
www.allitebooks.com

http://www.allitebooks.org

PhoneGap and AngularJS for
Cross-platform Development

Build exciting cross-platform applications using
PhoneGap and AngularJS

Yuxian, Eugene Liang

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

PhoneGap and AngularJS for Cross-platform
Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1241014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-892-1

www.packtpub.com

Cover image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Yuxian, Eugene Liang

Reviewers
Simon Basset

Razi Mahmood

Commissioning Editor
Kunal Parikh

Acquisition Editor
Meeta Rajani

Content Development Editor
Priyanka Shah

Technical Editors
Veronica Fernandes

Anand Singh

Copy Editors
Roshni Banerjee

Adithi Shetty

Project Coordinator
Kartik Vedam

Proofreaders
Maria Gould

Elinor Perry-Smith

Indexers
Monica Ajmera Mehta

Tejal Soni

Production Coordinators
Kyle Albuquerque

Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Yuxian, Eugene Liang is a frontend engineer with working knowledge of UX
and data mining / machine learning. He builds applications predominantly using
JavaScript/Python, and related frameworks such as AngularJS, ReactJS, Node.
js, Tornado, and Django. He led a team of two (including himself) to win Startup
Weekend at Taiwan recently. He has also completed academic research on social
network analysis (link prediction) using machine learning techniques, while
interning as a frontend engineer at Yahoo!. To know more about him, visit
http://www.liangeugene.com.

I am grateful for this opportunity and I want to thank the following
people at Packt Publishing: Priyanka Shah, Kartik Vedam, Sageer
Parkar, Meeta Rajani, and Anand Singh.

Special thanks to Professor Daphne Yuan, Professor Tsai-Yen Li,
and Professor Pailin Chen of the National Cheng Chi University,
Taipei, Taiwan, for providing me with timely and practical advice
on how to carry out great research and how to deal with life.

To the good people of Service Science Research Center, Intelligent
Media Lab, and the research team of the Flood and Fire research
project, thank you for helping me out when I needed it the most.

I also want to thank XJL for helping me out and staying put when
I most needed support.

Last but not least, I want to thank my family members and friends
for their continued support.

www.allitebooks.com

http://www.liangeugene.com
http://www.allitebooks.org

[FM-5]

About the Reviewers

Simon Basset is a cross-platform mobile and frontend engineer living in Paris.
He works hard every day to create attractive mobile and web apps.

He worked for years at Smile Open Source Solutions, technically leading a team
specializing in mobile development, and has recently joined the frontend expert
team of AXA France.

He is a technology enthusiast. He likes to try and use cutting-edge technologies
and loves the Web and open source. He also loves animals, has two cats, and is
a vegetarian.

Razi Mahmood has a Master's degree in IT with 14 years of working experience,
and is an accomplished and experienced software training consultant. His interest
in technology never fades and he always keeps himself updated with the latest
technology. As a result, he has succeeded in many areas in his career. He is motivated
and is a quick learner, and has the ability to handle projects with minimum
supervision; these are his personal strengths in every achievement.

Razi started his career as an executive in an engineering firm in Kuala Lumpur. Over
the years, he has developed custom software solutions to expedite work in accounting,
human resources, and project management reporting. These solutions were eventually
documented and presented as part of his project thesis for his Master's degree. Upon
completion of his Master's degree, he joined the School Of Technology Management,
Binary University as a lecturer in Software Engineering and Accounting Information
System. Since then, he has supervised various application development projects
undertaken by students using various platforms such as Windows, Linux, OS X,
Android, and iOS. In 2008, he was appointed as a member of the Panel of Assessors
of Malaysian Quality Assurance Programme, specializing in databases. He is also a
co-developer for an education-based mobile apps project endorsed by the Malaysian
Ministry Of Education to help students learn local history subjects. This app is
now featured on Google's Play store (https://play.google.com/store/apps/
details?id=com.fiziazezan2gmail.com.ism2&hl=en).

www.allitebooks.com

https://play.google.com/store/apps/details?id=com.fiziazezan2gmail.com.ism2&hl=en
https://play.google.com/store/apps/details?id=com.fiziazezan2gmail.com.ism2&hl=en
http://www.allitebooks.org

[FM-6]

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introduction to AngularJS	 5

A brief overview of AngularJS	 5
Core concepts	 5

Controllers	 6
Data-binding	 6
Directives	 6

A conceptual example	 7
A simple to-do list using AngularJS	 8

Preparing your code structure	 9
HTML for our to-do list	 9
Adding in JavaScript with AngularJS	 11

Summary	 16
Chapter 2: Getting Ready for PhoneGap	 17

Preparing for PhoneGap development	 17
Installing Android	 18
Installing iOS	 18

Command-line interface for both Android and iOS	 18
Running on real devices	 20

AngularJS on PhoneGap	 21
What just happened?	 26

Creating a to-do list app using AngularJS on PhoneGap	 26
A basic version of a to-do list using AngularJS on PhoneGap	 26

Summary	 31

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: From a Simple To-do List to an Advanced To-do List	 33
Rewriting the simple to-do list app	 33

Splitting index.html into multiple files	 34
Splitting todo.js into multiple files	 37
Checkpoint	 40

Wiring up a backend server	 40
Coding our server	 41
Changing AngularJS to perform RESTful requests	 45
Using the $http module of AngularJS	 45
Rewriting controllers to make use of the $http module	 46
Checking our code	 48

Preparing for PhoneGap	 50
Testing our code on iOS	 51
Testing our code on Android	 53
Summary	 56

Chapter 4: Adding Authentication Capabilities Using
PhoneGap Plugins	 57

Adding Facebook Connect to the to-do list app	 57
Initializing and preparing for Facebook Connect	 58
Writing the user controller	 59
Adding a login page	 60
Adding a logout function	 63
Checking the login status	 65

Facebook login for PhoneGap	 67
Installing the Facebook plugin	 67
Testing out Facebook Login on PhoneGap	 70

From web to PhoneGap	 74
Importing Facebook and PhoneGap plugins	 75
Changing FB to facebookConnectPlugin	 77

The to-do list app with Facebook Login on PhoneGap	 78
Summary	 80

Chapter 5: Sprucing Up the App Using Animations and
Mobile Design	 81

Adding animations to your web app	 81
Adding mobile CSS styles to your app	 85
Porting your web app to PhoneGap	 88

Testing your app on iOS	 90
Testing your app on Android	 91

Summary	 91

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 6: Getting Ready to Launch	 93
Deploying server.py	 93
Using phonegap.com	 95
Preparing your PhoneGap app for an Android release	 96

Testing your app on real devices	 96
Exporting your app to install on other devices	 96
Preparing promotional artwork for release	 97
Building your app for release	 97
Signing the app	 97

iOS	 98
Running your app on an iOS device	 98
Other techniques	 99

Using Xcode	 99
Summary	 101

Appendix: References	 103
AngularJS and related libraries	 103
PhoneGap and related references	 103
Others	 104
Other tutorials	 104

Index	 105

www.allitebooks.com

http://www.allitebooks.org

Preface
Welcome to AngularJS with PhoneGap! In this book, you will receive practical
knowledge about AngularJS and PhoneGap. In particular, you will learn how to
build a complete, workable web app using AngularJS, after which you will convert
various versions of this web app to a PhoneGap app. You should also pick up
something new regarding PhoneGap in particular: how to use the command-line
interface to generate PhoneGap apps.

What this book covers
Chapter 1, Introduction to AngularJS, will teach you the absolute basics of building an
AngularJS app.

Chapter 2, Getting Ready for PhoneGap, will cover the PhoneGap command-line
interface. By end of this chapter, you will have learned that the command-line
interface is one of the best things about PhoneGap 3.x. The example you coded
in Chapter 1, Introduction to AngularJS, will be put to use in this chapter.

Chapter 3, From a Simple To-do List to an Advanced To-do List, will cover some of
the slightly more advanced concepts of AngularJS, such as code organization,
making RESTful calls, and more. This advanced app will then be converted to
a PhoneGap app.

Chapter 4, Adding Authentication Capabilities Using PhoneGap Plugins, will add Facebook
authentication capabilities via PhoneGap plugins. Once again, you will see how we
can add the Facebook plugin using the command-line interface.

Chapter 5, Sprucing Up the App Using Animations and Mobile Design, will cover a
slightly more advanced AngularJS topic: animations.

Chapter 6, Getting Ready to Launch, will teach you how to launch the app, both in
Android and iOS devices.

Appendix, References, has a list of references that you should find useful.

Preface

[2]

What you need for this book
This book assumes that you have a basic code editor. You will need a Mac if you
intend to develop iOS versions of the PhoneGap app. You will most definitely
require an Internet connection and the Google Chrome browser.

Who this book is for
This book is intended for people who are not familiar with AngularJS but have
beginner experience in PhoneGap, and who might want to improve their PhoneGap
skills by learning the command-line interface for PhoneGap 3.x, and develop
PhoneGap apps using AngularJS.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Feel free to copy the code and save it as concepts.html."

A block of code is set as follows:

project/
 css/
 js/
 controllers/
 todo.js
 services/
 todo.js
 app.js
 partials/
 detail.html
 list.html
 index.html

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

<li ng-repeat="todo in todos">
 <input type="checkbox" ng-model="todo.done">
 {{todo.text}}
 <button ng-click="showDetail(todo.text)">Detail</button>

Any command-line input or output is written as follows:

cordova emulate android

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
Edit/Details for the Android item and start editing."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to AngularJS
Welcome to the world of AngularJS with PhoneGap! In this book, you will learn
how to merge two very exciting technologies, namely AngularJS and PhoneGap. By
the end of this book, you will have a working mobile app that works across iOS and
Android, based on AngularJS and PhoneGap. As mentioned previously, this book
is targeted at programmers who have knowledge of PhoneGap, but may or may not
have knowledge regarding AngularJS. You should have some idea about JavaScript
though, for you to get maximum benefit out of this book. That said, let us begin
with AngularJS.

A brief overview of AngularJS
AngularJS (https://angularjs.org/) is a super heroic JavaScript MVC framework,
which is maintained by Google. It is open source and its main goal is to assist with
creating single page applications. These are typically one-page web applications that
only require HTML, CSS, and JavaScript on the client side.

While one may argue that there are already many frameworks out there in the
market that help with this issue, I would like to say that AngularJS is different in a
few ways. And in quite a few of these instances, it makes your life much easier as
a frontend programmer.

Core concepts
There are many concepts related to AngularJS, but I will cover the most commonly
used ones for the sake of progressing through this chapter. As we go along in this
book, I'll touch on other concepts, such as the use of self-defined directives and
performing RESTful requests via AngularJS. The main concepts that you should
understand in this section are directives, controllers, and data binding.

Introduction to AngularJS

[6]

Controllers
If you have already used JavaScript frameworks, such as BackBone.js, Can.js, Ember.js,
or KnockOut.js, you should be familiar with this concept. Controllers are the behavior
behind the DOM elements. AngularJS lets you express the behavior in a clean readable
form without the usual boilerplate of updating the DOM, registering callbacks, or
watching model changes.

Data-binding
Data-binding is an automatic way to update the view whenever the model changes,
as well as updating the model whenever the view changes. The coolest aspect of this
concept is that it is a two way data-binding process. Used in tandem with controllers,
this can save you a lot of code, as there is no need for you to write the usual updating
of the DOM elements.

Directives
Directives are another awesome concept in AngularJS. What they do is teach
your application new HTML syntax and new things specific to your application.
Directives can be self-defined and predefined. Some of the more notable
predefined directives include:

•	 ng-app: This declares an element as a root element of the application,
allowing its behavior to be modified through custom HTML tags.

•	 ng-bind: This automatically changes the text of an HTML element to the
value of a given expression.

•	 ng-model: This is similar to ng-bind, but allows two-way binding between
the view and scope.

•	 ng-controller: This specifies a JavaScript controller class, which evaluates
HTML expressions. In layman's terms, what ng-controller does is that it
applies a JavaScript function to this block of HTML so that this particular
JavaScript function (including its accompanying logic, expressions, and
more) can only operate in this block of HTML.

•	 ng-repeat: You can see this as a loop through a collection.

Chapter 1

[7]

A conceptual example
Now, let's take a look at how some of the previous concepts play together.
Consider the following piece of code:

<!doctype html>
<html ng-app>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.2.12/angular.min.js"></script>
 </head>
 <body>
 <div>
 <label>Say Hello World</label>
 <input type="text" ng-model="yourHelloWorld" placeholder="Type
anything here.">
 <hr>
 <h1>Hello {{yourHelloWorld}}!</h1>
 </div>
 </body>
</html>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Let's go through the code.

•	 We defined an HTML5 HTML document in this case, as seen in the first line
•	 Next, notice ng-app in the second line of the code; this is an

AngularJS directive, which tells AngularJS that this is the root of the
AngularJS application

•	 In order to use AngularJS, we obviously have to install the script on
this web page, as shown in the <script> tag

•	 Within the body tag, we see a label, an input, and an h1 tag.
•	 Take note of the input tag, there is a ng-model directive, which is mapped

to h1 tag's {{yourHelloWorld}}
•	 What the previous piece of code does is that anything that is typed into

the input box, will be shown in place of {{yourHelloWorld}}

Take note of the version of the code we are using in this chapter, version 1.2.12;
should you be using newer versions of AngularJS, there is no guarantee that the
code will work.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Introduction to AngularJS

[8]

Now that we have briefly walked through the code, let us copy the code and run it on
our web browser. Feel free to copy the code and save it as concepts.html. The source
code for this chapter can be found in the concepts.html file in the Chapter 1 folder.

Copied the code? If so, open the file in your favorite web browser. You should see
the following screenshot in your browser:

A sample concept web page

Got the previous code? Ok great! So now you can try typing into the input box and
see new text being appended to Hello and before ! in the screen.

For instance, when we type world, we will see the new characters being appended
to the screen as I continue to type. By the end of typing the word "World", we should
see the following screenshot:

After typing World

Now that we have a brief idea as to how a simple AngularJS app works, let us move
to a more complicated app.

A simple to-do list using AngularJS
In this example, we will cover in detail as to how to write code for a slightly more
complicated AngularJS app. This app is modified from the official example found at
angularjs.org. This example will be used as a base when we convert it from a web
application to a PhoneGap application.

Chapter 1

[9]

Preparing your code structure
For starters, create the index.html and todo.js files. Just for your information,
the code found in this section can be found in the todo folder in Chapter 1.

HTML for our to-do list
We need to prepare our HTML file so that we can make use of AngularJS. Similar to
the previous concepts.html file, you will see that we have included the use of
AngularJS via script. Open up your index.html file in your favorite editor and you
can start by adding the following code:

<!doctype html>
<html ng-app>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.2.12/angular.min.js"></script>
 <script src="todo.js"></script>
 <link rel="stylesheet" href="http://netdna.bootstrapcdn.com/
bootstrap/3.0.3/css/bootstrap.min.css">
 <style>
 body {
 padding:40px;
 }
 #todoDetails {
 visibility: hidden;
 }
 </style>
 </head>
 <body>
 <div class="row" ng-controller="todoCtrl">
 <div class="col-md-6">
 <h2>Todo</h2>
 <div>
 {{getRemaining()}} of {{todos.length}} remaining
 [<button ng-click="archive()">archive</button>]
 <ul class="unstyled">
 <li ng-repeat="todo in todos">
 <input type="checkbox" ng-model="todo.done">
 {{todo.text}}
 <button ng-click="showDetail(todo.text)">Detail</button>

 <form ng-submit="addTodo()">

Introduction to AngularJS

[10]

 <input type="text" ng-model="todoText" size="30"
 placeholder="add new todo here">
 <input class="btn-primary" type="submit" value="add">
 </form>
 </div>
 </div>
 <div id="todoDetails" class="col-md-6" >
 <h2>Details</h2>
 Title: {{currentText}}

 Add Details:
 <form ng-submit="addDetails()">
 <textarea id="details" ng-model="currentDetails">{{currentDe
tails}}</textarea>
 <p>
 <input class="btn-primary" type="submit" value="Add
Details">
 <input class="btn-primary" type="submit" value="Cancel" ng-
click="closeThis()">
 </p>
 </form>
 </div>
 </div>
 </body>
</html>

Now, to make sure that you are on the same page as I am, I want you to open this file
in your favorite browser. You should see something like the following screenshot:

Our HTML template

Chapter 1

[11]

Got the previous code? It looks weird now due to the fact that we have not added the
main JavaScript functionalities. We will be working on it in the next section.

Now, let me explain the code; notice that I have highlighted a few lines of it. These
are the most important lines of the code that you should take note of in this example.
The remaining lines are just the usual HTML code.

•	 The first two lines of the highlighted code simply install AngularJS and
include BootStrap 3's CSS for styling purposes. Without both, the project
will not work and may not look good.

•	 The ng-controller directive is what we covered briefly earlier on in this
chapter. We are applying todoCtrl to this block of HTML.

•	 The ng-click directive is another directive that we did not touch on in the
previous section. What ng-click does is that it executes whatever function
is defined for this directive. In our example, ng-click="archive()" means
that on clicking it, archive() will be executed. The JavaScript function
archive() is written in our todo.js file, which we will cover later.

•	 The ng-repeat directive is a directive that loops through a collection.
Notice how we implemented ng-repeat in our HTML code:
<li ng-repeat="todo in todos">
 <input type="checkbox" ng-model="todo.done">
 {{todo.text}}
 <button ng-click="showDetail(todo.text)">Detail</button>

Anything that is within is dependent on the todo object, which is part
of the todos collection.

•	 The ng-submit directive is generally used in forms. This is a directive which
controls what is being done on the submit form. In this case, on the submit
form, we will execute the JavaScript function addToDo().

•	 The [] option encapsulates <button ng-click="archive()">archive</
button>, which simply adds a square bracket around the button.

Adding in JavaScript with AngularJS
Now we will open our todo.js file, which we created in the previous section.
Open todo.js in your favorite text editor. Let us begin by coding the following:

function todoCtrl($scope) {

}

Introduction to AngularJS

[12]

We are first going to define a controller, which we will be using for our app. Notice
that we have named it todoCtrl, which is mapped onto ng-controller in the
HTML file (index.html), where ng-controller="todoCtrl" means that todoCtrl
will be controlling this portion of the web page.

Also, notice the use of $scope, which is an object that refers to the application model;
it is the execution context for related expressions, such as ng-click, ng-model,
and so on. Any such expressions of a predefined directive outside this scope will
not be executed.

Let's start by initializing our to-do list. Within todoCtrl, add the following code:

 $scope.todos = [
 {text:'here is my first to do', done:true, details:''},
 {text:'continue writing chapter 1 for this book', done:false,
details:''},
 {text:'work on chapter 2 examples', done:false, details:''}
];

 $scope.currentText = ''; // make the text empty
 $scope.currentDetails = ''; // make the text empty

What $scope.todos does is that it simply creates a list of objects, which contains
the text, details, and whether this to-do is executed or not (true or false). Notice
that todos here is mapped to the collection todos as seen in index.html, where
ng-repeat is being used.

Let's move on by adding more functionalities. After $scope.currentDetails,
add the following three JavaScript functions:

 $scope.addTodo = function() {
 $scope.todos.push({text:$scope.todoText, done:false, details:''});
 $scope.todoText = '';
 };

 $scope.remaining = function() {
 var count = 0;
 angular.forEach($scope.todos, function(todo) {
 count += todo.done ? 0 : 1;
 });
 return count;
 };

 $scope.archive = function() {
 var oldTodos = $scope.todos;
 $scope.todos = [];

Chapter 1

[13]

 angular.forEach(oldTodos, function(todo) {
 if (!todo.done) $scope.todos.push(todo);
 });
 };

The $scope.todoText function resets todoText after it has been pushed into the
array. The $scope.addTodo function does what it is suppose to do, simply adding
a new to-do to the list of todos as defined earlier. The beauty of AngularJS is that it
uses standard JavaScript data structures that make manipulation so much easier.

The $scope.getRemaining function simply calculates the number of items that
are not done yet. Here, we can see two-way data-binding in action as this function
executes whenever there is a change in the length of todos.

The $scope.archive function marks a to-do as done:true in standard
JavaScript manner.

By now, you should have noticed that all the JavaScript functions defined here are
being used in index.html under ng-controller="todoCtrl".

Let's now add three more JavaScript functions to complete the finishing touch for
this sample application.

After the $scope.archive function, add the following functions:

 $scope.showDetail = function(text) {
 var result = $scope.todos.filter(function (obj) {
 return obj.text == text;
 })
 $scope.currentText = result[0].text;
 $scope.currentDetails = result[0].details;
 document.getElementById('todoDetails').style.visibility =
'visible';
 }

 $scope.closeThis = function() {
 $scope.currentText = '';
 $scope.currentDetails = '';
 document.getElementById('todoDetails').style.visibility =
'hidden';
 }

 $scope.addDetails = function(text) {
 var result = $scope.todos.filter(function (obj) {
 return obj.text == text;
 })

Introduction to AngularJS

[14]

angular.forEach($scope.todos, function(todo) {
 if(todo.text == text) {
 todo.details = $scope.currentDetails;
 }
 });
 document.getElementById('todoDetails').style.visibility =
'hidden';

 }

The $scope.showDetail function simply retrieves the current to-do being clicked on
and shows it on the div with ID #todoDetails. The visibility of the #todoDetails
function is then set to visible.

The $scope.close function simply changes the visibility of #todoDetails to hidden.

Finally, $scope.addDetails adds the details of the todo item, and changes the
visibility of #todoDetails to hidden once done.

Okay, so to see if we are on the same page, we now need to check our code. Save
this file as todo.js. Refresh your browser and you should still see the same user
interface as per the previous screenshot.

Now, try clicking on the Detail button in front of work on chapter 2 examples,
and you should see the following screenshot:

Details of the ToDo item shows on clicking on the corresponding detail button

You will see the details of a particular to-do item. You can try to add some details for
this item and click on Add Details. You can then click on other items and come back
to this item later (without refreshing the browser), and you should still see the details
in the text area.

Chapter 1

[15]

You can also check off any of the items and you will see that the number of
remaining to-do item decreases:

Number of items changes dynamically as you check off items

And of course, you can add new items by simply typing in the input box and clicking
on the add button. You should notice that the number of items now increases:

Adding new to-dos changes the number of items dynamically and
also shows on the screen immediately

Introduction to AngularJS

[16]

Summary
To summarize what we have done in this chapter; we have walked through the basics
of building an AngularJS app and familiarized ourselves with the basic concepts used
in AngularJS. We have made use of ng-app, ng-controller, ng-click, ng-repeat,
and ng-submit in general. These expressions, such as ng-click and ng-submit are
typically mapped onto JavaScript functions defined in AngularJS controllers, as seen
in todo.js in our example. Notice how little code we have written in order to achieve
such speedy UX through the concept of two-way data-binding and its controllers.

In the next chapter, we will start to port this app in a more organized manner
to PhoneGap.

Getting Ready for PhoneGap
As you might already know, PhoneGap (http://phonegap.com/) is a really cool
open source project (now owned by Adobe), that allows you to create cross platform
mobile apps using JavaScript/CSS/HTML.

This means that you can readily use your web development skills to developing
mobile apps. Since this book assumes basic familiarity with PhoneGap, I will
advance to how to install PhoneGap. You will primarily see examples related
to Android and iOS since we are going to create mobiles apps that only support
Android and iOS.

Note that we are focusing on using PhoneGap Version 3.3.0 and, as much as
possible, we will be building the apps via the latest command-line interface
provided by PhoneGap.

Just for your information, all source code found in this chapter—whether
automatically generated by PhoneGap or coded by us—can be found in the
source code folder, chapter2.

Preparing for PhoneGap development
We will now go quickly through the installation process for Android and iOS
platforms. The basic instructions for this section can be found at http://docs.
phonegap.com/en/3.3.0/guide_platforms_index.md.html#Platform%20Guides.

http://phonegap.com/
http://docs.phonegap.com/en/3.3.0/guide_platforms_index.md.html#Platform%20Guides
http://docs.phonegap.com/en/3.3.0/guide_platforms_index.md.html#Platform%20Guides

Getting Ready for PhoneGap

[18]

Installing Android
The instructions to install Android SDK can be found at http://docs.phonegap.
com/en/3.3.0/guide_platforms_android_index.md.html#Android%20
Platform%20Guide.

In order to benefit from this chapter, you need to follow the instructions till the point
where you can run the Hello World example in your Android emulator. This will
include things like installing the Android SDK, Eclipse Tools, and so on.

Installing iOS
If you are using Mac and want to develop an app for iOS, then you will need to
install the SDK for iOS as well. In general, you will need to install Xcode from the
App Store and you will need to register as an Apple Developer in order to deploy
the app in the App Store.

You can follow the instructions given at http://docs.phonegap.com/en/3.3.0/
guide_platforms_ios_index.md.html#iOS%20Platform%20Guide.

Please make sure that you can at least run the PhoneGap Hello World example in
your iOS simulator in order to benefit from this chapter.

Command-line interface for both Android
and iOS
Once you have finished installing the individual platforms, it's time to move on to the
command-line interface. This section contains the most important commands for the
command-line interface. To start off, you need to install Node.js (www.nodejs.org).
Once you have installed node.js, perform the following steps:

1.	 Run the npm –g install cordova command. This installs the command-line
interface on your computer.

2.	 Change the directory to the place where you will be saving your project files
for this chapter.

3.	 Once in the directory, issue the cordova create todo com.project.todo
ToDo command. This will create a folder containing your basic files
for PhoneGap.

4.	 Now, change directory to /todo.

http://docs.phonegap.com/en/3.3.0/guide_platforms_android_index.md.html#Android%20Platform%20Guide
http://docs.phonegap.com/en/3.3.0/guide_platforms_android_index.md.html#Android%20Platform%20Guide
http://docs.phonegap.com/en/3.3.0/guide_platforms_android_index.md.html#Android%20Platform%20Guide
http://docs.phonegap.com/en/3.3.0/guide_platforms_ios_index.md.html#iOS%20Platform%20Guide
http://docs.phonegap.com/en/3.3.0/guide_platforms_ios_index.md.html#iOS%20Platform%20Guide
www.nodejs.org

Chapter 2

[19]

5.	 Once in the directory, we need to install the various platforms we will
be supporting:

°° For iOS, use the cordova platform add ios command
°° For Android, use the cordova platform add android command

6.	 Now, let's try to run the Hello World example in Android using the cordova
emulate android command. If you see an area where you have not defined
an AVD, run the android create avd –name todo –target 1 command.

7.	 Then, run the cordova emulate android again command. If everything
works correctly, you should see the following screenshot:

Hello World working in android

www.allitebooks.com

http://www.allitebooks.org

Getting Ready for PhoneGap

[20]

Cool, so now let's try to run the Hello World example in an iOS simulator. For a start,
issue the node –g install ios-sim command. Now, run the cordova emulate
ios command. If everything runs correctly, you should see the following screenshot:

Running on real devices
So far, we have learned how to run the Hello World app on emulators. However,
what if we want to run our code on our devices ? It's easy; for android, run the
following commands:

cordova build android

cordova run android

For iOS, run the following commands:

cordova build ios

cordova run ios

Chapter 2

[21]

Got the previous example running? If so, great! Let's now move on to the next
section where we implement AngularJS on PhoneGap.

AngularJS on PhoneGap
Before we begin this section, let's take a look at how much magic the PhoneGap
command-line interface has. Navigate to the directory where you saved your code;
you should see something like the following screenshot:

Directory layout of the code

Getting Ready for PhoneGap

[22]

The previous screenshot is how my code directory looks after issuing the PhoneGap
commands of the previous section. Notice that I've created the folder phonegap/,
and the PhoneGap command line helped us create the todo/ project folder with
other folders such as hooks/, merges/, platforms/, plugins/, and so on. Our
platform-specific commands created the folders android/ and ios/ and they are
found under merges/ and platforms/ respectively.

The automatically created folders are meant to hold important
files that belong to different platforms. For example, you will find
Android-related files in android, while you will find iOS related
files in ios/. In the plugins/ folder, you will find the various
plugins that you have installed. Later in this book, you will see
and experience the Facebook connect plugin.

In my opinion, the command-line interface saves us a lot of work. Most importantly,
we are not tied down to any particular code editor; we can just use the terminal and
any code editor that we prefer (I use Sublime Text).

Now, going back to your source code, navigate to the www/ folder under todo/.
As you might already know, www/ contains our source code for the JavaScript,
CSS, and HTML files.

Look for the index.html file and rename it index_backup.html. Now, create a new
index.html file under the www/ directory.

Next, copy and paste the contents from concepts.html, but make a few changes to
it. For your convenience, the code that we will use is as follows:

<!doctype html>
<html ng-app>
 <head>
 <script type="text/javascript" src="cordova.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.2.12/angular.min.js"></script>
 <style>
 body {
 padding:40px;
 }
 #holder {
 border: 2px solid red;
 }
 </style>
 </head>
 <body>
 <div id="holder">
 <label>Say Hello World</label>

Chapter 2

[23]

 <input type="text" ng-model="yourHelloWorld" placeholder="Type
anything here.">
 <hr>
 <h1>Hello {{yourHelloWorld}}!</h1>
 </div>
 </body>
</html>

The code is generally the same as the concepts.html file as seen in the chapter1
folder, but with a few changes as shown in the highlighted lines of code:

•	 In the <header> tag, we installed PhoneGap by using <script type="text/
javascript" src="cordova.js">

•	 Next, we added simple styles so that we can see what we are concerned with
bounded in a red box

Now, save your code as index.html. Make sure it is saved under the www/ folder.
After you have saved it, we need to test the code and make sure that the code is
working as per what we have seen in the chapter1 folder. We should expect to
see that as we type any text into the input box, it should be appended after the
Hello! text.

So now, let's start testing our code. Let's start with iOS. Go to your terminal and
make sure you change the directory to todo/. Once in the directory, issue the
command cordova emulate ios. Once your emulator has started, you should
see the following screenshot:

AngularJS Hello World example on PhoneGap iOS Simulator

Getting Ready for PhoneGap

[24]

All is good. Now let's test by typing into the text input and see if it works as
intended. In my case, I typed, hey, and I got the following screenshot:

Typing hey to make sure that the code works

Understood the example? Make sure that the characters get printed out as you type
along! If iOS is working out fine, we should not have any problem with Android.
However, for safety's sake, let's fire up Android's emulator to make sure things are
going as intended.

Quit your iOS simulator if you want to. Now, return to your terminal and issue the
command cordova emulate android. Once Android's emulator has started, you
should see the following screenshot:

Chapter 2

[25]

AngularJS Hello World on Android emulator

If you got the output, that's good. Let's test by typing into the text input box.
This time, I typed world and I got the following screenshot:

AngularJS Hello World on iOS simulator

Getting Ready for PhoneGap

[26]

What just happened?
By now, you should have noticed that enabling AngularJS on PhoneGap apps are
pretty straightforward, just code as if you are writing an AngularJS app. To port it
over to PhoneGap, just make sure you run the commands shown in the previous
sections and install the cordova.js script in your AngularJS app.

Now that we have made sure that AngularJS works in PhoneGap, it's time to move
on to the main topic of this chapter: building a Todo app.

Creating a to-do list app using AngularJS
on PhoneGap
For this section, we'll start off by transferring the to-do list app from the chapter1
folder to PhoneGap. As you may have already guessed, shifting the to-do list app to
a PhoneGap version simply requires the installation of cordova.js. Let's see how
this is done in the next section.

A basic version of a to-do list using
AngularJS on PhoneGap
Let's quickly get started by shifting the to-do list app from chapter1 to PhoneGap.
Perform the following steps:

1.	 Change the directory to chapter2 and navigate to www/ where your
PhoneGap files are located.

2.	 Change index.html to index_concepts.html.
3.	 Now, copy the contents from index.html from chapter1 (where the basic

HTML structure for todo app resides) to our new index.html file.
4.	 Copy todo.js from todo/ in chapter1 to js/ in www/ in the chapter2 folder.

Chapter 2

[27]

Your directory should look like this for todo app of chapter2:

The code directory

5.	 So, as of now, your index.html file for this chapter should look like the
following code:
<!doctype html>
<html ng-app>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.2.12/angular.min.js"></script>
 <script src="todo.js"></script>
 <link rel="stylesheet" href="http://netdna.bootstrapcdn.com/
bootstrap/3.0.3/css/bootstrap.min.css">
 <style>
 body {
 padding:40px;
 }
 #todoDetails {
 visibility: hidden;

Getting Ready for PhoneGap

[28]

 }
 </style>
 </head>
 <body>
 <div class="row" ng-controller="todoCtrl">
 <div class="col-md-6">
 <h2>Todo</h2>
 <div>
 {{remaining()}} of {{todos.length}} remaining</
span>
 [archive]
 <ul class="unstyled">
 <li ng-repeat="todo in todos">
 <input type="checkbox" ng-model="todo.done">
 {{todo.text}}</
span>
 <button ng-click="showDetail(todo.text)">Detail</
button>

 <form ng-submit="addTodo()">
 <input type="text" ng-model="todoText" size="30"
 placeholder="add new todo here">
 <input class="btn-primary" type="submit" value="add">
 </form>
 </div>
 </div>
 <div id="todoDetails" class="col-md-6" >
 <h2>Details</h2>
 Title: {{currentText}}

 Add Details:
 <form ng-submit="addDetails(currentText)">
 <textarea id="details" ng-model="currentDetails">{{curre
ntDetails}}</textarea>
 <p>
 <input class="btn-primary" type="submit" value="Add
Details">
 <input class="btn-primary" type="submit" value="Cancel"
ng-click="closeThis()">
 </p>
 </form>
 </div>
 </div>
 </body>
</html>

Chapter 2

[29]

Let's make some CSS changes to the code that you are going to use
for index.html; we need to change the highlighted line of code to
padding:40px 20px 0 20px;.

6.	 Now, we need to fire up our code to make sure that it is working as intended.
We'll test it out on iOS first. Go to your terminal, change the directory
to todo/ and issue the command cordova emulate ios. Once the iOS
simulator is fired up, you should see the following screenshot:

Todo App on iOS

7.	 Now test the following to make sure that it is working as per what we see
in chapter1:

°° Tick off the check boxes to see if the number of tasks remaining and
total tasks are correct

°° Try adding a new todo item and see if it adds to the list of todos

Getting Ready for PhoneGap

[30]

°° Click on Detail and see if the item will show up below the input box.
For instance, you should see something like the following screenshot:

Details for each todo item

If you are getting the preceding tests right, then congratulations; all is working well
and good. Now we need to test the code on Android. Going back to your terminal,
issue the command cordova emulate android. After the emulator is fired up,
you should see the following:

Todo app on Android

Chapter 2

[31]

Now, as usual, carry out the test that you have done for iOS. Similarly, when you
click on the Detail button, you should see the following screenshot:

Todo details for each todo on Android

Summary
Let's quickly discuss what we have done in this chapter. We have prepared ourselves
for PhoneGap development by installing SDKs for both Android and iOS. Next, we
touched on how we can make use of PhoneGap command-line interface to set up our
app, install, and prepare for different platforms and run our apps on iOS and Android
emulators. We've also learned the commands to run our apps on real devices.

However, we are still far away from a decent mobile app. What we have now is just a
basic version of the todo app on PhoneGap; we need to improve on it. Specifically, we
need to make it look more like a mobile app. For instance, can we design the look and
feel of the to-do list so that it when we tap on it, we are shown the individual todo item
on a single page, instead of just appending it to the bottom of the page? We'll do this
and more in the next chapter.

From a Simple To-do List to
an Advanced To-do List

Now that we have our basics in place, let's move on to something more advanced.
In Chapter 1, Introduction to AngularJS, and Chapter 2, Getting Ready for PhoneGap, we
built a simple to-do list, which works well, but the code organization is amateurish at
best. The code arrangement in the previous chapters prevents us from writing large
apps should we want to. Hence, in this chapter, we will start off by reorganizing the
code first, before wiring up with a backend server.

We will be building on the topics covered in Chapter 1, Introduction to AngularJS,
and Chapter 2, Getting Ready for PhoneGap. Specifically, we are going to cover three
main areas:

•	 Reorganizing the code
•	 Writing our server using the Tornado web server
•	 Wiring our app with the backend server

Rewriting the simple to-do list app
In Chapter 2, Getting Ready for PhoneGap, we wrote a rather simplistic version of the
to-do list app. As you may have already noticed, many things were missing; there
was no backend server to save your to-do lists, and there was no code organization,
as everything was just written within a folder and with minimal breakup of the code.

In this section, we are going to do just that; rewrite the code so that there are some
levels of code organization.

From a Simple To-do List to an Advanced To-do List

[34]

Let's review the code organization first. The app we built in Chapter 1, Introduction to
AngularJS, looks like the following:

todo/
 todo.js
 index.html

We are going to break up the code so that the code organization looks as follows:

project/
 css/
 js/
 controllers/
 todo.js
 services/
 todo.js
 app.js
 partials/
 detail.html
 list.html
 index.html

So what is going to happen is that project.js from Chapter 2, Getting Ready for
PhoneGap, will be broken up into todo.js, controllers/todo.js, services/todo.
js, and app.js. We will also breakup index.html into multiple HTML snippets and
place them under the partials/ folder.

So before you start with the next section, you might want to create the directories
and empty files based on the code organization.

Splitting index.html into multiple files
We will start work on index.html first. To start off, this is what index.html will
look like in this chapter:

<!doctype html>
<html ng-app="todoApp">
 <head>
 <link rel="stylesheet" href="http://netdna.bootstrapcdn.com/
 bootstrap/3.0.3/css/bootstrap.min.css">
 <style>
 body {
 padding: 40px 20px 0 20px;
 }
 </style>

Chapter 3

[35]

 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.2.12/angular.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.2.12/angular-resource.min.js">
 </script>
 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.2.12/angular-route.min.js">
 </script>
 <script src="js/controllers/todo.js"></script>
 <script src="js/services/todo.js"></script>
 <script src="js/app.js"></script>
 </head>
 <body>
 <h2>Todos</h2>
 <div ng-view></div>
 </body>
</html>

The preceding code structure is essentially the same as what we saw in Chapter 2,
Getting Ready for PhoneGap. The main difference is that much of the details (such as
listing the to-do lists and edit view) are now being abstracted away.

The main thing to note is the use of ng-view in index.html; you can think of
ng-view as a container that will hold different snippets of HTML based on the
current URL.

Now let's begin coding:

1.	 Let's work on partials/detail.html:
<form name="myForm">
 <div class="control-group">
 <label>Name</label>
 <input type="text" name="text" ng-model="todoText">
 </div>
 <div class="control-group">
 <label>Details</label>
 <textarea name="description"
 ng-model="todoDetails"></textarea>
 </div>

 Cancel
 <button ng-click="save()"
 class="btn btn-primary">Save</button>
 <button ng-click="destroy()"
 ng-show="project.$remove" class="btn
 btn- danger">Delete</button>

</form>

From a Simple To-do List to an Advanced To-do List

[36]

2.	 You will see some of the details of the detail.html file in the previous
chapter; the highlighted lines of code are the new additions:

°° Cancel simply performs a change
in the URL route when we perform a cancel action. Notice that we are
using #/ instead of /.

°° Instead of using ng-submit to add new to-do lists, we now use
ng-click="save()" to either create or edit the current to-do item,
should there be any.

3.	 Once you're done with the preceding step, let's move to partials/list.html:
{{remaining()}} of {{todos.length}} remaining
<table>
 <thead>
 <tr>
 <th>Todo</th>
 <th>Done</th>
 <th>Details</th>
 <th><i class="icon-plus-sign">NEW</i>
 </th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="todo in todos">
 <td>{{todo.text}}</td>
 <td><input type="checkbox" ng-model="todo.done"></td>
 <td>
 <i class="icon-
 pencil">Edit/Details</i>
 </td>
 </tr>
 </tbody>
</table>

4.	 The list.html file is similar to what we have done in Chapter 2, Getting
Ready for PhoneGap; the only change was that we split the part where we
loop through the list of to-dos into a separate HTML file.

Now that we are done with the HTML portion of the code, let's move on to the meat
of this rewrite: rearranging the JavaScript code.

Chapter 3

[37]

Splitting todo.js into multiple files
We will first work on app.js found under the project/js folder. Bear in mind that
this is the first time we write the code for app.js. It contains the routes to different
views of the app by making use of an AngularJS module called ngRoute.

Now let's see how we can make use of ngRoute:

1.	 To start off, here's what app.js looks like now:
angular.module('todoApp', [
 'ngRoute',
 'todoApp.controllers',
 'todoApp.services'
])

.config(function($routeProvider) {
 $routeProvider
 .when('/', {
 controller:'ListCtrl',
 templateUrl:'partials/list.html'
 })
 .when('/edit/:todoText', {
 controller:'EditCtrl',
 templateUrl:'partials/detail.html'
 })
 .when('/new', {
 controller:'CreateCtrl',
 templateUrl:'partials/detail.html'
 })
 .otherwise({
 redirectTo:'/'
 });
})

2.	 Let's go through what's happening here line by line:
°° We first define todoApp; something we have done in Chapter 1,

Introduction to AngularJS, and Chapter 2, Getting Ready for PhoneGap.
°° Next, we included the modules and code that we want to use, namely

ngRoute, todoApp.controller, and todoApp.services. Take
note that we have not created todoApp.controller and todoApp.
services yet.

°° Finally, we make use of the ngRoute module to define the routes we
want to use, and its associated controller and template.

From a Simple To-do List to an Advanced To-do List

[38]

°° when('/' means that when the URL location is '/', we will be using
ListCtrl and the partials/list.html template.

°° Controllers in each of the route are defined as todoApp.controllers
(which is the controller.js file we will be working on in the
next section).

°° templateurl is simply the HTML snippet that we would like to
show for each different URL.

3.	 Now let's create the controller found at controller/todo.js. The code is
the same as in Chapter 2, Getting Ready for PhoneGap:
angular.module('todoApp.controllers',[])
 .controller('ListCtrl', function($scope, $http, Todos) {
 $scope.todos = Todos;
 $scope.remaining = function() {
 var count = 0;
 angular.forEach($scope.todos, function(todo) {
 count += todo.done ? 0 : 1;
 });
 return count;
 };

 })
 .controller('CreateCtrl', function($scope, $location,
 $timeout, Todos) {
 $scope.todoText = "";
 $scope.todoDetails = ""
 $scope.save = function() {
 Todos.push({text:$scope.todoText, done:false,
 details:$scope.todoDetails});
 $location.path('/');
 };
 })
 .controller('EditCtrl',
 function($scope, $location, $routeParams, Todos) {
 $scope.todos = Todos;

 var result = $scope.todos.filter(function (obj) {
 return obj.text == $routeParams.todoText;
 });
 $scope.todoText = result[0].text;
 $scope.todoDetails = result[0].details;
 $scope.save = function() {
 var text = $scope.todoText;

Chapter 3

[39]

 var details = $scope.todoDetails;
 var done = $scope.todoDone;
 alert(text);
 angular.forEach($scope.todos, function(todo) {
 if(todo.text == text) {
 todo.text = text;
 todo.details = details;
 }
 });
 $location.path('/');
 };
 $scope.destroy = function() {
 $scope.project.$remove();
 $location.path('/');
 };

 });

4.	 The only line of code you need to take note of is the first line; we have
defined todoApp.controllers, which was referenced from js/app.js
earlier on.

5.	 We can now move on to js/services/todo.js. As usual, we first declare
todoApp.services, followed by Todos. We simply return a list of to-do
items here. The code looks as follows:
angular.module('todoApp.services',[])
 .factory('Todos', function() {
 var items = [
 {text:'here is my first to do', done:true,
 details:''},
 {text:'continue writing chapter 1 for this book',
 done:false, details:''},
 {text:'work on chapter 2 examples', done:false,
 details:''}
]
 return items;
 })

Now that we have more or less reorganized our code, we should check that our
code is working. Save your code and open up index.html in your web browser.
You should expect to see that the code is working as per Chapter 2, Getting Ready for
PhoneGap. The interface will look the same with the exception that the underlying
code's organization has changed.

www.allitebooks.com

http://www.allitebooks.org

From a Simple To-do List to an Advanced To-do List

[40]

Is it all working well? If so, great! You can proceed to create a PhoneGap version
of this code by copying and pasting the contents of todos_advance/ into the
www/ folder found in your PhoneGap project.

Next, you can test your code in the Android and iOS emulators by running cordova
emulator android and cordova emulator ios, respectively, and making sure that
the code is working fine.

Checkpoint
Now that we have rewritten the code and transferred it to PhoneGap, check if the
www/ directory in your PhoneGap app looks like the following:

www/
 css/
 js/
 controllers/
 todo.js
 services/
 todo.js
 partials/
 detail.html
 list.html
 index.html

Most importantly, make sure that your code in PhoneGap is working as per Chapter 2,
Getting Ready for PhoneGap. Also, your app should look and work similarly to the
version we have coded we have in Chapter 2, Getting Ready for PhoneGap. If the code is
confirmed and working correctly, let's move on to the next section where we wire a
backend server and create an advanced version of the to-do list app.

Wiring up a backend server
In this section, we will make use of the $http module of AngularJS to make RESTful
calls to a simple backend server. The backend server here is based on Facebook's
Tornado Framework (https://github.com/facebook/tornado/), but the fact is
that you can make RESTful calls using Express.js (http://expressjs.com/) or any
other framework that you like.

Before you get started with this section, you will need to have MongoDB (http://
www.mongodb.org/), Python 2.7.x, and the Tornado web server installed. You
will also need to install a Python library called tornado-cor (https://github.
com/globocom/tornado-cors), which facilitates the use of cross-origin resources
between your AngularJS app and server.

https://github.com/facebook/tornado/
http://expressjs.com/
http://www.mongodb.org/
http://www.mongodb.org/
https://github.com/globocom/tornado-cors
https://github.com/globocom/tornado-cors

Chapter 3

[41]

Coding our server
The main idea of the Python Tornado server is as follows:

•	 We have one endpoint, where this endpoint will receive a GET or POST
request from our AngularJS app.

•	 Depending on the URL argument received, the corresponding handler will
perform GET on all to-do items or one to-do item. If the request is a POST
request, it will either edit or create a new to-do item.

Since the Tornado web server uses class-based views, we only need to define one
class, which accepts a GET or POST request. You can refer to the source code found
at chapter3/server/server.py. The full code for our server is as follows:

import tornado.httpserver
import tornado.ioloop
import tornado.options
import tornado.web

import pymongo
from bson.objectid import ObjectId
from tornado_cors import CorsMixin
from tornado.options import define, options
import json
define("port", default=8000, help="run on the given port",
 type=int)

class Application(tornado.web.Application):
 def __init__(self):
 handlers = [(r"/todos", Todos)]
 conn = pymongo.Connection("localhost")
 self.db = conn["todos"]
 settings = dict(
 xsrf_cookies=False,
 debug=True
)
 tornado.web.Application.__init__(self, handlers,
 **settings)

class Todos(CorsMixin, tornado.web.RequestHandler):
 CORS_ORIGIN = '*'
 CORS_METHODS = 'POST,GET,OPTIONS'
 CORS_HEADERS = 'Origin, X-Requested-With, Content-Type,
 Accept, content-type'
 CORS_MAX_AGE = 1728000

From a Simple To-do List to an Advanced To-do List

[42]

 CORS_CREDENTIALS = False
 def get(self):

 Todos = self.application.db.todos
 todo_id = self.get_argument("id", None)

 if todo_id:
 todo = Todos.find_one({"_id": ObjectId(todo_id)})
 todo["_id"] = str(todo['_id'])
 self.write(todo)
 else:
 todos = Todos.find()
 result = []
 data = {}
 for todo in todos:
 todo["_id"] = str(todo['_id'])
 result.append(todo)
 data['todos'] = result
 self.write(data)

 def options(self):

 todo_id = self.get_argument("id", None)
 Todos = self.application.db.todos
 #if self.request['Access-Control-Request-Method'] ==
 'POST':
 self.set_header("Access-Control-Allow-Headers",
 "content-type")

 def post(self):
 data = json.loads(self.request.body)

 Todos = self.application.db.todos
 todo_id = self.get_argument("id", None)

 if todo_id:
 # perform an edit
 todo = Todos.find_one({"_id": ObjectId(todo_id)})

 # here should perform the update...
 todo['text'] = data['text']
 todo['details'] = data['details']
 todo['done'] = data['done']
 Todos.save(todo)

Chapter 3

[43]

 # cos _id is not JSON serializable.
 todo["_id"] = str(todo['_id'])
 self.write(todo)
 else:
 data = json.loads(self.request.body)
 todo = {
 'text': data['text'],
 'details': data['details'],
 'done': data['done']
 }

 a = Todos.insert(todo)

 # cos _id is not JSON serializable.

 todo['_id'] = str(a)
 self.write(todo)

def main():
 tornado.options.parse_command_line()
 http_server = tornado.httpserver.HTTPServer(Application())
 http_server.listen(options.port)
 tornado.ioloop.IOLoop.instance().start()

if __name__ == "__main__":
 main()

Here's what's happening in our code:

•	 Right at the top of server.py, we simply import various libraries required
for our sever.

•	 Next, we have the Application class defined, where we initialize the
handlers required for our server. Handlers are simply URLs that are mapped
to class-based views in the Tornado web server.

•	 The Todos class contains three functions:
°° get: This function supports the GET operations
°° options: This function supports the CORS OPTIONS string
°° post: This function supports the POST operations

•	 Finally, we define a main() function, which is supposed to run our Tornado
server when called.

From a Simple To-do List to an Advanced To-do List

[44]

To make sure that the Tornado Python server is working, you must first run
MongoDB on your computer, navigate to the folder where server.py resides,
and then run the following command:

python server.js

Once you issue the preceding command, open up your web browser and navigate
to http:/localhost:8000; you will see the following screen:

Getting an error since we have not defined a handler for this URL

We get an error message because we did not define any handlers for the URL at
http://localhost:8000. So let's now change our URL to http://localhost:8000/
todos. You should technically receive an empty page, but because we already have
some test data saved in MongoDB, you will see the following screen:

A sample list of data returned

So when we perform a GET request at /todos, we simply retrieve a full list of to-dos.
Similarly, when we perform a GET request with an ID, you will see that only one
to-do item is being returned.

Chapter 3

[45]

One to-do item returned

Changing AngularJS to perform RESTful
requests
Now that our server is ready, we need to start coding our AngularJS app to make
it ready for RESTful operations. We'll be making changes to the code found in
js/controllers and js/services, in general. We'll start with js/services/
todo.js first.

Using the $http module of AngularJS
Let's get back to js/services/todo.js. We are going to include four basic
operations in this module, namely getting all to-do items, getting one to-do item,
saving to-do lists, and finally, editing to-do item operations.

The code that will consume the RESTful APIs is as follows:

angular.module('todoApp.services',[])
.config(function ($httpProvider){
 $httpProvider.defaults.useXDomain = true;
 delete $httpProvider.defaults.headers.common['X-Requested-With'];
})
.factory('Todos', function($http) {
 return {
 getAll: function () {
 // return $http.get('http://10.0.2.2:8000/todos'); // if
 using android
 return $http.get('http://localhost:8000/todos');
 },

From a Simple To-do List to an Advanced To-do List

[46]

 getTodo: function (id) {
 // return $http.get('http://10.0.2.2:8000/todos?id='+id); //
 if using android
 return $http.get('http://localhost:8000/todos?id='+id);
 },
 save: function (todoData) {
 // return $http.post('http://10.0.2.2:8000/todos',
 todoData); // if using android
 return $http.post('http://localhost:8000/todos', todoData);
 },
 edit: function (id, todoData) {
 // return $http.post('http://10.0.2.2:8000/todos',
 todoData); // if using android
 return $http.post('http://localhost:8000/todos?id='+id,
 todoData);
 },
 delete: function(id) {
 console.log(" i dont think I have a delete here.")
 }
 }
})

First and foremost, notice that we have a .config file where we used $httpProvider
and made some changes to the default behavior of the AngularJS $http requests. The
first two highlighted lines with .config are there to ensure that cross-domain requests
can be done, since our AngularJS app resides in a different location as our server.

Secondly, notice that the services module simply returns the operations we need,
with the relevant RESTful endpoints. For example, getAll is a function that returns
the endpoint http://localhost:8000/todos using a GET request.

Rewriting controllers to make use of the
$http module
In the previous section, we rewrote services/todo.js so that it now performs
RESTful requests. How do we consume these services in the controller? We can
simply do so by including Todo under the controllers that we want to use the
services provided for by Todo. Take for instance, ListCtrl:

 .controller('ListCtrl', function($scope, $rootScope, $http, Todos) {

 Todos.getAll().success(function(data) {

 $rootScope.todos = data['todos'];

Chapter 3

[47]

 })

 $scope.remaining = function() {
 var count = 0;
 angular.forEach($scope.todos, function(todo) {
 count += todo.done ? false : true;
 });
 return count;
 };

 })

In the highlighted line in the preceding code, notice that we have included Todos.
Next, in order to retrieve all to-do items, we simply make a .getAlI() call by doing
Todos.getAll(). If the call is successful, we return the JSON data and assign it to
$rootScope.todos.

We use $rootScope instead of $scope, because I wanted all the controllers
to be able to access the current state of todos without making another call to
the backend server.

Next, for CreateCtrl, we simply make a .save() to the backend with our to-do data:

.controller('CreateCtrl', function($scope, $rootScope, $location,
 $timeout, Todos) {
 $scope.todoText = "";
 $scope.todoDetails = "";
 $scope.save = function() {
 var todo = {
 text:$scope.todoText,
 done:false,
 details:$scope.todoDetails
 };
 console.log($rootScope.todos);
 $rootScope.todos.push(todo);
 console.log($rootScope.todos);

 Todos.save(todo);
 $location.path('/');

 };
 })

Notice that we simply make a Todos.save() call to save our data to our
backend server.

From a Simple To-do List to an Advanced To-do List

[48]

Finally, let's take a look at EditCtrl. This time around, we simply get the to-do
item by its ID, and perform edit() when we have made changes to the item. This is
shown by the highlighted line in the following code:

.controller('EditCtrl',
 function($scope, $location, $routeParams, Todos) {
 //$scope.todos = Todos;
 console.log($location.$$path.split("/"));
 var id = $location.$$path.split("/")[2];
 var result = Todos.getTodo(id).success(function(data) {
 console.log(" and the returned data is ");
 console.log(data);
 $scope.todoText = data.text;
 $scope.todoDetails = data.details;
 return data;
 })
 $scope.save = function() {
 var todo = {
 id:$location.$$path.split("/")[2],
 text:$scope.todoText,
 details:$scope.todoDetails,
 done:true
 }

 Todos.edit(id, todo);

 }
 });

Checking our code
Now that we have rewritten our AngularJS app, it's time to check if it works
correctly. As usual, fire up your server by issuing the Python server.py and start
your AngularJS app using a local server. When you first load your AngularJS app,
you will see a GET request on your server in the backend. Here's what it looks like
on my terminal:

A GET request

Let's try creating a new to-do item by clicking on NEW. As usual, you should see the
following screen:

Chapter 3

[49]

Our input fields to add a to-do list

Now type in the name and details. I'm going to just type hello world as the name
and hello world description as the details. Once done, click on Save. You should
see that you are now redirected to the page containing the list of todos with the new
to-do item at the bottom.

If you look at your terminal, you will also see the following screen:

A series of HTTP requests coming from our AngularJS app

The OPTIONS request is sent from AngularJS. You are then redirected back to the
home page (that's where the GET request occurs), and finally, the POST action is
completed, as shown by the last line in this terminal.

Now you can attempt to perform an edit operation. We will edit the item that we
have just added:

Adding a to-do item

From a Simple To-do List to an Advanced To-do List

[50]

We will now add new details to the to-do item:

Making changes to the to-do item

Now click on Save. We will see the following screen when we are redirected back to
the home page:

The to-do item is being edited and is reflected on the list of to-do items

If everything works as expected, we can now test our code on Android and iOS.

Preparing for PhoneGap
As usual, we will need to transfer the code that we have written under /www.
Make sure you transfer the code correctly to PhoneGap. If you've done it correctly,
your PhoneGap folder should look as follows:

Chapter 3

[51]

Code arrangement at this point in time

If you have performed the previous steps, let's test it out on iOS and Android.

Testing our code on iOS
To test our code on iOS, we simply navigate to our PhoneGap project
(phonegap/todo) and issue the following command:

cordova emulate ios

Remember to turn on your server and MongoDB as well. You should see the
following screen on your Android emulator:

Your to-do list app should look and work as expected

From a Simple To-do List to an Advanced To-do List

[52]

This is simply some of the data that we created beforehand. Let's go ahead and create
a new to-do item:

Your to-do list app should look and work as expected

Now go ahead and save it. You will see the following screen:

Your to-do list app should look and work as expected; creating a to-do item works

I'm just going to go ahead and edit the latest to-do item:

Editing a to-do item should work as expected

Chapter 3

[53]

Now click on Save. You should see the latest item saved as shown in the
following screenshot:

After editing and saving the to-do item, the app works as expected

Testing our code on Android
We need to make some changes in order to test our code on Android. We also need
to make changes to the endpoint that we are calling; http://localhost:8000 will
need to be changed to http://10.0.2.2.

For this Android version, your js/services/todo.js will look as follows:

angular.module('todoApp.services',[])
.config(function ($httpProvider){
 $httpProvider.defaults.useXDomain = true;
 delete $httpProvider.defaults.headers.common
 ['X-Requested-With'];
})
.factory('Todos', function($http) {
 return {
 getAll: function () {
 return $http.get('http://10.0.2.2:8000/todos'); // if using
 android
 //return $http.get('http://localhost:8000/todos');
 },
 getTodo: function (id) {
 return $http.get('http://10.0.2.2:8000/todos?id='+id);
 // if using android
 //return $http.get('http://localhost:8000/todos?id='+id);
 },

From a Simple To-do List to an Advanced To-do List

[54]

 save: function (todoData) {
 return $http.post('http://10.0.2.2:8000/todos', todoData);
 // if using android
 //return $http.post('http://localhost:8000/todos',
 todoData);
 },
 edit: function (id, todoData) {
 return $http.post('http://10.0.2.2:8000/todos', todoData);
 // if using android
 //return $http.post('http://localhost:8000/todos?id='+id,
 todoData);
 },
 delete: function(id) {
 console.log(" i dont think I have a delete here.")
 }
 }
})

Notice that we are commenting out the http://localhost:8000 version and using
the http://10.0.2.2 version.

Next, we simply navigate to our PhoneGap project phonegap/todo and issue the
following command:

cordova emulate android

Remember to turn on your server and MongoDB as well. You should see the
following screen on your Android emulator:

On the first load, the to-do app shows a list of items we have in the database

Chapter 3

[55]

This is simply just some of the data that we have created beforehand. As you can see,
the item created on iOS is present. So I'm just going to go ahead and create another
new to-do item:

Adding a new to-do item to your Android app

Let's go ahead and save it. You should see the new item on our to-do list.

Adding a new item works as expected

From a Simple To-do List to an Advanced To-do List

[56]

Finally, I'm going to make some edits to make sure that our code is working fine.
Click on Edit/Details for the Android item on the emulator and start editing it:

Editing a to-do item

Once you've saved the item, you will see that the Android item is now edited.

Summary
That's it! We went through quite a bit of detail in this chapter. By now you should
see that shifting an AngularJS app to PhoneGap is very straightforward; all you need
to do is place your files in the www/ folder. You also learned how to create RESTful
apps on top of AnguarJS and the Tornado web server.

In the next chapter, we will cover advanced-level topics, such as optimizing our
AngularJS app for touch devices, using PhoneGap plugins such as the Facebook
plugin, and how to create directives for our AngularJS app. See you there.

Adding Authentication
Capabilities Using

PhoneGap Plugins
In this chapter, we will be adding authentication capabilities to our to-do list app.
To be specific, we are going to add Facebook Login capabilities to our app. We will
start working on the web-based version of our app before porting the code over
to the PhoneGap version. In the PhoneGap version, we will be leveraging on the
PhoneGap plugin in order to achieve what we have done for the web-based version.
The porting of code will be slightly less straightforward due to the recent changes to
PhoneGap's Facebook plugin. So sit tight and see how we can add login capabilities
in this chapter.

Adding Facebook Connect to the to-do
list app
Adding Facebook Connect to our web-based version of the app is straightforward.
You will need to sign up for a new app (or use the current one) from
https://developers.facebook.com/ and take note of the app ID and app's secret
key. Then, as usual, you will need to initiate your app using some Facebook-specific
JavaScript and library "namely" Facebook's JavaScript SDK.

In case you are wondering, the Facebook Connect plugin is used to perform
Facebook login in PhoneGap apps.

https://developers.facebook.com/

Adding Authentication Capabilities Using PhoneGap Plugins

[58]

Initializing and preparing for Facebook
Connect
Let's quickly dive into the source code for index.html:

<!doctype html>
<html ng-app="todoApp">
 <head>
 <link rel="stylesheet" href="http://netdna.bootstrapcdn.com/
bootstrap/3.0.3/css/bootstrap.min.css">

 <style>
 body {
 padding: 40px 20px 0 20px;
 }
 </style>

 </head>
 <body>
 <div id="fb-root"></div>
 <script src="http://connect.facebook.net/en_US/all.js"></script>
 <script>
 FB.init({
 appId : XXX',
 xfbml : true,
 version : 'v1.0'
 });
 </script>
 <h2>Todos</h2>
 <div ng-view></div>

 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.3.0-beta.7/angular.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.3.0-beta.7/angular-resource.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.3.0-beta.7/angular-route.min.js"></script>
<script src="js/controllers/todo.js"></script>
 <script src="js/controllers/user.js"></script>
 <script src="js/services/todo.js"></script>
 <script src="js/app.js"></script>
 </body>
</html>

Chapter 4

[59]

Take note of the following highlighted lines of code:

 <div id="fb-root"></div>
 <script src="http://connect.facebook.net/en_US/all.js"></script>
 <script>
 FB.init({
 appId : 'XXX',
 xfbml : true,
 version : 'v1.0'
 });
 </script>

The preceding code is basically Facebook-specific and is required in order for you
to use Facebook Login for your web application. You will need to replace XXX with
your own app ID, and make sure that the site URL (found under your app settings
on Facebook Developers) is set to your login location.

Next, we have <script src="js/controllers/user.js"></script>. This will be
a small snippet of code, where we will add the login capabilities for our app.

Writing the user controller
We'll now start with the controller aspect of the app. So let's start by creating a new
file called user.js in js/controllers/user.js. As usual, we will need to define
angular.module and we are going to name this controller UserLoginCtrl. We can
simply make calls to Facebook using the FB object, which was initiated earlier in
index.html. So here's what your user.js should look like:

angular.module('todoApp.userControllers',[])

 .controller('UserLoginCtrl', function($scope, $rootScope, $http,
$location, Todos) {

 $scope.login = function() {

 // so this is for desktop testing
 FB.login(function(response) {
 if (response.authResponse) {
 console.log('Welcome! Fetching your information.... ');
 FB.api('/me', function(response) {
 console.log('Good to see you, ' + response.name + '.');
 $location.path('/');
 if(!$scope.$$phase) $scope.$apply();

Adding Authentication Capabilities Using PhoneGap Plugins

[60]

 });
 } else {
 console.log('User cancelled login or did not fully
authorize.');
 }
 });
 };

The main function here is $scope.login, which simply wraps around the FB.login
call where we attempt to login the user. The AngularJS-specific stuff is found in the
following code:

 $location.path('/');
 if(!$scope.$$phase) $scope.$apply();

This means that we will redirect the user back to the index page after he/she has
logged in successfully.

The $apply() option is meant to start a $digest cycle. A great tutorial
that explains this operation is available at http://www.sitepoint.
com/understanding-angulars-apply-digest/.

Now you may be wondering if there's any page where login takes place. Yes, of course,
and this is exactly what we are going to do in the next section.

Adding a login page
We are going to create a new file called login.html. This file will reside in the
partials folder, where all HTML snippets are found. However, first, we need
to define the route where this HTML partial will be loaded. So let's take a look
at app.js:

angular.module('todoApp', [
 'ngRoute',
 'todoApp.controllers',
 'todoApp.userControllers',
 'todoApp.services'
])

.config(function($routeProvider) {

http://www.sitepoint.com/understanding-angulars-apply-digest/
http://www.sitepoint.com/understanding-angulars-apply-digest/

Chapter 4

[61]

 $routeProvider
 .when('/', {
 controller:'ListCtrl',
 templateUrl:'partials/list.html'
 })
 .when('/edit/:id', {
 controller:'EditCtrl',
 templateUrl:'partials/detail.html'
 })
 .when('/new', {
 controller:'CreateCtrl',
 templateUrl:'partials/detail.html'
 })
 .when('/login', {
 controller:'UserLoginCtrl',
 templateUrl:'partials/login.html'
 })
 .otherwise({
 redirectTo:'/'
 });
})

There are two highlighted parts in our code, todoApp.userControllers,
which means that we are loading this controller so it can be used in our app.

The second instance is the following code:

 .when('/login', {
 controller:'UserLoginCtrl',
 templateUrl:'partials/login.html'
 })

The preceding code means that when the route is /login, we will be using
UserLoginCtrl and login.html. Now that we have defined the route and
coded UserLoginCtrl, it's time to work on login.html. The login.html
file is simple and straightforward; it contains a title and Login button:

<h3>Please login</h3>
<button ng-click="login()">Login</button>

Adding Authentication Capabilities Using PhoneGap Plugins

[62]

Yup, that's right, simple and straightforward. So if you save your files and visit your
app at /login, you will get the following screenshot:

Login Screen

So right now, we can try out by clicking on Login. If everything works correctly,
you will be redirected back to your index page. This page will show you a complete
list of Todos, as shown in the following screenshot:

List of Todos

Alright, pretty cool yeah? However, we are missing out some stuff. For example,
what happens if the user wants to logout? Or what happens when the user goes
straight to the index page without logging in first? We will deal with that in the
next two sections.

Chapter 4

[63]

Adding a logout function
Perform the following steps to add a logout function:

1.	 To add a logout functionality, we will first need to have a logout button.
So, we can add this functionality in the index page by placing the logout
button in partials/list.html:
<button ng-click="logout()" style="float:right">Logout</button>
{{remaining()}} of {{todos.length}} remaining
<table>
 <thead>
 <tr>
 <th>Todo</th>
 <th>Done</th>
 <th>Details</th>
 <th><i class="icon-plus-sign">NEW</i></th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="todo in todos">
 <td>{{todo.text}}</td>
 <td><input type="checkbox" ng-model="todo.done" value="todo._
id"></td>
 <td>
 <i class="icon-pencil">Edit/
Details</i>
 </td>
 </tr>
 </tbody>
</table>

2.	 The entire partials/list.html file is the same as before, except for the
highlighted line where the logout button is added.

3.	 Next, since the logout button is found in partials/list.html, this
means that we need to add a function to log out of todo.js. Now, going to
controllers/todo.js, prepend the $scope.logout function just before
Todos.getAll():
 $scope.logout = function () {
 alert('logging out')
 // this is the desktop version
 FB.logout(function(response) {
 alert('logged out');

Adding Authentication Capabilities Using PhoneGap Plugins

[64]

 $location.path('/login');
 if(!$scope.$$phase) $scope.$apply();
 });
 }

 Todos.getAll().success(function(data) {
 $rootScope.todos = data['todos'];
 })

4.	 The highlighted lines of code are the lines of code that will be handling the
logout. So basically, what happens is that on clicking the Logout button, you
will see an alert box that says logged out, after which you will be redirected
to the login page.

5.	 Save your files and refresh your browser. You should see the
following screenshot:

List of todos with the Logout button

6.	 Notice that we have a Logout button to the right of the page. Now click
on it and you should see the following screenshot, if everything is
working correctly:

Chapter 4

[65]

7.	 After clicking on OK, you will be redirected back to the login page.

Now, let's move on to the last requirement, which is checking for the login status.

Checking the login status
Checking of the login status will be done in the index page, for simplicity. So we
need to add a function in controllers/todo.js. We need to prepend the functions
used in the following code, before the $scope.logout function that we added in the
previous section:

 $scope.checkLogin = function() {
 FB.getLoginStatus(function(response) {
 if (response.status == 'connected') {
 //alert('logged in');
 console.log("logged in bro");
 }
 else {
 // alert('not logged in');
 $location.path('/login');
 if(!$scope.$$phase) $scope.$apply();
 }
 });
 }
 $scope.checkLogin();

Adding Authentication Capabilities Using PhoneGap Plugins

[66]

Now save the file and refresh your browser. If you are still logged out, you should
be redirected to the /login page, where you will be asked to log in. For example,
as I am still logged out from the previous section, I am redirected to the login page.
After clicking on the Login button, I am prompted to log in, as shown in the
following screenshot:

Facebook Login

Chapter 4

[67]

After entering my credentials, I am logged in successfully. Feel free to try out other
functionalities that we have coded in the previous section, just to make sure that
things are working as expected.

If everything is good to go, it's time to move on and port our code to PhoneGap.
It will be slightly different from what we have done in the previous sections, as there
are some extra steps and precautions that we have to take. You might want to take
a short break before continuing to the next section.

Facebook login for PhoneGap
PhoneGap has gone through quite a bit of changes not only for the main library,
but also the plugin system. In this section, you will see that we can quickly install
PhoneGap plugins using the command-line tool, without the usual multiple steps
that we have to follow if we want to install it manually.

Installing the Facebook plugin
Since we have already added iOS and Android platforms, this plugin installation
will add plugins for both iOS and Android. To install the Facebook plugin, you will
need to navigate to your todo app project. Next, issue the following command:

cordova plugin add

https://github.com/phonegap/phonegap-facebook-plugin, --variable APP_
ID="XXXXX" --variable APP_NAME="AngularPhoneGapTest".

You will need to replace XXXX with your app ID and you can name your app_name
app any name you want.

The installation process is now complete. For Android, you will need three more steps:

1.	 Import your todo app into your Eclipse development environment as an
Android project.

Adding Authentication Capabilities Using PhoneGap Plugins

[68]

2.	 While still in your Eclipse editor, in the left-hand column where all your
projects are listed, right click on Properties.

3.	 Make sure that you import FacebookLib and CordovaLib under the Library
section (at the bottom of the next screenshot):

Chapter 4

[69]

Once this is done, we have completed installation for both iOS and Android.
Now, it's time to test the code. Most of the examples run on iOS, but bear in mind
that the same piece of code will run properly and correctly on Android as well.

Adding Authentication Capabilities Using PhoneGap Plugins

[70]

Testing out Facebook Login on PhoneGap
In order to test if our Facebook Login plugin is installed correctly on PhoneGap,
we need to write a simple example just to see if the app is working correctly. There
are many examples out there on the Internet, but I've written a simple one here that
should quickly show if our app is working. At the same time, you will also see that
calling the FB SDK is also slightly different. Let's jump straight into the code by
writing a new index.html page for our PhoneGap app:

<!DOCTYPE html>
<html>
 <head>
 </head>
 <body>
 <button onclick="login()">Login</button>

 <div id="data">loading ...</div>
 <div id="fb-root"></div>
 <!-- cordova -->
 <script src="cordova.js"></script>
 <!-- cordova facebook plugin -->
 <script src="cdv-plugin-fb-connect.js"></script>
 <!-- facebook js sdk -->
 <script src="facebook-js-sdk.js"></script>
 <script>
 if ((typeof cordova == 'undefined') && (typeof Cordova ==
'undefined')) alert('Cordova variable does not exist. Check that you
have included cordova.js correctly');
 if (typeof CDV == 'undefined') alert('CDV variable does not exist.
Check that you have included cdv-plugin-fb-connect.js correctly');
 if (typeof FB == 'undefined') alert('FB variable does not exist.
Check that you have included the Facebook JS SDK file.');

 FB.Event.subscribe('auth.login', function(response) {
 alert('auth.login event');
 });

 FB.Event.subscribe('auth.logout', function(response) {
 alert('auth.logout event');

Chapter 4

[71]

 });

 FB.Event.subscribe('auth.sessionChange', function(response) {
 alert('auth.sessionChange event');
 });

 FB.Event.subscribe('auth.statusChange', function(response) {
 alert('auth.statusChange event');
 });

 var fbLoginSuccess = function (userData) {
 alert("UserInfo: " + JSON.stringify(userData));
 }
 function login() {
 facebookConnectPlugin.login(["basic_info"],
 fbLoginSuccess,
 function (error) { alert("" + error) }
);
 }

 document.addEventListener('deviceready', function() {
 try {
 alert('Device is ready! Make sure you set your app_id below this
alert.');
 FB.init({ appId: "XXXX", nativeInterface: CDV.FB,
useCachedDialogs: false });
 document.getElementById('data').innerHTML = "";
 } catch (e) {
 alert(e);
 }
 }, false);
 </script>
 <div id="log"></div>
 </body>
</html>

Adding Authentication Capabilities Using PhoneGap Plugins

[72]

The preceding code is somewhat similar to the official examples, but with three
subtle differences, as shown by the highlighted lines:

•	 <button onclick="login()">Login</button>

We are only focused on login() here, so we will remove the remaining
functionalities such as posting to the wall and so on

•	 The second section of the code is as follows:
 <script src="cordova.js"></script>
 <!-- cordova facebook plugin -->
 <script src="cdv-plugin-fb-connect.js"></script>
 <!-- facebook js sdk -->
 <script src="facebook-js-sdk.js"></script>

We are still required to install all PhoneGap-related files, including those
related to the Facebook plugins

•	 The third and most important section is as follows:
 var fbLoginSuccess = function (userData) {
 alert("UserInfo: " + JSON.stringify(userData));
 }
 function login() {
 facebookConnectPlugin.login(["basic_info"],
 fbLoginSuccess,
 function (error) { alert("" + error) }
);
 }

Notice that we are making a login call to Facebook using facebookConnectPlugin.
login instead of FB.login. This is due to the major change in plugins by the
PhoneGap team. When we are porting our code to PhoneGap from the web
version, our Facebook calls will be changed to reflect this. For now, follow on
with this section. Once the code is written, save the file and run the iOS emulator.
Issue the following command:

cordova emulate ios

Chapter 4

[73]

You will then see your iOS emulator get fired up, and you will be greeted with the
following screenshot:

On entering the app

After clicking on OK, you will see that the loading… message has vanished.
Next, you can click on Login and you will be presented with Facebook's
login page:

Facebook Login Screen

Adding Authentication Capabilities Using PhoneGap Plugins

[74]

Since we have already authorized the app, there's no need to log in or authorize the
app again. Click on OK and you should see a new screen with an alert box showing
a JSON representation of your data:

If you get the previous screenshot, this means that everything you have done till
now is right and should work well for Android too. If so, time to port our web-based
version of the code to the PhoneGap version.

From web to PhoneGap
If you remember, in the previous section, I briefly mentioned that making calls to
Facebook using the JavaScript SDK is now slightly different in PhoneGap, compared
to the web-based version. Instead of a simplistic FB.login() call in the web version,
we need to make a facebookConnectPlugin.login() call in the PhoneGap version.
In this section, we'll take careful steps to port our code from the web-based version
to a PhoneGap version.

Chapter 4

[75]

Importing Facebook and PhoneGap plugins
First, we need to import Facebook- and PhoneGap-related plugins. We also need to
slightly change how we initiate the FB object. So going back to your index.html file,
here's what you need to do:

<!doctype html>
<html ng-app="todoApp">
 <head>
 <link rel="stylesheet" href="http://netdna.bootstrapcdn.com/
bootstrap/3.0.3/css/bootstrap.min.css">
 <style>
 body {
 padding: 40px 20px 0 20px;
 }
 </style>
 </head>
 <body>
 <div id="fb-root"></div>
 <h2>Todos</h2>
 <div ng-view></div>
 <!-- this is for phonegap -->
 <script src="cordova.js"></script>
 <!-- cordova facebook plugin -->
 <script src="cdv-plugin-fb-connect.js"></script>
 <!-- facebook js sdk -->
 <script src="facebook-js-sdk.js"></script>

 <script>
 document.addEventListener('deviceready', function() {
 try {
 alert('Device is ready! Make sure you set your app_id below this
alert.');
 FB.init({ appId: "135542699836039", nativeInterface: CDV.FB,
useCachedDialogs: false });

 } catch (e) {
 alert(e);
 }
 }, false);
 </script>
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.3.0-beta.7/angular.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.3.0-beta.7/angular-resource.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.3.0-beta.7/angular-route.min.js"></script>

Adding Authentication Capabilities Using PhoneGap Plugins

[76]

 <!--
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.3.0-beta.7/angular-touch.min.js"></script>
 -->
 <script src="js/controllers/todo.js"></script>
 <script src="js/controllers/user.js"></script>
 <script src="js/services/todo.js"></script>
 <script src="js/app.js"></script>
 </body>
</html>

You will first need to import cordova.js, cdv-plugin-fb-connect.js,
and faceboo-js-sdk.js as shown here:

 <!-- this is for phonegap -->
 <script src="cordova.js"></script>
 <!-- cordova facebook plugin -->
 <script src="cdv-plugin-fb-connect.js"></script>
 <!-- facebook js sdk -->
 <script src="facebook-js-sdk.js"></script>

Next, we initiate the FB object by waiting for the deviceready event specific
to PhoneGap:

 <script>
 document.addEventListener('deviceready', function() {
 try {
 alert('Device is ready! Make sure you set your app_id below this
alert.');
 FB.init({ appId: "XXXXX", nativeInterface: CDV.FB,
useCachedDialogs: false });

 } catch (e) {
 alert(e);
 }
 }, false);
 </script>

As usual, remember to replace the XXXXX with your own app ID from Facebook so
that your login redirects correctly, and has the right credentials.

Chapter 4

[77]

Changing FB to facebookConnectPlugin
The next thing that we need to do is change FB to facebookConnectPlugin.
We will start with controller/user.js. The code should look like the following,
after the change:

angular.module('todoApp.userControllers',[])

 .controller('UserLoginCtrl', function($scope, $rootScope, $http,
$location, Todos) {

 $scope.login = function() {
 // place where the user just click and login
 var fbLoginSuccess = function(userData) {
 alert("UserInfo: " + JSON.stringify(userData));
 $location.path('/');
 if(!$scope.$$phase) $scope.$apply();

 }

 // this is used for PhoneGaP ver
 facebookConnectPlugin.login(["basic_info"],
 fbLoginSuccess,
 function (error) { alert("" + error) }
);

 };

 })

We have a new variable named fbLoginSuccess, which is called after the user logs
in successfully. Next, we have facebookConnectPlugin.login, which makes a call
to log in to Facebook via PhoneGap's plugin.

Adding Authentication Capabilities Using PhoneGap Plugins

[78]

Next, we need to work on controller.js. The two functions that you need to
change are $scope.checkLogin and $scope.logout. We simply replace FB with
facebookConnectPlugin. So here's what the code looks like now:

$scope.checkLogin = function() {
 facebookConnectPlugin.getLoginStatus(function(response) {
 alert(response);
 if (response.status == 'connected') {
 //alert('logged in');
 console.log("logged in bro");
 $location.path('/');
 if(!$scope.$$phase) $scope.$apply();
 }
 else {
 // alert('not logged in');
 $location.path('/login');
 if(!$scope.$$phase) $scope.$apply();
 }
 });

 }
$scope.logout = function () {
 alert('logging out')

 // this is the PhoneGap version
 facebookConnectPlugin.logout(function(response) {
 alert('logged out');
 $location.path('/login');
 if(!$scope.$$phase) $scope.$apply();
 });

 }

Now that we have made the required changes, it's time that we test the functionalities.

The to-do list app with Facebook Login
on PhoneGap
As usual, we need to run our code using PhoneGap's command-line interface. So to
change your current directory back to the to do list app, issue the following command:

cordova build ios

cordova emulate ios

Chapter 4

[79]

Once you have issued the command, you should see your iOS emulator fired up.
Next, you will see the following screenshot:

On Entering the App

As we are still logged in from the previous sections, we get to see our to-do list items
even after clicking on OK. At this point, if you are still logged in, feel free to click on
Logout, after which you should see the following screenshot:

Login Screen

Adding Authentication Capabilities Using PhoneGap Plugins

[80]

As usual, you can log in and be greeted by the previous screenshot. After clicking on
OK, you can start to play around with your app.

Successful login

Feel free to add new items, edit them, and log in and out just to see if the code
is working correctly. If all goes well, congratulations! You now have a working
PhoneGap app making RESTful calls coupled with Facebook Login capabilities.

Summary
To summarize, we worked our way from a very simple AngularJS app to one which
can make RESTful calls coupled with Facebook Login capabilities. At each stage, we
also ported the code to PhoneGap and made sure it works. The important takeaway
here, is that using a command-line interface can drastically reduce the number of steps
required to set up our PhoneGap project. In the next chapter, we will be working on
animations; various animation techniques will be used for our PhoneGap app.

Sprucing Up the App
Using Animations and

Mobile Design
Welcome to this chapter! In this chapter, we will spruce up our app using animation
and styles that mimic the mobile user interface. This will be a short yet useful
chapter. As usual, the code shown in this chapter can be applied across iOS and
Android apps.

In this chapter, we'll learn about:

•	 Performing animations using ngAnimate
•	 Pitfalls to avoid when performing animations in PhoneGap

Adding animations to your web app
Adding animations is surprisingly easy using AngularJS. The ngAnimate module of
AngularJS will take users there with CSS animations.

We'll start by adding animation to our web app before porting it over to PhoneGap.
To do this, head back to your web-based version of the code and open index.html.
There are three changes that you need to make:

1.	 Add a new index.css file.
2.	 Add class="todos" in your <div ng-view> </div>.
3.	 Add <script src="https://ajax.googleapis.com/ajax/libs/

angularjs/1.3.0-beta.7/angular-animate.min.js"></script> to the
list of imported JavaScript.

Sprucing Up the App Using Animations and Mobile Design

[82]

4.	 The end result of your code in index.html should look like this:
<!doctype html>
<html ng-app="todoApp">
 <head>
 <link rel="stylesheet"
 href="http://netdna.bootstrapcdn.com/bootstrap/
 3.0.3/css/bootstrap.min.css">
 <link rel="stylesheet" href="css/index.css">
 <style>
 body {
 padding: 40px 20px 0 20px;
 }
 </style>

 </head>
 <body>
 <div id="fb-root"></div>
 <script src="http://connect.facebook.net/en_US/all.js"></script>
 <script>
 FB.init({
 appId : 'XXXXX',
 xfbml : true,
 version : 'v1.0'
 });
 </script>
 <h2>Todos</h2>
 <div ng-view class="todos"></div>

 <script src="https://ajax.googleapis.com/
 ajax/libs/angularjs/1.3.0-beta.7/angular.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.3.0-beta.7/angular-resource.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.3.0-beta.7/angular-route.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.3.0-beta.7/angular-animate.min.js"></script>
<script src="js/controllers/todo.js"></script>
 <script src="js/controllers/user.js"></script>
 <script src="js/services/todo.js"></script>
 <script src="js/app.js"></script>
 </body>
</html>

Chapter 5

[83]

The highlighted lines of code are the ones that you need to add to index.html.
You may have noticed that we have not created index.css; that's what we are
going to do right now:

1.	 Open your editor, create a new file in the css folder, and name it index.css.
We are going to create the initial state of todos and define how the animation
will look. Our goal is to make our app slide in from the left on initialization.
Clicking on Edit/Details or New should shift it towards the right. By clicking
on Cancel, the screen should shift leftwards. Our index.css file should look
like the following:
.todos {
 position: absolute;
 background: coral;
 display: block;
 width:90%;
 border-left:1px solid black;
}

.todos.ng-enter, .todos.ng-leave {
 transition: 500ms ease-in all;
}

.todos.ng-enter.ng-enter-active, .todos.ng-leave {
 left: 0;
}
.todos.ng-leave.ng-leave-active, .todos.ng-enter {
 left: 200%;
}

The .todos class simply defines the initial state of the todos class. Next, we
have .todos.ng-enter and .todos.ng-leave, where we define a transition
time of 500ms and an ease-in effect.

2.	 Next comes the fun part. .todos.ng-enter.ng-enter-active, .todos.ng-
leave is defined as left:0, which means that on entering a new route, the
partial in question will shift in from right to left till the distance from the left
side of the parent div is 0 px.

3.	 Similarly, on leaving, it is defined by .todos.ng-leave.ng-leave-active,
.todos.ng-enter at left:200%.
So what are we doing here ? If you noticed, we first defined <div ng-view >
with class="todos", and then we attached AngularJS specific animations by
using ng-enter, ng-leave, ng-enter-active, and ng-leave-active. These
are the four basic states that you can define for an animation.

Sprucing Up the App Using Animations and Mobile Design

[84]

4.	 Now save the file and open index.html on your favorite web browser.
Please remember to run your server and the MongoDB server in order
for this app to work. You should be greeted with the following screen:

The Todos list app

5.	 Click on NEW or Edit/Details and you should see animations shifting
in from right or left, depending on whether you cancel the action or not.
For instance, you can click on Edit/Details first and make sure that you
are moving towards the right with a new screen as follows:

Making changes to our items and should work
as expected with animation effects

6.	 If you click on Cancel, you will see your screen shift leftwards, which is a
direction that you would expect.

As soon as you get the preceding result, you know that all is working right. It's time
to add in CSS styles that mimic the usual mobile user interface.

Chapter 5

[85]

Adding mobile CSS styles to your app
In order to further spruce up our app, we will be leveraging on the CSS libraries of
TopCoat. You can get TopCoat CSS libraries from http://topcoat.io/. We also
need to change our index.html file a bit more in order to leverage on the styles
provided by TopCoat.

1.	 For a start, replace the stylesheet which points to Bootstrap CDN with the
following code:
<link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/
 topcoat/0.8.0/css/topcoat-mobile-light.css">

2.	 After this, just before <div ng-view class="todos"></div>, prepend the
following code:
<div class="topcoat-navigation-bar">
 <div class="topcoat-navigation-bar__item center full">
 <h1 class="topcoat-navigation-bar__title">Todos</h1>
 </div>
 </div>

This is to give a universal header that we commonly see in mobile apps.
After these changes, your index.html file should look like this:

<!doctype html>
<html ng-app="todoApp">
 <head>
 <link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/
 libs/topcoat/0.8.0/css/topcoat-mobile-light.css">
 <link rel="stylesheet" href="css/index.css">
 </head>
 <body>
 <div id="fb-root"></div>
 <script src="http://connect.facebook.net/en_US/
 all.js"></script>
 <script>
 FB.init({
 appId : 'XXX',
 xfbml : true,
 version : 'v1.0'
 });
 </script>
 <div class="topcoat-navigation-bar">
 <div class="topcoat-navigation-bar__item center full">
 <h1 class="topcoat-navigation-bar__title">Todos</h1>
 </div>
 </div>

http://topcoat.io/

Sprucing Up the App Using Animations and Mobile Design

[86]

 <div ng-view class="todos"></div>

 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.3.0-beta.7/angular.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.3.0-beta.7/angular-
 resource.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.3.0-beta.7/angular-
 route.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.3.0-beta.7/angular-
 animate.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/
 angularjs/1.3.0-beta.7/angular-touch.min.js"></script>
 <script src="js/controllers/todo.js"></script>
 <script src="js/controllers/user.js"></script>
 <script src="js/services/todo.js"></script>
 <script src="js/app.js"></script>
 </body>
</html>

3.	 There's still one more thing we need to change, and that is the listing of
todos. So, in partials/list.html, we need to change the stylistic elements
so that it appears correctly when shown on a mobile device. We are simply
applying TopCoat CSS classes here:
<div class="topcoat-list__container scroller">

 <i class="icon-plus-sign">NEW</i>

 {{remaining()}} of {{todos.length}} remaining

 <button ng-click="logout()"
 style="position:absolute;right:10px;">Logout</button>
 <ul class="topcoat-list list">
 <li ng-repeat="todo in todos"
 class="topcoat-list__item">
 <a style="display:block; padding-left:10px"
 href="#/edit/{{todo._id}}">{{todo.text}}

</div>>

4.	 The next and the final step before we test our app on the browser is to
remove certain parts of index.css so that our self-defined styles do not
get confused with TopCoat CSS styles.

Chapter 5

[87]

5.	 In your index.css file, look for .todos and remove background:coral
and border-left: 1px solid black. So, your final index.css file should
look like this:
.todos {
 position: absolute;
 display: block;
 width:100%;
}

.todos.ng-enter, .todos.ng-leave {
 transition: 500ms ease-in all;
}

.todos.ng-enter.ng-enter-active, .todos.ng-leave {
 left: 0;
}
.todos.ng-leave.ng-leave-active, .todos.ng-enter {
 left: 200%;
}

6.	 Now, open your new index.html file in your browser. You should see
something like the following screenshot:

A mobile app with universal header

Sprucing Up the App Using Animations and Mobile Design

[88]

Once you have this result, you might want to play around with it to see if it is
working out as expected.

Porting your web app to PhoneGap
Now we are at the final step, which is porting our app to PhoneGap. The steps are
very similar to the previous chapters: we need to include the required PhoneGap
and Facebook plugins. Most importantly, we need to include the ngTouch module of
AngularJS. Here's how our index.html file should look for our PhoneGap's version:

<!doctype html>
<html ng-app="todoApp">
 <head>
 <link rel="stylesheet" href="http://cdnjs.cloudflare.com/ajax/
 libs/topcoat/0.8.0/css/topcoat-mobile-light.css">
 <link rel="stylesheet" href="css/index.css">
 </head>
 <body>
 <div id="fb-root"></div>
 <div class="topcoat-navigation-bar">
 <div class="topcoat-navigation-bar__item center full">
 <h1 class="topcoat-navigation-bar__title">Todos</h1>
 </div>
 </div>
 <div ng-view class="todos"></div>
<!-- this is for phonegap -->
 <script src="cordova.js"></script>
 <!-- cordova facebook plugin -->
 <script src="cdv-plugin-fb-connect.js"></script>
 <!-- facebook js sdk -->
 <script src="facebook-js-sdk.js"></script>

 <script>
 document.addEventListener('deviceready', function() {
 try {
 alert('Device is ready! Make sure you set your app_id below
 this alert.');
 FB.init({ appId: "XXXX", nativeInterface: CDV.FB,
 useCachedDialogs: false });

 } catch (e) {

Chapter 5

[89]

 alert(e);
 }
 }, false);
 </script>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/
 1.3.0-beta.7/angular.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/
 1.3.0-beta.7/angular-resource.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/
 1.3.0-beta.7/angular-route.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/
 1.3.0-beta.7/angular-animate.min.js"></script>

 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/
 1.3.0-beta.7/angular-touch.min.js"></script>

 <script src="js/controllers/todo.js"></script>
 <script src="js/controllers/user.js"></script>
 <script src="js/services/todo.js"></script>
 <script src="js/app.js"></script>
 </body>
</html>

It's generally the final version as per the previous section; but the initialization for
PhoneGap and Facebook is included in this version. As usual, remember to use your
own app ID for this file.

We also need to convert our controllers to use the PhoneGap version for Facebook
API calls that we previously coded for. In the source code provided with this book,
you will see that there are two code blocks for each of the functions: one for the
desktop/web version and the other is for the PhoneGap version.

As mentioned in Chapter 4, Adding Authentication Capabilities Using PhoneGap Plugins,
the PhoneGap version connects to Facebook using the facebookConnectPlugin
namespace instead of the usual FB namespace (compared to previous versions).

www.allitebooks.com

http://www.allitebooks.org

Sprucing Up the App Using Animations and Mobile Design

[90]

Testing your app on iOS
To test your app on iOS, run the following commands from the root of your
app's directory:

cordova build ios

cordova emulate ios

You should see the following output in your iOS emulator:

The to-do list app on iOS

In my case, I have some items left in my database and hence that's what I got in
my emulator. Feel free to click around, add new items, edit them, or log in and out.
It should work as expected, with animations built in.

Chapter 5

[91]

Testing your app on Android
Now that we have tested on iOS, it's time to get your app tested on Android as well.
Note that since Android reads the http://localhost address differently, you will
need to change http://localhost:8000 to http://10.0.2.2:8000 at services/
todo.js in order for the code to work.

Also, remember to change your facebookConnectPlugin namespace to the usual FB
namespace in order for the Facebook Connect plugin to work.

Once that is done, you should issue the following command:

cordova build android

cordova emulate android

Your app should be working as expected.

Summary
To sum up, we created animations for our app and also made use of TopCoat CSS
skins to give our app a mobile look. There are many other areas that we can improve
on, such as it's design or even use other frameworks such as the Ionic framework;
notice that we did not make use of the popular jQuery Mobile, since we wanted to
make use of AngularJS as much as possible. Most importantly, by now you should
see that the code bases for both iOS and Android are almost the same, with the
exception of changing the URL of our server's location. In the next and final chapter,
you will learn about distributing and getting ready to launch our mobile apps.

Getting Ready to Launch
In this final chapter, we will run through some of the stuff that you should be doing
before launching your app to the world, whether it's through Apple App Store or
Google Android Play Store.

We will be covering the following topics:

•	 Testing your app on your device for real
•	 How to change the artwork for your app
•	 Deploying server.py

We will also discuss other useful tips before you launch the app in the real world,
and we'll start by launching server.py.

Deploying server.py
To deploy server.py, you will need access to an actual server. It can be rented from
Amazon EC2, Linode, or DigitalOcean. The operation system I am using here is
Ubuntu 12.04, although older variants of Ubuntu can work too, which include 10.04
and 11.04. Since the server is essentially a Tornado app, you will need to prepend
sudo to every command that follows in this section, if you are not running it as root.

1.	 To start off, you will need to put SSH into your server and start installing the
required tools and dependencies:
apt-get install python-setuptools

easy_install pip

pip install tornado

Getting Ready to Launch

[94]

2.	 You will also need to install MongoDB:
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
7F0CEB10

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart
dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

3.	 Reload the local package database:
apt-get update

4.	 Install the MongoDB packages:

apt-get install mongodb-org

For the latest instructions on installing MongoDB, refer to http://docs.
mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/.

5.	 Next, make a directory for you to host your app:
mkdir /srv/www/

mkdir /srv/www/app_name

6.	 Now, you can simply create a file called server.py under /srv/www/
app_name and copy the contents of server.py, which we coded in the
previous sections. However, before we run server.py we need to install
one more package:
pip install tornado-cors

7.	 Now that you have installed our required packages, you can run the server
by issuing the following command:
python server.py –host=80

8.	 To check if the server is working, go to http://XXX.XX.XX/todos and see if
you get an empty list. Your server should also show a GET response.

At this point, should you want to test your web app or PhoneGap version of the
app, you have to update js/services/todo.js so that the URLs reflect the new
IP address or domain name of the app.

There are other ways to set up server.py, such as using nginx and supervisor.
For more details, feel free to check out the guides provided by DigitalOcean
(https://www.digitalocean.com/) and Linode (https://www.linode.com/)
for more details.

Now that we are done with server.py, it's time to move on to the apps.

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
https://www.digitalocean.com/
https://www.linode.com/

Chapter 6

[95]

Using phonegap.com
The services on https://build.phonegap.com/ are a straightforward way for you
to get your app compiled for various devices. While this is a paid service, there is a
free plan if you only have one app that you want to work on. This would be fine in
our case, for this chapter.

Choose a plan from PhoneGap

You will need to have an Adobe ID in order to use PhoneGap services. If not, feel
free to create one. Since the process for generating compiled apps from PhoneGap
may change, it's that you visit https://build.phonegap.com/ and sign up for
their services and follow their instructions.

https://build.phonegap.com/
https://build.phonegap.com/

Getting Ready to Launch

[96]

Preparing your PhoneGap app for an
Android release
This section generally focuses on things that are specific for the Android platform.
This is by no means a comprehensive checklist, but some of the common tasks that
you should go through before releasing your app to the Android world.

Testing your app on real devices
For most of this book, we tested our app on the Android emulator. It is always good
to run your app on an actual handset to see how the app is working. To run your
PhoneGap app on a real device, issue the following command after you plug your
handset into your computer:

cordova run android

You will see that your app now runs on your handset.

Exporting your app to install on other devices
In the previous section we talked about installing your app on your device.
What if you want to export the APK so that you can test the app on other
devices? Here's what you can do:

•	 As usual, build your app using cordova build android
•	 Alternatively, if you can, run cordova build release

The previous step will create an unsigned release APK at /path_to_your_project/
platforms/android/ant-build. This app is called YourAppName-release-
unsigned.apk.

Now, you can simply copy YourAppName-release-unsigned.apk and install it on
any android based device you want.

Chapter 6

[97]

Preparing promotional artwork for release
In general, you will need to include screenshots of your app for upload to Google
Play. In case your device does not allow you to take screenshots, here's what you
can do:

•	 The first technique that you can use is to simply run your app in the emulator
and take screenshots off it. The size of the screenshot may be substantially
larger, so you can crop it using GIMP or some other online image resizer.

•	 Alternatively, use the web app version and open it in your Google Chrome
Browser. Resize your browser window so that it is narrow enough to
resemble the width of mobile devices.

Building your app for release
To build your app for release, you will need Eclipse IDE.

1.	 To start your Eclipse IDE, navigate to File | New | Project.
2.	 Next, navigate to Existing Code | Android | Android Project.
3.	 Click on Browse and select the root directory of your app. The Project to

Import window should show platforms/android.
4.	 Now, select Copy projects into workspace if you want and then click

on Finish.

Signing the app
We have previously exported the app (unsigned) so that we can test it on devices other
than those plugged into our computer. However, to release your app to the Play Store,
you need to sign them with keys. The steps here are the general steps that you need to
follow in order to generate "signed" APK apps to upload your app to the Play Store.

1.	 Right-click on the project that you have imported in the previous section,
and then navigate to Android Tools | Export Signed Application Package.
You will see the Project Checks dialog.

2.	 In the Project Checks dialog, you will see if your project has any errors or not.

Getting Ready to Launch

[98]

3.	 Next, you should see the Keystore selection dialog. You will now create the
key using the app name (without space) and the extension .keystore. Since
this app is the first version, there is no prior original name to use. Now, you
can browse to the location and save the keystore, and in the same box, give
the name of the keystore. In the Keystore election dialog, add your desired
password twice and click on Next. You will now see the Key Creation dialog.

4.	 In the Key Creation dialog, use app_name as your alias (without any spaces)
and give the password of your keystore. Feel free to enter 50 for validity
(which means the password is valid for 50 years). The remaining fields such
as names, organization, and so on are pretty straightforward, so you can just
go ahead and fill them in.

5.	 Finally, select the Destination APK file, which is the location to which you
will export your .apk file.

Bear in mind that the preceding steps are not a comprehensive list of instructions.
For the official documentation, feel free to visit http://developer.android.com/
tools/publishing/app-signing.html.

Now that we are done with Android, it's time to prepare our app for iOS.

iOS
As you might already know, preparing your PhoneGap app for Apple App Store
requires similar levels, if not more, as compared to your usual Android deployment.
In this section, I will not be covering things like making sure your app is in tandem
with Apple User Interface guidelines, but rather, how to improve your app before it
reaches the App Store. Before we get started, there are some basic requirements:

•	 Apple Developer Membership (if you ultimately want to deploy to the
App Store)

•	 Xcode

Running your app on an iOS device
If you already have an iOS device, all you need to do is to plug your iOS device to
your computer and issue the following command:

cordova run ios

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html

Chapter 6

[99]

You should see that your PhoneGap app will build and launch on your device.
Note that before running the preceding command, you will need to install the
ios-deploy package. You can install it using the following command:

sudo npm install –g ios-deploy

Other techniques
There are other ways to test and deploy your apps. These methods can be useful if
you want to deploy your app to your own devices or even for external device testing.

Using Xcode
Now let's get started with Xcode:

1.	 After starting your project using the command-line tool and after adding
in iOS platform support, you may actually start developing using Xcode.
You can start your Xcode and click on Open Other, as shown in the
following screenshot:

2.	 Once you have clicked on Open Other, you will need to browse to your
ToDo app folder.

Getting Ready to Launch

[100]

3.	 Drill down until you see ToDo.xcodeproj (navigate to platforms | ios).
Select and open this file.

4.	 You will see your Xcode device importing the files. After it's all done,
you should see something like the following screenshot:

Files imported into Xcode

Chapter 6

[101]

5.	 Notice that all the files are now imported to your Xcode, and you can
start working from here. You can also deploy your app either to devices
or simulators:

Deploy on your device or on simulators

Summary
In this chapter, we went through the basics of packaging your app before submission
to the respective app stores. That's it for this book. We have covered quite a bit in
this book in six chapters. In general, you should have a good idea of how to develop
AngularJS apps and apply mobile skins on them so that it can be used on PhoneGap.
You should also notice that developing for PhoneGap apps typically takes the pattern
of creating a web app first, before converting it to a PhoneGap version. Of course,
you may structure your project so that you can build a PhoneGap version from
day one, but it may make testing more difficult. Anyway, I hope that you enjoyed
this book and feel free to follow me at http://www.liangeugene.com and
http://growthsnippets.com.

http://www.liangeugene.com
http://growthsnippets.com

References
The following are some common resources that you can use for reference.

AngularJS and related libraries
•	 The main AngularJS is available at https://angularjs.org/; here you

can learn about the basic functionalities of AngularJS
•	 A list of popular add-ons, modules, and plugins for AngularJS is available

at http://ngmodules.org/
•	 CanJS, a framework that makes developing complex applications simple

and fast is available at http://canjs.com/
•	 Ember.js, a framework that incorporates common idioms so that

developers can focus on what makes your app special, is available
at http://emberjs.com/

•	 Knockout is a framework that developers can use to build single
page applications, custom bindings, and so it is available at
http://knockoutjs.com/

PhoneGap and related references
•	 The PhoneGap main website is available at http://phonegap.com/
•	 PhoneGap Plugins are available at https://build.phonegap.com/plugins
•	 The Apache Cordova main website is available at

http://cordova.apache.org/

•	 The Android Developers main website is available at
http://developer.android.com/index.html

References

[104]

Others
•	 The iOS main website is available at https://developer.apple.com/

devcenter/ios/index.action

•	 The Facebook login page is available at https://developers.facebook.
com/docs/facebook-login/v2.0

•	 Facebook PhoneGap plugin is available at https://github.com/phonegap/
phonegap-facebook-plugin

•	 The Ionic framework is available at http://ionicframework.com/

Other tutorials
In addition to the previous links, here are some useful tutorials regarding the use of
AngularJS and PhoneGap. Though some of them are slightly outdated (especially for
PhoneGap), it is still generally useful for you to understand how both PhoneGap and
AngularJS work together by referring to the following links:

•	 How to use PhoneGap and AngularJS together is available at
http://tech.pro/tutorial/1336/phonegap-and-angularjs-the-start

•	 Sample Mobile Application with AngularJS and PhoneGap is available at
http://coenraets.org/blog/2013/11/sample-mobile-application-
with-angularjs/

•	 Sample Mobile Application with Ionic Framework and PhoneGap is available
at http://coenraets.org/blog/2014/02/sample-mobile-application-
with-ionic-and-angularjs/

Index
Symbols
$apply() option 60
$digest

URL 60
$http module

of AngularJS, using 45, 46
using, controllers rewriting for 46, 47

$scope.addDetails function 14
$scope.addTodo function 13
$scope.archive function 13
$scope.close function 14
$scope.getRemaining function 13
$scope.showDetail function 14
$scope.todoText function 13

A
Android

app, testing on 91
code, testing on 53-56
command-line interface 18-20
installing 18
installing, URL 18

Android Developers
URL 103

AngularJS
$http module, using 45, 46
about 5
changing, to perform RESTful requests 45
conceptual example 7, 8
core concepts 5
references 103
references, for tutorials 104

to-do list 8
URL 5
URL, for modules 103

AngularJS, on PhoneGap
about 21-25
used, for basic version to-do list app 26-31
used, for creating to-do list app 26

animations
adding, to web app 81-84

Apache Cordova
URL 103

app, PhoneGap
building, for release 97
exporting, to install on other devices 96
mobile CSS styles, adding 85-88
signing 97, 98
testing, on real devices 96

B
backend

about 40
code, checking 48-50
server, coding 41-44

C
CanJS

about 103
URL 103

code
checking 48-50
testing, on Android 53-56
testing, on iOS 51-53

[106]

command-line interface
for Android 18-20
for iOS 18-20
real devices, running on 20, 21

conceptual example, AngularJS 7, 8
controllers

about 6
rewriting, to use $http module 46-48

core concepts, AngularJS
about 5
controllers 6
data-binding 6
directives 6

D
data-binding 6
DigitalOcean

URL 94
directives

about 6
ng-app 6
ng-bind 6
ng-controller 6
ng-model 6
ng-repeat 6

E
Ember.js

about 103
URL 103

Express
URL 40

F
Facebook Connect

adding, to to-do list app 57
initializing 58, 59
login page, adding 60-62
login status, checking 65-67
logout function, adding 63-65
preparing for 58, 59
URL 57
user controller, writing 59, 60

facebookConnectPlugin
FB, changing to 77, 78

Facebook login
for PhoneGap 67
installing 67-69
page, URL 104
testing, for PhoneGap 70-74

Facebook PhoneGap plugin
URL 104

Facebook plugins
importing 75, 76

FB
changing, to facebookConnectPlugin 77, 78

I
index.html

splitting, into multiple files 34-36
Ionic framework

URL 104
iOS

about 98
app, running 98, 99
app, testing on 90
code, testing on 51-53
command-line interface 18-20
installing 18
installing, URL 18
URL 104

K
Knockout

about 103
URL 103

L
Linode

URL 94
login page, Facebook Connect

writing 60-62
login status, Facebook Connect

checking 65-67
logout function, Facebook Connect

adding 63-65

[107]

M
mobile CSS styles

adding, to app 85-88
MongoDB

installing, URL 94
URL 40

multiple files
index.html, splitting into 34-36
todo.js, splitting into 37-40

N
ngAnimate module 81
ng-app directive 6
ng-bind directive 6
ng-click directive 11
ng-controller directive 6, 11
ng-model directive 6
ng-repeat directive 6, 11
ng-submit directive 11

P
PhoneGap

Android, installing 18
AngularJS 21-26
development, preparing for 17
Facebook login 67
Facebook login, testing out 70-74
from Web to 74
iOS, installing 18
preparing for 50, 51
references 103
references, for tutorials 104
URL 17
web app, porting to 88, 89

PhoneGap app
building, for release 97
exporting, to install on other devices 96
preparing, for Android release 96
promotional artwork,

preparing for release 97
signing 97, 98
signing, URL 98
testing, on real devices 96

phonegap.com
using 95

PhoneGap plugins
importing 75, 76
URL 103

promotional artwork, PhoneGap
preparing, for release 97

R
real devices

app, testing on 96
running on 20, 21

RESTful requests
performing, AngularJS changed 45

S
server, backend

coding 41-44
server.py

deploying 93, 94
simple to-do list app

Checkpoint 40
index.html, splitting into

multiple files 34,-36
rewriting 33, 34
todo.js, splitting into multiple files 37-40

T
todo.js

splitting, into multiple files 37-40
to-do list, AngularJS used

about 8
adding, in JavaScript 11-15
code structure, preparing 9
HTML 9-11

to-do list app
basic version 26-31
creating 26
Facebook Connect, adding 57
with Facebook Login 78-80
with PhoneGap 78-80

[108]

X
Xcode

using 99-101

Todos class 43
TopCoat CSS libraries

URL 85
tornado-cor

URL 40
Tornado Framework

URL 40

U
user controller, Facebook Connect

writing 59, 60

W
web

to PhoneGap 74
web app

animations, adding 81-84
porting, to PhoneGap 88, 89
testing, on Android 91
testing, on iOS 90

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to AngularJS
	Brief overview of AngularJS
	Core concepts
	Controllers
	Data-binding
	Directives

	A conceptual example

	A Simple to-do List using AngularJS
	Preparing your code structure
	HTML for our to-do list
	Adding in JavaScript with AngularJS

	Summary

	Chapter 2: Getting Ready for PhoneGap
	Preparing for PhoneGap development
	Installing Android
	Installing iOS

	Command-line interface for both Android and iOS
	Running on real devices

	AngularJS on PhoneGap
	What just happened?

	Create todo list app using AngularJS on PhoneGap
	Basic version of todo list using AngularJS on PhoneGap

	Summary

	Chapter 3: From Simple To-do List to Advanced To-do List
	Rewriting the simple to-do list app
	Splitting index.html into multiple files
	Splitting todo.js into multiple files
	Checkpoint

	Wiring up a backend server
	Coding our server
	Changing AngularJS to perform RESTful requests
	Using the $http module of AngularJS
	Rewriting controllers to make use of the $http module
	Checking our code

	Preparing for PhoneGap
	Testing our code on iOS
	Testing our code on Android
	Summary

	Chapter 4: Adding Authentication Capabilities Using
PhoneGap Plugins
	Adding Facebook Connect to the todo list app
	Initializing and preparing for Facebook Connect
	Writing the user controller
	Adding a login page
	Adding a logout function
	Checking the login status

	Facebook login for PhoneGap
	Installing the Facebook plugin
	Testing out Facebook Login on PhoneGap

	From Web to PhoneGap
	Importing Facebook and PhoneGap plugins
	Changing FB to facebookConnectPlugin

	The todo list app with Facebook Login on PhoneGap
	Summary

	Chapter 5: Sprucing Up the App
using Animations and
Mobile Design
	Adding animations to your web app
	Adding mobile CSS styles to your app
	Porting your web app to PhoneGap
	Testing your app on iOS
	Testing your app on Android

	Summary

	Chapter 6: Getting Ready to Launch
	Deploying server.py
	Using phonegap.com
	Preparing your PhoneGap app for Android release
	Testing your app on real devices
	Exporting your app to install on other devices
	Preparing promotional artwork for release
	Building your app for release
	Signing the app

	iOS
	Running your app on an iOS device
	Other techniques
	Using Xcode

	Summary

	References
	AngularJS and related libraries
	PhoneGap and related references
	Others
	Other tutorials

	Index

