
www.allitebooks.com

http://www.allitebooks.org

Play Framework Essentials

An intuitive guide to creating easy-to-build scalable
web applications using the Play framework

Julien Richard-Foy

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Play Framework Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1190914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-240-0

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Julien Richard-Foy

Reviewers
Shannon –jj Behrens

Cédric Chantepie

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Vinay Argekar

Content Development Editor
Akashdeep Kundu

Technical Editors
Indrajit A. Das

Taabish Khan

Humera Shaikh

Copy Editors
Deepa Nambiar

Laxmi Subramanian

Project Coordinator
Kartik Vedam

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Monica Ajmera Mehta

Tejal Soni

Graphics
Abhinash Sahu

Production Coordinators
Aparna Bhagat

Manu Joseph

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Julien Richard-Foy likes to design code that seamlessly expresses the ideas he
has in mind. He likes finding the right level of abstraction, separating concerns, or
whatever else that makes the code easy to reason about, to maintain and to grow.

He works at Zengularity, the company that created the Play framework, and actively
contributes to the evolution of the framework.

He aims at working on technically challenging and innovative projects that have a
positive environmental or social impact on the world.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

About the Reviewers

Shannon -jj Behrens is a staff software engineer at Twitter, working in the
Infrastructure and Operations department. He lives in Concord, California, with
his lovely wife and seven lovely children. He's well known for his impeccable
sense of modesty, world-renowned taste in T-shirts, and poor sense of humor.
He blogs at http://jjinux.blogspot.com on a wide variety of topics such as
Python, Ruby, Scala, Linux, open source software, the Web, and lesser-known
programming languages.

Cédric Chantepie is an IT system architect, with varied development experience
(C/C++/ObjC, LISP, JavaEE, Haskell, and Scala), obsessed by software quality
(CI, testing, and so on), and involved in open source projects.

www.allitebooks.com

http://jjinux.blogspot.com
http://www.allitebooks.org

[FM-6]

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Building a Web Service	 5

Play – a framework used to write web applications	 5
Bootstrapping a Play application	 9

Play applications' layout	 11
URL routing	 12

Route path parameters	 14
Parameters type coercion	 15
Parameters with fixed values	 15
Query string parameters	 16
Default values of query string parameters	 16
Trying the routes	 17

Building HTTP responses	 17
Serializing application data in JSON	 19

Reading JSON requests	 22
Validating JSON data	 26
Handling optional values and recursive types	 27

Summary	 29
Chapter 2: Persisting Data and Testing	 31

Testing your web service	 31
Writing and running tests	 32
Testing the HTTP layer	 33

Using the reverse router to generate URLs	 34
Running a fake Play application	 35
Effectively writing HTTP tests	 35

Persisting data	 37
Using a relational database	 37

Getting a reference to the currently running application	 39

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Using a database management library	 40
Using Slick in Scala	 40
Using JPA in Java	 42

Integrating with other persistence technologies	 43
Populating the database with fixtures	 43

The application's Global object	 44
Managing database schema evolutions	 45

Using an in-memory database for tests	 46
Summary	 49

Chapter 3: Turning a Web Service into a Web Application	 51
Delta between a web service and a web application	 51
Using the template engine to build web pages	 52

Inserting dynamic values	 53
Looping and branching	 55
Reusing document fragments	 55
Comments	 57
Import statements	 57

Generating HTML forms	 58
Repeated and nested fields	 61

Reading and validating HTML form data	 63
Handling the HTML form submission	 63
Validating the HTML form data	 64

The Scala form validation API	 65
The Java form validation API	 66
Optional and mandatory fields	 67

Sharing JSON validation and HTML form validation rules	 68
Handling content negotiation	 69
Putting things together	 71
Writing web user interface tests	 73
Summary	 76

Chapter 4: Integrating with Client-side Technologies	 77
Philosophy of Play regarding client-side technologies	 77
Serving static assets	 78

Sprinkling some JavaScript and CSS	 80
Using the JavaScript reverse router	 81
Managing assets from the build system	 83

Producing web assets	 84
Pipelining web assets' transformations	 85

Concatenating and minifying JavaScript files	 86
Gzipping assets	 88
Fingerprinting assets	 89

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Managing JavaScript dependencies	 91
Running JavaScript tests	 91

Summary	 92
Chapter 5: Reactively Handling Long-running Requests	 95

Play application's execution model	 95
Scaling up your server	 98
Embracing non-blocking APIs	 100
Managing execution contexts	 105
Writing incremental computations using iteratees	 108
Streaming results using enumerators	 110
Manipulating data streams by combining iteratees, enumerators,
and enumeratees	 111

Unidirectional streaming with server-sent events	 112
Preparing the ground	 112
Transforming streams of data using enumeratees	 114
Implementing a publish/subscribe system using Akka	 117

Bidirectional streaming with WebSockets	 124
Controlling the data flow	 126
Summary	 127

Chapter 6: Leveraging the Play Stack – Security,
Internationalization, Cache, and the HTTP Client	 129

Handling security concerns	 130
Authentication	 130
Cross-site scripting	 134
Cross-site request forgery	 135

HTTP request filters	 135
Using the CSRF filter	 138

Enabling HTTPS	 139
Saving computation time using cache	 141
Serving content in several languages	 143
Calling remote web services	 145

Background – the OAuth 2.0 protocol	 146
Integrating your application with your preferred social network	 147
Implementing the OAuth client	 148
Calling the HTTP API of your preferred social network	 152

Summary	 153

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 7: Scaling Your Codebase and Deploying
Your Application	 155

Making an action's logic reusable and composable with
action builders	 155

Capturing the logic of actions using blocking APIs	 156
Capturing the logic of actions that require authentication	 159
Combining action builders	 161

Modularizing your code	 162
Applying the inversion of control principle	 163

Using dynamic calls in route definitions	 164
Setting up a dependency injection system	 165
Making your code injectable	 167

Mocking components	 170
Splitting your code into several artifacts	 173
Splitting your controller layer into several artifacts	 175

Application deployment	 176
Deploying to your dedicated infrastructure	 177
Deploying to the cloud	 177
Handling the per environment configuration	 178

Overriding configuration settings using Java system properties	 178
Using different configuration files	 179

Summary	 179
Index	 181

Preface
The Web allows you to make applications that can be used from anywhere in
the world as long as there is an Internet connection. The Play framework has been
designed to embrace the characteristics of modern web applications such as handling
long-running requests and manipulating data streams.

This book shows you how to write such web applications using Play. I designed
it to be progressive so that you can quickly write a running application and then
enhance it to benefit from all the components of the Play stack, or from lower-level
APIs if you need more control.

Code examples are given in both Scala 2.10 and Java 8 (except for some APIs that
have no Java counterpart). You can find executable applications based on the code
examples of the book at http://github.com/julienrf/pfe-samples.

Finally, I encourage you to browse the API documentation of the framework
to complete the content of this book. You can find it online at http://www.
playframework.com/documentation.

What this book covers
Chapter 1, Building a Web Service, explains how to turn an application into a web service
by exposing its resources and features as HTTP endpoints.

Chapter 2, Persisting Data and Testing, shows how you can integrate a persistence system
to your Play application and how to write specifications of your HTTP layer.

Chapter 3, Turning a Web Service into a Web Application, goes one step further by
showing you how the Play framework can help you to define HTML pages for
your application and handle HTML forms.

Chapter 4, Integrating with Client-side Technologies, gives you insights on ways to manage
the production of web assets from the build system of your Play application.

http://github.com/julienrf/pfe-samples
http://www.playframework.com/documentation
http://www.playframework.com/documentation

Preface

[2]

Chapter 5, Reactively Handling Long-running Requests, dives deeper in the framework
internals and explains how to leverage its reactive programming model to
manipulate data streams.

Chapter 6, Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP
Client, presents additional components that are part of the Play stack.

Chapter 7, Scaling Your Codebase and Deploying Your Application, looks back at the code
of your application and provides patterns to keep it modular and easy to maintain.
It also explains how to deploy your application in a production environment.

What you need for this book
The content of this book is based on Play 2.3.x and shows both Scala and Java APIs.
Though this book uses Java 8, Play supports Java 6, so all you need to start developing
a Play application is at least JDK 6. Chapter 1, Building a Web Service, explains how to
install activator, a command-line tool to generate starter application skeletons and
then manage their life cycle (running, testing, and so on). Finally, you also need a
web browser to use your applications.

Who this book is for
This book targets Java or Scala developers who already have some knowledge of
web development.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Source files are under the app/ directory."

A block of code is set as follows:

val index = Action {
 Ok("Just Play Scala")
}

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

val index = Action {
 Ok("Just Play Scala")
}

Any command-line input or output is written as follows:

$ curl -v http://localhost:9000/items

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"If everything works fine, your browser should show a page titled Just Play
Scala (or Just Play Java)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that
you have expertise in and you are interested in either writing or contributing to
a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Building a Web Service
This chapter will cover the following topics:

•	 Bootstrapping a Play project
•	 Understanding the different pieces of a Play project
•	 Mapping URLs to your service entry points
•	 Serving JSON responses and reading and validating JSON requests

Play – a framework used to write
web applications
Play is a framework used to write web applications. As shown in the following
diagram, a web application is based on a client-server architecture and uses the
HTTP protocol for communication:

Client(s) Server(s)

Web-oriented architecture

Building a Web Service

[6]

Users have the role of clients and make HTTP requests to servers to interact with the
application. The servers process their requests and send them a response. Along the
way, the web application might need to make use of various databases or perhaps
other web services. This entire process is depicted in the following diagram:

Play application

router

controller A

action 1

action 2

action n

business
client

1)
2)

3)

The Play framework's overall architecture

This book will show you how Play can help you to write such web applications. The
preceding diagram shows a first big picture of the framework's overall architecture.
We will refine this picture as we read through this book, but for now it is a good
start. The diagram shows a web client and a Play application. This one is made of
a business layer (on the right), which provides the services and resources specific
to the application. These features are exposed to the HTTP world by actions, which
themselves can be logically grouped within controllers. Gray boxes represent the
parts of code written by the developer (you!), while the white box (the router)
represents a component already provided by Play.

HTTP requests performed by the client (1) are processed by the router that calls the
corresponding action (2) according to URL patterns you configured. Actions fill the
gap between the HTTP world and the domain of your application. Each action maps
a service or resource of the business layer (3) to an HTTP endpoint.

All the code examples in this book will be based on a hypothetical shopping
application allowing users to manage and sell their items. The service layer of
this application is defined by the following Shop trait:

case class Item(id: Long, name: String, price: Double)

trait Shop {
 def list(): Seq[Item]
 def create(name: String, price: Double): Option[Item]
 def get(id: Long): Option[Item]

Chapter 1

[7]

 def update(id: Long, name: String, price: Double): Option[Item]
 def delete(id: Long): Boolean
}

In Java, the service layer is defined by the following Shop interface:

public class Item {

 public final Long id;
 public final String name;
 public final Double price;

 public Item(Long id, String name, Double price) {
 this.id = id;
 this.name = name;
 this.price = price;
 }

}

interface Shop {
 List<Item> list();
 Item create(String name, Double price);
 Item get(Long id);
 Item update(Long id, String name, Double price);
 Boolean delete(Long id);
}

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

The Item type simply says that an item has a name, a price, and an ID. The Shop type
defines the typical Create, Read, Update, and Delete (CRUD) operations we want to
do. Connecting with the figure that shows the architecture of Play applications, these
types represent the business layer of your web service and their definition should
live in a models package in the app/ source directory. The remainder of this chapter
explains how to write a controller exposing this business layer via HTTP endpoints
using JSON to represent the data.

As an example, here is a possible minimalist Scala implementation of the Shop trait:

package models

import scala.collection.concurrent.TrieMap

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Building a Web Service

[8]

import java.util.concurrent.atomic.AtomicLong

object Shop extends Shop {
 private val items = TrieMap.empty[Long, Item]
 private val seq = new AtomicLong

 def list(): Seq[Item] = items.values.to[Seq]

 def create(name: String, price: Double): Option[Item] = {
 val id = seq.incrementAndGet()
 val item = Item(id, name, price)
 items.put(id, item)
 Some(item)
 }

 def get(id: Long): Option[Item] = items.get(id)

 def update(id: Long, name: String, price: Double): Option[Item]
 = {
 val item = Item(id, name, price)
 items.replace(id, item)
 Some(item)
 }

 def delete(id: Long): Boolean = items.remove(id).isDefined
}

This implementation stores the data in memory, so it loses everything each time
the application restarts! Nevertheless, it is a sufficient business layer basis, letting
us focus on the web layer. The implementation uses a concurrent collection to solve
concurrency issues. Indeed, as I will explain later, the code called by the controllers
must be thread safe.

For Java developers, here is a minimalist implementation of the Shop interface:

import java.util.concurrent.ConcurrentSkipListMap;
import java.util.concurrent.atomic.AtomicLong;

new Shop() {

 SortedMap<Long, Item> items = new ConcurrentSkipListMap<>();
 AtomicLong seq = new AtomicLong();

 @Override
 public Collection<Item> list() {
 return new ArrayList<>(items.values());
 }

Chapter 1

[9]

 @Override
 public Item create(String name, Double price) {
 Long id = seq.incrementAndGet();
 Item item = new Item(id, name, price);
 items.put(id, item);
 return item;
 }

 @Override
 public Item get(Long id) {
 return items.get(id);
 }

 @Override
 public synchronized Item update(Long id, String name, Double
 price) {
 Item item = items.get(id);
 if (item != null) {
 Item updated = new Item(id, name, price);
 items.put(id, updated);
 return updated;
 } else return null;
 }

 @Override
 public Boolean delete(Long id) {
 return items.remove(id) != null;
 }
};

As previously mentioned, the code called by controllers must be thread safe, hence
the use of Java concurrent collections.

Bootstrapping a Play application
While it is totally possible to start a Play project from nothing, you might find it more
convenient to start from an empty application skeleton and set up the build system
to depend on Play so that you can directly focus on the code of your application.

Typesafe Activator (https://typesafe.com/activator) can be used to generate such
an empty application skeleton. This tool lists several application templates designed
to be used as the project's starting point. Actually, Activator does a bit more than this:
it can also compile and run your project and even provide a minimalist development
environment with a code editor right in your web browser!

https://typesafe.com/activator

Building a Web Service

[10]

Let's start with a basic Scala or Java application. Download and install Activator
by referring to its documentation. Though some templates already support
advanced features out of the box, we will begin with a completely empty application
and will progressively enhance it with new features (for example, persistence or
client-side technologies).

In a *nix terminal, create a new application skeleton by running the following
activator command:

$ activator new

You will be asked which application template to use; choose just-play-scala
(or just-play-java to create a Java application). Give the application the name shop.

A new directory, shop/, has been created that contains the application's code. Go to
this directory and execute the activator run command:

$ cd shop

$ activator run

Activator starts a development HTTP server listening (by default) on port 9000.
In your browser, go to http://localhost:9000 to test it; the HTTP server compiles
your application, starts it, and processes your HTTP request. If everything works
fine, your browser should show a page titled Just Play Scala (or Just Play Java).

You can stop the running application with Ctrl + D.

You can also start Activator without passing it a command name:

$ activator

In such a case, you enter in the project sbt shell, where you can manage the life cycle
of your project as in any sbt project. For instance, you can try these commands: clean,
compile, run, and console. The last one starts a REPL where you can evaluate
expressions using your application's code.

sbt is a build tool for Scala projects. Check out
http://www.scala-sbt.org for more details.

http://www.scala-sbt.org

Chapter 1

[11]

Play applications' layout
To explain why you get this result in your browser when you ran the application,
let's have a look at the files created by the activator new command. Under the
project root directory (the shop/ directory), the build.sbt file describes your
project to the build system.

It currently contains a few lines, which are as follows:

name := """shop"""

version := "1.0-SNAPSHOT"

lazy val root = project.in(file(".")).enablePlugins(PlayScala)

The first two lines set the project name and version, and the last line imports the
default settings of Play projects (in the case of a Java project, this line contains
PlayJava instead of PlayScala). These default settings are defined by the Play sbt
plugin imported from the project/plugins.sbt file. As the development of a Play
application involves several file generation tasks (templates, routes, assets and so
on), the sbt plugin helps you to manage them and brings you a highly productive
development environment by automatically recompiling your sources when they
have changed and you hit the reload button of your web browser.

Though based on sbt, Play projects do not follow the standard sbt projects layout:
source files are under the app/ directory, test files under the test/ directory, and
resource files (for example, configuration files) are under the conf/ directory.
For instance, the definitions of the Shop and Item types should go into the app/
directory, under a models package.

After running your Play application, try changing the source code of the application
(under the app/ directory) and hit the reload button in your browser. The
development HTTP server automatically recompiles and restarts your application.
If your modification does not compile, you will see an error page in your browser
that shows the line causing the error.

Let's have a deeper look at the files of this minimal Play application.

The app/ directory, as mentioned before, contains the application's source code. For
now, it contains a controllers package with just one controller named Application.
It also contains a views/ directory that contains HTML templates. We will see how to
use them in Chapter 3, Turning a Web Service into a Web Application.

Building a Web Service

[12]

The conf/ directory contains two files. The conf/application.conf file contains
the application configuration information as key-value pairs. It uses the Human
Optimized Configuration Object Notation syntax (HOCON; it is a JSON superset,
check out https://github.com/typesafehub/config/blob/master/HOCON.md for
more information). You can define as many configuration points as you want in this
file, but several keys are already defined by the framework to set properties, such as
the language supported by the application, the URL to use to connect to a database,
or to tweak the thread pools used by the application.

The conf/routes file defines the mapping between the HTTP endpoints of the
application (URLs) and their corresponding actions. The syntax of this file is
explained in the next section.

URL routing
The routing component is the first piece of the framework that we will look at:

controllers.Articles.get(42)Get /articles/42

200 OK Ok(article)
Router Controller

URL routing

The preceding diagram depicts its process. It takes an HTTP request and calls the
corresponding entry point of the application. The mapping between requests and
entry points is defined by routes in the conf/routes file. The routes file provided
by the application template is as follows:

Routes
This file defines all application routes (Higher priority routes
first)
~~~~

Home page
GET / controllers.Application.index

Map static resources from the /public folder to the /assets URL path
GET /assets/*file controllers.Assets.versioned(path="/public",
file)

https://github.com/typesafehub/config/blob/master/HOCON.md

Chapter 1

[13]

Apart from comments (starting with #), each line of the routes file defines a route
associating an HTTP verb and a URL pattern to a controller action call.

For instance, the first route associates the / URL to the controllers.Application.
index action. This one processes requests by always returning an HTTP response
with a 200 status code (OK) and an HTML body that contains the result of the
rendering of the views.html.index template.

The content of the routes file is compiled by the sbt plugin into a Scala object named
Router and contains the dispatching logic (that is, which action to call according
to the incoming request verb and URL). If you are curious, the generated code is
written in the target/scala-2.10/src_managed/main/routes_routing.scala
file. The router tries each route, one after the other, in their order of declaration.
If the verb and URL match the pattern, the corresponding action is called.

Your goal is to expose your Shop business layer as a web service, so let's add the
following lines to the routes file:

GET /items controllers.Items.list
POST /items controllers.Items.create
GET /items/:id controllers.Items.details(id: Long)
PUT /items/:id controllers.Items.update(id: Long)
DELETE /items/:id controllers.Items.delete(id: Long)

The first route will return a list of items for sale in the shop, the second one will
create a new item, the third one will show detailed information about an item, the
fourth one will update the information of an item, and finally, the last one will delete
an item. Note that we follow the REST conventions (http://en.wikipedia.org/
wiki/REST) for the URL shapes and HTTP verbs.

In the controllers package of your code, add the following Items controller that
matches the added routes:

package controllers

import play.api.mvc.{Controller, Action}

object Items extends Controller {
 val shop = models.Shop // Refer to your Shop implementation
 val list = Action { NotImplemented }
 val create = Action { NotImplemented }
 def details(id: Long) = Action { NotImplemented }
 def update(id: Long) = Action { NotImplemented }
 def delete(id: Long) = Action { NotImplemented }
}

http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST

Building a Web Service

[14]

The equivalent Java code is as follows:

package controllers;

import play.mvc.Controller;
import play.mvc.Result;

public class Items extends Controller {

 static final Shop shop = Shop.Shop; // Refer to your Shop
 implementation

 public static Result list() {
 return status(NOT_IMPLEMENTED);
 }
 public static Result create() {
 return status(NOT_IMPLEMENTED);
 }
 public static Result details(Long id) {
 return status(NOT_IMPLEMENTED);
 }
 public static Result update(Long id) {
 return status(NOT_IMPLEMENTED);
 }
 public static Result delete(Long id) {
 return status(NOT_IMPLEMENTED);
 }
}

Each route is mapped by a controller member of type Action (or in Java, a public
static method that returns a Result). For now, actions are not implemented (they
all return NotImplemented) but you will progressively connect them to your Shop
service so that, for instance, the Items.list action exposes the shop list method.

Route path parameters
In our example, in the first route, the URL pattern associated with the controllers.
Items.details action is /items/:id, which means that any URL starting with /
items/ and then containing anything but another / will match. Furthermore, the
content that is after the leading / is bound to the id identifier and is called a path
parameter. The /items/42 path matches this pattern, but the /items/, /items/42/0,
or even /items/42/ paths don't.

When a route contains a dynamic part such as a path parameter, the routing logic
extracts the corresponding data from the URL and passes it to the action call.

Chapter 1

[15]

You can also force a path parameter to match a given regular expression by using the
following syntax:

GET /items/$id<\d+> controllers.Items.details(id: Long)

Here, we check whether the id path parameter matches the regular expression \d+
(at least one digit). In this case, the /items/foo URL will not match the route pattern
and Play will return a 404 (Not Found) error for such a URL.

A route can contain several path parameters and each one is bound to only one
path segment. Alternatively, you can define a path parameter spanning several
path segments using the following syntax:

GET /assets/*file controllers.Assets.at(path =
 "/public", file)

In this case, the file identifier captures everything after the /assets/ path segment.
For instance, for an incoming request with the /assets/images/favicon.png URL,
file is bound to images/favicon.png. Obviously, a route can contain at most one
path parameter that spans several path segments.

Parameters type coercion
By default, request parameters are coerced to String values, but the type annotation
id: Long (for example, in the details route) asks Play to coerce the id parameter
to type Long. The routing process extracts the content corresponding to a parameter
from the URL and tries to coerce it to its target type in the corresponding action
(Long in our example) before calling it.

Note that /items/foo also matches the route URL pattern, but then the type coercion
process fails. So, in such a case, the framework returns an HTTP response with a 400
(Bad Request) error status code.

This type coercion logic is extensible. See the API documentation of the
QueryStringBindable and PathBindable classes for more information
on how to support your own data types.

Parameters with fixed values
The parameter values of the called actions can be bound from the request URL,
or alternatively, can be fixed in the routes file by using the following syntax:

GET / controllers.Pages.show(page = "index")
GET /:page controllers.Pages.show(page)

Building a Web Service

[16]

Here, in the first route, the page action parameter is set to "index" and it is bound to
the URL path in the second route.

Query string parameters
In addition to path parameters, you can also define query string parameters:
parameters extracted from the URL query string.

To define a query string parameter, simply use it in the action call part of the route
without defining it in the URL pattern:

GET /items controllers.Items.details(id: Long)

The preceding route matches URLs with the /items path and have a query
string parameter id. For instance, /items and /items?foo=bar don't match but
/items?id=42 matches. Note that the URL must contain at least all the parameters
corresponding to the route definition (here, there is only one parameter, which is id),
but they can also have additional parameters; /items?foo=bar&id=42 also matches
the previous route.

Default values of query string parameters
Finally, you can define default values for query string parameters. If the parameter
is not present in the query string, then it takes its default value. For instance, you
can leverage this feature to support pagination in your list action. It can take an
optional page parameter defaulting to the value 1. The syntax for default values is
illustrated in the following code:

GET /items controllers.Items.list(page: Int ?= 1)

The preceding route matches the /items?page=42 URL and binds the page query
string parameter to the value 42, but also matches the /items URL and, in this case,
binds the page query string parameter to its default value 1.

Change the corresponding action definition in your code so that it takes a page
parameter, as follows:

def list(page: Int) = Action { NotImplemented }

The equivalent Java code is as follows:

public static Result list(Integer page) {
 return status(NOT_IMPLEMENTED);
}

Chapter 1

[17]

Trying the routes
If you try to perform requests to your newly added routes from your browser, you
will see a blank page. It might be interesting to try them from another HTTP client
to see the full HTTP exchange between your client and your server. You can use,
for example, cURL (http://curl.haxx.se/):

$ curl -v http://localhost:9000/items

> GET /items HTTP/1.1

> User-Agent: curl/7.35.0

> Host: localhost:9000

> Accept: */*

>

< HTTP/1.1 501 Not Implemented

< Content-Length: 0

<

The preceding command makes an HTTP GET request on the /items path and gets
an HTTP response with the status code 501 (Not Implemented). Try requesting other
paths such as /items/42, /itemss/foo, or /foo and compare the response status
codes you get.

Routes are the way to expose your business logic endpoints as HTTP endpoints;
your Shop service can now be used from the HTTP world!

Building HTTP responses
Actions process HTTP requests and return HTTP responses. So far, you have seen
how HTTP requests were routed by the framework to call your application's code.
Now, let's see how you can reply with HTTP responses.

An HTTP response has a status code and some optional headers and can be followed
by a body. So, to build a response, you have to at least supply a status code.

For instance, your current action definitions return HTTP responses with status
code 501 (Not Implemented). Try changing it to Ok (or ok() in Java) and reload the
page in your browser (or perform a request with cURL), you should get a response
with status code 200 (OK). Play provides helpers to build responses with common
status codes. Examples of other predefined statuses are NotFound (notFound()
in Java), BadRequest (badRequest() in Java) or InternalServerError
(internalServerError() in Java).

http://curl.haxx.se/

Building a Web Service

[18]

More generally, you can build an HTTP response with any status code by using the
Status function (or status in Java). For instance, Status(200) (or status(200) in
Java) builds an empty response with status 200 and the Content-Length header set
to 0.

In addition to a status code, HTTP responses can contain data in a body. For instance,
the Application.index action that was provided with the application skeleton
returns an HTML document. Alternatively, we can make it return a text document:

val index = Action {
 Ok("Just Play Scala")
}

The equivalent Java code is as follows:

public static Result index() {
 return ok("Just Play Java");
}

In Scala, you can supply a body to your response by calling the apply method of a
status; Ok("Just Play Scala") builds an HTTP response with status code 200 and
a body that contains "Just Play Scala". Similarly, in Java, you can just pass the
response body as a parameter to the status function.

Clients consuming a web service might want (or need) to know the content type of
response body data. HTTP responses have a header for this, which is Content-Type.
As the value of this header is tied to the type of values you send, Play automatically
infers the former from the latter, freeing you from writing redundant code.

In practice, in Scala, writing Ok("foo") builds an HTTP response with a Content-
Type header set to text/plain because "foo" has type String. Play infers the right
content type by using the type of the value you pass as response body. The type
signature of the apply method of the Result type is the following:

def apply[A](a: A)(implicit w: play.api.mvc.Writeable[A]): Result

This means that you can supply a response of type A only if you provide an implicit
value of type play.api.mvc.Writeable[A] . The Writeable typeclass actually tells
Play which content type to use (and how to serialize it to the HTTP response body).
For convenience, Play provides implicit Writeable values for common content types
such as JSON, HTML, XML, and plain text. However, if you want to send data of a
type that is not currently supported by Play, you have to define the corresponding
Writeable instance.

Chapter 1

[19]

Typeclasses are a feature of the Haskell programming language
to achieve ad hoc polymorphism (http://www.haskell.org/
tutorial/classes.html). It can be encoded in Scala using
parameterized types and implicit parameters.

In Java, the result method helpers, such as ok() and notFound(), are overloaded
to support common data types (for example, String, byte[]); ok("foo") builds
an HTTP response with a Content-Type header set to text/plain. Data types that
are not directly supported must implement the play.mvc.Content interface to be
correctly handled by Play. This interface specifies which content type to use and
how to serialize the data to the HTTP response body.

Serializing application data in JSON
Now that you know how to build an HTTP response containing a body, your last
step to bootstrap your web service consists of returning your business data as
a JSON document in the body of your HTTP responses.

Play comes with a rich library for JSON manipulation. Let's start by returning a
JSON value in the details action:

import play.api.libs.json.Json

def details(id: Long) = Action {
 shop.get(id) match {
 case Some(item) =>
 Ok(Json.obj(
 "id" -> item.id,
 "name" -> item.name,
 "price" -> item.price
))
 case None => NotFound
 }
}

This code tries to retrieve the item in the shop and if found, returns it as a JSON
object. The Json.obj function builds a JSON object from a list of name-value
pairs. If there is no item with the ID passed as a parameter, the action returns
a NotFound response. JSON objects have type JsValue, and Play has a built-in
Writeable[JsValue] instance that sets the content type of a JSON response
body to application/json.

www.allitebooks.com

http://www.haskell.org/tutorial/classes.html
http://www.haskell.org/tutorial/classes.html
http://www.allitebooks.org

Building a Web Service

[20]

The equivalent Java code is as follows:

import play.libs.json.Json;

public static Result details(Long id) {
 Item item = shop.get(id);
 if (item != null) {
 return ok(Json.toJson(item));
 } else {
 return notFound();
 }
}

In Java, Play uses the Jackson library (http://jackson.codehaus.org/) to
automatically serialize the Item value so that you don't need to explicitly tell how
to transform an Item into a JSON object. The Jackson object mapper that performs
this task can handle some simple data structures like the Item class, but for more
complex data structures (for example, involving cycles or bidirectional associations),
you might have to supply your own serialization process by annotating your types
with Jackson annotations.

The Scala API does not follow this approach because the Scala language gives
convenient mechanisms that allow you to tell how to serialize data without relying
on reflection and with minimal boilerplate.

If you call this action from your HTTP client, you will get a response like the
following (assuming your shop has an item with the ID 42):

$ curl http://localhost:9000/items/42

{"id":42,"price":4.2,"name":"Play Framework Essentials"}

Similar to the implementation of the details action, here is how you can implement
the list action and return the list of the items in the shop as a JSON array. The Java
version of the code is as follows:

public static Result list() {
 return ok(Json.toJson(shop.list()));
}

Again, the Json.toJson call delegates the JSON serialization of the list of items
to Jackson.

The Scala version of the code is as follows:

val list = Action {
 Ok(Json.arr(shop.list.map(item => Json.obj(
 "id" -> item.id,

http://jackson.codehaus.org/

Chapter 1

[21]

 "name" -> item.name,
 "price" -> item.price
)): _*))
}

We use the Json.arr method to create a JSON array and pass it a collection of JSON
objects as a parameter.

You might have noticed that the code defining these JSON objects from the items
duplicates the code already written in the details action. Instead, you should
isolate the logic corresponding to the serialization of an item into a JSON object as a
function and reuse it. Actually, you can do even better; the Play JSON library defines
a play.api.libs.json.Writes[A] typeclass that captures the serialization logic for
the type A, so you can just write an implicit value of type Writes[Item] and Play
will use it when needed. This typeclass has just one method, which is writes(item:
Item): JsValue that defines how to transform an Item into a JSON value. The
JsValue type is an algebraic data type representing JSON values. For now, you
have seen how to define JSON objects (represented by the JsObject type in Play)
and arrays (JsArray), using Json.obj and Json.arr, respectively, but there are
other types of JsValue such as numbers (JsNumber), strings (JsString), booleans
(JsBoolean), and null (JsNull).

Your first reusable JSON serializer for items can be defined and used as follows:

import play.api.libs.json.Writes

implicit val writesItem = Writes[Item] {
 case Item(id, name, price) =>
 Json.obj(
 "id" -> id,
 "name" -> name,
 "price" -> price
)
}

val list = Action {
 Ok(Json.toJson(shop.list))
}

def details(id: Long) = Action {
 shop.get(id) match {
 case Some(item) => Ok(Json.toJson(item))
 case None => NotFound
 }
}

Building a Web Service

[22]

The implicit value, writesItem, defines the serialization logic for Items. Then, in the
list and details actions, we use Json.toJson to transform our items into JSON
objects. This toJson method has the following signature:

def toJson[A](a: A)(implicit Writes[A]): JsValue

This means that it can serialize any value of type A if there is an implicit value of type
Writes[A] in the implicit scope. Fortunately, Play defines such JSON serializers for
common types and can combine them by chaining implicits; this is why Play is able
to serialize an Item as well as a List[Item].

Though the code of your writesItem is quite concise, it follows a repetitive pattern.
Each field of the Item class is serialized to a JSON field of the same name. Hopefully,
Play provides a macro that generates JSON serializers following this pattern, so the
previous serializer can be synthesized by just writing the following:

implicit val writesItem = Json.writes[Item]

You might be wondering why automatic generation of JSON serializers is not the
default behavior. There are two reasons for this. First, the automatic generation
mechanism cannot handle all data types (for example, cyclic data types). Secondly,
sometimes you don't want to use the same names for your JSON object fields and
your Scala object fields.

Reading JSON requests
Now your web service is able to send JSON data representing the application data.
However, clients cannot yet create new data by sending JSON requests; the create
action is still not implemented. This action should read the JSON data of requests
to extract the information required to create a new item, effectively create the item,
and return a response telling the client whether its operation succeeded.

The first step consists in defining which information is required to create a new item:

case class CreateItem(name: String, price: Double)

The equivalent Java code is as follows:

public class CreateItem {
 public String name;
 public Double price;
}

Chapter 1

[23]

The CreateItem data type just glues together the information needed to create
a new item: a name and price. The Java version uses public fields so that it can
automatically be handled by the Jackson object mapper.

The CreateItem data type is easy to work with in your server-side code, but it
means nothing for HTTP clients that only send JSON blobs. So you also have to
define a JSON structure corresponding to the CreateItem data type. A simple
solution consists of representing a CreateItem instance with a JSON object by
mapping each member of the CreateItem type with a member of the JSON object.
That is, a JSON object with a member "name" that contains a string value and a
member "price" that contains a number value.

The next step consists of defining how to convert a JSON object consistent with this
structure into a CreateItem value.

In Scala, similar to the Writes[A] typeclass that defines how to serialize an A value
into a JSON object, there is a Reads[A] typeclass that defines how to get an A value
from a JSON object. This typeclass has one abstract method:

def reads(json: JsValue): JsResult[A]

The JsResult[A] type represents either a successful conversion, JsSuccess(a), or
a unsuccessful conversion, JsError(errors), which contains a list of errors such as
missing fields in the JSON source object. So the Reads[A] typeclass tells how to try
to convert a JSON value to an A value.

Play provides Reads[A] values for common types such as String, Int, or Double.
You can then combine them to define Reads[A] values for more complex types.
For instance, you can define a Reads[CreateItem] value that tells how to try
to convert a JSON value to a CreateItem value, as follows:

import play.api.libs.json.{__, Reads}
import play.api.libs.functional.syntax._

implicit val readsCreateItem: Reads[CreateItem] = (
 ((__ \ "name").read[String]) and
 ((__ \ "price").read[Double])
)(CreateItem.apply _)

Building a Web Service

[24]

This code combines the Reads[String] and Reads[Double] values using the and
combinator. The (__ \ "name") expression is a JSON path referring to a member
"name" so that the (__ \ "name").read[String] expression reads the "name"
member as String and the (__ \ "price").read[Double] expression reads the
"price" member as Double. Finally, these values are passed to the apply method
of the CreateItem data type to make a CreateItem instance. Before showing how
to use this JSON reader to effectively transform the content of a JSON HTTP request,
let's give more details on the process of transforming JSON blobs to values. As our
readsCreateItem type is built by combining two subreaders using and, it tries to
apply all of them. If all succeed, the obtained values are passed to the CreateItem.
apply function to build a CreateItem instance and the reader returns a
JsSuccess[CreateItem] value. If one of the subreaders fails, the reader
returns a JsError value.

The and combinator is not a method of Reads[A]. It is available thanks
to an implicit conversion imported by play.api.libs.functional.
syntax._. This import brings several other combinators, such as
or, which succeeds if one of the two subreaders succeeds. These
combinators are not specific to the JSON API, and this is why they
are defined in a separate package.

In our case, both sub-readers look up a member in a JSON object, according to a
path defined by the \ operator. Note that we can define longer paths by chaining
the \ operator. Consider, for instance, the following expression that defines a path
locating a member "latitude" nested in a "position" member of a JSON object:

__ \ "position" \ "latitude"

Just like the Writes definition, the readsCreateItem definition is quite mechanical.
We try to get each field of the CreateItem case class from a field of the same name in
the JSON object. Just like the Writes definition, there is a macro automating the work
for Scala case classes so that the preceding Reads definition is completely equivalent
to the following:

implicit val readsCreateItem = Json.reads[CreateItem]

In Java, the Jackson mapper is used to convert JSON data to POJOs using reflection,
so you don't need to provide similar definitions.

Finally, the last step consists of making the create action interpret request content as
JSON data and making a CreateItem value from this data:

val create = Action(parse.json) { implicit request =>
 request.body.validate[CreateItem] match {

Chapter 1

[25]

 case JsSuccess(createItem, _) =>
 shop.create(createItem.name, createItem.price) match {
 case Some(item) => Ok(Json.toJson(item))
 case None => InternalServerError
 }
 case JsError(errors) =>
 BadRequest
 }
}

The equivalent Java code is as follows:

import play.mvc.BodyParser;

@BodyParser.Of(BodyParser.Json.class)
public static Result create() {
 JsonNode json = request().body().asJson();
 CreateItem createItem;
 try {
 createItem = Json.fromJson(json, CreateItem.class);
 } catch(RuntimeException e) {
 return badRequest();
 }
 Item item = shop.create(createItem.name, createItem.price);
 if (item != null) {
 return ok(Json.toJson(item));
 } else {
 return internalServerError();
 }
}

There are three important points to note in the preceding code. First, we tell
the create action to interpret the request body as JSON data by supplying the
parse.json value to the Action builder (or in Java, by annotating the method with
@BodyParser.Of(BodyParser.Json.class)). In Play, the component responsible
for interpreting the body of an HTTP request is named body parser. By default,
actions use a tolerant body parser that will be able to parse the request content as
JSON, XML, or URL-encoded form or multipart form data, but you can force the use
of a specific body parser by supplying it as the first parameter of your action builder
(or by using the @BodyParser.Of annotation in Java). The advantage is that within
the body of your request, you are guaranteed that the request body (available as the
body field on the request value) has the right type. If the request body cannot be
parsed by the body parser, Play returns an error response with the status 400
(Bad Request).

Building a Web Service

[26]

Secondly, in the Scala version, the second parameter passed to the Action builder
is not a block of the Result type, as with previous actions, but a function of type
Request[A] => Result. Actually, actions are essentially functions from HTTP
requests (represented by the Request[A] type) to HTTP responses (Result). The
previous way to use the Action builder (by just passing it a block of type Result)
was just a convenient shorthand for writing an action ignoring its request parameter.
The type parameter, A, in Request[A] represents the type of the request body. In our
case, because we use the parse.json body parser, we actually have a request of type
Request[JsValue]; the request.body expression has type JsValue. The default body
parser produces requests of the type Request[AnyContent], whose body can contain
JSON or XML content as described previously. In Java, Play sets up a context before
calling your action code (just after the routing process) so that within a controller,
you can always refer to the current HTTP request by using the request() method.

Thirdly, we make the CreateItem value from this request body by calling request.
body.validate[CreateItem] (or Json.fromJson(json, CreateItem.class)
in Java). The Scala version returns a JsResult value; this type can either be
JsSuccess if the CreateItem object can be created from the JSON data (using the
Reads[CreateItem] value available in the implicit scope), or JsError if the process
failed. In Java, the result is simply null in the case of an error.

In Scala, there is a body parser that not only parses the request body
a JSON blob but also validates it according to a reader definition and
returns a 400 (Bad Request) response in the case of a failure so that the
previous Scala code is equivalent to the following shorter version:

val create = Action(parse.json[CreateItem]) { implicit
 request =>
 shop.create(request.body.name, request.body.price)
 match {
 case Some(item) => Ok(Json.toJson(item))
 case None => InternalServerError
 }
}

Validating JSON data
At this point, your clients can consult the items of the shop and create new items.
What happens if one tries to create an item with an empty name or a negative price?
Your application should not accept such requests. More precisely, it should reject
them with the 400 (Bad Request) error.

Chapter 1

[27]

To achieve this, you have to perform validation on data submitted by clients. You
should implement this validation process in the business layer, but implementing it
in the controller layer gives you the advantages of detecting errors earlier and error
messages can directly refer to the structure of the submitted JSON data so that they
can be more precise for clients.

In Java, the Jackson API provides nothing to check this kind of validation. The
recommended way is to validate data after it has been transformed into a POJO.
This process is described in Chapter 3, Turning a Web Service into a Web Application.
In Scala, adding a validation step in our CreateItem reader requires a few
modifications. Indeed, the Reads[A] data type already gives us the opportunity
to report errors when the type of coercion process fails. We can also leverage this
opportunity to report business validation errors. Incidentally, the Play JSON API
provides combinators for common errors (such as minimum and maximum values
and length verification) so that we can forbid negative prices and empty item names,
as follows:

implicit val readsCreateItem = (
 (__ \ "name").read(Reads.minLength[String](1)) and
 (__ \ "price").read(Reads.min[Double](0))
)(CreateItem.apply _)

The preceding code rejects JSON objects that have an empty name or negative price.
You can try it in the REPL:

scala> Json.obj("name" -> "", "price" -> -42).validate[CreateItem]

res1: play.api.libs.json.JsResult[controllers.CreateItem] = JsError(List(

 (/price,List(ValidationError(error.min,WrappedArray(0.0)))),

 (/name,List(ValidationError(error.minLength,WrappedArray(1))))))

The returned object describes two errors: the first error is related to the price field;
it has the "error.min" key and additional data, 0.0. The second error is related to
the name field; it has the "error.minLength" key and an additional data, 1.

The Reads.minLength and Reads.min validators are predefined validators but you
can define your own validators using the filter method of the Reads object.

Handling optional values and recursive types
Consider the following data type representing an item with an optional description:

case class Item(name: String, price: Double, description:
Option[String])

Building a Web Service

[28]

In Scala, optional values are represented with the Option[A] type. In JSON, though
you can perfectly represent them in a similar way, optional fields are often modeled
using null to represent the absence of a value:

{ "name": "Foo", "price": 42, "description": null }

Alternatively, the absence of a value can also be represented by simply omitting
the field itself:

{ "name": "Foo", "price": 42 }

If you choose to represent the absence of value using a field containing null,
the corresponding Reads definition is the following:

(__ \ "name").read[String] and
(__ \ "price).read[Double] and
(__ \ "description").read(Reads.optionWithNull[String])

The optionWithNull reads combinator turns a Reads[A] into a Reads[Option[A]] by
successfully mapping null to None. Note that if the description field is not present
in the read JSON object, the validation fails. If you want to support field omission to
represent the absence of value, then you have to use readNullable instead of read:

(__ \ "name").read[String] and
(__ \ "price).read[Double] and
(__ \ "description").readNullable[String]

This is because read requires the field to be present before invoking the
corresponding validation. readNullable relaxes this constraint.

Now, consider the following recursive data type representing categories of items.
Categories can have subcategories:

case class Category(name: String, subcategories: Seq[Category])

A naive Reads[Category] definition can be the following:

implicit val readsCategory: Reads[Category] = (
 (__ \ "name).read[String] and
 (__ \ "subcategories").read(Reads.seq[Category])
)(Category.apply _)

The seq combinator turns Reads[A] into Reads[Seq[A]]. The preceding code
compiles fine; however, at run-time it will fail when reading a JSON object that
contains subcategories:

scala> Json.obj(
 "name" -> "foo",
 "subcategories" -> Json.arr(

Chapter 1

[29]

 Json.obj(
 "name" -> "bar",
 "subcategories" -> Json.arr()
)
)
).validate[Category]
java.lang.NullPointerException
 at play.api.libs.json.Json$.fromJson(Json.scala:115)
 …

What happened? Well, the seq[Category] combinatory uses the Reads[Category]
instance before it has been fully defined, hence the null value and
NullPointerException!

Turning implicit val readsCategory into implicit lazy val readsCategory
to avoid the NullPointerException will not solve the heart of the problem;
Reads[Category] will still be defined in terms of itself, leading to an infinite loop!
Fortunately, this issue can be solved by using lazyRead instead of read:

implicit val readsCategory: Reads[Category] = (
 (__ \ "name).read[String] and
 (__ \ "subcategories").lazyRead(Reads.seq[Category])
)(Category.apply _)

The lazyRead combinator is exactly the same as read, but uses a byname parameter
that is not evaluated until needed, thus preventing the infinite recursion in the case
of recursive Reads.

Summary
This chapter gave you an idea of the Play framework, but it contained enough material
to show you how to turn a basic application into a web service. By following the
principles explained in this chapter, you should be able to implement the remaining
Items.update and Items.delete actions.

You saw how to generate an empty Play application skeleton using activator. Then,
you saw how to define the mapping between HTTP endpoints and your application
entry points and the different ways you can bind your controller action parameters
from the request URL. You saw how to build HTTP responses and the mechanism
used by Play to infer the right response content type. Finally, you saw how to serve
JSON responses and how to read and validate JSON requests.

In the next chapter, you will replace the in-memory storage system with a persistent
storage system, and you will see how your Play application can be integrated with
existing persistence technologies like JDBC.

Persisting Data and Testing
In this chapter, you will see how you can write executable specifications for your
web service and how Play can integrate mainstream data persistence technologies
like RDMSes or document stores. More precisely, you will see how to perform
the following:

•	 Write and run unit tests
•	 Simulate HTTP requests and inspect returned HTTP responses
•	 Persist data using an RDBMS
•	 Use an in-memory database for development

Testing your web service
The architecture of your web service is depicted in the following diagram:

controllers.Itemsroutes models.Shop db.Schema

HTTP Business

/items

/items/ : id

...

list

details (id: Long)

list ()

get (id: Long)

items

This section presents the testing libraries that are integrated with Play and the testing
infrastructure provided by Play to test the HTTP layer of your web service.

Persisting Data and Testing

[32]

Writing and running tests
As Play projects are just sbt projects by default, you can add tests to your Play project
just as you would do for any other sbt project, except that the root directory for test
sources is not src/test/scala/ but simply test/.

sbt provides a mechanism to integrate testing libraries so that their tests can be
run from the build system. The testing component of Play integrates two testing
libraries out of the box: specs2 for Scala tests and JUnit for Java tests. Play projects
automatically depend on the Play testing component, so you don't need to add this
dependency in your build.sbt file. Obviously, you are free to use any other testing
library supported by sbt—just follow their usage instructions.

Though this book only presents the specs2 integration, it is worth noting
that for Scala developers, efforts have been made to provide a seamless
integration of the ScalaTest library. It takes the form of an additional
library named ScalaTest + Play. Refer to the official documentation
for more information.

The most common form of specs2 tests is a class extending org.specs2.mutable.
Specification as in the following test/models/ShopSpec.scala file:

import org.specs2.mutable.Specification
class ShopSpec extends Specification {
 "A Shop" should {
 "add items" in {
 failure
 }
 }
}

JUnit tests are just methods of a class that does not have an argument constructor.
These methods must return void and be annotated with @Test:

import org.junit.Test;
import static org.junit.Assert.fail;
public class ShopTest {
 @Test
 public void addItem() {
 fail();
 }
}

Refer to the documentation of specs2 or JUnit for more information on how
to write tests with these libraries. Note that Java Play projects also integrate
fest-assert, a library to write fluent assertions.

Chapter 2

[33]

You can run your tests by running the test sbt command. It should compile your
project and tests, run them, and show a nice test report:

[info] ShopSpec

[info] A Shop should

[info] x add items

[error] failure (ShopSpec.scala:6)

[info] Total for specification ShopSpec

[info] Finished in 14 ms

[info] 1 example, 1 failure, 0 error

[error] Failed: Total 1, Failed 1, Errors 0, Passed 0

As an example, here is a specification that checks whether an item can be inserted
in the shop:

"add items" in {
 Shop.create("Play Framework Essentials", 42) must
 beSome[Item].which {
 item => item.name == "Play Framework Essentials"
 && item.price == 42
 }
}

The Java equivalent code is as follows:

@Test
public void addItem() {
 Item item = Shop.create("Play Framework Essentials", 42.0);
 assertNotNull(item);
 assertEquals("Play Framework Essentials", item.name);
 assertEquals(new Double(42.0), item.price);
}

Testing the HTTP layer
So far, I've explained which existing testing technologies are shipped with Play,
but the framework also offers a testing infrastructure, making it easier to build
HTTP requests and to read HTTP responses so that you can effectively test your
HTTP layer by performing HTTP requests and checking whether their result
satisfies a given specification.

In order to build such HTTP requests, you need to know how you can generate
URLs to call your actions and how Play applications are loaded and started.

Persisting Data and Testing

[34]

Using the reverse router to generate URLs
The first step to build an HTTP request consists of defining the HTTP method and
the resource URL to use. For instance, to make an HTTP request on the Items.list
action, you will use the GET method and the /items URL, according to your routes
file. You could just hard code these values in your test specifications, but that would
be a very bad idea for at least two reasons.

First, the mapping between URL shapes and actions is already defined in the
routes file. By hard coding the URL and method in your test code, you would be
duplicating the information of the routes file, which is bad because you would have
to update at two places (in the routes file and in your test code) if you ever wanted
to change the mapping of this action.

Second, URLs should be percent encoded, which is a tedious task that you could be
tempted to disregard. In the case of the /items URL, this would not be a problem
because alphanumeric characters don't need to be encoded.

Hopefully, Play solves both problems by providing a reverse router. While the
router dispatches an HTTP request to its corresponding action, the reverse router
does the opposite job—it generates the URL and method corresponding to an
action call. For instance, you can get the URL and method corresponding to the
controllers.Items.list action call as follows:

controllers.routes.Items.list()

This expression returns a Call object containing two fields, url and method,
which in our case, are equal to "/items" and "GET", respectively.

It also works with routes that take parameters. The controllers.routes.Items.
details(42) expression returns an object with url and method members equal to
"/items/42" and "GET", respectively.

The reverse router is automatically generated by the Play sbt plugin each time you
change your routes file and guarantees that the URLs you generate are consistent
with the routing process and properly encoded. For each action referenced in a
route definition, the reverse router generates an object with the same name as the
controller in a routes subpackage and contains a method with the same name and
signature as in the route definition.

Chapter 2

[35]

Running a fake Play application
Once you get a Call object that defines the URL and method to use to call the action
you want to test, the next step consists of asking the framework to run the routing
logic to effectively call the corresponding action. This process is handled by the router,
and because it can be overridden by your application, it requires that you start the
application. Actually, when you use the run sbt command, Play manages to load
and start your application but this is not the case when running tests so you have to
manually start your application. Note that manually achieving this also gives you
more control over the process. The Scala testing API defines a specs2 scope named
play.api.test.WithApplication, which starts the application before running the
test content and stops it after the test execution. You can use it as follows:

import play.api.test.WithApplication
"a test specification" in new WithApplication {
 // some code relying on a running application
}

The Java API defines the following equivalent static methods:

import play.test.Helpers;
Helpers.running(Helpers.fakeApplication(), () -> {
 // some code relying on a running application
});

The running helper takes an application as parameter and starts it before evaluating
its second parameter.

You now are ready to write specifications against the HTTP layer!

Effectively writing HTTP tests
In Scala, I recommend your test classes to extend play.api.test.
PlaySpecification instead of org.specs2.mutable.Specification. You will
get helper methods to call your actions and inspect their result (for example, in a
test/controllers/ItemsSpec.scala file):

package controllers
import play.api.test.{PlaySpecification, FakeRequest, WithApplication}
import play.api.libs.json.Json

class ItemsSpec extends PlaySpecification {
 "Items controller" should {
 "list items" in new WithApplication {

Persisting Data and Testing

[36]

 route(FakeRequest(controllers.routes.Items.list())) match {
 case Some(response) =>
 status(response) must equalTo (OK)
 contentAsJson(response) must equalTo (Json.arr())
 case None => failure
 }
 }
 }
}

The route method calls the Items.list action using a fake HTTP request and
returns its response. Note that the fake request is built using the reverse router. Then,
if the routing process succeeds, the status method extracts the response status code
and the contentAsJson method reads the response content and parses it as a JSON
value. Note that all HTTP standard values (status codes and header names) are also
brought by the PlaySpecification trait, allowing us to just write OK instead of 200
to describe a successful status code. In addition to the methods illustrated in the
previous code, PlaySpecification also defines helper methods to inspect response
headers and in particular cookies and content type.

You might wonder why we are using helper functions such as status
to manipulate the values returned by action calls, instead of directly
invoking methods on them. That's because, as it will be explained
further in the book, action invocation is asynchronous and returns a
value of type Future[Result]. The helpers we use in the tests are
actually blocking; they wait for the completion of the result. Though
blocking threads is not recommended, it is convenient when writing
tests. Also, note that two action calls in a test will be concurrent unless
you wait for the completion of the first action. You can do this by
calling the await helper on your first action call.

For Java users, Play provides a class called Helpers with convenient static fields
describing HTTP standard values (status codes and header names) and static
methods to call controller actions, build requests, and inspect responses:

import org.junit.Test;
import play.mvc.Result;
import static play.test.Helpers.*;
import static org.fest.assertions.Assertions.*;

public class ItemsTest {
 @Test
 public void listItems() {
 running(fakeApplication(), () -> {

Chapter 2

[37]

 Result response = route(fakeRequest(controllers
 .routes.Items.list()));
 assertThat(status(response)).isEqualTo(OK);
 assertThat(contentAsString(response)).isEqualTo("[]");
 });
 }
}

I recommend that you import all the helpers using a wildcard static import as shown
in the preceding code. The route helper dispatches a given request and returns its
response. Then, the status helper method extracts the response status code and the
contentAsString method extracts the response body.

Refer to the API documentation of play.api.test.PlaySpecification (play.
test.Helpers in Java) for an exhaustive list of supported features.

Persisting data
Obviously, you are free to use any persistence technology such as relational databases,
document stores, key-value stores, and graph databases according to your needs.
Nevertheless, this section gives insights on the recommended ways to integrate a
persistence technology to your Play project.

As the persistence layer is usually independent of the HTTP layer, Play is agnostic
to which persistence layer you use. However, most persistence layers need
configuration settings, so you need a way to inject these settings to your persistence
technology from your application. A common way to achieve this is to define a
Play plugin. The next sections show how to integrate a relational database using
the provided JDBC and JPA plugins.

Using a relational database
If you are using a relational database, chances are that your database API relies on
JDBC. At some point, your database API will need a javax.sql.Connection object
to work with and might use JDBC transactions.

Play comes with a JDBC plugin that can help you to get a Connection object from
your application configuration settings and can make it easier to manage JDBC
transactions. To use it, add the following dependency to your build.sbt file:

libraryDependencies += jdbc

The Java equivalent code is as follows:

libraryDependencies += javaJdbc

Persisting Data and Testing

[38]

This value is provided by the Play sbt plugin and points to the JDBC module
corresponding to the same Play version your application is using.

Then, you can put the URLs of the data sources you want to use in your
conf/application.conf file and the JDBC plugin will automatically open them
when the application starts and close them when it is stopped. For instance, to use an
H2 database backed by the filesystem and running locally (Play already brings H2 to
your classpath, so you need no additional configuration in your build file), add the
following to your application.conf file:

db.default = {
 driver = org.h2.Driver
 url = "jdbc:h2:data"
}

By convention, if you use only one data source, your configuration settings go in
the db.default namespace. If you want to use several data sources, you can add
as many db.mydatasource namespaces as you want. Adjust the driver and url
settings to your environment and eventually supply the user and password settings
if opening your data source requires authentication.

Besides opening and closing your data sources according to your application's
life cycle, the JDBC plugin also manages a connection pool. In your Scala code,
you are provided a data source connection to work with as follows:

import play.api.db.DB
DB.withConnection("mydatasource") { connection =>
 // do something with the connection, it will
 // be closed for you at the end of the block
}

Otherwise, you can just write DB.withConnection { connection => … } without
supplying a data source name to get a connection to the default database.

The equivalent Java code will be the following:

import play.db.DB;
Connection connection = DB.getConnection("mydatasource");
try {
 // do something with the connection
} finally {
 connection.close();
}

Chapter 2

[39]

Finally, the Scala JDBC plugin is also able to handle transactions. By default,
once you got a connection, each SQL statement is treated as a transaction and is
automatically committed after it is executed (the JDBC autocommit mode). However,
you can also ask to treat several related SQL statements within a same transaction:

DB.withTransaction { connection =>
 // Execute several SQL statement here, the transaction
 // will be commited at the end of the block
}

Note that in Play 2.4, the Java DB API is enriched with the
withConnection and withTransaction methods, equivalent to
those of the Scala DB API. At the time of writing this book, Play 2.4
has not yet been released.

Getting a reference to the currently running
application
Actually, if you try to compile the previous Scala code examples, you will get the
following error:
You do not have an implicit Application in scope. If you want to bring
the current running Application into context, just add import play.api.
Play.current

What happened? The DB object has to retrieve data source configuration information
from the application.conf file. It could achieve this by itself by scanning the
classpath, looking for a configuration file, and parsing it. However, it is better to
perform this process only once, and this is exactly what Play does when it starts
your application; it creates an Application object (among others) that reads its
application.conf configuration file. Consequently, any component that needs
to read something in the application's configuration can just take an Application
object as a parameter and navigate through its configuration settings by using its
configuration member.

Now, the problem is that as Play creates this Application object, how can you get
a reference to it? Play uses a singleton object, play.api.Play (or just play.Play in
Java), that holds a reference to the currently running application. Finally, you can
get this reference by calling the current member of the Play singleton object (or by
calling the Play.application() static method in Java). For convenience, APIs that
need to access an application take it as an implicit parameter, so you don't have to
explicitly supply it at the usage site; instead, you can just add the following import:

import play.api.Play.current

With this import, all the previous code examples compile.

www.allitebooks.com

http://www.allitebooks.org

Persisting Data and Testing

[40]

Using a database management library
The previous section presented how to integrate with JDBC. However, you don't
usually work at the JDBC level but at a higher level using a database management
library. There are plenty of such libraries for both Scala and Java and presenting
them is out of the scope of this book. That being said, if you are using Scala, you
will certainly use Slick (http://slick.typesafe.com), a database management
library that is part of the Typesafe stack. If you are using Java, you will probably
use a JPA implementation.

If you don't want to learn Slick, I suggest you have a look at Anorm, a
simple Scala library that has been developed with the Play framework.
The main difference between Anorm and Slick is that Slick provides
a statically typed API to build SQL queries. This is not the case in
Anorm, where you write SQL queries in plain strings.

The next two sections give an overview on how to use Slick or JPA with a Play
application. It assumes that the following SQL schema is used to model our
shop data:

CREATE TABLE items (
 id BIGINT NOT NULL PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 price DOUBLE NOT NULL
);

Using Slick in Scala
Start by adding Slick as a dependency to your project:

libraryDependencies += "com.typesafe.slick" %% "slick" % "2.0.2"

Slick uses a representation of your database schema in terms of Scala types in order
to provide a type safe API to write queries for your database schema. For instance,
a minimalist representation of our shop's database schema could be the following:

object Schema {
 val queryLanguage = scala.slick.driver.H2Driver.simple
 import queryLanguage._
 import scala.slick.lifted.{Tag, TableQuery}

 class Items(tag: Tag) extends Table[(Long, String, Double)](tag,
 "ITEMS") {
 val id = column[Long]("ID", O.AutoInc)

http://slick.typesafe.com

Chapter 2

[41]

 val name = column[String]("NAME")
 val price = column[Double]("PRICE")
 override def * = (id, name, price)
 }
 val items = TableQuery[Items]

}

The Schema.items value can then be used to write SQL queries:

def findById(id: Long) = for (item <- items if item.id === id)
 yield item.*

The preceding query selects all the rows whose ID's column contains the same value
as the id parameter, and returns all their columns.

Finally, Slick needs a connection to your data source in order to execute SQL
statements on it. You can do this as follows:

def db(implicit app: play.api.Application) =
 Database.forDataSource(play.api.db.DB.getDataSource())

Now, you can execute your SQL queries:

db withSession { implicit session => findById(42).firstOption()}

To put things together, I suggest defining query helpers as Slick query extension
methods in the Schema object and execute them from the business layer. For our
shop, I define the following query extension method:

 implicit class ItemsExtensions[A](val q: Query[Items, A]) {
 val byId = Compiled { (id: Column[Long]) => q.filter(_.id ===
 id)
 }
 }

I would use it as follows in the Shop implementation:

def get(id: Long): Option[Item] = Schema.db withSession { implicit
session =>
 Schema.items.byId(id).firstOption()
}

The remaining create, list, update, and delete methods of Shop are left as an
exercise to the reader.

It is worth mentioning that a Play plugin for Slick is under development. This plugin
should give you an even smoother integration with Slick.

Persisting Data and Testing

[42]

Using JPA in Java
Play has a JPA plugin. Add it to your build definition as follows:

libraryDependencies += javaJpa

Also, add a dependency on the JPA implementation you want to use.

The JPA plugin needs to know which persistence unit to use, so add the following
to your application.conf file:

jpa.default = shopPersistenceUnit

Create the corresponding persistence.xml file in the conf/ directory. Make your
persistence unit refer to a non-jta-data-source data source:

<non-jta-data-source>shopDatasource</non-jta-data-source>

Finally, expose your data source through JNDI by adding the following to your
application.conf file:

db.default = {
 …
 jndiName = shopDatasource
}

You should be able to run your application. The JDBC plugin will connect to your
data source and expose them via JNDI. Then, the JPA plugin will create the entity
manager factories corresponding to your persistence units. So, the only remaining
work to do is to use the database layer in your code.

The JPA plugin exposes its features via static methods in the play.db.jpa.JPA class.
For instance, you can perform a query within a transaction as follows:

public Item get(Long id) throws Throwable {
 return JPA.withTransaction(() -> JPA.em().find(Item.class, id));
}

This code starts a transaction, and within this transaction, it retrieves the entity
manager and find an entity mapped by the Item class.

Chapter 2

[43]

The "() -> expression" syntax is supported starting
from Java 8. It is equivalent to the following:

new Function0<>() {
 public void apply() {
 return expression;
 }
}

Obviously, the Item class must be annotated as a JPA entity:

@Entity
@Table(name = "items")
public class Item {
 @Id public Long id;
 public String name;
 public Double price;

 public Item(Long id, String name, Double price) {
 this.id = id;
 this.name = name;
 this.price = price;
 }

 public Item() {}
}

Integrating with other persistence technologies
To integrate a non-JDBC-based persistence technology, the approach usually remains
the same. Have a dedicated plugin to retrieve the application configuration, set
things up at the start of the application, and clean resources when the application
is stopped. Fortunately, several persistence technologies are already supported by
third-party plugins (for example, Redis and MongoDB), so there are chances that the
technology you want to use is already seamlessly integrated with Play.

Populating the database with fixtures
During the development process of your application, you may find it convenient
to populate a test database with arbitrary fixtures data so that your user stories are
easier to write.

Persisting Data and Testing

[44]

You can achieve this by checking at the start of the application whether the database
is empty and then populating it if necessary. You already know how to communicate
with the database, so the only remaining obstacle is how to run some code at the
start of the application.

The application's Global object
You can define application-level settings by implementing an object that extends
the play.api.GlobalSettings class (or a class extending play.GlobalSettings
in Java). This class provides hooks on the application's life cycle and allows you
to define some common behavior for your HTTP layer (for example, what to do if
routes don't match an incoming request, or things to do before or after each action
invocation). For now, we will just override the onStart method, which is called
by Play right after the application has been started and all its plugins have been
initialized. In Scala, define the following Global object in the app/Global.scala file:

object Global extends GlobalSettings {
 override def onStart(app: Application): Unit = {
 super.onStart(app)
 if (Shop.list().isEmpty) {
 Shop.create("Play Framework Essentials", 42)
 }
 }
}

Our code calls the parent implementation and defines additional behavior; if the
database is empty, it inserts an item named "Play Framework Essentials"
with price 42.

The Java equivalent will be the following (in the app/Global.java file):

public class Global extends GlobalSettings {
 @Override
 public void onStart(Application app) {
 super.onStart(app);
 if (Shop.list().isEmpty()) {
 Shop.create("Play Framework Essentials", 42.0);
 }
 }
}

Chapter 2

[45]

When it starts your application, Play looks for an object named Global in the root
package, extending play.api.GlobalSettings (or a public class Global with a
default constructor, extending play.Globalsettings in Java). If there is no such
definition, Play uses a default global object. If you want to put your object in another
package or to give it another name, you have to provide its fully qualified name in
your application.conf file:

application.global = "my.custom.GlobalObject"

Managing database schema evolutions
As an application evolves, the corresponding data model can change and these
changes are reflected in the underlying database schema. Updating the data model in
the application is easy: just stop the application, replace it with the new version, and
restart it. However, updating the data model in the database is less simple because
there is existing data that conforms to the old database schema. So, you have to write
SQL migration scripts in order to make your database schema and data in sync with
your application code. Several tools exist to handle this task (such as Flyway and
Liquibase), but Play also comes with a solution named database evolutions.

With Play evolutions, each time your database schema changes, you write two
corresponding SQL migration scripts: one that tells how to upgrade the schema to the
new state and the other that tells how to downgrade the schema to the previous state.

These SQL scripts live in the conf/evolutions/<data-source>/ directory and are
named 1.sql, 2.sql, and so on. The evolution plugin is automatically loaded by
Play applications, and if it sees such SQL files match a configured data source, then
it will manage the database schema for you. You can disable the plugin by setting
the following property in your application.conf file:

evolutionplugin = disabled

At the start of the application in development mode, the plugin will check whether
the current database schema is up to date, and if this is not the case, it will ask to
apply the SQL scripts that are needed to synchronize the schema. You just have to
click on the apply button. In production mode, the application won't start at all if
the database schema is not up to date.

The conf/evolutions/default/1.sql script of your Shop database can be written
as follows:

--- !Ups
CREATE TABLE items (
 id IDENTITY NOT NULL PRIMARY KEY,

Persisting Data and Testing

[46]

 name VARCHAR(255) NOT NULL,
 price DOUBLE NOT NULL
);

--- !Downs
DROP TABLE items;

The script contains two special comments, # --- !Ups and # --- !Downs,
delimiting the upgrading and downgrading parts of the script. Within each part,
SQL statements are delimited with semicolons.

Suppose, at some point in the development of your Shop web application, you want
to enrich your data model and add a reference number to each item. You can write
the following 2.sql evolution script:

--- !Ups
ALTER TABLE items ADD ref VARCHAR(255) NOT NULL DEFAULT 'not
referenced';

--- !Downs
ALTER TABLE items DROP COLUMN ref;

Now, if you start an application in an environment that already has an existing
database, Play will ask you to apply this evolution script. On the other hand, if you
start an application in an environment without a database, Play will ask you to apply
both 1.sql and 2.sql scripts.

You might wonder why the downgrade part is necessary. The evolution plugin uses
them when it detects inconsistent states in your database, for instance, if several
developers concurrently define a migration script. For more information about this
feature, refer to the official Play documentation.

To detect whether an evolution script should be applied, Play
stores the state of your database schema in the database itself,
in a table named play_evolutions.

Using an in-memory database for tests
You now have all the required knowledge to make your web service persistent. Once
you have chosen a database technology, select the Play plugins you need (JDBC, JPA,
and so on), configure your data sources right from your application.conf file, use
the database helper classes provided by the plugins to integrate with your database
technology, and finally implement your business layer on top of your database layer.

Chapter 2

[47]

Once you have made your business layer persistent, you probably want to run your
tests to check whether you introduced a regression. However, you will unexpectedly
get the following error:

[info] A Shop should

[info] ! add items

[error] RuntimeException: : There is no started application (Play.
scala:71)

What happened? Remember that your database configuration is read by your Play
application at startup and then used by your database layer. The key step is when
you retrieve the data source—remember that the method takes an implicit parameter
of type Application as a parameter and that you supply the currently running
application by using the Play singleton object. However, when running tests, Play
does not start your application, so the Play singleton object throws an error when
you try to retrieve the currently running application.

To fix the problem, you have to run a fake application as previously explained.
However, you might want to run your tests on a database that is different from the
production database. You can do this by passing custom configuration settings to your
fake application, thus overriding the settings found in the application.conf file:

import play.api.test.{Helpers, FakeApplication, WithApplication}
class ShopSpec extends Specification {
 "A Shop" should {
 "add items" in new WithApplication(FakeApplication(
 additionalConfiguration = Helpers.inMemoryDatabase())) {
 Shop.create("foo", 42) must beSome[Item].which {
 item => item.name == "Play Framework Essentials"
 && item.price == 42
 }
 }
 }
}

The WithApplication constructor takes an application as a parameter, which defaults
to a value of type FakeApplication. In the preceding code, we supply our own value
of type FakeApplication that is configured to use an in-memory H2 database.

Persisting Data and Testing

[48]

You can use an H2 in-memory database even if your SQL scripts are
written for another database, such as MySQL or PostgreSQL. Indeed,
H2 has a compatibility layer for most relational database systems. For
instance, you can ask H2 to use MySQL compatibility as follows:

inMemoryDatabase(options = Map("MODE" -> "MySQL"))

Now your tests should run! Before executing each test, Play makes a fake application
using the supplied configuration. This configuration defines a data source, so
the evolution plugin will detect evolution scripts and apply them to your testing
database. After the test execution, the database is dropped.

In Java, the JDBC and JPA plugins also retrieve the currently running application
using the Play singleton, so you have to start a fake application too:

public class ShopTest {
 @Test
 public void addItem() {
 running(fakeApplication(inMemoryDatabase()), () -> {
 Item item = Shop.create("Play Framework Essentials", 42.0);
 assertNotNull(item);
 assertEquals("Play Framework Essentials", item.name);
 assertEquals(new Double(42.0), item.price);
 });
 }
}

The inMemoryDatabase helper, as its name suggests, returns a configuration setting
to use an in-memory database.

If most of your tests require a running application, you can avoid writing the
running(…) statement at the beginning of each test by using the play.test.
WithApplication class:

import play.test.WithApplication;
public class ShopTest extends WithApplication {
 @Override
 protected FakeApplication provideFakeApplication() {
 return fakeApplication(inMemoryDatabase());
 }
 @Test
 public void addItem() {
 Item item = Shop.create("Play Framework Essentials", 42.0);
 assertNotNull(item);

Chapter 2

[49]

 assertEquals("Play Framework Essentials", item.name);
 assertEquals(new Double(42.0), item.price);
 }
}

The WithApplication class defines the JUnit setup and teardown methods that start
an application before each test and stop after each test. You can customize the fake
application to be used by overriding the provideFakeApplication method, as in
the preceding code where I set up a fake application using an in-memory database.

Note that if you defined a custom global object as previously described, this global
object will be used by your fake application. If you want to use distinct global
settings in the test and development environments (for instance, in order to skip
fixture data insertion), you can supply another global object to your fake application:

FakeApplication(withGlobal = Some(DefaultGlobal),
 additionalConfiguration = Helpers.inMemoryDatabase())

The Java equivalent code is as follows:

fakeApplication(inMemoryDatabase(), fakeGlobal())

Summary
The HTTP layer is made of the routes and controllers.Items components.
The business layer is now made of two components, models.Shop and db.Schema
(in Java, the latter component is hidden by JPA).

In this chapter, you saw how to write testing specifications for your web service,
how to call your actions, supply them with fake HTTP requests, and process
their results. You also saw how to integrate with relational database technologies.
You learned that you can use the Play singleton to get a reference to the currently
running application and, for instance, read its configuration settings. You learned
how to hook into your application's life cycle using a global object. Finally, you
saw how to start a fake application in your tests.

In the next chapter, you will see how to serve HTML pages and handle forms;
your web service will evolve into a web application.

Turning a Web Service into
a Web Application

In this chapter, you will learn how to enhance your web service to make it a web
application by serving HTML pages that contain client-side logic. You will learn
how to use the HTML template engine and how to write browser tests.

More precisely, you will learn how to perform the following:

•	 Use the template engine to build HTML and JavaScript documents
•	 Generate URLs according to your route's definitions
•	 Handle content negotiation
•	 Read and validate data in the HTML forms
•	 Generate HTML forms using Play forms helpers
•	 Write web browser tests

Delta between a web service and
a web application
As shown in the following diagram, a web service essentially maps each of its
features or resources as HTTP endpoints and serializes its data over HTTP.

Turning a Web Service into a Web Application

[52]

In addition to handling these tasks, a web application also provides a user interface
built with HTML, CSS, and JavaScript documents and supports the user session.

data marshalling

routing

user interface

session

data marshalling

routing

HTTP

HTTP

Business Business

a) Web service b) Web application

Differences in the concerns handled by the HTTP layer between a web service and a web application

This chapter shows you how to handle the concerns about the user interface.
Session handling is covered in Chapter 6, Leveraging the Play Stack – Security,
Internationalization, Cache, and the HTTP Client.

Using the template engine to build web
pages
For now, your Play application only handles JSON. To create data, you must supply
a JSON payload with your HTTP request, and ensure the presentation of your
application resources is only JSON. This can be sufficient if you just want to provide
a web service. However, you sometimes also want to expose your resources as
HTML pages so that users can browse them from their web browser.

Play includes a template engine, Twirl, that makes it easier to define skeleton HTML
pages filled with data from your application and combine document fragments.

The app/views/main.scala.html file contains the HTML template used by the
provided controllers.Application.index action. Have a look at it in your code
editor. It contains a simple HTML document. The Application.index action
renders it using the views.html.main() method (or views.html.main.render()
in Java). You might ask how is the app/views/main.scala.html file related to
the views.html.main object? The Play sbt plugin automatically generates an
object corresponding to each file located under the app/views/ directory, whose
extension is .scala.html. This object is named according to the filename. Each app/
views/<pkg>/<name>.scala.html file produces an object whose fully qualified
name is views.html.<pkg>.<name>. Here, <pkg> is an arbitrary succession of
subdirectories (which may be empty, as in the provided template). The syntax of
templates is explained in the upcoming sections.

Chapter 3

[53]

Inserting dynamic values
Let's create an HTML template to show the details of an item. For example, for an
item named Play Framework Essentials that has a price of 42, the template should
render the following page:

Copy the content of the main.scala.html file to a new file named details.scala.
html and edit its content to look like the following:

@(item: models.Item)
<!DOCTYPE html>
<html>
 <head>
 <title>Item details</title>
 </head>
 <body>
 <h1>Item details</h1>
 <p>@item.name: @item.price €</p>
 </body>
</html>

The first line says that this template takes one parameter of type models.Item
named item. Then, @item.name and @item.price insert the item name and price,
respectively, in the template.

A template is a text document that contains dynamic expressions prefixed by the
special character @. The content of the expression that is after the @ character is
inserted when the template is rendered. For a complex expression, you can use
parentheses, for example, @(1 + 1). However, if your expression is just an access
to a value member (like in your current details.scala.html template), you can
omit the parentheses. The expression language of dynamic expressions is Scala
(even for Java applications).

Turning a Web Service into a Web Application

[54]

To insert the @ character in a template, you need to escape
it by typing in @@.

The generated object corresponding to this template is similar to a Scala function
taking one Item parameter and returning an Html value. The Html type is defined
by Play and is supported by actions so that supplying a value of the Html type as
an HTTP response body automatically sets its content type to text/html.

You can call it from your Items.details action as follows:

def details(id: Long) = Action {
 shop.get(id) match {
 case Some(item) => Ok(views.html.details(item))
 case None => NotFound
 }
}

The Java equivalent code is as follows:

public static Result details(Long id) {
 Item item = shop.get(id);
 if (item != null) {
 return ok(views.html.details.render(item));
 } else {
 return notFound();
 }
}

If the result of a dynamic expression contains an HTML character
entity, it will be escaped by the template engine: @("<") produces
<. This behavior helps prevent cross-site scripting if a dynamic
expression refers to some user submitted data. However, such
characters are not escaped in the static parts of the template:
produces (and not &nbsp;). You can bypass the
escaping process by inserting a dynamic value that already has type
Html: @Html("<h1>danger</h1>").

Chapter 3

[55]

Looping and branching
The template engine supports special statements for branching and looping.
For instance, a template showing the list of items can be defined as follows:

@(items: Seq[models.Item])
<!DOCTYPE html>
<html>
 <head>
 <title>Items list</title>
 </head>
 <body>
 <h1>Items list</h1>

 @for(item <- items) {

 @item.name

 }

 </body>
</html>

In addition to the @for statement, you can use @if:

@if(item.price == 0) { FREE } else { @item.price € }

Finally, the match expressions are also supported:

@item.price match {
 case 0 => { FREE }
 case p => { @p € }
}

Reusing document fragments
You might have noticed that the template that shows the list of items and the
template that shows an item's details are very similar and duplicate a lot of
content. Hopefully, as templates are functions, you can compose them just
like functions are compose. Let's generalize the details.scala.html and
list.scala.html templates in a template named layout.scala.html:

@(title: String)(content: Html)
<!DOCTYPE html>
<html>

Turning a Web Service into a Web Application

[56]

 <head>
 <title>@title</title>
 </head>
 <body>
 <h1>@title</h1>
 @content
 </body>
</html>

This template takes two parameter lists (of one parameter each), the first one
defines the page title and the second one, the page content as an HTML fragment.
The details.scala.html template can then be rewritten as follows:

@(item: models.Item)
@layout("Item details") {
 <p>@item.name: @item.price €</p>
}

This template calls the layout.scala.html template with "Item details" as title
and the small HTML fragment as content. Note that the use of parentheses or braces
is significant: the content between braces is interpreted as an HTML fragment.

Similarly, the list.scala.html template can be rewritten as follows:

@(items: Seq[models.Item])
@layout("Items list") {

 @for(item <- items) {

 @item.
name

 }

}

Reusing the same layout between templates makes the code easier to maintain.

You can also define reusable values visible only in the scope of a template:

@(item: models.Item)
@content = {
 <p>@item.name: @item.price €</p>
}
@layout("Item details")(content)

Chapter 3

[57]

In the preceding code, content is a local value that can be used in the rest of the
template. Note that local values can also be functions:

@(item: models.Item)
@content(item: models.Item) = {
 <p>@item.name: @item.price €</p>
}
@layout("Item details")(content(item))

Comments
Comments are supported with the following syntax:

@* this is a comment *@

Comments produce nothing in the template output.

Note that writing a comment immediately before the template parameters
declaration produces a Scaladoc comment on the generated object corresponding
to the template:

@**
 * Displays an item
 * @param item Item to display
 *@
@(item: models.Item)
@layout("Item details") {
 <p>@item.name: @item.price €</p>
}

Then, if you generate the API documentation of your application using the doc sbt
command, your HTML templates are documented!

Import statements
Import statements are supported using the following syntax:

@import models.Item
@content(item: Item) = { … }

If you have something imported in a lot of templates, you can define a global import
in your build.sbt file:

templatesImport += "models._"

The templatesImport setting is defined by the Play sbt plugin and used by the
template compiler. It adds the corresponding imports on top of each generated object.

Turning a Web Service into a Web Application

[58]

Generating HTML forms
The two routes of our application using the GET verb (Items.list and Items.
details) now return an HTML page. However, the remaining routes are not currently
reachable by our web users. Web browsers can perform POST requests only when an
HTML form is submitted or if some client-side code sends an XmlHTTPRequest.

Let's add an HTML page that contains a form to create new items, which will look
like the following:

First, we need to define an HTTP endpoint for the page containing the form and then
write the according route:

GET /items/add controllers.Items.createForm

Note that as routes are tried in their definition order, this route must be
defined before the Items.details one, as their URL pattern overlap.

Then, we define the corresponding action in the Items controller:

val createForm = Action {
 Ok(views.html.createForm())
}

The Java equivalent code is as follows:

public static Result createForm() {
 return ok(views.html.createForm.render());
}

Chapter 3

[59]

This action just renders an HTML page defined by the app/views/createForm.
scala.html template, and its skeleton is as follows:

@layout("Add an item") {
 // html form definition
}

The HTML form definition can then be defined manually but Play provides some
HTML helpers, making this task easier to achieve. These helpers use an abstract
model of the form that describes the list of fields to use and their type. For instance,
our form for creating items contains two fields, name and price, and can be modeled
by the following Form definition:

import play.api.data.Form
import play.api.data.Forms.{mapping, text, of}
import play.api.data.format.Formats.doubleFormat
val createItemFormModel = Form(mapping(
 "name" -> text,
 "price" -> of[Double]
)(CreateItem.apply)(CreateItem.unapply))

The CreateItem class is the same as in Chapter 1, Building a Web Service: it defines the
information required to create an item (a name and price). The form model is defined
by a mapping between the CreateItem data type and the HTML form fields. Each
field is defined by a key identifier and some validation logic. In our case, the text
validation logic does nothing special and the of[Double] validation logic interprets
the field content as a Double number. Thus, the type of our createItemFormModel
form model is Form[CreateItem]. More details about the input validation logic
process are given in the next section.

Defining a data type that aggregates all the input data, such as
CreateItem, is not required. You can also aggregate them in a
tuple as follows:

import play.api.data.Forms.tuple
Form(tuple(
 "name" -> text,
 "price" -> of[Double]
))

The Java equivalent code is as follows:

import play.data.Form;
Form<CreateItem> createItemFormModel = Form.form(CreateItem.class);

Turning a Web Service into a Web Application

[60]

The data mapping mechanism finds input fields by reflection on the CreateItem
data type.

You can then pass the form model as a parameter to your createForm HTML template:

@(form: Form[CreateItem])
@layout("Add an item") {
 @helper.form(routes.Item.create()) {
 @helper.inputText(form("name"))
 @helper.inputText(form("price"))
 <button>Save</button>
 }
}

This template uses HTML helpers defined by Play in the views.html.helper
package. The helper.form function takes a route call and an HTML fragment and
wraps the latter in an HTML form tag in which the action and method attributes are
set according to the route call. The helper.inputText function produces an HTML
input field corresponding to the field that is passed as a parameter. We refer to the
fields of an HTML form using their name, for example, form("name") refers to the
name field of the form.

The HTML code corresponding to each input field contains a label and an input tag
as well as an error div and hint div. The error tag shows the form validation errors
and the hint tag can show some hint text for users (like This field is mandatory).

The inputText helper produces the HTML code for an input field of the type text.
Play also provides helpers for other types of form input (such as radio buttons,
checkboxes, and select). See the documentation of the views.html.helper package
for an exhaustive list.

If you are not happy with the shape of the HTML code produced by these helpers,
you can customize it by two means:

•	 By supplying additional parameters: The inputText function can take a
variable number of additional parameters of type (Symbol, Any), which are
transformed to HTML attributes in the underlying input tag. For instance,
inputText(myField, 'class -> "input-field") adds a class="input-
field" attribute to the generated input tag. Parameters that start with an
underscore are considered to be special and can override the properties of
the field (such as label, ID, and errors). For instance, inputText(myField,
'_label -> "my custom label") sets the label to my custom label. See the
documentation for an exhaustive list of supported special parameters.

Chapter 3

[61]

•	 By defining your own FieldConstructor parameter: This class is
responsible for producing all the HTML code for one given input field.
The field constructor is implicitly required by each input helper, which
delegates the generation of the HTML code to it. See the documentation
for more details about this approach.

Though the default input helpers have these extension points, in some cases, they
might not be the most convenient tool to build your HTML forms. In such a case,
I suggest that you define a similar set of HTML input helpers adapted to your
requirements and design.

Finally, update your Items.createForm action to supply the corresponding form
model to the createForm template:

val createForm = Action {
 Ok(views.html.createForm(createItemFormModel))
}

The Java equivalent code is as follows:

public static Result createForm() {
 return ok(views.html.createForm.render(Form.form(CreateItem.
class)));
}

Now you should see a page that shows a basic form when browsing
http://localhost:9000/items/add.

Repeated and nested fields
Form models support nested values. Suppose that you want to represent your item
sellers in a map:

case class Position(lat: Double, lng: Double)
val positionMapping = mapping(
 "lat" -> of[Double],
 "lng" -> of[Double]
)(Position.apply)(Position.unapply)

case class Seller(name: String, position: Position)
val sellerFormModel = Form(mapping(
 "name" -> text,
 "position" -> positionMapping
)(Seller.apply)(Seller.unapply))

Turning a Web Service into a Web Application

[62]

The preceding code defines Position as something with latitude and longitude
and Seller as something with name and position. The form model for a seller
reuses the positionMapping definition. The name of the field corresponding to
the latitude of a seller is position.lat. The same applies to the longitude.

The Java equivalent requires nothing particular:

public class Position {
 public Double lat;
 public Double lng;
}
public class Seller {
 public String name;
 public Position position;
}
Form<Seller> sellerFormModel = Form.form(Seller.class);

Form models also support variable length collections of fields. Suppose that you
want to attach categories to your items:

case class CreateItem(name: String, price: Double, categories:
Seq[String])
val createItemFormModel = Form(mapping(
 "name" -> text,
 "price" -> of[Double],
 "categories" -> seq(text)
)(CreateItem.apply)(CreateItem.unapply))

In the preceding form model, the name of the input field corresponding to a
category associated with an item can be categories[] or categories[x],
where x is a number.

Again, in Java, nothing special is required:

public class CreateItem {
 public String name;
 public Double price;
 public List<String> categories;
}

Such repeated fields can be conveniently manipulated in HTML templates using
the views.html.helper.repeat function:

@helper.repeat(form("categories"), min = 2) { categoryField =>
 @helper.inputText(categoryField)
}

The preceding template generates at least two category fields, each consisting of
a text input.

Chapter 3

[63]

Reading and validating HTML form data
If you try to submit the form, you get an error because the data submitted by your
form is not sent to the browser as a JSON blob, as expected by your current Items.
create action. Indeed, web browsers send the form data as application/x-www-
form-urlencoded content. So, we have to update our action code to handle
this content type instead of JSON.

Handling the HTML form submission
The form model you use to produce the HTML form can also be used to process the
request body of a form submission. Change the Items.create action as follows:

val create = Action(parse.urlFormEncoded) { implicit request =>
 createItemFormModel.bindFromRequest().fold(
 formWithErrors => BadRequest(views.html.
createForm(formWithErrors)),
 createItem => {
 shop.create(createItem.name, createItem.price) match {
 case Some(item) => Redirect(routes.Items.details(item.id))
 case None => InternalServerError
 }
 }
)
}

The Java equivalent code is as follows:

@BodyParser.Of(BodyParser.FormUrlEncoded.class)
public static Result create() {
 Form<CreateItem> submission = Form.form(CreateItem.class).
bindFromRequest();
 if (submission.hasErrors()) {
 return badRequest(views.html.createForm.render(submission));
 } else {
 CreateItem createItem = submission.get();
 Item item = shop.create(createItem.name, createItem.price);
 if (item != null) {
 return redirect(routes.Items.details(item.id));
 } else {
 return internalServerError();
 }
 }
}

Turning a Web Service into a Web Application

[64]

The form submission handling process implemented by this action can be described
as follows.

First, the urlFormEncoded body parser tries to parse the request body as
application/x-www-form-urlencoded content (the @BodyParser.Of annotation
achieves this in Java).

Second, the form model tries to bind the request body as a CreateItem value
according to the form model definition. Basically, the form/urlencoded content is
key-value pairs, so the binding process looks for each form model key in the request
body to retrieve its value and then tries to coerce it to its expected type. So, form
models are bi-directional mappings between a data type and an HTML form. The
binding process returns a copy of the form model, either with the input data as a
CreateItem value, or in the case of failure, the input data and their validation errors.

Third, the fold method tells you what to do in the case of failure and success. In the
case of failure, the fold method calls its first parameter, which is a function, and
supplies it the result of the form submission: the collected data and the validation
errors at the origin of the failure. In our case, we return an HTTP response with a
400 status code (Bad Request) that contains the form page with the user-submitted
data and their validation errors (all this information is carried by the form model).
In the case of success, the fold method calls its second parameter, which is also a
function, and supplies it the CreateItem value created from the user-submitted data.
In our case, we ask the Shop service to effectively create the item and if this operation
succeeds, redirect the user to the Items.details page.

In Java, we distinguish between form submission success and failure using the
hasErrors method on a form model. In the case of failure, we pass the content of
the submission (that contains the user-submitted data and their eventual validation
errors) as a parameter to the HTML form page. In the case of success, we retrieve the
CreateItem resulting value using the get method of the form model.

Validating the HTML form data
Your application should now be able to create items from HTML form submissions.
However, as in Chapter 1, Building a Web Service, users can create items with negative
prices or empty names: you should add a validation step that performs checks on the
input data.

Chapter 3

[65]

The Scala form validation API
In Scala, the form API allows you to add validation constraints on your mappings:

import play.api.data.validation.Constraints.nonEmpty
val createItemFormModel = Form(mapping(
 "name" -> text.verifying(nonEmpty),
 "price" -> of[Double].verifying("Price must be positive", _ > 0)
)(CreateItem.apply)(CreateItem.unapply))

The verifying method adds a constraint on a mapping. The method comes with
overloads, allowing you to supply a Constraint object (as in the name mapping)
or an error message and a predicate (as in the price mapping).

The framework comes with a set of common predefined constraints available in the
Constraints object. Actually, the price mapping can leverage them as follows:

"price" -> of[Double].verifying(min(0.0, strict = true))

See the API documentation of the Constraints object for an exhaustive list of
predefined constraints.

The form data binding process applies the mapping corresponding to each field as
well as their validation constraints. If the validation succeeds, it returns the data.
Otherwise, it returns the list of validation errors. Thus, the form model returned
by the binding process either contains a CreateItem or a list of validation errors.
Each error is associated with a field name, so you can either get the list of all the
errors using myForm.errors or retrieve the errors associated with a particular
field using myForm.errors("fieldname").

Note that it is also possible to define errors not associated with a particular field.
This can be useful if the error is related to a combination of field values. For instance,
here is how you can define a CreateItem mapping with a dumb validation constraint
that checks whether the name of an item has more characters than its price:

mapping(
 "name" -> text.verifying(nonEmpty),
 "price" -> of[Double].verifying(min(0.0, strict = true))
)(CreateItem.apply)(CreateItem.unapply).verifying(
 "Please use a name containing more characters than the item price",
 item => item.name.size > item.price
)

Turning a Web Service into a Web Application

[66]

Such a validation constraint is globally associated with the mapping, so the
produced error is not associated with a field name. You can retrieve global
errors using myForm.globalErrors.

The Java form validation API
In Java, validation constraints are described using annotations similar to JSR-303:

import static play.data.validation.Constraints.*;
public class CreateItem {
 @Required
 public String name;
 @Required @Min(1)
 public Double price;
}

The form binding process reads the input data and looks for values for each field
of the target data type (based on the name and type of fields). Then, validation
constraints are applied. The resulting object contains the list of validation errors
if any, or the CreateItem object if there was no validation error. The exhaustive
list of provided validation annotations is available in the API documentation.

You can eventually add a global validation rule by implementing a validate
method:

public class CreateItem {
 @Required
 public String name;
 @Required @Min(0)
 public Double price;
 public String validate() {
 if (name.length() < price) {
 return "Please use a name containing more characters than the
item price";
 } else {
 return null;
 }
 }
}

In the preceding code, if the length of the item name is less than the item price, a global
error (an error not associated with a particular form field) is added to the form.

Chapter 3

[67]

When performing validation on an object, if the framework finds a method named
validate, it calls it after having successfully checked the field's constraints. If the
returned value is null, then no error is added to the object. If the returned value
is of type String, it is added as a global error message. If the returned value is
List<play.data.validation.ValidationError>, all these errors are added.

Note that if your form model contains nested values, you have to use the @Valid
annotation on the nested fields to trigger the validation process on them:

public class Seller {
 public String name;
 @Valid
 public Position position;
}

Optional and mandatory fields
Finally, forms often distinguish between mandatory and optional fields. Remember
the item's optional description suggested in Chapter 1, Building a Web Service.

In Scala, optional values are modeled with the Option data type:

val createItemFormModel = Form(mapping(
 "name" -> text.verifying(nonEmpty),
 "price" -> of[Double].verifying(min(0.0, strict = true)),
 "description" -> optional(text.verifying(nonEmpty))
)(CreateItem.apply)(CreateItem.unapply))

The optional mapping combinator turns a Mapping[A] into a Mapping[Option[A]]
, which produces a value of type Some[A] if the initial mapping succeeded, or
None if it failed.

Note that the text mapping treats the empty text, "", as a
valid value. However, you almost never want to consider the
empty text as a valid text; this is why I strongly recommend
that you always use text.verifying(nonEmpty). Actually,
there also is a nonEmptyText convenient shorthand for text.
verifying(nonEmpty). If you want to model an optional text
value, you generally will need optional(nonEmptyText).

Turning a Web Service into a Web Application

[68]

In Java, fields are considered to be optional, unless they are annotated with @Required.
A form model equivalent to the preceding code would be the following:

public class CreateItem {
 @Required
 public String name;
 @Required @Min(0)
 public Double price;

 public String description;
}

Sharing JSON validation and HTML form
validation rules
The attentive reader might have noticed that our form validation logic duplicates
the JSON validation logic presented in Chapter 1, Building a Web Service. How can
we avoid duplicating things and reuse the same validation for both JSON processing
and HTML form processing? There are essentially two ways to achieve this:

•	 By supporting both HTML form content and JSON content in the form
binding process

•	 By making the form binding process and the JSON binding process be able
to use the same validation API

Play supports the first approach. In addition to the URL-encoded data, the binding
process supports multipart/form-data (used by web browsers to transfer files)
and JSON data.

The other path has also been explored, though, but has not been integrated into Play
at the time these lines are written. Nevertheless, you can find it at http://github.
com/jto/play-validation. This means that, using the same form model, you can
bind and validate data from the URL-encoded data as well as from the JSON data.

You can even share the same HTTP POST endpoints if your action is able to parse
and interpret both content types. To achieve this, instead of explicitly requiring
requests content to be JSON or URL-encoded data using a specific body parser,
just use the default tolerant body parser. Thus, all you have to do is remove the
explicit parse.urlFormEncoded body parser (or the @BodyParser.Of annotation
in Java) from your action definition.

http://github.com/jto/play-validation
http://github.com/jto/play-validation

Chapter 3

[69]

Your action will then be able to parse the JSON data as well as the URL-encoded
data. The form binding process builds a key-value map from the request body.
If this one is a JSON object, it uses field names as keys and field values as values.

For instance, the following two request bodies create the same item:

{ "name": "foo", "price": 42 }
name=foo&price=42

Note that an alternative would have been to define separate endpoints to handle
JSON requests and HTML form submissions:

val createFromJson = Action(parse.json)(create)
val createFromHtmlForm = Action(parse.urlFormEncoded)(create)
val create: Request[_] => Result = { implicit request => … }

Handling content negotiation
The same HTTP POST endpoints can process the JSON content as well as the
URL-encoded content; however, GET endpoints, which previously returned JSON
content, now only return HTML content. Is it possible to return both the JSON and
HTML content from the same GET endpoints (similarly to what has been done for
POST endpoints)?

The answer is yes, and this HTTP feature is named content negotiation. The word
negotiation comes from the fact that HTTP clients inform servers of which versions
of a resource they would rather get (according to their capabilities). They do this
by specifying HTTP request headers starting with Accept. For instance, your web
browser usually sends, along with each request, an Accept-Language header
containing your preferred languages. This gives the server the opportunity to return
a version of the document in a language that fits best your preferences. The same
applies to the result content types, which are driven by the Accept header. For
instance, my web browser sends the following header when I click on a hyperlink:

Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp,*/*;q=0.8

This means that it prefers HTML or XML content (q=0.9) but also accepts everything
(*/*;q=0.8).

You can handle this header in order to serve HTML content to web browsers, but
also JSON content to clients preferring this content type. This can be achieved
as follows:

 val list = Action { implicit request =>
 val items = shop.list()

Turning a Web Service into a Web Application

[70]

 render {
 case Accepts.Html() => Ok(views.html.list(items))
 case Accepts.Json() => Ok(Json.toJson(items))
 }
 }

The render function takes a partial function as a parameter. This one tells which
content types your server supports and their corresponding results. The render
function starts by reading the Accept header of the current request. Then, for each
content type set in the header, it tests whether this content type is supported by
your server. Finally, it chooses the content type that is supported by your server and
has the highest q value. If none of the content types supported by your server are
accepted by the client, a response with the 406 status (Not Acceptable) is returned.

Note that if a client defines no Accept header, then the server can consider that it
accepts all content types, so the framework will pick the first one in your render call.
That's why I put the Accepts.Html() line first in the preceding code; the default is
to serve HTML, except for clients explicitly telling that they prefer JSON over HTML.

At the time of writing this, there is no direct equivalent in the Java API of the
framework. However, it is easy to define some helper functions similar to the Scala
content negotiation API so that your Items.list action looks like the following:

public static Result list() {
 return render(
 version(MimeTypes.HTML, () -> ok(views.html.list.render(shop.
list()))),
 version(MimeTypes.JSON, () -> ok(Json.toJson(shop.list())))
);
}

The render and version functions are imported from this Render.java file:

import play.api.http.MediaRange;
import play.mvc.Controller;
import play.mvc.Result;
import java.util.function.Supplier;

public class Render extends Controller {

 public static Result render(Version... versions) {
 List<MediaRange> acceptedTypes = request().acceptedTypes();
 if (acceptedTypes.isEmpty() && versions.length > 0) {
 return versions[0].resultThunk.get();
 }

Chapter 3

[71]

 for (MediaRange mediaRange : acceptedTypes) {
 for (Version version : versions) {
 if (mediaRange.accepts(version.mimeType)) {
 return version.resultThunk.get();
 }
 }
 }
 return status(NOT_ACCEPTABLE);
 }

 public static class Version {
 public final String mimeType;
 public final Supplier<Result> resultThunk;

 public Version(String mimeType, Supplier<Result> resultThunk) {
 this.mimeType = mimeType;
 this.resultThunk = resultThunk;
 }
 }

 public static Version version(String mimeType, Supplier<Result>
resThunk) {
 return new Version(mimeType, resThunk);
 }

}

The render method takes a list of supported versions of your document, each one
being associated with a MIME type, and tries to find a media range accepted by
the current request that matches one of your versions. It returns the first matching
version or a 406 status (Not Acceptable) if none of your versions are accepted by
the client.

Putting things together
You now have all the required knowledge to define HTTP endpoints for the list,
create, and get entry points of the Shop service so that your HTTP endpoints can
read both HTML form data and JSON data, and can return either HTML or JSON
content according to the client's preferences.

For instance, here is the code for how the create endpoint can look like:

 val create = Action { implicit request =>
 createItemFormModel.bindFromRequest().fold(

Turning a Web Service into a Web Application

[72]

 formWithErrors => render {
 case Accepts.Html() =>
 BadRequest(views.html.createForm(formWithErrors))
 case Accepts.Json() => BadRequest(formWithErrors.errorsAsJson)
 },
 createItem => {
 shop.create(createItem.name, createItem.price) match {
 case Some(item) => render {
 case Accepts.Html() => Redirect(routes.Items.details(item.
id))
 case Accepts.Json() => Ok(Json.toJson(item))
 }
 case None => InternalServerError
 }
 }
)
 }

The Java equivalent code is as follows:

public static Result create() {
 Form<CreateItem> submission = Form.form(CreateItem.class).
bindFromRequest();
 if (submission.hasErrors()) {
 return render(
 version(MimeTypes.HTML, () ->
 badRequest(views.html.createForm.render(submission))),
 version(MimeTypes.JSON, () -> badRequest(submission.
errorsAsJson()))
);
 } else {
 CreateItem createItem = submission.get();
 Item item = shop.create(createItem.name, createItem.price);
 if (item != null) {
 return render(
 version(MimeTypes.HTML, () ->
 redirect(routes.Items.details(item.id))),
 version(MimeTypes.JSON, () -> ok(Json.toJson(item)))
);
 } else {
 return internalServerError();
 }
 }
}

Chapter 3

[73]

Note that when the action returns a 500 status (Internal Server Error), it does not
differentiate between JSON or HTML clients because the response has no content.
It would be better to return a pretty HTML page to HTML clients.

Also, note that you have to update your tests for the HTTP layer to explicitly tell that
you prefer getting JSON instead of HTML. Just add the corresponding header in your
HTTP requests:

FakeRequest(routes.Items.list()).withHeaders(ACCEPT -> MimeTypes.JSON)

The Java equivalent code is as follows:

fakeRequest(routes.Items.list()).withHeader(ACCEPT, MimeTypes.JSON);

The remaining entry points of the Shop service are update and delete. They are
mapped to actions using the put and delete verbs; however, performing this kind
of requests is not possible from HTML forms, so the recommended way consists of
using some JavaScript code, executed on the client side, to send HTTP requests using
put and delete. This approach is covered in the next chapter. Alternatively, you can
also change your route definitions to use post instead of put and delete (note that in
this case, you will also have to use different URL patterns for these routes so that
they don't clash with the create route).

Writing web user interface tests
Until now, you have written specifications for the business and HTTP layers.
However, these specifications do not cover user experience. For instance, you might
want to define the following user story as a testable specification: a user browses the
item list, clicks on a button to add a new item, enters the name and price of the item
to create and submit the form, and the created item is displayed.

You can define such specifications using Selenium WebDriver (https://code.
google.com/p/selenium/); this library allows you to programmatically drive a
web browser. Play applications automatically depend on Selenium WebDriver as
well as on FluentLenium, a library that provides a fluent interface for the WebDriver.
For instance, a specification for the user story described previously can be defined
as follows:

import play.api.test.{WithBrowser, PlaySpecification}

class UISpec extends PlaySpecification {
 "A user" should {
 "add a new item to the item list" in new WithBrowser {
 browser.goTo(controllers.routes.Items.list().url)
 // No item yet

https://code.google.com/p/selenium/
https://code.google.com/p/selenium/

Turning a Web Service into a Web Application

[74]

 browser.$("ul").isEmpty must beTrue
 // Click on the "Add a new item" button
 val formUrl = controllers.routes.Items.createForm().url
 browser.$(s"""a[href="$formUrl"]""").click()
 browser.submit("form",
 "name" -> "Play Framework Essentials",
 "price" -> "42")
 // The item is displayed
 browser.$("body")
 .getText must contain ("Play Framework Essentials: 42.00 €")
 }
 }
}

The Java equivalent code is as follows:

import org.junit.Test;
import play.test.WithBrowser;
import static org.fest.assertions.Assertions.assertThat;
import static play.test.Helpers.*;

public class UITest extends WithBrowser {
 @Test
 public void addItem() {
 browser.goTo(controllers.routes.Items.list().url());
 assertThat(browser.$("ul").isEmpty()).isTrue();
 String formUrl = controllers.routes.Items.createForm().url();
 browser.$("a[href=\"" + formUrl + "\"]").click();
 browser.fill("input[name=name]").with("Play Framework
Essentials");
 browser.fill("input[name=price]").with("42");
 browser.submit("form");
 assertThat(browser.$("body").getText())
 .contains("Play Framework Essentials: 42.00 €");
 }
}

The test definition is essentially the same in Scala and Java. It uses the FluentLenium
API (with some additional convenient methods in Scala). It starts by browsing the
URL that shows the list of items. It checks whether there are any items. It clicks on a
link to create a new item. It fills and submits the form. It checks whether the content
of the created item is displayed.

Chapter 3

[75]

The Scala test uses the WithBrowser scope that starts the application and
an HTTP server, creates a Selenium WebDriver (available within the scope
through the browser member), runs the test, and stops the application. As with
WithApplication, the WithBrowser scope can take the application to start as a
parameter, so you can provide a custom application whose configuration is tweaked
for your testing environment:

"a test specification" in new WebBrowser(app = yourFakeApplication) {
 // your test code goes here
}

The Java version uses the WithBrowser class that starts the application and an HTTP
server and creates a Selenium WebDriver (available through the browser field)
before running the test and stops the server after the test has been executed. You can
use a custom WebDriver by overriding the provideBrowser method (just like the
provideFakeApplication method).

Actually, the previously mentioned addItem test specification does not pass if your
global object inserts bootstrap data into the database when the application starts, as
explained in Chapter 2, Persisting Data and Testing, (the test expects that the item list is
empty at the beginning). Indeed the default fake application uses the default global
object, namely the same as your real application. Another problem is that the test
specification inserts data into the database, but you might want to use a test database
instead of the real database.

You can solve both problems by using a custom fake application, which itself uses
custom global settings:

"add a new item to the item list" in new WithBrowser(
 app = fakeApplication(
 withGlobal = Some(Helpers.defaultGlobal),
 additionalConfiguration = Helpers.inMemoryDatabase
)
) { … }

The Java equivalent code is as follows:

@Override
protected FakeApplication provideFakeApplication() {
 return fakeApplication(inMemoryDatabase(), fakeGlobal());
}

Turning a Web Service into a Web Application

[76]

Summary
In this chapter, you learned to use the template engine and the reverse router. You saw
how to handle content negotiation. You learned how to define HTML form models to
generate HTML forms and handle their submission. Finally, you learned how to write
tests for your web pages.

In the next chapter, you will see how to serve static assets (such as images, scripts,
and stylesheets) from your application and how to integrate with the existing
client-side technologies.

Integrating with Client-side
Technologies

The previous chapter showed how to serve HTML pages, thus turning your
application into a web application. Well, actually, modern web applications also
make heavy use of client-side scripting and styling technologies. So, this chapter
explains how to serve and process (linting, minification, and concatenation) static
assets (images, scripts, and style sheets). It also shows how to manage client-side
dependencies from the build system.

The following is the list of topics that will be covered in the chapter:

•	 Serving static files from your application
•	 Generating the application's URLs from the JavaScript code
•	 Linting, minifying, and gzipping CSS and JavaScript assets
•	 Running JavaScript tests from sbt
•	 Managing JavaScript dependencies

Philosophy of Play regarding client-side
technologies
The Play framework essentially focuses on the server-side part of your application and
gives you freedom on which client-side technology to use. The advantage is that you
can choose whichever technology you are comfortable with, but the drawback is that
it gives almost no high-level features such as automatic client-server data binding.

Integrating with Client-side Technologies

[78]

Nevertheless, as explained in the following sections, the build system can help you
in several client-side-related tasks such as assets compression and concatenation.
Play also comes with a controller that can serve static assets and supports several
useful features such as fingerprinting, as explained in the upcoming sections.

Serving static assets
The web layer we wrote in the previous chapter was not really complete; we
could add some beautiful CSS styles and some cool JavaScript behavior. CSS files,
JavaScript files, as well as images do not change once your application is started,
so they are usually referred to as static assets. The most convenient way to serve
them is to map a URL path to a directory of your filesystem. Play comes with an
Assets controller that does just this. Consider the following route definition:

GET /assets/*file controllers.Assets.at(path = "/public", file)

This route maps the public directory of your application to the assets path of your
HTTP layer. This means that, for example, a public/stylesheets/shop.css file is
served under the /assets/stylesheets/shop.css URL.

This works because Play automatically adds the public/ directory of your
application to the classpath. To use an additional directory as an assets folder,
you have to explicitly add it to the application classpath and to the packaging
process by adding the following setting to your build.sbt file:

unmanagedResourceDirectories in Assets += baseDirectory.value /
 "my-directory"

The Assets controller is convenient to serve files whose content does not change
during the application lifetime. Let's create a public/stylesheets/shop.css file
and request it:

$ curl -I http://localhost:9000/assets/stylesheets/shop.css

HTTP/1.1 200 OK

Last-Modified: Fri, 02 May 2014 09:35:37 GMT

Content-Length: 0

Cache-Control: no-cache

Content-Type: text/css; charset=utf-8

Date: Fri, 02 May 2014 09:37:58 GMT

ETag: "1d2408ce266a8226416fa8901bd7865364452bd6"

Chapter 4

[79]

There are several things to note about the Assets controller from the
preceding response:

•	 It automatically detects asset's content type (from the filename extension)
and sets the corresponding Content-Type HTTP header accordingly

•	 It leverages caching headers and sets the Last-Modified header to the last
modification date obtained from the filesystem and the Etag header to a
checksum of the file contents

•	 The Cache-Control header is set to no-cache in the development mode in
order to prevent web browsers from caching the response, but in production,
this value is set to 33600 (one hour) and can be overridden by configuration

Obviously, the Assets controller replies with a 304 response (Not Modified) if one
makes a request with an If-Modified-Since or If-None-Match header matching
the resource, and if this resource has not changed:

$ curl -I -H "If-None-Match:
\"1d2408ce266a8226416fa8901bd7865364452bd6\"" http://localhost:9000/
assets/stylesheets/shop.css

HTTP/1.1 304 Not Modified

ETag: "1d2408ce266a8226416fa8901bd7865364452bd6"

Last-Modified: Fri, 02 May 2014 09:35:37 GMT

Cache-Control: no-cache

Content-Length: 0

The Last-Modified and Etag response headers as well as their request counterparts,
If-Modified-Since and If-None-Match, save bandwidth in the case of large
files, but they still require an HTTP round trip, which checks that there is no newer
version of the resource.

On the other hand, the Cache-Control header tells clients that they can keep the
response content in their local cache and reuse it for a given duration instead of
performing an HTTP request. As previously said, in the development mode, this
header is set to no-cache in order to prevent clients from caching the responses
because you might often change their content. However, when you run in the
production mode, this header is set to 33600, telling clients that they can cache
the response content for one hour before requesting it again.

Integrating with Client-side Technologies

[80]

Sprinkling some JavaScript and CSS
For the sake of completeness, here is how your HTML layout template
(the app/views/layout.scala.html file) can look so that each web page
loads a favicon image, CSS style sheet, and JavaScript program:

@(body: Html)
<!DOCTYPE html>
<html>
<head>
<title>Shop</title>
<link rel=stylesheet src="@routes.Assets.at("stylesheets/shop.css")">
<link rel=favicon src="@routes.Assets.at("images/favicon.png")">
</head>
<body>
 @body
<script src="@routes.Assets.at("javascripts/shop.js")"></script>
</body>
</html>

The preceding template refers to a shop.css file located in the public/stylesheets/
directory, a favicon.png file in the public/images/ directory, and a shop.js file in
the public/javascripts/ directory.

Here is the possible content for the JavaScript public/javascripts/shop.js file,
which performs an Ajax call to the Items.delete action:

(function () {
 var handleDeleteClick = function (btn) {
 btn.addEventListener('click', function (e) {
 var xhr = new XMLHttpRequest();
 xhr.open('DELETE', '/items/' + btn.dataset.id);
 xhr.addEventListener('readystatechange', function () {
 if (xhr.readyState === XMLHttpRequest.DONE) {
 if (xhr.status === 200) {
 var li = btn.parentNode;
 li.parentNode.removeChild(li);
 } else {
 alert('Unable to delete the item!');
 }
 }
 });
 xhr.send();
 });
 };

Chapter 4

[81]

 var deleteBtns = document.querySelectorAll('button.delete-item');
 for (var i = 0, l = deleteBtns.length ; i < l ; i++) {
 handleDeleteClick(deleteBtns[i]);
 }
})();

This code finds all the HTML buttons with the delete-item class and sets up a click
handler that performs an HTTP request on the Items.delete route. If this request
succeeds, the item is also removed from the page, otherwise, an error message is
shown to the user. The code retrieves the corresponding item ID using the data-id
attribute of the button. It assumes that the following HTML markup represents
an item:

 @item.name
 <button class="delete-item" data-id="@item.id">Delete</button>

Let's define the public/stylesheets/shop.css file so that the delete button is
made visible only when the user hovers over an item:

li button.delete-item {
 visibility: hidden;
}
li:hover button.delete-item {
 visibility: visible;
}

Finally, feel free to design a public/images/favicon.png image of your choice!

Using the JavaScript reverse router
There is a major issue with the preceding JavaScript code; the way it computes
the URL of the Items.delete route is very fragile because it duplicates the
route definition:

xhr.open('DELETE', '/items/' + btn.dataset.id);

If you change the route definition, you will also have to accordingly change the
preceding line of code.

Integrating with Client-side Technologies

[82]

We can solve this issue by putting the route information in the HTML attributes,
instead of putting the item ID, as follows:

 @item.name
 @defining(routes.Items.delete(item.id)) { route =>
 <button class="delete-item"
 data-url="@route.url"
 data-method="@route.method">Delete</button>
 }

However, in practice, this approach does not scale; in practice, you often need to
compute URLs from the client side. Fortunately, this is exactly what the JavaScript
reverse router does.

Play provides a JavaScript reverse router: a JavaScript program that computes your
route URLs from their corresponding action parameters. For instance, the URL of the
Items.delete action can be computed from an item ID as follows, assuming that the
JavaScript reverse router is available through a global routes object:

var itemId = btn.dataset.id;
var route = routes.controllers.Items.delete(itemId);
xhr.open(route.method, route.url);

The routes object contains properties that correspond to your routes' (fully
qualified) names. Each route has a corresponding function (here, the controllers.
Items.delete function) that returns an object with the method and url properties
corresponding to the HTTP verb and URL to be used, respectively.

For the previous code to work, you actually need to define this routes object that
contains the JavaScript reverse router. You can do this by defining an HTTP endpoint
that returns a JavaScript document which defines a routes object containing the
reverse router. Start by updating the layout template so that all pages include the
JavaScript reverse router:

<script src="@routes.Application.javascriptRouter()"></script>

Put the preceding line before you load any other script of your application.
Then, define the corresponding javascriptRouter action and add a route for it:

import play.api.Routes
def javascriptRouter = Action { implicit request =>
 Ok(Routes.javascriptRouter("routes")(
 routes.javascript.Items.delete
))
}

Chapter 4

[83]

The action definition uses the play.api.Routes.javascriptRouter method that
takes an identifier (here, routes) and a list of JavaScript routes (here, just routes.
javascript.Items.delete) and returns a JavaScript program containing the
reverse router. The routes.javascript namespace is generated by Play from
your routes file.

In Java, the equivalent action will be the following:

import play.Routes;
public static Result javascriptRouter() {
 return ok(Routes.javascriptRouter("routes",
 routes.javascript.Items.delete()));
}

Managing assets from the build system
The previous sections showed how your Play application can serve static files such
as JavaScript or CSS files. However, many people prefer not to write JavaScript
or CSS code directly. Rather, they generate it from higher-level languages such as
CoffeeScript and Less. Furthermore, you might want to minify and gzip these files
as they don't need to be read by humans anymore when they are executed by web
browsers and compressing them can save some bandwidth.

The build system of your Play application can manage such processing steps for you
and make the produced assets available to your application as if they were static
files in the public/ directory. This work is achieved by an sbt plugin family named
sbt-web, which Play already depends on.

You can find more information about sbt-web from
http://github.com/sbt/sbt-web.

The sbt-web plugin defines a dedicated configuration scope named Assets (or
web-assets from within the sbt shell) to configure the managed assets' production
process. By default, the source directory for managed assets is defined as follows:

sourceDirectory in Assets :=(sourceDirectory in Compile).value /
 "assets"

So, in the case of a standard Play application, this directory refers to the app/assets/
directory. This means that you can place your asset source files in this directory
and the build system will copy them to a public/ directory in the classpath after
eventually transforming them using an sbt plugin based on sbt-web.

http://github.com/sbt/sbt-web

Integrating with Client-side Technologies

[84]

In practice, this means that instead of placing static files in the public/ directory of
your application, you can put them in the app/assets/ directory and benefit from
the managed assets' compilations and pipeline transformations such as concatenation
and minification.

Producing web assets
The first category of sbt plugins based on sbt-web are those producing web assets
from the assets' source files. Examples of such plugins are sbt-coffeescript, which
compiles .coffee files into .js files, and sbt-less, which compiles .less files into
.css files. Using them is just a matter of adding the following lines to your
project/plugins.sbt file:

addSbtPlugin("com.typesafe.sbt" % "sbt-coffeescript" % "1.0.0")
addSbtPlugin("com.typesafe.sbt" % "sbt-less" % "1.0.0")

You can then replace the public/javascripts/shop.js file with the following
app/assets/javascripts/shop.coffee file:

(() ->
 handleDeleteClick = (btn) ->
 btn.addEventListener('click', (e) ->
 xhr = new XMLHttpRequest()
 route = routes.controllers.Items.delete(btn.dataset.id)
 xhr.open(route.method, route.url)
 xhr.addEventListener('readystatechange', () ->
 if xhr.readyState == XMLHttpRequest.DONE
 if xhr.status == 200
 li = btn.parentNode
 li.parentNode.removeChild(li)
 else
 alert('Unable to delete the item!')
)
 xhr.send()
)

 for deleteBtn in document.querySelectorAll('button.delete-item')
 do (deleteBtn) -> handleDeleteClick(deleteBtn)
)()

Replace the public/stylesheets/shop.css file with the following app/assets/
stylesheets/shop.less file:

li {
 button.delete-item {
 visibility: hidden;

Chapter 4

[85]

 }
 &:hover button.delete-item {
 visibility: visible;
 }
}

Finally, as the sbt-less plugin only looks for a file named main.less but your file is
named shop.less, you need to fix the includeFilter setting in your build.sbt file:

includeFilter in (Assets, LessKeys.less) := "shop.less"

Web assets are now produced from your .coffee and .less source files. This
compilation happens only once; the application then serves the resulting static files.

Pipelining web assets' transformations
You cannot use several plugins to compile Less files (this is the same for CoffeeScript
files and so on); this means that plugins that produce web assets are mutually
exclusive to each other in terms of their function.

On the other hand, there is another category of web assets plugins, those that
transform assets whose functions can be combined. For instance, your web assets can
be concatenated, minified, and then gzipped. Plugins of this category are executed
after those that produce assets and are sequentially combined one after the other.
You are responsible for defining their order of execution in your build.sbt file with
the pipelineStages setting. Another difference with plugins that produce assets is
that some of the plugins that transform assets are not executed in the development
mode, but when the application is prepared for the production mode.

The production mode is the one you want to use when your application is deployed.
The main difference with the development mode is that there is no hot reloading
mechanism. Thus, this execution mode gives better performance. The sbt-web plugin
differentiates between these execution modes because some asset transformations
only have a purpose of optimization (for example, compression) and might slow
down the hot reloading process in the development mode. You can execute your
application in the production mode (and therefore observe the effects of the assets
pipeline) by using the start sbt command instead of run. The rest of this section
shows how to set up concatenation and minification of your JavaScript files, along
with gzipping and fingerprinting.

Integrating with Client-side Technologies

[86]

Concatenating and minifying JavaScript files
Concatenation of JavaScript files is useful because JavaScript code bases are usually
modularized so that the code is easier to reuse and maintain. Yet, the JavaScript
language has no built-in support for modules, but several tools or libraries make
modularization possible, such as Browserify or RequireJS.

At the time of writing this, there is only one plugin for RequireJS: sbt-rjs. This plugin
runs the RequireJS optimizer on your code base to concatenate and minify it.

RequireJS does both concatenation and minification. If you want just
minification, take a look at the sbt-uglify plugin at http://github.
com/sbt/sbt-uglify.

To use it, you first need to add it to the build in the project/plugins.sbt file:

addSbtPlugin("com.typesafe.sbt" % "sbt-rjs" % "1.0.1")

Then, add it to the assets pipeline process in your build.sbt file:

pipelineStages := Seq(rjs)

You also need the require.js client-side runtime in order to load modules from
the client side. Get it from http://requirejs.org and place it somewhere in your
assets source directory, for example, in app/assets/lib/requirejs/require.js.

Now, let's modularize your code base. Define two modules, logic.coffee and
ui.coffee, decoupling the application's behavior and user interface:

// ui.coffee
define(() ->
 (node) ->
 delete: () ->
 li = node.parentNode
 li.parentNode.removeChild(li)
 forEachClick: (callback) ->
 node.addEventListener('click', callback)
)

// logic.coffee
define(['ui'], (Ui) ->
(node, id) ->
 ui = Ui(node)
 ui.forEachClick(() ->
 xhr = new XMLHttpRequest()
 route = routes.controllers.Items.delete(id)

http://github.com/sbt/sbt-uglify
http://github.com/sbt/sbt-uglify
http://requirejs.org

Chapter 4

[87]

 xhr.open(route.method, route.url)
 xhr.addEventListener('readystatechange', () ->
 if xhr.readyState == XMLHttpRequest.DONE
 if xhr.status == 200
 ui.delete()
 else
 alert('Unable to delete the item!')
)
 xhr.send()
)
)

The ui module defines a function that takes as a parameter a root DOM node
corresponding to an item's delete button and returns an object with two methods.
The first one, delete, removes the item from the DOM, and the second one,
forEachClick, registers a callback on click events on the item delete button.
The logic module depends on the ui module and defines a function that takes
an item delete button node and ID as parameters and sets up its behavior.

Finally, update the shop module to use the logic module:

require(['logic'], (Logic) ->
 for deleteBtn in document.querySelectorAll('button.delete-item')
 do (deleteBtn) -> Logic(deleteBtn, deleteBtn.dataset.id)
)

The preceding code finds all item delete buttons and sets up their logic.

By default, the CoffeeScript compiler wraps the generated JavaScript in
an anonymous function. Unfortunately, the RequireJS optimizer is unable
to detect and process AMD module definitions when they are wrapped
in an anonymous function. To solve this issue, set the bare option of the
CoffeeScript compiler to true:

CoffeeScriptKeys.bare := true

The RequireJS optimizer can usually be configured by command-line arguments
or by using a JavaScript configuration object. With sbt-rjs, you can set up such
a JavaScript configuration object from your build.sbt file. For instance, here is
how we can set the main module's name to be shop, instead of the default main:

RjsKeys.mainModule := "shop"

Integrating with Client-side Technologies

[88]

Refer to the documentation of the sbt-rjs plugin for more information.

The logic module also has a dependency to the JavaScript router, but
this one is not an AMD module, so you can't load it with RequireJS. As a
work-around, you can tweak the reverse router generation to produce an
AMD module:

def javascriptRouter = Action { implicit request =>
 val router = Routes.javascriptRouter("routes")(
 routes.javascript.Items.delete
)
Ok(JavaScript(
 s"""
 define(function)() { $router; return routes })
 """
))"
 }

Then, you can load it using RequireJS in your logic module:
define(['ui', 'routes'], (Ui, routes) ->
 …
)

Be sure to tell the optimizer to ignore the routes module in its paths
configuration:

RjsKeys.paths += "routes" -> ("routes", "empty:")

Now, if you run your application in the production mode (using the start sbt
command), your JavaScript and CSS files will be minified and all the dependencies
of the main module will be concatenated in a single resulting file.

Note that you can enable the assets pipeline in the development mode (so
that you don't need to execute your application in the production mode
to observe the assets transformations) by scoping the pipelineStages
setting to the Assets configuration:

pipelineStages in Assets := Seq(rjs)

Gzipping assets
Gzipping web assets can save some bandwidth. The sbt-gzip plugin compresses all
the .html, .css, and .js assets of your application. For each asset, it produces a
compressed file with the same name suffixed with .gz. The Play Assets controller
handles these files for you; when it is asked to serve a resource, if a resource with
the same name but suffixed with .gz is found and if the client can handle the gzip
compression, the compressed resource is served.

Chapter 4

[89]

To use it, add the plugin to your project/plugins.sbt file:

addSbtPlugin("com.typesafe.sbt" % "sbt-gzip" % "1.0.0")

Add the gzip task to the asset's pipeline in your build.sbt file:

pipelineStages := Seq(rjs, gzip)

Now, run your application and request, for instance, the /assets/stylesheets/
shop.css resource, and while setting this, you can handle the gzip compression
(by using the Accept-Encoding header):

$ curl -H "Accept-Encoding: gzip"
 http://localhost:9000/assets/stylesheets/shop.css

��TH*-)���KI�I-I��,I�U��RP(�,�L���,��R��LIIͳ����ɴ��/K-"F���

��owTg%

You get a compressed version of the resource, as expected. If you don't set the
Accept-Encoding header, you get the uncompressed version, as expected too:

$ curl http://localhost:9000/assets/stylesheets/shop.css

li button.delete-item {

 visibility: hidden;

}

li:hover button.delete-item {

 visibility: visible;

}

Fingerprinting assets
As explained previously, in the production mode, the Assets controller sets the
Cache-Control header to max-age=3600, telling web browsers that they can cache
the result for one hour before requesting it again.

However, typically your assets won't change until the next deployment, so web
browsers can probably cache them for a duration longer than one hour. However, if
a client makes a request in the hour preceding a redeployment, it will keep outdated
assets in its cache.

You can solve this problem by following this principle: if you want a client to cache a
resource, then this resource should never change. If you have a newer version of the
resource, then you should use a different URL for it.

www.allitebooks.com

http://www.allitebooks.org

Integrating with Client-side Technologies

[90]

Assets fingerprinting helps you achieve this. The idea is that when your application
is packaged for production, an MD5 hash of each web asset is computed from its
contents and written in a file with the same name, but suffixed with .md5. When the
application is running, if the Assets reverse router finds a resource along with its
hash, it generates the resource URL by concatenating the file name to its hash. The next
time the application is deployed, if an asset has changed, it also changes its hash and
then its URL. So, web browsers can cache versioned assets for an infinite duration.

To enable assets versioning, you must use the versioned action of the Assets
controller:

GET /assets/*file controllers.Assets.versioned(path="/public",
file)

Also, update all the places (for example, in the HTML templates) where you reverse
routed the Assets.at action to use the Assets.versioned action.

When reverse routed, this action looks for a resource with the same name as file,
but suffixed with .md5, containing the file hash, to build a URL composed of the hash
contents and the file name. So, you need to generate a hash for each of your web
assets, and this is exactly what the sbt-digest plugin does.

Enable this plugin by adding it to your project/plugins.sbt file:

addSbtPlugin("com.typesafe.sbt" % "sbt-digest" % "1.0.0")

Add the digest task to the assets pipeline in your build.sbt file:

pipelineStages := Seq(rjs, gzip, digest)

Now, when your application is prepared for production, a hash file is generated
for each of your web assets so that the Assets controller can generate a unique
URL for a given asset. Also, as your asset URLs refer to resources that never change,
the caching policy is more aggressive; now, the Cache-Control header is set to
max-age=31536000, thus telling web browsers that they can cache the result for
one year.

If there is no hash file for a given resource, the Assets.versioned
action falls back to the unversioned behavior, so everything still works the
same if you use Assets.versioned instead of Assets.at. Actually, I
recommend that you always use Assets.versioned in your projects.

Chapter 4

[91]

If you are curious, take a look at the URLs generated by the reverse routing process.
Consider, for instance, the following line in the layout.scala.html template:

@routes.Assets.versioned("stylesheets/shop.css")

It produces the following URL:

/assets/stylesheets/91d741f219aa65ac4f0fc48582553fdd-shop.css

Managing JavaScript dependencies
The sbt-web plugin supports WebJars, a repository of client-side artifacts.
This means that, provided your JavaScript library is hosted on WebJars, sbt can
download it and place it in a public/lib/<artifact-id>/ directory.

For instance, instead of manually downloading the RequireJS runtime, we can add
a dependency on it in our build.sbt file:

libraryDependencies += "org.webjars" % "requirejs" % "2.1.11-1"

The requirejs artifact content is downloaded and copied to the public/lib/
requirejs directory so that you can refer to the require.js file within a script tag
in an HTML page as follows:

<scriptsrc="@routes.Assets.versioned("lib/requirejs/require.js")"><
 /script>

The WebJars repository does not host as many artifacts as npm or bower registries.
Consequently, if you want to automatically manage such dependencies, you should
use a node-based build system such as Grunt (besides using sbt to manage your Play
application). Nevertheless, it is worth noting that sbt-web is able to run npm so that
we can expect an sbt-grunt plugin unifying the two build systems. However, at the
time of writing this, such a plugin does not exist.

Running JavaScript tests
As your JavaScript code grows, you will surely want to test it. The sbt-mocha
plugin runs Mocha tests from the sbt test runner. Enable it in your project/
plugins.sbt file:

addSbtPlugin("com.typesafe.sbt" % "sbt-mocha" % "1.0.0")

Integrating with Client-side Technologies

[92]

Then, you can write JavaScript tests using Mocha and they will be run when you
execute the test sbt command. By default, all files under the test/ directory and
that end with Test.js or Spec.js are considered to be tests to run.

For instance, you can add the following code to the test/assets/someTest.coffee
file:

var assert = require("assert")
describe("some specification", () ->
 it("should do something", (done) ->
 assert(false)
 done()
)
)

Then, running the test sbt command produces the following output:

[info] some specification
[info] x should do something
[error] AssertionError: false == true

Tests are executed in a node environment, so you can use node's require command
to load CommonJS modules, but if you want to load AMD modules, you first need
to get an AMD module loader such as the RequireJS runtime. Read the sbt-mocha
documentation for more details on how to achieve this.

Summary
This chapter explained how the build system can be leveraged to produce minified
and concatenated web assets. These assets can then be safely cached by web browsers
while giving you the comfort of writing the client-side code in a modular way and
using higher-level languages to compile to JavaScript and CSS.

Chapter 4

[93]

The assets processing pipeline that we set up in this chapter can be illustrated using
the following diagram:

The compilation plugins, sbt-less and sbt-coffee, compile the a.less module
(that depends on a b.less module) into a single a.css module and the modules,
a.coffee and b.coffee, into the a.js and b.js modules, respectively. Then, the
concatenation plugin, sbt-rjs, concatenates the a.js and b.js modules into a single
a.js module (it is worth noting that the CSS concatenation is already performed
by the less compiler but that the RequireJS optimizer also processes .css files to
minify them). The compression plugin, sbt-gzip, produces a compressed file for
each artifact. Finally, the fingerprinting plugin, sbt-digest, produces a .md5 file
that contains an MD5 hash for each asset.

The next chapter will present the programming model provided by the Play
framework to manipulate streams of data. You will learn how to both receive
and serve streams of data.

Reactively Handling
Long-running Requests

I mentioned in the first chapter that the code called by controllers must be thread-
safe. We also noticed that the result of calling an action has type Future[Result]
rather than just Result. This chapter explains these subtleties and gives answers to
questions such as "How are concurrent requests processed by Play applications?"

More precisely, this chapter presents the challenges of stream processing and the
way the Play framework solves them. You will learn how to consume, produce, and
transform data streams in a non-blocking way using the Iteratee library. Then, you
will leverage these skills to stream results and push real-time notifications to your
clients. By the end of the chapter, you will be able to do the following:

•	 Produce, consume, and transform streams of data
•	 Process a large request body chunk by chunk
•	 Serve HTTP chunked responses
•	 Push real-time notifications using WebSockets or server-sent events
•	 Manage the execution context of your code

Play application's execution model
The streaming programming model provided by Play has been influenced by the
execution model of Play applications, which itself has been influenced by the nature
of the work a web application performs. So, let's start from the beginning: what does
a web application do?

Reactively Handling Long-running Requests

[96]

For now, our example application does the following: the HTTP layer invokes some
business logic via the service layer, and the service layer does some computations by
itself and also calls the database layer. It is worth noting that in our configuration,
the database system, as implemented in Chapter 2, Persisting Data and Testing, runs on
the same machine as the web application but this is, however, not a requirement. In
fact, there are chances that in real-world projects, your database system is decoupled
from your HTTP layer and that both run on different machines. It means that while
a query is executed on the database, the web layer does nothing but wait for the
response. Actually, the HTTP layer is often waiting for some response coming from
another system; it could, for example, retrieve some data from an external web
service (Chapter 6, Leveraging the Play Stack – Security, Internationalization, Cache,
and the HTTP Client, shows you how to do that), or the business layer itself could be
located on a remote machine. Decoupling the HTTP layer from the business layer or
the persistence layer gives a finer control on how to scale the system (more details
about that are given further in this chapter). Anyway, the point is that the HTTP
layer may essentially spend time waiting.

With that in mind, consider the following diagram showing how concurrent
requests could be executed by a web application using a threaded execution model.
That is, a model where each request is processed in its own thread.

Threaded execution model

Chapter 5

[97]

Several clients (shown on the left-hand side in the preceding diagram) perform
queries that are processed by the application's controller. On the right-hand side of
the controller, the figure shows an execution thread corresponding to each action's
execution. The filled rectangles represent the time spent performing computations
within a thread (for example, for processing data or computing a result), and the
lines represent the time waiting for some remote data. Each action's execution is
distinguished by a particular color. In this fictive example, the action handling the
first request may execute a query to a remote database, hence the line (illustrating
that the thread waits for the database result) between the two pink rectangles
(illustrating that the action performs some computation before querying the database
and after getting the database result). The action handling the third request may
perform a call to a distant web service and then a second one, after the response of
the first one has been received; hence, the two lines between the green rectangles.
And the action handling the last request may perform a call to a distant web service
that streams a response of an infinite size, hence, the multiple lines between the
purple rectangles.

The problem with this execution model is that each request requires the creation of
a new thread. Threads have an overhead at creation, because they consume memory
(essentially because each thread has its own stack), and during execution, when the
scheduler switches contexts.

However, we can see that these threads spend a lot of time just waiting. If we could
use the same thread to process another request while the current action is waiting for
something, we could avoid the creation of threads, and thus save resources. This is
exactly what the execution model used by Play—the evented execution model—does,
as depicted in the following diagram:

Evented execution model

Reactively Handling Long-running Requests

[98]

Here, the computation fragments are executed on two threads only. Note that
the same action can have its computation fragments run by different threads (for
example, the pink action). Also note that several threads are still in use, that's why
the code must be thread-safe. The time spent waiting between computing things is
the same as before, and you can see that the time required to completely process a
request is about the same as with the threaded model (for instance, the second pink
rectangle ends at the same position as in the earlier figure, same for the third green
rectangle, and so on).

A comparison between the threaded and evented models can be found in
the master's thesis of Benjamin Erb, Concurrent Programming for Scalable
Web Architectures, 2012. An online version is available at http://berb.
github.io/diploma-thesis/.

An attentive reader may think that I have cheated; the rectangles in the second figure
are often thinner than their equivalent in the first figure. That's because, in the first
model, there is an overhead for scheduling threads and, above all, even if you have a
lot of threads, your machine still has a limited number of cores effectively executing
the code of your threads. More precisely, if you have more threads than your number
of cores, you necessarily have threads in an idle state (that is, waiting). This means,
if we suppose that the machine executing the application has only two cores, in the
first figure, there is even time spent waiting in the rectangles!

Scaling up your server
The previous section raises the question of how to handle a higher number of
concurrent requests, as depicted in the following diagram:

A server under an increasing load

http://berb.github.io/diploma-thesis/
http://berb.github.io/diploma-thesis/

Chapter 5

[99]

The previous section explained how to avoid wasting resources to leverage the
computing power of your server. But actually, there is no magic; if you want to
compute even more things per unit of time, you need more computing power,
as depicted in the following diagram:

Scaling using more powerful hardware

One solution could be to have a more powerful server. But you could be smarter
than that and avoid buying expensive hardware by studying the shape of the
workload and make appropriate decisions at the software-level.

Indeed, there are chances that your workload varies a lot over time, with peaks and
holes of activity. This information suggests that if you wanted to buy more powerful
hardware, its performance characteristics would be drawn by your highest activity
peak, even if it occurs very occasionally. Obviously, this solution is not optimal
because you would buy expensive hardware even if you actually needed it only
one percent of the time (and more powerful hardware often also means more
power-consuming hardware).

Reactively Handling Long-running Requests

[100]

A better way to handle the workload elasticity consists of adding or removing server
instances according to the activity level, as depicted in the following diagram:

Scaling using several server instances

This architecture design allows you to finely (and dynamically) tune your server
capacity according to your workload. That's actually the cloud computing model.
Nevertheless, this architecture has a major implication on your code; you cannot
assume that subsequent requests issued by the same client will be handled by
the same server instance. In practice, it means that you must treat each request
independently of each other; you cannot for instance, store a counter on a server
instance to count the number of requests issued by a client (your server would
miss some requests if one is routed to another server instance). In a nutshell, your
server has to be stateless. Fortunately, Play is stateless, so as long as you don't
explicitly have a mutable state in your code, your application is stateless. Note that
the first implementation I gave of the shop was not stateless; indeed the state of the
application was stored in the server's memory.

Embracing non-blocking APIs
In the first section of this chapter, I claimed the superiority of the evented execution
model over the threaded execution model, in the context of web servers. That being
said, to be fair, the threaded model has an advantage over the evented model: it is
simpler to program with. Indeed, in such a case, the framework is responsible for
creating the threads and the JVM is responsible for scheduling the threads, so that
you don't even have to think about this at all, yet your code is concurrently executed.

Chapter 5

[101]

On the other hand, with the evented model, concurrency control is explicit and you
should care about it. Indeed, the fact that the same execution thread is used to run
several concurrent actions has an important implication on your code: it should not
block the thread. Indeed, while the code of an action is executed, no other action code
can be concurrently executed on the same thread.

What does blocking mean? It means holding a thread for too long a duration.
It typically happens when you perform a heavy computation or wait for a remote
response. However, we saw that these cases, especially waiting for remote responses,
are very common in web servers, so how should you handle them? You have to
wait in a non-blocking way or implement your heavy computations as incremental
computations. In all the cases, you have to break down your code into computation
fragments, where the execution is managed by the execution context. In the diagram
illustrating the evented execution model, computation fragments are materialized by
the rectangles. You can see that rectangles of different colors are interleaved; you can
find rectangles of another color between two rectangles of the same color.

However, by default, the code you write forms a single block of execution
instead of several computation fragments. It means that, by default, your code
is executed sequentially; the rectangles are not interleaved! This is depicted in
the following diagram:

Evented execution model running blocking code

The previous figure still shows both the execution threads. The second one handles
the blue action and then the purple infinite action, so that all the other actions can
only be handled by the first execution context. This figure illustrates the fact that
while the evented model can potentially be more efficient than the threaded model,
it can also have negative consequences on the performances of your application:
infinite actions block an execution thread forever and the sequential execution of
actions can lead to much longer response times.

Reactively Handling Long-running Requests

[102]

So, how can you break down your code into blocks that can be managed by an
execution context? In Scala, you can do so by wrapping your code in a Future block:

Future {
 // This is a computation fragment
}

The Future API comes from the standard Scala library. For Java users, Play provides
a convenient wrapper named play.libs.F.Promise:

Promise.promise(() -> {
 // This is a computation fragment
});

Such a block is a value of type Future[A] or, in Java, Promise<A> (where A is the
type of the value computed by the block). We say that these blocks are asynchronous
because they break the execution flow; you have no guarantee that the block will be
sequentially executed before the following statement. When the block is effectively
evaluated depends on the execution context implementation that manages it. The
role of an execution context is to schedule the execution of computation fragments.
In the figure showing the evented model, the execution context consists of a thread
pool containing two threads (represented by the two lines under the rectangles).

Actually, each time you create an asynchronous value, you have to supply the
execution context that will manage its evaluation. In Scala, this is usually achieved
using an implicit parameter of type ExecutionContext. You can, for instance, use
an execution context provided by Play that consists, by default, of a thread pool
with one thread per processor:

import play.api.libs.concurrent.Execution.Implicits.defaultContext

In Java, this execution context is automatically used by default, but you can explicitly
supply another one:

Promise.promise(() -> { ... }, myExecutionContext);

Now that you know how to create asynchronous values, you need to know
how to manipulate them. For instance, a sequence of several Future blocks is
concurrently executed; how do we define an asynchronous computation
depending on another one?

You can eventually schedule a computation after an asynchronous value has been
resolved using the foreach method:

val futureX = Future { 42 }
futureX.foreach(x => println(x))

Chapter 5

[103]

In Java, you can perform the same operation using the onRedeem method:

Promise<Integer> futureX = Promise.promise(() -> 42);
futureX.onRedeem((x) -> System.out.println(x));

More interestingly, you can eventually transform an asynchronous value using the
map method:

val futureIsEven = futureX.map(x => x % 2 == 0)

The map method exists in Java too:

Promise<Boolean> futureIsEven = futureX.map((x) -> x % 2 == 0);

If the function you use to transform an asynchronous value returned
an asynchronous value too, you would end up with an inconvenient
Future[Future[A]] value (or a Promise<Promise<A>> value, in Java).
So, use the flatMap method in that case:

val futureIsEven = futureX.flatMap(x => Future { x % 2 == 0 })

The flatMap method is also available in Java:

Promise<Boolean> futureIsEven = futureX.flatMap((x) -> {
 Promise.promise(() -> x % 2 == 0)
});

The foreach, map, and flatMap functions (or their Java equivalent) all have in
common to set a dependency between two asynchronous values; the computation
they take as the parameter is always evaluated after the asynchronous computation
they are applied to.

Another method that is worth mentioning is zip:

val futureXY: Future[(Int, Int)] = futureX.zip(futureY)

The zip method is also available in Java:

Promise<Tuple<Integer, Integer>> futureXY = futureX.zip(futureY);

The zip method returns an asynchronous value eventually resolved to a tuple
containing the two resolved asynchronous values. It can be thought of as a way to
join two asynchronous values without specifying any execution order between them.

Reactively Handling Long-running Requests

[104]

If you want to join more than two asynchronous values, you can use the
zip method several times (for example, futureX.zip(futureY).
zip(futureZ).zip(…)), but an alternative is to use the Future.
sequence function:

val futureXs: Future[Seq[Int]] =
 Future.sequence(Seq(futureX, futureY, futureZ, …))

This function transforms a sequence of future values into a future
sequence value. In Java, this function is named Promise.sequence.

In the preceding descriptions, I always used the word eventually, and it has a reason.
Indeed, if we use an asynchronous value to manipulate a result sent by a remote
machine (such as a database system or a web service), the communication may
eventually fail due to some technical issue (for example, if the network is down).
For this reason, asynchronous values have error recovery methods; for example,
the recover method:

futureX.recover { case NonFatal(e) => y }

The recover method is also available in Java:

futureX.recover((throwable) -> y);

The previous code resolves futureX to the value of y in the case of an error.

Libraries performing remote calls (such as an HTTP client or a database client) return
such asynchronous values when they are implemented in a non-blocking way. You
should always be careful whether the libraries you use are blocking or not and keep
in mind that, by default, Play is tuned to be efficient with non-blocking APIs.

It is worth noting that JDBC is blocking. It means that the majority of
Java-based libraries for database communication are blocking.

Obviously, once you get a value of type Future[A] (or Promise<A>, in Java), there
is no way to get the A value unless you wait (and block) for the value to be resolved.
We saw that the map and flatMap methods make it possible to manipulate the
future A value, but you still end up with a Future[SomethingElse] value (or a
Promise<SomethingElse>, in Java). It means that if your action's code calls an
asynchronous API, it will end up with a Future[Result] value rather than a
Result value. In that case, you have to use Action.async instead of Action,
as illustrated in this typical code example:

val asynchronousAction = Action.async { implicit request =>

Chapter 5

[105]

 service.asynchronousComputation().map(result => Ok(result))
}

In Java, there is nothing special to do; simply make your method return a
Promise<Result> object:

public static Promise<Result> asynchronousAction() {
 service.asynchronousComputation().map((result) -> ok(result));
}

Managing execution contexts
Because Play uses explicit concurrency control, controllers are also responsible for
using the right execution context to run their action's code. Generally, as long as your
actions do not invoke heavy computations or blocking APIs, the default execution
context should work fine. However, if your code is blocking, it is recommended to
use a distinct execution context to run it.

An application with two execution contexts (represented by the black and grey arrows). You can specify in
which execution context each action should be executed, as explained in this section

Unfortunately, there is no non-blocking standard API for relational database
communication (JDBC is blocking). It means that all our actions that invoke code
executing database queries should be run in a distinct execution context so that
the default execution context is not blocked. This distinct execution context has to
be configured according to your needs. In the case of JDBC communication, your
execution context should be a thread pool with as many threads as your maximum
number of connections.

Reactively Handling Long-running Requests

[106]

The following diagram illustrates such a configuration:

This preceding diagram shows two execution contexts, each with two threads.
The execution context at the top of the figure runs database code, while the default
execution context (on the bottom) handles the remaining (non-blocking) actions.

In practice, it is convenient to use Akka to define your execution contexts as they
are easily configurable. Akka is a library used for building concurrent, distributed,
and resilient event-driven applications. This book assumes that you have some
knowledge of Akka; if that is not the case, please do some research on it. Play
integrates Akka and manages an actor system that follows your application's life
cycle (that is, it is started and shut down with the application). For more information
on Akka, visit http://akka.io.

Here is how you can create an execution context with a thread pool of 10 threads, in
your application.conf file:

jdbc-execution-context {
 thread-pool-executor {
 core-pool-size-factor = 10.0
 core-pool-size-max = 10
 }
}

http://akka.io

Chapter 5

[107]

You can use it as follows in your code:

import play.api.libs.concurrent.Akka
import play.api.Play.current
implicit val jdbc =
 Akka.system.dispatchers.lookup("jdbc-execution-context")

The Akka.system expression retrieves the actor system managed by Play.
Then, the execution context is retrieved using Akka's API.

The equivalent Java code is the following:

import play.libs.Akka;
import akka.dispatch.MessageDispatcher;
import play.core.j.HttpExecutionContext;
MessageDispatcher jdbc =
 Akka.system().dispatchers().lookup("jdbc-execution-context");

Note that controllers retrieve the current request's information from a thread-local
static variable, so you have to attach it to the execution context's thread before using
it from a controller's action:

play.core.j.HttpExecutionContext.fromThread(jdbc)

Finally, forcing the use of a specific execution context for a given action can
be achieved as follows (provided that my.execution.context is an implicit
execution context):

import my.execution.context
val myAction = Action.async {
 Future { … }
}

The Java equivalent code is as follows:

public static Promise<Result> myAction() {
 return Promise.promise(
 () -> { … },
 HttpExecutionContext.fromThread(myExecutionContext)
);
}

Does this feel like clumsy code? See Chapter 7, Scaling Your Codebase and Deploying
Your Application, to learn how to reduce the boilerplate!

Reactively Handling Long-running Requests

[108]

Writing incremental computations using
iteratees
There is another situation, which I haven't mentioned yet, where the server could
be waiting for a remote response: when it reads the body of an incoming request.
Indeed, according to the upload speed of the client, the server may be waiting
between every chunk of data. In this situation, the job of the server consists of
parsing the request body to make it available to the action's code. However, you
don't want the server to block for the inputs to arrive, and you probably don't want
the server to load the entire request body in memory, just in case it is a big file! Play
provides a specific abstraction named Iteratee for the purpose of incrementally
consuming a stream of data in a non-blocking way.

The iteratee's API is not intended to be used from the Java code.
Nevertheless, Java developers should not skip this section as it gives
useful details on the internals of Play.

An Iteratee[E, A] object represents an incremental computation eventually producing
a value of type A (for example, a request body) and consuming input of type E
(for example, an HTTP chunk). An iteratee is in one of the three following states:

•	 Done(a, e): The computation is finished, it produced the value a,
and e remains as an unused input

•	 Error(msg, e): The computation resulted in an error described by msg,
and e remains as an unused input

•	 Cont(k): The computation is in progress, and k is a continuation function
taking the next input as the parameter and returning the next state of the
iteratee (that is either Done, Error, or Cont)

For the sake of illustration, here is how you can define an iteratee consuming a
sentence (a stream of letters ending with a point):

import play.api.libs.iteratee.{Iteratee, Input, Cont, Done, Error}
def step(parsed: String): Iteratee[Char, String] = Cont {
 case Input.El('.') => Done(parsed)
 case Input.El(char) => step(parsed :+ char)
 case Input.Empty => step(parsed)
 case Input.EOF => Error("A sentence must end with a point!", Input.
EOF)
}
val sentence = step("")

Chapter 5

[109]

The step function effectively implements one step of the incremental computation:
it takes the next input, which can either be a character, an empty input, or the special
Input.EOF object representing the end of the input. If we input the character .,
the computation ends and yields the text that preceded the point. If the input is
any other character, the computation continues with the character appended to the
previously parsed content. If the end of the input arrives before a point has been
encountered, the computation yields an error message. The sentence value is a step
with an empty string as the initial state.

The Iteratee companion object provides various methods making it easier to
define iteratees. For instance, Iteratee.consume concatenates all the inputs in
one big sequence. Iteratee.fold works in a similar way to the fold method of
Scala's collections. Another method worth mentioning is Iteratee.foreach, which
produces nothing but executes a side-effecting function each time an input arrives.

Let's reconsider the way Play processes HTTP requests and calls your action's code
now that you are familiar with iteratees.

Body parsers were mentioned in Chapter 1, Building a Web Service; they are
responsible for reading the body of the requests. Body parsers are able to read
the request body in a non-blocking way because they are defined as incremental
computations. As a first approximation, a BodyParser[A] object can be thought of as
an Iteratee[Array[Byte], A] object: an incremental computation processing each
request chunk as an array of bytes and producing a value of type A (where A is, for
instance, JsValue in the case of a JSON request).

When a client performs an HTTP request, it first sends the request headers and then
the request body, eventually using several chunks of data. When Play receives the
request, it first finds the corresponding action to invoke, according to the request
URL and the application's routes. Then, the request body is incrementally parsed
by the action's body parser. Finally, the result of the body parsing is supplied to the
action's code.

In some cases though, it can be useful to short-circuit the parsing process and
return an HTTP result without even invoking the action's code. For instance, it can
be useful to limit the size of requests to 1 KB and let the body parser directly produce
an HTTP response with status code 413 (entity too large) before even parsing the
whole body if a client sends a request that is too big. That's why, body parsers are
rather represented as Iteratee[Array[Byte], Either[Result, A]]. That way,
they have a chance to directly send a result to the client, without invoking the
action's code.

Reactively Handling Long-running Requests

[110]

At last, the request headers may contain useful information to guide the parsing
process. For instance, the default body parser chooses which parsing algorithm to use
(JSON, XML, URL-encoded, multipart, and so on) according to the Content-Type
request header. That's why the exact type signature of body parsers is as follows:

trait BodyParser[A]
 extends RequestHeader => Iteratee[Array[Byte], Either[Result, A]]

It means that a BodyParser[Foo] object is an incremental computation parameterized
by the request headers, processing each request chunk as an array of bytes, and either
producing an HTTP result or a Foo value.

Finally, note that a body parser is not forced to load all the content of the request
body in memory. For instance, Play defines a parse.file body parser that copies
the request body to a file, chunk by chunk, without ever loading the whole request
body in memory.

Streaming results using enumerators
Iteratees make it possible to consume streams of data in a non-blocking way.
Conversely, enumerators produce data streams in a non-blocking way. They are
useful when you need to send large results, or if your result is built from an
intermittent data source. An Enumerator[A] object defines a stream of values
of type A.

The simplest way to create an enumerator is to use one of the methods of the
Enumerator object. For instance, you can easily convert a java.io.InputStream
class or a java.io.File class to an Enumerator[Array[Byte]] object as follows:

import play.api.libs.iteratee.Enumerator
Enumerator.fromStream(inputStream)
Enumerator.fromFile(file)

To send a stream of data as a response body, it is better to explicitly set the
Content-Length response header so that the connection can be kept alive to serve
further requests. Alternatively, you can use the chunked transfer encoding as follows:

Ok.chunked(Enumerator.fromFile(new File("foo.txt")))

Chapter 5

[111]

To use the chunked transfer encoding in Java, you have to pass a Chunks value to
your result:

StringChunks chunks = (out) -> {
 out.write("foo");
 out.write("bar");
 out.close();
}
return ok(chunks);

Note, however, that in the case of files, it is even better to use the sendFile method:

Ok.sendFile(new File("foo.txt"))

The sendFile method reads the file size using the filesystem and sets the Content-
Length header accordingly so that the web browser can display a nice progress
bar while downloading the response content. The Content-Type header is also set
according to the file extension. Finally, it also sets the Content-Disposition header
to the attachment so that browsers download the file instead of displaying it.

In Java, simply pass File as a parameter of your result:

return ok(new File("foo.txt"));

Manipulating data streams by combining
iteratees, enumerators, and enumeratees
Well, that's enough concepts for now. Let's put this in practice by implementing
a new feature in our shop application: an auction room.

The idea is to allow multiple users to bid for an item of the shop in a room
where all connected users instantly see the bids of others, as depicted in the
following screenshot:

An auction room for the item Play Framework Essentials. The prices offered by Alice and Bob
are followed by the form at the bottom where users can make new offers

Reactively Handling Long-running Requests

[112]

Unidirectional streaming with server-sent
events
In order to instantly send a notification to all the users of an auction room when
one makes a bid, we have to provide an HTTP endpoint streaming these events.
We can achieve this using server-sent events. Thus, we have at least two endpoints:
one to make a bid and one to get the stream of bid notifications. We actually need
a third endpoint to get the HTML page showing an auction room (illustrated in the
previous screenshot).

Preparing the ground
Let's create an Auctions controller and implement these three endpoints:

package controllers
import play.api.mvc.{Action, Controller}

object Auctions extends Controller {

 /* Show an auction room for an item of the shop */
 def room(id: Long) = Action {
 models.Shop.get(id) match {
 case Some(item) => Ok(views.html.auctionRoom(item))
 case None => NotFound
 }
 }

 /* Make a bid for an item */
 def bid(id: Long) = Action { NotImplemented }

 /* Get a stream of bid notifications for an item */
 def notifications(id: Long) = Action { NotImplemented }

}

The Java implementation of the controller is the following:

package controllers;
import models.Item;
import static models.Shop.Shop;
import play.mvc.Controller;
import play.mvc.Result;

public class Auctions extends Controller {

 /* Show an auction room for an item of the shop */
 public static Result room(Long id) {

Chapter 5

[113]

 Item item = Shop.get(id);
 if (item != null) {
 return ok(views.html.auctionRoom.render(item));
 } else return notFound();
 }

 /* Make a bid for an item */
 public static Result bid(Long id) {
 return status(NOT_IMPLEMENTED);
 }

 /* Get a stream of bid notifications for an item */
 public static Result notifications(Long id) {
 return status(NOT_IMPLEMENTED);
 }
}

Now, we will define the routes for the actions we just defined earlier:

GET /items/:id/auction controllers.Auctions.room(id: Long)
POST /items/:id/auction controllers.Auctions.bid(id: Long)
GET /items/:id/auction/notifications
 controllers.Auctions.notifications(id: Long)

The room action is straightforwardly implemented; it retrieves the item in the shop
and renders an HTML template showing the auction room. This template could be
as simple as the following code:

@(item: models.Item)
@layout {
 <h2>Auction room</h2>
 <p>@item.name:
 @(f"${item.price}%.2f") €</p>
 <div id="auction-room"></div>
 <script
 src="@routes.Assets.versioned("javascripts/auction.js")">
 </script>
}

This template only shows the item and its starting price. The display of the bids and
the bid form will happen in the empty div tag with the auction-room ID and is
delegated to a script auction.js. This script has to perform the following tasks:

•	 Display a form allowing users to make bids and, on submission, send an Ajax
request to the corresponding server endpoint

•	 Get the stream of bid notifications and continuously update the room display
so that users can see who has made which bid

Reactively Handling Long-running Requests

[114]

For the sake of brevity, I will show only the part of the code that retrieves the stream
of notifications using the server-sent events' API (I assume that you already know
how to build DOM fragments and perform Ajax requests):

/* Handles the logic of an item's auction room */
var auctionRoom = function (item) {
 var route = routes.controllers.Auctions.notifications(item.id);
 var notifications = new EventSource(route.url);
 notifications.addEventListener('message', function (event) {
 updateUIWithAddedBid(JSON.parse(event.data));
 });
};

This function requests the item's bid notifications and adds an event handler
updating the user interface each time a bid is received.

Transforming streams of data using enumeratees
On the server side, we can represent a bid simply as a pair (String, Double),
containing the name of the user making the bid and the bid price. For convenience,
let's define a type alias Bid for this type:

type Bid = (String, Double)

The stream of an item bid can then be represented with an Enumerator[Bid] object in
the Scala API. Let's assume that we have a function AuctionRooms.notifications,
in the service layer, which takes an item ID as the parameter and returns such an
enumerator of bids. To implement the Auctions.notifications action, we need
to take this stream and format each element according to the server-sent events'
specification. For the purpose of transforming data streams, Play provides an
abstraction called Enumeratee. If an enumerator can be thought of as a data source and
an iteratee as a data sink, an enumeratee can be thought of as an adaptor that can be
plugged to both enumerators and iteratees. This is described in the following diagram:

Chapter 5

[115]

The preceding diagram shows an enumeratee (in the middle) that transforms square
elements into triangle elements. By combining it with an enumerator producing
squares (on the top left), it gives an enumerator producing triangles. Conversely,
combining it with an iteratee consuming triangles (on the top right) gives an iteratee
consuming squares. It is worth noting that enumeratees can be combined together
too. For instance, if we had an enumeratee transforming triangles into circles, we
could combine it with the enumeratee transforming squares into triangles in order
to get an enumeratee transforming squares into circles.

In our case, we have an enumerator of bids and we want to have an enumerator of
server-sent events. So we need an Enumeratee[Bid, String] object that formats a
bid according to the server-sent events' specification. However, server-sent events
represent data as text, meaning that, on the client side, we have to parse each event
data to interpret its value. In our case, I propose to serialize our bids as JSON objects
containing a name field and a price field and then parse them on the client side using
JSON.parse. It means that, finally, our enumeratee must first format a bid as a JSON
object and then format the JSON according to the server-sent events' specification.

A simple way to implement an enumeratee is to use the Enumeratee.map function:

val bidToFormattedJson = Enumeratee.map[Bid] {
 case (name, price) => … // return something from bid
}

To combine it with an enumerator, we can use the through method:

val notifications: Enumerator[Bid] =
 AuctionRooms.notifications(item.id)
val formattedNotifications: Enumerator[String] =
 notifications.through(bidToFormattedJson)

Alternatively, the API also supports a symbolic operator &>:

val formattedNotifications = notifications &> bidToFormattedJson

So, the complete code of the Auctions.notifications action is as follows:

def notifications(id: Long) = Action {
 val notifications = AuctionRooms.notifications(id)
 Ok.chunked(notifications &> bidToFormattedJson).as(EVENT_STREAM)
}

This action retrieves the stream of bids corresponding to a given item ID and returns
it after transforming it into a stream of formatted events. Note that the chunked
method does not infer the response content type, that's why we explicitly have
to set it.

Reactively Handling Long-running Requests

[116]

We still need to implement the bidToFormattedJson enumeratee, but hopefully
Play already provides some pieces that we can just reuse. First, we can get an
Enumeratee[Bid, JsValue] object, transforming a bid into a JSON value by
defining an implicit Writes[Bid] method and calling the Json.toJson[Bid]
method. Secondly, we can get an Enumeratee[JsValue, String] object that
formats JSON values according to the server-sent events' specification by calling
the play.api.libs.EventSource[JsValue]() method. Finally, we can combine
these two enumeratees to get an Enumeratee[Bid, String] object that transforms
bids into JSON objects and then formats them according to the server-sent event's
specification, as follows:

val bidToFormattedJson = Json.toJson[Bid].compose(EventSource())

You can also use the equivalent symbolic operator, as follows:

val bidToFormattedJson = Json.toJson[Bid] ><> EventSource()

In Java, since Play provides no equivalent to the Enumerator API, a simple way
to implement something close is to use a callback-based approach.

It is worth noting that some reactive programming libraries do exist
in Java, such as RxJava, and that there is an ongoing initiative for
establishing a standard specification for reactive programming on
the JVM. You can follow this initiative at http://www.reactive-
streams.org/.

In practice, it means that instead of having an AuctionRooms.notifications
method returning an Enumerator[Bid]object, we have an AuctionRooms.
subscribe method that takes as parameter a callback consuming a Bid object.
We can use it to implement the Auctions.notifications action, as follows:

import play.libs.EventSource;
import static play.libs.EventSource.Event.event;

public static Result notifications(Long id) {
 return ok(EventSource.whenConnected(eventSource -> {
 AuctionRooms
 .subscribe(id, bid ->
 eventSource.send(event(Json.toJson(bid))));
 }));
}

http://www.reactive-streams.org/
http://www.reactive-streams.org/

Chapter 5

[117]

The EventSource.whenConnected method creates an HTTP response streaming data
according to the server-sent events' specification. It takes a function as parameter that
itself takes an EventSource object as parameter and allows us to define when to send
notifications to users. In our case, we call the AuctionRooms.subscribe method and
pass it a callback that sends a notification each time a bid is made. The notification
message just contains a JSON object describing the bid.

Implementing a publish/subscribe system
using Akka
So far, the client-side part and the HTTP layer have been implemented; the part that
remains to be implemented is the AuctionRooms service, which holds the state of
the bids for each item. The specificity of this service is that besides storing data, it has
to notify all the participants of an auction room each time a new bid is made. This
could be achieved by using some publish/subscribe system such as Redis Pub/Sub
or MongoDB-tailed cursors but integrating with these systems is out of the scope of
this book. For the sake of simplicity, we will use an in-memory implementation of
a publish/subscribe system using Akka (in the AuctionRooms.scala file of the
app/models/ folder):

package models
import akka.actor.Actor
import play.api.libs.iteratee.Concurrent

class AuctionRoomsActor extends Actor {
 import AuctionRooms._

 var rooms = Map.empty[Long, Room]

 def lookupOrCreate(id: Long): Room = rooms.getOrElse(id, {
 val room = new Room
 rooms += id -> room
 room
 })

 def receive = {
 case Notifications(id) =>
 sender() ! lookupOrCreate(id).notifications
 case ItemBid(id, name, price) =>
 lookupOrCreate(id).addBid(name, price)
 }

 class Room {
 var bids = Map.empty[String, Double]
 val (notifications, channel) = Concurrent.broadcast[Bid]

Reactively Handling Long-running Requests

[118]

 def addBid(name: String, price: Double): Unit = {
 if (bids.forall { case (_, p) => p < price}) {
 bids += name -> price
 channel.push(name -> price)
 }
 }
 }
}

object AuctionRooms {
 case class Notifications(id: Long)
 case class ItemBid(id: Long, name: String, price: Double)
}

The Java version is a bit different since it does not use the Enumerator API.
Let's explain the previous Scala version of the AuctionRoomsActor actor before
showing the Java version.

The AuctionRoomsActor actor manages the item's auction rooms, where each room
(represented with the class Room) contains a map of per user bids (represented by the
bids field). The Room classes also contain an enumerator streaming bid notifications
(represented by the notifications field), which is obtained from the Concurrent.
broadcast call. The Concurrent API, provided by Play, gives convenient functions
to implement a publish/subscribe system. In our case, the broadcast method creates
an enumerator paired with a channel. The channel allows us to push (or publish)
elements, which are then streamed by the enumerator. The enumerator is the part that
is publicly shared with the outside world, while we keep the channel for internal use,
so that whenever we push data into the channel, the outside world can see it through
the enumerator. We effectively push data into the channel in the addBid method,
which both updates the state of the room with a new bid and publishes it into the
channel, after it has checked whether the new bid is higher than all the previous bids.

Actors are event-driven. In our case, we define two events: Notifications(id) and
ItemBid(id, name, price), which ask for the notifications stream of a Room class
and make a bid, respectively. For convenience, let's enrich the AuctionRooms object
with two methods corresponding to these events:

object AuctionRooms {

 import play.api.Play.current
 import akka.pattern.ask
 import scala.concurrent.duration.DurationInt
 implicit val timeout: akka.util.Timeout = 1.second

Chapter 5

[119]

 private lazy val ref =
 Akka.system.actorOf(Props[AuctionRoomsActor])

 def notifications(id: Long): Future[Enumerator[Bid]] =
 (ref ? Notifications(id)).mapTo[Enumerator[Bid]]

 def bid(id: Long, name: String, price: Double): Unit =
 ref ! ItemBid(id, name, price)

 case class Notifications(id: Long)
 case class ItemBid(id: Long, name: String, price: Double)
}

The two methods, notifications and bid, provide the public (and typed) API of
our actor, whose instance, ref, is kept private.

That's all for the Scala implementation of the AuctionRooms service.

The Java implementation of the AuctionRoomsActor actor is as follows (in the
AuctionRoomsActor.java file in the app/models folder):

package models;
import akka.actor.UntypedActor;
import java.util.function.Consumer;
import java.util.stream.Collectors;

public class AuctionRoomsActor extends UntypedActor {

 Map<Long, Room> rooms = new HashMap<>();

 Room lookupOrCreate(Long id) {
 Room room = rooms.get(id);
 if (room == null) {
 room = new Room();
 rooms.put(id, room);
 }
 return room;
 }

 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof Subscribe) {
 Subscribe subscribe = (Subscribe) message;
 Room room = lookupOrCreate(subscribe.id);
 room.subscribers.add(subscribe.subscriber);
 } else if (message instanceof ItemBid) {
 ItemBid itemBid = (ItemBid) message;

Reactively Handling Long-running Requests

[120]

 Room room = lookupOrCreate(itemBid.id);
 room.addBid(itemBid.name, itemBid.price);
 } else unhandled(message);
 }

 static class Room {
 Map<String, Double> bids = new HashMap<>();
 List<Consumer<Bid>> subscribers = new ArrayList<>();

 void addBid(String name, Double price) {
 if (bids.values().stream().allMatch(p -> p < price)) {
 bids.put(name, price);
 subscribers.forEach(subscriber -> {
 subscriber.accept(new Bid(name, price))
 });
 }
 }
 }

 static class Subscribe {
 public final Long id;
 public final Consumer<Bid> subscriber;

 public Subscribe(Long id, Consumer<Bid> subscriber) {
 this.id = id;
 this.subscriber = subscriber;
 }
 }

 static class ItemBid {
 public final Long id;
 public final String name;
 public final Double price;

 public ItemBid(Long id, String name, Double price) {
 this.id = id;
 this.name = name;
 this.price = price;
 }
 }

 public static class Bid {
 public String name;
 public Double price;

 public Bid() {}

Chapter 5

[121]

 public Bid(String name, Double price) {
 this.name = name;
 this.price = price;
 }
 }
}

The architecture is similar to the Scala version; the AuctionRoomsActor actor
manages the item's auction rooms, represented by the Room class, which contains a
map of per user bids and a list of notification subscribers. The addBid method adds
a new bid; it makes sure that its price is higher than the previous bids, stores it, and
notifies all the subscribers.

The two events that drive our actor are Subscribe(id, subscriber) and
ItemBid(id, name, price), that subscribe to an auction room and make a bid,
respectively. As in the Scala version, it is convenient to provide two static methods,
in an AuctionRooms class, as a public API to communicate with the actor:

package models;
import play.libs.Akka;
import akka.actor.Props;

public class AuctionRooms {

 static final ActorRef ref =
 Akka.system().actorOf(Props.create(AuctionRoomsActor.class));

 public static void subscribe(Long id, Consumer<Bid> subscriber) {
 ref.tell(new Subscribe(id, subscriber), null);
 }

 public static void bid(Long id, String name, Double price) {
 ref.tell(new ItemBid(id, name, price), null);
 }
}

Actually, there is a memory leak issue with this first implementation; we register
subscriptions but never remove them when users close their web browser. To fix it,
we need to give subscribers a chance to cancel their subscription (the following code
lives in the AuctionRooms class):

import play.libs.F;
import scala.concurrent.Future;
import scala.concurrent.duration.Duration;
import java.util.concurrent.TimeUnit;
import static akka.patterns.Patterns.ask;

Reactively Handling Long-running Requests

[122]

static final Timeout t = new Timeout(Duration.create(1, TimeUnit.
SECONDS));

public static F.Promise<Subscription> subscribe(Long id,
 Consumer<Bid> subscriber) {
 return F.Promise.wrap(
 (Future)ask(ref, new Subscribe(id, subscriber), t)
);
}

public static class Subscription {
 private final Long id;
 private final Consumer<Bid> subscriber;

 public Subscription(Long id, Consumer<Bid> subscriber) {
 this.id = id;
 this.subscriber = subscriber;
 }

 public void cancel() {
 ref.tell(new Unsubscribe(id, subscriber), null);
 }
}

static class Unsubscribe {
 public final Long id;
 public final Consumer<Bid> subscriber;

 public Unsubscribe(Long id, Consumer<Bid> subscriber) {
 this.id = id;
 this.subscriber = subscriber;
 }
}

The subscribe method now returns a Subscription (or, more precisely,
a Promise<Subscription>, because message passing is asynchronous in Akka),
which has a cancel method. This one sends an Unsubscribe message to the
actor. Finally, the Unsubscribe message is handled by the onReceive method
of the actor, as follows:

if (message instanceof Unsubscribe) {
 Unsubscribe unsubscribe = (Unsubscribe) message;
 Room room = rooms.get(unsubscribe.id);
 if (room != null) {
 room.subscribers.remove(unsubscribe.subscriber);
 }
}

Chapter 5

[123]

The preceding code just removes the subscriber from the room.

We can leverage this mechanism to cancel our subscriptions when the connection
with the client is closed. This can be achieved as follows (in the Auctions controller):

public static Result notifications(Long id) {
 return ok(EventSource.whenConnected(eventSource -> {
 AuctionRooms
 .subscribe(
 id,
 bid -> eventSource.send(event(Json.toJson(bid)))
).onRedeem(subscription -> {
 eventSource.onDisconnected(() -> subscription.cancel());
 });
 });
}

The preceding code registers a callback that calls the cancel method of the
subscription when the client is disconnected. The onRedeem method allows us to
eventually do something with the Promise<Subscription> object returned by the
subscribe method; it takes a function as the parameter, which is called when the
promise is redeemed, and which is supplied the redeemed value.

In Scala, the Enumerator API handles the unsubscription problem
for us.

Our Java and Scala implementations of the AuctionRooms service are now
complete. What remains is to implement the Auctions.bid action. This can be
straightforwardly achieved, as follows:

def bid(id: Long) =
 Action(parse.json(bidValidator)) { implicit request =>
 val (name, bid) = request.body
 AuctionRooms.bid(id, name, bid)
 Ok
 }

Alternatively, in Java, it can be done as follows:

@BodyParser.Of(BodyParser.Json.class)
public static Result bid(Long id) {
 Bid bid = Json.fromJson(request().body().asJson(), Bid.class);
 AuctionRooms.bid(id, bid.name, bid.price);
 return ok();
}

Reactively Handling Long-running Requests

[124]

This implementation accepts requests whose body contains a JSON object describing
a bid (that is, having a name and a price). Then, it just calls the AuctionRooms.bid
function with the request data.

Our auction room's implementation is now finished! Connected users can make bids
and instantly see bids made by others. There are two issues with the implementation
proposed in this book, though.

First, the stream of bid notifications notifies users only when someone makes a
new bid, so when a user joins an auction room, he or she do not get the bids that
have been made in the past. This could be solved by changing the Auctions.
notifications endpoint to prepend bids that have been made in the past to the
stream of notifications.

Secondly, our implementation is not stateless since the state of the auction rooms
and the list of subscribers is kept in our server's memory. This system would not
scale horizontally. However, as previously mentioned, this could be solved using a
publish/subscribe system separated from the server. Also, note that because Akka
actors can transparently be migrated to remote locations, we could separate our actor
from our server with minimal effort.

Bidirectional streaming with WebSockets
In the implementation presented earlier, making a bid is performed by an Ajax call,
while bid notifications are retrieved by an event source. Alternatively, we can use a
single bidirectional WebSocket endpoint to both send bids and receive notifications.
On the server side, it changes the way we handle bid requests; instead of using the
Auctions.bid endpoint (though this one can coexist with the WebSocket endpoint),
we react to data sent by the client through the WebSocket. We obviously want to do
that in a non-blocking way.

First, let's define an Auctions.channel WebSocket action and its corresponding route:

GET /items/:id/auction/channel
 controllers.Auctions.channel(id: Long)

On the client side, we receive the notifications via the WebSocket, as follows:

var route = routes.controllers.Auctions.channel(item.id);
var ws = new WebSocket(route.webSocketURL());
ws.addEventListener('message', function (event) {
 updateUIWithAddedBid(JSON.parse(event.data));
});

Chapter 5

[125]

Note that we obtain the corresponding route URL by calling the webSocketURL
method of the route instead of using its url property.

We also use the WebSocket to send bids, instead of performing an Ajax request:

ws.send(JSON.stringify({ name: name, price: price }))

This code assumes that variables name and price contain the values of the
corresponding form fields.

On the server side, the Auctions.channel action now returns a WebSocket handler
instead of an Action. It needs two parameters: an iteratee defining how to process
incoming data and an enumerator defining the outgoing data stream. The outgoing
data stream is the same as in the server-sent events version, except that we don't
need to format the events according to the server-sent events' specification; we can
send them as JSON objects. The iteratee defining how incoming data is processed
can be thought of as an infinite computation returning nothing and calling the
AuctionRooms.bid service method for each incoming bid. This leads to the
following code:

def channel(id: Long) = WebSocket.tryAccept[JsValue] { request =>
 AuctionRooms.notifications(id).map { notifications =>
 val bidsHandler = Iteratee.foreach[JsValue] { json =>
 for ((name, bid) <- json.validate(bidValidator)) {
 AuctionRooms.bid(id, name, bid)
 }
 }
 Right((bidsHandler, notifications &> Json.toJson[Bid]))
 }
}

The WebSocket.tryAccept method defines a WebSocket handler. In our case,
we say that the incoming and outgoing data should be interpreted as JSON objects.
The tryAccept method takes one parameter: a function that takes the current
request headers as the parameter and returns either a Result (in that case the
WebSocket is not created) or a pair of iteratees and enumerators defining the logic of
the WebSocket handler. In our case, we always return an iteratee and an enumerator.
The bidsHandler iteratee is defined using the Iteratee.foreach method; we
simply forward each incoming bid to the AuctionRooms.bid service method.

The Java version is as follows:

public static WebSocket<JsonNode> channel(Long id) {
 return WebSocket.whenReady((in, out) -> {
 in.onMessage(json -> {
 Bid bid = Json.fromJson(json, Bid.class);

Reactively Handling Long-running Requests

[126]

 AuctionRooms.bid(id, bid.name, bid.price);
 });
 AuctionRooms
 .subscribe(id, bid -> out.write(Json.toJson(bid)))
 .onRedeem(subscription -> {
 in.onClose(() -> subscription.cancel());
 });
 });
}

The WebSocket.whenReady method creates a WebSocket handler, whose logic
is defined by the function it is passed as parameter. This function takes two
parameters: the WebSocket's inbound and outbound. Incoming data processing logic
is defined using inbound's onMessage method. In our case, we forward each bid to
the AuctionRooms.bid service method. The inbound's onClose method cancels the
notifications subscription when the WebSocket is closed.

Finally, note that Play also supports a way to define WebSocket using actors instead
of iteratees and enumerators in Scala or callbacks in Java. In that case, incoming
data is sent to the actor as messages, and outgoing messages are sent by the actor to
another actor reference managed by Play. This approach can be particularly useful
in Java where there is currently no reactive programming model.

Controlling the data flow
Iteratees allow us to consume data streams and enumerators to produce data
streams. With their reactive programming model, we just say what to do when data
is available. But how is the data flow controlled? Consider, for instance, a situation
where a producer generates data at a higher rate than what the facing iteratee can
consume, what happens then?

In that case, iteratees impose their speed to data producers. It means that if
your server is slower than a client uploading a file, the uploading process will be
slowed down according to the iteratee processing speed. This feature is called
back-pressure handling.

Conversely, in some cases, you don't want things to be slowed down, for instance, if
you are serving data to a client that has a low download rate and this data is directly
streamed from a database and holds a database connection. In this case, this client is
causing contention on your database, so it is better to fetch as much data as possible
from the database to your server's memory. This buffering logic can be achieved by
an enumeratee, and Play already provides a ready-to-use implementation via the
Concurrent.buffer method.

Chapter 5

[127]

A slight variant of this situation is when the nature of the streamed data allows the
client to eventually miss some pieces (for example, when streaming audio or video
data). In this case, instead of buffering data in your server, you can just drop some
elements. Again, this job can be achieved by an enumeratee, and, again, Play provides
a ready-to-use implementation via the Concurrent.dropInputIfNotReady method.

Summary
This chapter detailed a lot of things on the internals of the framework. You now
know that Play uses an evented execution model to process requests and serve
responses and that it implies that your code should not block the execution thread.
You know how to use future blocks and promises to define computation fragments
that can be concurrently managed by Play's execution context and how to define
your own execution context with a different threading policy, for example, if you
are constrained to use a blocking API.

You now know how to define incremental computations consuming streams of
data, how to produce such streams of data, and how to transform them. You learned
how to put this in practice in your HTTP layer to stream your responses using the
chunked transfer encoding, to incrementally parse the body of the requests, and to
send push notifications to your clients using server-sent events or WebSockets.

You also learned that keeping your server stateless makes it easier to scale.

In the next chapter, you will see how the Play stack can help you manage common
concerns of web applications such as security or internationalization.

Leveraging the Play
Stack – Security,

Internationalization, Cache,
and the HTTP Client

In this chapter, you will learn how to protect your application against common web
attacks, such as cross-site scripting and cross-site request forgery. You will also learn
how to restrict some pages of your application to authenticated users only. Then, you
will learn how to internationalize the application, how to use the cache to improve
performance, and how to perform HTTP requests to other web services.

The following topics will be covered in this chapter:

•	 Security (cross-site scripting, cross-site request forgery, authentication,
and HTTPS)

•	 Cache
•	 Internationalization
•	 The HTTP client

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[130]

Handling security concerns
This section presents the main security challenges in web applications and how to
handle them with the Play framework.

Authentication
In the previous chapter, we added a page that showed an auction room for an item.
The form to participate in an auction requires users to fill their name and a price for
the item. In this section, I propose to restrict auction rooms to authenticated users
only. This means that if a non-authenticated user tries to go to an auction room, he is
redirected to a login form. Once he is logged in, he is redirected back to the auction
room, whose form now has only one field, the bid price, because the username can
be retrieved from the user's identity.

To differentiate between identified and non-identified users, we rely on a session
mechanism. Once a user is authenticated, he visits the pages of the application on
behalf of his identity; two users might not see the same response when they go to
the same page. To achieve this in a stateless way, the user's session is not stored
on the server but on the client so that two users going to a same page get different
responses because their requests are effectively different. Concretely, Play uses
cookies to store the user's session. To prevent malicious users from forging a
fake session, the session's cookie cannot be modified in JavaScript, and above all,
its content is signed using a passphrase defined in the application's configuration
(more precisely, defined by the application.secret key). As long as your
application's secret key is not shared with the outside world, it is very difficult
for the outside world to forge a fake session.

Back to our shop application, to restrict auction rooms to authenticated users,
we will need to achieve the following:

•	 Add a login form and add actions to authenticate the user and to log out
•	 Redirect anonymous users to the login form when they try to go to an

auction room
•	 Retrieve the username from its session when processing its bid
•	 Add a logout link in the application to log out users

Let's start by adding the following endpoints to the routes file:

GET /login controllers.Authentication.login(returnTo)
POST /authenticate
 controllers.Authentication.authenticate(returnTo)
GET /logout controllers.Authentication.logout

Chapter 6

[131]

The Authentication.login action returns the HTML login form. The form
submission is bound to the Authentication.authenticate action, which
checks whether the username and password are correct and in such a case, adds
information on the user's identity to his session. The Authentication.logout
action removes the user's identity from his session. The login and authenticate
actions both take a returnTo parameter that defines which URL the user
should be redirected to in the case of a successful authentication.

Our login form has two fields: a username and a password. Both are text and
required fields. The corresponding form model can be defined as follows:

type Login = (String, String)
object Login {
 val form = Form(tuple(
 "username" -> nonEmptyText,
 "password" -> nonEmptyText
))
}

In Java, an equivalent form model can be defined by the following class:

public static class Login {
 @Constraints.Required
 public String username;
 @Constraints.Required
 public String password;
}

Finally, the associated HTML form can be simply defined as follows:

@(form: Form[Authentication.Login], returnTo: String)
@layout {
 <h1>Please sign in</h1>
 @helper.form(routes.Authentication.authenticate(returnTo)) {

 @for(error <- form.globalErrors) {
 @error.message
 }

 @helper.inputText(form("username"), '_label -> "Name")
 @helper.inputPassword(form("password"), '_label -> "Password")
 <button>Sign in</button>
 }
}

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[132]

The template takes the form model and return URL as parameters and returns a page
that contains a form bound to the authentication action.

The login action is straightforward to implement—it just renders the previous
template. The authenticate action checks whether the form has been correctly filled
in and that the credentials are correct and in such a case, adds the user identity to
his session and redirects him to the return URL. Then, checking whether a user has
been identified is just a matter of checking whether it has identity information in his
session. Here is an implementation of the authenticate action:

def authenticate(returnTo: String) = Action { implicit request =>
 val submission = Login.form.bindFromRequest()
 submission.fold(
 errors => BadRequest(views.html.login(errors, returnTo)),
 {
 case (username, password) =>
 if (users.authenticate(username, password)) {
 Redirect(returnTo).addingToSession("username" -> username)
 } else {
 val erroneousSubmission = submission
 .withGlobalError("Invalid username and/or password")
 BadRequest(
 views.html.login(erroneousSubmission, returnTo)
)
 }
 }
)
}

In the preceding code, the highlighted parts are the ones that check whether the
credentials are valid (using a service layer named users) and the one that adds
the username to the user's session. The session can be seen as a key-value store.
In our case, we associate the user's name with the username key (so we assume
that names are unique among users).

The Java version is as follows:

public static Result authenticate(String returnTo) {
 Form<Login> submission =
 Form.form(Login.class).bindFromRequest();
 if (submission.hasErrors()) {
 return badRequest(
 views.html.login.render(submission, returnTo)
);

Chapter 6

[133]

 } else {
 Login login = submission.get();
 if (users.authenticate(login.username, login.password)) {
 session().put("username", login.username);
 return redirect(returnTo);
 } else {
 submission.reject("Invalid username and/or password");
 return badRequest(
 views.html.login.render(submission, returnTo)
);
 }
 }
}

Now that we have support to authenticate users, we can restrict some actions to
authenticated users only. To achieve this, we look in the session for the username
key. Here is how we can restrict the auction room to authenticated users:

def room(id: Long) = Action { implicit request =>
 request.session.get("username") match {
 case Some(username) =>
 shop.get(id) match {
 case Some(item) => Ok(views.html.auctionRoom(item))
 case None => NotFound
 }
 case None =>
 Redirect(routes.Authentication.login(request.uri))
 }
}

The request.session expression returns the user's session. Then, the get
method searches in the session for a value associated with a given key (in our
case, username). If there is no such value, we redirect the users to the login
action and pass it the current request URL as a parameter.

The Java equivalent is as follows:

public static Result room(Long id) {
 String username = session().get("username");
 if (username != null) {
 Item item = Shop.get(id);
 if (item != null) {
 return ok(views.html.auctionRoom.render(item));
 } else return notFound();
 } else {

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[134]

 return redirect(routes.Authentication.login(request().uri()));
 }
}

In Scala, reading the session is achieved by calling the session
member of the request (that reads the request's session cookie),
and modifying the session is achieved by using methods such
as addingToSession or removingFromSession on a result
(that writes the result's session cookie).
In Java, the API to manipulate the session is somewhat more
high level; reading from and writing to the session is achieved by
retrieving the session with the session method of the controller
and then by imperatively using its get, put, or remove method.

Finally, the logout action removes the user's identity from its session:

val logout = Action { implicit request =>
 Redirect(routes.Items.list()).removingFromSession("username")
}

The Java equivalent is the following:

public static Result logout() {
 session().remove("username");
 return redirect(routes.Items.list());
}

Cross-site scripting
Cross-site scripting (XSS) is a typical security vulnerability of web applications
that allows attackers to inject a snippet of JavaScript into the HTML pages of your
application. This snippet is then executed by all the clients of your application that
browse the infected page. By default, dynamic values inserted in HTML templates
are escaped so that their content can not be interpreted as HTML structure by
browsers. Concretely, for example, the @("<a>foo") expression in a template
produces the <a>foo output.

There is a way to disable the HTML escaping process by using the Html function;
@Html("<a>foo") produces the <a>foo output. In order to protect
your application against cross-site scripting attacks, you should never pass a
user-submitted value to the Html function. More generally, I recommend
avoiding the use of this function.

Chapter 6

[135]

Cross-site request forgery
Cross-site request forgery (CSRF) is another typical security vulnerability of
web applications. It consists of making a user invoke an action of your application,
unbeknownst to him. An attacker can achieve this, for instance, by including, in an
HTML document, an image that points to an URL of your application. When a user
loads the page of the attacker's website, the request performed to your application
to retrieve the image content, includes all the user's cookies for your application,
including their session cookie. Note that in this case, the HTTP request is issued
using the GET verb, but the attacker can perform a POST request using a form
targeting your application (though this will require an additional action from the
user). In such a case, the request content type is limited to application/x-www-
form-urlencoded, multipart/form-data, and text/plain.

To prevent this kind of attack, a simple rule is to not expose actions that have
side effects as GET routes. However, this is not sufficient because, as explained
previously, the attacker could display to the user a fake form that would perform
a POST request to your application. You can protect your application against these
attacks by adding a hidden field to your forms that contains a randomly generated
value and then by checking whether the field contains the expected value when you
process the form submission. Attackers will not be able to send you fake requests
with the correct value. Finally, because this value is randomly generated and
specific to a user, you have to store it in his session before displaying the form.

For instance, to protect the Items.create action, you must first modify the Items.
createForm action, which displays the form to create items so that it generates a
random token and adds it as a hidden field of the displayed form and to the user's
session. Then, you can protect the Items.create action by checking whether the
form field effectively contains the same token as in the user's session.

Play provides an HTTP filter to automate this process.

HTTP request filters
HTTP filters is a feature of the Play framework that makes it possible to run
some code before or after your actions are invoked. Filters are defined in the
application's global object and are applied to all routed action right before the
action's code is executed.

In Scala, you can define a filter by overriding the doFilter method of your
global object, which has the following signature:

def doFilter(action: EssentialAction): EssentialAction

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[136]

This method is called by Play before invoking your actions. The default
implementation does nothing; it just returns the action.

The EssentialAction type is slightly more general than the Action[A] type that
we have been using from the beginning of this book. It is defined as follows:

trait EssentialAction extends
 RequestHeader => Iteratee[Array[Byte], Result]

This means that an essential action is a function that takes the HTTP request
headers and returns an incremental computation (processing the request body),
yielding an HTTP response.

A basic filter can be defined as follows:

import play.api.mvc.EssentialAction
override def doFilter(action: EssentialAction) =
 EssentialAction { headers =>
 println("do something before the action is executed")
 val iteratee = action(headers)
 println("when is this printed?")
 iteratee
 }

Note that the second println method is not executed after the action has been
executed because the computation that yields the action's result is asynchronous.
To do something after an action has been executed, you can use the map method:

action(headers).map { result =>
 println("do something after the action has been executed")
 result
}

For convenience, Play provides a higher-level Filter API that hides the
iteratee-related details. Thus, our filter can be implemented as follows:

import play.api.mvc.Filter
class MyFilter extends Filter {
 def apply(action: RequestHeader => Future[Result])
 (headers: RequestHeader) = {
 println("do something before the action is executed")
 action(headers).map { result =>
 println("do something after the action has been executed")
 result
 }
 }
}

Chapter 6

[137]

Then, to apply such a filter to your global object, you can make this one extend the
WithFilters class:

import play.api.mvc.WithFilters
object Global extends WithFilters(new MyFilter) {
 // … the remaining global object definition
}

The WithFilters class overrides the doFilter method to apply the filter that is
passed as a parameter. You can pass several filters to the WithFilters constructor:

object Global extends WithFilters(
 new FirstFilter, new SecondFilter
)

In such a case, filters are chained in the same order they are passed as parameters.
In the preceding code, FirstFilter is applied before SecondFilter.

In Java, you can set up the filters of your application by overriding the filters
method of your global object, which returns an array of filter classes:

import play.api.mvc.EssentialFilter;
@Override
public <T extends EssentialFilter> java.lang.Class<T>[] filters()
{
 return new Class[] { MyFilter.class };
}

Nevertheless, at the time of writing this, there is no Java-idiomatic API to define filters.

Play provides some predefined filters. To use them, add a dependency on the
filters artifact to your build:

libraryDependencies += filters

Notably, Play provides a filter that compresses the results of your actions if the
client accepts the gzip compression. To use it, just add the following to your
global object definition:

import play.filters.gzip.GzipFilter
object Global extends WithFilters(new GzipFilter()) {
 // …
}

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[138]

The Java equivalent is as follows:

@Override
public <T extends EssentialFilter> java.lang.Class<T>[] filters()
{
 return new Class[] { GzipFilter.class };
}

The following figure integrates filters and the user session in the architecture of the
Play framework:

Filters are located between the router and the controllers. The user session exists only on the client side.

Using the CSRF filter
Finally, Play also provides a CSRF filter that automatically checks that the CSRF
token of a form submission corresponds to the one in the client's session.

Enable this filter as usual:

import play.filters.csrf.CSRFFilter
object Global extends WithFilters(new CSRFFilter())

The Java equivalent is as follows:

@Override
public <T extends EssentialFilter> java.lang.Class<T>[] filters()
{
 return new Class[] { CSRFFilter.class };
}

Chapter 6

[139]

The filter generates a new token for each GET request and puts it to the client's
session. Then, by default, all POST requests that contain a form submission are
filtered; if the form submission does not contain a CSRF field with the correct
token value, the filter returns a 403 (Forbidden) response.

So, you have to add a CSRF field that contains the generated token to each of your
forms. Again, Play provides a function that does just this:

@helper.form(routes.Items.create()) {
 @helper.CSRF.formField
 … the remaining form definition
}

Alternatively, you can put the token in the query string of the form submission action:

@helper.form(helper.CSRF(routes.Items.create())) { … }

In Scala, in both cases, you need to add an implicit RequestHeader parameter to
your template so that the CSRF helper can retrieve the current CSRF token:

@(form: Form[CreateItem])(implicit header: RequestHeader)

This step is not required in Java because the current request's header is automatically
imported from the current HTTP context.

The HTTP context is set up by Play before executing your action's
code. It basically contains references to the incoming HTTP request
and the outgoing HTTP response.

See the relevant part of the official documentation at http://www.playframework.
com/documentation/2.3.x/ScalaCsrf to get information on all the possible
configuration options of the filter.

Enabling HTTPS
By default, Play applications use only HTTP. This means that the data exchanged with
clients can be seen by inspecting the network traffic. This situation can be acceptable
for a wide range of applications; however, as soon as you exchange sensible data
with clients, such as passwords or credit card numbers, the communications should
be encrypted. You can achieve this by using HTTPS instead of HTTP. Enabling the
HTTPS support is just a matter of defining a system property named https.port that
contains the port number to be used. Note that such a property can also be passed as
an argument to the run or start sbt command:

[shop] $ run –Dhttps.port=9001

http://www.playframework.com/documentation/2.3.x/ScalaCsrf
http://www.playframework.com/documentation/2.3.x/ScalaCsrf

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[140]

You can then access your application's resources using HTTPS URLs, such as
https://localhost:9001/items.

HTTPS uses SSL to encrypt the communications between clients and servers.
The SSL protocol requires servers to own a certificate. Play generates a self-signed
certificate if you don't provide one. However, web browsers generally warn users
when they encounter such a certificate, so you should consider buying a certificate
from a signing authority. To use such a signed certificate in your Play application,
store it in a Java KeyStore and set an https.keyStore system property that
contains the path to the KeyStore and an https.keyStorePassword system
property that contains the KeyStore password:

[sohp] $ run –Dhttps.port=9001 -Dhttps.keyStore=/path/to/jks -Dhttps.
keyStorePassword=password

Play builds an SSLEngine setting up SSL according to the system
properties described earlier. You can have even finer control by
providing your own SSLEngine. Just implement the play.
server.api.SSLEnineProvider class (or play.server.
SSLEngineProvider in Java) that has only one abstract method
that returns an SSLEngine. Then, tell Play to use it by defining
an https.sslengineprovider property containing the fully
qualified name of your SSLEngineProvider implementation.

If you want to disable HTTP, just set an http.port system property to disabled:

[shop] $ run –Dhttps.port=9001 –Dhttp.port=disabled

Finally, absolute URLs generated by the reverse router must now use HTTPS or WSS
(in the case of WebSockets). This can be achieved by setting the secured parameter
value to true:

routes.Application.index.absoluteURL(secured = true)

The equivalent JavaScript code is as follows:

routes.controllers.Application.index.absoluteURL({secured: true})

In the case of WebSockets, the JavaScript code is as follows:

routes.controllers.Auctions.channel.webSocketURL({secured: true})

Chapter 6

[141]

Saving computation time using cache
Using a cache can help you to avoid computing things several times. Web applications
support two kinds of caches: server-side and client-side caches. The latter can save
HTTP round trips. In both cases, dealing with expiration can be a complex task!

Play provides a minimal cache library and some controller level caching features that
can help you leverage both client-side and server-side caches. The implementation
uses EhCache under the hood and, by default, caches things in memory only. You'll
find more about EhCache at http://ehcache.org/.

To use it, you first need to add it to your build dependencies:

libraryDependencies += cache

The cache basically works as a key-value store. You can store values for a given
duration and retrieve them using a key. Let's use it in the Application.index
action that just displays a static HTML page:

import play.api.cache.Cache
val index = Action {
 Ok(Cache.getOrElse("main-html")(views.html.main()))
}

The getOrElse method retrieves the value associated with the given key, or if
not found, computes it and sets it in the cache. By default, the storage duration
is infinite but you can set a custom duration in seconds, for example, 1 hour:

Cache.getOrElse("main-html", 3600)(…)

The Java equivalent is as follows:

public static Result index() throws Exception {
 return ok(Cache.getOrElse("main-html", () -> views.html.main.
render(), 0));
}

In Java, the storage duration is mandatory.

The cache API also has set, get, and remove methods, to store, retrieve, and remove
a value, respectively.

http://ehcache.org/

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[142]

Nevertheless, this part of the API does not help you to deal with client-side caching
mechanisms; though our main page is always the same, web browsers don't cache
it and always send an HTTP request to retrieve it. Our server computes the page
content only once, but it is always sent through the wires to the clients. By relying
on a client-side cache, you can save some bandwidth.

Client-side caching mechanisms are based on the HTTP requests and response
headers, so their responsibility falls to the controller layer.

There are different ways to describe how HTTP clients can cache a result. You can,
for example, provide an expiration date. In this case, web browsers won't even send
an HTTP request to retrieve the resource as long as it didn't expire. However, it is
difficult to predict how long time a resource will be valid. Alternatively, you can
indicate when the resource was last modified, or associate a unique ETag value to
each version of your resource. In this case, the browser sends a request indicating the
last version it has in its cache, giving the HTTP server the opportunity to reply with
a 304 (Not Modified) response if the resource hasn't been modified since then. The
first approach saves HTTP round trips but might lead clients to see outdated content.
The second solution always requires an HTTP request (the response is empty if the
resource hasn't changed) but ensures that clients always sees up-to-date content.
The second approach can also be harder to manage if you can't easily track the
modifications of your content.

You can combine the second approach for client-side caching with server-side
caching by using the Cached action combinator:

val index = Cached("main-html") {
 Action {
 Ok(views.html.main())
 }
}

In Java, annotate your action with the @Cached annotation:

@Cached(key = "main-html")
public static Result index() {
 return ok(views.html.main.render());
}

The preceding code stores the whole HTTP response in the server cache and adds an
ETag and an Expires header to the response. By default, the expiration duration is
set to 1 year, but you can supply a custom duration.

Chapter 6

[143]

By default, the Scala Cached function caches the result returned by the action
irrespective of whether it was a successful result or not. You might not want to cache
error results; in such a case, you can specify which status codes should be cached:

Cached.status(OK, "main-html") { … }

The preceding code caches only responses with a 200 (OK) status code. There is no
equivalent in the Java API.

Serving content in several languages
Play comes with handy support for internationalization so that you can define
the messages of your application in several languages and automatically select the
language to use according to the user preferences (as defined by the Accept-Language
request header).

When a user performs a request to a server from his web browser, this one usually
sets an Accept-Language header according to the user preferences. For instance,
in my case, it is the following:

Accept-Language:en,en-US;q=0.8,fr;q=0.6,fr-FR;q=0.4

This means that the language I prefer to read is English and then French. The
preference level is defined by the q factor. If there is no q factor associated with
a language (for instance, en, in the preceding code), its value defaults to 1
(highest preference).

So, when I request a page, the server should serve the English version of the page
if it has one, or the French version. This means that the server has to choose, among
the languages it supports, the one that fits best its client.

In a Play application, you can define which languages are supported in the conf/
application.conf file, using their ISO 639-2 language code (optionally followed
by an ISO 3166-1 alpha-2 country code):

application.langs="en,fr"

The preceding line of code specifies that the application supports both English and
French. This information is used by Play to determine which language to use for each
request; it takes the request's accepted languages in decreasing order of preference
and selects the first that is supported by the application. If the application does not
support any of the request's accepted languages, then Play selects the first language
supported by the application (in this case, en).

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[144]

Note that if a client specifies that he accepts a language without setting a country
code and you defined that your application supports this language refined with a
country code, your language still satisfies his language. However, the inverse is not
true. For example, if a client accepts the language fr and you support just fr-FR,
this is fine because fr-FR satisfies fr. Inversely, fr does not satisfy fr-FR.

Once this language has been determined, it is used to find the corresponding
translation of each message in the application. Indeed, all the messages in an
internationalized application should be defined in the conf/messages.xx-yy files,
where xx is a language code and yy is an optional country code. These files contain
a list of messages defined as a key-value pair. For instance, our application's index
page displays the message Just Play Scala (or Just Play Java). In order to display
Juste Play Scala (or Juste Play Java) to French users, we have to do the following.

First, create the conf/messages.fr and conf/messages.en files and define a
message named index in both files:

file messages.fr
index=Juste Play Scala
file messages.en
index=Just Play Scala

Then, in the app/views/main.scala.html template, replace occurrences of the
message content with the @Message("index") expression. The whole template
should look like the following:

<!DOCTYPE html>
<html>
 <head>
 <title>@Messages("index")</title>
 </head>
 <body>
 <h1>@Messages("index")</h1>
 </body>
</html>

The Messages function looks for a translation of a message given its key. It determines
which language the message should be translated into by using an implicit Lang
parameter, so your template also have to take an implicit Lang parameter:

@()(implicit lang: Lang)

Note that this is not required in Java because the current language is automatically
imported from the current HTTP context. Also note that within a controller, an implicit
Lang parameter is automatically provided if there is an implicit RequestHeader header
in the scope.

Chapter 6

[145]

The translation search algorithm allows you to define default translations for your
messages and refine them for some languages or countries. It first searches in the
conf/messages.xx-yy file, where xx-yy is the selected language, which contains
a language code and country code. Then, it falls back to a conf/messages.xx file.
Then, it finally falls back to a conf/messages file. If none of these files provide a
translation, the message key is returned.

Note that the last file, conf/messages, is used to search the message's translations
regardless of the selected language. You can use it to provide default messages in
the language of your choice in case your application is only partially translated.

When a user tries to authenticate with an unknown name, we can produce this
error message: Unknown user: <name>, where <name> is the username. The French
version will be Utilisateur inconnu : <name>. Translations can be parameterized.
They use the java.text.TextFormat syntax:

authentication.unknown=Unknown user: {0}

To get a translation of the authentication.unknown message, you have to supply
one parameter:

Messages("authentication.unknown", username)

When retrieving a translation from Java code (which is not the case in HTML
templates), you have to use the Messages.get static method:

import play.i18n.Messages;
Messages.get("authentication.unknown", username);

Calling remote web services
Web applications sometimes make use of an external web service. For this purpose,
Play provides an HTTP client. To use it, add the following dependency to your build:

libraryDependencies += ws

In Java, the library is named javaWS:

libraryDependencies += javaWs

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[146]

Background – the OAuth 2.0 protocol
Though some web services can be freely used, most of them provide only
authenticated APIs. The OAuth 2.0 protocol is often used as an authentication
system. You can find more about OAuth at http://oauth.net/2/. Incidentally,
authenticating using OAuth requires calling a web service (the authorization
server as depicted in the following figure), so we will implement an OAuth
client to illustrate how to call web services:

As a reminder, the preceding figure shows a typical workflow using OAuth. In this
scenario, the user performs some action that requires the application to get a resource
held by an external resource server, on behalf of the user. The application starts by
redirecting the user to an external authorization server (that can be the same machine
as the resource server), which authenticates the user and returns an authorization code
to the application. Using this authorization code, the application can request an access
token to the authorization server. When the access token is received, the application
can use the token to perform a request to the resource server to get a resource on
behalf of the authenticated user. Finally, the access token can be reused for subsequent
requests so that users don't have to authenticate each time.

http://oauth.net/2/

Chapter 6

[147]

Integrating your application with your
preferred social network
Let's put this in practice. Suppose you want to give users a way to share a shop item
on their social network, and suppose this social network has an HTTP API for this
that uses OAuth for authorization.

To achieve this, add the following route to your application:

POST /items/:id/share controllers.Items.share(id: Long)

On the item's detail page, add a button that invokes this route. The idea is that the
Items.share action calls the social network's API, on behalf of the user, to share a
link to the item's page. As the authorization process uses OAuth, you also need to
add an OAuth controller and a route to handle the authorization code issued by the
authorization server:

GET /oauth/callback controllers.OAuth.callback

Let's begin with the Items.share action implementation:

def share(id: Long) = Action { implicit request =>
 request.session.get(OAuth.tokenKey) match {
 case Some(token) =>
 val url = routes.Items.details(id).absoluteURL()
 socialNetwork.share(url, token)
 Ok
 case None =>
 Redirect(OAuth.authorizeUrl(routes.Items.details(id)))
 }
}

The equivalent Java code is as follows:

public static Result share(Long id) {
 String token = session().get(OAuth.TOKEN_KEY);
 if (token != null) {
 String url = routes.Items.details(id).absoluteURL(request());
 socialNetwork.share(url, token);
 return ok();
 } else {
 return redirect(OAuth.authorizeUrl(routes.Items.details(id)));
 }
}

The preceding code looks for the access token in the user's session. If found, it calls
a socialNetwork service method to share the item's URL and returns a 200 (OK)
status. Otherwise, it redirects the user to an authorization URL.

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[148]

Implementing the OAuth client
The OAuth controller (in an app/controllers/OAuth.scala file or the app/
controllers/OAuth.java file) is responsible for computing the authorization
URL, handling the response code sent by the authorization server, retrieving
an access token from this code, and saving the access token in the user's session.
Let's detail these steps one by one.

The authorization URL depends on the authorization server used by your social
network API. Authorization servers often support adding a state parameter to
this URL, according to the OAuth specification, to maintain the state between the
request and callback. We can use it to redirect the user back to the item's details
page after he has been authenticated. Note that it would be even better to perform
the authentication process in a separate window, use JavaScript to automatically
close it after successful authorization, and send the Ajax request to share the item
only once the authorization process is done. This is left as an exercise for you to try.

The authorization URL depends on the authorization endpoint of the authorization
server. It looks like the following:

def authorizeUrl(returnTo: Call)(implicit request: RequestHeader):
String =
 makeUrl(authorizationEndpoint,
 "response_type" -> "code",
 "client_id" -> clientId,
 "redirect_uri" -> routes.OAuth.callback().absoluteURL(),
 "scope" -> scope,
 "state" -> returnTo.url
)

def makeUrl(endpoint: String, qs: (String, String)*): String = {
 import java.net.URLEncoder.{encode => enc}
 val params =
 for ((n, v) <- qs)
 yield s"""${enc(n, "utf-8")}=${enc(v, "utf-8")}"""
 endpoint + params.toSeq.mkString("?", "&", "")
}

The makeUrl function builds a URL from a given HTTP endpoint and a list of query
string parameters. I omitted the definition of the authorizationEndpoint, clientId,
and scope values, which depend on your application and authorization server.

Chapter 6

[149]

The Java version is as follows:

public static String authorizeUrl(Call returnTo) {
 return URL.build(AUTHORIZATION_ENDPOINT,
 URL.param("response_type", "code"),
 URL.param("client_id", CLIENT_ID),
 URL.param("redirect_uri", routes.OAuth.callback().
absoluteURL(request())),
 URL.param("scope", SCOPE),
 URL.param("state", returnTo.url())
));
}

It uses a hypothetical URL builder library that behaves like the Scala makeUrl function
in the preceding code.

Now, if a user submits the sharing form on an item's details page, they call the Items.
share action, which looks for an access token in their session and redirects them to the
authorization URL because there is no such access token yet. The authorization server
shows the login and authorization form. If the user authorizes the application to make
requests on behalf of its identity, he is redirected to the OAuth.callback action, which
is the next step to implement.

The OAuth.callback action finishes the authorization process. In the case of a
successful authorization, it makes an HTTP request to the authorization server
to exchange the authorization code that is passed to an access token:

import play.api.libs.ws.WS

val ws = WS.client(play.api.Play.current)

val callback = Action.async { implicit request =>
 request.getQueryString("code") match {
 case Some(code) =>
 val returnTo = request.getQueryString("state")
 .getOrElse(routes.Items.list().url)
 val callbackUrl = routes.OAuth.callback().absoluteURL()
 for {
 response <- ws.url(tokenEndpoint).post(Map(
 "code" -> Seq(code),
 "client_id" -> Seq(clientId),
 "client_secret" -> Seq(clientSecret),

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[150]

 "redirect_uri" -> Seq(callbackUrl),
 "grant_type" -> Seq("authorization_code")
))
 } yield {
 (response.json \ "access_token").validate[String].fold(
 _ => InternalServerError,
 token => Redirect(returnTo)
 .addingToSession(tokenKey -> token)
)
 }
 case None =>
 Future.successful(InternalServerError)
 }
}

The preceding code looks for the code request's query string parameter, performs a
POST request to the token endpoint provided by the authorization server, parses the
JSON response to retrieve the access token, and finally redirects the user to the initial
URL and adds the access token to its session.

The HTTP client is created by calling WS.client, which takes an application as a
parameter so that it can use the application configuration. Then, the ws.url method
starts building an HTTP request, and it just takes an endpoint as a parameter. Then,
the post method performs a POST request to the given URL. The body of the request
is passed as a parameter in exactly the same way you would set the body of an action's
response. Here, we use Map[String, Seq[String]], which is then formatted by
Play as an application/x-www-form-urlencoded content type, as expected by
the OAuth specification.

The HTTP request is asynchronously sent. The post method returns a
Future[WSResponse] value, hence the for/yield expression to compute the
action's result once the response has been received.

The Java equivalent is as follows (within the controllers.OAuth class):

import play.lib.ws.WS;
import play.lib.ws.WSClient;

static final WSClient ws = WS.client();

public static F.Promise<Result> callback() {
 String code = request().getQueryString("code");
 if (code != null) {

Chapter 6

[151]

 String state = request().getQueryString("state");
 String returnTo =
 state != null ? state : routes.Items.list().url();
 String callbackUrl =
 routes.OAuth.callback().absoluteURL(request());
 return ws.url(TOKEN_ENDPOINT)
 .setContentType(Http.MimeTypes.FORM)
 .post(URL.encode(
 URL.param("code", code),
 URL.param("client_id", CLIENT_ID),
 URL.param("client_secret", CLIENT_SECRET),
 URL.param("redirect_uri", callbackUrl),
 URL.param("grant_type", "authorization_code")
))).map(response -> {
 JsonNode accessTokenJson =
 response.asJson().get("access_token");
 if (accessTokenJson == null
 || !accessTokenJson.isTextual()) {
 return internalServerError();
 } else {
 String accessToken = accessTokenJson.asText();
 session().put(TOKEN_KEY, accessToken);
 return redirect(returnTo);
 }
 });
 } else {
 return F.Promise.pure(internalServerError());
 }
}

Here, the HTTP client is created using the WS.client method that uses the current
application's configuration. The ws.url method starts building an HTTP request.
The setContentType method is used to indicate that the request body has type
application/x-www-form-urlencoded. The post method performs the HTTP
request. Here, we pass a string value as the request body, which is computed using
a hypothetical URL.encode function that formats a list of key-value pairs into the
application/x-www-form-urlencoded content type.

Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client

[152]

Calling the HTTP API of your preferred
social network
Now that the authorization process is implemented, we can effectively implement
the SocialNetwork service layer that performs an HTTP request on an external
HTTP API, on behalf of the user, to share the details page of an item as follows:

object SocialNetwork {
 def share(content: String, token: String): Future[WSResponse] =
 ws.url(sharingEndpoint)
 .withQueryString("access_token" -> token)
 .post(Map("content" -> Seq(content)))
}

Here, we use the withQueryString method to add query string parameters to the
initial HTTP endpoint.

The Java equivalent is as follows:

public F.Promise<WSResponse> share(String content, String token) {
 return ws.url(SHARING_ENDPOINT)
 .setQueryParameter("access_token", token)
 .setContentType(Http.MimeTypes.FORM)
 .post(URL.encode(URL.param("content", content)));
}

In our use case, we only performed POST requests, but there are also the get, put,
and delete methods to perform HTTP requests with other verbs.

These methods are asynchronous too; they return a Future[WSResponse] object
(Promise<WSResponse> in Java). Once you receive the response content, you
can interpret it as JSON or XML, using the json or xml methods (asJson and
asXml in Java), but you can also get its headers. See the API documentation for
more information.

Finally, it is also possible, with the Scala API, to incrementally read the response
content using iteratees.

Chapter 6

[153]

Summary
In this chapter, you saw several components of the Play stack that can help you
manage security issues, perform caching and internationalization, and make
HTTP requests to external web services.

This chapter also revealed more details of the Play internals. Indeed, you now
know that there is a component between the router and controllers: filters.

Finally, this chapter also emphasized the fact that the user session scope is
not stored on your application but on the client side. It is carried out on every
request performed.

The next chapter will help you to keep the code base easy to grow by making it
more modular. It will also show you how to deploy your application in the real
world and how to manage the different configuration environments between
development and production.

Scaling Your Codebase and
Deploying Your Application

In the previous chapter, we added several features to our case study application
without being careful in making this code reusable or maintainable. This chapter
presents common code patterns you want to use in order to keep a productive code
base. We will also see how to deploy the application in the real world.

The following is the list of topics that will be covered in this chapter:

•	 Factor out common code defining actions
•	 Definition of subprojects and handle dependency injection
•	 Deployment of the application to a cloud Platform as a Service or

dedicated hardware
•	 Handle per environment configuration

Making an action's logic reusable and
composable with action builders
This section shows patterns to factor out the common code that is duplicated in your
controllers. The resulting action builders can be used to capture transversal concerns
such as authentication.

Scaling Your Codebase and Deploying Your Application

[156]

Capturing the logic of actions that use
blocking APIs
We saw in Chapter 5, Reactively Handling Long-running Requests, how to specify in
which execution context to execute an action communicating with a database using
a blocking API based on JDBC. We did this by wrapping the action code in a Future
object (a Promise object in Java) and by explicitly specifying which execution context
to use to execute them. This resulted in quite bloated code:

import my.execution.context
val myAction = Action.async {
 Future {
 // the action's code actually starts only here!
 }
}

The Java equivalent was the following:

public static Promise<Result> myAction() {
 return Promise.promise(
 () -> {
 // the action's code actually starts only here!
 },
 HttpExecutionContext.fromThread(myExecutionContext)
);
}

You will want to get rid of the boilerplate, and to do so, just write the following:

val myAction = DBAction {
 // the action's code
}

Well, a naive solution is easy to achieve:

def DBAction(actionBlock: => Result) = Action.async {
 Future { actionBlock }
}

However, in the earlier chapters, we saw that there are several overloaded ways
to build actions. For instance, you can specify which body parser to use; you can
write the action's block as a function that takes a request as a parameter or just
as a block that returns a result. So, to make DBAction support all these ways of
building actions, you have to write a lot of overloads. In order to avoid that pain,
Play provides an action builder class that captures all these overloads so that the
remaining work to define a custom action builder (such as DBAction) only consists
in saying how to invoke the action's block of code:

Chapter 7

[157]

import play.api.mvc.ActionBuilder
object DBAction extends ActionBuilder[Request] {
 def invokeBlock[A](
 request: Request[A],
 block: Request[A] => Future[Result]) = {
 Future(block(request))(my.execution.context).flatten
 }
}

The preceding code invokes the action's block in a Future object configured to use
the right execution context. Then, it flattens the resulting Future[Future[Result]]
value to a Future[Result] value. The DBAction action builder can then be used in
the same way we use the Action object:

DBAction { … }
DBAction { implicit request => … }
DBAction(parse.json) { implicit request => … }
DBAction.async { … }
DBAction.async { implicit request => … }
DBAction.async(parse.json) { implicit request => … }

It is worth noting, however, that in the specific case of defining an action builder that
just sets an execution context; the implementation can be simplified to the following:

object DBAction extends ActionBuilder[Request] {
 override protected lazy val executionContext = my.execution.context
 def invokeBlock[A](
 req: Request[A],
 block: Request[A] => Future[Result]) =
 block(request)
}

Things are a bit different in Java because the API has been designed to be
syntactically comfortable to use with Java 6, which does not provide the lambda
notation we now have in Java 8. This is why you use annotations to customize your
action definitions. The Java equivalent of the DBAction class will be the following
@DB annotation:

@DB
public static Result myAction() {
 // the action's code
}

Scaling Your Codebase and Deploying Your Application

[158]

The definition of the @DB annotation is the following:

import play.mvc.Action;
import play.mvc.With;
public class DBAction extends Action<Void> {

 @With(DBAction.class)
 @Target({ ElementType.TYPE, ElementType.METHOD })
 @Retention(RetentionPolicy.RUNTIME)
 public static @interface DB {}

 static ExecutionContext myExecutionContext = …;

 @Override
 public Promise<Result> call(Http.Context ctx) throws Throwable {
 return Promise.promise(
 () -> delegate.call(ctx),
 HttpExecutionContext.fromThread(myExecutionContext)
).flatMap(r -> r);
 }
}

We define a DBAction class that extends Action. This class has one abstract
method, call, that defines how to call the action's code. We implement this
method by invoking the call method of a delegate action within a promise
that is supplied to the custom execution context. Finally, we flatten the resulting
Promise<Promise<Result>> object to a Promise<Result>. The @DB annotation is
defined as a static inner annotation. It contains nothing, but it is itself annotated with
@With(DBAction.class), which tells Play to wrap an action method annotated with
@DB into a DBAction class.

The delegate action is provided by Play when it handles the annotation; it can be
thought of as the reification of the action's body as an Action instance that can be
invoked by calling its call method.

Before invoking Java actions, Play looks for attached annotations. It builds the final
action to execute by first wrapping the action code into an Action object, creating
as many extra Action object wrappers as there are annotations, and chaining them
so that their delegate member refers to the next one, up to the initial action. Play
then invokes the Action object that results from this process. Note that you can also
attach annotations on the controller class definition. Finally, if the order of the effects
of your action interceptors matters, you should use the @With annotation instead and
pass it a list of action interceptors (they will be applied in order):

@With({DBAction.class, LogAction.class})

Chapter 7

[159]

Capturing the logic of actions that require
authentication
The code that protects actions from unauthenticated users (given in Chapter 6,
Leveraging the Play Stack – Security, Internationalization, Cache, and the HTTP Client)
can be improved in a similar way as follows:

def bid(id: Long) = Action(parse.json) { implicit request =>
 request.session.get("username") match {
 case Some(username) =>
 for (bid <- request.body.validate(bidValidator)) {
 AuctionRooms.bid(id, username, bid)
 }
 Ok
 case None =>
 Redirect(routes.Authentication.login(request.uri))
 }
}

Instead of writing the preceding code, you will just write the following:

def bid(id: Long) =
 AuthenticatedAction(parse.json) { implicit request =>
 for (bid <- request.body.validate(bidValidator)) {
 AuctionRooms.bid(id, request.username, bid)
 }
 Ok
 }

The AuthenticatedAction class is an action builder that invokes the action's block
if there is a username in the session. The difference with the DBAction action builder
is that we want to refine the request to add it the username member so that we can
write request.username:

class AuthenticatedRequest[A](
 val username: String,
 request: Request[A]) extends WrappedRequest[A](request)

object AuthenticatedAction extends ActionBuilder[AuthenticatedRequest]
{
 def invokeBlock[A](
 request: Request[A],
 block: AuthenticatedRequest[A] => Future[Result]) =
 request.session.get("username") match {
 case Some(username) =>

Scaling Your Codebase and Deploying Your Application

[160]

 block(new AuthenticatedRequest(username, request))
 case None =>
 Future.successful(
 Redirect(routes.Authentication.login(request.uri))
)
 }
}

The AuthenticatedRequest type refines the Request type by adding it a username
member. The AuthenticatedAction class is an ActionBuilder[AuthenticatedRe
quest] object, which means that it handles blocks taking an AuthenticatedRequest
class as a parameter, instead of the usual Request, as for DBAction. Then, the
invokeBlock implementation looks for the username in its session, builds the
AuthenticatedRequest and then supplies it to the action's block. If there is no
username in the session, the action block is not executed and a redirection to the
login page is returned.

In Java, there is no analogous way to refine the Request type. Instead, action
interceptors can store data on a Map<String, Object> object that is shared by
the HTTP context:

public class AuthenticatedAction extends Action<Void> {

 @With(AuthenticatedAction.class)
 @Target({ ElementType.TYPE, ElementType.METHOD })
 @Retention(RetentionPolicy.RUNTIME)
 public static @interface Authenticated {}

 @Override
 public Promise<Result> call(Http.Context ctx) throws Throwable {
 String username = ctx.session().get("username");
 if (username != null) {
 ctx.args.put("username", username);
 return delegate.call(ctx);
 } else {
 return Promise.pure(
 redirect(routes.Authentication.login(ctx.request().uri()))
);
 }
 }
}

Chapter 7

[161]

The ctx.args property contains the map shared by the HTTP context. It can be used
as follows by controllers:

@Authenticated
@BodyParser.Of(BodyParser.Json.class)
public static Result bid(Long id) {
 CreateBid bid =
 Json.fromJson(request().body().asJson(), CreateBid.class);
 String username = (String)(ctx().args.get("username"));
 AuctionRooms.bid(id, username, bid.price);
 return ok();
}

Note that in the case of authentication, Play already provides a play.
api.mvc.Security object that provides the AuthenticatedRequest
and AuthenticatedBuilder classes that can be reused to implement a
simple authentication process as in our example. The Java API provides
a play.mvc.Security class that contains an AuthenticatedAction
class and an Authenticated annotation similar to our example.

Combining action builders
We saw that Java annotations on actions can be combined either by placing several
annotations on an action or by using the @play.mvc.With annotation. In Scala,
action builders can be combined too. Consider for instance the Auctions.room
action. It requires the user to be authenticated and performs a database query. You
can combine the DBAction and AuthenticatedAction builders using andThen:

def room(id: Long) =
 (DBAction andThen AuthenticatedAction) { implicit request =>
 service.shop.get(id) match {
 case Some(item) => Ok(views.html.auctionRoom(item))
 case None => NotFound
 }
 }

The andThen method works just like the andThen method of functions—it returns
an action builder that applies the first builder and then the second builder.

Scaling Your Codebase and Deploying Your Application

[162]

Modularizing your code
As our shop application grew in size, we added code but we never went back to
see how the components are interrelated. The following figure shows the classes
involved in our application and the dependency links between them:

A diagram of the classes involved in the shop application and the dependency links between them.
Note that the models.db.Schema component has no equivalent in the Java version.

We observe that there are many interdependencies between the parts of the
application. Of course, controllers depend on services, but we also see that both
services and controllers might depend on a web service client (for example, the
OAuth controller and the SocialNetwork service in our case). More importantly,
the same applies to the Play Application class. Both controllers and services might
depend on the underlying application (the Application class has methods to get the
application's configuration, plugins, or classpath).

Until now, I didn't give any particular recommendation regarding the way you can
resolve these dependencies. In my code examples, everything was implemented
as object singletons (or static methods in Java) that were directly referred to by the
code depending on it. Though this design has the merit of being simple, it makes
it less modular, and therefore, it is harder to test. For instance, there is no way to
use a mocked service to test a controller because this one is tightly coupled to the
service singleton.

Chapter 7

[163]

Applying the inversion of control principle
My favorite solution to make the code more modular is to apply the inversion of
control principle. Instead of letting the components instantiate or have hardcoded
references to their dependencies, you (or a dependency injection process) supply
these dependencies to the components. This way, you can use a mocked service
layer to test a controller. In practice, defining each component as a class that takes
its dependencies as constructor parameters works quite well. We used objects
everywhere (or Java classes with only static methods), but now we have to trade
them for regular classes.

Unfortunately, this solution does not work so well in the case of Play applications.
Indeed, as we see in the previous figure, there is a component that several other
components depend on, and that is not controlled by you: Application. You don't
control this component because it is managed by Play when it handles your project's
life cycle. When Play runs your code, it creates an Application instance from
your project and registers it as the current application. The significant advantage
of this design is that Play is able to hot reload your project when it detects changes
in the development mode, without requiring anything from you. On the other
hand, if your code depends on a feature provided by the Application instance
(for example, getting the application's configuration), there is no other way to
access it than reading the Play global state, which is play.api.Play.current (or
its Java equivalent, play.Play.application()). This function returns the current
application if there is already such an application started; otherwise it throws an
exception. As you don't control the application creation and because the current
application is not a stable reference, you cannot use play.api.Play.current
(or play.Play.application() in Java) to supply an Application object to the
constructor of a component that has such a dependency.

Although this design makes it impossible for you to statically instantiate all the
components of your application, it is yet possible to use a runtime dependency
injection system. Such a system instantiates your components at runtime, based on
an injection configuration. If you can tell your injection mechanism how to resolve
the current Application class, your injection mechanism can instantiate your
application's components.

I usually do not recommend using runtime dependency injection
systems because they might have hard-to-debug behaviors or produce
exceptions at runtime. However, it is worth noting that Play 2.4 aims to
make it possible to fully achieve a compile-time dependency injection
(though at the time of writing this, the implementation is still subject to
discussion). Therefore, my advice remains: write your components as
classes taking their dependencies as constructor parameters.

Scaling Your Codebase and Deploying Your Application

[164]

Finally, to modularize your code, you have to achieve two steps: turning each
component into a class taking its dependencies as constructor parameters and
setting up a runtime dependency injection system.

Applying the first step in your Scala code leads to the following changes in the
business layer. The models.db.Schema object becomes a class that takes an
Application object as the constructor parameter. Consequently, the models.Shop
object becomes a class that takes models.db.Schema as a constructor parameter.
Similarly, the models.AuctionRooms object becomes a class that depends on an
Application (this one is used to retrieve the Akka actor system). Finally, the
models.SocialNetwork object becomes a class that depends on a WSClient object.

Now that the Schema class constructor takes an Application as a
parameter, we clearly see that our service layer depends on the Play
framework. Indeed, our application relies on Play evolutions to set up
the database. However, in a real-world project, your service layer might
be completely decoupled from the Play framework. In such a case, the
Schema class will take Database as a constructor parameter instead of
a Play application.

In Java, the models.Shop implementation uses the JPA plugin, which itself uses a
hardcoded reference to the currently running Play application (it uses play.Play.
application()), so you cannot achieve inversion of control for this component.
Similarly, the Play Akka integration API directly uses the currently running Play
application, so you can not either achieve inversion of control for the models.
AuctionRooms component. You should nevertheless turn them into regular classes
(with methods instead of static methods) so that they can be injected into your
controllers. Finally, the models.SocialNetwork component can be turned into
a class that takes WSClient as a constructor parameter.

Using dynamic calls in route definitions
The controller layer is, in turn, affected by the application of the inversion of control
principle. However, if you turn a controller object into a class (or define actions as
methods instead of static methods in Java), you will encounter a problem—your
routes expect actions to be statically referenced. Thankfully, Play allows you to have
a dynamic controller by prepending the action call of a route with the character @.
So, you have to prepend all the action calls of your routes that use a dynamic
controller with @:

GET /items @controllers.Items.list
POST /items @controllers.Items.create
etc. for other routes

Chapter 7

[165]

the following route remains unchanged, though
GET /assets/*file controllers.Assets.versioned(path="/public",
file: Asset)

How does Play handle such route definitions? When a request matches the
URL pattern, it retrieves the corresponding controller instance by calling the
getControllerInstance method of your project's Global object and then calls the
corresponding action. You are responsible for implementing this method, which has
the following type signature:

def getControllerInstance[A](controllerClass: Class[A]): A

In Java it has the following type signature:

public <A> A getControllerInstance(Class<A> controllerClass)

This method provides Play with a means of using your runtime dependency
injection system. A common pattern is to define an injector (as per your dependency
injection system) in your Global object and then use it to implement the
getControllerInstance method.

Setting up a dependency injection system
Several dependency injection systems exist, especially in the Java ecosystem. In Scala,
runtime dependency injection systems are not very popular. That's why in this book
I provide only an example using Guice, both in Scala and Java.

Guice is a dependency injection framework brought by Google. It
implements the standard JSR 330 specification, so the content of this
section should require few modifications to be adapted to another
standards-compliant dependency injection system.

Here is a Scala implementation of a drop-in GlobalSettings mixin that achieves
dependency injection using Guice:

import com.google.inject.{Provider, Guice, AbstractModule}
import play.api.{Application, GlobalSettings}

trait GuiceInjector extends GlobalSettings {
 val injector = Guice.createInjector(new AbstractModule {
 def configure() = {
 val applicationClass = classOf[Application]
 bind(applicationClass) toProvider new Provider[Application] {
 def get() = play.api.Play.current
 }

Scaling Your Codebase and Deploying Your Application

[166]

 }
 })
 override def getControllerInstance[A](ctrlClass: Class[A]) =
 injector.getInstance(ctrlClass)
}

This trait creates an injector whose configuration is instructed on how to resolve a
dependency to an Application object (by reading the play.api.Play.current
variable). Then, the getControllerInstance method just delegates to this injector.
When Guice is asked to get a class instance, it figures out the class dependencies by
looking at its constructor parameters (using reflection). It then tries to inject them by
resolving them according to the injector configuration (if the configuration tells you
nothing for a given class, it tries to create an instance by calling its constructor, after
having resolved its dependencies, and so on).

To use this trait in your project, just mix it in your Global object:

object Global extends WithFilters(CSRFFilter())
 with GuiceInjector { … }

In Java, an equivalent implementation is as follows:

import com.google.inject.AbstractModule;
import com.google.inject.Guice;
import com.google.inject.Injector;
import com.google.inject.Provider;
import play.Application;
import play.GlobalSettings;

public class Global extends GlobalSettings {
 final Injector injector =
 Guice.createInjector(new AbstractModule() {
 @Override
 protected void configure() {
 bind(Application.class)
 .toProvider(new Provider<Application>() {
 @Override
 public Application get() {
 return play.Play.application();
 }
 });
 }
 });
 @Override
 public <A> A getControllerInstance(Class<A> controllerClass) {
 return injector.getInstance(controllerClass);
 }
}

Chapter 7

[167]

Making your code injectable
As is the case with most dependency injection systems, your code has to be adapted
to be injectable. That is to say, Guice needs to know which constructor it should use to
instantiate a class. In Java (and in Guice), the JSR-330 specification defines standard
annotations for this purpose. This means that the constructor you want Guice to use
must be annotated with the @javax.inject.Inject annotation.

Note that this adaptation step is not required by some dependency
injection systems, for instance, PicoContainer in Java and Subcut (using
the injected macro) and MacWire in Scala. Though they do not suffer
from this inconvenience, their usage seems to be less prevalent than
Guice. This is why I sticked to Guice in this book. Nevertheless, feel free
to give them a try.

Furthermore, in the case of controllers, we don't want to create a new instance each
time getControllerInstance is called (that is, each time a request is routed to a
dynamic controller call), but we want to reuse the same controller instance during
the whole application's lifetime. Fortunately, Guice can do this for us if we annotate
our controllers with the @javax.inject.Singleton annotation.

In order to avoid having your entire code base polluted with such annotations, you
can restrict the perimeter of the classes that are managed by Guice to the controllers.
Thus, you can define a controllers.Service class that wires up your services, and
then you can make your controllers depend on this class instead of depending on the
services (Guice won't instantiate them so that you don't have to annotate them):

package controllers

import javax.inject.{Singleton, Inject}
import models.{SocialNetwork, Users, AuctionRooms, Shop}
import db.Schema
import play.api.libs.ws.WS

@Singleton
class Service @Inject() (val app: play.api.Application) {
 val ws = WS.client(app)
 val shop = new Shop(new Schema(app))
 val auctionRooms = new AuctionRooms(app)
 val users = new Users
 val socialNetwork = new SocialNetwork(ws)
}

Scaling Your Codebase and Deploying Your Application

[168]

The equivalent Java code is as follows:

package controllers;

import com.google.inject.Singleton;
import models.AuctionRooms;
import models.Shop;
import models.SocialNetwork;
import models.Users;
import play.libs.ws.WSClient;
import play.libs.ws.WS;

@Singleton
public class Service {
 public final WSClient ws = WS.client();
 public final Shop shop = new Shop();
 public final AuctionRooms auctionRooms = new AuctionRooms();
 public final Users users = new Users();
 public final SocialNetwork socialNetwork =
 new SocialNetwork(ws);
}

In Java, we don't take an Application object as a constructor parameter because
as mentioned before, the JPA and Akka APIs have a hardcoded dependency on
the currently started Play application.

Finally, you can define your controllers as injectable classes depending on this
service. Here is the relevant code for the Items controller:

@Singleton class Items @Inject() (service: Service)
 extends Controller { … }

The equivalent Java code is the following:

@Singleton
public class Items extends Controller {
 protected final Service service;
 @Inject
 public Controller(Service service) {
 this.service = service;
 }
 …
}

Chapter 7

[169]

Note that the code of your controllers might also depend on an Application object
(for example, the cache API uses an implicit Application parameter). So, you might
also need to add the following implicit definition to your Scala controllers:

implicit val app = service.app

Finally, you can avoid repeating this boilerplate code for each controller by factoring
it out in a controllers.Controller trait (or class in Java):

package controllers

class Controller(val service: Service)
 extends play.api.mvc.Controller {
 implicit val app = service.app
}

The equivalent Java code is as follows:

package controllers;

public class Controller extends play.mvc.Controller {
 protected final Service service;
 public Controller(Service service) {
 this.service = service;
 }
}

Then, all you need is to make your controllers extend controllers.Controller:

@Singleton class Items @Inject() (service: Service)
 extends Controller(service) { … }

The equivalent Java code is as follows:

@Singleton
public class Items extends Controller {
 @Inject
 public Items(Service service) {
 super(service);
 }
 …
}

Your application should now compile and run properly.

Scaling Your Codebase and Deploying Your Application

[170]

Defining the controllers.Service component has a drawback—your
controllers now depend on the whole service layer instead of just one
service in particular. It is up to you to not follow this practice and to make
all your components injectable instead.

Mocking components
Now that your architecture is more modular, you can leverage it to independently
test each component. In particular, you can now test the controller layer without
going through the service layer even if controllers depend on services. You can do so
by mocking a service while testing a controller that depends on it. For this purpose,
Play includes Mockito, a library for mocking objects.

Let's demonstrate how to test, for instance, the Auctions.room action with a mocked
Shop service in a test/controllers/AuctionsSpec.scala file:

package controllers
import org.specs2.mock.Mockito
class AuctionsSpec extends PlaySpecification with Mockito {
 class WithMockedService extends {
 val service = mock[Service]
 } with WithApplication(
 FakeApplication(withGlobal = Some(new GlobalSettings {
 val injector = Guice.createInjector(new AbstractModule {
 def configure(): Unit = {
 bind(classOf[Application])
 .toProvider(new Provider[Application] {
 def get() = play.api.Play.current
 })
 bind(classOf[Service]).toInstance(service)
 }
 })
 override def getControllerInstance[A](clazz: Class[A]) =
 injector.getInstance(clazz)
 })))

 "Auctions controller" should {
 val request = FakeRequest(routes.Auctions.room(1))

 "redirect unauthenticated users to a login page" in
 new WithMockedService {
 route(request) must beSome.which { response =>

Chapter 7

[171]

 status(response) must equalTo (SEE_OTHER)
 }
 }

 "show auction rooms for authenticated users" in
 new WithMockedService {
 val shop = mock[Shop]
 service.shop returns shop
 shop.get(1) returns Some(
 Item(1, "Play Framework Essentials", 42)
)

 route(request.withSession(
 Authentication.UserKey -> "Alice")
) must beSome.which(status(_) must equalTo (OK))
 }
 }
}

The preceding code defines a WithMockedService scope, which extends
WithApplication and that uses a global object that defines custom dependency
injection logic. This dependency injection logic binds the Service class to a mocked
instance, defined as a service member in the early initialization block. The first test
specification does not actually rely on this mock; it checks that an unauthenticated
user is effectively redirected to the login page when he attempts to access an auction
room. The second test specification creates a mock for the Shop class, configures
the service mock to use the shop mock, configures the shop mock to return an Item
object, and finally checks whether an authenticated user effectively gets the auction
room page. The AuctionsSpec specification class extends the Mockito trait, which
provides the integration with the Mockito API.

Something similar can be achieved in Java, in a test/controllers/AuctionsTest.
java file:

package controllers;
import static org.mockito.Mockito.*;
public class AuctionsTest extends WithApplication {
 Service service;
 @Override
 protected FakeApplication provideFakeApplication() {
 return fakeApplication(new GlobalSettings() {
 {
 service = mock(Service.class);
 }

Scaling Your Codebase and Deploying Your Application

[172]

 Injector injector =
 Guice.createInjector(new AbstractModule() {
 @Override
 protected void configure() {
 bind(Application.class)
 .toProvider(new Provider<Application>() {
 @Override
 public Application get() {
 return play.Play.application();
 }
 });
 bind(Service.class).toInstance(service);
 }
 });
 @Override
 public <A> A getControllerInstance(
 Class<A> controllerClass) throws Exception {
 return injector.getInstance(controllerClass);
 }
 });
 }

 @Test
 public void redirectUnauthenticatedUsers() {
 Result response = route(fakeRequest(routes.Auctions.room(1)));
 assertThat(status(response)).isEqualTo(SEE_OTHER);
 }

 @Test
 public void acceptAuthenticatedUsers() {
 Shop shop = mock(Shop.class);
 when(service.shop()).thenReturn(shop);
 when(shop.get(1L)).thenReturn(
 new Item(1L, "Play Framework Essentials", 42.0)
);
 Result response =
 route(fakeRequest(routes.Auctions.room(1))
 .withSession(Authentication.USER_KEY, "Alice"));
 assertThat(status(response)).isEqualTo(OK);
 }
}

Chapter 7

[173]

Here, the AuctionsTest class extends WithApplication and overrides the
provideFakeApplication method to return a fake application with global settings
that define the custom dependency injection logic. This logic binds the Service class
to a mock created in the GlobalSettings instance initializer. As in the Scala version,
the first test specification does not actually rely on the mock. It checks whether an
unauthenticated user is redirected to the login page when they attempt to access an
auction room. The second test specification configures the service mock to use a
shop mock, then configures the shop mock to return an Item, and finally checks that
an authenticated user effectively gets the auction room page. The Mockito API is
brought by a static import of org.mockito.Mockito.*.

Splitting your code into several artifacts
You can go one step further and split your code into independent artifacts so that the
service layer does not even know the existence of the controller layer.

You can achieve this by defining several sbt projects, for instance, one for the controller
layer and another one for the service layer, by making the controller depend on the
service. Defining completely separated sbt projects can be cumbersome to work with
as you need to republish them to your local repository each time they change so
that projects depending on them can see the changes. Alternatively, you can define
subprojects within the same sbt project. In this case, a change in a project whose
another project depends on automatically causes a recompilation of this one.

The sbt documentation explains in detail how to set up a multi-project build.
The remaining of this section shows how to define separate projects for the
controller and service layers.

A way to achieve this consists of keeping the Play application (that is, the
controller layer) in the root directory and placing the service layer in the service/
subdirectory. In our case, the service layer contains the code under the models
package, so move everything from shop/app/models/ to shop/service/src/
main/scala/models/ (or shop/service/src/main/java/models/ in Java) and
everything from shop/test/models/ to shop/service/src/test/scala/models/
(or shop/service/src/test/java/models/ in Java). Note that the subproject is a
standard sbt project, not a Play application, so it follows the standard sbt directory
layout (sources are in the src/main/scala/ and src/main/java/ directories and
tests are in the src/test/scala/ and src/test/java/ directories).

Declare the service project in your build.sbt file:

lazy val service = project.settings(
 libraryDependencies ++= Seq(
 "com.typesafe.slick" %% "slick" % "2.0.1",

Scaling Your Codebase and Deploying Your Application

[174]

 jdbc,
 ws,
 "org.specs2" %% "specs2-core" % "2.3.12" % "test",
 component("play-test") % "test"
)
)

The service layer depends on Slick for database communication, on the Play JDBC
plugin to manage database evolutions, on the Play WS library for the social network
integration, and on specs and the play-test library for tests. We also need the play-test
library in order to create a fake Play application that manages our database evolutions.
Note that for the evolutions plugin to detect evolution files, you have to move them to
the shop/service/src/main/resources/evolutions/default/ directory.

In Java, the service subproject definition looks like the following:

lazy val service = project.settings(
 libraryDependencies ++= Seq(
 javaWs,
 javaJpa,
 /* + your JPA implementation */,
 component("play-test") % "test"
)
)

The service layer depends on the Play WS library, the Play JPA plugin, the JPA
implementation of your choice and the play-test library. As for the Scala version, you
have to move your evolution scripts to the shop/service/src/main/resources/
evolutions/default/ directory. You also have to move your persistence.xml
file to the shop/service/src/main/resources/META-INF/ directory.

Finally, make the root project depend on the service project:

lazy val shop = project.in(file("."))
 .enablePlugins(PlayScala)
 .dependsOn(service)

The equivalent code for Java projects is as follows:

lazy val shop = project.in(file("."))
 .enablePlugins(PlayJava)
 .dependsOn(service)

Chapter 7

[175]

Splitting your controller layer into several
artifacts
It could be interesting to pull the OAuth controller out of your application so that you
can reuse it in another project. However, if you can easily split your service layer into
different artifacts with no particular constraint, just as you would do with any other
sbt project, then splitting the controller layer is not as simple if you also want to split
the route definitions.

Indeed, splitting the route definitions has two consequences. First, all projects that
define some routes should be Play projects so that they benefit from the routes
compiler. Second, you need a means to include the routes defined by another project
in your final application.

You can define a Play subproject in your build just as you would define a regular sbt
subproject (just as you did with the service layer), with this key difference: enable
PlayScala (or PlayJava in Java) for the project. Consequently, the directory layout
is the same as with Play applications (that is, sources live in the app/ subdirectory,
and so on). In the case of the OAuth component, create an oauth/ directory and put
the controller code in an app/ subdirectory. Define the corresponding subproject in
your build.sbt file and make the shop project depend on it:

lazy val oauth = project.enablePlugins(PlayScala).settings(
 libraryDependencies ++= Seq(
 ws,
 "com.google.inject" % "guice" % "3.0"
)
)
lazy val shop = project.in(file("."))
 .enablePlugins(PlayScala)
 .dependsOn(service, oauth)

Our OAuth controller uses the Play WS library and Guice to be injectable. In Java,
the relevant parts of the build.sbt file are as follows:

lazy val oauth = project.enablePlugins(PlayJava).settings(
 libraryDependencies ++= Seq(
 javaWs,
 "com.google.inject" % "guice" % "3.0"
)
)
lazy val shop = project.in(file("."))
 .enablePlugins(PlayJava)
 .dependsOn(service, oauth)

Scaling Your Codebase and Deploying Your Application

[176]

The design of the Play router has important consequences when you define several
projects with routes.

Indeed, each route file is compiled into both a router and a reverse router. The router
is a regular Scala object whose qualified name is, by default, Routes. As each routes
file produces a dedicated router, if you have multiple routes file they must produce
routers with different names (otherwise, it issues a name clash). This can be achieved
by giving the routes file a different name; a conf/xxx.routes file will produce
a router in the xxx package. For our OAuth module, I suggest that you name the
routes file conf/oauth.routes so that the generated router is named oauth.Routes.

Reverse routers are defined per routes file and per controller. They are objects named
xxx.routes.Yyy, where xxx.Yyy is the fully qualified name of the controller (for
example, a route that refers to a controllers.Application controller produces
a reverse router named controllers.routes.Application). For the same routes
file, if the routes refer to controllers of the same package, their reverse routers are
merged. However, if different routes file define routes using controllers of the same
package, the generated reverse routers of the different projects have name clashes.
That's why you should always use specific package names for your subprojects that
define routes. For our OAuth module, I suggest that you place the OAuth controller
in a controllers.oauth package so that the reverse router is named controllers.
oauth.routes. So, the routes file of the OAuth modules is named shop/oauth/
conf/oauth.routes and contains the following definition:

GET /callback @controllers.oauth.OAuth.callback

Finally, the last step consists of importing the routes of the OAuth module into the
shop application. Write the following in the shop routes file:

-> /oauth oauth.Routes

This route definition tells Play to use the routes defined by the oauth.Routes router
using the path prefix /oauth. All the routes of the imported router are prefixed with
the given path prefix. In our case, the oauth.Routes router defines only one route,
so its inclusion in the shop project is equivalent to the following single route:

GET /oauth/callback @controllers.oauth.OAuth.callback

Now, you have a reusable OAuth controller that is imported in your shop application!

Application deployment
Before making your application publicly available, you should choose a unique
secret key to use to sign the session cookie. Keep this key a secret so that your
users won't be able to forge a fake session.

Chapter 7

[177]

The application secret key is defined by the application.secret configuration
property. By default, the template sets it to changeme. Note that if you try to
run your application in the production mode while your secret key still has the
changeme value, Play throws an exception.

Deploying to your dedicated infrastructure
We already saw how you can run your application in production mode using the
start sbt command. This command compiles your code, eventually executes the
assets pipeline if you use it, and starts the Play HTTP server in a new JVM.

However, the start command is executed within the sbt shell, which means that
you actually have two running JVMs: one for sbt itself and one for your application.
In addition to the start command, there also is a stage command that packages
the application and creates an executable *nix shell script and a .bat script to start it.
This script directly starts the Play HTTP server without relying on sbt. The script is
located in the target/universal/stage/bin/<app-name> file (that is, for the shop
application, it is located in the target/universal/stage/bin/shop file). Once an
application has been staged, it can be started by executing the script and stopped by
sending it a SIGTERM signal (this can be achieved by typing Ctrl + C on *nix systems).

The stage command is not specific to Play; it is provided by an sbt plugin
named native packager. As you will see in the next section, several cloud
hosting systems rely on this plugin to manage sbt applications from their
code source. They just invoke the sbt stage command when you deploy
it on the cloud, and then they can run the application.

The approach using the stage command requires you to have sbt installed on the
machine that runs the application. Alternatively, you can use the dist command
to produce an archive of the packaged application and its starting scripts. You can
then copy this archive to the server. The archive is located in a file named target/
universal/stage/<app-name>-<version>.zip.

Deploying to the cloud
Several cloud platforms as a service provide built-in Play support (for example,
Heroku or Clever Cloud). It is worth noting that most of them have free plans
if your application handles a limited traffic. This can be very useful to publish
a prototype on the Web without having to set up a server infrastructure.

Scaling Your Codebase and Deploying Your Application

[178]

The deployment process can vary from one system to the other, but the pattern
is generally to send the application source code on the platform as a service. The
platform then relies on the stage sbt command to produce the starting scripts and
manage their execution for you. Finally, deploying on such a platform is usually
as easy as performing a git push!

When this approach is not supported, the platform is usually able to run the
application from the .zip output file of the dist command described in the
previous section.

Handling per environment configuration
You probably want to use a different database in the dev and prod modes so that
during development, you don't alter the production data. Often, it is very common
to use different configuration settings in the dev and prod modes to make your
development process safer and easier (for example, by populating your database
with fake data).

The global object's method, onApplicationStart, is a good place to do some
setting up at application bootstrap, but you probably don't want to do the same
things for the dev and prod modes. You can distinguish between these modes by
calling the Application's mode member (or the isDev and isProd methods in Java).
Alternatively, you can use completely different global objects in the dev and prod
modes by setting its fully qualified name in the application.global configuration
property. For this to work, you need to be able to define different configuration
settings in the dev and prod modes, though.

Overriding configuration settings using Java
system properties
Configuration settings defined in the application.conf file can be overridden
when you run the application, by supplying additional command-line arguments:

$ target/universal/stage/bin/shop –Dapplication.global=my.prod.
GlobalObject

I recommend that you do not define the application's secret key in the
application.conf file so that there is no risk of putting it under
source version control. You should instead supply it as a command-
line argument.

Chapter 7

[179]

Using different configuration files
Alternatively, you can use distinct configuration files for the dev and prod modes.
This can be achieved by supplying a config.resource configuration property:

$ target/universal/stage/bin/shop –Dconfig.resource=prod.conf

This will look for a prod.conf file in the project's classpath.

You can also use the config.file property to use a file that is on the machine's file
system, or even config.url to specify a URL.

Summary
This chapter gave you some final advice on how to make your code base easy to
grow and how to deploy your application into a production environment.

More precisely, you saw how to construct action builders to factor out common
patterns of code defining actions. You saw how you can break down your code into
modular components that can be tested in isolation of each other and the specificities
of Play controllers and routers in this regard.

You also saw the different approaches you can follow to start your application in
the production mode, that is, without the hot-reloading system overhead, and how
to use per environment configuration settings.

Index
Symbols
200 (OK) status 147
403 (Forbidden) response 139
@DB annotation 158

A
action builders

combining 161
used, for making action

logic composable 155
used, for making action logic reusable 155

action logic
capturing, blocking APIs used 156-158
capturing, that require

authentication 159-161
making composable, with action

builders 155
making reusable, with action builders 155

actions 6
Akka

about 106
URL 106

application
integrating, with preferred

social network 147
application data

serializing, in JSON 19-22
application deployment

about 176
configuration settings overriding,

Java system properties used 178
different configuration files, using 179
per environment configuration,

handling 178

to cloud 177
to dedicated infrastructure 177

architecture, web service 31
artifacts

code, splitting into 173, 174
controller layer, splitting into 175, 176

assets
fingerprinting 89-91
managing, from build system 83

Assets controller
about 79
Cache-Control header 79

AuthenticatedAction class 159
authentication 130-133

B
bidirectional streaming,

WebSockets 124-126
blocking APIs

used, for capturing
action logic 156-158

body parser 25
branching, template engine 55
build system

assets, managing from 83
business layer 6

C
cache

used, for saving computation
time 141-143

client-side technologies 77
cloud

deploying to 177

[182]

code
making, injectable 167-169
splitting, into artifacts 173, 174

code, modularizing
about 162
code, making injectable 167-169
dependency injection system,

setting up 165, 166
dynamic calls, using in route

definitions 164, 165
inversion of control principle,

applying 163, 164
comments, template engine 57
components

mocking 170-173
computation time

saving, cache used 141-143
configuration files

using 179
configuration settings

overriding, Java system
properties used 178

content
serving, in several languages 143, 144

content negotiation
handling 69-71

controller layer
splitting, into artifacts 175, 176

controllers 6
controllers.Service component 170
cookies 130
CreateItem data type 23
Create, Read, Update, and Delete.

See CRUD
cross-site request forgery (CSRF)

about 135
HTTP request filters 135-137

cross-site scripting (XSS) 134
CRUD 7
CSRF filter

using 138, 139
ctx.args property 161
cURL

URL 17

D
database

populating, with fixtures 43
database evolutions 45
database management library

used, for persisting data 40
database schema evolutions

managing 45, 46
data flow

controlling 126
data, persisting

about 37
database management library used 40
relational database used 37, 38

data streams
manipulating 111

DBAction class 158
dependency injection system

setting up 165, 166
document fragments, template engine

reusing 55-57
dynamic calls

using, in route definitions 164, 165
dynamic values

inserting 53, 54

E
EhCache

URL 141
enumerators

used, for streaming results 110
evented execution model 97
EventSource.whenConnected method 117
execution contexts

managing 105-107
execution model

overview 95-98

F
fixtures

database, populating with 43

[183]

G
getOrElse method 141
Global object 44, 45

H
Haskell programming language

URL, for tutorials 19
HOCON 12
HTML form data validation

Java form validation API 66, 67
mandatory fields 67, 68
optional fields 67, 68
Scala form validation API 65

HTML forms
data, reading 63
data, validating 63, 64
generating 58-61
nested fields 61, 62
repeated fields 61, 62
submission, handling 63, 64
validation rules and JSON validation,

sharing 68
HTTP API

calling, of preferred social network 152
HTTP layer

fake Play application, running 35
reverse router, used for

generating URLs 34
testing 33

HTTP request filters 135-137
HTTP response

application data, serializing in JSON 19-22
body 17
building 17, 18
headers 17
status code 17

HTTPS
enabling 139, 140

HTTP tests
writing, effectively 35-37

Human Optimized Configuration Object
Notation. See HOCON

I
import statements, template engine 57
incremental computations

writing, iteratees used 108, 109
infrastructure

deploying to 177
in-memory database

using, for tests 46-49
inversion of control principle

applying 163, 164
iteratee

used, for writing incremental
computations 108, 109

iteratee, states
Cont(k) 108
Done(a, e) 108
Error(msg, e) 108

J
Jackson library

URL 20
Java

JPA, using in 42
session, manipulating 134

Java form validation API 66, 67
JavaScript dependencies

managing 91
JavaScript files

concatenating 86, 87
minifying 86, 87

JavaScript reverse router
using 81, 82

JavaScript tests
testing 91, 92

Java system properties
used, for overriding configuration

settings 178
JPA

using, in Java 42
JSON

application data, serializing 19-22
JSON data

validating 26, 27

[184]

JSON requests
optional values, handling 27-29
reading 22-26
recursive types, handling 27-29

JSON validation
and HTML form validation rules,

sharing 68, 69
JUnit tests 32

L
looping, template engine 55

N
nested fields, HTML forms 61, 62
non-blocking APIs

embracing 100-104
non-JDBC-based persistence technology

integrating with 43

O
OAuth 2.0 protocol 146
OAuth client

implementing 148-151

P
parameters fixed values, URL routing 15
parameters type coercion, URL routing 15
path parameters, URL routing 14, 15
Play

about 5, 52
reference, for configuration options

of filters 139
URL 68
web application, writing 5-9

Play application
bootstrapping 9, 10
project layout 11, 12

Q
query string parameters default values,

URL routing 16
query string parameters, URL routing 16

R
reactive programming

reference 116
relational database, data persistence

about 37, 38
reference, obtaining to currently running

application 39
remote web services

calling 145
repeated fields, HTML forms 61, 62
RequireJS

about 86
URL 86

REST conventions
URL 13

results
streaming, enumerators used 110

reverse router
used, for generating URLs 34

route 13
route definitions

dynamic calls, using 164, 165
router 6
RxJava 116

S
sbt

about 10
URL 10

sbt-uglify plugin
URL 86

sbt-web
URL 83

Scala
session, reading 134
Slick, using in 40, 41

Scala form validation API 65
security concerns, handling

about 130
authentication 130-133
cross-site request forgery (CSRF) 135
cross-site scripting (XSS) 134
HTTPS, enabling 139, 140

Selenium WebDriver
URL 73

[185]

server
scaling up 98-100

server-sent events 112
session mechanism 130
Slick

about 40
URL 40
using, in Scala 40, 41

social network
application, integrating with 147
HTTP API, calling of 152

stage command 177
stateless server 100
static assets

about 78
serving 78

T
template engine

about 52
branching 55
comments 57
document fragments, reusing 55-57
dynamic values, inserting 53, 54
import statements 57
looping 55
used, for building web pages 52

tests
in-memory database, using for 46-49
running 32, 33
writing 32

test sbt command 33
threaded execution model 96
threaded versus evented models

reference 98
Twirl 52
typeclasses 19
Typesafe Activator

about 9
URL 9

U
unidirectional streaming, server-sent events

about 112
ground, preparing 112, 113
publish/subscribe, implementing with

Akka 117-124
streams of data, transforming with

enumeratees 114-116
URL routing

about 12-14
default values, for query

string parameters 16
parameters fixed values 15
parameters type coercion 15
path parameters 14, 15
query string parameters 16
routes, adding 17

URLs
generating, reverse router used 34

W
web applications

writing 5-9, 51
web assets

gzipping 88
producing 84, 85
transformations, pipelining 85

web pages
building, template engine used 52
CSS style sheet, loading 80
JavaScript program, loading 80

web service
about 51
architecture 31
HTTP layer, testing 33
testing 31

web user interface
tests, writing 73-75

WithApplication class 49

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building a Web Service
	Play – a framework used to write web applications
	Bootstrapping a Play application
	Play applications' layout

	URL routing
	Route path parameters
	Parameters type coercion
	Parameters with fixed values
	Query string parameters
	Default values of query string parameters
	Trying the routes

	Building HTTP responses
	Serializing application data in JSON

	Reading JSON requests
	Validating JSON data
	Handling optional values and recursive types

	Summary

	Chapter 2: Persisting Data and Testing
	Testing your web service
	Writing and running tests
	Testing the HTTP layer
	Using the reverse router to generate URLs
	Running a fake Play application
	Effectively writing HTTP tests

	Persisting data
	Using a relational database
	Getting a reference to the currently running application

	Using a database management library
	Using Slick in Scala
	Using JPA in Java

	Integrating with other persistence technologies
	Populating the database with fixtures
	The application's Global object

	Managing database schema evolutions

	Using an in-memory database for tests
	Summary

	Chapter 3: Turning a Web Service into
a Web Application
	Delta between a web service and
a web application
	Using the template engine to build web pages
	Inserting dynamic values
	Looping and branching
	Reusing document fragments
	Comments
	Import statements

	Generating HTML forms
	Repeated and nested fields

	Reading and validating HTML form data
	Handling the HTML form submission
	Validating the HTML form data
	The Scala form validation API
	The Java form validation API
	Optional and mandatory fields

	Sharing JSON validation and HTML form validation rules

	Handling content negotiation
	Putting things together
	Writing web user interface tests
	Summary

	Chapter 4: Integrating with Client-side Technologies
	Philosophy of Play regarding client-side technologies
	Serving static assets
	Sprinkling some JavaScript and CSS

	Using the JavaScript reverse router
	Managing assets from the build system
	Producing web assets
	Pipelining web assets' transformations
	Concatenating and minifying JavaScript files
	Gzipping assets
	Fingerprinting assets

	Managing JavaScript dependencies
	Running JavaScript tests

	Summary

	Chapter 5: Reactively Handling
Long-running Requests
	Play application's execution model
	Scaling up your server
	Embracing non-blocking APIs
	Managing execution contexts
	Writing incremental computations using iteratees
	Streaming results using enumerators
	Manipulating data streams by combining iteratees, enumerators, and enumeratees
	Unidirectional streaming with server-sent events
	Preparing the ground
	Transforming streams of data using enumeratees
	Implementing a publish/subscribe system
using Akka

	Bidirectional streaming with WebSockets

	Controlling the data flow
	Summary

	Chapter 6: Leveraging the Play!
Stack – Security, Internationalization, Cache, and the HTTP Client
	Handling security concerns
	Authentication
	Cross-site scripting
	Cross-site request forgery
	HTTP request filters
	Using the CSRF filter

	Enabling HTTPS

	Saving computation time using cache
	Serving content in several languages
	Calling remote web services
	Background – the OAuth 2.0 protocol
	Integrating your application with your preferred social network
	Implementing the OAuth client
	Calling the HTTP API of your preferred
social network

	Summary

	Chapter 7: Scaling Your Codebase and Deploying Your Application
	Making an action's logic reusable and composable with action builders
	Capturing the logic of actions using
blocking APIs
	Capturing the logic of actions that require authentication
	Combining action builders

	Modularizing your code
	Applying the inversion of control principle
	Using dynamic calls in route definitions
	Setting up a dependency injection system
	Making your code injectable

	Mocking components
	Splitting your code into several artifacts
	Splitting your controller layer into several artifacts

	Application deployment
	Deploying to your dedicated infrastructure
	Deploying to the cloud
	Handling the per environment configuration
	Overriding configuration settings using Java system properties
	Using different configuration files

	Summary

	Index

