
Pro
MERN Stack

Full Stack Web App Development with
Mongo, Express, React, and Node
—
Vasan Subramanian

www.allitebooks.com

http://www.allitebooks.org

Pro MERN Stack
Full Stack Web App Development

with Mongo, Express, React,
and Node

Vasan Subramanian

www.allitebooks.com

http://www.allitebooks.org

Pro MERN Stack

Vasan Subramanian
Bangalore, Karnataka, India

ISBN-13 (pbk): 978-1-4842-2652-0 ISBN-13 (electronic): 978-1-4842-2653-7
DOI 10.1007/978-1-4842-2653-7

Library of Congress Control Number: 2017933833

Copyright © 2017 by Vasan Subramanian

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Pramila Balan
Development Editor: Poonam Jain
Technical Reviewer: Anshul Chanchlani
Coordinating Editor: Prachi Mehta
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-2652-0.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2652-0
http://www.apress.com/source-code
http://www.allitebooks.org

To Sandeep and Fazle.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xvii

 ■Chapter 1: Introduction �� 1

 ■Chapter 2: Hello World �� 17

 ■Chapter 3: React Components �� 37

 ■Chapter 4: React State �� 55

 ■Chapter 5: Express REST APIs �� 69

 ■Chapter 6: Using MongoDB ��� 93

 ■Chapter 7: Modularization and Webpack ����������������������������������� 115

 ■Chapter 8: Routing with React Router �� 151

 ■Chapter 9: Forms �� 173

 ■Chapter 10: React-Bootstrap �� 207

 ■Chapter 11: Server Rendering �� 245

 ■Chapter 12: Advanced Features ��� 275

 ■Chapter 13: Looking Ahead �� 319

Index �� 325

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ��� xvii

 ■Chapter 1: Introduction �� 1

What Is MERN? �� 1

Who Should Read This Book �� 2

Structure of the Book �� 2

Conventions ��� 3

What You Need �� 5

MERN Components �� 5

React �� 5

Node�js �� 7

Express ��� 9

MongoDB �� 10

Tools and Libraries ��� 12

Why MERN? ��� 13

JavaScript Everywhere ��� 13

JSON Everywhere ��� 14

Node�js Performance �� 14

The npm Ecosystem ��� 14

Isomorphic �� 14

It’s not a Framework! ��� 15

Summary ��� 15

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

 ■Chapter 2: Hello World �� 17

Server-Less Hello World �� 17

Server Setup ��� 20

nvm ��� 21

Node�js �� 21

Project �� 22

npm �� 22

Express ��� 24

Build-Time JSX Compilation �� 26

Separate Script File �� 27

Transform ��� 28

Automate �� 29

React Library �� 30

ES2015 �� 30

Summary ��� 33

Answers to Exercises �� 34

Exercise: JSX �� 34

Exercise: npm ��� 34

Exercise: Express �� 35

Exercise: Babel ��� 35

Exercise: ES2015 �� 36

 ■Chapter 3: React Components �� 37

Issue Tracker ��� 37

React Classes �� 38

Composing Components ��� 40

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Passing Data ��� 42

Using Properties ��� 42

Property Validation�� 44

Using Children �� 45

Dynamic Composition�� 47

Summary ��� 51

Answers to Exercises �� 51

Exercise: React Classes �� 51

Exercise: Passing Data ��� 52

Exercise: Dynamic Composition�� 52

 ■Chapter 4: React State �� 55

Setting State �� 55

Async State Initialization ��� 58

Event Handling �� 60

Communicating from Child to Parent �� 60

Stateless Components��� 63

Designing Components ��� 65

State vs� props �� 65

Component Hierarchy ��� 65

Communication ��� 66

Stateless Components �� 66

Summary ��� 66

Answers to Exercises �� 67

Exercise: Setting State�� 67

Exercise: Communicate Child to Parent �� 68

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

 ■Chapter 5: Express REST APIs �� 69

REST �� 69

Resource Based �� 69

HTTP Methods as Actions ��� 70

JSON ��� 71

Express �� 72

Routing ��� 72

Handler Function �� 73

Middleware ��� 75

The List API �� 76

Automatic Server Restart ��� 77

Testing �� 77

The Create API ��� 80

Using the List API �� 82

Using the Create API �� 84

Error Handling ��� 85

Summary ��� 88

Answers to Exercises �� 89

Exercise: The List API �� 89

Exercise: Create API �� 90

Exercise: Using the List API �� 90

Exercise: Using the Create API �� 91

Exercise: Error Handling ��� 91

 ■Chapter 6: Using MongoDB ��� 93

MongoDB Basics ��� 93

Documents ��� 93

Collections �� 94

Query Language ��� 94

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

Installation �� 95

The mongo Shell ��� 95

Shell Scripting �� 99

Schema Initialization ��� 99

MongoDB Node�js Driver ��� 101

Callbacks �� 103

Promises ��� 104

Generator and co Module ��� 104

The async Module ��� 105

Reading from MongoDB �� 107

Writing to MongoDB �� 109

Summary ��� 111

Answers to Exercises �� 112

Exercise: Mongo Shell �� 112

Exercise: Schema Initialization ��� 112

Exercise: Reading from MongoDB �� 113

Exercise: Writing to MongoDB �� 113

 ■Chapter 7: Modularization and Webpack ����������������������������������� 115

Server-Side Modules ��� 115

Introduction to Webpack ��� 117

Using Webpack Manually �� 118

Transform and Bundle ��� 120

Libraries Bundle �� 125

Hot Module Replacement �� 129

HMR Using Middleware ��� 132

Comparison of HMR Alternatives �� 133

Debugging ��� 134

Server-Side ES2015 �� 135

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xii

ESLint �� 140

Environment ��� 142

Summary ��� 147

Answers to Exercises �� 148

Exercise: Transform and Bundle ��� 148

Exercise: Hot Module Replacement �� 148

Exercise: Server-Side ES2015 �� 149

Exercise: ESLint �� 150

 ■Chapter 8: Routing with React Router �� 151

Routing Techniques ��� 152

Simple Routing �� 152

Route Parameters �� 154

Route Query String �� 157

Programmatic Navigation �� 161

Nested Routes ��� 164

Browser History ��� 167

Summary ��� 169

Answers to Exercises �� 169

Exercise: Route Parameters �� 169

Exercise: Route Query String �� 169

Exercise: Programmatic Navigation �� 170

 ■Chapter 9: Forms �� 173

More Filters in the List API �� 173

Filter Form ��� 174

The Get API �� 180

Edit Page ��� 182

■ Contents

xiii

UI Components �� 186

Number Input �� 186

Date Input ��� 190

Update API ��� 195

Using Update API ��� 198

Delete API �� 200

Using the Delete API �� 201

Summary ��� 203

Answers to Exercises �� 203

Exercise: More Filters in List API �� 203

Exercise: Filter Form ��� 203

Exercise: Edit Page ��� 204

Exercise: Date Input �� 204

Exercise: Update API ��� 205

 ■Chapter 10: React-Bootstrap �� 207

Bootstrap Installation �� 207

Navigation ��� 210

Table and Panel ��� 216

Forms �� 218

Grid-Based Forms ��� 218

Inline Forms �� 222

Horizontal Forms �� 224

Alerts ��� 229

Validations �� 229

Results �� 231

Modals ��� 237

Summary ��� 242

■ Contents

xiv

Answers to Exercises �� 243

Exercise: Navigation ��� 243

Exercise: Grid-Based Forms ��� 243

Exercise: Inline Forms �� 243

Exercise: Modals ��� 244

 ■Chapter 11: Server Rendering �� 245

Basic Server Rendering ��� 245

Handling State ��� 250

Initial State �� 252

Server-Side Bundle ��� 254

Back-End HMR �� 256

Routed Server Rendering �� 260

Encapsulated Fetch ��� 268

Summary ��� 272

Answers to Exercises �� 273

Back-End HMR �� 273

Routed Server Rendering ��� 273

 ■Chapter 12: Advanced Features ��� 275

MongoDB Aggregate�� 275

Pagination ��� 284

Higher Order Components ��� 288

Search Bar ��� 297

Google Sign-In ��� 303

Session Handling ��� 310

Summary ��� 317

■ Contents

xv

 ■Chapter 13: Looking Ahead �� 319

Mongoose �� 319

Flux �� 320

Deployment ��� 322

mern�io �� 323

That’s All, Folks! �� 324

Index �� 325

xvii

About the Author

Vasan Subramanian has experienced all kinds of
programming, from 8-bit, hand-assembled code on
an 8085 to AWS Lambda. He not only loves to solve
problems using software, but he also looks for the right
mix of technology and processes to make a software
product team most efficient. He learned software
development at companies such as Corel, Wipro, and
Barracuda Networks, not just as a programmer but also
as a leader of teams at those companies.

Vasan studied at IIT Madras and IIM Bangalore.
In his current job as CTO at Accel, he mentors startups
on all things tech. While not mentoring or coding
(or writing books!), Vasan runs half marathons and
plays 5-a-side soccer. He can be contacted at
vasan.promern@gmail.com for boquets, brickbats, or
anything in-between.

mailto:vasan.promern@gmail.com

1© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_1

CHAPTER 1

Introduction

Web application development is not what it used to be even a couple of years back.
Today, there are so many options, and the uninitiated are often confused about what’s
good for them. This applies not just to the broad stack (the various tiers or technologies
used), but also to the tools that aid in development; there are so many choices. This book
stakes a claim that the MERN stack is great for developing a complete web application,
and it takes the reader through all that is necessary to get it done.

In this chapter, I’ll give a broad overview of the technologies that make up the MERN
stack. I won’t go into details or examples in this chapter; I’ll just introduce the high-level
concepts. This chapter will focus on how these concepts affect an evaluation of whether
MERN is a good choice for your next web application project.

What Is MERN?
Any web application is made by using multiple technologies. The combination of these
technologies is called a “stack,” popularized by the LAMP stack, which is an acronym
for Linux, Apache, MySQL, and PHP, which are all open-source components. As web
development matured and interactivity came to the fore, single page applications (SPAs)
became more popular. An SPA is a web application paradigm that avoids refreshing a web
page to display new content; it instead uses lightweight calls to the server to get some data
or snippets and updates the web page. The result looks quite nifty when compared to the
old way of reloading the page entirely. This brought about a rise in front-end frameworks,
since much of the work was done on the client side. At approximately the same time,
although completely unrelated, NoSQL databases also started gaining popularity.

The MEAN (MongoDB, Express, AngularJS, Node.js) stack was one of the early
open-source stacks that epitomized this shift towards SPAs and the adoption of NoSQL.
AngularJS, a front-end framework based on the model-view-controller (MVC) design
pattern, anchored this stack. MongoDB, a very popular NoSQL database, was used for
persistent data storage. Node.js, a server-side JavaScript runtime environment, and
Express, a web server built on Node.js, formed the middle tier, or the web server. This
stack is arguably the most popular stack for any new web application these days.

Chapter 1 ■ IntroduCtIon

2

Not exactly competing, but React, an alternate front-end technology from Facebook,
has been gaining popularity and offers a replacement to AngularJS. It thus replaces the
“A” with an “R” in MEAN, to give us the MERN Stack. I said “not exactly” since React is not
a full-fledged MVC framework. It is a JavaScript library for building user interfaces, so in
some sense it’s the View part of the MVC.

Although we pick a few defining technologies to define a stack, these are not enough
to build a complete web application. Other tools are required to help the process of
development, and other libraries are needed to complement React. This book is about all
of them: how to build a complete web application based on the MERN stack, using other
complementary tools that make it easy for us to do it.

Who Should Read This Book
Developers and architects who have prior experience in any web app stack other than
the MERN stack will find this book useful for learning about this modern stack. Prior
knowledge of how web applications work is required. Knowledge of JavaScript is also
required. It is further assumed that the reader knows the basics of HTML and CSS. It will
greatly help if you are also familiar with the version control tool git; you can try out the
code just by cloning the git repository that holds all the source code described in this
book, and running each step by just checking out a branch.

If you have decided that your new app will use the MERN stack, then this book will
help you quickly get off the ground. Even if you have not made any decision, reading the
book will get you excited about MERN and equip you with enough knowledge to make
that decision for a future project. The most important thing you will learn is how to put
together multiple technologies and build a complete, functional web application; by the
book’s end, you’ll be a full-stack developer or architect on MERN.

Structure of the Book
Although the focus of the book is to teach you how to build a complete web application,
most of the book revolves around React. That’s just because, as is true of most modern
web applications, the front-end code forms the bulk. And in this case, React is used for
the front end.

The tone of the book is tutorial-like. What this means is that unless you try out
the code and solve the exercises yourself, you will not get the full benefit of reading the
book. There are plenty of code listings in the book (this code is also available online in
a GitHub repository, at https://github.com/vasansr/pro-mern-stack). I encourage
you not to copy/paste; instead, please type out the code yourself. I find this very valuable
in the learning process. There are very small nuances, such as the types of quotes,
which can cause a big difference. When you actually type out the code, you are much
more conscious of these things than when you are just reading it. Clone the repository
only when you are stuck and want to compare it with my code, which has been tested
and confirmed to work. And if you do copy/paste small sections, don’t do it from the
electronic version of the book, as the typography of the book may not be a faithful
reproduction of the actual code.

https://github.com/vasansr/pro-mern-stack

Chapter 1 ■ IntroduCtIon

3

I have also added a checkpoint (a git branch, in fact) after every change that can be
tested in isolation, so that you can look at the exact diffs between two checkpoints, online. The
checkpoints and links to the diffs are listed in the home page (the README) of the repository.
You may find this more useful than looking at the entire source, or even the listings in the text
of this book, as GitHub diffs are far more expressive than what I can do in this book.

Rather than cover one topic or technology per section, I have adopted a more
practical and problem-solving approach. You will have developed a full-fledged working
application by the end of the book, but you’ll start small with a Hello World example.
Just as in a real project, you will add more features to the application as you progress.
When you do this, you’ll encounter tasks that need additional concepts or knowledge to
proceed. For each of these tasks, I will introduce the concept or technology that can be
used, and I’ll discuss it in detail. Thus, you may not find one chapter or section devoted
purely to one topic or technology; instead, each chapter will be a set of goals you want to
achieve in the application. You will be switching between technologies and tools as you
progress.

I have included exercises wherever possible to make you either think or look up
various documentation pages on the Internet. This is so that you know where to get
additional information for things that are not covered in the book, such as very advanced
topics or APIs.

I have chosen an issue tracking application as the application that you’ll build.
It’s something most developers can relate to, and it has many of the attributes and
requirements that any enterprise application will have, commonly referred to as a
“CRUD” application (CRUD stands for Create, Read, Update, Delete of a database record).

Conventions
Many of the conventions used in the book are quite obvious, so I won’t explain all of
them. However, I will cover some conventions with respect to how the code is shown if
they’re not obvious.

Each chapter has multiple sections, and each section is devoted to one set of code
changes that results in a working application and can be tested. One section can have
multiple listings, each of which may not be testable by itself. Every section will also have a
corresponding entry in the GitHub repository, where you can see the complete source of
the application at the end of that section, as well as the differences between the previous
section and the current section. You will find the difference view very useful to identify
the changes made in the section.

All code changes will appear in the listings within the section, but do not rely on
their accuracy. The reliable and working code can be found in the GitHub repository,
which may even have undergone last minute changes that couldn’t make it to the book in
time. All listings will have a listing caption, which will include the name of the file being
changed or created.

A listing is a full listing if it contains a file, a class, a function, or an object in its
entirety. A full listing may also contain two or more classes, functions, or objects, but not
multiple files. In such a case, if the entities are not consecutive, I’ll use ellipses to indicate
chunks of unchanged code.

Listing 1-1 is an example of a full listing, the contents of an entire file.

Chapter 1 ■ IntroduCtIon

4

Listing 1-1. server.js: Express server

const express = require('express');

const app = express();
app.use(express.static('static'));

app.listen(3000, function () {
 console.log('App started on port 3000');
});

A partial listing, on the other hand, will not list complete files, functions, or objects.
It will start and end with an ellipsis, and will have ellipses in the middle to skip chunks of
code that have not changed. Wherever possible, the actual changes will be highlighted.
The changes will be highlighted in bold, and the unchanged code will be in the normal
font. Listing 1-2 is an example of a partial listing that has small changes.

Listing 1-2. package.json: Adding Scripts for Transformation

...
 "scripts": {
 "compile": "babel src --presets react,es2015 --out-dir static",
 "watch": "babel src --presets react,es2015 --out-dir static --watch",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
...

Deleted code will be shown using strikethrough, as in Listing 1-3.

Listing 1-3. index.html: Change in Script Name and Type

...
<script
 src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.
min.js"></script>
...

Code blocks are used within regular text to cull out changes in code for discussion,
and are often a repetition of code in listings. These are not listings, and are often just a
line or two. The following is an example, where the line is extracted out of a listing, and
one word is highlighted:

...
const contentNode = ...
...

All commands that need to be executed on the console will be in the form a code
block starting with $. Here is an example:

$ npm install express

Chapter 1 ■ IntroduCtIon

5

What You Need
You will need a computer where you can run your server and do other tasks such as
compilation. You also need a browser to test your application. I recommend a Linux-
based computer running Ubuntu or a Mac as your development server, but with minor
changes, you could also use a Windows PC.

If you have a Windows PC, an option is to run an Ubuntu server virtual machine
using Vagrant (www.vagrantup.com/). This is helpful because you will eventually need to
deploy your code on a Linux-based server, and it is best to get used to that environment
from the beginning. But you may find it difficult to edit files using the console. In that
case, an Ubuntu desktop variant may work better for you, but it requires more memory
for the virtual machine.

Running Node.js directly on Windows will also work, but the code samples in this
book assume a Linux-based PC or Mac. If you choose to run directly on a Windows PC,
you may have to make the appropriate changes, especially when running commands in
the shell, using a copy instead of using soft links, and in rare cases, to deal with ‘\’ vs. ‘/’ in
path separators.

Further, to keep the book concise, I have not included installation instructions for
packages, and they are different for different operating systems. You will need to follow the
installation instructions from the package providers’ websites. And in many cases I have not
included direct links to websites even though I ask you to look them up. This is for a couple
of reasons. The first is to let you learn by yourself how to search for them. The second is that
the link I may provide may have moved to another location due to the fast-paced changes
that the MERN stack was experiencing at the time of writing this book.

MERN Components
I’ll give a quick introduction to the main components that form the MERN stack and a few
other libraries and tools that you’ll be using to build your web application. I’ll just touch
upon the salient features, and leave the details to other chapters where they are more
appropriate.

React
React anchors the MERN stack. In some sense, it is the defining component of the MERN
stack.

React is an open-source JavaScript library maintained by Facebook that can be used
for creating views rendered in HTML. Unlike AngularJS, React is not a framework. It is a
library. Thus, it does not, by itself, dictate a framework pattern such as the MVC pattern.
You use React to render a view (the V in MVC), but how to tie the rest of the application
together is completely up to you.

I’ll discuss a few things about React that make it stand out.

http://www.vagrantup.com/

Chapter 1 ■ IntroduCtIon

6

Why Facebook Invented React
The Facebook folks built React for their own use, and later they open-sourced it. Why did
they have to build a new library when there are tons of them out there?

React was born not in the Facebook application that we all see, but rather in
Facebook’s Ads organization. Originally, they used a typical client-side MVC model,
which had all of the regular two-way data binding and templates. Views would listen to
changes on models, and they would respond to those changes by updating themselves.

Soon, this got pretty hairy as the application became more and more complex. What
would happen was that a change would cause an update, which would cause another
update (because something changed due to that update), which would cause yet another,
and so on. Such cascading updates became difficult to maintain because there were subtle
difference in the code to update the view, depending on the root cause of the update.

Then they thought, why do we need to deal with all this, when all the code to depict
the model in a view is already there? Aren’t we replicating the code by adding smaller
and smaller snippets to manage transitions? Why can’t we use the templates (that is, the
views) themselves to manage state changes?

That’s when they started thinking of building something declarative rather than
imperative.

Declarative
React views are declarative. What this really means is that you, as a programmer, don’t
have to worry about managing the effect of changes in the view’s state or the data. In
other words, you don’t worry about transitions or mutations in the DOM caused by
changes to the view’s state. How does this work?

A React component declares how the view looks like, given the data. When the data
changes, if you are used to the jQuery way of doing things, you’d typically do some DOM
manipulation. Not in React. You just don’t do anything! The React library figures out
how the new view looks, and just applies the changes between the old view and the new
view. This makes the views consistent, predictable, easier to maintain, and simpler to
understand.

Won’t this be too slow? Won’t it cause the entire screen to be refreshed on every data
change? Well, React takes care of this using its virtual DOM technology. You declare
how the view looks, not in the form of HTML or a DOM, but in the form of a virtual
representation, an in-memory data structure. React can compute the differences in
the virtual DOM very efficiently, and can apply only these changes to the actual DOM.
Compared to manual updates which do only the required DOM changes, this adds very
little overhead because the algorithm to compute the differences in the virtual DOM has
been optimized to the hilt.

Component-Based
The fundamental building block of React is a component, which maintains its own state
and renders itself.

Chapter 1 ■ IntroduCtIon

7

In React, all you do is build components. Then, you put components together
to make another component that depicts a complete view or page. A component
encapsulates the state of data and the view, or how it is rendered. This makes writing and
reasoning about the entire application easier, by splitting it into components and focusing
on one thing at a time.

Components talk to each other by sharing state information in the form of read-only
properties to their child components and by callbacks to their parent components. I’ll dig
deeper into this concept in a later chapter, but the gist of it is that components in React
are very cohesive, and the coupling with one another is minimal.

No Templates
Many web application frameworks rely on templates to automate the task of creating
repetitive HTML or DOM elements. The templating language in these frameworks is
something that the developer will have to learn and practice. Not in React.

React uses a full-featured programming language to construct repetitive or
conditional DOM elements. That language is none other than JavaScript. For example,
when you want to construct a table, you write a for(...) loop in JavaScript, or use the
map() function of an Array.

There is an intermediate language to represent a virtual DOM, and that is JSX, which
is very similar to HTML. It lets you create nested DOM elements in a familiar language
rather than hand-construct them using JavaScript functions. Note that JSX is not a
programming language; it is a representational markup like HTML. It’s also very similar
to HTML so you don’t have to learn too much. More about this later.

You don’t have to use JSX; you can write pure JavaScript to create your virtual DOM if
you prefer. But if you are used to HTML, it’s simpler to just use JSX. Don’t worry about it;
it’s really not a new language that you’ll need to learn.

Isomorphic
React can be run on the server too. That’s what isomorphic means: the same code can run
on both server and the browser.

This allows you to create pages on the server when required, for example, for SEO
purposes. The same code can be shared on the server to achieve this. On the server, you’ll
need something that can run JavaScript, and this is where I introduce Node.js.

Node.js
Simply put, Node.js is JavaScript outside of a browser. The creators of Node.js just took
Chrome’s V8 JavaScript engine and made it run independently as a JavaScript runtime. If
you are familiar with the Java runtime that runs Java programs, you can easily relate to the
JavaScript runtime: the Node.js runtime runs JavaScript programs.

Chapter 1 ■ IntroduCtIon

8

Node.js Modules
In a browser, you can load multiple JavaScript files, but you need an HTML page to do all
that. You cannot refer to another JavaScript file from one JavaScript file. But for Node.js,
there is no HTML page that starts it all. In the absence of the enclosing HTML page,
Node.js uses its own module system based on CommonJS to put together multiple
JavaScript files.

Modules are like libraries. You can include the functionality of another JavaScript file
(provided it’s written to follow a module’s specifications) by using the keyword require
(which you won’t find in a browser’s JavaScript). You can therefore split your code
into files or modules for the sake of better organization, and load one or another using
require. I’ll talk about the exact syntax in a later chapter; at this point it’s enough to note
that compared to JavaScript on the browser, there is a cleaner way to modularize your
code using Node.js.

Node.js ships with a bunch of core modules compiled into the binary. These
modules provide access to the operating system elements such as the file system,
networking, input/output, etc. They also provide some utility functions that are
commonly required by most programs.

Apart from your own files and the core modules, you can also find a great amount of
third-party open source libraries available for easy installation. This brings us to npm.

Node.js and npm
npm is the default package manager for Node.js. You can use npm to install third-party
libraries (packages) and also manage dependencies between them. The npm registry
(www.npmjs.com) is a public repository of all modules published by people for the
purpose of sharing.

Although npm started off as a repository for Node.js modules, it quickly transformed
into a package manager for delivering other JavaScript-based modules, notably those that
can be used in the browser. jQuery, by far the most popular client-side JavaScript library,
is available as an npm module. In fact, even though React is largely client-side code
and can be included directly in your HTML as a script file, it is recommended instead
that React is installed via npm. But, once installed as a package, we need something to
put all the code together that can be included in the HTML so that the browser can get
access to the code. For this, there are build tools such as browserify or webpack that can
put together your own modules as well as third-party libraries in a bundle that can be
included in the HTML.

As of the writing this book, npm tops the list of module or package repositories,
having more than 250,000 packages (source: www.modulecounts.com). Maven, which used
to be the biggest two years back, has just half the number now. This shows that npm is not
just the largest, but also the fastest growing repository. It is often touted that the success
of Node.js is largely owed to npm and the module ecosystem that has sprung around it.

npm is not just easy to use both for creating and using modules; it also has a unique
conflict resolution technique that allows multiple conflicting versions of a module to exist
side-by-side to satisfy dependencies. Thus, in most cases, npm just works.

http://www.npmjs.com/
http://www.modulecounts.com/

Chapter 1 ■ IntroduCtIon

9

Node.js Is Event Driven
Node.js has an asynchronous, event-driven, non-blocking input/output (I/O) model, as
opposed to using threads to achieve multitasking.

Most languages depend on threads to do things simultaneously. But in fact, there is
no such thing as simultaneous when it comes to a single processor running your code.
Threads give the feeling of simultaneousness by letting other pieces of code run while
one piece waits (blocks) for some event to complete. Typically, these are I/O events such
as reading from a file or communicating over the network. For a programmer, this means
that you write your code sequentially. For example, on one line, you make a call to open a
file, and on the next line, you have your file handle ready. What really happens is that your
code is blocked while the file is being opened. If you have another thread running, the
operating system or the language can switch out this code and start running some other
code during the blocked period.

Node.js, on the other hand, has no threads. It relies on callbacks to let you know that
a pending task is completed. So, if you write a line of code to open a file, you supply it with
a callback function to receive the results. On the next line, you continue to do other things
that don’t require the file handle. If you are accustomed to asynchronous Ajax calls, you
will immediately know what I mean. Event-driven programming is natural to Node.js due
to the underlying language constructs such as closures.

Node.js achieves multitasking using an event loop. This is nothing but a queue of
events that need to be processed and callbacks to be run on those events. In the above
example, the file that is ready to be read is an event that will trigger the callback you
supplied while opening it. If you don’t understand this completely, don’t worry. The
examples in the rest of this book should make you comfortable about how it really works.

On one hand, an event-based approach makes Node.js applications fast and lets
the programmer be blissfully oblivious of the semaphores and locks that are utilized to
synchronize multi-threaded events. On the other hand, getting used to this model takes
some learning and practice.

Express
Node.js is just a runtime environment that can run JavaScript. To write a full-fledged
web server by hand on Node.js directly is not that easy, nor is it necessary. Express is the
framework that simplifies the task of writing your server code.

The Express framework lets you define routes, specifications of what to do when a
HTTP request matching a certain pattern arrives. The matching specification is regular
expression (regex) based and is very flexible, like most other web application frameworks.
The what-to-do part is just a function that is given the parsed HTTP request.

Express parses request URL, headers, and parameters for you. On the response side,
it has, as expected, all of the functionality required by web applications. This includes
setting response codes, setting cookies, sending custom headers, etc. Further, you can
write Express middleware, which are custom pieces of code that can be inserted in any
request/response processing path to achieve common functionality such as logging,
authentication, etc.

Express does not have a template engine built in, but it supports any template engine
of your choice such as pug, mustache, etc. But, for an SPA, you will not need to use a

Chapter 1 ■ IntroduCtIon

10

server-side template engine. This is because all dynamic content generation is done on
the client, and the web server only serves static files and data via API calls. Especially with
MERN stack, page generation is handled by React itself on the server side.

In summary, Express is a web server framework meant for Node.js, and it is not very
different from many other server-side frameworks in terms of what you can achieve with it.

MongoDB
MongoDB is the database used in the MERN stack. It is a NoSQL document-oriented
database, with a flexible schema and a JSON-based query language. I’ll discuss a few
things that MongoDB is (and is not) here.

NoSQL
NoSQL stands for “non-relational,” no matter what the acronym expands to. It’s
essentially not a conventional database where you have tables and columns (called a
relational database). I find that there are two attributes of NoSQL that differentiate it from
the conventional.

The first is the ability to horizontally scale by distributing the load over multiple
servers. NoSQL databases do this by sacrificing an important (for some) aspect of the
traditional databases: strong consistency. That is, the data is not necessarily consistent
for very brief amounts of time across replicas. For more information, read up on the
“CAP theorem” (https://en.wikipedia.org/wiki/CAP_theorem). But in reality, very few
applications require web scale, and this aspect of NoSQL databases comes into play very
rarely.

The second, and to me, more important, aspect is that NoSQL databases are
not necessarily relational databases. You don’t have to think of your data in terms of
rows and columns of tables. The difference in the representation in the application
and on disk is sometimes called impedance mismatch. This is a term borrowed from
electrical engineering, and it means, roughly, that we’re not talking the same language.
In MongoDB, instead, you can think of the persisted data just as you see it in your
application code; that is, as objects or documents. This helps a programmer avoid a
translation layer, whereby one has to convert or map the objects that the code deals
with to relational tables. Such translations are called object relational mapping (ORM)
layers.

Document-Oriented
Compared to relational databases where data is stored in the form of relations, or tables,
MongoDB is a document-oriented database. The unit of storage (comparable to a row) is
a document, or an object, and multiple documents are stored in collections (comparable
to a table). Every document in a collection has a unique identifier by which it can be
accessed. The identifier is indexed automatically.

https://en.wikipedia.org/wiki/CAP_theorem

Chapter 1 ■ IntroduCtIon

11

Imagine the storage structure of an invoice, with the customer name, address, etc.
and a list of items (lines) in the invoice. If you had to store this in a relational database,
you would use two tables, say, invoice and invoice_lines, with the lines or items
referring to the invoice via a foreign-key relation. Not so in MongoDB. You would store
the entire invoice as a single document, fetch it, and update it in an atomic operation.
This applies not just to line items in an invoice. The document can be any kind of deeply
nested object.

Modern relational databases have started supporting one level of nesting by
allowing array fields and JSON fields, but it is not the same as a true document database.
MongoDB has the ability to index on deeply nested fields, which relational databases
cannot do.

The downside is that the data is stored denormalized. This means that data is
sometimes duplicated, requiring more storage space. Also, things like renaming a master
(catalog) entry name would mean sweeping through the database. But then, storage has
become relatively cheap these days, and renaming master entries are rare operations.

Schema-Less
Storing an object in a MongoDB database does not have to follow a prescribed schema.
All documents in a collection need not have the same set of fields.

This means that, especially during early stages of development, you don’t need to
add/rename columns in the schema. You can quickly add fields in your application code
without having to worry about database migration scripts. At first, this may seem a boon,
but in effect all it does is transfer the responsibility of data sanity from the database to
your application code. I find that in larger teams and more stable products, it is better
to have a strict or semi-strict schema. Using object document mapping libraries such as
mongoose (not covered in this book) alleviates this problem.

JavaScript Based
MongoDB’s language is JavaScript.

For relational databases, there is a query language called SQL. For MongoDB, the
query language is based on JSON: you create, search for, make changes, and delete
documents by specifying the operation in a JSON object. The query language is not
English-like (you don’t SELECT or say WHERE), and therefore much easier to construct
programmatically.

Data is also interchanged in JSON format. In fact, the data is natively stored in a
variation of JSON called BSON (where B stands for Binary) in order to efficiently utilize
space. When you retrieve a document from a collection, it is returned as a JSON object.

MongoDB comes with a shell that is built on top of a JavaScript runtime like Node.js.
This means that you have a powerful and familiar scripting language (JavaScript)
to interact with the database via command line. You can also write code snippets in
JavaScript that can be saved and run on the server (the equivalent of stored procedures).

Chapter 1 ■ IntroduCtIon

12

Tools and Libraries
It’s hard to build any web application without using tools to help you on your way. Here’s
a brief introduction to the other tools apart from the MERN stack components that you
will be using to develop your sample application in this book.

React-Router
React supplies only the view rendering capability and helps manage interactions in
a single component. When it comes to transitioning between different views of the
component and keeping the browser URL in sync with the current state of the view, we
need something more.

This capability of managing URLs and history is called routing. It is similar to the
server-side routing that Express does: a URL is parsed, and based on its components,
a piece of code is associated with the URL. React-Router not only does this, but also
manages the browser’s Back button functionality so that we can transition between what
seem as pages without loading the entire page from the server. We could have built this
ourselves, but React-Router is a very easy-to-use library that manages this for us.

React-Bootstrap
Bootstrap, the most popular CSS framework, has been adapted to React and the project is
called React-Bootstrap. This library not only gives us most of the Bootstrap functionality,
but the components and widgets provided by this library also give us a wealth of
information on how to design our own widgets and components.

There are other component/CSS libraries built for React (such as Material-UI, MUI,
Elemental UI, etc.) and also individual components (such as react-select, react-treeview,
and react-date-picker). All these are good choices too, depending on what you are trying
to achieve. But I have found that React-Bootstrap is the most comprehensive single
library with the familiarity of Bootstrap (which I presume most of you know already).

Webpack
Webpack is indispensable when it comes to modularizing code. There are other
competing tools such as Bower and Browserify which also serve the purpose of
modularizing and bundling all the client code, but I found that webpack is easier to use
and does not require another tool (like gulp or grunt) to manage the build process.

We will be using webpack not just to modularize and build the client-side code into a
bundle to deliver to the browser, but also to “compile” some code. The compilation step is
needed to generate pure JavaScript from React code written in JSX.

Chapter 1 ■ IntroduCtIon

13

Other Libraries
Very often, there’s a need for a library to address a common problem. In this book, we’ll
use body-parser (to parse POST data in the form of JSON, or form data), ESlint (for
ensuring that the code follows conventions), and express-session, all on the server side,
and some more like react-select on the client side.

Why MERN?
So now you have a fair idea of the MERN stack and what it is based on. But is it really far
superior to any other stack, say, LAMP, MEAN, J2EE, etc.? By all means, all of these stacks
are good enough for most modern web applications. All said and done, familiarity is the
crux of productivity in software, so I wouldn’t advise a MERN beginner to blindly start
their new project on MERN, especially if they have an aggressive deadline. I’d advise them
to choose the stack that they are already familiar with.

But MERN does have its special place. It is ideally suited for web applications that
have a large amount of interactivity built into the front-end. Go back and reread the
section on “Why Facebook built React.” It will give you some insights. You could perhaps
achieve the same with other stacks, but you’ll find that it is most convenient to do so with
MERN. So, if you do have a choice of stacks, and the luxury of a little time to get familiar,
you may find that MERN is a good choice. I’ll talk about a few things that I like about
MERN, which may help you decide.

JavaScript Everywhere
The best part about MERN is that there is a single language used everywhere. It uses
JavaScript for client-side code as well as server-side code. Even if you have database
scripts (in MongoDB), you write them in JavaScript. So, the only language you need to
know and be comfortable with is JavaScript.

This is kind of true of all other stacks based on MongoDB and Node.js, especially
the MEAN stack. But what makes the MERN stack stand out is that you don’t even need
a template language to generate pages. In the React way, you programmatically generate
HTML (actually DOM elements) using JavaScript. So, not only do you avoid learning a
new language, you also get the full power of JavaScript. This is in contrast to a template
language, which will have its own limitations. Of course, you will need to know HTML
and CSS, but these are not programming languages, and there is no way you can avoid
learning HTML and CSS (not just the markup, but the paradigm and the structure).

Apart from the obvious advantage of not having to switch contexts while writing
client-side and server-side code, having a single language across tiers also lets you share
code between them. I can think of functions that execute business logic, do validation,
etc. that can be shared. They need to be run on the client side so that user experience is
better by being more responsive to user inputs. They also need to be run on the server
side to protect the data model.

Chapter 1 ■ IntroduCtIon

14

JSON Everywhere
When using the MERN stack, object representation is JSON (JavaScript Object Notation)
everywhere: in the database, in the application server, and on the client, and even on the
wire.

I have found that this often saves me a lot of hassle in terms of transformations. No
object relational mapping (ORM), no having to force fit an object model into rows and
columns, no special serializing and de-serializing code. An object document mapper
(ODM) such as mongoose may help enforce a schema and make things even simpler, but
the bottom line is that you save a lot of data transformation code.

Further, it just lets me think in terms of native objects, and see them as their natural
selves even when inspecting the database directly using a shell.

Node.js Performance
Due to its event-driven architecture and non-blocking I/O, the claim is that Node.js is
very fast and a resilient web server.

Although it takes a little getting used to, I have no doubt that when your application
starts scaling and receiving a lot of traffic, this will play an important role in cutting
costs as well as savings in terms of time spent in trouble-shooting server CPU and I/O
problems.

The npm Ecosystem
I’ve already discussed the huge number of npm packages available freely for everyone
to use. Any problem that you face will have an npm package already. Even if it doesn’t fit
your needs exactly, you can fork it and make your own npm package.

npm has been developed on the shoulders of other great package managers and has
therefore built into it a lot of best practices. I find that npm is by far the easiest to use and
fastest package manager I have used to date. Part of the reason is that most npm packages
are so small, due to the compact nature of JavaScript code.

Isomorphic
SPAs used to have the problem that they were not SEO friendly. We had to use
workarounds like running PhantomJS on the server to pseudo-generate HTML pages,
or use Prerender.io services that did the same for us. This introduced an additional
complexity.

With the MERN stack, serving pages out of the server is natural and doesn’t require
tools that are after-thoughts. This is made possible due to the virtual DOM technique
used by React. Once you have a virtual DOM, the layer that translates it to a renderable
page can be abstracted. For the browser, it is the real DOM. For the server side, it is
HTML. In fact, React Native has taken it to another extreme: it can even be a mobile app!

I don’t cover React Native in this book, but this should give you a feel of what virtual
DOM can do for you in future.

Chapter 1 ■ IntroduCtIon

15

It’s not a Framework!
Not many people like or appreciate this, but I really like the fact that React is a library, not
a framework.

A framework is opinionated; it has a set way of doing things. The framework asks you
to fill in variations of what it thinks you want to get done. A library, on the other hand,
gives you tools to use to construct your application. In the short term, a framework helps
a lot by getting most of the standard stuff out of the way. But over time, vagaries of the
framework, its assumptions about what you want to get done, and the learning curve will
make you wish you had some control over what’s happening under the hood, especially
when you have some special requirements.

With a library, an experienced architect can design his or her application with the
complete freedom to pick and choose from the library’s functions, and build their own
framework that fits their application’s unique needs and vagaries. So, for an experienced
architect or very unique application needs, a library is better, even though a framework
can get you started quickly.

Summary
This book lets you experience what it takes, and what it is like, to develop an application
using the MERN stack. The work that we will do as part of this book encourages thinking
and experimenting rather than reading. That’s why I have a lot of examples; at the
same time, there are exercises that make you think. Finally, it uses the least common
denominator to get this done: the CRUD app.

If you are game, read on. Code ahoy!

www.allitebooks.com

http://www.allitebooks.org

17© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_2

CHAPTER 2

Hello World

As is customary, we will start with a Hello World example, something that is a bare
minimum application that uses MERN. The main purpose of any Hello World exercise is
to create the environment that has most of the technology of the stack.

In the Hello World exercise, we’ll use React to render a simple page and use Node.js
and Express to serve that page from a web server. This will also give you some insight into
nvm, npm, and JSX transformation, some tools that you’ll need to get used to as you go
along.

Server-Less Hello World
To quickly get off the ground, let’s write a simple piece of code in a single HTML file
that uses React to display a simple page on the browser. No installations, no downloads,
no server!

Open up your favorite editor and create an HTML file with a head and body, like
Listing 2-1.

Listing 2-1. index.html: Server-less Hello World

<!DOCTYPE HTML>
<html>

<head>
 <meta charset="UTF-8" />
 <title>Pro MERN Stack</title>
 <script src=
 "https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react.js">

 </script>
 <script src=
 "https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react-dom.js">

 </script>
 <script src=
 "https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.js">

 </script>
</head>

Chapter 2 ■ hello World

18

<body>
 <div id="contents"></div><!-- this is where our component will appear -->
 <script type="text/babel">
 var contentNode = document.getElementById('contents');
 var component = <h1>Hello World!</h1>; // A simple JSX component
 ReactDOM.render(component, contentNode); // Render the component inside 

the content Node
 </script>
</body>

</html>

It’s very likely that you will copy/paste this code rather than type it yourself, despite
my advice that typing it in is better. OK just this once, but only because you’re in a hurry
to get it to work! But do compare the code line by line, and make sure it has been pasted
correctly.

Save it as index.html anywhere on your file system. Open it in your browser and
check it out. It may take a few seconds to load, but you should see the browser displaying
the caption, as seen in Figure 2-1.

Now, let’s analyze the code and see what happened here. The first thing to look at is
the following line inside the inline script:

...
 ReactDOM.render(component, contentNode);
...

ReactDOM, as you probably guessed, is defined in the included script, react-dom.js.
The above line asks the ReactDOM library to render the component within the content node.
In this case, the content node is the one with the ID contents.

Figure 2-1. Hello World written in React

Chapter 2 ■ hello World

19

But the component is a little more interesting. Look at this line:

...
 var component = <h1>Hello World!</h1>;
...

This is probably familiar to you; it looks like HTML. But it should immediately strike
you that the component is not a string that’s being used as an innerHTML. That’s because
it’s not enclosed in quotes. It’s not even valid JavaScript! How did it even parse?

It is, instead, a special HTML-like language called JSX. It, in fact, gets transformed
into JavaScript code that generates an element in React’s virtual DOM. After
transformation, this is what the code that is generated will look like:

...
var component = React.createElement('h1', null, 'Hello World!');
...

This essentially creates a React <h1> element (which is not the same as the HTML
<h1> element, but very similar). How and when did the code get compiled into the
React.createElement call? Well, there are two lines that are responsible for this
transformation. The first is the inclusion of the following script:

...
 <script src=
 "https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.js">
</script>

...

The babel library is a JSX transformer. I will not go into the details of how this is
done, because soon we will stop using the browser-based transformer, and instead have
a build step during the development, which will create a pre-transformed JavaScript file
that we can include in the HTML. The browser-based compiler is not intended for use in
production; it is just a try-me-out tool.

Then, there is the type of the script that you specify in the wrapping <script> tags
around the JSX code:

...
 <script type="text/babel">
 var contentNode = document.getElementById('contents');
...

The browser-based JSX compiler looks for all inline scripts of type “text/babel” and
compiles the contents into the corresponding JavaScript. The other two scripts, react.js
and react-dom.js, are the core React libraries that handle react component creation and
rendering.

At this point in time, you should play around with the code and try a few things to
appreciate and understand what is happening under the hood.

Chapter 2 ■ hello World

20

EXERCISE: JSX

1. remove type="text/babel" from the script. What happens,
and can you explain why? remove the babel JavaScript library
instead. What happens now?

2. add a class to the h1 element (you will also need to define the
class in a <style> section within the <head> section.) hint:
Search for “how to specify class in jsx” on stackoverflow.com.

3. We used the minified version of babel, but not for react and
react-dom. Can you guess why? Switch to the minified version
and introduce a runtime error in react. For example, introduce a
typo in the id of the content node so there is no place to mount
the component. What happens?

answers are available at the end of the chapter.

Now, given all the differences and the complexity in comparison to HTML, why do
you need to learn JSX? What value does it add? Why not write the JavaScript itself directly?
One of the things I talked about in the Introduction chapter is that MERN has just one
language throughout, so isn’t this contrary to that statement?

As you explore React further, you will soon find that the differences between HTML
and JSX are not earth-shaking and they are very logical. You will not need to remember a
lot or need to look up things as long as you understand and internalize the logic. Further,
though writing JavaScript directly to create the virtual DOM elements is indeed an option,
I find that it is quite tedious and doesn’t help me visualize the DOM. More so, when it
comes to deeply nested elements.

Since most of us already know the basic HTML syntax, writing JSX will probably work
best. It is easy to understand what the screen will look like when you read JSX because it is
very similar to HTML.

Server Setup
The server-less setup allowed you to get familiarized with React without any installations
or firing up a server. But as you may have noticed, it’s good neither for development nor
for production. During development, some additional time is introduced for loading
the scripts from a content delivery network (CDN). As you may have noticed, that’s how
you’re getting all of the React library into your web page. Take a look at the size of each of
the scripts using the Network tab of the browser’s developer console, and you’ll see that
the babel compiler (even the minified version) is really big. On production, especially in
larger projects, runtime compilation of JSX to JavaScript will affect performance.

So, let’s get a little organized and serve all files from an HTTP server. We will, of
course, use other components of the MERN stack to achieve this.

Chapter 2 ■ hello World

21

nvm
To start, let’s install nvm. This is the Node Version Manager that makes installation and
switching between multiple versions of Node.js easy. This is not a mandatory step, but
I’ve found that having nvm installed at the very beginning made my life easier when I had
to start a new project and I wanted to use the latest and greatest version of Node.js at that
point in time.

If you are using Mac OS or any Linux-based distribution, follow the instructions on
nvm’s GitHub page at https://github.com/creationix/nvm. Windows users can follow
nvm for Windows (please search for it in your favorite search engine), or install Node.js
directly without nvm. Generally, I advise Windows users to install a Linux virtual machine
(VM), preferably using Vagrant, and do all the server-side coding within the VM. This
usually works best, especially when you want to deploy your code on a Linux server.

One tricky thing about nvm is knowing how it initializes your PATH. This works
differently on different operating systems, so make sure you read up on the nuances.
Essentially, it adds a few lines to your shell’s initialization scripts so that next time you
open a shell, your PATH is initialized and executes nvm’s initialization scripts. This lets
nvm know about the different versions of Node.js that are installed, and the path to the
default executable.

For this reason, it’s always a good idea to start a new shell right after you install nvm
rather than continue in the shell where you installed it. Once you get the right path for
your nvm, things follow smoothly.

Node.js
Now that we have installed nvm, let’s install Node.js using nvm. Visit the Node.js website
to find out which version of Node.js fits the requirement: the Long Term Support (LTS) or
the latest stable version. If you like to use the latest version, just type

$ nvm install node

An alternative is to choose the LTS version, which is assured to have support for a
longer term than other versions. This means that although you cannot expect feature
upgrades, you can expect security and performance fixes that are backward compatible,
and you can continue to install incrementally newer versions without worrying about
breaking your existing code. For this alternative, you have to type in the version number.
As of the writing of this book, 4.5.0 was the LTS version, so you can use it:

$ nvm install 4.5

All the code in this book was tested with Node.js version 4.5.0, so I recommend that
you do the same. Also, don’t forget to make the just installed version of node the default.
For example,

$ nvm alias default 4.5

https://github.com/creationix/nvm

Chapter 2 ■ hello World

22

Otherwise, the next time you enter the shell, node will not be in your PATH. Or you
may get the wrong version, if you have installed another version. Confirm the version
of the node that’s been installed as your default by typing the following in a new shell /
terminal:

$ node --version

Note that installing Node.js via nvm will also install npm, the package manager. If
you are using Windows and installing Node.js directly, ensure that you have installed a
compatible version of npm as well. Confirm this by noting down the version of npm that
was installed along with Node.js:

$ npm --version

With Node.js 4.5, you are likely to see 2.15.9 as the npm version.

Project
Before we install any third-party packages with npm, it’s a good idea to initialize the
project. With npm, even an application is considered a package. A package defines
various attributes of the application. One such important attribute is a list of other
packages that it depends upon. This will change over time, as we find a need to use more
libraries.

But to start with, we need at least a placeholder where these things will be saved. For
that, we need to initialize the package. Create a directory, say pro-mern-stack, navigate
to it in your shell, and type the following:

$ npm init

Most questions that this command asks of you should be easy to answer. The
defaults will work fine too. From now on, make sure you are in the project directory for all
commands, especially npm commands (which I’ll describe below). This will ensure that
all changes and installations are localized to the project directory.

npm
To install anything using npm, the command that you use is npm install <package>.
To start off, and because we need an HTTP server, let’s install Express using npm.
Installation of Express is as simple as

$ npm install express

Go ahead and install it. Once done, you will notice that it prints a tree of other packages
Express depends upon. Now, uninstall and install it again with the --save options:

$ npm uninstall express
$ npm install express --save

Chapter 2 ■ hello World

23

 ■ Note While installing, you can give a specific version to install using the suffix
@<version>, for example, npm install express@4.14.10. When not specified, it installs
the latest version. If something is not working as described in this book, it may be due to a
difference in version that you have installed vis-à-vis the version I used when writing the
book. In such cases, you can try installing the same version as I have used for this book. For
a list of the version of all packages, please refer to the final package.json file in the Github
repository that contains the source code for this book.

EXERCISE: NPM

1. Find out what difference --save made. try uninstalling and
re-installing express with and without this option. hint: the
difference is in package.json.

2. When was package.json created? If you can't guess, inspect
the contents for a hint. Still can't figure out? Go back and redo
your steps. Start with creation of the project directory, and look
at the directory contents at each step.

3. Uninstall express. Now, just type npm install. What happens?
add another dependency, mongodb, manually to package.json
this time. Use version as “latest”. Now, type npm install. What
happens? Uninstall mongodb, and use --save this time to affect
package.json.

4. Use --save-dev instead of --save while installing a package.
What difference do you see in package.json? What difference
do you think it will make?

5. Where do you think the packages files are installed? type npm
ls --depth=0 to check all the currently installed packages.
Clean up any packages you do not need.

play around with npm installation and uninstallation a bit. this will be
useful in general. learn more about npm version syntax from the documentation:
https://docs.npmjs.com/files/package.json#dependencies.

answers are available at the end of the chapter.

https://docs.npmjs.com/files/package.json#dependencies

Chapter 2 ■ hello World

24

npm is extremely powerful, and its options are vast. For the moment, we will concern
ourselves only with the installation of packages and a few other useful things. The
location of the installed files under the project directory is a conscious choice that the
makers of npm made. This has the following effect:

 1. All installations are local to the project directory. This means
that another project can use a different version of any of the
installed packages. This may at first seem unnecessary and
feel like a lot of duplication. But you will really appreciate
this feature of npm when you start multiple Node.js projects
and don’t want to deal with a package upgrade that you don’t
need. Further, you will notice that the entire Express package,
including all dependencies, is just 1.8Mb. With such tiny sizes,
you needn’t be worried about excessive disk usage either.

 2. A package’s dependencies are also isolated within the
package. Thus, you could, by all means, have two packages
depending on different versions of a common package, and
they would each have their own copy and therefore work
flawlessly.

 3. You don’t need administrator (superuser) rights to install a
package.

There is, of course, an option to install packages globally, and sometimes it is useful
to do this. One use case is when a command-line utility is packaged as an npm package.
You typically want the command line to be available regardless of the current directory,
and in this case, you would choose a global install. In such cases, the –g option of npm
install can be used, but you may need admin or root access to do this depending on your
OS and type of installation.

Express
Express, if you remember the introduction in the previous chapter, is the best way to run
an HTTP server in the Node.js environment. For starters, we’ll use Express to serve only
static files. This is so that you get used to what Express does, without getting into a lot of
server-side coding.

To start using Express, you need to import the module, and use the top level function
that the module exports, in order to instantiate an application. You can create multiple
applications, which listen on different ports, but we won’t do that. We’ll instantiate just
one application. The listen() method of the application takes in a port number and
starts the server, which then waits eternally for requests. But before you start listening on
a port, you need to set up the application to tell it how to respond to certain requests.

Express is a framework that does minimal work by itself; instead, it gets most of the
job done by functions called middleware. A middleware is a function that takes in an
HTTP request and response object, plus the next middleware function in the chain. The
function can look at and modify the request and response objects, respond to requests, or
decide to continue with middleware chain by calling the next function.

Chapter 2 ■ hello World

25

The express.static generator function generates one such middleware function.
This middleware responds to a request by trying to match the request URL with a file
under a directory specified by the parameter to the generator function. If a file exists, it
returns the contents of the file as the response; if not, it chains to the next middleware
function. The middleware is mounted on the application using the application’s use()
method.

Let’s put all this together in a file called server.js in the root directory of the project.
Listing 2-2 shows the code that is needed to achieve a simple static server.

Listing 2-2. server.js: Express Server

const express = require('express');

const app = express();
app.use(express.static('static'));

app.listen(3000, function () {
 console.log('App started on port 3000');
});

Let’s create a directory named static under the project directory and move
index.html (which we created in the previous section) into this directory. Now we can
start the web server and serve index.html. To start the web-server, do this on the console:

$ npm start

You should see a message saying the application has started on port 3000. Open up
your browser and type http://localhost:3000 in the URL bar. You should see the same
Hello World page.

Let’s examine the server code and understand its contents in detail.

...
const express = require('express');
...

require is a JavaScript keyword specific to Node.js, and it is used to import other
modules. In the above line, we loaded up the module called express and saved the
top-level thing that the module exports, in the constant named express. Node.js allows
the thing to be a function, an object, or whatever can fit into a variable. The type and form
of what the module exports is really up to the module, and the documentation of the
module will tell you how to use it. In the case of Express, the module exports a function
that can be used to instantiate an application.

Note that we are using const and not var. This is because we are using the
ECMAScript 2015 (ES2015) specification of JavaScript. You may also see references to
ECMAScript 6th Edition (ES6), which is just an older name for ES2015. ECMAScript 6th
edition was renamed to ECMAScript 2015 recently.

Chapter 2 ■ hello World

26

Node.js supports ES2015 to a large extent, so we will be using the ES2015 features
and style of programming. We’ll be using ES2015 for the client-side code, so we might as
well use the same on the server, so as to have a consistent style throughout.

...
const app = express();
app.use(express.static('static'));
...

This instantiates the application and then mounts a middleware. The middleware
generator takes the parameter static to indicate that this is the directory where all the
static files reside. Remember that we moved index.html into this directory.

The express.static generated middleware function is also smart enough to
translate a request to “/” (the root of the website) and respond by looking for index.html
in the directory. This is similar to what other static web servers such as Apache would
have done. You could also have used http://localhost:3000/index.html to access the
application and seen the familiar Hello World.

EXERCISE: EXPRESS

1. Change the name of the file index.html to something else, say,
hello.html. how does this affect the application?

2. If you wanted all static files to be accessed by a prefixed Url, for
example /public, what change would you make? hint: take a
look at the express documentation for static files and try this out.

3. Change the name of the web application file from server.js to
something else, say, app.js. Now, what options do you have for
starting up the web server? hint: look up the npm documentation,
in specific, ClI commands and the command run-script.

answers are available at the end of the chapter.

Build-Time JSX Compilation
As you saw in earlier sections, the transformation of JSX to JavaScript happens at runtime.
This is inefficient and quite unnecessary. Let’s instead move the transformation to the
build stage in your development, so that we can deploy a ready-to-use distribution of the
application.

Chapter 2 ■ hello World

27

Separate Script File
First, we need to separate out the JSX script from your all-in-one index.html, and refer to
it as an external script. This way, we can keep the HTML as pure HTML and all the scripts
that need compilation in a separate file. Let’s call this external script App.jsx, and place
it in the static directory, so that it can be referred to as /App.jsx from the browser. The
new modified files are shown in Listings 2-3 and 2-4.

Listing 2-3. index.html: Separate HTML and JSX

<!DOCTYPE HTML>
<html>

<head>
 <meta charset="UTF-8" />
 <title>Pro MERN Stack</title>
 <script src=
 "https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react.js">
</script>

 <script src=
 "https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react-dom.js">
</script>

 <script src=
 "https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.js">
</script>

</head>

<body>
 <div id="contents"></div><!-- this is where our component will appear -->
 <script type="text/babel" src="/App.jsx"></script>
</body>

</html>

Listing 2-4. App.jsx: JSX Part Separated Out from the HTML

var contentNode = document.getElementById('contents');
var component = <h1>Hello World!</h1>; // A simple JSX component
ReactDOM.render(component, contentNode); // Render the component inside 

the content Node

At this point, the app should continue to work. Test it to make sure it does (point
your browser to http://localhost:3000). Until now, we have only separated the files; we
have not moved the transform to build-time. The JSX continues to get transformed by the
babel library script. We’ll move the transform to build-time in the next step.

Chapter 2 ■ hello World

28

Transform
Create a directory to keep all the JSX files, which will be transformed into JavaScript and
placed in the static folder. Let’s call this directory src. Let’s move App.jsx into this directory.

To transform the JSX, we need to install some babel tools. In this case, we need a
couple of tools: babel-cli (the command line tool that invokes the transformation)
and babel-preset-react (the plugin that handles React JSX transformation). Note that
the babel tool handles not just JSX but many other transformations, which you can read
about on the website. For now, we’ll only be installing the React transform, so execute the
following command:

$ npm install --save-dev babel-cli babel-preset-react

Now we’re ready to transform App.jsx into pure JavaScript. Do this:

$ node_modules/.bin/babel src --presets react --out-dir static

Since we did not install babel-cli globally, you must type the path to the command,
relative to the current directory, which is node_modules/.bin. We could have installed
babel-cli globally using the --global (or –g) option of npm. That way, we would
have access to the command in any directory, without having to prefix the path. But as
discussed earlier, it’s a good practice to keep all installations local to a project. This is
so that we don’t have to deal with version differences of a package across projects. An
alternative is to add the .bin directory to the PATH environment variable, but you’ll see
later that there is a better way to do all this, so let’s keep it like this for now.

We also need to change index.html to replace the reference to App.jsx to App.js
and indicate the new type of this script; it is now JavaScript and not JSX. So, let’s just
remove the type="text/babel" in the script specification. We no longer need the runtime
transformer to be loaded in index.html, so we can get rid of the babel-core script library.
These changes are shown in Listing 2-5.

Listing 2-5. index.html: Changes in Script Name and Type

...
 <script
 src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.

min.js"></script>
...
 <body>
 <div id="contents"></div><!-- this is where our component will appear -->
 <script src="/App.js" type="text/babel"></script>
 </body>
...

It’s time to test this set of changes and ensure that things work as before. For good
measure, use the browser’s developer console to ensure it is App.js that’s being fetched,
and not App.jsx. The developer console can be found on most browsers; you may need
to look at your browser’s documentation for instructions to get to it.

Chapter 2 ■ hello World

29

EXERCISE: BABEL

1. Inspect the contents of App.js, the output of the transform.
You’ll find it in the static directory. What do you see? Can you
explain this?

2. Why did you use --save-dev instead of --save while installing
babel-cli? hint: read the npm documentation, the ClI
command for install.

3. Can you explain each of the command-line arguments of babel?
experiment with the arguments to find out.

4. look at the babel website (http://babeljs.io). What other
transforms do you think will be of use?

answers are available at the end of the chapter.

Automate
npm provides an automatic way of running command-line binaries that belong to
locally installed packages. This lets you pay less attention to the location of command-
line binaries. (Didn’t I say npm was powerful? This is one of the things that it does, even
though this is not real package manager functionality.)

You can define your own npm commands by specifying them in the scripts section
of package.json. These commands can then be called using npm run <script> from the
console. Let’s add a script called “compile” whose command line is the babel command
line, but without the prefix to the binary location. This is because npm automatically
figures out the location. The changes in package.json are shown in Listing 2-6. You can
now run the transform like this:

$ npm run compile

Make a few temporary changes to App.jsx, recompile it, and ensure that the changes
are visible in the browser. To recompile, just run npm run compile again.

 ■ Note avoid using npm sub-command names which are also npm first-level commands
such as build and rebuild, because this leads to silent errors if and when you miss out the
'run' in the npm command.

When we work on the client-side code and change the source files frequently, we
have to manually recompile it. Wouldn’t it be nice if someone detects these changes for us
and recompiles the source into JavaScript? Well, babel supports this out of the box via the
option --watch. To make use of it, let’s add another script called watch with this additional
option to the babel command line. The final set of scripts added is shown in Listing 2-6.

http://babeljs.io/

Chapter 2 ■ hello World

30

Listing 2-6. Package.json: Adding Scripts for Transformation

...
"scripts": {
 "compile": "babel src –presets react –out-dir static",
 "watch": "babel src –presets react –out-dir static –watch",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
...

Go ahead and run the new command using npm watch. You will notice that it does
one transform, but doesn’t return to the shell. It’s actually waiting in a permanent loop,
watching for changes to the source files. Test out its effect by making a small change to
App.jsx and saving the file. You’ll see that it prints out a fresh line like this for every change:

src/App.jsx -> static/App.js

Refresh your browser after the new line is printed when a change in App.jsx is made
and ensure that your changes are reflected in the application.

React Library
Although it is possible to serve the React library scripts also from the server and gain a
little more speed during development, we won’t be doing this just yet. The reason is that
in a later step, we’ll be bundling not just the React library but also other libraries and the
application’s JavaScript files together using a tool called Webpack. The added benefit of
moving the React scripts to the server right now is very minimal.

ES2015
Until now, we were using ES5 (old JavaScript) to write your client-side code. Let’s switch
to ES2015 instead. This not only gives us a few useful features, but it also makes the code
more readable by allowing short-hand syntaxes such as arrow functions. We’ll also be
able to use extra conveniences that React gives you by using ES2015 classes.

For the server-side code, we didn’t have to do anything special; we just wrote the
code in ES2015. But we can’t do this for the client-side code because not all browsers
uniformly support ES2015 specifications. Luckily, babel provides the ability to deal with
ES2015 in addition to JSX into ES5 JavaScript. Conversion from one specification of
JavaScript to another is called transpiling (though you may also use compiling in the rest
of the book to mean the same thing). Let’s install another babel plugin for this:

$ npm install –save-dev babel-preset-es2015

Chapter 2 ■ hello World

31

Let’s now modify the compile npm scripts in package.json to include an ES2015
compilation in addition to React transformation. The changed script commands are
shown in Listing 2-7, with the changes highlighted in bold.

Listing 2-7. package.json: Including ES2015 Transformation

...
 "scripts": {
 "compile": "babel src --presets react,es2015 --out-dir static",
 "watch": "babel src --presets react,es2015 --out-dir static --watch",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
...

All the new syntaxes and language features can now be used in your client-side code.
But there’s one more thing: ES2015 also comes with many built-in objects and extensions,
which are not syntactic changes. For example, the Promise object is an ES2015
specification, as is the array find() method. These are not supported by older browsers
such as Internet Explorer 11 and earlier. And, a transpile is not enough to add these new
capabilities.

If you must support those browsers and want to use these built-in functions, you need
to add support to the browser via a JavaScript library. These are called polyfills, things that
supplement browser capabilities or global functions. If the browser natively supports a
certain feature, a polyfill will choose to use the native objects or methods rather than use
the JavaScript-based supplement. There are individual polyfills for various features; for
example, you will find a polyfill for Promises. But rather than install individual polyfills,
let’s use the babel recommended polyfill that emulates a full ES2015 environment. This
is called babel-polyfill. Let’s use this, like the React libraries, from a CDN. So, change the
index.html to include the babel-polyfill library as shown in Listing 2-8.

Listing 2-8. index.html: Changes for Including ES2015 Polyfill

...
 <title>Pro MERN Stack</title>
 <script src=
 "https://cdnjs.cloudflare.com/ajax/libs/babel-polyfill/6.13.0/polyfill.js">
</script>

 <script src=
 "https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react.js">
</script>

...

Now we’re ready to use ES2015 in App.jsx. Let’s replace the contents with the code
in Listing 2-9, which you’ll examine soon.

Chapter 2 ■ hello World

32

Listing 2-9. App.jsx: Rewritten in ES2015

const contentNode = document.getElementById('contents');

const continents = ['Africa','America','Asia','Australia','Europe'];
const message = continents.map(c => `Hello ${c}!`).join(' ');

const component = <p>{message}</p>; // A simple JSX component
ReactDOM.render(component, contentNode); // Render the component inside the 

content Node

Compile the new App.jsx by running npm run watch or npm run compile. If you
already running npm run watch, you will need to break that process using Ctrl-C and
restart it. That’s because it needs to load the changes to the watch command which now
includes the ES2015 preset.

Refresh your browser (you should be running npm start in a different console by
now), and you should now see a greeting for each continent rather than the entire world.
Let’s discuss the new code, which includes a few ES2015 features and also one React
feature.

...
const contentNode = ...
...

In ES2015, the const and let keywords replace the var keyword. You use const to
declare constants (variables that don’t change once assigned). You use let to declare and
initialize a variable that may take other values during the course of the script execution.
In the above piece of code, we used const to say that the variable contentNode is not
going to be assigned later on to anything else.

...
continents.map(c => ...)
...

This is an arrow function. It’s a shorthand for defining a function taking a single
parameter and returning an expression. Note that there is no return keyword, it reads as
“c maps to `Hello ${c}!`”.

...
`Hello ${c}!`
...

Chapter 2 ■ hello World

33

Pay close attention to the quotes: these are back-ticks and not single-quotes. This
construct is called a template string. You can plug in variables using ${} within the string,
and the variables will be expanded inline, just like string interpolation in perl and python.
In fact, you can use any JavaScript expression rather than just a variable.

...
const component = <p>{message}</p>;
...

Similar to ES2015 string interpolation, this is a JSX feature. The curly braces allow
you to insert JavaScript expressions inside JSX, and these will be replaced by the value of
the expression. This works not only for HTML text nodes but also within attributes. For
example, the class name for an element can be a JavaScript variable.

EXERCISE: ES2015

1. try to format the message as one per line by using
 to
join the individual messages instead of a space. are you able to
do it? Why not?

2. Inspect the generated App.js now. What is new because of
eS2015 transformation?

answers are available at the end of the chapter.

Please read all about ES2015 on the Babel website: http://babeljs.io/docs/
learn-es2015/. We will be using many ES2015 features in this book, but I will not explain
each of them henceforth. You don’t need to be an expert, but you should know the basics
and be able to find help when needed. I will assume that you are familiar with ES2015
from now on.

Summary
In this chapter, we saw the basics of how React applications can be built. We started with
a simple piece of code written React JSX that we compiled at runtime; then we moved the
compilation to the server. We also looked at ES2015, and how to transpile, that is, compile
from one specification of the language to another.

We also got a whiff of what Node.js with Express can do, and how to use Babel to
compile JSX into plain JavaScript. We didn’t MongoDB, the M in the MERN stack, but I
hope you got a good view of the others. In the next two chapters, we’ll dive deeper into
React, and then surface up to look at the big picture, dealing with REST APIs, MongoDB,
and Express.

http://babeljs.io/docs/learn-es2015/
http://babeljs.io/docs/learn-es2015/

Chapter 2 ■ hello World

34

Answers to Exercises
Exercise: JSX
 1. The attribute "type=text/babel" on the script element

indicates that the contents are JSX, as opposed to regular
JavaScript, the default if you don’t specify a type. The babel
compiler compiles all such script elements into JavaScript
and injects it back. Removing either the babel compiler or
the type attribute will cause the script not to be compiled into
JavaScript and will cause errors on the JavaScript console.

 2. To specify a class in JSX, you need to use className=<name>
instead of class=<name> as you would have done in HTML.

 3. A minified version of React hides or shortens runtime errors.
A non-minified version gives full errors and helpful warnings
as well.

Exercise: npm
 1. The npm option --save causes the installation/uninstallation

to be recorded under the dependencies section of
package.json.

 2. package.json got created when we created the project using
npm init. In fact, all of the responses to the prompts when we
ran npm init were recorded in package.json.

 3. Running npm install without any further options or
parameters causes all dependencies to be installed, by looking
at package.json. Thus, you could add dependencies manually
to package.json and just use npm install. This gives you
better control over which version of the package you want.

 4. The option --save-dev adds the package in devDependencies
instead of dependencies. The list of dev dependencies
will not be installed in production, which is indicated by
the environment variable NODE_ENV being set to the string
production.

 5. Package files are installed under the directory node_modules
under the project. npm ls lists all the packages installed, in a
tree-like manner. --depth=0 restricts the tree depth to the top-
level packages. Deleting the entire node_modules directory is
one way of ensuring you start clean.

Chapter 2 ■ hello World

35

Exercise: Express
 1. The static file middleware does not specially treat hello.html

as it did index.html, so you will have to access the application
with the name of the file like this: http://localhost:3000/
hello.html.

 2. For accessing static files via a different mount point, specify that
prefix in the middleware generated helper function as the first
parameter. The directory name will now be the second parameter.
For example, express.static('/public', 'static').

 3. By default, npm start runs the command node server.js.
If you use some other file name, say app.js, you should add
"start": "node app.js" as a script under the scripts
section of package.json to tell npm that this is the actual start
command. Alternatively, you could just run the server yourself
without using npm, using the command node app.js.

Exercise: Babel
 1. App.js now contains pure JavaScript, as discussed in the

beginning of the chapter. JSX, the short-hand notation for
React.createElement() function calls, has been transformed
into just that.

 2. When you deploy the code, you only deploy a pre-built
version of the application. That is, you transform the JSX on
a build server or your development environment, and push
out the resulting JavaScript to your production server. Thus,
on the production server, you will not need the tools that
are required to build the application. Therefore, you use
--save-dev so that on the production server, the package
need not be installed.

 3. The first argument to babel is the source: this can be a
directory or an individual file. --presets react tells it to run
the React (JSX) transformation. --out-dir tells it to place
output files (derived from the input file name) at the specified
location. You could have used --out-file to specify any
custom file name.

 4. We’ll definitely use the es2015 transform because we’ll soon
switch over to ES2015 for the client-side code as well. There
are other useful transforms such as object-assign which also
can be considered.

Chapter 2 ■ hello World

36

Exercise: ES2015
 1. React does this on purpose, to avoid cross-site scripting

vulnerabilities. It is not easy to insert HTML markup, although
there is a way using the dangerouslySetInnerHTML attribute
of an element. The correct way to do this is to compose an
array of components. We will explore this in later chapters.

 2. Without ES2015 transformation, only JSX snippets were
transformed. Now, with ES2015 transformation, even
JavaScript is modified.

www.allitebooks.com

http://www.allitebooks.org

37© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_3

CHAPTER 3

React Components

In the Hello World example, we created a very basic React native component, using pure
JSX. In the real world, you will want to do much more than what a simple single line JSX
can do. This is where React components come in. React components react to user input,
change state, interact with other components, and much more.

However, before going into all that detail, let me first describe the requirements
of the application that we will build. After that, at every step that we take forward, we’ll
take one feature or task that needs to be addressed and complete it. I like this approach
because I learn things the best when I put them to immediate use. This approach not only
lets you appreciate and internalize the concepts because you put them to use, but also
brings the more useful and practical concepts to the forefront.

The application I’ve come up with is something that most developers can relate to.

Issue Tracker
I’m sure that most of you are familiar with GitHub or JIRA issues. It’s essentially a CRUD
application (Create, Read, Update, and Delete a record in a database). The CRUD pattern
is so useful because pretty much all enterprise applications are built around the CRUD
pattern on different entities or objects.

In our case, we’ll only deal with a single object/record, because that’s good enough
to depict the pattern. Once you grasp the fundamentals of how to implement the CRUD
pattern in MERN, you’ll be able to replicate the pattern and create a real-life application.

Here’s the requirement list:

•	 We should be able to view a list of issues, with the ability to filter
the list by various parameters.

•	 We should be able to add new issues by supplying the initial
values of the issue’s fields.

•	 We should be able to update an issue by changing its field values.

•	 We should be able to delete issues.

An issue should be described by the following attributes:

•	 A title that summarizes the issue (free-form text)

•	 An owner to whom the issue is assigned to (free-form short text)

Chapter 3 ■ reaCt Components

38

•	 A status indicator (a list of possible status values)

•	 Creation date (a date, automatically assigned)

•	 Effort required to address the issue (number of days, a number)

•	 Estimated completion date (a date, entered by the user)

Note that I’ve included different types of fields (lists, date, number, text) to make sure
you learn how to deal with different data types. We’ll start simple, build one feature at a
time, and learn about the MERN stack as we go along.

In this chapter, we’ll create React classes and instantiate components. We’ll also
create bigger components by putting together smaller components. Finally, we’ll pass
data among these components and create components dynamically from data. In terms
of features, the objective in this chapter is to lay out the main UI page of the Issue Tracker:
a list of issues. We’ll hard-code the data that is used to display the page, and leave
persistence and retrieval of the data to a later chapter.

React Classes
In this section, the objective is to convert the single line JSX into a simple React
component instantiated from a React class, so that we can later use the full power of first
class React components.

React classes let us create real components (as opposed to the templated HTML that
we saw in the previous chapter), reuse them within other components, handle events,
and so much more. To start with, we’ll replace the Hello World example with a simple
class, as the starting point for the Issue Tracker application.

React classes are created by extending React.Component. There is also a non-ES2015
class way of doing this by calling React.createClass, which is the only way if you are not
using ES2015. Though there are a few differences in the style and the methods, you can
achieve the same in both options. Some people prefer using React.createClass, but the
React team recommends ES2015 classes. In this book, we’ll follow that recommendation.

Within the class definition, we need, at the minimum, a render() function. To start,
let’s just return a <div> with some placeholder text from the render() method. The new
contents of App.jsx are shown in Listing 3-1.

Listing 3-1. App.jsx: A Simple React Class

const contentNode = document.getElementById('contents');

class IssueList extends React.Component {
 render() {
 return (
 <div>This is a placeholder for the issue list.</div>
);
 }
}

ReactDOM.render(<IssueList />, contentNode); // Render the component inside 
the content Node

Chapter 3 ■ reaCt Components

39

If you refresh your browser, you should see the placeholder text. Now, let’s examine
what happened here in a little more detail.

The render() method is something that that the React framework calls when it
needs to display the component. There are other methods with special meaning to
React that can be implemented, called the Lifecycle functions, which provide hooks into
various stages of the component formation and events. I’ll discuss them in later chapters.
But render() is one that must be present; otherwise you’ll have a component that has no
screen presence.

Within the render() method, we’re supposed to return a native component instance,
or an instance of a component defined by us. In this case, we returned a <div> element,
just like the first Hello World example used an <h1> element. We don’t really need the
brackets around the <div> but it’s convention, and it helps readability when rendering a
more complex or nested set of elements.

Let’s take a closer look at the last line:

...
ReactDOM.render(<IssueList />, contentNode);
...

Here, we rendered an instantiation of the IssueList component into the contents
element defined in index.html. To instantiate a component, you write it in JSX as if it
were an element, enclosed within angle brackets. It’s worth noting here that div and
h1 are built-in internal React components that you can directly instantiate, whereas
IssueList is something that you define and later instantiate. And within IssueList, you
use React’s built-in div component.

I’ve used component and instance of a component interchangeably, like sometimes
we tend to do with objects. But it should be obvious by now that IssueList and div are
actually React component classes, whereas <IssueList /> and <div /> are tangible
components or instances of the component class.

EXERCISE: REACT CLASSES

1. In the render function, instead of returning one <div>,
return two <div> elements placed one after the other. What
happens? Why, and what’s the solution? hint: Look in the react
documentation under tips: maximum number of JsX root
nodes.

2. Create a runtime error by changing the string 'contents' to
'main' or some other string that doesn’t identify an element
in the htmL. Where is the error caught? What about Javascript
runtime errors like undefined variable references?

answers are available at the end of the chapter.

Chapter 3 ■ reaCt Components

40

Composing Components
In the previous section, you saw how to build a component by putting together built-in
React components that are HTML element equivalents. It’s possible to build a component
that uses other user-defined components as well.

This is called component composition, and it is one of the most powerful features of
React. It lets you split the UI into smaller independent pieces so that you can reason about
each piece in isolation. Using components rather than building the UI in a monolithic
fashion also encourages reuse. We’ll see in a later chapter how one of the components
that you built can easily be reused, even though we hadn’t thought of reuse at the time of
building the component.

A component takes inputs (called properties, which I’ll discuss later) and its output is
the rendered UI of the component. In this section, we will not use inputs, but put together
fine-grained components to build a larger UI.

Let’s design the main page of the application as three parts: a filter to select
which issues to display, the list of issues, and finally an entry form for adding an issue.
We’re focusing on composing the components at this point in time, so we’ll only use
placeholders for these three parts. So, just like the IssueList class, let’s define three
placeholder classes: IssueFilter, IssueTable, and IssueAdd—very similar to the
IssueList class, the only difference being the placeholder text. To put them together,
and change the IssueList class, let’s remove the placeholder text and replace it with an
instance of each of the new placeholder classes separated by a <hr> or horizontal line.

Ideally, components should be isolated into their own files so that they can be
reused. But at the moment, we only have placeholders, so for the sake of brevity, we’ll
keep all the classes in the same file. At a later stage, when the classes are expanded to
their actual content, we’ll separate them out.

Listing 3-2 shows the new contents of the file App.jsx.

Listing 3-2. App.jsx: Composing Components

const contentNode = document.getElementById('contents');

class IssueFilter extends React.Component {
 render() {
 return (
 <div>This is a placeholder for the Issue Filter.</div>
)
 }
}

class IssueTable extends React.Component {
 render() {
 return (
 <div>This is a placeholder for a table of Issues.</div>
)
 }
}

Chapter 3 ■ reaCt Components

41

class IssueAdd extends React.Component {
 render() {
 return (
 <div>This is a placeholder for an Issue Add entry form.</div>
)
 }
}

class IssueList extends React.Component {
 render() {
 return (
 <div>
 <h1>Issue Tracker</h1>
 <IssueFilter />
 <hr />
 <IssueTable />
 <hr />
 <IssueAdd />
 </div>
);
 }
}

ReactDOM.render(<IssueList />, contentNode); // Render the component inside 
the content Node

The effect of this code is an uninteresting page, as in Figure 3-1.

Figure 3-1. Issue tracker by composing components

Chapter 3 ■ reaCt Components

42

Passing Data
Composing components without any variables is not so interesting. You should be able to
pass data from a parent component to a child component and make it render differently
on different instances. Displaying multiple rows of issues using a class for a single row is
an ideal use case to demonstrate this.

Let’s create a component called IssueRow to depict one row in a table, and then use
this multiple times within IssueTable, passing in different data to show different issues.

Using Properties
You can pass data from a parent to a child component in different ways. One way to do
this is using properties. Any data passed in from the parent can be accessed in the child
component through a special variable, this.props. So, to access a property called
issue_title, you use this.props.issue_title. For example, in the IssueRow child
component, you access the property in a JSX snippet like this:

...
 <td>{this.props.issue_title}</td>
...

And, to pass this data, you use XML- or HTML-like attributes in the parent. For
example, to pass the property issue_title, in the parent, you do this:

...
 <IssueRow title="Title of the first issue” />
...

You can pass not only strings but also JavaScript objects and other data types. In
fact, any JavaScript expression can be passed along by using curly braces ({}) instead of
quotes, as in the above example. Listing 3-3 shows the new IssueRow component and the
modified IssueTable component.

Listing 3-3. App.jsx: Passing Data from IssueTable to IssueRow Component

class IssueRow extends React.Component {
 render() {
 const borderedStyle = {border: "1px solid silver", padding: 4};
 return (
 <tr>
 <td style={borderedStyle}>{this.props.issue_id}</td>
 <td style={borderedStyle}>{this.props.issue_title}</td>
 </tr>
)
 }
}

Chapter 3 ■ reaCt Components

43

class IssueTable extends React.Component {
 render() {
 const borderedStyle = {border: "1px solid silver", padding: 6};
 return (
 <table style={{borderCollapse: "collapse"}}>
 <thead>
 <tr>
 <th style={borderedStyle}>Id</th>
 <th style={borderedStyle}>Title</th>
 </tr>
 </thead>
 <tbody>
 <IssueRow issue_id={1}
 issue_title="Error in console when clicking Add" />
 <IssueRow issue_id={2}
 issue_title="Missing bottom border on panel" />
 </tbody>
 </table>
)
 }
}

Let’s examine what happened here. Let’s first look at the table body, which containes
multiple lines of the following form:

...
 <IssueRow issue_id={1}
 issue_title="Error in console when clicking Add" />
...

The issue title is passed in as a string using a quoted attribute, whereas the numbers
1 and 2 are enclosed in curly braces. We accessed the properties using this.props in the
child component as seen in the IssueRow component:

...
 <td style={borderedStyle}>{this.props.issue_id}</td>
...

We passed in different values for the id and title properties to display two hard-coded
rows of Issues. We added only two fields of an Issue for the sake of brevity; we’ll add the
other fields later. Further, we passed the attribute style to the native HTML element <td>:

...
 const borderedStyle = {border: "1px solid silver", padding: 4};
...
 <td style={borderedStyle}>{this.props.issue_id}</td>
...

Chapter 3 ■ reaCt Components

44

The first line above creates an object describing a style. This style is then applied to
all the table cells that are created.

But note that these are not really HTML attributes. Instead, they are also like
properties being interpreted by the built-in native components. In most cases, like style,
the name of the attribute is the same as the HTML attribute, but a few attributes cause
conflict with JavaScript reserved words, so the naming requirements are different. Thus,
the class HTML attribute is className in JSX. Also, hyphens in the HTML are replaced
with camel cased names; for example, max-length becomes maxLength.

In most cases, the value of the attribute is a string, which looks the same as the
HTML attribute value. But for the attribute style, you pass in an object describing the
style rather than a string as in HTML. The style object contains a series of JavaScript key-
value pairs. The keys are same as the CSS style name, except that instead of dashes (like
border-collapse), they are camel cased (like borderCollapse). The values are CSS style
values, just as in CSS. There is also a special shorthand for specifying pixel values: you can
just use a number (like 4, above) instead of a string like "4px".

Figure 3-2 shows the output of the above changes.

Figure 3-2. Passing data to child components

Property Validation
When you pass parameters in functions in strongly typed languages such as Java, you
declare the types of the function parameters. This ensures that the caller knows the list
and the types of parameters, and also ensures that passed-in parameters are validated
against this specification.

Similarly, the properties being passed from one component to another can also
be validated against a specification. This specification is supplied in the form of a static
object called propTypes in the class, with the name of the property (e.g., issue_title)
as the key and the validator as the value, which is one of the many constants exported by
React.PropTypes, for example, React.PropTypes.string. To indicate that issue_id

Chapter 3 ■ reaCt Components

45

and issue_title are the properties expected, the first being a mandatory value, you add
the propTypes static variable to IssueRow like this:

IssueRow.propTypes = {
 issue_id: React.PropTypes.number.isRequired,
 issue_title: React.PropTypes.string
};

In ES2015, static members can only be functions; hence the class member must be
declared outside the class declaration. If you prefer that the declaration be inside the
class declaration, you can use a getter function instead, like this:

...
 static get propTypes() {
 return {
 issue_id: React.PropTypes.number.isRequired,
 issue_title: React.PropTypes.string
 };
 }
...

Property validation is checked only in development mode, and a warning is shown in
the console when any validation fails. Since we are in an early stage in the development of
the application, we expect more changes to the properties. We’ll add property validations
later, when the properties are reasonably stabilized.

Further, you can also default the property values when the parent does not supply
the value. For example, if you want the title to be defaulted to something else, rather than
show an empty string, you can do this:

IssueRow.defaultProps = {
 issue_title: '-- no title --',
};

Using Children
There is another way to pass data to other components, using the contents of the HTML-
like node of the component. In the child component, this can be accessed using a special
property of this.props called this.props.children.

As you have probably noticed, just like in regular HTML, you can nest components.
We added the three sections within the <div> built-in component by nesting it. When
the components are converted to HTML elements, the elements nest in the same order.
Similarly, even for your own components, you can nest other components at the time the
component is instantiated. In such cases, you’ll find that the JSX expression includes both
the opening and closing tags, and other components or JSX expressions within them.
When the enclosing component programmatic needs access to the nested component, it
can do that using this.props.children.

Chapter 3 ■ reaCt Components

46

Say you wanted to wrap an arbitrary component with a bordered <div>. You would
create such a wrapper component like this:

...
class BorderWrap extends React.Component {
 render() {
 const borderedStyle = {border: "1px solid silver", padding: 6};
 return (
 <div style={borderedStyle}>
 {this.props.children}
 </div>
);
 }
}
...

Then, during the rendering, you could wrap any component with a border like this:

...
 <BorderWrap>
 <ExampleComponent />
 </BordeWrap>
...

Thus, instead of passing the issue title as a property to IssueRow, we now use this
technique and embed it as contents of <IssueRow>. This change is shown in in Listing 3-4.

Listing 3-4. App.jsx: Using Children Instead of Props

...
 <td style={borderedStyle}>{this.props.issue_titlechildren}</td>
...
 <IssueRow issue_id={1} issue_title="Error in console when clicking Add" />
 <IssueRow issue_id={2} issue_title="Missing bottom border on panel" />
 <IssueRow issue_id={1}>Error in console when clicking Add</IssueRow>
 <IssueRow issue_id={2}>Missing bottom border on panel</IssueRow>
...

Now, as you can see, you are able to pass a formatted HTML content as the title
directly to the IssueRow rather than a plain string.

Chapter 3 ■ reaCt Components

47

EXERCISE: PASSING DATA

1. add an attribute border=1 for the table, as you would in regular
htmL. What happens? Why? hint: read up on supported
tags and attributes in the reference section of the react
documentation.

2. Why is there a double curly brace in the inline style for the
table? hint: Compare it with the other style, where you declared
a variable and used that instead of specifying it inline.

3. the curly braces are a way to escape into Javascript in the
middle of JsX markup. Compare this to similar techniques in
other templating languages such as php.

4. When is it appropriate to pass data as props vis-à-vis
children? hint: think about what is it that you want to pass.

answers are available at the end of the chapter.

Dynamic Composition
In this section, we’ll replace the hard-coded set of IssueRow components with a
programmatically generated set. For the moment, we’ll use a simple JavaScript array
in memory to store the list of issues to be displayed. In later chapters, we’ll get more
sophisticated by getting the data from the server, and then from a database. Using this
in-memory array, we’ll generate an array of IssueRow components. We’ll also include as
many fields of an issue as possible in this array. Listing 3-5 shows this in-memory array,
declared globally just before the IssueList class declaration.

Listing 3-5. App.jsx: In-Memory Array of Issues

const issues = [
 {
 id: 1, status: 'Open', owner: 'Ravan',
 created: new Date('2016-08-15'), effort: 5, completionDate: undefined,
 title: 'Error in console when clicking Add',
 },
 {
 id: 2, status: 'Assigned', owner: 'Eddie',
 created: new Date('2016-08-16'), effort: 14, 

completionDate: new Date('2016-08-30'),
 title: 'Missing bottom border on panel',
 },
];

Chapter 3 ■ reaCt Components

48

We added an array called issues that holds two issues objects. We left completionDate
undefined in the first object, to indicate that this is an optional field. We can add more
example issues, but two is sufficient to demonstrate dynamic composition. Now, let’s modify
the IssueList class to pass this array as a property to IssueTable. The changes are shown in
Listing 3-6.

Listing 3-6. App.jsx: Pass Issues from IssueList to IssueTable

...
 <hr />
 <IssueTable issues={issues} />
 <hr />
...

We could have kept the array scoped within the render() function of IssueList, but
keeping it global gives us some convenience later on. Also, since this is a simulation of a
list of issues that needs to be fetched from the server, it is a more accurate replacement if
we keep it in the global scope.

Within the IssueTable class’ render() method, we need to iterate over the issues
array and generate an array of IssueRows from it. The map() method of Array comes
in handy to do this, as we can map an issue object to an IssueRow instance. This time,
instead of passing each field as a property, we pass the issue object itself apart from the
key property, which is required for arrays. This is how we create the array of IssueRow
components:

...
issues.map(issue => <IssueRow key={issue.id} issue={issue} />)
...

If we use a for loop instead, we can’t do it within the JSX, because JSX is not really
a templating language. We must create a variable in the render() method and use
that in the JSX. Let’s do this anyway for readability. Replace the two hard-coded issue
components with this variable instead.

In other frameworks and templating languages, creating multiple elements using a
template requires a special for-loop construct (e.g., ng-repeat in AngularJS) within that
templating language. But in React, you just use regular JavaScript for all programmatic
constructs, not only giving you the full power of JavaScript to manipulate templates, but
also a lesser number of constructs to learn and remember.

In the IssueTable class, we also need to expand the header row for the table to
include all fields. Further, let’s replace the inline styling with a CSS class. The new
IssueTable class is shown in Listing 3-7.

Listing 3-7. App.jsx: IssueTable Class with an Array of IssueRows

class IssueTable extends React.Component {
 render() {
 const issueRows = this.props.issues.map(issue => <IssueRow 

key={issue.id} issue={issue} />)

Chapter 3 ■ reaCt Components

49

 return (
 <table className="bordered-table">
 <thead>
 <tr>
 <th>Id</th>
 <th>Status</th>
 <th>Owner</th>
 <th>Created</th>
 <th>Effort</th>
 <th>Completion Date</th>
 <th>Title</th>
 </tr>
 </thead>
 <tbody>{issueRows}</tbody>
 </table>
)
 }
}

The changes in IssueRow are quite simple. We can remove the inline styles, and we
need to add a few more columns for each of the added fields. The new IssueRow class is
shown in Listing 3-8.

Listing 3-8. App.jsx: New IssueRow Class Using Issue Object Property

class IssueRow extends React.Component {
 render() {
 const issue = this.props.issue;
 return (
 <tr>
 <td>{issue.id}</td>
 <td>{issue.status}</td>
 <td>{issue.owner}</td>
 <td>{issue.created.toDateString()}</td>
 <td>{issue.effort}</td>
 <td>{issue.completionDate ? 

issue.completionDate.toDateString() : ''}</td>
 <td>{issue.title}</td>
 </tr>
)
 }
}

Chapter 3 ■ reaCt Components

50

We also used a local variable issue instead of referring to this.props all the time;
this is just for readability. There are some things to note in this line:

...
 <td>{issue.completionDate ? 

issue.completionDate.toDateString() : ''}</td>
...

Firstly, we used the ?: ternary operator to deal with a conditional display. Since
anything within the curly braces is a JavaScript expression, this is a simple way of
specifying an if-then-else condition. Secondly, we have to call toDateString()
explicitly to format the date. React does not call a toString() automatically on objects,
because it expects all objects as children of components to be React components if they
are not strings.

To replace the inline styles, we need a style section in index.html, as seen in
Listing 3-9.

Listing 3-9. index.html: Using CSS Styles

...
 <s cript src=

"https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react-dom.js">
 </script>
 <style>
 table.bordered-table th, td {border: 1px solid silver; padding: 4px;}
 table.bordered-table {border-collapse: collapse};
 </style>
</head>
...

After the above changes, the screen should look like Figure 3-3.

Figure 3-3. Rows constructed programmatically from an array

Chapter 3 ■ reaCt Components

51

EXERCISE: DYNAMIC COMPOSITION

1. Why did we pass the property issues from IssueTable?
Couldn’t we have passed it from IssueList?

2. remove the key property when constructing the array of
IssueRow components. What happens? explain this. hint: read
about multiple components in the react documentation.

3. We used the issue’s id field as the value of key. What other
keys could have been used? Which would you choose?

4. In the previous section, we passed every field of an issue as a
separate property to IssueRow. In this section, we passed the
entire issue object. Why?

5. Instead of using a local variable issueRows, try using the map
expression directly inside the <tbody>. Does it work? What does
it tell us?

answers are available at the end of the chapter.

Summary
In this chapter, we created a barebones version of the main page of the Issue Tracker. We
used some placeholders to depict components that you have yet to develop. We did this
by writing fine-grained individual components and putting them together (composing) in
an enclosing component. We also saw how to pass parameters or data from an enclosing
component to its children, to be able to reuse a single component with different data.

The components themselves didn’t do much apart from rendering themselves based
on the data. In the next chapter, we’ll see how to add user interactivity that changes the
appearance and manipulates data.

Answers to Exercises
Exercise: React Classes
 1. Compilation will fail with an error, “Adjacent JSX elements must

be wrapped in an enclosing tag”. The render() method can only
have a single return value, thus, it can return only one element.
Enclosing the two <div>s in another <div> is one solution.

 2. React prints an error in the browser’s JavaScript console when
it is a React error. Regular JavaScript errors are also shown in
the console, but the code displayed is not the original code;
it is the compiled code. You’ll learn how to debug using the
original source in later chapters.

Chapter 3 ■ reaCt Components

52

Exercise: Passing Data
 1. A border will not be displayed. How the JSX parser interprets

each attribute is different from how an HTML parser does it.
The border attribute is not one of the supported attributes.
It completely ignores the border attribute, and it expects the
style attribute to be an object, not a string.

 2. The outer braces denote that the attribute value is a JavaScript
expression. The inner braces specify an object, which is the
attribute’s value.

 3. The curly braces of React are similar to <?php ... ?> of PHP,
with a slight difference. The contents within a <?php ... ?>
tag are full-fledged programs, whereas in JSX, you can only
have JavaScript expressions. All programming constructs like
loops are done outside the JSX in plain JavaScript.

 4. props are flexible and useful for passing in any kind of data.
On the other hand, children are components that can also
be deeply nested. Thus, if you have simple data, pass it as
props. If you have a component to pass, you could use a
child if it is deeply nested and naturally appears within the
child component. Components can also be passed as props,
typically when you want to pass multiple components or when
the component is not a natural child content of the parent.

Exercise: Dynamic Composition
 1. It is best to keep the data at the topmost component that

contains all the components that have a chance to deal with
and manipulate the data. You’ll learn more about this in the
next chapter. But the gist is that IssueAdd and IssueFilter
may also need access to the issue array, so it really belongs in
IssueList.

 2. The key property is essential for arrays of components. If you
don’t supply a key, React throws a warning that each child in
an array or iterator should have a unique key property. React
uses this key to uniquely identify every element in a row.

 3. Another choice for the key property is the array index,
because it is also unique. If the key is a large value like a
UUID, you may think that it is more efficient to use the array
index, but in reality it is not. React uses the key to identify the
row. If it finds the same key, it assumes it is the same row.
If the row has not changed, it does not rerender the row.

Chapter 3 ■ reaCt Components

53

Thus, if you insert a row, React will be more efficient in
shuffling existing rows rather than rerendering the entire table
if the rows were the ID of the object. If you used the array
index instead, it would think that every row after the inserted
row has changed and rerender each of them.

 4. Passing the entire object is obviously more concise. I would
choose to pass individual properties only if the number of
properties that are being passed is a small subset of the full set
of properties of the object.

 5. It works, despite the fact that you have JSX within the
expression. Anything within the curly braces is parsed as a
JavaScript expression. But since you are using a JSX transform
on JavaScript expressions, these snippets will also go through
the transform. It is possible to nest this deeper and use
another set of curly braces within the nested piece of JSX and
so on.

55© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_4

CHAPTER 4

React State

Until now, you’ve only seen static components. To make components that respond to
user input and other events, React uses a data structure called state in the component.
The state essentially holds the model, something that can change, as opposed to the
immutable properties in the form of props that you saw earlier. It is only the change of
state that can change the rendered view.

For this chapter, the goal is to add a button and append a row to the initial list of
issues on the click of that button. We’ll add this button below the Issues table. By doing
that, you’ll learn about a component’s state, how to manipulate it, how to handle events,
and how to communicate between components.

Setting State
We’ll start by appending a row without user interaction. We’ll do this using a timer rather
than a button so that we can focus on the state and modifications without having to deal
with UI complexity.

React treats the component as a simple state machine. Whenever the state changes,
it triggers a rerender of the component and the view automatically changes. The way to
inform React of a state change is by using the setState() method. This method takes
in an object, and the top-level properties are merged into the existing state. Within the
component, you can access the properties via the this.state variable. The initialization
of the state is done in the constructor.

What we include in the state is up to us so we’ll keep a list of issues in the state. Thus,
the state will have a single property called issues, which we will initialize to the global
issues array in the constructor. Also, in the constructor, we’ll add a timer that appends a
new issue to the list and sets it in the new state. We are not supposed to modify the state
directly, so we need to make a copy or a clone of the existing array in the state, append to
it, and set it as the state. Listing 4-1 shows the new IssueList class.

Listing 4-1. App.jsx: Initializing and Modifying State

class IssueList extends React.Component {
 constructor() {
 super();
 this.state = { issues: issues };

Chapter 4 ■ reaCt State

56

 setTimeout(this.createTestIssue.bind(this), 2000);
 }

 createIssue(newIssue) {
 const newIssues = this.state.issues.slice();
 newIssue.id = this.state.issues.length + 1;
 newIssues.push(newIssue);
 this.setState({ issues: newIssues });
 }

 createTestIssue() {
 this.createIssue({
 status: 'New', owner: 'Pieta', created: new Date(),
 title: 'Completion date should be optional',
 });
 }

 render() {
 return (
 <div>
 <h1>Issue Tracker</h1>
 <IssueFilter />
 <hr />
 <IssueTable issues={this.state.issues} />
 <hr />
 <IssueAdd />
 </div>
);
 }
}

On running this set of changes and refreshing the browser, you’ll see that there are
two rows of issues to start with. After two seconds, another row is added. Let’s examine
what happened here.

Firstly, let’s look at the state initialization in the constructor:

...
 this.state = { issues: issues };
...

Initializing the state is as simple as setting the this.state variable to the state object.

 ■ Note If you are using React.createClass instead of extending from React.Component,
the state has to be initialized within the method getInitialState(). the return value of
that function is the initial state.

Chapter 4 ■ reaCt State

57

We then passed the data contained in the state to the IssueTable via properties, as
discussed in the previous chapter, replacing the global array with the state data, as follows:

...
 <IssueTable issues={this.state.issues} />
...

The initial rendering of the IssueTable component will now use this array as
its source data. Thus, same as in the previous chapter, you will see two rows of issues
displayed in the table. But in the constructor, we also added a timer to do something:

...
 setTimeout(this.createTestIssue.bind(this), 2000);
...

This means that 2000 milliseconds after the constructor is called, this.createIssue
will be called. Note that we had to include a bind(this) on the function instead of
passing it as is. This is because we want the context, or the this variable when the
function is called, to be this component’s instance. If we don’t do this, the this variable
will be set to the event that called the function. When the timer fires, createTestIssue is
called, which uses a test issue object and calls createIssue using that object.

Let’s look at createIssue more closely. Here’s the code:

...
 const newIssues = this.state.issues.slice();
 newIssue.id = this.state.issues.length + 1;
 newIssues.push(newIssue);
 this.setState({ issues: newIssues });
...

In the first line, we made a copy of the issues array in the state by calling slice() on it.
We then pushed the new issue to be created into the array. Lastly, we called this.setState
with the new array, thus modifying the state of the component. When React sees the state
being modified this way, it triggers a rerendering process for the component, and all
descendent components where properties get affected because of the state change.

Thus, IssueTable and all IssueRows will also be rerendered, and when they are, their
properties will reflect the new state of the parent IssueList component automatically.
And this will include the new issue. This is what the declarative programming paradigm
is all about: you just mutate the model (state), and the view rerenders itself to reflect
the changes. We did not have to write code for inserting a row into the DOM; it was
automatic.

Note that we made a copy of the state value issues. This is important, because you
are not supposed to modify the state directly. The following may seem to work:

...
 this.state.issues.push(newIssue);
 this.setState({ issues: this.state.issues });
...

Chapter 4 ■ reaCt State

58

But this will have unintended consequences in some of the Lifecycle methods
within descendent components. Especially in those methods that compare the old and
new properties, you’ll find that the old and new properties are the same. There are React
add-ons such as the update add-on to help you with creating copies when the change is
deeply nested within the state. For now, we’ll manage the copy ourselves.

EXERCISE: SETTING STATE

1. remove bind(this) in the setTimeout() call. What happens?

2. We passed the function this.createIssue as a variable
only once. Instead, if we to refer to it multiple times, we have
to do the bind in each of those references. Can you think
of alternatives? hint: Look up the guide called Reusable
Components in the react documentation. there is a section
titled “No autobinding.” read it.

3. add a console.log in the IssueRow’s render() method. how
many times is render() called?

answers are available at the end of the chapter.

Async State Initialization
In reality, you will not have an initial set of issues available to you. This list will be fetched
from your web server. Let’s simulate this condition: the initial set of issues will be empty,
and it will be loaded via an asynchronous call as soon as the component is ready.

In the constructor, let’s modify the state initialization to an empty array. Then, let’s
add a method for loading data called loadData(), which will use the global issues list
to set the state. We’ll simulate the asynchronous nature of an AJAX call by using a timer
(with a small timeout, something that is reasonable for an AJAX call to a server) to wrap
the setState() call.

Finally, we’ll need to make a call to loadData() somewhere. A good place to do this
is when you’re sure the component is mounted and ready to receive setState() calls.
React provides a Lifecycle method called componentDidMount() to indicate that the
component is ready so let’s use it.

Listing 4-2 shows the new code: the constructor is modified and two new methods,
componentDidMount() and loadData(), have been introduced.

Chapter 4 ■ reaCt State

59

Listing 4-2. App.jsx, IssueList: Loading State Asynchronously

...
 constructor() {
 super();
 this.state = { issues: [] };

 setTimeout(this.createTestIssue.bind(this), 2000);
 }

 componentDidMount() {
 this.loadData();
 }

 loadData() {
 setTimeout(() => {
 this.setState({ issues: issues });
 }, 500);
 }
...

Note that we don’t have to bind loadData to this because we used an arrow
function, which uses the lexical this. Thus in the anonymous function that’s passed to
setTimeout, the this variable is initialized to the component instance.

We also used the first Lifecycle method hook, componentDidMount(). Apart from this,
there are other hooks into the component lifecycle that React calls and lets us take action
on those events. The method componentDidMount(), as the name indicates, is called after
the component is mounted, that is, created and placed into the DOM. The other hooks
related to mounting are componentWillMount() and componentWillUnmount().

The hooks related to an update, that is, when the state or props of a
component change are componentWillReceiveProps(), componentWillUpdate(),
componentDidUpdate(), and shouldComponentUpdate(). We will be using some of them
in later chapters to hook into events that indicate change of props. Of these hooks,
shouldComponentUpdate() is an optimization hook that can be used to let React know
exactly when there is a change in the display of the component; otherwise React plays it
safe and rerenders the component on any state or props change, which may or may not
change the display.

 ■ Note It is tempting to initiate loadData() within the constructor, but that should not
be done. that’s because there is a chance that the load finishes even before the component
is ready (i.e., not yet rendered). Calling setState() can cause unexpected behavior if the
component is not yet ready.

Chapter 4 ■ reaCt State

60

Event Handling
Let’s now add an issue interactively on the click of a button. We’ll first add a simple
button component next to the IssueTable. To handle the button’s click event, all you
need to do is attach a handler function to the event. We do this by supplying the name of
the handler to the onClick attribute. We can directly set the createTestIssue function
as the handler to this event.

Listing 4-3 shows a modified constructor and a modified render() function of
IssueList.

Listing 4-3. App.jsx, IssueList: Button and Event Handler

...
 constructor() {
 super();
 this.state = { issues: [] };

 this.createTestIssue = this.createTestIssue.bind(this);
 setTimeout(this.createTestIssue, 2000);
 }
...
 <IssueTable issues={this.state.issues} />
 <button onClick={this.createTestIssue}>Add</button>
 <hr />
...

The createTestIssue method takes no parameters and appends the sample issue to
the list of issues in the state. We retained the timer way of adding an issue as well, just to
ensure that works too. We also get rid of multiple binds by replacing this.createTestIssue
with a permanently bound version in the constructor. Going forward, we’ll use this
strategy in all methods that need to be bound.

When you try out the changes, you’ll find that a test row is added 2 seconds after
the page loads, and then, on the click of the Add button, any new number of rows can be
added interactively from the UI.

Communicating from Child to Parent
Ideally, the Add button should be within the IssueAdd component, as that’s where its
functionality belongs. We didn’t do this earlier to avoid the complexity of communicating
from a child component to its parent. Let’s move the button now to where it belongs, and
see how to communicate from child to parent. Since the button will move, its handler will
also have to move to the IssueAdd component.

Instead of a hard-coded test issue, let’s create a form in this component, with input
fields that we’ll use for the values of the new issue’s fields. This handler will create a new
issue object based on the form’s input fields.

But how will this handler function get access to the createIssue method,
which is in its parent, IssueList? Does the child component have a handle to its parent?

Chapter 4 ■ reaCt State

61

For good reason, no, the child does not have access to the parent’s methods. The way to
communicate from the child to a parent is by passing callbacks from the parent to the
child, which it can call to achieve specific tasks. In this case, you pass createIssue as a
callback property from IssueTable to IssueAdd. From the child, you just call the passed
in function in your handler to create a new issue.

Listing 4-4 shows the new IssueAdd class. The click handler is called handleSubmit,
and within this method, we read the form’s input values and using them, we call the
createIssue function, which is available to the component via this.props.

Listing 4-4. App.jsx, IssueAdd: Handling Add from This Component

class IssueAdd extends React.Component {
 constructor() {
 super();
 this.handleSubmit = this.handleSubmit.bind(this);
 }

 handleSubmit(e) {
 e.preventDefault();
 var form = document.forms.issueAdd;
 this.props.createIssue({
 owner: form.owner.value,
 title: form.title.value,
 status: 'New',
 created: new Date(),
 });
 // clear the form for the next input
 form.owner.value = ""; form.title.value = "";
 }

 render() {
 return (
 <div>
 <form name="issueAdd" onSubmit={this.handleSubmit}>
 <input type="text" name="owner" placeholder="Owner" />
 <input type="text" name="title" placeholder="Title" />
 <button>Add</button>
 </form>
 </div>
)
 }
}

Let’s discuss a few things in the new components. The first thing we did was create a
form with two text input fields for accepting Owner and Title of a new issue from the user.
We also included an Add button in the form.

Note that unlike the previous step, we are handling the form’s onSubmit event rather
than the button’s onClick event. Both methods are acceptable, but using onSubmit will
allow the user to press Enter to add a new issue in addition to clicking on the Add button.

Chapter 4 ■ reaCt State

62

We also gave a name to the form so that we could access the form’s input fields
programmatically. In the submit handler, the first thing we did was prevent the default
behavior of the form:

...
 handleSubmit(e) {
 e.preventDefault();
...

The rest of the event handler is straightforward. We collected the form input values,
constructed a new issue object with some default values for the other fields, and called the
parent’s createIssue method via the callback that we had in this.props.createIssue.

Now, let’s make changes to IssueList. The main thing we need to do is pass the
createIssue method as a property to IssueAdd. Note that we must bind this method in
the constructor since it’s now being called from another component (so that the this
variable during the call will be the calling component). We can also delete all of the code
that was used for creating a test issue using a timer as well as from the button within
IssueList. The changes to IssueList are shown in Listing 4-5.

Listing 4-5. App.jsx, IssueList: Moved Add Functionality to Child

...
super();
 this.state = { issues: [] };

 this.createTestIssue = this.createTestIssue.bind(this);
 setTimeout(this.createTestIssue, 2000);
 this.createIssue = this.createIssue.bind(this);
 }
...
 createTestIssue() {
 this.createIssue({
 status: 'New', owner: 'Pieta', created: new Date(),
 title: 'Completion date should be optional',
 });
 }
...
 <IssueTable issues={this.state.issues} />
 <button onClick={this.createTestIssue}>Add</button>
 <hr />
 <IssueAdd createIssue={this.createIssue} />
 </div>
);
...

The new screen (shown in in Figure 4-1) now has a form for entering values and
adding a new issue. You can test it by entering some values in the input fields and clicking
the Add button to add a new issue.

Chapter 4 ■ reaCt State

63

Figure 4-1. Issue Tracker with user interactivity

EXERCISE: COMMUNICATE CHILD TO PARENT

1. remove e.preventDefault() in handleSubmit(). What
happens? Can you explain why?

2. Would it have been possible to achieve all this if we had
maintained the state in IssueTable instead of IssueList?

3. refresh the browser; you’ll see that the added issues are gone.
how can you persist the changes?

answers are available at the end of the chapter.

Stateless Components
We have added three React components by now (another one, the Issue Filter is still a
placeholder). But there is a difference among them.

IssueList has lots of methods, a state, initialization, and functions that modify the
state. In comparison, IssueAdd has some interactivity, but no state.1 But, if you notice,
IssueRow and IssueTable have nothing but a render() method. For performance
reasons, it is recommended that such components are written as functions rather
than classes: a function that takes in props and just renders based on it. It’s as if the
component’s view is a pure function of its props.

1This is not entirely true. There is, in fact, state in this component: the state of the input fields as the
user is typing. But you have not captured them as React state, and have let the browser’s native
handlers maintain it.

Chapter 4 ■ reaCt State

64

Listing 4-6 shows these components changed to stateless functions.

Listing 4-6. App.jsx, IssueRow, and IssueTable: Stateless Components

const IssueRow = (props) => (
 <tr>
 <td>{props.issue.id}</td>
 <td>{props.issue.status}</td>
 <td>{props.issue.owner}</td>
 <td>{props.issue.created.toDateString()}</td>
 <td>{props.issue.effort}</td>
 <td>{props.issue.completionDate ? 

props.issue.completionDate.toDateString() : ''}</td>
 <td>{props.issue.title}</td>
 </tr>
)

function IssueTable(props) {
 const issueRows = props.issues.map(issue =><IssueRow 
key={issue.id} issue={issue} />);

 return (
 <table className="bordered-table">
 <thead>
 <tr>
 <th>Id</th>
 <th>Status</th>
 <th>Owner</th>
 <th>Created</th>
 <th>Effort</th>
 <th>Completion Date</th>
 <th>Title</th>
 </tr>
 </thead>
 <tbody>{issueRows}</tbody>
 </table>
);
}

We used two different styles for the two components. The first is the ES2015 arrow
function style with only the return value as an expression. There are no curly braces, and
no statements, just a JSX expression:

...
const IssueRow = (props) => (
...

Chapter 4 ■ reaCt State

65

The second style, a little less concise, is needed when the function is not a single
expression. We initialized a variable called issueRows, which means we need a full-fledged
function with a return value. The main difference is the use of a curly brace to indicate that
there’s going to be a return value, rather than the expression within the round braces being
an implicit return of that expression’s result:

...
function IssueTable(props) {
 const issueRows = props.issues.map(issue =><IssueRow 
key={issue.id} issue={issue} />);

...

Technically, we could have avoided defining the issueRows variable and replaced its
reference within <tbody> with the variable expression itself. But let’s keep it like this for
the sake of readability.

Designing Components
Most beginners will have a bit of confusion between state and props, when to use which,
what granularity of components should one choose, and how to go about it all. This
section is devoted to discussing some principles and best practices.

State vs. props
Both state and props hold model information, but they are different. The props are
immutable, whereas state is not. Typically, state variables are passed down to child
components as props because the children don’t maintain or modify them. They take in
read-only copy and use it only to render the view of the component. If any event in the
child affects the parent’s state, the child calls a method defined in the parent. Access to
this method should have been explicitly given by passing it as a callback via props.

Anything that can change due to an event anywhere in the component hierarchy
qualifies as being part of the state. Avoid keeping computed values in the state; instead,
simply compute them when needed, typically inside the render() method.

Do not copy props into state, just because props are immutable. If you feel the need
to do this, think of modifying the original state from which these props were derived.
One exception is when props are used as initial values to the state, and the state is truly
disjointed from the original state after the initialization.

Component Hierarchy
Split the application into components and subcomponents. Typically, this will reflect the
data model itself. For example, in the Issue Tracker, the issues array was represented by
the IssueTable component, and each issue was represented by the IssueRow component.

Chapter 4 ■ reaCt State

66

Decide on the granularity just as you would for splitting functions and objects. The
component should be self-contained with minimal and logical interfaces to the parent.
If it is doing too many things, just like for functions, it should probably be split into
multiple components, so that it follows the Single Responsibility principle (that is, every
component should be responsible for one and only one thing). If you are passing in too
many props to a component, it is an indication that either the component needs to be
split, or it need not exist; the parent itself could do the job.

Communication
Communication between components depends on the direction. Parents communicate
to children via props; when state changes, the props automatically change. Children
communicate to parents via callbacks.

Siblings and cousins can’t communicate with each other, so if there is a need, the
information has to go up the hierarchy and then back down. This is what we did when
adding a new issue. The component IssueAdd had to insert a row in IssueTable. It was
achieved by keeping the state in the least common ancestor, IssueList. The addition was
initiated by IssueAdd and a new array element added in IssueList’s state via a callback. The
result was seen in IssueTable by passing the issues array down as props from IssueList.

If there is a need to know the state of a child in a parent, you’re probably doing it
wrong. Although React does offer a way using refs, you shouldn’t feel the need if you
follow the one-way data flow strictly: state flows as props into children, and events cause
state changes, which flows back as props.

Stateless Components
In a well-designed application, most components are stateless functions of their
properties. All state is captured in a few components at the top of the hierarchy, from
where the props of all the descendants are derived.

We did just that with the IssueList, where we kept the state. We converted all
descendent components to stateless components, relying only on props passed down the
hierarchy to render themselves. We kept the state in IssueList because that was the least
common component above all the descendants that depended on that state. It’s also OK
to invent a new component just to hold the state.

Summary
In this chapter, you learned how to use state and make changes to it on user interactions
or other events. The more interesting aspect was how state values are propagated down
the component hierarchy as props. You also had a glimpse of user interaction, the click
of a button to add a new issue, and how that causes the state to change, and in turn, the
rendering via props in all the descendant components.

But we used simulated asynchronous calls and local data to achieve all this.
In the next chapter, instead of using local data, we’ll get the data from the server, and also
save to it.

Chapter 4 ■ reaCt State

67

Answers to Exercises
Exercise: Setting State
 1. If you remove bind(this), you’ll get an error because

this.state will be undefined (since this is now the window
object, not the component).

 2. One alternative that is popular is to replace the function with
a permanently bound function in the constructor like this:

...
 this.state = { issues: issues };
 this.createTestIssue = this.createTestIssue.bind(this);
...

Now, you can just use this.createTestIssue all the time.
One of the reasons some people prefer React.createClass
as compared to extending from React.Component is that
React.createClass auto-binds all the functions. This extra
step is then not required. This saves debugging time spent
whenever you forget to bind a function.

Another alternative is to use ES2015 arrow functions, which
use a lexical this, that is, picks it up from the surroundings
rather than the caller’s this, like this:

...
 setTimeout(() => {this.createTestIssue()}, 2000);
...

 3. Each row is rendered once when initialized (two renders,
one for each row). After the new row is inserted, each row is
rendered once too (three renders, one for each row).
Although a render is called, this does not mean that the DOM
is updated. Only the virtual DOM is created on each render.
A real DOM update happens only where there are differences.

Chapter 4 ■ reaCt State

68

Exercise: Communicate Child to Parent
 1. On removing e.preventDefault(), the default behavior of the

form is executed, which is to really submit the form. This does
a GET (the default action, if not specified) to the form’s action
URL, which is the same as the current URL. Thus, the effect is
to refresh the page even before the event is handled.

 2. Since there is no way to communicate between siblings (only
parent to child and vice versa), keeping the state at the root
of the hierarchy is the best strategy. If we had kept the state
in IssueTable, tying up the Add action would have meant
calling a function that belongs in IssueTable from IssueAdd.
This is neither simple nor a good practice.

 3. To persist the changes, you could either save the issues in
local storage on the browser, or save it in the server. We’ll be
saving it in the server in a later chapter.

69© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_5

CHAPTER 5

Express REST APIs

Now that you know how to deal with states and models in the UI, let’s spend some time
integrating with the backend for the real data.

In this chapter, we’ll start storing in and fetching the data from the Node.js server
instead of the hard-coded array of issues in the browser’s memory. The objective is to get
used to interacting with the server via REST APIs. We will be modifying both front-end
and back-end code because we’ll be implementing as well as using REST APIs. As for
persistence, let’s leave it to the next chapter. For the moment, we’ll save the data in an
in-memory data structure on the server.

REST
REST (short for representational state transfer) is an architectural pattern for application
programming interfaces (APIs). There are other older patterns such as SOAP and XML-
RPC, but of late, the REST pattern has gained popularity.

Since the APIs are only for internal consumption, you can use any API pattern, or
even invent your own. But REST is a good pattern to adopt because it is simple and has
very few constructs. Further, adopting an existing popular pattern makes you think about
your APIs and schema, and organize them better, forcing some best practices.

There are many architectural constraints that true REST APIs must follow. But
keeping in mind that the APIs are only for internal consumption, we’ll just use a few
core concepts of the REST API architectural pattern rather than follow it very strictly,
which requires a lot more work. If you ever decide to expose the APIs to others, you can
strengthen the RESTfulness of the API set. I’ll briefly discuss the core concepts that we
will make use of in your API design.

Resource Based
The APIs are resource based (as opposed to action based). Thus, you will not find API
names like getSomething or saveSomething. In fact, there are no API names because APIs
are formed by a combination of resources and actions.

Resources are accessed based on a Uniform Resource Identifier (URI), also known
as an endpoint. Resources are nouns (not verbs). You typically use two URIs per resource:
one for the collection (like /customers) and one for the object (like /customers/1234,
where 1234 uniquely identifies a customer.

Chapter 5 ■ express rest apIs

70

Resources can also form a hierarchy. For example, the collection of orders of a
customer is identified by /customers/1234/orders, and an order of that customer is
identified by /customers/1234/orders/43.

HTTP Methods as Actions
To access and manipulate the resources, you use HTTP methods. While resources were
nouns, the HTTP methods are verbs that operate on them. They map to CRUD (Create,
Read, Update, Delete) operations on the resource. Tables 5-1 shows commonly used
mapping of CRUD operations to HTTP methods and resources.

Table 5-1. CRUD Mapping for Collections

Operation HTTP Method Resource Example Remarks

Read – List GET Collection GET
/customers

Lists objects (additional
query string can be used
to filter)

Read GET Object GET
/customers/1234

Returns a single object
(query string may be
used to filter fields)

Create POST Collection POST
/customers

Creates an object, and
the object is supplied in
the body.

Update PUT Object PUT
/customers/1234

Replaces the object with
the object supplied in the
body.

Update PATCH Object PATCH
/customers/1234

Modifies some
attributes of the object,
specification in the body.

Delete DELETE Object DELETE
/customers/1234

Deletes the object

Some other operations such as DELETE and PUT in the collection may also be used
to delete and modify the entire collection in one shot, but this is not common usage.
HEAD and OPTIONS are also valid verbs that give out information about the resources
rather than actual data. They are used mainly for APIs that are externally exposed and
consumed by many different clients.

Chapter 5 ■ express rest apIs

71

Two important concepts about the HTTP methods are safety and idempotency of
the methods. A safe method is one whose results can be cached. Thus, GET, HEAD, and
OPTIONS are safe methods; you can call them any number of times and get the same
results. An idempotent method is one that has the same effect when called multiple
times. Note that it’s not the same result; instead it’s the effect on the resource. A safe
method is always idempotent, but not the other way round.

As for the rest of the HTTP methods, only PUT and DELETE are idempotent, whereas
POST and PATCH are not. If you use PUT multiple times, you continue to replace the
same resource with the same new contents, thus the outcome is the same for each
attempt. DELETE, if seen as “let the resource not exist,” also has the same outcome, even
though in the second and later attempts the resource is not deleted because it doesn’t
exist any longer. But these are not safe methods, because their results can be different.
For example, DELETE when called the first time can return a success, whereas the second
time can return a warning that the resource doesn’t exist.

The reason the HTTP methods are mapped to the CRUD operations as listed in
Table 5-1 is due to the idempotency and safety of these methods. This is also why PATCH
and PUT are subtly different, even though both can be used to update a resource. You can
use PATCH to modify a resource by adding to an array in the resource. For example, you
can add a new phone number to a customer resource. When called multiple times, the
resource keeps changing because the same element is added again and again to the array.
The same is not true for PUT since it completely replaces the resource.

It’s important to keep these two concepts in mind when creating specialized
variations of a REST API. For example, if you know the ID of the resource that you want to
create if it doesn’t already exist (also called an upsert operation, a portmanteau of update
and insert), you use PUT to create that resource, even though POST is the preferred
method for creating. That’s because if the resource doesn’t exist, it is created, but if it
does, it is replaced. The net effect is the same: at the end of the operation, you have a
resource as specified. And this is an idempotent operation.

It is a good practice to prefix the URI with /api/ to separate the APIs from application-
related HTTP resources such as HTML files. Further, adding a version to the API ensures
that you respect backward compatibility for external consumers, like /api/v1/. If you don’t
think you’ll ever expose the APIs to an external entity, it’s OK to skip the version indicator.
Note that a mobile application should be considered an external entity, because you could
potentially have different versions of the application accessing your APIs.

JSON
JSON is used as the preferred encoding for the data, both in request and response bodies.
Some REST specifications allow the caller to specify the format (JSON, XML, CSV, etc.),
but we will be supporting only JSON, because we don’t expect your API to be exposed
to other consumers who may want this choice. So we will skip the need for the client to
specify the format.

Chapter 5 ■ express rest apIs

72

Express
I briefly touched upon Express and how to serve static files using Express in the Hello
World chapter. But Express can do much more than just serve static files. Express is
a minimal, yet, flexible web application framework. It’s minimal in the sense that by
itself, Express does very little. It relies on other modules (middleware) to provide the
functionality that most applications will need. The concepts are simple and easy to
understand.

Routing
The first concept is that of routing. At the heart of Express is a router, which essentially
takes a client request, matches it against any routes that are present, and executes the
handler function that is associated with that route. The handler function is expected to
generate the appropriate response.

A route specification consists of an HTTP method (GET, POST, etc.), a path
specification that matches the request URI, and the route handler. The handler is passed
in a request object and a response object. The request object can be inspected to get the
various details of the request, and the response object’s methods can be used to send the
response to the client. All this may seem a little overwhelming, so let’s just start with a
simple example and explore the details:

const app = express();

app.get('/hello', (req, res) => {
 res.send('Hello World');
});

To use Express, you first need to create an application using its root-level exported
function. You do that using const app = express();. You can now set up routes using this
app. To set up a route, you use a function to indicate which HTTP method; for example, to
handle the GET HTTP method, you use the app’s get() function. To this function, you pass
the pattern to match and a function to deal with the request if it does match.

Request Matching
When a request is received, the first thing that happens is request matching. The request’s
method is matched with the route method (the get function was called on app, indicating
it should match only GET HTTP methods), and also the request URL with the path spec
('/hello' in the above example). If a request matches this spec, then the handler is
called. In other words, the above example reads “If you receive a GET request to the URL /
hello, then execute this piece of code.”

The method as well as the path need not be very specific. Normally, you would use
app.get(), app.post(), app.put(), etc., but if you want to say “any method,” you could use
app.all(). The path specification can also take regular expression-like patterns (like '/*.
do') or regular expressions themselves. But regular expressions in paths are rarely used.
Route parameters in the path are used often, so I’ll discuss them in a little more detail.

Chapter 5 ■ express rest apIs

73

Route Parameters
Route parameters are named segments in the path specification that match a part of the
URL. If a match occurs, the value in that part of the URL is supplied as a variable in the
request object. This is used in the following form:

app.get('/customers/:customerId', ...

The URL /customers/1234 will match the above route specification, and so will
/customers/4567. In either case, the customer ID will be captured and supplied to the
handler function as part of the request in req.params, with the name of the parameter as
the key. Thus, req.params.customerId will have the value 1234 or 4567 for each of these
URLs, respectively.

It’s no coincidence that route parameters work really well for what we discussed as
good REST API endpoints. This feature was designed just for that. In fact, you can have
multiple parameters, for example /customers/:customerId/orders/:orderId, to match
a customer’s order.

 ■ Note the query string is not part of the path specification, so you cannot have different
handlers for different parameters or values of the query string.

Route Lookup
Multiple routes can be set up to match different URLs and patterns. The router does not
try to find a best match; instead, it tries to match all routes in the order in which they are
installed. The first match is used. So, if two routes are possible matches to a request, it will
use the first defined one. It is up to you to define routes in the order of priority. So, when
you add patterns rather than very specific paths, you should be careful to add the more
generic pattern after the specific paths. For example, if you want to match everything that
goes under /api/, that is, a pattern like /api/*, you should add this route only after all the
specific routes that handle paths such as /api/issues.

Handler Function
Once a route is matched, the handler function is called, which in the above example was
an anonymous function supplied to the route setup function. The parameters passed to
the handler are a request object and a response object. Let’s briefly look at the important
properties and methods of these objects.

Request Objects
Any aspect of the request can be inspected using the request object’s properties and
methods. You already saw how to access a parameter value using req.params. The other
important properties follow.

Chapter 5 ■ express rest apIs

74

•	 req.query: This holds a parsed query string. It’s an object with
keys as the query string parameters and values as the query string
values. Multiple keys with the same name are converted to arrays,
and keys with a square bracket notation result in nested objects
(e.g., order[status]=closed can be accessed as req.query.
order.status).

•	 req.header, req.get(header): The get method gives access
to any header in the request. The header property is an object
with all headers stored as key-value pairs. Some headers are
treated specially (like Accept), and have dedicated methods in
the request object for them. That’s because common tasks that
depend on these headers can be easily handled.

•	 req.path: This contains the path part of the URL, that is,
everything up to any ? that starts the query string. Usually, the
path is part of the route if the route is not a pattern, but if the
path is a pattern that can match different URLs, you can use this
property to get the actual path that was received in the request.

•	 req.url, req.originalURL: These properties contain the
complete URL, including the query string. Note that if you have
any middleware that modifies the request URL, originalURL will
hold the URL as it was received, before the modification.

•	 req.body: This contains the body of the request, valid for POST,
PUT, and PATCH requests. Note that the body is not available
(req.body will be undefined) unless a middleware is installed to
read and optionally interpret or parse the body.

There are many other methods and properties; for a complete list, please refer to the
Request documentation of Express at http://expressjs.com/en/api.html#req as well
as Node.js’ request object at https://nodejs.org/api/http.html#http_class_http_
incomingmessage, from which the Express Request is extended.

Response Objects
The response object is used to construct and send a response to a request. If no response
is sent, the client is left waiting.

•	 res.send(body): You already saw the res.send() method briefly,
which responded with a string. This method can also accept a
buffer (in which case the content type is set as application/
octet-stream as opposed to text/html in case of a string). If the
body is an object or an array, it is automatically converted to a
JSON string with an appropriate content type.

http://expressjs.com/en/api.html#req
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_incomingmessage

Chapter 5 ■ express rest apIs

75

•	 res.status(code): This sets the response status code. If not set, it
is defaulted to 200 OK. One common way of sending an error is by
combining the status() and send() methods in a single call like
res.status(403).send("Access Denied").

•	 res.json(object): This is the same as res.send(), except that
this method forces conversion of the parameter passed into a
JSON, whereas res.send() may treat some parameters like null
differently. It also makes the code readable and explicit, stating
that you are indeed sending out a JSON.

•	 res.sendFile(path): This responds with the contents of the file
at path. The content type of the response is guessed using the
extension of the file.

There are many other methods and properties in the response object; you can look
at the complete list in the Express documentation for Response at http://expressjs.
com/en/api.html#res and also Node.js’ Response object in the HTTP module at
https://nodejs.org/api/http.html#http_class_http_serverresponse. But for the
Issue Tracker application, the methods I’ve discussed should suffice.

Middleware
Express is a web framework that has minimal functionality of its own. An Express
application is essentially a series of middleware function calls. In fact, the Router itself is
nothing but a middleware function.

Middleware functions are those that have access to the request object (req), the
response object (res), and the next middleware function in the application’s request-
response cycle. The next middleware function is commonly denoted by a variable named
next. I won’t go into the details of how to write your own middleware functions, since we
will not be writing new middleware in the application. But we will use some middleware
for sure.

We already used one middleware called express.static in the Hello World
example, to serve static files. This is the only built-in middleware (other than the router)
available as part of Express. But there are other very useful middleware supported by
the Express team, of which we will be using body-parser in this chapter. Third-party
middleware is available via npm.

Middleware can be at the application level (that is, applies to all requests) or the
router level (applies to specific request path patterns). The way to use a middleware at the
application level is to simply supply the function to the application, like this:

app.use(middlewareFunction);

The actual middleware function is supplied by the module in a module-specific
way. For example, the static middleware used a “factory” function to “manufacture” a
middleware function. We supplied the factory function one parameter: the location of the
static files. This created the real middleware function that knows the location of static files
to serve.

http://expressjs.com/en/api.html#res
http://expressjs.com/en/api.html#res
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://expressjs.com/en/4x/api.html#req
https://expressjs.com/en/4x/api.html#res

Chapter 5 ■ express rest apIs

76

In order to use the same middleware in a route-specific way, you could have done
the following:

app.use('/public', express.static('static'));

This would have mounted the static files on the path /public and all static files
would have to be accessed with the prefix /public, for example, /public/index.html.

The List API
Now that you have learned the basic concepts of Express, let’s start by implementing the
first API. This will be the List API, which lists all issues. We’re not integrating this with
the front-end code just yet; instead we’ll test it by other means. We’ll directly call this API
from the browser or the shell using curl. We also won’t use the version indicator in the
APIs, since they are for internal consumption only.

Since the Issue Tracker application has a single resource for now, the endpoint or
URI that we’ll use is straightforward: /api/issues. All the List API has to do is return the
complete list of issues.

We will store the list of issues in your server’s memory, by moving the global array
from the file App.jsx to the server. Then, we will add a get route to the application, which
just sends out this global array of issues as a JSON using res.json().

The new file, server.js, is shown in Listing 5-1.

Listing 5-1. server.js: New List API

const express = require('express');

const app = express();
app.use(express.static('static'));

const issues = [
 {
 id: 1, status: 'Open', owner: 'Ravan',
 created: new Date('2016-08-15'), effort: 5, completionDate: undefined,
 title: 'Error in console when clicking Add',
 },
 {
 id: 2, status: 'Assigned', owner: 'Eddie',
 created: new Date('2016-08-16'), effort: 14, 

completionDate: new Date('2016-08-30'),
 title: 'Missing bottom border on panel',
 },
];

app.get('/api/issues', (req, res) => {
 const metadata = { total_count: issues.length };
 res.json({ _metadata: metadata, records: issues });
});

Chapter 5 ■ express rest apIs

77

app.listen(3000, () => {
 console.log('App started on port 3000');
});

Automatic Server Restart
In order to have the changes take effect, you need to restart the server. You can stop the
server using Ctrl-C, and start it again using npm start. But, if you are going to make
many changes and test them often, this soon becomes a hassle. It’s not just the act of
restarting, but you’ll find yourself spending time debugging why something didn’t work
and realize it was all because the server was not restarted!

To automatically restart the server on changes, let’s install and use the package
nodemon. You may also find by searching the Internet that forever is another package that
can be used to achieve the same goal. Typically, forever is used to restart the server on
crashes rather than watch for changes to files. The best practice is to use nodemon during
development (where you watch for changes) and forever on production (where you
restart on crashes). So, let’s install nodemon now:

$ npm install nodemon --save-dev

Since it is a local install, you need to use a script in package.json that tells npm to
use nodemon instead of running the server directly. You can either modify the start
command or add a new command. We will just modify the start command, assuming
that on production, we won’t be using npm start. Here are the changes in package.json:

...
 "scripts": {
 "start": "nodemon -w server.js server.js",
...

The –w command line option is to tell nodemon which files to watch for changes. If
we hadn’t supplied that command line option, it would have watched for changes in any
file in the current directory and subdirectories. Thus, it would have restarted even when
front-end code changed, and that’s not what we want.

After the installation and changes to package.json, you can run npm start and see
that any change to server.js automatically restarts the server. You can also change
App.jsx and see that it does not restart the server, even when App.js is generated and
saved in the static directory.

Testing
Now that you’ve restarted the server, let’s test the newly created API. To test it, you can
just type http://localhost:3000/api/issues in the browser’s URL. Or, you can use the
command line utility curl, which will come in handy while testing HTTP methods other
than GET (because you can only simulate a GET by typing in the URL). It may also be

Chapter 5 ■ express rest apIs

78

useful to install browser extensions or apps such as getpostman (www.getpostman.com/), a
full-fledged API tester. The extension jsonview is also useful to see JSON output formatted
nicely in the browser.

You can choose your favorite tool, but I personally prefer using Chrome’s Developer
Console to inspect the network traffic. It also automatically parses JSON and shows it as
a collapsible tree. For the purpose of showing results in this book, I will show just a curl
execution snippet. The curl command-line and the output of testing the List API are as
follows:

$ curl -s http://localhost:3000/api/issues | json_pp
{
 "_metadata" : {
 "total_count" : 2
 },
 "records" : [
 {
 "id" : 1,
 "title" : "Error in console when clicking Add",
 "effort" : 5,
 "created" : "2016-08-15T00:00:00.000Z",
 "owner" : "Ravan",
 "status" : "Open"
 },
 {
 "title" : "Missing bottom border on panel",
 "created" : "2016-08-16T00:00:00.000Z",
 "effort" : 14,
 "id" : 2,
 "owner" : "Eddie",
 "status" : "Assigned",
 "completionDate" : "2016-08-30T00:00:00.000Z"
 }
]
}

Let’s examine the interesting parts of the code. The entry point for the API is the
Express route for the resource URI:

...
app.get('/api/issues', (req, res) => {
...

This code sets up a route such that a request to /api/issues (only GET requests,
though) will be handled by the function that is defined here. The part of this function that
returns a response is in the following line:

http://www.getpostman.com/

Chapter 5 ■ express rest apIs

79

...
 res.json({ _metadata: metadata, records: issues });
...

The above is actually a shortcut for the following:

...
 res.set('Content-Type', 'application/json');
 res.send(JSON.stringify({ _metadata: metadata, records: issues }));
...

This essentially sends out a JSON string representation of the object that we passed
to the function. In this case, the object consists of a metadata and the set of records.
For the set of records, we just used the in-memory array of issues. The metadata at the
moment consists only of the total count of records. This can be expanded to add other
useful metadata such as pagination information in the future.

EXERCISE: THE LIST API

1. Using the Chrome browser, type the apI endpoint UrL to test the
apI. Open the Network section of the Developer Console and hit
refresh. You will see that the status code for the request is 304,
and not a 200. Why is this happening? hint: search the Internet
for “express etag 304”. Will it be a problem if the list of issues is
modified?

2. print a log statement just before sending the response. Now
restart the server. Do you see the response being sent on a new
request? Did you expect a 304 this time too, or a 200? What
does this tell you about what express might be doing?

3. If you look closely in the List apI testing results, you will see that
the output of curl is piped to json_pp. how will the output look if
this was not done? If you wanted to return pretty-printed JsON
always, what would you do? hint: Look up the documentation of
JSON.stringify() and also express app.set().

4. search the Internet for “rest api link header,” especially The
GitHub Developer Guide. Link headers are an alternative way of
including pagination metadata. What are the pros and cons of
using that approach as compared to what you have done
(a wrapper on the output)?

5. Is the JsON output identical to the issues array? What are the
differences? how do you think this will affect the client?

answers are available at the end of the chapter.

Chapter 5 ■ express rest apIs

80

The Create API
The application supports adding a new issue as well, as of now. So, in order to complete
the transition of the data to the server, we need a Create API that supports adding a new
issue.

Looking at the HTTP methods mapping in Table 5-1, you can see that the resource
URI for this API needs to be /api/issues and the method needs to be a POST. The
request body will contain the new issue object to be created.

Express does not have an in-built parser that can parse request bodies to convert
them into objects. So, we first need to install an npm package that helps us do that. The
package body-parser can parse various types of request bodies including URL Encoded
form data and JSON. Let’s use it:

$ npm install body-parser --save

Then, we need to include it in server.js (using a require statement) and we also
need to let Express know that this middleware should be used. This is so that it can
intercept requests, look at the content type, and deal with the body appropriately. At the
moment, we only need the JSON parser, so only that middleware is set up. The JSON
parser middleware is created using bodyParser.json(), and the middleware is mounted
at the application level using app.use().

Listing 5-2 shows the changes to server.js to get this done.

Listing 5-2. server.js: Including the body-parser Module

...
const bodyParser = require('body-parser');
...
app.use(express.static('static'));
app.use(bodyParser.json());
...

Now, we are ready to add the Express route for handling a POST to the endpoint
/api/issues. The body-parser middleware places the result of parsing in the request’s
body property. So, within the handler, we need to use req.body to gain access to the new
issue object that was passed in. After a little bit of processing, which includes generating
an ID for the new issue and defaulting a few values, we will append this new issue to the
in-memory issues array.

It is also good practice to return the newly created issue as the result of the operation.
The client may use this to access the field values that were set in the server. Listing 5-3
shows the new route handler.

Listing 5-3. server.js: Creating an API POST Handler

app.post('/api/issues', (req, res) => {
 const newIssue = req.body;
 newIssue.id = issues.length + 1;
 newIssue.created = new Date();

Chapter 5 ■ express rest apIs

81

 if (!newIssue.status)
 newIssue.status = 'New';

 issues.push(newIssue);

 res.json(newIssue);
});

Testing the Create API will result in a transcript like this:

$ curl -s http://localhost:3000/api/issues \
 --data '{"title": "Test Test", "owner": "me"}' \
 --header 'Content-Type: application/json' | json_pp
{
 "title" : "Test Test",
 "owner" : "me",
 "created" : "2016-08-07T15:20:36.579Z",
 "status" : "New",
 "id" : 3
}

Most of the code is self-explanatory. We grabbed the new issue to be added from the
request body (which was already parsed by body-parser). We then added some new fields
like id and created, and set some fields to their defaults if not supplied.

The last statement in the handler is responsible for returning the new issue as a
response to the request. An alternative is to return nothing and let the client query the
entire issue list again after the addition. But we need some response, so we may as well
return the new object that was created. You can let the client decide if they want to query
for the entire list or use the return value as per convenience.

Note that we did not specify the method as POST in the curl command line. This is
because curl automatically uses POST when the --data option is supplied.

EXERCISE: THE CREATE API

1. test the apI with a malformed JsON as the request body. What
happens? Is this acceptable?

2. Change the Content type header in the pOst to say, text/x-
json. What happens? Why? What if you wanted to handle both?
hint: Look at the body-parser documentation.

3. the apI allows creation of an issue without a title or owner. You
can also create an issue with an invalid status (not one of the
enumerations you want). Is this acceptable?

answers are available at the end of the chapter.

Chapter 5 ■ express rest apIs

82

Using the List API
In this section, we will use the List API in the application front end and replace the
in-memory list of issues. To use the APIs, we need to make asynchronous API calls, or
Ajax calls. The popular library jQuery is an easy way to use the $.ajax() function, but
including the entire jQuery library just for this purpose seems like overkill.

Fortunately, there are many libraries that provide this functionality. Better
still, modern browsers support asynchronous calls natively via the Fetch API. It’s
my expectation that in the near future, all browsers will support this API and its full
specification. It would be good to use fetch() with a polyfill for the browsers that don’t
support it yet, so that in the future you can get rid of the polyfill and use fetch() natively.
The polyfill is available in a package called whatwg-fetch. We’ll use it directly from a CDN
and include it in index.html like this:

...
<script src=
 "https://cdnjs.cloudflare.com/ajax/libs/fetch/1.0.0/fetch.min.js">
</script>
...

 ■ Note the polyfill is required only for safari or Internet explorer. For other browsers
such as the latest Chrome, Firefox, or edge, you don’t need to include the polyfill, as these
browsers support fetch() natively. You may skip this step if you are testing on these
browsers, and don’t expect your users to use safari or Ie.

Next, let’s replace the method loadData() in the IssueList component with an Ajax
call using fetch(). This API is similar to $.ajax(), if you have used that jQuery function.
It takes in the path of the URL to be fetched, and returns a promise with the response
as the value. If you are not familiar with promises, please read up on them. Searching
the Internet for “javascript promise” should give you a lot of resources. The one at MDN
(https://developer.mozilla.org/en-YOU/docs/Web/JavaScript/Reference/Global_
Objects/Promise) is a very concise and great resource. We will be using promises in later
chapters as well.

We need to parse the response, for which we can use the json() method of the
response itself. This too returns a promise with the value as the parsed data. The parsed
data will reflect what we sent from the server, which includes the properties _metadata
and records. We can use records to directly set the state, but before that, we need to do
some data transformations for converting date strings to date objects. Also, since we don’t
use the metadata yet, we just print it using a console log statement. Listing 5-4 shows the
new loadData()method.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise)
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise)

Chapter 5 ■ express rest apIs

83

Listing 5-4. App.jsx, IssueLlist: Loading Data Using fetch()

loadData() {
 fetch('/api/issues').then(response =>
 response.json()
).then(data => {
 console.log("Total count of records:", data._metadata.total_count);
 data.records.forEach(issue => {
 issue.created = new Date(issue.created);
 if (issue.completionDate)
 issue.completionDate = new Date(issue.completionDate);
 });
 this.setState({ issues: data.records });
 }).catch(err => {
 console.log(err);
 });
}

To convert dates, we introduced a forEach loop that does the conversion. We need a
check for completionDate being defined since that field is optional. It’s now a good time
to get rid of the in-memory array of issues in App.jsx. The modifications (only deletions)
are shown in in Listing 5-5.

Listing 5-5. App.jsx: Removing the In-Memory Array

...
const issues = [
 {
 id: 1, status: 'Open', owner: 'Ravan',
 created: new Date('2016-08-15'), effort: 5, completionDate: undefined,
 title: 'Error in console when clicking Add',
 },
 {
 id: 2, status: 'Assigned', owner: 'Eddie',
 created: new Date('2016-08-16'), effort: 14, completionDate: new

Date('2016-08-30'),
 title: 'Missing bottom border on panel',
 },
];
...

On testing this set of changes, you will find that the application behaves the same
as before. Adding a new issue via the UI also works. Importantly, refreshing the browser
continues to revert to the original list. That’s because we have not yet integrated the
Create API to save any newly created issue.

Chapter 5 ■ express rest apIs

84

EXERCISE: USING THE LIST API

1. Instead of converting the dates into Date objects just after
fetching the data and before setting state, you could have done
it in the IssueRow stateless function. What are the pros and
cons of doing that?

answers are available at the end of the chapter.

Using the Create API
The next step is to modify the createIssue() method, by including a call to the Create
API. Thus, instead of directly appending to the list of issues, we’ll first send it to the server,
and use the updated issue returned by the server to append to the list of issues.

The fetch() API for POST methods needs a little more information than just the
URL path. This information is supplied as an options object in the second parameter. You
need to include the method, the Content Type header, and finally the body, which is a
JSON representation of the new issue.

On the return path, you know that the server is going to give you a JSON
representation of the new issue created. You can either reload the entire list or use
this new object to append to the existing list of issues in the current state. Let’s use the
new object, which is faster than a round trip to the server, for the new list. Parsing of
the response is similar to what we did in the List API, using the json() method of the
response object. As for the setting the new state, we need to create a new list of issues.
We can do this by making a copy of the existing list from the current state, that is
this.state. Listing 5-6 shows the modified createIssue() method.

Listing 5-6. Using the Create API to Create an Issue

createIssue(newIssue) {
 fetch('/api/issues', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify(newIssue),
 }).then(response => response.json()
).then(updatedIssue => {
 updatedIssue.created = new Date(updatedIssue.created);
 if (updatedIssue.completionDate)
 updatedIssue.completionDate = new Date(updatedIssue.completionDate);
 const newIssues = this.state.issues.concat(updatedIssue);
 this.setState({ issues: newIssues });
 }).catch(err => {
 alert("Error in sending data to server: " + err.message);
 });
}

Chapter 5 ■ express rest apIs

85

Let’s take a closer look at the setting of the new state:

...
 const newIssues = this.state.issues.concat(updatedIssue);
 this.setState({ issues: newIssues });
...

Remember that the state is immutable, so you cannot make modifications to it. So,
we used the concat() function of Array, which creates a copy of the original array, and
therefore, is safe. We used splice() earlier, but this is more readable.

On testing, you can see that a browser refresh keeps any newly added issues. Of
course, restarting the server will cause the list of issues to be reset to the original. To
permanently save the issues, we need to persist it in a database, which we will deal with in
the next chapter.

EXERCISE: USING THE CREATE API

1. Can you think of a situation where using the returned issue to
append to the list is not appropriate?

answers are available at the end of the chapter.

Error Handling
I discussed error handling in the Create API section as part of the exercises, but we did
not implement it then. Let’s do so now. We will not handle malformed JSON kind of
errors, because they don’t cause great harm. Also, handling malformed JSON is a bit
complicated, because we need to write a own middleware for this. As for application-level
validations, we’ll handle missing required fields and incorrect list values.

One decision that we need to make is: how do we return errors back to the client? The
success or failure of any REST API call is typically reflected in the HTTP status code. Some
prefer returning a 400 Bad Request status code, but in my opinion, a 400 status indicates
a malformed request, or something that does not conform to HTTP standards, or for
syntactically incorrect requests. Application errors are not problems with the syntax of the
input, so we’ll instead use 422 Unprocessable Entity as the error status code for them. If
and when you implement errors for malformed JSON, you could use the 400 error code.

The error message (a description of what went wrong) itself can be returned in the
response body, again as a JSON string. We will return an object with a single property
called message that holds a readable as the description. For programmatic interpretation
of the errors, it may also be useful to include an error code, but we won’t do that in the
application because the API is only for internal consumption.

At the server, sending an error is simple; all you need to do is set the status using
res.status() and send the error message as the response. Apart from this, the rest of the
changes (as seen in Listing 5-7) are straightforward logic, which can be implemented in
many different ways. Listing 5-7 shows a few new global variables, a validation function,
and the new modified POST handler for creating an issue.

Chapter 5 ■ express rest apIs

86

Listing 5-7. server.js: Adding Server-Side Validation

const validIssueStatus = {
 New: true,
 Open: true,
 Assigned: true,
 Fixed: true,
 Verified: true,
 Closed: true,
};

const issueFieldType = {
 id: 'required',
 status: 'required',
 owner: 'required',
 effort: 'optional',
 created: 'required',
 completionDate: 'optional',
 title: 'required',
};

function validateIssue(issue) {
 for (const field in issueFieldType) {
 const type = issueFieldType[field];
 if (!type) {
 delete issue[field];
 } else if (type === 'required' && !issue[field]) {
 return `${field} is required.`;
 }
 }

 if (!validIssueStatus[issue.status])
 return `${issue.status} is not a valid status.`;

 return null;
}

app.post('/api/issues', (req, res) => {
 const newIssue = req.body;
 newIssue.id = issues.length + 1;
 newIssue.created = new Date();
 if (!newIssue.status)
 newIssue.status = 'New';

 const err = validateIssue(newIssue)
 if (err) {
 res.status(422).json({ message: `Invalid requrest: ${err}` });
 return;

Chapter 5 ■ express rest apIs

87

 }
 issues.push(newIssue);

 res.json(newIssue);
});

The first two global objects are a kind of schema definition to indicate what is a valid
Issue object. The function validateIssue checks against this specification and returns an
error if the validation fails. Note that we also deleted any fields that do not belong, effectively
ignoring such errors rather than reporting them back to the client. It’s a matter of preference
whether you want to report or ignore them; you could handle them either way.

In the handler, we called the validation function and in case of an error, we set
the status to 422 and sent back an object with an appropriate message. The single line
containing res.status() and json() is a shortcut for res.status() followed by a
res.json() as two different statements.

At the client, we need to modify the code to detect a non-success HTTP status
code. Note that the Fetch API does not throw an error for failure HTTP status codes, so
relying on the catch section is not going to work. We must check the response’s property
response.ok, and if it is not OK, we need to show an error. Listing 5-8 shows the client-
side code, the complete createIssue() method.

Listing 5-8. App.jsx, IssueList’s createIssue method: Client-Side Error Handling

createIssue(newIssue) {
 fetch('/api/issues', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify(newIssue),
 }).then(response => {
 if (response.ok) {
 response.json().then(updatedIssue => {
 updatedIssue.created = new Date(updatedIssue.created);
 if (updatedIssue.completionDate)
 updatedIssue.completionDate = new Date(updatedIssue.completionDate);
 const newIssues = this.state.issues.concat(updatedIssue);
 this.setState({ issues: newIssues });
 });
 } else {
 response.json().then(error => {
 alert("Failed to add issue: " + error.message)
 });
 }
 }).catch(err => {
 alert("Error in sending data to server: " + err.message);
 });
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ express rest apIs

88

We moved the entire success path processing to within an if (response.ok)
check. The else part just shows an error message as an alert. In both cases, we had to
parse the response body. In the success case, the response body represents the updated
Issue object, and in the error case, the response body contains the error object with the
message.

Another way to handle this could be to throw an error if response.ok indicates a
failure, so that you can handle all this in a single catch block. But this complicates things,
especially since you want to show the error message that’s within the response body, as
parsing the response is another asynchronous call. If you did not care about the response
message, you could have just thrown an error in the first step, where you only pass on the
status text message instead of the application error message. Like this:

...
 }).then(response => {
 if (!response.ok) {
 throw new Error(response.statusText);
 } else {
 return response.json();
 }
...

To simulate the errors and test the new code, create an issue via the UI, skipping the
mandatory field. An error message should show. For an invalid status, you need to test via
a direct API call, or hardcode an invalid status to send to the server, because there’s no
UI for setting the status yet.

EXERCISE: ERROR HANDLING

1. Do you think the validations that you implemented are enough?
If not, what other validations can you think of?

2. Looks like errors due to http status error codes like 503 or 422
are not thrown as errors in fetch(). so, which types of errors
are thrown? Can you simulate one such error? hint: refer to the
fetch apI documentation.

3. Can you think of other ways of sending the error message?

Summary
APIs are all about intuitiveness and predictability. REST gives you a framework for how
to think about and structure APIs. We implemented the C and R of CRUD in this chapter,
to get a whiff of what REST looks like and how to implement and consume APIs. We’ll
explore U and D much later, when we start implementing the features that require them.

In the meanwhile, it’s a good time to find out how to persist and read that persisted
data. In the next chapter, you’ll learn a bit about how to do so with MongoDB.

Chapter 5 ■ express rest apIs

89

Answers to Exercises
Exercise: The List API
 1. Express uses ETags to identify the version of a resource. This

is a kind of hash, which will change if the resource changes.
If you look at the request headers, you will see that Chrome
is sending an ETag header in the request. This means that
Chrome already has a version of the resource, and if it
matches the version that the server has, you are OK to use the
cached version.

No, it will not be a problem if the issues list changes; see the
next answer.

 2. Express does not cache the response, as you may have
initially suspected. Instead, the response is always generated
(as seen by the log statement). It calculates the hash again,
and if it matches what the browser has, it sends a 304 status
code instead of the response. This is a far more reliable
way of avoiding unnecessary network traffic compared to
conventional caching mechanisms such as Cache-Control,
Max-Age, and If-Modified-Since headers.

But note that this does not avoid processing, since the
response is generated anyway. This optimization only saves
some network traffic.

 3. The pipe to json_pp (stands for JSON pretty-print) formats
and pretty-prints the JSON output, which otherwise would
have been in a single line. To always return a formatted JSON,
you could replace res.json with res.send and construct the
JSON string yourself using JSON.stringify(). This would
allow you to pass parameters that give you a formatted string.
Or, you could set the application settings json spaces using
app.set() so that all responses are pretty printed.

 4. Link headers are useful if all you are doing is adding Next/
Previous links in the UI. It is more standard than a wrapper, so
it needs less documentation. On the other hand, a wrapper is
easier to parse for the client, and allows for programmatically
generating related actions. Also, the wrapper can include
other useful information such as count, which can be used to
show a total count of results in the UI.

 5. The difference between the array and the JSON string is in
the dates. Since JSON allows only primitive types, dates are
encoded as an ISO 8601 string in the JSON. If the client needs
to manipulate or do calculations on dates, it must convert the
string to a Date object.

Chapter 5 ■ express rest apIs

90

Exercise: Create API
 1. On testing with a malformed JSON, an error and stack trace

are printed in the server’s console. Also, the output of curl is
an HTML response of the same stack trace. This means that
somewhere along the response chain, the error was caught
and sent as an HTML response to the request.

Ideally, you should catch such errors and return a JSON
indicating an error code, and hide the stack trace. This
involves installing your own error handling middleware in
Express, which is an advanced topic. Since our API is internal,
such errors will be caused by our own programming errors on
the client, so, for the moment, we’ll live with this.

 2. The middleware bodyParser looks at the Content-Type
header and determines if and how the body can be parsed.
For JSON, the default content type is application/json. In
the absence of this header, bodyParser does not parse the
request body, and the variable req.body ends up as an empty
object. Thus, a new issue is created without a title or owner. If
you want to handle both content types, you need to instantiate
the JSON parser by supplying an option. This option is an
array that has all the content types that you want to accept as
JSON and trigger the JSON parser.

 3. I said that it’s OK to not handle malformed JSON errors
because the API is for internal consumption, and they are
programming errors. Getting invalid objects is also very likely
a programming error, but there is a difference. No harm is
done if malformed JSON errors are not handled; the request
just fails. But without validation, you may end up with invalid
objects in the database, and that can cause havoc later. The
application must handle validation errors to protect data
integrity. I’ll address this validation later in the book.

Exercise: Using the List API
 1. Doing the date conversions from strings to actual dates at the

point of usage is also a valid strategy. In this case, you think
of the model as always containing strings. This will work well
when you need to do only formatting conversions.

Chapter 5 ■ express rest apIs

91

On the other hand, if you expect to manipulate dates (e.g.,
to show the number of days from today left for completion,
or the age of the issue from the date created), it’s more
convenient to convert them to dates right after the fetch.
Otherwise, you’ll be doing the same conversion multiple
times.

Exercise: Using the Create API
 1. We are just appending the newly created issue. If the order

is important (for example, the list is sorted on some field),
appending may ruin the order. In this case, it is better to
refetch the entire list in the correct order from the server.

Exercise: Error Handling
 1. The validations are not exhaustive. Ideally, you need to

validate the type of every field, for example, effort has to be
a number and dates have to be proper dates. Further, there
could also be validations such as completion date that cannot
be lesser than the created or current date. You could define a
more elaborate schema, or use something like JSON Schema,
or even use mongoose rather than invent your own.

We will not implement exhaustive validations as part of this
book, because that exercise will not give new insights into
the MERN stack. But remember that in a real-life application,
having such validations is essential.

You should also introduce front-end validations for more
instant user-friendly error messages. I’ll leave them for later
chapters, as you have explored how to return errors, and that
was the objective of this section.

 2. Only network-related errors are thrown by fetch, such as
an unreachable server. Try shutting down the server before
creating an issue to simulate a network error.

 3. A popular alternative is to always wrap the result in an object
that contains the success status, error message, and the result.
This means that the status checking will have to be inside the
second stage, post response parsing to JSON. This way, clients
don’t have to look at the HTTP Status code to find out about
application-level error messages.

93© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_6

CHAPTER 6

Using MongoDB

In this chapter, you’ll learn about MongoDB. The goal is to get rid of the in-memory list
of issues and start using a MongoDB database to add and retrieve issues. To achieve this,
we will need to install MongoDB, learn about how to add to and list records from the
database directly, and then modify the server code to use MongoDB to persist the list of
issues.

MongoDB Basics
This section is an introductory section, where we will not be modifying the application.
We’ll look at the following core concepts in this section: MongoDB, documents, and
collections. Then, we’ll install MongoDB and explore these concepts with examples using
the mongo shell while reading and writing to the database.

Documents
MongoDB is a document database, which means that the equivalent of a record is a
document, or an object. In a relational database, one has to use rows and columns,
whereas in a document database, an entire object can be written as a document.

For simple objects, this may seem no different from a relational database. But let’s
say you have objects with nested objects (called embedded documents) and arrays. Now,
when using a relational database, you typically need multiple tables. For example, an
Invoice object may be stored in a combination of an invoice table and invoice_lines
table in a relational database. In MongoDB, you store the entire Invoice object as one
document.

A document is a data structure composed of field and value pairs. The values of fields
may include other documents, arrays, and arrays of documents. MongoDB documents
are similar to JSON objects, so it is easy to think of them as JavaScript objects. Compared
to a JSON object, a MongoDB document has support not only for the primitive data
types boolean, numbers, and strings, but also other common data types such as dates,
timestamps, regular expressions, and binary data. You can even store JavaScript functions
as document fields.

You will see examples of documents when you explore the mongo shell later in this
chapter.

Chapter 6 ■ Using MongoDB

94

Collections
A collection is like a table in a relational database. It is a set of documents, and you
access each document via the collection. Just like in a relational database, you can have a
primary key and indexes on the collection. But there are a few differences.

A primary key is mandated in MongoDB, and it has the reserved field name _id.
Even if you don’t supply an _id field when creating a document, MongoDB creates this
field and auto-generates a unique key for every document. More often than not, the auto-
generation is used as is, since it is convenient and guaranteed to produce unique keys
even when multiple clients are writing to the database simultaneously. MongoDB uses a
special data type called the ObjectId for the primary key.

The _id field is automatically indexed. Apart from this, indexes can be created
on other fields, and this includes fields within embedded documents and array fields.
Indexes are used to efficiently access a subset of documents in a collection.

Unlike a relational database, MongoDB does not require you to define a schema
for a collection. The only requirement is that all documents in a collection must have a
unique _id, but the actual documents may have completely different fields. In practice,
though, all documents in a collection do have the same fields. Although a flexible
schema may seem very convenient for schema changes during the initial stages of an
application, this can cause problems if you don’t have some kind of schema checking in
the application code.

Query Language
Unlike the universal English-like SQL in a relational database, the MongoDB query
language is made up of methods to achieve various operations. The main methods for
read and write operations are the CRUD methods. Other methods include aggregation,
text search, and geospatial queries.

All methods operate on a collection and take parameters as JavaScript objects that
specify the details of the operation. Each method has its own specification. For example,
to insert a document, the only parameter you need is the document itself. For querying,
the parameters are a match specification and a list of fields to return.

Unlike relational databases, there is no method that can operate on multiple
collections at once. All methods operate on only one collection at a time. If there is a need
to combine the result of multiple collections, each collection has to be queried separately
and manipulated by the client. In a relational database, you can use joins to combine
tables using fields that are common to the tables, so that the result includes the contents
of both tables. You can’t do this in MongoDB and many other NoSQL databases. This lets
NoSQL databases scale by using shards, or multiple servers to distribute documents part
of the same collection.

Also, unlike relational databases, MongoDB encourages denormalization, that is,
storing related parts of a document as embedded subdocuments rather than as separate
collections (tables) in a relational database. Take an example of people (name, gender,
etc.) and their contact information (primary address, secondary address etc.). In a
relational database, you would have separate tables for People and Contacts, then join the
two tables when you need all of the information together. In MongoDB, on the other hand,
you store the list of contacts within the same People document, thus avoiding a join.

Chapter 6 ■ Using MongoDB

95

Installation
MongoDB can be installed easily on OS X, Windows, and most distributions based
on Linux. The installation instructions are different for each operating system and
have a few variations depending on the OS flavor as well. Please install MongoDB by
following the instructions at the MongoDB website (https://docs.mongodb.com/
manual/installation/ or search for “mongodb installation” in your search engine).
Choose version 3.2 or higher, preferably the latest, as some of the examples use features
introduced only in version 3.2. Most installation options let you install the server, the
shell, and tools all in one. Check that this is the case; if not, you may have to install them
separately.

After installation, ensure that you have started MongoDB server (the name of the
daemon or service is mongod), if it is not already started by the installation process. Test
the installation by running the mongo shell like this:

$ mongo

On a Windows system, you may need to add .exe to the command. The command
may require a path depending on your installation method. If the shell starts successfully,
it will also connect to the local MongoDB server instance. You should see the version of
MongoDB printed on the console, the database it is connecting to (the default is test),
and a command prompt, like this:

MongoDB shell version: 3.2.4
connecting to: test
>

If, instead, you see an error message, revisit the installation and server starting
procedure.

The mongo Shell
The mongo shell is an interactive JavaScript shell, very much like the Node.js shell. In this
interactive shell, there are a few non-JavaScript conveniences apart from the full power
of JavaScript. In this section, you’ll look at the basic operations that are possible via the
shell, those that are most commonly used. For a full reference of all you can do with the
shell, take a look at the MongoDB documentation.

By default, the shell connects to a database called test. At any time, to know the
current database, use the special command db like this:

> db

It should print the current database, which is by default, test. To connect to another
database, say a playground database, do this:

> use playground

https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/

Chapter 6 ■ Using MongoDB

96

Note that a database does not have to exist to connect to it. The first document
creation will initiate the database creation if it doesn’t exist. The same applies to
collections: the first creation of a document in a collection creates the collection. You can
see the proof of this by listing the databases and collections in the current database:

> show databases
> show collections

You will see that playground is not listed in the databases, and the collections
list is empty. Let’s create an employees collection by inserting a document. To insert
a document, you use the insert() method on the collection, which is referred to by a
property with the name of the database, of the special variable db:

> db.employees.insert({name: {first: 'John', last: 'Doe'}, age: 44});

Now, if you list the databases and collections, you will find both playground and
employees listed. Let’s also make sure that the first employee record has been created. To
list the contents of a collection, you need to use the find() method of the collection:

> db.employees.find();
{ "_id" : ObjectId("57b1caea3475bb1784747ccb"), "name" : { "first" : "John",
 "last" : "Doe" }, "age" : 44 }

You can see that _id was automatically generated and assigned. If you wanted a
prettier, indented listing of employees, you should use the pretty() method on the
results of find() like this:

> db.employees.find().pretty()
{
 "_id" : ObjectId("57b1caea3475bb1784747ccb"),
 "name" : {
 "first" : "John",
 "last" : "Doe"
 },
 "age" : 44
}

Now, insert a few more documents with different names and ages. Add a middle
name for someone, like this:

> db.employees.insert({name: {first: 'John', middle: 'H', last: 'Doe'}, 
age: 22});

Chapter 6 ■ Using MongoDB

97

This is what a flexible schema lets you do: you can enhance the schema whenever
you discover a new data point that you need to capture, without having to explicitly
modify the schema. In this case, it is implicit that any employee document where the
middle field under name is missing indicates an employee without a middle name. If,
on the other hand, you added a field that didn’t have an implicit meaning when absent,
you’d either have to handle the absence in the code, or run a migration to modify all
documents and add the field with a default value.

Note that MongoDB automatically generated the primary key for each of the
documents, which is displayed as ObjectId("57b1caea3475bb1784747ccb") in the
find() output. Just to reiterate, the ObjectId is a special data type, which is why it is
displayed like that. You can convert an ObjectId to and from strings, which you’ll see a
little later.

The insert() method can take in an array when inserting multiple documents
together. The variations insertOne() and insertMany() were introduced in version 3.2 to
make it more explicit whether the parameter is a single document or an array.

To retrieve only some documents that you’re interested in, you need to supply a filter
to find(). The filter specification is an object where the property name is the field that you
want to filter on, and the value is its value that you want to match. Say you want to find all
employees aged 44; this is what you would do:

> db.employees.find({age: 44});

The output would be similar to the output of find() without filters as described
previously. The filter is actually a shortcut for age: {$eq: 44}, where $eq is the operator.
Other operators for comparison are available, such as $gt for greater than. If you need to
compare and match fields within embedded documents, you can refer to field using the
dot notation (which will require you to specify quotes around the field name). If there are
multiple field specifications, all of them have to match.

A second parameter can be passed to restrict the fields that are returned. This is
called the projection. The format of this specification is an object with one or more field
names as the key and the value as 0 or 1, to indicate exclusion or inclusion. Unfortunately,
you cannot combine 0s and 1s: you can only start with nothing and include all the fields
using 1s, or start with everything and exclude fields using 0s. The _id field is an exception;
it is always included unless you specify a 0. The following will find employees whose first
name is John, aged 44 or more, and print only their first names and ages:

> db.employees.find({'name.first': 'John', age: {$gte: 44}}, 
{'name.first': 1, age: 1})

The method findOne() is a variation that returns a single document rather than an
cursor that can be iterated over.

Chapter 6 ■ Using MongoDB

98

In order to update a document, you first need to specify the filter that matches the
document to update, and then specify the modifications. The filter specification is the
same as for a read operation. Typically, the filter is the ID of the document so that you are
sure you update one and only one document. You can replace the entire document by
supplying the document as the second parameter. If you want to only change a few fields,
you do it by using the $set operator, like this:

> db.employees.update({_id: ObjectId("57b1caea3475bb1784747ccb")}, 
{$set: {age: 44}})

You identify the document to modify using its primary key, _id. In order to generate
the special data type ObjectId, you need to use the mongo shell’s built-in function
ObjectId() and pass it a string representation of the ID. The update results in a message
like this (the output may vary depending on the version of MongoDB you have installed):

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

The update() method can take more options, one of which is the upsert option.
When this is set to true, MongoDB will find the document based on the filter, but if it
doesn’t find one, it will create one based on the document supplied. Of course, this isn’t
useful if you are using the object ID to identify the object. It’s useful if the key to search for
is a unique key (like the employee number). Also, the second parameter in this case must
be the entire document; it can’t be a patch specification using $set.

The variations updateMany() and updateOne() were introduced in version 3.2 to
make it explicit as to the intention of the update. Use of these variations is recommended
over the plain update() since even if the filter matches multiple or single documents, the
update will affect one or many documents depending on which method was called.

To delete a document, use the remove method with a filter, just as in the find
method:

> db.employees.remove({"_id" : ObjectId("57b1caea3475bb1784747ccb")})

WriteResult({ "nRemoved" : 1 })

If you think a field is often used to filter the list, you should create an index on
the field to make the search more efficient. Failing this, MongoDB searches the entire
database for a match. To create an index on the age field, do this:

> db.employees.createIndex({age: 1})

Chapter 6 ■ Using MongoDB

99

Shell Scripting
A mongo shell script is a regular JavaScript program, with all the collection methods
available as built-ins. One difference from the interactive shell is that you don’t have
the convenience commands such as use and the default global variable db. You must
initialize them within the shell script programmatically, like this:

var db = new Mongo().getDB("playground");

Add a few more statements in a script file, the same that you typed in the mongo shell
for inserting and reading documents. To execute the script, supply it as a parameter to the
mongo shell like this (if you have saved the file as test.mongo.js):

$ mongo test.mongo.js

EXERCISE: MONGO SHELL

1. Does the mongo shell support es2015 features? hint: try out a
few es2015 features in the mongo shell.

2. Write a simple statement to retrieve all employees who have
middle names. hint: Look up the MongoDB documentation for
query operators.

3. is the filter specification a Json? hint: think about date objects
and quotes around field names.

4. say an employee’s middle name was set mistakenly, and you
need to remove it. Write a statement to do this. hint: Look up
the MongoDB documentation for update operators.

5. During index creation, what did the 1 indicate? What other
valid values are allowed? hint: Look up the MongoDB indexes
documentation.

answers are available at the end of the chapter.

Schema Initialization
Since MongoDB does not enforce a schema, there is really no such thing as a schema
initialization as you may do in other databases. The only thing you really want to do is
create indexes that will prove useful for often used filters in the application. While we’re
at it, let’s also initialize the database with some sample records to ease your testing.

Chapter 6 ■ Using MongoDB

100

Let’s create a mongo shell script called init.mongo.js and place it in a new scripts
directory in the project directory. We need to write the initialization statements, which
should include setting up the db variable; removing all existing issues, if any; inserting a
few sample records; and creating indexes. Listing 6-1 shows the contents of the script.

Listing 6-1. init.mongo.js: DB Initialization Script

db = new Mongo().getDB('issuetracker');

db.issues.remove({});

db.issues.insert([
 {
 status: 'Open', owner: 'Ravan',
 created: new Date('2016-08-15'), effort: 5, 

completionDate: undefined,
 title: 'Error in console when clicking Add',
 },
 {
 status: 'Assigned', owner: 'Eddie',
 created: new Date('2016-08-16'), effort: 14, 

completionDate: new Date('2016-08-30'),
 title: 'Missing bottom border on panel',
 },
]);

db.issues.createIndex({ status: 1 });
db.issues.createIndex({ owner: 1 });
db.issues.createIndex({ created: 1 });

The only notable thing we did differently from what I discussed in the previous
section is use an array to insert multiple records at once in the insert method. The array
of documents is a copy of what we had in server.js, except that we removed the field
called id. Run this script from the command line like this:

$ mongo scripts/init.mongo.js

It should run without any errors. To check the effect of the script, open up the
mongo shell, list all documents using find(), and list all indexes using getIndexes().
The find() should return the two documents that you inserted, with auto-generated
ObjectIDs in the _id field. And, getIndexes() should list four indexes: the three that we
created on status, owner, and created, and the auto-created index on _id.

Chapter 6 ■ Using MongoDB

101

EXERCISE: SCHEMA INITIALIZATION

1. We let MongoDB generate the _id primary key. What are the
pros and cons of generating the primary key ourselves instead?

2. are there any other indexes that may be useful? hint: What if
you needed a search input field in the application?

answers are available at the end of the chapter.

MongoDB Node.js Driver
This is the Node.js driver that lets you connect and interact with the MongoDB server. It
is, as you probably guessed, an npm module. It provides methods very similar to what you
saw in the mongo shell, but not exactly the same.

Another option is to use the mongoose client, which is an object-document-mapper
as discussed in Chapter 1. But since I want you to explore the nuts and bolts of how the
native driver works, which works similar to the shell commands, let’s use the native driver
itself.

To start, let’s install the driver:

$ npm install mongodb --save

To connect to the database from a Node.js program, you call the connect method
on the MongoClient object provided by the module. The mongodb module exports many
functions and objects, of which MongoClient gives you the ability to act as a client,
mainly, the connect method. The parameter to the connect function is a URL-like string
starting with mongodb:// followed by the server name, and then the database name
separated by a /. You can optionally include a port after the server name, separated by a
:, but if you’re using the default port, this can be skipped.

Once you acquire a connection, to get a handle to any collection, you need to call
its collection() method. To this method, you supply the name of the collection as the
parameter to indicate which collection. Then, the CRUD operation methods can be called
on the handle to the collection. For example, to connect to a database called playground
and fetch some documents from a collection called employees, you do the following:

...
const MongoClient = require('mongodb').MongoClient;

MongoClient.connect('mongodb://localhost/playground', function(err, db) {
 db.collection('employees').find().toArray(function(err, docs) {
 console.log('Result of find:', docs);
 db.close();
 });
});
...

http://dx.doi.org/10.1007/978-1-4842-2653-7_1

Chapter 6 ■ Using MongoDB

102

In the above, a find() returns a cursor which you could iterate over. Calling
toArray() on the cursor runs through all the documents and makes an array out of
them. It calls the callback when the array is ready to be processed, passing the array as a
parameter to the callback.

To insert a document, you need to use the insertOne() method on the collection,
and pass it one parameter: the object to be inserted. The result of an insert contains
various things, one of which is the new _id that has been generated, in a property called
insertedId.

Note that all calls to the driver are asynchronous calls, which means that you don’t
get the result of the call as a return value to the function call. In the above example, you
supplied a callback to each of the MongoDB driver methods. When the result is ready,
these callbacks will be called. The MongoDB driver documentation gives you three
different paradigms for dealing with this asynchronous nature: the callbacks paradigm,
one using promises, and another using the co module and generator functions. Let’s
explore these three options, and one more option using the async module, which is not
mentioned in the driver documentation.

Let’s do all this in a JavaScript program called trymongo.js so that you have a ready
test if and when required. Let’s initialize this file with a test wrapper that we will use to
exercise each of the paradigms. We’ll use a command line argument to the program to
call a different function for each of the paradigms. Command line arguments to Node.js
programs are available in the array process.argv. The first two elements in the array are
node and the name of the program. All user arguments follow after these two. The initial
contents of the file are shown in Listing 6-2.

Listing 6-2. trymongo.js: Initial Contents, Command Line Arguments Handling

'use strict';
const MongoClient = require('mongodb');

function usage() {
 console.log('Usage:');
 console.log('node', __filename, '<option>');
 console.log('Where option is one of:');
 console.log(' callbacks Use the callbacks paradigm');
 console.log(' promises Use the Promises paradigm');
 console.log(' generator Use the Generator paradigm');
 console.log(' async Use the async module');
}

if (process.argv.length < 3) {
 console.log("Incorrect number of arguments");
 usage();
} else {
 if (process.argv[2] === 'callbacks') {
 testWithCallbacks();
 } else if (process.argv[2] === 'promises') {
 testWithPromises();

Chapter 6 ■ Using MongoDB

103

 } else if (process.argv[2] === 'generator') {
 testWithGenerator();
 } else if (process.argv[2] === 'async') {
 testWithAsync();
 } else {
 console.log("Invalid option:", process.argv[2]);
 usage();
 }
}

We gave a name and associated a function with each of the paradigms: Callbacks,
Promises, Generator, and Async. We will fill in the functions in the following subsections.

Callbacks
The conventional and oldest way to deal with asynchronous calls is to provide a callback
to handle the result of the operation. As seen in the above example, it is minimal
JavaScript. You pass a callback to the method, with the first parameter of the callback
expecting any errors, and the second (or more) parameters expecting the result of the
operation.

Callbacks are easy to understand and reason about. They work in conventional ES5
JavaScript as well. They have very little constructs that you need to learn. The callback
paradigm is not particular to the MongoDB driver. There are many APIs, including the
core Node.js library, that follow this paradigm.

Listing 6-3 shows how to get a database connection, use the connection to insert into
a collection, and then use the result of the insert operation to retrieve the object. As you
can see, one problem with this paradigm is that it can get deeply nested and complicated,
depending on the depth of the chain: the result of one operation being passed to the next.

Listing 6-3. trymongo.js, testWithCallbacks: Callbacks Paradigm

function testWithCallbacks() {
 MongoClient.connect('mongodb://localhost/playground', function(err, db) {
 db.collection('employees').insertOne({id: 1, name: 'A. Callback'}, 

function(err, result) {
 console.log("Result of insert:", result.insertedId);
 db.collection('employees').find({id: 1}).toArray(function(err, docs) {
 console.log('Result of find:', docs);
 db.close();
 });
 });
 });
}

Chapter 6 ■ Using MongoDB

104

It can get even more deeply nested when you also have to handle errors (or other)
conditions: you’ll soon find yourself writing the same set of statements multiple times
(imagine db.close() in every error condition). This is often referred to as callback hell.
The only remedy if you want to stick to the callback paradigm is to split each small piece
of code into its own function and pass that function as a parameter to a call, chaining the
callback along.

Promises
Using ES2015 promises, the nesting can be avoided, and the chaining can become
seemingly sequential. The above can be written as shown in Listing 6-4, using the
promises paradigm.

Listing 6-4. trymongo.js, testWithPromises: Promises Paradigm

function testWithPromises() {
 let db;
 MongoClient.connect('mongodb://localhost/playground').then(connection => {
 db = connection;
 return db.collection('employees')....insertOne({id: 1, name: 'B. Promises'});

 }).then(result => {
 console.log("Result of insert:", result.insertedId);
 return db.collection('employees').find({id: 1}).toArray();

 }).then(docs => {
 console.log('Result of find:', docs);
 db.close();

 }).catch(err => {
 console.log('ERROR', err);
 });
}

The result of every call is a promise, on to which you attach a then, which returns
another promise, and so on. Finally, there is a catch block that consumes all errors.
Assuming all calls throw errors, you’ll find that error handling isn’t needed in each
individual block: just one final catch() for errors at any stage is enough.

Generator and co Module
ES2015 introduces generator functions, which can be exited temporarily and called again.
The temporary exits are done using the yield statement. Between multiple calls, the
function retains the execution state. These functions are declared using an asterisk after
the function keyword, like function*().

Chapter 6 ■ Using MongoDB

105

A module called co takes advantage of ES2015 generators and promises to make
asynchronous calls look sequential. It achieves this by asking you to sequence the
asynchronous calls within one function. Then, the co module makes multiple calls to this
function, where each asynchronous step temporarily exits the function.

To try this paradigm, let’s first install the co module:

$ npm install co

We did not use --save because we will not be using this module other than for trying
out this paradigm. The previous example can be rewritten using the co module as shown
in Listing 6-5.

Listing 6-5. trymongo.js, testWithGenerator: Generator Paradigm with co Module

function testWithGenerator() {
 const co = require('co');
 co(function*() {
 const db = yield MongoClient.connect('mongodb://localhost/playground');

 const result = yield db.collection('employees')...insertOne({id: 1, 
 name: 'C. Generator'});

 console.log('Result of insert:', result.insertedId);

 const docs = yield db.collection('employees').find({id: 1}).toArray();
 console.log('Result of find:', docs);

 db.close();
 }).catch(err => {
 console.log('ERROR', err);
 });
}

As you can see, every asynchronous call was preceded by the keyword yield. This
causes a temporary return from the function, after which the function can be resumed
where it left off, if called again. The co module does the repeated calling, which is why we
needed to wrap the function around co().

The async Module
Yet another way to manage callbacks is by using the async module, though this method
is not mentioned in the MongoDB driver documentation. To start, let’s install the
async module (again without --save because we will not be using this paradigm in the
application, only trying it out in this section.)

$ npm install async

Chapter 6 ■ Using MongoDB

106

Apart from many other useful utilities for managing asynchronous calls, this module
provides a method called waterfall, which lets you pipe the result of one asynchronous
call to another. This method takes an array of functions to run. Each function is passed
the results of the previous function, and a callback (which takes an error and results as its
parameters). Each function in the array must call this callback when it is done. The results
are passed through as a waterfall from one function to the next, that is, the outputs of one
are passed to the next.

Since all the driver methods follow the same callback convention of error and results,
it’s easy to pass the callbacks through the waterfall. Listing 6-6 demonstrates this.

Listing 6-6. trymongo.js, testWithAsync: Async Paradigm

function testWithAsync() {
 const async = require('async');
 let db;
 async.waterfall([
 next => {
 MongoClient.connect('mongodb://localhost/playground', next);
 },
 (connection, next) => {
 db = connection;
 db.collection('employees').insertOne({id: 1, name: 'D. Async'}, next);
 },
 (insertResult, next) => {
 console.log('Insert result:', insertResult.insertedId);
 db.collection('employees').find({id: 1}).toArray(next);
 },
 (docs, next) => {
 console.log('Result of find:', docs);
 db.close();
 next(null, 'All done');
 }
], (err, result) => {
 if (err)
 console.log('ERROR', err);
 else
 console.log(result);
 });
}

Only in the last function did we explicitly call the callback with a null error and
a string as the final result. In all of the other function calls, we just passed the callback
through to the MongoDB driver method. The driver function calls the callback when the
results are available. We also named the callback next, just to be clear that it will be the
next function in the array that will be called when done.

Chapter 6 ■ Using MongoDB

107

Choosing any one of the paradigms is a matter of taste and familiarity. All of them are
valid choices; it is really up to you as to which one you pick. For the purpose of the Issue
Tracker application, I am going to pick the promises paradigm, mainly because it does
not depend on any other module. Also, it lets you perform parallel tasks if you choose to
do so for certain operations.

Reading from MongoDB
Let’s first modify the List API to read from the database instead of the in-memory list of
issues on your server. Since we’ve initialized the database with a set of initial issues, you
should be able to test this easily.

To start, we have to include the MongoDB driver that we have already installed, in
server.js. Next, we need to connect to the MongoDB server and keep the connection
open for future calls to the database. We do this rather than acquire a connection in every
request because creating a connection takes a bit of time. Also, the MongoDB driver
keeps a pool of connections automatically and reuses them if you reuse the connection
handle. So, we’ll just save the connection in a global variable called db for later use.

We’ll also start the Express server only once we get the connection. Let’s call the
database issuetracker. Listing 6-7 shows the connection acquisition and modified
server startup section in server.js.

Listing 6-7. server.js: Modified Initialization Sequence with MongoDB connection

...
const MongoClient = require('mongodb').MongoClient;
...
let db;
MongoClient.connect('mongodb://localhost/issuetracker').then(connection => {
 db = connection;
 app.listen(3000, () => {
 console.log('App started on port 3000');
 });
}).catch(error => {
 console.log('ERROR:', error);
});
...

Now, we can modify the endpoint handler for /api/issues to read from the
database. All we need to do is call a find() on the issues collection, convert it to an
array, and return the documents returned by this call. Listing 6-8 shows the modified
endpoint handler.

Chapter 6 ■ Using MongoDB

108

Listing 6-8. server.js: List API Modified to Use MongoDB

app.get('/api/issues', (req, res) => {
 db.collection('issues').find().toArray().then(issues => {
 const metadata = { total_count: issues.length };
 res.json({ _metadata: metadata, records: issues })
 }).catch(error => {
 console.log(error);
 res.status(500).json({ message: `Internal Server Error: ${error}` });
 });
});

 ■ Caution never skip the catch block when using promises. if you do so, any runtime
error within any of the blocks will not be caught and will be silently ignored. if you don’t
have a catch block, you may fail to “catch” errors in your code, even those such as a typo in
one of the variable names.

Since we have changed the field name id to _id, the front-end code referring to id
also needs to change. There are two places in App.jsx where this has to be done. Listing
6-9 shows the changed lines, with the change highlighted in bold.

Listing 6-9. App.jsx: Front-End Changes, Replacing id with _id

...
 <td>{props.issue._id}</td>
...
 const issueRows = props.issues.map(issue =><IssueRow 
key={issue._id} issue={issue} />)

...

Finally, now that even the List API can return a non-successful HTTP Status code,
let’s make sure that we handle that in the front end, just like we did for the Create API, by
looking at response.ok. The modified method loadData() is show in Listing 6-10.

Listing 6-10. App.jsx, IssueList loadData(): Error Handling

loadData() {
 fetch('/api/issues').then(response => {
 if (response.ok) {
 response.json().then(data => {
 console.log("Total count of records:", data._metadata.total_count);
 data.records.forEach(issue => {
 issue.created = new Date(issue.created);
 if (issue.completionDate)
 issue.completionDate = new Date(issue.completionDate);
 });

Chapter 6 ■ Using MongoDB

109

 this.setState({ issues: data.records });
 });
 } else {
 response.json().then(error => {
 alert("Failed to fetch issues:" + error.message)
 });
 }
 }).catch(err => {
 alert("Error in fetching data from server:", err);
 });
}

Now, the changes can be tested. Refresh the browser, and the two issues that we
initialized using the mongo shell script should be displayed. The only change is that the
ID is now a long string instead of what used to be 1 and 2. Of course, adding a new issue
won’t work, which we’ll deal with in the next section.

EXERCISE: READING FROM MONGODB

1. We are saving the connection in a global variable. What happens
when the connection is lost? restart MongoDB server to see
what happens. Does the connection still work?

2. shut down the MongoDB server, refresh the browser, and then
start the server and see what happens. try the sequence again;
this time wait for a much longer time before starting the server.
What happens? hint: Look up the documentation of MongoDB
driver, look for the tutorial on connection failures.

3. We used toArray() to convert the entire list of issues into an
array. What if the list is too big, say, a million documents? how
would you deal with this?

answers are available at the end of the chapter.

Writing to MongoDB
You saw how to write to MongoDB using the insert method on a collection. We’ll use that
method to create a new record in the Create API. We will need to, as in the MongoDB driver
trial, read back the object that was just created and return it as the result of the API call.

The find() call to read back the object is guaranteed to return a single document
since you are using the _id as the filter criterion. In such a case, it’s recommended that
you do not use toArray(); instead, you use the next() method on the cursor returned by
find(). Another alternative is to use the findOne() method. This is just to prevent a large
array being created in memory inadvertently and also to make it clear that you only want
one document and not an array of one document.

Chapter 6 ■ Using MongoDB

110

The modified Create API is shown in Listing 6-11.

Listing 6-11. server.js: Modified Create API That Writes to MongoDB

app.post('/api/issues', (req, res) => {
 const newIssue = req.body;
 newIssue.id = issues.length + 1;
 newIssue.created = new Date();
 if (!newIssue.status)
 newIssue.status = 'New';

 const err = validateIssue(newIssue)
 if (err) {
 res.status(422).json({ message: `Invalid request: ${err}` });
 return;
 }

 db.collection('issues').insertOne(newIssue).then(result =>
 db.collection('issues').find({ _id: result.insertedId }).limit(1).next()
).then(newIssue => {
 res.json(newIssue);
 }).catch(error => {
 console.log(error);
 res.status(500).json({ message: `Internal Server Error: ${error}` });
 });
});

Since MongoDB will now generate the ID for each issue, we removed the line
where we assigned the field id based on the array length. We also need to remove the
validation for the field id. All we have to do is remove the corresponding property in the
issueFieldType array. Finally, we can also get rid of the in-memory array, now that we
are saving the list in a database. These two changes are shown in Listing 6-12.

Listing 6-12. server.js: Clean up Validations and Remove In-Memory Array

...
const issueFieldType = {
 id: 'required',
 status: 'required',
...
const issues = [
 {
 id: 1, status: 'Open', owner: 'Ravan',
 created: new Date('2016-08-15'), effort: 5, completionDate: undefined,
 title: 'Error in console when clicking Add',
 },

Chapter 6 ■ Using MongoDB

111

 {
 id: 2, status: 'Assigned', owner: 'Eddie',
 created: new Date('2016-08-16'), effort: 14, completionDate: new

Date('2016-08-30'),
 title: 'Missing bottom border on panel',
 },
];
...

Testing this set of changes will show that new issues can be added, and even on a
restart of the Node.js server, or the database server, the newly added issues are still there. As
a cross-check, use the mongo shell to look at the collection after every change from the UI.

EXERCISE: WRITING TO MONGODB

1. Could we have just added the _id to the passed-in object, and
returned that instead of doing a find() for the inserted object?

2. We could have used insert() instead of insertOne(). What
would be the difference? Why did we choose to use the latter?
hint: Look up the MongoDB driver documentation.

answers are available at the end of the chapter.

Summary
In this chapter, we looked at the installation and use of MongoDB, both via the mongo
shell as well as from Node.js code via the native driver. We explored a few methods, the
pillars of MongoDB via the shell as well as a test program in Node.js. We then used these
learnings to insert and read a document from the database, thus making the issue list
persistent.

You should now have a good understanding of the fundamentals of MongoDB and
the paradigms that it uses. We did not go deeper into other operations such as update
and delete, or getting summary reports via aggregates. We’ll do all of that later, when we
implement features in the Issue Tracker that require them to be used.

In the next chapter, we’ll take a break from implementing features. Instead, we’ll start
getting organized. We’ll modularize the code and use tools to improve our productivity
since the project is starting to get bigger.

Chapter 6 ■ Using MongoDB

112

Answers to Exercises
Exercise: Mongo Shell
 1. Yes, the mongo shell does support some ES2015 features.

Notably, you can use arrow functions, string interpolation,
and const variables.

 2. This can be done using the $exists operator like this:

> db.employees.find({"name.middle": {$exists: true}})

 3. The filter specification is not a JSON document, because it
is not a string. It is a regular JavaScript object, which is why
you are able to skip the quotes around the property names.
You will also be able to have real Date objects as field values,
unlike a JSON string.

 4. The $unset operator in an update can be used to unset a field
(which is actually different from setting it to null). Here is an
example:

> db.employees.update(({_id: ObjectId("57b1caea3475bb1784747ccb")},
{"name.middle": {$unset: null}})

Although we supplied null as the value for $unset, this value
is ignored. It can be anything.

 5. The 1 indicates an ascending sort order for traversing the index.
-1 is used to indicate a descending sort order. This is useful only
for compound indexes, because a simple index on one field can
be used to traverse the collection in either direction.

Exercise: Schema Initialization
 1. Creating our own _id would make the display and

identification of the issue more user friendly, because it can be
a continuous number like 1, 2, 3, and so on. The ObjectId is
harder to refer to. On the other hand, generating a continuous
number is more work, and may not scale well when there are
a large number of documents and simultaneous inserts from
multiple clients. Read the MongoDB tutorial called Create
an Auto-Incrementing Sequence Field for a more detailed
discussion.

 2. A search bar is quite helpful when searching for issues. A text
index (an index based on the words) on the title field would
be useful in this case. Find out more about text indexes in the
MongoDB tutorial. We’ll implement a text index towards the
end of the book.

Chapter 6 ■ Using MongoDB

113

Exercise: Reading from MongoDB
 1. The connection object is in fact a connection pool. It

automatically figures out the best thing to do: reuse an
existing TCP connection, reestablish a new connection when
the connection is broken, etc. Using a global variable (at least,
reusing the connection object) is the recommended usage. If
you don’t like global variables, you can create a module and
encapsulate the connection within it’s namespace.

 2. If the database is unavailable for a short period (30 seconds),
the driver waits and reconnects when the database is available
again. If the database is unavailable for a longer period, the
read throws an error. The driver is also unable to reestablish
a connection when the database is restored. The application
server needs to be restarted in this case.

If you’d rather throw an error if the database is unreachable,
set bufferMaxEntries to 0 when creating the connection. This
is perhaps the preferred approach for a single server. When
you have a replica set, the default behavior works better.

 3. One option is to use limit() on the result to limit the return
value to a maximum number of records. For example,
find().limit(100) returns the first 100 documents. If you
were to paginate the output in the UI, you could also use the
skip() method to specify where to start the list.

Another option is to use forEach() or stream() to stream the
result back to the client, without occupying too much memory
on the server to hold the entire array. This assumes that the
client can handle large results.

Exercise: Writing to MongoDB
 1. Adding the _id and returning the object passed in would

have worked, so long as you know for a fact that the write was
a success and the object was written to the database as is. In
most cases, this would be true, but it’s a good practice to get
the results from the database, as that is the ultimate truth.
Since we are querying on the _id (which is automatically
indexed), the extra call is very minimal in terms of latency
added to the query.

 2. The result from an insert() is slightly different from
insertOne(). Instead of insertedId, it returns an array
of insertedIds. You use insertOne() since insert() is
deprecated in favor of insertOne() and insertMany(), and
the usage is unambiguous.

115© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_7

CHAPTER 7

Modularization and Webpack

In this chapter, we’ll take a break from regular coding and adding features. Instead, we’ll
get a bit organized so that the application can grow bigger, yet be manageable. The focus
will be on development tools.

The goal of this chapter is to be able to split the code into multiple files, both on the
server and the client side. Despite this, we should be able to continue the development
process as before: automatically restart or rebuild whenever files change, except that this
would be any file. Further, we’ll even get the browser to refresh automatically when files
change during development. Finally, we’ll add checks to verify that the code we write
follows some standards and good practices, and catches possible bugs earlier than the
testing cycle.

Server-Side Modules
You saw in the Hello World chapter how to include modules in a Node.js file after
installing the module using npm install. But what about your own modules? How do
you write a file that can be included in another file?

It’s surprisingly simple to do this. There is a special variable that Node.js looks for
called module.exports within any file. If that file is used in a require statement, Node.js
just uses the value of this module.exports variable, and returns the same in the require
call. Thus, anything that you want to be available to be exported, you can just add to the
module.exports object.

Let’s aim to separate out code related to the Issue object (or model) into its own file.
To start with, let’s create a directory called server where we will keep all server-side files,
since there is going to be more than one file going forward. Let’s move server.js into
this directory. We’ll also create a new file called issue.js and cut/paste all of the issue
validation-related code into this file. We need to add 'use strict'; at the beginning of
the file to let Node.js accept const declarations. Finally, we define module.exports as an
object with the property validateIssue set to the function validateIssue.

Chapter 7 ■ Modularization and WebpaCk

116

The contents of the new issue.js file are shown in Listing 7-1.

Listing 7-1. issue.js: New File for the Issue Model

'use strict';

const validIssueStatus = {
 New: true,
 Open: true,
 Assigned: true,
 Fixed: true,
 Verified: true,
 Closed: true,
};

const issueFieldType = {
 status: 'required',
 owner: 'required',
 effort: 'optional',
 created: 'required',
 completionDate: 'optional',
 title: 'required',
};

function validateIssue(issue) {
 for (const field in issueFieldType) {
 const type = issueFieldType[field];
 if (!type) {
 delete issue[field];
 } else if (type === 'required' && !issue[field]) {
 return `${field} is required.`;
 }
 }

 if (!validIssueStatus[issue.status])
 return `${issue.status} is not a valid status.`;

 return null;
}

module.exports = {
 validateIssue: validateIssue
};

 ■ Note the first line, 'use strict';, is important. Without it, the behavior of const and
let are different in node.js version 4.5. ensure that you have not missed this line.

Chapter 7 ■ Modularization and WebpaCk

117

To use this new module in server.js, we must include the module that we just
created, using the (by now familiar) require statement. When you refer to your own
modules rather than modules installed via npm, you need to tell Node.js the path of the
module’s file rather than just the name. So, in this case, we must use './issue.js' rather
than a plain 'issue'. The changes are shown in Listing 7-2.

Listing 7-2. server.js: Changes to Using issue.js Module

...
const MongoClient = require('mongodb').MongoClient;
const Issue = require('./issue.js');
...
app.post('/api/issues', (req, res) => {
...
 const err = Issue.validateIssue(newIssue);
...

We could have chosen to assign module.exports directly to validateIssue (like
module.exports = validateIssue), in which case, the return value of the require
statement in server.js would have been the function itself, and we could use it as is (like
const validateIssue = require('./issue.js');). But we chose to use an object to
enclose the exported function. The expectation is that we may export more things related
to the Issue object later, and they can all be inside this object.

Finally, to let nodemon watch all the files in the new server directory, we need to
modify the start command in package.json. Now that we have a directory for all of the
server-side code, the -w argument can take the directory server as the value instead of a
single file. Further, the starting point is server/server.js rather than simply server.js.
This change is listed in Listing 7-3.

Listing 7-3. package.json: Changes to Start Script

...
 "start": "nodemon -w server.js server.js",
 "start": "nodemon -w server server/server.js",
...

If you restart the server (by pressing Ctrl-C in the console where it was started, and
running npm start again), you should be able to test your changes. You need to do this
because package.json itself changed, and it needed to be reloaded. The application
should function as before, because we have only refactored the code. We have not
introduced any functional changes.

Introduction to Webpack
Traditionally, one would split client-side JavaScript code into multiple files, and include
them all (or whichever are required) using <script> tags in the main HTML file. This
is less than ideal because the dependency management is done by the developer, by
maintaining a certain order of files in the HTML file. Further, when the number of files
becomes large, this becomes unmanageable.

Chapter 7 ■ Modularization and WebpaCk

118

Tools such as webpack and browserify provide alternatives that let you define
dependencies as you would in a Node.js application using require or equivalent
statements. They automatically figure out not just your own dependent modules, but
also third-party libraries. Then, they put together these individual files into one or more
bundles of pure JavaScript that has all the required code that can be included in the
HTML file.

The only downside is that this requires a build step. But then, we already have a
build step to transform JSX and ES2015 into plain JavaScript. It’s not much of a change in
habit to let the build step also create a bundle based on multiple files. Both webpack
and browserify are good tools and can be used to achieve the goals. But I chose webpack,
because it is simpler to get all that we want done, which includes separate bundles for
third-party libraries and our own modules. It has a single pipeline to transform, bundle,
and watch for changes and generate new bundles as fast as possible.

If you choose Browserify instead, you will need other task runners such as gulp or
grunt to automate watching and include multiple transforms. This is because Browserify
does only one thing: bundle. In order to combine bundle and transform (using babel) and
watch for file changes, you need something that puts all of them together, and gulp is one
such utility. In comparison, webpack (with a little help from loaders, which we’ll explore
soon) can not only bundle, but can also do many more things such as transforms and
watching for changes to files. You don’t need additional task runners to use webpack.

Note that webpack can also handle other static assets such as CSS files. It can even
split the bundles such that they can be loaded asynchronously. We will not be exercising
those aspects of webpack; instead, we’ll focus on the goal of being able to modularize the
client-side code, which is mainly JavaScript at this point in time.

Using Webpack Manually
To get used to what webpack really does, we’ll use webpack from the command-line just
like we did for the JSX transform using babel command line. Let’s first install webpack:

$ npm install --save-dev webpack

We installed webpack locally because, just like with babel, we’ll eventually move all
commands into commands defined in package.json, so that they can be run using npm
run. We don’t need webpack globally. Let’s see what webpack does. You can run it on the
client-side JavaScript file App.js and produce a bundle called app.bundle.js like this:

$ node_modules/.bin/webpack static/App.js static/app.bundle.js

Chapter 7 ■ Modularization and WebpaCk

119

You can see that webpack creates app.bundle.js, which is not very different from
App.js itself. Note also that we didn’t run it against the React file App.jsx, because
webpack cannot handle JSX natively. What webpack did in this bundling is hardly
interesting. We did it just to make sure we’ve installed it correctly and are able to run it.

To start the modularization exercise, let’s split App.jsx into two files by separating
out one component, IssueAdd. Let’s create a new file called IssueAdd.jsx under the src
directory, and move the entire IssueAdd class to this file. To include the new file,
we could use the require style imports and exports as in the server-side modules. But
ES2015 supports a new style with import statements, which are easier to read than
require statements. We could not take advantage of this style for the server side-code
because Node.js does not support this style natively as of the latest version at the time of
writing this book.

Using the new ES2015 style to export a class is as simple as prefixing export before
the class definition. Further, you can add the keyword default if you are exporting a
single class, and you want it to be the result of an import statement directly (or a top-level
export).

Listing 7-4 shows the changes to the class definition. The rest of the new file is the
original contents of the class unchanged.

Listing 7-4. IssueAdd.jsx: New File, Class Contents Moved Here from App.jsx

...
export default class IssueAdd extends React.Component {
 ...
}

To import this class in App.jsx, we need to use an import statement right at the
beginning of the file. This, as well as the removal of the IssueAdd class, is shown in
Listing 7-5

Listing 7-5. App.jsx: Move IssueAdd Class and Import It

...
import IssueAdd from ‘./IssueAdd.js’;
...
class IssueAdd extends React.Component {
 constructor() {
 super();
 this.handleSubmit = this.handleSubmit.bind(this);
 }
 ...
}
...

Chapter 7 ■ Modularization and WebpaCk

120

Let’s run the JSX transformation using npm run compile (or let the babel watch
automatically recompile upon detecting changes). This will transform both files, since
we’d specified the entire src directory as input source to babel. You’ll see that two files,
App.js and IssueAdd.js, are generated. Now, when you run webpack with the same
command as before, you will notice that it automatically includes IssueAdd.js in the
bundle, without you ever telling it do so. Here is a sample result of a webpack run:

Time: 88ms
 Asset Size Chunks Chunk Names
app.bundle.js 11.7 kB 0 [emitted] main
 [0] ./static/App.js 7.06 kB {0} [built]
 [1] ./static/IssueAdd.js 2.9 kB {0} [built]

You could create many more such files, and webpack does not need to be told
about any of them. That’s because it looks at the import statements within each of the
JavaScript files and figures out the dependency tree. Finally, we need to change the script
file referenced in index.html to the new app.bundle.js instead of App.js. This change is
shown in Listing 7-6.

Listing 7-6. index.html: Replace App.js Script with app.bundle.js

...
<script src="/app.bundle.js"></script>
...

At this point, you should test the application to see if it works as before. There will be
some residual temporary files, App.js and IssueAdd.js, in the static directory, which
you will not require any longer, so they can be removed.

Transform and Bundle
In the previous step, we had to manually transform JSX files, and then use webpack to
bundle them together. The good news is that webpack is capable of combining these two
steps, obviating the need for intermediate files. But it can’t do that on its own; it needs
some helpers called loaders. All transforms and file types other than pure JavaScript
require loaders in webpack. These are separate modules.

In this case, we need the babel loader to handle JSX transforms, so let’s install it:

$ npm install --save-dev babel-loader

Using loaders in the command line is cumbersome, especially if you want to pass
parameters to the loaders (babel, in this case, needs presets react and es2015). You
can instead use a configuration file to give these parameters to webpack. The default
configuration file that webpack looks for is called webpack.config.js, so let’s create that
file.

Chapter 7 ■ Modularization and WebpaCk

121

Webpack loads this configuration file as a module and gets its parameters from this
module. Everything has to be under one exported object. Since we won’t be transforming
this file, let’s use the module.exports syntax rather than the ES2015 export syntax.
Inside the exported object, webpack looks for various properties. We’ll use the properties
entry and output to replace what we did with the command line parameters until now.
The entry point is now App.jsx rather than App.js. The output property takes path and
filename as two subproperties.

To add the babel loader, we need to define the configuration property
module.loaders and supply it with an array of loaders. We will have only one element,
the babel loader in this array. A loader specification includes a test (regular expression) to
match files, the loader to apply (in this case, babel-loader), and finally a set of options to
the loader specified by the property query.

The final contents of the configuration file are shown in Listing 7-7.

Listing 7-7. webpack.config.js: Configuration File for webpack

module.exports = {
 entry: './src/App.jsx',
 output: {
 path: './static',
 filename: 'app.bundle.js'
 },
 module: {
 loaders: [
 {
 test: /\.jsx$/,
 loader: 'babel-loader',
 query: {
 presets: ['react','es2015']
 }
 },
]
 }
};

The option for babel loader is an array of presets, very similar to the babel command
line:

...
 query: {
 presets: ['react','es2015']
 }
...

The import statement in App.jsx referred to IssueAdd.js, but this file will no longer
be created because webpack will transform IssueAdd.jsx to IssueAdd.js on the fly. So,
for the dependency tree to be built correctly, we will have to import the pretransformed
file with the jsx extension, as shown in Listing 7-8.

Chapter 7 ■ Modularization and WebpaCk

122

Listing 7-8. App.jsx: Import the jsx File Instead of js

...
import IssueAdd from './IssueAdd.jsx';
...

Now, webpack can be run on the command line without any command line
parameters, like this:

$ node_modules/.bin/webpack

You will notice that it takes quite a while to complete. You don’t want to wait this
long every time you modify a source file, do you? Nor do you want to run this command
over and over again. Fortunately, just like babel, webpack has a watch mode, which looks
for changes and processes only the changed files. So, run this command instead:

$ node_modules/.bin/webpack --watch

Modify some text (create a syntax error, for instance) and ensure that it rebuilds
the bundle on every change, and note how long it takes to do this. Watch how errors are
reported, too. Now is a good time to modify the npm script commands for building and
watching for changed files. Let’s replace the compile and watch script specifications in
package.json, as shown in Listing 7-9.

Listing 7-9. package.json: New Compile and Watch Scripts

...
 "compile": "webpack",
 "watch": "webpack --watch",
...

Now that you know what webpack is capable of, let’s organize your files into one
file per class: IssueList, IssueAdd, and IssueFilter. Let the stateless components
IssueTable and IssueRow remain with IssueList in the same file. The entry file, App.jsx,
will only import the other classes and mount the main component. This will create a
two-level hierarchy of imports: App.jsx will import IssueList.jsx, which in turn will
import IssueAdd.jsx and IssueFilter.jsx.

To start with, let’s move the placeholder class IssueFilter to its own file. This is
shown in in Listing 7-10.

Listing 7-10. IssueFilter.jsx: Move Class IssueFilter Here and Add Export

export default class IssueFilter extends React.Component {
 render() {
 return (
 <div>This is a placeholder for the Issue Filter.</div>
)
 }
}

Chapter 7 ■ Modularization and WebpaCk

123

Similarly, let’s take the class IssueAdd from the file App.jsx and create a new file
called IssueAdd.jsx. Listing 7-11 shows the partial contents of the new file: the class as
such is unchanged, except that in the class declaration you have the keywords export
default.

Listing 7-11. IssueAdd.jsx: New File, Move Class IssueAdd Here, and Add Export

export default class IssueAdd extends React.Component {
 constructor() {
 super();
 this.handleSubmit = this.handleSubmit.bind(this);
 }
 ...
}

Listing 7-12 shows another change, but here we extract three classes (IssueRow,
IssueTable, and IssueList) from App.jsx. The new file created is called IssueList.jsx.
Since this file needs the other extracted classes, IssueAdd and IssueFilter, we also need
import statements for them in addition to the classes that are moved into this file. Only
the class IssueList is exported, so we need to add the keywords export default only
to that class declaration. The other two classes are for internal use only, so they are not
exported.

Listing 7-12. IssueList.jsx: Move Classes IssueList, IssueTable, and Issue Row Here, and
Add Import and Export

import IssueAdd from './IssueAdd.jsx';
import IssueFilter from './IssueFilter.jsx';

const IssueRow = (props) => (
 <tr>
 ...
 </tr>
)

function IssueTable(props) {
 const issueRows = props.issues.map(issue => <IssueRow 
key={issue._id} issue={issue} />)

 return (
 ...
);
}

Chapter 7 ■ Modularization and WebpaCk

124

export default class IssueList extends React.Component {
 constructor() {
 super();
 this.state = { issues: [] };

 this.createIssue = this.createIssue.bind(this);
 }
 ...
}

Now that most of the contents of App.jsx have been moved out to their individual
files, we’re left with just the rendering of the component. The contents of this file are
shown in Listing 7-13.

Listing 7-13. App.jsx: Complete Contents After Moving All Classes Out

import IssueList from './IssueList.jsx';

const contentNode = document.getElementById('contents');
ReactDOM.render(<IssueList />, contentNode); // Render the component inside 

the content Node

If you run npm run watch, you will find that all the compilations are done and the
bundle is ready for you to test the application. If not, just start the npm start and npm
run watch commands in different consoles, and then test the application to ensure that it
behaves the same as before.

EXERCISE: TRANSFORM AND BUNDLE

1. Save any JSX file with only a spacing change, while running npm
run watch. does webpack rebuild the bundle? Why not?

2. Why did we separate the mounting of the component and the
component into different files? hint: think about what other
pages you’ll need in the future.

3. What would happen if you did not use the default keyword
while exporting a class? hint: revisit how you had choices
for validateIssue to be exported. also look up the babel
documentation and/or Mozilla developer network (Mdn)
documentation on JavaScript export statement.

answers are available at the end of the chapter.

Chapter 7 ■ Modularization and WebpaCk

125

Libraries Bundle
For the server side, we started by importing third-party libraries, and then we created
modules from our own code. For the client-side code, we have only used modules of our
own code until now.

But we do have library dependencies, notably React itself. We included them as
scripts from a CDN. In this section, we’ll use webpack to create a bundle that includes
these libraries. If you remember, I discussed that npm is used not only for server-side
libraries, but also client-side ones. What’s more, webpack understands this and can deal
with client-side libraries installed via npm.

So, let’s first install, using npm, the client-side libraries that we have used until now.
This is the same list as the list of <script>s in index.html.

$ npm install --save-dev react react-dom whatwg-fetch babel-polyfill

Next, to use these installed libraries, let’s them in all the client-side files where they
are needed, just like we imported our own files. Listings 7-14 to 7-17 show these changes.

Listing 7-14. App.jsx: Imports for Using React and ReactDOM

...
import React from 'react';
import ReactDOM from 'react-dom';
...

Listing 7-15. IssueAdd.jsx: Imports for Using React

...
import React from 'react';
...

Listing 7-16. IssueFilter.jsx: Imports for Using React

...
import React from 'react';
...

Listing 7-17. IssueList.jsx: Imports for Using React and Fetch

...
import React from 'react';
import 'whatwg-fetch';
...

Chapter 7 ■ Modularization and WebpaCk

126

You can now remove all the script references from index.html, as shown in Listing 7-18.

Listing 7-18. index.html: Remove Scripts Loaded from CDN

...
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react.
js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react-dom.
js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fetch/1.0.0/fetch.min.
js"></script>
...

Note that unlike React and React-DOM, fetch is imported into the global namespace,
because it is expected to be a substitute for window.fetch(), which should be available in
the browser in any case. If you have npm run watch already running, you will notice that
the number of hidden modules has shot up from four to more than a hundred, and also
that the size of app.bundle.js has increased from few kBs to more than 1Mb. The console
output of webpack before this step would have looked like this:

Hash: 8f5de02c8f9e672b4ccb
Version: webpack 1.13.2
Time: 10593ms
 Asset Size Chunks Chunk Names
app.bundle.js 13.8 kB 0 [emitted] main
 + 4 hidden modules

And after the change, it will look like this:

Hash: 983fd62bdc8309eb9fd5
Version: webpack 1.13.2
Time: 11886ms
 Asset Size Chunks Chunk Names
app.bundle.js 1.02 MB 0 [emitted] main
 + 472 hidden modules

The fact that the bundle includes all of the libraries is a minor problem. The libraries
will not change often, but the application code will, especially during the development
and testing. Even when the application code undergoes a small change, the entire bundle
is rebuilt, and therefore, a client will have to fetch (the now big) bundle from the server.
We’re not taking advantage of the fact that the browser can cache scripts when they are
not changed. This not only affects the development process, but even in production,
users will not have the optimum experience.

Chapter 7 ■ Modularization and WebpaCk

127

A better alternative is to have two bundles, one for the application code and another
for all the libraries. It turns out that a plugin called CommonsChunkPlugin, a webpack
built-in plugin, can do this quite easily. The modified webpack.config.js is shown in
Listing 7-19.

Listing 7-19. webpack.config.js: Separate Vendor Bundle Configuration

const webpack = require('webpack');

module.exports = {
 entry: './src/App.jsx',
 entry: {
 app: './src/App.jsx',
 vendor: ['react','react-dom','whatwg-fetch'],
 },
 output: {
 path: './static',
 filename: 'app.bundle.js'
 },
 plugins: [
 new webpack.optimize.CommonsChunkPlugin('vendor','vendor.bundle.js')
],
 module: {
 loaders: [
 {
 test: /\.jsx$/,
 loader: 'babel-loader',
 query: {
 presets: ['react','es2015']
 }
 },
]
 }
};

First, we specified two entry points to webpack in the configuration file, one for
the app and the other for the libraries. Thus, the configuration variable entry is now
an object with two keys: one for the app and the other for the libraries, which we
called vendor.

Next, we added the plugin in a new configuration variable called plugins. The first
line, where we require webpack, is needed because the plugin is available as part of the
webpack module. We passed in two parameters to the plugin, the first being the name of
the entry identifier, and the second its output file name.

Chapter 7 ■ Modularization and WebpaCk

128

You must reload the configuration file by restarting npm run watch. You’ll now see
that there are two bundles being created. You may see something similar to the following
console output:

Hash: 82e5bb4d86c63757adb8
Version: webpack 1.13.2
Time: 13826ms
 Asset Size Chunks Chunk Names
 app.bundle.js 13.8 kB 0 [emitted] app
vendor.bundle.js 1 MB 1 [emitted] vendor
 [0] multi vendor 52 bytes {1} [built]
 + 472 hidden modules

Further, if you modify any source file, you’ll see that only the application bundle is
being rebuilt, that too in much lesser time.

Hash: d8ef5154f4ffe1780984
Version: webpack 1.13.2
Time: 231ms
 Asset Size Chunks Chunk Names
app.bundle.js 13.8 kB 0 [emitted] app
 + 473 hidden modules

Now, let’s include the vendor bundle in index.html, so that the contents are
available to the rest of the code. This change is shown in Listing 7-20.

Listing 7-20. index.html: Including the Vendor Bundle Script

...
<script src="/vendor.bundle.js"></script>
<script src="/app.bundle.js"></script>
...

Refresh the browser and check whether vendor.bundle.js is getting reloaded in
the browser. Using the developer console, you should see a 304 response for the vendor
bundle, which means that it is not fetching the bundle if it is already there in the browser’s
cache. This should happen even when you change any source code and regenerate the
application bundle, and that’s the advantage of splitting the bundle in two.

Chapter 7 ■ Modularization and WebpaCk

129

Hot Module Replacement
The watch mode of webpack works well for client-side code, but there is potential pitfall
with this approach. You must keep an eye on the console that is running the command
npm run watch to ensure that bundling is complete, before you refresh your browser to
see the effect of your changes. If you hit the refresh a little too soon, you will end up with
the previous version of your client-side code, and scratch your head wondering why your
changes didn’t work, and then spend time debugging.

The webpack-dev-server comes in handy here. Not only can it watch for changes,
but it can speed up delivery of the bundle by keeping the bundle completely in memory,
not writing it to disk. But the best part is that it makes the browser wait until the bundle is
ready, thus ensuring that if you have changed any client-side code, you are guaranteed to
not be served the previous version, saving some scratches on your head.

Let’s start by installing the webpack-dev-server:

$ npm install --save-dev webpack-dev-server

Since it is part of webpack, the webpack-dev-server understands webpack.config.
js, and produces app.bundle.js and vendor.bundle.js according to the specifications
in there. You just need to give it a couple parameters, the first of which is the port on
which it will listen as a server. The second parameter is to tell it where static files other
than the bundles reside. In our case, we need it to serve index.html from the static
directory. Thus, we can run webpack-dev-server as follows:

$ node_modules/.bin/webpack-dev-server --port=8000 --content-base=static

Open up a new window or tab in your browser and go to http://localhost:8000/.
Note that now you are using the port of the webpack dev server (8000), not the Express
web server (3000). If you make a change in any of the client-side code, you will find that
while the bundling is in process, the browser is made to wait as opposed to being given a
previous version of the bundles. But you will also find that although the assets are loaded,
the REST API calls fail, because webpack-dev-server has no clue how to handle them.

The original URL, http://localhost:3000/, continues to work in the other browser
window or tab. This is because the APIs and the static files are both still available via this
application, which is hosted by the Express server. What we want is the APIs to be served
from the Express server and the static content and the bundles to be served from the
webpack-dev-server. But we want it all from a single server.

The solution is to tell webpack-dev-server to act as a proxy for API requests, and
forward them to the Express server. The webpack-dev-server is capable of doing this,
but setting this up is a little involved, so it’s better done in a configuration file rather than
command line parameters. The webpack-dev-server looks into a special section called
devServer in webpack.config.js for its parameters. Let’s configure the proxy here, and
also move the command line parameters into this configuration. The partial changes are
shown in Listing 7-21.

Chapter 7 ■ Modularization and WebpaCk

130

Listing 7-21. webpack.config.js: Webpack-dev-server Configuration Added

...
 },
 devServer: {
 port: 8000,
 contentBase: 'static',
 proxy: {
 '/api/*': {
 target: 'http://localhost:3000'
 }
 }
 }
...

The first two parameters, port and contentBase, were replacements for the
command line. The proxy configuration tells webpack-dev-server to look for requests
matching '/api/*' and forwards them to your Express server, which runs at the original
URL at port 3000. Let’s restart webpack-dev-server, this time without any command line
parameters because the configuration is now available as part of webpack.config.js.

$ node_modules/.bin/webpack-dev-server

Now, when you refresh the browser page pointing to the 8000 port page, you will find
that the API calls are also working. If you make a change in any of the client-side code,
you will also see the webpack-dev-server rebuilding the bundles. This is great, but the
webpack-dev-server is capable of some more magic: hot module replacement (HMR).

HMR automatically causes a browser refresh whenever there is a change in the
client-side bundle. In fact, it incrementally replaces only the modules that have changed,
making it very efficient in terms of network data transfer. This is really useful for impatient
programmers. To enable HMR, all we have to do is add a couple of command line
parameters to the webpack-dev-server invocation:

$ node_modules/.bin/webpack-dev-server --hot --inline

Now, when you refresh the browser (for the last time, I may say), you will see the
following in the browser’s console log:

[HMR] Waiting for update signal from WDS...
[WDS] Hot Module Replacement enabled.

If you change any client-side code, you will see more log messages in the console,
and you will find that the bundle is rebuilt, and the browser automatically refreshes and
gets the new changes!

There’s still one small caveat, though: you will find that the browser is refreshing
rather than hot replacing the module. If you look at the console log (you may need to
preserve log across requests), you will also see a message saying it’s unable to replace.

Chapter 7 ■ Modularization and WebpaCk

131

That is because your client-side code that is responsible for dealing with modules is yet to
accept HMR.

To enable this, we need a change in the topmost module, that is, App.jsx, that
accepts HMR. The new App.jsx is shown in in Listing 7-22.

Listing 7-22. App.jsx: Modified to Accept HMR

import React from 'react';
import ReactDOM from 'react-dom';

import IssueList from './IssueList.jsx';

const contentNode = document.getElementById('contents');
ReactDOM.render(<IssueList />, contentNode); // Render the component inside 

the content Node

if (module.hot) {
 module.hot.accept();
}

Now, you should be able to see that the browser doesn’t do a full refresh. There is a
good chance that you’ll mistakenly type the familiar http://localhost:3000 instead of
your new 8000 port that webpack dev server is running on. To prevent this, it’s best if you
delete the files app.bundle.js and vendor.bundle.js so that they don’t get served by the
3000 server, and an error will be immediately apparent.

Finally, let’s replace your watch command in package.json to use webpack-dev-
server rather than just bundle using webpack. This change is listed in Listing 7-23.

Listing 7-23. package.json: Change Watch Script to use webpack-dev-server

...
 "watch": "webpack-dev-server --hot --inline",
...

EXERCISE: HOT MODULE REPLACEMENT

1. how can you tell the difference between a browser refresh and
a hot module replacement? Can you compare the performance
of the two? hint: use the network section of your browser’s
developer tools and watch what goes on.

2. do you think webpack-dev-server is useful even without hMr?
hint: What problems does the dev server hMr solve? Which of
them is damaging?

answers are available at the end of the chapter.

Chapter 7 ■ Modularization and WebpaCk

132

HMR Using Middleware
Wouldn’t it be great if you didn’t have to run two servers and could thus avoid the
confusion with the ports? It turns out that there is an alternative to using webpack-dev-
server, by wiring in the HMR pieces within the Express code itself. This will make it a
single server that serves your APIs, and at the same time watches for changes to client-
side code, rebundles it, and sends incremental updates to the client.

The way to do this is to install HMR as middleware in the Express server. As
discussed earlier, middleware is something that can intercept requests and do some
special processing. The webpack-dev-middleware does the same work as it did as an
independent webpack-dev-server: it looks for changes to files, and blocks requests to the
bundle until the changes are incorporated into the bundle. The webpack-hot-middleware
does a similar thing for HMR. Let’s make these two middleware functions available by
installing the respective modules:

$ npm install --save-dev webpack-dev-middleware webpack-hot-middleware

We’ll use these modules within the Express server, but within an if condition that
does it only in a development environment. We’ll have to import these modules and
initialize them with a webpack configuration. Most of the configuration is already there
in webpack.config.js, but we need a few changes to the configuration for it to be used in
an HMR environment. They are the following:

 1. We need additional entry points (other than App.jsx) so that
webpack can build the client-side code necessary for this extra
functionality into the bundle.

 2. We need to add a plugin (which got enabled using the --hot
command line for the webpack-dev-server) that generates
incremental updates rather than entire bundles that can be
sent to the client.

We’ll make these changes by patching the configuration on the fly within the
Express server. But we need a few changes in webpack.config.js that will not affect the
production configuration, yet will allow us to patch in the changes. The changes required
are shown in Listing 7-24.

Listing 7-24. webpack.config.js: Compatible Changes to Allow Patching

...
 app: './src/App.jsx',
 app: ['./src/App.jsx'],
...
 path: './static',
 path: __dirname + './static',
...

Chapter 7 ■ Modularization and WebpaCk

133

The first change is to use an array instead of a single entry point. This will let us add
more entry points on the fly. The next change is to use an absolute path name for the
assets output directory name. This is a requirement for the middleware, but doesn’t affect
the webpack command line. Now we can make the changes in the Express server that
initializes the HMR middleware. These changes are shown in in Listing 7-25, which can
be inserted before the first app.get() call.

Listing 7-25. server.js: Use HMR via Middleware for Development Convenience

...
if (process.env.NODE_ENV !== 'production') {
 const webpack = require('webpack');
 const webpackDevMiddleware = require('webpack-dev-middleware');
 const webpackHotMiddleware = require('webpack-hot-middleware');

 const config = require('../webpack.config');
 config.entry.app.push('webpack-hot-middleware/client',
 'webpack/hot/only-dev-server');

 config.plugins.push(new webpack.HotModuleReplacementPlugin());

 const bundler = webpack(config);
 app.use(webpackDevMiddleware(bundler, { noInfo: true }));
 app.use(webpackHotMiddleware(bundler, { log: console.log }));
}
...

The first three lines in the block load the newly installed modules. Then, we
loaded up the default webpack configuration using another require statement, just as
webpack itself would have. Note that this can be done thanks to the fact that webpack
configurations are modules, not JSON files. Then we appended additional entry points
and plugins that are required for HMR. Finally, we created a bundler using the new
options, and passed it to the two middleware instantiations. To install the middleware,
we use app.use().

For HMR to work, just as in the previous section, you have to accept HMR in
App.jsx, as shown in Listing 7-22 in the previous section. With these changes, the server
should have automatically restarted if you were running npm start because nodemon
was watching for server file changes. Now, go back to the 3000 port server, without the
webpack-dev-server running. You need a manual browser refresh for the first time to kick
off HMR, and then, for every new client side change, you can see that modules are being
hot replaced automatically in the browser.

Comparison of HMR Alternatives
At first, I liked the middleware approach because it tied in nicely with the Express server,
and I did not have to run two consoles and monitor the restarts on each. Further, it did
not require another server and a listening port, and there was no question of making a
mistake by connecting to the wrong server and scratching heads.

Chapter 7 ■ Modularization and WebpaCk

134

But a problem with the middleware approach is that a change in the server-side code
causes the entire front-end bundle to be rebuilt, which takes approximately 13 seconds
on my environment. This is quite a long wait, and quite unnecessary too, since I did not
touch any client-side code. If there were a way to cache the bundles and not rebuild them
on every restart, the middleware option would be ideal.

Since there is no way to do that (at least as of writing this book), I have chosen to
revert back to the webpack-dev-server approach during my development. It does the
job: you don’t need to monitor the bundling and refresh the browser (because you’re
guaranteed to be not given stale bundles), so the extra console occupied for this can
remain hidden. As for mistakenly connecting to the wrong server, I have ensured that I
don’t ever run npm run compile, and I frequently check that the bundles don’t exist in
the file system.

I encourage you to make your own choice. Depending on how often you plan to
change the server-side code, you may find the middleware alternative more convenient,
unlike me.

Debugging
Until the previous chapter, if you needed to do any debugging on the client side, you
probably used console.log statements. Adding breakpoints using the developer tool
of your browser could have worked too, but you would have noticed that the generated
JavaScript code is quite different from the JSX we wrote. Creating a single bundle from
four different source files makes it even worse.

Fortunately, webpack solves this problem by its ability to give you source maps,
things that contain your original source code as you typed it in. The source maps also
connect the line numbers in the transformed code to your original code. Browsers’
development tools automatically understand source maps and correlate the two, letting
you put breakpoints in your code and converting them to breakpoints in the transformed
or transpiled code.

It’s quite simple to enable source maps. The small change to webpack.config.js is
listed in Listing 7-26.

Listing 7-26. webpack.config.js: Add Source Map Configuration

...
 devtool: 'source-map'
...

You need to restart npm run watch because of the configuration change. Note now
that two maps are generated by webpack apart from the two bundles. This can be seen in
the initial output of webpack-dev-server (you may need to scroll up in your console), or
when making changes to client-side code. Now, if you open up your Resources section in
your browser’s development tool, you will find the JSX files also listed, within which you
can set breakpoints. A sample development tool screen is shown in in Figure 7-1.

Chapter 7 ■ Modularization and WebpaCk

135

Server-Side ES2015
Even though Node.js supports many ES2015 features, it is not complete. For example,
you still need to use require instead of import to include other modules. Further, Node
4.5 does not support some useful things like destructuring assignments and spread
operators. On the client side, we assumed full ES2015 support and used these features. It
would be good to have the server side also support the same set, so that we don’t have to
be conscious of this fact when switching between client-side and server-side code. If we
do that, our coding style and features used can be uniform across the board.

Let’s start using the import and export style of modularization. Listing 7-27 shows
the changes to server.js, which includes removal of ‘use strict’ as well.

Listing 7-27. server.js: Replace Require with Imports

...
'use strict'

const express = require('express');
const bodyParser = require('body-parser');
const MongoClient = require('mongodb').MongoClient;
const Issue = require('./issue.js');
...
import express from 'express';
import bodyParser from 'body-parser';
import { MongoClient } from 'mongodb';
import Issue from './issue.js';
...

Figure 7-1. Developer console showing source files

Chapter 7 ■ Modularization and WebpaCk

136

Listing 7-28 shows changes to issue.js, where we replace the module.exports with
a simple export default, just like we did for the client-side code, as well as the removal
of use strict, which is no longer required due to ES2015.

Listing 7-28. issue.js: Changes for Using ES2015 Export

...
'use strict'
...
export default {
 validateIssue: validateIssue
};
...

Let’s also create a directory where the compiled files will be saved. Let’s call this
directory dist (short for distribution), and try out a transform using babel, as we did in
the Hello World chapter, to transform all the JSX:

$ node_modules/.bin/babel server --presets es2015 --out-dir dist

Now, instead of running server.js from the original directory, you can run it
from the dist directory. Try it out manually to ensure that the server starts up just fine.
If you inspect the compiled files, you will notice that the files are fully ES5 compliant,
that is, you will find vars instead of consts, and you will see that arrow functions have
been converted to regular functions. That’s great, but this means that you are not taking
advantage of the fact that Node.js natively supports constructs such as consts and arrow
functions.

Fortunately, there are other babel presets available that let you use what is available
in Node.js and change only unsupported ES2015 features. Depending on the version of
Node.js, the presets are named differently, corresponding to the version. For Node.js 4.5,
it’s called babel-preset-es2015-node4. Let’s now install this and use the preset instead
of the default es2015 preset:

$ npm install --save-dev babel-preset-es2015-node4

For Node.js version 6, it is babel-preset-es2015-node6. Further, the compilation
only takes care of the new syntax of ES2015, but does not provide new objects and
methods that are part of the ES2015 standard library. For example, you will find that the
method values() is missing in any array. To enable these objects and methods as you did
in the client-side code, we need to include babel-polyfill once in the app. Let’s include
that in the server. The changes are listed in Listing 7-29.

Listing 7-29. server.js: Include ES2015 Polyfill

...
import 'babel-polyfill';
...

Chapter 7 ■ Modularization and WebpaCk

137

Because of the compilation, all errors will now be reported as if they occurred at the
line number in the compiled file, not the source file. For a better reporting, we need to
generate source maps and tell Node.js to use the source maps. Generating source maps is
as easy as including a command line switch in the compilation:

$ node_modules/.bin/babel server --presets es2015 --out-dir dist --source-maps

To let Node.js report line numbers by using source maps, we need to install the
source-map-support module, and also call the library in the application once. Let’s first
install the package.

$ npm install --save source-map-support

To use this, we need to change server.js as shown in Listing 7-30.

Listing 7-30. server.js: Add Source Map Support

...
import SourceMapSupport from 'source-map-support';
SourceMapSupport.install();
...

Now, if you introduce an error anywhere in the server, the error message printed on
the console will have the line number from the source file instead of the compiled file.
You can try this out by temporarily introducing the following line anywhere in server.js:

...
throw new Error('Test!');
...

Now that the server depends on babel-polyfill during runtime, we need to move
the dependency from devDependencies to dependencies in package.json. While we’re
at it, let’s also change package.json to add new commands for compiling the server and
watching for changed files, and also change the start command to use the compiled file
from the dist directory. The changes are shown in Listing 7-31.

Listing 7-31. package.json: Changes to Scripts and Dependencies

...
 "scripts": {
 "start": "nodemon -w dist dist/server.js",
 "compile-server": "babel server --presets es2015-node4 

--out-dir dist --source-maps",
 "watch-server": "babel server --presets es2015-node4 

--out-dir dist --source-maps --watch",
...

Chapter 7 ■ Modularization and WebpaCk

138

 "dependencies": {
 "babel-polyfill": "^6.13.0",
...
 "devDependencies": {
 "babel-polyfill": "^6.13.0",
...

This also means that we need one more console to run npm run watch-server,
taking the total number of consoles occupied to three. There is an alternative to static
compilation that can do the transformation on the fly. This method is called the require
hook. That’s because it binds itself to Node.js’ require and dynamically compiles any
new module that is loaded. Let’s install it to try it out:

$ npm install --save-dev babel-register

To use it, let’s create a separate entry point, load the babel-register module, and
then load your server.js to start the server. Let’s call this new file start_hook.js; the
contents are shown in Listing 7-32.

Listing 7-32. File start_hook.js

require('babel-register')({
 presets: ['es2015-node4']
});

require('./server.js');

We initialized the compiler with a preset (the same as for the static compilation using
babel-cli) because this module does not load any presets by default. Also, this module
automatically ignores libraries loaded from node_modules, so we did not have to explicitly
mention them to be ignored. To start the server using the require hook, let’s add a new
command in package.json for use by npm run. The command is as follows:

"start-hook": "nodemon -w server server/start_hook.js",

Now, use the command line npm run start-hook to start the server. Ensure that
functionally is all well, as before.

If you are not comfortable running different start and watch scripts on different
consoles, it is best to combine the different scripts into one single script that runs all
three in the background. You can do this by creating a new script that calls other npm
run <script> commands, separated by an &. The & has the effect of placing the script
preceding the & in background. Let’s add two combination scripts for each of the methods
that we used. The entire set of changes made to package.json in this section is listed in
Listing 7-33.

Chapter 7 ■ Modularization and WebpaCk

139

Listing 7-33. package.json: Changes for New Commands and Moving Polyfill

...
 "scripts": {
 "start": "nodemon -w server server/server.js",
 "start": "nodemon -w dist dist/server.js",
 "compile-server": "babel server --presets es2015-node4 

--out-dir dist --source-maps",
 "watch-server": "babel server --presets es2015-node4 

--out-dir dist --source-maps --watch",
 "start-hook": "nodemon -w server server/start_hook.js",
 "compile": "webpack",
 "watch": "webpack-dev-server --hot --inline",
 "dev-all": "npm run watch & npm run watch-server & npm start",
 "dev-all-hook": "npm run watch & npm run start-hook",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
...
 "dependencies": {
 "babel-polyfill": "^6.13.0",
 "body-parser": "^1.15.2",
 ...
 },
...
 "devDependencies": {
 "babel-polyfill": "^6.13.0",
 ...
 }
...

Now, to run all development tasks using the statically compiled method, just use npm
run dev-all; for the start-hook method, use npm run dev-all-hook.

EXERCISE: SERVER-SIDE ES2015

1. We used the es2015-node4 preset rather than the es2015
preset, which would have worked for all versions of node, like
on the client side. Why did we do this? hint: think about the
advantages of native code.

2. Compare the pros and cons of the two ways of compiling:
statically using babel-cli or dynamically using the require hook.

answers are available at the end of the chapter.

Chapter 7 ■ Modularization and WebpaCk

140

ESLint
A linter (something that lints) checks for suspicious code that may be a bug. It can also
check whether your code adheres to conventions and standards that you want to follow
across your team to make the code predictably readable.

While there are multiple opinions and debates on what is a good standard (tabs
vs. spaces, for example), there has been no debate on whether there needs to be a
standard in the first place. For one team or one project, adopting one standard is far more
important than adopting the right standard.

ESLint is a very flexible linter that lets you define the rules that you want to follow.
Yet, we need something to start off with and the rule set that has appealed to me the most
has been that of Airbnb. Part of the reason for its appeal has been its popularity: if more
people adopt it, the more standardized it gets, so more people end up following it, and
the cycle continues.

To get started, let’s install ESLint. Along with it, we need a plugin that understands
JSX, and then the Airbnb rule set. Installing the configuration automatically installs all
dependencies, which you will be able to see in the console output as well as package.json.

$ npm install --save-dev eslint-config-airbnb

ESLint requires that the configuration and the rules to apply be specified in a starter
file, .eslintrc. Let’s create this file in the project directory, and initialize it by extending
the Airbnb rule set. The initial file contents are shown in Listing 7-34.

Listing 7-34. .eslintrc: Default .eslintrc File Contents

{
 "extends": "airbnb"
}

To lint your code, you need to run the eslint command line against a file like this:

$ node_modules/.bin/eslint src/IssueAdd.jsx

Or, you can run it against an entire directory, say the server-side code, like this:

$ node_modules/.bin/eslint server

Since the default extension that ESLint looks for is only js, we need to tell it to look
for jsx files also. Further, we need to tell it to handle the client source directory as well. To
run it against all the code including the webpack configuration file, we need to do this:

$ node_modules/.bin/eslint --ext jsx,js src server webpack.config.js

Chapter 7 ■ Modularization and WebpaCk

141

If you do this, you’ll see a lot of error reports. This is because we never gave full
attention to writing good code or sticking to a standard until now. Let’s set out to correct
the errors and clean them up. At this stage, it’s easier to deal with it one file at a time.
Alternatively, if your editor supports it, you can install a linter plugin that automatically
displays lint errors for you in the editor, so that you can correct them as you type. The
popular code editors Atom and Sublime do have plugins to handle this; please follow the
instructions on their respective websites to install the plugins.

As for the changes we need to make to fix the lint errors, there are too many to
discuss or even show in the listings individually. Other than the major rewrites, I’ll only
discuss the types of changes needed in order to get a clean ESlint report. For individual
changes, please refer to the GitHub repository accompanying this book and the
differences between this step and the previous. This is one section where I’ve skipped the
listings to show code changes.

For most of the errors, we are just going to change the code to adhere to the
suggested standard. But in a few cases, we will make exceptions to the Airbnb rule. The
first kind of exception is to override the rule itself, by setting different options for the
rule in the .eslintrc configuration file. A rule is identified by its name (as printed in
the console, for example, no-use-before-define). The value is the settings, which is an
array. The first element indicates whether the rule is disabled and causes a warning or an
error. Further elements are more options to the rule. Here is an example rule set:

...
"rules" {
 "no-console": ["off"]
 }
...

This rule set has only one rule specification, which switches off the rule, thus
allowing console.log statements throughout the project. It needs no further parameters.
But some rules can also take parameters, specifying conditions on which to apply them.
For example, to specify that parameter reassignment should be considered an error,
except for the parameters properties, this is what you write:

"no-param-reassign": ["error", { "props": false }]

The second kind of exception that you can make is for temporary code and for
things that are really localized, that is, not applicable for the project but for one particular
instance of that error. ESLint allows you to make such exceptions on a per-line basis by
adding an in-line comment starting with eslint-disable-line and optionally specifying
which rule to disable a check for (otherwise, it disables checking completely), like this:

console.log('Must see message'); // eslint-disable-line no-console-log

Chapter 7 ■ Modularization and WebpaCk

142

 ■ Note the errors can be quite different from what i have discussed, based on the
version of the airbnb eSlint configuration (the module eslint-config-airbnb) because the
configuration is under continuous change and improvement. i have used the configuration
version 9.0.1.

Environment
ESLint needs to be told that a certain file is being used in a certain environment. This
lets ESLint ignore otherwise invalid global variables such as document, which is available
in the browser environment. Since you need to specify different environments for the
server-side and client-side code, you’ll have to create override configuration files (again
called .eslintrc) in each of the directories.

The environment is specified not as a rule, but as a configuration variable at the
same level as rules. The configuration takes in an environment name and whether the
source is expected to run in that environment (true/false). For example, to set the browser
environment, you add this configuration:

...
 "env": {
 "browser": true
 },
...

Now, let’s discuss the types of errors and changes we need to do to fix them.

Syntax Consistency
JavaScript is quite flexible in syntax, so there are many ways to write the same code. The
linter rules report some errors so that you use a consistent syntax throughout the project.

 1. Missing semicolon: There’s a lot of debate on whether
semicolons everywhere or semicolons nowhere is better. Both
work, except for a few cases where the absence of semicolons
causes a behavior change. If you follow the no-semicolons
standard, it requires you to remember those special cases.
Let’s go with the Airbnb default, which is to require a
semicolon everywhere.

 2. Strings must use single quotes: JavaScript allows both single
and double-quotes. In order to standardize, it’s better to
consistently use one and only one style. Let’s use the Airbnb
default, single quotes.

Chapter 7 ■ Modularization and WebpaCk

143

 3. Chained calls require a newline per new function: When
chaining calls, especially promises, it improves readability to
have each call on a new line. Thus, every .then and the final
.catch need to start on their own new lines.

 4. Prefer shorthand: When the key and value in an object have
the same name, using the shorthand makes the code more
concise, and thus easier to read.

 5. Prefer string templates: String templates improve readability
because you don’t have a + character in the middle.

Editing Convenience
The following rules reduce the chance of an error when you edit code.

 1. Missing trailing comma: Requiring a comma for the last item
in a multi-line array or object is really handy when inserting
new items. In addition, when looking at the difference
between two versions in say, GitHub, the fact that a comma
is added to the last line highlights that the line has been
changed, whereas in reality, it hasn’t.

 2. Require a curly after an if: This is useful when you add more
lines in the block. It’s possible that you may forget to add the
curly and you could end up with a dangling line that looks
inside the block but is really outside. Forcing a curly avoids
this problem.

If you need a very short if block, you could write the block in
the same line without a curly. The curly is required only if the
block is in a new line of its own.

Structural Issues
When the linter points out structural issues, there are very likely bugs lurking underneath.

 1. Variables should be defined before using: This is a good
practice so that all global variables are at the top, and the
reader is not confused as to what the variable is all about
when reading code top to bottom.

 2. Use const/let instead of var: Using var to declare variables
causes it to be at the function scope rather than block scope.
This can lead to undesirable behavior, especially if the name
is used again. Using let and const forces you to think and
declare variables in the scope that they belong.

Chapter 7 ■ Modularization and WebpaCk

144

 3. For-in statements are disallowed: The linter suggests that you
guard this with a check for hasOwnProperty, since you may
unexpectedly get properties if you don’t. Note that for-in
statements are therefore best avoided; you can replace them
with a forEach iteration on the keys using Object.Keys().

 4. Already declared (shadow) variables: It’s best to avoid a
variable in an inner scope having the same name as one in
the outer scope. It’s confusing, and also it hides access to the
outer scope variable in case it is required to be accessed.

 5. Function parameter reassignment is disallowed: This really
exposed a bug in the code, and also points out that we should
in fact have had two separate functions to validate and clean
up the object. In the latter function, we should return a copy
of the issue passed in as a function parameter. The two new
functions are shown in Listing 7-35 and the changes to the
caller (server.js) are shown in Listing 7-36.

Listing 7-35. Rewrite of Function validateIssue as Two Functions

function cleanupIssue(issue) {
 const cleanedUpIssue = {};
 Object.keys(issue).forEach(field => {
 if (issueFieldType[field]) cleanedUpIssue[field] = issue[field];
 });
 return cleanedUpIssue;
}

function validateIssue(issue) {
 const errors = [];
 Object.keys(issueFieldType).forEach(field => {
 if (issueFieldType[field] === 'required' && !issue[field]) {
 errors.push(`Missing mandatory field: ${field}`);
 }
 });

 if (!validIssueStatus[issue.status]) {
 errors.push(`${issue.status} is not a valid status.`);
 }

 return (errors.length ? errors.join('; ') : null);
}

export default {
 validateIssue,
 cleanupIssue,
};

Chapter 7 ■ Modularization and WebpaCk

145

Listing 7-36. Changes to server.js for cleanupIssue

...
 db.collection('issues').insertOne(Issue.cleanupIssue(newIssue)). 
then(result =>

...

But in IssueList.jsx, we do need to modify the properties of
objects that are passed in during replacement of date strings
with Date objects in Issue records. So, we chose to override
the default no-param-reassign rule by allowing modification
of properties alone. The rule for this in the root .eslintrc file
is as follows:

 "no-param-reassign": ["error", { "props": false }]

React Specifics
These are React-specific issues that are good practices to adopt.

 1. Enforcing propTypes: Just like declaring function parameter
types, it’s a good practice to specify the properties and their
types that you pass to components from parent to child.
I discussed how this can be done in the chapter on React
components in the “Passing Data Using Properties” section;
now We’ll do it for all components.

 2. Stateless functions: The linter detects the fact that some
components don’t have any state, and they are better
written as stateless functions. We have such a component in
IssueFilter, but this is only a temporary placeholder. We’ll
add an in-line exception for this at the end of the line:

// eslint-disable-line

Rule Overrides
Rather than correct the code, we’ve chosen to override the default Airbnb rule to not
report certain issues as errors.

 1. Dangling _: These are meant to be internal variables that
you’re not supposed to use. But MongoDB’s _id is so
convenient for various things that you’ll allow the dangling
underscore only for this variable. The rule for this is

"no-underscore-dangle": ["error", { "allow": ["_id"] }],

Chapter 7 ■ Modularization and WebpaCk

146

 2. No console.log: Typically, this is considered bad practice. In
order to insert debugging statements, it is recommended
that you use a module such as debug. We’ll adhere to this for
the client side but override this rule for the server-side code,
because we do want to see console messages (and maybe save
them in a log file) on the server. The rule for this, only in the
server configuration, is

"no-console": ["off"]

 3. No alerts: The original intention of this rule was to weed out
debugging messages that were left unpruned. At least for the
foreseeable future of the application, we’ll be showing error
messages to the user as alerts. Until we find a better way to
do this, we’ll allow alerts. The rule is part of the client-side
.eslintrc, and is as follows:

"no-alert": ["off"]

The final set of .eslintrc files after including all the environment specifications and
the override rules is shown in the following listings. Listings 7-37 is for the configuration
at the root level, that is, common to all code. Listing 7-38 is for the server-side code and
Listing 7-39 is for the client-side code.

Listing 7-37. .eslintrc: Final root .eslintrc

{
 "extends": "airbnb",
 "rules": {
 "no-underscore-dangle": ["error", { "allow": ["_id"] }],
 "no-param-reassign": ["error", { "props": false }]
 }
}

Listing 7-38. server/.eslintrc: Final server .eslintrc

{
 "env": {
 "node": true
 },
 "rules": {
 "no-console": ["off"]
 }
}

Chapter 7 ■ Modularization and WebpaCk

147

Listing 7-39. src/.eslintrc: Final client .eslintrc

{
 "env": {
 "browser": true
 },
 "rules": {
 "no-alert": ["off"]
 }
}

Finally, for convenience of running ESLint using npm without having to remember
all the options that it takes, let’s create a command under scripts in package.json that
can be used to run the linter. This change is shown in Listing 7-40.

Listing 7-40. package.json: New Command for Running Lint

...
 "scripts": {
 ...
 "lint": "eslint --ext js,jsx src server webpack.config.js",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
...

EXERCISE: ESLINT

1. We disabled eSlint checking completely, instead of disabling
only the check for stateless functions. ideally, we should have
written // eslint-disable-line react/prefer-stateless-
function. We didn’t. Why not? What would happen if we did?

answers are available at the end of the chapter.

Summary
Although we did not add any features to the application in this chapter, we made lots
of changes to get organized and improve our productivity. Going forward, we’ll closely
watch lint errors, which help keep the code clean and uniform, but also detect errors
that otherwise would only be seen after you run the application and test it. Setting up
modularization on both the client and server also lets us keep code for different classes
separated.

In the next chapter, we’ll go back to adding more features. We’ll explore an important
concept of client-side routing that will allow us to show different components or pages
and navigate between them.

Chapter 7 ■ Modularization and WebpaCk

148

Answers to Exercises
Exercise: Transform and Bundle
 1. No, webpack does not rebuild if you save a file with just an

extra space. This is because the preprocessing or loader stage
produces a normalized JavaScript, which is no different from
the original. A rebundling is triggered only if the normalized
script is different.

 2. As of now, we have only one page to display, the Issue List.
Going forward, we’ll have other pages to render, for example,
a page to edit the issue, maybe another to list all users, yet
another to show one’s profile information, and so on. The
file App.jsx was created keeping in mind different page
components that could come up in the future.

 3. Not using the default keyword has the effect of exporting
the class as a property (rather than itself) of the object that’s
exported. In the import statement, you would have to do this:

import { IssueList } from ‘./IssueList.jsx’;

Note the curly braces around the LHS. This allows multiple
objects to be exported from a single file, each object you want
from the import being separated by a comma. If there’s only
one object being exported, you just default it, so that the curly
braces are not required.

Exercise: Hot Module Replacement
 1. There are many logs in the browser’s console that tell you that

HMR is being invoked. Further, even when the console log
window setting “preserve logs across browser requests” is off,
you will find that the logs still persist, which means there was
no new browser refresh.

If you look at the network requests, you will find that for a
browser refresh, requests are made to all of the assets. Take a
look at the sizes of these assets. Typically, vendor.bundle.js
is not fetched again when client-side code changes (it would
return a 304 response), but app.bundle.js will be reloaded.
But when HMR succeeds, you will see that the entire assets
are not fetched; instead, incremental files, much smaller than
app.bundle.js, are being transferred.

Chapter 7 ■ Modularization and WebpaCk

149

 2. The main objective of webpack-dev-server is to prevent
inadvertent errors, such as those caused by refreshing the
browser even before a bundle operation has completed. This
can be damaging because you may think you have changed
the code, but the new code is not what is running on the
browser. HMR is just icing on the cake. I would use webpack-
dev-server even if it did not support HMR.

Exercise: Server-Side ES2015
 1. Native support for any JavaScript feature is expected to be

faster than the transpiled code, which uses ES5 constructs.
On the client side, you cannot predict which browsers will
be used by the end user, so you must use the least common
denominator. Whereas, on the server side, the node version
that you are going to use in production is predictable and
under your control, and you can indeed take advantage of this.

 2. The static compilation alternative requires you to start up
two consoles just for the server and ensure that they are
functioning OK, whereas the dynamic alternative needs only
one console. Although we combined them into one npm
script, the output can be intermingled and it may not be easy
to spot any errors.

When there are syntax errors in your server code, in the
static compilation alternative, the compile step fails, but
the server continues to run the old code. This can lead to
confusion during development, if you are not monitoring the
server compilation console. In the require hook method, the
server crashes, and you will be forced to see what happened,
because the application will stop functioning.

The static compilation method is faster than the require hook,
especially when there are incremental changes to the server
code.

Using the static compilation, you are confident that the
production code is identical to the development code (require
hook is not intended for production, so you have to run the
statically compiled code). This removes at least that one
variable while chasing bugs in production.

My recommendation is to use static compilation regularly and
monitor the console. To me, the fact that the development and
production environments are identical is worth this trade-off.

Chapter 7 ■ Modularization and WebpaCk

150

Exercise: ESLint
 1. If you disabled that specific rule, the length of the line

would have exceeded 100 characters, triggering an error on
another rule that restricts the maximum line length. We took
a shortcut and disabled all linting for the line, knowing that
we’ll revisit this class soon.

An alternative is to disable both rules like this:

// eslint-disable-line max-len,react/prefer-stateless-function

151© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_8

CHAPTER 8

Routing with React Router

Now that we’ve organized the project and added development tools, let’s get back to
adding more features to the Issue Tracker. In this chapter, we’ll explore the concept of
routing, or handling multiple pages that we may need to display. Even when you build a
single-page application (SPA), there are in fact multiple logical pages (or views) within the
application. It’s just that the page load happens only the first time; after that, each of the
other views is loaded by manipulating or changing the DOM.

To navigate between different views of the application, you need routing. Routing
links the state of the page to the URL in the browser. It’s not only an easy way to reason
about what is displayed in the page based on the URL, it has the following very useful
properties:

•	 The user can use the Forward/Back buttons of the browser
to navigate between visited pages (actually, views) of the
application.

•	 Individual views can be bookmarked and visited later.

•	 Links to views can be shared with others. Say you want to ask
someone to help you with an issue, and you want to send them
the link that displayed the issue. Emailing them the link is far
easier than asking them to navigate through the user interface.

Before SPAs really matured, this was rather difficult, or SPAs just didn’t let you do
this. They had just a single page, which meant a single URL. All navigation had to be
interactive; the user had to go through the application via predefined steps. You couldn’t,
for example, send someone a link to a specific issue; you had to tell the recipient to
follow a sequence of steps on the SPA to reach that issue. But modern SPAs handle this
gracefully.

In this chapter, we’ll explore how to use React Router to ease the task of setting up
navigations between views. We’ll add another view to the application, one where the user
can see and edit a single issue. Then, we’ll create links between the two views so that the
user can navigate between them. On the hyperlinks that we create, we’ll add parameters
that can be passed to the different views, for example, the ID of the issue that needs to be
shown, to a view that shows a single issue. Finally, we’ll see how to nest components and
routes.

Chapter 8 ■ routing with reaCt router

152

Routing Techniques
In order to effect routing, we first need to connect a page to something that the browser
recognizes and indicates that “this is the page that the user is viewing.” In general, for
SPAs, there are two ways to make this connection:

•	 Hash-based: This uses the anchor portion of the URL (everything
following the #). This method is natural; you can think of the #
portion as a location within the page, which is an SPA. And this
location determines what section of the page is displayed. The
portion before the # never changes; it is the one and only page
(index.html) that is returned by the back end. This is simple
to understand, and works well for most applications. In fact,
implementing hash-based routing without a routing library is
quite simple (but we won’t do it).

•	 Push state, also known as browser history: This uses a new
HTML5 API that lets JavaScript handle the page transitions,
at the same time preventing the browser from reloading the
page when the URL changes. This is a little more complex
to implement even with help from React Router (because it
forces you to think about what happens when the server gets
a request to the different URLs). But it’s quite handy when
we want to render a complete page from the server itself,
especially to let search engine bots get the content of the
pages and index them.

We’ll start with the hash-based technique because it’s easy to understand, and then
switch over to the browser history technique because eventually we’ll do server-side
rendering.

Simple Routing
In this section, we’ll create two routes, one for the issue list that we’ve been working on
all along, and another (a placeholder) for viewing and editing a single issue. To start, let’s
install the package, React Router:

$ npm install --save-dev react-router

We need to also remember to add any new front-end packages that we install, to the
vendor section of the webpack configuration. This is so that they don’t get included in the
application’s bundle; instead, they go into the vendor bundle. This change is shown in
Listing 8-1.

Chapter 8 ■ routing with reaCt router

153

Listing 8-1. webpack.config.js: Add react-router as a Vendor Library

...
module.exports = {
 entry: {
 app: './src/App.jsx',
 vendor: ['react', 'react-dom', 'whatwg-fetch', 'react-router'],
 },
...

Let’s also create a placeholder component for editing an issue. Listing 8-2 shows the
complete code for the placeholder component, saved as IssueEdit.jsx in the src directory.

Listing 8-2. IssueEdit.jsx: Placeholder for a Component to Edit Issues

import React from 'react';

export default class IssueEdit extends React.Component 
{ // eslint-disable-line
 render() {
 return (
 <div>This is a placeholder for the Issue Edit page.</div>
);
 }
}

React Router works by taking control of the main component that is rendered in
the DOM. So, instead of rendering the App component in the content node, we need to
render a Router component. To the Router component, we supply the configuration that
includes the paths and the component associated with the path. The configuration is a
hierarchy of React components called Route, with properties specifying the path and the
component associated. The Router component then renders these different components
when the URI changes. Listing 8-3 shows the changed App.jsx code for this.

Listing 8-3. App.jsx Rewritten with Router

import 'babel-polyfill';
import React from 'react';
import ReactDOM from 'react-dom';
import { Router, Route, hashHistory } from 'react-router';

import IssueList from './IssueList.jsx';
import IssueEdit from './IssueEdit.jsx';

const contentNode = document.getElementById('contents');
const NoMatch = () =><p>Page Not Found</p>;

Chapter 8 ■ routing with reaCt router

154

const RoutedApp = () => (
 <Router history={hashHistory} >
 <Route path="/" component={IssueList} />
 <Route path="/issueEdit" component={IssueEdit} />
 <Route path="*" component={NoMatch} />
 </Router>
);

ReactDOM.render(<RoutedApp />, contentNode);

if (module.hot) {
 module.hot.accept();
}

Let’s start by looking at the render() call. Instead of rendering the IssueList
component, we are now rendering a RoutedApp. The only property for this component is
the kind of history to use, and we used a hash history, which we imported from react-
router. Nested within the Router are multiple Route components, each with a path and
a component to display for that URL path. We also introduced a new component for
showing unmatched routes, and this is associated with the fallback path, “*”, indicating
any path. The other changes are to import appropriate classes and components.

To see the Issue List page, the usual URL will work, since the path “/” is associated with
the IssueList component in the first route. But to see the Issue Edit page at this point in
time, you need to manually type in http://localhost:8000/#/issueEdit in the URL bar
of the browser. Later, when we implement a hyperlink from the Issues List, this will become
easier. Further, you can see that the Back and Forward buttons can be used to navigate
between the two pages. Finally, if you change issueEdit to any other word in the URL, it
shows a Page Not Found error, which is the fallback component matching the path “*”.

Route Parameters
We saw that the route path can take wildcards like “*”. In fact, the path can be a complex
string pattern that can match optional segments and even specify parameters like REST
API paths. Let’s reorganize the paths so that

•	 /issues shows the list of issues

•	 /issues/<id> takes the user to the edit page of the issue with the
corresponding id

•	 / redirects to /issues

A route parameter is specified using a : in front of the parameter. Thus, /issues/:id
will match any path that starts with /issues/ followed by any string. The value of that
string will be available to the component of the route in a property object called params,
with the key id. To implement a redirect, React Router provides a Redirect component.
Listing 8-4 shows the partial listing of the modified Router configuration which uses a
redirect and a route parameter.

Chapter 8 ■ routing with reaCt router

155

Listing 8-4. Modified Router Configuration with Parameters and Redirect

...
import { Router, Route, Redirect, hashHistory } from 'react-router';
...
const RoutedApp = () => (
 <Router history={hashHistory} >
 <Redirect from="/" to="/issues" />
 <Route path="/issues" component={IssueList} />
 <Route path="/issues/:id" component={IssueEdit} />
 <Route path="*" component={NoMatch} />
 </Router>
);
...

Further, let’s also add links between the two pages. In the Issue List, let’s change the
ID column to be a hyperlink to the Issue Edit page, with the destination URL including
the ID. Then, another link from the Issue Edit page to take the user back to the Issues List
page. To achieve this, we need to use the Link component from React Router, which is
very similar to the HTML <a> tag. Listing 8-5 shows the new IssueEdit.jsx contents, and
Listing 8-6 shows the changes to IssueList.jsx for these links. Let’s also include the ID
of the issue in the placeholder page to ensure that we can access the parameters in the
IssueEdit component.

Listing 8-5. IssueEdit.jsx: Modifications for Adding Link and Accessing Parameters

import React from 'react';
import { Link } from 'react-router';

export default class IssueEdit extends React.Component 
{ // eslint-disable-line
 render() {
 return (
 <div>
 <p>This is a placeholder for editing issue {this.props.params.id}.</p>
 <Link to="/issues">Back to issue list</Link>
 </div>
);
 }
}

IssueEdit.propTypes = {
 params: React.PropTypes.object.isRequired,
};

Chapter 8 ■ routing with reaCt router

156

The important changes in IssueEdit.jsx are the display of the id using
this.props.params.id and the use of the Link component. The other changes are
an import statement to make Link available, and a property definition to avoid link
errors.

Listing 8-6. IssueList.jsx: Changes for Adding a Link on Each Issue’s ID

...
import 'whatwg-fetch';
import { Link } from 'react-router';
...
 <tr>
 <td><Link to={`/issues/${props.issue._id}`}> 

 {props.issue._id.substr(-4)}
 </Link></td>
 <td>{props.issue.status}</td>
...

We used the Link component of React Router to create a hyperlink. This can be used
in place of the <a> tag that you use in normal HTML, with the target of the hyperlink
specified in the to attribute. Apart from the hyperlink, we also shortened the display to
only the last four characters using the substr function on the ID. If we need to see the full
ID, we can hover over the link and see it in the status bar of the browser.

When you test this set of changes, you’ll see that there is a hyperlink on each of the
ID fields in the issue list. On clicking these, you are taken to the placeholder page, which
displays the ID of the issue that you clicked, as shown in Figure 8-1. You can also check if
the index page (i.e., “/”) redirects to the issue list.

Figure 8-1. Placeholder page

Chapter 8 ■ routing with reaCt router

157

We can fetch the issue object from the server using an AJAX call and set the state in
componentDidMount() method as we did for the issue list. Editing involves a form, which
I’ll cover in the next chapter, so we’ll leave it as a placeholder for now.

Apart from the component that is displayed depending on the route or the URL
in the browser, there are other properties that you can set on the route. The onLeave
property is particularly useful to alert the user if any changes have been made in a
particular page, and the user is navigating away from the page without saving the
changes. The onLeave property in a route lets you specify a function that can be called on
this event. Other events that you can get notified for are onEnter (called when the user
enters a route) and onError (when errors are encountered when matching a route).

EXERCISE: ROUTE PARAMETERS

1. instead of <Link>, we could have used a simple <a href ...>.
why is the latter not recommended? hint: read up the api
documentation of react router for the <Link> component.

answers are available at the end of the chapter.

Route Query String
Apart from the parameters that are part of the URL path, React Router also parses the
query string, if any, and makes it available to the component in a property object called
location. This object contains various keys, including the path, the unparsed query
string, and a parsed query object.

Query strings are ideal for specifying a filter to the issue list. We’ll use the same
convention for both the Route URL’s query string as well as the REST API query string: a
set of key-value pairs where the key is the name of the field to filter on, and the value of
the field to match. For example, ?status=New will match all issues with the New status, and
?status=Open&owner=Vasan will fetch the issues that match both conditions. For now,
we’ll implement a single filter field in the UI.

First, the back-end API needs to be changed to handle this. You already learned
about filters in MongoDB’s find() method in the MongoDB chapter. You also learned
in the Express REST APIs chapter how to extract the query parameters from the Express
Request object. Let’s use these techniques to change the Issue List API. The modified API
is shown in Listing 8-7.

Listing 8-7. server.js: Modified Issue List API, with One Filter

app.get('/api/issues', (req, res) => {
 const filter = {};
 if (req.query.status) filter.status = req.query.status;
 ...
});

Chapter 8 ■ routing with reaCt router

158

The modified API can be tested using curl. You should be able to verify that only a
subset of the issues is fetched, those that match the filter. The curl command is like this:

$ curl -s http://localhost:3000/api/issues?status=Open | json_pp

The next step is to integrate this into the client-side code. We’ll first create links to
a few hard-coded filters. The filter should ideally be a form where the user can choose
different combinations, but since you haven’t learned about forms yet, we’ll leave that
to the next chapter. We’ll rewrite the IssueFilter placeholder component as shown in
Listing 8-8.

Listing 8-8. IssueFilter.jsx: Rewritten with Hardcoded Filters

import React from 'react';
import { Link } from 'react-router';

export default class IssueFilter extends React.Component 
{ // eslint-disable-line
 render() {
 const Separator = () => | ;
 return (
 <div>
 <Link to="/issues">All Issues</Link>
 <Separator />
 <Link to={{ pathname: '/issues', query: { status: 'Open' } }}>

Open Issues
</Link>

 <Separator />
 <Link to="/issues?status=Assigned">Assigned Issues</Link>
 </div>
);
 }
}

We created multiple links using variations in the query string. There are two ways to
supply a query string to a Link, and I’ve used both, just to demonstrate the variation. The
first method is more verbose but convenient when you need to generate multiple links
programmatically. The second one is good for hard-coded query strings.

Finally, we need to pass the filter to the REST API call while loading the list of issues
in IssueList component, in the call to fetch(). Since we kept the query string format
same for the REST API as well as the URL, we just have to pass along the query string as is
to the REST API, like in Listing 8-9.

Listing 8-9. IssueList.jsx: Changes to Pass a Filter to the REST API in loadData()

...
 fetch(`/api/issues${this.props.location.search}`).then(response => {
...

Chapter 8 ■ routing with reaCt router

159

The change from single quotes to back-ticks is subtle, to make it a template
string. Make sure you don’t miss this change. We don’t use a ? character because
location.search already includes it. Now, when you navigate using the hyperlinks
for each hard-coded filter, you will find that the list of issues doesn’t change, even
though the browser URL reflects the new query string. But it does work when you
refresh the browser.

The reason is that we are calling loadData() only when the component is mounted.
When there is a change in the query string, the component is not mounted again; instead,
React reuses the component that’s already mounted. On a browser refresh, the entire
page is recreated, and therefore the component is mounted. It is also mounted when
navigating between routes, for example, when you click on the ID of an issue to edit it and
then press the back button, you will see that the correct list is loaded. Compared to that,
the change in the query string is only a change in one of the properties, which doesn’t
warrant a remounting of the component.

I talked briefly about component lifecycle methods earlier. These are hooks into
various changes that React does on the component. We used the lifecycle method
componentDidMount() to hook into the initially ready state of the component.
Similarly, we need to hook into a method that tells us that the route query string has
changed, so that we can reload the list. The Component Lifecycle guide for React
Router recommends we do it in the lifecycle method componentDidUpdate(), which
gives us a hook whenever any property of the component changes. Let’s do so; see
Listing 8-10.

Listing 8-10. IssueList.jsx: Handle the Lifecycle Method componentDidUpdate

...
 componentDidUpdate(prevProps) {
 const oldQuery = prevProps.location.query;
 const newQuery = this.props.location.query;
 if (oldQuery.status === newQuery.status) {
 return;
 }
 this.loadData();
 }
...
IssueList.propTypes = {
 location: React.PropTypes.object.isRequired,
};
...

Now, testing will show you that navigating between the filter links indeed reloads the
data. A screenshot of the main Issue List page is shown in Figure 8-2.

Chapter 8 ■ routing with reaCt router

160

EXERCISE: ROUTE QUERY STRING

1. Create a bookmark for one of the issues (or copy/paste an
issue’s iD in the urL bar). navigate between two different
issues’ edit pages. it works. why didn’t we need the lifecycle
method hook in this case? hint: think about how a change in
properties affected the issue List vis-à-vis the issue edit page.

2. which other lifecycle method could have been used in place of
componentDidUpdate()? hint: read the “Component Lifecycle”
section in the official documentation of react.

3. what happens if we remove the check for old and new queries
being the same? that is, we always reload the data whenever
the component updates?

4. add a log message in the render() call of IssueAdd. You will
find that this component is being rerendered when the filter
changes. what are the performance implications? how can this
be optimized? hint: read the “Component Lifecycle” section in
the documentation on react.

answers are available at the end of the chapter.

Figure 8-2. Issue list with hardcoded filters as hyperlinks

Chapter 8 ■ routing with reaCt router

161

Programmatic Navigation
We are using the React Router’s Link component to navigate using a hyperlink. But
eventually we’ll convert this hard-coded filter into a form that takes user inputs with an
Apply button that constructs the query string programmatically. In this case, we can’t use
a Link; instead, we must navigate by changing the browser’s URL using code.

React Router has a router object that can be passed around to components. This
object has many methods, including methods for setting hooks on entering and leaving a
route, to programmatically generate query strings given a route, but most importantly, to
programmatically push into the history or replace the current route. Let’s use the
router.push() method to set the filter programmatically.

But the router object is not available to all the components automatically. There are
two ways to get access to this. The first is using React’s Context feature. This feature allows
a property to be available in deeply nested components without having to explicitly pass
it through each and every component in the hierarchy. You can read up more on this at
the React’s official documentation, but as described there, Context is an experimental
feature that you should avoid when there are alternatives.

The second method is by injecting the router property into the components which
need it, using React Router’s withRouter method. This method wraps a given component
and makes the router property available. This is described in detail in React Router’s API
documentation under withRouter and <RouterContext>. Let’s make these changes in
App.jsx, as shown in Listing 8-11.

Listing 8-11. App.jsx: Changes to Inject router to IssueFilter

...
import { Router, Route, Redirect, hashHistory, withRouter } 
from 'react-router';
...
<Route path="/issues" component={withRouter(IssueList)} />
...

Now, IssueList can use this.props.router to access the router object. Let’s add a
method in IssueList to set a new filter, given a set of field-value pairs, and use the router
to change the URL based on the filter. We’ll pass this method along to IssueFilter as a
property for it to call when required. The changes to IssueList are shown in Listing 8-12.

Listing 8-12. IssueList.jsx: Changes to Use Router and Push a Filter

...
 constructor() {
 ...
 this.setFilter = this.setFilter.bind(this);
 }

Chapter 8 ■ routing with reaCt router

162

...
 setFilter(query) {
 this.props.router.push({ pathname: this.props.location.pathname, query });
 }
...
 <h1>Issue Tracker</h1>
 <IssueFilter setFilter={this.setFilter} />
 <hr />
...
IssueList.propTypes = {
 location: React.PropTypes.object.isRequired,
 router: React.PropTypes.object,
};
...

The new setFilter method takes in a query object like { status: 'Open' }
and uses the push method of router to change only the query string part, keeping the
pathname the same as before. We could have also passed in a string like
'/issues/?status=Open' by constructing the query string, but that would mean writing
some code to escape unsafe URL characters in the value of the filter field.

We had to bind the method to this in the constructor, because the method needs
access to this.props.router. Also, for property validation, we added the router property
as an object in the propTypes declaration. Finally, we passed the setFilter method as a
property to IssueFilter.

To use the new programmatic way of setting the route, we’ll rewrite IssueFilter.
Instead of <Link>s, let’s use regular <a> tags and in the onClick event of these anchor
tags, we can programmatically set the filter or clear the filter. To do this, we’ll have to use
the setFilter method passed into this component via props. The entire new file is listed
in Listing 8-13.

Listing 8-13. IssueFilter.jsx: Rewrite to Handle Navigation Programmatically

import React from 'react';

export default class IssueFilter extends React.Component {
 constructor() {
 super();
 this.clearFilter = this.clearFilter.bind(this);
 this.setFilterOpen = this.setFilterOpen.bind(this);
 this.setFilterAssigned = this.setFilterAssigned.bind(this);
 }

 setFilterOpen(e) {
 e.preventDefault();
 this.props.setFilter({ status: 'Open' });
 }

Chapter 8 ■ routing with reaCt router

163

 setFilterAssigned(e) {
 e.preventDefault();
 this.props.setFilter({ status: 'Assigned' });
 }

 clearFilter(e) {
 e.preventDefault();
 this.props.setFilter({});
 }

 render() {
 const Separator = () => | ;
 return (
 <div>
 All Issues
 <Separator />
 Open Issues
 <Separator />
 Assigned Issues
 </div>
);
 }
}

IssueFilter.propTypes = {
 setFilter: React.PropTypes.func.isRequired,
};

One thing to note in Listing 8-13 is the call to e.preventDefault(), which prevents
the default action on clicking the hyperlink. This is required, just like in the IssueAdd
component; otherwise the default action will be executed, which would be to set the URL
to #. On testing this set of changes, you should see that the behavior is no different from
the previous section.

EXERCISE: PROGRAMMATIC NAVIGATION

1. there is yet another way to navigate programmatically. what
are the pros and cons of using that method? hint: read react
router’s 2.0.0 upgrade guide to find the other method.

2. Change router.push() to router.replace(). what difference
do you see? when would you use one versus the other? hint:
play around with the Back/Forward browser buttons to discover
the difference.

answers are available at the end of the chapter.

Chapter 8 ■ routing with reaCt router

164

Nested Routes
Most applications have a common header and footer across all views or pages. The
header typically has the brand icon, the application, or website name, sometimes a
menu, and also a search box for quick access to different parts of the application. The
footer usually has links to useful information regarding the application.

In the Issue Tracker application, we just had a header in the issue list itself, which
was not shared with the edit page. Let’s create a common decoration for all pages across
the application. To do this, we can use nesting of routes. This way, a component can have
different children depending on the route. We’ll use only one level of nesting, where a
main component has a header, the contents section, and a footer. The exact component
that is rendered in the contents section will depend on the route. Thus, the root route will
be “/”, the contents section will render a list of issues when the route is “/issues”, or a
single issue when the route is “/issues/<id>”.

To configure this, all we need to do is nest the routes in the router configuration, with
paths relative to the parent route. Note that although we use only one level of nesting,
React Router allows infinite levels. A great example is described in the “Introduction”
section of the React Router documentation.

We need to create a new component corresponding to the decorator that
holds the header and footer. Let’s call this component App. React Router will pass via
props.children the child component resolved as a result of route matching. Let’s place
it within the rendering function at the place where we want the contents to be displayed:
a <div> with class contents. As for the header and footer, we’ll just create <div>s and
show a simple text. This can later be expanded to hold maybe a navigation menu and/or
a search box.

As for the Router configuration, we need to change it so that “/” is mapped to the
new App component, and the other routes are nested within this. Listing 8-14 shows the
new contents of the file App.jsx.

Listing 8-14. App.jsx: Rewritten to Decorate and Nest Routing

import 'babel-polyfill';
import React from 'react';
import ReactDOM from 'react-dom';
import { Router, Route, Redirect, hashHistory, withRouter } from 
'react-router';

import IssueList from './IssueList.jsx';
import IssueEdit from './IssueEdit.jsx';

const contentNode = document.getElementById('contents');
const NoMatch = () =><p>Page Not Found</p>;

const App = (props) => (
 <div>
 <div className="header">
 <h1>Issue Tracker</h1>
 </div>

Chapter 8 ■ routing with reaCt router

165

 <div className="contents">
 {props.children}
 </div>
 <div className="footer">
 Full source code available at this <a href= 

"https://github.com/vasansr/pro-mern-stack">
 GitHub repository.
 </div>
 </div>
);}

App.propTypes = {
 children: React.PropTypes.object.isRequired,
};

const RoutedApp = () => (
 <Router history={hashHistory} >
 <Redirect from="/" to="/issues" />
 <Route path="/" component={App} >
 <Route path="issues" component={withRouter(IssueList)} />
 <Route path="issues/:id" component={IssueEdit} />
 <Route path="*" component={NoMatch} />
 </Route>
 </Router>
);

ReactDOM.render(<RoutedApp />, contentNode);

if (module.hot) {
 module.hot.accept();
}

Now, we can remove the heading from IssueList, because this is now part of the
decorator. This change is shown in Listing 8-15.

Listing 8-15. IssueList.jsx: Removal of Heading

...
 <div>
 <h1>Issue Tracker</h1>
 <IssueFilter setFilter={this.setFilter} />
...

Finally, there are some trivial styles added to space the headers and footers for better
readability. This is done in index.html; the changes are listed in Listing 8-16.

Chapter 8 ■ routing with reaCt router

166

Listing 8-16. index.html: Styles Added for Header and Footer

...
 .header {border-bottom: 1px solid silver; margin-bottom: 20px;}
 .footer {
 border-top: 1px solid silver; padding-top: 5px; margin-top: 20px;
 font-family: Helvetica; font-size: 10px; color: grey;
 }
...

When you test this, you can see that the plain-looking edit page now has a header
and footer. What’s more, even a Page Not Found error triggered by an invalid route has
these decorations. The new edit page is shown in Figure 8-3.

Figure 8-3. Edit page, decorated

We redirected “/” to “/issues”, which means that we did not have an independent
view or route for “/” itself. There can be use cases where we don’t want to do this and
instead display, say, a Home page or a Help page. Let’s imagine a dashboard of sorts
when a user lands at the Home page that gives a summary of all the issues at hand. To
indicate that a particular component needs to be displayed if only the parent route is
matched, we can use the IndexRoute component like this:

...
 <Redirect from="/" to="/issues" />
 <Route path="/" component={App} >
 <IndexRoute component={Dashboard} />
 <Route path="issues" component={withRouter(IssueList)} />
...

Chapter 8 ■ routing with reaCt router

167

Without the redirect, the “/”, or the index of the parent route would have been an App
without any children. But with an IndexRoute added, the URL with just a “/” will display
the Dashboard component within the App. In the Issue Tracker, we don’t have a need for
an IndexRoute, so we won’t implement it.

There is also an IndexRedirect component that is handy if you want to specify a
redirect to the index. What we achieved using Redirect outside the root route could
have been achieved using an IndexRedirect within the route too. Both methods are
acceptable, but as you’ll see later, IndexRedirect has some advantages due to the fact
that it makes the entire route self-contained.

Browser History
Using the browser history method is recommended for two reasons. For one, the URL
looks cleaner and easier to read. But most applications can live with the hash-based
routing, because users rarely look at the URL or try to make sense out of it, so this reason
is not compelling enough to switch to the browser history method. The other, more
important, reason is that if you need to do server-side rendering (something that will help
search engine bots index your pages correctly), the hash-based method will just not work.

That’s because the hash-anchor is just a location within the page, not something
that a bot will crawl. Take, for example, the links to each issue. Say these are “pages” that
you want search engines to index. The only way the bots can get to them is via the Issues
List page. But since the links are in-page anchors, the bots will not make a request to the
server to fetch them. In fact, they cannot, since anything after the # is stripped out when
identifying a URI.

Let’s switch to the browser history method in anticipation that you want the
application to be indexed by search engines. At first glance, it looks as if replacing
hashHistory with browserHistory is all we need to do to start using the browser history
method, but it’s not as simple as that.

Whenever you hit the refresh button until now, the first request that went to the
server was always to “/”. That’s because all URLs ended at “/” before the “#”. Now,
imagine a URL such as /issues rather than /#/issues. When navigating between routes,
React Router ensures that a new component is mounted. But when you hit refresh on the
browser, if the URL were /issues, the browser will try to fetch /issues (note: not /api/
issues) from the server.

How do we deal with this? What are we supposed to return for the request to
/issues? It turns out that the server needs to return the one and only real page in an SPA,
index.html, regardless of the request (except, of course, the REST API calls). And then,
React Router will take care of mounting the right components based on the URL.

One obvious place where we have to do this is the Express server. But we also have a
webpack dev-server that we use during development. That too needs to be configured to
handle this correctly. It turns out that webpack developers are already familiar with the
use case, so they let you do it with a simple flag called historyApiFallback.

Let’s carry out these server-side changes and then finally flip the switch to browser
history in the client side. Listings 8-17 through 8-19 show the changes in each file that
must be made to achieve this.

Chapter 8 ■ routing with reaCt router

168

Listing 8-17. server.js: Return index.html for Any Request

...
import path from 'path';
...
app.get('*', (req, res) => {
 res.sendFile(path.resolve('static/index.html'));
});
...

The new express route has to be placed after all the other routes, so that it gets
resolved only if none of the previous routes match. Also, we need to use the resolve
method from the path module because sendFile accepts only absolute paths. We can’t
give it a path relative to the current directory.

Listing 8-18. webpack.config.js, devServer section: Fallback to Server

...
 devServer: {
 ...
 proxy: {
 ...
 },
 historyApiFallback: true,
 },
...

Listing 8-19. App.jsx: Flip the Switch to browserHistory

...
import { Router, Route, Redirect, browserHistory, withRouter } from 
'react-router';
...
<Router history={browserHistory} >
...

When you restart the webpack dev-server, you will notice a small change in webpack
dev-server’s output. It prints out the following in the console:

...
404s will fallback to /index.html
...

That’s comforting, because we now know that for any request that doesn’t match
the proxy path or having static content, the dev-server will return index.html. And that’s
what we want. Let’s test it in development mode, that is, by running the webpack
dev-server. Not only should navigations work, but browser refreshes also should work.

Chapter 8 ■ routing with reaCt router

169

Further, to test the production mode, you need to compile the client-side code,
compile the server-side code, and then start the server. This too should work when
navigating between pages and when refreshing. Finally, do check that the browser URL
has no hashes, and it is a clean URL in each case.

Summary
In this chapter, you learned about an important aspect of single page applications:
routing. We used the popular React Router library to achieve this, and we routed between
two pages: Issue List and a placeholder for Issue Edit. More importantly, you learned how
to add more routes if required, and also to deal with parameters and query strings, which
act as input parameters to the pages.

We used a form as part of Issue Add, but we used it in the conventional HTML way.
React has another way of dealing with forms and form inputs, called controlled forms,
which can connect to state variables in components to achieve two-way binding between
form fields and state variables. We’ll look at this technique in the next chapter when we
complete the Issue Edit page.

Answers to Exercises
Exercise: Route Parameters
 1. One useful feature that Link gives us is the ability to set an

active class. We can style a link differently based on whether
the currently active route matches that link. This is useful in
displaying menus or tabs that have multiple links, with the
current link automatically highlighted.

Another effect of using a Link is that we don’t need to be
aware of the underlying mechanism of routing: it could be
hash-based or it could be browser history-based. The path is
the same.

Exercise: Route Query String
 1. When properties are changed in a component, a render()

is automatically called by React. The call to render now has
access to the new properties. When a change in properties
only affects rendering, we don’t need to do anything more.

The difference in the IssueList was that the change in
properties caused a change in the state. Further, this change
was asynchronous. This change had to be triggered somewhere,
and we chose the Lifecycle method componentDidUpdate() to
do that. Eventually, even in IssueEdit, when we load the issue
details in an asynchronous call to the server, we will have to
hook into the Lifecycle method.

Chapter 8 ■ routing with reaCt router

170

 2. We could have used componentWillReceiveProps() instead
of componentDidUpdate(). Both are OK to use, and React
documentation recommends componentDidUpdate(). I like
componentWillReceiveProps() because it is more indicative
of what’s happening; it makes the code more readable.

 3. If we don’t have the check for old and new properties being
the same, we end up in an infinite loop. That’s because setting
a new state is also considered an update to the component,
and this will trigger a new loadData(), which will do a
setState() again, and the cycle will continue endlessly.

 4. Any change in a parent component will trigger a render in
the child, because it is assumed that the state of the parent
can affect the child as well. Normally, this is not a problem,
because the DOM itself is not updated; it is only the virtual
DOM that is updated. React will not update the DOM, seeing
no differences in the old and new virtual DOMs.

Updates to the virtual DOM are not that expensive, because
they are no more than data structures in memory. But, in rare
cases, especially when the component hierarchy is very deep
and the number of components affected is very large, just the
act of updating the virtual DOM may take a wee bit of time.
If you want to optimize for this, React provides the Lifecycle
method shouldComponentUpdate(), which lets you determine
if an update is warranted.

Exercise: Programmatic Navigation
 1. The other method is by directly importing the singleton

hashHistory and using its push method to effect the
navigation. We could have done this in IssueList instead of
having to inject the router property into the component.

This is convenient, especially if we were to do the navigation
in IssueFilter itself, which is one level deeper in the
hierarchy: we would have had to pass the router property
further down. But the advantage is that we don’t have to
hardcode the fact that you are using hashHistory throughout
the application. Using the withRouter method, we can keep
IssueList and other components agnostic to the kind of
history we’re using.

Chapter 8 ■ routing with reaCt router

171

Note that withRouter and importing of the singleton
hashHistory is available only from version 2.4.0 of React
Router. Older versions, especially 1.x, had different techniques
to do programmatic navigation.

 2. The method router.replace() replaces the current URL such
that the history does not have the old location. router.push()
ensures that the user can use the Back button to go back to
the previous view. Replacing can be used when the two routes
are not really different. It is analogous to a HTTP redirect,
where the contents of the request are the same, but available
at a different location. In this case, you really don’t want to
remember the history of the first location.

173© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_9

CHAPTER 9

Forms

User input is an important part of any web application, and the Issue Tracker is no
different. We had some user input when we used a form to create a new issue. But it was
very rudimentary, and it did not demonstrate how forms are supposed to be dealt with
in React.

In this chapter, we’ll start taking in a lot more user input. We will convert the
hard-coded filter to something more flexible with user input, and then we’ll fill in the
Edit page with a form, and finally, we’ll add the ability to delete issues from the Issue
List page. To be able to do this, we’ll also have to modify the back-end APIs to support
these functions. We’ll modify the List API to take more filter options, and we’ll create new
Update and Delete APIs. We’ll thus complete implementing all of the CRUD actions.

More Filters in the List API
The List API already has one filter field for the status of the issue. Let’s add another, this
time the integer field, effort, so that we can explore how different data types can be dealt
with. We’ll implement a from-to criterion for this field rather than an equality.

The difference between an equality operator and other comparison operators is that
the other operators need to be specified as an object with the key being the operator, such
as {effort: {$gte: 0}}. This way, multiple operators can be added for the same field.
For the effort field, we need a greater than or equal to value, and also a less than or
equal to value, both being optional. If both were specified, it would look like {effort:
{$gte: 0, $lte: 10}}. If neither were specified, the filter wouldn’t have an effort key
at all. Further, we need two parameters in the query string to specify each of the values:
the minimum and the maximum. Let’s call them effort_gte and effort_lte to match
the names of the MongoDB operators.

Another thing to note is that MongoDB is strict about data types. If we supply a string
instead of a number, the match will return no documents. So, we have to convert the
query parameters to an integer before setting the value in the filter.

Listing 9-1 shows the above changes in the List API.

Chapter 9 ■ Forms

174

Listing 9-1. server.js: Add Effort Filter to List API

...
 const filter = {};
 if (req.query.status) filter.status = req.query.status;
 if (req.query.effort_lte || req.query.effort_gte) filter.effort = {};
 if (req.query.effort_lte) filter.effort.$lte = 
parseInt(req.query.effort_lte, 10);

 if (req.query.effort_gte) filter.effort.$gte = 
parseInt(req.query.effort_gte, 10);

 db.collection('issues').find(filter).toArray()
...

These changes can be tested using curl as follows:

$ curl 'http://localhost:3000/api/issues?effort_lte=16&effort_gte=4'

Test with each comparison as a single parameter as well as both together to make
sure the API returns the expected documents.

EXERCISE: MORE FILTERS IN THE LIST API

1. If you haven’t added any issues other than the schema-
initialized default ones, add them using the add form. If you run
the curl test, you will find that the added documents are never
returned. Why? hint: read up on the $gte operator reference in
the mongoDB documentation.

2. If we do need documents without an effort to be returned
always, what would the filter look like? hint: read up on the $or
operator reference in the mongoDB documentation.

answers are available at the end of the chapter.

Filter Form
One of the challenges that a declarative style of programming faces is user interaction
in form inputs. If, like, conventional HTML code, you set the value of a text <input> to a
string, it means that the value is always that string because you declared it so. If you let the
user edit the value, it means that any rerendering destroys the user edits and restores it to
that original string.

To avoid that from happening, you have two options. The first is to supply no value
to the input, which is what we did with the IssueAdd component. Whenever you need
the user input, you get it from the HTML component, the conventional way. This may be

Chapter 9 ■ Forms

175

OK as long as you don’t have to initialize the inputs with some value, as in the case of the
IssueAdd component. In this approach, there is still an internal state of the component
(the current state of the user-typed value), but it is not tracked by any state variable in
React components. Whenever you need the component’s state (value), for example,
when the user hits the Add button, you peek into it using conventional HTML and DOM
functions.

The other option is to supply a value that is a variable, something that is part of
React’s state. This connects a state variable to the value that is displayed. If you change
the state variable, the value displayed in the component automatically changes, even on
a rerender. Such form components, those that have their value bound to the state, are
called controlled components. If not bound, like the components we used in IssueAdd,
they are called uncontrolled.

Controlled components are great because their value can be dictated by state
(or in many cases, props, which in turn depends on the state of a parent or ascendant
component). But what about user interaction? What happens when the user starts typing
in the component? There seems to be a deadlock because even if the value is not a hard-
coded string, there doesn’t seem to be an obvious way to change its value based on a
user’s keystrokes.

The solution many other frameworks (for example, Angular) offer is two-way binding
out of the box. The components are not just bound to the value in the state, but also
vice versa. Any user input automatically changes the state variable too. But in React,
unidirectional data flow is important, so it does not support two-way binding as part
of the library. In order to let the user’s keystrokes affect the state, you need to handle
the onChange event in the component yourself. On this event, you need to set the state
variable based on the user’s input. This will come back all the way, and set the value of
the component, and thus its display.

To experience the difference, we’ll leave the IssueAdd as is, using uncontrolled
components, but we’ll implement the Filter form using controlled components. Let’s
start with the render() method and replace the hyperlinks with a form. We need three
input components: a <select> for the status filter and two <input>s for the effort from
and to fields. We’ll need to link the three components’ values to state variables: status,
effort_gte, and effort_lte, respectively. We’ll also need to assign a change handler for
each of the components.

Let’s also add three buttons. The first, an Apply button, is for applying the filter. The
second, a Reset button, to reset the filter to the values that were there before the user
made any changes. We’ll also make it so that the reset button will only be enabled if the
user has made any changes and has yet to apply them. This will act as an indicator that
something has been changed but has yet to be applied. We’ll use a state variable, changed
for this purpose. Finally, we’ll add a Clear button, which will work like the Clear link in
the filter’s previous avatar. The new render() method implementing all of this is shown
in Listing 9-2.

Chapter 9 ■ Forms

176

Listing 9-2. IssueFilter.jsx: render() Method with the Filter Form

render() {
 return (
 <div>
 Status:
 <select value={this.state.status} onChange={this.onChangeStatus}>
 <option value="">(Any)</option>
 <option value="New">New</option>
 <option value="Open">Open</option>
 <option value="Assigned">Assigned</option>
 <option value="Fixed">Fixed</option>
 <option value="Verified">Verified</option>
 <option value="Closed">Closed</option>
 </select>
 Effort between:
 < input size={5} value={this.state.effort_gte} 

onChange={this.onChangeEffortGte} />
 -
 < input size={5} value={this.state.effort_lte} 

onChange={this.onChangeEffortLte} />
 <button onClick={this.applyFilter}>Apply</button>
 < button onClick={this.resetFilter} disabled={!this.state.

changed}>Reset</button>
 <button onClick={this.clearFilter}>Clear</button>
 </div>
);
}

Next, we’ll handle the onChange events from each of the inputs. All we need to do is
set the state variable to the event target’s value. But we can also take advantage of the fact
that we know the value that is being typed, and so do some validations. For the number
fields, we’ll apply a mask and prevent any characters other than numeric characters from
being input. If the user types any non-numeric character, we’ll just ignore the new value
and not set the state value. The onChange event handlers that sync user input in all the
inputs to state variables are shown in Listing 9-3.

Listing 9-3. IssueFilter.jsx: onChange Event Handlers for the Inputs

onChangeStatus(e) {
 this.setState({ status: e.target.value, changed: true });
}

onChangeEffortGte(e) {
 const effortString = e.target.value;
 if (effortString.match(/^\d*$/)) {
 this.setState({ effort_gte: e.target.value, changed: true });
 }
}

Chapter 9 ■ Forms

177

onChangeEffortLte(e) {
 const effortString = e.target.value;
 if (effortString.match(/^\d*$/)) {
 this.setState({ effort_lte: e.target.value, changed: true });
 }
}

Note that the change of status did not require any mask or condition to propagate the
user’s input, but the other two handlers applied a mask to ignore any change where the
resulting value had non-numeric characters.

Handling the apply and clear buttons is simple; we just call the setFilter handler
with values from the state variables, which reflect the filter values. Let’s also make the
contract for setFilter such that any condition not specified will be undefined, and not
an empty string. These handlers are shown in Listing 9-4.

Listing 9-4. IssueFilter.jsx: applyFilter and clearFilter Handlers

applyFilter() {
 const newFilter = {};
 if (this.state.status) newFilter.status = this.state.status;
 if (this.state.effort_gte) newFilter.effort_gte = this.state.effort_gte;
 if (this.state.effort_lte) newFilter.effort_lte = this.state.effort_lte;
 this.props.setFilter(newFilter);
}

clearFilter() {
 this.props.setFilter({});
}

Now comes the tricky part. We need to reflect the current filter in the inputs’ values.
At the same time, we need to let the user change them. The user may type the query string
in the browser’s URL bar, bookmark a list of issues, or use the UI to apply a new filter.
We need to not just apply that filter, but also show the filter parameters that got applied.
Then, when the user changes any value, we stop showing the current filter and instead
show the intended new filter. The reset button will get enabled to show the distinction and
also let the user undo this action.

Essentially, we need to have two things. One, the currently applied filter (let’s call
it the initFilter), which cannot change unless the filter is applied and is in effect.
Second, the current state of the form, which reflects the changes the user has made before
hitting Apply. We won’t use a special variable for this; we’ll use the state itself to store
the field values. This is initialized to initFilter but maintains its own values from there
on. Since initFilter cannot be changed by the filter form, we’ll hold it as a property,
passed in from the parent component based on the URL (location). We can copy its
values to the state initially (in the constructor), as well as when the filter changes (when
the component receives new properties because the location changes). Also, when the
user hits Reset, we can use the values in initFilter to set the form’s values back to their
original values, to reflect the current filter that is applied.

This set of changes is shown in Listing 9-5. It also includes the changes to the
constructor for binding handler methods to this.

Chapter 9 ■ Forms

178

Listing 9-5. IssueFilter.jsx: Using initFilter to Initialize and Reset the Form’s State

constructor(props) {
 super(props);
 this.state = {
 status: props.initFilter.status || '',
 effort_gte: props.initFilter.effort_gte || '',
 effort_lte: props.initFilter.effort_lte || '',
 changed: false,
 };
 this.onChangeStatus = this.onChangeStatus.bind(this);
 this.onChangeEffortGte = this.onChangeEffortGte.bind(this);
 this.onChangeEffortLte = this.onChangeEffortLte.bind(this);
 this.applyFilter = this.applyFilter.bind(this);
 this.resetFilter = this.resetFilter.bind(this);
 this.clearFilter = this.clearFilter.bind(this);
}

componentWillReceiveProps(newProps) {
 this.setState({
 status: newProps.initFilter.status || '',
 effort_gte: newProps.initFilter.effort_gte || '',
 effort_lte: newProps.initFilter.effort_lte || '',
 changed: false,
 });
}

resetFilter() {
 this.setState({
 status: this.props.initFilter.status || '',
 effort_gte: this.props.initFilter.effort_gte || '',
 effort_lte: this.props.initFilter.effort_lte || '',
 changed: false,
 });
}

We also need a small change to propTypes to let React know that a new property
initFilter has been introduced. This is shown in Listing 9-6.

Listing 9-6. IssueFilter.jsx: propTypes Now Includes initFilter

IssueFilter.propTypes = {
 setFilter: React.PropTypes.func.isRequired,
 initFilter: React.PropTypes.object.isRequired,
};

Finally, in the parent component IssueList, we need a couple of changes. First, we
had a check in componentDidUpdate() before loadData() to see if the filter has changed.
This should now include the new filter fields related to effort. Next, we need to pass the

Chapter 9 ■ Forms

179

initial filter from the location to the IssueFilter component. Since we already have the
parsed query parameters in location.query, we can directly pass this to the child. These
changes are shown in Listing 9-7.

Listing 9-7. IssueList.jsx: Pass the Initial Filter to IssueFilter, Include the Effort Field in
Filter Changes

...
 componentDidUpdate(prevProps) {
 ...
 if (oldQuery.status === newQuery.status
 && oldQuery.effort_gte === newQuery.effort_gte
 && oldQuery.effort_lte === newQuery.effort_lte) {
 return;
 }
 this.loadData();
 }
...
 <div>
 < IssueFilter setFilter={this.setFilter} 

initFilter={this.props.location.query} />
 <hr />
...

When you test these changes, you should find the screen looks like Figure 9-1. Instead
of hyperlinks for a hard-coded filter, you now have a form that can generate various filter
criteria. Do tests with different values of effort as well as a combination with the status. An
interesting thing to try is how the numeric input’s validation works, especially when typing
invalid characters when the cursor is at various positions in the input.

Figure 9-1. A hard-coded filter replaced with a form

Chapter 9 ■ Forms

180

As you’d have realized by now, masking the input has its downside. To demonstrate,
place the cursor before 3 when the input’s value is 1234. Then, hit any non-numeric key,
say, a space. You’ll see that the cursor jumps to the end of the input. This happens when
the input’s value is ignored in the onChange event handler.

Why this happens is roughly like this: when a keystroke is received in the input
element, the changes first get applied to the value of the input. The actual DOM now has
the value, which includes the user’s keystroke. Then, an event is generated, which causes
React’s rerendering to kick in, regardless of whether you do a setState. At this point,
React compares the input’s value in the virtual DOM with the state variable. If the two
are the same, it leaves the input alone. If they are different, it sets the value of the input
back to the state variable. Since the input is being set with a new value (the original state
value), the cursor moves to the end. Note that the cursor movement is a behavior that
browsers implement, with or without React.

There are different approaches to address this issue. One option is to handle the
cursor movement on every event. Packages like react-input-mask do this in addition to
letting you define masks on the input characters. Another approach is to always let the
state variable and the input’s value be synchronized, and do any validation or masking
when the input loses focus. We’ll use the latter approach when designing the Date input.

EXERCISE: FILTER FORM

1. In IssueList, we had to compare the old props with the new
props, whereas in the IssueFilter, we didn’t, and got away
with it. Why?

2. try using <input type="number"> rather than the default text.
test it on different browsers, say, Chrome, safari, and Firefox.
type possibly valid number characters such as . (dot) and e.
What do you observe? Why? hint: add some console.log
statements within the change handler and observe the logs.

answers are available at the end of the chapter.

The Get API
The List API gave us a list of issues that matched a criterion. To display a single issue in
the Edit page, we need an API that can be used to retrieve a single issue, as opposed to
a list. We could do this by implementing a filter on the ID of the issue. But that is not the
REST convention. To get a single resource, REST dictates that we need an API of the form
/api/issues/<issue_id>.

If you recollect, I discussed route parameters in the Express REST APIs chapter. We
can specify an Express route of the form /api/issues/:id. In the handler, we get the ID
as a parameter in the request object, as req.params.id. The ID will be a string, which
we need to convert to a MongoDB ObjectID. Using that object ID, we can then retrieve a
single record matching the ID and return the document as a JSON in the response.

Chapter 9 ■ Forms

181

The code for all this, including error handling, is shown in Listing 9-8.

Listing 9-8. server.js: New Express Route for Get API

app.get('/api/issues/:id', (req, res) => {
 let issueId;
 try {
 issueId = new ObjectId(req.params.id);
 } catch (error) {
 res.status(422).json({ message: `Invalid issue ID format: ${error}` });
 return;
 }

 db.collection('issues').find({ _id: issueId }).limit(1)
 .next()
 .then(issue => {
 if (!issue) res.status(404).json({ message: `No such issue: ${issueId}` });
 else res.json(issue);
 })
 .catch(error => {
 console.log(error);
 res.status(500).json({ message: `Internal Server Error: ${error}` });
 });
});

The code is quite similar to the Create API, except for the parsing and validation of
the input parameter for the issue ID. You should be able to test this using curl and get a
response like this console output:

$ curl -s http://localhost:8000/api/issues/57e14da9ca2d380662d9d05c |
json_pp
{
 "effort" : 5,
 "owner" : "Ravan",
 "created" : "2016-08-15T00:00:00.000Z",
 "status" : "Open",
 "_id" : "57e14da9ca2d380662d9d05c",
 "title" : "Error in console when clicking Add"
}

You should also test for invalid format of the issue ID (for example with more than
24 characters), and with an issue ID that is valid in format, but does not exist in the
database.

Chapter 9 ■ Forms

182

Edit Page
Now that we have an API to fetch just one issue, let’s use this to render the contents of the
Edit page. Let’s create a form to display all the values of the issue, with the editable fields
as form inputs. We will not handle the submission of the form yet; we’ll leave that for the
following sections.

The render method is simple. We’ll first have two labels for the non-editable fields:
ID and Created Date. As for the rest of the fields, we’ll use a select for the status, and
input fields for the rest. Let’s make these controlled components by connecting them
to an object in the state called issue. But, instead of handling each input’s onChange
individually like we did in IssueFilter, let’s make a common method called onChange.

To differentiate between the inputs that generate the onChange event, we’ll have to
supply the name property to each input, which will be set in the event’s target field in the
event handler. We’ll use the field’s name as the input name as well. This makes it easy
to set the appropriate field of the state object in the event handler: we can just use the
target’s name as the key to the state object, and modify its value.

As we did for the IssueList, we’ll add a load() method to fetch the issue properties
using the Get API we created in the previous section. We’ll call this method from the
componentDidMount() and componentDidUpdate() lifecycle methods.

There is one difference from the IssueList approach. Instead of keeping the field
data types as their natural data types, we’ll have to convert them to strings. That’s because
the input fields’ value cannot be an object like Date; they can only handle strings.

Finally, we’ll have to create an initial state in the constructor with empty strings. If
not, React assumes that the original values were absent, and therefore, that the input
fields were uncontrolled components. When the return of the API call sets the issue fields
to non-null values, React assumes that we’ve converted an uncontrolled component to a
controlled one and issues a warning.

The entire new file is shown in Listing 9-9.

Listing 9-9. IssueEdit.jsx

import React from 'react';
import { Link } from 'react-router';

export default class IssueEdit extends React.Component {
 constructor() {
 super();
 this.state = {
 issue: {
 _id: '', title: '', status: '', owner: '', effort: '',
 completionDate: '', created: '',
 },
 };
 this.onChange = this.onChange.bind(this);
 }

 componentDidMount() {
 this.loadData();
 }

Chapter 9 ■ Forms

183

 componentDidUpdate(prevProps) {
 if (prevProps.params.id !== this.props.params.id) {
 this.loadData();
 }
 }

 onChange(event) {
 const issue = Object.assign({}, this.state.issue);
 issue[event.target.name] = event.target.value;
 this.setState({ issue });
 }

 loadData() {
 fetch(`/api/issues/${this.props.params.id}`).then(response => {
 if (response.ok) {
 response.json().then(issue => {
 issue.created = new Date(issue.created).toDateString();
 issue.completionDate = issue.completionDate != null ?
 new Date(issue.completionDate).toDateString() : '';
 issue.effort = issue.effort != null ? issue.effort.toString() : '';
 this.setState({ issue });
 });
 } else {
 response.json().then(error => {
 alert(`Failed to fetch issue: ${error.message}`);
 });
 }
 }).catch(err => {
 alert(`Error in fetching data from server: ${err.message}`);
 });
 }

 render() {
 const issue = this.state.issue;
 return (
 <div>
 <form>
 ID: {issue._id}

 Created: {issue.created}

 Status: <select name="status" value={issue.status} 

onChange={this.onChange}>
 <option value="New">New</option>
 <option value="Open">Open</option>
 <option value="Assigned">Assigned</option>
 <option value="Fixed">Fixed</option>
 <option value="Verified">Verified</option>

Chapter 9 ■ Forms

184

 <option value="Closed">Closed</option>
 </select>

 Owner: <input name="owner" value={issue.owner} 

onChange={this.onChange} />

 Effort: <input size={5} name="effort" value={issue.effort} 

onChange={this.onChange} />

 Completion Date: <input
 name="completionDate" value={issue.completionDate}

onChange={this.onChange}
 />

 Title: <input name="title" size={50} value={issue.title} 

onChange={this.onChange} />

 <button type="submit">Submit</button>
 <Link to="/issues">Back to issue list</Link>
 </form>
 </div>
);
 }
}

IssueEdit.propTypes = {
 params: React.PropTypes.object.isRequired,
};

Let’s examine some parts of the code in greater detail. The following statement in
onChange is interesting:

...
 issue[event.target.name] = event.target.value;
...

We used the target’s name as the key in the state object to set the value in the state
object. This technique helps us combine all of the inputs’ onChange into one. This works
only if we set the name property in the inputs, as shown in the last set of highlights within
the render() method. For example, the name of the select component was set to
status:

...
 Status: <select name="status" value={issue.status} 

onChange={this.onChange}>
...

Chapter 9 ■ Forms

185

Also, note that the state variables are not exact copies of the object fields. We had to
do some data type conversions after fetching the data, for example:

...
 issue.created = new Date(issue.created).toDateString();
...

The above set of changes will result in an Edit page that looks as in Figure 9-2. It’s a
good idea now to test it to ensure that all off the inputs are editable and faithfully replicate
the user input.

Figure 9-2. Edit page placeholder replaced with a form

EXERCISE: EDIT PAGE

1. Must we hook into componentDidUpdate()? What will not work
correctly if we don’t hook into this method and call loadData()
from the method? hint: think about what will cause only a
property change, that is, without the component being mounted
again. What are the ways the property can change?

answers available at the end of the chapter.

Chapter 9 ■ Forms

186

UI Components
Although we saved some repetitive code by combining all of the onChange handlers into
one handler, it should be immediately obvious that the approach has some scope for
improvement.

 1. When dealing with non-string data types, when you want
to validate (for example, check if the completion date is not
before today), you need to convert the string representations
to the natural data type. The same conversion is needed
before sending the modified issue to the server.

 2. If there is more than one input of the same type (number or
date), you must repeat the conversions for each input.

 3. The inputs let you type anything and don’t reject invalid
numbers or dates. We already found that the HTML5 input
types aren’t much help, and since the onChange handler is a
common one, you can’t add masks there for different input
types.

Ideally, we want the form’s state to store the fields in their natural data types
(number, date, etc.). We also want all of the data type conversion routines to be shared.
A good solution to all this is to make reusable UI components for the non-string inputs,
which emit natural data types in their onChange handlers. We could very well use some of
the great packages like react-number-input and react-datepicker that provide these UI
components. But for the sake of understanding how these UI components can be built,
let’s create our own, minimalistic components.

We’ll first create a simple UI component for the number with simple validation and
conversion. Then, we’ll create a more sophisticated UI component for the date, which
does more, like letting the user know if and when the value is invalid.

Number Input
Since form inputs work well with strings, but we need a number in the state, the first thing
we must do is separate the two states: one that represents the value of the persisted issue’s
field and another that is the transient value, that is, the state while it’s being edited by the
user. The persisted state can be the natural data type, and the transient one must be a
string.

We’ll encapsulate the transient state along with all the other things needed to
manage the editing and conversion within a UI component called NumInput. The
transient state will be initialized to the persisted state (which will be owned by the
parent component) when the component is mounted, via props. The two states will be
synchronized as long as the input is not in the “being edited” state. Once the user starts
editing (by placing the cursor and focusing on the input), the two states get disconnected.
This also lets the user type in a temporarily invalid value. It may not seem such a big deal
for plain numbers, but as you’ll see in the next section, it is important for other data types
like dates.

Chapter 9 ■ Forms

187

We can use the event of losing input focus from the input as a good indicator that
the user is done editing. We can hook into this event by using an onBlur() handler in
the input. It is at this point that we’ll emit the onChange() event to the parent. The actual
onChange() handler within the NumInput component will only affect the local, or the
transient, state. When the parent’s onChange() handler is called when the input loses
focus, it will set its state (the persistent one) to the new value. At this point, the two states
will be back in sync.

When calling the parent’s onChange, we will need to pass the validated, natural data
type of the input. Instead of modifying the event’s target’s value (which doesn’t work),
we’ll use a second argument to the onChange() handler to pass the value converted to the
natural data type. An additional benefit is that the parent can choose to use the event’s
target’s value or the converted value as it deems fit.

It’s also a good idea to let the parent specify some properties of the input field that
can be passed through to the real HTML <input>. One useful property in this case is the
size, which we set at 5 for the original input field. We’ll do this using the spread attribute
construct of JSX. The new NumInput component is shown in Listing 9-10.

Listing 9-10. NumInput.jsx

import React from 'react';

export default class NumInput extends React.Component {
 constructor(props) {
 super(props);
 this.state = { value: this.format(props.value) };
 this.onBlur = this.onBlur.bind(this);
 this.onChange = this.onChange.bind(this);
 }

 componentWillReceiveProps(newProps) {
 this.setState({ value: this.format(newProps.value) });
 }

 onBlur(e) {
 this.props.onChange(e, this.unformat(this.state.value));
 }

 onChange(e) {
 if (e.target.value.match(/^\d*$/)) {
 this.setState({ value: e.target.value });
 }
 }

 format(num) {
 return num != null ? num.toString() : '';
 }

Chapter 9 ■ Forms

188

 unformat(str) {
 const val = parseInt(str, 10);
 return isNaN(val) ? null : val;
 }

 render() {
 return (
 <input
 type="text" {...this.props} value={this.state.value}
 onBlur={this.onBlur} onChange={this.onChange}
 />
);
 }
}

NumInput.propTypes = {
 value: React.PropTypes.number,
 onChange: React.PropTypes.func.isRequired,
};

Let’s examine a few statements in the listing in a bit more detail. First, let’s look at the
format method of NumInput:

...
 format(num) {
 return num != null ? num.toString() : '';
 }
...

Here, while converting the natural data type to a string, we are also dealing with
the fact that the field is optional. A null value needs to be shown as an empty string. The
corresponding unformat method does the same by checking if the parsed value is a number:

...
 unformat(str) {
 const val = parseInt(str, 10);
 return isNaN(val) ? null : val;
 }
...

An empty string would have resulted in isNaN being true. This also has the effect of
rejecting possibly invalid values and setting them to null instead. But the regex check
within onChange() on the input characters makes it very difficult to actually type in
invalid values.

The two methods format() and unformat() are used to convert the natural data type
to and from a string. We used format() when initializing the local state (in the constructor
as well as the componentWillReceiveProps() lifecycle method), and we used unformat()
in the onBlur() handler to convert to a natural data type before sending it to the parent.

Chapter 9 ■ Forms

189

Let’s also take a closer look at the spread attribute usage, which allowed us to pass an
object that already has the properties directly to a component:

...
<input
 type="text" {...this.props} value={this.state.value}
 onBlur={this.onBlur} onChange={this.onChange}
 />
...

A construct of the form {...<object>} is the spread attribute. It places the key-value
pairs of the supplied object as property-value pairs at that point. In the above code, we
just passed through to the <input>, all the properties we received from the parent.

Note that we used {...this.props} after the type property but before the other
properties like value. This is a way of indicating which properties can be overridden by
the parent and which cannot. In JSX, if the same property is specified more than once,
the last specification is the one that takes effect. Thus, if this.props contained a type
property, it would take preference since it appears after the type specification in the
input. Whereas if this.props contained value, onBlur, or onChange properties, they
would not be passed through to the <input>. In fact, this.props does contain onChange
and value properties, and they get overridden.

In order to use the new component, we need some changes to IssueEdit. We need
to use NumInput instead of input for the effort field. Further, we need to change the
onChange handler to look for an additional argument and use that if available. Finally,
we can now use the natural data type in the issue object stored in the state, and the
initial value can be null rather than an empty string. The modifications to the IssueEdit
component are shown in Listing 9-11, with the changes highlighted.

Listing 9-11. IssueEdit.jsx: Changes for Using NumInput

...
import NumInput from './NumInput.jsx';
...
 this.state = {
 issue: {
 _id: '', title: '', status: '', owner: '', effort: null,
...
 onChange(event, convertedValue) {
 const issue = Object.assign({}, this.state.issue);
 const value = (convertedValue !== undefined) ? 

convertedValue : event.target.value;
 issue[event.target.name] = event.target.value;
 issue[event.target.name] = value;
 this.setState({ issue });
 }
...

Chapter 9 ■ Forms

190

 response.json().then(issue => {
 ...
 issue.effort = issue.effort != null ? issue.effort.toString() : '';
 this.setState({ issue });
...
 Effort: <NumInput size={5} name="effort" value={issue.effort} 

onChange={this.onChange} />
...

Testing with the above changes will show that the effort field is editable, but doesn’t
allow non-numeric characters. It also supports an empty value. More importantly, with
a few console.log() statements, you’ll be able to see that the form’s state is updated
only on losing focus from the input, and also that the value that we’re storing in the state
object is of the numeric data type.

Date Input
Now that we have a basic UI component working, let’s take it to the next level with
the Date field. A date is more challenging because we can’t prevent invalid values by
masking the input. The input has to allow partially typed dates (which are invalid at
that point in time), and also handle the possibility that the focus is lost while in an
invalid state.

We could clear the input whenever it’s invalid and it loses focus. But that’s not good
user experience. What we really need is the ability to let the input be in an invalid state
and lose focus, so that the user can come back and correct it. But we need to show that it
needs correction, and also prevent submission of the form in this state.

The disconnected state technique helps us handle this. The transient state, which is a
string, can hold invalid dates. But the persisted state (even when the focus is lost) cannot.
Thus, we not only have to prevent calling onChange() in the parent with an invalid date,
we also have to indicate to the parent that the input is invalid. This is so that the parent
can take appropriate action, such as not allowing the submission to happen and give
helpful messages to the user.

We’ll also take advantage of the disconnected state to make the display of the value
friendlier. We’ll display the date in a long format, including the day of the week while
not being edited. But when being edited, we need a more precise format, so let’s use a
YYYY-MM-DD format.

To achieve all this, apart from the transient state in the UI component, we will have
to introduce two more state variables:

 1. A state variable that indicates whether the focus is in the input
field or not

 2. Another state variable that indicates whether the currently
typed in value is valid or not.

Chapter 9 ■ Forms

191

A combination of the two variables will affect how we render the text in the input.
If the input is focused, we’ll just render the transient state string (which could be invalid).
If the input has lost focus, if the value is not valid, we’ll continue to render the transient
state string. We can also indicate to the user that the value is invalid using a CSS style.
If the input is not focused and the value is a valid date, then we’ll convert it to the long
format and display it.

The validity state will also need to be communicated to the parent whenever it
changes. For this, we’ll need a new callback passed in from the parent via props. In the
parent, we can keep a list of all invalid inputs and disable the submit button if the list
is not empty. The list will be added to or removed from when the parent receives any
change-of-validity event from the components.

The new component for the Date input is shown in Listing 9-12.

Listing 9-12. DateInput.jsx: UI Component to Handle Dates

import React from 'react';

export default class DateInput extends React.Component {
 constructor(props) {
 super(props);
 this.state = { value: this.editFormat(props.value), focused: false, 

valid: true };
 this.onFocus = this.onFocus.bind(this);
 this.onBlur = this.onBlur.bind(this);
 this.onChange = this.onChange.bind(this);
 }

 componentWillReceiveProps(newProps) {
 if (newProps.value !== this.props.value) {
 this.setState({ value: this.editFormat(newProps.value) });
 }
 }

 onFocus() {
 this.setState({ focused: true });
 }

 onBlur(e) {
 const value = this.unformat(this.state.value);
 const valid = this.state.value === '' || value != null;
 if (valid !== this.state.valid && this.props.onValidityChange) {
 this.props.onValidityChange(e, valid);
 }
 this.setState({ focused: false, valid });
 if (valid) this.props.onChange(e, value);
 }

Chapter 9 ■ Forms

192

 onChange(e) {
 if (e.target.value.match(/^[\d-]*$/)) {
 this.setState({ value: e.target.value });
 }
 }

 displayFormat(date) {
 return (date != null) ? date.toDateString() : '';
 }

 editFormat(date) {
 return (date != null) ? date.toISOString().substr(0, 10) : '';
 }

 unformat(str) {
 const val = new Date(str);
 return isNaN(val.getTime()) ? null : val;
 }

 render() {
 const className = (!this.state.valid && !this.state.focused) ?

'invalid' : null;
 const value = (this.state.focused || !this.state.valid) ? this.state.

value
 : this.displayFormat(this.props.value);
 return (
 <input
 type="text" size={20} name={this.props.name} className={className}

value={value}
 placeholder={this.state.focused ? 'yyyy-mm-dd' : null}
 onFocus={this.onFocus} onBlur={this.onBlur} onChange={this.onChange}
 />
);
 }
}

DateInput.propTypes = {
 value: React.PropTypes.object,
 onChange: React.PropTypes.func.isRequired,
 onValidityChange: React.PropTypes.func,
 name: React.PropTypes.string.isRequired,
};

Let’s get into some of the details of the new component’s code, mostly in comparison
to the simpler NumInput component. For NumInput, we had only one format method; here
we have two, one for a friendly displayable format and the other for the editable one. The
editable format is used to display and handle the transient state within the component.
This is the format that is also updated in the onChange() handler.

Chapter 9 ■ Forms

193

We had to introduce an onFocus handler so that we could set the state variable
focus. The same is unset during onBlur(). When the input loses focus, we also checked
the validity and it’s here that we called the parent’s validity handler.

Within the componentWillReceiveProps() lifecycle method, we introduced a check
to see if the props have really changed. This was not required in the NumInput component
because it did not have to deal with invalid values. Whereas in the DateInput component,
since we have to preserve the invalid string, we couldn’t receive new props without
checking that it is indeed a change. Otherwise, it could overwrite user typed values.

Another difference from the Number input is the lack of {...this.props} in the
input’s attributes. This is because we have an extra property onValidityChange handler
that will get passed on to the input causing a warning because it is an unrecognized
property for the input.

Let’s take a closer look how we showed that the input is invalid. We used a class
called invalid to show this. The value of this class name is determined by the following:

...
 const className = (!this.state.valid && !this.state.focused) ? 

'invalid' : null;
...

This behaves such that we highlight an invalid input with a red border (the actual
style definition is shown in Listing 9-14), but only if the field is not focused. This is so that
we don’t distract the user when editing. Also, if we did show the red border even when
the input was focused, the expectation would be that the input becomes normal as the
user types and makes the input valid, which will mean that we have to validate the input
on every keystroke rather than when it loses focus. That’s also a valid approach, used
by many applications, especially for password fields, where the validation is typically
complex and it’s good to have a confirmation on every keystroke.

To make use of the new DateInput component, we need a few changes in the parent,
IssueEdit. This includes a new handler that tracks invalid field names, a state variable
to store the invalid fields, making use of a Date type for the date input, and a validation
message. The changes are shown in Listing 9-13.

Listing 9-13. IssueEdit.jsx: Changes to Use DateInput

...
 this.state = {
 issue: {
 _id: '', title: '', status: '', owner: '', effort: null,
 completionDate: null, created: '',
 },
 invalidFields: {},
 };
...
 this.onValidityChange = this.onValidityChange.bind(this);
...
 onValidityChange(event, valid) {
 const invalidFields = Object.assign({}, this.state.invalidFields);

Chapter 9 ■ Forms

194

 if (!valid) {
 invalidFields[event.target.name] = true;
 } else {
 delete invalidFields[event.target.name];
 }
 this.setState({ invalidFields });
 }
...
 response.json().then(issue => {
 ...
 issue.completionDate = issue.completionDate != null ?
 new Date(issue.completionDate) : null;
 ...
 });
...
 render() {
 const issue = this.state.issue;
 const validationMessage = Object.keys(this.state.invalidFields). 

length === 0 ? null
 : (<div className="error">Please correct invalid fields before 

submitting.</div>);
...
 Completion Date: <DateInput
 name="completionDate" value={issue.completionDate}

onChange={this.onChange}
 onValidityChange={this.onValidityChange}
 />
...

 {validationMessage}
 <button type="submit">Submit</button>
...

Finally, a couple of changes are required in the style section of index.html to give a
distinct style to the error message and the invalid input. This is shown in Listing 9-14.

Listing 9-14. index.html: Changes to Add New Styles for Errors

...
 }
 input.invalid {border-color: red;}
 div.error {color: red;}
 </style>
...

Ensure that you are able to edit and test with valid and invalid values, and also
that the validation message is shown whenever the user leaves the input in an invalid
state. We could have added a way to dismiss the error message, but that requires special
widgets, which I’ll leave for the next chapter.

Chapter 9 ■ Forms

195

EXERCISE: DATE INPUT

1. since we couldn’t use {...this.props} we had to hard-code the
size. If we want to let the parent optionally specify a different
size, like we did for NumInput, what options do we have? hint:
Look up defaultProps in the react documentation.

answers are available at the end of the chapter.

Update API
If you recall from Chapter 5 (Express Rest APIs), there are two ways to update an object
using REST APIs. You can use the PATCH method and specify the changes, or you can use
the PUT method to replace the object altogether. Let’s briefly discuss the pros and cons of
the two options.

The PATCH method allows the caller to alter individual fields without having to send
across the entire object even for small changes. The savings in network traffic may not
amount to much, but it eases the front-end code if it is able to modify individual fields.
Imagine the Issue List page having a drop-down menu next to each issue that allows the
user to quickly change the status. In this case, the front end needs to send only the change
in status rather than the entire object.

The PATCH method is almost unavoidable if the front end does not have access to
the complete object. Say you had some extra fields in the back end not exposed to the
front end (for example, some bookkeeping fields or embedded documents such as a list
of comments associated with each issue). Replacing the entire object would either mean
destroying those fields not visible to the front end or an elaborate merge process in the
back end. Finally, if you needed an audit log of who changed what, using the PATCH
lets you just save the patch specification from the front end rather than trying to find the
difference between the old and new documents.

The PUT way of doing things, on the other hand, is very simple to implement.
You don’t have to learn about and implement a format such as JSON Patch (http://
jsonpatch.com) that would need to be used in the PATCH method. In the front end, you
can just take the entire object, serialize it, and submit it. At the back end, all you need
to do is a bit of validation to check if the document is valid, and then use the updateOne
function in the MongoDB driver to save the document. In the Issue Tracker, the client is a
trusted one (our own code), and we know that there are no bookkeeping fields, embedded
documents, or a requirement for an audit log as of now. If we find a need for individually
updating fields in the future, we can implement the PATCH method at that point in time.

To use the PUT method, the Update API will need a put route that matches /api/
issues/:id, where id is the Object ID of the document, as in the case of Get API. The
body of the request is the modified issue object, which will be automatically parsed if the
client passes “application/json” as the content type, as in the Create API. Let’s also decide
to return the modified object in the response, like we did for the Create API.

http://dx.doi.org/10.1007/978-1-4842-2653-7_5

Chapter 9 ■ Forms

196

We’ll use the updateOne MongoDB function to save the document. Also, we need to
convert the date strings in the input to the Date data type. We’ll introduce a new function
in issue.js that does this conversion. Apart from these, the rest of the code is very similar
to the other APIs. The changes for the conversion function are shown in Listing 9-15 and
the complete API is shown in Listing 9-16.

Listing 9-15. issue.js: New Conversion Function

...
function convertIssue(issue) {
 if (issue.created) issue.created = new Date(issue.created);
 if (issue.completionDate) issue.completionDate = new Date(issue.
completionDate);

 return cleanupIssue(issue);
}
...
export default {
 validateIssue,
 cleanupIssue,
 convertIssue,
};
...

Listing 9-16. server.js: New Route for Update API

app.put('/api/issues/:id', (req, res) => {
 let issueId;
 try {
 issueId = new ObjectId(req.params.id);
 } catch (error) {
 res.status(422).json({ message: `Invalid issue ID format: ${error}` });
 return;
 }

 const issue = req.body;
 delete issue._id;

 const err = Issue.validateIssue(issue);
 if (err) {
 res.status(422).json({ message: `Invalid request: ${err}` });
 return;
 }

 db.collection('issues').update({ _id: issueId }, 
Issue.convertIssue(issue)).then(() =>

 db.collection('issues').find({ _id: issueId }).limit(1)
 .next()
)

Chapter 9 ■ Forms

197

 .then(savedIssue => {
 res.json(savedIssue);
 })
 .catch(error => {
 console.log(error);
 res.status(500).json({ message: `Internal Server Error: ${error}` });
 });
});

Note that we converted all date strings to the Date data types using the Issue.
convertIssue function:

...
 db.collection('issues').update({ _id: issueId }, 
Issue.convertIssue(issue)).then(() =>

...

But that function did not convert the ID from strings to ObjectID. Instead, we just
deleted the ID, if present, from the object:

...
 delete issue._id;
...

This is because the MongoDB update operation treats the ID specially, and leaves it
intact even if not present in the document that replaces the existing document.

To test the new API, you can use curl, as shown in the console output below.
Remember to change the ID string to a valid Object ID that was generated in your
database, by doing a find(). The ID shown below is unlikely to work for you.

$ curl -s -X PUT http://localhost:8000/api/issues/57e14da9ca2d380662d9d05c \
 --header 'Content-Type: application/json' \
 -- data '{"title" : "Error in console when clicking Add", 

"status" : "Open", \
 "effort" : 6, "owner" : "Ravan", 

"created" : "2016-08-15T00:00:00.000Z" }' \
 | json_pp
{
 "effort" : 6,
 "owner" : "Ravan",
 "_id" : "57e14da9ca2d380662d9d05c",
 "title" : "Error in console when clicking Add",
 "created" : "2016-08-15T00:00:00.000Z",
 "status" : "Open"
}

Chapter 9 ■ Forms

198

After successful execution, you should also be able to confirm using the application
in the browser that any changes you sent across have in fact taken effect. You should also
test with invalid objects supplied in the request body. Finally, confirm that the dates have
been converted to the Date data type by using the MongoDB shell and displaying the
issues in the database. They should show up as ISODate(...) rather than strings.

EXERCISE: UPDATE API

1. In the Update apI call, we had to pass a value for the created
field. Ideally, we’d need to prevent changes to this field, even
if the caller supplies it. You can’t use the same approach as
we did for the ID, because that would mean removing the field
in the document. What options do we have? hint: Look up
mongoDB’s update documentation, use something that doesn’t
replace the entire document.

answers are available at the end of the chapter.

Using Update API
To use the Update API, we’ll need to handle the form submission within the Edit page. In
this handler method, we’ll need to call the API using the PUT method. If successful, we’ll
have to do the usual data type conversions and set the returned document in the state.
We’ll also show an alert message saying the save was successful; otherwise, the user gets
no indication that something changed.

While implementing the NumInput and DateInput components we had converted the
effort and completion fields to their natural data types. We’ll do the same for the created
field now, so that all data types are their natural ones now. The changes to IssueEdit for
using the Update API are shown in Listing 9-17.

Listing 9-17. IssueEdit.jsx: Changes to Handle Form Submission

...
 this.state = {
 issue: {
 _id: '', title: '', status: '', owner: '', effort: null,
 completionDate: null, created: null,
 },
...
 this.onSubmit = this.onSubmit.bind(this);
...
 onSubmit(event) {
 event.preventDefault();

Chapter 9 ■ Forms

199

 if (Object.keys(this.state.invalidFields).length !== 0) {
 return;
 }

 fetch(`/api/issues/${this.props.params.id}`, {
 method: 'PUT',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify(this.state.issue),
 }).then(response => {
 if (response.ok) {
 response.json().then(updatedIssue => {
 updatedIssue.created = new Date(updatedIssue.created);
 if (updatedIssue.completionDate) {
 updatedIssue.completionDate = new Date(updatedIssue.

completionDate);
 }
 this.setState({ issue: updatedIssue });
 alert('Updated issue successfully.');
 });
 } else {
 response.json().then(error => {
 alert(`Failed to update issue: ${error.message}`);
 });
 }
 }).catch(err => {
 alert(`Error in sending data to server: ${err.message}`);
 });
 }
...
 loadData() {
 fetch(`/api/issues/${this.props.params.id}`).then(response => {
 if (response.ok) {
 response.json().then(issue => {
 issue.created = new Date(issue.created);
 issue.completionDate = issue.completionDate != null ?
...
 <form onSubmit={this.onSubmit}>
 ID: {issue._id}

 Created: {issue.created ? issue.created.toDateString() : ''}

...

We used event.preventDefault() to disable the default action of the submit
button, which would have been available to submit the form. We also silently ignored the
submission if there were validation errors, since we know that the error message will be
visible. We are now ready to test the complete Edit Page functionality: view, change, and
save an issue. The screenshot for the Edit page is already shown in Figure 9-2.

Chapter 9 ■ Forms

200

Do test with invalid inputs as well ensure that the save is prevented. Also check that
the object has been saved correctly, both in the Issue List page as well as in the database
using MongoDB shell.

Delete API
It’s unlikely that an application will actually want to delete database records. Usually,
records are marked deleted and removed from listings. But for the sake of CRUD
completion, let’s also implement a Delete API.

We will use the MongoDB driver’s deleteOne API to delete an object from the
database. The REST API will use the DELETE method, which will translate to a route
function call to app.delete. There is no object to return on a delete, so we’ll only return
a status whether the delete was successful. The result tells us how many objects were
deleted; depending on this, we’ll return an OK or a warning if the object was not found.
We don’t want to treat this as an error, since the absence of the object is what the caller is
requesting, which is technically the case after the call, even if the object was not found.

The Delete API is shown in Listing 9-18.

Listing 9-18. server.js: Delete API Implementation

app.delete('/api/issues/:id', (req, res) => {
 let issueId;
 try {
 issueId = new ObjectId(req.params.id);
 } catch (error) {
 res.status(422).json({ message: `Invalid issue ID format: ${error}` });
 return;
 }

 db.collection('issues').deleteOne({ _id: issueId }).then((deleteResult) => {
 if (deleteResult.result.n === 1) res.json({ status: 'OK' });
 else res.json({ status: 'Warning: object not found' });
 })
 .catch(error => {
 console.log(error);
 res.status(500).json({ message: `Internal Server Error: ${error}` });
 });
});

The new API can be tested using curl like this:

$ curl -s -X DELETE http://localhost:8000/api/issues/581de551c47b3814fd20c23f 
| json_pp
{
 "status" : "OK"
}

Chapter 9 ■ Forms

201

If you run the same test using curl again, it should return a status message with a
warning that the object was not found.

Using the Delete API
To implement delete functionality in the UI, we’ll need to first introduce a button on each
row in the Issue List. Upon the click of this button, we expect the issue to be deleted. This
requires changes in the IssueRow component.

Rather than call the Delete API directly from the IssueRow component, we’ll pass in a
delete handler from IssueList via props. This keeps the IssueRow simple and isolates the
actual mechanism of deletion. If we decide that we need a confirmation, or even let the
delete be implemented as a checkbox in the UI and require a “submit” to confirm it after
multiple deletes, these options would be easier done in the IssueList.

To handle the delete button’s click, we must add an onClick handler, which needs to
be a function that calls the delete handler with the ID of the current row as a parameter.
We could do this by binding the delete handler with the ID of the issue in the component
instance, but this is not recommended, as ESLint will tell us. Instead, we’ll add an inner
function for onClick that uses a closure to call the delete handler with the ID.

The modified IssueRow component is shown in Listing 9-19.

Listing 9-19. IssueList.jsx: IssueRow Class Rewritten

const IssueRow = (props) => {
 function onDeleteClick() {
 props.deleteIssue(props.issue._id);
 }

 return (
 <tr>
 <td><Link to={`/issues/${props.issue._id}`}>{props.issue._ 

id.substr(-4)}</Link></td>
 <td>{props.issue.status}</td>
 <td>{props.issue.owner}</td>
 <td>{props.issue.created.toDateString()}</td>
 <td>{props.issue.effort}</td>
 <td>{ props.issue.completionDate ? 

props.issue.completionDate.toDateString() : ''}</td>
 <td>{props.issue.title}</td>
 <td><button onClick={onDeleteClick}>Delete</button></td>
 </tr>
);
};

IssueRow.propTypes = {
 issue: React.PropTypes.object.isRequired,
 deleteIssue: React.PropTypes.func.isRequired,
};

Chapter 9 ■ Forms

202

Since the function is no longer a simple expression, we must enclose the contents
with curly braces. Also, we must add a return around the rendering. The substantial
changes are the addition of a new <td> with a button, the onClick handler, and the
addition of the handler to propTypes.

Next, we need to implement the actual delete handler in IssueList and pass it on
as props (via IssueTable) to IssueRow. The delete handler will call the Delete API using
fetch() and reload the data on completion to show the new list. Also, we need to add a
column in IssueTable for the extra column header. These changes are also in the same
file, IssueList.jsx, and shown in Listing 9-20.

Listing 9-20. IssueList.jsx: Other Changes for Using Delete API

...
function IssueTable(props) {
 const issueRows = props.issues.map(issue =>
 <IssueRow key={issue._id} issue={issue} deleteIssue={props.deleteIssue} />
);
 ...
 return (
 <table className="bordered-table">
 ...
 <th>Title</th>
 <th></th>
...
IssueTable.propTypes = {
 issues: React.PropTypes.array.isRequired,
 deleteIssue: React.PropTypes.func.isRequired,
};
...
export default class IssueList extends React.Component {
 constructor() {
 ...
 this.setFilter = this.setFilter.bind(this);
 this.deleteIssue = this.deleteIssue.bind(this);
 }
...
 deleteIssue(id) {
 fetch(`/api/issues/${id}`, { method: 'DELETE' }).then(response => {
 if (!response.ok) alert('Failed to delete issue');
 else this.loadData();
 });
 }
...
 <IssueTable issues={this.state.issues} deleteIssue={this.deleteIssue} />
...

Chapter 9 ■ Forms

203

Now we can really call the CRUD implementation complete. We can add and delete
objects from the List page, and view and modify a single object in the Edit page. At this
stage, you should test the functionality of the complete application as a user: add, modify,
and delete a few issues as a user would do.

Summary
We used the Edit page to explore forms and the difference between controlled and
uncontrolled form components. We also added new APIs to cater to the needs of the new
form, and completed the CRUD paradigm by adding a Delete operation as well.

While we did all this, a thought must have crossed your mind: can you make all this,
especially the Edit page, look better in the browser? That’s exactly what you’ll set out to do
in the next chapter. We’ll use a popular CSS library adapted to React to add some polish
to the UI.

Answers to Exercises
Exercise: More Filters in List API
 1. MongoDB is strict with respect to data types. This also means

that for a field that has no value, it cannot determine the type,
thus the match cannot occur if the field has a filter criterion.

 2. If we do need to return documents with the effort field
missing, we’ll have to create an or condition that includes
the original filter, as well as a condition that says the effort
is undefined. The $or operator takes an array of filters and
matches the document against any of the filter conditions.
To match a document where the effort field is not defined,
we must use {$exists: false} as the criterion for the field.
Here’s an example in the mongo shell:

> db.issues.find({$or: [{effort: {$lte: 10}}, 
{effort: {$exists: false}}]});

Exercise: Filter Form
 1. When loading data, we asynchronously updated the state,

and React has no way of knowing that it was done as part
of the lifecycle method. Even if we had used the method
ComponentWillReceiveProps, we would have had to compare
the old and new. In the case of the IssueFilter, although we
are modifying the state, we are not doing it asynchronously.
This allows React to handle the change gracefully, and not
trigger another ComponentWillReceiveProps.

Chapter 9 ■ Forms

204

 2. If you set the input’s type as number, you find that (a) it
behaves differently on different browsers, (b) masking does
not work on some browsers, and (c) when it does allow invalid
characters, you don’t see them in onChange. This is because as
per the HTML specification, when the type is specified, and
the input does not conform to the specification, the .value of
the input is supposed to return an empty string. It is also up
to the browser how to deal with invalid values; for example,
some browsers may display the fact that the input is invalid,
whereas others may prevent an invalid entry.

When using React, it is best not to use the type attribute of
input fields; instead, deal with the validation or masking
yourself (or use packages that do it for you). This lets the
behaviour be predictable across browsers, as well as make
informed decisions on what to do with invalid input,
especially input that is invalid temporarily in order to get to a
valid value.

Exercise: Edit Page
 1. The only property for this component is the ID of the issue

being shown. The component will not be remounted if
only the ID changed. This can happen if you make a switch
between one issue’s edit page and another.

One way to make this happen is by using the browser’s History
menu (not just the Back button). For example, in Safari, there
is a History menu, and in Chrome, you can right-click the Back
button to jump to any previous page. Thus, when viewing
issue 1, you can click on “Back to Issue List,” and then go to
issue 2. Now, using the History menu, you can jump directly
to issue 1. When this happens, the component is not mounted
again, and without the hook into componentDidUpdate(), the
page would be showing the wrong issue details.

Exercise: Date Input
 1. One option is to copy the this.props into another object

using Object.assign() and then remove the offending
properties such as onValiditychange, and then use the new
object as a spread attribute. This will enable the passing of
more properties without explicitly specifying each of them.

Another option is to set the input’s size property to
{this.props.size}. In this case, you need to add size
as a numeric property type in propTypes, and also define
defaultProps with the size set to the default value like this:

Chapter 9 ■ Forms

205

...
DateInput.defaultProps = {
 size: 20,
};
...

This will allow the parent to skip the size specification, in
which case the default will be used. If the parent did specify
the size, then that size would be used.

Exercise: Update API
 1. To prevent the API’s caller from changing the created

date, one option is to read the object from the database
and overwrite the created date using the persisted value.
Although this is a valid approach, and if we are reading the
object for other reasons (for example, to record which fields
have changed), it’s OK to do so. If not, we could use the $set
update operator after deleting the created field like this:

...
 delete issue.created;
...
db.collection('issues').updateOne({ _id: issueId }, 
{ $set: issue }).then(() =>
...

This has the effect of saying, “Modify the fields specified in the
issue to their corresponding values.” Since the created field
has been deleted, its value will be left alone.

207© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_10

CHAPTER 10

React-Bootstrap

CSS frameworks like Bootstrap and Foundation have changed the way people build their
websites. These tools make it a lot easier to make a web application look professional and
responsive, that is, have it adapt even to mobile screens. Of course, the downside is that
these existing frameworks may not give you fine-grained flexibility, and your application
will look like many others. But, even if you do have the luxury or the capability to create
your own end-to-end custom styles, I suggest that you start off with these frameworks.
That’s because there’s a lot to learn from the patterns these frameworks use.

Since we are using React as the UI library, we need to choose something that
fits into and plays well with React. I evaluated React + Foundation, Material UI, and
React-Bootstrap because they appeared the most popular, based on Google searches.
React + Foundation didn’t appear to be very different from React-Bootstrap in terms of
capability, but Bootstrap itself is far more popular. Material UI has an interesting CSS-in-
JS and inline-style approach of styling that fits well into React’s philosophy of isolating
everything needed by a component, with the component itself. But this framework is
much less popular and also seems to be a work in progress. And, perhaps the inline-style
approach is too drastic a deviation from convention.

React-Bootstrap is a safe alternative that is built on top of the very popular Bootstrap
and fits our needs (except for the lack of a date picker). I thus chose React-Bootstrap for
this book. In this chapter, we’ll look at how to make the application look professionally
styled using React-Bootstrap. I won’t be covering how to make custom themes and other
advanced topics, but we’ll learn just enough to appreciate what React Bootstrap is all
about, so you can go further when required.

Bootstrap Installation
In this section, we’ll install React-Bootstrap and confirm that it works by making a small
change that is visible in the UI. Let’s first install React-Bootstrap:

$ npm install --save-dev react-bootstrap

React-Bootstrap contains a library of React components, and has no CSS styles or
themes itself. But it does require a Bootstrap stylesheet to be included in the application to
use these components. The version or mechanism of including the stylesheet is left to us.
The easiest way is to include the stylesheet from a CDN directly in index.html.

http://getbootstrap.com/
http://foundation.zurb.com/

Chapter 10 ■ reaCt-Bootstrap

208

But since we have other dependencies locally installed, let’s to do the same for Bootstrap
as well. So, let’s install bootstrap also using npm so that its distribution files are available
to you:

$ npm install --save bootstrap

The next step is to include the Bootstrap stylesheet in the application. One way to
do this is by using webpack’s style and CSS loaders. This allows us to use an import (or
require) statement to include CSS files just like we import other React or JavaScript
modules. Note that webpack then builds the dependency tree and includes all the styles
that have been imported in the bundle that is created. Also note that webpack, by default,
includes all required styles in a string within the JavaScript bundle that is built. When the
application is loaded, the string is placed into the DOM as a <style> node.

To get this to work, we need to install the CSS and style loaders using npm. Then,
we need to add pattern matches in the webpack configuration that triggers these
loaders based on the file extension. We will also need loaders for the icons and fonts
that the stylesheet may include. Finally, we need a single import statement that imports
bootstrap.css, maybe just in App.jsx.

I find that for our needs, all of this is overkill. The purpose of webpack’s CSS and Style
loaders is to be able to modularize stylesheets just as we modularized the React code.
If every component had its own set of styles separated out into their own CSS files, this
method would work great. Unfortunately, Bootstrap is shipped as a monolithic stylesheet.
We have to include all of it, even if we are using only a single component. Also, we don’t
envisage our own components being associated with their individual styles in a modular
fashion.

Thus, all we’ll do is keep a link to the Bootstrap distribution under the static
directory, and include the CSS just as you would use other static files such as index.html
itself. The command to run to achieve this is on a Mac or a Linux based computer is

$ ln -s ../node_modules/bootstrap/dist static/bootstrap

Alternatively, you can copy the entire dist directory under the Bootstrap library
into the static directory. Since soft links are not supported under Windows, that’s the
only option for Windows users. If you now explore the new directory, you’ll find three
subdirectories: css, fonts, and js. We won’t need the js directory because that’s what
React-Bootstrap replaces. In index.html, we’ll add a link to this stylesheet, which is under
the css directory of the directory that we linked or copied. We won’t include the optional
theme file, just the main minified Bootstrap style. The changes to index.html are shown
in Listing 10-1.

Listing 10-1. index.html: Changes to Include Bootstrap Styles

...
 <title>Pro MERN Stack</title>
 <link rel="stylesheet" href="/bootstrap/css/bootstrap.min.css" >
...

Chapter 10 ■ reaCt-Bootstrap

209

 ■ Note When we installed Bootstrap, we used --save instead of --save-dev. this is
because we are serving the Bootstrap files directly from the server, and they are needed at
runtime, unlike all other front-end assets that are compiled and bundled from their sources.

To test that Bootstrap is properly installed and usable, and also to test that the fonts are
available, let’s make a few minor changes: let’s replace the Delete button with a trash icon
button. Let’s also add some style to the Issues table with a Bootstrap container-fluid class.

For the trash icon, we need two components from React-Bootstrap: Button and
Glyphicon. We can import them as we did other components such as Link from
react-router in the IssueList.jsx file. As for the style, we can directly apply the
Bootstrap class container-fluid to the content <div> that is the parent of all the routed
components. The container-fluid class of Bootstrap is needed for most containers and
layouts, letting the library know that the elements contained can be styled by Bootstrap.
These changes are shown in Listing 10-2 and Listing 10-3, respectively.

Listing 10-2. IssueList.jsx: Changes for Trash Icon

...
import { Button, Glyphicon } from 'react-bootstrap';
...
 <td>{props.issue.title}</td>
 <td><button onClick={onDeleteClick}>Delete</button></td>
 <td>
 <Button bsSize="xsmall" onClick={onDeleteClick}><Glyphicon 

glyph="trash" /></Button>
 </td>
 </tr>
...

Listing 10-3. App.jsx: Adding container-fluid Class at Topmost div

...
 <div className="container-fluid">
 {props.children}
 </div>
...

The components available as part of React-Bootstrap can be found in the React-
Bootstrap documentation site, and the glyphs and styles are described in the Bootstrap
documentation site. For the Button, we added an onClick handler just as we would
in a regular button. We also use the xsmall size attribute to use the smallest possible
button size.

When specifying the glyph attribute, we need to only specify the name (as in trash),
unlike Bootstrap styles which are prefixed with glyphicon- (like glyphicon-trash). You
will find that this is a consistent theme in React-Bootstrap: you don’t have to use the
prefixes because, due to modularization, you don’t have the possibility of a namespace
conflict as in CSS.

Chapter 10 ■ reaCt-Bootstrap

210

On testing, you’ll find that the new button and styles are indeed applied, as shown in
Figure 10-1.

We’ll deal with the alignment issues soon, but you can see that the changes that
we made are indeed taking effect, and we can now start using other components and
styles. The lack of margins around the header and the footer are due to Bootstrap’s
normalization of styles (also called style reset) to make it consistent across browsers.

Navigation
In this section, we’ll explore what we can do with the header and also fix the footer
alignment. It is common practice to have a header with a Navigation bar, one that lets the
user navigate between various sections of the application. In our case, we don’t have too
many sections (yet), so apart from the main Issue List page, we’ll add placeholders for
the rest.

Let’s keep the application name in its original place, after which we can have two
tabs or links, one for the Issue List and another as a placeholder for Reports. The Edit
page doesn’t really belong in the navigation bar because it’s not something that the user
can go to directly; they need to navigate from the Issue List only. Let’s also, on the right
side, have an action item for creating a new issue (we’ll move the in-page Add form to a
Modal in later sections), and an extended drop-down menu for any other action you may
have in mind. For now, let the extended menu have just one action, say, Logout (which
does nothing for now).

Figure 10-1. Initial Bootstrap-styled Issue List page

Chapter 10 ■ reaCt-Bootstrap

211

We can use React-Bootstrap’s NavBar and within that, a NavBar.Header and
NavBar.Brand component for the application name, as described in the documentation.
Following that, we need a Nav for the left-aligned items, and another for the right-aligned
items using the pullRight attribute. In the right-aligned set, let’s add a NavItem and
a NavDropdown with one menu item for Logout. As for the left-aligned Nav, we have a
decision to make. We can use NavItem from React-Bootstrap, which takes a href. But we
really need React-router’s Links instead, which include their own <a> elements causing
the styling to mess up if we use it within the NavItem.

The recommended way to break this impasse is to use the package react-router-
bootstrap, which provides a wrapper called LinkContainer acting as the React-router’s
Link, at the same time letting its children have their own styling. We can have a NavItem
without a href inside the LinkContainer, and let it deal with the path to the route. Let’s
install the package to use the LinkContainer:

$ npm install --save-dev react-router-bootstrap

Since it contains React components and JavaScript code, we must also change the
webpack configuration so that it gets included in the vendor bundle rather than the
application bundle. This is shown in Listing 10-4.

Listing 10-4. webpack.config.js: Changes to Include react-router-bootstrap in Vendor
Bundle

...
module.exports = {
 entry: {
 app: './src/App.jsx',
 'react', 'react-dom', 'react-router', 'react-bootstrap',

'react-router-bootstrap',
...

We’ll now create a new component called Header, place of all of the Navigation items
within it, and use it in the App component in place of the original header. As for the footer,
we’ll pull it into the contents <div> so that it maintains margins, and use Bootstrap
typography elements <small> and <h5> to make it look as before. These changes are
shown in Listing 10-5, Listing 10-6, and Listing 10-7.

Listing 10-5. App.jsx: Imports for react-bootstrap and react-router-bootstrap

...
import { Navbar, Nav, NavItem, NavDropdown, MenuItem, Glyphicon } 
from 'react-bootstrap';
import { LinkContainer } from 'react-router-bootstrap';
...

Chapter 10 ■ reaCt-Bootstrap

212

Listing 10-6. App.jsx: New Component, Header

const Header = () => (
 <Navbar fluid>
 <Navbar.Header>
 <Navbar.Brand>Issue Tracker</Navbar.Brand>
 </Navbar.Header>
 <Nav>
 <LinkContainer to="/issues">
 <NavItem>Issues</NavItem>
 </LinkContainer>
 <LinkContainer to="/reports">
 <NavItem>Reports</NavItem>
 </LinkContainer>
 </Nav>
 <Nav pullRight>
 <NavItem><Glyphicon glyph="plus" /> Create Issue</NavItem>
 < NavDropdown id="user-dropdown" 

title={<Glyphicon glyph="option-horizontal" />} noCaret>
 <MenuItem>Logout</MenuItem>
 </NavDropdown>
 </Nav>
 </Navbar>
);

Listing 10-7. App.jsx: App Component Rewritten

const App = (props) => (
 <div>
 <Header />
 <div className="container-fluid">
 {props.children}
 <hr />
 <h5><small>
 Full source code available at 

this
 GitHub repository.
 </small></h5>
 </div>
 </div>
);

Note that we haven’t used eventKeys for the NavItems, as described in the React-
Bootstrap documentation. These are required if we either want to set the active item, or
if we have a common handler for the selection of an item and we need to know which
item generated the event. Since LinkContainer takes care of showing which link is active,
and we don’t have a common handler for the events from the menu items, we don’t need
event keys.

Chapter 10 ■ reaCt-Bootstrap

213

Using an icon and text for the right-aligned NavItem is straightforward, but it’s not so
for the drop-down. Let’s take a closer look at the code for the drop-down:

...
< NavDropdown id="user-dropdown" 
title={<Glyphicon glyph="option-horizontal" />} noCaret>
...

NavDropdown is the component that displays the clickable portion of the drop-down.
Normally, it has a caret (downward pointing arrow), and the title is usually a string.
We’ve set the title as an icon (components are acceptable titles for NavDropdown), which
already indicates that it’s a dropdown or an extended menu. So, we must disable the
default caret by using the noCaret property. The ID is required for accessibility.

When you test this set of changes, you can see a screen similar to Figure 10-2. Note
that switching between Issues and Reports highlights the selected route in the NavBar.
The actionable right-side items don’t do anything as of now. They do not show any
highlighting because they are not associated with any route: they are pure actions. We’ll
eventually add an onClick handler in each of those items. Clicking on Reports will show a
Page Not Found message, but that’s OK. We are yet to implement the page.

Figure 10-2. Header and footer styled with Bootstrap

Let’s now test this on a mobile device and see how responsive the navigation bar
is. One way to do this is to actually use a mobile phone and connect to the server that’s
running on your desktop. For that, you must compile the front end and back end, and
then start the production server rather than use the development servers. An easier way
is to use the mobile emulation mode of the web browsers to see how it looks. I found

Chapter 10 ■ reaCt-Bootstrap

214

that only Chrome accurately reflects what happens in a real mobile device; Safari (using
the responsive mode under Develop menu) and Firefox (in the dev tools) only simulate
a change of screen size. What you’d see on a real mobile device or on Chrome’s mobile
emulator is shown in Figure 10-3.

This is not what we wanted to see. The screen looks squished or zoomed out. The
reason this happens is that the mobile browser assumes that the page has not been
designed for mobile screens, so it picks an arbitrary width that would be appropriate for a
desktop, uses that, and then zooms out the page so that it fits the screen. We must tell the
mobile browser that you know how to handle small screens, so that it doesn’t do all that.
The way to do so is by adding a meta tag in the main page. The change for this is shown in
Listing 10-8.

Figure 10-3. The application in a mobile device: squished!

Chapter 10 ■ reaCt-Bootstrap

215

Listing 10-8. index.html: Meta Tag for Adapting to Mobile Screens

...
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Pro MERN Stack</title>
...

What the above really means is that it’s OK to set the viewport (the un-zoomed
screen) to be the same as the device’s width and also to start with a one-is-to-one scale.
The effect of this important change is shown in Figure 10-4.

Figure 10-4. Viewport adapting to the device screen

Chapter 10 ■ reaCt-Bootstrap

216

The text is now in a readable font size. You can also see that the navigation bar has
collapsed into a single column of choices rather than a wide horizontal list. The same
could be simulated by changing the screen size of the browser on the desktop.

EXERCISE: NAVIGATION

 1. replace LinkContainer with a NavItem with a href, as
given in the react-bootstrap examples, and switch between
the two. Do you see a difference? also, look at the network
traffic while you switch.

answer available at the end of the chapter.

Table and Panel
In this section, we’ll use React-Bootstrap’s table styles to replace our styles. Further,
we’ll make the Issue Filter a collapsible panel. This is so that when we add more filter
fields and the section occupies more vertical space, we don’t waste valuable real estate at
the top of the screen.

Using React-Bootstrap’s Table component is simple; we just need to replace the
<table> with a <Table>. As for styling it, we can get rid of our own styles and class names,
and instead use the Table component’s property bordered to show borders. There are
other useful properties such as hover and responsive, which are good to have as well.
The property hover has the effect of highlighting a row when the user hovers the mouse
over a row. To provide a horizontal scrollbar on smaller screens, we use the property
responsive. To keep the table looking compact, we also need to use the condensed
property.

To make the filter section collapsible, we need the Panel component to wrap the
IssueFilter component. Once we do this, we can also get rid of the horizontal rules,
as the panel itself has a border delineating the filter from the table. Panel supports the
property collapsible, which makes the header (if there’s one) clickable and toggles the
visibility of the contents.

The changes for using a Panel and styling the table are shown in Listing 10-9.

Listing 10-9. IssueList.jsx: Changes for Table and Panel

...
import { Button, Glyphicon, Table, Panel } from 'react-bootstrap';
...
 <table className="bordered-table">
 <Table bordered condensed hover responsive>
...
 </table>
 </Table>
...

Chapter 10 ■ reaCt-Bootstrap

217

 <div>
 <Panel collapsible header="Filter">
 < IssueFilter setFilter={this.setFilter} 

initFilter={this.props.location.query} />
 </Panel>
 <hr />
 < IssueTable issues={this.state.issues} 

deleteIssue={this.deleteIssue} />
 <hr />
 <IssueAdd createIssue={this.createIssue} />
 </div>
...

The attributes bordered, condensed, and hover are pretty obvious, but it’s worth
pointing out the effect of the responsive attribute. In the previous section, you saw
on mobile devices that the content within table cells is wrapped (see Figure 10-4). In
addition, the screen width matched the smallest possible table width, leaving some
gap in the navigation bar at the right. The responsive attribute of the table lets it behave
differently on small screens. It prefers not wrapping cell contents; instead, it adds a
horizontal scrollbar if the table is too wide to fit the screen. This is usually a better layout
experience.

When you try out this set of changes, you’ll find that it’s not obvious that the panel
header is clickable. Firstly, the cursor does not change to something that shows that it’s
clickable. Also, the only place you can click is on the text. For the sake of usability, what
we’d really like is the cursor to indicate that it’s clickable, and also let the entire header
area be clickable. If you inspect the DOM using Safari’s or Chrome’s inspectors, you can
see that there is an <a> element that is added by React-Bootstrap when the header is
made collapsible.

Unfortunately, we don’t have a way of configuring the panel to either not add the <a>
(and let you specify a clickable node yourself for the header), or to tell it to fill the horizontal
space. The only way we can do this is by using a style that makes the <a> a block element
to fill the space and set the cursor. The changes for this style, and the removal of the table
border styles which are no longer required, are shown in Listing 10-10.

Listing 10-10. index.html: Style Changes

...
 table.bordered-table th, td {border: 1px solid silver; padding: 4px;}
 table.bordered-table {border-collapse: collapse;}
 input.invalid {border-color: red;}
 div.error {color: red;}
 .panel-title a {display: block; width: 100%; cursor: pointer; }
...

Ideally, we shouldn’t have any styles in the header of the main page, because this is
hard to discover and maintain. We’ll have to live with this minor infraction, at least for
now. The screenshot in Figure 10-5 shows how the screen looks with the filter collapsed.

Chapter 10 ■ reaCt-Bootstrap

218

Forms
We have three forms in the application, and we’ll explore three different ways of
displaying these forms. In the first approach, we’ll also see how Bootstrap’s Grid system is
used to display pages responsively, that is, how they adapt to screen sizes.

Grid-Based Forms
The Bootstrap default way of displaying labels and inputs in a form is to have the input
below the label and then another label and another input below it. For narrow screens or
narrow sections within a page, this may work well. But if you think about a wide screen, it
does seem like a lot of wasted real estate.

A better way to deal with this is to use the grid system of Bootstrap and let each field
(and that includes the label) float, that is, occupy the space next to its precedent, or below
its precedent if the width of the screen doesn’t allow it. The Issue Filter is a good use case
for this behavior, because we’d like to see it laid out horizontally, but on smaller screens,
one below the other.

Bootstrap’s grid system usually starts with a <Grid>, but we don’t need this if the
component is inside another container. The Issue Filter is inside a panel, which is already
a container. So, we can directly add a <Row>, within which we can add <Col>s, which will
hold the form fields. We’ll refer to each <Col> as a cell in the following text.

The grid system works this way: the horizontal space is divided into a maximum of 12
columns. A cell can occupy one or more columns, and also a different number of columns
at different screen widths. The cells wrap if you have more than 12 column-space of cells
within a row. You only use a new row if you want to force a break in the flow of cells. When
it comes to forms, the best way to use the grid system is to have a single row, and specify
how many columns each form control (one cell) occupies at different screen widths.

Figure 10-5. Collapsible filter panel and Bootstrap-styled table

Chapter 10 ■ reaCt-Bootstrap

219

Bootstrap then takes care of laying them out and deciding how to fit the cells at different
screen widths. In the filter, we have three cells, of roughly equal width: status input, effort
inputs, and the buttons. We don’t want to break either the effort inputs or the buttons into
multiple lines even on very small screens, so we’ll treat them as one cell each.

Let’s start with the smallest screen size: a mobile device. Let’s use half the screen
width per cell. This will mean that we’ll have Status and Effort on one line, and the
buttons in the next. This can be achieved by specifying xs={6} for each of the cells, that
is, half the total available 12 columns. You may wonder how 3 cells of 6 columns each,
totaling 18 columns, can fit a row of 12 columns. But the fact is that the grid system wraps
the last 6 columns into another line (not row, mind you).

It’s best to compare the fluid grid system with paragraphs and lines. Rows are
like paragraphs rather than lines. A paragraph (row) can contain multiple lines. As the
paragraph width (screen width) reduces, it will need more lines. It’s only when you want
to break two sets of sentences (sets of cells) that you really need another paragraph (row).
Most people take some time to appreciate this aspect of the fluid grid system, because
many popular examples show rows and columns in a fixed grid rather than a fluid one,
and therefore lay out the screen in multiple rows.

Next, let’s consider a slightly bigger screen: a tablet, in landscape mode. The property
for this size is sm. Let’s fill the screen width with all three cells in one line. We must use a
width of 4 columns for each, thus specifying sm={4} for these cells. If we had more cells,
then this too would wrap into multiple lines but since we have exactly three, this will fit
the screen in one line.

On larger screens like desktops, we can let each cell continue to occupy 4 columns
each, which doesn’t require any more property specifications. But I think it looks ungainly
if the form controls stretch too much, so let’s reduce the width of the cells using md={3}
and lg={2}. This will cause the trailing columns on larger screens to be unoccupied.

Now, for the contents of each cell in the grid. The most common usage is to use
a FormGroup component that encloses a FormLabel for the label of the control and a
FormControl component for the actual control. A FormControl has a componentClass
property that specifies the component class of the actual element that is rendered, such
as input, select, and textarea. It can even be our own custom class instead of the built-
in HTML elements. The status drop-down fits this pattern, with the options as children of
the FormControl.

The Effort inputs are not that straightforward since they’re made up of two inputs.
We can use an InputGroup to enclose the two FormControls, but by itself, it will cause the
two inputs to show one below the other. The InputGroup.Addon component can be used
to display the inputs next to each other, as well as show the dash between the two inputs.

We’ll use a ButtonToolbar for the set of buttons in the last cell. There is no label for
this, but to align the buttons with the controls, we need an empty label. The code for the
new render() method of IssueFilter is shown in Listing 10-11.

Listing 10-11. IssueFilter.jsx: New render() Method, and Required Imports

...
import { Col, Row, FormGroup, FormControl, ControlLabel, InputGroup,
 ButtonToolbar, Button } from 'react-bootstrap';
...
 render() {
 return (

Chapter 10 ■ reaCt-Bootstrap

220

 <Row>
 <Col xs={6} sm={4} md={3} lg={2}>
 <FormGroup>
 <ControlLabel>Status</ControlLabel>
 <FormControl
 componentClass="select" value={this.state.status}
 onChange={this.onChangeStatus}
 >
 <option value="">(Any)</option>
 <option value="New">New</option>
 <option value="Open">Open</option>
 <option value="Assigned">Assigned</option>
 <option value="Fixed">Fixed</option>
 <option value="Verified">Verified</option>
 <option value="Closed">Closed</option>
 </FormControl>
 </FormGroup>
 </Col>
 <Col xs={6} sm={4} md={3} lg={2}>
 <FormGroup>
 <ControlLabel>Effort</ControlLabel>
 <InputGroup>
 < FormControl value={this.state.effort_gte} 

onChange={this.onChangeEffortGte} />
 <InputGroup.Addon>-</InputGroup.Addon>
 < FormControl value={this.state.effort_lte} 

onChange={this.onChangeEffortLte} />
 </InputGroup>
 </FormGroup>
 </Col>
 <Col xs={6} sm={4} md={3} lg={2}>
 <FormGroup>
 <ControlLabel> </ControlLabel>
 <ButtonToolbar>
 <Button bsStyle="primary" onClick={this.applyFilter}>Apply 

</Button>
 < Button onClick={this.resetFilter} 

disabled={!this.state.changed}>Reset</Button>
 <Button onClick={this.clearFilter}>Clear</Button>
 </ButtonToolbar>
 </FormGroup>
 </Col>
 </Row>
);
 }

The screenshots for very small and small screen sizes are shown in Figure 10-6 and
Figure 10-7, respectively.

Chapter 10 ■ reaCt-Bootstrap

221

Figure 10-6. Filter form in a very small width screen

Figure 10-7. Filter form in a small width screen

Chapter 10 ■ reaCt-Bootstrap

222

EXERCISE: GRID-BASED FORMS

1. Let’s say the cells are larger and you need the cells to (a) on
very small screens, appear one below the other, (b) on small
screens, have a max of two cells per line, (c) on medium
sized screens, together fit the width, and (d) on large screens,
together occupy two-thirds the screen width. What are the
width specifications in this case?

2. although great for mobile devices, the input controls look a
bit oversized on the desktop browser. What can be done to
make them look smaller? hint: Look up the react-Bootstrap
documentation and search for the bsSize property in the
“Forms” section.

answers are available at the end of the chapter.

Inline Forms
Sometimes we want the form controls next to each other, including the labels. This is
ideal for small forms with two or three inputs that can all fit in one line and are closely
related. This style will suit the Issue Add form, even though we don’t have labels.

For the grid-based forms, we didn’t have to enclose the controls or the groups within
a <Form>, since the default behavior of the groups was a vertical layout (one below the
other, including labels). For inline forms, we need a <Form> with the inline property
around the controls. This also comes in handy because we need to set the other attributes
of the form: name and submit handler.

Since we don’t need labels, we can just place the two form controls and a button
one after the other, without a FormGroup. The code for the new IssueAdd component’s
render() method is shown in Listing 10-12.

Listing 10-12. IssueAdd.jsx: New render() Method and Required Imports

...
import { Form, FormControl, Button } from 'react-bootstrap';
...
 render() {
 return (
 <div>
 <Form inline name="issueAdd" onSubmit={this.handleSubmit}>
 <FormControl name="owner" placeholder="Owner" />
 {' '}
 <FormControl name="title" placeholder="Title" />
 {' '}
 <Button type="submit" bsStyle="primary">Add</Button>

Chapter 10 ■ reaCt-Bootstrap

223

 </Form>
 </div>
);
 }

We had to manually add spaces using {' '} since JSX strips out spaces and newlines.
The effect of this change is shown in Figure 10-8. At this point, you should test to ensure
that the add form and the filter forms work as they used to.

EXERCISE: INLINE FORMS

1. say we want to make the form controls look smaller. Where
can we set the bsSize property? hint: In the react-Bootstrap
documentation, look in the “Inline Forms” section.

2. the widths of the two controls are identical, and it seems we
have no control over this because the bsSize property only
affects the height. If we want to show a smaller owner input
and a wider title Input, what can be done? after setting the size,
what difference do you see in very small screens?

answers are available at the end of the chapter.

Figure 10-8. IssueAdd form using inline forms

Chapter 10 ■ reaCt-Bootstrap

224

Horizontal Forms
The next type of form we will explore is the Horizontal Form, where the label appears to
the left of the input, but each field appears one below the other. Typically, the input fills
the parent container until the right edge, giving it an aligned look. Let’s change the Issue
Edit page to use a horizontal form, since this form has a lot of fields and this kind of form
will suit it. Let’s also use the validation states that Bootstrap provides rather than our own
rudimentary method to display validation error in the Date input.

To lay out a horizontal form, first we need a horizontal property on the <Form>
component, and the usual FormGroups that we have used before. But that’s not all; we also
need to specify how much width the label and the input will occupy. For this, we need to
enclose the <ControlLabel> and the <FormControl> with <Col>s and specify the column
width. Since we want it to fill the screen, we won’t use different widths for different screen
sizes, just one specification for the small screen width that splits the label and the input in
some proportion. The grid system will use the same ratio for bigger screen widths. As for
the very small screen width, it will cause it to collapse to a single column. Let’s choose a
3-9 split between the two columns.

Enclosing the <FormControl> with a <Col> works OK, but for a <ControlLabel>, this
does not have the intended effect of right-aligning the label. The suggested method in
the Bootstrap documentation is to set the componentClass of the <Col> to ControlLabel
instead. This has the effect of rendering a single element with the combined classes of a
ControlLabel and a Col for rather than a label within a <div>.

Recall that we can specify our own component classes for the FormInput as well;
this lets us use the custom components NumInput and DateInput where we need them.
To show the invalidity of an input, we need to set the validationState to error in the
FormGroup. The reason we need to do it in the form group rather than the input itself
is that this makes the label stand out and adds other adornments. We’ll just set the
validationState to the string error if we find that the state variable invalidFields
contains this field’s name.

The code for the new render() method and the required import changes are shown
in Listing 10-13.

Listing 10-13. IssueEdit.jsx: Changed render() Method using Horizontal Form

...
import { Link } from 'react-router';
import { FormGroup, FormControl, ControlLabel, ButtonToolbar, Button,
 Panel, Form, Col } from 'react-bootstrap';
...
 render() {
 const issue = this.state.issue;
 const validationMessage = Object.keys(this.state.invalidFields).length 

=== 0 ? null
 : (<div className="error">Please correct invalid fields before 

submitting.</div>);
 return (

Chapter 10 ■ reaCt-Bootstrap

225

 <Panel header="Edit Issue">
 <Form horizontal onSubmit={this.onSubmit}>
 <FormGroup>
 <Col componentClass={ControlLabel} sm={3}>ID</Col>
 <Col sm={9}>
 <FormControl.Static>{issue._id}</FormControl.Static>
 </Col>
 </FormGroup>
 <FormGroup>
 <Col componentClass={ControlLabel} sm={3}>Created</Col>
 <Col sm={9}>
 <FormControl.Static>
 {issue.created ? issue.created.toDateString() : ''}
 </FormControl.Static>
 </Col>
 </FormGroup>
 <FormGroup>
 <Col componentClass={ControlLabel} sm={3}>Status</Col>
 <Col sm={9}>
 <FormControl
 componentClass="select" name="status" value={issue.status}
 onChange={this.onChange}
 >
 <option value="New">New</option>
 <option value="Open">Open</option>
 <option value="Assigned">Assigned</option>
 <option value="Fixed">Fixed</option>
 <option value="Verified">Verified</option>
 <option value="Closed">Closed</option>
 </FormControl>
 </Col>
 </FormGroup>
 <FormGroup>
 <Col componentClass={ControlLabel} sm={3}>Owner</Col>
 <Col sm={9}>
 < FormControl name="owner" value={issue.owner} 

onChange={this.onChange} />
 </Col>
 </FormGroup>
 <FormGroup>
 <Col componentClass={ControlLabel} sm={3}>Effort</Col>
 <Col sm={9}>
 <FormControl
 componentClass={NumInput} name="effort"
 value={issue.effort} onChange={this.onChange}
 />
 </Col>
 </FormGroup>

Chapter 10 ■ reaCt-Bootstrap

226

 <FormGroup validationState={this.state.invalidFields. 
completionDate ? 'error' : null}>

 <Col componentClass={ControlLabel} sm={3}>Completion Date</Col>
 <Col sm={9}>
 <FormControl
 componentClass={DateInput} name="completionDate"
 value={issue.completionDate} onChange={this.onChange}
 onValidityChange={this.onValidityChange}
 />
 <FormControl.Feedback />
 </Col>
 </FormGroup>
 <FormGroup>
 <Col componentClass={ControlLabel} sm={3}>Title</Col>
 <Col sm={9}>
 < FormControl name="title" value={issue.title} 

onChange={this.onChange} />
 </Col>
 </FormGroup>
 <FormGroup>
 <Col smOffset={3} sm={6}>
 <ButtonToolbar>
 <Button bsStyle="primary" type="submit">Submit</Button>
 <LinkContainer to="/issues">
 <Button bsStyle="link">Back</Button>
 </LinkContainer>
 </ButtonToolbar>
 </Col>
 </FormGroup>
 </Form>
 {validationMessage}
 </Panel>
);
 }
}

We enclosed the form within a Panel to make it look more like a form and also give it
a header. Also, instead of a plain Link to go back to the Issue list, we used a Button with a
link style; this lets us align the button and the link. Enclosing this within a LinkContainer
ensures that React-Router gets hold of the href and manipulates the route correctly.
For the non-editable fields ID and Created Date, we used <FormControl.Static>.

The code is testable at this point, but you will find that the date field is not filling the
screen. It also looks quite differently styled from the other inputs; see Figure 10-9.

Chapter 10 ■ reaCt-Bootstrap

227

The reason is that we set the class for the input within DateInput to either null or
invalid, depending on the validation state. Bootstrap would have normally set a class for
the input, and our setting, especially the null, overwrites it.

One option is to replace the className with this.props.className. But we’re unsure
what other properties are being passed through, so it is safer to use {...this.props},
as we did for the NumInput, with one change: we’ll make a copy of the props and delete
the onValidityChange property, since it is an invalid property for <input>. The changes
to DateInput are listed in Listing 10-14.

Listing 10-14. DateInput.jsx: Changes for Passing Through Props

...
 render() {
 const className = (!this.state.valid && !this.state.focused) ? 'invalid'

: null;
 const value = (this.state.focused || !this.state.valid) ? this.state.value
 : this.displayFormat(this.props.value);
 const childProps = Object.assign({}, this.props);
 delete childProps.onValidityChange;
 return (

Figure 10-9. Issue Edit page, with the date input not looking good

Chapter 10 ■ reaCt-Bootstrap

228

 <input
 type="text" size={20} name={this.props.name} className={className}

value={value}
 type="text" {...childProps} value={value}
 placeholder={this.state.focused ? 'yyyy-mm-dd' : null}
 onFocus={this.onFocus} onBlur={this.onBlur} onChange={this.onChange}
 />
);
 }
...

Figure 10-10 shows the new Issue Edit form, with a validation error.

Figure 10-10. Issue Edit form with Bootstrap horizontal forms

Chapter 10 ■ reaCt-Bootstrap

229

Alerts
In this section, we’ll convert all of the messages shown to the user to Bootstrap-styled alerts.

Validations
The first candidate to convert to a Bootstrap-styled alert is the validation message, as seen
in Figure 10-10. We want this to look aligned and styled like the rest of the page. Also, we’ll
be subtler. Since the form field itself shows that something is wrong, we won’t display
the error message until after the user clicks Submit. We’ll also let the user dismiss the
message after they’ve seen it.

React-Bootstraps’s <Alert> component works well for this. It has different styles to
show a message, and it also has the ability to show a Close icon. But its visibility needs
to be handled by us: we should show or not show the message based on a state variable
in IssueEdit. But since the Close icon itself is part of <Alert>, to let that icon make the
message disappear, we have to pass in a handler that modifies the visibility state. We can
use the onDismiss property to achieve this.

By default, the message won’t be shown (the initial showing state is false). When the
user clicks on Submit, we’ll force the message to be shown (by setting the state to true).
We’ll also hide the message if there are no errors. Thus, a combination of there being
errors and the visibility state will show the message.

For alignment, let’s make the validation message appear right below the button
toolbar, inside a form group. The changes to IssueEdit for the validation message
handing are shown in Listing 10-15.

Listing 10-15. IssueEdit.jsx: Changes for Using Alert for a Validation Message

...
import { FormGroup, FormControl, ControlLabel, ButtonToolbar, Button,
 Panel, Form, Col, Alert } from 'react-bootstrap';
...
 this.state = {
 issue: {
 _id: '', title: '', status: '', owner: '', effort: null,
 completionDate: null, created: null,
 },
 invalidFields: {}, showingValidation: false,
 };
 this.dismissValidation = this.dismissValidation.bind(this);
 this.showValidation = this.showValidation.bind(this);
...
 onSubmit(event) {
 event.preventDefault();
 this.showValidation();
...

Chapter 10 ■ reaCt-Bootstrap

230

 showValidation() {
 this.setState({ showingValidation: true });
 }

 dismissValidation() {
 this.setState({ showingValidation: false });
 }
...
 render() {
 const issue = this.state.issue;
 const validationMessage = Object.keys(this.state.invalidFields).length

=== 0 ? null
 : (<div className="error">Please correct invalid fields before

submitting.</div>);
 let validationMessage = null;
 if (Object.keys(this.state.invalidFields).length !== 0 

&& this.state.showingValidation) {
 validationMessage = (
 <Alert bsStyle="danger" onDismiss={this.dismissValidation}>
 Please correct invalid fields before submitting.
 </Alert>
);
 }
...
 </FormGroup>
 <FormGroup>
 <Col smOffset={3} sm={9}>{validationMessage}</Col>
 </FormGroup>
 </Form>
 {validationMessage}
...

This is a good time to get rid of the styles in index.html that we had used to show
validation errors and style the messages. This is shown in Listing 10-16.

Listing 10-16. index.html: Obsolete Styles Removed

...
 <style>
 input.invalid {border-color: red;}
 div.error {color: red;}
 .panel-title a {display: block; width: 100%; cursor: pointer; }
 </style>
...

When you try this out, you should see validation message for invalid entries in the
date fields, as in Figure 10-11. Do also try out correcting the error and submitting the form
to ensure the positive path works as before.

Chapter 10 ■ reaCt-Bootstrap

231

Results
Let’s now look at result messages, that is, the reporting of successes and failures. Since we
need to do this in multiple pages, let’s create a new custom component for this that can
be reused in any page that needs to show result messages.

These messages are intended to be unobtrusive, so let’s make them disappear after
a few seconds automatically rather than make the user close them. We’ll also let the
messages overlay the page as well as transition in and out like the Toast messages in the
Android OS.

We’ll use a visible state, just as in the previous section, that determines whether the
alert is shown or not. To achieve an automatic close of the alert, we must install a timer
that calls the onDismiss handler after a few seconds. We must also reinstall the timer
when any property (for example, the message) changes. To achieve a smooth fading-in
transition, we will enclose the <Alert> inside a <Collapse> component that’s provided by
React-Bootstrap for this purpose and use its in property to control the visibility.

The new component will support the properties showing (to control visibility),
onDismiss (the dismiss handler), bsStyle (to control the style, such as success and error),
and message (the message to be shown). Let’s put the new component with all this in a
new file called Toast.jsx, the code for which is shown in Listing 10-17.

Listing 10-17. Toast.jsx: New Reusable Alert Component

import React from 'react';
import { Alert, Collapse } from 'react-bootstrap';

export default class Toast extends React.Component {
 componentDidUpdate() {
 if (this.props.showing) {

Figure 10-11. Validation message using alerts

Chapter 10 ■ reaCt-Bootstrap

232

 clearTimeout(this.dismissTimer);
 this.dismissTimer = setTimeout(this.props.onDismiss, 5000);
 }
 }

 componentWillUnmount() {
 clearTimeout(this.dismissTimer);
 }

 render() {
 return (
 <Collapse in={this.props.showing}>
 <div style={{ position: 'fixed', top: 30, left: 0, right: 0,

textAlign: 'center' }}>
 <Alert
 style={{ display: 'inline-block', width: 500 }} 

bsStyle={this.props.bsStyle}
 onDismiss={this.props.onDismiss}
 >
 {this.props.message}
 </Alert>
 </div>
 </Collapse>
);
 }
}

Toast.propTypes = {
 showing: React.PropTypes.bool.isRequired,
 onDismiss: React.PropTypes.func.isRequired,
 bsStyle: React.PropTypes.string,
 message: React.PropTypes.any.isRequired,
};

Toast.defaultProps = {
 bsStyle: 'success',
};

Note that we’re using inline styles rather than a class and style specification in a
CSS file or <style> section. This is actually in keeping with the philosophy of React:
everything required for a component is within the component. I find that maintaining
this component is easier if the style specification is inline, mainly because I don’t have
to search for the CSS file where the class is defined and make a change to, say, the width
of the alert. Some have taken this approach to the next level (search for CSS in JS on
the Internet to find some interesting discussions on this topic), and until very recently,
Material-UI fully embraced this approach.

Chapter 10 ■ reaCt-Bootstrap

233

But this technique has its limitations. For one, you need to make a distinction
between themes and individual styles. Style consists of things like alignment, margins,
sizes, etc., and is localized. Themes, on the other hand, need to be controlled globally. If
you do adopt the inline-styles approach, you need global variables that can be referred to
by the inline styles.

For example, if the position from top is something that someone other than the
owner of the component needs to be able to change, it can’t be an inline style. This can
happen because a designer (who is different from the programmer) is in charge of these
decisions. Or, it could be that component itself is part of a library, and the user of the
library needs this flexibility. The hard part is deciding which style elements need to be
controlled externally and how to account for them. I suggest you start with inline styles
and as your project gets bigger, you’ll realize which are the elements that need global or
external control, and you can then start separating them out into theme CSS in JS or add
class names as you deem fit.

For now, we’ll leave it as inline styles because that seems most convenient (compare
this to the class we had for styling the validation errors, and almost forgot removing the
unnecessary styles from index.html).

To use the new component, we’ll make changes in the IssueEdit and IssueList
components. First, we’ll place the Toast component somewhere in the page (it doesn’t
matter where because its position is fixed); add state variables for its visibility, message,
and style; and methods to show and dismiss the alert message. Then, we’ll replace all the
alerts with Toast messages. These changes for IssueEdit are shown in Listing 10-18.

Listing 10-18. IssueEdit.jsx: Changes Replacing Alert with Toast

...
import Toast from './Toast.jsx';
...
 constructor() {
 super();
 this.state = {
 issue: {
 _id: '', title: '', status: '', owner: '', effort: null,
 completionDate: null, created: null,
 },
 invalidFields: {}, showingValidation: false,
 toastVisible: false, toastMessage: '', toastType: 'success',
 };
 this.dismissValidation = this.dismissValidation.bind(this);
 this.showValidation = this.showValidation.bind(this);
 this.showSuccess = this.showSuccess.bind(this);
 this.showError = this.showError.bind(this);
 this.dismissToast = this.dismissToast.bind(this);
 this.onChange = this.onChange.bind(this);
 this.onValidityChange = this.onValidityChange.bind(this);
 this.onSubmit = this.onSubmit.bind(this);
 }

Chapter 10 ■ reaCt-Bootstrap

234

...
 onSubmit(event) {
...
 this.setState({ issue: updatedIssue });
 alertthis.showSuccess('Updated issue successfully.');
 });
 } else {
 response.json().then(error => {
 alertthis.showError(`Failed to update issue: ${error.message}`);
 });
 }
 }).catch(err => {
 alertthis.showError(`Error in sending data to server: ${err.message}`);
 });
 }
...
 loadData() {
...
 this.setState({ issue });
 });
 } else {
 response.json().then(error => {
 alertthis.showError(`Failed to fetch issue: ${error.message}`);
 });
 }
 }).catch(err => {
 alertthis.showError(`Error in fetching data from server: 

${err.message}`);
 });
 }
...
 showSuccess(message) {
 this.setState({ toastVisible: true, toastMessage: message, 

toastType: 'success' });
 }

 showError(message) {
 this.setState({ toastVisible: true, toastMessage: message, 

toastType: 'danger' });
 }

 dismissToast() {
 this.setState({ toastVisible: false });
 }
...
 </Form>
 <Toast

Chapter 10 ■ reaCt-Bootstrap

235

 showing={this.state.toastVisible} 
message={this.state.toastMessage}

 onDismiss={this.dismissToast} bsStyle={this.state.toastType}
 />
 </Panel>
...

There are similar changes in IssueList, except that we don’t have any success
messages, so we’ve skipped the showSuccess method. The changes for IssueList are
shown in Listing 10-19.

Listing 10-19. IssueList.jsx: Changes Replacing Alert with Toast

...
import Toast from './Toast.jsx';
...
 constructor() {
 super();
 this.state = {
 issues: [],
 toastVisible: false, toastMessage: '', toastType: 'success',
 };

 this.createIssue = this.createIssue.bind(this);
 this.setFilter = this.setFilter.bind(this);
 this.deleteIssue = this.deleteIssue.bind(this);
 this.showError = this.showError.bind(this);
 this.dismissToast = this.dismissToast.bind(this);
 }
...
 showError(message) {
 this.setState({ toastVisible: true, toastMessage: message, toastType:

'danger' });
 }

 dismissToast() {
 this.setState({ toastVisible: false });
 }
...
 loadData() {
 fetch(`/api/issues${this.props.location.search}`).then(response => {
 if (response.ok) {
 ...
 } else {
 response.json().then(error => {
 alertthis.showError(`Failed to fetch issues ${error.message}`);
 });
 }

Chapter 10 ■ reaCt-Bootstrap

236

 }).catch(err => {
 alertthis.showError(`Error in fetching data from server: ${err}`);
 });
 }
...
 createIssue(newIssue) {
 fetch('/api/issues', {
 ...
 }).then(response => {
 if (response.ok) {
 ...
 } else {
 response.json().then(error => {
 alertthis.showError(`Failed to add issue: ${error.message}`);
 });
 }
 }).catch(err => {
 alertthis.showError(`Error in sending data to server: ${err.message}`);
 });
 }
...
 render() {
 return (
 <div>
 ...
 <IssueAdd createIssue={this.createIssue} />
 <Toast
 showing={this.state.toastVisible} 

message={this.state.toastMessage}
 onDismiss={this.dismissToast} bsStyle={this.state.toastType}
 />
 </div>
);
 }
...

Now that we’ve rid the application of alert() messages, we can now remove the
exception rule that we had in .eslintrc in the client-side code directory. This change is
shown in Listing 10-20.

Listing 10-20. src/.eslintrc: Remove Exception for Alert

{
 "env": {
 "browser": true
 },
 "rules": {

Chapter 10 ■ reaCt-Bootstrap

237

 "no-alert": ["off"]
 }
}

An error message can be caused by clicking Add Issue with the input fields as blank.
A success message can be tested by saving an issue in the Edit page; see Figure 10-12. An
error message will look similar, with a red background instead.

Modals
In this section, we’ll replace the in-page IssueAdd component with a modal dialog that
is launched by clicking the Create Issue navigation item in the header. This is so that the
user can create an issue from anywhere in the application, not just the Issue List page.
Further, when the new issue is submitted, we’ll show the newly created issue in the Issue
Edit page, because this can be done regardless of where the dialog was launched from.
Instead of a Modal dialog, the Create Issue can also be a separate page. But a Modal works
better when the number of required fields is small; the user can quickly create the issue
and later fill up more information if required.

When a Modal is rendered, it is rendered outside the main <div> of the DOM that
holds the rest of the page. Thus, in terms of code placement, it can be placed anywhere
in the component hierarchy. In order to launch or dismiss the Modal, the Create Issue
navigation item is the controlling component. So, let’s create a component that is self-
contained: it displays the navigation item, launches the dialog and also controls its
visibility, creates the issue, and routes to the issue edit page on a successful creation.

Figure 10-12. Successful Toast on saving an issue

Chapter 10 ■ reaCt-Bootstrap

238

At the root of the component is a <NavItem>. In addition to the icon and text, this
will also contain a <Modal> as one of its children. As discussed, placement of the Modal
doesn’t matter because when it is rendered, it is taken out of its original placement and
rendered near the root of the DOM. The visibility of the Modal is controlled by a state
variable: showing. The <NavItem>’s onClick will set this state to true, and the Modal’s
onHide handler will set it to false.

Within the Modal are three sections: the header, the body, and the footer. We’ll place
a title in the header, and enable the Close button on the header using the closeButton
property. The body will contain the form, a regular vertical form. The footer will contain
a button toolbar for Submit and Cancel. To handle the submit, we’ll move the code from
IssueList to this component. On success, we’ll navigate to the edit page of the newly
created issue, based on its ID.

Finally, we also need to show error messages, so let’s include a Toast within the
<NavItem>, along with the required state variables and handlers as we’ve done in the
previous sections. The entire code for this new component, called IssueAddNavItem, is
shown in Listing 10-21.

Listing 10-21. IssueAddNavItem.jsx: New Component for Create Issue

import React from 'react';
import { withRouter } from 'react-router';
im port { NavItem, Glyphicon, Modal, Form, FormGroup, FormControl, 
ControlLabel, Button, ButtonToolbar } from 'react-bootstrap';

import Toast from './Toast.jsx';

class IssueAddNavItem extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 showing: false,
 toastVisible: false, toastMessage: '', toastType: 'success',
 };
 this.showModal = this.showModal.bind(this);
 this.hideModal = this.hideModal.bind(this);
 this.submit = this.submit.bind(this);
 this.showError = this.showError.bind(this);
 this.dismissToast = this.dismissToast.bind(this);
 }

 showModal() {
 this.setState({ showing: true });
 }

 hideModal() {
 this.setState({ showing: false });
 }

Chapter 10 ■ reaCt-Bootstrap

239

 showError(message) {
 t his.setState({ toastVisible: true, toastMessage: message, 

toastType: 'danger' });
 }

 dismissToast() {
 this.setState({ toastVisible: false });
 }

 submit(e) {
 e.preventDefault();
 this.hideModal();
 const form = document.forms.issueAdd;
 const newIssue = {
 owner: form.owner.value, title: form.title.value,
 status: 'New', created: new Date(),
 };
 fetch('/api/issues', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify(newIssue),
 }).then(response => {
 if (response.ok) {
 response.json().then(updatedIssue => {
 this.props.router.push(`/issues/${updatedIssue._id}`);
 });
 } else {
 response.json().then(error => {
 this.showError(`Failed to add issue: ${error.message}`);
 });
 }
 }).catch(err => {
 this.showError(`Error in sending data to server: ${err.message}`);
 });
 }

 render() {
 return (
 <NavItem onClick={this.showModal}><Glyphicon glyph="plus" /> Create Issue
 <Modal keyboard show={this.state.showing} onHide={this.hideModal}>
 <Modal.Header closeButton>
 <Modal.Title>Create Issue</Modal.Title>
 </Modal.Header>
 <Modal.Body>
 <Form name="issueAdd">
 <FormGroup>
 <ControlLabel>Title</ControlLabel>

Chapter 10 ■ reaCt-Bootstrap

240

 <FormControl name="title" autoFocus />
 </FormGroup>
 <FormGroup>
 <ControlLabel>Owner</ControlLabel>
 <FormControl name="owner" />
 </FormGroup>
 </Form>
 </Modal.Body>
 <Modal.Footer>
 <ButtonToolbar>
 < Button type="button" bsStyle="primary" 

onClick={this.submit}>Submit</Button>
 <Button bsStyle="link" onClick={this.hideModal}>Cancel</Button>
 </ButtonToolbar>
 </Modal.Footer>
 </Modal>
 <Toast
 showing={this.state.toastVisible} message={this.state.toastMessage}
 onDismiss={this.dismissToast} bsStyle={this.state.toastType}
 />
 </NavItem>
);
 }
}

IssueAddNavItem.propTypes = {
 router: React.PropTypes.object,
};

export default withRouter(IssueAddNavItem);

Let’s take a closer look at injecting the router property. Firstly, we did not use export
default as we would normally do in the class definition:

...
class IssueAddNavItem extends React.Component {
...

This means that the class is not exported. Instead, we imported React-Router’s
withRouter function, and used it to create a new component based on this component,
and export that instead:

...
import { withRouter } from 'react-router';
...
export default withRouter(IssueAddNavItem);
...

Chapter 10 ■ reaCt-Bootstrap

241

This is similar to the withRouter usage within App.jsx to wrap IssueList, but this
time we wrapped the component before exporting it. This ensures that the caller doesn’t
have to be aware of the fact that the component requires a router, and the usage of router
is encapsulated within the component.

To use this new component, we’ll modify the navigation bar, and use it in place of the
<NavItem>. This change is shown in Listing 10-22.

Listing 10-22. App.jsx: Use IssueAddNavItem Instead of NavItem

...
import IssueAddNavItem from './IssueAddNavItem.jsx';
...
 <Nav pullRight>
 <NavItem><Glyphicon glyph="plus" /> Create Issue</NavItem>
 <IssueAddNavItem />
 < NavDropdown id="user-dropdown" 

title={<Glyphicon glyph="option-horizontal" />} noCaret>
...

Finally, we can now remove the IssueAdd component itself (no listing shown), and
delete the code in IssueList that displays the inline form and the handler for adding an
issue (these changes are shown in Listing 10-23).

Listing 10-23. IssueList.jsx: Removal of Issue Add Code

...
import IssueAdd from './IssueAdd.jsx';
...
 this.createIssue = this.createIssue.bind(this);
...
 createIssue(newIssue) {
 fetch('/api/issues', {
 ...
 });
 }
...
 < IssueTable issues={this.state.issues} 

deleteIssue={this.deleteIssue} />
 <IssueAdd createIssue={this.createIssue} />
 <Toast
...

Figure 10-13 shows the Create Issue modal dialog.

Chapter 10 ■ reaCt-Bootstrap

242

EXERCISE: MODALS

1. In the inline form version, we had to clear out the inputs after
the form add button was clicked. We didn’t have to do the same
in the Modal. Why? hint: Inspect the DoM and locate the Modal
both when it’s visible and hidden.

2. We added a property called keyboard to the Modal. What
effect does this have? hint: Look in the react-Bootstrap
documentation under Modals.

answers are available at the end of the chapter.

Summary
Adding styles and themes to an application in a MERN stack is no different from any
other stack because the important part is the CSS and how styles are handled by various
browsers. And they don’t vary depending on the chosen stack. Bootstrap, a pioneer in this
area, gave us browser independence and a responsive behavior out of the box. React-
Bootstrap replaced the separate JavaScript code that dealt with the Bootstrap elements,
and gave us self-contained components.

Figure 10-13. Create Issue Modal dialog

Chapter 10 ■ reaCt-Bootstrap

243

We could have used Material-UI or any other framework to achieve what was
required, but the take-away from this chapter should be a peek into how we can design
our own reusable UI components if and when required

At this point in time, the application may look complete except for some advanced
features. But if the application were something that we must let search engine bots
index the pages naturally, we need to be able to serve the pages right from the server,
as they would appear finally. In the next chapter, we’ll learn how to do this and, more
importantly, how to do this using the same code base on the client as well as the server.

Answers to Exercises
Exercise: Navigation
 1. A plain NavItem with a href looks OK, but it doesn’t

automatically highlight the current route. This is because
React-Bootstrap doesn’t know which of the links is active.
If we need to do it, we must handle it ourselves by using
activeHref attribute of the Nav component, or setting active
property of the NavItem by matching it with the URL. react-
router-bootstrap automated all this in the LinkContainer
component.

Another consequence of not using Link or LinkContainer is
that a regular <a href...> causes the page to reload rather than
replace the contents section of the app. This is because React
Router does not know about the transition, and the browser does
the reload of the page for the new URL that has been selected.

Exercise: Grid-Based Forms
 1. If the cells were larger, a specification of xs={12} sm={6}

md={4} lg={3} would work best. On very small and small
screens, you’ll see multiple lines, and on medium and large
screens, the cells will fit into a single line.

 2. To make the controls look smaller, we can use the
bsSize="small" property on the FormGroups. But this does
not work for buttons; we must specify the property for each
button instead.

Exercise: Inline Forms
 1. The bsSize="small" property can only be set on a FormGroup.

If we want smaller looking controls, we must wrap the
form controls within a FormGroup component, without a
ControlLabel. For the button, we can set the style in the
Button component itself.

Chapter 10 ■ reaCt-Bootstrap

244

 2. To specify an exact width, you must use an inline style, such
as style={{ width: 300 }}. Without a width specification,
the control fills the width of the screen on very small screens.
With a width, it takes the width specified on all screen sizes.
In effect, if we do set the width, it’s better to set the size on all
controls rather than some.

Exercise: Modals
 1. Every time the Modal is dismissed, the component is

destroyed, and recreated whenever the Modal is launched.
This is different from a <Collapse>, which uses a display:
none style to hide itself. Thus, on recreation of the Modal
element, the input fields are recreated as well and have no
initial value. Whereas in the inline form, the input fields were
not recreated, so we had to clear them out ourselves.

 2. The property keyboard on the Modal lets the user press the
Escape key to dismiss the modal dialog.

245© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_11

CHAPTER 11

Server Rendering

In this chapter, we’ll explore another cornerstone of React, the ability to generate HTML
on the server in addition to being able to render directly to the DOM. This lets you create
isomorphic applications, that is, applications that use the same code base on the server as
well as the client to do either task: render to the DOM or create HTML.

One of the benefits of server rendering is that it improves the performance and thus
the user experience. But the real need for it is when you want your application to be
indexed by search engines. Search engine bots typically start from the root URL (/) and
then traverse all the hyperlinks present in the HTML that the root URL returns. They do
not execute JavaScript to fetch data via Ajax calls and look at the resulting DOM. So, if you
want pages from your application to be properly indexed by search engines, you need to
serve the exact same HTML that will result after the Ajax call in componentDidMount()
calls.

For example, if a request is made directly to /issues, you must return HTML with
the list of issues in the table prepopulated. The same goes for all other pages that can be
bookmarked or have a hyperlink pointing to them. At the end of this chapter, the Issue
Tracker application will have both the Issue List page and the Issue Edit page capable of
being rendered on the server, using the same code base, that is, isomorphic.

A note of caution: not all applications need server rendering. If your application does
not need to be indexed by search engines, the complexity introduced by server rendering
can be avoided. The performance benefits alone do not justify server rendering.

Basic Server Rendering
The key API that React provides to let you render at the server is renderToString().
Although the API itself is a simple one, the changes that we need to do to use it are not.
So, before we add server rendering capabilities to all the components in the Issue Tracker
application, let’s use a simple Hello World component so that we get familiar with the
fundamentals. The code for the very basic Hello World component is shown in Listing 11-1,
and we’ll use this component to start exploring server rendering.

Chapter 11 ■ Server rendering

246

Listing 11-1. HelloWorld.jsx: Hello World Component for Server Rendering

import React from 'react';

export default function HelloWorld() {
 return (
 <h1>Hello World!</h1>
);
}

Initiating the render is different on the client and the server, so let’s create a new
entry point that is specific to the client alone, and place it in a new directory, client. The
entry point, Client.jsx, is shown in Listing 11-2.

Listing 11-2. Client.jsx: New Entry Point for Client

import 'babel-polyfill';
import React from 'react';
import ReactDOM from 'react-dom';

import HelloWorld from '../src/HelloWorld.jsx';

const contentNode = document.getElementById('contents');
ReactDOM.render(<HelloWorld />, contentNode);

if (module.hot) {
 module.hot.accept();
}

On the server side, we can call renderToString() to render the same component,
HelloWorld. This will give us an HTML string representation of the rendered component.
But we also need to place it inside the <div> with ID contents in index.html before
we send it to the client. So, let’s make a template out of index.html that can accept the
contents of the <div> and return the complete HTML. Powerful templating languages
such as pug (earlier known as jade) can be used for this, but our requirement is quite
simple, so we’ll just use the ES2015 template strings feature. Let’s place this function in a
file called template.js under the server directory. The entire code for this file is shown in
Listing 11-3.

Listing 11-3. template.js: A Templated Version of index.html

export default function template(body) {
return `<!DOCTYPE HTML>
<html>
<head>
 <meta charset="UTF-8" />
 <title>Pro MERN Stack</title>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <link rel="stylesheet" href="/bootstrap/css/bootstrap.min.css" >

Chapter 11 ■ Server rendering

247

 <style>
 .panel-title a {display: block; width: 100%; cursor: pointer; }
 </style>
</head>

<body>
 <div id="contents">${body}</div> 
 <!-- this is where our component will appear -->
 <script src="/vendor.bundle.js"></script>
 <script src="/app.bundle.js"></script>
</body>

</html>
`;
}

As you can see, the function just returns the original contents of index.html,
with the variable ${body} within the <div> contents. We can now delete the original file,
index.html (there’s no listing shown for this).

As for server-side routing, we can no longer match all requests and return
index.html from the static directory. We should be able to match specific paths and
return the components rendered using the new template. Let’s put all the server
rendering and routing code in a separate file under the server directory and call it
renderedPageRouter.jsx. Note that we’re assigning it a .jsx extension since we’ll be
putting JSX code to initiate the render, in the form of the <HelloWorld> component. The
contents of this new file are shown in Listing 11-4.

Listing 11-4. renderedPageRouter.jsx: New Server-Side Rendering and Routing File

import React from 'react';
import { renderToString } from 'react-dom/server';
import Router from 'express';

import HelloWorld from '../src/HelloWorld.jsx';
import template from './template.js';

const renderedPageRouter = new Router();

renderedPageRouter.get('*', (req, res) => {
 const html = renderToString(<HelloWorld />);
 res.send(template(html));
});

export default renderedPageRouter;

Chapter 11 ■ Server rendering

248

React’s renderToString() API is available not directly from react-dom but from
a subdirectory called server, so the import statement used that subdirectory. Server
rendering is as simple as calling this API to get the HTML for the rendered component,
and then using the template to build the complete HTML to send back to the client.

For now, we’ll using a “*” match, that is, something that matches any request. Unlike
the previous express routes that took the form app.get(), etc., we are now creating a
router instance to which we can attach multiple routes as we did in the app. The Express
Router documentation says you can think of a Router instance as a mini-application
capable of performing only routing and middleware functions. Since the router behaves
like a middleware instance, you can just use it in an application’s use() method.

And that’s just what we’ll do. We’ll replace the catch-all route in server.js with a
use() method for the new router. The changes in server.js are shown in Listing 11-5.

Listing 11-5. server.js: Changes to Separate Out Server Rendering

...
import path from 'path';
...
import renderedPageRouter from './renderedPageRouter.jsx';
...
app.get('*', (req, res) => {
 res.sendFile(path.resolve('static/index.html'));
});
app.use('/', renderedPageRouter);
...

To put all this to work, we also need a few changes to the build process. First, we
need a change to the webpack configuration: the entry point for initiating the application
bundle is now Client.jsx. Further, the dev-server needs to proxy all requests to the
back-end server, not just API calls. This is because we’ll be receiving calls to other URLs
such as /issues as well, and we will want to return a prefilled page rather than the
contents of index.html. This also means that static files in the static directory will no
longer be served by the dev-server directly; instead, they will be routed to the Express
server. This is really OK because all the static content now will come from libraries such
as bootstrap, which will be cached by the browser anyway. See Listing 11-6.

Listing 11-6. webpack.config.js: Changes for New Entry Point and dev Server

...
 entry: {
 app: './src/App.jsx',
 app: './client/Client.jsx',
 vendor: ['react', 'react-dom', 'whatwg-fetch'],
 },
...
 devServer: {

Chapter 11 ■ Server rendering

249

 ...
 proxy: {
 '/api/*': {
 '**': {
 target: 'http://localhost:3000',
 },
 },
...

At this point, the start_hook way of starting the server works, with just one change
to include the react preset (since we now have React components on the server side as
well), as shown in Listing 11-7.

Listing 11-7. start_hook.js: Include React Preset

require('babel-register')({
 presets: ['es2015-node4', 'react'],
});

require('./server.js');

But we’ll also need to tell nodemon to watch for changes to the src directory in
addition, because any change in that directory also affects the server side code now onwards.

For production, we’d either have to include the react preset when compiling the
server-side files using babel, or create a bundle just like in the client side. It turns out
that it’s not enough to compile the server-side files; we also need to compile all the React
components, since they are also now part of the dependency tree. Thus, creating a bundle
works best, even for the server. But we’ll leave this for a later section and use the start
hook method of running the server for now, and remove the other methods. All these
changes are in package.json, as shown in Listing 11-8.

Listing 11-8. package.json: Changes for start-hook to Restart on Client Code Changes,
Disable babel Method

...
 "scripts": {
 "start": "nodemon -w dist dist/server.js",
 "compile-server": "babel server --presets es2015-node4 --out-dir dist 

--source-maps",
 "watch-server": "babel server --presets es2015-node4 --out-dir dist 

--source-maps --watch",
 "start-hook": "nodemon -e js,jsx -w server server/start_hook.js",
 "start-hook": "nodemon -e js,jsx -w server,src server/start_hook.js",
 "compile": "webpack",
 "watch": "webpack-dev-server --hot --inline",
 "dev-all": "npm run watch & npm run watch-server & npm start",
 "dev-all-hook": "npm run watch & npm run start-hook",
...

Chapter 11 ■ Server rendering

250

Now, browsing to any URL (since we matched all routes) should show a message
like in Figure 11-1. Further, changes to HelloWorld.jsx should reflect in the browser
automatically.

To ensure that you are getting the message prefilled from the server, take a look at the
Network tab of the developer console in the browser and inspect the contents of initial
response. Alternatively, you can use curl to make a request to the local server and see that
the string Hello World! is indeed part of the response HTML.

Handling State
The Hello World component is trivial. It doesn’t have things like state and data fetch from
the server like the React components that need data from the server. (IssueList and
IssueEdit). So, let’s simulate what really happens in those components. Essentially, they
start with an empty state. They then make an Ajax call to get the initial state and rerender
the view with the state when the initial state is available.

We’ll modify HelloWorld so that it takes in a message as a state parameter and
displays that while rendering. Further, we’ll start with an empty state and fill the state
using an asynchronous call in the componentDidMount() method. Now, for server
rendering, let’s just hard-code this value to the same as that in the client. Let’s pass
this state via props to the component when rendering from the server whereas, when
rendering from client, we’ll assume that the asynchronous call will do the needful.
Therefore, we won’t pass any props from the client, but we’ll set the default to an
empty state.

The new component is shown in Listing 11-9.

Figure 11-1. Hello World rendered from server

Chapter 11 ■ Server rendering

251

Listing 11-9. HelloWorld.jsx: Stateful Component with Props for Server Rendering
Initial State

import React from 'react';

export default class HelloWorld extends React.Component {
 constructor(props) {
 super(props);
 this.state = Object.assign({}, this.props);
 }

 componentDidMount() {
 setTimeout(() => {
 this.setState({ addressee: 'Universe' });
 }, 100);
 }

 render() {
 return (
 <h1>Hello {this.state.addressee}!</h1>
);
 }
}

HelloWorld.propTypes = {
 addressee: React.PropTypes.string,
};

HelloWorld.defaultProps = {
 addressee: '',
};

The state variable has a single key, addressee, which we are using to parametrize
whom we’re saying Hello to. We’ll pass ‘Universe’ as the addressee from the server, and in
the simulated Ajax call (which is just a setTimeout() call). The corresponding changes in
server rendering is shown in Listing 11-10.

Listing 11-10. renderedPageRouter.jsx

renderedPageRouter.get('*', (req, res) => {
 const initialState = { addressee: 'Universe' };
 const html = renderToString(<HelloWorld {...initialState} />);
 res.send(template(html));
});

On testing this, you can see that the page appears correctly, but there’s a flash (if
you miss this, you can try increasing the milliseconds parameter in the setTimeout()
call). If you inspect the network traffic and look at the HTML response, you can indeed

Chapter 11 ■ Server rendering

252

see that the server is sending out ‘Universe’ as part of the HTML response, but the initial
rendering shows only a blank addressee! You can confirm this by commenting out
componentDidMount() method; you’ll find that the addressee is always blank.

On closer inspection, you’ll also see an error in the console, as in Figure 11-2.

As the error indicates, it appears that React tried to render the component on the
client side, but found that this resulted in something different from what was sent from
the server. What’s more, it rejected the server rendering and replaced it with what it
thought was the correct DOM generated using ReactDom.render() at the client. We’ll
address this in the next section.

Initial State
The error in the previous section really means this: we need to ensure that the initial
rendering on the client matches the page rendered at the server. The most common way
to do this is to send the initial state also to the client along with the rendered page. Now,
when the component is rerendered for the first time at the client, it uses this state, which
results in the same DOM as is sent from the server so that React doesn’t see a problem
with it.

To send the state to the client, we need to create a <script> section in the template
and set a variable in that script that holds the initial state. The client rendering can now
pass this state as the props to HelloWorld, just like it is done on the server. The first

Figure 11-2. Error in console and the initial state from the server is rejected

Chapter 11 ■ Server rendering

253

change we’ll make is to the template, which will now take two parameters: one for the
body and another for the script. The changed template function is shown in Listing 11-11.

Listing 11-11. template.js: Changes to Include a Script in the Template

...
export default function template(body, initialState) {
...
<body>
 <div id="contents">${body}</div> 
 <!-- this is where our component will appear -->
 <script>window.__INITIAL_STATE__ = ${JSON.stringify(initialState)}; 
</script>

 <script src="/vendor.bundle.js"></script>
 <script src="/app.bundle.js"></script>
</body>
...

We’ve named the initial state variable as something unique (with leading and
trailing double underscores) because it has to reside in the global namespace. Now, while
rendering on the server, we can pass the initial state to the template to generate HTML
that includes it as a script. This change is shown in Listing 11-12.

Listing 11-12. renderedPageRouter.jsx: Changes for Including Initial State in the
Template

...
renderedPageRouter.get('*', (req, res) => {
 const initialState = { addressee: 'Universe' };
 const html = renderToString(<HelloWorld {...initialState} />);
 res.send(template(html, initialState));
});
...

In Client.jsx, when we carry out the initial render, we can pass in the initial state
that we received as part of the script. The changes for this are shown in Listing 11-13, which
includes an ESlint rule exception since we have underscores around the variable name.

Listing 11-13. Client.jsx: Pass Initial State as Props from Client Also

...
/* eslint no-underscore-dangle: 0 */
ReactDOM.render(<HelloWorld {...window.__INITIAL_STATE__} />, contentNode);
...

On testing this set of changes, you’ll find that the error message and the flash are
now gone. A look at the response from the server using the network inspection tool will
confirm that in addition to the <div> being populated, you also have a script that holds
the initial state.

Chapter 11 ■ Server rendering

254

 ■ Note the use of a script will not work if there is any string in the initial state that has
</script> in it, because this will end up terminating the script tag. an alternative some
people use to work around this is to use another <div>, which is hidden to hold the contents
of the stringified initial state. this string must to be parsed using JSON.parse() before use,
though.

Server-Side Bundle
For production use, we cannot use the require hook. We need to precompile the server
code. The babel compiler that we used until now is not convenient, since it does not
manage dependencies, which are now getting larger. So, let’s use webpack as we did in
the client code to bundle the server code as well. We’ll use a different configuration file,
webpack.server-config.js, for this because the server configuration for webpack has to
be different.

One difference between the client and the server is that we had to bundle the
third-party libraries in a separate vendor bundle, whereas on the server we have these
libraries already installed. We don’t really need a bundle for them. Also, as in the client,
we included two bundles in index.html, but there is no way to do that in the server
because there is no encompassing index.html. We have to start the server with a single
script: the application code bundle.

In the production environment, having the entire code in a single bundle or multiple
bundles will not make any difference because the code will be loaded only once. But
during development, creating the entire bundle every time we change the server code
(or even the client code, since it is now part of the bundle) is going to be a hassle. So, let’s
separate the vendor and application code even for the server.

Just like specifying which files can go into a separate bundle, webpack lets you
declare some dependencies as external. This tells webpack that these dependencies don’t
need to be included in the bundle, and the regular require() statement will resolve it
as an installed module dependency. Rather than specify each external module that the
server code depends on, we’ll just use a pattern to say that anything that is not imported
as a local dependency (that is, starting with ‘./’) can be considered an external. We’ll use a
simple a-z regex for this to say that any import statement with the module name starting
with the characters a-z is an external module.

We also have to include a target entry to indicate that the output is meant to
be run using Node.js (the default is browser, that’s why we didn’t have to do this for the
client-side bundle), and a resolve.extensions parameter to indicate that .jsx files also
are dependencies since the default does not include it. The webpack server configuration
file is shown in Listing 11-14.

Listing 11-14. webpack.server-config.js: Webpack Configuration for Bundling Server

module.exports = {
 target: 'node',
 entry: './server/server.js',

Chapter 11 ■ Server rendering

255

 output: {
 path: './dist',
 filename: 'server.bundle.js',
 libraryTarget: 'commonjs',
 },
 resolve: {
 extensions: ['', '.js', '.jsx'],
 },
 externals: [/^[a-z]/],
 module: {
 loaders: [
 {
 test: /\.jsx$/,
 loader: 'babel-loader',
 query: {
 presets: ['react', 'es2015-node4'],
 },
 },
 {
 test: /\.js$/,
 exclude: /node_modules/,
 loader: 'babel-loader',
 query: {
 presets: ['es2015-node4'],
 },
 },
],
 },
 devtool: 'source-map',
};

The module loaders are similar to the client-side webpack configuration, so they
need no explanation. To compile using this using npm command line, we need to change
the server compile scripts in package.json from using babel to webpack. We also need
to change the entry point for the start script from server.js to the generated bundle:
server.bundle.js. Finally, since React and other libraries are now dependencies
that we’ll require at runtime, we need to move them from devDependencies to regular
dependencies. These changes, all part of package.json, are shown in Listing 11-15.

Listing 11-15. package.json: Changes for Server-Side Bundling

...
 "scripts": {
 "start": "nodemon -w dist dist/server.bundle.js",
 "compile-server": "webpack --config webpack.server-config.js",
 "watch-server": "webpack --config webpack.server-config.js --watch",
...

Chapter 11 ■ Server rendering

256

 "dependencies": {
 ...
 "object-assign": "^4.1.0",
 "react": "^15.3.1",
 "react-bootstrap": "^0.30.6",
 "react-dom": "^15.3.1",
 "react-router": "^2.7.0",
 "react-router-bootstrap": "^0.23.1",
...
 "devDependencies": {
 ...
 "react": "^15.3.1",
 "react-bootstrap": "^0.30.6",
 "react-dom": "^15.3.1",
 "react-router": "^2.7.0",
 "react-router-bootstrap": "^0.23.1",
...

 ■ Note due to a bug in npm dependency evaluation, if you are using npm version less
than 3, you will find that some packages need object-assign, but it’s not resolved. You will
need to install object-assign module manually. this is the case for node.js version 4.x,
which comes with an npm version less than 3. For node.js version 6, this is not required.

Now, you should be able to use compile-server and watch-server npm run
commands to compile the server-side code and test the Hello World component.

Back-End HMR
Earlier, the server-side and client-side code were independent, and each set of changes
would only cause one particular bundle to be rebuilt. But now, any client-side code
change will cause both the server and the client bundles to be rebuilt. Thus, you’ll see
that the server is restarted even for all client-side code changes.

This causes a problem in the smooth development process we had until now: while
the browser reloads the new modules due to the client bundle changes, the server is also
restarting. If there were API calls being made during the browser reload, they may fail
because the server is temporarily down. In the start-hook method of running the server,
the problem is compounded since the time taken is much longer: the server is down
while compiling in addition to restarting.

Wouldn’t it be great if we could use the hot module replacement (HMR) mechanism
that we used in the browser also on the server? This is indeed possible, but the changes

Chapter 11 ■ Server rendering

257

are not the same as in the browser. That’s because, with the browser, we don’t have to
manage an existing state when the code is replaced. With the Node.js server, the request
handler for the HTTP server needs to be removed and a new one instantiated and added
with the new code.

To be able to do this, we first need to separate out the code that creates the server
from the rest of the Express code, the real request handler. Let’s call this new file
index.js. The contents of this file are shown in Listing 11-16.

Listing 11-16. server/index.js: New File for Starting the Server and HMR

import SourceMapSupport from 'source-map-support';
SourceMapSupport.install();
import 'babel-polyfill';
import http from 'http';

import { MongoClient } from 'mongodb';

let appModule = require('./server.js');
let db;
let server;

MongoClient.connect('mongodb://localhost/issuetracker').then(connection => {
 db = connection;
 server = http.createServer();
 appModule.setDb(db);
 server.on('request', appModule.app);
 server.listen(3000, () => {
 console.log('App started on port 3000');
 });
}).catch(error => {
 console.log('ERROR:', error);
});

if (module.hot) {
 module.hot.accept('./server.js', () => {
 server.removeListener('request', appModule.app);
 appModule = require('./server.js'); // eslint-disable-line
 appModule.setDb(db);
 server.on('request', appModule.app);
 });
}

Instead of using app.listen(), we are now creating the server using the http
built-in module of Node.js. We need three steps now, http.createServer(),
server.on(), and server.listen(), instead of the single statement app.listen().
The two methods are identical, as explained in the Express documentation. We need

Chapter 11 ■ Server rendering

258

this new method so that we can keep a handle to the server and reinstall a new request
handler when needed. The following statement installs the request handler:

 server.on('request', <request handler>);

Since multiple request handlers can be installed on a server, we also need a way to
remove an installed handler:

 server.removeListener('request', <request handler>);

In the accept() method of module.hot, the first parameter indicates the dependent
module, the replacement of which you need to handle. When that module is replaced,
the second parameter, the callback, is called. There is only one dependent module, which
will give us a function for setting the DB connection, and another, the request handler, an
express app(). We’ll soon look at the modified server.js that will provide them.

In the callback that’s called when the module (or any if its dependents) is modified,
all we did was remove the old request handler and install the new one. Since we don’t
want to create a new database connection on a module reload, we kept the connection as
a global variable in this file itself and supply it to the new module, both at the beginning
and whenever it is replaced.

The next set of changes is in server.js. This includes removal of the code that
started the server, and also a new function called setDb() to accept the database
connection as a variable. We’ll export the express app and this new function. The changes
to server.js are shown in Listing 11-17.

Listing 11-17. server.js: Changes for Separating Out HTTP Server Code from the App

...
import SourceMapSupport from 'source-map-support';
SourceMapSupport.install();
import 'babel-polyfill';
...
import { MongoClient, ObjectId } from 'mongodb';
...
MongoClient.connect('mongodb://localhost/issuetracker').then(connection => {
 db = connection;
 app.listen(3000, () => {
 console.log('App started on port 3000');
 });
}).catch(error => {
 console.log('ERROR:', error);
});
...
function setDb(newDb) {
 db = newDb;
}

export { app, setDb };
...

Chapter 11 ■ Server rendering

259

Next, the server webpack configuration needs a few changes to enable HMR. The
first is an additional entry point that injects the code that listens for module changes. We
can do this by polling at a certain interval to see if there are changes. An alternative is to
use the signal method, which sends a signal to a listening socket in the running server.
This is a little more involved for setting up, so we will use the poll method.

The other change is to include the plugin that provides this feature. The changes to
the webpack configuration are shown in Listing 11-18.

Listing 11-18. webpack.server-config.js: Changes for Back-End HMR

...
const webpack = require('webpack');

module.exports = {
 target: 'node',
 entry: './server/server.js',
 entry: ['./server/index.js', './node_modules/webpack/hot/poll?1000'],
...
 plugins: [
 new webpack.HotModuleReplacementPlugin(),
],
...

In the entry point, we could have used just webpack/hot/poll rather than specify the
path within node_modules. But it so happens that the entry point cannot be an external
module; it has to be part of the bundle for it to work. Since the pattern for deciding
externals depends on the import statement not starting with ‘./’, we did just that.
There are other mechanisms for achieving this; a popular one is using the package
webpack-node-externals, which lets you create a list of node modules excluding one or
more specific modules. The query string to the entry point tells the poller how frequently
(in milliseconds) to look for changes.

Finally, in package.json, the start script for the server needs to change so that we no
longer use nodemon. We can directly start the server, and it will poll for changes via the
HMR mechanism. This change is shown in Listing 11-19.

Listing 11-19. package.json: Start the Server Without nodemon

...
 "scripts": {
 "start": "nodemon -w dist dist/server.bundle.js",
 "start": "node dist/server.bundle.js",
...

Now, you can use the dev-all npm command to start all three processes: the
webpack dev server to watch for client changes, the webpack watcher for the server, and
the server starter. This is also a good time to test the HMR by changing the Hello World

Chapter 11 ■ Server rendering

260

string to something else, and checking if the server reloads the new module. You should
see something like this in the console:

[HMR] Updated modules:
[HMR] - 13
[HMR] - 10
[HMR] - 6
[HMR] - 1
[HMR] Update applied.

Note that a change in index.js itself will fail because we haven’t installed any
handler to handle this change. We need to restart the server if we change this file. That’s a
good reason to keep the contents of this file to a minimum.

EXERCISE: BACK-END HMR

1. Change the module.accept() code to accept changes to
self, that is, without any parameters or handlers, as we did in
Client.jsx. What happens when a file is changed? Can you
explain the behavior?

answers are available at the end of the chapter.

Routed Server Rendering
Although server rendering worked well for a simple Hello World component, applying the
same changes to the Issue Tracker application is not that simple. The reason is that the
application uses React Router, which poses the following challenges:

 1. On the server, we can’t use React-Router’s Router directly
because it requires a real DOM. Also, browser history doesn’t
make sense here: there is no browser and therefore no history.

 2. The initial state that we need to inject depends on the main
component that’s being rendered. In the case of IssueList,
we need the list of issues, whereas in the case of IssueEdit,
we need a single issue.

 3. The component that needs the initial state is nested deep
in the hierarchy; we cannot directly set the props for these
components from the client rendering code.

A look at React-Router’s documentation under the “Server Rendering” sections tells
us that the makers of React-Router have thought about this and have specific solutions. To

Chapter 11 ■ Server rendering

261

address the first point, we need a different component to deal with server-side rendering
called RouterContext. This is similar to Router, but is meant for the server. Also, we need
to run the matching ourselves using the match() API. Both Router (on the client side)
and match() on the server side expect the same set of routes. Rather than repeat the code,
we’ll move the contained routes into a separate file. The new file under src directory is
shown in Listing 11-20.

Listing 11-20. Routes.jsx: Separate the Routes from App.jsx into a New File

import React from 'react';
import { Route, IndexRedirect, withRouter } from 'react-router';

import App from './App.jsx';
import IssueList from './IssueList.jsx';
import IssueEdit from './IssueEdit.jsx';

const NoMatch = () => <p>Page Not Found</p>;

export default (
 <Route path="/" component={App} >
 <IndexRedirect to="/issues" />
 <Route path="issues" component={withRouter(IssueList)} />
 <Route path="issues/:id" component={IssueEdit} />
 <Route path="*" component={NoMatch} />
 </Route>
);

Note that we had to use an IndexRedirect rather than a Redirect directly under
Router, so that we could put all the necessary elements under one top-level route for “/”.
Now, we can remove the routes from App.jsx. We can also delete other code we have
already moved to Client.jsx and make it a pure component. These changes are listed in
Listing 11-21.

Listing 11-21. App.jsx: Remove Routing and Entry Point Code

...
import ReactDOM from 'react-dom';
import { Router, Route, Redirect, browserHistory, withRouter } from 
'react-router';
...
import IssueList from './IssueList.jsx';
import IssueEdit from './IssueEdit.jsx';
...
const contentNode = document.getElementById('contents');
const NoMatch = () => <p>Page Not Found</p>;
...

Chapter 11 ■ Server rendering

262

const RoutedApp = () => (
 <Router history={browserHistory} >
 <Redirect from="/" to="/issues" />
 <Route path="/" component={App} >
 <Route path="issues" component={withRouter(IssueList)} />
 <Route path="issues/:id" component={IssueEdit} />
 <Route path="*" component={NoMatch} />
 </Route>
 </Router>
);

ReactDOM.render(<RoutedApp />, contentNode);

if (module.hot) {
 module.hot.accept();
}
...
export default App;

The last line to export the component is now required since it is referred to by the
routes specification. Routes.jsx can now be used by server rendering to create a match
and act upon the results of the match. But before we do this, let’s deal with the second
challenge: the initial state depends on which component (IssueEdit or IssueList) is
being rendered. For now, we’ll take advantage of the fact that the URLs of the page and
the APIs are identical except for the “/api” prefix. We’ll just make a call to the API to fetch
the initial state data, like this:

...
fetch(`http://localhost:3000/api${req.url}`)
...

For example, if the call to the server is /issues, we’ll make a call to /api/issues
to fetch the data for the initial state. But the fetch() API is not available on Node.js; it’s
meant only for the browser. Fortunately, there’s an npm module called isomorphic-fetch
that makes this API available on Node.js via the request package, and whatwg-fetch() on
browsers. Let’s replace whatwg-fetch with the new package:

$ npm uninstall --save whatwg-fetch
$ npm install --save isomorphic-fetch

We also need to replace whatwg-fetch in webpack.config.js in the vendor section.
This change is shown in Listing 11-22.

Chapter 11 ■ Server rendering

263

Listing 11-22. webpack.config.js: Changes to Replace whatwg-fetch with
isomorphic-fetch

...
 vendor: [
 'react', 'react-dom', 'react-router', 'react-bootstrap', 

'react-router-bootstrap',
 'whatwg-fetch','isomorphic-fetch', 'babel-polyfill',
],
...

The last challenge was to be able to set the initial state property deep inside the
component hierarchy. To achieve this, we’ll use React’s Context feature, which lets us
make a set of data available in all the descendants of a component.

 ■ Note the context feature of react is an experimental one, and the recommendation
from the authors of react is to use state management libraries such as redux and Mobx.
But this is a complex topic and is also tightly coupled with the Flux architecture, which at
the moment is not relevant for server rendering. in production applications, you may choose
to build your own global store to store the initial state, or use redux or Mobx in place of
Context.

Let’s briefly explore how Context works. The parent component declares its context
variables that are available to all descendants using a static variable, childContextTypes.
This is very much like propTypes, which declares the names and types of props variables
that are available to this component. As for the actual value of the context variables,
the parent component defines a method getChildContext(), which needs to return
an object, with each context variable as the key and its value as the value of the context
variable.

As for accessing the variables exposed by a parent, within each
descendant component you need to declare the context variables that are being
received. You do this using the static variable contextTypes, again very similar to
propTypes. Now, the descendant component can access these context variables using
this.context.<variable> anywhere in the component’s methods. For the constructor
alone, just like props is not part of this, context is also passed into the constructor’s
arguments, so you need to declare the constructor as constructor(props, context).

We’ll first create the parent component that will wrap Router or RouterContext and
provide the initial state to all descendants. Let’s call this component ContextWrapper, the
code for which is shown in Listing 11-23.

Chapter 11 ■ Server rendering

264

Listing 11-23. ContextWrapper: New Component to Inject Initial State to All
Descendants

import React from 'react';

export default class ContextWrapper extends React.Component {
 getChildContext() {
 return { initialState: this.props.initialState };
 }

 render() {
 return this.props.children;
 }
}

ContextWrapper.childContextTypes = {
 initialState: React.PropTypes.object,
};

ContextWrapper.propTypes = {
 children: React.PropTypes.object.isRequired,
 initialState: React.PropTypes.object,
};

We’ve used a single context variable called initialState. We’ll let the callers and
components determine its contents. We’re now ready to modify both the server and the
client rendering entry point to use the wrapper and set the initial state in it. The new code
for renderedPageRouter on the server is very similar to the code in the React Router’s
server rendering documentation. Since most of the code is rewritten, Listing 11-24 shows
the new file in its entirety.

Listing 11-24. renderedPageRouter.jsx: Changes for Dealing with Routes

import React from 'react';
import { renderToString } from 'react-dom/server';
import { match, RouterContext } from 'react-router';

import Router from 'express';

import template from './template.js';
import routes from '../src/Routes.jsx';
import ContextWrapper from '../src/ContextWrapper.jsx';

const renderedPageRouter = new Router();

Chapter 11 ■ Server rendering

265

renderedPageRouter.get('*', (req, res) => {
 match({ routes, location: req.url }, 
(error, redirectLocation, renderProps) => {

 if (error) {
 res.status(500).send(error.message);
 } else if (redirectLocation) {
 res.redirect(302, redirectLocation.pathname + redirectLocation. search);
 } else if (renderProps) {
 fetch(`http://localhost:3000/api${req.url}`).then(response => 

(response.json()))
 .then(data => {
 const initialState = { data };
 const html = renderToString(
 <ContextWrapper initialState={initialState} >
 <RouterContext {...renderProps} />
 </ContextWrapper>
);
 res.status(200).send(template(html, initialState));
 })
 .catch(err => {
 console.log(`Error rendering to string: ${err}`);
 });
 } else {
 res.status(404).send('Not found');
 }
 });
});

export default renderedPageRouter;

The main change from sending out a hard-coded <HelloWorld> component is the
call to match(), which is passed a set of React-Router routes. On a successful match, it
calls the supplied callback with a possible error, redirect, or renderProps. The handling of
the error and redirect are straightforward. As for renderProps, it contains the routes and
some other data that is to be sent to the RouterContext to complete the rendering. Before
we rendered to a string, we needed the data, which we got using the fetch() API on the
API-ized version of the request URL. We used this data as initial state and passed it on to
ContextWrapper.

We have to continue to use “*” in the Express router match, since we really don’t
know if the requested URL has a match or not. This is done by the match() call, and if it
doesn’t return a renderProps, we know that React-Router couldn’t match the request,
and we can return a 404.

The client-side entry point for rendering is similar: we’ll use the context wrapper
again, but this time we’ll get the initial state from the global __INITIAL_STATE__ variable.
Also, we will use a Router in the client side to wrap the routes instead of using match()
and a RouterContext. The new Client.jsx is shown in Listing 11-25.

Chapter 11 ■ Server rendering

266

Listing 11-25. Client.jsx: Replaced Hello World with Issue Tracker Application

import 'babel-polyfill';
import React from 'react';
import ReactDOM from 'react-dom';
import { Router, browserHistory } from 'react-router';

import routes from '../src/Routes.jsx';
import ContextWrapper from '../src/ContextWrapper.jsx';

const WrappedApp = (props) => (
 <ContextWrapper {...props}>
 <Router history={browserHistory} >
 {routes}
 </Router>
 </ContextWrapper>
);

const contentNode = document.getElementById('contents');
/* eslint no-underscore-dangle: 0 */
ReactDOM.render(<WrappedApp initialState={window.__INITIAL_STATE__} />, 
contentNode);

if (module.hot) {
 module.hot.accept();
}

Finally, we need to use the global initial state in the components IssueList and
IssueEdit to set their initial state. The change for IssueList also contains the replaced
reference to whatwg-fetch. These changes are shown in Listing 11-26 and 11-27.

Listing 11-26. IssueList.jsx: Changes to Get Initial State from Global Variable

...
import 'whatwg-fetch';
import 'isomorphic-fetch';
...
 constructor (props, context) {
 super (props, context);
 const issues = context.initialState.data.records;
 issues.forEach(issue => {
 issue.created = new Date(issue.created);
 if (issue.completionDate) {
 issue.completionDate = new Date(issue.completionDate);
 }
 });

Chapter 11 ■ Server rendering

267

 this.state = {
 issues: [],
 issues,
...
IssueList.contextTypes = {
 initialState: React.PropTypes.object,
};
...

Listing 11-27. IssueEdit.jsx: Changes to Get Initial state from Global Variable

...
 constructor(props, context) {
 super(props, context);
 const issue = context.initialState.data;
 issue.created = new Date(issue.created);
 issue.completionDate = issue.completionDate != null ?
 new Date(issue.completionDate) : null;
 this.state = {
 issue: {
 _id: '', title: '', status: '', owner: '', effort: null,
 completionDate: null, created: null,
 },
 issue,
...
IssueEdit.contextTypes = {
 initialState: React.PropTypes.object,
};
...

Testing this should show that server rendering works for both IssueList and
IssueEdit; it automatically fetches the appropriate data at the server and creates the
corresponding HTML.

But, if you start with one of the pages (that is, use browser refresh on that page) and
then switch to the other, you’ll see that things don’t work that well. There are errors on
the console; also, sometimes the page does not load properly when switched. I’ll discuss
these problems in the next section.

EXERCISE: ROUTED SERVER RENDERING

1. is componentDidMount() required? Since the component
is rendered on the server, why do we need to make an
ajax call once more to get the state? hint: Comment out
componentDidMount() handling and see what happens when
switching between the issue edit and issue List pages.

answers are available at the end of the chapter.

Chapter 11 ■ Server rendering

268

Encapsulated Fetch
It should be obvious by now that the approach we took in the previous section has serious
limitations. Here are a few things that we’ll address in this section.

 1. If we had API calls that don’t match the URL, for example, if
App had to fetch the currently logged-in user’s name to show
in the header, the initial state fetching will not work. We need
a better way of finding out which API call to fetch data for the
initial state, one that doesn’t depend on the sameness of the
API call and the requested URL.

 2. Say we had more than one component that needs data for a
single rendering. Using the same user name example above,
the App component’s data would need to be fetched in
addition to either IssueEdit or IssueList data.

 3. For every new component added, we need to change the
server rendering entry point. This is not good, and makes the
code maintenance a hassle. The knowledge of which data to
fetch should be part of the component itself.

 4. A component should not try to use some other component’s
initial data. That’s what happened in the previous section,
causing errors on the console when switching between the
Issue Edit and Issue List pages.

To deal with the above, we need to encapsulate the fetch within the components that
can have initial data. We also need a contract between all server-rendered components
and the server rendering entry point that lets each component specify an identifier that
identifies its initial data so that it knows that the data in the initial state is its own. Further,
we’ll let the components implement a data fetcher that can return the identified data,
given the route’s properties.

To facilitate this process, React-Router’s match() provides us as part of renderProps,
a list of components that are required to render the route. Note that this is a list of
component classes, not instances, since the rendering has not yet begun; we’ve just
matched a route. We could traverse this list of components that match() provides, and
call a static function in each of them that returns you something that can fetch the data.
We’ll also make it so that the same function can be called from within component itself,
to fetch the data after being mounted in the browser. Here’s the function signature:

dataFetcher({ params, location, urlBase }) => Promise

From the server rendering entry point, we pass in the params, location, and the base
URL of the API endpoint, and the component is expected to return a Promise, which will
resolve to an object of the form:

{ Identifier: data }

Chapter 11 ■ Server rendering

269

The Identifier for each component needs to be unique. We can use a convention
that the class name itself is the identifier. Further, if the component does not define the
static data fetcher function, it means that there is no initial data requirement for that
component.

Let’s first make the changes to renderedPageRouter to consume the new contract.
These changes are shown in Listing 11-28.

Listing 11-28. renderedPageRouter.jsx: Changes for Encapsulating Data Fetch

...
 } else if (renderProps) {
 fetch(`http://localhost:3000/api${req.url}`).then(response => 

(response.json()))
 .then(data => {
 const initialState = { data };
 const componentsWithData = renderProps.components.filter(c => 

c.dataFetcher);
 const dataFetchers = componentsWithData.map(c => c.dataFetcher({
 params: renderProps.params, location: renderProps.location,
 urlBase: 'http://localhost:3000',
 }));
 Promise.all(dataFetchers).then((dataList) => {
 let initialState = {};
 dataList.forEach((namedData) => {
 initialState = Object.assign(initialState, namedData);
 });
 const html = renderToString(
 <ContextWrapper initialState={initialState} >
...

We first constructed a list of components that have a data fetcher from the list of
components provided in renderProps. Then, we created a Promise for each of these
components by calling the data fetcher in that component. Promise.all() is used
to resolve multiple promises and get the resolved result from all of them in an array.
Thus, when all the fetches complete, dataList will have one element for each of the
components. We need to create an initial state of the form key (component identifier) –
value (initial data for that component) from this array, and that’s what the
dataList.forEach() does.

Next, we need changes in IssueList and IssueEdit that define these data
fetchers, and also use the same function to fetch the data while loading the component
dynamically. The data fetchers return a Promise that resolves to a named data element,
so the name has to be unwrapped for the data to be used within the component. This is
done both in the constructor (setting initial state) and the loadData() method, where the
same data fetcher is called. These changes for IssueList and IssueEdit are shown in
Listings 11-29 and 11-30, respectively.

Chapter 11 ■ Server rendering

270

Listing 11-29. IssueList.jsx: Changes for Using Named Data

...
export default class IssueList extends React.Component {
 static dataFetcher({ urlBase, location }) {
 return fetch(`${urlBase || ''}/api/issues${location.search}`). 

then(response => {
 if (!response.ok) return response.json().then(error => Promise. 

reject(error));
 return response.json().then(data => ({ IssueList: data }));
 });
 }

 constructor(props, context) {
 super(props, context);
 const issues = context.initialState.data.records;
 const issues = context.initialState.IssueList ? 

context.initialState.IssueList.records : [];
...
 loadData() {
 fetch(`/api/issues${this.props.location.search}`).then(response => {
 if (response.ok) {
 response.json().then(data => {
 data.records.forEach(issue => {
 issue.created = new Date(issue.created);
 if (issue.completionDate) {
 issue.completionDate = new Date(issue.completionDate);
 }
 });
 this.setState({ issues: data.records });
 });
 } else {
 response.json().then(error => {
 this.showError(`Failed to fetch issues ${error.message}`);
 });
 }
 IssueList.dataFetcher({ location: this.props.location })
 .then(data => {
 const issues = data.IssueList.records;
 issues.forEach(issue => {
 issue.created = new Date(issue.created);
 if (issue.completionDate) {
 issue.completionDate = new Date(issue.completionDate);
 }
 });
 this.setState({ issues });
 }).catch(err => {
...

Chapter 11 ■ Server rendering

271

Listing 11-30. IssueEdit.jsx: Changes for Using Named Data

...
export default class IssueEdit extends React.Component {
 static dataFetcher({ params, urlBase }) {
 return fetch(`${urlBase || ''}/api/issues/${params.id}`).then 

(response => {
 if (!response.ok) return response.json().then(error => Promise. 

reject(error));
 return response.json().then(data => ({ IssueEdit: data }));
 });
 }

 constructor(props, context) {
 super(props, context);
 const issue = context.initialState.data;
 issue.created = new Date(issue.created);
 issue.completionDate = issue.completionDate != null ?
 new Date(issue.completionDate) : null;
 let issue;
 if (context.initialState.IssueEdit) {
 issue = context.initialState.IssueEdit;
 issue.created = new Date(issue.created);
 issue.completionDate = issue.completionDate != null ?
 new Date(issue.completionDate) : null;
 } else {
 issue = {
 _id: '', title: '', status: '', owner: '', effort: null,
 completionDate: null, created: null,
 };
 }
...
 loadData() {
 fetch(`/api/issues/${this.props.params.id}`).then(response => {
 if (response.ok) {
 response.json().then(issue => {
 issue.created = new Date(issue.created);
 issue.completionDate = issue.completionDate != null ?
 new Date(issue.completionDate) : null;
 this.setState({ issue });
 });
 } else {
 response.json().then(error => {
 this.showError(`Failed to fetch issue: ${error.message}`);
 });
 }

Chapter 11 ■ Server rendering

272

 IssueEdit.dataFetcher({ params: this.props.params })
 .then(data => {
 const issue = data.IssueEdit;
 issue.created = new Date(issue.created);
 issue.completionDate = issue.completionDate != null ?
 new Date(issue.completionDate) : null;
 this.setState({ issue });
 }).catch(err => {
...

In both cases, in the constructor, we have a check for whether the initial data
contains data with the key as the name of the class; only then do we use it to initialize the
state. Otherwise, we fall back to the original behavior of using a default data object, which
is what will be used in the initial render of the object when newly mounted on the client.

Since the same function is used both at the server and the client, we had to add a
check for urlBase, which is not supplied if it is a client-side function call. Also, we needed
to prefix the class name to call static class functions, which is why you see loadData()
having IssueEdit.dataFetcher() and IssueList.dataFetcher().

And that’s it. Finally, we have the application working seamlessly with multiple
components loading their own data both on the server and the client. Testing this should
show that switching between components works, as also do direct calls (using Refresh in
the browser) to each page. Do test the server rendering with a filter applied in the Issue
List page as well.

Summary
This chapter may have been a little heavy since we used complex constructs and patterns
to implement server rendering. Hopefully, going back to the Hello World example eased
out the complexity and helped you understand the fundamental concepts that allow us to
do server rendering.

It must also be evident by now that React itself, not being a framework, does not
dictate each of the additional parts that complete the application. React-Router helped us
quite a bit with all that, and so did other packages like isomorphic-fetch. We also used our
own pattern of data fetchers to tie the data requirement of each component when being
rendered on the server.

In the next chapter, we won’t focus on one single feature or concept; instead we’ll
learn about common features that most applications will need, which also lets us exercise
the salient features of the technology choices that we’ve made.

Chapter 11 ■ Server rendering

273

Answers to Exercises
Back-End HMR
 1. If we use module.hot.accept() without any parameters or

callbacks, we’ll see an error that the port 3000 is already in
use. This is because any change will reload index.js itself,
which will cause a starting of another HTTP server at the same
port, 3000, and it will fail because we already have a server
running on that port.

Giving module.hot.accept() a set of dependencies has the
effect of saying “This is where the buck stops. I know how
to handle changes in my dependents.” Otherwise, it has the
effect of saying, “I don’t care; replace me.”

Routed Server Rendering
 1. If we remove the loading of data on componentDidMount(),

we’ll find that when switching between the two pages, the
server does not render the page that is switched to. Here,
the only way to get to the state data is via an Ajax call. An
optimization opportunity exists: we should be able to detect
that the component data exists and is available from the
server and consume it. But once consumed, we should delete
this data so that when the component is mounted again
(purely in the UI), it is fetched instead of being used again. For
the moment, the extra code does not seem worth it, so we’ll
leave it as is.

275© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_12

CHAPTER 12

Advanced Features

In this chapter, we’ll take a look at features common to many applications. These features
cut across the different technologies (front end, back end, database) that the MERN stack
consists of, and requires us to put together changes in all of them to make these features
work.

MongoDB Aggregate
We had left a placeholder for reports in the Navigation bar in an earlier chapter. Let’s now
implement this page, where we’ll show a table with a count of issues assigned to various
owners categorized by status. We’ll use a format that is popularly known as a cross-tab or
a pivot table: a two-dimensional array or table with one axis labeled with the statuses and
the other axis with owners.

Since the number of owners can be many, and there are a limited number of
statuses, we’ll line up the statuses on the horizontal axis (table row header), and use one
row per owner to show the count of issues assigned to that owner.

The first decision we need to make is the design of the REST API. Since the report
itself is not a resource, it doesn’t fit into the usual CRUD pattern or the methods that we
use for a typical resource. Some people tend to use a prefix to the resource endpoint, with
/stats/<resource> as the common pattern. Others use a suffix instead, but this creates
confusion with the resource ID and you must call the suffix a reserved word. I’ve also seen
suggestions to make a completely new endpoint like /issue_stats, but then this (and the
prefix strategy) can have only the GET method; the other methods don’t make sense. It
doesn’t feel RESTful enough, since the resource is either not that concrete or some of the
verbs become invalid.

What we’ll do instead is to treat the report API as a view of the GET method itself on
the Issues collection. The default view is the list of issues, and by supplying a parameter,
we indicate that we need a summary of the issues rather than a full listing. This also falls
in line with the commands used to do the same with a SQL database: you use SELECT for
both getting a list or for getting a summary using GROUP BY. (I’ll discuss the MongoDB
way of doing this soon.) We can even use the filter to apply to the summary view.

Since all regular query parameters to the HTTP endpoint /issues indicate filters, we
must use a special convention to indicate reserved words such as showing a summary
(and later, to indicate the sort order, etc.). We’ll use an underscore prefix to distinguish
all these non-filter parameters. It doesn’t make an immediate difference, but it avoids

Chapter 12 ■ advanCed Features

276

conflicts in future if we were to add a filter on a field called summary. So, if we find a request
parameter _summary in the List API, we’ll return a summary instead of a listing.

To be able to test this, you first need lots of issues populated in the database. A
simple MongoDB shell script to generate a set of issues randomly distributed across
dates, owners, and statuses is shown in Listing 12-1.

Listing 12-1. generate_data.mongo.js: Mongo Shell Script to Generate Some Data

/* eslint-disable */
var db = new Mongo().getDB('issuetracker');

var owners = ['Ravan','Eddie','Pieta','Parvati','Victor','Violet'];
var statuses = ['New','Open','Assigned','Fixed','Verified','Closed'];

var i;
for (i=0; i<1000; i++) {
 var randomCreatedDate = new Date(
 (new Date()) - Math.floor(Math.random() * 60) * 1000*60*60*24);
 var randomCompletionDate = new Date(
 (new Date()) - Math.floor(Math.random() * 60) * 1000*60*60*24);
 var randomOwner = owners[Math.floor(Math.random() * 6)];
 var randomStatus = statuses[Math.floor(Math.random() * 6)];
 var randomEffort = Math.ceil(Math.random() * 20);
 var issue = {
 created: randomCreatedDate, completionDate: randomCompletionDate,
 owner: randomOwner, status: randomStatus, effort: randomEffort,
 };
 issue.title = 'Lorem ipsum dolor sit amet, ' + i;
 db.issues.insert(issue);
}

MongoDB provides the collection method aggregate() to summarize and perform
various other read tasks on the collection using a pipeline, that is, a series of transforms
on the collection before returning the result set. In fact, the default call to aggregate() is
identical to a call to find(), that is, it returns the entire list of documents in the collection,
without any manipulation (which reinforces our decision to use a variation of the GET
method to fetch a summary).

The MongoDB aggregation pipeline consists of stages. Each stage transforms the
documents as they pass through the pipeline. For example, a match stage will act like
a filter on the list of documents from the previous stage. To simulate a find() with a
filter, you use a single match stage in the pipeline. To transform the document, you use
a project stage, which, unlike the projection in find(), can even add new calculated
fields to the document using expressions. Each stage does not have to produce a one-
to-one mapping of the previous stage. The group stage is one such stage that produces a
summary. The unwind stage is something that does the opposite: it expands array fields
into one record for each array element. The same stage can appear multiple times; for
example, you could start with a match, then group, and then another match to filter out
some documents after the grouping.

https://docs.mongodb.com/v3.2/reference/operator/aggregation/#aggregation-pipeline-operator-reference

Chapter 12 ■ advanCed Features

277

To implement the Reports page, all we need is a match stage (based on the filter) and
a group stage to summarize the matching documents. I’ll only discuss the group stage in
depth because it’s the most commonly used. You can refer to the MongoDB Aggregation
documentation for the other useful aggregation pipeline stages such as unwind.

The aggregate() method takes a single parameter, an array of pipeline stages. Each
pipeline stage is an object with a single key indicating the type of the stage and the value
holding the parameters for the stage. A match stage takes in the filter, as you would specify
in a find() method as the value. Thus, the following command (issued in the MongoDB
shell) will return all open issues:

> db.issues.aggregate([{ $match: { status: 'Open' } }])

The group stage is a little more involved. It consists of a set of fields that need to be
created, and a specification of how they need to be created. In the object specification,
the key is the name of the field, and the value specifies how the field’s value is to be
constructed. The values are typically based on existing fields in the document (actually
the results of the previous stage), and to refer to these fields, one needs to use a $ prefix;
otherwise it will be taken as a literal. The field _id is mandatory and has a special
meaning: it is the value that the results are grouped by. Typically, you use an existing
field specification for this. For the rest of the fields in the output, you can specify an
aggregation function to construct their values.

For example, if you need the sum and average effort of all issues grouped by the owner,
you use the following aggregate() command (which has a single stage in the pipeline):

> db.issues.aggregate([
 { $group: {
 _id: '$owner',
 total_effort: { $sum: '$effort' },
 average_effort: {$avg: '$effort' },
 } }
])

The above command will produce an output like this:

{ "_id" : "Parvati", "total_effort" : 1643, "average_effort" :
9.838323353293413 }
{ "_id" : "Violet", "total_effort" : 1694, "average_effort" :
10.204819277108435 }
{ "_id" : "Victor", "total_effort" : 1827, "average_effort" :
9.770053475935828 }
{ "_id" : "Pieta", "total_effort" : 1581, "average_effort" :
9.75925925925926 }
{ "_id" : "Eddie", "total_effort" : 1730, "average_effort" :
10.548780487804878 }
{ "_id" : "Ravan", "total_effort" : 1644, "average_effort" :
10.538461538461538 }

Chapter 12 ■ advanCed Features

278

If the entire collection is to be grouped into a single value, you can use a literal value
for the _id, typically null. Also, there is no special count aggregate function; you just
need to sum the number 1 to get a count of all matched documents. Thus, another way to
count the number of documents in a collection using the aggregate() method is

> db.issues.aggregate([{ $group: { _id: null, count: { $sum: 1 } } }])

This will result in the following output:

{ "_id" : null, "count" : 1002 }

For the reports page, we need two grouped by fields, the owner and the status.
Multiple group fields are specified as an object instead of a string. So, to get a count of
issues grouped by owner and status, this is the command to use:

> db.issues.aggregate([{ $group: {
 _id: { owner: '$owner',status: '$status' },
 count: { $sum: 1 },
} }])

This produces output like this:

{ "_id" : { "owner" : "Ravan", "status" : "Assigned" }, "count" : 23 }
{ "_id" : { "owner" : "Parvati", "status" : "Fixed" }, "count" : 30 }
{ "_id" : { "owner" : "Violet", "status" : "Assigned" }, "count" : 29 }
{ "_id" : { "owner" : "Ravan", "status" : "Closed" }, "count" : 21 }
...

Let’s now use this query to generate the summary report in the List API. We need
to check for the request parameter _summary; if it is undefined, we’ll just return the list
of issues as we did before. If the request is indeed for a summary, we’ll use the filter to
match the documents and the aggregate() method to get the results. Further, we’ll
transform the results to a friendlier output that can be consumed by callers more easily.
We’ll send back an object with one key for each owner, and the value for that owner
holding the total count under each status. For example,

{
 "Ravan": {
 "Assigned": 23,
 "Closed": 21,
 "Fixed": 26,
 ...
 },

Chapter 12 ■ advanCed Features

279

 "Parvati": {
 "Fixed": 30,
 "Closed": 21,
 ...
 }
 ...
}

This way, the caller can use stats[owner][status] to get to the count for an owner-
status combination. The changes to GET API to achieve this are listed in Listing 12-2.

Listing 12-2. server.js: Changes to List API for Summary Output

...
app.get('/api/issues', (req, res) => {
 ...
 if (req.query._summary === undefined) {
 let limit = req.query.limit ? parseInt(req.query._limit, 10) : 20;
 if (limit > 50) limit = 50;
 db.collection('issues').find(filter).limit(limit)
 .toArray()
 .then(issues => {
 const metadata = { total_count: issues.length };
 res.json({ _metadata: metadata, records: issues });
 })
 .catch(error => {
 console.log(error);
 res.status(500).json({ message: `Internal Server Error: ${error}` });
 });
 } else {
 db.collection('issues').aggregate([
 { $match: filter },
 { $group: { _id: { owner: '$owner', status: '$status' }, count: { 
 $sum: 1 } } },
]).toArray()
 .then(results => {
 const stats = {};
 results.forEach(result => {
 if (!stats[result._id.owner]) stats[result._id.owner] = {};
 stats[result._id.owner][result._id.status] = result.count;
 });
 res.json(stats);
 })
 .catch(error => {
 console.log(error);
 res.status(500).json({ message: `Internal Server Error: ${error}` });
 });
 }
});

Chapter 12 ■ advanCed Features

280

We added a limit() to the existing List API because we now have a lot of records,
and it slows down the rendering if we show all of them in the Issue List page. Also, now
that we’re using a lot of variables with a dangling underscore, let’s disable this rule in
.eslintrc. This change is shown in Listing 12-3.

Listing 12-3. .eslintrc: Disable no-underscore-dangle

{
 "extends": "airbnb",
 "rules": {
 "no-underscore-dangle": ["error", { "allow": ["_id"] }],
 "no-underscore-dangle": "off",
 "no-param-reassign": ["error", { "props": false }]
 }
}

To test this API, you can use curl to fetch the URL http://localhost:3000/
api/issues?_summary. To make use of this new API, let’s create a new IssueReport
component that displays the report. The code is similar to the other two components: we
fetch the data using initial state or using an Ajax call. The rendering is also simple since
we made the API output easy to consume. At the outer level, we need to iterate through
all the keys returned by the API to generate one table row per owner. At the inner level, we
need to iterate through all valid statuses and get its count from the API output and then
display it in a table cell. The code for the new component is shown in Listing 12-4.

Listing 12-4. IssueReport.jsx: New Component to Show the Report

import React from 'react';
import { Panel, Table } from 'react-bootstrap';

import IssueFilter from './IssueFilter.jsx';
import Toast from './Toast.jsx';

const statuses = ['New', 'Open', 'Assigned', 'Fixed', 'Verified', 'Closed'];

const StatRow = (props) => (
 <tr>
 <td>{props.owner}</td>
 { statuses.map((status, index) => (<td key={index}>{props. 

counts[status]}</td>))}
 </tr>
);

StatRow.propTypes = {
 owner: React.PropTypes.string.isRequired,
 counts: React.PropTypes.object.isRequired,
};

Chapter 12 ■ advanCed Features

281

export default class IssueReport extends React.Component {
 static dataFetcher({ urlBase, location }) {
 const search = location.search ? `${location.search}&_summary` : 
 '?_summary';
 return fetch(`${urlBase || ''}/api/issues${search}`).then(response => {
 if (!response.ok) return response.json().then(error => Promise. 
 reject(error));
 return response.json().then(data => ({ IssueReport: data }));
 });
 }

 constructor(props, context) {
 super(props, context);
 const stats = context.initialState.IssueReport ? context.initialState. 
 IssueReport : {};
 this.state = {
 stats,
 toastVisible: false, toastMessage: '', toastType: 'success',
 };
 this.setFilter = this.setFilter.bind(this);
 this.showError = this.showError.bind(this);
 this.dismissToast = this.dismissToast.bind(this);
 }

 componentDidMount() {
 this.loadData();
 }

 componentDidUpdate(prevProps) {
 const oldQuery = prevProps.location.query;
 const newQuery = this.props.location.query;
 if (oldQuery.status === newQuery.status
 && oldQuery.effort_gte === newQuery.effort_gte
 && oldQuery.effort_lte === newQuery.effort_lte) {
 return;
 }
 this.loadData();
 }

 setFilter(query) {
 this.props.router.push({ pathname: this.props.location.pathname, query });
 }

 showError(message) {
 this.setState({ toastVisible: true, toastMessage: message, 
 toastType: 'danger' });
 }

Chapter 12 ■ advanCed Features

282

 dismissToast() {
 this.setState({ toastVisible: false });
 }

 loadData() {
 IssueReport.dataFetcher({ location: this.props.location })
 .then(data => {
 this.setState({ stats: data.IssueReport });
 }).catch(err => {
 this.showError(`Error in fetching data from server: ${err}`);
 });
 }

 render() {
 return (
 <div>
 <Panel collapsible header="Filter">
 < IssueFilter setFilter={this.setFilter} 

initFilter={this.props.location.query} />
 </Panel>
 <Table bordered condensed hover responsive>
 <thead>
 <tr>
 <th></th>
 {statuses.map((status, index) =><td key={index}>{status}</td>)}
 </tr>
 </thead>
 <tbody>
 {Object.keys(this.state.stats).map((owner, index) =>
 < StatRow key={index} owner={owner} 
 counts={this.state.stats[owner]} />
)}
 </tbody>
 </Table>
 <Toast
 showing={this.state.toastVisible} message={this.state.toastMessage}
 onDismiss={this.dismissToast} bsStyle={this.state.toastType}
 />
 </div>
);
 }
}

IssueReport.propTypes = {
 location: React.PropTypes.object.isRequired,
 router: React.PropTypes.object,
};

Chapter 12 ■ advanCed Features

283

IssueReport.contextTypes = {
 initialState: React.PropTypes.object,
};

Note that we used the IssueFilter as is; this lets us reuse the component’s display
(HTML) as well as its behavior (JavaScript). In many other frameworks, you may have
to wire the two separately. For the status columns, we used a constant array of statuses
to simplify the code and also to show the statuses in a logical order. Finally, to include
the component in the UI, a small change to Routes.jsx is required to connect the
component to the route /reports. This is shown in Listing 12-5.

Listing 12-5. Routes.jsx: Include Issue Report Component

...
import IssueReport from './IssueReport.jsx';
...
<Route path="/" component={App} >
...
<Route path="issues/:id" component={IssueEdit} />
<Route path="reports" component={withRouter(IssueReport)} />
...

The result of all the above changes can now be seen in the application UI, shown in
Figure 12-1.

Figure 12-1. Reports page

Chapter 12 ■ advanCed Features

284

Do test the new page by changing the filter as well as refreshing the page to let the
server render it, with and without filters.

Pagination
Now that we have many documents in the database, we need a way to see all of them,
yet not overwhelm the browser by sending them all in one shot. It’s common to add
pagination or an infinite scroll (more data is loaded when the user scrolls down) to
address this requirement.

An infinite scroll appears slick at first glance, but it has its issues. Most infinite scroll
implementations do not unload the scrolled-out data, so the DOM can get really big if
the user keeps scrolling, affecting performance. The browser’s back button, too, needs to
be handled specially since the additional set of loaded items will no longer be loaded if
the user clicked on an issue’s link and wanted to come back to the list. Finally, if you want
your pages to be indexed, you need to insert special invisible code that allows search
engine bots to index all pages, because apart from the initially shown results, the rest of
the pages won’t have natural hyperlinks. This is not to say that infinite scrolls are bad, but
that you need to evaluate if it’s worth the effort required to implement it correctly.

We’ll use pagination buttons, since they are simpler and lets us quickly explore the
concepts required to get them working end to end. We can use React-Bootstrap’s Pagination
component; it’s a convenient component that seems to give us just what you want.

The List API needs to change to add pagination support. First, it needs to give us data
for a given page, that is, starting from a certain index into the list. So, just like the _limit
parameter in the API’s query, we’ll introduce an _offset parameter that determines
where in the list of documents you need to start. The MongoDB cursor method skip()
can be used to get the list of documents starting at an offset. As compared to a parameter
that specifies which page to start on, we’ll chose the granular offset because it reduces
coupling between the API and the UI. With a page parameter, both the UI and the API
need to implicitly agree upon a page size (or pass an additional parameter for that),
whereas with an offset, the UI is free to determine the page size. We’ll of course default
the page size and ensure it is not too large in the back end to protect from unintended
queries for large amounts of data or even hackers who can take advantage of this.

Whenever we use an offset into a list, we also need to ensure that the list is in the
same order when queried multiple times. Without an explicit sort order, MongoDB does
not guarantee this. The order of the documents may vary between two queries (although
it appears as that it is always the order of insertion). To guarantee a certain order, we
need to include a sort specification. Since the Object ID is a natural key to sort on (since
it matches the insertion order), and it is an indexed field (that is, there is no penalty for
requesting the list to be sorted in this order), we’ll use it as the default sort key.

Since the Pagination component needs the total number of pages, we need to get
the total count of documents that matches the filter. Here, the cursor method count()
comes in handy. It returns the total count of documents that were matched, as if the
limit() was not applied. We can use the same cursor to get the actual list of matching
documents too.

The changes to the List API in server.js are shown in Listing 12-6.

Chapter 12 ■ advanCed Features

285

Listing 12-6. server.js: Changes to List API to Support Pagination

app.get('/api/issues', (req, res) => {
 ...
 if (req.query._summary === undefined) {
 const offset = req.query._offset ? parseInt(req.query._offset, 10) : 0;
 let limit = req.query._limit ? parseInt(req.query._limit, 10) : 20;
 if (limit > 50) limit = 50;
 db.collection('issues').find(filter).limit(limit)
 .toArray()

 const cursor = db.collection('issues').find(filter).sort({ _id: 1 })
 .skip(offset)
 .limit(limit);

 let totalCount;
 cursor.count(false).then(result => {
 totalCount = result;
 return cursor.toArray();
 })
 .then(issues => {
 const metadata = { total_count: issues.length };
 res.json({ _metadata: metadata, records: issues });
 res.json({ metadata: { totalCount }, records: issues });
 })

Instead of directly getting the array of documents using toArray(), we split the call
into two stages. First, we got a cursor by filtering, sorting, skipping, and applying a limit.
Then, we issued a count() request on the cursor. The argument false ensures that the
effects of skip() and limit() will be ignored when returning the count, that is, the true
count of documents with only the filter applied. After we got the count, we got the actual
document list using toArray() on the same cursor. Finally, we made some cosmetic
changes to the metadata that we return, which contains the total count of matched
documents.

At this stage, you can test the new API by supplying an _offset parameter in a curl
request to the endpoint, and optionally a _limit parameter.

Let’s now use the new API in the UI to display the pagination strip. Of the many
options that React-Bootstrap’s Pagination component has, I like the Previous and Next
buttons because they are the most used ones. Showing the boundary links (that is, the
first and last page numbers) also helps since the last page number is an indication of how
many documents or pages there are in the filtered results.

We also need to take a break from the one-to-one mapping of the front-end URL
query parameters and the API call. This is because we need to translate a page in the UI to
an offset in the API call. We’ll do this translation in the dataFetcher() method. For now,
we can hard code the page size using a constant. But it’s easy to imagine (and implement)
a way to let the user select the page size.

Chapter 12 ■ advanCed Features

286

The changes are all in the IssueList component, shown in Listing 12-7.

Listing 12-7. IssueList.jsx: Changes for Pagination

...
import { Button, Glyphicon, Table, Panel, Pagination } from 'react-
bootstrap';
...
const PAGE_SIZE = 10;
...
 static dataFetcher({ urlBase, location }) {
 return fetch(`${urlBase || ''}/api/issues${location.search}`). 
 then(response => {
 const query = Object.assign({}, location.query);
 const pageStr = query._page;
 if (pageStr) {
 delete query._page;
 query._offset = (parseInt(pageStr, 10) - 1) * PAGE_SIZE;
 }
 query._limit = PAGE_SIZE;
 const search = Object.keys(query).map(k => `${k}=${query[k]}`).join('&');
 return fetch(`${urlBase || ''}/api/issues?${search}`).then(response => {
 ...
...
 constructor(props, context) {
 super(props, context);
 const issues = context.initialState.IssueList ? context.initialState. 
 IssueList.records : [];
 const data = context.initialState.IssueList ? 
 context.initialState.IssueList
 : { metadata: { totalCount: 0 }, records: [] };
 const issues = data.records;
...
 this.state = {
 ...
 totalCount: data.metadata.totalCount,
 };
...
 this.selectPage = this.selectPage.bind(this);
 }
...
 componentDidUpdate(prevProps) {
 ...
 && oldQuery._page === newQuery._page) {
 return;
 }
 this.loadData();
...

Chapter 12 ■ advanCed Features

287

 selectPage(eventKey) {
 const query = Object.assign(this.props.location.query, 
 { _page: eventKey });
 this.props.router.push({ pathname: this.props.location.pathname, 
 query });
 }
...
 loadData() {
 ...
 .then(data => {
 ...
 this.setState({ issues, totalCount: data.IssueList.metadata. 
 totalCount });
...
 render() {
 ...
 <Panel collapsible header="Filter">
 < IssueFilter setFilter={this.setFilter} 
 initFilter={this.props.location.query} />
 </Panel>
 <Pagination
 items={Math.ceil(this.state.totalCount / PAGE_SIZE)}
 activePage={parseInt(this.props.location.query._page || '1', 10)}
 onSelect={this.selectPage} maxButtons={7} next prev boundaryLinks
 />
...

The key part of the change, apart from the Pagination component, is the selectPage
handler, which uses the page number (event key) and pushes that as the _page parameter
to the URL. This eventually comes back as a change in props, which we dealt with in
componentDidUpdate to reload the data. To load the data, we used an API call that
converts the _page parameter to an offset based on the page size, and also explicitly set
the page size in the _limit parameter to the API.

The results of these changes are shown in the screenshot in Figure 12-2, the
pagination bar.

Chapter 12 ■ advanCed Features

288

The approach of using the same cursor to fetch the count was OK for small data sets,
but you can’t use it for larger data sets. The problem with React-Bootstrap’s Pagination
is that it needs the total count of pages or the total count of documents in the filtered set.
The fact is that in any database, counting the number of matches is expensive; the only
way you can do it is to visit every document to check whether it matches the filter (unless,
of course, you have indexes for every possible filter combination, which either means
limiting the kind of filters you want to allow the user, or spending enormous storage
capacity for indexing all combinations).

I find that, practically, it isn’t of much use to show the exact number of pages or
count of matched records, when the result is possibly very large. If it’s indeed hundreds
of pages long, it is highly unlikely that the user will want to go to exactly the 97th page, or
even the last page. In such cases, it’s advisable to just show the Previous and Next links
and not query the total count in every request. React-Bootstrap’s Pager component will
work well for this approach.

You should also be aware that React-Bootstrap’s Pagination component uses buttons
and not links. This means that search engines will not be able to reach and index other
pages. Once again, the Pager component works better if you really need indexing on all
pages.

Higher Order Components
In the Issue Tracker application, you can see that a fair bit of code was repeated across the
main views for showing and managing Toast messages. We’ll try and reuse this code in
this section. The authors of React recommend Composition over Inheritance for reusing
code across components.

Figure 12-2. Pagination

Chapter 12 ■ advanCed Features

289

One way to do this is to use a wrapper component that does all the message
management and passes down the methods for showing error and success messages to
the children, like this:

class ToastWrapper extends React.Component {
 consrtuctor() {
 this.state = { toastVisible: false, ... }
 }
 showError() {
 this.setState({ toastVisible: true, ... });
 }
 render() {
 return (
 <div>
 {this.props.children}
 <Toast showing={this.state.toastVisible} />
 </div>
);
 }
}

This way, both the display and the state management are localized within the
wrapper, which can be used to wrap any of the components before use, like this:

...
<ToastWrapper><IssueEdit /><ToastWrapper>
...

Although this addresses the display, you also need to let the wrapped component be
able to show error messages. You need to pass the showError() method as props to the
wrapped component. React provides access to the children and also an iterator (since
this.props.children itself is an opaque object) to iterate through it. You can use a clone
of the wrapped components in the render() method and add additional properties for
injecting the new methods like this:

render() {
 const childrenWithMessages = React.Children.map(this.props.children, child =>
 React.cloneElement(child, { showSuccess: this.showSuccess, 
 showError: this.showError })
);
 return (
 ...
 {childrenWithMessages}
...

Chapter 12 ■ advanCed Features

290

React.Children.map takes in the children as a parameter and calls back a function
with each child as an argument. You can clone this child using React.cloneElement with
additional properties for the new methods that the child will receive.

This approach works, but since this.props.children is not necessarily a single
element, you must use an iterator. An alternative approach is to use the Higher Order
Components (HOC) design pattern, which is essentially a function that takes in a
component and returns a wrapped component with additional functionality, thus
enhancing it. You saw a glimpse of this pattern when we used the function withRouter to
inject the router property into components that needed it.

Let’s create our own HOC called withToast along similar lines. This function too will
take in a component and return an enhanced component. The render() method will use
a <div> and place the original component as well as a Toast component within it. Also,
like in the previous examples, it will have state variables and methods to manage the
message visibility. The code for this new file is shown in Listing 12-8.

Listing 12-8. withToast.jsx: A Higher Order Component to Add Toast Functionality

import React from 'react';
import Toast from './Toast.jsx';

export default function withToast(OriginalComponent) {
 return class WithToast extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 toastVisible: false, toastMessage: '', toastType: 'success',
 };
 this.showSuccess = this.showSuccess.bind(this);
 this.showError = this.showError.bind(this);
 this.dismissToast = this.dismissToast.bind(this);
 }

 showSuccess(message) {
 this.setState({ toastVisible: true, toastMessage: message, 
 toastType: 'success' });
 }

 showError(message) {
 this.setState({ toastVisible: true, toastMessage: message, 
 toastType: 'danger' });
 }

 dismissToast() {
 this.setState({ toastVisible: false });
 }

Chapter 12 ■ advanCed Features

291

 render() {
 return (
 <div>
 <OriginalComponent
 showError={this.showError} showSuccess={this.showSuccess} 
 {...this.props}
 />
 <Toast
 showing={this.state.toastVisible} message={this.state. 
 toastMessage}
 onDismiss={this.dismissToast} bsStyle={this.state.toastType}
 />
 </div>
);
 }
 };
}

Let’s take a closer look at some of the code in the new component.

...
 return class WithToast extends React.Component {
...

The new function just had one return statement, and it returned a new component,
which wrapped the original component. We moved all of the Toast management state
variables and functions into this component, and we also passed in the showError and
showSuccess handlers to the original component:

...
 <OriginalComponent
 showError={this.showError} showSuccess={this.showSuccess} 

{...this.props}
 />
...

Unlike the cloneElement and iteration over children, this is more explicit, and it
also forces the fact that only one component is wrapped. Now, we’re ready to remove
all the Toast-related code from the components that contained the repeated code. But
there’s one change that an HOC causes: any static functions that you used in the original
component are no longer available in the wrapped component. We must explicitly copy
the static functions from the original to the wrapped.

Let’s first do this change in the Issue Edit page. The changes for this are shown in
Listing 12-9.

Chapter 12 ■ advanCed Features

292

Listing 12-9. IssueEdit.jsx: Changes for Reusing Toast Management

...
import Toast from './Toast.jsx';
import withToast from './withToast.jsx';
...
export default class IssueEdit extends React.Component {
...
 this.state = {
 ...
 toastVisible: false, toastMessage: '', toastType: 'success',
 };
...
 this.showSuccess = this.showSuccess.bind(this);
 this.showError = this.showError.bind(this);
 this.dismissToast = this.dismissToast.bind(this);
...
 this.setState({ issue: updatedIssue });
 this.props.showSuccess('Updated issue successfully.');
...
 response.json().then(error => {
 this.props.showError(`Failed to update issue: ${error.message}`);
...
 }).catch(err => {
 this.props.showError(`Error in sending data to server: 
 ${err.message}`);
...
 }).catch(err => {
 this.props.showError(`Error in sending data to server: 
 ${err.message}`);
...
 showSuccess(message) {
 this.setState({ toastVisible: true, toastMessage: message, toastType: 
 'success' });
 }

 showError(message) {
 this.setState({ toastVisible: true, toastMessage: message, toastType: 
 'danger' });
 }

 dismissToast() {
 this.setState({ toastVisible: false });
 }
...

Chapter 12 ■ advanCed Features

293

 render() {
 ...
 <Toast
 showing={this.state.toastVisible} message={this.state. 
 toastMessage}
 onDismiss={this.dismissToast} bsStyle={this.state.toastType}
 />
...
IssueEdit.propTypes = {
...
 showSuccess: React.PropTypes.func.isRequired,
 showError: React.PropTypes.func.isRequired,
};
...
const IssueEditWithToast = withToast(IssueEdit);
IssueEditWithToast.dataFetcher = IssueEdit.dataFetcher;

export default IssueEditWithToast;
...

Most of the changes are obvious: we removed all the methods for showing and
dismissing the Toast, and also the state variables and the Toast component itself. We
changed the this.showError and this.showSuccess messages to use the functions
passed in through props instead, and also added propTypes for these functions. Finally,
we removed the export of the class itself; instead, we included an export of the class
created using withToast(). But before exporting, we had to copy the static functions.

Changes to IssueList and IssueReport are very similar, except that these
components do not have a showSuccess() method, so we don’t have to remove them.
But the new wrapper lets us use showError if and when required without changes in the
wrapper. These changes are listed in Listing 12-10 and 12-11, respectively.

Listing 12-10. IssueList.jsx: Changes for Reusing Toast Management

...
import Toast from './Toast.jsx';
import withToast from './withToast.jsx';
...
export default class IssueList extends React.Component {
...
 this.state = {
 ...
 toastVisible: false, toastMessage: '', toastType: 'success',
 };
...
this.showError = this.showError.bind(this);
 this.dismissToast = this.dismissToast.bind(this);
...

Chapter 12 ■ advanCed Features

294

 showError(message) {
 this.setState({ toastVisible: true, toastMessage: message, toastType: 
 'danger' });
 }

 dismissToast() {
 this.setState({ toastVisible: false });
 }
...
 }).catch(err => {
 this.props.showError(`Error in fetching data from server: ${err}`);
...
 fetch(`/api/issues/${id}`, { method: 'DELETE' }).then(response => {
 if (!response.ok) this.props.showError('Failed to delete issue');
...
render() {
 ...
 <Toast
 showing={this.state.toastVisible} message={this.state. 
 toastMessage}
 onDismiss={this.dismissToast} bsStyle={this.state.toastType}
 />
...
IssueList.propTypes = {
 ...
 showError: React.PropTypes.func.isRequired,
};
...
const IssueListWithToast = withToast(IssueList);
IssueListWithToast.dataFetcher = IssueList.dataFetcher;

export default IssueListWithToast;
...

Listing 12-11. IssueReport.jsx: Changes for Reusing Toast Management

...
import Toast from './Toast.jsx';
import withToast from './withToast.jsx';
...
export default class IssueReport extends React.Component {
...
 this.state = {
 ...
 toastVisible: false, toastMessage: '', toastType: 'success',
 };

Chapter 12 ■ advanCed Features

295

...
 this.showError = this.showError.bind(this);
 this.dismissToast = this.dismissToast.bind(this);
...
 showError(message) {
 this.setState({ toastVisible: true, toastMessage: message, toastType: 
 'danger' });
 }

 dismissToast() {
 this.setState({ toastVisible: false });
 }
...
 }).catch(err => {
 this.props.showError(`Error in fetching data from server: ${err}`);
...
render() {
 ...
 <Toast
 showing={this.state.toastVisible} message={this.state. 
 toastMessage}
 onDismiss={this.dismissToast} bsStyle={this.state.toastType}
 />
...
IssueReport.propTypes = {
 ...
 showError: React.PropTypes.func.isRequired,
};
...
const IssueReportWithToast = withToast(IssueReport);
IssueReportWithToast.dataFetcher = IssueReport.dataFetcher;

export default IssueReportWithToast;
...

The changes to IssueAddNavItem are not the same as the above, because the
introduction of a <div> interferes with the display of the navigation item, which is
an inline element. So, we’ll look for a more appropriate component up the hierarchy
and pass down the showError method via props from that component. The Header
component seems ideal for this. The changes for this component are shown in
Listing 12-12.

Listing 12-12. App.jsx: Changes in Header for Including Toast

...
import withToast from './withToast.jsx';
...

Chapter 12 ■ advanCed Features

296

const Header = (props) => (
...
 <IssueAddNavItem showError={props.showError} />
...
Header.propTypes = {
 showError: React.PropTypes.func.isRequired,
};

const HeaderWithToast = withToast(Header);

const App = (props) => (
 <div>
 <Header />
 <HeaderWithToast />
...

Instead of using Header directly in the App, we used a wrapped component. But
Header itself does not use the showError() method; all we did was pass it through
via props to IssueAddNavItem. The changes in IssueAddNavItem are similar to that of
IssueList, etc., except that we don’t wrap this component. We only make use of the
showError method passed in via props. The changes to this component are in
Listing 12-13.

Listing 12-13. IssueAddNavItem: Changes for Reusing Toast Management

...
import Toast from './Toast.jsx';
...
...
 this.state = {
 ...
 toastVisible: false, toastMessage: '', toastType: 'success',
 };
...
 this.showError = this.showError.bind(this);
 this.dismissToast = this.dismissToast.bind(this);
...
 showError(message) {
 this.setState({ toastVisible: true, toastMessage: message, toastType: 
 'danger' });
 }

 dismissToast() {
 this.setState({ toastVisible: false });
 }
...

Chapter 12 ■ advanCed Features

297

...
 response.json().then(error => {
 this.props.showError(`Failed to add issue: ${error.message}`);
...
}).catch(err => {
this.props.showError(`Error in sending data to server: ${err.message}`);
...
render() {
 ...
 <Toast
 showing={this.state.toastVisible} message={this.state.toastMessage}
 onDismiss={this.dismissToast} bsStyle={this.state.toastType}
 />
...
IssueAddNavItem.propTypes = {
 ...
 showError: React.PropTypes.func.isRequired,
...

At this point, you should be able to test each of the error messages and success
messages in all these components that have been modified.

Search Bar
A search bar in most applications lets you find documents by just typing in some words.
We’ll implement this not like a search-filter, but instead as an autocomplete that finds all
issues matching the words typed, and lets the user pick one of them to directly view. We’ll
add this search in the Navigation bar since the user should be able to jump to a particular
issue, no matter which page they are viewing.

Assuming that the number of issues is large, it wouldn’t perform well if we were to
apply a filter criterion, say, a regex on all the issues. That’s because to apply the regex,
MongoDB would have to scan all the documents and apply the regex to see if it matches
the search term. MongoDB’s text index, on the other hand, lets you quickly get to all the
documents that contain a certain term. A text index gathers all the terms (words) in all the
documents, and creates a lookup table that, given a term (word), returns all documents
containing that term (word). You can create such an index using the following MongoDB
shell command:

>db.issues.createIndex({ title: "text" })

This will collect all the terms in the field title and create a text index. Now the
documents can be searched using the usual find() method, with a special filter like this:

>db.issues.find({ $text: {$search: "lorem" } })

Chapter 12 ■ advanCed Features

298

This will quickly give you the list of documents that had the term “lorem” in it. Note
that this does not go through all the documents in the collection to try to match the
contents. Instead, it looks up the index for the term “lorem,” which already has the IDs of
all documents containing this term.

Let’s first change the initialization script (and optionally rerun it, as well as the
generation script) to create this index. If you don’t want to go through the reinitialization,
you could just execute the createIndex() command manually. The changes to the
initialization script are shown in Listing 12-14.

Listing 12-14. init.mongo.js: Add createIndex for a Text Index on Title

...
db.issues.createIndex({ created: 1 });
db.issues.createIndex({ title: "text" });
...

The next step is to use this index in the List API to find documents containing a given
term. All we need to do is add a filter criterion if we find a request parameter for search.
This is shown in Listing 12-15.

Listing 12-15. server.js: List API Changes to Include a Text Search Filter

...
 if (req.query.effort_gte) filter.effort.$gte = parseInt(req.query. 
 effort_gte, 10);
 if (req.query.search) filter.$text = { $search: req.query.search };
...

Now you should be able to test the new filter using curl to see if you get document
matches. You’ll probably notice that MongoDB searches only for whole terms. I’ll discuss
the impact of this a little later.

Let’s now install a package that provides an auto-complete: as you type in a word, it
lists all the matching issues in a drop-down. It lets you pick one so that you can view that
document. I’ve chosen a package called react-select that we’ll install using

$ npm install react-select –save

This component also requires that we include some CSS styles, which are part of
the distribution of the package. So, as we did for Bootstrap, we’ll soft-link (or copy, if
you’re using Windows) the CSS from its distribution directory to the application’s static
directory:

$ ln -s ../node_modules/react-select/dist static/react-select

We’ll also have to include the stylesheet in the HTML that is generated using the
template. This change is shown in Listing 12-16.

Chapter 12 ■ advanCed Features

299

Listing 12-16. template.js: Include react-select Stylesheet

...
 <link rel="stylesheet" href="/bootstrap/css/bootstrap.min.css" >
 <link rel="stylesheet" href="/react-select/react-select.css" >
...

Now that we have the infrastructure in place, we can add the auto-complete
component to the header’s Navigation bar. We’ll separate out the Header component for
convenience into a separate file because we now have a lot of code that deals with the
auto complete. In the header, we’ll need to divide the space into three columns since the
react-select component happens to be a <div> that will occupy the entire width of its
parent. We’ll use Bootstrap’s Col components to do the division of space.

In the middle column, we’ll place the Select component imported from react-select.
We’ll use the Async variant of this component since that’s the one that loads the list from
the server asynchronously. The important properties that this component needs are the
functions that load the options asynchronously and the function that is to be called when
an item in the drop-down is selected. With these functions implemented, Listing 12-17
shows the code for the new Header component.

Listing 12-17. Header.jsx: New Component Extracted Out of App.jsx, to Include the
Search Bar

import React from 'react';
import { Navbar, Nav, NavItem, NavDropdown, MenuItem, Glyphicon, Col } from 
'react-bootstrap';
import { LinkContainer } from 'react-router-bootstrap';
import { withRouter } from 'react-router';
import Select from 'react-select';

import IssueAddNavItem from './IssueAddNavItem.jsx';
import withToast from './withToast.jsx';

const Header = (props) => {
 function searchIssues(input) {
 if (input.length < 2) return Promise.resolve({ options: [] });

 return fetch(`/api/issues?search=${input}`).then(response => {
 if (!response.ok) return response.json().then(error => Promise. 
 reject(error));
 return response.json().then(data => {
 const options = data.records.map(issue => ({
 value: issue._id,
 label: `${issue._id.substr(-4)}: ${issue.title}`,
 }));
 return { options };

Chapter 12 ■ advanCed Features

300

 }).catch(error => {
 this.props.showError(`Error fetching data from server: ${error}`);
 });
 });
 }

 function filterOptions(options) {
 return options;
 }

 function selectIssue(item) {
 if (item) props.router.push(`/issues/${item.value}`);
 }

 return (
 <Navbar fluid>
 <Col sm={5}>
 <Navbar.Header>
 <Navbar.Brand>Issue Tracker</Navbar.Brand>
 </Navbar.Header>
 <Nav>
 <LinkContainer to="/issues">
 <NavItem>Issues</NavItem>
 </LinkContainer>
 <LinkContainer to="/reports">
 <NavItem>Reports</NavItem>
 </LinkContainer>
 </Nav>
 </Col>
 <Col sm={4}>
 <div style={{ paddingTop: 8 }}>
 <Select.Async
 instanceId="search" placeholder="Search ..." autoload={false} 
 cache={false}
 loadOptions={searchIssues} filterOptions={filterOptions} 
 onChange={selectIssue}
 />
 </div>
 </Col>
 <Col sm={3}>
 <Nav pullRight>
 <IssueAddNavItem showError={props.showError} />
 <NavDropdown
 id="user-dropdown" title={<Glyphicon glyph="option-horizontal" 
 />} noCaret
 >

Chapter 12 ■ advanCed Features

301

 <MenuItem>Logout</MenuItem>
 </NavDropdown>
 </Nav>
 </Col>
 </Navbar>
);
};

Header.propTypes = {
 showError: React.PropTypes.func.isRequired,
 router: React.PropTypes.object,
};

export default withRouter(withToast(Header));

There were three methods that we supplied to Select.Async as properties. The first
is loadOptions, which makes an Ajax call to search issues based on the input text. The
return value is an object with a key option that holds an array of matching options, with
a value and a label. The value is the key to each item that is matched, so we used the _id
of the issue for this. As for the label, we used the title of the issue, and this is what will be
displayed in the drop-down that is shown after the user types in a few characters.

We also have a handler for filtering the options:

...
 function filterOptions(options) {
 return options;
 }
...

Normally, the Select component looks at the list of options that we gave it, and
further filters it based on what the user has typed. To override this and tell it that the list
has already been filtered based on the input text, we had to return the fetched array, no
matter what the input was. This ensures that the list fetched from the server is shown in
its entirety, without another filter applied by the Select component.

The property instanceId is needed to work around a bug in this module, which
causes server-rendering issues if not supplied. The onChange handler uses the selected
item’s ID and routes the router to display the page that shows the selected issue.

Finally, since the header is now in a separate file, we’ll need to remove this from the
App component and import it instead. The new file is shown in Listing 12-18.

Listing 12-18. App.jsx: Rewritten After Separating Out the Header

import 'babel-polyfill';
import React from 'react';

import Header from './Header.jsx';

Chapter 12 ■ advanCed Features

302

const App = (props) => (
 <div>
 <Header />
 <div className="container-fluid">
 {props.children}
 <hr />
 <h5><small>
 Full source code available at this <a href="https://github.com/ 
 vasansr/pro-mern-stack">
 GitHub repository.
 </small></h5>
 </div>
 </div>
);

App.propTypes = {
 children: React.PropTypes.object.isRequired,
};

export default App;

To test it, it’s best to add new issues manually with different words. The search is
case insensitive and also does word stemming: you can type missed and it will match
miss, missing, etc. But you’ll find that you need to type a whole word (or more) for the text
index to match. For example, if you type con, the issue containing the word console will
not be fetched. This is due to the text index in MongoDB. This is the trade-off between
faster searches and flexibility. If you really want the user to be able to type just con and
the search to return the issue, you must use a regex-based search, but this cannot use an
index. It will have to scan through the entire collection to find all the issues that match the
regex.

A screenshot of the application’s Issue List page after including the search bar in the
header is shown in Figure 12-3.

Chapter 12 ■ advanCed Features

303

Google Sign-In
Most applications need to identify and authenticate users. Instead of having our own
user creation and authentication mechanism, we’ll integrate with one of the social sign-
ins. We’ll only implement one (Google Sign-In for Websites); this will serve as a good
example for other integrations, since it uses the OAuth2 mechanism, which most other
authentication integrations also use.

In this section, we’ll only focus on the integration, and leave the actual access control
and session tracking to the next section. Eventually, we’ll make it so that users can view
all information without signing in, but in order to make any change, they will have to sign
in. We’ll use a Modal dialog that lets the user sign in with Google from anywhere in the
application. Once signed in, the application will let the user stay on the same page, so that
they can perform the edit functions after having signed in.

The various options for integrating with Google Sign-In are listed in the “Guides”
section at https://developers.google.com/identity/sign-in/web/. In the
recommended method for integration listed there, the library itself renders the button and
handles its enabled and signed-in states. Unfortunately, this doesn’t work well with React
because the Google library needs a handle to the button and needs it to be permanent.
If you try to use the button within a React-Bootstrap modal, the library throws up errors
since on closing the modal the button is destroyed and recreated when the modal is
opened again. The library apparently doesn’t like this. So, we must display the button
ourselves by following the guide titled Building a button with a custom graphic.

As a preparatory measure, we need a Console Project and a Client ID to identify
the application. Please follow the instructions in the guide to create your own project
and client ID.

To use the client ID, we’ll store it in a configuration file that will be required during
runtime, but one that we cannot commit as part of the source code or include in
any bundle during compilation. This is because we’d like the file to be changed

Figure 12-3. Search bar added to header

https://developers.google.com/identity/sign-in/web/

Chapter 12 ■ advanCed Features

304

after deployment, and the contents can be different for different deployments
(e.g., development, staging, production). Since this configuration will only be used in the
client, we can simply create a JavaScript file in the static directory with the configuration
parameters and include that in the index.html that is generated. The configuration file
name is simply config.js. A sample configuration is available in the GitHub repository
accompanying this book as config.sample.js, and the contents should be like in Listing
12-19, with the text YOUR_CLIENT_ID replaced by the client ID you generated in your
project.

Listing 12-19. config.js: Runtime Configuration File with Client ID

window.config = {
 googleClientId: YOUR_CLIENT_ID.apps.googleusercontent.com',
};

We’ll use this configuration parameter in a new component that encapsulates
the entire sign-in and sign-out functionality. Just like we did for Create Issue, we’ll
encapsulate this inside a NavItem. When the user is signed in, we’ll show a drop-down
menu with the user’s name and a menu item to sign out. When not signed in, we’ll
instead show a navigation item that lets the user sign in.

We’ll initialize the authentication engine within componentDidMount, as it will be
called only once, since the component is in the header and always visible. Upon clicking
the Sign In navigation item, we’ll show a modal dialog, with a single button for Google
Sign-In. I used an image as per the branding guidelines found in the Google Sign-In
developer guide within this button. For testing, you may use a plain button, but if you
intend to put the application in production, you should follow the branding guidelines.

Upon clicking this button, we’ll call the auth2.signin() method. This method is not
described in the guide, but you can find a description in the “Reference” section. On a
successful sign in, we’ll call a callback with the name of the user to the parent component,
since this information will eventually have to flow down into all components that will
need the user information. This component, too, will need the information on the
signed-in state and the name of the user to determine the navigation item to display. The
contents of the new component are shown in Listing 12-20.

Listing 12-20. SignInNavItem.jsx: New Component to Handle Google Sign-in

import React from 'react';
import { NavItem, Modal, Button, NavDropdown, MenuItem } from 
'react-bootstrap';

export default class SigninNavItem extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 showing: false, disabled: true,
 };
 this.showModal = this.showModal.bind(this);
 this.hideModal = this.hideModal.bind(this);

Chapter 12 ■ advanCed Features

305

 this.signout = this.signout.bind(this);
 this.signin = this.signin.bind(this);
 }

 componentDidMount() {
 window.gapi.load('auth2', () => {
 if (!window.gapi.auth2.getAuthInstance()) {
 if (!window.config || !window.config.googleClientId) {
 this.props.showError('Missing Google Client ID or config file 
 /static/config.js');
 } else {
 window.gapi.auth2.init({ client_id: window.config.googleClientId 
 }).then(() => {
 this.setState({ disabled: false });
 });
 }
 }
 });
 }

 signin() {
 this.hideModal();
 const auth2 = window.gapi.auth2.getAuthInstance();
 auth2.signIn().then(googleUser => {
 fetch('/signin', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({ id_token: googleUser.getAuthResponse(). 
 id_token }),
 }).then(response => {
 if (response.ok) {
 response.json().then(user => {
 this.props.onSignin(user.name);
 });
 } else {
 response.json().then(error => {
 this.props.showError(`App login failed: ${error}`);
 });
 }
 })
 .catch(err => {
 this.props.showError(`Error posting login to app: ${err}`);
 });
 }, error => {
 this.props.showError(`Error authenticating with Google: ${error}`);
 });
 }

Chapter 12 ■ advanCed Features

306

 signout() {
 const auth2 = window.gapi.auth2.getAuthInstance();
 fetch('/signout', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 }).then(response => {
 if (response.ok) {
 auth2.signOut().then(() => {
 this.props.showSuccess('Successfully signed out.');
 this.props.onSignout();
 });
 }
 });
 }

 showModal() {
 if (this.state.disabled) {
 this.props.showError('Missing Google Client ID or config file /static/ 
 config.js');
 } else {
 this.setState({ showing: true });
 }
 }

 hideModal() {
 this.setState({ showing: false });
 }

 render() {
 if (this.props.user.signedIn) {
 return (
 <NavDropdown title={this.props.user.name} id="user-dropdown">
 <MenuItem onClick={this.signout}>Sign out</MenuItem>
 </NavDropdown>
);
 }
 return (
 <NavItem onClick={this.showModal}>Sign in
 < Modal keyboard show={this.state.showing} onHide={this.hideModal} 
 bsSize="sm">
 <Modal.Header closeButton>
 <Modal.Title>Sign in</Modal.Title>
 </Modal.Header>
 <Modal.Body>
 < Button block disabled={this.state.disabled} 
 onClick={this.signin}>
 <img src="/btn_google_signin_dark_normal_web.png" 
 alt="Signin" />

Chapter 12 ■ advanCed Features

307

 </Button>
 </Modal.Body>
 <Modal.Footer>
 <Button bsStyle="link" onClick={this.hideModal}>Cancel</Button>
 </Modal.Footer>
 </Modal>
 </NavItem>
);
 }
}

SigninNavItem.propTypes = {
 user: React.PropTypes.object,
 onSignin: React.PropTypes.func.isRequired,
 onSignout: React.PropTypes.func.isRequired,
 showError: React.PropTypes.func.isRequired,
 showSuccess: React.PropTypes.func.isRequired,
};

We expect the property user to be an object that has the keys signedIn and name.
These keys let us choose between showing a drop-down or a navigation item in the
render() method. As a precautionary measure, we also disabled the login button until
the initialization has completed, and if it has failed, we show an error (it is very likely that
on a fresh deployment, someone will miss the configuration file for the Google Client ID).
Also, we’re expecting a sign in and a sign out handler, as well as functions for showing
success and error as part of the properties.

The gapi functions are available as part of Google’s platform library, which we’ll
include as part of the index.html template. This change is shown in Listing 12-21.

Listing 12-21. template.js: Changes to Include Google API Platform Library, and Loading
the Configuration

...
 <script src="https://apis.google.com/js/api:client.js"></script>
...
 <script src="/app.bundle.js"></script>
 <script src="/config.js"></script>
...

To use the component, we’ll include it in the header, in place of the placeholder that
we had until now. Further, we won’t let the header handle the sign-in or sign-out; instead,
we’ll pass on the information to its parent, App, so that the user information can be held
at the topmost point possible. The changes to the Header component are shown in Listing
12-22.

Chapter 12 ■ advanCed Features

308

Listing 12-22. Header.jsx: Changes for Including Sign-In Navigation Item

...
import { Navbar, Nav, NavItem, NavDropdown, MenuItem, Glyphicon, Col } from 
'react-bootstrap';
...
import SigninNavItem from './SigninNavItem.jsx';
...
 render()
 ...
 <NavDropdown id="user-dropdown" title={<Glyphicon glyph="option- 
 horizontal" />}
 noCaret>
 <MenuItem>Logout</MenuItem>
 </NavDropdown>
 <SigninNavItem
 user={props.user} onSignin={props.onSignin} 
 onSignout={props.onSignout}
 showError={props.showError} showSuccess={props.showSuccess}
 />
...
Header.propTypes = {
 ...
 showSuccess: React.PropTypes.func.isRequired,
 onSignin: React.PropTypes.func.isRequired,
 onSignout: React.PropTypes.func.isRequired,
 user: React.PropTypes.object,
...

The App component will now have to be converted to a stateful component since it
will hold the user information and the signed-in state. We’ll also introduce methods to
manipulate this state. The new rewritten App component is shown in Listing 12-23.

Listing 12-23. App.jsx: Rewritten as a Stateful Component to Hold User Information

import 'babel-polyfill';
import React from 'react';

import Header from './Header.jsx';

export default class App extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 user: { signedIn: false, name: '' },
 };
 this.onSignin = this.onSignin.bind(this);
 this.onSignout = this.onSignout.bind(this);
 }

Chapter 12 ■ advanCed Features

309

 onSignin(name) {
 this.setState({ user: { signedIn: true, name } });
 }

 onSignout() {
 this.setState({ user: { signedIn: false, name: '' } });
 }

 render() {
 return (
 <div>
 < Header user={this.state.user} onSignin={this.onSignin} 
 onSignout={this.onSignout} />
 <div className="container-fluid">
 {this.props.children}
 <hr />
 <h5><small>
 Full source code available at this

 GitHub repository.
 </small></h5>
 </div>
 </div>
);
 }
}

App.propTypes = {
 children: React.PropTypes.object.isRequired,
};

The render() method is almost the same, except for passing in the handlers as
properties to Header. The effect of these changes can now be tested. Figure 12-4 shows
the modal dialog. Clicking the button should open a new browser window with your
accounts, and if it’s the first time you are signing in, you will also be shown a message
asking to grant permissions to the application. Upon successful sign-in, the menu item
will be replaced with the first name of the user, which is obtained from the authentication.

Chapter 12 ■ advanCed Features

310

If you want to support multiple social sign-ins such as Facebook and GitHub in
addition to Google, you’re probably better off using an npm package such as passport,
which lets you quickly put together multiple sign-in options. But the passport integration
is at the back end and works well if the result of the sign-in doesn’t have to be the same
page the user initiates it from. It takes the user through a series of redirects and ends up in
a possibly new page as the result of a successful sign-in.

Session Handling
Just authenticating with Google is not enough; we’ll need to do something with the
authentication. First, we’ll need to ensure that the credentials are validated at the back
end, and also establish a session so that requests can be validated against credentials for
all subsequent API calls. Session handling support is available for Express via the npm
package express-session. Let’s now install this:

$ npm install --save express-session

Using the package is quite simple. We install it as a middleware in the application
using app.use(). A required option to create the middleware is the secret, which is used
to encrypt cookies. We’ll just use a random string for this purpose. The other options are
based on recommendations in the express-session documentation.

We’ll initialize a user session in a new route: /signin, which will take in a parameter
in the request body, which is the Google Authentication token. This token will have to be
revalidated using a call to a Google API as described in the sign-in developer guide. Once
verified, we’ll keep an object called user in the session to identify the user, and save just
one variable: the user’s name. In the future, we can save more information such as the

Figure 12-4. Google Sign-In modal dialog

Chapter 12 ■ advanCed Features

311

user’s email ID, which is unique, say, if we add audit logs for saving who changed what in
the issues. The counterpart route of /signout simply destroys the session. Let’s also add a
special API endpoint called /api/users/me that returns the currently signed in user details.

Although we’ll implement checks in the UI to prevent edits unless the user is signed
in, it is good practice to enforce this at the back end also, since the back end API can be
accessed directly without the UI. A single route to /app/all does the job for us where we
check if the methods are one of POST, PUT, or DELETE, and then return an error if we
don’t find a session. In reality, you may have finer-grained access based on roles such as
only administrators can create new users, in which case you need to add such checks in
each endpoint handler, and also save the user’s roles and rights along with the session.

These changes are all in the server, as shown in Listing 12-24.

Listing 12-24. server.js: Changes for Session Handling

...
import session from 'express-session';
...
app.use(session({ secret: 'h7e3f5s6', resave: false, saveUninitialized: 
true }));

app.all('/api/*', (req, res, next) => {
 if (req.method === 'DELETE' || req.method === 'POST' || req.method === 
 'PUT') {
 if (!req.session || !req.session.user) {
 res.status(403).send({
 message: 'You are not authorized to perform the operation',
 });
 } else {
 next();
 }
 } else {
 next();
 }
});
...
app.get('/api/users/me', (req, res) => {
 if (req.session && req.session.user) {
 res.json(req.session.user);
 } else {
 res.json({ signedIn: false, name: '' });
 }
});

app.post('/signin', (req, res) => {
 if (!req.body.id_token) {
 res.status(400).send({ code: 400, message: 'Missing Token.' });
 return;
 }

Chapter 12 ■ advanCed Features

312

 fetch(`https://www.googleapis.com/oauth2/v3/tokeninfo?id_token=${req.body. 
 id_token}`)
 .then(response => {
 if (!response.ok) response.json().then(error => Promise.reject(error));
 response.json().then(data => {
 req.session.user = {
 signedIn: true, name: data.given_name,
 };
 res.json(req.session.user);
 });
 })
 .catch(error => {
 console.log(error);
 res.status(500).json({ message: `Internal Server Error: ${error}` });
 });
});

app.post('/signout', (req, res) => {
 if (req.session) req.session.destroy();
 res.json({ status: 'ok' });
});
...

Now, from the sign-in component, at appropriate events, we’ll need to send the sign-in
and sign-out information to the server as well. For a sign-in, we’ll retrieve the id_token using
the getAuthResponse() method on the user object. With this token, we’ll call the /signin
API in the server, and on success, we’ll propagate the user name to the parent component.

The sign out process is reversed: we first call /signout on the server, and on success,
sign the user out with Google Authentication. The new signin() and signout() methods
in the component are shown in Listing 12-25.

Listing 12-25. SigninNavItem.jsx: Send Sign In and Sign Out Events to the Server

...
 signin() {
 this.hideModal();
 const auth2 = window.gapi.auth2.getAuthInstance();
 auth2.signIn().then(googleUser => {
 fetch('/signin', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({ id_token: googleUser.getAuthResponse(). 
 id_token }),
 }).then(response => {
 if (response.ok) {
 response.json().then(user => {
 this.props.onSignin(user.name);
 });

Chapter 12 ■ advanCed Features

313

 } else {
 response.json().then(error => {
 this.props.showError(`App login failed: ${error}`);
 });
 }
 })
 .catch(err => {
 this.props.showError(`Error posting login to app: ${err}`);
 });
 }, error => {
 this.props.showError(`Error authenticating with Google: ${error}`);
 });
 }

 signout() {
 const auth2 = window.gapi.auth2.getAuthInstance();
 fetch('/signout', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 }).then(response => {
 if (response.ok) {
 auth2.signOut().then(() => {
 this.props.showSuccess('Successfully signed out.');
 this.props.onSignout();
 });
 }
 });
 }
...

At this stage, you’ll find that the session information is persisted in the server, and
also that all the edit operations return an error. Rather than let the user try this and face
error messages, we’ll just make these operations unavailable. We’ll hide the Create Issue
navigation item and the delete icons in the Issue List. In the Issue Edit page, we’ll disable
the Submit button. To be able to do all this, we’ll assume that the user information is
passed through to these components from the App component. The UI changes are
shown in Listings 12-26, 12-27, and 12-28.

Listing 12-26. IssueEdit.jsx: Disable Submit Button if User Is Not Signed In

...
 render()
 ...
 <Button bsStyle="primary" type="submit">Submit</Button>
 < Button bsStyle="primary" type="submit" disabled={!this. 
 props.user.signedIn}>
 Submit
 </Button>

Chapter 12 ■ advanCed Features

314

...
IssueEdit.propTypes = {
 ...
 user: React.PropTypes.object.isRequired,
};
...

Listing 12-27. Header.jsx: Hide Create Issue Button When User Is Not Signed In

...
{props.user.signedIn ? <IssueAddNavItem showError={props.showError} /> : null}
...

Listing 12-28. IssueList.jsx: Hide delete Icons When User Is Not Logged In

...
const IssueRow = (props) => {
 ...
 return (
 ...
 {props.deleteIssue ? (
 <td>
 <Button bsSize="xsmall" onClick={onDeleteClick}><Glyphicon 
 glyph="trash" /></Button>
 </td>
) : null}
...
IssueRow.propTypes = {
 ...
 deleteIssue: React.PropTypes.func.isRequired,
};
...
function IssueTable(props) {
 ...
 return (
 ...
 {props.deleteIssue ? <th></th> : null}
...
IssueTable.propTypes = {
...
 deleteIssue: React.PropTypes.func.isRequired,
};
...
class IssueList extends React.Component {
 ...
 render() {
 ...
 <IssueTable issues={this.state.issues} deleteIssue={this. 
 deleteIssue} />

Chapter 12 ■ advanCed Features

315

 <IssueTable
 issues={this.state.issues}
 deleteIssue={this.props.user.signedIn ? this.deleteIssue : null}
 />
...
IssueList.propTypes = {
 ...
 user: React.PropTypes.object.isRequired,
};
...

Since we already had user as a property in Header, we didn’t have to add it as part
of propTypes, but for the other two components, we added it. The user logged-in state in
IssueList had to percolate down to the descendent components, and rather than pass
the user information down, we made the function deleteIssue optional, indicating to the
children that it is not supported when not passed.

To make the user information available in these components, we must stuff it in
as props from App. But due to the usage of React-Router, we have direct access only to
Header, not to the other children, which are dynamically mounted. We’ll use the
React.cloneElement() strategy discussed earlier to make the props available to all
children without knowing which ones they are. Also, to make the user information
available even when the user refreshes the browser (in this case, the onSignin handler
wouldn’t have been called), we’ll fetch the user information from the server using /api/
users/me API as usual, in the componentDidMount() method in the App component.

With just these changes, you’ll find that the application works, but for a signed-in
user, there’s a brief flash when the browser is refreshed: it first displays as if the user has
not signed in, and when the Ajax call to /api/users/me completes, the UI is redrawn to
reflect the fact that there is a signed-in user. We can fix this using the Server Rendering
technique such that App also uses initial state from the context to initialize its state.

But that’s not enough, because a call to /api/users/me from the server when
constructing all the initial states will fail to fetch the currently logged-in user because it
does not supply a cookie to identify the session. To fix this, we must pass any cookie from
the UI through to all API calls when server-rendering a page. The first change for this is
to extract the cookie from the request and pass it to all the data fetchers. This change is
shown in Listing 12-29.

Listing 12-29. renderedPageRouter.jsx: Pass on Cookies to the API Calls

...
 const dataFetchers = componentsWithData.map(c => c.dataFetcher({
 params: renderProps.params, location: renderProps.location,
 urlBase: 'http://localhost:3000', cookie: req.headers.cookie,
 }));
...

Now, in the data fetcher of App, we’ll use the cookie to add a header while making
the fetch API call. Note that this needs to be done only when rendering on the server, so
there’s a check for existence of this parameter in the data fetcher call, which is not passed

Chapter 12 ■ advanCed Features

316

in from componentDidMount() when rendering in the DOM. This change, and the other
changes in App discussed above, are shown in Listing 12-30.

Listing 12-30. App.jsx: Changes for fetching user data with support for server rendering

export default class App extends React.Component {
 static dataFetcher({ urlBase, cookie }) {
 const headers = cookie ? { headers: { Cookie: cookie } } : null;
 return fetch(`${urlBase || ''}/api/users/me`, headers).then(response => {
 if (!response.ok) return response.json().then(error => Promise. 
 reject(error));
 return response.json().then(data => ({ App: data }));
 });
 }

 constructor(props, context) {
 super(props, context);
 const user = context.initialState.App ? context.initialState.App : {};
 this.state = {
 user: { signedIn: false, name: '' },
 };
...
 componentDidMount() {
 App.dataFetcher({ })
 .then(data => {
 const user = data.App;
 this.setState({ user });
 });
 }
...
 render() {
 const childrenWithUser = React.Children.map(this.props.children, child =>
 React.cloneElement(child, { user: this.state.user })
);
 return (
...
 {this.props.children}
 {childrenWithUser}
...
App.contextTypes = {
 initialState: React.PropTypes.object,
};
...

Chapter 12 ■ advanCed Features

317

Note that we included the cookie in the data fetcher’s fetch() call conditionally, as
in these lines:

...
 static dataFetcher({ urlBase, cookie }) {
 const headers = cookie ? { headers: { Cookie: cookie } } : null;
...

In a client-side call, the cookie would have been automatically included in the fetch
call, hence we didn’t have to explicitly pass the cookie as a parameter when calling the
same method in componentDidMount().

Also, we did not make the same change in other components’ data fetchers because
their results don’t depend on the session. If they did, for example, if the list of issues
depended on the signed-in user, say something like My Issues, then we would have to
include the cookie in those data fetchers as well.

Summary
In this chapter, we explored a variety of techniques and concepts that we can use to
implement features that make the application more usable.

We saw how to use MongoDB’s aggregate framework to summarize or even expand
the data that we can get from collections. We used a third-party React-specific library
to search for issues based on a text index in MongoDB. Finally, we added sign-in and
session capabilities to the application.

Let’s wrap up by discussing what more can be done with the MERN stack in the
next chapter. We’ll stop adding features and code to the application and just look at
other possibilities and libraries that could be useful, depending on how your specific
application takes shape.

319© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7_13

CHAPTER 13

Looking Ahead

I hope by now that I have succeeded in planting the fundamentals of the MERN stack
in your mind. More importantly, I hope I have equipped you to take it to the next level,
because this is by no means the end of the Issue Tracker application, or anything else you
had in mind as a project. If you’d really tried answering the exercises in each chapter, you
should now be familiar with where to get more information when needed.

There are many more features that can be added and more technologies that can be
used to help you going forward. In this chapter, I’ll touch upon some of the technologies
that you may want to consider if you decide to use MERN in real-life projects. But this
will only be a brief introduction to what’s possible; we won’t be adding any code to the
application we’ve created until now. I’ll also talk about the options you have and things
you need to do to deploy. Finally, I’ll introduce mern.io, which can be used to quickly
start off a new project using a boilerplate.

But note that these new things may not necessarily suit your application. You need
to evaluate them carefully if and when you hit a roadblock or want to automate some
repetitive code as your application grows. The previous chapters in this book should have
given you enough confidence that you can use the MERN stack and solve all problems
by hand, or yourself. But in many a case, others have faced similar problems and created
libraries to solve them. I suggest that you look for an existing solution, but wait until you
are clear about what is it that you want solved.

Mongoose
As I’m sure you’ve noticed, there’s lot of repetitive code to convert dates to and from
strings. We also had to add validation code to check the validity of an issue being added
or updated. We did not add these validations on the client-side code, expecting the server
to catch these errors. This is not a great user experience; one would expect the errors to be
caught earlier and friendlier messages to be shown.

We encapsulated some of the conversions and validations in issue.js on the server,
and we could easily share this with the client-side code, our own model of sorts. But we
still need to repeat most of the code for all the CRUD operations on MongoDB across
other models, if we had more than just the issues in the application.

An alternative to consider is the object-document mapping (ODM) package,
mongoose. This is similar to object-relational mappers (ORMs) that you find for SQL

Chapter 13 ■ Looking ahead

320

databases, except that there is in reality very little mapping that’s happening. What
mongoose provides instead is the following:

•	 Schema definitions: This is useful since MongoDB does not
enforce a schema, unlike SQL databases. With SQL databases,
a schema error will be automatically caught by the database,
whereas we had to write our own schema validations. With
mongoose, you can define schemas and have new documents
automatically validated against it.

•	 Data conversions: Happily, mongoose automatically converts data
such as a JSON date string into the native Date type.

•	 Custom validators: Note that mongoose built-in validators include
type checking, required checking, minimum, maximum for
integers, and lengths for strings. Over and above these validators,
you can add custom validators such as email ID validators.

•	 Isomorphic: There’s a browser component that lets the schema
validations be used in the browser, although data conversions still
need to be done manually.

For smaller projects such as the Issue Tracker, mongoose was probably not needed.
You could easily extend and share issue.js to reuse code. But for larger projects with
multiple people working in a team, using mongoose will definitely ease errors in the
development process and also serve as documentation for the object schema, which is
especially helpful for newcomers.

Flux
If you have read about React, it is very likely that you have also heard about Redux and/or
the Flux pattern. Due to its popularity, it’s very tempting to dive right in and start using it.
But let’s first look at opportunities for improvement before we find solutions for them.

When we added user sign-in, we found that we had to transfer user information and
the sign-in action up the component hierarchy and back down to the components that
had use for it. It seems a little wasteful for the components somewhere in between, that
don’t need to know the information. For example, the IssueList component by itself had
little use for the user’s name or signed-in state. All it did was pass the knowledge down to
IssueTable.

Imagine a more deeply nested hierarchy, where only the leaf element needs this
information. A great example a developer gave me was that in his application, the up-vote
button needed to be disabled for comments or posts made by the currently signed-in
user (for obvious reasons). And this button was a component, five levels deep in the
hierarchy, and none of the intermediate components had any use for the signed-in user
information.

If you run into many such cases where you find yourself having to traverse the
component hierarchy needlessly, you really need to consider a global state, one that every
component that is being rendered has access to and depends on for its display. Of course,
all of these components will now be stateless components, pure functions, as I discussed

Chapter 13 ■ Looking ahead

321

in Chapter 4. The state will be abstracted away into a place where every component has
access to it, called a store. But anything global needs some restrictions or contracts to
avoid havoc caused by uncontrolled changes to it. This is what the Flux architectural
pattern tries to define.

Flux embraces a unidirectional data flow, so that all changes to the state are
channeled through a dispatcher, which controls the order of changes and thus avoids
infinite loops because of interdependencies. Although this pattern was invented by the
same people who developed React (that is, Facebook), the pattern is not restricted to
be used only in React. Here is a very succinct, yet complete, description of Flux that I’m
quoting from Facebook’s React blog (emphasis mine):

When a user interacts with a React view, the view sends an action
(usually represented as a JavaScript object with some fields) through the
dispatcher, which notifies the various stores that hold the application’s
data and business logic. When the stores change state, they notify the
views that something has updated. This works especially well with
React’s declarative model, which allows the stores to send updates
without specifying how to transition views between states.

Essentially, the pattern consists of formally defined actions, for example, Create
Issue, initiated by the user. The action is dispatched to a store. This has the effect of
affecting the store’s state. Typically, a function called a reducer is used to describe the
effect of an action on the state: the new state is a function of the current state and the
action.

Redux and Mobx are two popular choices recommended by the authors of React that
can be used for global state management, and they follow the concepts of the Flux pattern
largely. The effect of these frameworks or the Flux pattern is that you will have to write a
lot of boilerplate code, that is, code that looks very much like some other code, seemingly
unnecessarily. For every user action, you must formally define an action, a dispatcher,
and a reducer that, given the current state, returns the contents of a new state.

Let’s take the action of deleting an issue as an example. You must define a set of
formal actions, including a constant like DELETE_ISSUE. Then, you must define a reducer,
a function that takes in various actions, their parameters, and returns a new state (a
switch-case for each different action). Then, you must create a dispatcher, which converts
the action and parameters into a real action, such as sending the request to the server.

All of this is worth it if the state machine in your application is very complicated, like
say, if a delete request can be initiated from several different places in the UI (and also
not the UI, as in some other user’s action), and it has many other implications besides
just removing a row in a table. Not many applications face this kind of complexity. I
can assure you with reasonable confidence that there’ll be a point in time when your
application will grow big enough within a single page (imagine your Facebook page) and
you’ll know you need Redux or Mobx, and why. Until that point in time, it may be wiser to
get things done using just the basics and fundamentals while continuing to learn about
these awesome patterns.

http://dx.doi.org/10.1007/978-1-4842-2653-7_4

Chapter 13 ■ Looking ahead

322

Deployment
All this while, we’ve been using the development environment, although we did make
distinctions between installing packages for development versus for production. Let’s
now look at the different things you may need to do when deploying the application for
others to consume.

Firstly, you need to extricate the hard-coding of various parameters into
configuration files, so that they can be changed depending on the deployment. You really
want to keep the deployment flexible; for example, the MongoDB server may not be on
the same machine as the Node.js web server, or the port, or the user and password to
access the database. We started by using a configuration file for the Google client ID. It’s a
good idea to separate all other parameters that could be different when the application is
really deployed. Things you may like to put in the configuration are the following:

•	 MongoDB database connection parameters: The server name, IP
address, port, user, password.

•	 The port on which the web server listens: This could be port 80 if
Express is handling requests directly, or some other port if there
is a reverse proxy or a load balancer before the HTTP requests hit
the actual server.

•	 Location of static content: JavaScript bundles, images, and
possibly CSS files. They may reside on a CDN, so the prefix of
where to get these from should be soft-coded in template.js and
configured.

•	 If the traffic is to be encrypted using SSL, and if so, the location of
the certificates and keys.

If you decide to not use a proxy and make the Express server directly face the
Internet traffic, the first roadblock you will hit when deploying the application is that you
will need root access on the server for Node.js to run. One option is to install Node.js
and the application under /root and run it under root privileges. But this is dangerous
because it exposes any vulnerabilities in the application or the underlying platform to
hackers. It’s always safer to use a reverse proxy such as apache or nginx to terminate the
requests coming in via the Internet, and run the actual Node.js process as a non-root user.
This way, even if a hacker gains access to the server via unknown security vulnerabilities
in your code or Node.js, the maximum they can get is a regular user access. This is not so
damaging as access as a root user, who gains complete control over the server.

You also want to think about keeping the different layers separate and possibly
running on different machines. Running MongoDB on a separate server is very likely to
happen, especially if you want to handle high availability and add clustering capabilities
so that MongoDB is not running on a single server but multiple servers. Separating
the configuration of where the database resides is almost a must. It’s also a good idea
to make the API server configurable as well, just in case you want the server rendering
to be handed by a separate server. Thus, instead of hard-coding the URL Base in
renderedPageRouter.jsx, you should move it to a configuration file.

Finally, you also need to think about how you copy a tested, certified version of
the application (or even parts of it) to a production server. Lots of people directly pull

Chapter 13 ■ Looking ahead

323

the code from their source control system on to the production servers, but I don’t
recommend this. Instead, I think you should have a small script that compiles all the
required bundles, archives them (tar or zip) along with other static files that are required,
and create a distribution that can be deployed. On the target deployment server, all you
need to do is un-archive the distribution and install any new packages needed (just run
npm install).

In the process, it’s also advisable to mark the distribution with a version number that
is traceable back to the exact replica of the source code from which the distribution was
created. There are multiple ways to do this depending on the source control system, but
most of them support a tagging system that can be used for this purpose. This lets you
look at bug reports in production and relate them to the exact source code that caused
the bug.

mern.io
Although you’ve learned how to build a MERN stack application from scratch, there are
times when you don’t want to go through the same steps for starting a new application.
A lot of code that we wrote would have to be repeated. For example, most of the code for
server rendering or all of the webpack configurations, and even .eslintrc, would have to
be written again and again for each project that you want to initiate.

If you want to get a good head start on most of the popular practices followed in a
MERN stack application, it’s handy to start with a project that’s already crafted with all of
the boilerplate code, as well as an example set of objects that you can tweak or copy to get
your job done quickly.

Enter mern.io (http://mern.io). This project includes a nifty utility that you can
use to create the skeleton of a MERN application. The package itself is called mern-cli, a
command-line utility that creates a MERN app. The commands to start using this are as
follows:

$ npm install –g mern-cli
$ mern init my-new-app

You will find that you have an entire functional application under the directory
my-new-app. To quickly see if it really works, all you need to do is navigate to the directory,
install all the required packages (using npm install), and then run

$ npm start

If you point your browser to http://localhost:8000, you will see a functional
application that can create and delete blog posts. The differences between what we’ve
developed as part of this book and the application created by mern-cli are the following:

•	 mern-cli does not use Bootstrap or React-Bootstrap. It has its
own style sheets for styling its content.

•	 The mern-cli application uses Redux and mongoose, two
technologies that we discussed but did not use in the Issue
Tracker application.

http://mern.io/

Chapter 13 ■ Looking ahead

324

•	 There is no user sign-in code in the mern-cli application.

•	 The code is organized as modules, cohesive pieces of code that
work together to expose a significant functionality. The only
module in the mern-cli application is the Post module.

•	 The mern-cli application supports internationalization.

•	 The server side code is also modularized: the mern-cli
application has separate folders for models, controllers, and
routes.

•	 It uses CSS loaders to pack styles into the main bundle as opposed
to dealing with them as separate files.

The downside is that the framework is opinionated: it has already picked
technologies such as mongoose for the ODM and AVA for testing, choices that you may
not be comfortable with. You may also not be in sync with the organization of the folders.

But the good part about using mern-cli is that all of the tooling is taken care of. You
can focus on your application’s components instead of building the infrastructure needed
to run the application. The choices already made are probably good for you.

That’s All, Folks!
I hope it has been a fun sail through the waters of the MERN stack for you, as it has been
for me. I have learned a lot by just contemplating the programming model, the paradigm
the new thinking that this new stack has opened my eyes to.

But I’m sure this is nowhere close to the end. In a few months, I am reasonably
certain that things won’t be the same. Who knows? Browsers may themselves adapt or
incorporate the virtual DOM technique, making React mostly redundant! Or, you’ll see
a new framework (not a library) that anchors React as the View part in an MVC offering.
The key thing is to keep looking for these new developments, yet be very, very analytical
about why they do or do not work for your application and your team.

Here’s to looking ahead to the more awesome future.

325© Vasan Subramanian 2017
V. Subramanian, Pro MERN Stack, DOI 10.1007/978-1-4842-2653-7

��������� A
Airbnb rule, 145
app.bundle.js, 118–120, 126, 128–129,

131, 148
App.jsx, 108, 119, 124–125, 131, 161, 164,

168, 208–209, 211–212, 241
App.jsx Rewritten with Router, 153
Application programming interfaces

(APIs), 69
Create API, 80–81, 90

error handling, 85–88, 91
using, 84–85, 91

List, 76, 79, 89
automatic server restart, 77
testing, 77–79
using, 82–84, 90

��������� B
babel-preset-es2015-node4, 136
Bootstrap typography elements, 211
Bundle, 120, 122–124

��������� C
Client-side libraries, 125
CommonsChunkPlugin, 127
Componentcomposition. See

Composing component
componentDidMount(), 58

lifecycle methods, 182
componentDidUpdate() lifecycle

methods, 178, 182, 186, 205
Composing component, 40–41
Content delivery network (CDN), 20

Convenience, editing, 143
Cross-tab, 275
CRUD mapping, 70
Custom validators, 320

��������� D
Data conversions, 320
Debugging, 134
Deployment, 322–323
devServer, 129–130
Document-oriented

databases, 10–11
Dynamic composition

CSS Styles, 50
in-memory array, 47
IssueList class, 48
IssueRow class, 49
IssueTable class, 48–49

��������� E
ECMAScript 2015 (ES2015)

App.jsx, 32
arrow function, 32
index.html, 31
package.json, 31
template string, 33

Editing convenience, 143
Error handling, 85–88, 91
ESLint, 140–142
.eslintrc, 140–142, 145–147
Express, 24, 26, 72

handler function, 73
request objects, 73–74
response objects, 74–75

Index

■ INDEX

326

MERN, 9–10
middleware, 75–76
routing, 72

request matching, 72
route lookup, 73
route parameters, 73

��������� F
Facebook, 6
File start_hook.js, 138
Flux pattern, 320–321
FormGroup component, 219, 243
Forms

actual DOM, 180
back-end APIs, 173
buttons, 175
onChange events, 176
componentWillReceive

Props, 204
controlled components, 175
date input, 190, 192–193, 195
delete API, 200–203
edit page, 182, 185, 205
get API, 180–181
hard-coded filter, 179
HTML component, 174
initFilter, 177
input’s type, 204
IssueAdd component, 174
IssueFilter.jsx, 176–178
issue.js, 196
IssueList.jsx, 179
in List API, 173–174, 204
number input, 187–190
PATCH method, 195
PUT method, 196
render() method, 175
server.js, 196
UI components, 186
Update API, 199–200
updateOne MongoDB

function, 196
virtual DOM, 180

��������� G
gapi functions, 307
Glyphicon, 209
Google Sign-In, 303–310

��������� H
Hello World component, 250
Higher Order Components (HOC),

288–291, 293–295, 297
historyApiFallback, 167
Horizontal form, 224
Hot module replacement (HMR)

back-end, 256–260
middleware, 132–134

��������� I
index.html, 120, 126, 128, 207–208, 215,

217, 230, 233
Initial Bootstrap-styled Issue

List page, 210
init.mongo.js, 100
Isomorphic, 320
isomorphic-fetch, 262
IssueAdd class, 119
IssueAdd component, 175
IssueAdd.jsx, 119, 121–123, 125, 140, 222
IssueAddNavItem.jsx, 238
IssueEdit.jsx, 153, 155, 182, 190, 194,

199, 229, 233
IssueFilter component, 216
IssueFilter.jsx, 122, 125, 158, 162, 219
issue.js, 116, 136
IssueList.jsx, 122–123, 125, 131, 145, 148,

156, 158–159, 161, 165, 202, 209,
216, 235, 241

Issue Tracker application, 288–291,
293–295, 297

��������� J, K
Jade, 246
JavaScript, 11–13
JavaScript modules, 208
JavaScript Object Notation (JSON), 14
JSX

automate, 29
react library, 30
separate script file, 27
transformation, 28, 120

��������� L
LinkContainer, 211–212, 216, 226, 243
Loaders, 118, 120–121, 127

Express (cont.)

■ INDEX

327

��������� M
Material UI, 207, 232
mern.io, 323–324
MERN stack, 1–2

components, 5
Express, 9–10
libraries, 13
MongoDB, 10–11
Node.js, 8–9
React, 6–7
React-Bootstrap, 12
React-Router, 12
tools and libraries, 12
webpack tool, 12

purpose, 13
isomorphic, 14
JavaScript, 13
JSON, 14
Node.js performance, 14
not a framework, 15
npm Ecosystem, 14

Middleware function, 75–76
Model-view-controller (MVC), 1
module.exports, 115, 117, 121, 136
MongoDB

aggregate, 275–283
App.jsx, 108
async module, 105–106
callbacks, 103
collections, 94
documents, 93
generator and co module, 104–105
insert method, 109–111
in server.js, 107
installation, 95
limit(), 113
MERN, 10

document-oriented, 10–11
JavaScript, 11
NoSQL, 10
schema-less, 11

mongo shell, 95–98, 112
Node.js Driver, 101–103
promises, 104
query language, 94
schema initialization, 99–100, 112
shell scripting, 99
TCP connection, 113

Mongoose, 319–320

��������� N
NavDropdown, 211, 213
Node.js, 21

MERN, 7
event-driven, 9
modules, 8
and npm, 8

performance, 14
NoSQL databases, 10
npm, 22, 24
nvm, 21

��������� O
onBlur() handler, 187
onChange event, 175–176, 180, 182, 184,

186–189, 191–193, 204

��������� P, Q
package.json, 117, 122, 131, 137, 139
Pagination, 284–288
PATCH method, 195–196
Placeholder page, 155–156
Project directory, 22
PUT method, 195–196, 199

��������� R
React, 55

async state initialization, 58–59
child to parent, communicating from,

60–63, 68
classes, 38–39

composing component, 40–41
designing components, 65

communication, 66
component hierarchy, 65
stateless components, 66
state vs. props, 65

event handling, 60
MERN, 5

component-based, 6–7
declarative, 6
Facebook, 6
isomorphic, 7
no templates, 7

setting state, 55–58, 67
stateless components, 63–65

■ INDEX

328

React-Bootstrap, 12
CSS-in-JS and inline-style approach, 207
grid-based Forms, 218–221, 243
horizontal forms, 224–225, 227–228
inline forms, 222–223, 243
installation, 207, 209–210
Material-UI, 243
Modals, 237, 240, 242, 244
navigation, 210, 213–215, 243
results, 231–237
table and panel, 216–218
UI library, 207
validations, 229–231

React components
classes, 38–41
Issue Tracker, 37
passing data

property, 42–44
property validation, 44–45
props.children, 45–46

React-specific issues, 145
render() method, 309
Representational state transfer (REST), 69

APIs, 69
HTTP methods as actions, 70–71
JSON, 71
resource based, 69

Routed server rendering, 260–261,
263–267

RouterContext, 261
Routing techniques

App.jsx Rewritten with Router, 153
browser history, 152, 167–168
controlled forms, 169
hash-based, 152
IssueEdit.jsx, 153
nested routes, 164–166
parameters, 154–157, 169
programmatic navigation, 161–163,

170–171
properties, 151
query string, 157, 159–160, 169
React Router, 152
React Router works, 153
SPAs, 151
webpack.config.js, 153

��������� S
Schema definitions, 320
Search bar, 297–299, 301–302

Server, 248
server.js, 107–108, 110, 117, 133, 135–136,

145, 157, 168, 174, 181, 200
Server-less Hello World, 17–20
Server rendering, 245

back-end HMR, 256–257, 259
basic, 245–250
encapsulated fetch, 268–272
handling state, 250–252
initial state, 252–253
routed, 260–261, 263–267
server-side bundle,

254–255
Server setup

Express, 24–26
Node.js, 21
npm, 22, 24
nvm, 21
project directory, 22

Server-side bundle, 254–255
Server-side ES2015, 135–139
Server-side modules, 115–117
Session handling, 310–317
setDb(), 258
Single page applications

(SPAs), 1, 151–152, 167
Structural issues, 143
Syntax consistency, 142

��������� T, U
template.js, 246
Third-party libraries, 125
Toast.jsx, 231, 235
Transform, 120, 122–124
trymongo.js, 102–106

��������� V
Validation function, 87
Vendor bundle, 211
Virtual DOM technique, 324

��������� W, X, Y, Z
Webpack, 117–120
webpack.config.js, 120–121, 127,

129–130, 132, 134, 140, 147,
153, 168, 211

webpack-dev-server, 129
Webpack tool, 12

	Contents at a Glance
	Contents
	About the Author
	Chapter 1: Introduction
	What Is MERN?
	Who Should Read This Book
	Structure of the Book
	Conventions
	What You Need
	MERN Components
	React
	Why Facebook Invented React
	Declarative
	Component-Based
	No Templates
	Isomorphic

	Node.js
	Node.js Modules
	Node.js and npm
	Node.js Is Event Driven

	Express
	MongoDB
	NoSQL
	Document-Oriented
	Schema-Less
	JavaScript Based

	Tools and Libraries
	React-Router
	React-Bootstrap
	Webpack
	Other Libraries

	Why MERN?
	JavaScript Everywhere
	JSON Everywhere
	Node.js Performance
	The npm Ecosystem
	Isomorphic
	It’s not a Framework!

	Summary

	Chapter 2: Hello World
	Server-Less Hello World
	Server Setup
	nvm
	Node.js
	Project
	npm
	Express

	Build-Time JSX Compilation
	Separate Script File
	Transform
	Automate
	React Library

	ES2015
	Summary
	Answers to Exercises
	Exercise: JSX
	Exercise: npm
	Exercise: Express
	Exercise: Babel
	Exercise: ES2015

	Chapter 3: React Components
	Issue Tracker
	React Classes
	Composing Components
	Passing Data
	Using Properties
	Property Validation
	Using Children

	Dynamic Composition
	Summary
	Answers to Exercises
	Exercise: React Classes
	Exercise: Passing Data
	Exercise: Dynamic Composition

	Chapter 4: React State
	Setting State
	Async State Initialization
	Event Handling
	Communicating from Child to Parent
	Stateless Components
	Designing Components
	State vs. props
	Component Hierarchy
	Communication
	Stateless Components

	Summary
	Answers to Exercises
	Exercise: Setting State
	Exercise: Communicate Child to Parent

	Chapter 5: Express REST APIs
	REST
	Resource Based
	HTTP Methods as Actions
	JSON

	Express
	Routing
	Request Matching
	Route Parameters
	Route Lookup

	Handler Function
	Request Objects
	Response Objects

	Middleware

	The List API
	Automatic Server Restart
	Testing

	The Create API
	Using the List API
	Using the Create API
	Error Handling
	Summary
	Answers to Exercises
	Exercise: The List API
	Exercise: Create API
	Exercise: Using the List API
	Exercise: Using the Create API
	Exercise: Error Handling

	Chapter 6: Using MongoDB
	MongoDB Basics
	Documents
	Collections
	Query Language
	Installation
	The mongo Shell
	Shell Scripting

	Schema Initialization
	MongoDB Node.js Driver
	Callbacks
	Promises
	Generator and co Module
	The async Module

	Reading from MongoDB
	Writing to MongoDB
	Summary
	Answers to Exercises
	Exercise: Mongo Shell
	Exercise: Schema Initialization
	Exercise: Reading from MongoDB
	Exercise: Writing to MongoDB

	Chapter 7: Modularization and Webpack
	Server-Side Modules
	Introduction to Webpack
	Using Webpack Manually
	Transform and Bundle
	Libraries Bundle
	Hot Module Replacement
	HMR Using Middleware
	Comparison of HMR Alternatives

	Debugging
	Server-Side ES2015
	ESLint
	Environment
	Syntax Consistency
	Editing Convenience
	Structural Issues
	React Specifics
	Rule Overrides

	Summary
	Answers to Exercises
	Exercise: Transform and Bundle
	Exercise: Hot Module Replacement
	Exercise: Server-Side ES2015
	Exercise: ESLint

	Chapter 8: Routing with React Router
	Routing Techniques
	Simple Routing
	Route Parameters
	Route Query String
	Programmatic Navigation
	Nested Routes
	Browser History
	Summary
	Answers to Exercises
	Exercise: Route Parameters
	Exercise: Route Query String
	Exercise: Programmatic Navigation

	Chapter 9: Forms
	More Filters in the List API
	Filter Form
	The Get API
	Edit Page
	UI Components
	Number Input
	Date Input

	Update API
	Using Update API
	Delete API
	Using the Delete API
	Summary
	Answers to Exercises
	Exercise: More Filters in List API
	Exercise: Filter Form
	Exercise: Edit Page
	Exercise: Date Input
	Exercise: Update API

	Chapter 10: React-Bootstrap
	Bootstrap Installation
	Navigation
	Table and Panel
	Forms
	Grid-Based Forms
	Inline Forms
	Horizontal Forms

	Alerts
	Validations
	Results

	Modals
	Summary
	Answers to Exercises
	Exercise: Navigation
	Exercise: Grid-Based Forms
	Exercise: Inline Forms
	Exercise: Modals

	Chapter 11: Server Rendering
	Basic Server Rendering
	Handling State
	Initial State
	Server-Side Bundle
	Back-End HMR
	Routed Server Rendering
	Encapsulated Fetch
	Summary
	Answers to Exercises
	Back-End HMR
	Routed Server Rendering

	Chapter 12: Advanced Features
	MongoDB Aggregate
	Pagination
	Higher Order Components
	Search Bar
	Google Sign-In
	Session Handling
	Summary

	Chapter 13: Looking Ahead
	Mongoose
	Flux
	Deployment
	mern.io
	That’s All, Folks!

	Index

