
www.allitebooks.com

http://www.allitebooks.org

Performance Testing
with JMeter
Second Edition

Test web applications using Apache JMeter with
practical, hands-on examples

Bayo Erinle

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Performance Testing with JMeter
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Second edition: April 2015

Production reference: 1200415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-481-3

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

[FM-3]

Credits

Author
Bayo Erinle

Reviewers
Vinay Madan

Satyajit Rai

Ripon Al Wasim

Commissioning Editor
Pramila Balan

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Adrian Raposo

Technical Editors
Tanvi Bhatt

Narsimha Pai

Mahesh Rao

Copy Editors
Charlotte Carneiro

Pranjali Chury

Rashmi Sawant

Project Coordinator
Kinjal Bari

Proofreaders
Simran Bhogal

Safis Editing

Joanna McMahon

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Bayo Erinle is an author and senior software engineer with over 11 years of
experience in designing, developing, testing, and architecting software. He has
worked in various spectrums of the IT field, including government, commercial,
finance, and health care. As a result, he has been involved in the planning,
development, implementation, integration, and testing of numerous applications,
including multi-tiered, standalone, distributed, and cloud-based applications. He is
passionate about programming, performance, scalability, and all things technical.
He is always intrigued by new technology and enjoys learning new things.

He currently resides in Maryland, US, and when he is not hacking away at some new
technology, he enjoys spending time with his wife, Nimota, and their three children,
Mayowa, Durotimi, and Fisayo.

He also authored Performance Testing with JMeter 2.9 (first edition) and JMeter
Cookbook, both by Packt Publishing.

I'd like to thank my wife and children for the countless hours
of sacrifice they endured while I worked on this project. I truly
appreciate their help.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

About the Reviewers

Vinay Madan is a consultant QA analyst and has an MS degree in information
systems. He has more than 8 years of experience in diversified fields of software
testing, quality assurance, and test management, both manual and automated.

He has worked on projects for leading international clients on smart card issuance,
payment gateway, big data, security, telecom, and e-learning. He is an avid learner
with strong technical expertise on functional and performance automation testing
tools, such as Selenium, QTP, Cucumber, JMeter, and Load Runner.

Over the years, he has worked with multiple testing methodologies, including
Agile, Scrum and customized Waterfall for Windows, the Web, and mobile. He
is passionate about automation, open source technologies and loves sharing his
knowledge on blogs and forums.

Satyajit Rai is a programmer with an interest in the design and implementation of
large-scale distributed systems. He has designed and developed large and complex
enterprise systems as well Internet-scale systems. He has developed expertise on
different programming languages on different platforms. He is passionate about
development-related best practices and puts a lot of emphasis on the performance,
reliability, maintainability, and operability aspects of the system.

Over the course of his work at Persistent Systems Ltd, Pune, India, he worked on
the performance aspects of many systems at different stages, such as architecture,
design, deployment, performance evaluation, and tuning. He used his knowledge
of a diverse set of systems to improve the performance of many such systems. At
Persistent Systems, he was also instrumental in building a large-scale performance
testing service, which was developed using JMeter on the AWS cloud.

I would like to thank my wife, Minakshi, and son, Achintya, for
being patient and allowing me to spend time on the review.

www.allitebooks.com

http://www.allitebooks.org

[FM-6]

Ripon Al Wasim is currently a senior software engineer at Cefalo (http://www.
cefalo.com/). He lives in Dhaka, Bangladesh. He has over 13 years of experience in
the software industry. His professional expertise includes software development and
testing. He also has some experience as a trainer in Java and testing.

He is a Sun Certified Java Programmer (SCJP) and JLPT Level 3 (Japanese Language
Proficiency Test) certified.

Ripon is an active participant in the professional community Stack Overflow
(http://stackoverflow.com/users/617450/ripon-al-wasim).

He is also one of the reviewers of Selenium WebDriver Practical Guide, Ripon's first
official effort with Packt Publishing.

I would like to thank my mother, who always prays for me. I would
like to extend deep gratitude and thanks to my wife, Koly, for her
everlasting love and support. I like to play and simply enjoy with my
daughter, Nawar, and my son, Nazif, in my leisure time. Thanks a lot
to Mohammad Golam Kabir, cofounder of Cefalo, for his inspiration.

www.allitebooks.com

http://stackoverflow.com/users/617450/ripon-al-wasim
http://www.allitebooks.org

[FM-7]

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Performance Testing Fundamentals	 1

The incident	 2
The aftermath	 2
Performance testing	 3
Performance testing and tuning	 7

Baselines	 8
Load and stress testing	 8

JMeter to the rescue	 9
Up and running with JMeter	 10

Installation	 10
Installing Java JDK	 12
Setting up JAVA_HOME	 12
Running JMeter	 13
Tracking errors during test execution	 18
Configuring JMeter	 18

Summary	 20
Chapter 2: Recording Your First Test	 21

Configuring the JMeter HTTP(S) Test Script Recorder	 21
Setting up your browser to use the proxy server	 24

Using a browser extension	 25
Changing the machine system settings	 25
Running your first recorded scenario	 28

Excilys Bank case study	 31
Parameterizing the script	 33

Anatomy of a JMeter test	 39
Test plan	 40
Thread groups	 40
Controllers	 41

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Samplers	 41
Logic controllers	 42
Test fragments	 42
Listeners	 42
Timers	 43
Assertions	 43
Configuration elements	 43
Preprocessor and postprocessor elements	 43

Summary	 44
Chapter 3: Submitting Forms	 45

Capturing simple forms	 45
Handling checkboxes	 46
Handling radio buttons	 47
Handling file uploads	 47
Handling file downloads	 48
Posting JSON data	 49
Reading JSON data	 53

Using BSF PostProcessor	 55
Handling XML responses	 57

Summary	 59
Chapter 4: Managing Sessions	 61

Managing sessions with cookies	 62
Managing sessions with URL rewriting	 66
Summary	 69

Chapter 5: Resource Monitoring	 71
Basic server monitoring	 72

Setting up Apache Tomcat Server	 72
Configuring Tomcat users	 76
Setting up a monitor controller in JMeter	 77

Monitoring the server with a JMeter plugin	 81
Installing the plugins	 81
Adding monitor listeners to the test plan	 83

Summary	 87
Chapter 6: Distributed Testing	 89

Remote testing with JMeter	 89
Configuring JMeter slave nodes	 91

Configuring one slave per machine	 92
Configuring the master node	 95
Configuring multiple slave nodes on a single box	 99
Configuring the master node	 101

Table of Contents

[iii]

Leveraging the cloud for distributed testing	 102
Obtaining your access key, secret key, and key pair	 103
Launching the AWS instance	 105
Executing the test plan	 107
Viewing the results from the virtual machines	 108

Using cloud services	 111
Using Flood.io	 111
Using BlazeMeter	 114

Summary	 117
Chapter 7: Helpful Tips	 119

JMeter properties and variables	 119
JMeter functions	 121
The Regular Expression tester	 122
The debug sampler	 123
Using timers in your test plan	 124

The Constant Timer	 124
The Gaussian Random Timer	 124
The Uniform Random Timer	 124
The Constant Throughput Timer	 124
The Synchronizing Timer	 125
The Poisson Random Timer	 125

The JDBC Request sampler	 125
Setting up the H2 database	 125
Configuring a JDBC Connection Configuration component	 128
Adding a JDBC Request sampler	 129

Using a MongoDB Sampler	 130
A Dummy Sampler	 133
The JSON Path Extractor element	 135
Handling RESTful web services	 136
Summary	 137

Index	 139

[v]

Preface
Performance testing is a type of testing intended to determine the responsiveness,
reliability, throughput, interoperability, and scalability of a system and/or application
under a given workload. It is critical and essential to the success of any software
product launch and its maintenance. It also plays an integral part in scaling an
application out to support a wider user base.

Apache JMeter is a free open source, cross-platform, performance testing tool
that has been around since the late 90s. It is mature, robust, portable, and highly
extensible. It has a large user base and offers lots of plugins to aid testing.

This is a practical hands-on book that focuses on how to leverage Apache JMeter to
meet your testing needs. It starts with a quick introduction on performance testing, but
quickly moves into engaging topics, including recording test scripts, monitoring system
resources, an extensive look at several JMeter components, leveraging the cloud for
testing, extending Apache JMeter capabilities via plugins, and so on. Along the way,
you will do some scripting, learn and use tools such as Vagrant, Apache Tomcat, and be
armed with all the knowledge you need to take on your next testing engagement.

Whether you are a developer or tester, this book is sure to give you some valuable
knowledge to aid you in attaining success in your future testing endeavors.

What this book covers
Chapter 1, Performance Testing Fundamentals, covers the fundamentals of performance
testing and the installation and configuration of JMeter.

Chapter 2, Recording Your First Test, dives into recording your first JMeter test script
and covers the anatomy of a JMeter test script.

Preface

[vi]

Chapter 3, Submitting Forms, covers form submission in detail. It includes handling
various HTML form elements (checkboxes, radio, file uploads and downloads, and
so on), JSON data, and XML.

Chapter 4, Managing Sessions, explains session management, including cookies and
URL rewriting.

Chapter 5, Resource Monitoring, dives into the active monitoring of system resources
while executing tests. You get to start up a server and extend JMeter via plugins.

Chapter 6, Distributed Testing, takes an in-depth look at leveraging the cloud for
performance testing. We dive into tools such as Vagrant and AWS, and explore the
existing cloud testing platforms, BlazeMeter and Flood.io.

Chapter 7, Helpful Tips, provides you with helpful techniques and tips for getting the
most out of JMeter.

What you need for this book
To successfully execute the code samples provided in this book, you need
the following:

•	 A computer with an Internet connection
•	 Apache JMeter (http://jmeter.apache.org/)
•	 Java Runtime Environment (JRE) or Java Development Kit (JDK)

(http://www.oracle.com/technetwork/java/javase/downloads/index.
html)

•	 In addition, for Chapter 5, Resource Monitoring, you need the following:
°° Apache Tomcat (http://tomcat.apache.org)

•	 For Chapter 6, Distributed Testing, you need the following :
°° Vagrant (http://www.vagrantup.com/)
°° An AWS account (http://aws.amazon.com/)
°° A BlazeMeter account (http://blazemeter.com/)
°° A Flood.io account (https://flood.io/)

This book contains pointers and additional helpful links in setting all these up.

http://jmeter.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org
http://www.vagrantup.com/
http://aws.amazon.com/
http://blazemeter.com/
https://flood.io/

Preface

[vii]

Who this book is for
The book is targeted primarily at developers and testers. Developers who have
always been intrigued by performance testing and have wanted to dive in on the
action will find it extremely useful and gain insightful skills as they walk through
the practical examples in this book.

Testers will also benefit from this book since it will guide them through solving
practical, real-world challenges when testing modern web applications, giving them
ample knowledge to aid them in becoming better testers. Additionally, they will be
exposed to certain helpful testing tools that will come in handy at some point in their
testing careers.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Should you need to customize JMeter default values, you can do so by editing the
jmeter.properties file in the JMETER_HOME/bin folder, or making a copy of that
file, renaming it to something different (for example, my-jmeter.properties), and
specifying that as a command-line option when starting JMeter."

A block of code is set as follows:

name=firstName0lastName0
name_g=2
name_g0="firstName":"Larry","jobs":[{"id":1,"description":"Doctor"}],"
lastName":"Ellison"
name_g1=Larry
name_g2=Ellison
server=jmeterbook.aws.af.cm

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

name=firstName0lastName0
name_g=2
name_g0="firstName":"Larry","jobs":[{"id":1,"description":"Doctor"}],"
lastName":"Ellison"
name_g1=Larry
name_g2=Ellison
server=jmeterbook.aws.af.cm

Preface

[viii]

Any command-line input or output is written as follows:

vagrant ssh n1

cd /opt/apache-jmeter-2.12/bin

./jmeter --version

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Launch JMeter."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Preface

[ix]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/4813OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/4813OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/4813OS_ColoredImages.pdf

[1]

Performance Testing
Fundamentals

Software performance testing is used to determine the speed or effectiveness
of a computer, network, software program or device. This process can involve
quantitative tests done in a lab, such as measuring the response time or the number
of MIPS (millions of instructions per second) at which a system functions.

-Wikipedia

Let's consider a case study. Baysoft Training Inc. is an emerging start-up company
focused on redefining how software will help to get more people trained in various
fields in the IT industry. The company achieves this goal by providing a suite of
products, including online courses, on-site training, and off-site training. As such,
one of their flagship products TrainBot, a web-based application is focused solely
on registering individuals for courses of interest that will aid them in attaining
career goals. Once registered, the client can then go on to take a series of interactive
online courses.

Performance Testing Fundamentals

[2]

The incident
Up until recently, traffic on TrainBot was light as it was only opened to a handful
of clients, since it was still in closed beta. Everything was fully operational and the
application as a whole was very responsive. Just a few weeks ago, TrainBot was
opened to the public and all is still good and dandy. To celebrate the launch and
promote its online training courses, Baysoft Training Inc. recently offered 75 percent
off on all the training courses. However, this promotional offer caused a sudden influx
on TrainBot, far beyond what the company had anticipated. Web traffic shot up by
300 percent and suddenly things took a turn for the worse. Network resources weren't
holding up well, server CPUs and memory were at 90-95 percent, and database servers
weren't far behind due to high I/O and contention. As a result, most web requests
began to get slower response times, making TrainBot totally unresponsive for most of
its first-time clients. It didn't take too long after that, for the servers to crash and for the
support lines to get flooded.

The aftermath
It was a long night at the Baysoft Training Inc. corporate office. How did this
happen? Could this have been avoided? Why was the application and system
not able to handle the load? Why weren't adequate performance and stress tests
conducted on the system and application? Was it an application problem, a
system resource issue, or a combination of both? All these were questions that the
management demanded answers to from the group of engineers, which comprised
software developers, network and system engineers, Quality Assurance (QA) testers,
and database administrators gathered in the WAR room. There sure was a lot of
finger pointing and blame to go around the room. After a little brainstorming, it
wasn't long before the group had to decide what needed to be done. The application
and its system resources needed to undergo extensive and rigorous testing. This
included all facets of the application and all supporting system resources including,
but not limited to, infrastructure, network, database, servers, and load balancers.
Such a test would help all involved parties discover exactly where the bottlenecks are
and address them accordingly.

Chapter 1

[3]

Performance testing
Performance testing is a type of testing intended to determine the responsiveness,
reliability, throughput, interoperability, and scalability of a system and/or application
under a given workload. It could also be defined as a process of determining the
speed or effectiveness of a computer, network, software application, or device. Testing
can be conducted on software applications, system resources, targeted application
components, databases, and a whole lot more. It normally involves an automated
test suite as it allows easy repeatable simulations of a variety of normal, peak, and
exceptional load conditions. Such forms of testing help to verify whether a system or
application meets the specifications claimed by its vendor. The process can compare
applications in terms of parameters such as speed, data transfer rate, throughput,
bandwidth, efficiency, or reliability. Performance testing can also aid as a diagnostic
tool in determining bottlenecks and single points of failures. It is often conducted in a
controlled environment and in conjunction with stress testing; a process of determining
the ability of a system or application to maintain a certain level of effectiveness under
unfavorable conditions.

Why bother? Using Baysoft's case study, it should be obvious why companies
bother and go through great lengths to conduct performance testing. The disaster
could have been minimized, if not totally eradicated, if effective performance testing
had been conducted on TrainBot prior to opening it up to the masses. As we go
ahead in this chapter, we will continue to explore the many benefits of effective
performance testing.

At a very high level, performance testing is almost always conducted to address one
or more risks related to expenses, opportunity costs, continuity, and/or corporate
reputation. Conducting such tests helps to give insights into software application
release readiness, adequacy of network and system resources, infrastructure stability,
and application scalability, to name a few. Gathering estimated performance
characteristics of application and system resources prior to the launch helps address
issues early and provides valuable feedback to stakeholders; helping them make key
and strategic decisions.

Performance testing covers a whole lot of ground including areas such as:

•	 Assessing application and system production readiness
•	 Evaluating against performance criteria (for example, transactions per

second, page views per day, registrations per day, and so on)
•	 Comparing performance characteristics of multiple systems or

system configurations
•	 Identifying the source of performance bottlenecks

Performance Testing Fundamentals

[4]

•	 Aiding with performance and system tuning
•	 Helping to identify system throughput levels
•	 Acting as a testing tool

Most of these areas are intertwined with each other, each aspect contributing to
attaining the overall objectives of stakeholders. However, before jumping right
in, let's take a moment to understand the following core activities in conducting
performance tests:

•	 Identifying acceptance criteria: What is the acceptable performance of the
various modules of the application under load? Specifically, identifying the
response time, throughput, and resource utilization goals and constraints.
How long should the end user wait before rendering a particular page? How
long should the user wait to perform an operation? Response time is usually
a user concern, throughput a business concern, and resource utilization a
system concern. As such, response time, throughput, and resource utilization
are key aspects of performance testing. Acceptance criteria are usually driven
by stakeholders and it is important to continuously involve them as the
testing progresses, as the criteria may need to be revised.

•	 Identifying the test environment: Becoming familiar with the physical test
and production environments is crucial for a successful test run. Knowing
things such as the hardware, software, and network configurations of the
environment helps to derive an effective test plan and identify testing
challenges from the outset. In most cases, these will be revisited and/or
revised during the testing cycle.

•	 Planning and designing tests: Know the usage pattern of the application
(if any), and come up with realistic usage scenarios including variability
among the various scenarios. For example, if the application in question has a
user registration module, how many users typically register for an account in
a day? Do those registrations happen all at once, at the same time, or are they
spaced out? How many people frequent the landing page of the application
within an hour? Questions such as these help put things in perspective and
design variations in the test plan. Having said that, there may be times where
the application under test is new and so no usage pattern has been formed
yet. At such times, stakeholders should be consulted to understand their
business process and come up with as close to a realistic test plan as possible.

Chapter 1

[5]

•	 Preparing the test environment: Configure the test environment, tools, and
resources necessary to conduct the planned test scenarios. It is important to
ensure that the test environment is instrumented for resource monitoring to
help analyze results more efficiently. Depending on the company, a separate
team might be responsible for setting up the test tools; while another
team may be responsible for configuring other aspects such as resource
monitoring. In other organizations, a single team may be responsible for
setting up all aspects.

•	 Preparing the test plan: Using a test tool, record the planned test scenarios.
There are numerous testing tools available, both free and commercial that do
the job quite well, with each having their pros and cons.
Such tools include HP Load Runner, NeoLoad, LoadUI, Gatling, WebLOAD,
WAPT, Loadster, LoadImpact, Rational Performance Tester, Testing
Anywhere, OpenSTA, Loadstorm, The Grinder, Apache Benchmark,
HttpPerf, and so on. Some of these are commercial while others are not as
mature or portable or extendable as JMeter. HP Load Runner, for example,
is a bit pricey and limits the number of simulated threads to 250 without
purchasing additional licenses. It does offer a much better graphical interface
and monitoring capability though. Gatling is the new kid on the block, is free
and looks rather promising. It is still in its infancy and aims to address some
of the shortcomings of JMeter, including easier testing DSL (domain-specific
language) versus JMeter's verbose XML, and better and more meaningful
HTML reports, among others. Having said that, it still has only a tiny user
base as compared to JMeter, and not everyone may be comfortable with
building test plans in Scala, its language of choice. Programmers may find it
more appealing.
In this book, our tool of choice will be Apache JMeter to perform this step.
This shouldn't be a surprise considering the title of the book.

•	 Running the tests: Once recorded, execute the test plans under light load and
verify the correctness of the test scripts and output results. In cases where
test or input data is fed into the scripts to simulate more realistic data (more
on this in later chapters), also validate the test data. Another aspect to pay
careful attention to during test plan execution is the server logs. This can be
achieved through the resource monitoring agents set up to monitor the servers.
It is paramount to watch for warnings and errors. A high rate of errors, for
example, can be an indication that something is wrong with the test scripts,
application under test, system resource, or a combination of all these.

Performance Testing Fundamentals

[6]

•	 Analyzing results, report, and retest: Examine the results of each successive
run and identify areas of bottleneck that need to be addressed. These could
be related to system, database, or application. System-related bottlenecks
may lead to infrastructure changes, such as increasing memory available to
the application, reducing CPU consumption, increasing or decreasing thread
pool sizes, revising database pool sizes, reconfiguring network settings,
and so on. Database-related bottlenecks may lead to analyzing database
I/O operations, top queries from the application under test, profiling
SQL queries, introducing additional indexes, running statistics gathering,
changing table page sizes and locks, and a lot more. Finally, application-
related changes might lead to activities such as refactoring application
components, reducing application memory consumption and database round
trips, and so on. Once the identified bottlenecks are addressed, the test(s)
should then be rerun and compared with previous runs. To help better track
what change or group of changes resolved a particular bottleneck, it is vital
that changes are applied in an orderly fashion, preferably one at a time. In
other words, once a change is applied, the same test plan is executed and the
results are compared with a previous run to see whether the change made
had any improved or worsened effect on results. This process repeats till the
performance goals of the project have been met.

The performance testing core activities are displayed as follows:

Performance testing core activities

Chapter 1

[7]

Performance testing is usually a collaborative effort between all parties involved.
Parties include business stakeholders, enterprise architects, developers, testers,
DBAs, system admins, and network admins. Such collaboration is necessary to
effectively gather accurate and valuable results when conducting tests. Monitoring
network utilization, database I/O and waits, top queries, and invocation counts
helps the team find bottlenecks and areas that need further attention in ongoing
tuning efforts.

Performance testing and tuning
There is a strong relationship between performance testing and tuning, in the
sense that one often leads to the other. Often, end-to-end testing unveils system
or application bottlenecks that are regarded unacceptable with project target goals.
Once those bottlenecks are discovered, the next steps for most teams are a series of
tuning efforts to make the application perform adequately.

Such efforts are normally included but are not limited to:

•	 Configuring changes in system resources
•	 Optimizing database queries
•	 Reducing round trips in application calls; sometimes leading to redesigning

and re-architecting problematic modules
•	 Scaling out application and database server capacity
•	 Reducing application resource footprint
•	 Optimizing and refactoring code, including eliminating redundancy and

reducing execution time

Tuning efforts may also commence if the application has reached acceptable
performance but the team wants to reduce the amount of system resources being
used, decrease volume of hardware needed, or further increase in system performance.

After each change (or series of changes), the test is re-executed to see whether
performance has improved or declined as a result of the changes. The process
will be continued with the performance results having reached acceptable goals.
The outcome of these test-tuning circles normally produces a baseline.

Performance Testing Fundamentals

[8]

Baselines
Baseline is a process of capturing performance metric data for the sole purpose
of evaluating the efficacy of successive changes to the system or application. It is
important that all characteristics and configurations except those specifically being
varied for comparison remain the same in order to make effective comparisons as
to which change (or series of changes) is driving results towards the targeted goal.
Armed with such baseline results, subsequent changes can be made to the system
configuration or application and testing results can be compared to see whether such
changes were relevant or not. Some considerations when generating baselines include:

•	 They are application-specific
•	 They can be created for system, application, or modules
•	 They are metrics/results
•	 They should not be over generalized
•	 They evolve and may need to be redefined from time to time
•	 They act as a shared frame of reference
•	 They are reusable
•	 They help identify changes in performance

Load and stress testing
Load testing is the process of putting demand on a system and measuring its
response, that is, determining how much volume the system can handle. Stress
testing is the process of subjecting the system to unusually high loads far beyond
its normal usage pattern to determine its responsiveness. These are different
from performance testing whose sole purpose is to determine the response and
effectiveness of a system, that is, how fast the system is. Since load ultimately affects
how a system responds, performance testing is almost always done in conjunction
with stress testing.

Chapter 1

[9]

JMeter to the rescue
In the previous section, we covered the fundamentals of conducting a performance
test. One of the areas performance testing covers is testing tools. Which testing tool
do you use to put the system and application under load? There are numerous
testing tools available to perform this operation from free to commercial solutions.
However, our focus in this book will be on Apache JMeter, a free open source
cross-platform desktop application from The Apache Software foundation. JMeter
has been around since 1998 according to historic change logs on its official site,
making it a mature, robust, and reliable testing tool. Cost may also have played a
role in its wide adoption. Small companies usually may not want to foot the bill for
commercial end testing tools, which often place restrictions, for example, on how
many concurrent users one can spin off. My first encounter with JMeter was exactly
a result of this. I worked in a small shop that had paid for a commercial testing tool,
but during the course of testing, we had outrun the licensing limits of how many
concurrent users we needed to simulate for realistic test plans. Since JMeter was free,
we explored it and were quite delighted with the offerings and the share amount of
features we got for free.

Here are some of its features:

•	 Performance test of different server types including web (HTTP and HTTPS),
SOAP, database, LDAP, JMS, mail, and native commands or shell scripts

•	 Complete portability across various operating systems
•	 Full multithreading framework allowing concurrent sampling by many

threads and simultaneous sampling of different functions by separate
thread groups

•	 Graphical User Interface (GUI)
•	 HTTP proxy recording server
•	 Caching and offline analysis/replaying of test results
•	 High extensibility
•	 Live view of results as testing is being conducted

JMeter allows multiple concurrent users to be simulated on the application allowing
you to work towards most of the target goals obtained earlier in this chapter, such as
attaining baseline, identifying bottlenecks, and so on.

Performance Testing Fundamentals

[10]

It will help answer questions such as:

•	 Will the application still be responsive if 50 users are accessing it concurrently?
•	 How reliable will it be under a load of 200 users?
•	 How much of the system resources will be consumed under a load of

250 users?
•	 What will the throughput look like with 1000 users active in the system?
•	 What will be the response time for the various components in the application

under load?

JMeter, however, should not be confused with a browser (more on this in Chapter 2,
Recording Your First Test and Chapter 3, Submitting Forms). It doesn't perform all the
operations supported by browsers, in particular, JMeter does not execute JavaScript
found in HTML pages, nor does it render HTML pages the way a browser does.
However, it does give you the ability to view request responses as HTML through
many of its listeners, but the timings are not included in any samples. Furthermore,
there are limitations to how many users can be spun on a single machine. These vary
depending on the machine specifications (for example, memory, processor speed,
and so on) and the test scenarios being executed. In our experience, we have mostly
been able to successfully spin off 250-450 users on a single machine with a 2.2 GHz
processor and 8 GB of RAM.

Up and running with JMeter
Now, let's get up and running with JMeter, beginning with its installation.

Installation
JMeter comes as a bundled archive so it is super easy to get started with it. Those
working in corporate environments behind a firewall or machines with non-admin
privileges appreciate this more. To get started, grab the latest binary release by
pointing your browser to http://jmeter.apache.org/download_jmeter.cgi.
At the time of writing this, the current release version is 2.12. The download site
offers the bundle as both .zip file and .tar file. In this book, we go with the .zip
file option, but free feel to download the .tgz file if that's your preferred way of
grabbing archives.

Once downloaded, extract the archive to a location of your choice. Throughout this
book, the location you extracted the archive to will be referred to as JMETER_HOME.

http://jmeter.apache.org/download_jmeter.cgi

Chapter 1

[11]

Provided you have a JDK/JRE correctly installed and a JAVA_HOME environment
variable set, you are all set and ready to run!

The following screenshot shows a trimmed down directory structure of a vanilla
JMeter install:

JMETER_HOME folder structure

Following are some of the folders in the Apache-JMeter-2.12 as shown in the
preceding screenshot:

•	 bin: This folder contains executable scripts to run and perform other
operations in JMeter

•	 docs: This folder contains a well-documented user guide
•	 extras: This folder contains miscellaneous items including

samples illustrating the usage of the Apache Ant build tool
(http://ant.apache.org/) with JMeter and bean shell scripting

•	 lib: This folder contains utility JAR files needed by JMeter (you may add
additional JARs here to use from within JMeter—more on this will be
covered later)

•	 printable_docs: This is the printable documentation

www.allitebooks.com

http://ant.apache.org/
http://www.allitebooks.org

Performance Testing Fundamentals

[12]

Installing Java JDK
Follow these steps to install Java JDK:

1.	 Go to http://www.oracle.com/technetwork/java/javase/downloads/
index.html.

2.	 Download Java JDK (not JRE) compatible with the system that you will use
to test. At the time of writing, JDK 1.8 (update 20) was the latest and that is
what we use throughout this book.

3.	 Double-click on the executable and follow the on-screen instructions.

On Windows systems, the default location for the JDK is under Program
Files. While there is nothing wrong with this, the issue is that the
folder name contains a space, which can sometimes be problematic when
attempting to set PATH and run programs such as JMeter depending
on the JDK from the command line. With this in mind, it is advisable to
change the default location to something such as C:\tools\jdk.

Setting up JAVA_HOME
Here are the steps to set up the JAVA_HOME environment variable on Windows and
Unix operating systems.

On Windows
For illustrative purposes, assume that you have installed Java JDK at C:\tools\jdk:

1.	 Go to Control Panel.
2.	 Click on System.
3.	 Click on Advance System settings.
4.	 Add Environment to the following variables:

°° Value: JAVA_HOME
°° Path: C:\tools\jdk

5.	 Locate Path (under system variables, bottom half of the screen).
6.	 Click on Edit.
7.	 Append %JAVA_HOME%/bin to the end of the existing path value (if any).

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 1

[13]

On Unix
For illustrative purposes, assume that you have installed Java JDK at /opt/tools/jdk:

1.	 Open up a terminal window.
2.	 Export JAVA_HOME=/opt/tools/jdk.
3.	 Export PATH=$PATH:$JAVA_HOME.

It is advisable to set this in your shell profile settings such as .bash_profile
(for bash users) or .zshrc (for zsh users) so you won't have to set it for each
new terminal window you open.

Running JMeter
Once installed, the bin folder under the JMETER_HOME folder contains all the
executable scripts that can be run. Based on the operating system that you installed
JMeter on, you either execute the shell scripts (.sh file) for operating systems that are
Unix/Linux flavored, or their batch (.bat file) counterparts on operating systems
that are Windows flavored.

JMeter files are saved as XML files with a .jmx extension.
We refer to them as test scripts or JMX files in this book.

These scripts include:

•	 jmeter.sh: This script launches JMeter GUI (the default)
•	 jmeter-n.sh: This script launches JMeter in non-GUI mode (takes a JMX file

as input)
•	 jmeter-n-r.sh: This script launches JMeter in non-GUI mode remotely
•	 jmeter-t.sh: This opens a JMX file in the GUI
•	 jmeter-server.sh: This script starts JMeter in server mode (this will be

kicked off on the master node when testing with multiple machines remotely;
more on this in Chapter [x])

•	 mirror-server.sh: This script runs the mirror server for JMeter
•	 shutdown.sh: This script gracefully shuts down a running non-GUI instance
•	 stoptest.sh: This script abruptly shuts down a running non-GUI instance

Performance Testing Fundamentals

[14]

To start JMeter, open a terminal shell, change to the JMETER_HOME/bin folder and
run the following command on Unix/Linux:

./jmeter.sh

Run the following command on Windows:

jmeter.bat

A short moment later, you will see the JMeter GUI displayed in the Configuring
proxy server section. Take a moment to explore the GUI. Hover over each icon to see
a short description of what it does. The Apache JMeter team has done an excellent
job with the GUI. Most icons are very similar to what you are used to, which helps
ease the learning curve for new adapters. Some of the icons, for example, stop and
shutdown, are disabled for now till a scenario/test is being conducted. In the next
chapter, we will explore the GUI in more detail as we record our first test script.

On the terminal window, you might see some warnings from Java 8 that some Java
options (PermSize and MaxPerSize) provided will be ignored. Do not be alarmed.
JDK 8 came with better memory management and some default Java options used to
start JMeter are no longer required, so it ignores them. You can read more about this
at the following links:

http://java.dzone.com/articles/java-8-permgen-metaspace

http://www.infoq.com/news/2013/03/java-8-permgen-metaspace

The environment variable JVM_ARGS can be used to override JVM
settings in the jmeter.bat or jmeter.sh script. Consider the
following example:
export JVM_ARGS="-Xms1024m -Xmx1024m -Dpropname=propvalue"

Command-line options
Running JMeter with incorrect options provides you with usage info. The options
provided are as follows:

./jmeter.sh –

-h, --help

print usage information and exit

-v, --version

print the version information and exit

-p, --propfile<argument>

http://java.dzone.com/articles/java-8-permgen-metaspace
http://www.infoq.com/news/2013/03/java-8-permgen-metaspace

Chapter 1

[15]

thejmeter property file to use

-q, --addprop<argument>

additionalJMeter property file(s)

-t, --testfile<argument>

thejmeter test(.jmx) file to run

-l, --logfile <argument>

the file to log samples to

-j, --jmeterlogfile<argument>

jmeter run log file (jmeter.log)

-n, --nongui

 run JMeter in nongui mode

This is a snippet (non-exhaustive list) of what you might see if you did the same.
We will explore some, but not all these options as we go through the book.

JMeter's Classpath
Since JMeter is 100 percent pure Java, it comes packed with functionality to get most
of the test cases scripted. However, there might come a time when you need to pull
in a functionality provided by a third-party library or one developed by yourself,
which is not present by default. As such, JMeter provides two directories where such
third-party libraries can be placed to be auto discovered on its classpath:

•	 JMETER_HOME/lib: This is used for utility JARs.
•	 JMETER_HOME/lib/ext: This is used for JMeter components and add-ons.

All custom-developed JMeter components should be placed in the lib/ext
folder, while third-party libraries (JAR files) should reside in the lib folder.

Configuring a proxy server
If you are working from behind a corporate firewall, you may need to configure
JMeter to work with it, providing it with the proxy server host and port number.
To do so, supply additional command-line parameters to JMeter when starting
it up. Some of them are as follows:

•	 -H: This command-line parameter specifies the proxy server hostname or
IP address

•	 -P: This specifies the proxy server port
•	 -u: This specifies the proxy server username if it is secure
•	 -a: This specifies the proxy server password if it is secure, for example:

./jmeter.sh -H proxy.server –P 7567 -u username -a password

Performance Testing Fundamentals

[16]

On Windows, run the jmeter.bat file instead.

Do not confuse the proxy server mentioned here with JMeter's
built-in HTTP Proxy Server, which is used to record HTTP or
HTTPS browser sessions. We will be exploring this in the next
chapter when we record our first test scenario.

The screen is displayed as follows:

JMeter GUI

Running in non-GUI mode
As described earlier, JMeter can run in non-GUI mode. This is needed when you run
remotely, or want to optimize your testing system by not taking the extra overhead
cost of running the GUI. Normally, you will run the default (GUI) when preparing
your test scripts and running light load, but run the non-GUI mode for higher loads.

To do so, use the following command-line options:

•	 -n: This command-line option indicates to run in non-GUI mode
•	 -t: This command-line option specifies the name of the JMX test file
•	 -l: This command-line option specifies the name of the JTL file to

log results to

Chapter 1

[17]

•	 -j: This command-line option specifies the name of the JMeter run log file
•	 -r: This command-line option runs the test servers specified by the

remote_hosts JMeter property
•	 -R: This command-line option runs the test in the specified remote servers

(for example, -Rserver1,server2)

In addition, you can also use the -H and -P options to specify proxy server host and
post like we saw earlier:

./jmeter.sh -n -t test_plan_01.jmx -l log.jtl

Running in server mode
This is used when performing distributed testing, that is, using more testing servers
to generate additional load on your system. JMeter will be kicked off in server mode
on each remote server (slave) and then a GUI on the master server will be used to
control the slave nodes. We will discuss this in detail when we dive into distributed
testing in Chapter 4, Managing Sessions:

./jmeter-server.sh

Specify the server.exitaftertest=true JMeter property if
you want the server to exit after a single test is completed. It is
set as off by default.

Overriding properties
JMeter provides two ways to override Java, JMeter, and logging properties. One
way is to directly edit the jmeter.properties, which resides in the JMETER_HOME/
bin folder. I suggest that you take a peek into this file and see the vast number of
properties you can override. This is one of the things that makes JMeter so powerful
and flexible. On most occasions, you will not need to override the defaults, as they
have sensible default values.

The other way to override these values is directly from the command line when
starting JMeter.

The options available to you include:

•	 Defining a Java system property value:
-D<property name>=<value>

•	 Defining a local JMeter property:
-J<property name>=<value>

Performance Testing Fundamentals

[18]

•	 Defining a JMeter property to be sent to all remote servers:
-G<property name>=<value>

•	 Defining a file containing JMeter properties to be sent to all remote servers:
-G<property file>

•	 Overriding a logging setting, setting a category to a given priority level:
-L<category>=<priority>
./jmeter.sh -Duser.dir=/home/bobbyflare/jmeter_stuff \
 -Jremote_hosts=127.0.0.1 -Ljmeter.engine=DEBUG

Since command-line options are processed after the logging
system has been set up, any attempt to use the -J flag to update
the log_level or log_file properties will have no effect.

Tracking errors during test execution
JMeter keeps track of all errors that occur during a test in a log file named jmeter.
log by default. The file resides in the folder from which JMeter was launched. The
name of this log file, like most things, can be configured in jmeter.properties or
via a command-line parameter -j <name_of_log_file>. When running the GUI,
the error count is indicated in the top-right corner, that is, to the left of the number
of threads running for the test, as shown in Figure 1.4 in the following screenshot.
Clicking on it reveals the log file contents directly at the bottom of the GUI. The log
file provides an insight into what exactly is going on in JMeter when your tests are
being executed and helps determine the cause of error(s) when they occur.

Figure 1.4: JMeter GUI error count/indicator

Configuring JMeter
Should you need to customize JMeter default values, you can do so by editing the
jmeter.properties file in the JMETER_HOME/bin folder, or making a copy of that
file, renaming it to something different (for example, my-jmeter.properties), and
specifying that as a command-line option when starting JMeter.

Chapter 1

[19]

Some options you can configure include:

•	 xml.parser: This specifies Custom XML parser implementation. The default
value is org.apache.xerces.parsers.SAXParser. It is not mandatory. If
you found the provided SAX parser buggy for some of your use cases, it
provides you with the option to override it with another implementation. For
example, you can use javax.xml.parsers.SAXParser, provided that the
right JARs exist on your instance of JMeter classpath.

•	 remote_hosts: This is a comma-delimited list of remote JMeter hosts (or
host:port if required). When running JMeter in a distributed environment,
list the machines where you have JMeter remote servers running. This will
allow you to control those servers from this machine's GUI. This applies only
to distributed testing and is not mandatory. More on this will be discussed in
Chapter 6, Distributed Testing.

•	 not_in_menu: This is a list of components you do not want to see in JMeter's
menus. Since JMeter has quite a number of components, you may wish to
restrict it to show only components you are interested in or those you use
regularly. You may list their classname or their class label (the string that
appears in JMeter's UI) here, and they will no longer appear in the menus. The
defaults are fine and in our experience, we have never had to customize them,
but we list it here so that you are aware of its existence. It is not mandatory.

•	 user.properties: This specifies the name of the file containing additional
JMeter properties. These are added after the initial property file, but before the
-q and -J options are processed. This is not mandatory. User properties can be
used to provide additional classpath configurations such as plugin paths via
the search_paths attribute, and utility JAR paths via the user_classpath
attribute. In addition, these properties files can be used to fine-tune JMeter
components' log verbosity.

°° search_paths: This specifies a list of paths (separated by ;) that
JMeter will search for JMeter add-on classes; for example additional
samplers. This is in addition to any of the JARs found in the lib/
ext folder. This is not mandatory. This comes in handy, for example,
when extending JMeter with additional plugins that you don't intend
to install in the JMETER_HOME/lib/ext folder. You can use this to
specify an alternate location on the machine to pick up the plugins.
Refer to Chapter 4, Managing Sessions.

°° user.classpath: In addition to JARs in the lib folder, use this
attribute to provide additional paths that JMeter will search for
utility classes. It is not mandatory.

Performance Testing Fundamentals

[20]

•	 system.properties: This specifies the name of the file containing additional
system properties for JMeter to use. These are added before the -S and -D
options are processed. This is not mandatory. This typically provides you
with the ability to fine-tune various SSL settings, key stores, and certificates.

°° ssl.provider: This specifies the custom SSL implementation
if you don't want to use the built-in Java implementation. This
is not mandatory. If, for some reason, the default built-in Java
implementation of SSL, which is quite robust, doesn't meet your
particular usage scenario, this allows you to provide a custom one.
In our experience, the default has always been sufficient.

The command-line options are processed in the following order:

•	 -p profile: This specifies the custom jmeter properties file to be used. If
present, it is loaded and processed. This is optional.

•	 jmeter.properties file: This is the default configuration file for JMeter and
is already populated with sensible default values. It is loaded and processed
after any user-provided custom properties file.

•	 -j logfile: This is optional. It specifies the jmeter logfile. It is loaded and
processed after the jmeter.properties file that we discussed previously.

•	 Logging is initialized.
•	 user.properties: is loaded (if any).
•	 system.properties: is loaded (if any).
•	 All other command-line options are processed.

Summary
In this chapter, we have covered the fundamentals of performance testing. We also
discussed key concepts and activities surrounding performance testing in general.
In addition, we installed JMeter and you learned how to get it fully running on a
machine and explored some of the configurations available with it. We explored
some of the options that make JMeter a great tool of choice for your next performance
testing assignment. These include the fact it is free and mature, open sourced, easily
extensible and customizable, completely portable across various operating systems,
is a great plugin eco-system, has a large user community, built-in GUI and recording,
and validating test scenarios among others. In comparison with the other tools for
performance testing, JMeter holds its stance.

In the next chapter, we will record our first test scenario and dive deeper into JMeter.

[21]

Recording Your First Test
JMeter comes with a built-in test script recorder, also referred to as a proxy server
(http://en.wikipedia.org/wiki/Proxy_server), to aid you in recording test
plans. The test script recorder, once configured, watches your actions as you perform
operations on a website, creates test sample objects for them, and eventually stores
them in your test plan, which is a JMX file. In addition, JMeter gives you the option
to create test plans manually, but this is mostly impractical for recording nontrivial
testing scenarios. You will save a whole lot of time using the proxy recorder, as you
will be seeing in a bit.

So without further ado, let's record our first test! For this, we will record the browsing
of JMeter's own official website as a user will normally do. For the proxy server to be
able to watch your actions, it will need to be configured. This entails two steps:

1.	 Setting up the HTTP(S) Test Script Recorder within JMeter.
2.	 Setting the browser to use the proxy.

Configuring the JMeter HTTP(S) Test
Script Recorder
The first step is to configure the proxy server in JMeter. To do this, we perform the
following steps:

1.	 Start JMeter.
2.	 Add a thread group, as follows:
3.	 Right-click on Test Plan and navigate to Add | Threads (User) |

Thread Group.

http://en.wikipedia.org/wiki/Proxy_server

Recording Your First Test

[22]

4.	 Add the HTTP(S) Test Script Recorder element, as follows:
5.	 Right-click on WorkBench and navigate to Add | Non-Test Elements |

HTTP(S) Test Script Recorder.
6.	 Change the port to 7000 (1) (under Global Settings).
7.	 You can use a different port, if you choose to. What is important is to choose

a port that is not currently used by an existing process on the machine. The
default is 8080.

8.	 Under the Test plan content section, choose the option Test Plan > Thread
Group (2) from the Target Controller drop-down.

9.	 This allows the recorded actions to be targeted to the thread group we
created in step 2.

10.	 Under the Test plan content section, choose the option Put each group in a
new transaction controller (3) from the Grouping drop-down.

11.	 This allows you to group a series of requests constituting a page load. We
will see more on this topic later.

12.	 Click on Add suggested Excludes (under URL Patterns to Exclude).
13.	 This instructs the proxy server to bypass recording requests of a series of

elements that are not relevant to test execution. These include JavaScript files,
stylesheets, and images. Thankfully, JMeter provides a handy button that
excludes the often excluded elements.

14.	 Click on the Start button at the bottom of the HTTP(S) Test Script
Recorder component.

15.	 Accept the Root CA certificate by clicking on the OK button.

Chapter 2

[23]

With these settings, the proxy server will start on port 7000, and monitor all requests
going through that port and record them to a test plan using the default recording
controller. For details, refer to the following screenshot:

Configuring the JMeter HTTP(S) Test Script Recorder

In older versions of JMeter (before version 2.10), the now
HTTP(S) Test Script Recorder was referred to as HTTP
Proxy Server.

Recording Your First Test

[24]

While we have configured the HTTP(S) Test Script Recorder manually, the newer
versions of JMeter (version 2.10 and later) come with prebundled templates that
make commonly performed tasks, such as this, a lot easier. Using the bundled
recorder template, we can set up the script recorder with just a few button clicks.
To do this, click on the Templates…(1) button right next to the New file button on
the toolbar. Then select Select Template as Recording (2). Change the port to your
desired port (for example, 7000) and click on the Create (3) button. Refer to the
following screenshot:

Configuring the JMeter HTTP(S) Test Script Recorder through the template Recorder

Setting up your browser to use the proxy
server
There are several ways to set up the browser of your choice to use the proxy server.
We'll go over two of the most common ways, starting with my personal favorite,
which is using a browser extension.

Chapter 2

[25]

Using a browser extension
Google Chrome and Firefox have vibrant browser plugin ecosystems that allow you
to extend the capabilities of your browser with each plugin that you choose. For
setting up a proxy, I really like FoxyProxy (http://getfoxyproxy.org/). It is a neat
add-on to the browser that allows you to set up various proxy settings and toggle
between them on the fly without having to mess around with setting systems on the
machine. It really makes the work hassle free. Thankfully, FoxyProxy has a plugin
for Internet Explorer, Chrome, and Firefox. If you are using any of these, you are
lucky! Go ahead and grab it!

Changing the machine system settings
For those who would rather configure the proxy natively on their operating system,
we have provided the following steps for Windows and Mac OS.

On Windows OS, perform the following steps for configuring a proxy:

1.	 Click on Start, then click on Control Panel.
2.	 Click on Network and Internet.
3.	 Click on Internet Options.
4.	 In the Internet Options dialog box, click on the Connections tab.
5.	 Click on the Local Area Network (LAN) Settings button.
6.	 To enable the use of a proxy server, select the checkbox for Use a proxy

server for your LAN (These settings will not apply to dial-up or VPN
connections), as shown in the following screenshot.

7.	 In the proxy Address box, enter localhost in the IP address.
8.	 In the Port number text box, enter 7000 (to match the port you set up for

your JMeter proxy earlier).
9.	 If you want to bypass the proxy server for local IP addresses, select the

Bypass proxy server for local addresses checkbox.

http://getfoxyproxy.org/

Recording Your First Test

[26]

10.	 Click on OK to complete the proxy configuration process.

 Manually setting proxy on Windows 7

On Mac OS, perform the following steps to configure a proxy:

1.	 Go to System Preference.
2.	 Click on Network.
3.	 Click on the Advanced… button.
4.	 Go to the Proxies tab.
5.	 Select the Web Proxy (HTTP) checkbox.
6.	 Under Web Proxy Server, enter localhost.
7.	 For port, enter 7000 (to match the port you set up for your JMeter

proxy earlier).
8.	 Do the same for Secure Web Proxy (HTTPS).

Chapter 2

[27]

9.	 Click on OK.

Manually setting proxy on Mac OS

For all other systems, please consult the related operating system documentation.

Now that is all out of the way and the connections have been made, let's get to
recording using the following steps:

1.	 Point your browser to http://jmeter.apache.org/.
2.	 Click on the Changes link under About.
3.	 Click on the User Manual link under Documentation.
4.	 Stop the HTTP(S) Test Script Recorder by clicking on the Stop button, so that

it doesn't record any more activities.
5.	 If you have done everything correctly, your actions will be recorded under

the test plan. Refer to the following screenshot for details.

http://jmeter.apache.org/

Recording Your First Test

[28]

Congratulations! You have just recorded your first test plan. Admittedly, we have
just scrapped the surface of recording test plans, but we are off to a good start. We
will record a lot more complex plans as we proceed along this book.

Recording your first scenario

Running your first recorded scenario
We can go right ahead and replay or run our recorded scenario now, but before that
let's add a listener or two to give us feedback on the results of the execution. We will
cover listeners in depth in Chapter 5, Resource Monitoring, when we discuss resource
monitoring, but for now it is enough to know that they are the components that
show the results of the test run. There is no limit to the amount of listeners we can
attach to a test plan, but we will often use only one or two.

For our test plan, let's add three listeners for illustrative purposes. Let's add a Graph
Results listener, a View Results Tree listener, and an Aggregate Report listener. Each
listener gathers a different kind of metric that can help analyze performance test
results as follows:

1.	 Right-click on Test Plan and navigate to Add | Listener | View Results Tree.
2.	 Right-click on Test Plan and navigate to Add | Listener | Aggregate Report.
3.	 Right-click on Test Plan and navigate to Add | Listener | Graph Results.

Chapter 2

[29]

Just as we can see more interesting data, let's change some settings at the thread
group level, as follows:

1.	 Click on Thread Group.
2.	 Under Thread Properties set the values as follows:

°° Number of Threads (users): 10
°° Ramp-Up Period (in seconds): 15
°° Loop Count: 30

This will set our test plan up to run for ten users, with all users starting their test
within 15 seconds, and have each user perform the recorded scenario 30 times. Before
we can proceed with test execution, save the test plan by clicking on the save icon.

Once saved, click on the start icon (the green play icon on the menu) and watch the
test run. As the test runs, you can click on the Graph Results listener (or any of the
other two) and watch results gathering in real time. This is one of the many features
of JMeter.

From the Aggregate Report listener, we can deduce that there were 600 requests
made to both the changes link and user manual links, respectively. Also, we can see
that most users (90% Line) got very good responses below 200 milliseconds for both.
In addition, we see what the throughput is per second for the various links and see
that there were no errors during our test run.

Results as seen through this Aggregate Report listener

Recording Your First Test

[30]

Looking at the View Results Tree listener, we can see exactly the changes link
requests that failed and the reasons for their failure. This can be valuable information
to developers or system engineers in diagnosing the root cause of the errors.

Results as seen via the View Results Tree Listener

The Graph Results listener also gives a pictorial representation of what is seen in the
View Tree listener in the preceding screenshot. If you click on it as the test goes on,
you will see the graph get drawn in real time as the requests come in. The graph is
a bit self-explanatory with lines representing the average, median, deviation, and
throughput. The Average, Median, and Deviation all show average, median, and
deviation of the number of samplers per minute, respectively, while the Throughput
shows the average rate of network packets delivered over the network for our test
run in bits per minute. Please consult a website, for example, Wikipedia for further
detailed explanation on the precise meanings of these terms. The graph is also
interactive and you can go ahead and uncheck/check any of the irrelevant/relevant
data. For example, we mostly care about the average and throughput. Let's uncheck
Data, Median, and Deviation and you will see that only the data plots for Average
and Throughput remain. Refer to the following screenshot for details.

With our little recorded scenario, you saw some major components that constitute
a JMeter test plan. Let's record another scenario, this time using another application
that will allow us to enter form values. We will explore this more in the next chapter,
but for now let's have a sneak peek.

Chapter 2

[31]

Excilys Bank case study
We'll borrow a website created by the wonderful folks at Excilys, a company
focused on delivering skills and services in IT (http://www.excilys.com/). It's
a light banking web application created for illustrative purposes. Let's start a new
test plan, set up the test script recorder like we did previously, and start recording.

Results as seen through this Graph Results Listener

Let's start with the following steps:

1.	 Point your browser to http://excilysbank.aws.af.cm/public/login.html.
2.	 Enter the username and password in the login form, as follows:
3.	 Username: user1
4.	 Password: password1
5.	 Click on the PERSONNAL CHECKING link.

www.allitebooks.com

http://www.excilys.com/
http://excilysbank.aws.af.cm/public/login.html
http://www.allitebooks.org

Recording Your First Test

[32]

6.	 Click on the Transfers tab.
7.	 Click on My Accounts.
8.	 Click on the Joint Checking link.
9.	 Click on the Transfers tab.
10.	 Click on the Cards tab.
11.	 Click on the Operations tab.
12.	 Click on the Log out button.
13.	 Stop the proxy server by clicking on the Stop button.

This concludes our recorded scenario. At this point, we can add listeners for
gathering results of our execution and then replay the recorded scenario as we did
earlier. If we do, we will be in for a surprise (that is, if we don't use the bundled
recorder template). We will have several failed requests after login, since we have
not included the component to manage sessions and cookies needed to successfully
replay this scenario. Thankfully, JMeter has such a component and it is called HTTP
Cookie Manager. This seemingly simple, yet powerful component helps maintain an
active session through HTTP cookies, once our client has established a connection
with the server after login. It ensures that a cookie is stored upon successful
authentication and passed around for subsequent requests, hence allowing those
to go through. Each JMeter thread (that is, user) has its own cookie storage area.
That is vital since you won't want a user gaining access to the site under another
user's identity. This becomes more apparent when we test for websites requiring
authentication and authorization (like the one we just recorded) for multiple users.
Let's add this to our test plan by right-clicking on Test Plan and navigating to Add |
Config Element | HTTP Cookie Manager.

Once added, we can now successfully run our test plan. At this point, we can
simulate more load by increasing the number of threads at the thread group level.
Let's go ahead and do that. If executed, the test plan will now pass, but this is not
realistic. We have just emulated one user, repeating five times essentially. All threads
will use the credentials of user1, meaning that all threads log in to the system as
user1. That is not what we want. To make the test realistic, what we want is each
thread authenticating as a different user of the application. In reality, your bank
creates a unique user for you, and only you or your spouse will be privileged to see
your account details. Your neighbor down the street, if he used the same bank, won't
get access to your account (at least we hope not!). So with that in mind, let's tweak
the test to accommodate such a scenario.

Chapter 2

[33]

Parameterizing the script
We begin by adding a CSV Data Set Config component (Test Plan | Add | Config
Element | CSV Data Set Config) to our test plan. Since it is expensive to generate
unique random values at runtime due to high CPU and memory consumption, it
is advisable to define that upfront. The CSV Data Set Config component is used to
read lines from a file and split them into variables that can then be used to feed input
into the test plan. JMeter gives you a choice for the placement of this component
within the test plan. You would normally add the component at the HTTP request
level of the request that needs values fed from it. In our case, this will be the login
HTTP request, where the username and password are entered. Another is to add it
at the thread group level, that is, as a direct child of the thread group. If a particular
dataset is applied to only a thread group, it makes sense to add it at this level. The
third place where this component can be placed is at the Test Plan root level. If a
dataset applies to all running threads, then it makes sense to add it at the root level.
In our opinion, this also makes your test plans more readable and maintainable, as it
is easier to see what is going on when inspecting or troubleshooting a test plan since
this component can easily be seen at the root level rather than being deeply nested at
other levels. So for our scenario, let's add this at the Test Plan root level.

You can always move the components around using
drag and drop even after adding them to the test plan.

CSV Data Set Config

Recording Your First Test

[34]

Once added, the Filename entry is all that is needed if you have included headers in
the input file. For example, if the input file is defined as follows:

user, password, account_id
user1, password1, 1

If the Variable Names field is left blank, then JMeter will use the first line of the
input file as the variable names for the parameters. In cases where headers are not
included, the variable names can be entered here. The other interesting setting here is
Sharing mode. By default, this defaults to All threads, meaning all running threads
will use the same set of data. So in cases where you have two threads running,
Thread1 will use the first line as input data, while Thread2 will use the second line.
If the number of running threads exceeds the input data then entries will be reused
from the top of the file, provided that Recycle on EOF is set to True (the default).
The other options for sharing modes include Current thread group and Current
thread. Use the former for cases where the dataset is specific for a certain thread
group and the latter for cases where the dataset is specific to each thread. The other
properties of the component are self-explanatory and additional information can be
found in JMeter's online user guide.

Now that the component is added, we need to parameterize the login HTTP request
with the variable names defined in our file (or the csvconfig component) so that the
values can be dynamically bound during test execution. We do this by changing the
value of the username to ${user} and password to ${password}, respectively, on
the HTTP login request.

The values between the ${} match the headers defined in the
input file or the values specified in the Variable Names
entry of the CSV Data Set Config component.

Binding parameter values for HTTP requests

Chapter 2

[35]

We can now run our test plan and it should work as earlier, only this time the
values are dynamically bound through the configuration we have set up. So far, we
have run for a single user. Let's increase the thread group properties and run for
ten users, with a ramp-up of 30 seconds, for one iteration. Now let's rerun our test.
Examining the test results, we notice some requests failed with a status code of 403
(http://en.wikipedia.org/wiki/HTTP_403), which is an access denied error. This
is because we are trying to access an account that does not seem to be the logged-in
user. In our sample, all users made a request for account number 4, which only one
user (user1) is allowed to see. You can trace this by adding a View Tree listener to
the test plan and returning the test.

If you closely examine some of the HTTP requests in the Request tab of the View
Results Tree listener, you'll notice requests as follows:

/private/bank/account/ACC1/operations.html
/private/bank/account/ACC1/year/2013/month/1/page/0/operations.json
…

Observant readers would have noticed that our input data file also contains an
account_id column. We can leverage this column so that we can parameterize all
requests containing account numbers to pick the right accounts for each logged-in
user. To do this, consider the following line of code:

/private/bank/account/ACC1/operations.html

Change this to the following line of code:

/private/bank/account/ACC${account_id}/operations.html

Now, consider the following line of code:

/private/bank/account/ACC1/year/2013/month/1/page/0/operations.json

Change this to the following line of code:

/private/bank/account/ACC${account_id}/year/2013/month/1/page/0/
operations.json

Make similar changes to the rest of the code. Go ahead and do this for all such
requests. Once completed, we can now rerun our test plan and, this time, things are
logically correct and will work fine. You can also verify that if all works as expected
after the test execution by examining the View Results Tree listener, clicking on some
account requests URL, and changing the response display from text to HTML, you
should see an account other than ACCT1.

http://en.wikipedia.org/wiki/HTTP_403

Recording Your First Test

[36]

Extracting information during test run
This brings us to one more scenario to explore. Sometimes, it is useful to parse the
response to get the required information rather than sending it as a column of the input
data. The parsed response can be any textual format. These include JSON, HTML, TXT,
XML, CSS, and so on. This can further help to make your test plans more robust. In
our preceding test plan, we could have leveraged this feature and parsed the response
to get the required account number for users, rather than sending it along as input
parameters. Once parsed and obtained, we can then save and use the account number
for other requests down the chain. Let's go ahead and record a new test plan as we did
before. Save it under a new name. To aid us in extracting a variable from the response
data, we will use one of JMeter's postprocessor components, Regular Expression
Extractor. This component runs after each sample request in its scope, applying the
regular expression and extracting the requested values. A template string is then
generated and the result of this is stored into a variable name. This variable name is
then used to parameterize, such as in the case of CSV Data Set Config we saw earlier.

We'll add a Regular Expression Extractor component as a child element of the HTTP
request to /private/bank/accounts.html just below the /login request. Unlike
the CSV Data Set Config component we saw earlier, this component has to be placed
directly as a child element of the request on which it will act, hence a Post-Processor
component. Its configuration should be as shown in the following screenshot:

Using the View Results Tree to verify response data

Chapter 2

[37]

When configuring the Regular Expression Extractor component, use the following
values for each of the indicated fields:

•	 Apply to: Main sample only
•	 Response Field to check: Body
•	 Reference Name: account_id
•	 Regular Expression: <td class="number">ACC(\d+)</td>
•	 Template: 1
•	 Match No.(0 for Random): 1
•	 Default Value: NOT_FOUND

The following screenshot shows what the component will look like with all the
entries filled out:

Configuring the Regular Expression Extractor

Once configured, proceed to parameterize the other requests for accounts with the
${account_id} variable like we did earlier. At this point, we are able to rerun our
test plan and get exactly the similar behavior and output as we did before we fed in a
dataset, which also had account_id as a column. You have now seen two ways to get
the same information when building your own test plans. Though your use case will
mostly vary from those we have examined here, the same principles will be applied.

Recording Your First Test

[38]

Here is a brief summary of the various configuration variables for the Regular
Expression Extractor component:

•	 Apply to: The default Main sample only is almost always okay, but
there are times when the sample contains child samples that request for
embedded resources. The options allow you to target either the main sample,
subsamples, or both. The last option is that the JMeter variable allows
assertions to be applied to the contents of the named variable.

•	 Response field to check: This parameter specifies which field the regular
expression should apply to. The options include:

°° Body: This is the body of the response, excluding headers.
°° Body (unescaped): This is the body of the response with all HTML

escape codes replaced.
°° Headers: These may not be present for non-HTTP samples.
°° URL: The URL of the request will be parsed with the

regular expression.
°° Response Code: For example, 200, 403, 500 meaning success,

access denied, and internal server error, respectively. Visit http://
en.wikipedia.org/wiki/HTTP_200#2xx_Success for a complete
list of various HTTP status codes.

°° Response Message: For example, OK, Access Denied,
Internal server error.

•	 Reference Name: The variable name under which the parsed results will be
saved. This is what will be used for parameterization.

•	 Regular Expression: Enter any valid regular expression. As a side note,
JMeter regular expressions differ from their Perl counterparts. While all
regular expressions in Perl must be enclosed within //, the same is invalid
in JMeter. Regular expressions is a broad topic and you will see more of it
throughout the cause of the book, but we encourage you to read more at
http://en.wikipedia.org/wiki/Regular_expression.

•	 Template: This is the template used to create a string from the matches
found. This is an arbitrary string with special elements to refer to a group
such as 1 to refer to group 1, 2 to refer to group 2, and so on. 0 refers
to whatever the expression matches. In our example, 0 would refer to
ACC<td class="number">ACC4</td>, for example, and 1 refers to ACC4.

http://en.wikipedia.org/wiki/HTTP_200#2xx_Success
http://en.wikipedia.org/wiki/HTTP_200#2xx_Success
http://en.wikipedia.org/wiki/Regular_expression

Chapter 2

[39]

•	 Match No. (0 for Random): This parameter indicates which match to use
since the regular expression may match multiple times:

°° 0: This indicates that JMeter should be used to match at random.
°° N: A positive number N means to select the nth match.
°° refName: The value of the template.
°° refName_gn: Where n is the groups for the match, for example, 1,2,3,

and so on.
°° refName_g: The number of groups in the regular expression

(excluding 0).

Note that when no matches occur, refName_g0, refName_g1,
and refName_g variables are all removed and the refName
value is set to the default value, if present.

°° Negative numbers can be used in conjunction with a ForEach
controller.

°° refName_matchNr: This is the number of matches found. It could
be 0.

°° refName_n: Where n is the number of strings as generated by the
template, for example, 1, 2, 3, and so on.

°° refName_n_gm: Where m is the number of groups for the match, for
example, 0, 1, 2, and so on.

°° refName: This is set to the default value (if present).
°° refName_gn: This is not set.

Default Value: If the regular expression doesn't match, then the variable will be set
to the default value set. This is an optional parameter, but I recommend that you
always set it as it helps to debug and diagnose issues while creating your test plans.

Anatomy of a JMeter test
With the samples we have explored so far, we have seen a similar pattern emerging.
We have seen what mostly constitutes a JMeter test plan. We'll use the remainder of
this chapter to explore the anatomy and composition of the JMeter tests.

Recording Your First Test

[40]

Test plan
This is the root element of the JMeter scripts and houses the other components such
as Threads, Config Elements, Timers, PreProcessors, PostProcessors, Assertions, and
Listeners. It also offers a few configurations of its own.

First off, it allows you to define user variables (name-value pairs) that can be used
later in your scripts. It also allows the configuration of how the thread groups that
it contains should run, that is, should thread groups run one at a time? As test plans
evolve over time, you'll often have several thread groups contained within a test
plan. This option allows you determine how they run. By default, all thread groups
are set to run concurrently. A useful option when getting started is the Functional
Test Mode. When checked, all the server responses returned from each sample are
captured. This can prove useful for small simulation runs ensuring that JMeter
is configured correctly and the server is returning the expected results, but the
downside is that JMeter will see performance degradation and file sizes can be huge.
It is off by default and shouldn't be checked when conducting real test simulations.
One more useful configuration is the ability to add third-party libraries that can be
used to provide additional functionality for test cases. The time will come when your
simulation needs additional libraries that are not bundled with JMeter by default. At
such times, you can add those JARs through this configuration.

Thread groups
Thread groups, like we have seen, are the entry points of any test plan. They
represent the number of threads/users JMeter will use to execute the test plan. All
controllers and samplers for a test must reside under a thread group. Other elements,
such as listeners, may be placed directly under a test plan in cases where you want
them to apply to all the thread groups, or under a thread group, if they only pertain
to that group. Thread group configurations provide options to specify the number
of threads that will be used for the test plan, how long it will take for all threads to
become active (ramp-up), and the number of times the test will be executed. Each
thread will execute the test plan completely independently of other threads. JMeter
spins off multiple threads to simulate concurrent connections to the server. It is
important that the "ramp-up" be long enough to avoid too large a workload at the
start of a test as this can often lead to network saturation and invalidate test results.
If the intention is to have X number of users active in the system, it is better to ramp-
up slowly and increase the number of iterations. A final option the configuration
provides is the scheduler. This allows setting the starting and ending time of a test
execution. For example, you can kick-off a test to run during off-peak hours for
exactly one hour.

Chapter 2

[41]

Controllers
Controllers drive the processing of a test and come in two flavors: sampler
controllers and logic controllers.

Sampler controllers send requests to a server. These include HTTP, FTP, JDBC,
LDAP, and so on. Although JMeter has a comprehensive list of samplers, we will
mostly focus on HTTP request samplers in this book, since we are focusing on testing
web applications.

Logical controllers, on the other hand, allow the customization of the logic used to
send the requests. For example, a loop controller can be used to repeat an operation
a certain number of times. The if controller is for selectively executing a request, and
the while controller for continuing to execute a request till some condition becomes
false, and so on. At the time of writing, JMeter 2.12 comes bundled with 16 different
controllers, each serving different purposes.

Samplers
These components help send requests to the server and wait for a response. Requests
are processed in the order they appear in the tree. JMeter comes bundled with the
following samplers:

•	 HTTP request
•	 JDBC request
•	 LDAP request
•	 SOAP/XML-RPC request
•	 Webservice (SOAP) request
•	 FTP request

Each of these has properties that can further be tweaked to suit your needs. In most
cases, the default configurations are fine and can be used as it is. Consider adding
assertions to samplers to perform basic validation on server responses. Often during
testing, the server may return a status code 200, indicative of a successful request,
but might fail to display the page correctly. At such times, assertions can help to
ensure that the request was indeed successful as indicated.

Recording Your First Test

[42]

Logic controllers
These help customize the logic used to decide how requests are sent to a server.
They can modify requests, repeat requests, interleave requests, control the duration
of requests' execution, switch requests, measure the overall time taken to perform
requests, and so on. At the time of writing, JMeter comes bundled with total of
16 logic controllers. Please visit the online user guide (http://jmeter.apache.
org/usermanual/component_reference.html#logic_controllers) to see a
comprehensive list and details on each.

Test fragments
A special type of controller is used purely for code reuse within a test plan. They
exist on the test plan tree at the same level as the thread group element and are not
executed unless referenced either by an Include or Module Controller.

Listeners
These components gather the results of a test run, allowing it to be further analyzed.
In addition, listeners provide the ability to direct the data to a file for later use.
Furthermore, it allows to define which fields are saved and whether to use CSV
or XML format. All listeners save the same data with the only difference being the
way the data is presented on screen. Listeners can be added anywhere in the test,
including directly under the test plan. They will collect data only from the elements
at or below their level.

JMeter comes bundled with about 18 different listeners all serving different
purposes. Though you will often only use a handful of them, it is advisable
to become familiar with what each offers to know when to use them.

Some listeners such as Assertion Results, Comparison Assertion
Visualizer, Distribution Graph, Graph Results, Spline Visualizer,
and View Results in tree are memory and CPU intensive and
should not be used during actual test runs. They are okay to be
used for debugging and functional testing.

http://jmeter.apache.org/usermanual/component_reference.html#logic_controllers
http://jmeter.apache.org/usermanual/component_reference.html#logic_controllers

Chapter 2

[43]

Timers
By default, JMeter threads send requests without pausing between each request.
It is recommended that you specify a delay by adding one of the available timers
to thread groups. This also helps make your test plans more realistic as real users
couldn't possibly send requests at that pace. The timer causes JMeter to pause a
certain amount of time before each sampler that is in its scope.

Assertions
Assertion components allow you to verify responses received from the server. In
essence, they allow you to verify that the application is functioning correctly and that
the server is returning the expected results. Assertions can be run on XML, JSON,
HTTP, and other forms of responses returned from the server. Assertions can also be
resource intensive, so ensure that you don't have them on for actual test runs.

Configuration elements
Configuration elements work closely with a sampler, enabling requests to be
modified or added to. They are only accessible from inside the tree branch where
you place the element. These elements include HTTP Cookie Manager, HTTP Header
Manager, and so on.

Preprocessor and postprocessor elements
A preprocessor element, like the name implies, executes some actions prior to a
request being made. Preprocessor elements are often used to modify the settings
of a request just before it runs or to update variables that aren't extracted from the
response text.

Recording Your First Test

[44]

Postprocessor elements execute some actions after a request has been made. They are
often used to process response data and extract value from it.

The anatomy of a JMeter test

Summary
We have covered quite a lot in this chapter. You learned how to configure JMeter and
our browsers to help record test plans. In addition, you learned about some built-in
components that can help us feed data into our test plan and/or extract data from
server responses. In addition, you learned what composes a JMeter test plan and got
a good grasp on those components.

In the next chapter, we will dive deeper into form submission and explore more
JMeter components.

[45]

Submitting Forms
In this chapter, we'll expand on the foundations we started building on in Chapter 2,
Recording Your First Test, and we will dive deeper into the details of submitting forms.
While most of the forms you encounter while recording test plans might be simple
in nature, some are a completely different beast and require careful attention. For
example, more and more websites are embracing RESTful web services, and as such,
you would mainly interact with JSON objects when recording or executing test plans
for such applications. Another area of interest will be recording applications that make
heavy use of AJAX to accomplish business functionality. Google, for one, is known
to be a mastermind at this. Most of their products, including Search, Gmail, Maps,
YouTube, and so on, all use AJAX extensively. Occasionally, you might have to deal
with XML response data, for example, extracting parts of it to use for samples further
down the chain in your test plan. You might also come across cases when you need to
upload a file to the server or download one from it.

For all these and more, we will explore some practical examples in this chapter and
gain some helpful insights as to how to deal with these scenarios when you come
across them as you prepare your test plans.

Capturing simple forms
We have already encountered a variation of form submission in Chapter 2, Recording
Your First Test, when we submitted a login form to be authenticated with the server.
The form had two text fields for username and password, respectively. This is a good
start. Most websites requiring authentication will have a similar feel to them. HTML
forms, however, span a whole range of other input types. These include checkboxes,
radio buttons, select and multiselect drop-down lists, text area, file uploads, and so
on. In this section, we take a look at handling other HTML input types.

Submitting Forms

[46]

We have created a sample application that we will use throughout most of this
chapter to illustrate some of the concepts that we will discuss. The application can
be reached by visiting http://jmeterbook.aws.af.cm. Take a minute to browse
around and take it for a manual spin so as to have an idea what the test scripts we
record will be doing.

Handling checkboxes
Capturing checkbox submission is similar to capturing textboxes, which we
encountered earlier in Chapter 2, Recording Your First Test. Depending on the use
case, there might be one or more related/unrelated checkboxes on a form. Let's run
through a scenario for illustrative purposes. With your JMeter proxy server running
and capturing your actions, perform the following steps:

1.	 Go to http://jmeterbook.aws.af.cm/form1/create.
2.	 Enter a name in the textbox.
3.	 Check a hobby or two.
4.	 Click on the submit button.

At this point, if you examine the recorded test plan, the /form1/submit post request
has the following parameters:

•	 Name: This represents the value entered in the textbox
•	 Hobbies: You can have one or more depending on the number of hobbies

you checked off
•	 submit: This is the value of the submit button

We can then build upon the test plan by adding a CSV Data Set Config component
to the mix to allow us to feed different values for the names and hobbies (refer to
handling-chechboxes.jmx at https://github.com/ptwj/ptwj-code/blob/master/
chap3/handling-checkboxes.jmx). Finally, we can expand the test plan further
by parsing the response from the /form1/create sample to determine what
hobbies are available on the form using a Post-Processor element (for example,
Regular Expression Extractor) and then randomly choosing one or more of them
to be submitted. We'll leave that as an exercise for you. Handling multiselect is no
different from this.

http://jmeterbook.aws.af.cm
http://jmeterbook.aws.af.cm/form1/create
https://github.com/ptwj/ptwj-code/blob/master/chap3/handling-checkboxes.jmx
https://github.com/ptwj/ptwj-code/blob/master/chap3/handling-checkboxes.jmx

Chapter 3

[47]

Handling radio buttons
Radio buttons are normally used as option fields on a web page, that is, they are
normally grouped together to present a series of choices to the user allowing them
to select one per each group. Things such as marital status, favorite food, polls, and
so on are practical uses of these buttons. Capturing their submission is quite similar
to dealing with checkboxes, just that we will only have one entry per submission
for each radio group. Our sample at http://jmeterbook.aws.af.cm/radioForm/
index has only one radio group, allowing users to identify their marital status.
Hence after recording this, we will only have one entry submission for a user.

Let's follow the given steps:

1.	 Go to http://jmeterbook.aws.af.cm/radioForm/index.
2.	 Enter a name in the textbox.
3.	 Enter your marital status.
4.	 Click on the submit button.

Viewing the HTML source of the page (right-click anywhere on the page and select
View Page Source) would normally get you the "IDs" that the server expects to be
returned for each option presented on the page. Armed with this information, we can
expand our input test data allowing us to run the same scenario for more users with
varying data. As always, you can use a Post-Processor component to further eliminate
the need to send the radio button IDs to your input feed. Handling a drop-down list
is no different from this scenario. Handling all other forms of HTML input types for
example text, text area, and so on falls under the categories we have explored so far.

Handling file uploads
You may encounter situations where uploading a file to the server is part of the
functionality of the system under test. JMeter can also help in this regard. It comes
with a built-in multipart/form-data option on post requests, which is needed by
HTML to correctly process file uploads. In addition to checking the option to make a
post request multipart, you will need to specify the absolute path of the file, in cases
where the file you are uploading is not within JMeter's bin directory, or the relative
path in cases where the file resides within JMeter's bin directory. Let's record a
scenario illustrating this:

1.	 Go to http://jmeterbook.aws.af.cm/uploadForm.
2.	 Enter name in the textbox.
3.	 Choose a file to upload by clicking on the Choose File button.
4.	 Click on Submit.

http://jmeterbook.aws.af.cm/radioForm/index
http://jmeterbook.aws.af.cm/radioForm/index
http://jmeterbook.aws.af.cm/radioForm/index
http://jmeterbook.aws.af.cm/uploadForm

Submitting Forms

[48]

Note that for our test application, files uploaded can't
be larger than 1 MB.

Depending on the location of the file you choose, you might encounter an error
similar to this:

java.io.FileNotFoundException: Argentina.png (No such file or directory)

 at java.io.FileInputStream.open(Native Method)

 at java.io.FileInputStream.<init>(FileInputStream.java:120)

 at org.apache.http.entity.mime.content.FileBody.writeTo(FileBody.
java:92)

 at org.apache.jmeter.protocol.http.sampler.
HTTPHC4Impl$ViewableFileBody.writeTo(HTTPHC4Impl.java:773)

Do not be alarmed! This is because JMeter is expecting to find the file in its bin
directory. You will have to either tweak the file location in the recorded script to
point the absolute path of the file or place it in the bin directory or a subdirectory
thereof. For the sample packaged with this book, we have opted to place the files
in a subdirectory under the bin directory ($JMETER_HOME/bin/samples/images).
Examine the file handling-file-uploads.jmx.

Handling file downloads
Another common situation you may encounter will be testing a system that has
file download capabilities exposed as a function to its users. Users, for example,
might download reports, user manuals, documentation, and so on from a website.
Knowing how much strain this can put on the server can be an area of interest to
stakeholders. JMeter provides the ability to record and test such scenarios. As an
example, let's record a user retrieving a PDF tutorial from JMeter's website.

Let's follow the given steps:

1.	 Go to http://jmeterbook.aws.af.cm/.
2.	 Click on the Handling File Downloads link.
3.	 Click on the Access Log Tutorial link.

http://jmeterbook.aws.af.cm/

Chapter 3

[49]

This should stream a PDF file to your browser. You can add a View Tree Listener
and examine the response output after playing back the recording. You can also add
a Save Responses to file Listener and have JMeter save the contents of the response
to a file that you can later inspect. This is the route we have opted for in the sample
recorded with this book. Files will be created in the bin directory of the JMeter's
installation directory. Refer to handling-file-downloads-1.jmx (https://github.
com/ptwj/ptwj-code/blob/master/chap3/handling-file-downloads-1.jmx).
Also, using Save Responses to file Listener is useful for cases where you want to
capture the response, in this case, a file, and feed it to other actions further in the test
scenario. For example, we could have saved the response and used it to upload the
file to another section of the same server, or to a different server entirely.

Posting JSON data
REST (Representational State Transfer) is a simple stateless architecture that
generally runs over HTTP/HTTPS. Requests and responses are built around the
transfer of representations of resources. It emphasizes interactions between clients
and services by providing a limited number of operations (GET, POST, PUT, and
DELETE). The GET method fetches the current state of a resource, the POST method
creates a new resource, the PUT method updates an existing resource, and the
DELETE method destroys the resource. Flexibility is provided by assigning resources
their own unique Universal Resource Indicators (URIs). Since each operation has
a specific meaning, REST avoids ambiguity. In modern times, the typical object
structure passed between a client and server is JSON. More information about REST
can be found at http://en.wikipedia.org/wiki/REST.

When dealing with websites that expose RESTful services in one form or the other,
you will most likely have to interact with JSON data in some way. Such websites
may provide means to create, update, and delete data on the server via posting
JSON data. URLs can also be provided to return existing data in JSON format. This
happens even more in the most modern websites, which use AJAX to an extent,
as we use JSON when interacting with AJAX. In all such scenarios, you will need
to be able to capture and post data to the server using JMeter. JSON, also known
as JavaScript Object Notation, is a text-based open standard designed for human
readable data interchange. You can find more information about it at http://
en.wikipedia.org/wiki/JSON and http://www.json.org/. For this book, it
will suffice to know what the structure of a JSON object looks like. Consider the
following example:

{"empNo": 109987, "name": "John Marko", "salary": 65000}

https://github.com/ptwj/ptwj-code/blob/master/chap3/handling-file-downloads-1.jmx
https://github.com/ptwj/ptwj-code/blob/master/chap3/handling-file-downloads-1.jmx
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSON
http://www.json.org/

Submitting Forms

[50]

Also, consider this example:

[{
 "id":1,
 "dob":"09-01-1965",
 "firstName":"Barry",
 "lastName":"White",
"jobs":[{"id":1,"description":"Doctor"}, {"id":2,"description":"Firem
an"}]
}]

Some basic rules of thumb when dealing with JSON are as follows:

•	 [] – indicates a list of objects
•	 {} – indicates an object definition
•	 "key": "value" – define string values of an object, under a desired key
•	 "key": value – define integer values of an object, under a desired key

The example that we just saw shows an employee object with employee number
109987, whose name is John Marko, and earns $65,000. The second sample shows
a person named Barry White, born on 9/1/1965 who is both a doctor and fireman.

Now that we covered a sample JSON structure, let's examine how JMeter can help
with posting JSON data. The example website provides a URL to save the Person
object. A person has a first name, a last name, and a date of birth attribute. In addition,
a person can hold multiple jobs. A valid JSON structure to store a person may look like
the following code:

{"firstName":"Malcom", "lastName":"Middle", "dob": "2/2/1965",
"jobs":[{"id": 1, "id": 2}]}
{"firstName":"Sarah", "lastName":"Martz", "dob": "3/7/1971"}

Instead of recording, we will manually construct the test scenario for this case since
we have intentionally not provided a form to save a person's entry so as to give you
hands-on experience with writing test plans for such scenarios.

Chapter 3

[51]

Let's post JSON data by following these steps:

1.	 Launch JMeter.
2.	 Add a thread group to the test plan (right-click on Test Plan and navigate to

Add | Threads (Users) | Thread Group).
3.	 Add an HTTP Request Sampler component to the thread group (right-click

on Thread Group and navigate to Add | Sampler | HTTP Request).
4.	 Under HTTP Request, change implementation to HttpClient4.
5.	 Fill the properties of the HTTP Request Sampler component, as follows:

°° Server Name or IP: jmeterbook.aws.af.cm
°° Method: POST
°° Path: /person/save

6.	 Click on the Body Data tab to fill in the JSON data to fill in the following
code as:
 {
 "firstName": "Bob",
 "lastName": "Jones",
 "jobs": [
 {
 "id": "3"
 }
]
}

7.	 Add an HTTP Header Manager component to the HTTP Request Sampler
component (right-click on HTTP Request Sampler and navigate to Add |
Config Element | HTTP Header Manager).

8.	 Add a View Results Tree Listener to the thread group (right-click on Thread
Group and navigate to Add | Listener | View Results Tree).

9.	 Save the test plan.

Submitting Forms

[52]

If you have done all this correctly, your HTTP Request Sampler component will look
like the following screenshot:

Configuring HTTP Request Sampler to post JSON

Now you will be able to run the test, and if all was correctly set, Bob Jones will now
be saved on the server. You can verify that by examining View Results Tree Listener.
The request should be green and in the Response data tab, you should see Bob
Jones listed as one of the entries. Even better yet, you can view the last 10 stored
entries in the browser directly at http://jmeterbook.aws.af.cm/person/list.

Of course all other tricks you learned so far apply here as well. We can use a CSV
Data Config element to parameterize the test and have variation in our data input.
Refer to posting-json.jmx for this. Regarding input data variation, since jobs are
optional for this input set, it may make sense to parameterize the whole JSON
string read from the input feed to give you more variation.

For example, you can replace the value with ${json} and let the input CSV Data
have entries such as:

json
{"firstName":"Malcom", "lastName":"Middle", "dob": "1/2/1971",
"jobs":[{"id": 1, "id": 2}]}
{"firstName":"Sarah", "lastName":"Martz", "dob": "6/9/1982"}

It is important to put each record on a separate line. We'll leave that as an exercise
for you. Although simplistic in nature, what we covered here will give you all the
information you need to post JSON data when recording your test plans.

http://jmeterbook.aws.af.cm/person/list

Chapter 3

[53]

When dealing with RESTful requests in general, it helps to have some tools handy to
examine requests, inspect responses, and view network latency, among many others.
The following is a list of handy tools that can help:

•	 Firebug (Firefox, Chrome and IE browser add-on): http://getfirebug.com/
•	 Chrome developer tools: https://developers.google.com/chrome-

developer-tools/

•	 Advance REST Client (chrome browser extension): http://bit.
ly/15BEKlV

•	 REST Client (Firefox browser add-on): http://mzl.la/h8YMlz

Reading JSON data
Now that we know how to post JSON data, let's take a brief look at how to consume
them in JMeter. Depending on the use case, you may find yourself dealing more with
reading JSON than posting them. JMeter provides a number of ways to digest this
information, store them if needed, and use them further down the chain in your test
plans. Let's start with a simple use case. The example website has a link that provides
usage of the last 10 entries of persons stored on the server. It can be reached by
visiting http://jmeterbook.aws.af.cm/person/list.

If we were to process the JSON response and use the first and last name further
down the chain, we can use a Regular Expression Extractor PostProcessor to
extract these. Let's create a test plan to do just that.

Let's follow the given steps:

1.	 Launch JMeter.
2.	 Add a thread group to the test plan (right-click on Test Plan and navigate to

Add | Threads (Users) | Thread Group).
3.	 Add a HTTP Request Sampler to the thread group (right-click on Thread

Group and navigate to Add | Sampler | HTTP Request).
4.	 Under HTTP Request, change implementation to HttpClient4.
5.	 Fill the properties of the HTTP Request Sampler, as follows:

°° Server Name or IP: jmeterbook.aws.af.cm
°° Method: GET
°° Path: /person/list

Submitting Forms

[54]

6.	 Add a Regular Expression Extractor as a child of the HTTP Request
Sampler (right-click on HTTP Request Sampler and navigate to Add |
Post Processors | Regular Expression Extractor):

°° Reference Name: name
°° Regular Expression: "firstName":"(\w+?)",.+?,"lastName":"(\

w+?)"

°° Template: $1$$2$
°° Match No: 1
°° Default Value: name

7.	 Add Debug Sampler to the thread group (right-click on Thread Group and
navigate to Add | Sampler | Debug Sampler).

8.	 Add a View Results Tree Listener to the thread group (right-click on Thread
Group and navigate to Add | Listener | View Results Tree).

9.	 Save the test plan.

The interesting bit is the cryptic regular expression that we use here. It describes
the words to be matched and stores them in variables defined as name. The \w+?
instructs the pattern engine not to be greedy when matching and to stop on the first
occurrence. The full capabilities of regular expressions are beyond the scope of this
book, but I encourage you to master it some as it will help you while scripting your
scenarios. For now, just believe that it does what it says. Once you execute the test
plan, you will be able to see the matches in the debug sampler of the View Results
Tree. Here's a snippet of what you should expect to see:

name=firstName0lastName0
name_g=2
name_g0="firstName":"Larry","jobs":[{"id":1,"description":"Doctor"}],"
lastName":"Ellison"
name_g1=Larry
name_g2=Ellison

server=jmeterbook.aws.af.cm

Now, let's shift gears to a more complicated example.

Chapter 3

[55]

Using BSF PostProcessor
When dealing with more complicated JSON structures, you might find that the
Regular Expression Extractor PostProcessor doesn't remove it. You might struggle to
come up with the right regular expression to extract all the info you need. Examples
of that might be deeply nested object graphs that have embedded lists of objects in
them. At such times, a BSF PostProcessor will fit the bill. Bean Scripting Framework
(BSF) is a set of Java classes that provides scripting language support within Java
applications. This opens a whole realm of possibilities allowing you to leverage
the knowledge and power of scripting languages within your test plan, while still
retaining access to Java class libraries. Scripting languages supported within JMeter
at the time of writing include Groovy, JavaScript, BeanShell, Jython, Perl, and Java to
name a few. Let's jump right in with an example querying Google's search service.

Let's follow the given steps:

1.	 Launch JMeter.
2.	 Add a thread group to the test plan (right-click on Test Plan and navigate to

Add | Threads (Users) | Thread Group).
3.	 Add a HTTP Request Sampler to the thread group (right-click on Thread

Group and navigate to Add | Sampler | HTTP Request).
4.	 Under HTTP Request, change implementation to HttpClient4.
5.	 Fill the properties of the HTTP Request Sampler as follows:

°° Server Name or IP: ajax.googleapis.com
°° Method: GET
°° Path: /ajax/services/search/web?v=1.0&q=jmeter

6.	 Add a BSF PostProcessor as a child of the HTTP Request Sampler (right-click
on HTTP Request Sampler and navigate to Add | Post Processors | BSF
PostProcessor):

°° Pick JavaScript in the language drop-down list
°° In the scripts text area, enter this:

// Turn the JSON into an object called 'response'
eval('var response = ' + prev.getResponseDataAsString());

vars.put("url_cnt", response.responseData.results.length);

//for each result, stop the URL as a JMeter variable

Submitting Forms

[56]

for (var i = 0; i <= response.responseData.results.length;
i++)
{
 var x = response.responseData.results[i];
 vars.put("url_" + i, x.url);
}

7.	 Add a Debug Sampler to the thread group (right-click on Thread Group and
navigate to Add | Sampler | Debug Sampler).

8.	 Add a View Results Tree Listener to the thread group (right-click on Thread
Group and navigate to Add | Listener | View Results Tree).

9.	 Save the test plan.

Once saved, you can execute the test plan and see the full JSON returned by the
request and the extracted values that have now been stored as JMeter variables.
If all is correct, you will see values similar to these:

url_0=http://jmeter.apache.org/
url_1=http://jmeter.apache.org/download_jmeter.cgi
url_2=http://jmeter.apache.org/usermanual/
url_3=http://en.wikipedia.org/wiki/Apache_JMeter
url_cnt=4

The BSF PostProcessor exposes a few variables that can be used in your scripts by
default. In our preceding example, we have used two of them (prev and var). The
prev variable gives access to the previous sample's result and the var variable gives
read/write access to variables. Refer to a list of available variables at http://jmeter.
apache.org/usermanual/component_reference.html#BSF_PostProcessor.

Consider the following code:

eval('var response = ' + prev.getResponseDataAsString());

A quick rundown of the code retrieves the response data of the previous sampler as
string and uses the JavaScript eval() function to turn it into a JSON structure. Take
a look at the JavaDocs at http://jmeter.apache.org/api/org/apache/jmeter/
samplers/SampleResult.html to see all other methods available for the prev
variable. Once a JSON structure has been extracted, we can call methods like we
would normally do in JavaScript:

vars.put("url_cnt", response.responseData.results.length);

This gets the size of how many results were returned and stores the results in a
JMeter variable url_cnt. The final bit of code iterates through the results and
extracts the actual URLs and stores them into distinct JMeter variables url_0
through url_3.

Chapter 3

[57]

The same can be achieved with any of the other supported scripting languages. An
equivalent script in Groovy will be as follows:

import groovy.json.*

// Turn the JSON into an object called 'response'
def response = prev.responseDataAsString
def json = new JsonSlurper().parseText(response)

vars.put("url_cnt", json.responseData.results.size as String)

for (int i = 0; i < json.responseData.results.size; i++)	
{
 def result = json.responseData.results.get(i)
 vars.put("url_" + i, result.url)
}

For this to work, however, you will need to download the groovy-all-2.3.x.jar file
and put it in your $JMETER_HOME/lib directory. In addition, you will have to ensure
that groovy is selected as the scripting language in the BSF PostProcessor component.

Handling XML responses
Yet another structure you may encounter as you build test plans is XML. Some
websites may hand off XML as their response to certain calls. XML (Extensible
Markup Language) allows you to describe object graphs in a different format
than JSON does. For example, we can get our test application to return an XML
representation of the list of persons we were working with earlier in this chapter
by making a call to http://jmeterbook.aws.af.cm/person/list?format=xml.
Describing XML in detail goes beyond the scope of this book, but you can find much
more about it online. For our exercise, it suffices just to know what they look like.
Take a look at the XML returned by the previous link. Now that you know what
XMLs look like, let's get going with a sample test plan that deals with retrieving
an XML response and extracting variables from it. Take a look at the XML that
we will parse at http://search.maven.org/remotecontent?filepath=org/
springframework/spring-test/3.2.1.RELEASE/spring-test-3.2.1.RELEASE.
pom. Our goal is to extract all the artifactId elements (deeply nested within the
structure) into variables that we can use later in our test plan, if we choose.

Submitting Forms

[58]

Let's follow the given steps:

1.	 Launch JMeter.
2.	 Add a thread group to the test plan (right-click on Test Plan and navigate to

Add | Threads (Users) | Thread Group).
3.	 Add a HTTP Request Sampler to the thread group (right-click on Thread

Group and navigate to Add | Sampler | HTTP Request).
4.	 Under HTTP Request, change implementation to HttpClient4.
5.	 Fill the properties of the HTTP Request Sampler as follows:

°° Server Name or IP: search.maven.org
°° Method: GET
°° Path: /remotecontent?filepath=org/springframework/spring-

test/3.2.1.RELEASE/spring-test-3.2.1.RELEASE.pom

6.	 Add a Save Responses to a file Listener as a child of the HTTP Request
Sampler (right-click on HTTP Request Sampler and navigate to Add |
Listener | Save Responses to a file) with the following properties:

°° Filename prefix: xmlSample_
°° Variable name: testFile

7.	 Add a XPath Extractor as a child of the HTTP Request Sampler (right-click
on HTTP Request Sampler and navigate to Add | Post Processors | XPath
Extractor): with the following properties:

°° Reference name: artifact_id
°° XPath query: project/dependencies/dependency/artifactId
°° Default value: artifact_id

8.	 Add a Debug Sampler to the thread group (right-click on Thread Group and
navigate to Add | Sampler | Debug Sampler).

9.	 Add a View Results Tree Listener to the thread group (right-click Thread
Group and navigate to Add | Listener | View Results Tree).

10.	 Save the test plan.

Once saved, you will be able to execute the test plan and see the artifact_id
variables in the View Tree Listener. The only new element we used here is the XPath
Extractor Post-Processor. This nifty JMeter component allows you to use XPath
query language to extract values from a structured XML or (X)HTML response. As
such, we can extract an element deeply nested in the structure with this simple query
project/dependencies/dependency/artifactId.

Chapter 3

[59]

This will look for the tail element (artifactId) of the query string within the
structure, as follows:

<project...>
 ...
 <dependencies>
 <dependency>
 <groupId>javax.activation</groupId>
 <artifactId>activation</artifactId>
 <version>1.1</version>
 <scope>provided</scope>
 </dependency>
 ...
 </dependencies>
</project>

This will return activation, for example. This is exactly the information we are
interested in. Now you know just how to get at the information you need when
dealing with XML responses.

Summary
In this chapter, we went through the details of how to capture form submission in
JMeter. We covered simple forms with checkboxes and radio buttons. The same
concepts covered in those sections can be equally applied to other input form
elements such as text areas, combo boxes, and so on. We further explored how to
deal with file uploads and downloads when recording test plans. Along the way,
we addressed working with JSON data, both posting and consuming them. This
exposed us to two powerful and flexible JMeter Post-Processors, Regular Expression
Extractor, and BSF PostProcessor. Finally, we took a look at how to deal with XML
data when we encounter them. For that, we covered yet another Post-Processors that
JMeter offers, XPath Extractor PostProcessor. You will now be able to use what you
learned so far to accomplish most tasks you need to with forms while planning and
scripting your test plans.

In the next chapter, we will dive into managing sessions with JMeter and see how we
can leverage some of the components provided by JMeter to handle web application
HTTP sessions.

[61]

Managing Sessions
In this chapter, we'll cover session management in JMeter in detail. Web applications,
by their very nature, use client and server sessions; both work in harmony to give
each user a distinct enclosure to maintain a series of communications with the server
without affecting other users. For example, in Chapter 2, Recording Your First Test, the
server session was created the moment a user logged in to the application, and was
maintained for all requests sent to the server by that user until he/she logged off or
timed out. This is what protects other users from seeing each other's information.
Depending on the application's architecture, the session may be maintained through
cookies (most commonly used) or URL rewriting (less commonly used). The former
maintains the session by sending a cookie in the HTTP headers of each request, while
the latter rewrites the URLs to append the session ID. The main difference is that the
former relies on a client's browser choosing to accept cookies and is transparent to
the application developer, while the latter isn't transparent and works regardless of
whether cookies are enabled or not. That being said, diving into the details of the two
modes goes beyond the scope of this book, but I'll encourage you to spend some time
reading some online resources to gain better understanding if you are the curious
type. For this book, it will suffice to know that there are two modes and that JMeter
handles both.

Let's dig right in and explore these scenarios and see how JMeter deals with each.

Managing Sessions

[62]

Managing sessions with cookies
A majority of web applications rely on cookies to maintain the session state. In the
very early stages of the Internet, cookies were only used to keep the session ID.
Things have evolved since then and cookies now store a lot more information, such
as user IDs and location preferences. The banking application we used as a case
study in Chapter 2, Recording Your First Test, for example, relies on cookies to help
each user maintain a valid session with the server, enabling the user to make a series
of requests to the server. An example will help clear things up, so let's get right to
one. For our example, some resources are protected based on the role of the user that
is logged in. Users can have an admin or user role. The steps to manage sessions with
cookies are as follows:

1.	 Launch JMeter.
2.	 Start the Test Script Recorder (refer to Chapter 2, Recording Your First Test, if

you don't know how).
3.	 In the browser, go to http://jmeterbook.aws.af.cm/.
4.	 Click on the User Protected Resource link (under Chapter 4).
5.	 Log in.
6.	 Enter user1 in the Username field.
7.	 Enter password in the Password field.
8.	 Click on Link under User resources.
9.	 Log out.
10.	 Save the test plan.

Attempting to execute the recorded scenario on saving it will not yield the expected
results. Go ahead and add a View Results Tree listener (right-click on Test Plan and
go to Add | Listener | View Results Tree) to diagnose what is actually going on.
Once the simulation is run, examine the responses from the server through the View
Results Tree listener. Even though all responses are green, indicating successful
requests (since we got a response code of 200 from the server), we are actually still
just getting back the login page after successfully logging in (see the Response tab of
View Results Tree for subsequent requests after successful authentication). Ensure
that you switch to the HTML view from the drop-down menu to correctly have the
page rendered to see things more clearly.

http://jmeterbook.aws.af.cm/

Chapter 4

[63]

If you examine the Request tab, then you will see the reason for using that. Here is
a snippet of the Request data of the login process. You will see something similar
to this:

GET
 http://jmeterbook.aws.af.cm/;jsessionid=2CE58BC032344AA90CA60C6C880
687A4

[no cookies]

Request Headers:
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Accept-Language: en-US,en;q=0.8
Accept:
 text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Origin: http://jmeterbook.aws.af.cm
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2)
 AppleWebKit/537.22 (KHTML, like Gecko) Chrome/25.0.1364.99
 Safari/537.22
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
Cache-Control: max-age=0
Referer: http://jmeterbook.aws.af.cm/login/auth
Accept-Encoding: gzip,deflate,sdch
Host: jmeterbook.aws.af.cm

You will notice two things here. First, there is a [no cookies] line present,
indicating JMeter didn't find any stored cookie to use for this request. Second is the
jsessionid cookie in the first line of the request. The server uses this to group all
requests from a user under the same session ID, once authentication is established.
If you compare this with the subsequent calls in View Results Tree, you will notice
different jsessionid values, further indicating that the server is treating those
subsequent calls as new requests and not associating it with a previous request.
Third, the URL for subsequent calls also mimics what we saw earlier in http://
jmeterbook.aws.af.cm/login/auth, indicating that we are actually being asked to
authenticate again on the login page since the server didn't associate our requests for
protected resources with the same jsessionid cookie.

The following snippet is displayed as:

GET
 http://jmeterbook.aws.af.cm/login/auth;jsessionid=0B478A8A1F93D68D14
745261D0A7E792

[no cookies]
…

http://jmeterbook.aws.af.cm/login/auth
http://jmeterbook.aws.af.cm/login/auth

Managing Sessions

[64]

All this is evidence that JMeter is not currently managing the session appropriately,
but how can it? We have not instructed it to. JMeter comes with a couple of
components to help maintain sessions. Since our sample here relies on cookies
to maintain sessions, we will use the HTTP Cookie Manager component. This
component stores and sends cookies just as web browsers do. If an HTTP request
and response contains a cookie, the Cookie Manager automatically stores that cookie
and will use it for all future requests to the application.

Since a thread is synonymous to a user in JMeter, each thread has its
own cookie storage area, giving us the ability to run multiple users
for a simulation with each maintaining a separate session.

This is exactly what we want. Let's go ahead and add a Cookie Manager to our test
plan. Right-click on Test Plan and navigate to Test Plan | Add | Config Element
| HTTP Cookie Manager (refer to following screenshot). This component allows
you to define additional cookies, but the default will usually suffice except in cases
where your application might be doing something tricky. Once this is added, if we
rerun our test plan and examine the Request tab, we will see a different outcome.
This time, the jsessionid cookie is stored and maintained across requests and the
[no cookie] line is gone. Here is a snippet of the two subsequent requests in View
Results Tree:

GET http://jmeterbook.aws.af.cm/login/auth

Cookie Data:
JSESSIONID=013FA93C2AABB31EBE8FDF8CCC575F09
GET http://jmeterbook.aws.af.cm/secure/user

Cookie Data:
JSESSIONID=013FA93C2AABB31EBE8FDF8CCC575F09

Note that the same session ID is maintained across the requests. If you examine the
Response data, you will see that you are now able to access the intended protected
resources. Refer to the following screenshot, which shows how to use the HTTP
Cookie Manager component to define additional cookies:

Chapter 4

[65]

HTTP Cookie Manager

This completes our exploration of the HTTP Cookie Manager element. It is possible
to have more than one Cookie Manager in a test plan depending on the application
needs. For example, if you have multiple thread groups within a test plan, it is
possible to have a Cookie Manager per thread group.

If there are more than one Cookie Managers in the scope of a sampler,
there is no way to specify which will be used. Also, a cookie stored in
one Cookie Manager is not available to any other manager, so exercise
caution when using multiple Cookie Managers.

Managing Sessions

[66]

Managing sessions with URL rewriting
In the absence of cookie support, the alternative method web applications use to
manage session information is a technique known as URL rewriting. With this
approach, the session ID is attached to all URLs that are within the HTML page that
is sent as a response to the client. This ensures that the session ID is automatically
sent back to the server as part of the request, without the need of putting it in the
header. The advantage of this technique is that it works even if a client browser has
cookies disabled. Let's examine a sample and see how JMeter comes to the rescue by
displaying the following steps:

1.	 Launch JMeter.
2.	 Start the HTTP proxy server (refer to Chapter 2, Recording Your First Test, if

you don't know how).
3.	 In the browser, go to http://jmeterbook.aws.af.cm.
4.	 Click on the URL Rewrite Sample link under Chapter 4.
5.	 Click on First Link.
6.	 Click on Another Link (at the bottom of the page).
7.	 Click on the Home link.
8.	 Click on Second Link.
9.	 Click on the jmeter-book link on the banner on the navigation bar at the top.
10.	 Save the test plan.

If you re-execute the test plan after saving it, you'll notice that all the links have a
jsessionid cookie appended to them. This ensures that the same session ID is sent
along to the server, thereby treating our series of requests as one whole conversation
with the server; in short, our session is maintained. Since we recorded this, the
session ID sent with all the requested links is the one that the server generated at the
time we recorded. Obviously, we will need to turn this into a variable that can then
be used for multiple threads, as each new thread will be treated as a new user with
each getting their own unique session ID.

http://jmeterbook.aws.af.cm

Chapter 4

[67]

To do this, we'll employ JMeter's HTTP URL Re-writing Modifier component. This
component is similar to the HTML Link Parser modifier except that its specific
purpose is to extract session IDs from the response, that is, a page or link. Let's add
this to the test plan (right-click on Thread Group and navigate to Thread Group |
Pre Processors | HTTP URL Re-writing Modifier). Refer to the following screenshot
to see what the configuration elements are. The most important parameter is Session
Argument Name. This allows you to specify the session ID parameter name to grab
from the response. This may vary based on your application. Java web applications,
for example, usually have this as jsessionid (as in our case) or JSESSIONID. Web
applications that are not written in Java might have a variation of this, for example,
SESSION_ID. Inspect the application under test and note the key that the session ID
is getting stored on. This value is what goes into this parameter box. In our case,
it is simply jsessionid. Refer to the following screenshot to see the configuration
elements of HTTP URL Re-writing Modifier:

HTTP URL Re-writing Modifier

Managing Sessions

[68]

The other options that can be configured are:

•	 Path Extension: If checked, a semicolon will be used to separate the session
ID and the argument URL. Java web applications fall into this category, so go
ahead and check it for our sample.

•	 Do not use equals in path extension: If checked, this omits the use of = when
capturing the rewrite URL. However, Java web applications use =, so we
leave this unchecked.

•	 Do not use questionmark in path extension: This prevents the query string
from ending up in the path extension. We will leave it unchecked.

•	 Cache Session Id: This saves the value of the session ID for later use, when
it is not present, for example, in subsequent page requests. We check this
option as it applies to us. We want the same session ID sent for all page
requests by a thread/user.

The last thing to clean up before we rerun our test plan is the already existing session
IDs that were captured during our recording. Go through each sampler and delete
these from the URL request paths. Consider the following URL:

/urlRewrite/link1;jsessionid=9074385741E66F07B36286763FF8C2FD

This will be written as follows:

/urlRewrite/link1

This will be captured by the HTTP URL Re-writing Modifier component and
appended to subsequent calls automatically. At this point, we are ready to
rerun our sample and see the outcome. Remember to add a View Results Tree
listener to the plan if you haven't already done so. Once run, we should be able
to verify that the outcome is what we expected. The same session ID should
be maintained for subsequent requests from a user. Here is a snippet of three
subsequent requests from the same thread, all maintaining the same session ID
(774F9D6220F76C54CA346D0365A33998):

GET http://jmeterbook.aws.af.cm/urlRewrite/index;jsessionid=774F9D6220
F76C54CA346D0365A33998

[no cookies]

Request Headers:
Connection: keep-alive
Accept-Language: en-US,en;q=0.5
Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

Chapter 4

[69]

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:16.0)
 Gecko/20100101 Firefox/16.0
Referer: http://jmeterbook.aws.af.cm/
Accept-Encoding: gzip, deflate
Host: jmeterbook.aws.af.cm

GET http://jmeterbook.aws.af.cm/urlRewrite/link1;jsessionid=774F9D6220
F76C54CA346D0365A33998

GET http://jmeterbook.aws.af.cm/urlRewrite/link3;jsessionid=774F9D6220
F76C54CA346D0365A33998

Although we have placed the element at the Thread Group level, it can be placed
at the sampler level. In such a case, it will only modify that request and not affect
subsequent calls. You may need such flexibility in some situations.

This wraps up the different ways in which we can manage sessions with JMeter. The
web applications you test will normally fall under these two major categories, cookie
management and URL rewriting. Based on your needs, JMeter provides components
to help manage sessions for both.

Summary
In this chapter, we covered how JMeter helps manage web sessions for your test
plans. First, we examined the most common way in which web applications manage
sessions—using a cookie. For these cases, JMeter provides a component called HTTP
Cookie Manager, whose primary job is to help capture the cookie generated by
the server and store it for future use during test execution. We then explored web
applications that use URL rewriting to maintain sessions as opposed to cookies. This
led us to HTTP URL Re-writing Modifier, another component that JMeter provides
for handling these cases.

In conclusion, what we have covered here should suffice in helping you effectively
manage sessions as you build test plans for your own applications.

In the next chapter, we will cover resource monitoring.

[71]

Resource Monitoring
So far, we have seen how JMeter can help with conducting performance testing. In
this chapter, we will explore what it offers in terms of resource monitoring. Resource
monitoring is a broad subject that covers analyzing system hardware usage, which
includes CPU, memory, disk, and network. As you conduct testing, it is important
to know how each of these resources behave under load to better understand
when there are bottlenecks and address them accordingly. Most organizations
have dedicated teams (for example, network and system engineers) to configure
and monitor these resources. In addition, there are dedicated tools to monitor
and analyze them. Tools such as HP OpenView, CA Wily Introscope (now CA
Application Performance Management), New Relic, profiler agent probes, and so on
were created for this sole purpose. I said all this to say that what JMeter offers pales
in comparison to what you will get using such dedicated tools. Notwithstanding this,
not all companies can afford such tools, or have personnel in charge of setting up
adequate monitoring. You may just be a one-man shop doing testing and monitoring
all by yourself!

Since this is a book on JMeter, let's see how we can go about doing some resource
monitoring with it.

Resource Monitoring

[72]

Basic server monitoring
JMeter comes with an out-of-the-box monitoring controller. This allows you
to monitor the general health of the application or web server. These include
lightweight web containers such as Jetty, Apache Tomcat, Resin, or fully stacked
heavy weight ones such as WebSphere, Weblogic, JBoss, Geronimo, Oracle OCJ4,
and so on. Metrics such as active threads, memory, health, and load are gathered
and reported in a graphical form. Having such metrics makes it easier to see the
relationship between server performance and response time on the clients. Multiple
servers can be monitored using a single monitor controller. Although originally
designed to work with Apache Tomcat server (http://tomcat.apache.org/),
any servlet (http://en.wikipedia.org/wiki/Servlet_container) container
supporting Java Management Extension (JMX) can port the Tomcat status servlet to
provide the same information. Providing such a port for other servers goes beyond
the scope of this book, we will stick to using Apache Tomcat for our use case.

Monitoring servers during test executions helps identify potential bottlenecks
in the application or system resource. It can draw focus to long-running queries,
insufficient thread and data source pools, insufficient heap size, high I/O activity,
server capacity inadequacies, slow performing application components, tracking
CPU usage, and so on. All these are important in troubleshooting performance issues
and attaining the targeted goals.

To get started, we first need a server to monitor. Let's download Apache Tomcat and
get it up and running.

Setting up Apache Tomcat Server
To set up Apache Tomcat Server, perform the following steps:

1.	 Download Apache Tomcat from http://tomcat.apache.org/
download-80.cgi. At the time of writing this, version 8.0.15 is the latest.
This is what we will use for our purposes though an older version will
work just as well.

2.	 Get the .zip file or the compressed .tar file.
3.	 Extract the contents of the archive to a location of your choice. We will refer

to this as TOMCAT_HOME for the remainder of this chapter.

http://tomcat.apache.org/
http://en.wikipedia.org/wiki/Servlet_container
http://tomcat.apache.org/download-80.cgi
http://tomcat.apache.org/download-80.cgi

Chapter 5

[73]

4.	 From the command line, change to the TOMCAT_HOME/bin directory.
5.	 Start the server to verify that the installation is OK:

°° On windows, run:
catalina.bat run

°° On unix, run:
./catalina.sh run

If all goes well, the server will start up and you will see something similar to this on
the console:

Using CATALINA_BASE: /Users/berinle/devtools/server/apache-
tomcat-8.0.15
Using CATALINA_HOME: /Users/berinle/devtools/server/apache-
tomcat-8.0.15
Using CATALINA_TMPDIR: /Users/berinle/devtools/server/apache-
tomcat-8.0.15/temp
Using JRE_HOME: /Users/berinle/.jenv/versions/oracle64-1.8.0.20
Using CLASSPATH: /Users/berinle/devtools/server/apache-
tomcat-8.0.15/bin/bootstrap.jar:/Users/berinle/devtools/server/apache-
tomcat-8.0.15/bin/tomcat-juli.jar
15-Dec-2014 14:33:32.711 INFO [main] org.apache.catalina.startup.
VersionLoggerListener.log Server version: Apache Tomcat/8.0.15
…
15-Dec-2014 14:33:34.139 INFO [localhost-startStop-1] org.apache.
catalina.startup.HostConfig.deployDirectory Deployment of web
application directory /Users/berinle/devtools/server/apache-
tomcat-8.0.15/webapps/ROOT has finished in 31 ms
15-Dec-2014 14:33:34.143 INFO [main] org.apache.coyote.
AbstractProtocol.start Starting ProtocolHandler ["http-nio-8080"]
15-Dec-2014 14:33:34.150 INFO [main] org.apache.coyote.
AbstractProtocol.start Starting ProtocolHandler ["ajp-nio-8009"]
15-Dec-2014 14:33:34.151 INFO [main] org.apache.catalina.startup.
Catalina.start Server startup in 1119 ms

Resource Monitoring

[74]

If the server doesn't start up, then it could be that the JAVA_HOME
home is not properly set up (refer to Chapter 1, Performance Testing
Fundamentals for details), or the executable files in the bin directory
don't have the right permissions. Please refer to the Apache Tomcat
documentation at http://tomcat.apache.org/tomcat-8.0-
doc/setup.html for more details.

Apache Tomcat extracted content

http://tomcat.apache.org/tomcat-8.0-doc/setup.html
http://tomcat.apache.org/tomcat-8.0-doc/setup.html

Chapter 5

[75]

Point your browser to http://localhost:8080 and verify that you are greeted with
the Apache Tomcat home screen.

Apache Tomcat Home Screen

http://localhost:8080

Resource Monitoring

[76]

Congratulations, your server is now up and running! To monitor it, you need to
perform one more step on the server. You need to set up at least one user account
with the proper role on the server to get the information you need. The account
that you set up will later be used when you configure the monitoring controller
in JMeter shortly.

To use a port other than the default 8080 Tomcat users, you will
need to edit $TOMCAT_HOME/conf/server.xml and replace all
references to 8080 with your desired port.

Configuring Tomcat users
To configure the Tomcat role and the user needed for this section, perform the
following steps:

1.	 Navigate to TOMCAT_HOME/conf.
2.	 Open tomcat-users.xml in any suitable editor.
3.	 Add the following between:

<tomcat-users></tomcat-users>
<role rolename="manager-gui"/>
<user username="admin" password="admin" roles="manager-gui"/>

°° This creates a user named "admin" with the password "admin" to
authenticate the Tomcat manager application

4.	 Save the file.
5.	 Restart your server to stop it and press Ctrl + C from the console you started

it from earlier and start it again to ensure that the configuration changes are
picked up.

6.	 Visit http://localhost:8080/manager/html.
7.	 Enter the login credentials (admin for both username and password)

when prompted.
8.	 You should now be able to see the manager page.

Finally, with the server configurations behind us, we can now proceed with setting
up JMeter to monitor the server.

Contents of tomcat-users.xml:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>

http://localhost:8080/manager/html

Chapter 5

[77]

<role rolename="manager-gui"/>
<user username="admin" password="admin" roles="manager-gui"/>
</tomcat-users>

Authenticating with Tomcat Application Manager

Setting up a monitor controller in JMeter
To set up a monitor controller in JMeter, perform the following steps:

1.	 Launch JMeter.
2.	 Add a new Thread group by navigating to Test Plan | Add | Threads

(Users) | Thread Group.
3.	 Add an HTTP authorization Manager by navigating to Thread Group | Add

|Config Element | HTTP Authorization Manager:
°° Base URL: (leave blank)
°° Username: admin
°° Password: admin
°° Domain: (leave blank)
°° Realm: (leave blank)

4.	 Add an HTTP request by navigating to Thread Group | Add | Sampler |
HTTP Request:

°° Name: Server Status (optional)
°° Server Name: localhost
°° Port Number: 8080
°° Path: /manager/status

Resource Monitoring

[78]

5.	 Add a request parameter named "XML" in uppercase. Give it a value "true"
in lowercase.

6.	 Check Use as Monitor at the bottom of the sampler.
7.	 Add a constant timer with a thread delay of 5000 milliseconds by navigating

to Thread Group | Add | Timer | Constant Timer.
8.	 Add a Monitor listener by navigating to Thread Group | Add | Listener |

Monitor Results.
9.	 Save the test plan.

Now we have JMeter all set up and ready to monitor the server. We can go ahead
and execute the test plan now; however, we won't see too much in terms of
results, since there is no activity on the server and we need to have JMeter actively
monitoring such activities. We have prepared a test plan using examples that came
with Apache Tomcat (basic-monitor-sampler.jmx available at https://github.
com/ptwj/ptwj-code/blob/master/chap5/basic-monitor-sampler.jmx), so
grab it and let's use that to put some load on the server. Assuming that you haven't
changed the default server ports of Tomcat, the provided test plan will work right
out the .bat.file:

•	 Before kicking off the provided test plan, let's change the monitor test plan to
loop forever, so that we can watch the server metrics as the activity continues
on the server.

•	 For the monitor test plan, click on Thread Group and check the "forever" box
for the loop count. Save the test plan.

For the constant timer in the monitor test plan, intervals shorter than
5 seconds add stress on the server. You should consult with infrastructure
engineers in your company (if any) to see what an acceptable interval
may be, before you configure monitoring for a production environment.
As a rule of thumb, 5 seconds is a decent number.
To run the provided test plan alongside the monitoring test plan, you
need to launch another instance of JMeter and open the provided test
plan in it.

https://github.com/ptwj/ptwj-code/blob/master/chap5/basic-monitor-sampler.jmx
https://github.com/ptwj/ptwj-code/blob/master/chap5/basic-monitor-sampler.jmx

Chapter 5

[79]

So without further ado, let's kick off the monitor test plan and then execute the
provided test plan to put stress on the server and see the monitoring results. If it has
all been set up properly, you will see that some results start to show up under the
Monitor Results Listener. The Health tab might look similar to the succeeding figure
Monitor Results Listener (Health Tab), and the Performance tab-like figure Monitor
Results Listener (Performance Tab). As you can see, from the Monitor Results
Listener (Health Tab) figure, our run gradually progressed from healthy and stopped
at active at the end of the simulation run. We didn't reach the warning or dead levels,
which is a good sign as our server stayed healthy overall.

Monitor Results Listener (Health tab)

In the Monitor Results Listener (Performance Tab) figure, you can see Memory
(represented by the yellow line), and Load (represented by the blue line) gradually
spike up during our simulation. The Thread percentage (represented by the red line)
and Health (represented by the green line) also stayed on healthy levels consistent
with what we observed.

Resource Monitoring

[80]

That wraps up our look into basic monitoring with JMeter. In the next section,
we will see how we can leverage JMeter's plugin architecture and use a plugin to
provide even granular monitoring metrics for our needs.

Monitor Results Listener (Performance tab)

Chapter 5

[81]

Monitoring the server with a JMeter
plugin
So far, we have examined how we can use the built-in server monitoring capabilities
of JMeter to monitor server health. While this might be OK for basic needs, it falls
short for advanced needs. For instance, the graphs generated don't provide CPU and
disk I/O metrics that can be deemed critical for your analysis. To get such metrics,
you can extend JMeter with a suite of plugins that give better results. JMeter plugins
hosted at http://jmeter-plugins.org is a neat project that aims to extend JMeter
with some much needed features that are lacking out of the box. The project provides
additional samplers, graphs, listeners, and so on, all of which make it more fun to
work with JMeter. In this section, we will install this suite of plugins and use the
monitoring capability it provides to get better metrics.

The only prerequisite for installing it is that you are running JMeter 2.8 or later with
JRE 1.6 (Java Runtime Environment) or above.

Installing the plugins
The plugin comes with three archives all of which must be extracted to different
destinations. At the time of writing this, the project was at version 1.2.0, which is
what we will be working with.

Let's try the following steps to install the plugins:

1.	 Navigate to the download section of http://jmeter-plugins.org/.
2.	 Download the JMeterPlugins-Standard-1.2.0.zip file:

°° This archive contains JMeter custom plugins

3.	 Download the ServerAgent-2.2.1.zip file:
°° This archive contains server resource monitoring agents to use with

the PerfMon Metrics Collector plugin standalone utility

4.	 Extract the contents of the JMeterPlugins-Standard-1.2.0.zip file into
JMETER_HOME:

°° Specifically, copy the contents of lib/ext from the archive into
JMETER_HOME/lib/ext

5.	 Extract the contents of the ServerAgent-2.2.1.zip file into the TOMCAT_
HOME/serveragent directory:

°° Be aware that you'll need to create the serveragent directory

www.allitebooks.com

http://jmeter-plugins.org
http://jmeter-plugins.org/
http://www.allitebooks.org

Resource Monitoring

[82]

6.	 Download the JMeterPlugins-1.1.0.zip file.
7.	 This archive contains JMeter custom plugins.
8.	 Download the JMeterPlugins-libs-1.1.0.zip file:

°° This archive contains additional third-party JAR's used by some of
the custom plugins provided

9.	 Download the ServerAgent-2.2.1.zip.file:
°° This archive contains server resource monitoring agents to use with

the PerfMon Metrics Collector plugin standalone utility

10.	 Extract the contents of the JMeterPlugins-1.1.0.zip file into JMETER_
HOME/lib/ext.

11.	 Extract the contents of the JMeterPlugins-libs-1.1.0.zip file into
JMETER_HOME/lib.

12.	 Extract the contents of the ServerAgent-2.2.1.zip file into TOMCAT_HOME.

With these steps, we have installed a whole suite of plugins, adding new features
to JMeter. If you were to relaunch JMeter now, you will notice additional samplers,
listeners, timers, and so on, all beginning with jp@gc to distinguish them from the
bundled ones.

Let's start the server agent, which will feed the JMeter listener probe that we will add
to our test plan later.

We will begin with the following steps:

1.	 Start shell or DOS prompt.
2.	 Navigate to the TOMCAT_HOME/serveragent directory.
3.	 Start the agent:

°° On Windows, run:
startAgent.bat

°° On Unix, run:
./startAgent.sh

You should see logs similar to the following ones if the agent has started successfully:

INFO 2015-01-05 19:13:33.328 [kg.apc.p] (): Binding UDP to 4444
INFO 2015-01-05 19:13:34.329 [kg.apc.p] (): Binding TCP to 4444
INFO 2015-01-05 19:13:34.334 [kg.apc.p] (): JP@GC Agent v2.2.0
started

Chapter 5

[83]

As you can see, the agent has started on port 4444, the default. We will use this port
later when configuring the monitor listener for JMeter. If this port is not satisfactory
for you, the plugin provides configuration files that can be edited to choose a desired
port. Please refer to the documentation at http://jmeter-plugins.org/.

With the server agent running, let's add a few monitor listeners to our test plan. For
our purposes, we have chosen the sample test plan we recorded using the samples
provided by Apache Tomcat.

Please note that these same concepts can be applied to other
applications deployed on the same server where the monitor
agent has been installed.

Adding monitor listeners to the test plan
To add a monitor listener to the test plan, perform the following steps:

1.	 Launch JMeter.
2.	 Open the test plan provided (advanced-monitoring-sampler-1.jmx,

https://github.com/ptwj/ptwj-code/blob/master/chap5/advanced-
monitoring-sampler-1.jmx).

3.	 Add a PerfMon Metrics Collector listener by navigating to Test Plan | Add |
Listener |jp@gc – PerfMon Metrics Collector:

°° Add one row each to gather these metrics (CPU, Memory, Network
I/O, Disks I/O)

°° Host/IP: localhost
°° Port: 4444
°° Metrics to collect (dropdown): CPU/Memory/Network I/O,

Disks I/O

4.	 Add a response time vs threads listener by navigating to Test Plan | Add |
Listener |jp@gc – Response Times over Time.

5.	 Add a Transactions per second listener by navigating to Test Plan | Add |
Listener |jp@gc – Transactions per Second.

6.	 Save the test plan.

http://jmeter-plugins.org/
https://github.com/ptwj/ptwj-code/blob/master/chap5/advanced-monitoring-sampler-1.jmx
https://github.com/ptwj/ptwj-code/blob/master/chap5/advanced-monitoring-sampler-1.jmx

Resource Monitoring

[84]

With the server agent running, and our additional monitor listeners set up, we are
ready to kick off the simulation execution. Let's go right on and execute it. While it's
executing, we can see the graphical representation of the metrics we have chosen to
analyze if you click on the jp@gc - PerfMon Metrics Collector. As you can see from
the PerfMon Metrics Collector figure, the CPU is spiking up and down, showing
quite a descent load on the server. The memory stays almost constant while the
network, relatively stable, spiked quite high two minutes into our simulation run.
It immediately dropped down back to the low ranges after the spike, so something
might have transpired on the network at the time of the execution run, causing
such a spike. Since this test plan doesn't involve any disk I/O, it stays on 0 for the
duration of our simulation.

PerfMon Metrics Collector

Chapter 5

[85]

The response time over time listener shows a true picture of how much time the
server takes to service each request over the elapsed time of the simulation run.
The graph can be a bit clobbered to read, so in the "Rows" tab, you can check only
the requests you are interested in analyzing. We have done just this in the response
times vs threads figure, and chosen only a handful of requests. As you can see, we
have an elapsed time of a little over three minutes and the highest response time
from this graph was for request /examples at about the 1:32 and 1:50 mark.

Response Times vs. Threads

Resource Monitoring

[86]

Though the graph isn't shown here, the last listener we added was the Transactions
per Second Listener. It shows just how many requests (transactions) the server was
able to handle during the course of our simulation run on a second-by-second basis.
Like the Response times over time listener, the chart can be clobbered and you will
need to selectively choose which requests you were interested in to make some sense
of the graph.

As you can see, these new listeners along with the server agent allow you to monitor
resources in far greater detail than those shipped with JMeter. In addition to the
metrics we gathered, you can choose to gather additional ones including swap,
TCP, JMX, and so on if those were areas of concern. By and large, we can use
this to effectively monitor resources on the server.

Although we have only set this up for one server, the monitor
can be set up to monitor multiple servers, for example, in
cases where we have a cluster of servers.

We have just scratched the surface of how servers can be monitored during
performance testing and since this is a book about JMeter, we are sticking to how
to accomplish the task using it. However, for deeper monitoring needs, there are
dedicated tools both free and commercial that do a much more thorough job at
server resource analysis.

If the applications under test run on the Java Virtual Machine (JVM), then VisualVM
is a free and lightweight resource-monitoring tool. More details about it can be found
at http://visualvm.java.net. On the commercial side, there are quite a number of
choices; some of the most notable ones are YourKit (http://www.yourkit.com/) and
JProfiler (https://www.ej-technologies.com/products/jprofiler/overview.
html). YourKit also has a profiler targeted at .NET applications, so it is definitely the
one to consider if your applications fall under that category.

http://visualvm.java.net
http://www.yourkit.com/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html

Chapter 5

[87]

Summary
In this chapter, we walked through how JMeter can help with monitoring server
resources. To do this, we set up an Apache Tomcat server to monitor. Once done, we
examined the built-in capabilities of JMeter with regards to monitoring. We further
examined how we can get more granular monitoring metrics by extending JMeter
with custom-developed plugins. This allowed us to monitor server resources such as
CPU, disk I/O, memory, and network I/O among other things. Through the plugin,
we also got additional samplers, timers, processors, and listeners that allowed us
to monitor transactions per second and response over time metrics. Though not
an extensive monitoring tool, JMeter proved itself as a capable tool to do basic
monitoring of server resources.

In the next chapter, we will go in depth on distributed testing and see how to
leverage the capabilities of JMeter to accomplish this.

[89]

Distributed Testing
There will come a time when running your test plans on a single machine won't
cut it any longer performance-wise, since resources on the single box are limited.
For example, this can be the case when you want to spin-off a thousand users for
a test plan. Depending on the power and resources of the machine you are testing
on and the nature of your test plans, a single machine can probably spin-off with
300–600 threads before starting to error out or causing inaccurate test results. There
are several reasons why this may happen. One is because there is a limit to the
amount of threads you can spin-off on a single machine. Most operating systems
guard against complete system failure by placing such limits on hosted applications.
Also, your use case may require you to simulate requests from various IP addresses.
Distributed testing allows you to replicate tests across many low-end machines,
enabling you to start more threads and thereby simulating more load on the server.
In this chapter, we will learn how to leverage JMeter for distributed testing and put
more load on the server under test in the process.

Remote testing with JMeter
JMeter has inbuilt support for distributed testing. This enables a single JMeter
GUI instance known as the master, to control a number of remote JMeter instances,
known as slaves and collect all the test results from them. The features offered by this
approach are as follows:

•	 Saving of test samples to the local machine
•	 Managing multiple instances of JMeterEngine (slave nodes) from a

single machine
•	 Replicating the test plan from the master node to each controlled server

without the need to copy them to each server

Distributed Testing

[90]

JMeter does not distribute the load between servers. Each server
will execute the same test plan in its entirety.

Though the test plan is replicated across to each server, the data needed by the test
plan, if any, is not. In cases where input data such as CSV data is needed to run the
tests, such data needs to be made available on each server where the test plan will
be executed. This can be a shared network mount that all the servers can get to.

The remote mode is more resource intensive than running the same
number of non-GUI tests independently. If many server instances are
used, the client's JMeter can become overloaded, as can the client's
network connection, since results need to be communicated in real
time from the slave to the master.

JMeter distributed testing architecture

Chapter 6

[91]

It is important that all the slave nodes and the master node are
running the same version of JMeter and if possible, the same version
of Java Runtime Environment. Mostly, minor JRE variations are fine
but not major ones. For example, master could be running on JRE
1.6.12 and slaves on 1.6.17, but not 1.6.xx versus 1.5.xx.

Configuring JMeter slave nodes
There are a number of ways to get the slave nodes going. In this section, we will go
over two options that will often fit the bill for accomplishing your goals.

The most obvious is to go out and buy new machines just for this purpose. For most
of us, that is not feasible. Another option is to get hold of extra computers lying
around in the office, configure them appropriately, and use them for this purpose.
While that will work perfectly, it may be time consuming to get all the boxes set up
without the appropriate tools, knowledge, and expertise. Another option is to use
virtual machines to accomplish the same. This is the option we will be focusing on in
this section. We favor this approach for the following reasons:

•	 We don't necessarily need another physical machine to try out
distributed testing

•	 We can leverage Vagrant an excellent infrastructure automation tool
(https://www.vagrantup.com) to set up virtual boxes with needed software
with little interaction from us

•	 We can be up and running with a few virtual machines in less time than it
takes to run to your local coffee shop and grab a cup of coffee

•	 It is free
•	 It can be used with configuration management tools such as Puppet, Chef,

Ansible, and Salt
•	 The same concepts can be applied to leverage machines in the cloud

(AWS, Rackspace, Digital Ocean, and so on) to test

In case you haven't heard of Vagrant before, don't be alarmed. It's an excellent tool
that makes building development environments easy. It allows you to create and
configure lightweight, reproducible, and portable development environments.
Elaborating on the uses of Vagrant go beyond the scope of this book, but I'll
encourage you to read more about them at http://www.vagrantup.com. Grab a
copy of Vagrant at https://www.vagrantup.com/downloads.html. At the time of
writing, version 1.7.2 is the latest, and that is what we will be using in this chapter.

https://www.vagrantup.com
http://www.vagrantup.com
https://www.vagrantup.com/downloads.html

Distributed Testing

[92]

For this book, we prepared the necessary scripts you can use to provision boxes.
The only requirement to use the script is to have Oracle's VirtualBox installed on
your machine. VirtualBox comes with installers for Windows, Mac OS, Solaris, and
Linux. You can grab a copy of the operating system of your choice at https://www.
virtualbox.org/wiki/Downloads. At the time of writing, VirtualBox is at Version
4.3.20, and that is what we installed.

With both Vagrant and VirtualBox installed, we are ready to configure our
distributed testing environment. Let's go right ahead and do that.

Configuring one slave per machine
In this configuration, we are going to set up three slave machines and control them
with one master client. This will mimic having four separate physical machines with
one of them acting as master (where the JMeter GUI client runs) and the other three
machines acting as slave nodes (where the JMeter server scripts are kicked-off).
Perform the following steps:

1.	 Download the Vagrant project provided for this section from https://
github.com/ptwj/slave_master/archive/master.zip.

2.	 Extract the contents to a folder of your choice, for example, ch6_01.
3.	 On the command line, go to the extracted folder.
4.	 Run vagrant up n1.
5.	 If prompted, choose the appropriate connection to bridge. If you are on a

wireless connection, for example, choose en1: Wi-Fi. If you are on Ethernet,
choose en0: Ethernet, and so on.

In a few moments, a fully functional VirtualBox will be created with JMeter installed
and ready to run! You should see logs similar to the following:

Bringing machine 'n1' up with 'virtualbox' provider...

==> n1: Importing base box 'ubuntu/trusty64'...

==> n1: Matching MAC address for NAT networking...

==> n1: Checking if box 'ubuntu/trusty64' is up to date...

==> n1: Setting the name of the VM: vagrant_slave_master_
n1_1422016178879_40938

==> n1: Clearing any previously set forwarded ports...

==> n1: Clearing any previously set network interfaces...

==> n1: Preparing network interfaces based on configuration...

 n1: Adapter 1: nat

 n1: Adapter 2: hostonly

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://github.com/ptwj/slave_master/archive/master.zip
https://github.com/ptwj/slave_master/archive/master.zip

Chapter 6

[93]

==> n1: Forwarding ports...

 n1: 22 => 2222 (adapter 1)

==> n1: Booting VM...

==> n1: Waiting for machine to boot. This may take a few minutes...

…

Don't take our word for it though. Verify that the box is properly configured by
performing the following on the command line (from the same folder you ran
vagrant up n1 from):

vagrant ssh n1

cd /opt/apache-jmeter-2.12/bin

./jmeter --version

This should show you the version of JMeter that you are running on the guest
machine. In my case, as you can see in the following log, it reports Version 2.12
r1636949:

vagrant@trusty64:~$ cd /opt/apache-jmeter-2.12/bin

vagrant@trusty64:/opt/apache-jmeter-2.12/bin$./jmeter --version

log_file=jmeter.log java.io.FileNotFoundException: jmeter.log (Permission
denied)

[log_file-> System.out]

2015/01/23 12:36:31 INFO - jmeter.util.JMeterUtils: Setting Locale to
en_US

2015/01/23 12:36:31 INFO - jmeter.JMeter: Loading user properties from:
/opt/apache-jmeter-2.12/bin/user.properties

2015/01/23 12:36:31 INFO - jmeter.JMeter: Loading system properties
from: /opt/apache-jmeter-2.12/bin/system.properties

2015/01/23 12:36:31 INFO - jmeter.JMeter: Copyright (c) 1998-2014 The
Apache Software Foundation

2015/01/23 12:36:31 INFO - jmeter.JMeter: Version 2.12 r1636949

2015/01/23 12:36:31 INFO - jmeter.JMeter: java.version=1.7.0_65

2015/01/23 12:36:31 INFO - jmeter.JMeter: java.vm.name=OpenJDK 64-Bit
Server VM

2015/01/23 12:36:31 INFO - jmeter.JMeter: os.name=Linux

2015/01/23 12:36:31 INFO - jmeter.JMeter: os.arch=amd64

2015/01/23 12:36:31 INFO - jmeter.JMeter: os.version=3.13.0-44-generic

2015/01/23 12:36:31 INFO - jmeter.JMeter: file.encoding=UTF-8

2015/01/23 12:36:31 INFO - jmeter.JMeter: Default Locale=English (United
States)

Distributed Testing

[94]

2015/01/23 12:36:31 INFO - jmeter.JMeter: JMeter Locale=English (United
States)

2015/01/23 12:36:31 INFO - jmeter.JMeter: JMeterHome=/opt/apache-
jmeter-2.12

2015/01/23 12:36:31 INFO - jmeter.JMeter: user.dir =/opt/apache-
jmeter-2.12/bin

2015/01/23 12:36:31 INFO - jmeter.JMeter: PWD =/opt/apache-
jmeter-2.12/bin

2015/01/23 12:36:31 INFO - jmeter.JMeter: IP: 127.0.1.1 Name: trusty64
FullName: trusty64

Copyright (c) 1998-2014 The Apache Software Foundation

Version 2.12 r1636949

We provisioned our JMeter installation to reside at /opt/apache-jmeter-2.12.
For the rest of this section, we'll refer to this location (/opt/apache-jmeter-2.12)
as JMETER_HOME.

If we attempt to kick-off JMeter server on this node now (from apache-jmeter-2.12/
bin directory, run ./jmeter-server), we will encounter an error like the following:

vagrant@trusty64:/opt/apache-jmeter-2.12/bin$./jmeter-server

2015/01/23 12:40:50 INFO - jmeter.engine.RemoteJMeterEngineImpl:
Starting backing engine on 1099

2015/01/23 12:40:50 INFO - jmeter.engine.RemoteJMeterEngineImpl: Local
IP address=127.0.1.1

Server failed to start: java.rmi.RemoteException: Cannot start. trusty64
is a loopback address.

2015/01/23 12:40:50 ERROR - jmeter.JMeter: Giving up, as server failed
with: java.rmi.RemoteException: Cannot start. trusty64 is a loopback
address.

This is because the server is returning an IP address of 127.0.1.1 that is considered
a loop back address. To fix this, we need to find out the assigned IP address of the
virtual machine and edit $JMETER_HOME/bin/jmeter-server to add that IP address.
To get the assigned IP address from the newly created virtual machine, run this on
the command line:

ifconfig | grep inet

Chapter 6

[95]

The line of interest here is the line containing 192.168.x.x or 172.x.x.x depending on
your network. For our node, the assigned IP address is 172.28.128.3:

inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0

 inet6 addr: fe80::a00:27ff:fe26:6cc6/64 Scope:Link

 inet addr:172.28.128.3 Bcast:172.28.128.255
Mask:255.255.255.0

 inet6 addr: fe80::a00:27ff:feda:ecbc/64 Scope:Link

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

Now edit $JMETER_HOME/bin/jmeter-server using an editor of choice. Vim comes
with the virtual machine we just created, so edit the file using the command vi
$JMETER_HOME/bin/jmeter-server. Look for the line beginning with RMI_HOST_
DEF and add the following just below it:

RMI_HOST_DEF=-Djava.rmi.server.hostname=172.28.128.3

Be sure to replace the 172.28.128.3 here with the
assigned IP address of your own virtual box.

Save the file (by pressing Esc, then typing :wq) and this machine is ready to act as a
server. Before we configure a second node, it would be wise to take it for a spin. Let's
run JMETER_HOME/bin/jmeter-server again on the machine. This time, it should
succeed and you should see something similar to the following on the console:

Created remote object: UnicastServerRef [liveRef:
[endpoint:[192.168.1.27:46313](local),objID:[62a8e304:13da47c073a:-7fff,
-369620866826328728]]]

Now, it is waiting for instructions from the master. Let's go right ahead and
configure the master to control it.

Configuring the master node
Now that we have one slave node configured, we can test it out by configuring the
master node to connect to it and control it. To do that, we will have to add the slave
node's IP address to the master's node configuration file.

On the host machine (where JMeter GUI client is running), perform the following steps:

1.	 Open JMETER_HOME/bin/jmeter.properties.
2.	 Look for the line beginning with remote_hosts=127.0.0.1.

Distributed Testing

[96]

3.	 Change it to remote_hosts=172.28.128.3.
4.	 172.28.128.3 should be changed to match the assigned IP address of your

virtual box.
5.	 Save the file.
6.	 Launch JMeter.
7.	 Navigate to Run | Remote Start | Slave IP address (where Slave IP address

is the assigned IP address of your virtual machine).

By clicking on the Slave IP address, the master node will make a connection with the
remote server running on the VirtualBox. You will see a similar log on the client and
the server, respectively:

Remote Start menu

On JMeter GUI client console:

Using remote object: UnicastRef [liveRef: [endpoint:[172.28.128.3:60883]
(remote),objID:[-7854a167:14b16e354ea:-7fff, 2799922095106363247]]]

Chapter 6

[97]

On JMeter server console:

Starting the test on host 172.28.128.3 @ Fri Jan 23 13:16:57 UTC 2015
(1422019017345)

Finished the test on host 172.28.128.3 @ Fri Jan 23 13:16:57 UTC 2015
(1422019017642)

Congratulations! We are now able to control this slave node from the master. We can
proceed with testing at this point, but since we are focusing on distributed testing in
this chapter, it will help to have two or more nodes to control.

Repeat the same steps we used to configure node_one, to spin-off two more nodes
node_two and node_three. To spin-off the second and third slave machines, run
vagrant up n2 and vagrant up n3, respectively. Once the machines are up, add
their assigned IP addresses to jmeter.properties of the master node like we did
for node_one. In the end, we should have three slave nodes, which we can now
control from the master node.

Now your JMeter GUI client should have three server IP addresses under Run |
Remote Start, and you can either kick-off an individual server node by targeting the
server IP address of choice, or start all configured slave nodes at once by navigating
to Run | Remote Start All (Command + Shift + R on Mac or Ctrl + Shift + R on
Windows). When starting all the configured node servers, if everything has been
properly configured, you should see logs similar to the following on the master
console with each server node responding and acknowledging, kicking-off the
intended test plan:

Using remote object: UnicastRef [liveRef: [endpoint:[172.28.128.3:60883]
(remote),objID:[49a18727:13da4a8a955:-7fff, -4630561463080329291]]]

Using remote object: UnicastRef [liveRef: [endpoint:[172.28.128.5:51200]
(remote),objID:[46a1e04c:13da4a79d3d:-7fff, -5213066472819797239]]]

Using remote object: UnicastRef [liveRef: [endpoint:[172.28.128.6:51791]
(remote),objID:[-1434b37d:13da4a85f8a:-7fff, -2658534524006849789]]]

As you can see from the preceding logs, the master node makes connection with all
the three configured slave nodes 172.28.128.3, 172.28.128.5, and 172.28.128.6.
With the connections verified, we can now pick a test plan to run and gather the
results on the master node.

Distributed Testing

[98]

For our first test, we are going to execute a test that doesn't require input data. The
provided test plan (https://raw.githubusercontent.com/ptwj/ptwj-code/
master/chap6/browse-apple-itunes.jmx) navigates to Apple's iTunes website
and browses around a bit for music, movies, apps, and so on. It does no data entry
and therefore doesn't need any input data. Load that into the master node's JMeter
GUI and kick-it-off on all slave nodes. The script launches 150 users over 30 seconds
and runs for two iterations. Since we are distributing this over three slave nodes,
we will have a total of 450 users launched (150 users per node) and 15 users started
per second, that is, 450/30. The following are the results our machine produced. It's
a quad-core MacBook Pro with a 2.2GHz processor and 8GB of RAM. Your mileage
may vary depending on the computing power of your machine:

Aggregate report for Browse Apple iTunes distributed test

It should be noted that in our case, we are still running all these virtual
slave nodes on a single box, so the resources are still limited. That is, all
the slaves are still sharing the resource of the host machine. Therefore,
attempting to distribute more load than that can be originally handled
by the host machine can lead to degraded performance with high
response times. However, nothing prevents you from running the
provided Vagrant scripts on additional physical machines to simulate
more load without worrying about constrained resources.

The second test is one we have seen before in Chapter 2, Recording Your First Test. It's
the Excilys' banking application that requires an input data file. As JMeter only sends
the test plans to slave nodes, we need to get the input files across to all slave nodes in
other to successfully execute the test. To do that, perform the following steps:

1.	 On the command line, go to the directory of the slave node.
2.	 Run the following commands in sequence:
3.	 SSH into the machine

vagrant ssh

https://raw.githubusercontent.com/ptwj/ptwj-code/master/chap6/browse-apple-itunes.jmx
https://raw.githubusercontent.com/ptwj/ptwj-code/master/chap6/browse-apple-itunes.jmx

Chapter 6

[99]

4.	 Go to the JMeter bin directory
cd apache-jmeter-2.12/bin

5.	 Get the users2.txt file from a remote location:
wget https://raw.github.com/berinle/vagrant-data/master/users2.txt

Repeat the steps for all three nodes. This puts the users2.txt file, that is needed by
the test plan, in a location that can be seen by the JMeter server on the slave nodes.
Now open the test plan (excilys-bank-scenario-2.jmx) on the master JMeter GUI
client. As before, select Run | Remote Start All. Feel free to increase the number of
threads, ramp-up, and iterations, but please be careful not to crash the server.

Configuring multiple slave nodes on a single box
JMeter allows you to configure multiple slave nodes on a single box as long as they
are configured to broadcast on different RMI ports. This can come in handy in cases
where the machine you are using is powerful enough to handle it or you don't have
access to additional physical machines. Just like in the previous section, we will be
using Vagrant to configure a single virtual machine and spin-off multiple JMeter
slave nodes on it. For this illustration, we prepared a Vagrant script with shell
provisioning, similar to what we had in the last section. This brings up a VirtualBox,
exposes port 1099 (standard JMeter RMI port), 1664, and 1665, and installs three
JMeter slave nodes named jmeter-1, jmeter-2, and jmeter-3, respectively. These
are the different ports that will be used by the different slave nodes when starting the
server. To get started, proceed with the following steps:

1.	 Download the bundle from this section from https://github.com/ptwj/
adhoc_distributed/archive/master.zip and into a directory of your
choice. We will call it VAGRANT_EXTRACT.

2.	 From the command line, go to the VAGRANT_EXTRACT directory.
3.	 Run vagrant up.
4.	 If prompted, choose the appropriate connection to bridge. If you are on a

wireless connection, for example, choose en1: Wi-Fi. If you are on Ethernet,
choose en0: Ethernet, and so on.

5.	 Wait for the VirtualBox to be fully built.
6.	 Run vagrant ssh.
7.	 Run cd /opt
8.	 Run ls -l.

https://github.com/ptwj/adhoc_distributed/archive/master.zip
https://github.com/ptwj/adhoc_distributed/archive/master.zip

Distributed Testing

[100]

At this point, you should see the three slave nodes present on the machine as follows:

vagrant@trusty64:/opt$ ls -la

drwxr-xr-x 5 root root 4096 Jan 23 14:42 .

drwxr-xr-x 23 root root 4096 Jan 23 14:40 ..

drwxr-xr-x 8 vagrant root 4096 Jan 23 14:42 jmeter-1

drwxr-xr-x 8 vagrant root 4096 Jan 23 14:42 jmeter-2

drwxr-xr-x 8 vagrant root 4096 Jan 23 14:42 jmeter-3

The only thing left now is to configure RMI_HOST_DEF in JMETER_HOME/bin/jmeter-
server, as we did in the previous section to avoid the loop back error that will be
reported. From the VirtualBox, run the following on the command line:

ifconfig | grep inet

This will provide you the assigned IP address of the box.

Edit the jmeter-server script to add the box IP address using the following steps:

1.	 Run vi /opt/jmeter-1/bin/jmeter-server.
2.	 Look for the line beginning with #RMI_HOST_DEF and replace it with

RMI_HOST_DEF=-Djava.rmi.server.hostname=172.28.128.3 (replacing
172.28.128.3 with the assigned IP address of your virtual box).

3.	 Save and close the file (press Esc, type :wq).
4.	 Repeat the process for the other two slave nodes (jmeter-2 and jmeter-3).

At this point, the slave nodes are ready to be kicked-off, and the only thing left
to do is to start each of them up on our already configured RMI ports (1099, 1664,
and 1665).

To start the jmeter-1 slave node in a new shell/console, perform the following steps:

1.	 Go to the VAGRANT_EXTRACT directory.
cd VAGRANT_EXTRACT.

2.	 SSH into the box.
vagrant ssh

3.	 Start the JMeter server on the default port: 1099.
cd /opt/jmeter-1 && ./bin/jmeter-server

Chapter 6

[101]

To start the jmeter-2 slave node in a new shell/console, perform the following steps:

1.	 Go to the VAGRANT_EXTRACT directory.
cd VAGRANT_EXTRACT

2.	 SSH into the box.
vagrant ssh

3.	 Start the JMeter server on port 1664.
cd /opt/jmeter-2 && SERVER_PORT=1664 ./bin/jmeter-server

To start the jmeter-3 slave node in a new shell/console, perform the following steps:

1.	 Go to the VAGRANT_EXTRACT directory.
cd VAGRANT_EXTRACT

2.	 SSH into the box.
vagrant ssh

3.	 Start the JMeter server on port 1665.
cd /opt/jmeter-3 && SERVER_PORT=1665 ./bin/jmeter-server

Configuring the master node
With the slave nodes configured, we will need to configure the master node to
communicate with them before we can proceed with executing our tests remotely.
To do that, we will have to add the slave nodes' IP addresses and ports to the
master's node configuration file.

On the host machine (where JMeter GUI client is running), perform the
following steps:

1.	 Open JMETER_HOME/bin/jmeter.properties.
2.	 Look for the line beginning with remote_hosts=127.0.0.1 and then:

°° Change it to remote_hosts=172.28.128.3:1099,
172.28.128.3:1664, 172.28.128.3:1665

°° 172.28.128.3 should be changed to match the assigned IP address
of your VirtualBox

3.	 Save the file (press Esc, type :wq).
4.	 Launch JMeter.
5.	 Navigate to Run | Remote Start | Slave IP address (where Slave IP address

is the assigned IP address of your virtual machine).

Distributed Testing

[102]

With that done, we are ready to kick-off our tests like we did in the previous section.
The only difference now is that all our slave nodes are now configured on one virtual
host. Open up the browse-apple-itunes.jmx test plan in the JMeter GUI client
on the master. Change the number of threads from 150 to 15. Now, kick-off the test
remotely on all the slave nodes. The test should complete after a while (be patient). If
you compare the results of this run with the previous run that had slaves configured
on separate virtual boxes, you will see quite an increase in the response times. The
following are the results we got from our run:

Aggregate report for Browse Apple iTunes distributed test 2

You can see that we observe a higher response times in the 90% Line column for this
run when compared with the previous run, even though this test is using far fewer
users (15 compared to 150). One conclusion that can be drawn from these results
is that spinning-off multiple slave nodes on a machine is not always optimal and
should not be your first pick. Your mileage may vary based on the capacity of the
machine you use.

Leveraging the cloud for distributed
testing
So far, we have seen how we can distribute load to various physical or virtual
machines and by doing so achieve more load than can ever be possible with a
single machine. Our setup so far, though, has been internal to our network using a
master/slave configuration. Sometimes, it helps to isolate any artificial bottlenecks
occurring on the LAN and run your tests from more realistic locations external to
your network. This has the added benefit of leveraging substantially large hardware
at minimal cost thanks to the various cloud offerings now at our disposal. Another
area worth considering is the master/slave setup that we employed up to now.

Chapter 6

[103]

While this will work perfectly well when few slaves are configured, as more slaves get
added to the mix, the master node becomes a huge bottleneck. This shouldn't come as
a surprise since I/O and network operations increase as more and more slave nodes
try to feed ongoing testing results to the master. What will be most efficient and ideal is
to have each slave node run its test in isolation in non-GUI mode, save the results, and
have the cumulative results from all slave nodes gathered at the end of the test. The
challenge here, of course, is kicking-off all test executions on all nodes in harmony and
gathering the results from each. That can be a little bit daunting not to mention time
consuming. Thankfully, we can use Vagrant, our Swiss-Army-knife environmental
setup tool, to get part way there. We will employ it to start server instances on Amazon
Web Service (AWS), set up Java Runtime Environment (JRE), JMeter, and upload our
test scripts to the cloud virtual machines we bring up. Amazon has an excellent variety
of cloud services that make it easy to run your whole company's infrastructure in the
cloud, if you choose. Read more about it at http://aws.amazon.com/.

Provided that the application under test is accessible from outside your corperate
network, the methods described here should suit your needs just fine.

The first step is to register for an AWS account, if you don't already have one.
You can do that by going to http://aws.amazon.com/ and clicking on the
Sign up button. Once registered, you'll need to obtain your access key, secret key,
and a key pair to use for authenticating with the machines you create on AWS.

Obtaining your access key, secret key, and
key pair
To obtain AWS access keys, which are needed for sections in Chapter 5, Resource
Monitoring, perform the following steps:

1.	 Create a free AWS Account if you don't already have one by going to
http://aws.amazon.com/ and clicking on the Sign up or Create a Free
Account button.

2.	 Once your account has been created, go to the IAM console at
https://console.aws.amazon.com/iam/home?#home.

3.	 Click on the Users link on the side bar.
4.	 Select your IAM username and User Actions | Manage Access Keys:

°° If your username does not yet exist, create a new one by clicking on
the Create New Users button and follow the on-screen instructions.

°° Note the Access Key ID and Secret Access Key of the newly created
user and download them.

http://aws.amazon.com/
http://aws.amazon.com/
http://aws.amazon.com/
https://console.aws.amazon.com/iam/home?#home

Distributed Testing

[104]

5.	 Click on the Create Access Key button:
°° A new key/secret pair is generated and can be downloaded.

6.	 Click on the Download Credentials button. See the following screenshot
for details.

7.	 Keep the downloaded file in a secure location as you will need that to access
the instances you spin up.

8.	 With all that done, we are ready to start launching some instances in
the cloud!

Obtaining AWS credentials

AWS is a paid service and you are billed for every hour you have
an instance up and running. At the time of writing, a small instance
that we use during the course of this section, costs $0.10/hr for each
instance which is not bad considering all the effort it saves; getting a
box, setting it up, and doing that multiple times.

We prepared a Vagrant script with Puppet provisioning like we did in the previous
sections. The only difference this time is that is it configured to work with AWS as
opposed to virtual boxes in our intranet. To use it, you need to install the Vagrant
AWS plugin. Do that by running the following from the command line:

vagrant plugin install vagrant-aws

This simple one liner makes Vagrant AWS aware how to interact with machines
on AWS. We can now transparently spin-off virtual machines on Amazon's
infrastructure like we did with VirtualBox locally.

Chapter 6

[105]

Running the vagrant plugin install command, assumes
that you already installed Vagrant on the machine where this
operation is performed. If you haven't, please grab a copy at
https://www.vagrantup.com/downloads.html and
proceed with the installation as directed.

Launching the AWS instance
With the Vagrant AWS plugin installed, the next step is to perform the following steps:

1.	 Download the prepared Vagrant bundle for this section from https://
github.com/ptwj/diy_cloud_distribution/archive/master.zip.

2.	 Extract it to a location of your choice. We will refer to this as INSTANCE_HOME.
3.	 Open the $INSTANCE_HOME/Vagrant file in an editor of your choice and fill in

the required entries:
°° aws.secret_access_key = "YOUR AWS SECRET KEY"

°° aws.keypair_name= "YOUR KEYPAIR NAME"

°° aws.ssh_private_key_path = "PATH TO YOUR PRIVATE KEY"

°° aws.region = "YOUR AWS REGION"

(These are values as generated in the previous section Obtain your access key,
secret key, and key pair.)

4.	 Save your changes.
5.	 From the command line, go to the directory of INSTANCE_HOME:

cd $INSTANCE_HOME

6.	 Bring up the first virtual machine on AWS:
vagrant up vm1 --provider=aws

7.	 Wait for the process to complete. You will see a bunch of entries (similar
to what follows) written to the console, and the whole process could take
up to a minute or two depending on network latency, internet speed, and
communication with AWS among others:
Bringing machine 'vm1' up with 'aws' provider...

[vm1] Warning! The AWS provider doesn't support any of the Vagrant

high-level network configurations (`config.vm.network`). They

will be silently ignored.

[vm1] Launching an instance with the following settings...

https://www.vagrantup.com/downloads.html
https://github.com/ptwj/diy_cloud_distribution/archive/master.zip
https://github.com/ptwj/diy_cloud_distribution/archive/master.zip

Distributed Testing

[106]

[vm1] -- Type: m1.small

[vm1] -- AMI: ami-7747d01e

[vm1] -- Region: us-east-1

[vm1] -- SSH Port: 22

[vm1] -- Keypair: book-test

[vm1] Waiting for instance to become "ready"...

[vm1] Waiting for SSH to become available...

[vm1] Machine is booted and ready for use!

…

notice: /Stage[main]/Java::Package_debian/Package[java]/ensure:
ensure changed 'purged' to 'present'

notice: Finished catalog run in 113.17 seconds

8.	 Check whether you are able to connect to the box and that JMeter was
successfully installed on the machine:
vagrant ssh vm1

ls –l

°° This should contain a testplans directory.
ls –l /usr/local/

°° This should contain some directories including a jmeter one.

Now our first VirtualBox is up and running, ready to execute our test plans.

Start up three additional console/shell windows, one for each additional virtual
machine we will bring up. To bring up the second (vm2), third (vm3), and fourth
(vm4) virtual machines, run the following commands, one in each of the new
shell windows:

vagrant up vm2 --provider=aws

vagrant up vm3 --provider=aws

vagrant up vm4 --provider=aws

Verify each of them is properly set up, just like we did for the first virtual machine.
With all four machines running, we are ready to proceed with executing our test plans.

Chapter 6

[107]

Executing the test plan
Since we are not using a master/slave node configuration in this section for reasons
described earlier, we'll need to execute the following command on all four virtual
machines simultaneously as best we can.

To execute our test plans, run the following on the virtual boxes:

On vm1, type (or copy) the following on the console:

/usr/local/jmeter/bin/jmeter -n -t testplans/browse-apple-itunes.jmx -l
vm1-out.csv

On vm2, type (or copy) the following on the console:

/usr/local/jmeter/bin/jmeter -n -t testplans/browse-apple-itunes.jmx -l
vm2-out.csv

On vm3, type (or copy) the following on the console:

/usr/local/jmeter/bin/jmeter -n -t testplans/browse-apple-itunes.jmx -l
vm3-out.csv

On vm4, type (or copy) the following on the console:

/usr/local/jmeter/bin/jmeter -n -t testplans/browse-apple-itunes.jmx -l
vm4-out.csv

These will run JMeter in a non-GUI mode and execute the browse-apple-itunes.
jmx test plan. Each virtual machine will print simulation results to the CSV files.
Therefore, vm1 will output results to vm1-out.csv, vm2 to vm2-out.csv, and so on.

Now that all the consoles are ready, press Enter on your keyboard in each console to
execute the test plan on each virtual machine. You should see a log similar to each of
the following on each console:

Created the tree successfully using testplans/browse-apple-itunes.jmx

Starting the test @ Fri Jan 23 20:49:38 UTC 2015 (1365108578406)

Waiting for possible shutdown message on port 4445

Generate Summary Results + 3592 in 82s = 43.9/s Avg: 1030 Min:
4 Max: 7299 Err: 0 (0.00%) Active: 208 Started: 300 Finished: 92

Generate Summary Results + 3008 in 55s = 54.8/s Avg: 541 Min:
4 Max: 6508 Err: 0 (0.00%) Active: 0 Started: 300 Finished: 300

Distributed Testing

[108]

Generate Summary Results = 6600 in 114s = 57.7/s Avg: 807 Min:
4 Max: 7299 Err: 0 (0.00%)

Tidying up ... @ Fri Jan 23 20:51:34 UTC 2013 (1365108694177)

... end of run

The last line (… end of run) indicates that the test is finished on that node and the
result is ready for viewing. You should be able to verify that the results file was
generated by listing the contents of the current directory using the ls -l command.
You should see an output of the vmX-out.csv format (where X will represent the
node you are on. In our case, it's 1,2,3, or 4).

Viewing the results from the virtual machines
To view the results, we need to grab the files off each host machine and then
concatenate them together to form a composite whole. We can then view the final
merged file using a JMeter GUI client. To grab the files, we can use any SFTP tool of
our choice. If you are on a Unix-flavored machine, chances are that you already have
the scp command-line utility handy. That is what we will be using here. To proceed,
we will need the name of the host machine that we are trying to connect to. To get
this, type the exit command on the console of the first virtual machine.

You will see a line similar to the following:

ubuntu@ip-10-190-237-149:~$ exit

logout

Connection to ec2-23-23-1-249.compute-1.amazonaws.com closed.

The ec2-xxxxxx.compute-1.amazonaws.com line is the host name of the machine.
We can now connect to the box using our keypair file and retrieve the results file. At
the console, issue the following command:

scp -i [PATH TO YOUR KEYPAIR FILE] ubuntu@[HOSTNAME]:"*.csv" [DESTINATION
DIRECTORY ON LOCAL MACHINE]

As an example, on our box, our keypair file named book-test.pem is stored under
the .ec2 directory in our home directory, and we want to place the results file in /
tmpdirectory. Therefore, we run the following command:

scp -i ~/.ec2/book-test.pem ubuntu@ec2-23-23-1-249.compute-1.amazonaws.
com:"*.csv" /tmp

This will transfer all the .csv files on the AWS instance to our local machine under
the /tmp directory.

Repeat the command for the three additional virtual boxes.

Chapter 6

[109]

Remember to use the correct hostname for each VirtualBox.

After transferring all the result files from the virtual machines, we can terminate all
the instances as we are done with them.

AWS is a paid service, and you are charged per hour/per
instance. If you are done with a box, remember to shut it down
else you incur unnecessary charges.

You can either shut down each individually using vagrant destroy [VM ALIAS
NAME](vagrant destroy vm1 will shut down virtual box aliased vm1), or shut
all running instances down using vagrant destroy.

You can always verify the state of your instances through the
vagrant status command or through the AWS web console
at https://console.aws.amazon.com/ec2.

With our entire results file from all hosts now available locally, we will need to
merge them together to get an aggregate of response time across all hosts. We can
do this with any editor that can deal with CSV file formats. Basically, you will open
a file (say vm1-out.csv) and append the entire contents of the other files (vm2-out.
csv, vm3-out.csv, and vm4-out.csv) to it. Alternatively, this can all be done from
the command line. For those on unix-flavored machines, the cat command can be
employed. Open the command line and change directory to the location where you
have transferred the result files. Then run the following on the console:

cat vm1-out.csv vm2-out.csv vm3-out.csv vm4-out.csv >> merged-out.csv

This assumes that you followed along with this section and
named your result files from vm1-out.csv to vm4-out.csv,
respectively.

This creates a file named merged-out.csv that can now be opened in our JMeter
GUI client. To do that, perform the following steps:

1.	 Launch JMeter GUI.
2.	 Add a Summary Report listener by navigating to Test Plan | Add | Listener

| Summary Report.

https://console.aws.amazon.com/ec2

Distributed Testing

[110]

3.	 Click on Summary Report.
4.	 Click on the Browse… button.
5.	 Select the merged-out.csv file.

Since our test plan spins-off 300 users and runs for two iterations, each virtual
node generates 600 samples. Since we ran this across four nodes, we have a total
of 2,400 samples generated as can be seen from the Summary Report listener in the
following screenshot:

Summary Report listener

We also see the Max response time is not too shabby. There were no errors reported
on any of the nodes and the throughput was good for our run. These are not bad
numbers considering we used AWS small instances. We can always put more stress
on the application or web servers by spinning off more nodes to run test plans
or using higher capacity machines on AWS. Although we have only used four
virtual boxes for illustrative purposes here, nothing prevents you from scaling out
to hundreds of machines to run your test plans. As you start to scale out to more
and more servers for your test plans, it may become increasingly difficult and
cumbersome to simultaneously start your test plans across all nodes.

Chapter 6

[111]

At the time of this writing, we discovered yet another tool that promises to ease
the management pain across multiple AWS nodes or inhouse networked machines.
This tool helps spin off AWS instances (like we have done here), install JMeter, run
a test plan distributing the load across the number of instances spun, and gather
all the results from all hosts to your local box, all the while giving you the real-time
aggregate information on the console. At the end of the tests, it terminates all AWS
instances that were started. We gave it a spin, but couldn't quite get it working as
advertised. It is still worth keeping an eye on the project, and you can find out
more about it at https://github.com/oliverlloyd/jmeter-ec2. Furthermore,
we should mention that there are some services out on the web, helping to bring
ease into distributed testing. Two of such services are Flood.io (http://flood.io)
and BlazeMeter (http://blazemeter.com/). We will cover these two awesome
cloud services in the sections that follow.

Using cloud services
In the preceding section, we walked through how you can roll your own distributed
testing infrastructure, if you desire or are constrained by something beyond your
control. In this section, we discuss how you can take advantage of the existing cloud
distributed testing services that aim to ease your overall setup and testing needs.
They also help you perform your testing tasks more quickly and more efficiently.
The two services discussed (Flood.io and BlazeMeter) take different approaches to
tackling these problems, but ultimately you get similar results.

Using Flood.io
Flood.io is described as a service that takes the pain out of setting up and
maintaining cloud-based load and performance test infrastructure. It can be found at
http://flood.io. With Flood.io, you upload an already recorded test script to its
service and it takes care of the rest, ensuring that your tests are distributed among
several machines while assembling important results and metrics in a beautiful and
well-crafted UI, in real time as the test progresses.

http://flood.io
http://blazemeter.com/
http://flood.io

Distributed Testing

[112]

Flood.io is a paid service, but you can register for a free user account at http://
flood.io to follow along with the sample discussed here. The free user account
gives you a monthly quota of an hour and allows you to run your tests for a
maximum of five minutes after which it is shutdown. This will give you a taste of
how nice this cloud service is.

Download the entire code sample for the book at https://github.
com/ptwj/ptwj-code/archive/master.zip. You'll find the files
needed for this section in the chap6 directory.

Rather than discussing it, let's take out a prerecorded test script (chap6/railway.
jmx) and take it for a spin on its service:

1.	 Register for a free account at http://flood.io.
2.	 Log in to your account.
3.	 Once logged in, click on the Create Flood button.
4.	 Drag and drop the simulation file (railway.jmx) that we will be using for

our test into the Upload Files box.
5.	 In addition, drag and drop the supporting data files (cars.txt, trains.txt,

and stations.txt) for the test into the Upload Files box.
6.	 Optionally, you can provide a name for your flood in the Name textbox.
7.	 In the Grids dropdown, select the only available grid on the free tier.
8.	 Optionally, you can enter the number of threads, ramp up, and duration into

their respective boxes, but for our purposes, you can skip them.
9.	 Click on the Start Flood button.

http://flood.io
http://flood.io
https://github.com/ptwj/ptwj-code/archive/master.zip
https://github.com/ptwj/ptwj-code/archive/master.zip
http://flood.io

Chapter 6

[113]

Momentarily, your test simulation (what Flood.io refers as a flood) will be started
and live results will be displayed on the screen once the test has enough information
to display meaningful reports. The actual simulation run for this section can be seen
at http://bit.ly/1Ejpnji. The following is the result of our test run on Flood.io.

In addition to providing easy setup of distributed testing, it is worth noting that
Flood.io provides some useful features such as:

•	 Allowing you to easily emulate various network topologies, for example,
mobile, broadband, and so on.

•	 Allowing you to override JMeter parameters in your test plans
•	 Allowing you to override the URL parameters for your test plans
•	 Scheduling tests to kick-off at a later point in the future
•	 Providing a ruby gem that allows you write test plans in an expressive

domain specific language (DSL)
•	 Allowing you launch tests on its cloud infrastructure without opening

a browser

http://bit.ly/1Ejpnji

Distributed Testing

[114]

All in all, Flood.io is an excellent cloud testing service to consider if your budget
permits. Next, we explore BlazeMeter, another good cloud testing service.

Using BlazeMeter
BlazeMeter is a cloud testing service that describes itself as the load testing cloud.
It is aimed at getting you up and running with distributed testing in no time. Their
platform allows you to test and monitor mobile and web applications under heavy
and realistic loads while presenting you with useful metrics and reports. It is a paid
service, but they do offer a free account that we will be using for the purpose of this
section. The free account allows you to simulate at most 50 users for a maximum of 1
hour, which is sufficient to get a feel of the service.

Download the entire code sample for the book at https://github.
com/ptwj/ptwj-code/archive/master.zip. You'll find the files
needed for this section in the chap6 directory.

Let's jump right in and use the same sample as we did in the preceding exercise:

1.	 Register for a free account at http://blazemeter.com/.
2.	 Log in to your account.
3.	 Once logged in, click on the Add Test button on the top navigation bar.
4.	 Provide a name for your test in the Test Name textbox.
5.	 In the Load Origin location dropdown, you can optionally switch to a

different region, but BlazeMeter is smart enough to default to the closest
region to your geographical location.

6.	 Click on the Upload Files button and select the simulation file (railway.jmx)
and the three supporting data files (cars.txt, trains.txt, and stations.
txt) for our tests.

7.	 Adjust the ramp up time from the default of 300 seconds to 10 seconds by
moving the slider down as needed.

8.	 Reduce the test duration from the default of 50 minutes to 10 minutes by
moving the slider down as needed.

https://github.com/ptwj/ptwj-code/archive/master.zip
https://github.com/ptwj/ptwj-code/archive/master.zip
http://blazemeter.com/

Chapter 6

[115]

9.	 In the JMeter Version dropdown, select 2.12 BlazeMeter.
10.	 Leave the rest of the values unchanged.
11.	 Click on the Save button.
12.	 Once saved, BlazeMeter gives you a preview of test settings allowing you to

make additional modifications to it as you desire.
13.	 Once you are satisfied, click on the Start button to begin the test simulation.
14.	 Another dialog box pops up letting you know your test will terminate after

1 hour and requires you to acknowledge that you are authorized to run the
test. Click on the Launch Server button.

15.	 The test simulation will then begin, and real-time reports can be seen by
clicking on the Report tab in the top navigation bar. In addition, an e-mail
will be sent to you once the test has completed, which is pretty cool!

The real-time graph allows you to view different matrices regarding your tests
including active and max users, response time, latency, hits per second, throughput
per second (KB/s), errors, and so on. In the Load Results tab, you also get a familiar
table view (similar to what you see in the Aggregate Report Listener) of your results.

In the Waterfall tab, you get yet another view of metrics data to analyze your test
results. These include page load and a detailed breakdown of each request and
where time was spent.

In the Monitoring tab, you get a view of the system metrics as your test was being
conducted. These include CPU, Memory, Network I/O, and Connections. These
are all useful analytic metrics that can help you identify and pinpoint performance
bottlenecks in the application under test. The last tab, Logs, give the public IP
addresses of the machines that were used to conduct your tests and access to the
Jmeter console logs generated during your test run which you can download and
further analyze.

Distributed Testing

[116]

Our run at the time of writing can be reached at https://a.blazemeter.com/
report/r-ec254c21d52f30f1.

In addition to these, BlazeMeter offers even more useful features including:

•	 Allowing you to easily emulate various network topologies for example,
mobile, broadband, and so on

•	 Allowing you to override JMeter parameters in your test plans
•	 Allowing you to override the URL parameters for your test plans
•	 Scheduling tests to kick-off at a later point in the future
•	 Integration with New Relic (http://newrelic.com) allows your valuable

insight into application metrics as your tests is being conducted
•	 Integration with Amazon's AWS CloudWatch to monitor your resources on

AWS if the application under test happens to be housed there
•	 User experience monitoring with Selenium (http://docs.seleniumhq.org/)

https://a.blazemeter.com/report/r-ec254c21d52f30f1
https://a.blazemeter.com/report/r-ec254c21d52f30f1
http://newrelic.com
http://docs.seleniumhq.org/

Chapter 6

[117]

BlazeMeter is an exceptional cloud testing service to consider if your budget permits.

So with that, we wrap up our look into distributed testing with JMeter. Though
the test plan we used had no input test data, nothing prevents you from using one
that does. Also, all the other techniques we learned in other chapters can be applied
whenever they make sense. And not using a master/node configuration got us past
the hurdle of known limitations with that approach. These include:

•	 Network saturation due to high number of slave nodes writing to the
master node

•	 RMI communication is not possible across subnets without a proxy thereby
forcing slaves and the master to be on the same subnet, in these cases

•	 The master node server can be easily overwhelmed with very few slave
nodes reporting to it, depending on its resources (CPU and memory)

Summary
We covered quite a lot of ground in this chapter. We learned how we can distribute
a load using different techniques when executing test plans. We learned how to
have JMeter work in a master/node configuration. With the help of tools such as
Vagrant, we made a daunting task really easy. We learned how to spin-off several
node machines on the same physical box (or different boxes) and use a master node
to control them all from a JMeter GUI. While convenient, we saw that this method
was limiting in terms of scalability. As the number of slave nodes grew, the master
quickly became the bottleneck due to high I/O generated from several nodes trying
to report progress to it. To overcome such restrictions and ultimately achieve infinite
scalability, we learned how to run several test machines in parallel to execute our test
plans. In the process, we leveraged the AWS infrastructure and saw how we can use
the cloud to aid more efficient testing, thereby helping us reach our goals.

In the last sections, we covered two outstanding cloud services Flood.io and
BlazeMeter and saw how they take the pain out of distributed testing while
still providing all the useful features needed for testing and monitoring.

In the next chapter, we will look at some tips that are helpful and handy when
working with JMeter such as JMeter Properties and Variables, JMeter Functions
and Regular Expression Tester, to name a few.

[119]

Helpful Tips
At this point, you have hopefully become familiar with the inner workings of JMeter
and are comfortable with using it to achieve most of your testing needs. However,
before we wrap up the book, there are some helpful tips worth mentioning that will
make working with JMeter more pleasant and perhaps save you time in the process.
These are some techniques we learned over the years, and they have proven to be
useful in almost every environment we've found ourselves in.

JMeter properties and variables
JMeter properties are defined in jmeter.properties (located in the $JMETER_HOME/
bin directory), which is global in nature and used to define some defaults JMeter
uses. The value of the remote_hosts property encountered in the previous chapter
is a good example of this. Properties can be referenced from within a test plan, but
cannot be used for thread-specific values because of their global nature (shared
among all threads).

JMeter variables, on the other hand, are local to each thread. The values may stay the
same or vary between threads. In cases where a variable is updated by a thread, only
the thread copy of the variable is changed, thus remaining invisible to other running
threads. A good example of this is the Regular Expression Extractor post processor that
we encountered in the previous chapters. The values extracted and acted upon are in
the context of the samples of the running thread. The variables that are extracted are
user-defined and available to the whole test plan at the startup. If the same variable is
defined by multiple user-defined variable elements, the last one wins.

Helpful Tips

[120]

As simple as they appear, using JMeter variables wisely can help save your time
by allowing you to use the same recorded scripts from one environment to another
environment without having to rescript for every single environment you are
targeting, provided the two environments are structured similarly architecturally.
For instance, test plans recorded against the User Acceptance Test (UAT)
environment can be run in production if these two environments bear a resemblance
in structure. To accomplish that, you can either define User Defined Variables
(UDV) at the test plan root level, or replace individual URLs for HTTP Request
samplers. For example, we can define the following UDVs at the test plan root level:

app_url ${__P(app_url, https://uat.fastcompany.com/someapp)}

sso_url ${__P(sso_url, https://sso.uat.fastcompany.com/
login)}

threads ${__P(threads, 10)}

loops ${__P(loops, 30)}

With such a configuration, we defined default values for app_url, sso_url,
threads, and loops and still provided the ability to override them from the
command line as follows:

jmeter ... -Japp_url=https://fastcompany.com/someapp Jsso_url=https://
sso.fastcompany.com/login –Jloops=15

This will make our test plans use an app_url variable having the value https://
fastcompany.com/someapp, the sso_url variable having the value https://sso.
fastcompany.com/login, and the loops variable having the value 15. The number
of threads will remain 10 (by default) since it wasn't overridden. This concept saves
a lot of time when developing test plans against various environments, allowing
you to record once and target various environments with the same set of scripts. For
instance, this is useful when a particular environment isn't ready yet and scripts have
already been developed targeting an active environment. Once the environment
becomes available, the same scripts can target the newly available environment
without having to rerecord them.

We bundled a sample with the book (excilys-bank-scenario-3.jmx). It's from
the banking application sample test plan that we saw in Chapter 2, Recording Your
First Test . It is hosted on two different cloud providers: OpenShift at http://
excilysbank-berinle.rhcloud.com and AppFog at http://excilysbank.aws.
af.cm. It runs against AppFog by default. To run it against OpenShift, you will need
to override the hostname variable when you start JMeter like the following:

jmeter -Jhostname=excilysbank-berinle.rhcloud.com

http://excilysbank-berinle.rhcloud.com
http://excilysbank-berinle.rhcloud.com
 http://excilysbank.aws.af.cm
 http://excilysbank.aws.af.cm

Chapter 7

[121]

JMeter functions
JMeter functions are special values that can populate fields or any sampler or other
element in the test plan. They take the following form:

${__functionName(var1,var2,var3)}

Here, __functionName matches any of the many function names JMeter offers.
Parentheses surround the parameters sent to the function, which can vary from
function to function. Functions with no parameters don't need the parentheses, for
example, ${__threadNum}. A list of all available functions can be found on JMeter's
website at http://jmeter.apache.org/usermanual/functions.html. Functions are
divided into seven main categories. They are given here along with their examples:

•	 Information: threadNum, machineIP, time, and so on
•	 Input: CSVRead, XPath, and so on
•	 Calculation: counter, Random, UUID, and so on
•	 Scripting: javaScript, BeanShell, and so on
•	 Properties: property, P, setProperty, and so on
•	 Variables: split, eval, and so on
•	 String: char, unescape, and so on

Functions can prove useful in certain situations, allowing the computation of new
values at a runtime based on previous response data, such as which thread the
function is in, time, and numerous other sources. Their values are generated afresh
for every request throughout the course of the test. There are also some restrictions
regarding where certain functions can be invoked. Since JMeter thread variables
are not fully initialized when functions are processed, variable names passed as
parameters will not be set up. This causes variable references to not work.

Functions are shared between threads in the test plan.
Each occurrence of a function call is handled by a separate
function instance.

http://jmeter.apache.org/usermanual/functions.html

Helpful Tips

[122]

The Regular Expression tester
Throughout the course of the book, we have seen Regular Expression Extractor post
processors in action in several of our scenarios. These components allow you to
extract values from a server response using a Perl-type regular expression. As a post
processor, this element executes after each sample request in its scope, applying the
regular expression; extracts the requested values, generating the template string;
and finally stores the result into a given variable name, which can then be referenced
further down the test plan. To fully maximize the use of the Regular Expression
Extractor post processor, you should get acquainted with regular expressions in
general. There are numerous online resources that can help, but you can start with
this one: http://www.regular-expressions.info/tutorial.html. The RegExp
Tester view is one of the options that you can choose from the View Results Tree
listener drop-down menu. It allows you to test various regular expressions against
the server response on a per-sampler basis. When you are interested in extracting
a variable or group of variables that vary dynamically based on which thread is
currently executing, this gives you the maximum flexibility to test and tune your
regular expression till you find the exact match that suits your needs. Without
such an element, ample time can be spent nailing down the right pattern matcher,
as it will involve rerunning your test plan several times with various inaccurate
expressions, hoping it eventually matches:

The RegExp Tester

http://www.regular-expressions.info/tutorial.html

Chapter 7

[123]

In our browse iTunes store test plan from the previous chapter, say we were interested
in extracting the class elements from the HTML response of the /itunes/charts/
sampler. Once the test has been exercised, we can explore the RegExp Tester view
to find the right regular expression for this. For our purpose, it came down to li
class="([^"]*).*, which matched 22 elements, listed in the bottom half of the
window as seen in the previous screenshot. We can then copy that pattern into a
Regular Expression Extractor post processor under the /itunes/charts/ sampler and
store the results in a variable to use further down the chain in our test plan.

The debug sampler
The debug sampler generates a sample containing all the values of JMeter variables
and/or properties. A View Results Tree listener must be present in the test plan to
view its results. This nifty component helps you debug your test plans appropriately,
providing you with the tools to analyze the runtime-assigned values of various
variables during test execution. In our aforementioned example, suppose we add a
Regular Expression Extractor post processor to the /itunes/charts sampler and
store it in a variable, we will be able to view the value assigned to the variable, and
more importantly how to get to the different values if there is more than one match.
To add a Debug Sampler, right-click on Thread Group, and navigate to Add |
Sampler | Debug Sampler, as follows:

The debug sampler via the View Result Listener

Helpful Tips

[124]

As you can see from this screenshot, the multiple matches are stored under
linkclass_n (where n is a match position), followed by the variable name declared
in our Regular Expression Extractor post processor. Thus, we can get hold of the
first match as linkclass_1, the second as linkclass_2, and so on. As you record
more and more complex scripts, you will find the debug sampler to be an invaluable
component that is worth keeping handy.

Using timers in your test plan
By default, JMeter doesn't put timers in your test plans when a scenario is recorded.
This is far from reality. Ideally, users will have a think or wait time between page
views and requests. Getting JMeter to simulate such pauses or waits makes your test
plans more realistic, bringing it closer to how actual users may behave. JMeter offers
various built-in timer components that help achieve this. Each varies from the others
in how it varies the simulated pauses. The following is a list of some of the included
timers at the time of writing of this book.

The Constant Timer
The Constant Timer is used if you want each thread to pause for the same amount of
time between requests.

The Gaussian Random Timer
The Gaussian Random Timer pauses each thread request for a random amount of
time with most of the time intervals occurring near a particular value. The total delay
is the sum of the Gaussian distributed value times, the value specified, and the offset.

The Uniform Random Timer
The Uniform Random Timer pauses thread requests for a random amount of time,
with each time interval having the same probability of occurring. The total delay is
the sum of the random and offset values.

The Constant Throughput Timer
The Constant Throughput Timer introduces variable pauses calculated to keep the
total throughput, that is, samples per minute as close as possible to the targeted
figure. Though called a constant throughput timer, the throughput can be varied by
using a counter value, JavaScript value, BeanShell value, or remote BeanShell server.

Chapter 7

[125]

The Synchronizing Timer
The Synchronizing Timer helps simulate large instantaneous loads on various points
in the test plan by blocking threads until a certain number of threads have been
blocked and then released all at once.

The Poisson Random Timer
The Poisson Random Timer, like the Gaussian Random Timer, pauses thread
requests for a random amount of time, with most of the time intervals occurring
near a particular value. The total delay is the sum of the Poisson distributed value
and the offset value.

Any of these timers can be added by right-clicking on a thread group and navigating
to Add | Timer | (Timer to Add). You can read more about each of these timers and
more at JMeter's website at http://jmeter.apache.org/usermanual/component_
reference.html#timers.

The JDBC Request sampler
Sometimes, it's necessary to test durability and I/O operations against the database
directly. How fast are insert, update, and select queries on the tables in question?
For such tests, JMeter provides a JDBC Request sampler to help issue SQL queries
against the database. However, to use it, we need to set up a JDBC Connection
Configuration component. Setting up this component requires us to point to a
database. Therefore, let's go ahead and set up the database. Normally, this will
already be set up for you to test against, but for illustrative purposes, we are going
to assume that none has been set up. We will be using H2, an open source, pure
Java SQL database. It is lightweight and relatively easy to set up. You can find more
details about H2 at http://www.h2database.com/html/main.html.

Setting up the H2 database
To set up the H2 database, do the following:

1.	 Download a distribution from http://www.h2database.com/html/
download.html.

2.	 Extract the archive to a location of your choice. We will refer to this as
H2_HOME.

3.	 From the command line, go to the H2_HOME/bin folder.

http://jmeter.apache.org/usermanual/component_reference.html#timers
http://jmeter.apache.org/usermanual/component_reference.html#timers
http://www.h2database.com/html/main.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html

Helpful Tips

[126]

4.	 Start the H2 database server by issuing either of these commands.
°° On Unix:

./h2.sh

°° On Windows:
h2.bat

5.	 This will launch your browser and point to the H2 Admin console, as seen in
the following screenshot:

The H2 Admin console (before the connection)

6.	 Create a test database named test by changing your JDBC URL value to
either of the following:

°° On Unix:
jdbc:h2:tcp://localhost//tmp/test;MVCC=TRUE

°° On Windows:
jdbc:h2:tcp://localhost/c:/test;MVCC=TRUE

Chapter 7

[127]

7.	 Click on the Connect button.
8.	 Create the sample table that we will be using to test by copying the following

script into the space provided in the console (see the screenshot that follows
the next screenshot):
DROP TABLE IF EXISTS TEST;
CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255));
INSERT INTO TEST VALUES(1, 'Hello');
INSERT INTO TEST VALUES(2, 'World');

9.	 Click on the Run button.

Now that we have a database and table to test with, we can go ahead and configure a
JDBC Connection Configuration component to point to it.

Since H2 is Java-based, to run it, you need to have a JRE (Java Runtime
Environment) set up on the machine of choice. Please refer to Chapter 1,
Performance Testing Fundamentals, for instructions on setting up JRE on
your machine if you don't already have it.

The H2 Admin console (after the connection)

Helpful Tips

[128]

Configuring a JDBC Connection
Configuration component
As the name suggests, this component helps create a connection to the database
from the supplied settings. Each thread can get its own dedicated connection or
connections may be pooled between threads.

1.	 Copy the JDBC driver (h2-1.3.171.jar or similar) from the H2_HOME/bin
folder to the JMETER_HOME/lib/ext folder.

2.	 Add a JDBC Connection Configuration component to the test plan by right-
clicking on Test Plan and navigating to Test Plan | Add | Config Element |
JDBC Connection Configuration.

3.	 Configure the properties as follows:
°° Variable Name: testPool
°° Validation Query: Select 1 from dual
°° Database URL: jdbc:h2:tcp://localhost//tmp/test;MVCC=TRUE

(those using Windows should use jdbc:h2:tcp://localhost/c:/
test;MVCC=TRUE)

°° JDBC Driver class: org.h2.Driver
°° Username: sa

4.	 Leave the rest of the configurations as they are:

Chapter 7

[129]

The JDBC Connection Configuration component

Adding a JDBC Request sampler
Now that we have a JDBC Connection Configuration component configured, the final
step is to add a JDBC Request sampler to our test plan to make use of it. Adding that
is not different from how we added other samplers throughout the book:

1.	 Create a Thread Group element, if none already exist, by right-clicking on
Test Plan and navigating to Test Plan | Threads | Thread Group.

2.	 Add a JDBC Request sampler by right-clicking on Thread Group and
navigating to Thread Group | Add | Sampler | JDBC Request.

Helpful Tips

[130]

3.	 In the SQL Query input field, type in the following:
SELECT * FROM TEST

4.	 Add a View Results Tree listener by right-clicking on Thread Group and
navigating to Add | Listener | View Results Tree.

5.	 Save the test plan.
6.	 Execute the test.

Although a simple query, it illustrates the concept. The JDBC Request sampler
allows you to issue complex queries with bind parameters, inserts, updates, deletes,
and even stored procedures. More details can be found at http://jmeter.apache.
org/usermanual/build-db-test-plan.html and http://jmeter.apache.org/
usermanual/component_reference.html#JDBC_Request.

Using a MongoDB Sampler
In the previous section, we saw how JMeter can be used to directly test a relational
database. A new category of databases termed NoSQL (Not Only SQL or No SQL) are
on the rise and it is not uncommon to come across applications using these databases
either in combination with relational ones, or entirely as the only database. These
databases offer certain features such as document-oriented storage, schema-less, high
availability, sharding, map/reduce, and so on that make them more attractive than
their relational counterparts for certain use cases. You can read more about NoSQL
databases at https://en.wikipedia.org/wiki/NoSQL.

The popular NoSQL databases are MongoDB, Couchbase, Redis, Apache Cassandra,
Riak, Amazon DynamoDB, to name a few.

Since MongoDB is one of the most popular ones, JMeter comes bundled with
components that can help you directly test MongoDB databases with no additional
plugins. This can come in handy if you would like to test the database isolated from
the interfacing application using it.

To test MongoDB with JMeter, do the following:

1.	 Install MongoDB as described in the online documentations at http://docs.
mongodb.org/manual/installation/

For easier use, make sure MONGODB_HOME/bin is available at
your path, so you can access commands such as mongod and
mongo easily from any terminal and/or directory.

http://jmeter.apache.org/usermanual/build-db-test-plan.html
http://jmeter.apache.org/usermanual/build-db-test-plan.html
http://jmeter.apache.org/usermanual/component_reference.html#JDBC_Request
http://jmeter.apache.org/usermanual/component_reference.html#JDBC_Request
https://en.wikipedia.org/wiki/NoSQL
http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/installation/

Chapter 7

[131]

2.	 Start the MongoDB instance by opening a terminal window and typing mongod.
3.	 If your installation was successful and mongod correctly exists in your PATH,

then you should see something similar to the following screenshot:

Starting mongodb instance using mongod command

4.	 Launch JMeter.
5.	 Add Thread Group by navigating to Test Plan | Add | Threads(Users) |

Thread Group.
6.	 Add the MongoDB Source Config element by navigating to Thread Group |

Add | Config Element | MongoDB Source Config.
7.	 Fill in the contents as follows:

°° Server Address List: 127.0.0.1
°° MongoDB Source: mongo

8.	 Add the MongoDB Script component to the Thread Group by navigating to
Thread Group | Add | Sampler | MongoDB Script.

9.	 Fill in the following details:
°° MongoDB Source: mongo (should match the name specified in step 7)
°° Database Name: ptwj
°° Username: (leave it blank)

Helpful Tips

[132]

°° Password: (leave it blank)
°° The script to run: Copy the contents of https://raw.

githubusercontent.com/ptwj/ptwj-code/master/chap7/ch7_
mongo_script.txt and paste into the text area

Any valid mongo script can be filled in the script to run text
area, depending on your testing needs. Here, we are just testing
inserts. The script we run is bundled with the sample code under
the ch7_mongo_script.txt name. It can also be found here
https://raw.githubusercontent.com/ptwj/ptwj-
code/master/chap7/ch7_mongo_script.txt.

10.	 Add a View Results Tree listener to your test plan (Test plan | Add |
Listener | View Results Tree).

11.	 Save and run the test plan. Observe the results of the execution.
12.	 The Response tab of the View Results Tree component should report ok

indicating that the script is successfully completed.
13.	 You can verify that the entries successfully made it into the targeted mongo

collection by doing the following from the terminal (in sequence):
mongo
use ptwj
db.posts.count()
db.posts.find()

The mongo command opens up a client connection to the MongoDB server. The use
ptwj command instructs MongoDB if we want to switch to the ptwj database. This
matches the database name that we specified in Step 9. The db.posts.count()
counts the number of records we have in the posts collection. The last command,
db.posts.find() prints all the contents we have in the posts collection.

For additional information on MongoDB, please refer to this link: http://www.
mongodb.org/.

https://raw.githubusercontent.com/ptwj/ptwj-code/master/chap7/ch7_mongo_script.txt
https://raw.githubusercontent.com/ptwj/ptwj-code/master/chap7/ch7_mongo_script.txt
https://raw.githubusercontent.com/ptwj/ptwj-code/master/chap7/ch7_mongo_script.txt
https://raw.githubusercontent.com/ptwj/ptwj-code/master/chap7/ch7_mongo_script.txt
https://raw.githubusercontent.com/ptwj/ptwj-code/master/chap7/ch7_mongo_script.txt
http://www.mongodb.org/
http://www.mongodb.org/

Chapter 7

[133]

A Dummy Sampler
Though not part of the built-in JMeter samplers, this sampler can be added to
your JMeter toolkit via the JMeter extensions project. We discussed this in detail in
Chapter 5, Resource Monitoring, so if you don't already have it configured, please refer
to the chapter to get the gist of it. This sampler generates samples with just the values
that are defined for it. It comes in extremely handy when debugging post processors
without having to repeat the entire execution of the test plan or waiting for the exact
condition in the application under testing.

This component allows you to determine if the response should be marked a
successful sample, what response code to return, the response message, the latency,
and response times. In addition, it allows you to specify a request and a response,
which can be anything you choose; for example, HTML, XML, and JSON.

Once the plugins have been properly installed into your JMeter instance, you should
see additional samplers available to pick from:

1.	 Add a Thread Group element to the test plan by right-clicking on Test Plan
and navigating to Threads | Thread Group.

2.	 Add a Dummy Sampler element by right-clicking on Thread Group and
navigating to Add | Sampler | jp@gc - Dummy Sampler. For the contents
of the Response Data, add the following HTML snippet:
<html>
<head>
 <title>Welcome to Debug Sampler</title>
</head>
<body>
 This is a test
</body>
</html>

3.	 Add a View Results Tree listener by right-clicking on Thread Group and
navigating to Add | Listener | View Results Tree.

4.	 Save the test plan.

Helpful Tips

[134]

5.	 Execute the test:

The Dummy Sampler

See the bundled dummy-sampler.jmx file for the full example.

Chapter 7

[135]

The JSON Path Extractor element
Another helpful nugget in the JMeter plugin's project is the JSON Path Extractor
element. This makes working with JSON pure bliss. It helps extract data out of
a JSON response using JSONPath syntax (http://goessner.net/articles/
JsonPath/index.html#e2). For complex JSON structures, using JMeter's bundled
XPath Extractor can sometimes lead to heartache when trying to get at targeted
elements. Where XPath Extractor fails, JSON Path Extractor shines.

Consider a JSON structure like the following:

{ "store": {
 "book": [
{ "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95
 },
{ "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99
 },
{ "category": "fiction",
 "author": "Herman Melville",
 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99
 },
{ "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",
 "price": 22.99
 }
],
 "bicycle": {
 "color": "red",
 "price": 19.95
 }
 }
}

http://goessner.net/articles/JsonPath/index.html#e2
http://goessner.net/articles/JsonPath/index.html#e2

Helpful Tips

[136]

If you wanted to get to the title of the second book in the store, an expression like
$.store.book[1].title gets you there swiftly. No matter how nested the structure
is, JSON Path Extractor gets the job done elegantly. See the two examples that
accomplish this in this book: JSONPathExtractorExample.jmx (from the JMeter
plugin's site) and dummy-sampler.jmx.

Handling RESTful web services
An increasing number of applications are shifting to RESTful web services due to
their simplicity to build, test, and consume compared to their SOAP counterparts. All
REST communication is done over the HTTP protocol between the parties involved.
HTTP is used for CRUD (create, read, update, and delete) operations. The built-in
HTTP Request sampler in JMeter is more than up to the task. It supports GET, POST,
PUT, and DELETE operations, among other things. The body of the request can be in
XML or JSON format. An HTTP Header Manager component can be used to send
additional HTTP header attributes if needed.

In our sample, we are going to create a new person in our sample application
using a POST request, and then verify that the person was actually created
using a GET request:

1.	 Create a new test plan.
2.	 Add a new Thread Group (by navigating to Test Plan | Add |

Thread Group).
3.	 Add an HTTP Request sampler (this retrieves all the people records in

our application so far), by navigating to Thread Group | Add | Sampler |
HTTP Request. Call it Get All People. You will get the following fields.
Fill in their values as given here:

°° Server Name: jmeterbook.aws.af.cm
°° Method: GET
°° Path: /person/list

4.	 Add another HTTP Request sampler by navigating to Thread Group | Add
| Sampler | HTTP Request (this will create a new person record). Call it
Save Person().

°° Server Name: jmeterbook.aws.af.cm
°° Method: POST
°° Post Body: {"firstName":"Test", "lastName":"Jmeter",

"jobs":[{"id":5}]}

Chapter 7

[137]

5.	 Add a JSON Path Extractor element as a child element of the
Save Person sampler.

°° Name: person_id
°° JSON path: $.id

6.	 Add another HTTP Request sampler (this will retrieve the newly created
person using the extracted ID). Call it Get Person.

°° Server Name: jmeterbook.aws.af.cm
°° Method: GET
°° Path: /person/get/${person_id}

7.	 Add a View Results Tree listener.
8.	 Save the test plan.
9.	 Execute the test plan.

If all was correctly done, a new person with the name Test JMeter will be
created in our application, and you can verify this by pointing your browser
to http://jmeterbook.aws.af.cm/person/list. By the same token, we can
issue DELETE and PUT requests to delete and update resources if our application
supports it.

Summary
In this chapter, we learned some helpful tips that are essential for making testing
with JMeter more pleasurable. We covered variables, functions, regular expression
testers, and timers, to name a few. Along the way, we covered some additional
helpful components provided by the excellent JMeter plugin extensions. We barely
scratched the surface of the additional components it provides. We looked at JSON
Extractor and Dummy Sampler to name just a few. For a full list of all components,
we encourage you to read up on their website at https://code.google.com/p/
jmeter-plugins/. Finally, we looked at how JMeter can help us work with the
database and REST web services.

We hope by now that you know enough about JMeter to become proficient and
attain your testing goals. In just a short time, you have grown from novice to pro.
Though we can't cover all JMeter has to offer, we hope that we covered enough
to make you see it as a valuable tool of choice when embarking on your next
performance testing engagement and that you enjoyed reading the book as
much as we enjoyed writing it.

http://jmeterbook.aws.af.cm/person/list
https://code.google.com/p/jmeter-plugins/
https://code.google.com/p/jmeter-plugins/

[139]

Index
A
Advance REST Client

URL 53
Amazon Web Service (AWS)

access keys, obtaining 103, 104
instance, launching 105, 106
key pair, obtaining 103, 104
secret key, obtaining 103, 104
URL 103

Apache Ant build tool
URL 11

Apache Tomcat
documentation, URL 74

Apache Tomcat Server
monitor controller, setting up in

JMeter 77-79
setting up 72-76
Tomcat Users, configuring 76
URL 72

AppFog
URL 120

assertions 43

B
baseline 8
Bean Scripting Framework (BSF) 55
BlazeMeter

URL 114
using 114-117

browser
Excilys Bank Case Study 31, 32
extension, using 25
first recorded scenario, running 28-30

machine system settings, changing 25-27
script, parameterize 33-37
setting up, to use proxy server 24
test run information, extracting 36-39

BSF Postprocessor
using 55-57

C
checkboxes

handling 46
Chrome developer tools

URL 53
cloud

leveraging, for distributed testing 102, 103
cloud services

BlazeMeter, using 114-117
Flood.io, using 111-113
using 111

Constant Throughput Timer 124
Constant Timer 124
controllers 41
cookies

used, for managing sessions 62-65

D
debug sampler 123, 124
distributed testing

AWS instance, launching 105, 106
cloud, leveraging for 102, 103
results from virtual machines,

viewing 108, 109
test plan, executing 107, 108

Dummy sampler
using 133, 134

[140]

E
Excilys

URL 31
Extensible Markup Language. See XML

F
file downloads

handling 48
file uploads

handling 47, 48
URL 47

Firebug
URL 53

Flood.io
URL 111, 112
using 111-114

forms, capturing
about 45, 46
checkboxes, handling 46
file downloads, handling 48
file uploads, handling 47, 48
JSON data, posting 49-53
JSON data, reading 53, 54
radio buttons, handling 47
XML responses, handling 57

FoxyProxy
URL 25

functions
categories 121
URL 121

G
Gaussian Random Timer 124

H
H2 database

setting up 125-127
URL 125

J
Java 8

URL 14

JavaDocs
URL 56

JAVA_HOME
setting up, On Unix 13
setting up, on Windows 12

Java JDK
installing 12
URL 12

Java Management Extension (JMX) 72
Java Runtime Environment (JRE)

URL 103
JavaScript Object Notation 49
Java Virtual Machine (JVM) 86
JDBC Connection Configuration component

configuring 128
JDBC Request sampler

about 125
adding 129, 130
H2 database, setting up 125-127
JDBC Connection Configuration

component, configuring 128
URL 130

JMeter
about 9
command-line options 20
configuring 18-20
errors, tracking during test execution 18
features 9
functions 121
installation 10, 11
JAVA_HOME, setting up 12
Java JDK, installing 12
monitor controller, setting up 77-79
overriding, properties 17, 18
plugins, installing 81-83
properties 119, 120
remote testing with 89-91
running 13, 14
slave nodes, configuring 91, 92
URL 10
used, for monitoring server 81
variables 119, 120

JMeter HTTP(S) Test Script Recorder
configuring 21-24

JMeter, running
Classpath 15

[141]

command-line options 14, 15
in non-GUI mode 16, 17
in server mode 17
proxy server, configuring 15, 16
scripts 13, 14

JMeter slave nodes
Apple iTunes, URL 98
configuring 91, 92
master node, configuring 95-102
multiple slave nodes, configuring on

single box 99-101
one slave per machine, configuring 92-95
one slave per machine, URL 92

JMeter test, anatomy
about 39
assertions 43
configuration elements 43
controllers 41
listeners 42
logic controllers 42
postprocessor elements 43
preprocessor elements 43
samplers 41
test fragments 42
test plan 40
thread groups 40
timers 43

JSON
URL 49

JSON data
BSF Postprocessor, using 55-57
posting 49-53
reading 53, 54

JSON Path Extractor element
about 135, 136
URL 135

L
listeners 42
load testing 8
logic controllers 42

M
machine system settings

changing 25-27

master 89
MongoDB sampler

testing, with JMeter 130-132
URL 130-132
using 130-132

mongo script
URL 132

monitor listeners
adding, to test plan 83-86

N
New Relic

URL 116
non-GUI mode, JMeter

running in 16, 17
NoSQL databases

URL 130

O
OpenShift

URL 120

P
performance testing

about 3-7
and tuning 7
baselines 8
load testing 8

Poisson Random Timer 125
postprocessor elements 43
preprocessor elements 43
proxy server

configuring 15, 16

R
radio buttons

handling 47
URL 47

radio group
URL 47

regular expression
URL 38

Regular Expression Extractor component
configuration variables 38, 39

[142]

Regular Expression tester
about 122, 123
URL 122

remote testing
with JMeter 89-91

REST Client
URL 53

RESTful web services
handling 136, 137

REST (Representational State Transfer)
URL 49

S
samplers 41
Selenium

URL 116
server

JMeter plugins, installing 81
monitoring 72
monitoring, with JMeter plugin 81
plugins, installing 83
running in 17

servlet
URL 72

sessions
managing, cookies used 62-65
managing, with URL rewriting 66-69

slaves 89
stress testing 8
Synchronizing Timer 125

T
test fragments 42
test plan

about 40
executing 107, 108

monitor listeners, adding 83-86
thread groups 40
timers

about 43
Constant Throughput Timer 124
Constant Timer 124
Gaussian Random Timer 124
Poisson Random Timer 125
Synchronizing Timer 125
Uniform Random Timer 124
using, in test plan 124

U
Uniform Random Timer 124
Universal Resource Indicators (URIs) 49
URL rewriting

sessions, managing with 66-69
User Acceptance Test (UAT) 120
User Defined Variables (UDV) 120

V
Vagrant

URL 91, 105
variables

URL 56
VirtualBox

URL 92
VisualVM

URL 86

X
XML

about 57
responses, handling 57-59
URL 57

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Performance Testing Fundamentals
	The incident
	The aftermath
	Performance testing
	Performance testing and tuning
	Baselines
	Load and stress testing

	JMeter to the rescue
	Up and running with JMeter
	Installation
	Installing Java JDK
	Setting up JAVA_HOME
	Running JMeter
	Tracking errors during test execution
	Configuring JMeter

	Summary

	Chapter 2: Recording Your First Test
	Configuring the JMeter HTTP(S) Test Script Recorder
	Setting up your browser to use the proxy server
	Using a browser extension
	Changing the machine system settings
	Running your first recorded scenario
	Excilys Bank case study
	Parameterizing the script

	Anatomy of a JMeter test
	Test plan
	Thread groups
	Controllers
	Samplers
	Logic controllers
	Test fragments
	Listeners
	Timers
	Assertions
	Configuration elements
	Preprocessor and postprocessor elements

	Summary

	Chapter 3: Submitting Forms
	Capturing simple forms
	Handling checkboxes
	Handling radio buttons
	Handling file uploads
	Handling file downloads
	Posting JSON data
	Reading JSON data
	Using BSF PostProcessor

	Handling XML responses

	Summary

	Chapter 4: Managing Sessions
	Managing sessions with cookies
	Managing sessions with URL rewriting
	Summary

	Chapter 5: Resource Monitoring
	Basic server monitoring
	Setting up Apache Tomcat Server
	Configuring Tomcat users
	Setting up a monitor controller in JMeter

	Monitoring the server with a JMeter plugin
	Installing the plugins
	Adding monitor listeners to the test plan

	Summary

	Chapter 6: Distributed Testing
	Remote testing with JMeter
	Configuring JMeter slave nodes
	Configuring one slave per machine
	Configuring the master node
	Configuring multiple slave nodes on a single box
	Configuring the master node

	Leveraging the cloud for distributed testing
	Obtaining your access key, secret key, and key pair
	Launching the AWS instance
	Executing the test plan
	Viewing the results from the virtual machines

	Using cloud services
	Using Flood.io
	Using BlazeMeter

	Summary

	Chapter 7: Helpful Tips
	JMeter properties and variables
	JMeter functions
	The Regular Expression tester
	The debug sampler
	Using timers in your test plan
	The Constant Timer
	The Gaussian Random Timer
	The Uniform Random Timer
	The Constant Throughput Timer
	The Synchronizing Timer
	The Poisson Random Timer

	The JDBC Request sampler
	Setting up the H2 database
	Configuring a JDBC Connection Configuration component
	Adding a JDBC Request sampler

	Using a MongoDB Sampler
	A Dummy Sampler
	The JSON Path Extractor element
	Handling RESTful web services
	Summary

	Index

