the WebLogic Server Environment
	Optimizing Application Performance
	WebLogic Server Thread Pools
	Work Managers
	Configuring Work Managers
	Work Manager Components
	Defining a Work Manager Through the Console

	Managing Server Work Overload
	Throttling the Thread Pool
	Handling Overload or Failure Conditions
	Limiting Active HTTP Sessions
	Dealing with Stuck Threads
	WebLogic Server Self-Health Monitoring

	Optimal Network Configuration
	Benefits of Using Network Channels
	Creating Custom Network Channels
	Tunneling
	Configuring Network Channels
	Designing Network Channels

	The Java Connector Architecture (JCA)
	Managing Resource Adapters Through the Console
	Monitoring Resource Adapter Connections
	The WebLogic Tuxedo Connector

	Summary

	6 Monitoring and Troubleshooting WebLogic Server
	The WebLogic Diagnostic Framework
	Using WLDF with the JRockit Flight Recorder
	Using the Monitoring Dashboard
	Configuring Diagnostic Image Capture
	Configuring a Diagnostic Archive
	Using a Diagnostic System Module
	Configuring Metric Collection
	Configuring WLDF Instrumentation
	Configuring Watches and Notifications
	Accessing the WLDF Diagnostic Data

	Monitoring WebLogic Server Instances
	Monitoring with the Administration Console
	Monitoring with JMX
	Using WLST Monitoring Scripts
	Monitoring with SNMP

	Understanding WebLogic Logging Services
	Understanding the Log Files
	Anatomy of a Log Message
	Viewing Logs
	Configuring a Domain Log Filter
	Subsystem Logs
	Understanding Server Log File Maintenance
	Setting Debugging Flags Using the Console
	Integrating Application and Server Logging
	Controlling Server Log Messages to Log Destinations

	WebLogic Server Troubleshooting
	Understanding Java Thread Dumps
	Collecting a JRockit Thread Dump
	JVM Crashes
	Generating Logs for Troubleshooting
	Using WLST Diagnostic Dump Commands
	Out-of-Memory Errors

	Summary

	7 Working with WebLogic Server Clusters
	Introduction to WebLogic Server Clusters
	Relationship Between Clusters and a Domain
	Deployment in a Cluster
	Cluster Architectures
	How Clusters Communicate
	Naming Cluster Instances

	Creating and Configuring a Cluster
	Using the Administration Console
	Using the WLST Script
	Configuring a Cluster
	Creating Dynamic Clusters
	The config.xml File and a Cluster

	Managing a WebLogic Server Cluster
	Starting and Stopping the Cluster
	Monitoring a Cluster

	Clustering WebLogic Server Services
	JNDI Naming Service
	JDBC Clustering
	JMS and Clusters
	Cluster-Targeted JMS Servers

	WebLogic Server Load Balancing
	Load-Balancing Servlets and JSPs
	Load Balancing for EJBs and RMI Objects

	Application Failover and Replication
	Detecting Application Failures
	Handling Servlet and JSP Failures
	Failover for EJBs and RMIs

	Handling Server and Service Failures
	Migratable Servers
	Manual and Automatic Service Migration
	Migratable Targets
	Leasing and Automatic Migration
	Migrating JMS-Related Services
	Migrating JTA Services
	Whole Server Migration
	Using WLST to Migrate Services

	Summary

	8 Understanding WebLogic Server Application Deployment
	Introduction to WebLogic Server Deployment
	Types of Applications You Can Deploy
	Deployment Targets
	Deployment Tools
	Deployment Descriptors, Annotations, and Deployment Plans
	Configuring Deployments with Deployment Plans

	Preparing Applications for Deployment
	Deploying an Archive File
	Deploying an Exploded Archive Directory
	Naming the Deployment and the Applications
	Storing the Deployment Files
	How WebLogic Server Accesses Source Files

	Staging Deployment Plans
	Deploying Applications
	Deployment Order
	Using the Administration Console for Deployment
	Using WLST to Deploy Applications
	Deploying with weblogic.Deployer
	Deploying with the wldeploy Ant Task

	Reducing Deployment Time During Development
	Using the Autodeployment Feature During Development
	Using FastSwap to Shorten the Development Cycle

	Monitoring and Updating Applications
	Monitoring Applications
	Using Administration Mode to Sanity Test Deployments
	Updating an Application

	Production Redeployment Strategies
	Performing a Production Redeployment

	Summary

	9 Managing WebLogic Server Security
	Java EE Security and OPSS
	Java EE Security and WebLogic Server
	The Java Security Manager
	Oracle Platform Security Services

	WebLogic Server Security Basics
	WebLogic Server Resources
	Security Realms
	Security Providers

	Managing Security Realms
	Creating and Configuring a New Security Realm
	Configuring the Security Providers
	Exporting and Importing Security Data
	Caching Security Information
	Configuring Entitlements Caching
	Changing the Default Security Realm
	Reverting to an Older Security Configuration

	Users, Groups, Roles, and Security Policies
	Users
	Groups
	Security Roles
	Configuring Security Policies
	Static and Dynamic Security Conditions

	Security Models for Web Applications and EJBs
	The Deployment Descriptor Only Model
	The Custom Roles Model
	The Custom Roles and Policies Model
	The Advanced Model
	Security-Related Deployment Descriptors

	Configuring the Embedded LDAP Server
	Configuring an RDBMS as the Security Store
	Setting Up the RDBMS Security Store
	Creating Tables in the RDBMS Store
	Setting Up JMS Notifications for Security Changes

	Configuring Domain Security
	Configuring Domain Security in the Administration Console
	Enabling Trust Between Domains
	Using Connection Filters

	Configuring SSL
	Configuring Identity and Trust
	Setting SSL Configuration Attributes
	Using the weblogic.management.username and weblogic.management.password

	Oracle WebLogic Security Best Practices
	Use Multiple Administrative Users
	Control Access to WebLogic Resources
	Avoid Running the Server Under a Privileged Account
	Enable Security Auditing
	Use Connection Filters
	Prevent Denial of Service Attacks
	Implement Security for Applications

	Summary

	10 WebLogic Server Performance Tuning
	Tuning WebLogic Server
	Thread Management
	Tuning the Network I/O

	Tuning the JVM
	Understanding Memory Management
	Understanding Locking

	Tuning Messaging Applications
	Tuning the Persistent Store
	Tuning WebLogic JMS
	Tuning WebLogic JMS Store-and-Forward

	Tuning the Applications and Managing Sessions
	Tuning Web Applications
	Using Oracle Coherence
	Tuning EJB Performance
	SQL Tuning Best Practices
	Managing Sessions
	JPA and TopLink

	Tuning Data Sources and Transactions
	Tuning Data Sources
	Tuning Transactions

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

