
Freeman

Shelve in
Web Development/JavaScript

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro jQuery 2.0
jQuery 2.0 is the latest version of the jQuery framework. Suitable for modern web
browsers it provides a robust API for web application development. It is fast becoming
the tool of choice for web developers the world over and sets the standard for simplic-
ity, flexibility and extensibility in website design.

In Pro jQuery 2.0 seasoned author, Adam Freeman, demonstrates how to get the
most from jQuery 2.0 by focusing on the practical features of the technology and how
they can be applied to solving real-world problems. In this comprehensive reference he
goes in depth to give you the practical knowledge that you need.

Each topic is covered clearly and concisely, and is packed with the details you’ll
need to learn to be truly effective. The most important features are given a no-non-
sense, in-depth treatment, and chapters contain examples that demonstrate both the
power and the subtlety of jQuery.

With this book you’ll:

• Understand the capabilities of jQuery and why it is special
• Use the core of jQuery to enrich HTML5, including tables, forms and data displays
• Use jQuery UI to create rich and fluid user experiences
• Use rich interactions such as drag and drop, sortable data and touch sensitivity
• Use jQuery Mobile to create touch-enabled interfaces for mobile devices and tablets
• Extend jQuery by creating custom plugins and widgets

9 781430 263883

ISBN 978-1-4302-6388-3

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xxix

About the Technical Reviewer ��� xxxi

Acknowledgments ��� xxxiii

Chapter 1: Putting jQuery in Context ■ ���1

Chapter 2: HTML Primer ■ ��11

Chapter 3: CSS Primer ■ ���33

Chapter 4: JavaScript Primer ■ ��61

Chapter 5: jQuery Basics ■ ���93

Chapter 6: Managing the Element Selection ■ ���117

Chapter 7: Manipulating the DOM ■ ���145

Chapter 8: Manipulating Elements ■ ��177

Chapter 9: Working with Events ■ ��211

Chapter 10: Using jQuery Effects ■ ���235

Chapter 11: Refactoring the Example: Part I ■ ���267

Chapter 12: Using Data Templates ■ ���281

Chapter 13: Working with Forms ■ ���309

Chapter 14: Using Ajax: Part I ■ ���351

Chapter 15: Using Ajax: Part II ■ ��381

Chapter 16: Refactoring the Example: Part II ■ ��411

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a GlanCe

vi

Chapter 17: Setting Up jQuery UI ■ ���449

Chapter 18: Using the Button, Progress Bar, and Slider Widgets ■ ����������������������������������457

Chapter 19: Using the Autocomplete and Accordion Widgets ■ ���������������������������������������491

Chapter 20: Using the Tabs Widget ■ ��527

Chapter 21: Using the Datepicker Widget ■ ��555

Chapter 22: Using the Dialog and Spinner Widgets ■ ���587

Chapter 23: Using the Menu and Tooltip Widgets ■ ��621

Chapter 24: Using the Drag-and-Drop Interactions ■ ���653

Chapter 25: Using the Other Interactions ■ ��683

Chapter 26: Refactoring the Example: Part III ■ ���709

Chapter 27: Getting Started with jQuery Mobile ■ ��737

Chapter 28: Pages, Themes & Layouts ■ ��763

Chapter 29: The Dialog & Popup Widgets ■ ��797

Chapter 30: Buttons and Collapsible Blocks ■ ���823

Chapter 31: Using jQuery Mobile Forms ■ ��847

Chapter 32: Using Lists and Panels ■ ���879

Chapter 33: Refactoring the Example: Part IV ■ ���903

Chapter 34: Using the jQuery Utility Methods ■ ��929

Chapter 35: The jQuery UI Effects & CSS Framework ■ ��945

Chapter 36: Using Deferred Objects ■ ��963

Index ���995

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1

Putting jQuery in Context

At its heart, jQuery does something that sounds dull: it lets you modify the contents of web pages by manipulating
the model that the browser creates when it processes the HTML, a process known as DOM (Document Object Model)
manipulation, which I describe in detail later. If you have picked up this book, then you have probably already
done some DOM manipulation, using either another JavaScript library or the built-in web browser API (application
programming interface), and now you want to do it in a better way.

jQuery goes beyond better. It makes DOM manipulation a pleasure and, on occasion, an actual joy. There is
something elegant and graceful about the way that jQuery works that transforms a task that can be pure drudgery into
something that is simple and easy. Once you start using jQuery, there is no going back. Here are the top reasons that
I use jQuery in my projects.

•	 jQuery is expressive. I can do more work with much code.

•	 jQuery methods apply to multiple elements. The DOM API approach of select-iterate-modify is
gone, meaning fewer for loops to iterate through elements and fewer mistakes.

•	 jQuery deals with implementation differences between browsers. I don’t have to worry about
whether Internet Explorer (IE) supports a feature in an odd way, for example; I just tell jQuery
what I want, and it works around the implementation differences for me.

•	 jQuery is open source. When I don’t understand how something works or I don’t quite get the
result I expect, I can read through the JavaScript code and, if needed, make changes.

The genius of jQuery is that it takes something that is a major grind in web development and makes it simple,
quicker, and easier. I can’t ask for more than that. Not everything is perfect, of course, and there are one or two rough
edges, which I’ll explain as I get into the details. But even with the occasional flaw, I love working with jQuery, and
I hope you will find it equally compelling and enjoyable to use.

Understanding jQuery UI and jQuery Mobile
In addition to the core jQuery library, I also cover jQuery UI and jQuery Mobile, which are user interface (UI) libraries
built on top of jQuery. jQuery UI is a general-purpose UI toolkit intended to be used on any device, and jQuery Mobile
is designed for use with touch-enabled devices such as smartphones and tablets.

Understanding jQuery Plug-ins
jQuery plug-ins extend the functionality of the basic library. Some plug-ins are so good and so widely used that I have
covered them in this book. There are a lot of plug-ins available (although the quality can vary), so if you don’t like the
plug-ins I describe in this book, you can be confident that an alternative approach is available.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ putting jQuery in Context

2

What Do I Need to Know?
Before reading this book, you should be familiar with the basics of web development, have an understanding of
how HTML and CSS (cascading style sheets) work, and, ideally, have a working knowledge of JavaScript. If you are
a little hazy on some of these details, I provide refreshers for HTML, CSS, and JavaScript in Chapters 2, 3, and 4. You
won’t find a comprehensive reference for HTML elements and CSS properties, though. There just isn’t the space in a
book about jQuery to cover HTML in its entirety. If you want a complete reference for HTML and CSS, then I suggest
another of my books: The Definitive Guide to HTML5, also published by Apress.

What Is the Structure of This Book?
This book is split into six parts, each of which covers a set of related topics.

Part 1: Getting Ready
Part 1 of this book provides the information you need to get ready for the rest of the book. It includes this chapter and
primers/refreshers for HTML, CSS, and JavaScript. Later in this chapter, I’ll describe the software that you will need in
order to follow along.

Part 2: Working with jQuery
Part 2 of this book introduces you to the jQuery library, starting with a basic example and building up to include each
of the core features: element selection, DOM manipulation, events, and effects.

Part 3: Working with Data and Ajax
Part 3 of this book shows how jQuery makes it possible to work with inline or remote data. I show you how you can
generate HTML content from data, how you can validate data entered into web forms, and how you can use jQuery to
perform asynchronous operations, including Ajax.

Part 4: Using jQuery UI
jQuery UI is one of the two user interface libraries that I describe in this book. Built on, and integrated with, the core
jQuery library, jQuery UI allows you to create rich and responsive interfaces for your web applications.

Part 5: Using jQuery Mobile
jQuery Mobile is the other user interface library that I cover in this book. jQuery Mobile is built on top of jQuery and
incorporates some basic feature from jQuery UI but has been optimized for creating smartphone and tablet interfaces.
Fewer UI widgets are available in jQuery Mobile, but those that are supported are optimized for touch interaction and
for presentation on smaller displays.

Part 6: Advanced Features
The final part of this book describes some jQuery and jQuery UI features not commonly used but which can be helpful
in complex projects. These are advanced features that require a better understanding of HTML, CSS, and jQuery itself.
When reading Chapter 36, a basic knowledge of asynchronous programming is very helpful.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ putting jQuery in Context

3

What’s New in This Edition?
Since the first edition of this book, jQuery, jQuery UI, and jQuery Mobile have all undergone substantial changes.

What’s New for Core jQuery?
The API for the core jQuery library is remarkably stable. Some years ago, the jQuery team starting listing changes that
they intended to make, and these were implemented with the release of jQuery version 1.9. Some of these changes are
quite substantial and I have indicated the changes in each chapter throughout Part 2 of this book.

The good news is that these changes are very rare and the API is likely to remain stable for several years. That’s
not to say that new features won’t be added, but the code that you develop today will continue to work without
modification for some time to come.

The bad news is that the jQuery team did something unusual when they released jQuery 1.9—they also released
jQuery 2.0, and thus they split development into two lines of parallel releases: jQuery 1.x and jQuery 2.x. Both release
lines have the same API but jQuery 2.x doesn’t support versions 6, 7, and 8 of IE.

The older versions of IE are notorious in their non-standard approach to HTML, CSS, and JavaScript, and
removing all of the checks for odd behavior and the associated workarounds makes jQuery 2.x smaller and faster.

Tip ■ at the time of this writing, the current versions of jQuery are 2.0.2 and 1.10.1. it is important to understand that
jQuery 2.0.2 doesn’t supersede version 1.10.1. they are both the latest release and the only difference is that jQuery
1.10.1 preserves support for older versions of internet explorer.

You should use jQuery 2.x if you are sure that none of your users will have Internet Explorer 6, 7, or 8. If that is not
the case—or if you are not sure—then you should use jQuery 1.x. These versions of IE are still widely used, especially
in large corporations, and you should think carefully about the effect of using the 2.x line.

There are no legacy users in the idealized world of programming books, and I’ll be using the jQuery 2.0.2 library
throughout most this book—but you can substitute any version of the jQuery 1.x line (from version 1.9 onward) and
get the same result and preserve support for the old versions of IE.

Tip ■ i use jQuery 1.x in part 4, when i describe jQuery Mobile. jQuery Mobile tends to lag behind the main jQuery
release and, as i write this, only supports jQuery 1.x.

What’s New for jQuery UI?
jQuery UI has also been updated. The API for using the existing user interface widgets has been updated to be more
consistent and to work more closely with the HTML elements that underpin them and some new widgets have been
added. Throughout Part 3 of this book, you will find that I show the important changes at the start of each chapter, just
as I did for the changes to jQuery itself in Part 2.

What’s New for jQuery Mobile?
jQuery Mobile has matured a lot since the previous edition of this book. The API has been normalized, new widgets
have been added, and the overall developer experience is much more consistent with jQuery and jQuery UI. To reflect
this maturity, I have completely rewritten Part 4 to bring it in line with the rest of the book. There are more examples,
reference tables, and demonstrations of specific features.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ putting jQuery in Context

4

What Else Is New?
From Chapter 12 onward, I use templates to generate HTML elements from data. This is an important technique
and I use it liberally. The library that I used in the previous edition has reached the end of its life and I have chosen
a replacement. The new library doesn’t come with direct integration into jQuery and so in Chapter 12, I provide a
custom plug-in that makes using the template library I selected easy to use with jQuery. All of the examples that follow
Chapter 12 have been revised to use the new library.

I changed the toolset that I use for testing mobile applications, preferring to use a cloud-based testing service
rather than maintaining my own emulators. I explain why I have done this in Chapter 27.

Are There Lots of Examples?
There are loads of examples. One of the nice aspects of jQuery is that almost any task can be performed in several
different ways, allowing you to develop a personal jQuery style. To show the different approaches you can take, I have
included a lot of different examples—so many, in fact, that I include the complete HTML document you are working
with only once in some chapters in order to fit everything in. The first example in every chapter is a complete HTML
document, as shown in Listing 1-1, for example.

Listing 1-1. A Complete Example Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script type="text/javascript">
 $(document).ready(function () {
 $("img:odd").mouseenter(function (e) {
 $(this).css("opacity", 0.5);
 }).mouseout(function (e) {
 $(this).css("opacity", 1.0);
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required >
 </div>
 <div class="dcell">

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ putting jQuery in Context

5

 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 <div id="row2" class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

This listing is taken from Chapter 5. Don’t worry about what it does; just be aware that the first example in each
chapter is a complete HTML document, similar to the one shown in Listing 1-1. Almost all of the examples are based
around the same basic HTML document, which displays a simple flower shop. It isn’t the most exciting example, but it
is self-contained and includes all of the things we are interested in when working with jQuery.

For the second and subsequent examples, I only show you the elements that change. This is generally just the
script element, which is where your jQuery code lives. You can spot a partial listing because it starts and ends with
ellipsis (...), as shown in Listing 1-2.

Listing 1-2. A Partial Listing

...
<script type="text/javascript">
 jQuery(document).ready(function () {
 jQuery("img:odd").mouseenter(function(e) {
 jQuery(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 jQuery(this).css("opacity", 1.0);
 });
 });
</script>
...

Listing 1-2 is a subsequent listing from Chapter 5. You can see that just the script element appears, and I have
highlighted a number of statements. This is how I draw your attention to the part of the example that shows the jQuery
feature I am using. In a partial listing like this, only the element I show has changed from the complete document
shown at the start of the chapter.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ putting jQuery in Context

6

I have kept the examples in this book very focused on individual features. This is to give you the best coverage of
how jQuery operates. But in doing this, you can lose sight of how different features fit together, so at the end of each
part of the book, there is a short chapter in which I refactor the example document to incorporate all of the topics in
the previous chapters and present a joined-up view of what’s possible.

Where Can I Get the Example Code?
You can download all the examples for all the chapters in this book in the Source Code/Download area of the Apress
web site (www.apress.com). The download is available without charge and includes all of the supporting resources
that are required to re-create the examples without having to type them in (including images, JavaScript libraries, and
CSS style sheets). You don’t have to download the code, but it is the easiest way of experimenting with the examples
and cutting and pasting techniques into your own projects.

Tip ■ even though i list just the changes in a lot of the code listings in the chapters, each example in the source code
download is a complete htML document that you can load directly into your browser.

What Software Do I Need for This Book?
To follow the examples in this book, you will need various pieces of software, as described in the following sections.

Getting jQuery
The very first thing you need is the jQuery library, which is available from http://jquery.com. There is a download
button right on the front page of the web site and an option to choose either the production or development release,
as shown in Figure 1-1.

Figure 1-1. Downloading the jQuery library

www.allitebooks.com

http://www.apress.com/
http://jquery.com/
http://www.allitebooks.org

Chapter 1 ■ putting jQuery in Context

7

You will need to download jQuery 2.x for Parts 1–4 and 6 of this book and jQuery 1.x for Part 5. You’ll be using the
development versions for this book. I explain the difference between these versions and show you how to set up the
jQuery library in Chapter 5.

Tip ■ i tell you how to obtain and install the jQuery ui and jQuery Mobile libraries in Chapters 17 and 27, respectively.

Getting an HTML Editor
One of the most important tools for web development is an editor with which you can create HTML documents.
HTML is just text, so you can use a very basic editor, but there are some dedicated packages available that make the
development smoother and simpler, and many of them are available without charge.

When I wrote the first edition of this book, I used Komodo Edit from Active State. It is free; it is simple; it has
good support for HTML, JavaScript, and jQuery; and there are versions for Windows, Mac, and Linux. See
http://activestate.com for details.

Recently, however, I have switched to Microsoft’s Visual Studio. Many of my books are about Microsoft’s web
stack and I write my code on Windows. The recent versions of Visual Studio have outstanding support for HTML
editing and can be used without any dependency of the Microsoft web stack. I used Visual Studio 2012 Express for
this book, which is available for free—see http://www.microsoft.com/visualstudio. (There are paid-for versions as
well—this is Microsoft, after all—but you don’t need the extra features for jQuery development.)

As an alternative, JsFiddle is a popular online editor that provides support for working with jQuery. I don’t get
on with it (it is structured in a way that conflicts with my development habits), but it does seem pretty flexible and
powerful. It is free to use and is available at http://jsfiddle.net.

Note ■ i recommend a few products in this book, but only because they are the ones that i use and like. i don’t have any
relationship with active State, Microsoft, or any other company aside from apress, which publishes all of my books. i pay full
price for every web service and development tool that i use; i don’t get any special support or secret access to the development
teams and the only money that i receive comes from royalties (and i am very grateful for your purchase—thank you).

Getting a Web Browser
You need a web browser to view your HTML documents and test your jQuery and JavaScript code. I like Google
Chrome: I find it quick, I like the simple UI, and the developer tools are pretty good. Whenever you see a screenshot in
this book (which is often), it will be Google Chrome that you see.

That said, you don’t have to use the same browser I do, but I do recommend you pick one with good developer
tools. Mozilla Firefox has some excellent JavaScript tools available through the Firebug extension, which you can get at
http://getfirebug.com.

If you don’t like Chrome or Firefox, then your next best bet is Internet Explorer. A lot of web programmers have
moral objections to IE, but version 10 is pretty good and I often use it as a quick sanity check when Chrome behaves in
an unexpected manner.

Getting a Web Server
If you want to re-create the examples in this book, you will need a web server so that the browser has somewhere from
which to load the example HTML document and related resources (such as images and JavaScript files). A lot of web
servers are available, and most of them are open source and free of charge. It doesn’t matter which web server you
use. I have used Microsoft’s Internet Information Services (IIS) in this book, but that’s just because I have a Windows
Server machine already set up and ready to go.

http://activestate.com/
http://www.microsoft.com/visualstudio
http://jsfiddle.net/
http://getfirebug.com/

Chapter 1 ■ putting jQuery in Context

8

Getting Node.js
Starting in Part 3, you’ll be using Node.js in addition to a regular web server. Node.js is very popular at the moment,
but I have used it for the simple reason that it is based on JavaScript, so you don’t have to deal with a separate web
application framework. You won’t be digging into any detail at all about Node.js, and I’ll be treating it as a black box
(although I do show you the server scripts so you can see what’s happening on the server if you are interested).

You can download Node.js from http://nodejs.org. There is a precompiled binary for Windows and source
code that you can build for other platforms. In this book, I am using version 0.10.13, which is likely to be superseded
by the time you read this, but the server scripts should still work without any problems.

Setting Up and Testing Node.js
The simplest way to test Node.js is with a simple script. Save the contents of Listing 1-3 to a file called NodeTest.js.
I have done this in the same directory as my Node.js binary.

Listing 1-3. A Node.js Test Script

var http = require('http');
var url = require('url');

http.createServer(function (req, res) {
 console.log("Request: " + req.method + " to " + req.url);

 res.writeHead(200, "OK");
 res.write("<h1>Hello</h1>Node.js is working");
 res.end();

}).listen(80);
console.log("Ready on port 80");

This is a simple test script that returns a fragment of HTML when it receives an HTTP GET request.

Tip ■ Don’t worry if that last sentence didn’t make complete sense. you don’t need to know how http and web
servers work to use jQuery, and i provide a crash course in htML in Chapter 2.

To test Node.js, run the binary specifying the file you just created as an argument. For my Windows installation,
I typed the following at the console prompt:

node NodeTest.js

To make sure everything is working, navigate to port 80 on the machine that is running Node.js. You should see
something very similar to Figure 1-2, indicating that everything is as expected.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://nodejs.org/

Chapter 1 ■ putting jQuery in Context

9

I run Node.js on a machine different from the regular web server, which means that using port 80 doesn’t cause
me any problems. If you have only one machine available, run the web server on port 80 and change the Node.js
script to use another port. I have highlighted the part of the test script in Listing 1-3 that specifies which port is used.

Image Attribution
Throughout this book, I use a set of images in the examples. Thanks to the following people for kind permission to use
their photographs: Horia Varlan, David Short, Geishaboy500, Tanaka Juuyoh, Mervi Eskelinen, Fancy Speed Queen,
Alan “craigie3000” Craigie, notsogood, and melalouise.

Summary
In this chapter, I outlined the content and structure of this book and set out the software that is required for jQuery
web development, all of which can be obtained free of charge. The next three chapters refresh your basic skills in
HTML, CSS, and JavaScript. If you are familiar with these topics, then skip to Chapter 5 where I introduce jQuery.

Figure 1-2. Testing Node.js

11

Chapter 2

HTML Primer

We are going to spend a lot of time in this book working on HTML documents. In this chapter, I set out the
information you’ll need to understand what we are doing later in the book. This isn’t an HTML tutorial but rather a
summary of the key characteristics of HTML that I rely on in later chapters.

The latest version of HTML, which is known as HTML5, is a topic in its own right. HTML5 has more than
100 elements, and each of them has its own purpose and functionality. That said, you need only a basic knowledge
of HTML to understand how jQuery works, but if you want to learn about the details of HTML, then I suggest another
of my books: The Definitive Guide to HTML5, also published by Apress.

Introducing a Basic HTML Document
The best place to start is to look at an HTML document. From such a document, you can see the basic structure
and hierarchy that all HTML documents follow. Listing 2-1 shows a simple HTML document. I use this document
throughout this chapter to introduce the core concepts of HTML.

Listing 2-1. A Simple HTML Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <style>
 h1 {
 width: 700px; border: thick double black; margin-left: auto;
 margin-right: auto; text-align: center; font-size: x-large; padding: .5em;
 color: darkgreen; background-image: url("border.png");
 background-size: contain; margin-top: 0;
 }
 .dtable {display: table;}
 .drow {display: table-row;}
 .dcell {display: table-cell; padding: 10px;}
 .dcell > * {vertical-align: middle}
 input {width: 2em; text-align: right; border: thin solid black; padding: 2px;}
 label {width: 5em; padding-left: .5em;display: inline-block;}
 #buttonDiv {text-align: center;}
 #oblock {display: block; margin-left: auto; margin-right: auto; width: 700px;}
 </style>
</head>

Chapter 2 ■ htML priMer

12

<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required >
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 <div class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

This is a short and basic HTML document, but it contains some of the most important characteristics associated
with HTML. You can see how this document appears in a browser in Figure 2-1.

Chapter 2 ■ htML priMer

13

Understanding the Anatomy of an HTML Element
At the heart of HTML is the element, which tells the browser what kind of content each part of an HTML document
represents. Following is an element from the example:

...
<h1>Jacqui's Flower Shop</h1>
...

This element has three parts: the start tag, the end tag, and the content, as illustrated by Figure 2-2.

The name of this element (also referred to as the tag name or just the tag) is h1, and it tells the browser that the
content between the tags should be treated as a top-level header. You create the start tag by placing the tag name in
angle brackets, the < and > characters. You create the end tag in a similar way, except that you also add a / character
after the left-angle bracket (<).

Figure 2-1. Displaying the example HTML document in the browser

Figure 2-2. The anatomy of a simple HTML element

Chapter 2 ■ htML priMer

14

Understanding Attributes
You can provide additional information to the browser by adding attributes to your elements. Listing 2-2 shows an
element with an attribute from the example document.

Listing 2-2. Defining an Attribute

...
<label for="aster">Aster:</label>
...

This is a label element, and it defines an attribute called for. I have emphasized the attribute to make it easier to
see. Attributes are always defined as part of the start tag. This attribute has a name and a value. The name is for, and the
value is aster. Not all attributes require a value; just defining them sends a signal to the browser that you want a certain
kind of behavior associated with the element. Listing 2-3 shows an example of an element with such an attribute.

Listing 2-3. Defining an Attribute That Requires No Value

...
<input name="snowdrop" value="0" required>
...

This element has three attributes. The first two, name and value, are assigned a value. (This can get a little
confusing. The names of these attributes are name and value. The value of the name attribute is snowdrop, and the
value of the value attribute is 0.) The third attribute is just the word required. This is an example of an attribute that
doesn’t need a value, although you can define one by setting the attribute value to its name (required="required") or
by using the empty string (required="").

The id and class Attributes
Two attributes are particularly important in this book: the id and class attributes. One of the most common tasks you
need to perform with jQuery is to locate one or more elements in the document so that you can perform some kind of
operation on them. The id and class attributes are useful for locating one or more elements in the HTML document.

Using the id Attribute
You use the id attribute to define a unique identifier for an element in a document. No two elements are allowed to
have the same value for the id attribute. Listing 2-4 shows a simple HTML document that uses the id attribute.

Listing 2-4. Using the id Attribute

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
</head>
<body>
 <h1 id="mainheader">Welcome to Jacqui's Flower Shop</h1>
 <h2 id="openinghours">We are open 10am-6pm, 7 days a week</h2>
 <h3 id="holidays">(closed on national holidays)</h3>
</body>
</html>

Chapter 2 ■ htML priMer

15

I have defined the id attribute on three of the elements in the document. The h1 element has an id value of
mainheader, the h2 element has an id value of openinghours, and the h3 element has an id value of holidays.
Using the id value lets you find a specific element in the document.

Using the class Attribute
The class attribute arbitrarily associates elements together. Many elements can be assigned to the same class, and
elements can belong to more than one class, as shown in Listing 2-5.

Listing 2-5. Using the class Attribute

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
</head>
<body>
 <h1 id="mainheader" class="header">Welcome to Jacqui's Flower Shop</h1>
 <h2 class="header info">We are open 10am-6pm, 7 days a week</h2>
 <h3 class="info">(closed on national holidays)</h3>
</body>
</html>

In Listing 2-5, the h1 element belongs to the header class, the h2 element belongs to the header and info classes,
and the h3 element belongs just to the info class. As you can see, you can add an element to multiple classes just by
separating the class names with spaces.

Understanding Element Content
Elements can contain text, but they can also contain other elements. Following is an example of an element that
contains other elements:

...
<div class="dcell">

 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
</div>
...

The div element contains three others: an img, a label, and an input element. You can define multiple levels
of nested elements, not just the one level shown here. Nesting elements like this is a key concept in HTML because it
imparts the significance of the outer element to those contained within (this is a theme I return to later). You can mix
text content and other elements, as follows:

...
<div class="dcell">
 Here is some text content

 Here is some more text!
 <input name="rose" value="0" required>
</div>
...

Chapter 2 ■ htML priMer

16

Understanding Void Elements
The HTML specification includes elements that may not contain content. These are called void or self-closing
elements and they are written without a separate end tag. Following is an example of a void element:

...

...

A void element is defined in a single tag, and you add a / character before the last angle bracket (the > character).
Strictly speaking, there should be a space between the last character of the last attribute and the / character, as follows:

...

...

However, browsers are tolerant when interpreting HTML and you can omit the space character. Void elements
are often used when the element refers to an external resource. In this case, the img element is used to link to an
external image file called rose.png.

Understanding the Document Structure
There are some key elements that define the basic structure of any HTML document: the DOCTYPE, html, head, and
body elements. Listing 2-6 shows the relationship between these elements with the rest of the content removed.

Listing 2-6. The Basic Structure of an HTML Document

<!DOCTYPE html>
<html>
<head>
 ...head content...
</head>
<body>
 ...body content...
</body>
</html>

Each of these elements has a specific role to play in an HTML document. The DOCTYPE element tells the browser
that this is an HTML document and, more specifically, that this is an HTML5 document. Earlier versions of HTML
required additional information. For example, following is the DOCTYPE element for an HTML4 document:

...
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
...

The html element denotes the region of the document that contains the HTML content. This element always
contains the other two key structural elements: head and body. As I said at the start of this chapter, I am not going to
cover the individual HTML elements. There are too many of them, and describing HTML5 completely took me more
than 1,000 pages in my HTML5 book. That said, I will provide brief descriptions of the elements I use so that you have a
good idea of what a document does. Table 2-1 summarizes the elements used in the example document from Listing 2-1,
some of which I describe in a little more detail later in this chapter.

http://www.w3.org/TR/html4/strict.dtd

Chapter 2 ■ htML priMer

17

Understanding the Metadata Elements
The head element contains the metadata for the document—in other words, one or more elements that describe or
operate on the content of the document but that are not directly displayed by the browser. The example document
contains three metadata elements in the head section: title, script, and style. The title element is the most basic
and the contents of this element are used by browser to set the title of the window or tab, and all HTML documents
are required to have a title element. The other two elements are more important for this book, as I explain in the
sections that follow.

Understanding the script Element
The script element lets you include JavaScript in your code. This is an element that you will see often once I start
covering jQuery in depth. The example document contains one script element, which is shown in Listing 2-7.

Listing 2-7. The script Element from the Example Document

...
<script src="jquery-2.0.2.js" type="text/javascript"></script>
...

When you define the src attribute for the script element, you are telling the browser that you want to load the
JavaScript contained in another file. In this case, this is the main jQuery library, which the browser will find in the file
jquery-2.0.2.js. A single HTML document can contain more than one script element, and you can include the
JavaScript code between the start and end tags if you prefer, as shown in Listing 2-8.

Table 2-1. HTML Elements Used in the Example Document

Element Description

DOCTYPE Indicates the type of content in the document

body Denotes the region of the document that contains content elements (described in the section
“Understanding the Content Elements”)

button Denotes a button; often used to submit a form to the server

div A generic element; often used to add structure to a document for presentation purposes

form Denotes an HTML form, which allows you to gather data from the user and send them to a server for
processing

h1 Denotes a header

head Denotes the region of the document that contains metadata (described in the section “Understanding
the Metadata Elements”)

html Denotes the region of the document that contains HTML (which is usually the entire document)

img Denotes an image

input Denotes an input field used to gather a single data item from the user, usually as part of an HTML form

script Denotes a script, typically JavaScript, that will be executed as part of the document

style Denotes a region of CSS settings; see Chapter 3

title Denotes the title of the document; used by the browser to set the title of the window or tab used to
display the document’s content

Chapter 2 ■ htML priMer

18

Listing 2-8. Using the script Element to Define Inline JavaScript Code

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script type="text/javascript">
 $(document).ready(function() {
 $('#mainheader').css("color", "red");
 });
 </script>
</head>
<body>
 <h1 id="mainheader" class="header">Welcome to Jacqui's Flower Shop</h1>
 <h2 class="header info">We are open 10am-6pm, 7 days a week</h2>
 <h3 class="info">(closed on national holidays)</h3>
</body>
</html>

This example has two script elements. The first imports the jQuery library to the document, and the second
is a simple script that uses some basic jQuery functionality. Don’t worry about what the second script does for the
moment. I’ll get into jQuery properly starting in Chapter 5. The script element can appear in the head or body
element in an HTML document. In this book, I tend to put scripts only in the head element, but this is just a matter of
personal preference.

Tip ■ the order of script elements is important. You have to import the jQuery library before you can make use of
its features.

Understanding the style Element
The style element is one of the ways you can introduce Cascading Style Sheets (CSS) properties into your documents.
In short, you can use CSS to manage the way your document is presented when displayed to the user in the browser.
Listing 2-9 shows the style element and its contents from the example document.

Listing 2-9. Using the style Element

...
<style>
 h1 {
 width: 700px; border: thick double black; margin-left: auto;
 margin-right: auto; text-align: center; font-size: x-large; padding: .5em;
 color: darkgreen; background-image: url("border.png");
 background-size: contain; margin-top: 0;
 }
 .dtable {display: table;}
 .drow {display: table-row;}
 .dcell {display: table-cell; padding: 10px;}
 .dcell > * {vertical-align: middle}
 input {width: 2em; text-align: right; border: thin solid black; padding: 2px;}

Chapter 2 ■ htML priMer

19

 label {width: 5em; padding-left: .5em;display: inline-block;}
 #buttonDiv {text-align: center;}
 #oblock {display: block; margin-left: auto; margin-right: auto; width: 700px;}
</style>
...

The browser maintains a set of properties, the values of which are used to control the appearance of each
element. The style element allows you to select elements and change the value of one or more of those properties. I
get into this in more detail in Chapter 3.

The style element, like the script element, can appear in the head and body elements, but in this book you
will find that I place them only in the head section, as in the example document. This is another matter of personal
preference; I like to separate my styles from my content.

Understanding the Content Elements
The body element contains the content in an HTML document. These are the elements that the browser will display to
the user and that the metadata elements, such as script and style, operate on.

Understanding the Semantic/Presentation Divide
One of the major changes in HTML5 is a philosophical one: the separation between the semantic significance of an
element and the effect an element has on the presentation of content. This is a sensible idea. You use HTML elements
to give structure and meaning to your content and then control the presentation of that content by applying CSS styles
to the elements. Not every consumer of HTML documents needs to display them (because some consumers of HTML
are automated programs rather than browsers, for example), and keeping the presentation separate makes HTML
easier to process and draw meaning from automatically.

This concept is at the heart of HTML. You apply elements to denote what kind of content you are dealing with.
People are good at inferring significance by context. For example, you immediately understood that the header for this
section on the page is subordinate to the previous header because it is printed in a smaller typeface (and because this
is a pattern that you have seen in most nonfiction books you have read).

Computers can’t infer context anywhere near as well and for this reason, each HTML element has a specific
meaning. For example, the article element denotes a self-contained piece of content that is suitable for syndication
and the h1 element denotes a heading for a content section. Listing 2-10 shows an example document that uses
elements to confer structure and significance.

Listing 2-10. Using HTML Elements to Add Structure and Meaning to Content

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
</head>
<body>
 <article>
 <header>
 <hgroup>
 <h1>New Delivery Service</h1>
 <h2>Color and Beauty to Your Door</h2>
 </hgroup>
 </header>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 2 ■ htML priMer

20

 <section>
 We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter. All flowers are satisfaction-guaranteed and
 we offer free phone-based consultation.
 </section>
 <section>
 Our new service starts on Wednesday and there is a $10 discount
 for the first 50 customers.
 </section>
 <footer>
 <nav>
 More Information:
 Learn More About Fruit
 </nav>
 </footer>
 </article>
</body>
</html>

There are no hard-and-fast rules about when to apply a section or article element, but I recommend you apply
them consistently in your content. Elements like section and article don’t provide any information to the browser
about how the content they contain should be displayed. This is the heart of the semantic/presentation divide. The
browser has a style convention for most HTML elements that determines how they will be displayed if the presentation
is not changed using CSS, but the idea is that you will make liberal use of CSS to create the presentation you require
for your document. This is something you can do with the style element and that jQuery makes easy to do in a
script element.

Some of the elements that existed in HTML4 were created when there was no notion of separating presentation
from meaning, and that puts us in an odd situation. An example of this oddity is the b element. Until HTML5, the
b element instructed the browser to show the content contained by the start and end tags as bold text. In HTML5,
elements are not intended to be solely presentational and so the definition for the b element was revised, as follows:

The b element represents a span of text offset from its surrounding content without conveying any
extra emphasis or importance, and for which the conventional typographic presentation is bold
text; for example, keywords in a document abstract, or product names in a review.

—HTML: The Markup Language, w3c.org

This is a long-winded way of way of saying that the b element tells the browser to make text bold. There is
no semantic significance to the b element; it is all about presentation. And this weasel-worded definition tells us
something important about HTML5: we are in a period of transition. We would like there to be a complete separation
between elements and their presentation, but the reality is that we also want to maintain compatibility with the
countless documents that have been written using earlier versions of HTML, and so we have to compromise.

Understanding Forms and Inputs
One of the most interesting elements in the body of the example document is the form element. This is a mechanism
you can use to gather data from the user so that you can send it to the server. As you’ll see in Part 3, jQuery has some
excellent support for working with forms, both directly in the core library and in some commonly used plug-ins.
Listing 2-11 shows the body element from the example document and its contents, which includes the form element.

http://jacquisflowershop.com
http://w3c.org

Chapter 2 ■ htML priMer

21

Listing 2-11. The Content Elements of the Example Document

...
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required >
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 <div class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
...

When there is a form element, the input element can usually be found nearby. This is the element you use to get
a particular piece of information from the user. Listing 2-12 shows an example input element from the document.

Listing 2-12. Using the input Element

...
<input name="snowdrop" value="0" required>
...

Chapter 2 ■ htML priMer

22

This input element gathers a value from the user for a data item called snowdrop, which has an initial value of
zero. The required attribute tells the browser that the user should not be able to send the form to the server unless
he has supplied a value for this data item. This is a new feature in HTML5 called form validation, but frankly you can
achieve much better validation using jQuery, as I demonstrate in Part 3.

Closely related to forms is the button element, which is often used to submit the form to the server (and can
also be used to reset the form to its initial state). Listing 2-13 shows the button element I defined in the example
document.

Listing 2-13. Using the button Element

...
<button type="submit">Place Order</button>
...

Setting the type attribute to submit tells the browser I want the form submitted when the button is pressed. The
contents of the button element are displayed within the button control in the browser, as you can see in Figure 2-3.

Figure 2-3. Using the content of the button element

Understanding Structural Elements
You will notice that there are a lot of div elements in the body of the example document. This is an element that has
no specific semantic significance and is often used just to control the layout of content. In the case of the example
document, I use the div element to create a table layout, such that the elements that the div elements contain are
presented to the user in a grid. The layout is applied to the div elements by some of CSS contained in the style
element. I’ll be using CSS throughout this book and I give a quick primer in Chapter 3.

Chapter 2 ■ htML priMer

23

Understanding Elements with External Resources
Some elements allow you to bring external resources into your document. A great example of this is the img element,
which you can use to add images to documents. In the example document in Listing 2-1, I used the img element to
display pictures of the different flowers on sale, as shown in Listing 2-14.

Listing 2-14. Using the img Element to Refer to an External Image

...

...

The src attribute is used to specify the image. I have used the image snowdrop.png. This is an example of a
relative URL (uniform resource locator), which means the browser will use the URL of the document that contains the
element to work out the URL of the image I want.

The alternative to a relative URL is an absolute URL (also known as a fully qualified URL). This is a URL that
has all of the basic components defined, as shown in Figure 2-4. (I have included the port in Figure 2-4, but if this is
omitted, then the browser will use the default port associated with the scheme. For the http scheme, this is port 80.)

Figure 2-4. The basic structure of a URL

It can be tiresome to have to type out fully qualified URLs for every resource you want, which is why relative
URLs are so useful. When I specified a value of snowdrop.png for the src attribute of the img element, I was telling the
browser that it could find the image at the same location that it obtained the document that contains the img element.
Table 2-2 shows the different kinds of relative URL you can use and the absolute URLs that are created from them. These
all assume that the document has been loaded from http://www.jacquisflowershop.com/jquery/example.html.

Table 2-2. Relative URL Formats

Relative URL Equivalent To

snowdrop.png http://www.jacquisflowershop.com/jquery/snowdrop.png

/snowdrop.png http://www.jacquisflowershop.com/snowdrop.png

/ http://www.jacquisflowershop.com/jquery/

//www.mydomain.com/index.html http://www.mydomain.com/index.html

The last example in the table is rarely used because it doesn’t save much typing, but it can be useful to ensure that
resources are requested using the same scheme as was used to retrieve the HTML document. This avoids a problem
where some content is requested over an encrypted connection (using the https scheme) and other content is
requested over an unencrypted connection (using the http scheme). Some browsers, especially Internet Explorer and
Google Chrome, don’t like mixing secure and insecure content and will warn the user when it occurs.

http://www.jacquisflowershop.com/jquery/example.html
http://www.jacquisflowershop.com/jquery/snowdrop.png
http://www.jacquisflowershop.com/snowdrop.png
http://www.jacquisflowershop.com/jquery/
http://www.mydomain.com/index.html
http://www.mydomain.com/index.html

Chapter 2 ■ htML priMer

24

Caution ■ You can use the two periods (..) to navigate relative to the directory on the web server that contains the
main htML document. i recommend avoiding this technique, not least because many web servers will reject requests
that contain these characters as a security precaution.

Understanding the Element Hierarchy
The elements in an HTML document form a natural hierarchy. The html element contains the body element, which
contains content elements, each of which can contain other elements, ad infinitum.

Understanding this hierarchy is important when you want to navigate the document, either to apply styles using
CSS (which I describe in Chapter 3) or to use jQuery to find elements in the document (which I explain in Part 2).

The most important part of the hierarchy is the relationships that exist between elements. To help me describe
these relationships, I have represented the hierarchy for some of the elements from the flower shop example
document in Figure 2-5.

<html>

<head> <body>

<title> <h1> <form>

<div> <div>

Figure 2-5. Part of the document hierarchy

Figure 2-5 shows just part of the hierarchy of elements from the document so you can see that the relationships
correspond directly to the way that one element can contain another. There are various kinds of relationships, as
described in the following sections.

Understanding Parent-Child Relationships
A parent-child relationship exists when one element contains another, for example. The form element is a child of the
body element in the figure. Conversely, the body element is the parent of the form element. An element can have more
than one child but only one parent. In Figure 2-5, the body element has two children (the form and h1 elements) and is
the parent to both of them.

The parent-child relationship exists only between an element and elements that are directly contained within it.
So, for example, the div elements are children of the form element, but they are not children of the body element.

There are some variations on the child relationship. The first child is the child element that is defined first in the
document. For example, the h1 element is the first child of the body element. The last child is the last child element

Chapter 2 ■ htML priMer

25

defined in the document. The form element is the last child of the body element. You can also refer to the nth-child,
where you start with the first child element and start counting children until you get to n (you start counting at 1).

Understanding Ancestor-Descendant Relationships
An element’s descendants are its children, its children’s children, and so on. In fact, any element contained directly or
indirectly is a descendant. For example, the descendants of the body element are the h1, form, and both div elements,
and all of the elements shown in Figure 2-5 are descendants of the html element.

The opposite relationship is ancestors, which are an element’s parent, the parent’s parent, and so on. For the
form element, for example, the descendants are the body and html elements. Both div elements have the same set of
ancestors: the form, body, and html elements.

Understanding Sibling Relationships
Siblings are elements that share a common parent. In Figure 2-5, the h1 and form elements are siblings because
they share the body element as their parent. When working with siblings, we tend to refer to the next siblings and the
previous siblings. These are the siblings defined before and after the current element. Not all elements have both
previous and next siblings; the first and last child elements will have only one or the other.

Understanding the Document Object Model
When the browser loads and processes an HTML document, it creates the Document Object Model (DOM). The
DOM is a model where JavaScript objects are used to represent each element in the document, and the DOM is the
mechanism by which you can programmatically engage with the content of an HTML document.

Note ■ in principle, the DOM can be used with any programming language that the browser cares to implement. in
practice, JavaScript dominates the mainstream browsers, so i am not going to differentiate between the DOM as an
abstract idea and the DOM as a collection of related JavaScript objects.

One of the reasons you should care about the relationship between elements that I described in the previous
section is that they are preserved in the DOM. As a consequence, you can use JavaScript to traverse the network of
objects to learn about the nature and structure of the document that has been represented.

Tip ■ Using the DOM means using JavaScript. if you require a refresher in the basics of the JavaScript language, then
see Chapter 4.

In this part of the chapter, I demonstrate some of the basic features of the DOM. For the rest of the book, I focus
on using jQuery to access the DOM, but in this section I show you some of the built-in support, in part, to emphasize
how much more elegant the jQuery approach can be.

Chapter 2 ■ htML priMer

26

Using the DOM
The JavaScript object that defines the basic functionality that is available in the DOM for all types of elements is called
HTMLElement. The HTMLElement object defines properties and methods that are common to all HTML element types,
including the properties shown in Table 2-3.

Table 2-4. Document Methods to Find Elements

Property Description Returns

getElementById(<id>) Returns the element with the specified id value HTMLElement

getElementsByClassName(<class>) Returns the elements with the specified class value HTMLElement[]

getElementsByTagName(<tag>) Returns the elements of the specified type HTMLElement[]

querySelector(<selector>) Returns the first element that matches the specified
CSS selector

HTMLElement

querySelectorAll(<selector>) Returns all of the elements that match the specified
CSS selector

HTMLElement[]

Table 2-3. Basic HTMLElement Properties

Property Description Returns

className Gets or sets the list of classes that the element belongs to string

id Gets or sets the value of the id attribute string

lang Gets or sets the value of the lang attribute string

tagName Returns the tag name (indicating the element type) string

Many more properties are available. The exact set depends on the version of HTML you are working with. But these
four are sufficient for me to demonstrate the basic workings of the DOM.

The DOM uses objects that are derived from HTMLElement to represent the unique characteristics of each element
type. For example, the HTMLImageElement object is used to represent img elements in the DOM, and this object defines
the src property, which corresponds to the src attribute of the img element. I am not going to go into any detail about
the element-specific objects, but as a rule, you can rely on properties being available that correspond to an element’s
attributes.

You access the DOM through the global document variable, which returns a Document object. The Document object
represents the HTML document that is being displayed by the browser and defines some methods that allow you to
locate objects in the DOM, as described by Table 2-4.

Once again, I am just picking the methods that are useful for this book. The last two methods described in the
table use CSS selectors, which I describe in Chapter 3. Listing 2-15 shows how you can use the Document object to
search for elements of a specific type in the document.

Chapter 2 ■ htML priMer

27

Listing 2-15. Searching for Elements in the DOM

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <style>
 h1 {
 width: 700px; border: thick double black; margin-left: auto;
 margin-right: auto; text-align: center; font-size: x-large; padding: .5em;
 color: darkgreen; background-image: url("border.png");
 background-size: contain; margin-top: 0;
 }
 .dtable {display: table;}
 .drow {display: table-row;}
 .dcell {display: table-cell; padding: 10px;}
 .dcell > * {vertical-align: middle}
 input {width: 2em; text-align: right; border: thin solid black; padding: 2px;}
 label {width: 5em; padding-left: .5em;display: inline-block;}
 #buttonDiv {text-align: center;}
 #oblock {display: block; margin-left: auto; margin-right: auto; width: 700px;}
 </style>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required >
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 <div class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ htML priMer

28

 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
 <script>
 var elements = document.getElementsByTagName("img");
 for (var i = 0; i < elements.length; i++) {
 console.log("Element: " + elements[i].tagName + " " + elements[i].src);
 }
 </script>
</body>
</html>

In Listing 2-15, I have added a script element at the end of the body element. When browsers find a script
element in a document, they execute the JavaScript statements right away, before the rest of the document has been
loaded and processed. This presents a problem when you are working with the DOM because it means your searches
for elements via the Document object are performed before the objects you are interested in have been created in the
model. To avoid this, I have placed the script element at the end of the document. jQuery provides a nice way of
dealing with this issue, as I explain in Part 2.

In the script, I use the getElementsByTagName method to find all of the img elements in the document. This
method returns an array of objects that I enumerate to print out the value of the tagName and src properties for each
object to the console. The output written to the console is as follows:

Element: IMG http://www.jacquisflowershop.com/jquery/aster.png
Element: IMG http://www.jacquisflowershop.com/jquery/daffodil.png
Element: IMG http://www.jacquisflowershop.com/jquery/rose.png
Element: IMG http://www.jacquisflowershop.com/jquery/peony.png
Element: IMG http://www.jacquisflowershop.com/jquery/primula.png
Element: IMG http://www.jacquisflowershop.com/jquery/snowdrop.png

Modifying the DOM
The objects in the DOM are live, meaning that changing the value of a DOM object property affects the document that
the browser is displaying. Listing 2-16 shows a script that has this effect. (I am just showing the script element here to
reduce duplication. The rest of the document is the same as for Listing 2-15.)

Listing 2-16. Modifying a DOM Object Property

...
<script>
 var elements = document.getElementsByTagName("img");
 for (var i = 0; i < elements.length; i++) {
 elements[i].src = "snowdrop.png";
 }
</script>
...

http://www.jacquisflowershop.com/jquery/aster.png
http://www.jacquisflowershop.com/jquery/daffodil.png
http://www.jacquisflowershop.com/jquery/rose.png
http://www.jacquisflowershop.com/jquery/peony.png
http://www.jacquisflowershop.com/jquery/primula.png
http://www.jacquisflowershop.com/jquery/snowdrop.png

Chapter 2 ■ htML priMer

29

In this script, I set the value of the src attribute to be snowdrop.png for all of the img elements. You can see the
effect in Figure 2-6.

Modifying Styles
You can use the DOM to change the values for CSS properties. (Chapter 3 provides a primer in CSS if you need it.) The
DOM API support for CSS is comprehensive, but the simplest technique is to use the style property that is defined
by the HTMLElement object. The object returned by the style property defines properties that correspond to CSS
properties (I realize that there are a lot of properties in this sentence, for which I apologize).

The naming scheme of properties as defined by CSS and by the object that style returns is slightly different. For
example, the background-color CSS property becomes the style.backgroundColor object property. Listing 2-17
demonstrates the use of the DOM to manage styles.

Listing 2-17. Using the DOM to Modify Element Styles

...
<script>
 var elements = document.getElementsByTagName("img");
 for (var i = 0; i < elements.length; i++) {
 if (i > 0) {
 elements[i].style.opacity = 0.5;
 }
 }
</script>
...

In this script, I change the value of the opacity property for all but the first of the img elements in the document. I
left one element unaltered so you can see the difference in Figure 2-7.

Figure 2-6. Using the DOM to modify the HTML document

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 2 ■ htML priMer

30

Handling Events
Events are signals sent by the browser to indicate a change in status of one or more elements in the DOM. There is a
range of events to represent different kinds of state change. For example, the click event is triggered when the user
clicks an element in the document and the submit element is triggered when the user submits a form. Many events
are related. For example, the mouseover event is triggered when the user moves the mouse over an element, and the
mouseout event is triggered when the user moves the mouse out again. You can respond to an event by associating a
JavaScript handler function with an event for a DOM element. The statements in the handler function will be executed
each time the event is triggered. Listing 2-18 gives an example.

Listing 2-18. Handling an Event

...
<script>
 var elements = document.getElementsByTagName("img");
 for (var i = 0; i < elements.length; i++) {
 elements[i].onmouseover = handleMouseOver;
 elements[i].onmouseout = handleMouseOut;
 }

 function handleMouseOver(e) {
 e.target.style.opacity = 0.5;
 }

 function handleMouseOut(e) {
 e.target.style.opacity = 1;
 }
</script>
...

Figure 2-7. Using JavaScript to change CSS property values

Chapter 2 ■ htML priMer

31

This script defines two handler functions, which I assign as the values for the onmouseover and onmouseout
properties on the img DOM objects. The effect of this script is that the images become partially transparent when
the mouse is over them and return to normal when the mouse exits. I don’t intend to get too deeply into the DOM
API event handling mechanism, because the jQuery support for events is the topic of Part 2. I do, however, want to
look at the object that is passed to the event handler functions: the Event object. Table 2-5 shows the most important
members of the Event object.

Table 2-5. Functions and Properties of the Event Object

Name Description Returns

type The name of the event (i.e., mouseover) string

target The element at which the event is targeted HTMLElement

currentTarget The element whose event listeners are currently
being invoked

HTMLElement

eventPhase The phase in the event life cycle number

bubbles Returns true if the event will bubble through the document;
returns false otherwise

boolean

cancelable Returns true if the event has a default action that can be
canceled; returns false otherwise

boolean

stopPropagation() Halts the flow of the event through the element tree after the
event listeners for the current element have been triggered

void

stopImmediatePropagation() Immediately halts the flow of the event through the
element tree; untriggered event listeners for the current
element will be ignored

void

preventDefault() Prevents the browser from performing the default action
associated with the event

void

defaultPrevented Returns true if preventDefault() has been called boolean

In the previous example, I used the target property to get hold of the element for which the event was triggered.
Some of the other members relate to event flow and to default actions, which I briefly explain in the next section. I am
just laying the groundwork in this chapter.

Understanding Event Flow
An event has three phases to its life cycle: capture, target, and bubbling. When an event is triggered, the browser
identifies the element that the event relates to, which is referred to as the target for the event. The browser identifies all
of the elements between the body element and the target and checks each of them to see whether they have any event
handlers that have asked to be notified of events of their descendants. The browser triggers any such handler before
triggering the handlers on the target itself. (I’ll show you how to ask for notification of descendant events in Part 2.)

Once the capture phase is complete, you move to the target phase, which is the simplest of the three. When the
capture phase has finished, the browser triggers any listeners for the event type that have been added to the target
element.

Chapter 2 ■ htML priMer

32

Once the target phase has been completed, the browser starts working its way up the chain of ancestor elements
back toward the body element. At each element, the browser checks to see whether there are listeners for the event
type that are not capture-enabled (which I’ll explain how to do in Part 2). Not all events support bubbling. You can
check to see whether an event will bubble using the bubbles property. A value of true indicates that the event will
bubble, and false means that it won’t.

Understanding Default Actions
Some events define a default action that will be performed when an event is triggered. As an example, the default
action for the click event on the a element is that the browser will load the content at the URL specified in the href
attribute. When an event has a default action, the value of its cancelable property will be true. You can stop the
default action from being performed by calling the preventDefault method. Note that calling the preventDefault
function doesn’t stop the event flowing through the capture, target, and bubble phases. These phases will still
be performed, but the browser won’t perform the default action at the end of the bubble phase. You can test to
see whether the preventDefault function has been called on an event by an earlier event handler by reading the
defaultPrevented property. If it returns true, then the preventDefault function has been called.

Summary
In this chapter, I took you on a tour of HTML, albeit without describing any of the 100+ elements in detail. I showed
you how to create and structure a basic HTML document, how elements can contain a mix of text content and other
elements, and how this leads to a hierarchy of elements with specific types of relationship. I also showed you basic use
of the DOM API and how it handles element selection and events—as you’ll see throughout this book, one of the main
reasons to use jQuery is because it hides away the details of the DOM API and makes working with HTML elements
and the JavaScript objects that represent them simple and easy. In Chapter 3, I provide a quick primer to Cascading
Style Sheets, which are used to control the presentation of HTML elements.

33

Chapter 3

CSS Primer

Cascading Style Sheets (CSS) are the means by which you control the appearance (more properly known as
presentation) of HTML elements. CSS has a special significance for jQuery for two reasons. The first is that you can
use CSS selectors (which I describe in this chapter) to tell jQuery how to find elements in an HTML document. The
second reason is that one of the most common tasks that jQuery is used for is to change the CSS styles that are applied
to elements.

There are more than 130 CSS properties, each of which controls an aspect of an element’s presentation. As with
the HTML elements, there are too many CSS properties for me to be able to describe them in this book. Instead, I have
focused on how CSS works and how you apply styles to elements. If you want detailed coverage of CSS, then I suggest
another of my books: The Definitive Guide to HTML5, which is also published by Apress.

Getting Started with CSS
When the browser displays an element on the screen, it uses a set of properties, known as CSS properties, to work out
how the element should be presented. Listing 3-1 shows a simple HTML document.

Listing 3-1. A Simple HTML Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
</head>
<body>
 <h1>New Delivery Service</h1>
 <h2>Color and Beauty to Your Door</h2>
 <h2>(with special introductory offer)</h2>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter.</p>
</body>
</html>

You can see how a browser displays the document in Figure 3-1.

Chapter 3 ■ CSS primer

34

There are a lot of CSS properties—too many to cover in detail in this book—but you can learn a lot about how
CSS works by looking at just the small number of properties in Table 3-1.

Figure 3-1. Displaying a simple document in the browser

Table 3-1. Some CSS Properties

Property Description

color Sets the foreground color of the element (which typically sets the color of text)

background-color Sets the background color of the element

font-size Sets the size of the font used for text contained in the element

border Sets the border for the element

I haven’t defined values for these CSS properties but the browser has still managed to display the content and, as
Figure 3-1 shows, each of the content elements has been presented in a different way. The browser still has to display
the elements even if you haven’t provided values for the CSS properties, and so each element has a style convention—a
default value that it uses for CSS properties when no other value has been set in the HTML document. The HTML
specification defines style conventions for elements, but browsers are free to vary them, which is why so you will see
variations in the style convention between, say, Google Chrome and Internet Explorer. Table 3-2 shows the default
values that are used by Google Chrome for the properties I listed in Table 3-1.

Table 3-2. Some CSS Properties and Their Style Convention Values

Property h1 h2 p

color black black black

background-color transparent transparent transparent

font-size 32px 24px 16px

border none none none

Chapter 3 ■ CSS primer

35

You can see from the table that all three types of element have the same values for the color, background-color,
and border properties and that it is only the font-size property that changes. Later in the chapter, I describe the units
used for these property values—but for the moment, though, we are going to focus on setting values for properties
without worrying about the units in which those values are expressed.

Setting an Inline Value
The most direct way to set values for CSS properties is to apply the style attribute to the element whose presentation
we want to change. Listing 3-2 shows how this is done.

Listing 3-2. Using the style Attribute to Set a CSS Property on an Element

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
</head>
<body>
 <h1>New Delivery Service</h1>
 <h2 style="background-color: grey; color: white">Color and Beauty to Your Door</h2>
 <h2>(with special introductory offer)</h2>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter.</p>
</body>
</html>

In Listing 3-2, I have used style declarations to specify values for two of the CSS properties. You can see the
anatomy of the attribute value in Figure 3-2.

Figure 3-2. The anatomy of a style attribute value

Each style declaration specifies the name of a property you want to change and the value that you want to use,
separated by a colon (:). You can put multiple declarations together using a semicolon character (;). In Figure 3-2,
I set the value of the background-color to grey and the value of the color property to white. These values are
specified in the style attribute of the h2 element and will affect only that element (other elements in the document
remain unaffected, even if they are also h2 elements). You can see the effect that these new property values have in the
presentation of the first h2 element in Figure 3-3.

Chapter 3 ■ CSS primer

36

Defining an Embedded Style
Using the style attribute is easy but it applies to only a single element. You could use the style attribute for every
element that you wanted to change, but it becomes difficult to manage and error-prone quickly, especially if you need
to make revisions later. A more powerful technique is to use the style element (rather than the style attribute) to
define an embedded style and direct the browser to apply it with a selector. Listing 3-3 shows an embedded style.

Listing 3-3. Defining an Embedded Style

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <style>
 h2 { background-color: grey; color: white;}
 </style>
</head>
<body>
 <h1>New Delivery Service</h1>
 <h2>Color and Beauty to Your Door</h2>
 <h2>(with special introductory offer)</h2>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter.</p>
</body>
</html>

We still use declarations in an embedded style, but they are enclosed in braces (the { and } characters) and are
preceded by a selector. You can see the anatomy of an embedded style in Figure 3-4.

Figure 3-3. The effect of changing CSS values in the style attribute of the h2 element

Chapter 3 ■ CSS primer

37

Tip ■ i have placed the style element within the head element, but i could have equally put it inside the body element.
i prefer using the head element for styles because i like the idea of separating the content from the CSS that controls its
appearance.

CSS selectors are important in jQuery because they are the basis by which you select elements in order to perform
operations on them. The selector I used in the example is h2, which means that the style declarations contained in
the braces should be applied to every h2 element in the document. You can see the effect this has on the h2 elements
in Figure 3-5.

Figure 3-4. The anatomy of an embedded style

Figure 3-5. The effect of an embedded style

You can use a style element to contain more than one embedded style. Listing 3-4 shows the flower shop
document that you first saw in Chapter 2, which has a more complex set of styles.

Chapter 3 ■ CSS primer

38

Listing 3-4. A More Complex Set of Styles in an HTML Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <style>
 h1 {
 width: 700px; border: thick double black; margin-left: auto;
 margin-right: auto; text-align: center; font-size: x-large; padding: .5em;
 color: darkgreen; background-image: url("border.png");
 background-size: contain; margin-top: 0;
 }
 .dtable {display: table;}
 .drow {display: table-row;}
 .dcell {display: table-cell; padding: 10px;}
 .dcell > * {vertical-align: middle}
 input {width: 2em; text-align: right; border: thin solid black; padding: 2px;}
 label {width: 5em; padding-left: .5em;display: inline-block;}
 #buttonDiv {text-align: center;}
 #oblock {display: block; margin-left: auto; margin-right: auto; width: 700px;}
 </style>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required>
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 <div class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>

Chapter 3 ■ CSS primer

39

 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

The style element in Listing 3-4 contains several embedded styles, and some of them, especially the one
with the h1 selector, define values for many properties.

Defining an External Style Sheet
Rather than define the same set of styles in each of your HTML documents, you can create a separate style sheet. This
is an independent file, with the conventional .css file extension, into which you put your styles. Listing 3-5 shows the
contents of the file styles.css, into which I have placed the styles from the flower shop document.

Listing 3-5. The styles.css File

h1 {
 min-width: 700px; border: thick double black; margin-left: auto;
 margin-right: auto; text-align: center; font-size: x-large; padding: .5em;
 color: darkgreen; background-image: url("border.png");
 background-size: contain; margin-top: 0;
}
.dtable {display: table;}
.drow {display: table-row;}
.dcell {display: table-cell; padding: 10px;}
.dcell > * {vertical-align: middle}
input {width: 2em; text-align: right; border: thin solid black; padding: 2px;}
label {width: 5em; padding-left: .5em;display: inline-block;}
#buttonDiv {text-align: center;}
#oblock {display: block; margin-left: auto; margin-right: auto; min-width: 700px;}

You don’t need to use a style element in a style sheet. You just define the selectors and declarations directly. You
then use the link element to bring the styles into your document, as shown in Listing 3-6.

Listing 3-6. Importing an External Style Sheet

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css" />
</head>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 3 ■ CSS primer

40

<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required>
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 <div class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

You can link to as many style sheets as you need, referencing one per link element. The order in which you import style
sheets is important if you define two styles with the same selector. The one that is loaded last will be the one that is applied.

Understanding CSS Selectors
Notice that there are different kinds of selectors in the flower shop style sheet: some are element names (such as h1
and input), others start with a period (such as .dtable and .row), and yet others start with a pound (#butonDiv and
#oblock). If you are particularly observant, you will notice that one of the selectors has multiple components: .dcell > *.
Each CSS selector selects elements in the document, and the different kinds of selector tell the browser to look for
elements in different ways. In this section, I describe the different kinds of selectors that are defined by CSS, starting
with the core selectors, which Table 3-3 summarizes.

Chapter 3 ■ CSS primer

41

These selectors are the most widely used (they cover most of the styles I defined in the example document,
for instance).

Selecting by Attribute
Although the basic selectors work on the id and class attributes (which I described in Chapter 2), there are also
selectors available that let you work with any attribute. Table 3-4 describes them.

Table 3-3. The Core Selectors

Selector Description

* Selects all elements

<type> Selects elements of the specified type

.<class> Selects elements of the specific class (irrespective of element type)

<type>.<class> Selects elements of the specified type that are members of the specified class

#<id> Selects elements with the specified value for the id attribute

Table 3-4. The Attribute Selectors

Selector Description

[attr] Selects elements that define the attribute attr, irrespective of the value assigned to the attribute

[attr="val"] Selects elements that define attr and whose value for this attribute is val

[attr^="val"] Selects elements that define attr and whose value for this attribute starts with the string val

[attr$="val"] Selects elements that define attr and whose value for this attribute ends with the string val

[attr*="val"] Selects elements that define attr and whose value for this attribute contains the string val

[attr~="val"] Selects elements that define attr and whose value for this attribute contains multiple values,
one of which is val

[attr|="val"] Selects elements that define attr and whose value is a hyphen-separated list of values, the
first of which is val

Listing 3-7 shows a simple document with an embedded style whose selector is based on attributes.

Listing 3-7. Using the Attribute Selectors

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <style>
 [lang] { background-color: grey; color: white;}
 [lang="es"] {font-size: 14px;}
 </style>
</head>

Chapter 3 ■ CSS primer

42

<body>
 <h1 lang="en">New Delivery Service</h1>
 <h2 lang="en">Color and Beauty to Your Door</h2>
 <h2 lang="es">(Color y belleza a tu puerta)</h2>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter.</p>
</body>
</html>

The first selector matches any element that has the lang attribute, and the second selector matches any element
whose lang attribute value is es. You can see the effect of these styles in Figure 3-6.

Figure 3-6. Applying styles using attribute selectors

Note ■ there is something important to note in this figure. Look at how the h2 element has been affected by both of
the embedded styles. the first style is applied to all elements with a lang attribute. the second style is applied to all
elements that have a lang attribute whose value is es. the second h2 element in the document meets both of those
criteria, and so the values for the background-color, color, and font-size properties are all changed. i’ll explain more
about how this works in the section “Understanding Style Cascading.”

Selecting by Relationship
In Chapter 2, I explained that elements (and the object that represents them in the DOM) have a hierarchy that
gives rise to different kinds of relationship. There are CSS selectors that allow you to select elements based on those
relationships, as described in Table 3-5.

Chapter 3 ■ CSS primer

43

I used one of these selectors in the flower shop example document, as follows:

.dcell > * {vertical-align: middle}

This selector matches all of the elements that are children of elements that belong to the dcell class, and the
declaration sets the vertical-align property to the value middle. Listing 3-8 shows some of the other relationship
selectors being used.

Listing 3-8. Using the Relationship Selectors

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <style>
 h1 ~ [lang] { background-color: grey; color: white;}
 h1 + [lang] {font-size: 12px;}
 </style>
</head>
<body>
 <h1 lang="en">New Delivery Service</h1>
 <h2 lang="en">Color and Beauty to Your Door</h2>
 <h2 lang="es">(Color y belleza a tu puerta)</h2>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter.</p>
</body>
</html>

I have used both of the sibling selectors in Listing 3-8. The first selector, the one that uses the tilde (~) character,
matches any element that has a lang attribute and that is defined after and is a sibling to an h1 element. In the
example document, this means that both the h2 elements are selected (since they have the attribute and are siblings
to and are defined after the h1 element). The second selector, the one that uses the plus character, is similar but
matches only the immediate sibling of an h1 element. This means that only the first of the h2 element is selected. You
can see the effect in Figure 3-7.

Table 3-5. The Relationship Selectors

Selector Description

<selector> <selector> Selects elements that match the second selector and that are descendants of the
elements matched by the first selector

<selector> > <selector> Selects elements that match the second selector and that are children of the
elements matched by the first selector

<selector> + <selector> Selects elements that match the second selector and are the next sibling to an
element that matches the first selector

<selector> ~ <selector> Selects elements that match the second selector and that are siblings to (and that
appear after) an element that matches the first selector

Chapter 3 ■ CSS primer

44

Selecting Using the Pseudo-element and Pseudo-class Selectors
CSS supports a set of pseudo-element and pseudo-class selectors. These provide convenient functionality that doesn’t
correspond directly to elements or class membership in the document. Table 3-6 describes these selectors.

Figure 3-7. Using the sibling relationship selectors

Table 3-6. The Pseudo-selectors

Selector Description

:active Selects elements that are presently activated by the user; this usually means those
elements that are under the pointer when the mouse button is pressed

:checked Selects elements that are in a checked state

:default Selects default elements

:disabled Selects elements that are in their disabled state

:empty Selects elements that contain no child elements

:enabled Selects elements that are in their enabled state

:first-child Selects elements that are the first children of their parent

:first-letter Selects the first letter of a block of text

:first-line Selects the first line of a block of text

:focus Selects the element that has the focus

:hover Selects elements that occupy the position on-screen under the mouse pointer

:in-range
:out-of-range

Selects constrained input elements that are within or outside the specified range

:lang(<language>) Selects elements based on the value of the lang attribute

(continued)

Chapter 3 ■ CSS primer

45

Selector Description

:last-child Selects elements that are the last children of their parent

:link Selects link elements

:nth-child(n) Selects elements that are the nth child of their parent

:nth-last-child(n) Selects elements that are the nth from last child of their parent

:nth-last-of-type(n) Selects elements that are the nth from last child of their type defined by their parent

:nth-of-type(n) Selects elements that are the nth child of their type defined by their parent

:only-child Selects elements that are the sole element defined by their parent

:only-of-type Selects elements that are the sole element of their type defined by their parent

:required
:optional

Selects input elements based on the presence of the required attribute

:root Selects the root element in the document

:target Selects the element referred to by the URL fragment identifier

:valid
:invalid

Selects input elements that are valid or invalid based on input validation in forms

:visited Selects link elements that the user has visited

Table 3-6. (continued)

Listing 3-9 shows the use of some pseudo-selectors.

Listing 3-9. Using Pseudo-selectors

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <style>
 :nth-of-type(2) { background-color: grey; color: white;}
 p:first-letter {font-size: 40px;}
 </style>
</head>
<body>
 <h1 lang="en">New Delivery Service</h1>
 <h2 lang="en">Color and Beauty to Your Door</h2>
 <h2 lang="es">(Color y belleza a tu puerta)</h2>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter.</p>
</body>
</html>

You can use the pseudo-selectors on their own or as a modifier to another selector. I have shown both approaches in
Listing 3-9. The first selector matches any element that is the second element of its type defined by its parent. The second
selector matches the first letter of any p elements. You can see the application of these styles in Figure 3-8.

Chapter 3 ■ CSS primer

46

Unions and the Negation Selectors
You can get additional flexibility by arranging selectors together. Specifically, you can create unions by combining
selections and inverting a selection through negation. Both of these approaches are described in Table 3-7.

Figure 3-8. Using pseudo-selectors to apply styles

Table 3-7. Flexibly Arranging Selectors

Selector Description

<selector>, <selector> Selects the union of elements matched by the first selector and the elements
matched by the second selector

:not(<selector>) Selects the elements that are not matched by the specified selector

Listing 3-10 shows how you can create unions and negations.

Listing 3-10. Using Selector Unions and Negation

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <style>
 h1, h2 { background-color: grey; color: white;}
 :not(html):not(body):not(:first-child) {border: medium double black;}
 </style>
</head>

Chapter 3 ■ CSS primer

47

<body>
 <h1 lang="en">New Delivery Service</h1>
 <h2 lang="en">Color and Beauty to Your Door</h2>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter.</p>
</body>
</html>

The first selector in Listing 3-10 is the union of the h1 and h2 selectors. As you might imagine, this matches all
h1 and h2 elements in the document. The second selector is a little more esoteric. I wanted to demonstrate how you
could use pseudo-selectors as modifiers to other pseudo-selectors, including negation.

...
:not(html):not(body):not(:first-child) {border: medium double black;}
...

This selector matches any element that is not an html element, that is not a body element, and that is not the first
child of its parent. You can see how the styles in this example are applied in Figure 3-9.

Figure 3-9. Creating selector unions and negations

Understanding Style Cascading
The key to understanding style sheets is to understand how they cascade and inherit. There can be multiple sources
for CSS properties in an HTML document and cascading and inheritance are the means by which the browser
determines which values should be used to display an element. You have seen three different ways you can define
styles (inline, embedded, and from an external style sheet), but there are two other sources of styles: browser styles
and user styles.

The browser styles (more properly known as the user agent styles) are the style conventions that a browser applies
to an element if no other style has been specified. You saw an example of style conventions being used at the start of
this chapter.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ CSS primer

48

In addition, most browsers allow users to define their own style sheets. The styles that these style sheets contain
are called user styles. This isn’t a widely used feature, but those users who do define their own style sheets often attach
great importance to being able to do so, not least because it provides a way of making pages more accessible.

Each browser has its own mechanism for user styles. Google Chrome on Windows, for example, creates a file in
the user’s profile directory called User StyleSheets\Custom.css. Any styles added to this file are applied to any site
that the user visits, subject to the cascading rules that I describe in the following section.

Understanding How Styles Cascade
Now that you have seen all of the sources of styles that a browser has to consider, you can look at the order in which
the browser will look for a property value when it comes to display an element.

 1. Inline styles (styles that are defined using the style attribute on an element)

 2. Embedded styles (styles that are defined in a style element)

 3. External styles (styles that are imported using the link element)

 4. User styles (styles that have been defined by the user)

 5. Browser styles (the style conventions applied by the browser)

Imagine that the browser needs to display a p element. It needs to know what color should be used to display the
text and that means it needs to find a value for the CSS color property. First, it will check to see whether the element it
is trying to display has an inline style that defines a value for color, as follows:

...
<p style="color: red">We are pleased to announce that we are starting a home delivery
 service for your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter.</p>
...

If there is no inline style, then the browser will look for a style element that contains a style that applies to the
element, as follows:

...
<style>
 p {color: red};
</style>
...

If there is no such style element, the browser looks at the style sheets that have been loaded via the link
element, and so on until the browser finds a value for the color property, and that means using the value defined in
the default browser styles if no other value is available.

Tip ■ the first three sources of properties (inline styles, embedded styles, and style sheets) are collectively referred to
as the author styles. the styles defined in the user style sheet are known as the user styles, and the styles defined by the
browser are known as the browser styles.

Chapter 3 ■ CSS primer

49

Tweaking the Order with Important Styles
You can override the normal cascade order by marking your property values as important, as shown in Listing 3-11.

Listing 3-11. Marking Style Properties as Important

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
<style>
 p {color: black !important; }
</style>
</head>
<body>
 <h1 lang="en">New Delivery Service</h1>
 <h2 lang="en">Color and Beauty to Your Door</h2>
 <p style="color: red">We are pleased to announce that we are starting a home delivery
 service for your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter.</p>
</body>
</html>

You mark individual values as important by appending !important to the declaration. The browser gives
preference to important styles, irrespective of where they are defined. You can see the effect of property importance in
Figure 3-10, where the embedded value for the color property overrides the inline value (this may be a little hard to
make out on the printed page, but all of the text is black).

Figure 3-10. Important property values overriding inline property values

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 3 ■ CSS primer

50

Tip ■ the only thing that will take precedence over an important value that you define is an important value defined
in the user style sheet. For regular values, the author styles are used before the user styles, but this is reversed when
dealing with important values.

Tie-Breaking with Specificity and Order Assessments
We enter a tie-break situation if there are two styles that can applied to an element defined at the same cascade level
and they both contain values for the CSS property that the browser is looking for. To decide which value to use, the
browser assesses the specificity of each style and selects the one that is most specific. The browser determines the
specificity of a style by counting three different characteristics.

The number of •	 id values in the style’s selector

The number of other attributes and pseudo-classes in the selector•	

The number of element names and pseudo-elements in the selector•	

The browser combines the values from each assessment and applies the property value from the style that is most
specific. You can see a simple example of specificity in Listing 3-12.

Listing 3-12. Specificity in Styles

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <style>
 p {background-color: grey; color: white;}
 p.details {color:red;}
 </style>
</head>
<body>
 <h1 lang="en">New Delivery Service</h1>
 <h2 lang="en">Color and Beauty to Your Door</h2>
 <p class="details">We are pleased to announce that we are starting a home delivery
 service for your flower needs. We will deliver within a 20 mile radius of the store
 for free and $1/mile thereafter.</p>
</body>
</html>

When assessing specificity, you create a number in the form a-b-c, where each letter is the total from one of the
three characteristics that are counted. This is not a three-digit number. A style is more specific if its a value is the
greatest. Only if the a values are equal does the browser compare b values. The style with the greater b value is more
specific in this case. Only if both a and b values are the same does the browser consider the c value. This means that a
specificity score of 1-0-0 is more specific than 0-5-5.

In this case, the selector p.details includes a class attribute, which means that the specificity of the style is
0-1-1 (0 id values + 1 other attributes + 1 element names). The other selector has a specificity of 0-0-1 (it contains no
id values or other attributes and one element name).

When rendering a p element, the browser will look for a value for the color property. If the p element is a
member of the details class, then the style with the p.details selector will be the most specific, and the value of red
will be used. For all other p elements, the value white will be used. You can see how the browser selects and applies
values for this example in Figure 3-11.

Chapter 3 ■ CSS primer

51

When there are values defined in styles with the same specificity, then the browser selects the value it uses based
on the order in which the values are defined. The one that is defined last is the one that will be used. Listing 3-13
shows a document that contains two equally specific styles.

Listing 3-13. Styles That Are Equally Specific

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <style>
 p.details {color:red;}
 p.information {color: blue;}
 </style>
</head>
<body>
 <h1 lang="en">New Delivery Service</h1>
 <h2 lang="en">Color and Beauty to Your Door</h2>
 <p class="details information">We are pleased to announce that we are starting a home
 Delivery service for your flower needs. We will deliver within a 20 mile radius of
 the store for free and $1/mile thereafter.</p>
</body>
</html>

Both styles defined in the style element have the same specificity score, and both apply to the p element. When
the browser displays the p element in the page, it will select the blue property for the color property since that is the
value defined in the latter style. You can see this in Figure 3-12.

Figure 3-11. Applying values from styles based on specificity

Chapter 3 ■ CSS primer

52

Tip ■ these specificity rules are applied only to styles that are defined at the same cascade level. this means that a
property defined in a style attribute will always take precedence over a style defined in a style element, for example.

Understanding CSS Units
Earlier in the chapter, I showed you the values that the browser uses by default for some CSS properties. These are the
style conventions for some of the elements in the examples, and I have duplicated this information in Table 3-8.

Figure 3-12. Selecting property values based on the order in which styles are defined

Table 3-8. Some CSS Properties and Their Values

Property h1 h2 p

color black black black

background-color transparent transparent transparent

font-size 32px 24px 16px

border none none none

CSS defines a broad range of different unit types, and in the sections that follow I’ll show you some of the more
commonly used ones, including those that I use in this book.

Chapter 3 ■ CSS primer

53

Working with CSS Colors
Colors are used by a lot of the CSS properties, including the color and background-color properties I have been
using in this chapter. The simplest way to specify a color is to use a predefined color name or to use a decimal or
hexadecimal value for each of the red, green, and blue components. Decimal values are separated by a comma, and
hex values are usually prefixed with #, such as #ffffff, which represents white. You can see some of the predefined
names for colors and their decimal and hex equivalents in Table 3-9.

Table 3-9. Selected CSS Colors

Color Name Hex Decimal Color Name Hex Decimal

black #000000 0,0,0 green #008000 0,128,0

silver #C0C0C0 192,192,192 lime #00FF00 0,255,0

grey #808080 128,128,128 olive #808000 128,128,0

white #FFFFFF 255,255,255 yellow #FFFF00 255,255,0

maroon #800000 128,0,0 navy #000080 0,0,128

red #FF0000 255,0,0 blue #0000FF 0,0,255

purple #800080 128,0,128 teal #008080 0,128,128

fuschia #FF00FF 255,0,255 aqua #00FFFF 0,255,255

Table 3-10. Selected CSS Colors

Color Name Hex Decimal

darkgrey #a9a9a9 169,169,169

darkslategrey #2f4f4f 47,79,79

dimgrey #696969 105,105,105

grey #808080 128,128,128

lightgrey #d3d3d3 211,211,211

lightslategrey #778899 119,136,153

slategrey #708090 112,128,144

These are known as the basic color names. CSS also defines the extended colors. There are too many to detail
here, but you can find a complete list at www.w3.org/TR/css3-color. In addition to the basic colors, a lot of slight
variations are available. As an example, Table 3-10 shows the extended set of grey shades that can be used.

Specifying More Complex Colors
Color names and simple hex values aren’t the only way you can specify colors. A number of functions allow you to
select a color. Table 3-11 describes each of the functions available.

http://www.w3.org/TR/css3-color

Chapter 3 ■ CSS primer

54

You can use the rgba function to specify a color with transparency, but if you want a completely transparent
element, then you can use the special color value transparent.

Understanding CSS Lengths
Many CSS properties require you to specify a length, such as the font-size property, which is used to specify the size
of font used to render an element’s content. When you specify a length, you concatenate the number of units and the
unit identifier together, without any spaces or other characters between them. For example, a value of 20pt for the
font-size property means 20 of the units represented by the pt identifier (which are points, explained in a moment).
CSS defines two kinds of length unit: those that are absolute and those that are relative to another property. I explain
both in the sections that follow.

Working with Absolute Lengths
Absolute units are real-world measurements. CSS supports five types of absolute unit, which Table 3-12 describes.

Table 3-11. CSS Color Functions

Function Description Example

rgb(r, g, b) Specifies a color using the RGB
(red, green, blue) model.

color: rgb(112, 128, 144)

rgba(r, g, b, a) Specifies a color using the RGB model, with the
addition of an alpha value to specify opacity.
(A value of 0 is fully transparent; a value of 1 is
fully opaque.)

color: rgba(112, 128, 144, 0.4)

hsl(h, s, l) Specifies a color using the hue, saturation, and
lightness (HSL) model.

color: hsl(120, 100%, 22%)

hsla(h, s, l, a) Like HSL, but with the addition of an alpha value to
specify opacity.

color: hsla(120, 100%, 22%, 0.4)

Table 3-12. CSS Absolute Units of Measurement

Unit Identifier Description

in Inches

cm Centimeters

mm Millimeters

pt Points (1 point is 1/72 of an inch)

pc Picas (1 pica is 12 points)

You can mix and match units in a style and mix absolute and relative units. Absolute units can be useful if you
have some prior knowledge of how the content will be rendered, such as when designing for print. I don’t use the
absolute units that much in my CSS projects—I find the relative units more flexible and easier to maintain and I rarely
create content that has to correspond to real-world measurements.

Chapter 3 ■ CSS primer

55

Tip ■ You might be wondering where pixels are in the table of absolute units. in fact, CSS tries to make pixels a
relative unit of measurement, although, sadly, the specification makes a botched attempt at doing so. You can learn
more in the section “Working with pixels.”

Working with Relative Lengths
Relative lengths are more complex to specify and implement than absolute units and require tight and concise
language to define their meaning unambiguously. A relative unit is measured in terms of some other unit.
Unfortunately, the language in the CSS specifications isn’t precise enough (a problem that has plagued CSS for years).
This means CSS defines a wide range of interesting and useful relative measurements, but you can’t use some of
them because they don’t have widespread or consistent browser support. Table 3-13 shows the relative units that CSS
defines and that can be relied on in mainstream browsers.

Table 3-13. CSS Relative Units of Measurement

Unit Identifier Description

em Relative to the font size of the element

ex Relative to x-height of the element’s font

rem Relative to the font size of the root element

px A number of CSS pixels (assumed to be on a 96 dpi display)

% A percentage of the value of another property

When you use a relative unit, you are effectively specifying a multiple of another measurement. Listing 3-14 gives
an example that sets a property relative to the font-size.

Listing 3-14. Using a Relative Unit

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <style>
 p.details {
 font-size: 15pt;
 height: 3em;
 border: thin solid black;
 }
 </style>
</head>
<body>
 <h1 lang="en">New Delivery Service</h1>
 <h2 lang="en">Color and Beauty to Your Door</h2>
 <p class="details information">We are pleased to announce that we are starting a home
 delivery service for your flower needs. We will deliver within a 20 mile radius of
 the store for free and $1/mile thereafter.</p>
</body>
</html>

Chapter 3 ■ CSS primer

56

In this example, I have specified the value of the height property (which sets the height of an element) to be 3em,
which means that p elements should be rendered so that the height of the element on the screen is three times the
font-size. You can see how the browser displays these elements in Figure 3-13. I added a border (using the border
property) so you can see the size of the element more readily.

Figure 3-13. The effect of using relative measurements

Working with Pixels
Pixels in CSS are not what you might expect. The usual meaning of the term pixel refers to the smallest addressable
unit on a display: one picture element. CSS tries to do something different and defines a pixel as follows:

The reference pixel is the visual angle of one pixel on a device with a pixel density of 96 dpi and a
distance from the reader of an arm’s length.

This is the kind of vague definition that plagues CSS. I don’t want to rant, but specifications that are dependent on
the length of a user’s arm are problematic. Fortunately, the mainstream browsers ignore the difference between pixels
as defined by CSS and pixels in the display and treat 1 pixel to be 1/96th of an inch. (This is the standard Windows
pixel density; browsers on platforms with displays that have a different pixel density usually implement a translation
so that 1 pixel is still roughly 1/96th of an inch.)

Tip ■ although it isn’t much use, you can read the full definition of a CSS pixel at
www.w3.org/TR/CSS21/syndata.html#length-units.

The net effect of this is that although CSS pixels are intended to be a relative unit of measure, they are treated as
an absolute unit by browsers. Listing 3-15 demonstrates specifying pixels in a CSS style.

http://www.w3.org/TR/CSS21/syndata.html#length-units

Chapter 3 ■ CSS primer

57

Listing 3-15. Using Pixel Units in a Style

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <style>
 p.details {
 font-size: 20px;
 width: 400px;
 border: thin solid black;
 }
 </style>
</head>
<body>
 <h1 lang="en">New Delivery Service</h1>
 <h2 lang="en">Color and Beauty to Your Door</h2>
 <p class="details information">We are pleased to announce that we are starting a home
 delivery service for your flower needs. We will deliver within a 20 mile radius of
 the store for free and $1/mile thereafter.</p>
</body>
</html>

In Listing 3-15, I have expressed both the font-size and width properties in pixels (the width property is the
complement to the height property and sets the width of an element). You can see how the browser applies this style
in Figure 3-14.

Figure 3-14. Specifying units in pixels

Chapter 3 ■ CSS primer

58

Tip ■ although i often use pixels as units in CSS, it tends to be a matter of habit. i find em units more flexible. this is
because i have to alter the size of the font only when i need to make a change, and the rest of the style works seamlessly.
it is important to remember that while CSS pixels were intended to be relative units, they are absolute units in practice
and can be inflexible as a consequence.

Working with Percentages
You can express a unit of measurement as a percentage of another property value. You do this using the % (percent)
unit, as demonstrated in Listing 3-16.

Listing 3-16. Expressing Units as a Percentage of Another Property Value

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <style>
 p.details {
 font-size: 200%;
 width: 50%;
 border: thin solid black;
 }
 </style>
</head>
<body>
 <h1 lang="en">New Delivery Service</h1>
 <h2 lang="en">Color and Beauty to Your Door</h2>
 <p class="details information">We are pleased to announce that we are starting a home
 delivery service for your flower needs. We will deliver within a 20 mile radius of
 the store for free and $1/mile thereafter.</p>
</body>
</html>

There are two complications in using percentages as units. The first is that not all properties can be expressed in
this way, and the second is that each property that can be expressed as a percentage individually defines which other
property the percentage refers to. For example, the font-size property uses the inherited font-size value from the
parent element, and the width property uses the width of the containing element.

Using Shorthand Properties and Custom Values
Not all properties are set using units and colors. Some have special values that are unique to the kind of behavior they
control. A good example of this is the border property, which I used in some of the listings to draw a border around
elements. You set the border property using three values, as follows:

...
border: thin solid black;
...

Chapter 3 ■ CSS primer

59

The first value is the thickness of the border, the second value is the style of the border, and the final value is the
color of the border. Table 3-14 shows the values you can use to specify the thickness of the border.

Table 3-14. Values for the Border Width

Value Description

<length> A length expressed in CSS measurement units such as em, px, or cm

<perc>% Percent of the width of the area around which the border will be drawn

thin
medium
thick

Preset widths, the meanings of which are defined by each browser, but
which are progressively thicker

Figure 3-15. The border styles

Table 3-15. Values for the Border Style

Value Description

none No border will be drawn

dashed The border will be a series of rectangular dashes

dotted The border will be a series of circular dots

double The border will be two parallel lines with a gap between them

groove The border will appear to have been sunken into the page

inset The border will be such that the content looks sunken into the page

outset The border will be such that the content looks raised from the page

ridge The border will appear raised from the page

solid The border will be a single, unbroken line

By combining values from these tables with a color, you can achieve a wide range of border effects. You can see
the range of styles displayed in the browser in Figure 3-15.

Table 3-15 shows the values you can use for the style of the border.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 3 ■ CSS primer

60

The border property is also a good example of a shorthand property. These properties allow you to set the value
of several related properties in a single declaration. This means a border such as the one shown earlier is equivalent
to the following 12 declarations:

border-top-color: black;
border-top-style: solid;
border-top-width: thin;
border-bottom-color: black;
border-bottom-style: solid;
border-bottom-width: thin;
border-left-color: black;
border-left-style: solid;
border-left-width: thin;
border-right-color: black;
border-right-style: solid;
border-right-width: thin;

CSS allows you to dig into the details and set individual properties for fine control or to use the shorthand
properties when all of the related values are the same.

Summary
In this chapter, I gave you a brief overview of CSS, showing you how to set properties using the style attribute, how to
use the style element (including the wide range of selectors that are available), and how the browsers use cascading
and specificity to work out which property values should be applied to elements when they are displayed. I finished
with a tour of the CSS units, custom values, and shorthand properties. You can express values for properties in a
number of different ways, which adds flexibility (and a little confusion) to CSS styles.

In Chapter 4, I introduce the basics of JavaScript, which is the means by which jQuery functionality is defined and
applied to HTML content.

61

Chapter 4

JavaScript Primer

jQuery is a JavaScript library that you add to your HTML documents and that is executed by a browser. You employ
the features of the jQuery library by adding your own code to the document as well – and this requires a basic
understanding of how to write JavaScript. In this chapter, I provide a primer for the JavaScript language, focusing on
the features that are most pertinent when working with jQuery.

JavaScript has a mixed reputation as a programming language. It is true that JavaScript has had a difficult life and
was rushed through standardization before it had a chance to mature properly, leaving some oddities in the way that
JavaScript works. But most complaints about JavaScript are from developers who find that JavaScript doesn’t work in
exactly the same way as their preferred back-end language, such as C#, Java, or Python.

Once past the hurdle of accepting that JavaScript is a language in its own right, you will find a language that is
flexible, dynamic, and pleasant to work with. There are still oddities, of course, but the overall experience is positive
and with just a little effort you will find JavaScript an expressive and rewarding language.

Tip ■ If you are new to programming, a good starting point is a series of articles posted on the popular site
Lifehacker.com. No programming knowledge is assumed, and all of the examples are in JavaScript. The guide is available
here: http://lifehacker.com/5744113/learn-to-code-the-full-beginners-guide.

Getting Ready to Use JavaScript
JavaScript code is added to an HTML document as a script – a block of JavaScript statements that the browser will
execute – and there are different ways you can add scripts. You can define an inline script, where the content of the
script is part of the HTML document. You can also define an external script, where the JavaScript is contained in
a separate file and referenced via a URL (which is how you access the jQuery library, as you’ll see in Part 2). Both
of these approaches rely on the script element. In this chapter, I will be using inline scripts. You can see a simple
example in Listing 4-1.

Listing 4-1. A Simple Inline Script

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 console.log("Hello");
 </script>
</head>

http://Lifehacker.com
http://lifehacker.com/5744113/learn-to-code-the-full-beginners-guide

ChapTer 4 ■ JavaSCrIpT prImer

62

<body>
 This is a simple example
</body>
</html>

This script writes a message to the console. The console is a basic (but useful) tool that the browser provides that
lets you display debugging information as your script is executed. Each browser has a different way of showing the
console. For Google Chrome, you select JavaScript console from the Tools menu. You can see how the console is
displayed in Chrome in Figure 4-1; the other browsers have similar features.

Figure 4-1. The Google Chrome JavaScript console

You can see that the output from calling the console.log method is displayed in the console window, along
with the details of where the message originated (in this case on line 6 of the example.html file). In this chapter, I
won’t show screenshots; I’ll show just the results from some of the examples. So, for example, for Listing 4-1, the
output is as follows:

Hello

I have formatted some of the results later in the chapter to make them easier to read. In the sections that follow,
I’ll show you the core features of the JavaScript language. If you have had any experience programming in any other
modern language, you will find the JavaScript syntax and style familiar – albeit, as I said at the start of the chapter, with
some oddities.

Using Statements
The basic JavaScript building block is the statement. Each statement represents a single command, and statements are
usually terminated by a semicolon (;). The semicolon is optional, but using them makes your code easier to read and
allows for multiple statements on a single line. Listing 4-2 shows a pair of statements in a script that is defined using a
script element.

ChapTer 4 ■ JavaSCrIpT prImer

63

Listing 4-2. Using JavaScript Statements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <script type="text/javascript">
 console.log("This is a statement");
 console.log("This is also a statement");
 </script>
 </head>
 <body>
 This is a simple example
 </body>
</html>

The browser executes each statement in turn. In this example, I simply write out a pair of messages to the
console. The results are as follows:

This is a statement
This is also a statement

Defining and Using Functions
When the browser reaches a script element, it immediately executes the JavaScript statements, one after the other.
You can also package multiple statements into a function, which won’t be executed until the browser encounters a
statement that invokes the function, as shown in Listing 4-3.

Listing 4-3. Defining a JavaScript Function

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 function myFunc() {
 console.log("This is a statement");
 };

 myFunc();
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

ChapTer 4 ■ JavaSCrIpT prImer

64

The statements contained by a function are encompassed by braces ({ and }) and are referred to as the code
block. This listing defines a function called myFunc, which contains a single statement in the code block. JavaScript is
a case-sensitive language, which means that the keyword function must be lowercase. The statement in the function
won’t be executed until the browser reaches another statement that calls the myFunc function, like this:

myFunc();

Executing the statement in the function produces the following output:

This is a statement

Other than demonstrating how functions are defined, this example isn’t especially useful because the function is
invoked immediately after it has been defined. You will see some examples with more useful functions in Part 2.

Defining Functions with Parameters
In common with most programming languages, JavaScript allows you to define parameters for functions, as shown in
Listing 4-4.

Listing 4-4. Defining Functions with Parameters

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 function myFunc(name, weather) {
 console.log("Hello " + name + ".");
 console.log("It is " + weather + " today");
 };

 myFunc("Adam", "sunny");
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

I added two parameters to the myFunc function, called name and weather. JavaScript is a dynamically typed
language, which means you don’t have to declare the data type of the parameters when you define the function.
I’ll come back to dynamic typing later in the chapter when I cover JavaScript variables. To invoke a function with
parameters, you provide values as argument when you invoke the function, like this:

...
myFunc("Adam", "sunny");
...

ChapTer 4 ■ JavaSCrIpT prImer

65

The results from this listing are as follows:

Hello Adam.
It is sunny today

The number of arguments when you invoke a function doesn’t need to match the number of parameters in the
function. If you call the function with fewer arguments than it has parameters, then the value of any parameters you
have not supplied values for is undefined. If you call the function with more arguments than there are parameters,
then the additional arguments are ignored.

The consequence of this is that you can’t create two functions with the same name and different parameters and
expect JavaScript to differentiate between them based on the arguments you provide when invoking the function. This
is called polymorphism, and although it is supported in languages such as Java and C#, it isn’t available in JavaScript.
Instead, if you define two functions with the same name, then the second definition replaces the first.

Defining Functions That Return Results
You can return results from functions using the return keyword. Listing 4-5 shows a function that returns a result.

Listing 4-5. Returning a Result from a Function

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 function myFunc(name) {
 return ("Hello " + name + ".");
 };

 console.log(myFunc("Adam"));
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

This function defines one parameter and uses it to produce a result. I invoke the function and pass the result as
the argument to the console.log function, like this:

...
console.log(myFunc("Adam"));
...

Notice that you don’t have to declare that the function will return a result or denote the data type of the result.
The result from this listing is as follows:

Hello Adam.

ChapTer 4 ■ JavaSCrIpT prImer

66

Using Variables and Types
You define variables using the var keyword and can optionally assign a value to the variable in a single statement.
Variables that are defined within a function are local variables and are available for use only within that function.
Variables that are defined directly in the script element are global variables and can be accessed anywhere, including
other scripts in the same HTML document. Listing 4-6 demonstrates the use of local and global variables.

Listing 4-6. Using Local and Global Variables

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <script type="text/javascript">
 var myGlobalVar = "apples";

 function myFunc(name) {
 var myLocalVar = "sunny";
 return ("Hello " + name + ". Today is " + myLocalVar + ".");
 };
 console.log(myFunc("Adam"));
 </script>
 <script type="text/javascript">
 console.log("I like " + myGlobalVar);
 </script>
 </head>
 <body>
 This is a simple example
 </body>
</html>

Again, JavaScript is a dynamically typed language. This doesn’t mean JavaScript doesn’t have types: it just means
you don’t have to explicitly declare the type of a variable and that you can assign different types to the same variable
without any difficulty. JavaScript will determine the type based on the value you assign to a variable and will freely
convert between types based on the context in which they are used. The result from Listing 4-6 is as follows:

Hello Adam. Today is sunny.
I like apples

Using the Primitive Types
JavaScript defines a set of primitive types: string, number, and boolean. This may seem like a short list, but JavaScript
manages to fit a lot of flexibility into these three types.

Working with Strings
You define string values using either the double quote or single quote characters, as shown in Listing 4-7.

ChapTer 4 ■ JavaSCrIpT prImer

67

Listing 4-7. Defining String Variables

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var firstString = "This is a string";
 var secondString = 'And so is this';
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The quote characters that you use must match. You can’t start a string with a single quote and finish with a
double quote, for example. There is no console output for this listing.

Working with Booleans
The boolean type has two values: true and false. Listing 4-8 shows both values being used, but this type is most
useful when used in conditional statements, such as an if statement. There is no console output from
this listing.

Listing 4-8. Defining Boolean Values

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var firstBool = true;
 var secondBool = false;
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

Working with Numbers
The number type is used to represent both integer and floating-point numbers (also known as real numbers).
Listing 4-9 provides a demonstration.

ChapTer 4 ■ JavaSCrIpT prImer

68

Listing 4-9. Defining number Values

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var daysInWeek = 7;
 var pi = 3.14;
 var hexValue = 0xFFFF;
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

You don’t have to specify which kind of number you are using. You just express the value you require, and
JavaScript will act accordingly. In the listing, I have defined an integer value, defined a floating-point value, and
prefixed a value with 0x to denote a hexadecimal value. (There is no console output from the listing.)

Creating Objects
JavaScript supports the notion of objects, and there are different ways in which you can create them. Listing 4-10
gives a simple example.

Listing 4-10. Creating an Object

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData = new Object();
 myData.name = "Adam";
 myData.weather = "sunny";

 console.log("Hello " + myData.name + ". ");
 console.log("Today is " + myData.weather + ".");
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

I create an object by calling new Object(), and I assign the result (the newly created object) to a variable called
myData. Once the object is created, I can define properties on the object just by assigning values, like this:

...
myData.name = "Adam";
...

ChapTer 4 ■ JavaSCrIpT prImer

69

Prior to this statement, my object doesn’t have a property called name. After the statement has executed, the
property does exist, and it has been assigned the value Adam. You can read the value of a property by combining the
variable name and the property name with a period, like this:

...
console.log("Hello " + myData.name + ". ");
...

The result from the listing is as follows:

Hello Adam.
Today is sunny.

Using Object Literals
You can define an object and its properties in a single step using the object literal format. Listing 4-11 shows how this
is done.

Listing 4-11. Using the Object Literal Format

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny"
 };

 console.log("Hello " + myData.name + ". ");
 console.log("Today is " + myData.weather + ".");
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

Each property that you want to define is separated from its value using a colon (:), and properties are separated
using a comma (,). The effect is the same as in the previous example, and the result from the listing is as follows:

Hello Adam.
Today is sunny.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

ChapTer 4 ■ JavaSCrIpT prImer

70

Using Functions as Methods
One of the features that I like most about JavaScript is the way that you can add functions to your objects. A function
defined on an object is called a method. I don’t know why, but I find this elegant and endlessly pleasing. Listing 4-12
shows how you can add methods in this manner.

Listing 4-12. Adding Methods to an Object

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 printMessages: function() {
 console.log("Hello " + this.name + ". ");
 console.log("Today is " + this.weather + ".");
 }
 };
 myData.printMessages();
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

In this example, I have used a function to create a method called printMessages. Notice that to refer to the
properties defined by the object, I have to use the this keyword. When a function is used as a method, the function is
implicitly passed the object on which the method has been called as an argument through the special variable this.
The output from the listing is as follows:

Hello Adam.
Today is sunny.

Working with Objects
Once you have created objects, you can do a number of things with them. In the following sections, I’ll describe the
activities that will be useful later in this book.

Read and Modify the Property Values
The most obvious thing to do with an object is to read or modify the values assigned to the properties that the object
defines. There are two different syntax styles you can use, both of which are shown in Listing 4-13.

ChapTer 4 ■ JavaSCrIpT prImer

71

Listing 4-13. Reading and Modifying Object Properties

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };

 myData.name = "Joe";
 myData["weather"] = "raining";

 console.log("Hello " + myData.name + ".");
 console.log("It is " + myData["weather"]);
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The first style is the one that most programmers with be familiar with and that I used in earlier examples. You
concatenate the object name and the property name together with a period, like this:

...
myData.name = "Joe";
...

You can assign a new value to the property by using the equals sign (=) or read the current value by omitting it.
The second style is an array-style index, like this:

...
myData["weather"] = "raining";
...

In this style, you specify the name of the property you want between square braces ([and]). This can be a
convenient way to access a property because you can pass the name of the property you are interested as a variable,
like this:

...
var myData = {
 name: "Adam",
 weather: "sunny",
};

var propName = "weather";
myData[propName] = "raining";
...

ChapTer 4 ■ JavaSCrIpT prImer

72

This is the basis for how you enumerate the properties of an object, which I describe next. Here is the console
output from the listing:

Hello Joe.
It is raining

Enumerating an Object’s Properties
You enumerate the properties that an object has using the for...in statement. Listing 4-14 shows how you can use
this statement.

Listing 4-14. Enumerating an Object’s Properties

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 printMessages: function() {
 console.log("Hello " + this.name + ". ");
 console.log("Today is " + this.weather + ".");
 }
 };

 for (var prop in myData) {
 console.log("Name: " + prop + " Value: " + myData[prop]);
 }

 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The for...in loop performs the statement in the code block for each property in the myData object. The prop
variable is assigned the name of the property being processed in each iteration. I use the array-index style to retrieve
the value of the property from the object. The output from this listing is as follows (I have formatted the results to
make them easier to read):

Name: name Value: Adam
Name: weather Value: sunny
Name: printMessages Value: function () {
 console.log("Hello " + this.name + ". ");
 console.log("Today is " + this.weather + ".");
}

ChapTer 4 ■ JavaSCrIpT prImer

73

From the result, you can see that the function I defined as a method is also enumerated. This is as a result of the
flexible way that JavaScript handles functions.

Adding and Deleting Properties and Methods
You are still able to define new properties for an object, even when you have used the object literal style. Listing 4-15
gives a demonstration. (The listings in this section do not produce any console output.)

Listing 4-15. Adding a New Property to an Object

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };

 myData.dayOfWeek = "Monday";
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

In this listing, I have added a new property to the object called dayOfWeek. I have used the dot notation (concatenating
the object and property names with a period), but I could as readily used the index-style notation. As you might expect by
now, you can also add new methods to an object by setting the value of a property to be a function, as shown in Listing 4-16.

Listing 4-16. Adding a New Method to an Object

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };

 myData.SayHello = function() {
 console.write("Hello");
 };
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

ChapTer 4 ■ JavaSCrIpT prImer

74

You can delete a property or method from an object using the delete keyword, as shown in Listing 4-17.

Listing 4-17. Deleting a Property from an Object

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };

 delete myData.name;
 delete myData["weather"];
 delete myData.SayHello;
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

Determine Whether an Object Has a Property
You can check to see whether an object has a property using the in expression, as shown in Listing 4-18.

Listing 4-18. Checking to See Whether an Object Has a Property

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };

 var hasName = "name" in myData;
 var hasDate = "date" in myData;

 console.log("HasName: " + hasName);
 console.log("HasDate: " + hasDate);
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

ChapTer 4 ■ JavaSCrIpT prImer

75

In this example, I test for a property that exists and one that doesn’t. The value of the hasName variable will be
true, and the value of the hasDate property will be false, as follows:

HasName: true
HasDate: false

Using JavaScript Operators
JavaScript defines a largely standard set of operators. I’ve summarized the most useful in Table 4-1.

Table 4-1. Useful JavaScript Operators

Operator Description

++, -- Pre- or post-increment and decrement

+, -, *, /, % Addition, subtraction, multiplication, division, remainder

<, <=, >, >= Less than, less than or equal to, more than, more than or equal to

==, != Equality and inequality tests

===, !== Identity and nonidentity tests

&&, || Logical AND and OR

= Assignment

+ String concatenation

?: Three operand conditional statement

Using Conditional Statements
Many of the JavaScript operators are used in conjunction with conditional statements. In this book, I tend to use the
if/else and switch statements. Listing 4-19 shows the use of both (which will be familiar if you have worked with
pretty much any programming language).

Listing 4-19. Using the if/else and switch Conditional Statements

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

 var name = "Adam";

 if (name == "Adam") {
 console.log("Name is Adam");
 } else if (name == "Jacqui") {
 console.log("Name is Jacqui");

ChapTer 4 ■ JavaSCrIpT prImer

76

 } else {
 console.log("Name is neither Adam or Jacqui");
 }

 switch (name) {
 case "Adam":
 console.log("Name is Adam");
 break;
 case "Jacqui":
 console.log("Name is Jacqui");
 break;
 default:
 console.log("Name is neither Adam or Jacqui");
 break;
 }
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The results from the listing are as follows:

Name is Adam
Name is Adam

The Equality Operator vs. the Identity Operator
The equality and identity operators are of particular note. The equality operator will attempt to coerce operands to
the same type in order to assess equality. This is a handy feature, as long as you are aware it is happening. Listing 4-20
shows the equality operator in action.

Listing 4-20. Using the Equality Operator

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

 var firstVal = 5;
 var secondVal = "5";

 if (firstVal == secondVal) {
 console.log("They are the same");
 } else {
 console.log("They are NOT the same");
 }
 </script>
</head>

ChapTer 4 ■ JavaSCrIpT prImer

77

<body>
 This is a simple example
</body>
</html>

The output from this script is as follows:

They are the same

JavaScript is converting the two operands into the same type and comparing them. In essence, the equality
operator tests that values are the same irrespective of their type. If you want to test to ensure that the values and the
types are the same, then you need to use the identity operator (===, three equals signs, rather than the two of the
equality operator), as shown in Listing 4- 21.

Listing 4-21. Using the Identity Operator

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

 var firstVal = 5;
 var secondVal = "5";

 if (firstVal === secondVal) {
 console.log("They are the same");
 } else {
 console.log("They are NOT the same");
 }
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

In this example, the identity operator will consider the two variables to be different. This operator doesn’t coerce
types. The result from this script is as follows:

They are NOT the same

JavaScript primitives are compared by value, but JavaScript objects are compared by reference. Listing 4-22 shows
how JavaScript handles equality and identity tests for objects.

ChapTer 4 ■ JavaSCrIpT prImer

78

Listing 4-22. Performing Equality and Identity Tests on Objects

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

 var myData1 = {
 name: "Adam",
 weather: "sunny",
 };

 var myData2 = {
 name: "Adam",
 weather: "sunny",
 };

 var myData3 = myData2;

 var test1 = myData1 == myData2;
 var test2 = myData2 == myData3;
 var test3 = myData1 === myData2;
 var test4 = myData2 === myData3;

 console.log("Test 1: " + test1 + " Test 2: " + test2);
 console.log("Test 3: " + test3 + " Test 4: " + test4);
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The results from this script are as follows:

Test 1: false Test 2: true
Test 3: false Test 4: true

Listing 4-23 shows the same tests performed on primitives.

Listing 4-23. Performing Equality and Identity Tests on Objects

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

ChapTer 4 ■ JavaSCrIpT prImer

79

 var myData1 = 5;
 var myData2 = "5";
 var myData3 = myData2;

 var test1 = myData1 == myData2;
 var test2 = myData2 == myData3;
 var test3 = myData1 === myData2;
 var test4 = myData2 === myData3;

 console.log("Test 1: " + test1 + " Test 2: " + test2);
 console.log("Test 3: " + test3 + " Test 4: " + test4);
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The results from this script are as follows:

Test 1: true Test 2: true
Test 3: false Test 4: true

Explicitly Converting Types
The string concatenation operator (+) has a higher precedence than the addition operator (also +), which means that
JavaScript will concatenate variables in preference to adding. This can cause confusion because JavaScript will also
convert types freely to produce a result – and not always the result that is expected, as shown in Listing 4-24.

Listing 4-24. String Concatentation Operator Precedence

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

 var myData1 = 5 + 5;
 var myData2 = 5 + "5";

 console.log("Result 1: " + myData1);
 console.log("Result 2: " + myData2);

 </script>
</head>
<body>
 This is a simple example
</body>
</html>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

ChapTer 4 ■ JavaSCrIpT prImer

80

The result from this script is as follows:

Result 1: 10
Result 2: 55

The second result is the kind that causes confusion. What might be intended to be an addition operation is
interpreted as string concatenation through a combination of operator precedence and over-eager type conversion.
To avoid this, you can explicitly convert the types of values to ensure you perform the right kind of operation, as
described in the following sections.

Converting Numbers to Strings
If you are working with multiple number variables and want to concatenate them as strings, then you can convert the
numbers to strings with the toString method, as shown in Listing 4-25.

Listing 4-25. Using the Number.toString Method

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData1 = (5).toString() + String(5);
 console.log("Result: " + myData1);
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

Notice that I have placed the numeric value in parentheses, and then I called the toString method. This is
because you have to allow JavaScript to convert the literal value into a number before you can call the methods that
the number type defines. I have also shown an alternative approach to achieve the same effect, which is to call the
String function and pass in the numeric value as an argument. Both of these techniques have the same effect, which
is to convert a number to a string, meaning that the + operator is used for string concatenation and not addition. The
output from this script is as follows:

Result: 55

There are some other methods that allow you to exert more control over how a number is represented as a string.
I have briefly described these in Table 4-2. All of the methods shown in the table are defined by the number type.

ChapTer 4 ■ JavaSCrIpT prImer

81

Converting Strings to Numbers
The complementary technique is to convert strings to numbers so that you can perform addition rather than
concatenation. You can do this with the Number function, as shown in Listing 4-26.

Listing 4-26. Converting Strings to Numbers

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var firstVal = "5";
 var secondVal = "5";

var result = Number(firstVal) + Number(secondVal);

 console.log("Result: " + result);
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The output from this script is as follows:

Result: 10

The Number method is quite strict in the way that is parses string values, but there are two other functions you
can use that are more flexible and will ignore trailing non-number characters. These functions are parseInt and
parseFloat. I have described all three methods in Table 4-3.

Table 4-2. Useful Number.toString Methods

Method Description Returns

toString() Represents a number in base 10 string

toString(2)
toString(8)
toString(16)

Represent a number in binary, octal, or hexadecimal notation string

toFixed(n) Represents a real number with the n digits after the decimal point string

toExponential(n) Represents a number using exponential notation with one digit
before the decimal point and n digits after

string

toPrecision(n) Represents a number with n significant digits, using exponential
notation if required

string

ChapTer 4 ■ JavaSCrIpT prImer

82

Working with Arrays
JavaScript arrays work much like arrays in most other programming languages. Listing 4-27 shows how you can create
and populate an array.

Listing 4-27. Creating and Populating an Array

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

 var myArray = new Array();
 myArray[0] = 100;
 myArray[1] = "Adam";
 myArray[2] = true;

 </script>
</head>
<body>
 This is a simple example
</body>
</html>

I have created a new array by calling new Array(). This creates an empty array, which I assign to the variable
myArray. In the subsequent statements, I assign values to various index positions in the array. (There is no console
output from this listing.) ().

There are a couple of things to note in this example. First, I didn’t need to declare the number of items in the
array when I created it. JavaScript arrays will resize themselves to hold any number of items. The second point is that
I didn’t have to declare the data types that the array will hold. Any JavaScript array can hold any mix of data types. In
the example, I have assigned three items to the array: a number, a string, and a boolean.

Using an Array Literal
The array literal style lets you create and populate an array in a single statement, as shown in Listing 4-28.

Table 4-3. Useful String to Number Methods

Method Description

Number(str) Parses the specified string to create an integer or real value

parseInt(str) Parses the specified string to create an integer value

parseFloat(str) Parses the specified string to create an integer or real value

ChapTer 4 ■ JavaSCrIpT prImer

83

Listing 4-28. Using the Array Literal Style

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

 var myArray = [100, "Adam", true];

 </script>
</head>
<body>
 This is a simple example
</body>
</html>

In this example, I specified that the myArray variable should be assigned a new array by specifying the items I
wanted in the array between square brackets ([and]). (There is no console output from this listing.)

Reading and Modifying the Contents of an Array
You read the value at a given index using square braces ([and]), placing the index you require between the braces, as
shown in Listing 4-29.

Listing 4-29. Reading the Data from an Array Index

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myArray = [100, "Adam", true];
 console.log("Index 0: " + myArray[0]);
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

You can modify the data held in any position in a JavaScript array simply by assigning a new value to the index.
Just as with regular variables, you can switch the data type at an index without any problems. The output from the
listing is as follows:

Index 0: 100

Listing 4-30 demonstrates modifying the contents of an array.

ChapTer 4 ■ JavaSCrIpT prImer

84

Listing 4-30. Modifying the Contents of an Array

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myArray = [100, "Adam", true];
 myArray[0] = "Tuesday";
 console.log("Index 0: " + myArray[0]);
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

In this example, I have assigned a string to position 0 in the array, a position that was previously held by a
number and produces this output:

Index 0: Tuesday

Enumerating the Contents of an Array
You enumerate the content of an array using a for loop. Listing 4-31 shows how to apply the loop to display the
contents of a simple array.

Listing 4-31. Enumerating the Contents of an Array

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myArray = [100, "Adam", true];
 for (var i = 0; i < myArray.length; i++) {
 console.log("Index " + i + ": " + myArray[i]);
 }
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

ChapTer 4 ■ JavaSCrIpT prImer

85

The JavaScript loop works just the same way as loops in many other languages. You determine how many
elements there are in the array by using the length property. The output from the listing is as follows:

Index 0: 100
Index 1: Adam
Index 2: true

Using the Built-in Array Methods
The JavaScript Array object defines a number of methods that you can use to work with arrays. Table 4-4 describes the
most useful of these methods.

Table 4-4. Useful Array Methods

Method Description Returns

concat(otherArray) Concatenates the contents of the array with the array specified by the
argument. Multiple arrays can be specified.

Array

join(separator) Joins all of the elements in the array to form a string. The argument
specifies the character used to delimit the items.

string

pop() Treats an array like a stack and removes and returns the last item in
the array.

object

push(item) Treats an array like a stack and appends the specified item to the array. void

reverse() Reverses the order of the items in the array. Array

shift() Like pop, but operates on the first element in the array. object

slice(start,end) Returns a section of the array. Array

sort() Sorts the items in the array. Array

splice(index, count) Removes count items from the array, starting at the specified index. Array

unshift(item) Like push, but inserts the new element at the start of the array. void

Handling Errors
JavaScript uses the try...catch statement to deal with errors. For the most part, I won’t be worrying about errors in
this book because my focus is on explaining the features of jQuery and not general programing technique. Listing 4-32
shows how to use this kind of statement.

Listing 4-32. Handling an Exception

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

ChapTer 4 ■ JavaSCrIpT prImer

86

 try {
 var myArray;
 for (var i = 0; i < myArray.length; i++) {
 console.log("Index " + i + ": " + myArray[i]);
 }
 } catch (e) {
 console.log("Error: " + e);
 }
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The problem in this script is a common one. I am trying to use a variable that has not been initialized properly. I
have wrapped the code that I suspect will cause an error in the try clauseof the statement. If no problems arise, then
the statements execute normally, and the catch clause is ignored.

However, since there is an error in this code, then execution of the statements in the try clause stops
immediately, and control passes to the catch clause, producing the following output on the console:

Error: TypeError: Cannot read property 'length' of undefined

The error that you have encountered is described by an Error object, which is passed to the catch clause.
Table 4-5 shows the properties defined by the Error object.

Table 4-5. The Error Object

Property Description Returns

message A description of the error condition. string

name The name of the error. This is Error, by default. string

number The error number, if any, for this kind of error. number

The catch clauseis your opportunity to recover from or clear up after the error. If there are statements that
need to be executed whether or not there has been an error, you can place them in the optional finally clause, as
shown in Listing 4-33.

Listing 4-33. Using a finally Clause

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 try {
 var myArray;
 for (var i = 0; i < myArray.length; i++) {
 console.log("Index " + i + ": " + myArray[i]);
 }

ChapTer 4 ■ JavaSCrIpT prImer

87

 } catch (e) {
 console.log("Error: " + e);
 } finally {
 console.log("Statements here are always executed");
 }
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The listing produces the following console output:

Error: TypeError: Cannot read property 'length' of undefined
Statements here are always executed

Comparing undefined and null Values
JavaScript defines a couple of special values that you need to be careful with when you compare them: undefined and
null. The undefined value is returned when you read a variable that hasn’t had a value assigned to it or try to read an
object property that doesn’t exist. Listing 4-34 shows how undefined is used in JavaScript.

Listing 4-34. The undefined Special Value

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };
 console.log("Prop: " + myData.doesntexist);
 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The output from this listing is as follows:

Prop: undefined

ChapTer 4 ■ JavaSCrIpT prImer

88

JavaScript is unusual in that it also defines null, another special value. The null value is slightly different from
undefined. The undefined value is returned when no value is defined, and null is used when you want to indicate
that you have assigned a value but that value is not a valid object, string, number, or boolean; that is, you have
defined a value of no value. To help clarify this, Listing 4-35 shows the transition from undefined to null.

Listing 4-35. Using undefined and null

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

 var myData = {
 name: "Adam",
 };

 console.log("Var: " + myData.weather);
 console.log("Prop: " + ("weather" in myData));

 myData.weather = "sunny";
 console.log("Var: " + myData.weather);
 console.log("Prop: " + ("weather" in myData));

 myData.weather = null;
 console.log("Var: " + myData.weather);
 console.log("Prop: " + ("weather" in myData));

 </script>
</head>
<body>
 This is a simple example
</body>
</html>

I create an object and then try to read the value of the weather property, which is not defined:

...
console.log("Var: " + myData.weather);
console.log("Prop: " + ("weather" in myData));
...

There is no weather property, so the value returned by calling myData.weather is undefined, and using the in
keyword to determine whether the object contains the property returns false. The output from these two statements
is as follows:

Var: undefined
Prop: false

ChapTer 4 ■ JavaSCrIpT prImer

89

Next, I assign a value to the weather property, which has the effect of adding the property to the object:

...
myData.weather = "sunny";
console.log("Var: " + myData.weather);
console.log("Prop: " + ("weather" in myData));
...

I read the value of the property and check to see whether the property exists in the object again. As you might
expect, the object does define the property and its value is sunny:

Var: sunny
Prop: true

Now I set the value of the property to null, like this:

...
myData.weather = null;
...

This has a specific effect. The property is still defined by the object, but I have indicated it doesn’t contain a value.
When I perform my checks again, I get the following results:

Var: null
Prop: true

This distinction is important when it comes to comparing undefined and null values because null is an object
and undefined is a type in its own right.

Checking for null or undefined
If you want to check to see whether a property is null or undefined (and you don’t care which), then you can simply
use an if statement and the negation operator (!), as shown in Listing 4-36.

Listing 4-36. Checking to See Whether a Property Is null or undefined

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

 var myData = {
 name: "Adam",
 city: null
 };

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

ChapTer 4 ■ JavaSCrIpT prImer

90

 if (!myData.name) {
 console.log("name IS null or undefined");
 } else {
 console.log("name is NOT null or undefined");
 }

 if (!myData.city) {
 console.log("city IS null or undefined");
 } else {
 console.log("city is NOT null or undefined");
 }

 </script>
</head>
<body>
 This is a simple example
</body>
</html>

This technique relies on the type coercion that JavaScript performs such that the values you are checking are
treated as boolean values. If a variable or property is null or undefined, then the coerced boolean value is false.
The listing produces this output:

name is NOT null or undefined
city IS null or undefined

Differentiating Between null and undefined
You have a choice if you want to compare two values. If you want to treat an undefined value as being the same as
a null value, then you can use the equality operator (==) and rely on JavaScript to convert the types. An undefined
variable will be regarded as being equal to a null variable, for example. If you want to differentiate between null and
undefined, then you need to use the identity operator (===). Listing 4-37 shows both comparisons.

Listing 4-37. Equality and Identity Comparisons for null and undefined Values

<!DOCTYPE HTML>
<html>
<head>
 <title>Example</title>
 <script type="text/javascript">

 var firstVal = null;
 var secondVal;

 var equality = firstVal == secondVal;
 var identity = firstVal === secondVal;

ChapTer 4 ■ JavaSCrIpT prImer

91

 console.log("Equality: " + equality);
 console.log("Identity: " + identity);

 </script>
</head>
<body>
 This is a simple example
</body>
</html>

The output from this script is as follows:

Equality: true
Identity: false

Summary
In this chapter, I showed you the core JavaScript features that you will use throughout this book. Understanding basic
JavaScript is essential to using jQuery, as you’ll see in the chapters ahead. In Part 2 of this book, I introduce jQuery
properly and show you how to use it.

93

Chapter 5

jQuery Basics

In this chapter, I will introduce you to your first jQuery script. The script is simple, but it demonstrates many of the
most important characteristics of jQuery, including how you select elements in the document, how such selections
are presented to you, and the nature of the relationship between jQuery and the built-in DOM API that is part of the
HTML specification. Table 5-1 provides the summary for this chapter.

Table 5-1. Chapter Summary

Problem Solution Listing

Add jQuery to an HTML document. Use the link element to import the
jQuery element, linking either to your web server
or to a CDN. Add a script element to define your
jQuery script.

1

Dynamically select the jQuery 1.x or 2.x lines. Use conditional comments. 2

Select elements in the document. Pass a CSS selector to the $ or jQuery function. 3, 4, 10

Rename the $ function. Use the noConflict method. 5, 6

Defer execution of your jQuery script until the
document has been loaded.

Register a handler for the ready event
on the global document variable or
pass a function to the $ function.

7, 8

Take control of when the ready event is triggered. Use the holdReady event. 9

Restrict element selection to part of the document. Pass a context to the $ function. 11, 12

Determine the context used to create a jQuery object. Read the context property. 13

Create a jQuery object from HTMLElement objects. Pass the HTMLElement objects as the
argument to the $ function.

14

Enumerate the contents of a jQuery object. Treat the jQuery object as an array or
use the each method.

15, 16

Find a specific element in a jQuery element. Use the index or get methods. 17–19

Apply an operation to multiple elements in
the document.

Use a jQuery method on a jQuery object. 20

Apply multiple operations to a jQuery object. Chain methods calls together. 21–23

Handle an event. Use one of the jQuery event handler methods. 24

Chapter 5 ■ jQuery BasiCs

94

JQUerY ChaNGeS SINCe the LaSt eDItION

in the first edition of this book, i described the use of the selector property to get a selector string from jQuery
that could be used to repeat queries in the future. as of jQuery 1.9, the selector property has been deprecated
and should not be used.

the selector engine that jQuery 1.9/2.0 uses (known as Sizzle) implements support for some new Css3 selectors
even in browsers that don't support them. the selectors are: :nth-last-child, :nth-of-type, :nth-last-of-
type, :first-of-type, :last-of-type, :only-of-type, :target, :root, and :lang.

Setting Up jQuery
The first thing you need to do with jQuery is add it to the document you want to work with. Listing 5-1 shows the
flower shop example document you first saw in Part 1, with the addition of the jQuery library.

Listing 5-1. The Flower Shop Example Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required >
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 <div id="row2" class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>

Chapter 5 ■ jQuery BasiCs

95

 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

To help maintain focus on the content, I have moved the CSS styles to a separate style sheet called styles.css,
as demonstrated in Chapter 3. You can see how I have added the jQuery library to the document, as follows:

...
<script src="jquery-2.0.2.js" type="text/javascript"></script>
...

Once you have selected the jQuery line that you will be using (the 1.x or 2.x line, as described in Chapter 3),
you will have the choice of two files from jquery.com – one with a .js file extension and the other with .min.js. For
version of the 2.x line that is current as I write this, the files are called jquery-2.0.2.js and jquery-2.0.2.min.js.

The jquery-2.0.2.js file is the one generally used during the development of a web site or application. This file
is around 240KB and standard JavaScript code. You can open and read the file to learn about how jQuery implements
its features and use the browser debugger to figure out what is going wrong if you encounter problems in your code.

Tip ■ jQuery is actively developed, and so by the time you read this a later version will almost certainly have been
released. But don’t worry – despite all of the talk of deprecated methods and split development lines, the jQuery api is
incredibly stable, and all of the techniques that i show you in this book will continue to work as jQuery 1.x and 2.x
continue to mature.

The other file, jquery.2.0.2.min.js, is intended for use when you deploy your site or web application to users.
It contains the same JavaScript code but has been minified, meaning that all of the whitespace characters have been
removed, and the meaningful variable names have been replaced with single-character names to save space. The
minified script is almost impossible to read for the purposes of debugging, but it is much smaller. The minification
process reduces the size of the file to about 82KB and if you are serving up a lot of pages that rely on jQuery, then this
difference can save you significant amounts of bandwidth.

Tip ■ you can download a source map (which has the .min.map extension) from jquery.com. source maps allow
minified code to be more easily debugged. they are a new idea and are not that widely implemented as i write this. you
can see a simple demonstration at http://www.html5rocks.com/en/tutorials/developertools/sourcemaps.

http://jquery.com/
http://jquery.com/
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps

Chapter 5 ■ jQuery BasiCs

96

USING a CDN FOr JQUerY

an alternative to storing the jQuery library on your own web servers is to use a public content delivery network
(CDN) that hosts jQuery. a CDN is a distributed network of servers that deliver files to the user using the server
that is closest to them. there are a couple of benefits to using a CDN. the first is a faster experience to the user,
because the jQuery library file is downloaded from the server closest to them, rather than from your servers. Often
a download won’t be required at all: jQuery is so popular that the user’s browser may have already cached the
library from another application or site that also uses jQuery. the second benefit is that none of your bandwidth is
used delivering jQuery to the user. For high-traffic sites, this can be a significant cost savings.

When using a CDN, you must have confidence in the CDN operator. you want to be sure that the user receives
the file they are supposed to and that service will always be available. Google and Microsoft both provide CDN
services for jQuery (and other popular javascript libraries) free of charge. Both companies have good experience
running highly available services and are unlikely to deliberately tamper with the jQuery library. you can learn
about the Microsoft service at www.asp.net/ajaxlibrary/cdn.ashx and about the Google service at
http://code.google.com/apis/libraries/devguide.html.

the CDN approach isn’t suitable for applications that are delivered to users within an intranet because it causes
all the browsers to go to the internet to get the jQuery library, rather than access the local server, which is
generally closer and faster and has lower bandwidth costs.

Using Conditional Comments
In Listing 5-1, I included only version 2.0.2 of the jQuery library. This version offers the best performance but it
doesn’t support older versions of Internet Explorer, as described in Chapter 1.

The good news is that you don’t have to choose between performance and compatibility. There is a technique
that dynamically selects between the 1.x and 2.x jQuery libraries automatically, using a feature called conditional
comments that Microsoft created as a nonstandard enhancement to HTML for Internet Explorer 5. In Listing 5-2,
you can see how I have applied the conditional comments feature to the example HTML document.

Listing 5-2. Using Conditional Comments to Dynamically Select between jQuery 1.x and 2.x

...
<head>
 <title>Example</title>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <!--[if lt IE 9]>
 <script src="jquery-1.10.1.js" type="text/javascript"></script>
 <![endif]-->
 <!--[if gte IE 9]><!-->
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <!--<![endif]-->
</head>
...

The conditional comments will load jQuery 1.10.1 for versions prior to Internet Explorer 9 and jQuery 2.0.2 for all
other browsers. You should take care to copy these comments exactly – it is easy to make a mistake.

http://www.asp.net/ajaxlibrary/cdn.ashx
http://code.google.com/apis/libraries/devguide.html
http://code.google.com/apis/libraries/devguide.html

Chapter 5 ■ jQuery BasiCs

97

Tip ■ i am not going to go into conditional comments in this book, but you can learn more about them at
http://en.wikipedia.org/wiki/Conditional_comment.

A First jQuery Script
Now that I have added the jQuery library to the document, I can write some JavaScript that uses jQuery functionality.
Listing 5-3 contains a simple script element that shows off some of the basic jQuery features.

Listing 5-3. A First jQuery Script

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script type="text/javascript">
 $(document).ready(function () {
 $("img:odd").mouseenter(function (e) {
 $(this).css("opacity", 0.5);
 }).mouseout(function (e) {
 $(this).css("opacity", 1.0);
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required >
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>

http://en.wikipedia.org/wiki/Conditional_comment
http://en.wikipedia.org/wiki/Conditional_comment

Chapter 5 ■ jQuery BasiCs

98

 <div id="row2" class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

This is a short script, but it demonstrates some of the most important features and characteristics of jQuery. I’ll
break down the script line by line in this chapter, but it will take you the rest of the part of this book to fully understand
all of the functional areas that this script touches upon. To start with, Figure 5-1 shows the effect that this script creates.

Tip ■ you will notice that i have returned to the explicit use of jQuery 2.0.2 in the listing – which i will do for most of
the rest of this book. i want to keep the examples clear and simple, but i recommend you use the conditional comments
technique, which i find useful in my own projects.

Figure 5-1. Changing image opacity

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ jQuery BasiCs

99

The script changes the opacity of the daffodil, peony, and snowdrop images when the mouse is moved over them.
This has the effect of making the image look a little brighter and washed out. When the mouse is moved away from the
image, the opacity returns to its previous value. The images for the aster, rose, and primula are unaffected.

Understanding the jQuery $ Function
You access jQuery through the $(...) function, which I will refer to as the $ function for simplicity. The $ function
is the entry point to the wonderful world of jQuery and is a shorthand for the jQuery function. You can rewrite the
example script to use the full function name if you prefer, as shown in Listing 5-4.

Listing 5-4. Using the jQuery Function in Place of the Shorthand

...
<script type="text/javascript">
 jQuery(document).ready(function () {
 jQuery("img:odd").mouseenter(function(e) {
 jQuery(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 jQuery(this).css("opacity", 1.0);
 });
 });
</script>
...

This script provides the same functionality as the previous example. It requires slightly more typing but has the
advantage of making the use of jQuery explicit.

This can be useful because jQuery is not the only JavaScript library that uses the $ notation, which can cause
problems when you use multiple libraries in the same document. You can make jQuery relinquish control of the $ by
calling the jQuery.noConflict method, as shown in Listing 5-5.

Listing 5-5. Releasing jQuery’s Control of $

...
<script type="text/javascript">
 jQuery.noConflict();
 jQuery(document).ready(function () {
 jQuery("img:odd").mouseenter(function(e) {
 jQuery(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 jQuery(this).css("opacity", 1.0);
 });
 });
</script>
...

You can also define your own shorthand notation. You do this by assigning the result of the noConflict method
to a variable, as shown in Listing 5-6.

Chapter 5 ■ jQuery BasiCs

100

Listing 5-6. Using an Alternative Shorthand

...
<script type="text/javascript">
 var jq = jQuery.noConflict();
 jq(document).ready(function () {
 jq("img:odd").mouseenter(function(e) {
 jq(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 jq(this).css("opacity", 1.0);
 });
 });
</script>
...

In this example, I created my own shorthand, jq, and then used this shorthand throughout the rest of my script.

Table 5-2. Arguments to the Main jQuery Function

Argument Description

$(function) Specifies a function to be executed when the DOM is ready.

$(selector) $(selector, context) Selects elements from the document.

$(HTMLElement) $(HTMLElement[]) Creates a jQuery object from an HTMLElement or an array of
HTMLElement objects.

$() Creates an empty selection.

$(HTML) $(HTML, map) Creates new elements from a fragment of HTML with
an optional map object to define attributes.
See Chapter 7 for details.

Tip ■ i will be using the $ notation throughout this book, since it is the normal convention for jQuery (and because
i won’t be using any other library that wants control of $).

Irrespective of how you refer to the main jQuery function, you can pass the same set of arguments, the most
important of which I have described in Table 5-2. All of these arguments are described later in this chapter except the
last one, which is described in Chapter 7.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 5 ■ jQuery BasiCs

101

Waiting for the Document Object Model
In Chapter 2, I placed the script element at the end of the document so that the browser would create all of the
objects in the DOM before executing my JavaScript code. You can neatly avoid this issue by using jQuery, by using the
following technique:

...
<script type="text/javascript">
 $(document).ready(function () {
 // ...code to execute...
 });
</script>
...

Instead of putting the JavaScript statements directly in the script element, I have passed the document object
(which I introduced in Chapter 1) to the $ function and called the ready method, passing in a function that I want
to be executed only when the browser has loaded all of the content in the HTML document. Listing 5-7 shows how
I applied this technique in the example HTML document.

Listing 5-7. Waiting for the DOM

...
<script type="text/javascript">
 $(document).ready(function () {
 $("img:odd").mouseenter(function (e) {
 $(this).css("opacity", 0.5);
 }).mouseout(function (e) {
 $(this).css("opacity", 1.0);
 });
 });
</script>
...

Using the ready function means I can place the script element wherever I want in the HTML document safe
in the knowledge that jQuery will prevent the function from being executed prematurely. I like to put my script
elements in the head element of the HTML document, but that’s just my preference.

Note ■ passing a function to the ready method creates a handler for the jQuery ready event. i cover jQuery events
fully in Chapter 9. For the moment, please accept that the function you pass to the ready method will be invoked when

the document is loaded and the DOM is ready for use.

Chapter 5 ■ jQuery BasiCs

102

FOrGettING the FUNCtION

a common error is to omit the function part of this incantation and just pass a series of javascript statements
to the ready method. this doesn’t work and the statements are executed by the browser immediately, rather than
when the DOM is ready. Consider the following script:

...
<script type="text/javascript">

 function countImgElements() {
 return $("img").length;
 }

 $(document).ready(function() {
 console.log("Ready function invoked. IMG count: " + countImgElements());
 });

 $(document).ready(
 console.log("Ready statement invoked. IMG count: " + countImgElements())
);
</script>
...

i call the ready method twice, once with a function and once just passing in a regular javascript statement. in
both cases, i call the countImgElements function, which returns the number of img elements that are present in
the DOM. (Don’t worry about how this method works for the moment. i explain the call to the length property later
in this chapter.) When i load the document, the script is executed, and the following output is written to the console:

Ready statement invoked. IMG count: 0
Ready function invoked. IMG count: 6

as you can see, the statement without the function is executed as the document is loaded and before the browser
has discovered the img elements in the document and created the corresponding DOM objects.

Using the Alternative Notation
You can pass your function as the parameter to the jQuery $ function if you prefer. This has the same effect as using
the $(document).ready approach. Listing 5-8 provides a demonstration.

Listing 5-8. Deferring Execution of a Function Until the DOM Is Ready

...
<script type="text/javascript">
 $(function() {
 $("img:odd").mouseenter(function(e) {
 $(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 $(this).css("opacity", 1.0);
 })
 });
</script>
...

Chapter 5 ■ jQuery BasiCs

103

Deferring the ready Event
You can control when the ready event is triggered by using the holdReady method. This can be useful if you need to
load external resources dynamically (an unusual and advanced technique). The holdReady method must be called
before the ready event is triggered and can then be called again when you are ready. Listing 5-9 gives an example of
using this method.

Listing 5-9. Using the holdReady Method

...
<script type="text/javascript">

 $.holdReady(true);

 $(document).ready(function() {
 console.log("Ready event triggered");
 $("img:odd").mouseenter(function(e) {
 $(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 $(this).css("opacity", 1.0);
 })
 });

 setTimeout(function() {
 console.log("Releasing hold");
 $.holdReady(false);
 }, 5000);

</script>
...

I call the holdReady method at the start of the script element, passing in true as the argument that indicates that
I want the ready event to be held. I then define the function I want to be called when the ready event is fired (this is
the same set of statements that I opened the chapter with, which alter the opacity of some of the images).

Finally, I use the setTimeout method to invoke a function after five seconds. This function calls the holdReady
method with an argument of false, which tells jQuery to trigger the ready event. The net effect is that I delay the
ready event for five seconds. I have added some debug messages that write the following output to the console when
the document is loaded into the browser:

Releasing hold
Ready event triggered

Tip ■ you can call the holdReady method multiple times, but the number of calls to the holdReady method with the
true argument must be balanced by the same number of calls with the false argument before the ready event will
be triggered.

Chapter 5 ■ jQuery BasiCs

104

Selecting Elements
One of the most important areas of jQuery functionality is how you select elements from the DOM. In the example
script, I located all of the odd img elements, as shown in Listing 5-10.

Listing 5-10. Selecting Elements from the DOM

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img:odd").mouseenter(function(e) {
 $(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 $(this).css("opacity", 1.0);
 })
 });
</script>
...

To select elements, you simply pass a selector to the $ function. jQuery supports all of the CSS selectors I described
in Chapter 3, plus some additional ones that give you some handy fine-grained control. In the example I used the
:odd pseudo-selector, which selects the odd-numbered elements matched by the main part of the selector (img in
this case, which selects all of the img elements, as described in Chapter 3). The :odd selector is zero-based, meaning
that the first element is considered to be even. This can be a little confusing at first. Table 5-3 lists the most useful
jQuery selectors.

Table 5-3. jQuery Extension Selectors

Selector Description

:animated Selects all elements that are being animated.

:contains(text) Selects elements that contain the specified text.

:eq(n) Selects the element at the nth index (zero-based).

:even Selects all the event-numbered elements (zero-based).

:first Selects the first matched element.

:gt(n) Selects all of the elements with an index greater than n (zero-based).

:has(selector) Selects elements that contain at least one element that matches the specified selector.

:last Selects the last matched element.

:lt(n) Selects all of the elements with an index smaller than n (zero-based).

:odd Selects all the odd-numbered elements (zero-based).

:text Selects all text elements.

Tip ■ you can create an empty selection by calling the $ function without any arguments ($()). i mention this for
completeness, but it is not a feature that i have ever had cause to use.

Chapter 5 ■ jQuery BasiCs

105

I have called these the most useful because they define functionality that would be difficult to re-create using
CSS selectors. These selectors are used just like the CSS pseudo-selectors. They can be used on their own, in which
case they are applied to all of the elements in the DOM, like this:

...
$(":even")
...

or combined with other selectors to narrow the selection, like this:

...
$("img:even")
...

jQuery also defines selectors that select elements based on type, as described in Table 5-4.

Table 5-4. jQuery Type Extension Selectors

Selector Description

:button Selects all buttons.

:checkbox Selects all check boxes.

:file Selects all file elements.

:header Selects all header elements (h1, h2, and so on).

:hidden Selects all hidden elements.

:image Selects all image elements.

:input Selects all input elements.

:last Selects the last matched element.

:parent Selects all of the elements that are parents to other elements.

:password Selects all password elements.

:radio Selects all radio elements.

:reset Selects all elements that reset a form.

:selected Selects all elements that are selected.

:submit Selects all form submission elements.

:visible Selects all visible elements.

Chapter 5 ■ jQuery BasiCs

106

CONSIDerING SeLeCtOr perFOrMaNCe

if you spend any time reading about jQuery, you are sure to encounter a discussion about selector performance.
a great many people spend a great deal of time comparing different ways of expressing selectors to squeeze the
maximum performance out of jQuery.

My view is simple: it should not matter – and if it does matter, then it is a sign of some other problem. the
performance of jQuery is pretty good, especially on the latest versions of the mainstream browsers that have
fast javascript implementations. When i see project teams that are trying to optimize selector performance,
it is usually because they are dealing with huge numbers of htML elements where it can take hundreds of
milliseconds to perform a selection – and when several such selections are required to perform an operation,
we start to get into the length of delay that users notice.

the real problem isn’t jQuery – it is the practice of sending more content to the browser than it can be reasonably
expected to cope with. Browsers are increasingly powerful and capable, but there are limits to what they can be
expected to do, especially older browsers and those running on mobile devices.

if you find yourself struggling to select elements quickly enough, don’t try to optimize your use of selectors.
instead, reconsider your use of htML elements: look for ways to minimize the content sent to the browser,
take on some of the processing at the server and stop treating web applications as though they were desktop
applications.

Narrowing the Selection with a Context
By default, jQuery searches the entire DOM for elements, but you can narrow the scope of a selection by providing an
additional argument to the $ function. This gives the search a context, which is used as the starting point for matching
elements, as shown in Listing 5-11.

Listing 5-11. Narrowing a Search with a Context

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img:odd", $(".drow")).mouseenter(function(e) {
 $(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 $(this).css("opacity", 1.0);
 })
 });
</script>
...

In this example, I use one jQuery selection as the context for another. The context is evaluated first, and it
matches all of the elements that are members of the drow class. This set of elements is then used as the context for the
img:odd selector.

Chapter 5 ■ jQuery BasiCs

107

When you supply a context that contains multiple elements, then each element is used as a starting point in the
search. There is an interesting subtlety in this approach. The elements that match the context are gathered together,
and then the main selection is performed. In the example, this means the img:odd selector is applied to the results
of the drow selector, which means that the odd-numbered elements are not the same as when you search the entire
document. The net result is that the opacity effect is applied to the odd-numbered img elements in each div element
in the drow class, selecting the daffodil and primula images. When I omitted the context in the earlier example, the
effect was applied to the daffodil, peony, and snowdrop images.

If you just want to match elements starting at a given point in the document, then you can use an HTMLElement
object as the context. Listing 5-12 contains an example. I show you how to easily switch between the jQuery world and
HTMLElement objects in the next section.

Listing 5-12. Using an HTMLElement as the Context

...
<script type="text/javascript">
 $(document).ready(function() {
 var elem = document.getElementById("oblock");

 $("img:odd", elem).mouseenter(function(e) {
 $(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 $(this).css("opacity", 1.0);
 })
 });
</script>
...

The script in this example searches for odd-numbered img elements, limiting the search to those elements that
are descended from the element whose id is oblock.

Of course, you could achieve the same effect using the descendant CSS selector. The benefit of this approach
arises when you want to narrow a search programmatically, without having to construct a selector string. A good
example of such a situation is when handling an event. You can learn more about events (and see how HTMLElement
objects arise in this situation) in Chapter 9.

Understanding the Selection Result
When you use jQuery to select elements from the DOM, the result from the $ function is a confusingly named jQuery
object, which represents zero or more DOM elements. In fact, when you perform a jQuery operation that modifies
one or more elements, the result is likely to be a jQuery object, which is an important characteristic that I’ll return
to shortly.

The methods and properties that are defined by the jQuery object are essentially the contents for the rest of the
book, but there are some basic members that I can cover in this chapter, as described in Table 5-5.

Chapter 5 ■ jQuery BasiCs

108

Determining the Context
The context property provides you with details of the context used when the jQuery was created. If a single
HTMLElement object was used as the context, then the context property will return that HTMLElement. If no context was
used or if multiple elements were used (as in the example I used earlier in the chapter), then the context property
returns undefined instead. Listing 5-13 shows this property in use.

Listing 5-13. Determining the Context for a jQuery Object

...
<script type="text/javascript">
 $(document).ready(function() {
 var jq1 = $("img:odd");
 console.log("No context: " + jq1.context.tagName);

 var jq2 = $("img:odd", $(".drow"));
 console.log("Multiple context elements: " + jq2.context.tagName);

 var jq3 = $("img:odd", document.getElementById("oblock"));
 console.log("Single context element: " + jq3.context.tagName);
 });
</script>
...

This script selects elements using no context, multiple context objects, and a single context object. The output is
as follows:

No context: undefined
Multiple context elements: undefined
Single context element: DIV

Table 5-5. Basic jQuery Object Members

Selector Description Returns

context Returns the set of elements used as the search context. HTMLElement

each(function) Performs the function on each of the selected elements. jQuery

get(index) Gets the HTMLElement object at the specified index. HTMLElement

index(HTMLElement) Returns the index of the specified HTMLElement. number

index(jQuery) Returns the index of the first element in the jQuery object. number

index(selector) Returns the index of the first element in the jQuery object in the set of
elements matched by the selector

number

length Returns the number of elements contained by the jQuery object. number

size() Returns the number of elements in the jQuery object. number

toArray() Returns the HTMLElement objects contained by the jQuery object as an array. HTMLElement[]

Chapter 5 ■ jQuery BasiCs

109

Dealing with DOM Objects
jQuery doesn’t replace the DOM; it just makes it a lot easier to work with. The HTMLElement objects (which I
introduced in Chapter 2) are still used, and the jQuery library makes it easy to switch between jQuery objects and
DOM objects. The ease with which you can move from the traditional DOM to jQuery and back is part of the elegance
of jQuery and helps you maintain compatibility with non-jQuery scripts and libraries.

Creating jQuery Objects from DOM Objects
You can create jQuery objects by passing an HTMLElement object or an array of HTMLElement objects as the argument
to the $ function. This can be useful when dealing with JavaScript code that isn’t written in jQuery or in situations
where jQuery exposes the underlying DOM objects, such as event processing. Listing 5-14 contains an example.

Listing 5-14. Creating jQuery Objects from DOM Objects

...
<script type="text/javascript">
 $(document).ready(function() {

 var elems = document.getElementsByTagName("img");

 $(elems).mouseenter(function(e) {
 $(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 $(this).css("opacity", 1.0);
 })
 });
</script>
...

In this example, I select the img elements in the document using the document.getElementsByTagName method,
rather than using jQuery directly with a selector. I pass the results of this method (which is a collection of HTMLElement
objects) to the $ function, which returns a regular jQuery object that I can use just as in the previous examples.

This script also demonstrates how you can create a jQuery object from a single HTMLElement object:

...
$(this).css("opacity", 1.0);
...

When you are handling events, jQuery sets the value of the this variable to the HTMLElement that is processing
the event. I describe the jQuery event support in Chapter 9, so I don’t want to get into the subject in this chapter
(although I do mention the functions that contain these statements again a little later in this chapter).

Treating a jQuery Object as an Array
You can treat a jQuery object as an array of HTMLElement objects. This means you get to use the advanced features that
jQuery provides but still access the DOM directly. You can use the length property or the size method to determine
how many elements are collected in the jQuery object and access individual DOM objects by using an array-style
index (using the [and] brackets).

Chapter 5 ■ jQuery BasiCs

110

Tip ■ you can use the toArray method to extract the HTMLElement objects from the jQuery object as an array. i like to
use the jQuery object itself, but sometimes it is useful to work with the DOM objects, such as when dealing with legacy
code that wasn’t written using jQuery.

Listing 5-15 shows how you can enumerate the contents of a jQuery object to access the HTMLElement objects
contained within.

Listing 5-15. Treating a jQuery Object as an Array

...
<script type="text/javascript">
 $(document).ready(function() {
 var elems = $("img:odd");
 for (var i = 0; i < elems.length; i++) {
 console.log("Element: " + elems[i].tagName + " " + elems[i].src);
 }
 });
</script>
...

In the listing, I use the $ function to select the odd-numbered img elements and enumerate the selected elements
to print out the value of the tagName and src properties to the console. The results are as follows:

Element: IMG http://www.jacquisflowershop.com/jquery/daffodil.png
Element: IMG http://www.jacquisflowershop.com/jquery/peony.png
Element: IMG http://www.jacquisflowershop.com/jquery/snowdrop.png

Iterate a Function over DOM Objects
The each method lets you define a function that is performed for each DOM object in the jQuery object. Listing 5-16
gives a demonstration.

Listing 5-16. Using the each Method

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img:odd").each(function(index, elem) {
 console.log("Element: " + elem.tagName + " " + elem.src);
 });
 });
</script>
...

jQuery passes two arguments to the specified function. The first is the index of the element in the collection, and
the second is the element object itself. In this example, I write the tag name and the value of the src property to the
console, producing the same results as the previous script:

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://www.jacquisflowershop.com/jquery/daffodil.png
http://www.jacquisflowershop.com/jquery/peony.png
http://www.jacquisflowershop.com/jquery/snowdrop.png

Chapter 5 ■ jQuery BasiCs

111

Element: IMG http://www.jacquisflowershop.com/jquery/daffodil.png
Element: IMG http://www.jacquisflowershop.com/jquery/peony.png
Element: IMG http://www.jacquisflowershop.com/jquery/snowdrop.png

Finding Indices and Specific Elements
The index method lets you find the index of an HTMLElement in a jQuery object. You can pass the index that you want
using either an HTMLElement or jQuery object as the argument. When you use a jQuery object, the first matched
element is the one whose index is returned. Listing 5-17 gives a demonstration.

Listing 5-17. Locating the Index of an HTMLElement

...
<script type="text/javascript">
 $(document).ready(function() {

 var elems = $("body *");

 // find an index using the basic DOM API
 var index = elems.index(document.getElementById("oblock"));
 console.log("Index using DOM element is: " + index);

 // find an index using another jQuery object
 index = elems.index($("#oblock"));
 console.log("Index using jQuery object is: " + index);
 });
</script>
...

In this example, I locate a method using the DOM API’s getElementById method to find a div element by the id
attribute value. This returns an HTMLElement object. I then use the index method on a jQuery object to find the index
of the object that represents the div element. I repeat the process using a jQuery object, which I obtain through the
$ function. I write the results from both approaches to the console, which produces the following results:

Index using DOM element is: 2
Index using jQuery object is: 2

You can also pass a string to the index method. When you do this, the string is interpreted as a selector.
However, this approach causes the index method to behave in a different way than the previous example. Listing 5-18
provides a demonstration.

Listing 5-18. Using the Selector Version of the index Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var imgElems = $("img:odd");
 // find an index using a selector

http://www.jacquisflowershop.com/jquery/daffodil.png
http://www.jacquisflowershop.com/jquery/peony.png
http://www.jacquisflowershop.com/jquery/snowdrop.png

Chapter 5 ■ jQuery BasiCs

112

 index = imgElems.index("body *");
 console.log("Index using selector is: " + index);

 // perform the same task using a jQuery object
 index = $("body *").index(imgElems);
 console.log("Index using jQuery object is: " + index);

 });
</script>
...

When you pass a string to the index method, the order in which the collection of elements is used changes.
jQuery matches elements using the selector and then returns the index in the matched elements of the first element in
the jQuery object on which you called the index method. This means that this statement:

...
index = imgElems.index("body *");
...

is equivalent to this statement:

...
index = $("body *").index(imgElems);
...

In essence, passing a string argument reverses the way in which the two sets of elements are considered. The listing
produces the following result:

Index using selector is: 10
Index using jQuery object is: 10

Tip ■ We can use the index method without an argument to get the position of an element relative to its siblings.
this can be useful when using jQuery to explore the DOM, which is the topic of Chapter 7.

The get method is the complement to the index method, such that you specify an index and receive the
HTMLElement object at that position in the jQuery object. This has the same effect as using the array-style index I
described earlier in this chapter. Listing 5-19 provides a demonstration.

Listing 5-19. Getting the HTMLElement Object at a Given Index

...
<script type="text/javascript">
 $(document).ready(function() {
 var elem = $("img:odd").get(1);
 console.log("Element: " + elem.tagName + " " + elem.src);
 });
</script>
...

Chapter 5 ■ jQuery BasiCs

113

In this script, I select the odd-numbered img elements, use the get method to retrieve the HTMLElement object
at index 1, and write the value of the tagName and src properties to the console. The output from this script is
as follows:

Element: IMG http://www.jacquisflowershop.com/jquery/peony.png

Modifying Multiple Elements and Chaining Method Calls
One of the features that make jQuery so concise and expressive is that calling a method on a jQuery object usually
modifies all of the elements that the object contains. I say usually, because some methods perform operations that
don’t apply to multiple elements, and you’ll see examples of this in later chapters. Listing 5-20 shows how to perform
an operation on multiple elements using the DOM API.

Listing 5-20. Operating on Multiple Elements Using the DOM API

...
<script type="text/javascript">
 $(document).ready(function() {

 var labelElems = document.getElementsByTagName("label");
 for (var i = 0; i < labelElems.length; i++) {
 labelElems[i].style.color = "blue";
 }
 });
</script>
...

The statements in the script element select all of the label elements and set the value of the CSS color property
to blue. Listing 5-21 shows how to perform the same task using jQuery.

Listing 5-21. Operating on Multiple Elements Using the jQuery

...
<script type="text/javascript">
 $(document).ready(function () {
 $("label").css("color", "blue");
 });
</script>
...

I can perform the task using a single jQuery statement, which is less effort than using the DOM API—not a huge
difference, I admit, but it mounts up in a complex web application. The jQuery statement is also easier to read and
understand, which helps with the long-term maintenance of the JavaScript code.

Another nice feature of the jQuery object is that it implements a fluent API. This means that whenever you call
a method that modifies the contents of the object, the result of the method is another jQuery object. This may seem
simple, but it allows you to perform method chaining, as shown in Listing 5-22.

http://www.jacquisflowershop.com/jquery/peony.png

Chapter 5 ■ jQuery BasiCs

114

Listing 5-22. Method Chaining Method Calls On a jQuery Object

...
<script type="text/javascript">
 $(document).ready(function() {

 $("label").css("color", "blue").css("font-size", ".75em");

 var labelElems = document.getElementsByTagName("label");
 for (var i = 0; i < labelElems.length; i++) {
 labelElems[i].style.color = "blue";
 labelElems[i].style.fontSize = ".75em";
 }
 });
</script>
...

In this example, I create a jQuery object using the $ function, call the css method to set a value for the color
property, and then call the css method again, this time to set the font-size property. I have also shown the
equivalent addition using the basic DOM API. You can see that it doesn’t require much work to achieve the same
effect, because you already have a for loop that is enumerating the selected elements.

You start to get real benefit from the fluent API when chaining methods that make more substantial changes to
the set of elements contained in the jQuery object. Listing 5-23 provides a demonstration.

Listing 5-23. A More Sophisticated Chaining Example

...
<script type="text/javascript">
 $(document).ready(function() {

 $("label").css("color", "blue").add("input[name!='rose']")
 .filter("[for!='snowdrop']").css("font-size", ".75em");

 var elems = document.getElementsByTagName("label");
 for (var i = 0; i < elems.length; i++) {
 elems[i].style.color = "blue";
 if (elems[i].getAttribute("for") != "snowdrop") {
 elems[i].style.fontSize= ".75em";
 }
 }
 elems = document.getElementsByTagName("input");
 for (var i = 0; i < elems.length; i++) {
 if (elems[i].getAttribute("name") != "rose") {
 elems[i].style.fontSize= ".75em";
 }
 }
 });
</script>
...

Chapter 5 ■ jQuery BasiCs

115

This is an over-the-top example, but it demonstrates the flexibility that jQuery offers. Let’s break down the
chained methods to make sense of what is happening. I start with this:

...
$("label").css("color", "blue")
...

I have selected all of the label elements in the document and set the value of the CSS color property to be blue
for all of them. The next step is as follows:

...
$("label").css("color", "blue").add("input[name!='rose']")
...

The add method adds the elements that match the specified selector to the jQuery object. In this case, I have
selected the input elements that don’t have a name attribute whose value is rose. These are combined with the
previously matched elements to give me a jQuery objects that contains a mix of label and input elements. You’ll
see more of the add method in Chapter 6. Here is the next addition:

...
$("label").css("color", "blue").add("input[name!='rose']").filter("[for!='snowdrop']")
...

The filter method removes all of the elements in a jQuery object that don’t meet a specified condition. I explain
this method in more depth in Chapter 6, but for the moment it is enough to know that this allows me to remove any
element from the jQuery object that has a for attribute whose value is snowdrop.

...
$("label").css("color", "blue").add("input[name!='rose']")
 .filter("[for!='snowdrop']").css("font-size", ".75em");
...

The final step is to call the css method again, this time setting the font-size property to .75em. The net result
of this is as follows:

 1. All label elements are assigned the value blue for the color CSS property.

 2. All label elements except the one that has the for attribute value of snowdrop are assigned
the value .75em for the CSS font-size property.

 3. All input elements that don’t have a name attribute value of rose are assigned the value
of .75em for the CSS font-size property.

Achieving the same effect using the basic DOM API is a lot more complex, and I ran into some difficulties while
writing this script. For example, I thought I could use the document.querySelectorAll method, described in
Chapter 2, to select input elements using the selector input[name!='rose'], but it turns out that this kind of
attribute filter doesn’t work with that method. I then tried to avoid duplicating the call to set the font-size value by
concatenating the results of two getElementsByTagName calls together, but that turns out to be a painful experience in
its own right. I don’t want to labor the point, especially since you must already have a certain commitment to jQuery
to be reading this book, but jQuery provides a level of fluidity and expressiveness that is impossible to achieve using
the basic DOM API.

Chapter 5 ■ jQuery BasiCs

116

Handling Events
Returning to the script I started the chapter with, you can see that I chained together two method calls, as highlighted
in Listing 5-24.

Listing 5-24. Chained Method Calls in the Example Script

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img:odd").mouseenter(function(e) {
 $(this).css("opacity", 0.5);
 }).mouseout(function(e) {
 $(this).css("opacity", 1.0);
 })
 });
</script>
...

The methods I chained were mouseenter and mouseout. These methods let me define handler functions for the
mouseenter and mouseout events that I described in Chapter 2. I cover the jQuery support for events in Chapter 9,
but I just wanted to show how you can use the behavior of the jQuery object to specify a single handler method for all
of the elements that you have selected.

Summary
In this chapter, I introduced you to your first jQuery script and used it to demonstrate some of the key characteristics
of the jQuery library: the $ function, the ready event, the jQuery result object, and how jQuery complements, rather
than replaces, the built-in DOM API that is part of the HTML specification.

117

Chapter 6

Managing the Element Selection

Most of the time, the use of jQuery follows a distinctive two-step pattern. The first step is to select some elements,
and the second step is to perform one or more operations on those elements. In this chapter, I focus on the first step,
showing you how to take control of the jQuery selection and tailor it to your exact needs. I’ll also show you how to use
jQuery to navigate the DOM. In both cases, you start with one selection and perform operations on it until it contains
just the elements you require. As you’ll see, the correlation between the elements you start with and those you finish
with can be as simple or as sophisticated as you like. Table 6-1 provides the summary for this chapter.

Table 6-1. Chapter Summary

Problem Solution Listing

Expand the selection. Use the add method. 1

Reduce the selection to a single element. Use the first, last, or eq method. 2

Reduce the selection to a range of elements. Use the slice method. 3

Reduce the selection by applying a filter. Use the filter or not method. 4, 5

Reduce the selection based on the descendants of the selected elements. Use the has method. 6

Project a new selection from the existing selection. Use the map method. 7

Check to see that at least one selected element meets a specific
condition.

Use the is method. 8

Revert to the previous selection. Use the end method. 9

Add the previous selection to the current selection. Use the addBack method. 10

Navigate to the children and descendants of selected elements. Use the children and find methods. 11–13

Navigate to the parents of selected elements. Use the parent method. 14

Navigate to the ancestors or selected elements. Use the parents method. 15

Navigate to the ancestors of elements until a specific element is
encountered.

Use the parentsUntil method. 16, 17

Navigate to the nearest ancestor that matches a selector or that
is a specific element.

Use the closest method. 18, 19

Navigate to the nearest positioned ancestor. Use the offsetParent method. 20

Navigate to the siblings of the selected elements. Use the siblings method. 21, 22

Navigate to the previous or next siblings for the selected elements. Use the next, prev, nextAll, prevAll,
nextUntil, or prevUntil method.

23

Chapter 6 ■ Managing the eleMent SeleCtion

118

JQUerY ChaNGeS SINCe the LaSt eDItION

in jQuery 1.9, the addBack method has replaced the jQuery 1.8 addSelf method with the addBack method.
these methods perform the same function, which is demonstrated in the “Changing and then Unwinding
the Selection” section in this chapter.

Expanding the Selection
The add method allows you to expand the contents of a jQuery object by adding additional elements. Table 6-2 shows
the different arguments you can use.

Like many jQuery methods, the add method returns a jQuery object on which you can call other methods,
including further calls to the add method. Listing 6-1 demonstrates the use of the add method to broaden a set of
elements.

Listing 6-1. Using the add Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function () {

 var labelElems = document.getElementsByTagName("label");
 var jq = $("img[src*=daffodil]");

 $("img:even").add("img[src*=primula]").add(jq)
 .add(labelElems).css("border", "thick double red");

 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

Table 6-2. add Method Argument Types

Arguments Description

add(selector)
add(selector, context)

Adds all of the elements that are matched by the selector, with or without a context.

add(HTMLElement)
add(HTMLElement[])

Adds a single HTMLElement or an array of HTMLElement objects.

add(jQuery) Adds the contents of the specified jQuery object.

Chapter 6 ■ Managing the eleMent SeleCtion

119

 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required >
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 <div id="row2"class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

Caution ■ a common mistake is to assume that the remove method is the counterpart to the add method and will
narrow the selection. in fact, the remove method changes the structure of the DoM, as i explain in Chapter 7. Use one of
the methods i describe in the “narrowing the Selection” section instead.

The script in this example uses all three approaches to add elements to the initial selection: with another selector,
with some HTMLElement objects, and with another jQuery object. Once I have built up my set of objects, I call the css
method to set a value for the border property, which has the effect of drawing a thick red border around the selected
elements, as shown in Figure 6-1.

Chapter 6 ■ Managing the eleMent SeleCtion

120

Narrowing the Selection
There are a number of methods that allow you to remove elements from the selection, as described in Table 6-3.
In every case, the methods return a new jQuery object that contains the reduced element selection. The jQuery object
on which the method was called remains unchanged.

Figure 6-1. Expanding the selection with the add method

Table 6-3. Methods to Filter Elements

Method Description

eq(index) Removes all of the elements except the one at the specified index.

filter(condition) Removes elements that don’t match the specified condition. See the later discussion
for details of the arguments you can use with this method.

first() Removes all of the elements except the first.

has(selector)
has(jQuery)
has(HTMLElement)
has(HTMLElement[])

Removes elements that don’t have a descendant matched by the specified selector or
jQuery object or whose descendants don’t include the specified HTMLElement objects.

last() Removes all but the last element.

not(condition) Removes all elements that match the condition. See the later discussion for details of
how the condition can be specified.

slice(start, end) Removes all elements outside the specified range of index values.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 6 ■ Managing the eleMent SeleCtion

121

Reducing the Selection to a Specific Element
The three most basic narrowing methods are first, last, and eq. These three methods allow you to select a specific
element based on its position in the jQuery object. Listing 6-2 provides a demonstration.

Listing 6-2. Reducing the Selection Based on Element Position

...
<script type="text/javascript">
 $(document).ready(function() {

 var jq = $("label");

 jq.first().css("border", "thick double red");
 jq.last().css("border", "thick double green");
 jq.eq(2).css("border", "thick double black");
 jq.eq(-2).css("border", "thick double black");

 });
</script>
...

Notice that I call the eq method twice. When the argument to this method is positive, the index is counted from
the first element in the jQuery object. When the argument is negative, the counting is done backward, starting
from the last element. You can see the effect of this script in Figure 6-2.

Figure 6-2. Reducing the selection to a specific element

Chapter 6 ■ Managing the eleMent SeleCtion

122

Reducing the Selection by Range
The slice method reduces the selection to a range of elements, as demonstrated by Listing 6-3.

Listing 6-3. Using the slice Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var jq = $("label");

 jq.slice(0, 2).css("border", "thick double black");
 jq.slice(4).css("border", "thick solid red");

 });
</script>
...

The arguments to the slice method are the index to begin selection and the index to end selection. Indexes are
zero-based, so the arguments I used in the example (0 and 2) select the first two elements. If the second argument is
omitted, then the selection continues to the end of the set of elements. By specifying a single argument of 4 for a set
of six elements, I selected the last two elements (which have the index values of 4 and 5). You can see the result of this
script in Figure 6-3.

Filtering Elements
The filter method removes elements from the selection that don't meet a specified condition. Table 6-4 shows the
different arguments that can be used to express the filtering condition.

Figure 6-3. Reducing the selection by range

Chapter 6 ■ Managing the eleMent SeleCtion

123

Listing 6-4 shows all four ways of specifying a filter.

Listing 6-4. Specifying a Filter

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img").filter("[src*=s]").css("border", "thick double red");

 var jq = $("[for*=p]");
 $("label").filter(jq).css("color", "blue");

 var elem = document.getElementsByTagName("label")[1];
 $("label").filter(elem).css("font-size", "1.5em");

 $("img").filter(function(index) {
 return this.getAttribute("src") == "peony.png" || index == 4;
 }).css("border", "thick solid red")
 });
</script>
...

The first three techniques are self-evident: you can filter based a selector, another jQuery object, or an
HTMLElement object.

The fourth technique relies on a function and requires a little more explanation. jQuery calls the function once
for every element contained by the jQuery object. If the function returns true then the element is retained, and it is
removed if the function returns false.

There is one argument passed to the function, which is the index of the element for which the function is being
called. In addition, the this variable is set to the HTMLElement object that you need to process. In the listing,
I return true if the element has a particular value for the src attribute and for a specific index value. You can see
the result in Figure 6-4.

Table 6-4. filter Method Argument Types

Arguments Description

filter(selector) Removes elements that don’t match the selector.

filter(HTMLElement) Removes all but the specified element.

filter(jQuery) Removes elements that are not contained in the specified jQuery object.

filter(function(index)) The function is called for each element; those for which the function returns false
are removed.

Chapter 6 ■ Managing the eleMent SeleCtion

124

Tip ■ You might be wondering why i have used the getAttribute method on the HTMLElement in the filter function,
as opposed to calling the src property. the reason is that the getAttribute method will return the value that i set for
the src attribute in the document (which is a relative Url), but the src property will return a fully qualified Url. For this
example, the relative Url was simpler to work with.

The complement to the filter method is not, which works in much the same way but inverts the filtering
process. Table 6-5 shows the different ways in which a condition can be applied using the not method.

Listing 6-5 shows the use of the not method, based on the previous example.

Table 6-5. not Method Argument Types

Arguments Description

not(selector) Removes elements that match the selector.

not(HTMLElement[])
not(HTMLElement)

Removes the specified element or elements.

not(jQuery) Removes elements that are contained in the specified jQuery object.

not(function(index)) The function is called for each element; those for which the function returns true
are removed.

Figure 6-4. Using the filter method

Chapter 6 ■ Managing the eleMent SeleCtion

125

Listing 6-5. Using the not Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img").not("[src*=s]").css("border", "thick double red");

 var jq = $("[for*=p]");
 $("label").not(jq).css("color", "blue");

 var elem = document.getElementsByTagName("label")[1];
 $("label").not(elem).css("font-size", "1.5em");

 $("img").not(function(index) {
 return this.getAttribute("src") == "peony.png" || index == 4;
 }).css("border", "thick solid red")
 });
</script>
...

You can see the effect of this script in Figure 6-5. It is, of course, the inverse of the effect of the previous example.

Figure 6-5. Filtering elements using the not method

Reducing the Selection Based on Descendants
The has method reduces the selection to elements that have particular descendants, specified through a selector or
one or more HTMLElement objects, as demonstrated in Listing 6-6.

Chapter 6 ■ Managing the eleMent SeleCtion

126

Listing 6-6. Using the has Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $("div.dcell").has("img[src*=aster]").css("border", "thick solid red");
 var jq = $("[for*=p]");
 $("div.dcell").has(jq).css("border", "thick solid blue");

 });
</script>
...

In the first case, where I use a selector, I reduce the selection to elements that have at least one descendant img
element with a src attribute value that contains aster. In the second case, where I use a jQuery object, I reduce the
selection to elements that have at least one descendant that has a for attribute with a value that contains the letter p.
You can see the effect of this script in Figure 6-6.

Figure 6-6. Using the has method to reduce the selection

Mapping the Selection
The map method provides a flexible way to use one jQuery object as a means to create another, based on a function.
The function is called for every element in the source jQuery object, and the HTMLElement objects that the function
returns are included in the result jQuery object, as demonstrated by Listing 6-7.

Listing 6-7. Using the map Method

...
<script type="text/javascript">
 $(document).ready(function() {

Chapter 6 ■ Managing the eleMent SeleCtion

127

 $("div.dcell").map(function(index, elem) {
 return elem.getElementsByTagName("img")[0];
 }).css("border", "thick solid red");

 $("div.dcell").map(function(index, elem) {
 return $(elem).children()[1];
 }).css("border", "thick solid blue");

 });
</script>
...

In this script, I perform two mapping operations. The first uses the DOM API to return the first img element
contained in each element, and the second uses jQuery to return the first item in the jQuery object returned by the
children method (I’ll explain this method fully later in this chapter, but as its name suggests, it returns the child nodes
of each element in a jQuery object). You can see the result in Figure 6-7.

Tip ■ You can return only one element each time the function is called. if you want to project multiple result elements
for each source element, you can combine the each and add methods, which i describe in Chapter 8.

Testing the Selection
The is method determines whether one of more elements in a jQuery object meets a specific condition. Table 6-6
shows the arguments you can pass to the is method.

Figure 6-7. Using the map method

Chapter 6 ■ Managing the eleMent SeleCtion

128

Table 6-6. is Method Argument Types

Arguments Description

is(selector) Returns true if the jQuery object contains at least one of the elements matched by the
selector.

is(HTMLElement[])
is(HTMLElement)

Returns true if the jQuery object contains the specified element, or at least one of the
elements in the specified array.

is(jQuery) Returns true if the jQuery object contains at least one of the elements in the argument
object.

is(function(index)) Returns true if the function returns true at least once.

When you specify a function as the condition, jQuery will invoke that function once for each element in the
jQuery object, passing the index of the element as the function argument and setting the this variable to the element
itself. Listing 6-8 shows the is method in use.

Note ■ this method returns a boolean value. as i mentioned in Chapter 5, not all jQuery methods return a
jQuery object.

Listing 6-8. Using the is Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var isResult = $("img").is(function(index) {
 return this.getAttribute("src") == "rose.png";
 });
 console.log("Result: " + isResult);

 });
</script>
...

This script tests to see whether the jQuery object contains an element whose src attribute value is rose.png and
writes out the result to the console, as follows:

Result: true

Changing and Then Unwinding the Selection
jQuery preserves a history stack when you modify the selection by chaining methods together, and you can use a
couple of methods to take advantage of this, as described in Table 6-7.

Chapter 6 ■ Managing the eleMent SeleCtion

129

Table 6-7. Methods to Unwind the Selection Stack

Method Description

end() Pops the current selection off the stack and returns to the previous selection.

addBack()
addBack(selector)

Adds the previous selection to the current selection, with an optional selector that
filters the previous selection.

Figure 6-8. Using the end method

The end method returns to the previous selection, which allows you to select some elements, expand or reduce
the selection, perform some operations, and then return to the original selection, as demonstrated by Listing 6-9.

Listing 6-9. Using the end Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $("label").first().css("border", "thick solid blue")
 .end().css("font-size", "1.5em");

 });
</script>
...

In this script, I start by selecting all of the label elements in the document. I then reduce the selection by calling
the first method (to get the first matched element) and then set a value for the CSS border property using the css
method, which has the effect of only changing the CSS property for the first selected element.

I then call the end method to return to the previous selection (which moves the selection the first label element
back to all of the label elements). I then call the css method again, this time to set a value for the font-size property.
This CSS property is applied to all of the label elements, as illustrated in Figure 6-8.

Chapter 6 ■ Managing the eleMent SeleCtion

130

The addBack method adds the contents of the previous selection on the stack to the current selection. Listing 6-10
shows the addBack method in use.

Listing 6-10. Using the andSelf Method

...
<script type="text/javascript">
 $(document).ready(function() {
 $("div.dcell").children("img").addBack().css("border", "thick solid blue");
 });
</script>
...

Note ■ the addBack method replaced the andSelf method in jQuery 1.9/2.0. the new method performs the same
function and supports an additional selector argument to filter the selection.

In this example, I select all of the div elements that are members of the dcell class and then use the children
method to select all of the img elements that are their children (I explain the children method fully in the Navigating
the DOM section later in this chapter). I then call the addBack method, which combines the previous selection (the
div element) with the current selection (the img elements) in a single jQuery object. Finally, I call use the css method
to set a border for the selected elements. You can see the effect of this script in Figure 6-9.

Navigating the DOM
You can use a selection as the start point for navigating elsewhere in the DOM, using one selection as the start point
for creating another. In the following sections, I’ll describe and demonstrate the jQuery navigation methods. In this
section I refer to the different kinds of relationships that can exist between elements that I introduced in Chapter 2.

Figure 6-9. Using the addBack method

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 6 ■ Managing the eleMent SeleCtion

131

Tip ■ all of the methods that are described in the following sections return a jQuery object. this object will contain the
matched elements if there are any and will be empty (i.e., the length property will be zero) if there are not.

Navigating Down the Hierarchy
When you navigate down the DOM hierarchy, you are selecting children and descendants of the elements contained
in a jQuery object. Table 6-8 describes the relevant jQuery methods.

The children method will select only those elements that are immediate descendants of each element in the
jQuery object, optionally filtered by a selector. The find method will select all descendant elements, not just the
immediate ones. The contents method will return the children elements, plus any text content. Listing 6-11 shows the
children and find methods in use.

Listing 6-11. Using the children and find Methods

...
<script type="text/javascript">
 $(document).ready(function() {

 var childCount = $("div.drow").children().each(function(index, elem) {
 console.log("Child: " + elem.tagName + " " + elem.className);
 }).length;
 console.log("There are " + childCount + " children");

 var descCount = $("div.drow").find("img").each(function(index, elem) {
 console.log("Descendant: " + elem.tagName + " " + elem.src);
 }).length;
 console.log("There are " + descCount + " img descendants");

 });
</script>
...

Table 6-8. Methods to Navigate Down the DOM Hierarchy

Method Description

children() Selects the children of all of the elements in the jQuery object.

children(selector) Selects all of the elements that match the selector and that are children of the elements
in the jQuery object.

contents() Returns the children and text content of all the elements in the jQuery object.

find() Selects the descendants of the elements in the jQuery object.

find(selector) Selects the elements that match the selector and that are descendants of the elements in
the jQuery object.

find(jQuery)
find(HTMLElement)
find(HTMLElement[])

Selects the intersection between the children of the elements in the jQuery object and
the argument object.

Chapter 6 ■ Managing the eleMent SeleCtion

132

In this example, I use the children method without a selector and the find method with one. I write the details
of the selected elements to the console along with how many were selected. The console output from this script is
as follows:

Child: DIV dcell
Child: DIV dcell
Child: DIV dcell
Child: DIV dcell
Child: DIV dcell
Child: DIV dcell
There are 6 children

Descendant: IMG http://www.jacquisflowershop.com/jquery/aster.png
Descendant: IMG http://www.jacquisflowershop.com/jquery/daffodil.png
Descendant: IMG http://www.jacquisflowershop.com/jquery/rose.png
Descendant: IMG http://www.jacquisflowershop.com/jquery/peony.png
Descendant: IMG http://www.jacquisflowershop.com/jquery/primula.png
Descendant: IMG http://www.jacquisflowershop.com/jquery/snowdrop.png
There are 6 img descendants

One of the nice features of the children and find methods is that you don’t receive duplicate elements in the
selection. Listing 6-12 provides a demonstration.

Listing 6-12. Generating a Selection with Overlapping Descendants

...
<script type="text/javascript">
 $(document).ready(function() {
 $("div.drow").add("div.dcell").find("img").each(function(index, elem) {
 console.log("Element: " + elem.tagName + " " + elem.src);
 });
 });
</script>
...

In this example, I start by creating a jQuery object that contains all of the div elements that are members of
the drow class and all of the div elements that are members of the dcell class. Note is that all of the members of the
dcell class are contained within members of the drow class, meaning that you have overlapping sets of descendants
and the potential for duplication when I use the find method with the img selector, since the img elements are
descendants of both classes of div elements. But jQuery ensures that there are no duplicates in the elements returned,
as demonstrated in the console output that the listing produces:

Element: IMG http://www.jacquisflowershop.com/jquery/aster.png
Element: IMG http://www.jacquisflowershop.com/jquery/daffodil.png
Element: IMG http://www.jacquisflowershop.com/jquery/rose.png
Element: IMG http://www.jacquisflowershop.com/jquery/peony.png
Element: IMG http://www.jacquisflowershop.com/jquery/primula.png
Element: IMG http://www.jacquisflowershop.com/jquery/snowdrop.png

http://www.jacquisflowershop.com/jquery/aster.png
http://www.jacquisflowershop.com/jquery/daffodil.png
http://www.jacquisflowershop.com/jquery/rose.png
http://www.jacquisflowershop.com/jquery/peony.png
http://www.jacquisflowershop.com/jquery/primula.png
http://www.jacquisflowershop.com/jquery/snowdrop.png
http://www.jacquisflowershop.com/jquery/aster.png
http://www.jacquisflowershop.com/jquery/daffodil.png
http://www.jacquisflowershop.com/jquery/rose.png
http://www.jacquisflowershop.com/jquery/peony.png
http://www.jacquisflowershop.com/jquery/primula.png
http://www.jacquisflowershop.com/jquery/snowdrop.png

Chapter 6 ■ Managing the eleMent SeleCtion

133

Using the find Method to Create an Intersection
You can pass a jQuery object, an HTMLElement object, or an array of HTMLElement objects as the argument to the find
method. When you do this, you select the intersection between the descendants in the source jQuery object and the
elements in the argument object. Listing 6-13 provides a demonstration.

Listing 6-13. Using the find Method to Create an Intersection

...
<script type="text/javascript">
 $(document).ready(function() {
 var jq = $("label").filter("[for*=p]").not("[for=peony]");
 $("div.drow").find(jq).css("border", "thick solid blue");
 });
</script>
...

As this script demonstrates, the advantage of this approach is that you can be specific about the elements that
intersect with the descendants. I create a jQuery object that I then reduce using the filter and not methods. This
object then becomes the argument to the find method on another jQuery object that contains all of the div elements
in the drow class. The final selection is the intersection between the descendants of the div.drow elements and my
reduced set of label elements. You can see the effect of the script in Figure 6-10.

Navigating Up the Hierarchy
When you navigate up the DOM hierarchy, you are interested in parents and ancestors of the elements contained in a
jQuery object. Table 6-9 shows the methods you can use to navigate upward.

Figure 6-10. Using the find method to create an intersection

Chapter 6 ■ Managing the eleMent SeleCtion

134

Selecting Parent Elements
The parent method selects the parent element for each of the elements in a jQuery object. If you provide a selector,
then only parent elements that match the selector will be included in the result. Listing 6-14 shows the parent element
in use.

Listing 6-14. Using the Parent Element

...
<script type="text/javascript">
 $(document).ready(function() {

 $("div.dcell").parent().each(function(index, elem) {
 console.log("Element: " + elem.tagName + " " + elem.id);
 });

 $("div.dcell").parent("#row1").each(function(index, elem) {
 console.log("Filtered Element: " + elem.tagName + " " + elem.id);
 });

 });
</script>
...

Table 6-9. Methods to Navigate Up the DOM Hierarchy

Method Description

closest(selector)
closest(selector, context)

Selects the nearest ancestor for each element in the jQuery object
that intersects with the specified selector.

closest(jQuery)
closest(HTMLElement)

Selects the nearest ancestor for each element in the jQuery object
that intersects with the elements contained in the argument object.

offsetParent() Finds the nearest ancestor that has a value for the CSS position
property of fixed, absolute, or relative.

parent()
parent(selector)

Selects the parent for each element in the jQuery object, optionally
filtered by a selector.

parents()
parents(selector)

Selects the ancestors for each element in the jQuery object,
optionally filtered by a selector.

parentsUntil(selector)
parentsUntil(selector, selector)

Selects the ancestors for each element in the jQuery object until
a match for the selector is encountered. The results can be filtered
using a second selector.

parentsUntil(HTMLElement)
parentsUntil(HTMLElement, selector)
parentsUntil(HTMLElement[])
parentsUntil(HTMLElement[], selector)

Selects the ancestors for each element in the jQuery object until
one of the specified elements is encountered. The results can be
filtered using a selector.

Chapter 6 ■ Managing the eleMent SeleCtion

135

In this script, I select all of the div elements that are members of the dcell class and call the parent method to
select the parent elements. I have also demonstrated using the parent method with a selector. I use the each method
to write information about the selected parent elements to the console, which produces the following output:

Element: DIV row1
Element: DIV row2
Filtered Element: DIV row1

Selecting Ancestors
The parents method (note the final letter s) selects all of the ancestors of elements in a jQuery object, not just the
immediate parents. Once again, you can pass a selector as a method to the argument to filter the results. Listing 6-15
demonstrates the parents method.

Listing 6-15. Using the parents Method

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img[src*=peony], img[src*=rose]").parents().each(function(index, elem) {
 console.log("Element: " + elem.tagName + " " + elem.className + " "
 + elem.id);
 });
 });
</script>
...

In this example, I selected two img elements and used the parents method to select their ancestors. I then write
information about each ancestor to the console, to produce the following output:

Element: DIV dcell
Element: DIV drow row2
Element: DIV dcell
Element: DIV drow row1
Element: DIV dtable
Element: DIV oblock
Element: FORM
Element: BODY
Element: HTML

A variation on selecting ancestors is presented by the parentsUntil method. For each element in the jQuery
object, the parentsUntil method works its way up the DOM hierarchy, selecting ancestor elements until an element
that matches the selector is encountered. Listing 6-16 provides a demonstration.

Chapter 6 ■ Managing the eleMent SeleCtion

136

Listing 6-16. Using the parentsUntil Method

...
<script>
 $(document).ready(function() {
 $("img[src*=peony], img[src*=rose]").parentsUntil("form")
 .each(function(index, elem) {
 console.log("Element: " + elem.tagName + " " + elem.className
 + " " + elem.id);
 });
 });
</script>
...

In this example, the ancestors for each element are selected until a form element is encountered. The output
from the script is as follows:

Element: DIV dcell
Element: DIV drow row2
Element: DIV dcell
Element: DIV drow row1
Element: DIV dtable
Element: DIV oblock

Notice that elements that match the selector are excluded from the selected ancestors. In this example, this
means that the form element is excluded. You can filter the set of ancestors by providing a second selector argument,
as shown in Listing 6-17.

Listing 6-17. Filtering the Set of Elements Selected by the parentsUntil Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img[src*=peony], img[src*=rose]").parentsUntil("form", ":not(.dcell)")
 .each(function(index, elem) {
 console.log("Element: " + elem.tagName + " " + elem.className
 + " " + elem.id);
 });

 });
</script>
...

In this example, I have added a selector that will filter out elements that belong to the dcell class. The output
from this script is as follows:

Element: DIV drow row2
Element: DIV drow row1
Element: DIV dtable
Element: DIV oblock

Chapter 6 ■ Managing the eleMent SeleCtion

137

Selecting the First Matching Ancestor
The closest method selects the first ancestor that is matched by a selector for each element in a jQuery object.
Listing 6-18 provides a demonstration.

Listing 6-18. Using the closest Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img").closest(".drow").each(function(index, elem) {
 console.log("Element: " + elem.tagName + " " + elem.className
 + " " + elem.id);
 });

 var contextElem = document.getElementById("row1");
 $("img").closest(".drow", contextElem).each(function(index, elem) {
 console.log("Context Element: " + elem.tagName + " " + elem.className
 + " " + elem.id);
 });

 });
</script>
...

In this example, I select the img elements in the document and then use the closest method to find the nearest
ancestor that belongs to the drow class. You can narrow the scope for selecting ancestors by specifying an HTMLElement
object as the second argument to the method. Ancestors that are not the context object or are not descendants of the
context object are excluded from the selection. The output from the script is as follows:

Element: DIV drow row1
Element: DIV drow row2
Context Element: DIV drow row2

When you specify a jQuery object or one or more HTMLElement objects as the argument to the closest method,
jQuery works its way up the hierarchy for each element in the source jQuery object, matching the first argument
object it finds. This is demonstrated by Listing 6-19.

Listing 6-19. Using the Closest Method with a Set of Reference Objects

...
<script type="text/javascript">
 $(document).ready(function() {

 var jq = $("#row1, #row2, form");

 $("img[src*=rose]").closest(jq).each(function(index, elem) {
 console.log("Context Element: " + elem.tagName + " " + elem.className
 + " " + elem.id);
 });

 });
</script>
...

Chapter 6 ■ Managing the eleMent SeleCtion

138

In this example, I select one of the img elements in the document and then use the closest method to select the
ancestor elements. I have supplied a jQuery object containing the form element and the elements with the row1 and
row2 ID as the argument to the closest method. jQuery will select whichever of the elements is the nearest ancestor
to the img element. In other words, it will start to work its way up the hierarchy until it encounters one of the elements
in the argument object. The output for this script is as follows:

Context Element: DIV drow row1

The offsetParent is a variation on the closest theme and funds the first ancestor that has a value for the
position CSS property of relative, absolute, or fixed. Such an element is known as a positioned ancestor, and
finding one can be useful when working with animation (see Chapter 10 for details of jQuery support for animation).
Listing 6-20 contains a demonstration of this method.

Listing 6-20. Using the offsetParent Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 #oblock {position: fixed; top: 120px; left: 50px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("img[src*=aster]").offsetParent().css("background-color", "lightgrey");
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required >
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 </div>
 </div>

Chapter 6 ■ Managing the eleMent SeleCtion

139

 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

In this cut-down version of the example document, I have used CSS to set a value for the position property
for the element with the id of oblock. In the script, I use jQuery to select one of the img elements and then call the
offsetParent method to find the closest positioned element. This method works its way up the hierarchy until it
reaches an element with one of the required values. I use the css property to set a value for the background-color
property for the selected element, as you can see in Figure 6-11.

Navigating Across the Hierarchy
The final form of DOM navigation deals with siblings. The methods that jQuery provides for this are described
in Table 6-10.

Figure 6-11. Finding the closest positioned ancestor

Table 6-10. Methods to Navigate Across the DOM Hierarchy

Method Description

next()
next(selector)

Selects the immediate next sibling for each element in the jQuery
object, optionally filtered by a selector.

nextAll()
nextAll(selector)

Selects all of the next siblings for each element in the jQuery object,
optionally filtered by a selector.

nextUntil((selector)
nextUntil(selector, selector)
nextUntil(jQuery)
nextUntil(jQuery, selector)
nextUntil(HTMLElement[])
nextUntil(HTMLElement[], selector)

Selects the next siblings for each element up to (and excluding) an
element that matches the selector or an element in the jQuery object
or the HTMLElement array. The results can optionally be filtered by a
selector as the second argument to the method.

prev()
prev(selector)

Selects the immediate previous sibling for each element in the jQuery
object, optionally filtered by a selector.

(continued)

Chapter 6 ■ Managing the eleMent SeleCtion

140

Table 6-10. (continued)

Method Description

prevAll()
prevAll(selector)

Selects all of the previous siblings for each element in the jQuery
object, optionally filtered by a selector.

prevUntil(selector)
prevUntil(selector, selector)
prevUntil(jQuery)
prevUntil(jQuery, selector)
prevUntil(HTMLElement[])
prevUntil(HTMLElement[], selector)

Selects the previous siblings for each element up to (and excluding)
an element that matches the selector or an element in the jQuery
object or the HTMLElement array. The results can optionally be filtered
by a selector as the second argument to the method.

siblings()
siblings(selector)

Selects all of the siblings for each of the elements in the jQuery object,
optionally filtered by a selector.

Selecting All Siblings
The siblings method selects all of the siblings for all of the elements in a jQuery object. Listing 6-21 shows this
method in use. (For this listing, I have returned to the full flower shop document).

Listing 6-21. Using the siblings Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function () {
 $("img[src*=aster], img[src*=primula]")
 .parent().siblings().css("border", "thick solid blue");
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required >
 </div>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 6 ■ Managing the eleMent SeleCtion

141

 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 <div id="row2"class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

In this example, I select two of the img elements, call the parent method to select their parent elements, and then
call the siblings method to select their sibling elements. Both the previous and next siblings will be selected, and
I use the css method to set a value for the border property. You can see the effect in Figure 6-12. (I used the parent
method to make the effect of the CSS property clearer.)

Figure 6-12. Selecting sibling elements

Chapter 6 ■ Managing the eleMent SeleCtion

142

Notice that only the siblings are selected, not the elements themselves. Of course, this changes if one element in
the jQuery object is a sibling of another, as shown in Listing 6-22.

Listing 6-22. Overlapping Sets of Siblings

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#row1 div.dcell").siblings().css("border", "thick solid blue");
 });
</script>
...

In this script, I start by selecting all of the div elements that are children of the row1 element and then call the
siblings method. Each of the elements in the selection is the sibling to at least one of the other elements, as you can
see in Figure 6-13.

Selecting Next and Previous Siblings
I am not going to demonstrate all of the methods for selecting next and previous siblings, because they work in the
same way as the other navigation methods. Listing 6-23 shows the nextAll and prevAll methods in use.

Listing 6-23. Using the nextAll and prevAll Methods

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img[src*=aster]").parent().nextAll().css("border", "thick solid blue");
 $("img[src*=primula]").parent().prevAll().css("border", "thick double red");
 });
</script>
...

Figure 6-13. Overlapping sibling elements

Chapter 6 ■ Managing the eleMent SeleCtion

143

This script selects the next siblings for the parent of the aster image and the previous siblings for the primula
image. You can see the effect of this script in Figure 6-14.

Summary
In this chapter, I showed you how to take control of the jQuery selection and tailor it to your exact needs, including
adding elements, filtering elements, using mapping, and testing the selection to assess a condition. I also showed you
how you can use a jQuery selection as the starting point to navigate the DOM, using one selection as the starting point
for traversing the document in order to create another. In Chapter 7, I show you how to use a selection to manipulate
the DOM, applying jQuery methods to create, remove, change, and create HTML elements.

Figure 6-14. Selecting next and previous siblings

145

Chapter 7

Manipulating the DOM

In the previous chapter, I showed you how to select elements. One of the most powerful things you can do with the
selection is to change the structure of the HTML document itself, known as manipulating the DOM. In this chapter,
I’ll show you the different ways in which you can alter the structure, including inserting elements as children, parents,
or siblings of other elements. I’ll also show you how to create new elements, how to move elements from one part of
the document to another, and how to remove elements entirely. Table 7-1 provides the summary for this chapter.

Table 7-1. Chapter Summary

Problem Solution Listing

Create new elements. Pass an HTML fragment to the $ function, by using
the clone method or by using the DOM API.

1–3

Insert elements as last children. Use the append method. 4

Insert elements as first children. Use the prepend method. 5, 6

Insert the same elements in different
positions.

Clone the elements before inserting them. 7, 8

Insert the contents of a jQuery object
as children of other elements.

Use the appendTo or prependTo methods. 9

Insert child elements dynamically. Pass a function to the append or prepend methods. 10

Insert parent elements. Use the wrap method. 11

Insert a common parent to several
elements.

Use the wrapAll method. 12, 13

Wrap the contents of elements. Use the wrapInner method. 14

Wrap elements dynamically. Pass a function to the wrap or wrapInner method. 15

Insert sibling elements. Use the after, before, insertAfter, or insertBefore
method.

16, 17

Insert sibling elements dynamically. Pass a function to the before or after method. 18

Replace elements with other elements. Use the replaceWith or replaceAll method. 19

Replace elements dynamically. Pass a function to the replaceWith method. 20

Remove elements from the DOM. Use the remove or detach method. 21–23

Remove the contents of an element. Use the empty method. 24

Remove the parents of elements. Use the unwrap method. 25

Chapter 7 ■ Manipulating the DOM

146

JQUerY ChaNGeS SINCe the LaSt eDItION

For this chapter, the most important change in jQuery 1.9/2.0 is a stricter approach in interpreting htMl strings.
however, this change was undone by the 1.10/2.0.1 releases and the old approach to htMl parsing was restored
– see the Changes to HTML Parsing sidebar for details.

there are some behind-the-scenes changes to the way that the after, before, replaceWith, appendTo,
insertBefore, insertAfter, and replaceAll methods to make the way that they handle jQuery objects
consistent with the other DOM manipulation methods. these changes don't affect the techniques in this chapter.

Creating New Elements
When writing web applications, you will often need to create new elements and insert them into the DOM (although
you can also insert existing elements, as I’ll explain later in the chapter). In the sections that follow, I’ll show you
different ways that you can create content.

Tip ■ it is important to understand that creating new elements doesn’t automatically add them to the DOM. You need
to explicitly tell jQuery where the new elements should be placed in the document, which i explain later in this chapter.

Creating Elements Using the $ Function
You can create new elements by passing an HTML fragment string to the $ function. jQuery parses the string and
creates the corresponding DOM objects. Listing 7-1 contains an example.

Listing 7-1. Creating New Elements Using the $ Function

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function() {

 var newElems = $("<div class='dcell'></div>");

 newElems.each(function (index, elem) {
 console.log("New element: " + elem.tagName + " " + elem.className);
 });

 newElems.children().each(function(index, elem) {
 console.log("Child: " + elem.tagName + " " + elem.src);
 });
 });
 </script>
</head>

Chapter 7 ■ Manipulating the DOM

147

<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required>
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required >
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required>
 </div>
 </div>
 <div id="row2"class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required>
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required>
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required>
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

In this example, I have created two new elements from an HTML fragment: a div element and an img element.
Since you are dealing with HTML, you can use fragments that contain structure. In this case, the img element is a child
of the div element.

Chapter 7 ■ Manipulating the DOM

148

ChaNGeS tO htML parSING

When you pass a string to the $ function, jQuery has to decide whether it is a selector or an htMl string.
prior to version 1.9, the string was considered htMl if it has a tag anywhere within it (see Chapter 2 for
details of tags). this presented some rare problems where complex selectors were being interpreted as htMl
and so the policy was changed in jQuery 1.9/2.0 so that a string was only considered as htMl if it started
with the < character.

that proved to be an unpopular change and so the policy was changed back in the jQuery 1.10/2.0.1 release –
but with a warning that further changes can be expected in the way that htMl strings are detected. if you are
working with strings that might be ambiguous, you can use the parseHTML method, which will process an htMl
string without the risk of interpreting it as a selector.

The jQuery object that is returned by the $ function contains only the top-level elements from the HTML
fragment. To demonstrate this, I have used the each function to write information about each element in the jQuery
object to the console. jQuery doesn’t discard the child elements. They are accessible via the usual navigation
methods that I described in Chapter 6. To demonstrate this, I have called the children method on the jQuery
object and printed information about each child element to the console as well. The output from this script is as
follows:

New element: DIV dcell
Child: IMG http://www.jacquisflowershop.com/jquery/lily.png

Tip ■ You can also provide a map object that specifies attributes that should be applied to the htMl element. You can
see this version of the $ function being used in Chapter 12.

Creating New Elements by Cloning Existing Elements
You can create new elements from existing elements by using the clone method. This duplicates all of the elements in
a jQuery object, along with all of their descendants. Listing 7-2 gives an example.

Listing 7-2. Cloning Elements

...
<script type="text/javascript">
 $(document).ready(function() {

 var newElems = $("div.dcell").clone();

 newElems.each(function (index, elem) {
 console.log("New element: " + elem.tagName + " " + elem.className);
 });

http://www.jacquisflowershop.com/jquery/lily.png

Chapter 7 ■ Manipulating the DOM

149

 newElems.children("img").each(function(index, elem) {
 console.log("Child: " + elem.tagName + " " + elem.src);
 });

 });
</script>
...

In this script I have selected and cloned all of the div elements that are members of the dcell class. To demonstrate
that the descendant elements are cloned as well, I have used the children method with a selector to obtain the cloned
img elements. I have written details of the div and img elements to the console, producing the following output:

New element: DIV dcell
New element: DIV dcell
New element: DIV dcell
New element: DIV dcell
New element: DIV dcell
New element: DIV dcell
Child: IMG http://www.jacquisflowershop.com/jquery/aster.png
Child: IMG http://www.jacquisflowershop.com/jquery/daffodil.png
Child: IMG http://www.jacquisflowershop.com/jquery/rose.png
Child: IMG http://www.jacquisflowershop.com/jquery/peony.png
Child: IMG http://www.jacquisflowershop.com/jquery/primula.png
Child: IMG http://www.jacquisflowershop.com/jquery/snowdrop.png

Tip ■ You can pass the value true as an argument to the clone method to include the event handlers and data associat-
ed with the elements in the copying process. Omitting this argument or specifying a value of false omits the event handlers
and data. i explain the jQuery support for events in Chapter 9 and explain how to associate data with elements in Chapter 8.

Creating Elements Using the DOM API
You can use the DOM API directly to create new HTMLElement objects, which is essentially what jQuery is doing for you
when you use the other techniques. I am not going to explain the details of the DOM API, but Listing 7-3 contains a
simple example to give you a sense of how you can approach this technique.

Listing 7-3. Using the DOM API to Create New Elements

...
<script type="text/javascript">
 $(document).ready(function() {

 var divElem = document.createElement("div");
 divElem.classList.add("dcell");

 var imgElem = document.createElement("img");
 imgElem.src = "lily.png";

http://www.jacquisflowershop.com/jquery/aster.png
http://www.jacquisflowershop.com/jquery/daffodil.png
http://www.jacquisflowershop.com/jquery/rose.png
http://www.jacquisflowershop.com/jquery/peony.png
http://www.jacquisflowershop.com/jquery/primula.png
http://www.jacquisflowershop.com/jquery/snowdrop.png

Chapter 7 ■ Manipulating the DOM

150

 divElem.appendChild(imgElem);

 var newElems = $(divElem);

 newElems.each(function (index, elem) {
 console.log("New element: " + elem.tagName + " " + elem.className);
 });

 newElems.children("img").each(function(index, elem) {
 console.log("Child: " + elem.tagName + " " + elem.src);
 });

 });
</script>
...

In this example, I create and configure a div HTMLElement and an img HTMLElement and assign the img as the
child of the div, just as I did in the first example. There is nothing wrong with creating elements this way, but since
this is a book about jQuery, I don’t want to go off topic by straying too far into the DOM API.

I pass the div HTMLElement as an argument to the jQuery $ function so I can use the same each functions as for
the other examples. The console output is as follows:

New element: DIV dcell
Child: IMG http://www.jacquisflowershop.com/jquery/lily.png

Inserting Child and Descendant Elements
Once I have created elements, I can start to insert them into the document. I start by looking at the methods that
insert one element inside another in order to create child and descendant elements, as described by Table 7-2.

Table 7-2. Methods for Inserting Child and Descendant Elements

Method Description

append(HTML)
append(jQuery)
append(HTMLElement[])

Inserts the specified elements as the last children of all of the elements in the DOM.

prepend(HTML)
prepend(jQuery)
prepend(HTMLElement[])

Inserts the specified elements as the first children of all of the elements in the DOM.

appendTo(jQuery)
appendTo(HTMLElement[])

Inserts the elements in the jQuery object as the last children of the elements
specified by the argument.

prependTo(HTML)
prependTo(jQuery)
prependTo(HTMLElement[])

Inserts the elements in the jQuery object as the first children of the elements
specified by the argument.

append(function)
prepend(function)

Appends or prepends the result of a function to the elements in the jQuery object.

http://www.jacquisflowershop.com/jquery/lily.png

Chapter 7 ■ Manipulating the DOM

151

Tip ■ You can also insert child elements using the wrapInner method, which i describe in the “Wrapping the Contents
of elements” section. this method inserts a new child between an element and its existing children. another technique is
to use the html method, which i describe in Chapter 8.

The elements passed as arguments to these methods are inserted as children to every element in the jQuery
object, which makes it especially important to use the techniques I showed you in Chapter 6 to manage the selection
so that it contains only the elements you want to work with. Listing 7-4 gives a demonstration of using the append
method.

Listing 7-4. Using the append Method

...
<script type="text/javascript">
 $(document).ready(function() {
 var newElems = $("<div class='dcell'></div>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />");

 newElems.css("border", "thick solid red");

 $("#row1").append(newElems);
 });
</script>
...

I use the append method in this script in two different ways: first to build up my set of new elements and then
to insert those elements into the HTML document. Since this is the first DOM manipulation method that I have
described, I am going to spend a moment demonstrating some behaviors that will help you avoid the most common
DOM-related jQuery errors. But first, let’s look at the effect of the script. You can see the result of adding the new
elements in Figure 7-1.

Figure 7-1. Inserting new elements into the document

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 7 ■ Manipulating the DOM

152

The first thing to look at is the way I built up my new elements using the append method:

...
var newElems = $("<div class='dcell'/>").append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />");
...

I could have just created a single, bigger block of HTML that contained all of the elements, but I wanted to show a
key facet of the DOM manipulation methods, which is that the jQuery objects returned by these methods contain the
same elements as the object on which the methods were called.

For example, I started with a jQuery object that contained a div element, and the result of each append method
was a jQuery object that contained the same div element and not the element that I added. This means that chaining
append calls together creates multiple new child elements for the originally selected elements.

The next behavior to point out was that newly created elements may not be attached to the document, but you
can still use jQuery to navigate and modify them. I wanted to highlight the new elements with a border, so I made the
following call:

...
newElems.css("border", "thick solid red");
...

This is a nice feature that allows you to create and manage complex sets of elements and prepare them fully
before adding them to the document. Finally, I add the new elements to the document, like this:

...
$("#row1").append(newElems);
...

The new elements are added to each element in the selection. There is only one element in the selection in the
example (the one with the id of row1) and so you have the new lily product added to the flower shop page.

Prepending Elements
The complement to the append method is prepend, which inserts the new elements as the first children of the
elements in the jQuery object. Listing 7-5 contains an example.

Listing 7-5. Using the prepend Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var orchidElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='orchid'>Orchid:</label>")
 .append("<input name='orchid' value='0' required />");

 var newElems = $("<div class='dcell'/>")
 .append("")

Chapter 7 ■ Manipulating the DOM

153

 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />").add(orchidElems);

 newElems.css("border", "thick solid red");

 $("#row1, #row2").prepend(newElems);
 });
</script>
...

In addition to the prepend method, this script demonstrates another jQuery DOM manipulation characteristic:
all of the elements passed as an argument to one of these methods are added as children to all of the elements in the
jQuery object. In this example, I create two div elements, one for lilies and one for orchids. I use the add method to
bring both sets of elements together in a single jQuery object.

Tip ■ the add method will also accept a string containing an htMl fragment. You can use this feature as an alternative
to building up new elements using jQuery objects.

I then create another jQuery object that contains the elements with the row1 and row2 id values and use the
prepend method to insert the orchid and lily elements into the document. You can see the effect in Figure 7-2. The
new elements are highlighted with a red border. As the figure shows, the lily and orchid elements have been added to
both row elements.

As an alternative to using the add method, you can pass multiple elements to the DOM modification methods, as
shown in Listing 7-6. This listing produces the same results as shown in Figure 7-2.

Figure 7-2. Adding multiple new elements to multiple selected elements

Chapter 7 ■ Manipulating the DOM

154

Listing 7-6. Passing Multiple Arguments to the prepend Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var orchidElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='orchid'>Orchid:</label>")
 .append("<input name='orchid' value='0' required />");

 var lilyElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />");

 orchidElems.css("border", "thick solid red");
 lilyElems.css("border", "thick solid red");

 $("#row1, #row2").prepend(lilyElems, orchidElems);
 });
</script>
...

Tip ■ i am using the css method to set the CSS border property in separate statements, but that's just to make the
example easier to follow. in fact, i can chain the call to the css method like any other jQuery method.

Inserting the Same Elements in Different Positions
You can add new elements to the document only once. At this point, using them as arguments to a DOM insertion
method moves the elements, rather than duplicates them. Listing 7-7 shows the problem.

Listing 7-7. Adding New Elements to the Document Twice

...
<script type="text/javascript">
 $(document).ready(function() {

 var orchidElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='orchid'>Orchid:</label>")
 .append("<input name='orchid' value='0' required />");

 var newElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />").add(orchidElems);

Chapter 7 ■ Manipulating the DOM

155

 newElems.css("border", "thick solid red");

 $("#row1").append(newElems);
 $("#row2").prepend(newElems);
 });
</script>
...

The intent in this script is clear: to append the new elements to row1 and prepend them to row2. Of course, this
isn’t what happens, as Figure 7-3 shows.

The elements were appended to row1, but the call to prepend has the effect of moving the elements rather than
adding them twice. To address this issue, you need to create copies of the elements you want to insert by using the
clone method. Listing 7-8 shows the revised script.

Listing 7-8. Cloning Elements So They Can Be Added to the Document More Than Once

...
<script type="text/javascript">
 $(document).ready(function() {

 var orchidElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='orchid'>Orchid:</label>")
 .append("<input name='orchid' value='0' required />");

Figure 7-3. Trying (and failing) to add new elements to the document twice

Chapter 7 ■ Manipulating the DOM

156

 var newElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />").add(orchidElems);

 newElems.css("border", "thick solid red");

 $("#row1").append(newElems);
 $("#row2").prepend(newElems.clone());
 });
</script>
...

The elements are now copied and inserted in both locations, as shown in Figure 7-4.

Figure 7-4. Cloning and inserting elements

Inserting from a jQuery Object
You can use the appendTo and prependTo methods to change the relationship between elements, as shown in
Listing 7-9.

Listing 7-9. Using the appendTo Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var newElems = $("<div class='dcell'/>");

Chapter 7 ■ Manipulating the DOM

157

 $("img").appendTo(newElems);

 $("#row1").append(newElems);
 });
</script>
...

I create jQuery objects to contain a new div element and the img elements in the document. I then use the
appendTo method to append the img elements as the children of the div element. You can see the result in Figure 7-5.
As you can see, the effect of the script is to move the img elements to the new div element, which I appended to the
row1 element.

Inserting Elements Using a Function
You can pass a function to the append and prepend methods. This allows you to dynamically insert children for the
elements selected by the jQuery object, as shown by Listing 7-10.

Listing 7-10. Adding Child Elements Dynamically with a Function

...
<script type="text/javascript">
 $(document).ready(function() {

 var orchidElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='orchid'>Orchid:</label>")
 .append("<input name='orchid' value='0' required />");

Figure 7-5. Using the appendTo method

Chapter 7 ■ Manipulating the DOM

158

 var lilyElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />");

 $(orchidElems).add(lilyElems).css("border", "thick solid red");

 $("div.drow").append(function(index, html) {
 if (this.id == "row1") {
 return orchidElems;
 } else {
 return lilyElems;
 }
 });
 });
</script>
...

The function is invoked once for each element in the jQuery object. The arguments passed to the function
are the index of the element in the selection and the HTML of the element that is being processed; the HTML is a
string. In addition, the value of the this variable is set to the appropriate HTMLElement. The result from the function
will be appended or prepended to the element being processed. You can return an HTML fragment, one or more
HTMLElement objects, or a jQuery object.

In this example, I prepare by creating sets of elements for the lily and orchid products and then return them from
the append function based on the value of the id property. You can see the result in Figure 7-6.

Figure 7-6. Inserting elements dynamically based on a function

Chapter 7 ■ Manipulating the DOM

159

Inserting Parent and Ancestor Elements
jQuery provides you with a set of methods for inserting elements as parents or ancestors of other elements. This is
known as wrapping (because one element is wrapped by another). Table 7-3 describes these methods.

Tip ■ the complement to the wrapping methods is unwrap, which i describe in the “removing elements” section later
in this chapter.

When you perform wrapping, you can pass multiple elements as the argument, but you must make sure that
there is only one inner element. Otherwise, jQuery can’t figure out what to do. This means that each element in the
argument must have at most one parent and at most one child. Listing 7-11 demonstrates the use of the wrap method.

Listing 7-11. Using the wrap Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var newElem = $("<div/>").css("border", "thick solid red");
 $("div.drow").wrap(newElem);

 });
</script>
...

In this script, I create a new div element and use the css method to set a value for the CSS border property. I then
use the wrap method to insert the div element as the parent to all of the label elements in the document. You can see
the effect in Figure 7-7.

Table 7-3. Methods for Wrapping Elements

Method Description
wrap(HTML)
wrap(jQuery)
wrap(HTMLElement[])

Wraps the specified elements around each of the elements in the jQuery object.

wrapAll(HTML)
wrapAll(jQuery)
wrapAll(HTMLElement[])

Wraps the specified elements around the set of elements in the jQuery object
(as a single group).

wrapInner(HTML)
wrapInner(jQuery)
wrapInner(HTMLElement[])

Wraps the specified elements around the content of the elements in the
jQuery object.

wrap(function)
wrapInner(function)

Wraps elements dynamically using a function.

Chapter 7 ■ Manipulating the DOM

160

The elements passed as arguments to the wrap method are inserted between each element in the jQuery object
and their current parents. So, for example, this fragment of HTML:

...
<div class="dtable">
 <div id="row1" class="drow">
 ...
 </div>
 <div id="row2" class="drow">
 ...
 </div>
</div>
...

is transformed like this:

...
<div class="dtable">
 <div style="...style properties...">
 <div id="row1" class="drow">
 ...
 </div>
 </div>

Figure 7-7. Using the wrap method to add a parent to elements

Chapter 7 ■ Manipulating the DOM

161

 <div style="...style properties...">
 <div id="row2" class="drow">
 ...
 </div>
 </div>
</div>
...

Wrapping Elements Together in a Single Parent
When you use the wrap method, the new elements are cloned, and each element in the jQuery object gets its own new
parent element. You can insert a single parent for several elements by using the wrapAll method, as shown in Listing 7-12.

Listing 7-12. Using the wrapAll Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var newElem = $("<div/>").css("border", "thick solid red");
 $("div.drow").wrapAll(newElem);

 });
</script>
...

The only change in this script is the use of the wrapAll method. You can see the effect in Figure 7-8.

Figure 7-8. Using the wrapAll method

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 7 ■ Manipulating the DOM

162

The new element is used to insert a common parent to the selected elements, such that the HTML is transformed
like this:

...
<div class="dtable">
 <div style="...style properties...">
 <div id="row1" class="drow">
 ...
 </div>
 <div id="row2" class="drow">
 </div>
 </div>
</div>
...

Be careful when using the wrapAll method. If the selected elements don’t already share a common parent, then
the new element is inserted as the parent to the first selected element. Then jQuery moves all of the other selected
elements to be siblings of the first one. Listing 7-13 contains a script that demonstrates this behavior.

Listing 7-13. Using the wrapAll on Elements Without a Common Parent

...
<script type="text/javascript">
 $(document).ready(function() {

 var newElem = $("<div/>").css("border", "thick solid red");
 $("img").wrapAll(newElem);

 });
</script>
...

I have selected the img elements in the document, none of which share a common parent. You can see the effect
of this script in Figure 7-9. The new div element has been inserted into the document as the parent to the aster image,
and all of the other images have been inserted as siblings.

Chapter 7 ■ Manipulating the DOM

163

Wrapping the Content of Elements
The wrapInner method wraps elements around the contents of the elements in a jQuery object, as demonstrated by
Listing 7-14.

Listing 7-14. Using the wrapInner Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var newElem = $("<div/>").css("border", "thick solid red");
 $(".dcell").wrapInner(newElem);

 });
</script>
...

The wrapInner method inserts new elements between the elements in the jQuery object and their immediate
children. In the script, I select the elements that belong to the dcell class and wrap their contents with a new div
element. You can see the effect in Figure 7-10.

Figure 7-9. Using wrapAll on elements that don’t share a common parent

4

Chapter 7 ■ Manipulating the DOM

164

You can also achieve the effect of the wrapInner method by using the append method. Just for reference, here is
the equivalent script:

...
<script type="text/javascript">
 $(document).ready(function() {

 var newElem = $("<div/>").css("border", "thick solid red");
 $(".dcell").each(function(index, elem) {
 $(elem).append(newElem.clone().append($(elem).children()));
 });

 });
</script>
...

I am not suggesting you use this approach (the wrapInner method is easier to read and more convenient),
but I think this is a good example of how you can use jQuery to perform the same task in different ways.

Wrapping Elements Using a Function
You can pass a function to the wrap and wrapInner methods to generate elements dynamically. The function is
invoked for each of the selected elements and is passed the current element index. The special variable this is set to
the element to be processed. The script in Listing 7-15 shows how you can wrap elements dynamically.

Figure 7-10. Using the wrapInner method

Chapter 7 ■ Manipulating the DOM

165

Listing 7-15. Wrapping Elements Dynamically

...
<script type="text/javascript">
 $(document).ready(function() {

 $(".drow").wrap(function(index) {
 if ($(this).has("img[src*=rose]").length > 0) {
 return $("<div/>").css("border", "thick solid blue");;
 } else {
 return $("<div/>").css("border", "thick solid red");;
 }
 });

 });
</script>
...

In this example, I use a function with the wrap method to tailor the new parent element based on the descendants
of each of the selected elements. You can see the effect of this script in Figure 7-11.

Figure 7-11. Using the wrap method with a function to generate parent elements dynamically

Chapter 7 ■ Manipulating the DOM

166

Inserting Sibling Elements
jQuery also provides a set of methods that insert elements into the document as siblings of existing elements, as
described in Table 7-4.

The before and after methods follow the same pattern you saw when inserting other kinds of element in the
document. Listing 7-16 contains a demonstration of both methods.

Listing 7-16. Using the before and after Methods

...
<script type="text/javascript">
 $(document).ready(function() {

 var orchidElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='orchid'>Orchid:</label>")
 .append("<input name='orchid' value='0' required />");

 var lilyElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />");

 $(orchidElems).add(lilyElems).css("border", "thick solid red");

 $("#row1 div.dcell").after(orchidElems);
 $("#row2 div.dcell").before(lilyElems);

 });
</script>
...

Table 7-4. Methods for Inserting Sibling Elements

Method Description

after(HTML)
after(jQuery)
after(HTMLElement[])

Inserts the specified elements as next siblings to each element in the
jQuery object.

before(HTML)
before(jQuery)
before(HTMLElement[])

Inserts the specified elements as previous siblings to each element in the
jQuery object.

insertAfter(HTML)
insertAfter(jQuery)
insertAfter(HTMLElement[])

Inserts the elements in the jQuery object as the next siblings for each element
specified in the argument.

insertBefore(HTML)
insertBefore(jQuery)
insertBefore(HTMLElement[])

Inserts the elements in the jQuery object as the previous siblings for each
element specified in the argument.

after(function)
before(function)

Inserts siblings dynamically using a function.

Chapter 7 ■ Manipulating the DOM

167

In this script, I create new sets of elements for orchids and lilies and use them with the before and after
methods to insert them as siblings for each of the elements in the dcell class. The orchid elements are inserted as
next siblings for all the elements in row1, and the lily elements are inserted as previous siblings for all of the elements
in row2. You can see the effect of this script in Figure 7-12.

Inserting Siblings from a jQuery Object
The insertAfter and insertBefore methods insert the elements in the jQuery object as the next or previous siblings
to the elements in the method argument. This is the same functionality as in the after and before methods, but the
relationship between the jQuery object and the argument is reversed. Listing 7-17 shows the use of these methods.
This script creates the same effect, as shown in Figure 7-12.

Listing 7-17. Using the insertAfter and InsertBefore Methods

...
<script type="text/javascript">
 $(document).ready(function() {

 var orchidElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='orchid'>Orchid:</label>")
 .append("<input name='orchid' value='0' required />");

Figure 7-12. Using the before and after elements to create siblings

Chapter 7 ■ Manipulating the DOM

168

 var lilyElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />");

 $(orchidElems).add(lilyElems).css("border", "thick solid red");

 orchidElems.insertAfter("#row1 div.dcell");
 lilyElems.insertBefore("#row2 div.dcell");
 });
</script>
...

Inserting Siblings Using a Function
You can insert sibling elements dynamically using a function with the after and before methods, just as for parent
and child elements. Listing 7-18 contains an example of dynamically generating sibling elements.

Listing 7-18. Generating Sibling Elements Dynamically with a Function

...
<script type="text/javascript">
 $(document).ready(function() {

 $("#row1 div.dcell").after(function(index, html) {
 if (index == 0) {
 return $("<div class='dcell'/>")
 .append("")
 .append("<label for='orchid'>Orchid:</label>")
 .append("<input name='orchid' value='0' required />")
 .css("border", "thick solid red");
 } else if (index == 1) {
 return $("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />")
 .css("border", "thick solid red");
 }
 });

 });
</script>
...

In this script, I use the index argument to generate siblings when the index of the element being processed is 0 or 1.
You can see the effect of this script in Figure 7-13.

Chapter 7 ■ Manipulating the DOM

169

Replacing Elements
You can replace one set of elements with another using the methods described in Table 7-5.

The replaceWith and the replaceAll methods work in the same way, with the exception that the role of the
jQuery object and the argument are reversed. Listing 7-19 demonstrates both methods.

Listing 7-19. Using the replaceWith and replaceAll Methods

...
<script type="text/javascript">
 $(document).ready(function() {

 var newElems = $("<div class='dcell'/>")
 .append("")
 .append("<label for='orchid'>Orchid:</label>")
 .append("<input name='orchid' value='0' required />")
 .css("border", "thick solid red");

 $("#row1").children().first().replaceWith(newElems);

Table 7-5. Methods for Wrapping Elements

Method Description

replaceWith(HTML)
replaceWith(jQuery)
replaceWith(HTMLElement[])

Replace the elements in the jQuery object with the specified content.

replaceAll(jQuery)
replaceAll(HTMLElement[])

Replace the elements specified by the argument with the elements in the
jQuery object.

replaceWith(function) Replaces the elements in the jQuery object dynamically using a function.

Figure 7-13. Adding sibling elements using a function

Chapter 7 ■ Manipulating the DOM

170

 $("").replaceAll("#row2 img")
 .css("border", "thick solid red");

 });
</script>
...

In this script, I use the replaceWith method to replace the first child of the row1 div element with new content
(this has the effect of replacing the aster with the orchid). I also use the replaceAll method to replace all of the img
elements that are descendants of row2 with the image of a carnation. You can see the effect of this script in Figure 7-14.

Replacing Elements Using a Function
You can replace elements dynamically by passing a function to the replaceWith method. This function is not passed
any arguments, but the this variable is set to the element being processed. Listing 7-20 provides a demonstration.

Listing 7-20. Replacing Elements Using a Function

...
<script type="text/javascript">
 $(document).ready(function() {
 $("div.drow img").replaceWith(function() {
 if (this.src.indexOf("rose") > -1) {
 return $("").css("border", "thick solid red");
 } else if (this.src.indexOf("peony") > -1) {
 return $("").css("border", "thick solid red");

Figure 7-14. Replacing content with the replaceWith and replaceAll methods

Chapter 7 ■ Manipulating the DOM

171

 } else {
 return $(this).clone();
 }
 });
 });
</script>
...

In this script, I replace img elements based on their src attribute. If the src attribute contains rose, then I replace
the img element with one displaying carnation.png. If the src attribute contains peony, then I replace the element
with one displaying lily.png. Both of the replacement elements have a red border to highlight their positions.

For all other elements, I return a clone of the element being processed, which has the effect of replacing the
element with a copy of itself. You can see the effect in Figure 7-15.

Tip ■ if you don’t want to replace an element, then you can simply return a clone. if you don’t clone the element, then
jQuery ends up removing the element entirely. Of course, you could avoid this issue by narrowing your selection, but that
isn’t always an option.

Figure 7-15. Replacing elements using a function

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 7 ■ Manipulating the DOM

172

Removing Elements
To complement inserting and replacing elements, jQuery provides a set of methods that to remove elements from the
DOM, as described in Table 7-6.

Listing 7-21 shows how you can use the remove elements to remove elements from the DOM.

Listing 7-21. Removing Elements from the DOM with the remove Method

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img[src*=daffodil], img[src*=snow]").parent().remove();
 });
</script>
...

This script selects the img elements whose src attributes contain daffodil and snow, gets their parent elements,
and then removes them. You can filter the elements that you remove if you pass a selector to the remove method,
as shown in Listing 7-22.

Listing 7-22. Filtering Elements to Remove Using a Selector

...
<script type="text/javascript">
 $(document).ready(function() {
 $("div.dcell").remove(":has(img[src*=snow], img[src*=daffodil])");
 });
</script>
...

Both of these scripts have the same effect, as shown in Figure 7-16.

Table 7-6. Methods for Removing Elements

Method Description

detach()
detach(selector)

Removes elements from the DOM. The data associated with the elements is preserved.

empty() Removes all of the child nodes from each element in the jQuery object.

remove()
remove(selector)

Removes elements from the DOM. As the elements are removed, the data associated with the
elements is destroyed.

unwrap() Removes the parent of each of the elements in the jQuery object.

Chapter 7 ■ Manipulating the DOM

173

Tip ■ the jQuery object returned from the remove method contains the original set of selected elements. in other
words, the removal of elements is not reflected in the method result.

Detaching Elements
The detach method works in the same as the remove method, with the exception that data associated with the
elements is preserved. I explain associating data with elements in Chapter 8, but for this chapter it is enough to know
that this is usually the best method to use if you intend to insert the elements elsewhere in the document. Listing 7-23
shows the detach method in use.

Listing 7-23. Using the detach Method to Remove Elements While Preserving the Associated Data

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#row2").append($("img[src*=aster]").parent().detach());
 });
</script>
...

Figure 7-16. Removing elements from the DOM

Chapter 7 ■ Manipulating the DOM

174

This script detaches the parent element of the img element whose src attribute contains aster. The elements are
then inserted back into the document using the append method, which I described earlier in the chapter. I tend not to
use this method, because using append without detach has the same effect. You can rewrite the key statement in the
listing as follows:

...
$("#row2").append($("img[src*=aster]").parent());
...

You can see the effect of the script in Figure 7-17.

Empting Elements
The empty method removes any descendants and text from the elements in a jQuery object. The elements themselves
are left in the document, as demonstrated by Listing 7-24.

Listing 7-24. Using the empty Method

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#row1").children().eq(1).empty().css("border", "thick solid red");
 });
</script>
...

In this script, I select the child of the row1 element at index 1 and call the empty method. To make the change
more evident, I added a border using the css method. You can see the effect in Figure 7-18.

Figure 7-17. Using the detach element

Chapter 7 ■ Manipulating the DOM

175

Unwrapping Elements
The unwrap method removes the parents of the elements in the jQuery object. The selected elements become children
of their grandparent elements. Listing 7-25 shows the unwrap method in use.

Listing 7-25. Using the unwrap Method

...
<script type="text/javascript">
 $(document).ready(function () {
 $("div.dcell").unwrap();
 });
</script>
...

In this script, I select the div elements that are part of the dcell class and call the unwrap method. This has the
effect of removing the row1 and row2 elements, as shown in Figure 7-19.

Figure 7-18. Using the empty method

Chapter 7 ■ Manipulating the DOM

176

Summary
In this chapter, I showed you how to use jQuery in order to manipulate the DOM. I showed you how to create new
elements and the many different ways in which elements (new or existing) can be inserted into the DOM as children,
parents, and siblings. I also showed you how to move elements within the DOM and how to remove elements entirely.
In Chapter 8, I show you how to use jQuery to manipulate the elements in the DOM.

Figure 7-19. Using the unwrap method

177

Chapter 8

Manipulating Elements

In this chapter, I show you how to use jQuery manipulate elements, including how to get and set attributes, how to
use the jQuery convenience methods for working with classes and CSS properties, and how to get and set HTML and
text content. I also show you a nice feature that allows you to associate data with elements. Table 8-1 provides the
summary for this chapter.

Table 8-1. Chapter Summary

Problem Solution Listing

Get the value of an attribute from the first element in
a jQuery object

Use the attr method 1

Get the value of an attribute from every element in a
jQuery object

Use the each and attr methods together 2

Set an attribute for all of the elements in a jQuery
object

Use the attr method, optionally with a function 3

Set multiple attributes in a single operation Use the attr method with a map object 4, 5

Unset an attribute Use the removeAttr method 6

Get or set a property defined by the HTMLElement
object

Use the prop counterparts to the attr methods 7

Control the classes that elements belong to Use the addClass, hasClass, and removeClass
methods, optionally with a function

8–10

Toggle the classes that elements belong to Use the toggleClass method 11–16

Set the contents of the style attribute Use the css method 17–21

Get details of the position of elements Use the CSS property-specific methods 22–24

Get or set the text or HTML content of elements Use the text or html method 25–27

Get or set the value of form elements Use the val method 28–30

Associate data with elements Use the data method 31

Chapter 8 ■ Manipulating eleMents

178

JQUerY ChaNGeS SINCe the LaSt eDItION

jQuery 1.9/2.0 introduced a new version of the css method that allows the values of multiple Css properties to be
obtained—see the section “getting Multiple Css properties” for details.

jQuery 1.9/2.0 also enforces the separation between the roles of the attr and prop methods. in earlier versions,
jQuery would allow the user of the attr method where the prop method should have been used in order to
preserve backward compatibility with versions earlier than 1.6, which is when the prop method was added.

the final change is that the current versions of jQuery allow the use of the attr method to set the value of the
type attribute on input elements when the browser supports it. use this feature with caution because jQuery will
throw an exception if the browser doesn’t support it, and this includes the older versions of internet explorer.
My advice is to replace elements when you need different types of input elements and avoid the issue entirely.

Working with Attributes and Properties
You can get and set the values of attributes for the elements in a jQuery object. Table 8-2 shows the methods that
relate to attributes.

When the attr method is called with a single argument, jQuery returns the value of the specified attribute from
the first element in the selection. Listing 8-1 contains a demonstration.

Table 8-2. Methods for Working with Attributes

Method Description

attr(name) Gets the value of the attribute with the specified name for the first element in the
jQuery object

attr(name, value) Sets the value of the attribute with the specified name to the specified value for all of
the elements in the jQuery object

attr(map) Sets the attributes specified in the map object for all of the elements in the
jQuery object

attr(name, function) Sets the specified attribute for all of the elements in the jQuery object using
a function

removeAttr(name)
removeAttr(name[])

Remove the attribute from all of the elements in the jQuery object

prop(name) Returns the value of the specified property for the first element in the jQuery object

prop(name, value)
prop(map)

Sets the value for one or more properties for all of the elements in the jQuery object

prop(name, function) Sets the value of the specified property for all of the elements in the jQuery object
using a function

removeProp(name) Removes the specified property from all of the elements in the jQuery object

Chapter 8 ■ Manipulating eleMents

179

Listing 8-1. Reading the Value of an Attribute

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function() {
 var srcValue = $("img").attr("src");
 console.log("Attribute value: " + srcValue);
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required />
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required />
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required />
 </div>
 </div>
 <div id="row2"class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required />
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required />
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required />
 </div>
 </div>
 </div>
 </div>

Chapter 8 ■ Manipulating eleMents

180

 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

In this script, I select all of the img elements in the document and then use the attr method to get the value for
the src attribute. The result from the attr method when you read an attribute value is a string, which I write out to the
console. The console output from this script is as follows:

Attribute value: aster.png

The each method can be combined with attr to read the value of an attribute for all of the elements in a jQuery
object. I described the each method in Chapter 5, and Listing 8-2 shows how you can use it in this situation.

Listing 8-2. Using the each and attr Methods to Read Attribute Values from Multiple Objects

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img").each(function(index, elem) {
 var srcValue = $(elem).attr("src");
 console.log("Attribute value: " + srcValue);
 });
 });
</script>
...

In this script, I pass the HTMLElement object as the argument to the function to create a new jQuery object via
the $ function. This object contains only one element, which is ideally suited to the attr method. The console output
from this script is as follows:

Attribute value: aster.png
Attribute value: daffodil.png
Attribute value: rose.png
Attribute value: peony.png
Attribute value: primula.png
Attribute value: snowdrop.png

Setting an Attribute Value
When the attr method is used to set an attribute value, the change is applied to all of the elements in the jQuery
object. This is in contrast to the read version of this method, which returns a value from only the first element.
Listing 8-3 demonstrates how to set an attribute.

Chapter 8 ■ Manipulating eleMents

181

Listing 8-3. Setting an Attribute

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img").attr("src", "lily.png");
 });
</script>
...

Tip ■ When setting a value, the attr method returns a jQuery object, which means that you can perform method
chaining.

I select all of the img elements and set the value of the src attribute to lily.png. This value is applied to the src
attribute of all the selected elements, and you can see the effect in Figure 8-1.

Setting Multiple Attributes
You can set multiple attributes in a single method call by passing an object to the attr method. The properties of
this object are interpreted as the attribute names, and the property values will be used as the attribute values. This is
known as a map object. Listing 8-4 provides a demonstration.

Figure 8-1. Setting an attribute to the same value for multiple elements

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 8 ■ Manipulating eleMents

182

Listing 8-4. Setting Multiple Elements Using a Map Object

...
<script type="text/javascript">
 $(document).ready(function() {
 var attrValues = {
 src: "lily.png",
 style: "border: thick solid red"
 };

 $("img").attr(attrValues);
 });
</script>
...

In this script I create a map object that has properties called src and style. I select the img elements in the
document and pass the map object to the attr value. You can see the effect in Figure 8-2.

Tip ■ although i have set the style property explicitly in this example, jQuery provides some methods that simplify
working with Css. see the section “Working with Css” for details.

Figure 8-2. Setting multiple attributes with the attr method

Chapter 8 ■ Manipulating eleMents

183

Setting Attribute Values Dynamically
You can tailor the values that you assign to an attribute by passing a function to the attr method. Listing 8-5 provides
a demonstration.

Listing 8-5. Setting Attribute Values with a Function

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img").attr("src", function(index, oldVal) {
 if (oldVal.indexOf("rose") > -1) {
 return "lily.png";
 } else if ($(this).closest("#row2").length > 0) {
 return "carnation.png";
 }
 });
 });
</script>
...

The arguments passed to the function are the index of the element being processed and the old attribute value.
The this variable is set to the HTMLElement being processed. If you want to change the attribute, then your function must
return a string containing the new value. If you don’t return a result, then the existing value is used. In Listing 8-5, I use
the function to selectively change the images shown by the img elements. You can see the effect in Figure 8-3.

Figure 8-3. Changing attribute values with a function

Chapter 8 ■ Manipulating eleMents

184

Removing an Attribute
You can remove (unset) attributes by using the removeAttr method, as shown in Listing 8-6.

Listing 8-6. Removing Attribute Values

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img").attr("style", "border: thick solid red");
 $("img:odd").removeAttr("style");

 });
</script>
...

I use the attr method to set the style attribute and then use the removeAttr method to remove the same
attribute from the odd-numbered elements. You can see the effect in Figure 8-4.

Working with Properties
For each form of the attr method, there is a corresponding prop method. The difference is that the prop methods deal
with properties defined by the HTMLElement object, rather than attribute values. Often, the attributes and properties
are the same, but this isn’t always the case. A simple example is the class attribute, which is represented in the
HTMLElement object using the className property. Listing 8-7 shows the use of the prop method to read this property.

Figure 8-4. Removing attributes from elements

Chapter 8 ■ Manipulating eleMents

185

Listing 8-7. Using the prop Method to Read a Property Value

...
<script type="text/javascript">
 $(document).ready(function() {
 $("*[class]").each(function(index, elem) {
 console.log("Element:" + elem.tagName + " " + $(elem).prop("className"));
 });
 });
</script>
...

In this example, I select all of the elements that have a class attribute and use the each method to enumerate
them. For each element, I print out the type and the value of the className property, producing the following
console output:

Element:DIV dtable
Element:DIV drow
Element:DIV dcell
Element:DIV dcell
Element:DIV dcell
Element:DIV drow
Element:DIV dcell
Element:DIV dcell
Element:DIV dcell

Working with Classes
Although you can use the general attribute methods to manage classes, jQuery provides a set of much more
convenient methods. Table 8-3 describes these methods. The most common use for classes in an HTML document is
to cause the browser to apply a set of CSS properties defined in a style element. See Chapter 7 for details.

Table 8-3. Methods for Working with Classes

Method Description

addClass(name name) Adds all of the elements in a jQuery object to the specified class

addClass(function) Assigns the elements in a jQuery object to classes dynamically

hasClass(name) Returns true if at least one of the elements in the jQuery object is a
member of the specified class

removeClass(name name) Removes the elements in the jQuery object from the specified class

removeClass(function) Removes the elements in a jQuery object from classes dynamically

toggleClass() Toggles all of the classes that the elements in the jQuery object belong to

toggleClass(boolean) Toggles all of the classes that the elements in the jQuery object belong to
in one direction

(continued)

Chapter 8 ■ Manipulating eleMents

186

Table 8-3. (continued)

Method Description

toggleClass(name)
toggleClass(name name)

Toggles one or more named classes for all of the elements in the
jQuery object

toggleClass(name, boolean) Toggles a named class for all of the elements in the jQuery object in
one direction

toggleClass(function, boolean) Toggles classes dynamically for all of the elements in a jQuery object

Elements can be assigned to classes with the addClass method, removed from classes using the removeClass
method, and you determine whether an element belongs to a class using the hasClass method. Listing 8-8
demonstrates all three methods in use.

Listing 8-8. Adding, Removing, and Testing for Class Membership

...
<style type="text/css">
 img.redBorder {border: thick solid red}
 img.blueBorder {border: thick solid blue}
</style>
<script type="text/javascript">
 $(document).ready(function() {

 $("img").addClass("redBorder");
 $("img:even").removeClass("redBorder").addClass("blueBorder");

 console.log("All elements: " + $("img").hasClass("redBorder"));
 $("img").each(function(index, elem) {
 console.log("Element: " + $(elem).hasClass("redBorder") + " " + elem.src);
 });

 });
</script>
...

To begin, I have used a style element to define two styles that will be applied based on class membership.
Classes don’t have to be used to manage CSS, but they make demonstrating the effect of changes easier in this chapter.

I select all of the img elements in the document and assign them to the redBorder class using the addClass
method. I then select the even-numbered img elements, remove them from the redBorder class, and assign them to
the blueBorder class using the removeClass method.

Tip ■ the addClass method does not remove any existing classes from the elements; it just adds the new class in
addition to those classes that have already been applied.

Finally, I use the hasClass method to test for the redBorder class on the set of all img elements (which returns
true if at least one of the elements is a member of the class) and each element individually. You can see the effect of
the class membership in Figure 8-5.

Chapter 8 ■ Manipulating eleMents

187

The output from the script, where I test for class membership, is as follows:

All elements: true
Element: false http://www.jacquisflowershop.com/jquery/aster.png
Element: true http://www.jacquisflowershop.com/jquery/daffodil.png
Element: false http://www.jacquisflowershop.com/jquery/rose.png
Element: true http://www.jacquisflowershop.com/jquery/peony.png
Element: false http://www.jacquisflowershop.com/jquery/primula.png
Element: true http://www.jacquisflowershop.com/jquery/snowdrop.png

Adding and Removing Classes Using a Function
You can decide dynamically which classes should be added or removed from a set of elements by passing a function
to the addClass or removeClass method. Listing 8-9 shows the use of a function with the addClass method.

Listing 8-9. Using the addClass Method with a Function

...
<style type="text/css">
 img.redBorder {border: thick solid red}
 img.blueBorder {border: thick solid blue}
</style>

Figure 8-5. Applying styles through class membership

http://www.jacquisflowershop.com/jquery/aster.png
http://www.jacquisflowershop.com/jquery/daffodil.png
http://www.jacquisflowershop.com/jquery/rose.png
http://www.jacquisflowershop.com/jquery/peony.png
http://www.jacquisflowershop.com/jquery/primula.png
http://www.jacquisflowershop.com/jquery/snowdrop.png

Chapter 8 ■ Manipulating eleMents

188

<script type="text/javascript">
 $(document).ready(function() {
 $("img").addClass(function(index, currentClasses) {
 if (index % 2 == 0) {
 return "blueBorder";
 } else {
 return "redBorder";
 }
 });
 });
</script>
...

The arguments to the function are the index of the element and the current set of classes for which the element
is a member. As for similar functions, jQuery sets the this variable to the HTMLElement object of the element being
processed. You return the class that you want the element to join. In this example, I use the index argument to assign
alternate elements to either the blueBorder or redBorder class. The effect is the same as the one shown in Figure 8-5.

You take a similar approach to removing elements from classes. You pass a function to the removeClass method,
as shown in Listing 8-10.

Listing 8-10. Removing Elements from Classes Using a Function

...
<style type="text/css">
 img.redBorder {border: thick solid red}
 img.blueBorder {border: thick solid blue}
</style>
<script type="text/javascript">
 $(document).ready(function() {

 $("img").filter(":odd").addClass("redBorder").end()
 .filter(":even").addClass("blueBorder");

 $("img").removeClass(function(index, currentClasses) {
 if ($(this).closest("#row2").length > 0
 && currentClasses.indexOf("redBorder") > -1) {
 return "redBorder";
 } else {
 return "";
 }
 });
 });
</script>
...

In this script, the function I pass to the removeClass method uses the HTMLElement object and the current set of
classes to remove the redBorder class from any img element that is a member and that is a descendant of the element
with the ID of row2. You can see the effect of this script in Figure 8-6.

Chapter 8 ■ Manipulating eleMents

189

Tip ■ notice that i return the empty string when i don’t want to remove any classes. if you don’t return a value,
then jQuery removes all of the classes from the element.

Toggling Classes
In its most basic form, toggling a class means adding it to any element that is not a member and removing it from any
element that is. You can achieve this effect by passing the name of the class you want to toggle to the toggleClass
method, as shown in Listing 8-11.

Listing 8-11. Using the toggleClass Method

...
<style type="text/css">
 img.redBorder {border: thick solid red}
 img.blueBorder {border: thick solid blue}
</style>
<script type="text/javascript">
 $(document).ready(function() {

 $("img").filter(":odd").addClass("redBorder").end()
 .filter(":even").addClass("blueBorder");

 $("<button>Toggle</button>").appendTo("#buttonDiv").click(doToggle);

Figure 8-6. Removing classes with a function

Chapter 8 ■ Manipulating eleMents

190

 function doToggle(e) {
 $("img").toggleClass("redBorder");
 e.preventDefault();
 };

 });
</script>
...

I start this script by applying the redBorder class to the odd-numbered img elements and the blueBorder class
to the even-numbered ones. I then create a button element and append it to the element whose id is buttonDiv.
This places my new button alongside the one that is already on the page. I have used the click method to specify a
function that jQuery will invoke when the user clicks the button. This is part of the jQuery support for events, which
I describe fully in Chapter 9.

The function that is executed when the button is clicked is called doToggle, and the key statement is

...
$("img").toggleClass("redBorder");
...

This statement selects all of the img elements in the document and toggles the redBorder class. The argument
to the function and the call to the preventDefault method are not important in this chapter and I explain them in
Chapter 9. You can see the effect of this script in Figure 8-7, although this kind of example makes most sense when
you load the document into a browser and click the button yourself.

If you are especially observant, you will notice something a little odd in the figure. Those elements with red
borders no longer have them, but the elements that started with blue borders still have blue borders. What happened
was that jQuery removed the redBorder class from the odd-numbered img elements and added it to the even-numbered
element, just as expected, but the element to which the redBorder class was added is also a member of blueBorder.

Figure 8-7. Toggling class membership with the toggleClass method

Chapter 8 ■ Manipulating eleMents

191

The blueBorder style is defined after redBorder in the style element, which means that its property values have
higher precedence, as I explained in Chapter 3. So, the class toggling is working, but you have to take into account the
subtleties of CSS as well. If you want the red borders to show through, then you can reverse the declaration order of
the styles, as shown in Listing 8-12.

Listing 8-12. Matching Style Declaration to Suit Class Toggling

...
<style type="text/css">
 img.blueBorder {border: thick solid blue}
 img.redBorder {border: thick solid red}
</style>
<script type="text/javascript">
 $(document).ready(function() {
 $("img").filter(":odd").addClass("redBorder").end()
 .filter(":even").addClass("blueBorder");

 $("<button>Toggle</button>").appendTo("#buttonDiv").click(doToggle);

 function doToggle(e) {
 $("img").toggleClass("redBorder");
 e.preventDefault();
 };
 });
</script>
...

Now when an element belongs to both the blueBorder and redBorder classes, the redBorder setting for the
border property will be used by the browser. You can see the effect of this change in Figure 8-8.

Figure 8-8. The effect of coordinating the CSS declaration order with class toggling

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 8 ■ Manipulating eleMents

192

Toggling Multiple Classes
You can supply multiple class names, separated by a space, to the toggleClass method, and each will be toggled for
the selected elements. Listing 8-13 shows a single example.

Listing 8-13. Toggling Multiple Classes

...
<style type="text/css">
 img.blueBorder {border: thick solid blue}
 img.redBorder {border: thick solid red}
</style>
<script type="text/javascript">
 $(document).ready(function() {

 $("img").filter(":odd").addClass("redBorder").end()
 .filter(":even").addClass("blueBorder");

 $("<button>Toggle</button>").appendTo("#buttonDiv").click(doToggle);

 function doToggle(e) {
 $("img").toggleClass("redBorder blueBorder");
 e.preventDefault();
 };

 });
</script>
...

In this example, I toggle the redBorder and blueBorder classes on all of the img elements. You can see the effect
in Figure 8-9.

Figure 8-9. Toggling multiple elements

Chapter 8 ■ Manipulating eleMents

193

Toggling All Classes
You can toggle all of the classes that a set of elements belong to by calling the toggleClass method with no arguments.
This is a clever technique because jQuery stores the classes that have been toggled so they are applied and removed
correctly. Listing 8-14 contains an example of this use of the method.

Listing 8-14. Toggling All of the Classes for Selected Elements

...
<style type="text/css">
 img.blueBorder {border: thick solid blue}
 img.redBorder {border: thick solid red}
 label.bigFont {font-size: 1.5em}
</style>
<script type="text/javascript">
 $(document).ready(function() {

 $("img").filter(":odd").addClass("redBorder").end()
 .filter(":even").addClass("blueBorder");
 $("label").addClass("bigFont");

 $("<button>Toggle</button>").appendTo("#buttonDiv").click(doToggle);

 function doToggle(e) {
 $("img, label").toggleClass();
 e.preventDefault();
 };

 });
</script>
...

In this example, I used the addClass method to add classes to the img and label elements. When the Toggle
button is clicked, I select those same elements and call the toggleClass method without any arguments. You get a
specific effect, which is shown in Figure 8-10.

Chapter 8 ■ Manipulating eleMents

194

When you first click the button, all of the classes are toggled off for the selected elements. jQuery makes a note of
which classes were removed so that they can be reapplied when you click the button again.

Toggling Classes in One Direction
You can limit the way that toggling is performed by passing a boolean argument to the toggleClass method. If you
pass false, the classes will only be removed, and if you pass true, the classes will only be added. Listing 8-15 gives
an example.

Listing 8-15. Restricting the Toggle Direction

...
<style type="text/css">
 img.blueBorder {border: thick solid blue}
 img.redBorder {border: thick solid red}
</style>
<script type="text/javascript">
 $(document).ready(function() {

 $("img").filter(":odd").addClass("redBorder").end()
 .filter(":even").addClass("blueBorder");

 $("<button>Toggle On</button>").appendTo("#buttonDiv").click(doToggleOn);
 $("<button>Toggle Off</button>").appendTo("#buttonDiv").click(doToggleOff);

 function doToggleOff(e) {
 $("img, label").toggleClass("redBorder", false);
 e.preventDefault();
 };

Figure 8-10. Toggling all of the classes for an element

Chapter 8 ■ Manipulating eleMents

195

 function doToggleOn(e) {
 $("img, label").toggleClass("redBorder", true);
 e.preventDefault();
 };
 });
</script>
...

I have added two button elements to the document, each of which will toggle the redBorder class in only one
direction. Once one of the button elements has been clicked, it will have no further effect until the other button is
clicked too (because each button toggles classes in only one direction). You can see the effect in Figure 8-11.

Toggling Classes Dynamically
You can decide which classes should be toggled for elements dynamically by passing a function to the toggleClass
method. Listing 8-16 provides a simple demonstration.

Listing 8-16. Toggling Classes with a Function

...
<style type="text/css">
 img.blueBorder {border: thick solid blue}
 img.redBorder {border: thick solid red}
</style>
<script type="text/javascript">
 $(document).ready(function() {

 $("img").addClass("blueBorder");
 $("img:even").addClass("redBorder");

 $("<button>Toggle</button>").appendTo("#buttonDiv").click(doToggle);

Figure 8-11. Toggling classes in one direction

Chapter 8 ■ Manipulating eleMents

196

 function doToggle(e) {
 $("img").toggleClass(function(index, currentClasses) {
 if (index % 2 == 0) {
 return "redBorder";
 } else {
 return "";
 }
 });
 e.preventDefault();
 };
 });
</script>
...

I apply the blueBorder class to all of the img elements and the redBorder class to the even-numbered img
elements. The arguments to the function are the index of the element you are processing and the current set of classes
it belongs to. In addition, the this variable is set to the HTMLElement object for the current element. The result from
the function is the name of the classes that should be toggled. If you don’t want to toggle any classes for the elements,
then you return the empty string (not returning a result for an element toggles all of its classes). You can see the effect
that the listing creates in Figure 8-12.

Working with CSS
In an earlier example, I used the basic attribute methods to set the value of the style attribute to define values for a
CSS property for a set of elements. jQuery provides a set of convenience elements that make dealing with CSS much
easier. Table 8-4 describes css, the most broadly useful of these methods

Figure 8-12. Toggling classes dynamically

Chapter 8 ■ Manipulating eleMents

197

Tip ■ these methods operate on the style attribute of individual elements. if you want to work with styles defined in a
style element, then you should use the class-related methods described earlier in this chapter.

Getting and Setting a Single CSS Value
To read the value of a CSS property, you pass the property name to the css method. What you receive is the value
from the first element in the jQuery object only. However, when you set a property, the change is applied to all of the
elements. Listing 8-17 shows the basic use of the css property.

Listing 8-17. Using the css Method to Get and Set CSS Property Values

...
<script type="text/javascript">
 $(document).ready(function() {
 var sizeVal = $("label").css("font-size");
 console.log("Size: " + sizeVal);
 $("label").css("font-size", "1.5em");
 });
</script>
...

Tip ■ although i used the actual property name (font-size) and not the camel-case property name defined by the
HTMLElement object (fontSize), jQuery happily supports both.

In this script, I select all of the label elements and use the css method to get the value of the font-size property
and write it to the console. I then select all of the label elements again and apply a new value for the same property to
all of them.

The output of the script is as follows:

Size: 16px

Table 8-4. The css Method

Method Description

css(name) Gets the value of the specified property from the first element in the jQuery object

css(names) Gets the value of multiple CSS properties, expressed as an array

css(name, value) Sets the value of the specific property for all elements in the jQuery object

css(map) Sets multiple properties for all of the elements in a jQuery object using a map object

css(name, function) Sets values for the specified property for all of the elements in a jQuery object using a
function

Chapter 8 ■ Manipulating eleMents

198

Tip ■ setting a property to the empty string ("") has the effect of removing the property from the element’s
style attribute.

Getting Multiple CSS Properties
You can get the value of multiple CSS properties by passing an array of property names to the css method. This
method returns an object that has properties for each of the names in the array and the value of each property in
the object is set to the value of the corresponding CSS property for the first element in the selection. In Listing 8-18,
you can see how I have used the css method to get values for three CSS properties.

Listing 8-18. Using the css Method to Get Multiple CSS Property Values

...
<script type="text/javascript">
 $(document).ready(function () {
 var propertyNames = ["font-size", "color", "border"];
 var cssValues = $("label").css(propertyNames);
 for (var i = 0; i < propertyNames.length; i++) {
 console.log("Property: " + propertyNames[i]
 + " Value: " + cssValues[propertyNames[i]]);
 }
 });
</script>
...

Note ■ this version of the css method was introduced in jQuery 1.9/2.0.

I create an array that contains the names of the three CSS properties I am interested in: font-size, color, and
border. I pass this array to the css method and I receive an object that contains the values I want. That object can be
expressed as follows:

{font-size: "16px", color: "rgb(0, 0, 0)", border: "0px none rgb(0, 0, 0)"}

To process the object, I iterate through the array of property names and read the corresponding property value,
producing the following console output:

Property: font-size Value: 16px
Property: color Value: rgb(0, 0, 0)
Property: border Value: 0px none rgb(0, 0, 0)

Setting Multiple CSS Properties
You can set multiple properties in two different ways. The first is simply by chaining calls to the css method, as shown
in Listing 8-19.

Chapter 8 ■ Manipulating eleMents

199

Listing 8-19. Chaining Calls to the css Method

...
<script type="text/javascript">
 $(document).ready(function() {
 $("label").css("font-size", "1.5em").css("color", "blue");
 });
</script>
...

In this script, I set values for the font-size and color properties. You can achieve the same effect using a map
object, as shown in Listing 8-20. The map object follows the same pattern as the object I received when I used the css
method to get multiple property values in the previous section.

Listing 8-20. Setting Multiple Value Using a Map Object

...
<script type="text/javascript">
 $(document).ready(function() {
 var cssVals = {
 "font-size": "1.5em",
 "color": "blue"
 };

 $("label").css(cssVals);
 });
</script>
...

Both of these scripts create the effect shown in Figure 8-13.

Figure 8-13. Setting multiple properties

Chapter 8 ■ Manipulating eleMents

200

Setting Relative Values
The css method can accept relative values, which are numeric values that are preceded by += or -= and that are added
to or subtracted from the current value. This technique can be used only with CSS properties that are expressed in
numeric units. Listing 8-21 demonstrates.

Listing 8-21. Using Relative Values with the css Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $("label:odd").css("font-size", "+=5")
 $("label:even").css("font-size", "-=5")

 });
</script>
...

These values are assumed to be in the same units that would be returned when the property value is read.
In this case, I have increased the font size of the odd-numbered label elements by 5 pixels and decreased it for the
even-numbered label elements by the same amount. You can see the effect in Figure 8-14.

Setting Properties Using a Function
You can set property values dynamically by passing a function to the css method, as demonstrated by Listing 8-22.
The arguments passed to the function are the index of the element and the current value of the property. The this
variable is set to the HTMLElement object for the element, and you return the value you want to set.

Figure 8-14. Using relative values

Chapter 8 ■ Manipulating eleMents

201

Listing 8-22. Setting CSS Values with a Function

...
<script type="text/javascript">
 $(document).ready(function() {
 $("label").css("border", function(index, currentValue) {
 if ($(this).closest("#row1").length > 0) {
 return "thick solid red";
 } else if (index % 2 == 1) {
 return "thick double blue";
 }
 });
 });
</script>
...

You can see the effect of this script in Figure 8-15.

Using the Property-Specific CSS Convenience Methods
In addition to the css method, jQuery defines a number of methods that can be used to get or set commonly used CSS
properties and information derived from them. Table 8-5 describes these methods.

Figure 8-15. Setting CSS property values with a function

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 8 ■ Manipulating eleMents

202

Most of these methods are self-evident, but a couple warrant explanation. The result from the offset and
position methods is an object that has top and left properties, indicating the location of the element. Listing 8-23
provides a demonstration using the position method.

Listing 8-23. Using the position Method

...
<script type="text/javascript">
 $(document).ready(function() {
 var pos = $("img").position();
 console.log("Position top: " + pos.top + " left: " + pos.left);
 });
</script>
...

This script writes out the value of the top and left properties of the object returned by the method. The result is
as follows:

Position top: 108.078125 left: 18

Table 8-5. Methods for Working with Specific CSS Properties

Method Description

height() Gets the height in pixels for the first element in the jQuery object

height(value) Sets the height for all of the elements in the jQuery object

innerHeight() Gets the inner height of the first element in the jQuery object (this is the height
including padding but excluding the border and margin)

innerWidth() Gets the inner width of the first element in the jQuery object (this is the width
including padding but excluding the border and margin)

offset() Returns the coordinates of the first element in the jQuery object relative to the
document

outerHeight(boolean) Gets the height of the first element in the jQuery object, including padding and border;
the argument determines if the margin is included

outerWidth(boolean) Gets the width of the first element in the jQuery object, including padding and border;
the argument determines whether the margin is included

position() Returns the coordinates of the first element in the jQuery object relative to the offset

scrollLeft()
scrollTop()

Gets the horizontal or vertical position of the first element in the jQuery object

scrollLeft(value)
scrollTop(value)

Sets the horizontal or vertical position of all the elements in a jQuery object

width() Gets the width of the first element in a jQuery object

width(value) Sets the width of all of the elements in a jQuery object

height(function)
width(function)

Sets the width or height for all of the elements in the jQuery object using a function

Chapter 8 ■ Manipulating eleMents

203

Setting the Width and Height Using a Function
You can set the width and height for a set of elements dynamically by passing a function to the width or height method.
The arguments to this method are the index of the element and the current property value. As you might expect by now,
the this variable is set to the HTMLElement of the current element, and you return the value you want assigned.
Listing 8-24 provides an example.

Listing 8-24. Setting the Height of Elements Using a Function

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#row1 img").css("border", "thick solid red")
 .height(function(index, currentValue) {
 return (index + 1) * 25;
 });
 });
</script>
...

In this script, I use the index value as a multiplier for the height. You can see the effect in Figure 8-16.

Working with Element Content
The methods I have described so far in this chapter operate on the attributes that elements define, but jQuery also
provides methods to work with the content of elements as well, as described in Table 8-6.

Figure 8-16. Using a function to set the height for elements

Chapter 8 ■ Manipulating eleMents

204

Unusually for jQuery, when you use the text method without arguments, the result that you receive is generated
from all of the selected elements and not just the first one. The html method is more consistent with the rest of jQuery
and returns just the content from the first element, as Listing 8-25 shows.

Listing 8-25. Using the html Method to Read Element Content

...
<script type="text/javascript">
 $(document).ready(function() {
 var html = $("div.dcell").html();
 console.log(html);
 });
</script>
...

This script uses the html method to read the HTML contents of the first element matched by the div.dcell
selector. This is written to the console, producing the following results. Notice that the HTML of the element itself is
not included.

<label for="aster">Aster:</label>
<input name="aster" value="0" required="">

Setting Element Content
You can set the content of elements using either the html or text method. My flower shop example document doesn’t
have any text content to speak of, so Listing 8-26 shows how to use the html method.

Listing 8-26. Using the html Method to Set Element Content

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#row2 div.dcell").html($("div.dcell").html());
 });
</script>
...

Table 8-6. Methods for Working with Element Content

Method Description

text() Gets the combined text contents of all the element in the jQuery object and their descendants

text(value) Sets the content of each element in the jQuery object

html() Gets the HTML contents of the first element in the jQuery object

html(value) Sets the HTML content of each element in the jQuery object

text(function)
html(function)

Sets the text or HTML content using a function

Chapter 8 ■ Manipulating eleMents

205

This script sets the HTML contents of the div elements in the dcell class that are descendants of the row2
element. For the content I have used the html method to read the HTML from the first div.dcell element. This has
the effect of setting the lower row of cells in the layout to have the aster content, as shown in Figure 8-17.

Setting Element Content Using a Function
As with many of the other methods in this chapter, you can use the html and text methods with a function to set
content dynamically. In both cases, the arguments are the index of the element in the jQuery object and the current
text or HTML content. The this variable is set to the element’s HTMLElement object, and you return the value you want
to set as the result from the function. Listing 8-27 shows how you can use a function with the text method.

Listing 8-27. Setting Text Content Using a Function

...
<script type="text/javascript">
 $(document).ready(function() {
 $("label").css("border", "thick solid red").text(function(index, currentValue) {
 return "Index " + index;
 });
 });
</script>
...

In this script I set the text content of the label elements using the index value (I also use the css method to add a
border to the elements I change). You can see the result in Figure 8-18.

Figure 8-17. Setting the content of elements with the html method

Chapter 8 ■ Manipulating eleMents

206

Working with Form Elements
You can get and set the value of form elements (such as input) using the val method, which is described in Table 8-7.

Listing 8-28 shows how you can use the val method to get the value from the first element in the jQuery object. In
this script, I have used the each method so that I can enumerate the values of the set of input elements in the document.

Listing 8-28. Using the val Method to Get the Value from an input Element

...
<script type="text/javascript">
 $(document).ready(function() {
 $("input").each(function(index, elem) {
 console.log("Name: " + elem.name + " Val: " + $(elem).val());
 });
 });
</script>
...

Table 8-7. The val method

Method Description

val() Returns the value of the first element in the jQuery object

val(value) Sets the value of all of the elements in the jQuery object

val(function) Sets the values for the elements in the jQuery object using a function

Figure 8-18. Setting text content using a function

Chapter 8 ■ Manipulating eleMents

207

I write the values to the console, which produces the following output:

Name: aster Val: 0
Name: daffodil Val: 0
Name: rose Val: 0
Name: peony Val: 0
Name: primula Val: 0
Name: snowdrop Val: 0

Setting Form Element Values
You can use the val method to set the value of all of the elements in a jQuery object by simply passing the value you
want as an argument to the method. Listing 8-29 demonstrates.

Listing 8-29. Setting Element Values with the val Method

...
<script type="text/javascript">
 $(document).ready(function () {
 $("<button>Set Values</button>").appendTo("#buttonDiv")
 .click(function (e) {
 $("input").val(100);
 e.preventDefault();
 })
 });
</script>
...

In this script I have added a button element to the document and specified an inline function that is called when
it is clicked. The function selects all of the input elements in the document and uses the val method to set their value
to 100. You can see the effect in Figure 8-19. (The call to the preventDefault method stops the browser posting the
HTML form back to the web server—I explain how jQuery supports events in detail in Chapter 9).

Chapter 8 ■ Manipulating eleMents

208

Setting Form Element Values Using a Function
As you might expect by now, you can also use a function to set values with the val method. The arguments to the
method are the index of the element and the element's current value. The this variable is set to the HTMLElement
object representing the element being processed. By using the val method in this way, you can set new values
dynamically, as demonstrated in Listing 8-30.

Listing 8-30. Using the val Method with a Function

...
<script type="text/javascript">
 $(document).ready(function() {
 $("input").val(function(index, currentVal) {
 return (index + 1) * 100;
 });
 });
</script>
...

In this example, I set the value based on the index argument. You can see the effect in Figure 8-20.

Figure 8-19. Using the val method to set input element values

Chapter 8 ■ Manipulating eleMents

209

Associating Data with Elements
jQuery allows you to associate arbitrary data with an element, which you can then test for and retrieve later. Table 8-8
describes the methods associated with this feature.

Listing 8-31 demonstrates setting, testing for, reading, and deleting data values.

Listing 8-31. Working with Element Data

...
<script type="text/javascript">
 $(document).ready(function() {

Table 8-8. Methods for Working with Arbitrary Element Data

Method Description

data(key, value)
data(map)

Associates one or more key/value pairs with the elements in a jQuery object

data(key) Retrieves the value associated with the specified key from the first element in the jQuery object

data() Retrieves the key/value pairs from the first element in the jQuery object

removeData(key) Removes the data associated with the specified key from all of the elements in the jQuery object

removeData() Removes all of the data items from all of the elements in the jQuery object

Figure 8-20. Setting the values dynamically using the val method with a function

Chapter 8 ■ Manipulating eleMents

210

 // set the data
 $("img").each(function () {
 $(this).data("product", $(this). siblings("input[name]").attr("name"));
 });

 // find elements with the data and read the values
 $("*").filter(function() {
 return $(this).data("product") != null;
 }).each(function() {
 console.log("Elem: " + this.tagName + " " + $(this).data("product"));
 });

 // remove all data
 $("img").removeData();

 });
</script>
...

Note ■ When you use the clone method, the data you have associated with elements are removed from the newly
copied elements unless you explicitly tell jQuery that you want to keep it. see Chapter 7 for details of the clone method
and how to preserve the data.

There are three stages in this script. In the first, I use the data method to associate an item of data with the
product key. I get the data by navigating from each img element to the input sibling that has a name attribute.

In the second stage, I select all of the elements in the document and then use the filter method to find those
that have a value associated with the product key. I then use the each method to enumerate those elements and
write the data values to the console. This is duplicative, but I wanted to demonstrate the best technique for selecting
elements that have data. There is no dedicated selector or method, so you must make do with the filter method and
a function.

Finally, I use the removeData to remove all data from all of the img elements. This script produces the following
output on the console:

Elem: IMG aster
Elem: IMG daffodil
Elem: IMG rose
Elem: IMG peony
Elem: IMG primula
Elem: IMG snowdrop

Summary
In this chapter, I showed you the different ways that you can manipulate elements in the DOM. I showed you how to
get and set attributes, including the jQuery convenience methods for working with classes and CSS properties. I also
showed you how to get and set the text or HTML content of elements and how jQuery supports associated arbitrary
data with elements.

211

Chapter 9

Working with Events

In this chapter, I describe the jQuery support for events. If you are unfamiliar with events, then I provided a brief
overview of how they work and how they are propagated through the DOM (Domain Object Model) in Chapter 2.
jQuery provides some useful event-related features, of which my favorite is the ability to automatically associate event
handler functions with elements as they are added to the DOM. Table 9-1 provides the summary for this chapter.

Table 9-1. Chapter Summary

Problem Solution Listing

Register a function to handle one or more
event

Use the bind method or one of the shorthand
methods

1–4, 19, 20, 23

Suppress the default action for an event Use the Event.preventDefault method or use the
bind method without specifying a handler function

5–6

Remove an event handler function from an
element

Use the unbind method 7–9

Create a handler function that is executed only
once for each element it is associated with

Use the one method 10

Automatically apply an event handler function
to elements as they are added to the document

Use the on method 11–13

Remove a handler created using the live
method

Use the off method 14

Apply an automatically added handler to a
specific element in the DOM

Use the delegate and undelegate methods 15

Manually invoke the event handler functions
for an element

Use the trigger or triggerHandler method or
one of the shorthand methods

16–18, 21, 22

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 9 ■ Working With events

212

JQUerY ChaNGeS SINCe the LaSt eDItION

jQuery 1.9/2.0 has removed the live and die methods. the same functionality is available through the on and
off methods, which are described in the section “performing Live event Binding.”

some behind-the-scenes changes have been made to the order in which focus and blur events are sent when
the trigger method is used so they better follow the sequence that would be seen had the events been triggered
by the user. see the section “Manually invoking event handlers” for details of how to use the trigger method.

a related change is that when you trigger the click event on a checkbox or radio button input element, the
event handlers will receive the new state of the element, which is consistent with the effect caused by the user
changing the state of the element. in previous versions of jQuery, the handlers would receive the old state.

i omitted some jQuery features in the last edition of this book because they were marked as deprecated.
the resulting changes in the latest versions of jQuery don’t affect the content in this chapter but are worth
mentioning in case you have found references to them on jquery.com and started using them in your projects:
the attrChange, attrName, relatedNode, and srcElement properties have been removed from the jQuery Event
object; the hover pseudo-event is no longer supported (but the hover method i describe in the section “Using
the event shorthand Methods” is unaffected); the toggle method, which alternated between two event handler
functions for the same event, has been removed.

Handling Events
jQuery provides a set of methods that let you register functions that are called when specified events are triggered on
elements you are interested in. Table 9-2 describes these methods.

Table 9-2. Methods for Handling Events

Method Description

bind(eventType, function)
bind(eventType, data, function)

Adds an event handler to the elements in a jQuery object with an optional
data item

bind(eventType, boolean) Creates a default handler that always returns false, preventing the default
action; the boolean argument controls event bubbling

bind(map) Adds a set of event handlers based on a map object to all elements in the
jQuery object

one(eventType, function)
one(eventType, data, function)

Adds an event handler to each element in a jQuery object with an optional data
item; the handler will be unregistered from an element once it has been executed.

unbind() Removes all event handlers on all elements in the jQuery object

unbind(eventType) Removes a previously registered event handler from all elements in the
jQuery object

unbind(eventType, boolean) Removes a previously registered always-false handler from all elements
in the jQuery object

unbind(Event) Removes an event handler using an Event object

http://jquery.com

Chapter 9 ■ Working With events

213

The various flavors of the bind method let you specify a function that will be invoked when an event is triggered,
and since this is jQuery, the function is used for all of the elements in the jQuery object on which the bind method
is called. Listing 9-1 shows a simple example.

Listing 9-1. Using the bind Method to Register an Event Handler Function

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function() {
 function handleMouseEnter(e) {
 $(this).css({
 "border": "thick solid red",
 "opacity": "0.5"
 });
 };

 function handleMouseOut(e) {
 $(this).css({
 "border": "",
 "opacity": ""
 });
 }

 $("img").bind("mouseenter", handleMouseEnter)
 .bind("mouseout", handleMouseOut);
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required />
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required />
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required />
 </div>
 </div>

Chapter 9 ■ Working With events

214

 <div id="row2"class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required />
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required />
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required />
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

In Listing 9-1, I select all of the img elements in the document and use the bind method to register handler
functions for the mouseenter and mouseout events. These handlers use the css method to set values for the border
and opacity properties. When the user moves the mouse pointer over one of the img elements, the border is drawn
and the image is made more transparent, returning to its previous state when the pointer is moved away.

When jQuery calls the handler function, the this variable is set to the element to which the handler is attached.
The object passed to the handler function is jQuery’s own Event object, which is different from the Event object
defined by the DOM specification. Table 9-3 describes the properties and methods of the jQuery Event object.

Table 9-3. Members of the jQuery Event Object

Name Description Returns

currentTarget Gets the element whose listeners are currently being invoked HTMLElement

Data Gets the optional data passed to the bind method when
the handler was registered; see the section “Registering a
Function to Handle Multiple Event Types” for details

Object

isDefaultPrevented() Returns true if the preventDefault method has been called Boolean

isImmediatePropagationStopped() Returns true if the stopImmediatePropagation method has
been called

Boolean

isPropagationStopped() Returns true if the stopPropagation method has been called Boolean

originalEvent Returns the original DOM Event object Event

pageX
pageY

Returns the mouse position relative to the left edge of the
document

number

preventDefault() Prevents the default action associated with the event from
being performed

void

(continued)

Chapter 9 ■ Working With events

215

The jQuery Event object also defines most of the properties from the standard DOM Event object. So, for almost all
situations, you can treat the jQuery Event object as having a superset of the functionality defined by the DOM standard.

Registering a Function to Handle Multiple Event Types
A common technique is to use a single function to handle two or more kinds of event. These events are usually related
in some way, such as the mouseenter and mouseout events. When using the bind method, you can specify multiple
event types in the first argument, separated by a space. Listing 9-2 demonstrates this method.

Listing 9-2. Registering a Function to Handle Multiple Event Types

...
<script type="text/javascript">
 $(document).ready(function() {

 function handleMouse(e) {
 var cssData = {
 "border": "thick solid red",
 "opacity": "0.5"
 }
 if (event.type == "mouseout") {
 cssData.border = "";
 cssData.opacity = "";
 }
 $(this).css(cssData);
 }

 $("img").bind("mouseenter mouseout", handleMouse);

 });
</script>
...

Name Description Returns

relatedTarget For mouse events, returns the related element; this varies
depending on which event has been triggered

HTMLElement

Result Returns the result from the last event handler that
processed this event

Object

stopImmediatePropagation() Prevents any other event handlers being called for this event void

stopPropagation() Prevents the event from bubbling but allows handlers
attached to the current target element to receive the event

void

Target Gets the element that triggered the event HTMLElement

timeStamp Gets the time at which the event was triggered number

Type Gets the type of the event string

Which Returns the button or key that was pressed for mouse and
keyboard events

number

Table 9-3. (continued)

Chapter 9 ■ Working With events

216

In this script, I have used a single call to the bind method to specify that the mouseenter and mouseout events
should be handled by the handleMouse function for all of the img elements in the document. Of course, you can also
use a single function and chain the bind calls, as follows:

...
$("img").bind("mouseenter", handleMouse).bind("mouseout", handleMouse);
...

You can also register handlers using a map object. The properties of the object are the names of the events, and
their values are the functions that will be invoked when the events are triggered. Listing 9-3 shows the use of a map
object with the bind method.

Listing 9-3. Using a Map Object to Register Event Handlers

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img").bind({
 mouseenter: function() {
 $(this).css("border", "thick solid red");
 },
 mouseout: function() {
 $(this).css("border", "");
 }
 });

 });
</script>
...

In Listing 9-3, I have defined the handler functions inline, as part of the map object. The bind method uses the
functions I specify as handlers for the events that correspond to the property names in the map object.

Providing Data to the Event Handler Function
You can pass an object to the bind method, which jQuery will then make available to the handler function through the
Event.data property. This can be useful when using a single function to handle events from different sets of elements.
The data value can help determine what kind of response is required. Listing 9-4 shows how to define and use the
data value.

Listing 9-4. Passing Data to the Event Handler Function via the bind Method

...
<script type="text/javascript">
 $(document).ready(function() {

 function handleMouse(e) {
 var cssData = {
 "border": "thick solid " + e.data,
 }

Chapter 9 ■ Working With events

217

 if (event.type == "mouseout") {
 cssData.border = "";
 }
 $(this).css(cssData);

 }

 $("img:odd").bind("mouseenter mouseout", "red", handleMouse);
 $("img:even").bind("mouseenter mouseout", "blue", handleMouse);
 });
</script>
...

I use the optional argument to the bind method to specify which color border should be displayed when
the mouseenter event is triggered. For the odd-numbered img elements, the border will be red and for the
even-numbered it will be blue. In the event handler function I use the Event.data property to read the data and use
it to create the value for the CSS (Cascading Style Sheet) border property. You can see the effect in Figure 9-1.

Suppressing the Default Action
As I mentioned in Chapter 2, some events have a default action when they are triggered on certain elements. A good
example occurs when the user clicks a button whose type attribute is submit. If the button is contained in a form
element, the default action is for the browser to submit the form. To prevent the default action from being performed,
you can call the preventDefault method on the Event object, as shown in Listing 9-5.

Figure 9-1. Passing data to the handler function via the bind method

Chapter 9 ■ Working With events

218

Listing 9-5. Preventing the Default Action on an Event

...
<script type="text/javascript">
 $(document).ready(function() {

 $("button:submit").bind("click", function(e) {
 e.preventDefault();
 });

 });
</script>
...

This script sets up a handler function for the click event on all button elements whose type attribute is set to
submit. The function only contains a call to the preventDefault method, which means that clicking the buttons won’t
do anything at all, since the default action is disabled and the handler function doesn’t set up any alternatives.

Usually you want to suppress the default action so you can perform some other activity instead—for example, to
stop the browser from submitting the form because you want to do it with Ajax (which is the topic of Chapters 14 and 15).
Instead of writing a one-line function as I did in Listing 9-5, you can use a different version of the bind method, as shown
in Listing 9-6.

Listing 9-6. Using the bind Method to Create a Handler That Prevents the Default Action

...
<script type="text/javascript">
 $(document).ready(function() {
 $("button:submit").bind("click", false);
 });
</script>
...

The first argument is the event or events whose default action you want to suppress, and the second argument
allows you to specify whether the event should be prevented from bubbling up the DOM (I explain event bubbling
in Chapter 2).

Removing Event Handler Functions
The unbind method removes a handler function from an element. You can unbind all of the handlers associated with
all events for all elements in a jQuery object by calling the unbind method with no arguments, as shown in Listing 9-7.

Listing 9-7. Unbinding All Event Handlers

...
<script type="text/javascript">
 $(document).ready(function() {

 function handleMouse(e) {
 var cssData = {
 "border": "thick solid red",
 "opacity": "0.5"
 }

Chapter 9 ■ Working With events

219

 if (event.type == "mouseout") {
 cssData.border = "";
 cssData.opacity = "";
 }
 $(this).css(cssData);
 }

 $("img").bind("mouseenter mouseout", handleMouse);

 $("img[src*=rose]").unbind();

 });
</script>
...

In Listing 9-7, I bind a handler for the mouseenter and mouseout events for all of the img elements and then use the
unbind method to remove all of the handlers for the img element whose src attribute contains rose. You can be more
selective by passing the events you want to unbind as an argument to the unbind method, as shown in Listing 9-8.

Listing 9-8. Selectively Unbinding Events

...
<script type="text/javascript">
 $(document).ready(function() {

 function handleMouse(e) {
 var cssData = {
 "border": "thick solid red",
 "opacity": "0.5"
 }
 if (event.type == "mouseout") {
 cssData.border = "";
 cssData.opacity = "";
 }
 $(this).css(cssData);
 }

 $("img").bind("mouseenter mouseout", handleMouse);

 $("img[src*=rose]").unbind("mouseout");

 });
</script>
...

In this script I unbind only the mouseout event, leaving the handler for the mouseenter event untouched.

Unbinding from Within the Event Handler Function
The final option for unbinding is to do so from within the event handler function. This can be useful if you want
to handle an event a certain number of times, for example. Listing 9-9 contains a simple demonstration.

Chapter 9 ■ Working With events

220

Listing 9-9. Unbinding from an Event Inside the Event Handler

...
<script type="text/javascript">
 $(document).ready(function() {

 var handledCount = 0;

 function handleMouseEnter(e) {
 $(this).css("border", "thick solid red");
 }
 function handleMouseExit(e) {
 $(this).css("border", "");
 handledCount ++;
 if (handledCount == 2) {
 $(this).unbind(e);
 }
 }
 $("img").bind("mouseenter", handleMouseEnter).bind("mouseout", handleMouseExit)
 });
</script>
...

In the handleMouseEvent function, I increment a counter each time that I handle the mouseout event. After I have
handled the event twice, I pass the Event object to the unbind method to unregister the function as a handler. jQuery
figures out the details it requires from the event object.

Executing a Handler Once
The one method lets you register an event handler that will be executed only once for an element and then removed.
Listing 9-10 provides an example.

Listing 9-10. Using the one Method to Register a Single-Shot Event Handler Function

...
<script type="text/javascript">
 $(document).ready(function() {

 function handleMouseEnter(e) {
 $(this).css("border", "thick solid red");
 };

 function handleMouseOut(e) {
 $(this).css("border", "");
 };

 $("img").one("mouseenter", handleMouseEnter).one("mouseout", handleMouseOut);

 });
</script>
...

Chapter 9 ■ Working With events

221

I have used the one method to register handlers for the mouseenter and mouseout events. The handler functions
will be called when the user moves the mouse in and out of one of the img elements, and then the function will be
unbound (but just for that element; the others will still have the handlers until the mouse is moved over them).

Performing Live Event Binding
One limitation of the bind method is that your event handler functions are not associated with any new element
that you add to the DOM. Listing 9-11 contains an example.

Listing 9-11. Adding Elements After Setting Up the Event Handlers

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img").bind({
 mouseenter: function() {
 $(this).css("border", "thick solid red");
 },
 mouseout: function() {
 $(this).css("border", "");
 }
 });

 $("#row1").append($("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />"));
 });
</script>
...

In this script, I use the bind method to set up handlers for the mouseenter and mouseout events for all of the
img elements. I then use the append methods to insert some new elements in the document, including another
img element. This new img element didn’t exist when I used the bind method, and my handler functions are not
associated with it. The result of this is that I have six img elements that display a border when the mouse hovers over
them and one that doesn’t.

In an example as simple as the one in Listing 9-11, the easy answer is to call the bind method again, but it can be
difficult to keep track of which handlers are required for different types of elements. Fortunately, jQuery makes this
easy for you with a set of methods that automatically register event handlers when new elements that match a selector
are added to the DOM. Table 9-4 describes these methods.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 9 ■ Working With events

222

Listing 9-12 shows the previous example updated to use the on method. The changes are minor, but the effect is
significant. Any elements that I add to the DOM that match the selector img will have the functions in the map object
set up as handlers for the mouseenter and mouseout events.

Listing 9-12. Using the on Method

...
<script type="text/javascript">
 $(document).ready(function () {

 $(document).on({
 mouseenter: function () {
 $(this).css("border", "thick solid red");
 },
 mouseout: function () {
 $(this).css("border", "");
 }
 }, "img");

 $("#row1").append($("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />"));
 });
</script>
...

Notice that I call the on method on a jQuery object that is created from document. This ensures that my event
handlers are applied to any img element that is added anywhere in the DOM. I can narrow the focus by changing the
initial selector—for example, if I only wanted my handler functions to be applied to img elements added to the row1
element, I could have used the following call instead:

...
$("#row1").on(...map..., "img");
...

Table 9-4. Methods for Automatically Registering Event Handlers

Method Description

on(events, selector, data, function)
on (map, selector, data)

Defines handlers for events for elements that exist now or in
the future

off(events, selector, function)
off(map, selector)

Removes event handlers created using the on method

delegate(selector, eventType, function)
delegate(selector, eventType, data,
 function)
delegate(selector, map)

Adds an event handler to the elements that match the selector
(now or in the future) attached to the elements in the jQuery
object

undelegate()
undelegate(selector, eventType)

Removes event handlers created with the delegate method for
the specified event types

Chapter 9 ■ Working With events

223

Tip ■ the on method doesn’t need to add the handler functions directly to the element. in fact, it creates an event
handler on the document object and looks for events that were triggered by elements that match the selector. When it
sees such an event, it triggers the event handler. however, for all practical purposes, it is just easier to imagine the on
method diligently adding handles to new elements.

Multiple events can be specified when using the on method. The event names are separated by space characters,
either in the property names of the map object or in the first argument when the map isn’t used, as illustrated by
Listing 9-13.

Listing 9-13. Specifying Multiple Events Using the on Method

...
<script type="text/javascript">
 $(document).ready(function () {

 function handleMouse(event) {
 if (event.type == "mouseenter") {
 $(this).css("border", "thick solid red");
 } else if (event.type == "mouseout") {
 $(this).css("border", "");
 }
 }

 $("#row1").on("mouseenter mouseout", "img", handleMouse);

 $("#row1").append($("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />"));
 });
</script>
...

In Listing 9-13 I have used the version of the on method that doesn’t rely on a map object, specifying that the
handleMouse function should be used for the mouseenter and mouseout events emitted by all img elements that are
descendants of the row1 element.

The complement to the on method is off, which is used to remove the event handlers from existing elements
and prevent them being used to respond to events from newly created elements. Listing 9-14 shows the use of the
off method.

Listing 9-14. Using the off Method

...
<script type="text/javascript">
 $(document).ready(function () {

 function handleMouse(event) {
 if (event.type == "mouseenter") {
 $(this).css("border", "thick solid red");

Chapter 9 ■ Working With events

224

 } else if (event.type == "mouseout") {
 $(this).css("border", "");
 }
 }

 $("#row1").on("mouseenter mouseout", "img", handleMouse);

 $("#row1").off("mouseout", "img");

 $("#row1").append($("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />"));
 });
</script>
...

Caution ■ it is important to use the same selector with the on and off methods; otherwise, the off method won’t
undo the effect of on.

Limiting DOM Traversal for Live Event Handlers
One problem with the on method is that the events have to propagate all the way up to the document element before
your handler functions are executed. You can take a more direct approach by using the delegate method, which
allows you to specify where the event listener will be located in the document. Listing 9-15 provides an example.

Listing 9-15. Using the delegate Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $("#row1").delegate("img", {
 mouseenter: function() {
 $(this).css("border", "thick solid red");
 },
 mouseout: function() {
 $(this).css("border", "");
 }
 });

 $("#row1").append($("<div class='dcell'/>")
 .append("")
 .append("<label for='carnation'>Carnation:</label>")
 .append("<input name='carnation' value='0' required />"));

Chapter 9 ■ Working With events

225

 $("#row2").append($("<div class='dcell'/>")
 .append("")
 .append("<label for='lily'>Lily:</label>")
 .append("<input name='lily' value='0' required />"));
 });

</script>
...

In Listing 9-15, I use the delegate method to add the listener to the element whose ID is #row1, and the selector I
specified matches the img element. The effect of this is that my handler functions will be executed when a mouseenter or
mouseout event that originated from an img element propagates to the row1 element. When I add another img element to
row1, it is automatically covered by my call to the delegate method, which is not the case when I add elements to row2.

The main benefit of using the delegate method is speed, which can become an issue if you have a particularly
large and complex document and a lot of event handlers. By pushing the point where the events are intercepted down
into the documents, you reduce the distance that events have to travel in the DOM before they lead to the handler
functions being invoked.

Tip ■ to remove handlers added with the delegate method, you have to use undelegate. the off method works only
with the on method.

Manually Invoking Event Handlers
You can manually invoke the event handling functions on elements using the methods described in Table 9-5.

Listing 9-16 shows how you can trigger the event handlers manually.

Listing 9-16. Triggering Event Handlers Manually

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img").bind({mouseenter: function() {
 $(this).css("border", "thick solid red");
 },

Table 9-5. Methods for Manually Invoking Event Handlers

Method Description

trigger(eventType) Triggers the handler functions for the specified event types on all of the elements
in a jQuery object

trigger(event) Triggers the handler functions for the specified event on all of the elements in a
jQuery object

triggerHandler(eventType) Triggers the handler function on the first element in the jQuery object, without
performing the default action or bubbling the event

Chapter 9 ■ Working With events

226

 mouseout: function() {
 $(this).css("border", "");
 }
 });

 $("<button>Trigger</button>").appendTo("#buttonDiv").bind("click", function (e) {
 $("#row1 img").trigger("mouseenter");
 e.preventDefault();
 });

 });

</script>
...

In this script, I use the bind method to set up a pair of event handler functions on the img elements in the
document. I then use the appendTo method to insert a button element into the document method and the bind
method to register a handler function for the click event.

When the button is pressed, the event handler function selects the img elements that are descendants of row1 and
uses the trigger method to invoke their handlers for the mouseenter button. The effect, which is shown in Figure 9-2,
is as though the mouse were moved over all three img elements.

Figure 9-2. Manually triggering event handler functions

Chapter 9 ■ Working With events

227

Using an Event Object
You can also use an Event object to trigger other elements’ event handlers. This can be a convenient technique to use
inside a handler, as demonstrated in Listing 9-17.

Listing 9-17. Manually Triggering Event Handles with an Event Object

...
<script type="text/javascript">
 $(document).ready(function() {

 $("#row1 img").bind("mouseenter", function() {
 $(this).css("border", "thick solid red");
 });

 $("#row2 img").bind("mouseenter", function(e) {
 $(this).css("border", "thick solid blue");
 $("#row1 img").trigger(e);
 });

 });

</script>
...

In Listing 9-17, I use the bind method to add a red border to the img descendants of the row1 element in response
to the mouseenter event. I do the same with a blue border to the row2 img elements, but in the handler, I have added
the following statement:

..
$("#row1 img").trigger(e);
...

The effect of this addition is that when the mouse enters one of the row2 img elements, the handler for the same
event type is triggered on the row1 img elements as well. You can see the effect in Figure 9-3.

Chapter 9 ■ Working With events

228

This approach is convenient when you want to trigger the handlers for the event type currently being processed,
but you could as easily get the same effect by specifying the event type.

Using the triggerHandler Method
The triggerHandler method invokes the handler functions without performing the event’s default action or allowing
the event to bubble up through the DOM. And, unlike the trigger method, triggerHandler invokes the handler
function only on the first element in a jQuery object. Listing 9-18 shows the use of this method.

Listing 9-18. Using the triggerHandler Method

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#row1 img").bind("mouseenter", function() {
 $(this).css("border", "thick solid red");
 });

 $("#row2 img").bind("mouseenter", function(e) {
 $(this).css("border", "thick solid blue");
 $("#row1 img").triggerHandler("mouseenter");
 });
 });
</script>
...

Figure 9-3. Triggering event handlers using an event

Chapter 9 ■ Working With events

229

Tip ■ the result from the triggerHandler method is the result returned by the handler function, which means you
cannot chain the triggerHandler method.

You can see the effect of this script in Figure 9-4.

Using the Event Shorthand Methods
jQuery defines some convenience methods that you can use as shorthand to register an event handler for commonly used
events. In the tables that follow, I have shown these shorthand methods with a function argument. This is the most
common use and is equivalent to calling the bind method, but these methods require less typing and (at least to my mind)
make it more obvious which events you are binding to. Listing 9-19 shows how you can use a shorthand method in this way.

Listing 9-19. Using an Event Shorthand Method to Bind a Handler Function

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img").mouseenter(function() {
 $(this).css("border", "thick solid red");
 });

 });
</script>
...

Figure 9-4. Using the triggerHandler method

Chapter 9 ■ Working With events

230

This is equivalent to using the bind event for the mouseenter event, which I have shown in Listing 9-20.

Listing 9-20. Using the bind Method for the mouseenter Event

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img").bind("mouseenter", function() {
 $(this).css("border", "thick solid red");
 });

 });
</script>
...

That’s all well and good, and by this point, you should be comfortable with how this example works. However,
you can also use the shorthand methods as an analog to the trigger method. You do this by calling the method
without arguments. Listing 9-21 shows how you can do this.

Listing 9-21. Using the Event Shorthand Methods to Trigger Event Handlers

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img").bind("mouseenter", function() {
 $(this).css("border", "thick solid red");
 });

 $("<button>Trigger</button>").appendTo("#buttonDiv").click(function (e) {
 $("img").mouseenter();
 e.preventDefault();
 });
 });
</script>
...

I add a button to the document that, when clicked, selects the img elements and invokes their handlers for the
mouseenter event. For completeness, Listing 9-22 shows the equivalent functionality written using the trigger method.

Listing 9-22. Using the trigger Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img").bind("mouseenter", function() {
 $(this).css("border", "thick solid red");
 });

Chapter 9 ■ Working With events

231

 $("<button>Trigger</button>").appendTo("#buttonDiv").click(function (e) {
 $("img").trigger("mouseenter");
 e.preventDefault();
 });
 });
</script>
...

In the sections that follow, I list the different categories of shorthand methods and the events they correspond to.

Using the Document Event Shorthand Methods
Table 9-6 describes the jQuery shorthand methods that apply to the document object.

The ready method deserves special mention. It doesn’t correspond directly to a DOM event but is incredibly
useful when using jQuery. You can see the different ways you can use the ready method in Chapter 5, where I explain
how to defer execution of a script until the DOM is ready and how you can control the execution of the ready event.

Using the Browser Event Shorthand Methods
Table 9-7 describes the browser events, which are usually targeted at the window object (although the error and
scroll events are also used with elements as well).

Table 9-6. Document Event Shorthand Methods

Method Description

load(function) Corresponds to the load event, triggered when the elements and resources in the document
have been loaded

ready(function) Triggered when the elements in the document have been processed and the DOM is ready to use

unload(function) Corresponds to the unload event, triggered when the user navigates away from the page

Table 9-7. Browser Event Shorthand Methods

Method Description

error(function) Corresponds to the error event, triggered when there is a problem loading an external
resource, such as an image

resize(function) Corresponds to the resize event, triggered when the browser window is resized

scroll(function) Corresponds to the scroll event, triggered when the scrollbars are used

Using the Mouse Event Shorthand Methods
Table 9-8 describes the set of shorthand methods that jQuery provides for dealing with mouse events.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 9 ■ Working With events

232

The hover method is a convenient way of binding a handler function to the mouseenter and mouseleave events.
If you provide two functions as arguments, then the first is invoked in response to the mouseenter event and the
second in response to mouseleave. If you specify only one function, it will be invoked for both events. Listing 9-23
shows the use of the hover method.

Listing 9-23. Using the hover Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $("img").hover(handleMouseEnter, handleMouseLeave);

 function handleMouseEnter(e) {
 $(this).css("border", "thick solid red");
 };

Table 9-8. Mouse Event Shorthand Methods

Method Description

click(function) Corresponds to the click event, triggered when the user presses and releases the mouse

dblclick(function) Corresponds to the dblclick event, triggered when the user presses and releases the
mouse twice in quick succession

focusin(function) Corresponds to the focusin event, triggered when the element gains the focus

focusout(function) Corresponds to the focusout event, triggered when the element loses the focus

hover(function)
hover(function, function)

Triggered when the mouse enters or leaves an element; when one function is
specified, it is used for both enter and exit events

mousedown(function) Corresponds to the mousedown event, triggered when the mouse button is pressed
over an element

mouseenter(function) Corresponds to the mouseenter event, triggered when the mouse enters the region
of screen occupied by an element

mouseleave(function) Corresponds to the mouseleave event, triggered when the mouse leaves the region
of screen occupied by an element

mousemove(function) Corresponds to the mousemouse event, triggered when the mouse is moved within
the region of screen occupied by an element

mouseout(function) Corresponds to the mouseout event, triggered when the mouse leaves the region
of screen occupied by an element

mouseover(function) Corresponds to the mouseover event, triggered when the mouse enters the region
of screen occupied by an element

mouseup(function) Corresponds to the mouseup event, triggered when the mouse button is pressed over
an element

Chapter 9 ■ Working With events

233

 function handleMouseLeave(e) {
 $(this).css("border", "");
 }
 });
</script>
...

Using the Form Event Shorthand Methods
Table 9-9 describes the shorthand methods that jQuery provides for dealing with events that are usually associated
with forms.

Using the Keyboard Event Shorthand Methods
Table 9-10 describes the shorthand methods that jQuery provides for dealing with keyboard events.

Summary
In this chapter, I showed you the jQuery support for events. As with much of jQuery, the benefit of the event
functionality is simplicity and elegance. You can create and manage event handlers with little effort. I particularly
like the support for creating live event handlers, such that elements that are added to the DOM that match a particular
selector are automatically associated with event handlers. It significantly reduces the amount of time that I spend
tracking down problems with event handling in my web applications. In Chapter 10, I describe the jQuery support
for effects.

Table 9-9. Form Event Shorthand Methods

Method Description

blur(function) Corresponds to the blur event, triggered when an element loses the focus

change(function) Corresponds to the change event, triggered when the value of an element changes

focus(function) Corresponds to the focus event, triggered when an element gains the focus

select(function) Corresponds to the select event, triggered when the user selects the element value

submit(function) Corresponds to the submit event, triggered when the user submits a form

Table 9-10. Keyboard Event Shorthand Methods

Method Description

keydown(function) Corresponds to the keydown event, triggered when the user presses a key

keypress(function) Corresponds to the keypress event, triggered when the user presses and releases a key

keyup(function) Corresponds to the keyup event, triggered when the user releases a key

235

Chapter 10

Using jQuery Effects

For the most part, jQuery UI contains the user interface (UI) functionality associated with jQuery, but the core library
includes some basic effects and animations, and these are the topic of this chapter. Although I describe them as
basic, they can be used to achieve some pretty sophisticated effects. The main focus is on animating the visibility
of elements, but you can use these features to animate a range of CSS properties in a number of ways. Table 10-1
provides the summary for this chapter.

Table 10-1. Chapter Summary

Problem Solution Listing

Show or hide elements Use the show or hide method 1

Toggle the visibility of elements Use the toggle method 2, 3

Animate the visibility of elements Provide a timespan argument to the show, hide, or
toggle method

4

Call a function at the end of an animation Provide a callback argument to the show, hide, or toggle
method

5–7

Animate visibility along the vertically Use the slideDown, slideUp, or slideToggle method 8

Animate visibility using opacity Use the fadeIn, fadeOut, fadeToggle, or fadeTo method 9–11

Create a custom effect Use the animate method 12–14

Inspect the queue of effects Use the queue method 15, 16

Stop and clear the effect queue Use the stop or finish methods 17, 18

Insert a delay into the effect queue Use the delay method 19

Insert custom functions into the queue Use the queue method with a function argument and
ensure that the next function in the queue is executed

20, 21

Disable the animation of effects Set the $.fx.off property to true 22

JQUerY ChaNGeS SINCe the LaSt eDItION

jQuery 1.9/2.0 defines a new finish method that is used to complete the current effect and clear the event
queue. See the section “Stopping Effects and Clearing the Queue” for details.

ChaptEr 10 ■ USing jQUEry EffECtS

236

Using the Basic Effects
The most basic effects are simply to show or hide elements. Table 10-2 describes the methods that you can use for this.

Table 10-2. Basic Effects Methods

Method Description

hide() Hides all of the elements in a jQuery object

hide(time)
hide(time, easing)

Hides the elements in a jQuery object over the specified period of time
with an optional easing style

hide(time, function)
hide(time, easing, function)

Hides the elements in a jQuery object over the specified period of time
with an optional easing style and a function that is called when the effect
is complete

show() Shows all of the elements in a jQuery object

show(time)
show(time, easing)

Shows the elements in a jQuery object over the specified period of time
with an optional easing style

show(time, function)
show(time, easing, function)

Shows the elements in a jQuery object over the specified period of time
with an optional easing style and a function that is called when the effect
is complete

toggle() Toggles the visibility of the elements in a jQuery object

toggle(time)
toggle(time, easing)

Toggles the visibility of the elements in a jQuery object over the
specified period of time with an optional easing style

toggle(time, function)
toggle(time, easing, function)

Toggles the visibility of the elements in a jQuery object over the
specified period of time with an optional easing style and a function that
is called when the effect is complete

toggle(boolean) Toggles the elements in a jQuery object in one direction

Listing 10-1 shows the simplest of these effects, which is to use the show and hide methods without any arguments.

Listing 10-1. Using the Show and Hide Methods Without Arguments

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function() {
 $("<button>Hide</button><button>Show</button>").appendTo("#buttonDiv")
 .click(function(e) {
 if ($(e.target).text() == "Hide") {
 $("#row1 div.dcell").hide();
 } else {
 $("#row1 div.dcell").show();
 }

ChaptEr 10 ■ USing jQUEry EffECtS

237

 e.preventDefault();
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required />
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required />
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required />
 </div>
 </div>
 <div id="row2"class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required />
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required />
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required />
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

I manipulate the DOM (Domain Object Model) to add two button elements and provide a function to be called
when either of them is clicked. This function uses the text method to figure out which button has been used and calls
either the hide or show method. In both cases, I call this method on a jQuery object with the selector #row1 div.dcell,
meaning that those div elements in the dcell class that are descendants of the element with the id of row1 will be
made invisible or visible. Figure 10-1 illustrates what happens when I click the Hide button.

ChaptEr 10 ■ USing jQUEry EffECtS

238

Figure 10-1. Hiding elements with the hide element

Clicking the Show button calls the show method, restoring the hidden elements, as Figure 10-2 shows.

Figure 10-2. Showing elements with the show method

ChaptEr 10 ■ USing jQUEry EffECtS

239

It is hard to show transitions using figures, but there are a few points to note. The first is that the transition is
immediate: there is no delay or effect, and the elements just appear and disappear. Second, calling hide on elements
that are already hidden has no effect; nor does calling show on elements that are visible. Finally, when you hide or
show an element, you also show or hide all of its descendants.

Tip ■ you can select elements using the :visible and :hidden selectors. See Chapter 5 for details of the jQuery
extension CSS selectors.

Toggling Elements
You can flip elements from being visible or hidden and back using the toggle method. Listing 10-2 gives an example.

Listing 10-2. Using the toggle Method to Switch Element Visibility

...
<script type="text/javascript">
 $(document).ready(function() {
 $("<button>Toggle</button>").appendTo("#buttonDiv")
 .click(function(e) {
 $("div.dcell:first-child").toggle();
 e.preventDefault();
 });
 });
</script>
...

In Listing 10-2 I add a single button to the document, and when it is clicked, I use the toggle element to change
the visibility of the div.dcell elements that are the first children of their parents. You can see the effect in Figure 10-3.

Figure 10-3. Toggling the visibility of elements

ChaptEr 10 ■ USing jQUEry EffECtS

240

Tip ■ notice that the structure of the document collapses around the hidden elements. if you want to hide the
elements and leave space on the screen, then you can set the CSS visibility property to hidden.

Toggling in One Direction
You can pass a boolean argument to the toggle method to restrict the way that visibility is toggled. If you pass true
as the argument, then only hidden elements will be shown (visible elements will not be hidden). If you pass false as
the argument, then you get the opposite effect. Visible elements will be hidden, but hidden elements will not be made
visible. Listing 10-3 shows the use of this flavor of the toggle method. The script in Listing 10-3 creates the effect
shown in Figure 10-3.

Listing 10-3. Using the toggle Method in One Direction

...
<script type="text/javascript">
 $(document).ready(function() {
 $("<button>Toggle</button>").appendTo("#buttonDiv")
 .click(function(e) {
 $("div.dcell:first-child").toggle(false);
 e.preventDefault();
 });
 });
</script>
...

Animating the Visibility of Elements
You can animate the process of showing and hiding elements by passing a time span to the show, hide, or toggle
methods. The process of showing and hiding elements is then performed gradually, over the specified period.
Table 10-3 shows the different time span arguments you can use.

Table 10-3. Time Span Arguments

Method Description

<number> Specifies duration in milliseconds

slow A shorthand equivalent to 600 milliseconds

fast A shorthand equivalent to 200 milliseconds

Listing 10-4 shows how you can animate showing and hiding elements.

Listing 10-4. Animating the Visibility of Elements

...
<script type="text/javascript">
 $(document).ready(function() {

ChaptEr 10 ■ USing jQUEry EffECtS

241

 $("<button>Toggle</button>").appendTo("#buttonDiv")
 .click(function(e) {
 $("img").toggle("fast", "linear");
 e.preventDefault();
 });

 });
</script>
...

In Listing 10-4, I have used the fast value to specify that toggling the visibility of the img elements in the
document should be done over a period of 600 milliseconds.

Tip ■ When specifying a duration in milliseconds, be sure that the value is not quoted. that is, use $("img").toggle(500)
and not $("img").toggle("500"). if you do use quotes, then the value will be ignored.

I have also provided an additional argument, which specifies the style of the animation, known as the easing
style or easing function. Two easing styles are available, swing and linear. When animating with the swing style, the
animation starts slowly, speeds up, and then slows down again as the animation reaches conclusion. The linear style
maintains a constant pace throughout the animation. If you omit the argument, swing is used. You can see the effect
of the animation as it hides elements in Figure 10-4. It is difficult to show animation in this way, but you’ll get a sense
of what happens.

Figure 10-4. Animating hiding elements

ChaptEr 10 ■ USing jQUEry EffECtS

242

As the figure shows, the animation effect reduces the size of the image in both dimensions and decreases the
opacity. At the end of the animation, the img elements are invisible. Figure 10-5 shows what happens if you click the
Toggle button again to make the img elements visible.

Figure 10-5. Animating showing elements

Using Effect Callbacks
You can supply a function as an argument to the show, hide, and toggle methods, and the function will be called
when these methods finish performing their effect. This can be useful for updating other elements to reflect the
change in status, as shown in Listing 10-5.

Listing 10-5. Using an Event Callback

...
<script type="text/javascript">
 $(document).ready(function() {

 var hiddenRow = "#row2";
 var visibleRow = "#row1";

 $(hiddenRow).hide();

 function switchRowVariables() {
 var temp = hiddenRow;
 hiddenRow = visibleRow;
 visibleRow = temp;
 }

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

ChaptEr 10 ■ USing jQUEry EffECtS

243

 function hideVisibleElement() {
 $(visibleRow).hide("fast", showHiddenElement);
 }

 function showHiddenElement() {
 $(hiddenRow).show("fast", switchRowVariables);
 }

 $("<button>Switch</button>").insertAfter("#buttonDiv button")
 .click(function(e) {
 hideVisibleElement();
 e.preventDefault();
 });
 });
</script>
...

Tip ■ if you want to perform multiple sequential effects on a single element, then you can use regular jQuery method
chaining. See the section “Creating and Managing the Effect Queue” for details.

To make Listing 10-5 clearer, I have broken down the effect activities into separate functions. To get set up,

I hide one of the div elements that acts as a row in my CSS table layout and define two variables that I use to track
which row is visible and which row is not. I add a button element to the document, and when this is clicked I call the
hideVisibleElement function, which uses the hide method to animate hiding the visible row.

...
$(visibleRow).hide("fast", showHiddenElement);
...

I specify the name of the function I want performed when the effect has completed, in this case showHiddenElement.

Tip ■ the callback function is not passed any arguments, but the this variable is set to the DOM element being
animated. if multiple elements are being animated, then the callback function will be called once for each of them.

This function uses the show method to animate revealing the element, as follows:

...
$(hiddenRow).show("fast", switchRowVariables);
...

Once again, I specify a function to perform at the end of the effect. In this case, it is the switchRowVariables
function, which shuffles the variables that track visibility so that you perform the effects on the right elements the next
time the button is clicked. The result is that when the button is clicked, the current row is replaced by the hidden row,
with a quick animation to make the transition less jarring to the user. Figure 10-6 shows the effect (although, once
again, the true effect becomes apparent only when you load the example in the browser).

ChaptEr 10 ■ USing jQUEry EffECtS

244

You wouldn’t usually need to break out the individual functions as I did, so Listing 10-6 shows the same example
rewritten using a terser set of inline functions.

Listing 10-6. Using Inline Callback Functions

...
<script type="text/javascript">
 $(document).ready(function() {

 var hiddenRow = "#row2";
 var visibleRow = "#row1";

 $(hiddenRow).hide();

 $("<button>Switch</button>").insertAfter("#buttonDiv button")
 .click(function(e) {
 $(visibleRow).hide("fast", function() {
 $(hiddenRow).show("fast", function() {
 var temp = hiddenRow;
 hiddenRow = visibleRow;
 visibleRow = temp;
 });
 });

 e.preventDefault();
 });
 });
</script>
...

Figure 10-6. Using callback functions to chain effects

ChaptEr 10 ■ USing jQUEry EffECtS

245

Figure 10-7. Performing an effect in a loop

Creating Looping Effects
You can use the callback functions to produce effects that are performed in a loop. Listing 10-7 demonstrates.

Listing 10-7. Using Callback Functions to Create a Looping Effect

...
<script type="text/javascript">
 $(document).ready(function() {

 $("<button>Toggle</button>").insertAfter("#buttonDiv button")
 .click(function(e) {
 performEffect();
 e.preventDefault();
 });

 function performEffect() {
 $("h1").toggle("slow", performEffect)
 }
 });
</script>
...

In this example, clicking the button leads to the performEffect function being executed. This function uses the
toggle method to change the visibility of the h1 element in the document and passes itself as the callback argument.
The result is that the h1 element loops between being visible and hidden, as shown in Figure 10-7.

ChaptEr 10 ■ USing jQUEry EffECtS

246

Tip ■ Some caution is required when using the current function as the callback function. Eventually you will
exhaust the javaScript call stack, and your script will stop working. the easiest way to solve this problem is with the
setTimeout function, which will schedule a callback to your target function without nesting the function calls, like this:
$("h1").toggle("slow", setTimeout(performEffect, 1)). it is actually pretty hard to exhaust the call stack,
and it usually means leaving a page with animations running for a long time, but it is worth bearing in mind—however,
it is something to be careful of when using the finish method, which i describe in the section “Stopping Effects and
Clearing the Queue.”

USING eFFeCtS reSpONSIBLY

to my mind, loops like this should be used sparingly and only when they serve a purpose (and by that, i mean
a purpose for the user and not to show off your excellent jQuery effect skills). in general, the impact of any kind
of effect should be carefully considered. it may look great during development, but injudicious use of effects
destroys the user’s enjoyment of your web application, especially if it is an application he or she uses every day.

as a simple example, i am a keen runner (keen but not any good). i used to have a runner’s wristwatch that
collects data about my heart rate, speed, distance, calories burned, and 100 other data points. at the end of a run,
i would upload the data to the manufacturer’s web site for storage and analysis.

here’s where the pain started. Every time i clicked a button on the page, the content i wanted would be revealed
through a long effect. i know the browser has received the data i want because i can see it being gradually
revealed, but it is a couple of seconds before i can read it. a couple of seconds may not sound like a lot, but it is,
especially when i want to look at between five and ten different data items at any time.

i am sure that the designer of the application thought the effects were nice and that they enhanced the
experience. But they don’t. they sucked so much that it made using the application a teeth-grinding
experience—so much so that since the last edition of this book, i purchased a competitor product.

this web application for the (now discarded) watch had some useful data analysis tools, but i got to the point
where it annoyed me so much that i was willing to pay several hundred dollars to get a replacement. i could be a
champion marathon runner by now if not for those effects (and maybe the beer and pizza i find myself consuming
with shocking frequency).

if you think i am exaggerating (about the effects . . . you can take my word about the pizza), then take one of the
listings in this chapter and set the time span to two seconds. then get a feel for how long that is when you are
waiting for the effect to complete.

My advice is that all effects should be used sparingly. i tend to use them only when making a change to the DOM
that would be jarring otherwise (elements suddenly disappearing from the page). When i do use them, i keep the
time spans short, typically 200 milliseconds. i never employ endless loops. that’s just a recipe for giving the user
a headache. i urge you to take the time to think about how your users engage with your application or site and
remove anything that doesn’t make the tasks at hand easier to perform. glossy sites are good, but glossy sites
that are usable are great.

ChaptEr 10 ■ USing jQUEry EffECtS

247

Using the Slide Effects
jQuery has a set of effects that slide elements on and off the screen. Table 10-4 describes the methods for this.

Table 10-4. Slide Effects Methods

Method Description

slideDown()
slideDown((time, function)
slideDown(time, easing, function)

Show elements by sliding them down

slideUp()
slideUp(time, function)
slideUp(time, easing, function)

Hide elements by sliding them up

slideToggle()
slideToggle(time, function)
slideToggle(time, easing, function)

Toggle the visibility of elements by sliding them up and down

These methods animate an element in the vertical axis. The arguments to these methods are as for the basic
effect. You can elect to provide a time span, an easing style, and a callback function. Listing 10-8 shows the slide
effects in use.

Listing 10-8. Using the Slide Effects

...
<script type="text/javascript">
 $(document).ready(function() {
 $("<button>Toggle</button>").insertAfter("#buttonDiv button")
 .click(function(e) {
 $("h1").slideToggle("fast");
 e.preventDefault();
 });
 });
</script>
...

In this script, I use the slideToggle method to toggle the visibility of the h1 element. You can see the effect
in Figure 10-8.

ChaptEr 10 ■ USing jQUEry EffECtS

248

The figure shows the h1 element being made visible. The elements are clipped, rather than scaled, because
jQuery creates the effect by manipulating the height of the element. You can see what I mean by this in Figure 10-9.

Figure 10-8. Using the slide effect to reveal an element

Figure 10-9. jQuery creating an effect by manipulating the height of the elements

This figure shows a close-up of the h1 element as it is made visible. You can see that the size of the text doesn’t
change, only the amount of it that is shown. However, this isn’t true for images, because the browser scales them
automatically. If you look really closely, you can see that the entire background image is always shown, but it is scaled
down to fit the height.

Using the Fade Effects
The fade effect methods show and hide elements by reducing their opacity (or, if you prefer, increasing their transparency).
Table 10-5 describes the fade effect methods.

ChaptEr 10 ■ USing jQUEry EffECtS

249

The fadeOut, fadeIn, and fadeToggle methods are consistent with the other effect methods. You can provide a
time span, an easing style, and a callback function, just as in the previous listings. Listing 10-9 demonstrates how to
use fading.

Listing 10-9. Showing and Hiding Elements by Fading

...
<script type="text/javascript">
 $(document).ready(function() {
 $("<button>Toggle</button>").insertAfter("#buttonDiv button")
 .click(function(e) {
 $("img").fadeToggle();
 e.preventDefault();
 });
 });
</script>
...

I have applied the fadeToggle method to the img elements in the document, in part to demonstrate one of the
limitations of this effect. Figure 10-10 shows what happens when you hide the elements.

Table 10-5. Fade Effects Methods

Method Description

fadeOut()
fadeOut(timespan)
fadeOut(timespan, function)
fadeOut(timespan, easing, function)

Hide elements by decreasing opacity

fadeIn()
fadeIn(timespan)
fadeIn(timespan, function)
fadeIn(timespan, easing, function)

Show elements by increasing opacity

fadeTo(timespan, opacity)
fadeTo(timespan, opacity, easing, function)

Change the opacity to the specified level

fadeToggle()
fadeToggle(timespan)
fadeToggle(timespan, function)
fadeToggle(timespan, easing, function)

Toggle the visibility of elements using opacity

ChaptEr 10 ■ USing jQUEry EffECtS

250

The fade effect operates only on opacity, unlike the other effects that change the size of the selected elements
as well. This means you get a nice smooth fade effect until the elements are completely transparent, at which point
jQuery hides them and the page snaps into a new layout. This last stage can be somewhat jarring if not used carefully.

Fading to a Specific Opacity
You can use the fadeTo method to fade elements to a particular opacity. The range of opacity values is a number
within the range of 0 (completely transparent) to 1 (completely opaque). The visibility of the elements isn’t changed,
so you avoid the snap of the page layout I mentioned. Listing 10-10 shows the use of the fadeTo method.

Listing 10-10. Fading to a Specific Opacity

...
<script type="text/javascript">
 $(document).ready(function() {
 $("<button>Fade</button>").insertAfter("#buttonDiv button")
 .click(function(e) {
 $("img").fadeTo("fast", 0);
 e.preventDefault();
 });
 });
</script>
...

In this example, I have specified that the img elements should be faded until they are completely transparent.
This has the same effect as the fadeOut method but doesn’t hide the elements at the end of the transition.
Figure 10-11 shows the effect.

Figure 10-10. Using the fade effect

ChaptEr 10 ■ USing jQUEry EffECtS

251

Figure 10-11. Fading out an element with the fadeTo method

You don’t have to fade elements to the extremes of the opacity range. You can specify intermediate values as well,
as Listing 10-11 demonstrates.

Listing 10-11. Fading to a Specific Opacity

...
<script type="text/javascript">
 $(document).ready(function() {
 $("<button>Fade</button>").insertAfter("#buttonDiv button")
 .click(function(e) {
 $("img").fadeTo("fast", 0.4);
 e.preventDefault();
 });
 });
</script>
...

You can see the effect in Figure 10-12.

ChaptEr 10 ■ USing jQUEry EffECtS

252

Creating Custom Effects
jQuery doesn’t limit you to the basic slide and fade effects. You can create your own as well. Table 10-6 shows the
methods that you use for this process.

Figure 10-12. Fading to a specific opacity

Table 10-6. Custom Effects Methods

Method Description

animate(properties)
animate(properties, time)
animate(properties, time, function)
animate(properties, time, easing, function)

Animates one or more CSS properties, with an optional
time span, easing style, and callback function

animate(properties, options) Animates one or more CSS properties, specifying the
options as a map

jQuery can animate any property that accepts a simple numeric value (e.g., the height property).

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

ChaptEr 10 ■ USing jQUEry EffECtS

253

Note ■ Being able to animate numeric CSS properties means you can’t animate colors. there are a few ways to
address this. the first (and to my mind best) solution is to use jQuery Ui, which i describe in part iV of this book. if you
don’t want to use jQuery Ui, then you might like to consider using the native browser support for CSS animations.
the performance of these is pretty good, but the support is patchy currently and nonexistent in older browser versions.
for details of CSS animation, see my book the Definitive Guide to HTML5, which is also published by apress. the approach
that i like least is using a jQuery plug-in. animating colors is difficult to get right, and i have yet to find a plug-in that i am
entirely satisfied with, but the most reliable i have found is available from https://github.com/jquery/jquery-color.

You supply a set of properties that you want to animate as a map object, and, if you want, you can do the same for
the options you want to set. Listing 10-12 shows a custom animation.

Listing 10-12. Using a Custom Animation

...
<script type="text/javascript">
 $(document).ready(function() {

 $("form").css({"position": "fixed", "top": "70px", "z-index": "2"});
 $("h1").css({"position": "fixed", "z-index": "1", "min-width": "0"});

 $("<button>Animate</button>").insertAfter("#buttonDiv button")
 .click(function(e) {

 $("h1").animate({
 height: $("h1").height() + $("form").height() + 10,
 width: ($("form").width())
 });

 e.preventDefault();
 });
 });
</script>
...

In Listing 10-12, I want to animate dimensions of the h1 element so that its background image extends behind the
form element. Before I can do this, I need to make some changes to the CSS (Cascading Style Sheets) for the affected
elements. I could do this using the style sheet I defined in Chapter 3, but since this is a book on jQuery, I have chosen
to use JavaScript. To make the animation easier to manage, I have positioned both the form and h1 elements using the
fixed mode and have used the z-index property to ensure that the h1 element is displayed below the form.

I have added a button to the document that calls the animate method when clicked. I have chosen to animate
the height and width properties, using information obtained via other jQuery methods. You can see the effect of the
animation in Figure 10-13.

https://github.com/jquery/jquery-color

ChaptEr 10 ■ USing jQUEry EffECtS

254

I have shown only the start and end states in the figure, but jQuery provides a smooth transition just like with the
other effects, and you can exert control over the transition by specifying a time span and an easing style.

Using Absolute Target Property Values
Notice that you specify only the final values for the animation. The start point for jQuery custom animations is the
current values of the properties being animated. I used values I derived from other jQuery methods, but you have
some other choices. First, and most obvious, is that you can use absolute values, as shown in Listing 10-13.

Listing 10-13. Performing a Custom Animation Using Absolute Values

...
<script type="text/javascript">
 $(document).ready(function() {

 $("form").css({"position": "fixed", "top": "70px", "z-index": "2"});
 $("h1").css({"position": "fixed", "z-index": "1", "min-width": "0"});

 $("<button>Animate</button>").insertAfter("#buttonDiv button")
 .click(function(e) {
 $("h1").animate({
 left: 50,
 height: $("h1").height() + $("form").height() + 10,
 width: ($("form").width())
 });

 e.preventDefault();
 });
 });
</script>
...

Figure 10-13. Performing a custom animation

ChaptEr 10 ■ USing jQUEry EffECtS

255

In Listing 10-13, I have added the left property to the animation, specifying an absolute value of 50 (which will
be taken as 50 pixels). This shifts the h1 element to the right. Figure 10-14 shows the outcome of the animation.

Figure 10-14. Creating a custom animation with a fixed final property value

Using Relative Target Property Values
You can also specify your animation targets using relative values. You specify an increase by prefixing a value
with += and a decrease with -=. Listing 10-14 shows the use of relative values.

Listing 10-14. Using Relative Values in a Custom Animation Effect

...
<script type="text/javascript">
 $(document).ready(function() {

 $("form").css({"position": "fixed", "top": "70px", "z-index": "2"});
 $("h1").css({"position": "fixed", "z-index": "1", "min-width": "0"});

 $("<button>Animate</button>").insertAfter("#buttonDiv button")
 .click(function(e) {
 $("h1").animate({
 height: "+=100",
 width: "-=700"
 });

 e.preventDefault();
 });
 });
</script>
...

ChaptEr 10 ■ USing jQUEry EffECtS

256

Creating and Managing the Effect Queue
When you use effects, jQuery creates a queue of the animations that it has to perform and works its way through them.
There are a set of methods you can use to get information about the queue or take control of it, as described
in Table 10-7.

Table 10-7. Effects Queue Methods

Method Description

queue() Returns the queue of effects to be performed on the elements in the jQuery object

queue(function) Adds a function to the end of the queue

dequeue() Removes and executes the first item in the queue for the elements in the jQuery object

stop()
stop(clear)
stop(clear, jumpToEnd)

Stops the current animation

finish() Stops the current animation and clears any queued animations

delay(time) Inserts a delay between effects in the queue

You create a queue of effects by chaining together calls to effect-related methods, as shown in Listing 10-15.

Listing 10-15. Creating an Effect Queue

...
<script type="text/javascript">
 $(document).ready(function() {

 $("form").css({"position": "fixed", "top": "70px", "z-index": "2"});
 $("h1").css({"position": "fixed", "z-index": "1", "min-width": "0"});

 var timespan = "slow";

 cycleEffects();

 function cycleEffects() {
 $("h1")
 .animate({left: "+=100"}, timespan)
 .animate({left: "-=100"}, timespan)
 .animate({height: 223,width: 700}, timespan)
 .animate({height: 30,width: 500}, timespan)
 .slideUp(timespan)
 .slideDown(timespan, cycleEffects);
 }
 });
</script>
...

ChaptEr 10 ■ USing jQUEry EffECtS

257

This script in Listing 10-15 uses regular jQuery method chaining to string together a series of effects on the h1
element. The last effect uses the cycleEffects function as the callback, which starts the process over again. This is
a pretty annoying sequence. It is hypnotic for a moment and then a little irritating, and then it tips right over into the
kind of effect that brings on a headache. But it does create a queue of effects, which is what I need to demonstrate the
queue features.

Note ■ i could have used the callback functions to achieve the same effect, but that doesn’t create the effect queue,
because the function that starts the next animation isn’t executed until the previous animation has completed. When you
use regular method chaining, as in this example, all of the methods are evaluated, and the animation effects are placed
in the queue. the limitation of using method chaining is that you are limited to working with the current selection. When
using callbacks, you can string together sequences that involve entirely unrelated elements.

Displaying the Items in the Effect Queue
You can use the queue method to inspect the contents of the effects queue. This is not entirely helpful because the
queue contains one of two types of data object. If an effect is being executed, then the corresponding item in the
queue is the string value inprogress. If the effect is not being executed, the item in the queue is the function that will
be invoked (although the function doesn’t reveal which animation function will be performed). That said, inspecting
the content is a good place to start with the queue, and Listing 10-16 shows how it can be done.

Listing 10-16. Inspecting the Contents of the Effect Queue

...
<script type="text/javascript">
 $(document).ready(function () {

 $("h1").css({ "position": "fixed", "z-index": "1", "min-width": "0" });
 $("form").remove();
 $("<table border=1></table>")
 .appendTo("body").css({
 position: "fixed", "z-index": "2",
 "border-collapse": "collapse", top: 100
 });

 var timespan = "slow";

 cycleEffects();
 printQueue();

 function cycleEffects() {
 $("h1")
 .animate({ left: "+=100" }, timespan)
 .animate({ left: "-=100" }, timespan)
 .animate({ height: 223, width: 700 }, timespan)
 .animate({ height: 30, width: 500 }, timespan)
 .slideUp(timespan)
 .slideDown(timespan, cycleEffects);
 }

ChaptEr 10 ■ USing jQUEry EffECtS

258

 function printQueue() {
 var q = $("h1").queue();
 var qtable = $("table");
 qtable.html("<tr><th>Queue Length:</th><td>" + q.length + "</td></tr>");
 for (var i = 0; i < q.length; i++) {
 var baseString = "<tr><th>" + i + ":</th><td>";
 if (q[i] == "inprogress") {
 $("table").append(baseString + "In Progress</td></tr>");
 } else {
 $("table").append(baseString + q[i] + "</td></tr>");
 }
 }
 setTimeout(printQueue, 500);
 }
 });
</script>
...

I don’t need the form element in this example, so I have removed it from the DOM and replaced it with a simple
table that I’ll use to display the contents of the effect queue. I have added a repeating function called printQueue that
calls the queue method and displays the number of items and a little detail about each of them in the table. As I say,
the items in the queue are not especially useful in their own right, but they do give you an overall picture of what is
going on. Figure 10-15 shows how jQuery progresses through the effects queue.

Figure 10-15. Inspecting the contents of the queue

Listing 10-16 is hard to portray in static images. I recommend you load the document into a browser to see for
yourself. When the cycleEffects function is first called, there are six items in the effects queue, the first of which is
shown as being in progress. The others are instances of an anonymous function that manages an animation. After
each effect is completed, jQuery removes the item from the queue. At the end of the last effect, the cycleEffects
function is called again, which puts six items in the queue again.

ChaptEr 10 ■ USing jQUEry EffECtS

259

Stopping Effects and Clearing the Queue
You can use the stop and finish methods to interrupt the effect that jQuery is currently performing. For the stop
method, you can provide two optional arguments to this method, both of which are boolean values. If you pass true
as the first argument, then all of the other effects are removed from the queue and will not be performed. If you pass
true as the second argument, then the CSS properties that are being animated by the current animation will be
immediately set to their final values.

The default value for both arguments is false, which means that only the current effect is removed from the
queue and that the properties that were being animated are left at the values they were set to at the moment the effect
was interrupted. If you don’t clear the queue, jQuery will move on to the next effect and begin executing it as normal.
Listing 10-17 provides an example of using the stop method.

Listing 10-17. Using the stop Method

...
<script type="text/javascript">
 $(document).ready(function () {

 $("h1").css({ "position": "fixed", "z-index": "1", "min-width": "0" });
 $("form").remove();

 $("<table border=1></table>")
 .appendTo("body").css({
 position: "fixed", "z-index": "2",
 "border-collapse": "collapse", top: 100
 });

 $("<button>Stop</button><button>Start</button>")
 .appendTo($("<div/>").appendTo("body")
 .css({
 position: "fixed", "z-index": "2",
 "border-collapse": "collapse", top: 100, left: 200
 })).click(function (e) {
 $(this).text() == "Stop" ? $("h1").stop(true, true) : cycleEffects();
 });

 var timespan = "slow";

 cycleEffects();
 printQueue();

 function cycleEffects() {
 $("h1")
 .animate({ left: "+=100" }, timespan)
 .animate({ left: "-=100" }, timespan)
 .animate({ height: 223, width: 700 }, timespan)
 .animate({ height: 30, width: 500 }, timespan)
 .slideUp(timespan)
 .slideDown(timespan, cycleEffects);
 }

ChaptEr 10 ■ USing jQUEry EffECtS

260

 function printQueue() {
 var q = $("h1").queue();
 var qtable = $("table");
 qtable.html("<tr><th>Queue Length:</th><td>" + q.length + "</td></tr>");

 for (var i = 0; i < q.length; i++) {
 var baseString = "<tr><th>" + i + ":</th><td>";
 if (q[i] == "inprogress") {
 $("table").append(baseString + "In Progress</td></tr>");
 } else {
 $("table").append(baseString + q[i] + "</td></tr>");
 }
 }
 setTimeout(printQueue, 500);
 }
 });
</script>
...

Tip ■ When you call the stop method, any callback associated with the current effect will not be executed. When you
use the stop method to clear the queue, no callback associated with any of the effects in the queue will be executed.

To demonstrate the stop method, I have added two buttons to the document. When the Stop button is clicked,

I call the stop method, passing in two true arguments. This has the effect of clearing the rest of the effect queue and
snapping the element to the target values for the property that was being animated. Since callback functions are not
invoked when the stop method is used, the loop of cycleEffects method calls is broken, and animation is brought to
a halt. When the Start button is clicked, the cycleEffects method is called and the animation resumes.

Tip ■ Clicking the Start button when the animations are running doesn’t confuse jQuery. it just adds the effects used
by the cycleEffects method to the effects queue. the use of callbacks means that the size of the queue will jump
around a little, but in terms of the animations, everything continues as normal.

The finish method has a similar effect to calling stop(true, true), but differs in the way that it handles the CSS
properties that are being animated. When calling stop(true, true), the CSS properties that are being animated by
the current effect jump to their final values, but when using the finish method, the CSS properties being animated
by the current effect and all of the queued effects jump to their final values. You can see how I have applied the finish
method in Listing 10-18.

Listing 10-18. Using the finish method

...
<script type="text/javascript">
 $(document).ready(function () {

 $("h1").css({ "position": "fixed", "z-index": "1", "min-width": "0" });
 $("form").remove();

ChaptEr 10 ■ USing jQUEry EffECtS

261

 $("<table border=1></table>")
 .appendTo("body").css({
 position: "fixed", "z-index": "2",
 "border-collapse": "collapse", top: 100
 });

 var finishAnimations = false;

 $("<button>Stop</button><button>Start</button>")
 .appendTo($("<div/>").appendTo("body")
 .css({
 position: "fixed", "z-index": "2",
 "border-collapse": "collapse", top: 100, left: 200
 })).click(function (e) {
 if ($(this).text() == "Stop") {
 finishAnimations = true;
 $("h1").finish();
 } else {
 finishAnimations = false;
 cycleEffects();
 }
 });

 var timespan = "slow";

 cycleEffects();
 printQueue();

 function cycleEffects() {
 $("h1")
 .animate({ left: "+=100" }, timespan)
 .animate({ left: "-=100" }, timespan)
 .animate({ height: 223, width: 700 }, timespan)
 .animate({ height: 30, width: 500 }, timespan)
 .slideUp(timespan)
 .slideDown(timespan, function () {
 if (!finishAnimations) {
 cycleEffects();
 }
 });
 }

 function printQueue() {
 var q = $("h1").queue();
 var qtable = $("table");
 qtable.html("<tr><th>Queue Length:</th><td>" + q.length + "</td></tr>");

 for (var i = 0; i < q.length; i++) {
 var baseString = "<tr><th>" + i + ":</th><td>";
 if (q[i] == "inprogress") {
 $("table").append(baseString + "In Progress</td></tr>");

ChaptEr 10 ■ USing jQUEry EffECtS

262

 } else {
 $("table").append(baseString + q[i] + "</td></tr>");
 }
 }
 setTimeout(printQueue, 500);
 }
 });
</script>
...

When using the finish method, care must be taken with effect loops, such as the one in Listing 10-18. In order
to determine the final CSS values for all of the animated properties, the finish method needs to execute all of the
effects—albeit without any time delays—and that means that any callback functions are executed as well.

In Listing 10-18, the last effect defined in the cycleEffects function sets up the next effect loop, as follows:

...
.slideDown(timespan, cycleEffects);
...

The finish method doesn’t prevent new effects being added to the queue and it doesn’t keep track of the state of
the queue when it is called. This means that the finish method will call the cycleEffects method, which adds effects
to the queue, which the finish method then executes, triggering the callback, which adds effects to the queue . . . and
so on. The overall effect is to immediately exhaust the JavaScript call stack.

To avoid this, I have added a variable called finishAnimations, which I set in response to the button elements
being clicked and I check before adding the next set of effects to the queue, as follows:

...
.slideDown(timespan, function () {
 if (!finishAnimations) {
 cycleEffects();
 }
});
...

Inserting a Delay into the Queue
You can use the delay method to introduce a pause between two effects in the queue. The argument to this method
is the number of milliseconds that the delay should last for. Listing 10-19 shows the use of this method to introduce
one-second delays into the effect queue.

Listing 10-19. Using the delay Method

...
function cycleEffects() {
 $("h1")
 .animate({ left: "+=100" }, timespan)
 .animate({ left: "-=100" }, timespan)
 .delay(1000)
 .animate({ height: 223, width: 700 }, timespan)
 .animate({ height: 30, width: 500 }, timespan)
 .delay(1000)

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

ChaptEr 10 ■ USing jQUEry EffECtS

263

 .slideUp(timespan)
 .slideDown(timespan, function () {
 if (!finishAnimations) {
 cycleEffects();
 }
 });
}
...

Inserting Functions into the Queue
You can add your own functions into the queue using the queue method, and they will be executed just as the
standard effect methods are. You can use this feature to start other animations, gracefully exit a chain of animations
based on an external variable, or, well, do anything that you need. Listing 10-20 contains an example.

Listing 10-20. Inserting a Custom Function into the Queue

...
function cycleEffects() {
 $("h1")
 .animate({ left: "+=100" }, timespan)
 .animate({ left: "-=100" }, timespan)
 .queue(function () {
 $("body").fadeTo(timespan, 0).fadeTo(timespan, 1);
 $(this).dequeue();
 })
 .delay(1000)
 .animate({ height: 223, width: 700 }, timespan)
 .animate({ height: 30, width: 500 }, timespan)
 .delay(1000)
 .slideUp(timespan)
 .slideDown(timespan, function () {
 if (!finishAnimations) {
 cycleEffects();
 }
 });
}
...

The this variable is set to the jQuery object that the method was called on. This is useful because you must make
sure to call the dequeue method at some point in your function in order to move the queue onto the next effect or function.
In this example, I used the queue method to add a function that fades the body element to fully transparent and back.

Tip ■ the effects i added in the custom function are added to the effect queues for the body element. Each element
has its own queue, and you can manage them independently of one another. if you want to animate multiple properties
on the same elements whose queue you are operating on, then you just use the animate method. Otherwise, your effects
will just be added to the queue in sequence.

ChaptEr 10 ■ USing jQUEry EffECtS

264

Alternatively, you can accept a single argument to the function, which is the next function in the queue. In this
situation, you must invoke the function to move the queue to the next effect, as shown in Listing 10-21.

Listing 10-21. Using the Argument Passed to the Custom Function

...
function cycleEffects() {
 $("h1")
 .animate({ left: "+=100" }, timespan)
 .animate({ left: "-=100" }, timespan)
 .queue(function (nextFunction) {
 $("body").fadeTo(timespan, 0).fadeTo(timespan, 1);
 nextFunction();
 })
 .delay(1000)
 .animate({ height: 223, width: 700 }, timespan)
 .animate({ height: 30, width: 500 }, timespan)
 .delay(1000)
 .slideUp(timespan)
 .slideDown(timespan, function () {
 if (!finishAnimations) {
 cycleEffects();
 }
 });
}
...

Caution ■ the effect sequence will stall if you don’t invoke the next function or call the dequeue method.

Enabling and Disabling Effect Animations
You can disable the animation of effects by setting the value of the $.fx.off property to true, as shown in Listing 10-22.

Listing 10-22. Disabling Animations

...
<script type="text/javascript">
 $(document).ready(function () {

 $.fx.off = true;

 $("h1").css({ "position": "fixed", "z-index": "1", "min-width": "0" });
 $("form").remove();

 // ...statements omitted for brevity...

 });
</script>
...

ChaptEr 10 ■ USing jQUEry EffECtS

265

When animations are disabled, calls to effect methods cause the elements to snap to their target property values
immediately. Time spans are ignored, and there are no intermediate animations. Looping sets of effects will quickly
hit the call stack limit when animations are disabled. To avoid this, use the setTimeout method, as described earlier in
this chapter.

Summary
In this chapter, I showed you how to use the jQuery effect features. The built-in effect methods are mostly for making
elements visible and invisible in different ways, but you can go beyond this and animate any numeric CSS property.
You can also dig into the effect queue and take more control over the sequence of effects that are applied to elements.
In Chapter 11, I refactor the example document to show you how some of the basic jQuery features covered in this and
earlier chapters can be combined.

267

Chapter 11

Refactoring the Example: Part I

In the previous chapters, I showed you each functional area in isolation: how to deal with events, how to manipulate
 the DOM (Domain Object Model), and so on. The real power and flexibility of jQuery arise when you combine
these features, and in this chapter, I am going to demonstrate the combination by refactoring the flower shop
example document.

All of the changes that I make in this chapter are in the script element. I have not changed the underlying HTML
of the example document. As with most jQuery features, there are many different routes to achieving the same result.
The approaches I take in this chapter reflect the parts of jQuery that I like the most and the way that I tend to think
about the DOM. You may have a different mental model and prefer different combinations of methods. It really
doesn’t matter, and there is no single correct way of using jQuery.

Reviewing the Example Document
I started this book with a simple example document, a basic flower shop page. In the chapters that followed, I used
jQuery to select elements from the document, explore and rearrange its DOM, listen to events, and apply effects to its
elements. Before I start to refactor the example, let’s look back to where I started. Listing 11-1 shows the basic document.

Listing 11-1. The Basic Example Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function() {
 // jQuery statements will go here
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">

Chapter 11 ■ refaCtoring the example: part i

268

 <label for="aster">Aster:</label>
 <input name="aster" value="0" required />
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required />
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required />
 </div>
 </div>
 <div id="row2"class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required />
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required />
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required />
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

I have highlighted the script element, because that’s where you spend your time in this book. I have put in the
ubiquitous jQuery handler for the ready event, but that’s all. There are no other JavaScript statements. You can see
how the unvarnished document appears in the browser in Figure 11-1.

Chapter 11 ■ refaCtoring the example: part i

269

Adding Additional Flower Products
The first change I make is to add some additional flowers to the shop. I want to do this to demonstrate how you can
create elements in a loop. Listing 11-2 shows the script element with the additions.

Listing 11-2. Adding Products to the Page

...
<script type="text/javascript">
 $(document).ready(function() {
 var fNames = ["Carnation", "Lily", "Orchid"];
 var fRow = $("<div id=row3 class=drow/>").appendTo("div.dtable");
 var fTemplate = $("<div class=dcell><label/><input/></div>");
 for (var i = 0; i < fNames.length; i++) {
 fTemplate.clone().appendTo(fRow).children()
 .filter("img").attr("src", fNames[i] + ".png").end()
 .filter("label").attr("for", fNames[i]).text(fNames[i]).end()
 .filter("input").attr({name: fNames[i], value: 0, required: "required"})
 }
 });
</script>
...

I have defined the three additional types of flower (Carnation, Lily, and Orchid) and created a new div
element that is assigned to the drow class and that I append to the existing div element that acts as a table in the CSS
(Cascading Style Sheet) table layout model.

Figure 11-1. The basic example document

Chapter 11 ■ refaCtoring the example: part i

270

...
var fNames = ["Carnation", "Lily", "Orchid"];
var fRow = $("<div id=row3 class=drow/>").appendTo("div.dtable");
...

I then define a skeletal set of elements; these describe the structure of elements that I want for each product but
don’t contain any of the attributes that distinguish one flower from another.

...
var fTemplate = $("<div class=dcell><label/><input/></div>");
...

I use the skeletal elements as a simple template, cloning them for each of the flowers I want to add and using the
name of the flower to add the attributes and values.

...
for (var i = 0; i < fNames.length; i++) {
 fTemplate.clone().appendTo(fRow).children()
 .filter("img").attr("src", fNames[i] + ".png").end()
 .filter("label").attr("for", fNames[i]).text(fNames[i]).end()
 .filter("input").attr({name: fNames[i], value: 0, required: "required"})
}
...

I use the filter and end methods to narrow and broaden the selection and the attr method to set the attribute
values. I end up with a fully populated set of elements for each new flower, inserted into the row-level div element,
which in turn is inserted into the table-level element. You can see the effect in Figure 11-2.

Figure 11-2. Adding new flowers to the page

Chapter 11 ■ refaCtoring the example: part i

271

One nice jQuery feature evident in this example is the way you can select and navigate around elements that are
not attached to the main document. The template elements are not part of the document when I clone them, but I can
still use the children and filter methods to narrow down the selection.

Adding the Carousel Buttons
I am going to create a simple carousel that will let the user page through sets of flowers. To begin with, I need left and
right buttons for the pagination. Listing 11-3 shows how I added them to the document.

Listing 11-3. Adding the Carousel Buttons

...
<script type="text/javascript">
 $(document).ready(function() {

 var fNames = ["Carnation", "Lily", "Orchid"];
 var fRow = $("<div id=row3 class=drow/>").appendTo("div.dtable");
 var fTemplate = $("<div class=dcell><label/><input/></div>");
 for (var i = 0; i < fNames.length; i++) {
 fTemplate.clone().appendTo(fRow).children()
 .filter("img").attr("src", fNames[i] + ".png").end()
 .filter("label").attr("for", fNames[i]).text(fNames[i]).end()
 .filter("input").attr({name: fNames[i], value: 0, required: "required"})
 }

 $("").prependTo("form")
 .css({
 "background-image": "url(leftarrows.png)",
 "float": "left",
 "margin-top": "15px",
 display: "block", width: 50, height: 50
 }).click(handleArrowPress).hover(handleArrowMouse)

 $("#right").css("background-image", "url(rightarrows.png)").appendTo("form");

 $("#oblock").css({float: "left", display: "inline", border: "thin black solid"});
 $("form").css({"margin-left": "auto", "margin-right": "auto", width: 885});

 function handleArrowMouse(e) {
 }

 function handleArrowPress(e) {
 }
 });
</script>
...

I define a pair of a elements, prepend them to the form element, and use the css method to apply values for a
number of different properties.

Chapter 11 ■ refaCtoring the example: part i

272

...
$("").prependTo("form")
 .css({
 "background-image": "url(leftarrows.png)",
 "float": "left",
 "margin-top": "15px",
 display: "block", width: 50, height: 50
}).click(handleArrowPress).hover(handleArrowMouse)
...

The key property is background-image, which I set to leftarrows.png. You can see this image in Figure 11-3.

Figure 11-4. The rightarrows.png image

Figure 11-3. The leftarrows.png image

This image contains three different arrows in a combined image. Each individual arrow is 50 pixels wide, and by
setting the width and height properties to 50, I make sure that only one of the individual arrows is showing at any time.
I use the click and hover methods to define handler functions for the click, mouseenter, and mouseexit events.

...
$("").prependTo("form")
 .css({
 "background-image": "url(leftarrows.png)",
 "float": "left",
 "margin-top": "15px",
 display: "block", width: 50, height: 50
}).click(handleArrowPress).hover(handleArrowMouse)
...

The handleArrowPress and handleArrowMouse functions are empty but I’ll populate them in a moment. At this
point, I have two a elements, both displaying left-facing arrows and both next to one another in the form element.
I created and formatted the a elements together because most of the configuration is common, but now it is time to
move and tailor the right button, which I do as follows:

...
$("#right").css("background-image", "url(rightarrows.png)").appendTo("form");
...

I use the append method to move the element to the end of the form element and use the css method to change
the background-image property to use the rightarrows.png. You can see this image in Figure 11-4.

Chapter 11 ■ refaCtoring the example: part i

273

Using combined images like this is a common technique, because it avoids the browser having to incur the
overhead of making three different requests to the server to get three closely related images. You’ll see how you can use
this kind of image when I fill in the handleArrowMouse function shortly. You can see how the page looks in Figure 11-5.

Figure 11-5. The intermediate state for the example document

Dealing with the Submit Button
As you can see from Figure 11-5, my example is in an intermediate state. New features have appeared, but I have not
properly dealt with some of the existing elements. The most significant of these is the Place Order button that submits
the form. Listing 11-4 shows the additions to the script to deal with this element (and add a new feature).

Listing 11-4. Dealing with the Submit Button

...
<script type="text/javascript">
 $(document).ready(function() {

 var fNames = ["Carnation", "Lily", "Orchid"];
 var fRow = $("<div id=row3 class=drow/>").appendTo("div.dtable");
 var fTemplate = $("<div class=dcell><label/><input/></div>");
 for (var i = 0; i < fNames.length; i++) {
 fTemplate.clone().appendTo(fRow).children()
 .filter("img").attr("src", fNames[i] + ".png").end()
 .filter("label").attr("for", fNames[i]).text(fNames[i]).end()
 .filter("input").attr({name: fNames[i], value: 0, required: "required"})
 }

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 11 ■ refaCtoring the example: part i

274

 $("").prependTo("form")
 .css({
 "background-image": "url(leftarrows.png)",
 "float": "left",
 "margin-top": "15px",
 display: "block", width: 50, height: 50
 }).click(handleArrowPress).hover(handleArrowMouse)

 $("#right").css("background-image", "url(rightarrows.png)").appendTo("form");

 $("h1").css({"min-width": "0", width: "95%",});
 $("#row2, #row3").hide();
 $("#oblock").css({float: "left", display: "inline", border: "thin black solid"});
 $("form").css({"margin-left": "auto", "margin-right": "auto", width: 885});

 var total = $("#buttonDiv")
 .prepend("<div>Total Items: 0</div>")
 .css({clear: "both", padding: "5px"});
 $("<div id=bbox />").appendTo("body").append(total).css("clear: left");

 function handleArrowMouse(e) {
 }

 function handleArrowPress(e) {

 }
 });
</script>
...

To accommodate the changes in the layout caused by the carousel buttons, I have moved the div that contains
the button element (it has an id of buttonDiv) to be inside a new div element, which, in turn, I have appended to the
body element. This moves the button to a position where it returns to the bottom of the page. I have also added a div
and a span element. These will be used to display the total number of products that the user has selected.

...
var total = $("#buttonDiv")
 .prepend("<div>Total Items: 0</div>")
 .css({clear: "both", padding: "5px"});
$("<div id=bbox />").appendTo("body").append(total).css("clear: left");
...

The next change for this section is to hide two of the rows of products. This is so that you can reveal them to the
user when they click the carousel buttons.

...
$("#row2, #row3").hide();
...

I have also tweaked the style of the h1 element to match the revised layout style.

Chapter 11 ■ refaCtoring the example: part i

275

...
$("h1").css({"min-width": "0", width: "95%",});
...

You can see the effect of these changes in Figure 11-6.

Figure 11-6. Dealing with the submit button and tidying the CSS

Implementing the Carousel Event Handler Functions
The next step is to implement the functions that handle events for the carousel buttons. I am going to deal with the
mouseenter and mouseexit events, which are handled by the handleArrowMouse function. Listing 11-5 shows the
implementation of this function.

Listing 11-5. Handling the Arrow Button Mouse Events

...
function handleArrowMouse(e) {
 var propValue = e.type == "mouseenter" ? "-50px 0px" : "0px 0px";
 $(this).css("background-position", propValue);
}
...

The trick to dealing with combined images is to use the background-position property to shift the image so that
only the part I want is visible. Although there are three images in my sets of arrows, I am going to use only two of them.
The darkest image will be shown normally, and the middle image will be shown when the mouse is hovering over the
element. You could use the remaining arrow to represent a button being clicked or being disabled, but I want to keep
things simple. You can see the two states that the images represent in Figure 11-7.

Chapter 11 ■ refaCtoring the example: part i

276

The handleArrowPress function is responsible for creating the carousel effect, allowing the user to page through
the rows of flowers. Listing 11-6 shows the implementation of this function.

Listing 11-6. Implementing the handleArrowPress Function

...
function handleArrowPress(e) {
 var elemSequence = ["row1", "row2", "row3"];
 var visibleRow = $("div.drow:visible");
 var visibleRowIndex = jQuery.inArray(visibleRow.attr("id"), elemSequence);

 var targetRowIndex;
 if (e.target.id == "left") {
 targetRowIndex = visibleRowIndex - 1;
 if (targetRowIndex < 0) {targetRowIndex = elemSequence.length -1};
 } else {
 targetRowIndex = (visibleRowIndex + 1) % elemSequence.length;
 }

 visibleRow.fadeOut("fast", function() {
 $("#" + elemSequence[targetRowIndex]).fadeIn("fast")});
}
...

The first three statements in this function set up the basic data you need.

...
var elemSequence = ["row1", "row2", "row3"];
var visibleRow = $("div.drow:visible");
var visibleRowIndex = jQuery.inArray(visibleRow.attr("id"), elemSequence);
...

Figure 11-7. The two states of the arrow buttons

Chapter 11 ■ refaCtoring the example: part i

277

The first statement defines the set of id attribute values for the row elements. The second statement uses jQuery
to get the visible row, which I then use to determine the index of the visible row in the array of row id values. (I do
this using the inArray utility method, which I explain in Chapter 34.) So, I know which row is visible and where in the
sequence of rows I am. My next step is to figure out the index of the row that will be displayed next.

...
var targetRowIndex;
if (e.target.id == "left") {
 targetRowIndex = visibleRowIndex - 1;
 if (targetRowIndex < 0) {targetRowIndex = elemSequence.length -1};
} else {
 targetRowIndex = (visibleRowIndex + 1) % elemSequence.length;
}
...

In almost any other programming language, I could use the modulo operator to figure out the index of the next
row to display, but the JavaScript implementation of modulo math doesn’t support negative values properly. So, if
the user clicks the left button, I check for array bounds manually; I do it using the % operator if the user clicks the right
button. Once I have figured out the currently visible element and the element to display next, I use jQuery effects to
animate a transition from one to the other.

...
visibleRow.fadeOut("fast", function() {
 $("#" + elemSequence[targetRowIndex]).fadeIn("fast")});
...

I have used the fadeOut and fadeIn methods because they work nicely with my CSS table-style layout. I use a callback
in the first effect to trigger the second and perform both effects using the fast time span. There is no change in the static
layout of the page, but the arrow buttons now take the user from one row of flowers to the next, as shown in Figure 11-8.

Figure 11-8. Providing a carousel of product rows

Chapter 11 ■ refaCtoring the example: part i

278

Totaling the Product Selection
The last change is to wire up the item total so that the total number of flowers selected in individual input fields is
shown under the product carousel. Listing 11-7 shows the changes to the script.

Listing 11-7. Wiring Up the Product Total

...
<script type="text/javascript">
 $(document).ready(function() {

 var fNames = ["Carnation", "Lily", "Orchid"];
 var fRow = $("<div id=row3 class=drow/>").appendTo("div.dtable");
 var fTemplate = $("<div class=dcell><label/><input/></div>");
 for (var i = 0; i < fNames.length; i++) {
 fTemplate.clone().appendTo(fRow).children()
 .filter("img").attr("src", fNames[i] + ".png").end()
 .filter("label").attr("for", fNames[i]).text(fNames[i]).end()
 .filter("input").attr({name: fNames[i], value: 0, required: "required"})
 }

 $("").prependTo("form")
 .css({
 "background-image": "url(leftarrows.png)",
 "float": "left",
 "margin-top": "15px",
 display: "block", width: 50, height: 50
 }).click(handleArrowPress).hover(handleArrowMouse)

 $("#right").css("background-image", "url(rightarrows.png)").appendTo("form");

 $("h1").css({"min-width": "0", width: "95%",});
 $("#row2, #row3").hide();
 $("#oblock").css({float: "left", display: "inline", border: "thin black solid"});
 $("form").css({"margin-left": "auto", "margin-right": "auto", width: 885});

 var total = $("#buttonDiv")
 .prepend("<div>Total Items: 0</div>")
 .css({clear: "both", padding: "5px"});
 $("<div id=bbox />").appendTo("body").append(total).css("clear: left");

 $("input").change(function(e) {
 var total = 0;
 $("input").each(function(index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 });

Chapter 11 ■ refaCtoring the example: part i

279

 function handleArrowMouse(e) {
 var propValue = e.type == "mouseenter" ? "-50px 0px" : "0px 0px";
 $(this).css("background-position", propValue);
 }

 function handleArrowPress(e) {
 var elemSequence = ["row1", "row2", "row3"];

 var visibleRow = $("div.drow:visible");
 var visibleRowIndex = jQuery.inArray(visibleRow.attr("id"), elemSequence);

 var targetRowIndex;

 if (e.target.id == "left") {
 targetRowIndex = visibleRowIndex - 1;
 if (targetRowIndex < 0) {targetRowIndex = elemSequence.length -1};
 } else {
 targetRowIndex = (visibleRowIndex + 1) % elemSequence.length;
 }
 visibleRow.fadeOut("fast", function() {
 $("#" + elemSequence[targetRowIndex]).fadeIn("fast")});
 }

 });
</script>
...

In this addition, I select the input element in the document and register a handler function that gets the value
from each, sums it, and sets it as the content for the span element I added earlier. You can see the effect in Figure 11-9.

Figure 11-9. Displaying the product selection total

Chapter 11 ■ refaCtoring the example: part i

280

The total shows the sum of all of the input elements and not just the ones that are currently visible (although it
would be a simple matter to use the other approach).

Disabling JavaScript
I have made some sweeping changes to the example document, but all of them were made with jQuery. This means
that I have effectively created two tiers of document, one for JavaScript-enabled browsers and one for non-JavaScript
browsers, Figure 11-10 shows what happens when you disable JavaScript and view the example document.

Figure 11-10. Disabling JavaScript and viewing the example document

I am back where I started. With a little planning and forethought, I can offer non-JavaScript clients a set of
functionality that still lets them interact with your page or application. This is generally a good idea; there are a lot of
large corporations that manage IT (information technology) centrally and disable JavaScript as a security precaution.
(Well, sort of. When working for such organizations for many years, I came to believe that these policies didn’t actually
stop staff from using JavaScript; they simply created incentives to find loopholes and workarounds.)

Summary
In this chapter, I showed you how to combine the techniques from previous chapters to refactor the example
document. I added new content programmatically, created a simple carousel of products, and created a total that
displays the overall number of selected items. Along the way, I tweaked the DOM and CSS to accommodate these
changes, all in a way that lets non-JavaScript browsers fall back to a document that remains useful.

In the next part of this book, I’ll continue to build on this example, bringing in ever more jQuery features to
flesh out the functionality. For the most part, I’ll apply these to the original example document so as to focus on each
feature in turn, but in Chapter 16, I'll refactor the example again to bring in more features.

281

Chapter 12

Using Data Templates

In the previous edition of this book, I introduced data templates using the jQuery Templates plug-in. This history of
this plug-in was rather odd. Microsoft and the jQuery team announced that three plug-ins developed by Microsoft
had been accepted as “official” plug-ins, a status that had not been accorded to any other plug-in. A while later, the
jQuery team announced that the plug-ins were deprecated, that the official status was removed, and that there were
plans to replace them with other functionality. A replacement for the template plug-in would be created as part of
jQuery UI (which I describe in Part IV of this book).

That was a while ago and the new official jQuery template engine that was announced, which was named jsViews,
is still not finished. There is a beta version available, but it has rough edges and remains volatile. I am not a fan, but
you can learn more and get the latest beta version of the library at https://github.com/BorisMoore/jsviews.

In the meantime, the deprecated jQuery Templates package I used in the last edition has not aged well.
I stopped using it a while ago in my own projects and settled on an alternative called Handlebars, which is available
from http://handlebarsjs.com. It doesn’t come with any jQuery integration – in fact, it isn’t a jQuery plug-in at
all – but it is easy to write a small amount of code to support templates through the jQuery syntax, and I show you
how this is done.

Handlebars – as did the jQuery Templates plug-in before it – supports mustache templates, which are expressed
as HTML containing special mustache directives. I explain what these are, but the use of the term mustache comes
from the fact that they are denoted using the brace characters ({ and }) which look a little like sideways mustaches.
Table 12-1 provides the summary for this chapter.

Table 12-1. Chapter Summary

Problem Solution Listing

Generate elements using a template. Install the Handlebars library, create a jQuery
plug-in, and use the template method.

1–6

Assign the elements generated from a template to
different parents.

Either split the source data and apply the template
twice, or use the slice filter and end methods to
divide up the generated elements.

7–10

Change the output of the template if a data
property is defined and isn’t null.

Use the built-in #if or #unless template helpers. 11, 12

Enumerate the contents of an array or the
properties of an object.

Use the #each template helper. 13, 14

Refer to another part of the data object in a template. Use the #with template helper, or use the ../ path. 15–17

(continued)

https://github.com/BorisMoore/jsviews
http://handlebarsjs.com/

Chapter 12 ■ Using Data templates

282

Understanding the Problem That Templates Solve
Data templates solve a specific problem: they allow you to programmatically generate elements from the properties
and values of JavaScript objects. This is something you can do in other ways, and, in fact, I did something similar in
Chapter 11 when I created some elements to represent additional flowers in the example document. Listing 12-1
shows the relevant statements from that chapter.

Listing 12-1. Creating Elements Programmatically

...
<script type="text/javascript">
 $(document).ready(function() {
 var fNames = ["Carnation", "Lily", "Orchid"];
 var fRow = $("<div id=row3 class=drow/>").appendTo("div.dtable");
 var fTemplate = $("<div class=dcell><label/><input/></div>");
 for (var i = 0; i < fNames.length; i++) {
 fTemplate.clone().appendTo(fRow).children()
 .filter("img").attr("src", fNames[i] + ".png").end()
 .filter("label").attr("for", fNames[i]).text(fNames[i]).end()
 .filter("input").attr({name: fNames[i], value: 0, required: "required"})
 }
 });
</script>
...

The statements in the listing are hard to read, and the difficulty increases sharply for more complex elements.
Handily, as I’ll explain, data templates put the emphasis back on HTML and minimize the amount of code needed to
generate elements from data.

Taking a broader view, the need to integrate data into the document is a common issue to resolve. In my projects,
it arises through two situations. The first is because I am working with some preexisting system that contains the data
that drives my web application. I could obtain the data and integrate it into the document at the server – nd there are
some great technologies available to do this – but it means that my server farm spends a lot of time doing work that
I could get the browser to do for me. If you have ever built and operated a high-volume web application, you know that
the costs are substantial and that any opportunity to reduce the amount of processing required is considered seriously.

The second reason I need to integrate data into a document is that my web application is sourcing the data via
Ajax in response to a user action. I will explain the jQuery support for Ajax fully in Chapters 14 and 15, but the short
version is that you can obtain and display data from a server without reloading the entire page in the browser. It is a
powerful technique that is widely used, and the data templates work nicely with it.

Problem Solution Listing

Create a custom template helper. Use the Handlebars.registerHelper method
to register the name of the helper and a helper
function that returns template content.

18–22

Receive optional arguments in a template helper
function.

Use the options.hash property. 23, 24

Define special properties that can be used within
the block of a custom template helper.

Use the options.data property. 25, 26

Table 12-1. (continued)

Chapter 12 ■ Using Data templates

283

Setting Up the Template Library
Before you can use templates, you must download the template library and link to it in your document. You can
download the library from http://handlebarsjs.com, and I saved the JavaScript code to a file called handlebars.js,
alongside the jQuery JavaScript file.

The handlebars library doesn’t have any integration with jQuery, but it is a simple matter to create a jQuery
plug-in that allows me to use jQuery syntax to generate templates. I created a file called handlebars-jquery.js
and used it to define the code shown in Listing 12-2.

Listing 12-2. Adapting handlerbars.js to Use jQuery Syntax in the handlebars-jquery.js File

(function ($) {
 var compiled = {};
 $.fn.template = function (data) {
 var template = $.trim($(this).first().html());
 if (compiled[template] == undefined) {
 compiled[template] = Handlebars.compile(template);
 }
 return $(compiled[template](data));
 };
})(jQuery);

CreatING CUStOM JQUerY pLUG-INS

as listing 12-2 demonstrates, it is simple to create plug-ins for jQuery, especially if you are just creating
a wrapper around an existing library. i don't describe how custom plug-ins work in this book because it is
something that few developers need to do, but you can get full details at http://learn.jquery.com/plugins.

This code defines a method called template that can be called on jQuery objects to apply a template to a data
object using handlebars. The result is a jQuery object containing the HTML elements generated from the template.
In order to generate templates, I need to add script elements for the handlebars.js and handlebars-jquery.js
files to the example document, as shown in Listing 12-3.

Listing 12-3. Adding the Library to the Example Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function () {

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://handlebarsjs.com/
http://learn.jquery.com/plugins

Chapter 12 ■ Using Data templates

284

 // ...example code will go here...

 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow"></div>
 <div id="row2"class="drow"></div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

I will use this listing as the example document for this chapter. Aside from the addition of the template library
and my simple plug-in, you will notice that I have removed the elements that describe individual flowers – I have
done this so that I can explore different techniques for adding them back in using templates. You can see how this
initial HTML document appears in the browser in Figure 12-1.

A First Data Templates Example
The best way to start learning about data templates is to jump right in. Listing 12-4 demonstrates the basic template
features. I have included the full HTML document in this listing because templates are expressed using a script
element, but I’ll just show the changes needed in subsequent listings.

Listing 12-4. A First Data Templates Example

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>

Figure 12-1. The starting example document

Chapter 12 ■ Using Data templates

285

 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#each flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="0" required />
 </div>
 {{/each}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: 2.99 },
 { name: "Daffodil", product: "daffodil", stock: "12", price: 1.99 },
 { name: "Rose", product: "rose", stock: "2", price: 4.99 },
 { name: "Peony", product: "peony", stock: "0", price: 1.50 },
 { name: "Primula", product: "primula", stock: "1", price: 3.12 },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: 0.99 }]
 };
 var template = $("#flowerTmpl").template(data).appendTo("#row1");
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow"></div>
 <div id="row2"class="drow"></div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

In the sections that follow, I’ll break down the example and explain each part.

Tip ■ When the data is part of the document, it is known as inline data. the alternative is remote data, which is where
you get the data from a server separately from the document. i’ll demonstrate remote data later in the chapter, but it
touches upon the jQuery support for ajax, which is the topic of Chapters 14 and 15.

Chapter 12 ■ Using Data templates

286

Defining the Data
The starting point for the example is the data, which in this case is an object with a single property that is set to an
array of objects. Each object describes a single flower product, and Listing 12-5 shows the relevant statements from
the example HTML document.

Listing 12-5. Defining the Flower Data

...
var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: 2.99 },
 { name: "Daffodil", product: "daffodil", stock: "12", price: 1.99 },
 { name: "Rose", product: "rose", stock: "2", price: 4.99 },
 { name: "Peony", product: "peony", stock: "0", price: 1.50 },
 { name: "Primula", product: "primula", stock: "1", price: 3.12 },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: 0.99 }]
};
...

Handlebars templates work on objects and properties, which is why I have to have an object wrapper around
my array of flower objects. For this example, the array contains six objects, each of which has a set of properties that
describe a flower shop product: the display name, the product name, the stock level, and the price.

Defining the Template
As you might imagine, at the heart of the data template library is the data template. This is a set of HTML elements
containing placeholders that correspond to aspects of the data objects. Listing 12-6 shows the template for this
example.

Listing 12-6. Defining the Data Template

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="0" required />
 </div>
 {{/flowers}}
</script>
...

The first point to note about the template is that it is contained within a script element with a type attribute of
text/x-handlebars-template. This is to stop the browser from interpreting the contents of the template. The second
point of note is that I have assigned a name to my script element using the id attribute: in this example, the template
is called flowerTmpl. The name is important because I will need it to apply the template to the data.

Chapter 12 ■ Using Data templates

287

The contents of the template will be applied to the objects in the data array in order to produce a set of HTML
elements for each and every object. You can see that the structure of the template corresponds to the set of elements
that I have used for the flower products in previous chapters.

The key difference, of course, is the parts I have emphasized in the listings. These are double mustache directives
(so called because the brace characters used to denote them look like mustaches – hence the term mustache
template). There are two kinds of directives in this example (and I’ll introduce further types later in the chapter).

The first kind of directive is a section, which defines a region of the template that will be generated for each value
of the property with the same name in the data object. Section directives start with a # character ({{#flowers}},
in this case) and end with a / character ({{/flowers}}). The section directive I used will generate the section of
the template it contains for each of the objects assigned to the flowers property.

The other type of directive is a variable, which will be replaced with the corresponding property value from the
data object. So, for example, when the template library encounters the {{product}} variable it replaces it with the
value of the product property from the object that is being processed, meaning that the part of the template like this:

...

...

is transformed into this:

...

...

Applying the Template
I apply the template to the data using the template method that I defined in my jQuery plug-in in Listing 12-2.
Here is the call to the template method from the example HTML document:

...
var template = $("#flowerTmpl").template(data).appendTo("#row1");
...

I use the jQuery $ function to select the script element that contains the template and then call the template
method on the resulting jQuery object, passing in the data that I want to process.

The template method returns a standard jQuery object that contains the elements produced from the template.
In this case, I end up with a set of div elements, each of which contains an img, label, and input element that has
been tailored for one of the objects in my data array. I use the appendTo method to insert the complete set as children
to the row1 element. You can see the result in Figure 12-2.

Chapter 12 ■ Using Data templates

288

Tweaking the Result
I don’t get exactly the result I wanted – all of the flowers are in a single row, rather than split over two rows as in
previous chapters. But, since I am dealing with a jQuery object, I can slice and dice the elements using the techniques
I described in Part 2. Listing 12-7 shows how you can do this by operating on the jQuery object that the template
method returns.

Listing 12-7. Processing the Results from a Template

...
<script type="text/javascript">
 $(document).ready(function () {
 var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: 2.99 },
 { name: "Daffodil", product: "daffodil", stock: "12", price: 1.99 },
 { name: "Rose", product: "rose", stock: "2", price: 4.99 },
 { name: "Peony", product: "peony", stock: "0", price: 1.50 },
 { name: "Primula", product: "primula", stock: "1", price: 3.12 },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: 0.99 }]
 };

 $("#flowerTmpl").template(data)
 .slice(0, 3).appendTo("#row1").end().end().slice(3).appendTo("#row2")
 });
</script>
...

In this example, I use the slice and end methods to narrow and broaden the selection and the appendTo method
to add subsets of the elements generated from the template to different rows.

Notice that I have to call the end method twice in succession to unwind the narrowing caused by the slide and
appendTo methods. You can see the effect in Figure 12-3 – I am closer, but I still didn’t get the result I had aimed for.

Figure 12-2. Using data templates

Chapter 12 ■ Using Data templates

289

The problem is that Handlebars adds text nodes to the HTML it generates at the point where the contents of my
template are split across multiple lines – and since my use of the slice method applies to all of the elements that the
template generates (including text nodes), I am splitting the content in the wrong place.

There are several ways of fixing this. The first is to adjust the template so that all of the content is on one line – but
I don’t like this approach, preferring to make templates as readable as possible.

Another approach is to adjust the indexes pass to the slice method to take the text nodes into account – but
I don’t like this either, because not all text editors represent new lines in a way that causes the text nodes to be created,
and that means that editing the HTML file with a different editor can change the behavior of the JavaScript code,
which is far from ideal.

My preferred approach is to use jQuery to remove the text nodes from the HTML generated by the template
before adding it into the DOM. Unfortunately, jQuery doesn’t include a useful method for this task and so the best
approach is to use the filter method with the * selector, which matches all HTML tag types but excludes text nodes.
You can see the addition of the filter method to my jQuery in Listing 12-8.

Listing 12-8. Using the filter Method to Remove Text Nodes

...
$("#flowerTmpl").template(data).filter("*")
 .slice(0, 3).appendTo("#row1").end().end().slice(3).appendTo("#row2")
...

You can see the result in Figure 12-4: the flowers are split properly across the two rows.

Figure 12-3. Trying to adjust the layout of the HTML generated from the data

Chapter 12 ■ Using Data templates

290

I am still not happy with the way that I handle the HTML generated by the template. I generally like using the
end method to create single-statement operations, but I find the end().end() sequence dislikable. Instead, I would
usually break down the steps into separate operations, as shown in Listing 12-9, which produces the same result as
Listing 12-8, but is easier to read.

Listing 12-9. Splitting the Elements Using Multiple Statements

...
var templateHtml = $("#flowerTmpl").template(data).filter("*");
templateHtml.slice(0, 3).appendTo("#row1");
templateHtml.slice(3).appendTo("#row2");
...

Tweaking the Input
A different approach is to adjust the data that you pass to the template method. Listing 12-10 shows how this can
be done.

Listing 12-10. Using the Data to Adjust the Output from the Template

...
<script type="text/javascript">
 $(document).ready(function () {
 var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: 2.99 },
 { name: "Daffodil", product: "daffodil", stock: "12", price: 1.99 },
 { name: "Rose", product: "rose", stock: "2", price: 4.99 },

Figure 12-4. Using the filter method to remove text nodes

Chapter 12 ■ Using Data templates

291

 { name: "Peony", product: "peony", stock: "0", price: 1.50 },
 { name: "Primula", product: "primula", stock: "1", price: 3.12 },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: 0.99 }]
 };

 var tElem = $("#flowerTmpl");
 tElem.template({ flowers: data.flowers.slice(0, 3) }).appendTo("#row1");
 tElem.template({ flowers: data.flowers.slice(3) }).appendTo("#row2");
 });
</script>
...

In this script, I solve the problem of allocating flowers to rows by using the template twice – once for each row.
I used the split method so that I could feed a range of data objects to the template each time. The technique is
different, but the result is the same, as shown in Figure 12-4. Notice that I have to take care to preserve the shape of the
object that I pass to the template method so that it matches my section declarations – I must ensure that the object
has a property called flowers that is set to the array of data objects that I want to process.

Using Template Logic
One of the ways you can differentiate between the huge varieties of JavaScript template engines is to look at how the
output of the templates can be varied based on different data values.

At one end of the spectrum is the logic-less template, which contains no logic at all and varying the output
from the template means careful preparation of the data before using the template engine. The other extreme is
the full-logic template, which is like having a simple programming language dedicated to defining and executing
templates, with built-in support for conditional statements, loops, array processing, and managing collections of data.

Opinions differ on just how much logic should be in a template and the whole topic is contentious. I like to be
somewhere in the middle of the spectrum – I like to be able to use logic in my templates, but I want to keep it simple
and not have add another language to my HTML documents. One of the reasons I chose the Handlebars library for
this chapter is that it allows you to use as little or as much logic in a template as you like – and, as you’ll see later in
the chapter, makes it easy to define custom logic to solve specific problems. The Handlebars library contains some
built-in helpers, described in Table 12-2, which are simple logic operators that can be used to vary the output from the
template based on data values.

Creating Conditional Content
To demonstrate how logic is used in Handlebars templates, I am going to set the value attribute of the input
element in the template based on the value of the stock property of each object in the flowers array of the data
object. My goal is to set the value to 1 when the corresponding stock property is greater than zero. You can see how
I have done this by applying the #if helper in Listing 12-11.

Table 12-2. The Built-in Handlebars Helpers

Helper Description

#if An if/then/else conditional, which evaluates to true if the specified property exists and is not null.

#unless The inverse of the #if helper; evaluates to true if the specified property does not exist or is null.

#each Iterates over an array of objects or the properties of an object.

#with Sets the context for a section of the template.

Chapter 12 ■ Using Data templates

292

Listing 12-11. Using Template Logic to Alter the Output from a Template

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="{{#if stock}}1{{else}}0{{/if}}" required />
 </div>
 {{/flowers}}
</script>
<script type="text/javascript">
 $(document).ready(function () {
 var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: 2.99 },
 { name: "Daffodil", product: "daffodil", stock: "12", price: 1.99 },
 { name: "Rose", product: "rose", stock: "2", price: 4.99 },
 { name: "Peony", product: "peony", stock: "0", price: 1.50 },
 { name: "Primula", product: "primula", stock: "1", price: 3.12 },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: 0.99 }]
 };
 for (var i = 0; i < data.flowers.length; i++) {
 if (data.flowers[i].stock == 0) {
 data.flowers[i].stock = null;
 }
 }
 var tElem = $("#flowerTmpl");
 tElem.template({ flowers: data.flowers.slice(0, 3) }).appendTo("#row1");
 tElem.template({ flowers: data.flowers.slice(3) }).appendTo("#row2");
 });
</script>
...

Each part of the helper is expressed using double mustaches: the first consists of #if followed by the property
that I want to inspect, which is stock in this case. This will evaluate as true if the current object being processed by
the #flowers section directive defines a stock property and that property is not null. If this is the case, the template
engine will insert the value that follows the first part of the conditional into the HTML, which is 1 in this example.

The optional else section works just like it does in JavaScript and allows me to provide an alternative value that
will be used if the current object doesn’t have a stock property or if there is a stock property and it is null. In this
case, the template engine will insert 0 into the HTML generated from the template. The final section is /if, which
denotes the end of the conditional block.

The logic that is behind the #if helper is basic and returning true based on whether the property exists and
is defined forces me to process my data before passing it to the template method. I use a JavaScript for loop to
enumerate the flower objects and set any stock property that has a value of 0 to null. The result is that all of the input
elements generated from the template will have a value of 1 except the one for the Peony, as shown in Figure 12-5.

Chapter 12 ■ Using Data templates

293

Tip ■ i am not fond of having to process the data to suit the limitations of the template engine, and i’ll show you how
to create custom logic that doesn’t require data processing later in the chapter.

The #unless helper works in the same way as the #if helper, but will evaluate as true if the property it is applied
to is doesn’t exist or is null. In Listing 12-12, you can see how I have applied the #if and #unless helpers alongside
each other without their optional else directives to set the value attribute of the input element in the template.

Listing 12-12. Applying the #if and #unless Helpers in the Template

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="{{#if stock}}1{{/if}}{{#unless stock}}0{{/unless}}" required />
 </div>
 {{/flowers}}
</script>
...

Figure 12-5. Using logic in a template to vary the generated HTML

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 12 ■ Using Data templates

294

The #if and #unless helpers are completely independent of each other, but using them this way shows how you
can test for the presence or the absence of a property without using an else directive. This listing produces the same
result as Listing 12-11, which was illustrated by Figure 12-5.

Enumerating Arrays and Properties
The section directive that I used in Listing 12-12 is part of the Handlebars library’s support for the more widely used
mustache templates, and the #each helper is a more sophisticated alternative that provides some special properties
that can be used within the template. These properties are described in Table 12-3.

In Listing 12-13, you can see how I have used the #each helper on the existing data, along with the @index
property.

Listing 12-13. Using the #each Helper and the @index Property

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#each flowers}}
 <div class="dcell">
 <label>Position: {{@index}}</label>

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="{{#if stock}}1{{/if}}{{#unless stock}}0{{/unless}}" required />
 </div>
 {{/each}}
</script>
...

I specify the source of the objects to be enumerated as the argument to the #each helper, which is this case is the
value of the flowers property of the data object passed to the template method. You can see the result in Figure 12-6
(the indexes restart for each row because I am splitting the data into two sections and calling the template method
twice, as shown in Listing 12-11).

Table 12-3. The Special Properties Provided by the #each Helper

Name Description

this Returns the object that is being processed.

@index Returns the index of the current object when the #each helper is used on an array.

@key Returns the name of the current property when used on an object.

Chapter 12 ■ Using Data templates

295

The this and @key properties are useful when passing objects to the template method, rather than arrays. The
Handlebars library will enumerate the properties of the object – the @key property is used to get the current property
name and the this property is used to get the current value. You can see both properties used together in Listing 12-14.

Listing 12-14. Enumerating the Properties of an Object with the #each Helper

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script id="flowerListTmpl" type="text/x-handlebars-template">

 {{#each stockData}}
 {{@key}} ({{this}} in stock)
 {{/each}}

 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 var data = {
 stockData: {
 Aster: 10, Daffodil: 12, Rose: 2,
 Peony: 0, Primula: 1, Snowdrop: 15
 }
 };
 $("#flowerListTmpl").template(data).appendTo("form");
 });
 </script>
</head>

Figure 12-6. Using the #each helper and the @index property

Chapter 12 ■ Using Data templates

296

<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 </form>
</body>
</html>

I have replaced the data in this example with a simpler structure – the data.stockData property returns an object
whose property names describe flowers and whose values describe the number in stock. For the template I use the
#each helper on the stockData property (remember that I have to pass an object to the template method and apply
the helpers and directives to its properties). The template in this example creates a list. I get the value of each property
with the this property and the name of the property with the @key property, and you can see the result in Figure 12-7.

Changing the Data Context
The data context is the part of the data object that helpers and variables are applied to. When template processing
begins, the context is the entire data object, but it is changed by helpers and section directives to make writing the
template easier, as shown in the template I used in the last example:

...
{{#each stockData}}
 {{@key}} ({{this}} in stock)
{{/each}}
...

The #each helper shifts the context to each of the properties of the data object in turn – and that means that
variables and helpers defined within the #each helper block will all be evaluated relative to the current object.
You can see this more clearly in Listing 12-15, where I have changes the data and the template to make the effect
of the context clearer.

Figure 12-7. Using the @key and this properties with the #each helper

Chapter 12 ■ Using Data templates

297

Listing 12-15. Emphasizing the Role of the Context in a Template

...
<script id="flowerListTmpl" type="text/x-handlebars-template">

 <h3>{{title}}</h3>
 {{#each stockData}}
 {{description.Name}} ({{description.Stock}} in stock)
 {{/each}}

</script>
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 title: "Stock List",
 stockData: {
 aster: {
 description: { Name: "Aster", Stock: 10 }
 },
 daffodil: {
 description: { Name: "Daffodil", Stock: 12 }
 },
 rose: {
 description: { Name: "Rose", Stock: 2 }
 }
 }
 };
 $("#flowerListTmpl").template(data).appendTo("form");
 });
</script>
...

I have added a title property to the data object and structure to the individual flowers. The first directive of the
template relies on the default data context, which is the entire data object:

...
<h3>{{title}}</h3>
...

You can see what I mean about the directives being evaluated relative to the context – I just need to specify the
property name without any qualification to get the value of the title property from the data object. The next directive
in the template changes the context:

...
{{#each stockData}}
...

Chapter 12 ■ Using Data templates

298

The #each helper enumerates the properties of the object returned by the stockData property and changes the
context to be each property value in turn. You can see the effect in the next line of the template:

...
{{description.Name}} ({{description.Stock}} in stock)
...

I access the Name and Stock properties relative to the current context – and that means using a path to navigate
through the description object, following the structure of the data object. The result is shown in Figure 12-8.

Using the #with Helper
In the previous example, I had to specify description.Name and description.Stock to access the property values
I wanted for my template. The #with helper can eliminate the need to duplicate common property names by changing
the data context for all of the directives that it contains, as shown in Listing 12-16.

Listing 12-16. Changing the Data Context with the #with Helper

...
<script id="flowerListTmpl" type="text/x-handlebars-template">

 <h3>{{title}}</h3>
 {{#each stockData}}
 {{#with description}}
 {{Name}} ({{Stock}} in stock)

Figure 12-8. Accessing properties relative to the context

Chapter 12 ■ Using Data templates

299

 {{/with}}
 {{/each}}

</script>
...

Within the scope of the #with block the context is narrowed to the description property. When combined with
the change in data context made by the #each helper, I am able to access the Name and Stock properties of each flower
object without having to qualify the name.

Access Parent Data Contexts
Changes in data context are not always helpful, and you sometimes need to access another part of the data object
to get a common property value. You can navigate to the parent context by prefixing variables with ../, as shown
in Listing 12-17.

Listing 12-17. Accessing the Parent Data Context

...
<script id="flowerListTmpl" type="text/x-handlebars-template">

 <h3>{{title}}</h3>
 {{#each stockData}}
 {{#with description}}
 {{Name}}{{../../prefix}}{{Stock}}{{../../suffix}}
 {{/with}}
 {{/each}}

</script>
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 title: "Stock List",
 prefix: " (",
 suffix: " in stock)",
 stockData: {
 aster: {
 description: { Name: "Aster", Stock: 10 }
 },
 daffodil: {
 description: { Name: "Daffodil", Stock: 12 }
 },
 rose: {
 description: { Name: "Rose", Stock: 2 }
 }
 }
 };
 $("#flowerListTmpl").template(data).appendTo("form");
 });
</script>
...

Chapter 12 ■ Using Data templates

300

I have defined prefix and suffix properties at the top-level of the data object. To access these from the template,
I need to navigate up two context levels, as follows:

...
{{../../prefix}}
...

This directive appears within the scope of the #with helper and so applying ../ once will change the context to
the next level up in the template, which is the #each helper. The #each helper has set the context to be the contents
of the stockData property, and so I need to up another level to get to the prefix property, meaning I must reference
../../prefix to get the value I want.

Tip ■ the ../ sequence navigates up one level in the template and not the data object.

Creating Custom Template Helpers
The logic in some of the helpers is pretty basic, and this means that processing the data to fit into the way the
helpers work is often required. You can see an example of this in Listing 12-18, which repeats the example I used
to demonstrate the #if helper earlier in the chapter.

Listing 12-18. Preparing Data for Use with a Template Helper

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="{{#if stock}}1{{else}}0{{/if}}" required />
 </div>
 {{/flowers}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: 2.99 },
 { name: "Daffodil", product: "daffodil", stock: "12", price: 1.99 },
 { name: "Rose", product: "rose", stock: "2", price: 4.99 },
 { name: "Peony", product: "peony", stock: "0", price: 1.50 },

Chapter 12 ■ Using Data templates

301

 { name: "Primula", product: "primula", stock: "1", price: 3.12 },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: 0.99 }]
 };
 for (var i = 0; i < data.flowers.length; i++) {
 if (data.flowers[i].stock == 0) {
 data.flowers[i].stock = null;
 }
 }
 var tElem = $("#flowerTmpl");
 tElem.template({ flowers: data.flowers.slice(0, 3) }).appendTo("#row1");
 tElem.template({ flowers: data.flowers.slice(3) }).appendTo("#row2");
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow"></div>
 <div id="row2"class="drow"></div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

I dislike having to process my data before passing it to the template engine because it means that I have logic for
displaying my data in two places: the template and the for loop.

This is where the use of templates becomes contentious because there are two approaches to ensuring that the
logic for generating content from the template is in just one place: remove the logic from the template and define it
all in JavaScript or to remove the for loop and add extra logic to the template. There are lots of arguments to support
both approaches, but it is essentially a personal choice driven by preference and the nature of the data that you are
working with. I prefer to add logic to the template, which is something that the Handlebars library makes simple
and easy.

Creating a Conditional Template Helper
In Listing 12-19, you can see the additions I made to the handlebars-jquery.js file to create a custom helper for my
template.

Tip ■ You can define the custom logic in any script element or Javascript file. i like to keep my additions to handlebar.js
in one place – but that’s just personal preference.

Chapter 12 ■ Using Data templates

302

Listing 12-19. Defining Custom Conditional Logic for Handlebars in the handlebars-jquery.js File

(function ($) {

 Handlebars.registerHelper('gt', function (a, b, options) {
 return (a > b) ? options.fn(this) : options.inverse(this);
 });

 var compiled = {};
 $.fn.template = function (data) {
 var template = $.trim($(this).first().html());
 if (compiled[template] == undefined) {
 compiled[template] = Handlebars.compile(template);
 }
 return $(compiled[template](data));
 };
})(jQuery);

The Handlebars library defines a global object called Handlebars, which in turn defines a method called
registerHelper. The registerHelper takes two arguments – the name that you want to give your helper and a helper
function that will be invoked when the helper is encountered in the template. I have called my custom helper gt
(short for greater than), but the easiest way to demonstrate how the helper function works is to demonstrate my
custom helper in action and then explain how its behavior relates to its definition. In Listing 12-20, you can see how
I have applied my gt helper to the example HTML document.

Listing 12-20. Applying a Custom Template Helper

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="{{#gt stock 0}}1{{else}}0{{/gt}}" required />
 </div>
 {{/flowers}}
</script>
<script type="text/javascript">
 $(document).ready(function () {
 var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: 2.99 },
 { name: "Daffodil", product: "daffodil", stock: "12", price: 1.99 },
 { name: "Rose", product: "rose", stock: "2", price: 4.99 },
 { name: "Peony", product: "peony", stock: "0", price: 1.50 },
 { name: "Primula", product: "primula", stock: "1", price: 3.12 },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: 0.99 }]
 };

Chapter 12 ■ Using Data templates

303

 var tElem = $("#flowerTmpl");
 tElem.template({ flowers: data.flowers.slice(0, 3) }).appendTo("#row1");
 tElem.template({ flowers: data.flowers.slice(3) }).appendTo("#row2");
 });
</script>
...

Tip ■ You may have to reload the web page in the browser to see the right effect. Javascript files are sometimes
 aggressively cached, which can prevent changes from taking effect.

My #gt helper checks to see if the value of the stock property is greater than zero. If it is, then 1 is inserted into
the template and 0 is inserted otherwise.

I have to call the Handlebars.registerHelper method before I generate content from the template so that the
Handlebars library knows about the #gt helper. When the helper directive is encountered, Handlebars will pass all
of the values that follow #gt in the directive as arguments to my function, after replacing any that can be resolved as
variables in the current data context.

In the listing, I have placed the reference to the #gt helper inside of a section directive, which means that
Handlebars will enumerate the data.flowers array, and the stock property will be replaced by the value for the
current flower – this means that for the Aster, for example, the arguments passed to my helper function will be 10,
the value of the Aster stock property, and 1, which cannot be resolved to a data value and is passed unchanged.

Tip ■ You can provide as many or as few arguments to your helper function as required. two is just the number i need
to perform a basic comparison.

These are the a and b values I receive in my helper function. I also receive an options object that is provided by
Handlebars:

...
Handlebars.registerHelper('gt', function (a, b, options) {
 return (a > b) ? options.fn(this) : options.inverse(this);
});
...

The options object provides features that are useful for writing helpers, as described in Table 12-4.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 12 ■ Using Data templates

304

In my #gt helper, I call the options.fn method to get the content that should be inserted into the HTML if a is
greater than b (which in the example means that the value of the stock property of the current flower is greater than
zero). I pass the this variable, which Handlebars sets to be the current data context. If a is not greater than b, then
I call the options.inverse method instead. For this example, the options.fn method will return 1 and the
options.inverse method will return 0.

Returning More Complex Content
The content inserted into the HTML is the result from the helper function, which means that I am free to increase the
complexity of my helper functions to simplify my templates by inserting larger fragments of HTML. In Listing 12-21,
you can see how I have defined a helper called #gtValAttr in the handlebars-jquery.js file.

Listing 12-21. Defining a More Complex Helper in the handlebars-jquery.js File

(function ($) {

 Handlebars.registerHelper('gt', function (a, b, options) {
 return (a > b) ? options.fn(this) : options.inverse(this);
 });

 Handlebars.registerHelper("gtValAttr", function () {
 return "value='" + (this.stock > 0 ? "1" : "0") + "'";
 });

 var compiled = {};
 $.fn.template = function (data) {
 var template = $.trim($(this).first().html());
 if (compiled[template] == undefined) {
 compiled[template] = Handlebars.compile(template);
 }
 return $(compiled[template](data));
 };
})(jQuery);

The new helper doesn’t take any arguments at all – it gets the value it required through the this property
(which, as I mentioned, is set to the current data context). The result from the helper function is a complete definition
of the value attribute, tailored to the template in which it will be used. You can see how I have applied the #gtValAttr
helper in the template in Listing 12-22.

Table 12-4. The Properties and Methods eDfined by the Options Object

Name Description

fn(data) Called to get the content that has been defined for the true outcome of a conditional helper,
or the sole content for helpers that don’t have an else directive.

inverse(data) Called to get the content that has been defined in the else clause of a helper.

Hash Used to receive optional arguments into the helper function.

Data Used to provide templates with special properties.

Chapter 12 ■ Using Data templates

305

Listing 12-22. Applying the #gtValAttr Helper in the Template

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 {{#gtValAttr}}{{/gtValAttr}} required />
 </div>
 {{/flowers}}
</script>
...

Note ■ i have shown you this helper to demonstrate the flexibility that the handlebars library provides, but i don’t
use this kind of helper in real projects. it depends too much on the structure of the data and the template, and a change
to either of them will break the code. i prefer to create small, focused helpers like #gt that can be used in any template
and that generate the smallest amount of content possible, ideally provided through arguments.

Receiving Optional Arguments in the Helper Function
You can define arguments in the template that are passed to the helper function. The purpose of these optional
arguments is entirely up to the creator of the helper, but the most common purpose is to pass attribute values to
helpers that generate complete HTML elements. In Listing 12-23, you can see that I have defined a helper that creates
complete input elements from a flower data object. Once again, this isn’t how I like to use templates in my own
projects, but readers may prefer complexity in the helpers to complexity in the template.

Listing 12-23. Defining a Helper That Takes Optional Arguments in the handlebars-jquery.js File

(function ($) {

 Handlebars.registerHelper('gt', function (a, b, options) {
 return (a > b) ? options.fn(this) : options.inverse(this);
 });

 Handlebars.registerHelper("gtValAttr", function () {
 return "value='" + (this.stock > 0 ? "1" : "0") + "'";
 });

 Handlebars.registerHelper("inputElem", function (product, stock, options) {
 options.hash.name = product;
 options.hash.value = stock > 0 ? "1" : "0";
 options.hash.required = "required";
 return $("<input>", options.hash)[0].outerHTML;
 });

Chapter 12 ■ Using Data templates

306

 var compiled = {};
 $.fn.template = function (data) {
 var template = $.trim($(this).first().html());
 if (compiled[template] == undefined) {
 compiled[template] = Handlebars.compile(template);
 }
 return $(compiled[template](data));
 };
})(jQuery);

The #inputElem helper generates a complete input element for a flower – but once again, it will be easier to
understand how it works by seeing it applied in the template, as shown in Listing 12-24.

Listing 12-24. Applying the #inputElem Helper in the Template

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 {{#inputElem product stock data-stock=stock data-price=price}}{{/inputElem}}
 </div>
 {{/flowers}}
</script>
...

As you can see in Listing 12-23, the #inputElem helper function takes two arguments, and I use these to pass the
value of the product and stock properties when I apply the helper in the template. The additional arguments are in
the form key=value, and these are passed to the helper function via the options.hash property, having first being
resolved against the current data context. For my example, this means that the options.hash property returns an
object that looks like this for the Aster flower:

{"data-stock": 10, "data-price": 2.99}

In Part 2, I explained that there was a version of the jQuery $ function that generates a jQuery object from an HTML
string and a map object of attributes, and the option.hash object is just the format I need to create the input element I
desire. But it doesn’t contain all of the attributes that I require, so I use the following statements to complete the set:

...
options.hash.name = product;
options.hash.value = stock > 0 ? "1" : "0";
options.hash.required = "required";
...

I can use the jQuery $ function to create my input element, apply the attributes, and return the HTML string that
is required for the template, as follows:

...
return $("<input>", options.hash)[0].outerHTML;
...

Chapter 12 ■ Using Data templates

307

To get the HTML string, I use an array indexer to get the HTMLElement object at index 0 and use the outerHTML
property to get a string like this:

<input data-stock="10" data-price="2.99" name="aster" value="1" required="required">

Handlebars and jQuery work well together to make generating complete HTML elements from helpers easy – as
the #inputElem helper demonstrates.

Tip ■ there is no convenient way to get the html of an element using jQuery, which is why i used the outerHTML
property of the underlying HTMLElement object. the closest method is html, but that returns the html content of an
 element and not the html of the element itself, which means that i would have had to append my input element to another
element before i could use the html method, like this: $("<div />").append($("<input>", options.hash)).html();
i find that using the html element is simpler and easier to read.

Providing Custom Template Properties
I explained earlier in the chapter that the #each helper defines special properties that are available within the block it
defines. This is something that you can do in custom helpers as well, and it can be a nice way to simplify the structure
of a template. As a demonstration, I have created the #stockValue helper, shown in Listing 12-25.

Listing 12-25. Creating the #stockValue Helper in the handlebars-jquery.js File

(function ($) {

 Handlebars.registerHelper('gt', function (a, b, options) {
 return (a > b) ? options.fn(this) : options.inverse(this);
 });

 Handlebars.registerHelper("gtValAttr", function () {
 return "value='" + (this.stock > 0 ? "1" : "0") + "'";
 });

 Handlebars.registerHelper("inputElem", function (product, stock, options) {
 options.hash.name = product;
 options.hash.value = stock > 0 ? "1" : "0";
 options.hash.required = "required";
 return $("<input>", options.hash)[0].outerHTML;
 });

 Handlebars.registerHelper("stockValue", function (options) {
 options.data.attributeValue = this.stock > 0 ? "1" : "0";
 return options.fn(this);
 });

 var compiled = {};
 $.fn.template = function (data) {
 var template = $.trim($(this).first().html());

Chapter 12 ■ Using Data templates

308

 if (compiled[template] == undefined) {
 compiled[template] = Handlebars.compile(template);
 }
 return $(compiled[template](data));
 };
})(jQuery);

This is a simple helper and all it does is create a property called attributeValue on the options.data object and
assigns it the value that I want as the value attribute for the input element. I can access this value within the template
block contained by the #stockValue helper in the template using the special property called @attributeValue, as
shown in Listing 12-26.

Listing 12-26. Accessing the Special Property in the Template

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 {{#stockValue}}
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="{{@attributeValue}}" required />
 {{/stockValue}}
 </div>
 {{/flowers}}
</script>
...

Summary
In this chapter, I introduced the Handlebars template library, which gives you a nice set of features for translating
JavaScript data into HTML elements without getting bogged down in a mass of nasty code. The reason that I like
using this library is that it provides flexibility as to how much logic is defined in the template, how much is handled
by processing data, and how much is hidden away in handlers. In the next chapter, I show you how jQuery supports
HTML forms and how to apply a widely used plug-in to validate the data that users enter into them.

309

Chapter 13

Working with Forms

In this chapter, I will show you the jQuery support for working with HTML forms. In part, I will recap the form-related
events and the jQuery methods you can use to manage them, but most of this chapter is dedicated to a plug-in that
provides a great mechanism for validating the values that users enter into a form before it is submitted to a server. If
you have written any kind of form-based web application, you will have realized that users will enter all sorts of data
into a form, so validation is an important process.

I begin this chapter by introducing the Node.js server script that you will use in this part of the book. For this
chapter, the script doesn’t do a great deal other than show you the data values that were entered into the form, but in
later chapters I’ll start to rely on Node.js a little more. Table 13-1 provides the summary for this chapter.

Table 13-1. Chapter Summary

Problem Solution Listing

Set up the Node.js server. Use the script listed in this chapter (and included in
the source code that accompanies this book).

1, 2

Respond to the focus being gained or lost by a
form element.

Use the focus and blur methods. 3

Respond to changes in the value that the user
has entered into a form element.

Use the change method. 4

Respond to (and interrupt) the user
submitting the form.

Use the submit method. 5, 6

Validate the values in a form. Use the validation plug-in. 7

Configure the validation plug-in. Pass a map object to the validate method. 8

Define and apply validation rules using a class. Use the addClassRules and addClass methods. 9–12

Apply validation rules directly to elements. Use the rules method. 13, 14

Apply validation rules using element names. Add a rules property to the options object. 15

Apply validation rules using element attributes. Define attributes that correspond to individual
validation checks.

16

Define custom messages for rules applied via
element names and attributes.

Add a message property to the options object, set
to a map object that defines the custom messages.

17, 18

Define custom messages for rules applied
directly to elements.

Include a map object defining the messages as an
argument to the rules method.

19

(continued)

Chapter 13 ■ Working With Forms

310

Preparing the Node.js Server
In this chapter, I will be using Node.js to receive and process form data from the browser. I don’t want to get drawn
into the details of how Node.js functions, but one of the reasons that I selected it for this book was because Node.js
is built around JavaScript, which means you can use the same skills for server-side programming as you do for
client-side programming.

Tip ■ if you want to re-create the example in this chapter, see Chapter 1 for details of how to obtain Node.js. You can
download the formserver.js server-side script along with all of the examples for this chapter from Apress.com.

Listing 13-1 shows the server-side script that you will use in this chapter, which I have saved in a file called
formserver.js. I present this as a black box and explain only the inputs and output.

Listing 13-1. The formserver.js Node.js Script

var http = require("http");
var querystring = require("querystring");

var port = 80;

http.createServer(function (req, res) {
 console.log("[200 OK] " + req.method + " to " + req.url);

 if (req.method == "POST") {
 var dataObj = new Object();
 var cType = req.headers["content-type"];
 var fullBody = "";

 if (cType && cType.indexOf("application/x-www-form-urlencoded") > -1) {
 req.on("data", function(chunk) { fullBody += chunk.toString();});
 req.on("end", function() {
 res.writeHead(200, "OK", {"Content-Type": "text/html"});
 res.write("<html><head><title>Post data</title></head><body>");
 res.write("<style>th, td {text-align:left; padding:5px; color:black}\n");

Problem Solution Listing

Create a custom validation check. Use the addMethod method. 20, 21

Format the validation messages. Use the highlight, unhighlight, errorElement,
and errorClass properties of the options object.

22–26

Use a validation summary. Use the errorContainer and errorLabelContainer
properties.

27

Compose error messages using templates. Use the $.validator.format method. 28

Table 13-1. (continued)

http://Apress.com

Chapter 13 ■ Working With Forms

311

 res.write("th {background-color:grey; color:white; min-width:10em}\n");
 res.write("td {background-color:lightgrey}\n");
 res.write("caption {font-weight:bold}</style>");
 res.write("<table border='1'><caption>Form Data</caption>");
 res.write("<tr><th>Name</th><th>Value</th>");
 var dBody = querystring.parse(fullBody);
 for (var prop in dBody) {
 res.write("<tr><td>" + prop + "</td><td>"
 + dBody[prop] + "</td></tr>");
 }
 res.write("</table></body></html>");
 res.end();
 });
 }
 }

}).listen(port);
console.log("Ready on port " + port);

To run this script, I enter the following at the command line:

node.exe formserver.js

The command will be different if you are using another operating system. See the Node.js documentation
for details. To demonstrate the Node.js functionality I will use the example document shown in Listing 13-2, which
I saved as example.html.

Listing 13-2. The Example Document for This Chapter

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#each flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}: </label>
 <input name="{{product}}" value="0" required />
 </div>
 {{/each}}
 </script>

Chapter 13 ■ Working With Forms

312

 <script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 </div>
 <div id="row2"class="drow">
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

The individual product elements are generated using data templates (as described in Chapter 12). I have
specified a value for the action attribute of the form element, which means it will post to the following URL:

http://node.jacquisflowershop.com/order

 I am using two different servers. The first server (www.jacquisflowershop.com) is the one that has been serving
up HTML content throughout this book. It delivers the static content such as HTML documents, scripts files, and
images. For me, this is Microsoft’s IIS, but you can use any server that appeals to you. (I use IIS because a lot of my
books are about Microsoft web technologies, and I already have a server set up and ready to go.)

The second server (node.jacquisflowershop.com) runs Node.js (using the formserver.js script shown
previously), and when you submit the form in the example document, this is where the data will be sent. In this
chapter, I don’t care a great deal about what the server does with the data it receives: I will be focused on the form
itself. In Figure 13-1, you can see that I have entered some values into the input elements in the document.

http://node.jacquisflowershop.com/order
http://node.jacquisflowershop.com/order
http://www.jacquisflowershop.com/

Chapter 13 ■ Working With Forms

313

When I click the Place Order button, the form is submitted to the Node.js server, and a simple response is sent
back to the browser, as shown in Figure 13-2.

Figure 13-1. Entering data into the input elements

Figure 13-2. The response from the Node.js server

I know this is not an interesting response, but I just need somewhere to send the data for now, and I don’t want to
get drawn off track into the world of server-side development.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 13 ■ Working With Forms

314

Recapping the Form-Event Methods
jQuery includes a set of methods that deal with form-related events. It is worth recapping these now that you are
specifically looking at forms. Table 13-2 describes the methods and the events to which they correspond.

Table 13-2. The jQuery Form-Event Methods

Method Event Description

blur(function) Blur Triggered when a form element loses the focus.

change(function) Change Triggered when the value of a form element changes.

focus(function) Focus Triggered when the focus is given to a form element.

select(function) Select Triggered when the user selects text within a form element.

submit(function) Submit Triggered when the user wants to submit the form.

Tip ■ Don’t forget that jQuery defines a set of extension selectors that match form elements. see Chapter 5
for details.

Dealing with Form Focus
The blur and focus methods allow you to respond to changes in the focus. A common use for these features is to help
the user by emphasizing which element has the focus (and thus which element will receive input from the keyboard).
Listing 13-3 provides a demonstration.

Listing 13-3. Managing Form Element Focus

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

Chapter 13 ■ Working With Forms

315

 function handleFormFocus(e) {
 var borderVal = e.type == "focus" ? "medium solid green" : "";
 $(this).css("border", borderVal);
 }
 $("input").focus(handleFormFocus).blur(handleFormFocus);
 });
</script>
...

In this example, I select all of the input elements and register the handleFormFocus function as the handler for
both the focus and blur events. The function applies a green border when an element gains the focus and removes it
when the focus is lost. You can see the effect in Figure 13-3.

Figure 13-3. Emphasizing the focused element

Notice that I used the input selector. In other words, I selected the elements by tag. jQuery provides the extension
selector :input (I described the extension selectors in Chapter 5), but the extension selector matches elements
more broadly and will match button elements that are capable of submitting the form, which means if I had used
use the extension selector, the border would have been applied to the button as well as the actual input elements.
You can see the difference when the button is focused in Figure 13-4. Which selector you use is a matter for personal
preference, but it is useful to be aware of the difference.

Chapter 13 ■ Working With Forms

316

Dealing with Value Changes
The change event is triggered when the user changes the value in a form element. This is a useful event if you are
providing cumulative information based on the values in the form. Listing 13-4 shows how you can use this event
to track the total number of items selected in the flower shop document. This is the same approach I took when
I refactored the example at the end of Part II of this book.

Listing 13-4. Responding to the Change Event

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

Figure 13-4. The difference between the input and :input selectors

Chapter 13 ■ Working With Forms

317

 function handleFormFocus(e) {
 var borderVal = e.type == "focus" ? "medium solid green" : "";
 $(this).css("border", borderVal);
 }
 $("input").focus(handleFormFocus).blur(handleFormFocus);

 var total = $("#buttonDiv")
 .prepend("<div>Total Items: 0</div>")
 .css({clear: "both", padding: "5px"});
 $("<div id=bbox />").appendTo("body").append(total).css("clear: left");

 $("input").change(function (e) {
 var total = 0;
 $("input").each(function (index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 });
 });
</script>
...

In this example, I respond to the change event by totaling the values in all of the input elements and displaying
the result in the span element that I had previously added to the document.

Tip ■ notice that i use the val method to get the value from the input elements.

Dealing with Form Submission
A lot of the more advanced activities you can perform with forms arise from the way you can prevent the browser’s
default form mechanism from working. Listing 13-5 provides a simple demonstration.

Listing 13-5. Intercepting the Form Submission

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

Chapter 13 ■ Working With Forms

318

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").submit(function (e) {
 if ($("input").val() == 0) {
 e.preventDefault();
 }
 });
 });
</script>
...

I register a handler function for the submit event. This event will be triggered when the user clicks the Place
Order button. If the value of the first input element is 0, I call the preventDefault method to interrupt the default
action of the form, which is to submit the data to the server. For any other value, the form is submitted.

Tip ■ as an alternative, you can return false from the event handler function to achieve the same effect.

There are two different to submit a form programmatically. You can use the jQuery submit method without any
arguments and you can use the submit method, which is defined for form elements by the HTML5 specification.
Listing 13-6 shows both approaches in use.

Listing 13-6. Explicitly Submitting a Form

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").submit(function (e) {
 if ($("input").val() == 0) {
 e.preventDefault();
 }
 });

Chapter 13 ■ Working With Forms

319

 $("<button>jQuery Method</button>").appendTo("#buttonDiv").click(function (e) {
 $("form").submit();
 e.preventDefault();
 });

 $("<button>DOM API</button>").appendTo("#buttonDiv").click(function (e) {
 document.getElementsByTagName("form")[0].submit();
 e.preventDefault();
 });
 });
</script>
...

I have added two button elements to the document. The one that uses the jQuery submit method triggers the
submit event, which I set up a handler function for in the last example. This means that if the value of the first input
element is zero, the form won’t be submitted.

The button elements that uses the DOM API and calls the submit method defined by the form element effectively
bypasses the event handler because the submit event isn't triggered, and this means that the form will always be
submitted, irrespective of the value of the first input element.

Tip ■ my advice is to stick to the jQuery methods, of course, but if you do use the Dom method, at least you will under-
stand the results you get.

Validating Form Values
The main reason for interrupting and preventing the browser from submitting data to the server is that you want to
validate the values that a user has entered into the form. At some point, every web programmer realizes that users
will type anything at all into an input element, and it is unwise to assume that your users will provide useful and
meaningful data. There are an infinite number of different values you might have to process, but in my experience
there are only a few reasons why the user gives you something unexpected in a form.

The first reason is that the user doesn’t understand what data you are after. You might have asked for the name on
the credit card, but the user might have entered her card number, for example.

The second reason is that the user doesn’t want to give you the information you have requested and is just trying
to get through the form as quickly as possible. She’ll enter anything that will move her to the next stage in the process.
If you have a lot of new users whose e-mail address is a@a.com, then you know that this is the problem.

The third reason is that you are asking for information the user doesn’t have, such as asking a U.K. resident which
state he lives in. (We don’t have states here. I am looking at you, NPR. No donation for you.)

The final reason is that the user has made a genuine mistake, typically a typo. For example, I am a quick but
inaccurate typist, and I often type my surname as Freman instead of Freeman, missing out an e.

There is nothing you can do about typos, but the way that you deal with the other three reasons can make the
difference between creating a smooth and seamless application and something that annoys and angers users.

I don’t want to get into a long rant about the design of web forms, but I do want to say that the best way of
approaching this issue is to focus on what the user is trying to achieve. And when things go wrong, try to see the
problem (and the required resolution) the way the user sees it. Your users don’t know about how you have built your
systems, and they don’t care about your business processes; they just want to get something done. Everyone can be
happy if you keep the focus on the task the user is trying to complete and don’t needlessly punish her when she don’t
give you the data you want.

jQuery provides you with all the tools you need to create your own system to validate data values, but I
recommend a different approach. One of the most popular jQuery plug-ins is called Validation, and as you guess from
the name, it handles form validation.

http://a@a.com

Chapter 13 ■ Working With Forms

320

Caution ■ What i am discussing in this chapter is client-side validation. this is a complement to rather than a
 replacement for server-side validation, where you check the data as it is received by the server. Client-side validation is
for the benefit of the user: to stop him from having to make repeated submissions to the server to discover and correct
data errors. server-side validation is for the benefit of the application and ensures that bad data doesn’t cause problems.
You must use both: it is trivial to bypass client-side validation, and it does not provide reliable protection for your
 application.

You can download the validation plug-in from http://jqueryvalidation.org or use the version that I included
in the source code download for this book (available at Apress.com). Listing 13-7 shows the use of this plug-in.
(As I write this, the current version is 1.1.1.)

Listing 13-7. Using the Form Validation Plug-in

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <script src="jquery.validate.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 .errorMsg {color: red}
 .invalidElem {border: medium solid red}
 </style>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#each flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}: </label>
 <input name="{{product}}" value="0" required />
 </div>
 {{/each}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

http://jqueryvalidation.org/
http://Apress.com

Chapter 13 ■ Working With Forms

321

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg"
 });

 $.validator.addClassRules({
 flowerValidation: {
 min: 0
 }
 })

 $("input").addClass("flowerValidation").change(function (e) {
 $("form").validate().element($(e.target));
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 </div>
 <div id="row2"class="drow">
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

The plug-in is distributed as a zip file, which you will need to decompress. Copy the jquery.validate.js file
from the dist folder so that it is in the same directory as the example.html file.

Tip ■ there are a lot of different configuration options for the validation plug-in. in this chapter, i have focused on those
that are most frequently used and that cover the broadest range of situations. if they don’t suit you, i suggest exploring
some of the other options, which are described in the documentation available in the plug-in download.

http://node.jacquisflowershop.com/order

Chapter 13 ■ Working With Forms

322

Note ■ htmL5 includes support for some form validation. it is a good start, but it is pretty basic, and there are still
significant differences in the way that browsers interpret the specification. Until the scope, richness, and consistency of
the htmL5 features improve, i recommend sticking with jQuery for form validation.

Importing the JavaScript File
The first thing I have to do is bring the template plug-in JavaScript file into the document with a script element, as
follows:

...
<script src="jquery-2.0.2.js" type="text/javascript"></script>
<script src="handlebars.js" type="text/javascript"></script>
<script src="handlebars-jquery.js" type="text/javascript"></script>
<script src="jquery.validate.js" type="text/javascript"></script>
...

Tip ■ i have used the debug version of the file, but there is a minimized version available, and some of the CDn
services host this file because it is so popular.

Configuring the Validation
The next step is to configure the validation of the form element, which I do by calling the validate method on the
form elements on which validation should be performed. The argument to the validate method is a map object that
contains configuration settings, as shown in Listing 13-8.

Listing 13-8. Configuring the Validation

...
$("form").validate({
 highlight: function(element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function(element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg"
});
...

I have specified values for four options (highlight, unhighlight, errorElement, and errorClass); I’ll come back
to these later in the chapter and explain their meaning.

Chapter 13 ■ Working With Forms

323

Defining the Validation Rules
A lot of the flexibility of the validation plug-in comes from the way that rules to test for valid input can be quickly and
easily defined. There are various ways of associating rules with elements and the one I tend to use works through
classes. I define a set of rules and associate them with a class, and when the form is validated the rules are applied
to any element contained with the form that is a member of the specified class. I created a single rule in the example,
as shown in Listing 13-9.

Listing 13-9. Defining a Validation Rule

...
$.validator.addClassRules({
 flowerValidation: {
 min: 0
 }
})
...

In this case, I created a rule that will be applied to elements that are members of the flowerValidation class.
The rule is that the value should be equal to or greater than zero. I have expressed the condition in the rule using min.
This is just one of a number of convenient predefined checks that the validation plug-in provides, and I’ll describe all
of them later in the chapter.

Applying the Validation Rules
Validation rules are associated with the elements in the form by adding the element to the class specified in the
previous step. This provides the ability to tailor the validation for different kinds of elements in a form. For this
example, all of the elements are to be treated the same, so I use jQuery to select all of the input elements and add
them to the flowerValidation class, as shown in Listing 13-10.

Listing 13-10. Adding the Input Elements to the Class Associated with Validation

...
$("input").addClass("flowerValidation").change(function(e) {
 $("form").validate().element($(e.target));
});
...

I have also set up a handler function for the change event to explicitly validate the element whose value has
changed. This ensures that the user gets immediate feedback if he corrects an error. You can see the effect of the
validation plug-in in Figure 13-5. To create this figure, I entered -1 in one of the input fields and clicked the Place
Order button.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 13 ■ Working With Forms

324

Tip ■ the text of the message shown to the user is generated by the validation plug-in. i show you how to customize
these messages later in the chapter.

The validation plug-in displays an error message, and the user is not able to submit the form until the problem
has been resolved. The error message provides the user with guidance as to how the problems can be resolved. (The
default messages, such as the one shown in the figure are a bit generic, but later in the chapter I’ll show you how to
change the text.)

Using the Validation Checks
The validation plug-in supports a wide range of checks that you can use to validate form values. You saw the min check
in the previous example. This ensures that the value is greater to or equal to a specified numeric value. Table 13-3
describes the set of checks you can perform.

Table 13-3. Validation Plug-in Checks

Checks Description

creditcard: true The value must contain a credit card number.

date: true The value must be a valid JavaScript date.

digits: true The value must contain only digits.

email: true The value must be a valid e-mail address.

max: maxVal The value must be at least as large as maxVal.

maxlength: length The value must contain no more than length characters.

Figure 13-5. Using the validation plug-in

(continued)

Chapter 13 ■ Working With Forms

325

You can associate multiple rules together in a single rule. This allows you to perform complex validations in a
compact and expressive way.

Tip ■ included in the validation plug-in distribution zip file is a file called additional-methods.js. this file defines
some additional checks, including U.s. and U.k. phone numbers, ipv4 and ipv6 addresses, and some additional date,
e-mail, and UrL formats.

You can apply these checks to your elements in several ways. I describe each in the sections that follow.

Note ■ the Validation plug-in also supports remote validation, where the data the user has entered into a field is
checked using a remote server. this is useful when you need to check with data that cannot be distributed to the client,
because it would be either insecure or impractical (such as checking that a username hasn’t already been used).
i demonstrate remote validation in Chapter 16, after i introduce the features it relies on in Chapters 14 and 15.

Applying Validation Rules via Classes
As I explained earlier, the validation technique I use most frequently is to apply checks through classes and this is the
approach I took in the example. I am not limited to a single check, however, and I can apply multiple checks together
to validate different aspects of the value that the user provides, as demonstrated in Listing 13-11.

Listing 13-11. Combining Multiple Checks in a Single Rule

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },

Checks Description

min: minVal The value must be at least as large as minVal.

minlength: length; The value must contain at least length characters.

number: true The value must be a decimal number.

range: [minVal, maxVal] The value must be between minVal and maxVal.

rangelength: [minLen, maxLen] The value must contain at least minLen and no more than maxLen characters.

required: true; A value is required.

url: true The value must be a URL.

Table 13-3. (continued)

Chapter 13 ■ Working With Forms

326

 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg"
 });

 $.validator.addClassRules({
 flowerValidation: {
 required: true,
 digits: true,
 min: 0,
 max: 100
 }
 });

 $("input").addClass("flowerValidation").change(function (e) {
 $("form").validate().element($(e.target));
 });
 });
</script>
...

In this example, I have combined the required, digits, min, and max checks to ensure that the user provides a
value that comprises only digits and that falls within the range of 0 to 100.

Notice that I associate the rule with the class using the addClassRules method. The argument to this method
is one or more sets of checks and the class name they are to be applied to. As shown, you call the addClassRules
method on the validator property of the main jQuery $ function.

Each validated form element is assessed individually, which means the user can be presented with different error
messages for different problems, as shown in Figure 13-6.

Chapter 13 ■ Working With Forms

327

I have entered several values that will fail the checks. It is important to note that the checks are performed in
the order they are defined in the rule. If you look at the error message for the Rose product, you will see that it has
failed the digits check. If you rearrange the order of the checks, you can get a different error. Listing 13-12 shows the
validation checks arranged in a different order.

Listing 13-12. Changing the Order in Which Checks Are Applied

...
$.validator.addClassRules({
 flowerValidation: {
 required: true,
 min: 0,
 max: 100,
 digits: true
 }
})
...

In this example, I have moved the digits check to the end of the rule. If I enter -1 into a form field now, it is the min
check that will fail, as demonstrated by Figure 13-7.

Figure 13-6. Applying multiple validation checks to form elements

Chapter 13 ■ Working With Forms

328

Applying Validation Rules Directly to Elements
The next technique allows you to apply rules to a single element, as shown in Listing 13-13.

Listing 13-13. Applying Validation Rules to the Elements in a Selection

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },

Figure 13-7. Changing the order in which the checks are applied during validation

Chapter 13 ■ Working With Forms

329

 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg"
 });

 $.validator.addClassRules({
 flowerValidation: {
 required: true,
 min: 0,
 max: 100,
 digits: true,
 }
 })

 $("#row1 input").each(function (index, elem) {
 $(elem).rules("add", {
 min: 10,
 max: 20
 })
 });

 $("input").addClass("flowerValidation").change(function (e) {
 $("form").validate().element($(e.target));
 });
 });
</script>
...

I call the rules method on a jQuery object, passing in the string add and a map object with the checks you want
to perform and their arguments. The rules method operates on only the first element in the selection, so I have to use
the each method to apply the rules more broadly. In this case, I selected all of the input elements that are descendants
of the row1 element and applied the min and max checks to ensure that the user enters a value between 10 and 20.

Tip ■ You can remove rules from elements by replacing add with remove when you call the rules method.

Rules applied to elements using the rules methods are evaluated before those applied using a class. For my
example, this means the input elements on the top row will be checked using a min value of 10 and a max value
of 20, while the other input elements will use values of 0 and 100, respectively. You can see the effect of this
in Figure 13-8.

w

Chapter 13 ■ Working With Forms

330

Because I am dealing with validation for each element individually, I can tailor the checks even further,
as demonstrated by Listing 13-14.

Listing 13-14. Tailoring Checks for Elements

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg"
 });

Figure 13-8. Applying rules directly to elements

Chapter 13 ■ Working With Forms

331

 $("input").each(function (index, elem) {
 var rules = {
 required: true,
 min: 0,
 max: data.flowers[index].stock,
 digits: true
 }
 if (Number(data.flowers[index].price) > 3.00) {
 rules.max--;
 }
 $(elem).rules("add", rules);
 });

 $("input").addClass("flowerValidation").change(function (e) {
 $("form").validate().element($(e.target));
 });
 });
</script>
...

In this example, I tailor the value of the max check using the data object that I added to the document to generate
elements using the template. The value for the max check is set based on the stock property and adjusted down if the
price is greater than $3. When you have data like this, you are able to perform much more useful validation. You can
see the effect of this change in Figure 13-9.

Figure 13-9. Setting different values for validation checks based on data

Chapter 13 ■ Working With Forms

332

Applying Validation Rules via the Element Name Attribute
Validation rules can also be applied to elements based on the value of the name attribute. Nothing in the HTML
specification requires the name attribute value to be unique, and a single value is often used to categorize a group of
form elements. In my flower shop example document, each name is different and corresponds to a specific product.
Either way, you can create rules that correspond to a name attribute value and rules that apply to all elements assigned
that value. Listing 13-15 gives a demonstration.

Listing 13-15. Assigning Validation Rules Based on Element Name

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 var rulesList = new Object();
 for (var i = 0; i < data.flowers.length; i++) {
 rulesList[data.flowers[i].product] = {
 min: 0,
 max: Number(data.flowers[i].stock),
 }
 }

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg",
 rules: rulesList
 });

 $("input").change(function (e) {
 $("form").validate().element($(e.target));
 });

 });
</script>
...

Chapter 13 ■ Working With Forms

333

I added rules that rely on element names using the rules property of the configuration object I pass to the
validate method when I set up form validation. Notice that I have used just the data object to create the set of rules
and also that the product property in the data object is used to generate the name attribute on the input elements.
Also notice that I have to use Number to convert the string data value so that it is processed correctly.

Tip ■ i tend not to use this approach in my own projects, since i would rather work directly with the elements in the
document, but this technique can be handy if you have a data object and want to set up validation before the form
elements have been added to the document.

Applying Validation Rules Using Element Attributes
The final way to apply validation checks to elements is to use attributes. The validation plug-in examines form
elements to see whether they define attributes that correspond to the name of the built-in checks, so an element
that defines a required attribute is assumed to need the required check. Listing 13-16 provides a demonstration.

Listing 13-16. Performing Validation Using Element Attributes

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#each flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}: </label>
 <input name="{{product}}" value="0" required min="0" max="{{stock}}"/>
 </div>
 {{/each}}
</script>
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 13 ■ Working With Forms

334

 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg"
 });

 $("input").change(function (e) {
 $("form").validate().element($(e.target));
 });
 });
</script>
...

I like this technique when it is used in conjunction with a data template, but I find it clutters up a document when
applied to statically defined elements because the same attributes are applied to elements over and over again.

Specifying Validation Messages
The validation plug-in defines a default error message for all of the built-in checks, but these are generic and not
always useful to the user. As a simple example, if I set a max check with a value of 10 and the user enters 20 in the field,
then the error message will be as follows:

Please enter a value less than or equal to 12

This message describes the constraint you have applied on a form element, but it doesn’t provide any guidance
to the user as to why there is a limit. Fortunately, you can change these messages to provide some additional context
and tailor the message to your needs. The method used to change the messages depends on how you validation rule
was created in the first place. It isn't possible to change the messages when you apply rules using a class, but in the
following sections I describe how to define custom messages for the other techniques.

Specifying Messages for Attribute and Name Validation
When relying on the name attribute or on check attributes to associate rules with elements, you can change the
messages displayed to the user by adding a messages property to the options object passed to the validate method.
Listing 13-17 provides a demonstration.

Listing 13-17. Using the messages Property on the options Object

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

Chapter 13 ■ Working With Forms

335

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg",
 messages: {
 rose: { max: "We don't have that many roses in stock!" },
 primula: { max: "We don't have that many primulas in stock!" }
 }
 });

 $("input").change(function (e) {
 $("form").validate().element($(e.target));
 });
 });
</script>
...

The validation for this example is applied through the min and max attributes applied to the input element in the
template, and you can see the structure of the object that sets out the values for the messages property in the JavaScript code.

Within the messages object, I define a property using the name of the element I am interested in and set the
value of this property to be a map between the check and the new message you want to use. In this example, I have
changed the message for the max check on the elements with the names rose and primula. You can see the effect in
Figure 13-10, which illustrates how these custom messages are displayed.

Figure 13-10. Changes messages via the options object

Chapter 13 ■ Working With Forms

336

The syntax for setting up these validation messages can be duplicative, so I tend to create an object with the
messages I want programmatically, as shown in Listing 13-18.

Listing 13-18. Defining Custom Messages Programmatically

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 var customMessages = new Object();
 for (var i = 0; i < data.flowers.length; i++) {
 customMessages[data.flowers[i].product] = {
 max: "We only have " + data.flowers[i].stock + " in stock"
 }
 }

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg",
 messages: customMessages
 });

 $("input").change(function (e) {
 $("form").validate().element($(e.target));
 });
 });
</script>
...

In this example, I incorporate the stock property from the data objects to give a more meaningful message to the
user, as shown in Figure 13-11.

Chapter 13 ■ Working With Forms

337

Specifying Messages for Per-Element Validation
When applying rules to individual elements, you pass in a messages object that defines the messages you want for
your checks. Listing 13-19 shows how this is done.

Listing 13-19. Specifying Messages for Rules Applied on a Per-Element Basis

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = { flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },

Figure 13-11. Generating custom validation messages programmatically

Chapter 13 ■ Working With Forms

338

 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg",
 });

 $("input").change(function (e) {
 $("form").validate().element($(e.target));
 }).each(function (index, elem) {
 $(elem).rules("add", {
 messages: {
 max: "We only have " + data.flowers[index].stock + " in stock"
 }
 })
 });
 });
</script>
...

Once again, I have used the stock property from the corresponding flowers data object to define the message.
For simplicity, I have assumed that the input elements are ordered in the same way that the data items are ordered.
You can see the effect of these messages in Figure 13-12.

Figure 13-12. Specifying messages that are derived from the data object

Tip ■ i have only specified the messages using Javascript. the min and max rules are still applied to the input
elements via the template, as shown in Listing 13-17.

Chapter 13 ■ Working With Forms

339

Creating a Custom Check
You can create a custom validation check if the built-in ones don’t suit your needs. This is a simple process that
means you can closely relate validation to the structure and nature of your web application. Listing 13-20 provides
a demonstration.

Listing 13-20. Creating a Custom Validation Check

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#each flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}: </label>
 <input name="{{product}}" value="0" required />
 </div>
 {{/each}}
</script>
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg"
 });

 $.validator.addMethod("stock", function (value, elem, args) {
 return Number(value) < Number(args);
 }, "We don't have that many in stock");

Chapter 13 ■ Working With Forms

340

 $("input").each(function (index, elem) {
 $(elem).rules("add", {
 stock: data.flowers[index].stock
 })
 }).change(function (e) {
 $("form").validate().element($(e.target));
 });
 });
</script>
...

I have removed the min and max attributes from the input elements in the template and introduced a custom
validation check in the JavaScript code. (You can mix and match custom and built-in validation freely, but the
example in this listing duplicates the functionality of the max validator.)

Custom checks are created using the addMethod method, which is called on the validator property of the
$ function. The arguments to this method are the name you want to assign the check, a function that is used to
perform validation, and a message to show if validation fails. In this example, I have defined a check called stock,
which I explain in the sections that follow.

Defining the Validation Function
The arguments to the custom validation function are the value entered by the user, the HTMLElement object
representing the form element, and any arguments that were specified when the check is applied to an element for
validation, like this:

...
$(elem).rules("add", {
 min: 0,
 stock: data.flowers[index].stock
})
...

When I applied the rule, I specified the value of a stock property from the flower data object that corresponds to
the input element as the argument to the check. This is passed as is to the custom validation function:

...
function(value, elem, args) {
 return Number(value) <= Number(args);
}
...

The value and the arguments are presented as strings, and that means I have to use the Number type to ensure
that JavaScript properly compares the values as numbers. The result of the validation function indicates if the value is
valid – for an acceptable value, return true and return false for unacceptable values. For my function, a value is valid
if it is smaller than or equal to the argument.

Chapter 13 ■ Working With Forms

341

Defining the Validation Message
You can specify the message that is displayed in two ways. The first is as a string, which is what I used in the earlier
example. The other way to specify a message is with a function, allowing you to create messages with a lot more
context. Listing 13-21 provides a demonstration.

Listing 13-21. Creating a Message for a Custom Check Using a Function

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg"
 });

 $.validator.addMethod("stock", function (value, elem, args) {
 return Number(value) < Number(args);
 }, function(args) {
 return "We only have " + args + " in stock"
 });

 $("input").each(function (index, elem) {
 $(elem).rules("add", {
 stock: data.flowers[index].stock
 })
 }).change(function (e) {
 $("form").validate().element($(e.target));
 });
 });
</script>
...

Chapter 13 ■ Working With Forms

342

The argument passed to the function is the argument you provided when applying the rule, which in this case is
the stock property value from the data flower object. You can see the effect in Figure 13-13.

Figure 13-13. Defining error messages for custom checks using a function

Formatting the Validation Error Display
To my mind, one of the best features of the validation plug-in is the wide range of ways that you can configure
how validation error messages are displayed to the user. In the examples so far in this chapter, I have relied on the
configuration options highlighted in Listing 13-22.

Listing 13-22. The Configuration Options for Formatting the Validation Errors

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

Chapter 13 ■ Working With Forms

343

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg"
 });

 $.validator.addMethod("stock", function (value, elem, args) {
 return Number(value) < Number(args);
 }, function(args) {
 return "We only have " + args + " in stock"
 });

 $("input").each(function (index, elem) {
 $(elem).rules("add", {
 stock: data.flowers[index].stock
 })
 }).change(function (e) {
 $("form").validate().element($(e.target));
 });
 });
</script>
...

I have relied on four different configuration options, but they are tightly coupled together. I explain the
significance of each in the following sections.

Setting the Class for Invalid Elements
The errorClass option specifies a class that will be associated with invalid values. This class is applied to error
message elements when they are added to the document. In my examples, I specify a class called errorMsg, for which
there is a corresponding CSS style in the style element, as shown in Listing 13-23. The style sets the text color to red
to emphasize the validation error.

Listing 13-23. The style Element for the Example Document

...
<style type="text/css">
 .errorMsg {color: red}
 .invalidElem {border: medium solid red}
</style>
...

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 13 ■ Working With Forms

344

Setting the Error Message Element
Error messages are inserted into the document as the immediate next sibling of the form element that contains
the invalid value. By default, the error message text is contained within a label element. This didn’t suit me in the
examples, because the external style sheet already contains a selector that matches all label elements within the
cell-level div elements in the CSS table layout and applied a style that prevented the text from displaying properly.
To address this, I used the errorElement option to specify that a div element be used instead, as shown in Listing 13-24.

Listing 13-24. Specifying the Element That Will Be Used for the Error Message

...
$("form").validate({
 highlight: function(element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function(element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg",

});
...

Setting the Highlighting for Invalid Elements
The highlight and unhighlight options specify functions that will be used to highlight elements that contain invalid
values. The arguments to the functions are the HTMLElement object representing the invalid element and the class
specified using the errorClass option.

As you can see in Listing 13-25, I ignore the second attribute but use the HTMLElement object to create a jQuery
selection, navigate to the parent element, and add it to the invalidElem class.

Listing 13-25. Controlling the Element Highlight

...
$("form").validate({
 highlight: function(element, errorClass) {
 $(element).add($(element).parent()).addClass("invalidElem");
 },
 unhighlight: function(element, errorClass) {
 $(element).add($(element).parent()).removeClass("invalidElem");
 },
 errorElement: "div",
 errorClass: "errorMsg",

});
...

Chapter 13 ■ Working With Forms

345

The function specified by the unhighlight option is called when the user has corrected the problem and the
element contains a valid value. I use this opportunity to remove the class I added in the other function. The invalidElem
class corresponds to a selector in the style element contained in the document, as shown in Listing 13-26.

Listing 13-26. The Style Used for Highlighting Element

...
<style type="text/css">
 .errorMsg {color: red}
 .invalidElem {border: medium solid red}
</style>
...

You can select and manipulate elements in these functions in any way you like. I have applied a border to the
parent element, but I could have operated directly on the element itself or on another part of the document entirely
had I preferred.

Using a Validation Summary
The validation plug-in can present the user with a single list of all the validation errors, rather than add individual
messages next to each element. This can be useful if the structure or layout of your document can’t easily flex to
accommodate additional elements. Listing 13-27 shows how to create a validation summary.

Listing 13-27. Using a Validation Summary

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 flowers: [
 { name: "Aster", product: "aster", stock: "10", price: "2.99" },
 { name: "Daffodil", product: "daffodil", stock: "12", price: "1.99" },
 { name: "Rose", product: "rose", stock: "2", price: "4.99" },
 { name: "Peony", product: "peony", stock: "0", price: "1.50" },
 { name: "Primula", product: "primula", stock: "1", price: "3.12" },
 { name: "Snowdrop", product: "snowdrop", stock: "15", price: "0.99" }]
 };

 var plurals = {
 aster: "Asters", daffodil: "Daffodils", rose: "Roses",
 peony: "Peonies", primula: "Primulas", snowdrop: "Snowdrops"
 };

 var templResult = $("#flowerTmpl").template(data).filter("*");
 templResult.slice(0, 3).appendTo("#row1");
 templResult.slice(3).appendTo("#row2");

 $("<div id='errorSummary'>Please correct the following errors:</div>")
 .addClass("errorMsg invalidElem")
 .append("<ul id='errorsList'>").hide().insertAfter("h1");

Chapter 13 ■ Working With Forms

346

 $("form").validate({
 highlight: function (element, errorClass) {
 $(element).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).removeClass("invalidElem");
 },
 errorContainer: "#errorSummary",
 errorLabelContainer: "#errorsList",
 wrapper: "li",
 errorElement: "div"
 });

 $.validator.addMethod("stock", function (value, elem, args) {
 return Number(value) <= Number(args.data.stock);
 }, function (args) {
 return "You requested " + $(args.element).val() + " "
 + plurals[args.data.product] + " but we only have "
 + args.data.stock + " in stock";
 });

 $("input").each(function (index, elem) {
 $(elem).rules("add", {
 stock: {
 index: index,
 data: data.flowers[index],
 element: elem
 }
 })
 }).change(function (e) {
 $("form").validate().element($(e.target));
 });

 });
</script>
...

For this example, I am going to work backward and show you the result before explaining how I get there.
Figure 13-14 shows the validation summary being displayed.

Chapter 13 ■ Working With Forms

347

Preparing the Validation Messages
The first issue to solve when using a validation summary is that the context that is implied by placing an error message
next to a form element is lost; I have to put some additional work into the error messages so that they make sense.
To start with, I defined an object that contained the plurals of the flower names:

...
var plurals = {
 aster: "Asters", daffodil: "Daffodils", rose: "Roses",
 peony: "Peonies", primula: "Primulas", snowdrop: "Snowdrops"
}
...

I use these values to generate a specific error message using the function feature of the custom check, like this:

...
$.validator.addMethod("stock", function (value, elem, args) {
 return Number(value) <= Number(args.data.stock);
}, function (args) {
 return "You requested " + $(args.element).val() + " "
 + plurals[args.data.product] + " but we only have "
 + args.data.stock + " in stock";
});
...

Figure 13-14. Using a validation summary

Chapter 13 ■ Working With Forms

348

The link between these two stages is the argument object that I specify when applying the custom check to the
form elements. The built-in checks have simple arguments, but you can create complex objects and pass whatever
data suits you, like this:

...
$("input").each(function (index, elem) {
 $(elem).rules("add", {
 stock: {
 index: index,
 data: data.flowers[index],
 element: elem
 }
 })
}).change(function (e) {
 $("form").validate().element($(e.target));
});
...

In this case, I have passed the index, the data array, and the element itself, all of which I use to piece together the
message to display to the user. (I'll show you a useful feature for simplifying string composition later in the chapter.)

Creating the Validation Summary
I am responsible for creating the element that will contain the validation summary and adding it to the document. To
that end, I added a div element that contains an ul element. My goal is to create an unnumbered list showing each error:

...
$("<div id='errorSummary'>Please correct the following errors:</div>")
 .addClass("errorMsg invalidElem").append("<ul id='errorsList'>").hide().insertAfter("h1");
...

The text in the div element is displayed above the list of errors. Notice that I have used the hide method after
appending these elements to the DOM. Not only am I responsible for creating the elements, but I am also responsible for
ensuring that they are not visible when there are no errors. The hide method ensures that the validation summary isn't
initially visible to the user – the validation plug-in will take care of the visibility once the validation process begins.

Now that I have all the pieces in place, I can configure the validation summary, as follows:

...
$("form").validate({
 highlight: function (element, errorClass) {
 $(element).addClass("invalidElem");
 },
 unhighlight: function (element, errorClass) {
 $(element).removeClass("invalidElem");
 },
 errorContainer: "#errorSummary",
 errorLabelContainer: "#errorsList",
 wrapper: "li",
 errorElement: "div"
});
...

Chapter 13 ■ Working With Forms

349

I have changed the implementation of the hightlight and unhighlight functions to style just the input
elements. The errorContainer option specifies a selector that will be made visible when there are validation errors
to display. In my case, this is the element with the errorSummary ID (the div element). The errorLabelContainer
option specifies the element into which the individual error messages will be inserted. For my example, this is the ul
element, since I want my messages displayed as a list.

The wrapper option specifies an element into which the validation message will be inserted. This is useful only
if you want a list display. Finally, the errorElement specifies the element that will contain the error text. This is the
label element by default, but I have switched to div elements to make the formatting easier. The result of these
options is the validation summary I showed you in Figure 13-14.

The validation plug-in removes messages from the summary when the user resolves an issue, and when there are
no issues at all, the validation summary is entirely hidden and the user can submit the form. Figure 13-15 shows the
validation summary after two of the three errors from the last figure have been resolved.

Figure 13-15. A validation summary showing fewer error messages

The choice between inline messages and validation summaries is a personal one and is usually driven by the
structure of the document. The good news is that the validation plug-in is flexible, and it usually doesn’t take much
work to define and apply validation that is closely tailored to your needs.

Chapter 13 ■ Working With Forms

350

Tidying Up the Error Message Composition
I am going to make one final change in this chapter, just to demonstrate a useful feature of the validation plug-in that
is not directly related to validating data. In the previous example, when I wanted to create a contextual error message,
I did so by concatenating strings and variables, like this:

...
$.validator.addMethod("stock", function (value, elem, args) {
 return Number(value) <= Number(args.data.stock);
}, function (args) {
 return "You requested " + $(args.element).val() + " "
 + plurals[args.data.product] + " but we only have "
 + args.data.stock + " in stock";
});
...

This works, but it is ugly and hard to read. The validation plug-in method provides a formatter than works in a
way similar to string composition in languages like C#, and you can see how I have used this feature in Listing 13-28.

Listing 13-28. Using the jQuery Validator String Formatting Feature

...
$.validator.addMethod("stock", function (value, elem, args) {
 return Number(value) <= Number(args.data.stock);
}, function(args) {
 return $.validator.format("You requested {0} {1} but we only have {2} in stock",
 $(args.element).val(), plurals[args.data.product], args.data.stock)
});
...

The string composition is performed by the $.validator.format method, which takes a template string and
a number of value arguments. The template string is parsed for occurrences of the brace characters surrounding
an integer, such as {0}, and these are replaced with the corresponding value argument. The first value argument
is referenced by {0}, the second by {1} and so on. The $.validator.format method returns a function that isn’t
evaluated until the error message is displayed, which ensures that the correct values are used when composing
the string.

This can be an odd way of creating strings if you are not used to it, but a sorely missed feature if you are
accustomed to a language like C# that frequently relies on this approach to string composition.

Summary
In this chapter, I showed you the support that jQuery provides for forms. I began by recapping the form-related event
methods and explained the roles that the most important ones play in the life of an HTML form. Most of the chapter
was spent covering the Validation plug-in, which provides flexible and extensible support for validating the values that
users enter into a form and providing the means for resolving any problems before the data is submitted to the server.
In Chapter 14, I begin the process of describing the support that jQuery provides for making Ajax requests.

351

Chapter 14

Using Ajax: Part I

Ajax stands for Asynchronous JavaScript and XML but is generally a word in its own right these days. Ajax allows you
to make requests to the server asynchronously, meaning, in short, that your request happens in the background and
doesn’t prevent the user from interacting with the content in your HTML document. The most common use for Ajax
is to submit data from a form element. The advantage of doing this is that the browser doesn’t have to load a new
document to display the server’s response and you can use the standard jQuery functions to display the data within
the document seamlessly.

The Ajax support that I use in this chapter is built into the core jQuery library, although I do briefly describe a
useful plug-in at the end of the chapter. jQuery doesn’t reinvent Ajax but, rather, makes the existing browser Ajax API
(application programming interface) easier to use. In this chapter, I describe the shorthand and convenience Ajax
methods. These are simpler methods that make using Ajax relatively quick and easy. In Chapter 15, I describe the
low-level jQuery Ajax API on which these methods are based. However, as you’ll see, the low-level API isn’t that low
level, and the main reason for its use is when the shorthand and convenience methods don’t do quite what you want.
Table 14-1 provides the summary for this chapter.

Table 14-1. Chapter Summary

Problem Solution Listing

Perform an asynchronous HTTP GET request Use the get method 1–3

Process the data obtained from an Ajax GET request Pass a function to the get method 4

Perform an Ajax request in response to a user action Call the get method within an event handler 5

Request JSON data from the server Use the get method and receive an object in
the argument function

6, 7

Send data to the server as part of a GET request Pass a JavaScript object as an argument to the
get method

8

Perform an asynchronous HTTP POST request Use the post method 9, 10

Send non-form data in a POST request Pass any JavaScript object as an argument to
the post method

11

Override the data type specified by the server in the
response to an Ajax request

Pass the expected type as an argument to the get
or post methods

12–13

Avoid the most common Ajax pitfall Don’t treat Ajax requests as though they were
synchronous

14

Use the convenience methods to make GET requests for
specific data types

Use the load, getScript, or getJSON method 15–22

Easily enable Ajax for form elements Use the Ajax Forms plug-in 23

Chapter 14 ■ Using ajax: part i

352

Using the Ajax Shorthand Methods
Although Ajax is usually associated with posting form data, it can be used a lot more widely. I am going to start
introducing Ajax by performing some simple tasks, starting with ways that you can obtain data from the server without
using forms at all.

jQuery defines a set of Ajax shorthand methods, which are convenient wrappers around the core Ajax
functions and which allow you to easily perform common Ajax tasks. In the sections that follow, I introduce you
to the shorthand methods for retrieving data from the server using HTTP GET requests. Table 14-2 summarizes
these methods.

Table 14-2. The jQuery Ajax Shorthand Methods

Name Description

$.get() Performs an Ajax request using the HTTP GET method

$.post() Performs an Ajax request using the HTTP POST method

(BrIeFLY) UNDerStaNDING aSYNChrONOUS taSKS

For those of you who are new to ajax, here’s a simple explanation of asynchronous requests. this is important
because these tasks are so central to ajax that the first letter in the acronym stands for asynchronous. Most of
the time, you are used to writing synchronous code. You define a block of statements that perform some task, and
then you wait while the browser executes them. When the last statement has been executed, you know the task
has been performed. During the execution, the browser doesn’t let the user interact with the content in any way.

When you perform an asynchronous task, you are telling the browser that you want something done in the
background. the phrase “in the background” is something of a catchall, but in essence you are saying, “Do this
thing without preventing the user from interacting with the document and tell me when you have done it.” in the
case of ajax, you are telling the browser to communicate with the server and notify you when the request has
been completed. this notification is handled through callback functions. You give jQuery one or more functions
that will be called when the task is complete. there will be a function to deal with a successful request, and there
can be other functions for other outcomes, such as errors.

the advantage of asynchronous requests is that they allow you to create a rich htML document that can be
seamlessly updated using responses from the server without interrupting the user’s interaction and without
having to make the user wait while the browser loads a new document.

the disadvantage is that you have to think through your code carefully. You can’t predict when an asynchronous
request will be completed, and you can’t make assumptions about the outcome. Further, the use of callback
functions tends to create more complex code that can punish the unwary programmer who makes assumptions
about the outcome or timeliness of a request.

Performing an Ajax GET Request
To begin, I am going to use Ajax to perform an HTTP GET request to load a fragment of HTML, which I will then add to
the HTML document displayed by the browser. Listing 14-1 shows the example document that I will be working with.

Chapter 14 ■ Using ajax: part i

353

Listing 14-1. The Example Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <script src="jquery.validate.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function() {
 // ...code will go here...
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 </div>
 <div id="row2"class="drow">
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

This is similar to the examples I have used in earlier chapters but there are no elements to describe the products
and no data item or templates to generate them. Instead, I have created a separate file called flowers.html, which
I have placed next to the example document (which is called example.html and can be found in the Source Code/
Download area of the Apress web site [www.apress.com]). Listing 14-2 shows the content of flowers.html.

Listing 14-2. The Contents of the flowers.html File

<div>
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required />
</div>
<div>
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required />
</div>
<div>
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required />
</div>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://node.jacquisflowershop.com/order
http://www.apress.com/

Chapter 14 ■ Using ajax: part i

354

<div>
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required />
</div>
<div>
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required />
</div>
<div>
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required />
</div>

These are the same elements I used in earlier chapters, except that they are not assigned to rows and I have
removed the class attribute from the div elements. I have made these changes so that I can show you how to work
with the elements once you load them. Notice that this isn’t a complete HTML document, just a fragment—there are
no html, head, or body elements, for example. At the moment, the flowers.html document is completely separate
from the main example, and you can see this in Figure 14-1.

Figure 14-1. The initial example document

I am going to use the jQuery support for Ajax to bring the HTML fragment into the main HTML document. This
might seem like an odd thing to do, but I am simulating a common situation where different pieces of content are
produced by different systems and need to be stitched together to create a complex document or web application.
I am using only one server in this example for simplicity, but it is easy to imagine that the information about the
products is coming from elsewhere. In fact, in later examples, I introduce Node.js in order to show you how to deal
with multiple servers. That is all to come. For the moment, let’s look at the basic jQuery Ajax support and use it to deal
with the flowers.html file. Listing 14-3 shows how I do this.

Listing 14-3. Using jQuery Ajax Support with an HTML Fragment

...
<script type="text/javascript">
 $(document).ready(function () {
 $.get("flowers.html", function (data) {
 var elems = $(data).filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 });
 });
</script>
...

Chapter 14 ■ Using ajax: part i

355

I used the jQuery get method and provided two arguments. The first argument is the URL that I want to load.
In this case, I have specified flowers.html, which will be interpreted as being a URL that is relative to the URL from
which the main document was loaded.

The second argument is a function that will be invoked if the request is successful. As I mentioned in the sidebar,
Ajax relies on callback functions to provide notification because the requests are performed asynchronously. jQuery
passes the data from the server response as the argument to the function.

When the document that contains this script is loaded into the browser, the script element is executed and
my jQuery code loads the flowers.html from the server. Once the flowers.html document is loaded, the HTML
fragment it contains is parsed into HTML elements that are then added to the document. Figure 14-2 shows the result.

Figure 14-2. The effect of using Ajax

OK, so I admit that I ended up with the same result as when the elements or data were inline, but the path I took
to get there is worth exploring and in the sections that follow I dig into the detail.

Tip ■ although i have used the get method to load htML, it can be used to obtain any kind of data from the server.

Processing the Response Data
The argument passed to the success function is the data that the server has sent back in answer to my request. In this
example, I get back the content of the flowers.html file, which is an HTML fragment. To make this into something
I can use with jQuery, I passed the data into the jQuery $ function so that it is parsed into a hierarchy of HTMLElement
objects, as shown in Listing 14-4.

Listing 14-4. Processing the Data Obtained from the Server

...
<script type="text/javascript">
 $(document).ready(function() {

Chapter 14 ■ Using ajax: part i

356

 $.get("flowers.html", function(data) {
 var elems = $(data).filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 });
 });
</script>
...

As I mentioned previously, I left out the class attributes from the div elements. You can see that I add them back
in using the jQuery addClass method. Once the data has been passed to the $ function, I can use the jQuery object
that is returned as I would any other. I add the elements to the document using the slice and appendTo methods, as
I have in previous chapters.

Tip ■ notice that i have used the filter method to select only the div elements generated from the data. When
parsing the data, jQuery assumes that the carriage-return characters that i added between the div elements in the
flowers.html file for structure are text content and creates text elements for them. to avoid this, you can either ensure
that there are no carriage returns in the documents you request or use the filter method to remove then. this is similar
to the issue i had with data templates in Chapter 13.

Making the Effect Easier to See
The statements that create the Ajax request are executed in response to the ready event (which I described in Chapter 5)
and this makes it hard to visualize how using Ajax is any different from using inline data because the content of the
flowers.html file is loaded and displayed automatically. To make the difference more obvious, I have added a button
to the document and handle the click event it generates so that the Ajax request will be performed only when it is
clicked. You can see the changes in Listing 14-5.

Listing 14-5. Making an Ajax Request in Response to a Button Press

...
<script type="text/javascript">
 $(document).ready(function () {
 $("<button>Ajax</button>").appendTo("#buttonDiv").click(function (e) {
 $.get("flowers.html",
 function (data) {
 var elems = $(data).filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 });
 e.preventDefault();
 });
 });
</script>
...

Chapter 14 ■ Using ajax: part i

357

Now the flowers.html document isn’t loaded until the button is clicked, and each time it is clicked, additional
elements are added to the document, as shown in Figure 14-3.

Tip ■ notice that i have called the preventDefault method on the Event object that is passed to my event handler
function. since the button element is contained with a form element, the default action is to submit the form to the server.

Getting Other Kinds of Data
You are not limited to using the get method just for HTML—you can obtain any kind of data from the server. Of
particular interest is JavaScript Object Notation (JSON) data, because of the way that jQuery helpfully processes the
response from the server. Back when Ajax started to be widely adopted, XML was seen as the data format of choice, so
much so that the X in Ajax stands for XML. I am not going to go into the details of XML, but XML tends to be verbose,
hard to read, and relatively time- and resource-consuming to generate and process.

In recent years, XML has been largely replaced by the JSON, which is a simpler data format and is easy to work
with in JavaScript code (as the name suggests). For this example, I have created a file called mydata.json and saved it
alongside the example.html file on the web server. Listing 14-6 shows the contents of mydata.json.

Listing 14-6. The Contents of the mydata.json File

[{"name":"Aster","product":"aster","stock":"10","price":"2.99"},
 {"name":"Daffodil","product":"daffodil","stock":"12","price":"1.99"},
 {"name":"Rose","product":"rose","stock":"2","price":"4.99"},
 {"name":"Peony","product":"peony","stock":"0","price":"1.50"},
 {"name":"Primula","product":"primula","stock":"1","price":"3.12"},
 {"name":"Snowdrop","product":"snowdrop","stock":"15","price":"0.99"}]

Figure 14-3. Using Ajax in response to a button press

Chapter 14 ■ Using ajax: part i

358

The file contains the data for the flower products and as you can see, JSON data is almost identical to the way you
represent data inline in JavaScript code. To load and process this data using Ajax, I can use the get method again, as
shown in Listing 14-7.

Listing 14-7. Using the get Method to Obtain JSON Data

...
<script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="0" required />
 </div>
 {{/flowers}}
</script>
<script type="text/javascript">
 $(document).ready(function () {
 $("<button>Ajax</button>").appendTo("#buttonDiv").click(function (e) {
 $.get("mydata.json", function (data) {
 var tmplData = $("#flowerTmpl").template({flowers: data}).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 });
 e.preventDefault();
 });
 });
</script>
...

In this example, I request the JSON data file in response to the button click. The data retrieved from the server
is passed to a function, just as with the HTML fragment. I have used the Handlebars template plug-in (described
in Chapter 12) to process the data and generate HTML elements from it and then the slice and appendTo method
to insert the elements into the document. Notice that I didn’t have to do anything to convert the JSON string to a
JavaScript object: jQuery does this for me automatically.

Tip ■ some web servers (and this includes some versions of Microsoft iis, which i have used for this book) will not
return content to browsers if they don’t recognize the file extension or data format. to make this example work with iis,
i have to add a new mapping between the file extension (.json) and the MiMe type for jsOn data (application/json).
Until i did this, iis would return 404—not Found errors when mydata.json was requested.

Providing Data to GET Requests
It is possible to send data to the server as part of a GET request, which is the kind of request made by the get method
(as well as the load, getScript, and getJSON methods that I describe later in this chapter). To send data as part of the
GET request, you pass a data object to the get method, as demonstrated by Listing 14-8.

Chapter 14 ■ Using ajax: part i

359

Listing 14-8. Sending Data as Part of a GET Request

...
<script type="text/javascript">
 $(document).ready(function () {

 var requestData = {
 country: "US",
 state: "New York"
 };

 $("<button>Ajax</button>").appendTo("#buttonDiv").click(function (e) {
 $.get("mydata.json", requestData, function (data) {
 var tmplData = $("#flowerTmpl").template({flowers: data}).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 });
 e.preventDefault();
 });
 });
</script>
...

The data you provide is appended to the specified URL as a query string. For this example, this means you
request the following:

http://www.jacquisflowershop.com/jquery/flowers.html?country=US&state=New+York

The server can use the data you provide to tailor the content that is returned. You might have different flower
sections for different states, for example. You won’t be able to see the URL used to make the Ajax request in the
browser, but you can use the developer’s tools (commonly known as the F12 tools because they are accessed via the
F12 key) to see what requests are being made. For Google Chrome, press F12, click the Network tab in the window
that appears, and click the XHR filter (XHR refers to the XmlHttpRequest object, which is the Document Object Model
(DOM) object used by jQuery to make Ajax requests). Figure 14-4 illustrates how Chrome displays details of the Ajax
request in the example.

Figure 14-4. Inspecting an Ajax request using the Google Chrome F12 tools

http://www.jacquisflowershop.com/jquery/flowers.html?country=US&state=New+York

Chapter 14 ■ Using ajax: part i

360

Get aND pOSt: pICK the rIGht ONe

You might be tempted to send form data using a GET request. Be careful. the rule of thumb is that GET requests
should be used for read-only information retrieval, while POST requests should be used for any operation that
changes the application state.

in standards-compliance terms, GET requests are for safe interactions (having no side effects besides information
retrieval), and POST requests are for unsafe interactions (making a decision or changing something). these
conventions are set by the World Wide Web Consortium (W3C), at www.w3.org/Provider/Style/URI.

so, you can use GET requests to send form data to the server, but not for operations that change state. Many
web developers learned this the hard way in 2005 when google Web accelerator was released to the public. this
application pre-fetched all the content linked from each page, which is legal within http because GET requests
should be safe. Unfortunately, many web developers had ignored the http conventions and placed simple links to
“delete item” or “add to shopping cart” in their applications. Chaos ensued.

One company believed its content management system was the target of repeated hostile attacks, because all its
content kept getting deleted. the company later discovered that a search-engine crawler had hit upon the UrL of
an administrative page and was crawling all the delete links.

Performing an Ajax POST Request
Now that you have seen how to get data from the server, I can turn my attention to how you send it—that is, how to
post form data to the server. Once again, there is a shorthand method: post, which makes posting a form simple. But
before I demonstrate the use of the post method, I need to extend the code for the formserver.js file so that Node.js
is able to receive and process the POST requests I use in the examples.

Preparing Node.js to Receive Form Data
I need a server script that will receive data sent from the browser using the HTTP POST method, perform some simple
operation on the data that has been sent, and generate a response. Listing 14-9 shows the updated version of the
formserver.js file that I first used in Chapter 13.

Listing 14-9. The Modified formserver.js File

var http = require("http");
var querystring = require("querystring");
var url = require("url");

var port = 80;

http.createServer(function (req, res) {
 console.log("[200 OK] " + req.method + " to " + req.url);

 if (req.method == "OPTIONS") {
 res.writeHead(200, "OK", {
 "Access-Control-Allow-Headers": "Content-Type",
 "Access-Control-Allow-Methods": "*",
 "Access-Control-Allow-Origin": "http://www.jacquisflowershop.com"
 });
 res.end();

http://www.w3.org/Provider/Style/URI
http://www.jacquisflowershop.com/

Chapter 14 ■ Using ajax: part i

361

 } else if (req.method == "POST") {
 var dataObj = new Object();
 var contentType = req.headers["content-type"];
 var fullBody = "";

 if (contentType) {
 if (contentType.indexOf("application/x-www-form-urlencoded") > -1) {
 req.on("data", function (chunk) { fullBody += chunk.toString(); });
 req.on("end", function () {
 var dBody = querystring.parse(fullBody);
 writeResponse(req, res, dBody,
 url.parse(req.url, true).query["callback"])
 });
 } else {
 req.on("data", function (chunk) { fullBody += chunk.toString(); });
 req.on("end", function () {
 dataObj = JSON.parse(fullBody);
 var dprops = new Object();
 for (var i = 0; i < dataObj.length; i++) {
 dprops[dataObj[i].name] = dataObj[i].value;
 }
 writeResponse(req, res, dprops);
 });
 }
 }
 } else if (req.method == "GET") {
 var data = url.parse(req.url, true).query;
 writeResponse(req, res, data, data["callback"])
 }

 function writeResponse(req, res, data, jsonp) {
 var total = 0;
 for (item in data) {
 if (item != "_" && data[item] > 0) {
 total += Number(data[item]);
 } else {
 delete data[item];
 }
 }
 data.total = total;
 jsonData = JSON.stringify(data);
 if (jsonp) {
 jsonData = jsonp + "(" + jsonData + ")";
 }

 res.writeHead(200, "OK", {
 "Content-Type": "application/json",
 "Access-Control-Allow-Origin": "*"
 });

Chapter 14 ■ Using ajax: part i

362

 res.write(jsonData);
 res.end();
 }

}).listen(port);
console.log("Ready on port " + port);

Tip ■ the easiest way to get this script is to download the source code that accompanies this book and that is freely
available on the apress web site at www.apress.com. i included details of obtaining Node.js in Chapter 1.

As before, I run the script by entering the following at the command prompt:

node.exe formserver.js

The revised Node.js script processes the data sent by the browser and creates a JSON response. I could have
returned HTML from this script, but JSON is more compact and often simpler to work with. The JSON object I return
is a simple object that contains the total number of products that the user has selected and the number of each of
them for which a value was specified. So, for example, if I selected one aster, two daffodils, and three roses, the JSON
response sent back by the Node.js script would be as follows:

{"aster":"1","daffodil":"2","rose":"2","total":5}

The previous JSON string I showed you represented an array of objects, but this server script returns just a single
object whose properties correspond to the selected flowers. The total property contains the sum of the individual
selections. I appreciate that this is hardly the most valuable activity a server can perform, but I want to focus on using
Ajax rather than server-side development.

Understanding Cross-Origin Ajax Requests
If you look at the new formserver.js script, you will see that when I write the response to the browser, I set an HTTP
header, as follows:

Access-Control-Allow-Origin: http://www.jacquisflowershop.com

By default, browsers limit scripts to making make Ajax requests within the same origin as the document that
contains them. An origin is the combination of the protocol, hostname, and port components of a URL. If two URLs
have the same protocol, hostname, and port, then they are within the same origin. If any of the three components is
different, then they are in different origins.

Tip ■ this policy is intended to reduce the risks of a cross-site scripting (Css) attack, where the browser (or user) is
tricked into executing a malicious script. Css attacks are outside the scope of this book, but there is a useful Wikipedia
article at http://en.wikipedia.org/wiki/Cross-site_scripting that provides a good introduction to the topic.

Table 14-3 shows how changes in URLs affect the origin when compared to the URL of the main example
document, which is www.jacquisflowershop.com/jquery/example.html.

http://www.apress.com/
http://www.jacquisflowershop.com/
http://en.wikipedia.org/wiki/Cross-site_scripting
http://www.jacquisflowershop.com/jquery/example.html

Chapter 14 ■ Using ajax: part i

363

In my configuration, I have two servers. www.jacquisflowershop.com handles the static content, and
node.jacquisflowershop.com runs Node.js. As you can see from the table, a document from the first server has a different
origin from the second. When you want to make a request from one origin to another, it is known as a cross-origin request.

The problem with this policy is that it is a blanket ban; there are no cross-origin requests. This has led to the use
of some ugly tricks to fool the browser into making requests that contravene the policy. Fortunately, there is now a
legitimate means of making cross-origin requests, defined in the Cross-Origin Resource Sharing (CORS) specification.
I am only going to describe CORS briefly. For complete details, see the full CORS standard at www.w3.org/TR/cors.

Tip ■ the COrs specification is reasonably recent. it is supported by the current generation of browsers, but older
browsers will simply ignore cross-origin requests. a more established approach is to use jsOnp, which i describe in the
section “Working with jsOnp.”

The way that CORS works is that the browser contacts the second server (the Node.js server in this case) and
includes an Origin header in the request. The value of this header is the origin of the document that has led to the
request being made.

If the server recognizes the origin and wants to allow the browser to make a cross-origin request, then it adds the
Access-Control-Allow-Origin header, setting the value to match the Origin header from the request. If the response
doesn’t contain this header, then the browser discards the response.

Tip ■ supporting COrs means that the browser has to apply the cross-origin security policy after it has contacted
the server and has obtained the response header, meaning that the request is made even if the response is discarded
because the required header is missing or specified a different domain. this is a different approach from browsers that
don’t implement COrs and that simply block the request, never contacting the server.

In the formserver.js script, I set the Access-Control-Allow-Origin header to my trusted origin
http://www.jacquisflowershop.com, but you could easily use the value of the Origin header in the request to follow
a more sophisticated decision process. You can also set the Access-Control-Allow-Origin header to an asterisk (*),
which means that cross-origin requests from any origin will be permitted. This is fine for the purposes of testing, but
you should think carefully about the security implications before using this setting in a production application.

Using the post Method to Submit Form Data
So, now that I have prepared the server and understood CORS, I am in a position to use the post method to send form
data to the server, as shown by Listing 14-10.

Table 14-3. Comparing URLs

URL Origin Comparison

http://www.jacquisflowershop.com/apps/mydoc.html Same origin

https://www.jacquisflowershop.com/apps/mydoc.html Different origin; protocol differs

http://www.jacquisflowershop.com:81/apps/mydoc.html Different origin; port differs

http://node.jacquisflowershop.com/order Different origin; host differs

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://www.jacquisflowershop.com/
http://node.jacquisflowershop.com
http://www.w3.org/TR/cors
http://www.jacquisflowershop.com/
http://www.jacquisflowershop.com/
http://www.jacquisflowershop.com/apps/mydoc.html
https://www.jacquisflowershop.com/apps/mydoc.html
http://www.jacquisflowershop.com:81/apps/mydoc.html
http://node.jacquisflowershop.com/order

Chapter 14 ■ Using ajax: part i

364

Listing 14-10. Sending Data with the post Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <script src="jquery.validate.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="0" required />
 </div>
 {{/flowers}}
 </script>
 <script id="totalTmpl" type="text/x-handlebars-template">
 <div id="totalDiv" style="clear: both; padding: 5px">
 <div style="text-align: center">Total Items:
 {{total}}</div>
 </div>
 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 $.get("flowers.html", function (data) {
 var elems = $(data).filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 });

 $("button").click(function (e) {
 var formData = $("form").serialize();
 $.post("http://node.jacquisflowershop.com/order",
 formData, processServerResponse);
 e.preventDefault();
 });

 function processServerResponse(data) {
 var inputElems = $("div.dcell").hide();
 for (var prop in data) {
 var filtered = inputElems.has("input[name=" + prop + "]")
 .appendTo("#row1").show();
 }

http://node.jacquisflowershop.com/order

Chapter 14 ■ Using ajax: part i

365

 $("#buttonDiv").remove();
 $("#totalTmpl").template(data).appendTo("body");
 }
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 </div>
 <div id="row2"class="drow">
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

This example looks more complicated than it really is. I start by using the getJSON method to obtain the mydata.json
file that contains details of the flower products and then use a data template to generate elements and add them to the
document. This gives me the starting point that you have come to know and love, as shown in Figure 14-5. You can see
that I have entered some values into the input elements: 12 asters, 20 daffodils, 4 primula, and 4 snowdrops.

Figure 14-5. The starting point for sending data to the server

http://node.jacquisflowershop.com/order

Chapter 14 ■ Using ajax: part i

366

I use the click method to register a function that will be called when the button element is clicked, as follows:

...
$("button").click(function (e) {
 var formData = $("form").serialize();
 $.post("http://node.jacquisflowershop.com/order", formData, processServerResponse);
 e.preventDefault();
});
...

The first thing that I do is to call the serialize method on the form element. This is a helpful method that works
its way through all of the form elements and creates a URL-encoded string that you can send to the server.

Tip ■ notice that i call the preventDefault method on the Event object that is passed to my handler function for the
click event. i need to do this to stop the browser posting the form in the regular way—that is, by sending the data and
loading the response as a separate htML document.

For the values I entered into the input elements, the serialize method generates a string as follows:

aster=12&daffodil=20&rose=0&peony=0&primula=4&snowdrop=0

I use the serialize method because the post method sends data in the URL-encoded format (although this can
be changed by using the ajaxSetup global event handler method, which I describe in Chapter 15). Once I have the
data from the input elements, I call the post method to initiate the Ajax request.

The arguments to the post method are the URL that I want to send the data to (which does not need to be the
same as the URL specified by the action attribute of the form element), the data I want to send, and a function to call if
the request is successful. In this example, I take the response from the server and pass it to the processServerResponse
function, which is defined as follows:

...
function processServerResponse(data) {
 var inputElems = $("div.dcell").hide();
 for (var prop in data) {
 var filtered = inputElems.has("input[name=" + prop + "]")
 .appendTo("#row1").show();
 }
 $("#buttonDiv").remove();
 $("#totalTmpl").template(data).appendTo("body");
}
...

I hide all of the cell-level div elements in the CSS layout (which are members of the dcell class) and then display
those that correspond to the properties in the JSON object from the server. I also use a new data template to generate
a display for the total number of selected items. These are both activities you could have performed on the client, but
the point here is that you obtained the data through an Ajax POST request. You can see the result in Figure 14-6.

http://node.jacquisflowershop.com/order

Chapter 14 ■ Using ajax: part i

367

You can see how easy it is to submit form data to the server (and, of course, how easy it is to process the response,
especially if it is JSON).

Tip ■ if you don’t get the response shown in the figure, then the likely cause is that your CORS header isn’t being set to
the correct domain in the Node.js script. as a quick test, set it to * and see what happens.

Sending Other Data Using the post Method
Although the post method is usually used to submit form data, it can actually send any data to the server. I just create an
object that contains your data, call the serialize method to format the data properly, and then pass it to the post method.

This can be a useful technique if you are collecting data from the user without using a form or if you want to be
selective about the form elements that you include in the POST request. Listing 14-11 shows how you can use the post
method in this way.

Listing 14-11. Using the post Method to Send Nonform Data to the Server

...
<script type="text/javascript">
 $(document).ready(function () {

 $("button").click(function (e) {
 var requestData = {
 apples: 2,
 oranges: 10
 };

 $.post("http://node.jacquisflowershop.com/order", requestData,
 function (responseData) {
 console.log(JSON.stringify(responseData));
 })
 e.preventDefault();
 })
 });
</script>
...

Figure 14-6. The effect of processing the data returned from the Ajax POST request

http://node.jacquisflowershop.com/order

Chapter 14 ■ Using ajax: part i

368

In this script, I create an object and define properties explicitly. I pass this object to the post method and use the
console.log method to write out the response from the server. (The formserver.js script doesn’t really care what
kind of data it gets from the browser; it will just try to add up the values and generate a total.) The script produces the
following console output:

{"apples":"2","oranges":"10","total":12}

Tip ■ the jsOn response from the server is automatically transformed into a javascript object by jQuery. i used the
JSON.stringify method (which is supported by most browsers) to turn it back into a string so that i could display it on
the console.

Specifying the Expected Data Type
When you use the get and post methods, jQuery has to figure out what kind of data the server is sending back
in response to your request. It can be anything from HTML to a JavaScript file. To do this, jQuery relies on the
information that the server provides in the response, particularly the Content-Type header. For the most part, this
works well, but on occasion jQuery needs a little help. This is usually because the server is specifying the wrong MIME
type for the data in the response.

You can override the information that the server provides and can tell jQuery what data you are expecting by
passing an additional argument to the get or post methods. This argument can be one of the following values:

•	 xml

•	 json

•	 jsonp

•	 script

•	 html

•	 text

Listing 14-12 shows how you can specify the expected data type for the get method.

Listing 14-12. Specifying the Expected Data Type

...
<script type="text/javascript">
 $(document).ready(function () {
 $.get("mydata.json", function (responseData) {
 console.log(JSON.stringify(responseData));
 }, "json");
 });
</script>
...

You specify the data type as the last argument to the shorthand methods. In this example, I have told jQuery that
I am expecting JSON data. It doesn’t matter what the server says the content type is: jQuery will treat the response as
JSON. This example produces the following console output:

Chapter 14 ■ Using ajax: part i

369

[{"name":"Aster","product":"aster","stock":"10","price":"2.99"},
 {"name":"Daffodil","product":"daffodil","stock":"12","price":"1.99"},
 {"name":"Rose","product":"rose","stock":"2","price":"4.99"},
 {"name":"Peony","product":"peony","stock":"0","price":"1.50"},
 {"name":"Primula","product":"primula","stock":"1","price":"3.12"},
 {"name":"Snowdrop","product":"snowdrop","stock":"15","price":"0.99"}]

This is the same content that I put into the mydata.json file, which is, of course, what you would expect. The
problem with specifying the data type is that you have to be right. If the data are actually of a different type, then you
can have some problems, as demonstrated in Listing 14-13.

Listing 14-13. Specifying the Wrong Kind of Data

...
<script type="text/javascript">
 $(document).ready(function () {

 $.get("flowers.html", function (responseData) {
 console.log(JSON.stringify(responseData));
 }, "json");
 });
</script>
...

In this example, I have requested a file that contains HTML but told jQuery that it should treat it as JSON. The problem
here is that when dealing with JSON, jQuery automatically creates a JavaScript object from the data, which it can’t do
with HTML.

Tip ■ i’ll show you how to detect ajax errors in Chapter 15.

Avoiding the Most Common Ajax Pitfall
Before going any further, I want to show you the most common problem that web programmers make with Ajax, which
is to treat the asynchronous request as though it were synchronous. Listing 14-14 gives an example of the problem.

Listing 14-14. A Common Ajax Mistake

...
<script type="text/javascript">
 $(document).ready(function () {

 var elems;

 $.get("flowers.html", function (data) {
 elems = $(data).filter("div").addClass("dcell");
 });

Chapter 14 ■ Using ajax: part i

370

 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 });
</script>
...

In this example, I have defined a variable called elems, which is then used by the Ajax callback function to assign
the result of the server request. I use the slice and appendTo methods to add the elements that I have obtained from
the server to the document. If you run this example, you will see that no elements are added to the document, and
depending on your browser, you will see an error message displayed on the console. Following is the message shown
by Google Chrome:

Uncaught TypeError: Cannot call method 'slice' of undefined

The issue here is that the statements in the script element are not executed in the order in which they are
written. The code in the example assumes the following sequence will occur:

 1. Define the elems variable.

 2. Get the data from the server and assign it to the elems variable.

 3. Slice the elements in the elems variable and add them to the document.

What really happens is this.

 1. Define the elems variable.

 2. Start the asynchronous request to the server.

 3. Slice the elements in the elems variable and add them to the document.

And, at some point in the future, this happens.

 1. Receive the request from the server.

 2. Process the data and assign it to the elems variable.

In short, I get the error message because I called the slice method on a variable that doesn’t contain any
elements. The worst thing about this mistake is that sometimes the code actually works. This is because the Ajax
response can complete so quickly that the variable contains the data before I come to process it (this is typically the
case when the data is cached by the browser or you perform some complex operations between starting the Ajax
request and trying to operate on the data). You now know what to look for whether you see this kind of behavior from
your code.

Chapter 14 ■ Using ajax: part i

371

Table 14-4. The jQuery Ajax Type-Specific Convenience Methods

Name Description

load() Loads HTML elements and inserts them into the elements in the jQuery object on which
the method has been called

$.getScript() Gets and executes JavaScript code

$.getJSON() Gets JSON data

Getting an HTML Fragment
The load method will only obtain HTML data, which allows you to request an HTML fragment, process the response
to create a set of elements, and insert those elements in the document in a single step. Listing 14-15 shows how you
can use the load method.

Listing 14-15. Using the Load Shorthand Method

...
<script type="text/javascript">
 $(document).ready(function () {
 $("#row1").load("flowers.html");
 });
</script>
...

You call the load method on the element in the document that you want to insert the new elements into and pass
the URL as a method argument. If the request is successful and the response from the server contains valid HTML,
then the elements will be inserted at the specified location, as shown in Figure 14-7.

Using the Type-Specific Convenience Methods
jQuery provides three convenience methods that make dealing with particular types of data a little easier. Table 14-4
summarizes these methods which are demonstrated in the sections that follow.

Chapter 14 ■ Using ajax: part i

372

The elements from the flower.html file have all been added to the document, but because they lack the class
attribute they are not properly added to the CSS table layout that the main document uses. For this reason, the load
method is most useful when all of the elements are to be inserted in a single location and you don’t need to modify
them before they are added.

Manipulating the Elements Added by the load Method
The load method returns a jQuery object that contains the elements into which the loaded HTML content will be
inserted. The key phrase is will be because the load method uses an asynchronous request to get the HTML from the
server. This means that you have to be careful if you want to manipulate the elements that the load method adds to
the DOM because normal jQuery techniques won’t work. Listing 14-16 shows the most common problem I see when
projects use the load method.

Listing 14-16. The Most Common Problem Code for the load Method

...
<script type="text/javascript">
 $(document).ready(function () {
 $("#row1").load("flowers.html").children().addClass("dcell");
 });
</script>
...

Figure 14-7. Adding elements to the document using the load method

Chapter 14 ■ Using ajax: part i

373

The objective of the code is obvious: to load the content of the flowers.html file into the row1 element, select the
newly added elements, and add them to the dcell class (which will have the effect of laying them out horizontally as
part of my CSS table layout).

But if you run this example, you will see that there is no change from the result shown in Figure 14-7. This is
because the load method goes off and requests the flowers.html file asynchronously, leaving jQuery free to continue
executing method calls. And so the child elements of the row1 element are selected and modified before the Ajax
request has completed and the new elements are added to the document.

To address this, the load method has an optional argument that allows a callback function to be specified. The
callback function won’t be invoked until the Ajax elements have been added to the document and this ensures that I
can sequence my manipulations correctly, as shown in Listing 14-17.

Listing 14-17. Using the Callback Argument of the load Method

...
<script type="text/javascript">
 $(document).ready(function () {
 var targetElems = $("#row1");
 targetElems.load("flowers.html", function () {
 targetElems.children().addClass("dcell");
 });
 });
</script>
...

The effect is that the calls to the children and addClass methods are not performed until after the content from
the flowers.html file is added to the document, producing the effect shown in Figure 14-8.

Figure 14-8. Using a callback function to manipulate the elements added by the load method

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 14 ■ Using ajax: part i

374

Getting and Executing Scripts
The getScript method loads a JavaScript file and executes the statements it contains. To demonstrate this method,
I have created a file called myscript.js and saved it alongside example.html on my web server. Listing 14-18 shows
the contents of this file.

Listing 14-18. The Contents of the myscript.js File

var flowers = [
 ["Aster", "Daffodil", "Rose"],
 ["Peony", "Primula", "Snowdrop"],
 ["Carnation", "Lily", "Orchid"]
]

$("<div id=row3 class=drow/>").appendTo("div.dtable");

var fTemplate = $("<div class=dcell><label/><input/></div>");

for (var row = 0; row < flowers.length; row++) {
 var fNames = flowers[row];

 for (var i = 0; i < fNames.length; i++) {
 fTemplate.clone().appendTo("#row" + (row + 1)).children()
 .filter("img").attr("src", fNames[i] + ".png").end()
 .filter("label").attr("for", fNames[i]).text(fNames[i]).end()
 .filter("input").attr({name: fNames[i], value: 0})
 }
}

These statements generate three rows of elements that describe flowers. I have generated these elements using
loops so I don’t have to get involved in defining templates (although, in general, I would much rather use data
templates as described in Chapter 12). Listing 14-19 demonstrates the use of the getScript method to obtain and
execute the contents of the myscript.js file.

Listing 14-19. Using the getScript Method

...
<script type="text/javascript">
 $(document).ready(function () {
 $.getScript("myscript.js");
 });
</script>
...

The getScript method is called when the DOM is ready. The execution of the myscript.js file leads to three
rows of flowers elements, as shown by Figure 14-9.

Chapter 14 ■ Using ajax: part i

375

The most important thing to realize when dealing with scripts like this is that the state of the document may
change between you initiating the Ajax request and the script statements being executed. Listing 14-20 contains a
script from the main document that uses the getScript method but also modifies the DOM before the Ajax request
can complete.

Listing 14-20. Requesting and Executing Scripts with the getScript Method

...
<script type="text/javascript">
 $(document).ready(function () {
 $.getScript("myscript.js");
 $("#row2").remove();
 });
</script>
...

Tip ■ the getScript method can be used for any script file, but i find it especially useful for loading and executing
scripts that are not central to a web application’s functionality, like tracker or geolocation scripts. the user doesn’t care if
i am able to accurately locate his location for my site statistics, but he does care when loading and executing the script
makes him wait. By using the getScript method, i can get the information i require without making it annoying. to be
clear, i am not suggesting that you do anything that is hidden from the user, only that you defer loading and executing
legitimate functionality that the user is unlikely to value more than his time.

Figure 14-9. Using the getScript method to load and execute a JavaScript file

Chapter 14 ■ Using ajax: part i

376

In this example I start the Ajax request with the getScript method and then call the remove method to remove
the row2 element from the document. This element is used by the myscript.js file to insert some of the new
elements.

These elements that would have been added to the row2 element are quietly discarded because the selector
for the row2 ID doesn’t match anything in the document. You can see the result in Figure 14-10. Depending on
the circumstances, you can view this as a robust design that does its best in the face of document changes or an
annoyance that quietly disposes of elements. Either way, it pays not to make too many assumptions about the state of
the document in your external JavaScript files.

Figure 14-10. The effect of a document change during an Ajax request

Getting JSON Data
The getJSON method obtains JSON data from the server and parses it to create JavaScript objects. This is perhaps the
least useful of the three convenience methods because it doesn’t do anything more with the data than the basic get
method. Listing 14-21 shows the use of the getJSON method.

Listing 14-21. Using the getJSON Method

...
<script type="text/javascript">
 $(document).ready(function () {
 $.getJSON("mydata.json", function (data) {
 var tmplElems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 });
 });
</script>
...

The JSON data retrieved from the server is passed to a callback function, much as with the get method that
I showed you earlier in the chapter. I have used a data template (described in Chapter 12) to process the data and
generate HTML elements from it and then the slice and appendTo method to insert the elements into the document.

Chapter 14 ■ Using ajax: part i

377

Tip ■ notice that you are passed a javascript object as the argument to the function. You don’t have to do anything to
convert from the jsOn format into an object because jQuery takes care of this for you.

Working with JSONP
JSONP is an alternative to CORS and works around the same-origin restriction on Ajax requests. It relies on the fact
that the browser will allow you to load JavaScript code from any server, which is how the script element works when
you specify a src attribute. To begin with, define a function in the document that will process the data, as follows:

...
function processJSONP(data) {
 //...do something with the data...
}
...

You then make a request to the server where the query string includes your form data and a callback property,
set to the name of the function you just defined, as follows:

http://node.jacquisflowershop.com/order? callback=processJSONP&aster=1
 &daffodil=2&rose=2&peony=0&primula=0&snowdrop=0

The server, which needs to understand how JSONP works, generates the JSON data as normal and then creates a
JavaScript statement that calls the function you created and passes in the data as an argument, as follows:

processJSONP({"aster":"1","daffodil":"2","rose":"2","total":5})

The server also sets the content type of the response to be text/javascript, which tells the browser that it has
received some JavaScript statements and should execute them. This has the effect of invoking the method you defined
earlier, passing in the data sent by the server. In this way, you neatly sidestep the same-domain issues without
using CORS.

Caution ■ Cross-origin requests are restricted for good reason. Don’t use jsOnp casually. it can create some serious
security problems.

jQuery has convenient support for JSONP. All you have to do is use the getJSON method and specify a URL
that contains callback=? in the query string. jQuery creates a function with a random name and uses this when
communicating to the server, meaning you don’t have to modify your code at all. Listing 14-22 demonstrates how to
make a JSONP request.

http://node.jacquisflowershop.com/order?callback=processJSONP%26aster=1%26daffodil=2%26rose=2%26peony=0%26primula=0%26snowdrop=0
http://node.jacquisflowershop.com/order?callback=processJSONP%26aster=1%26daffodil=2%26rose=2%26peony=0%26primula=0%26snowdrop=0

Chapter 14 ■ Using ajax: part i

378

Listing 14-22. Making a JSONP Request Using the getJSON Method

...
<script type="text/javascript">
 $(document).ready(function () {
 $.getJSON("mydata.json", function (data) {
 var tmplElems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");

 });

 $("button").click(function (e) {
 var formData = $("form").serialize();
 $.getJSON("http://node.jacquisflowershop.com/order?callback=?",
 formData, processServerResponse)
 e.preventDefault();
 })

 function processServerResponse(data) {
 var inputElems = $("div.dcell").hide();
 for (var prop in data) {
 var filtered = inputElems.has("input[name=' + prop + ']")
 .appendTo("#row1").show();
 }
 $("#buttonDiv, #totalDiv").remove();
 $("#totalTmpl").template(data).appendTo("body");
 }
 });
</script>
...

Using the Ajax Forms Plug-in
So far, I have been using the built-in jQuery support for Ajax. As I mentioned previously, one of the strengths of jQuery
is the ease with which it can be extended to add new functionality and the vibrant world of plug-ins that this leads to.
To finish this chapter, I am going to briefly describe a useful form-related plug-in.

If you are interested in using Ajax solely to post form data to a server, then you might like the jQuery Form plug-in,
which you can get from www.malsup.com/jquery/form and which I saved to a file called jquery.form.js. The jQuery
Form plug-in makes using Ajax on forms extremely simple, as Listing 14-23 demonstrates.

Listing 14-23. Using the Ajax Forms Plug-in

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <script src="jquery.validate.js" type="text/javascript"></script>

http://node.jacquisflowershop.com/order?callback
http://www.malsup.com/jquery/form

Chapter 14 ■ Using ajax: part i

379

 <script src="jquery.form.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stock}}"
 value="0" required />
 </div>
 {{/flowers}}
 </script>
 <script id="totalTmpl" type="text/x-handlebars-template">
 <div id="totalDiv" style="clear: both; padding: 5px">
 <div style="text-align: center">Total Items:
 {{total}}</div>
 </div>
 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 $.getScript("myscript.js");

 $("form").ajaxForm(function (data) {
 var inputElems = $("div.dcell").hide();
 for (var prop in data) {
 var filtered = inputElems.has("input[name=' + prop + ']")
 .appendTo("#row1").show();
 }
 $("#buttonDiv, #totalDiv").remove();
 $("#totalTmpl").template(data).appendTo("body");
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 </div>
 <div id="row2"class="drow">
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

http://node.jacquisflowershop.com/order

Chapter 14 ■ Using ajax: part i

380

In this example, I have added the jquery.form.js script file to the document (this is included in the download
for the plug-in) and, in the script element, called the ajaxForm method on the form element. The argument to the
ajaxForm method is a callback function, and this provides me with access to the response from the server. This is a
neat and simple approach to basic Ajax forms, right down to the fact that the URL to post the form to is taken from the
form element itself.

This plug-in does a lot more, and it even includes some support for basic form validation, but if you get to the
point where you want to start taking control of your Ajax requests, then I suggest using the low-level Ajax features that
I describe in Chapter 15. But for quick and simple situations, this plug-in is convenient and well designed.

Summary
In this chapter, I introduced you to the shorthand and convenience methods that jQuery provides for Ajax. I have
shown you how to use the get and post methods to make asynchronous HTTP GET and POST requests, how to work
with JSON data, and how to use the convenience methods that deal with specific data types. Along the way, I have
shown you the most common Ajax pitfall, explained cross-origin requests, and showed how to deal with them and
briefly introduced a jQuery plug-in, which makes it even easier to use Ajax with forms that the shorthand methods.
In the next chapter, I’ll show you the low-level API, although you’ll see that it isn’t really that low level and is actually
pleasant to use.

381

Chapter 15

Using Ajax: Part II

In this chapter, I show you how to use the low-level jQuery Ajax API (application programming interface). The term
low level implies rooting around in the guts of the request, but that really isn’t the case. The methods I describe in
this chapter are not as convenient as those in Chapter 14, but with a little more effort you can configure the fine detail
of the request when the configuration used by the shorthand and convenience methods doesn’t quite do the job.
Table 15-1 provides the summary for this chapter.

Table 15-1. Chapter Summary

Problem Solution Listing

Make an Ajax call with the low-level API Use the ajax method 1

Get details of the request in a way that is similar to the native
XMLHttpRequest object

Use the jqXHR method 2

Specify the URL for an Ajax request Use the url setting 3

Specify the HTTP method for a request Use the type setting 4

Respond to successful requests Use the success setting 5

Respond to unsuccessful requests Use the error setting 6

Respond to completed requests, regardless of success or errors Use the complete setting 7, 8

Configure a request before it is sent Use the beforeSend setting 9

Specify multiple functions to handle successful, unsuccessful,
or completed requests

Specify an array of functions for the
success, error, or complete setting

10

Specify the element that will be assigned to the this variable in
the functions for the success, error, and complete settings

Use the context setting 11

Respond to events for all Ajax requests Use the global event methods 12

Specify whether a request will lead to global events
being triggered

Use the global setting 13

Set the timeout for a request Use the timeout setting 14

Add headers to the request Use the headers setting 14

Specify the content type being set to the server Use the contentType header 15

(continued)

Chapter 15 ■ Using ajax: part ii

382

JQUerY ChaNGeS SINCe the LaSt eDItION

as of jQuery 1.9/2.0, the methods that set up handlers for the ajax global events can only be called on the document
object (in earlier jQuery versions, these methods could be used on any element). see the section “Using the global
ajax events” for the details of these methods.

Making a Simple Ajax Request with the Low-Level API
Making a request with the low-level API isn’t much more complicated than using the shorthand and convenience
methods I showed you in Chapter 14. The difference is that you can configure many different aspects of the request
and get a lot more information about the request as it is performed. The method that is at the heart of the low-level
API is ajax, and Listing 15-1 provides a simple demonstration of its use.

Listing 15-1. Using the ajax Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <script src="jquery.validate.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stocklevel}}"
 value="0" required />
 </div>

Problem Solution Listing

Specify whether a request will be performed synchronously
or asynchronously

Use the async setting 16

Ignore data that has not been changed Use the ifModified setting 17

Respond to the HTTP status code sent by the server Use the statusCode setting 18

Clean up the response data Use the dataFilter setting 19

Control how data is converted Use the converters setting 20

Define a common configuration for all Ajax requests Use the ajaxSetup method 21

Dynamically change the configuration for individual requests Use the ajaxPrefilter method 22

Table 15-1. (continued)

Chapter 15 ■ Using ajax: part ii

383

 {{/flowers}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 $.ajax("mydata.json", {
 success: function (data) {
 var tmplElems = $("#flowerTmpl")
 .template({flowers: data}).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 }
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 </div>
 <div id="row2"class="drow">
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

You use the ajax method by passing the URL that you want to request and a map object whose properties define
a set of key/value pairs, each of which configures a setting for the request.

Note ■ this chapter relies on the same Node.js script used in Chapter 14.

In this example, my map object has one property—success—which specifies the function to call if the request
is successful. I request the mydata.json file from the server and use it with a data template to create and insert
elements into the document, just as I did in the previous chapter with the shorthand methods. By default, the ajax
method makes an HTTP get request, which means that the example is equivalent to using the get or getJSON
method, which I showed you in Chapter 14. (I’ll show you how to create POST requests later in the section “Making
a POST Request.”)

Many settings are available and I explain them throughout the rest of the chapter, along with methods that jQuery
provides to make Ajax easier to use.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://node.jacquisflowershop.com/order

Chapter 15 ■ Using ajax: part ii

384

Understanding the jqXHR Object
The result returned by the ajax method is a jqXHR object that you can use to get details about and interact with the
Ajax request. The jqXHR object is a superset of the XMLHttpRequest object that is defined as part of the World Wide
Web Consortium (W3C) standard that underpins browser support for Ajax, adapted to work with the jQuery deferred
object features that I describe in Chapter 35.

You can simply ignore the jqXHR object for most Ajax requests, which is exactly what I suggest you do. The
jqXHR object is useful when you need more information about the response from the server than would otherwise be
available. Table 15-2 describes the members of the jqXHR object.

Table 15-2. The jqXHR Members

Member Description

readyState Returns the progress of the request through its life cycle from unsent
(value 0) to complete (value 4)

status Returns the HTTP status code sent back by the server

statusText Returns the text description of the status code

responseXML Returns the response if it is an XML document

responseText Returns the response as a string

setRequestHeader(name, value) Sets a header on the request

getAllResponseHeaders() Returns all of the headers in the response as a single string

getResponseHeader(name) Returns the value of the specified response header

abort() Terminates the request

Tip ■ the jqXHR object can be used to configure the ajax request, but this is more easily done using the configuration
options for the ajax method, which i explain in the section “....”

You will encounter the jqXHR object in several places when working with jQuery. The first is, as I say, as the result
from the ajax method, as illustrated by Listing 15-2.

Listing 15-2. Using the jqXHR Object

...
<script type="text/javascript">
 $(document).ready(function () {
 var jqxhr = $.ajax("mydata.json", {
 success: function (data) {
 var tmplElems = $("#flowerTmpl").template({flowers: data}).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 }
 });

Chapter 15 ■ Using ajax: part ii

385

 var timerID = setInterval(function () {
 console.log("Status: " + jqxhr.status + " " + jqxhr.statusText);
 if (jqxhr.readyState == 4) {
 console.log("Request completed: " + jqxhr.responseText);
 clearInterval(timerID);
 }
 }, 100);

 });
</script>
...

In this listing, I assign the result from the ajax method to a variable called jqxhr and use the setInterval
method to write information about the request to the console every 100 milliseconds. Using the result of the ajax
method doesn’t change the fact that the request is performed asynchronously, so caution is required when working
with the jqXHR object. I use the readyState property to check the status of the request (the value of 4 indicates the
request has completed) and write the response from the server to the console. This script produces the following
console output (although you might see something slightly different based on your browser configuration):

Status: 200 OK

Request completed: [{"name":"Aster","product":"aster","stocklevel":"10","price":"2.99"},
{"name":"Daffodil","product":"daffodil","stocklevel":"12","price":"1.99"},
{"name":"Rose","product":"rose","stocklevel":"2","price":"4.99"},
{"name":"Peony","product":"peony","stocklevel":"0","price":"1.50"},
{"name":"Primula","product":"primula","stocklevel":"1","price":"3.12"},
{"name":"Snowdrop","product":"snowdrop","stocklevel":"15","price":"0.99"}]

Tip ■ i rarely use the jqXHR object and never when it is the result of the ajax method. if i want to work with the jqXHR
object (typically to get additional information about the response from a server), then i usually do so through the event
handler settings that i describe in the section “handling ajax Callbacks.” they give me a context regarding the status of
the request without making me poll for request status.

Setting the Request URL
As an alternative to passing the URL for the request as an argument to the ajax method, you can define a url property
in the map object, as shown in Listing 15-3.

Listing 15-3. Using the url Property

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax({
 url: "mydata.json",

Chapter 15 ■ Using ajax: part ii

386

 success: function (data) {
 var tmplElems = $("#flowerTmpl").template({flowers: data}).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 }
 });
 });
</script>
...

Making a POST Request
You set the HTTP method for requests using the type setting. The default is to make GET requests, as in the previous
example. Listing 15-4 shows using the ajax method to create a POST request and submit form data to the server.

Listing 15-4. Creating a POST Request with the ajax Method

...
<script id="totalTmpl" type="text/x-handlebars-template">
 <div id="totalDiv" style="clear: both; padding: 5px">
 <div style="text-align: center">Total Items:
 {{total}}</div>
 </div>
</script>
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax({
 url: "mydata.json",
 success: function (data) {
 var tmplElems = $("#flowerTmpl").template({flowers: data}).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 }
 });

 $("button").click(function (e) {
 $.ajax({
 url: $("form").attr("action"),
 data: $("form").serialize(),
 type: "post",
 success: processServerResponse
 })
 e.preventDefault();
 })

 function processServerResponse(data) {
 var inputElems = $("div.dcell").hide();
 for (var prop in data) {
 var filtered = inputElems.has("input[name=' + prop + ']")
 .appendTo("#row1").show();
 }

Chapter 15 ■ Using ajax: part ii

387

 $("#buttonDiv").remove();
 $("#totalTmpl").template(data).appendTo("body");
 }
 });
</script>
...

I have used several settings in addition to type. To specify the target for the POST request, I used the url property,
which I take from the target of the form element in the document. I specify the data to send using the data property,
which I set by using the serialize method (described in Chapter 34).

GOING BeYOND Get aND pOSt

You can use the type property to specify any http method, but you may have difficulty using anything other than
GET or POST because many firewalls and application servers are configured to discard other kinds of request. if
you want to use other http methods, then you can make a POST request, but add the X-HTTP-Method-Override
header, setting it to the method you want to use, as follows:

X-HTTP-Method-Override: PUT

this convention is widely supported by web application frameworks and is a common way of creating RESTful web
applications, which you can learn more about at http://en.wikipedia.org/wiki/Representational_state_transfer.
see the section “setting timeouts and headers” for details of how to set a header on a jQuery ajax request.

Handling Ajax Callbacks
Several properties let you specify callback functions for key points in the life of an Ajax request. You already saw one
of these callbacks when I used the success property in Listing 15-4. Table 15-3 describes the property used to set up
each of these callbacks.

Table 15-3. The Ajax Event Properties

Setting Description

beforeSend Specifies a function that will be called before the Ajax request is started

complete Specifies a function that will be called when the Ajax request succeeds or fails

error Specifies a function that will be called when the Ajax request fails

success Specifies a function that will be called when the Ajax request succeeds

Tip ■ the settings described in table 15-3 are related to local callbacks, meaning that they deal with individual ajax
requests. You can also use a series of global events, which i describe in the section “Using the global ajax events.”

http://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 15 ■ Using ajax: part ii

388

Dealing with Successful Requests
When I demonstrated the use of the success property, I omitted a couple of arguments from the function: a status
message describing the result of the request and a jqXHR object. Listing 15-5 shows the use of a function that accepts
these arguments.

Listing 15-5. Receiving All of the Arguments to a Success Function

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax({
 url: "mydata.json",
 success: function (data, status, jqxhr) {

 console.log("Status: " + status);
 console.log("jqXHR Status: " + jqxhr.status + " " + jqxhr.statusText);
 console.log(jqxhr.getAllResponseHeaders());

 var tmplElems = $("#flowerTmpl").template({flowers: data}).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 }
 });
 });
</script>
...

The status argument is a string that describes the outcome of the request. The callback function specified by the
success property is executed only for successful results and so this argument generally has the value success. The
exception occurs when you use the ifModified setting, which I describe in the section “Ignoring Unmodified Data.”
The callback functions for the other Ajax events follow the same pattern, and this argument is more useful in some of
the other events.

The final argument is a jqXHR object. You don’t have to poll the status of the request before working with the
jqXHR object since you know the function is executed only when the request has successfully completed. In Listing 15-5,
I have used the jqXHR object to get the status information and the headers that the server has included in the response
and write them to the console. This example produces the following result (although you will see a different set of
headers depending on the web server you are using):

Status: success
jqXHR Status: 200 OK
Date: Thu, 20 Jun 2013 12:06:30 GMT
Last-Modified: Wed, 19 Jun 2013 16:29:49 GMT
Server: Microsoft-IIS/7.5
X-Powered-By: ASP.NET
ETag: "b680cf37a6dce1:0"
Content-Type: application/json
Cache-Control: no-cache
Accept-Ranges: bytes
Content-Length: 405

Chapter 15 ■ Using ajax: part ii

389

Dealing with Errors
The error property specifies a callback function to be called when a request fails. Listing 15-6 provides a
demonstration.

Listing 15-6. Using the error Property

...
<style type="text/css">
 .error {color: red; border: medium solid red; padding: 4px;
 margin: auto; width: 200px; text-align: center}
</style>
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax({
 url: "NoSuchFile.json",
 success: function (data, status, jqxhr) {
 var tmplElems = $("#flowerTmpl").template({flowers: data}).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 },
 error: function (jqxhr, status, errorMsg) {
 $("<div>").addClass("error")
 .text("Status: " + status + " Error: " + errorMsg)
 .insertAfter("h1");
 }
 });
 });
</script>
...

In Listing 15-6, I have requested a file called NoSuchFile.json, which doesn’t exist on the web server. This
ensures that the request will fail and the callback function I have specified with the error property will be invoked.

The arguments passed to the error callback function are a jqXHR object, a status message, and the error message
from the server response. In the listing, I use the error callback to add a div element to the document showing the
value of the status and errorMsg arguments, as shown in Figure 15-1.

Figure 15-1. Displaying an error message

Chapter 15 ■ Using ajax: part ii

390

The status argument can be one of the values shown in Table 15-4.

Table 15-4. The Error Status Values

Setting Description

abort Indicates that the request was aborted (using the jqXHR object)

error Indicates a general error, usually reported by the server

parsererror Indicates that the data returned by the server could not be parsed

timeout Indicates that the request timed out before the server responded

The value of the errorMsg argument varies based on the status. When the status is error, then errorMsg will be
set to the text portion of the response from the server. So, in this example, the response from the server was 404 Not
Found, and so errorMsg is set to Not Found.

When the status is timeout, the value of errorMsg will also be timeout. You can specify the period before a
request times out using the timeout setting, which I describe in the section “Setting Timeouts and Headers.”

When the status is parsererror, then errorMsg will contain details of the problem. This error occurs when
data is malformed or the server returns the wrong MIME type for the data. (You can override the data type using the
dataType setting.) Finally, when the request is abort, both the status and the errorMsg values will be abort.

Tip ■ although i have displayed the status and errorMsg values in the document, this is generally unhelpful to the
user, since the messages require some understanding of what’s happening inside the web application and they contain
no instructions about how the problem might be resolved.

Dealing with Completed Requests
The complete property specifies a function that will be called when the Ajax request completes, irrespective of
whether it succeeds or fails. Listing 15-7 provides a demonstration.

Listing 15-7. Using the Complete Property

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax({
 url: "mydata.json",
 success: function (data, status, jqxhr) {
 var tmplElems = $("#flowerTmpl").template({flowers: data}).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 },
 error: function (jqxhr, status, errorMsg) {
 $("<div>").addClass("error")
 .text("Status: " + status + " Error: " + errorMsg)
 .insertAfter("h1");
 },

Chapter 15 ■ Using ajax: part ii

391

 complete: function (jqxhr, status) {
 console.log("Completed: " + status);
 }
 });
 });
</script>
...

The callback function specified by the complete property is called after the functions specified by the success
and error properties. jQuery passes the jqXHR object and a status string to the callback function. The status string will
be set to one of the values shown in Table 15-5.

Table 15-5. The Ajax Event Settings

Setting Description

abort Indicates that the request was aborted (using the jqXHR object)

error Indicates a general error, usually reported by the server

notmodified Indicates that the requested content has not been modified since it was last
requested (see the section “Ignoring Unmodified Data” for more details)

parsererror Indicates that the data returned by the server could not be parsed

success Indicates that the request completed successfully

timeout Indicates that the request timed out before the server responded

You might be tempted to use the complete setting to specify a single function that can handle all outcomes
of a request, but doing so means you don’t benefit from the way that jQuery processes data and errors. A better
approach is to use the success and error settings and carefully organize the arguments on the common function,
as shown in Listing 15-8.

Listing 15-8. Using a Single Function to Handle All Request Outcomes

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax({
 url: "mydata.json",
 success: function (data, status, jqxhr) {
 handleResponse(status, data, null, jqxhr);
 },
 error: function (jqxhr, status, errorMsg) {
 handleResponse(status, null, errorMsg, jqxhr);
 }
 });

 function handleResponse(status, data, errorMsg, jqxhr) {
 if (status == "success") {
 var tmplElems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");

Chapter 15 ■ Using ajax: part ii

392

 } else {
 $("<div>").addClass("error")
 .text("Status: " + status + " Error: " + errorMsg)
 .insertAfter("h1");
 }
 }
 });
</script>
...

Configuring Requests Before They Are Sent
The beforeSend property lets you specify a function that will be called before the request is started. This gives you
an opportunity to do last-minute configuration that supplements or overrides the settings you passed to the ajax
method, which can be useful if you are using the same basic settings object for multiple requests. Listing 15-9
demonstrates the use of the beforeSend property.

Listing 15-9. Using the beforeSend Property

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax({
 url: "NoSuchFile.json",
 success: function (data, status, jqxhr) {
 handleResponse(status, data, null, jqxhr);
 },
 error: function (jqxhr, status, errorMsg) {
 handleResponse(status, null, errorMsg, jqxhr);
 },
 beforeSend: function (jqxhr, settings) {
 settings.url = "mydata.json";
 }
 });

 function handleResponse(status, data, errorMsg, jqxhr) {
 if (status == "success") {
 var tmplElems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 } else {
 $("<div>").addClass("error")
 .text("Status: " + status + " Error: " + errorMsg)
 .insertAfter("h1");
 }
 }

 });
</script>
...

Chapter 15 ■ Using ajax: part ii

393

The arguments passed to the callback function are the jqXHR object and the settings object that you passed to
the ajax method. In Listing 15-9, I used the url setting to specify the URL for the Ajax request, overriding the value
of the url property.

Specifying Multiple Event Handler Functions
I have shown just one callback function to respond to the Ajax request, but you can set the success, error, complete,
and beforeStart properties to an array of functions and each of them will be executed when the corresponding event
is triggered. Listing 15-10 provides a demonstration.

Listing 15-10. Specifying Multiple Event Handling Functions

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax({
 url: "mydata.json",
 success: [processData, reportStatus],
 });

 function processData(data, status, jqxhr) {
 var tmplElems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 }

 function reportStatus(data, status, jqxhr) {
 console.log("Status: " + status + " Result code: " + jqxhr.status);
 }
 });
</script>
...

In Listing 15-10, I have set the success property to an array containing two function names, one of which uses the
data to add elements to the document and the other of which prints information to the console.

Setting the Context for Events
The context property lets you specify an element that will be assigned to the this variable when an event function
is enabled. This can be useful for targeting elements in the document without having to select them in the handler
function. Listing 15-11 gives a demonstration.

Listing 15-11. Using the context Property

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax({
 url: "mydata.json",
 context: $("h1"),
 success: function (data, status, jqxhr) {

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 15 ■ Using ajax: part ii

394

 var tmplElems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 },
 complete: function (jqxhr, status) {
 var color = status == "success" ? "green" : "red";
 this.css("border", "thick solid " + color);
 }
 });
 });
</script>
...

In Listing 15-11, I set the context property to the jQuery object containing the h1 elements in the document.
In the complete callback function, I use the css method on the jQuery object (which I refer to via this) to set the
border for the selected elements (or element, since there is only one in the document), varying the color based on the
status of the request. You can see the result for successful and failed requests in Figure 15-2.

Figure 15-2. Using the context property to indicate the outcome of an Ajax request

Tip ■ You can assign any object using the context property, and so you are responsible for ensuring that you do
appropriate things with it. For example, if you set the context to be an HTMLElement object, then you must be sure to
pass the object to the $ function before calling any jQuery methods on it.

Using the Global Ajax Events
In addition to the per-request callback functions that I described in the previous chapter, jQuery also defines a set of
global events, which you can use to monitor all Ajax queries that are made by your application. Table 15-6 shows the
methods available for global events.

Chapter 15 ■ Using ajax: part ii

395

Tip ■ prior to jQuery 1.9, you could call the methods in the table on any element, but from jQuery 1.9/2.0 you can only
call the methods in the table on the document element, as shown in the examples in this section.

These methods are used to register handler functions and must be applied to the document element (as I
demonstrate shortly). The ajaxStart and ajaxStop methods do not pass any arguments to handler functions, but the
other methods provide the following arguments:

An •	 Event object describing the event

A •	 jqXHR object describing the request

The settings object that contains the configuration for the request•	

The ajaxError method passes an additional argument to the handler function, which is the description of the
error that has occurred.

There are two important things to remember about these methods. The first is that the functions will be triggered
for events from all Ajax requests, which means you have to be careful to ensure that you are not making assumptions
that are true only for a specific request.

The second thing to remember is that you need to call these methods before you start making Ajax requests to
ensure that the handler functions are properly triggered. If you call the global methods after calling the ajax method,
you run the risk that the Ajax request will have finished before jQuery can properly register your handler function.
Listing 15-12 provides a demonstration of using the global Ajax event methods.

Listing 15-12. Using the Global Ajax Event Methods

...
<script type="text/javascript">
 $(document).ready(function () {

 $("<div").append("<label>Events:<label>")
 .append("<input type='checkbox' id='globalevents' name='globalevents' checked>")
 .insertAfter("h1");
 $("<ol id='info' class='ajaxinfo'>").insertAfter("h1").append("Ready");

 function displayMessage(msg) {
 $("#info").append($("").text(msg));
 }

Table 15-6. jQuery Ajax Event Methods

Method Description

ajaxComplete(function) Registers a function to be called when an Ajax request completes
(irrespective of whether it was successful)

ajaxError(function) Registers a function to be called when an Ajax requests encounters an error

ajaxSend(function) Registers a function to be called before an Ajax request commences

ajaxStart(function) Registers a function to be called when an Ajax request starts

ajaxStop(function) Registers a function to be called when all Ajax requests complete

ajaxSuccess(function) Registers a function to be called when an Ajax request succeeds

Chapter 15 ■ Using ajax: part ii

396

 $(document)
 .ajaxStart(function () {
 displayMessage("Ajax Start")
 })
 .ajaxSend(function (event, jqxhr, settings) {
 displayMessage("Ajax Send: " + settings.url)
 })
 .ajaxSuccess(function (event, jqxhr, settings) {
 displayMessage("Ajax Success: " + settings.url)
 })
 .ajaxError(function (event, jqxhr, settings, errorMsg) {
 displayMessage("Ajax Error: " + settings.url)
 })
 .ajaxComplete(function (event, jqxhr, settings) {
 displayMessage("Ajax Complete: " + settings.url)
 })
 .ajaxStop(function () {
 displayMessage("Ajax Stop")
 });

 $("button").click(function (e) {
 $("#row1, #row2, #info").empty();
 $.ajax({
 url: "mydata.json",
 global: $("#globalevents:checked").length > 0,
 success: function (data, status, jqxhr) {
 var tmplElems = $("#flowerTmpl")
 .template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 }
 });
 e.preventDefault();
 });
 });
</script>
...

In Listing 15-12, I have registered functions for all of the global Ajax events. These functions call the
displayMessage function to show which event has been triggered. Because Ajax requests can complete quickly, I use
an ol element to display the messages as they arrive, building up a list of events.

I have added a handler function for the button element’s click event that starts the Ajax request when the button
is clicked. You can see the result in Figure 15-3, which shows the messages generated by the Ajax request once the
button has been clicked.

Chapter 15 ■ Using ajax: part ii

397

Controlling Global Events
You will notice that I added a check box to the document. In the call to the ajax function, I use the check box to set the
value of the global setting, as shown in Listing 15-13.

Listing 15-13. Using the global Property

...
$.ajax({
 url: "mydata.json",
 global: $("#globalevents:checked").length > 0,
 success: function (data, status, jqxhr) {
 var tmplElems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 }
})
...

When the global setting is false, the Ajax request doesn’t generate the global Ajax events. You can try this
yourself using the example. Uncheck the box and click the button and you will see that the Ajax request is performed
without any status information being shown.

Figure 15-3. Displaying the global Ajax events

Chapter 15 ■ Using ajax: part ii

398

Configuring the Basic Settings for an Ajax Request
There are a group of settings that allow you to perform basic configuration of the Ajax request. These are the least
interesting of the settings available, and they are largely self-evident. Table 15-7 describes these settings, and I
demonstrate a small number of them in the sections that follow.

Table 15-7. Basic Request Configuration Settings

Setting Description

accepts Sets the value of the Accept request header, which specifies the MIME types that the
browser will accept. By default, this is determined by the dataType setting.

cache If set to false, the content from the request will not be cached by the server. By default,
the script and jsonp data types are not cached, but everything else is.

contentType Sets the Content-Type header for the request.

dataType Specifies the data type that is expected from the server. When this setting is used, jQuery
will ignore the information provided by the server about the response type. See Chapter 14
for details of how this works.

headers Specifies additional headers and values to add to the request; see the following discussion
for a demonstration.

jsonp Specifies a string to use instead of a callback when making JSONP requests. This requires
coordination with the server. See Chapter 14 for details about JSONP.

jsonpCallback Specifies the name for the callback function, replacing the randomly generated name that
jQuery uses by default. See Chapter 14 for details of JSONP.

password Specifies a password to use in response to an authentication challenge.

scriptCharset When requesting JavaScript content, tells jQuery that the script is encoded with the
specified character set.

timeout Specifies the timeout (in milliseconds) for the request. If the request times out, then the
function specified by the error setting will be called with a status of timeout.

username Specifies a username to use in response to an authentication challenge.

Setting Timeouts and Headers
Users are often not aware of Ajax requests happening, so setting a timeout period is a good way to avoid leaving the
user hanging around waiting for a process they don’t even know is occurring. Listing 15-14 shows how you can set a
timeout on a request.

Listing 15-14. Setting Timeouts

...
<script type="text/javascript">
 $(document).ready(function() {

 $.ajax("mydata.json", {
 timeout: 5000,
 headers: { "X-HTTP-Method-Override": "PUT" },

Chapter 15 ■ Using ajax: part ii

399

 success: function(data, status, jqxhr) {
 var template = $("#flowerTmpl");
 template.tmpl(data.slice(0, 3)).appendTo("#row1");
 template.tmpl(data.slice(3)).appendTo("#row2");
 },
 error: function(jqxhr, status, errorMsg) {
 console.log("Error: " + status);
 }
 });
 });
</script>
...

In Listing 15-14, I have used the timeout setting to specify a maximum duration for the request of five seconds.
If the request hasn’t completed in that time, then the function specified by the error setting will be executed, with a
status value of error.

Caution ■ the timer starts as soon as the request is passed to the browser, and most browsers put limits on the
number of concurrent requests. this means you run the risk of timing out requests before they even start. to avoid
this, you must have some awareness of the limits of the browser and the volume and expected duration of any other
ajax requests that are in progress.

In Listing 15-14, I also used the headers setting to add a header to the request, as follows:

...
headers: { "X-HTTP-Method-Override": "PUT" },
...

Additional headers are specified using a map object. The header in the example is the one I mentioned in a
previous section “Making a POST Request.” This header can be useful for creating a RESTful web application, as long
as it is properly understood by the server.

Sending JSON Data to the Server
When you need to send data to the server, you can do so using the JSON format: it is a compact and expressive data
format and easy to generate from JavaScript objects. The process for sending JSON is simple: just use the contentType
property to set the Content-Type header in the request, which tells the server the kind of data being sent as
demonstrated by Listing 15-15.

Listing 15-15. Sending JSON to the Server

...
<script type="text/javascript">
 $(document).ready(function () {

Chapter 15 ■ Using ajax: part ii

400

 $.ajax("mydata.json", {
 success: function (data, status, jqxhr) {
 var tmplElems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 }
 });

 $("button").click(function (e) {
 $.ajax({
 url: $("form").attr("action"),
 contentType: "application/json",
 data: JSON.stringify($("form").serializeArray()),
 type: "post",
 success: processServerResponse
 })
 e.preventDefault();
 })

 function processServerResponse(data) {
 var inputElems = $("div.dcell").hide();
 for (var prop in data) {
 var filtered = inputElems.has("input[name=" + prop + "]")
 .appendTo("#row1").show();
 }
 $("#buttonDiv, #totalDiv").remove();
 $("#totalTmpl").template(data).appendTo("body");
 }
 });
</script>
...

I have used the contentType setting to specify a value of application/json, which is the MIME type for JSON.
I could have sent any object to the server, but I wanted to demonstrate how you express form data as JSON, as follows:

...
data: JSON.stringify($("form").serializeArray()),
...

I select the form element and call the serializeArray method; this creates an array of objects, each of which
has a name property and a value property representing one of the input elements in the form. I then use the
JSON.stringify method to convert this into a string like the following:

[{"name":"aster","value":"1"}, {"name":"daffodil","value":"1"},
 {"name":"rose","value":"1"}, {"name":"peony","value":"1"},
 {"name":"primula","value":"1"},{"name":"snowdrop","value":"1"}]

And so I have a JSON string that describes an array of objects that I can send to the server. The Node.js script that
I am using for this chapter is able to parse and process this object.

Chapter 15 ■ Using ajax: part ii

401

Using Advanced Configuration Settings
In the sections that follow, I describe the most interesting and useful of the advanced settings that you can apply to an
Ajax request. I find that I don’t use these often, but they are invaluable when required and they provide fine-grained
control over how jQuery deals with Ajax.

Making the Request Synchronously
The async property specifies whether the request will be performed asynchronously. Setting this property to true
(which is the default value used if the property isn't defined) means that it will performed asynchronously; a value of
false means that the request will be performed synchronously.

When the request is performed synchronously, the ajax method behaves like a normal function, and the browser
will wait for the request to complete before moving on to execute other statements in the script. Listing 15-16 gives an
example.

Listing 15-16. Making a Synchronous Request

...
<script type="text/javascript">
 $(document).ready(function() {
 var elems;

 $.ajax("flowers.html", {
 async: false,
 success: function(data, status, jqxhr) {
 elems = $(data).filter("div").addClass("dcell");
 }
 });

 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 });
</script>
...

This is the request that I showed in Chapter 14 to demonstrate the most common pitfall when using Ajax, updated
to use the low-level API. The difference in this case is that the async setting is false, and so the browser won’t get to
the statements that call the slice and appendTo methods until the request has been completed and the results are
assigned to the elems variable (assuming that the request completed successfully). Making synchronous calls using
the Ajax method is an odd thing to do, and I recommend you consider why your web application needs to do this.

I often use this technique as a quick test when looking a troublesome Ajax code—not dealing with asynchronous
requests properly is such a common problem that I start debugging with a quick synchronous test. If the code works,
I know to start looking for bad assumptions about when data will arrive from the server.

Tip ■ Do not use synchronous calls because you find making asynchronous calls arduous; i appreciate that using
callbacks and making sure you don’t make assumptions about the outcome of requests can be tiresome, but it really
is worth the time to get your head around this approach to web programming.

Chapter 15 ■ Using ajax: part ii

402

Ignoring Unmodified Data
You can use the ifModified property to receive data only if the response has changed since the last time you queried
it; this is determined by the Last-Modified header in the response. If you need to request the same data repeatedly
in response to a user action, you often end up processing the server response and modifying the document just to
present the user with whatever was already there. The default value for this setting is false, which tells jQuery to
ignore the header and always return the data. Listing 15-17 provides a demonstration of using this property.

Listing 15-17. Using the ifModified property

...
<script type="text/javascript">
 $(document).ready(function () {

 $("button").click(function (e) {
 $.ajax("mydata.json", {
 ifModified: true,
 success: function (data, status) {
 if (status == "success") {
 $("#row1, #row2").children().remove();
 var tmplElems = $("#flowerTmpl")
 .template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 } else if (status == "notmodified") {
 $("img").css("border", "thick solid green");
 }
 }
 });
 e.preventDefault();
 })
 });
</script>
...

In Listing 15-17, the value of the ifModified setting is true. The success function is always called, but if the
content has not been modified since I last requested it, then the data argument will be undefined and the status
argument will be notmodified.

In this example, I perform different actions based on the status argument. If the argument is success, then I use
the data argument to add elements to the document. If the argument is notmodified, then I use the css method to
add a border to the img elements already in the document.

I make the call to the ajax method in response to the click event from the button element. This allows me
to make the same request repeatedly to demonstrate the effect of the ifModified setting, which you can see
in Figure 15-4.

Chapter 15 ■ Using ajax: part ii

403

Caution ■ this can be a useful setting but should be used with care. if you are making a request as a consequence
of a user action (say, a button press), there is possibility that the user is pressing the button because the previous
request didn’t perform the way it was supposed to. imagine that you request the data but the success method
contains a bug that doesn’t properly update the document with the content; the user is pressing the button to try to
get the document to display properly. By using the ifModified setting unwisely, you can end up ignoring the user
action, forcing the user to take more serious steps to resolve the problem.

Dealing with the Response Status Code
The statusCode property allows you to respond to the different status codes that can be returned in HTTP responses.
You can use this feature as an alternative or complement to the success and error properties. Listing 15-18 shows
how you can use the statusCode setting on its own.

Listing 15-18. Using the statusCode Property

...
<style type="text/css">
 .error {color: red; border: medium solid red; padding: 4px;
 margin: auto; width: 200px; text-align: center}
</style>
<script type="text/javascript">
 $(document).ready(function() {

 $.ajax({
 url: "mydata.json",

Figure 15-4. Using the ifModified setting

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 15 ■ Using ajax: part ii

404

 statusCode: {
 200: handleSuccessfulRequest,
 404: handleFailedRequest,
 302: handleRedirect
 }
 });

 function handleSuccessfulRequest(data, status, jqxhr) {
 $("#row1, #row2").children().remove();
 var template = $("#flowerTmpl");
 template.tmpl(data.slice(0, 3)).appendTo("#row1");
 template.tmpl(data.slice(3)).appendTo("#row2");
 }

 function handleRedirect() {
 // this function will neber be called
 }

 function handleFailedRequest(jqxhr, status, errorMsg) {
 $("<div class=error>Code: " + jqxhr.status + " Message: "
 + errorMsg + "</div>").insertAfter("h1");
 }
 });
</script>
...

The statusCode property is assigned an object that maps between HTTP status codes and the functions you want
executed when they are returned to the server. In Listing 15-18, I have defined three functions and associated them
with the status codes 200, 404, and 302.

The arguments passed to the functions depend on whether the status code reflects a successful request or an
error. If the code represents a success (such as 200) then the arguments are the same as for the success callback
function. For failure status codes, such as the 404 code, which indicates the requested file can’t be found, the
arguments are the same as for the error callback function.

Notice that I have also added a map for the 302 code. This is sent back to the browser when the server wants to
redirect you to another URL. jQuery automatically follows redirections until it receives some content or encounters an
error. This means that my function for the 302 code won’t ever be called.

Tip ■ the 304 code, indicating that content has not been modified since it was last requested, is generated only if the
ifModified setting has been used. Otherwise, jQuery sends a 200 code. see the previous section “ignoring Unmodified
Data” for information about the ifModified setting.

I find this feature useful when I am debugging interactions between the browser and the server, typically to find
out why jQuery isn’t behaving quite the way I would like. When I do this, I use the statusCode setting to complement
the success and error settings and print out information to the console.

Tip ■ the success or error callback function is executed before those specified by the statusCode setting.

Chapter 15 ■ Using ajax: part ii

405

Cleaning Up the Response Data
The dataFilter property specifies a function that will be called to process the data returned by the server. This is a useful
feature when the server sends you data that aren’t quite what you need, either because the formatting isn’t perfect or
because it contains data that you don’t want processed. Listing 15-19 shows the use of the dataFilter property.

Listing 15-19. Using the dataFilter Property

...
<script type="text/javascript">
 $(document).ready(function () {

 $.ajax({
 url: "mydata.json",
 success: function (data, status, jqxhr) {
 $("#row1, #row2").children().remove();
 var tmplElems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 tmplElems.slice(0, 3).appendTo("#row1");
 tmplElems.slice(3).appendTo("#row2");
 },
 dataType: "json",
 dataFilter: function (data, dataType) {
 if (dataType == "json") {
 var filteredData = $.parseJSON(data);
 filteredData.shift();
 return JSON.stringify(filteredData.reverse());
 } else {
 return data;
 }
 }
 });
 });
</script>
...

The function is passed the data received from the server and the value of the dataType setting. If the dataType
setting has not been used, then the second function argument will be undefined. The purpose of the dataFilter
function is to return the filtered data, and in Listing 15-19 I focus on the json data type, as follows:

...
var filteredData = $.parseJSON(data);
filteredData.shift();
return JSON.stringify(filteredData.reverse());
...

I convert the JSON data into a JavaScript array by using the jQuery parseJSON data (this is one of the jQuery
utility methods I describe in Chapter 34). I then use the shift method to remove the first item in the array and use the
reverse method to reverse the order of the remaining items.

The dataFilter callback function has to return a string, so I call the JSON.stringify method, even though I
know that jQuery will convert the data back into a JavaScript object before calling the success function. That aside,
you can see that I am able to remove an element from the array and reverse the remaining items—and while this is not
the most useful transformation, it does demonstrate the filtering effect, which you can see in Figure 15-5.

Chapter 15 ■ Using ajax: part ii

406

Managing Data Conversion
I have saved one of my favorite properties until last. You will have noticed that jQuery does some handy conversions
when it receives certain data types. As an example, when jQuery receives some JSON data, it presents the success
function with a JavaScript object, rather than the raw JSON string.

You can control these conversions using the converters property. The value for this setting is an object that maps
between data types and functions that are used to process them. Listing 15-20 shows how you can use this property to
automatically parse HTML data into a jQuery object.

Listing 15-20. Using the converters Setting

...
<script type="text/javascript">
 $(document).ready(function() {

 $.ajax({
 url: "flowers.html",
 success: function(data, status, jqxhr) {
 var elems = data.filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 },
 converters: {
 "text html": function(data) {
 return $(data);
 }
 }
 });
 });
</script>
...

Figure 15-5. Removing an item and reversing the order of the data using the dataFilter setting

Chapter 15 ■ Using ajax: part ii

407

I registered a function for the text html type. Notice that you use a space between the components of the MIME
type (as opposed to text/html). The function is passed the data that have been received from the server and returns
the converted data. In this case, I pass the HTML fragment that is obtained from the flowers.html file to the jQuery
$ function and return the result. This means I can call all the usual jQuery methods on the object passed as the data
argument to the success function.

Tip ■ the data types don’t always match the MiMe types that are returned by the server. For example, application/json
is usually presented as "text json" to the converters method.

It is easy to get carried away with these converters. I try to avoid the temptation to do more in these functions
than I should. For example, I am sometimes tempted to take JSON data, apply a data template, and pass the resulting
HTML elements back. And although this is a nice trick, it can trip you up if someone else tries to extend your code or
you need to unwind heavy processing to get at the raw data later.

Setting Up and Filtering Ajax Requests
To finish this chapter, I am going to describe a couple of additional methods that jQuery provides to make configuring
requests simpler.

Defining Default Settings
The ajaxSetup method specifies settings that will be used for every Ajax request, freeing you from having to define all
of the settings you are interested in for each and every request. Listing 15-21 shows this method in use.

Listing 15-21. Using the ajaxSetup Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $.ajaxSetup({
 timeout: 15000,
 global: false,
 error: function(jqxhr, status, errorMsg) {
 $("<div class=error/>")
 .text("Status: " + status + " Error: " + errorMsg)
 .insertAfter("h1");
 },
 converters: {
 "text html": function(data) {
 return $(data);
 }
 }
 });

Chapter 15 ■ Using ajax: part ii

408

 $.ajax({
 url: "flowers.html",
 success: function(data, status, jqxhr) {
 var elems = data.filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 },
 });
 });
</script>
...

You call the ajaxSetup method against the jQuery $ function, just as you do for the ajax method. The
argument to the ajaxSetup is an object that contains the settings you want to use as the defaults for all your Ajax
requests. In Listing 15-21, I define defaults for the timeout, global, error, and converters settings. Once I have
called the ajaxSetup method, I only have to define values for those settings for which I haven’t provided a default
value or whose value I want to change. This can reduce code duplication when making a lot of Ajax requests that
have similar configurations.

Tip ■ the settings specified by the ajaxSetup method also affect requests made by the convenience and shorthand
methods i showed you in Chapter 14. this can be a nice way of combining the detailed control that comes with the
low-level api with the simplicity of the convenience methods.

Filtering Requests
You can use the ajaxPrefilter method if you want to dynamically tailor the settings for individual requests, as shown
in Listing 15-22.

Listing 15-22. Using the ajaxPrefilter Method

...
<script type="text/javascript">
 $(document).ready(function () {

 $.ajaxSetup({
 timeout: 15000,
 global: false,
 error: function (jqxhr, status, errorMsg) {
 $("<div class=error/>")
 .text("Status: " + status + " Error: " + errorMsg)
 .insertAfter("h1");
 },
 converters: {
 "text html": function (data) {
 return $(data);
 }
 }
 });

Chapter 15 ■ Using ajax: part ii

409

 $.ajaxPrefilter("json html", function (settings, originalSettings, jqxhr) {
 if (originalSettings.dataType == "html") {
 settings.timeout = 2000;
 } else {
 jqxhr.abort();
 }
 });

 $.ajax({
 url: "flowers.html",
 success: function (data, status, jqxhr) {
 var elems = data.filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 },
 });
 });
</script>
...

The arguments to the ajaxPrefilter method are a set of data types and a callback function that will be executed
when a request for those data types is made. If you omit the data type and just specify the function, it will be invoked
for all requests.

The arguments passed to the callback function are the settings for the request (which includes any defaults you
have set using the ajaxSetup method); the original settings passed to the Ajax method (which excludes any default
values) and the jqXHR object for the request. You make changes to the object passed as the first argument, as shown in
the example.

In Listing 15-22, I filter JSON and HTML requests so that if a dataType setting has been specified in the settings
passed to the Ajax method, I set the timeout to be two seconds. For a request that doesn’t have that setting, I call the
abort method on the jqXHR object to prevent the request from being sent.

Summary
In this chapter, I showed you the low-level jQuery Ajax interface, which, as I hope you agree, isn’t that much harder
to work with than the convenience and shorthand methods I showed you in Chapter 14. For a modicum of additional
effort, you can control many aspects of the way that the Ajax request is processed, giving you endless ways in which
you can tweak the process to your needs and preferences. In Chapter 16, I refactor the example to incorporate the
features and techniques that I described in this part of the book.

411

Chapter 16

Refactoring the Example: Part II

I introduced some rich features in this part of the book, and as I did in before in Chapter 11, I want to bring them
together to give a broader view of jQuery.

Tip ■ I am not going to try to preserve a workable non-JavaScript structure in this chapter, since all of the features
I am adding to the example rely heavily on JavaScript.

Reviewing the Refactored Example
In Chapter 11, I used the core jQuery features to refactor the example to include DOM (Domain Object Model)
manipulation, effects, and events. Listing 16-1 shows the document I ended up with, which will be the starting point
for this chapter as I integrate the features from this part of the book.

Listing 16-1. The Starting Point for This Chapter

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 a.arrowButton {
 background-image: url(leftarrows.png); float: left;
 margin-top: 15px; display: block; width: 50px; height: 50px;
 }
 #right {background-image: url(rightarrows.png)}
 h1 { min-width: 0px; width: 95%; }
 #oblock { float: left; display: inline; border: thin black solid; }
 form { margin-left: auto; margin-right: auto; width: 885px; }
 #bbox {clear: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

Chapter 16 ■ refaCtorIng the example: part II

412

 var fNames = ["Carnation", "Lily", "Orchid"];
 var fRow = $("<div id=row3 class=drow/>").appendTo("div.dtable");
 var fTemplate = $("<div class=dcell><label/><input/></div>");
 for (var i = 0; i < fNames.length; i++) {
 fTemplate.clone().appendTo(fRow).children()
 .filter("img").attr("src", fNames[i] + ".png").end()
 .filter("label").attr("for", fNames[i]).text(fNames[i]).end()
 .filter("input").attr({name: fNames[i],
 value: 0, required: "required"})
 }

 $("").prependTo("form")
 .addClass("arrowButton").click(handleArrowPress).hover(handleArrowMouse);
 $("#right").appendTo("form");

 $("#row2, #row3").hide();

 var total = $("#buttonDiv")
 .prepend("<div>Total Items: 0</div>")
 .css({clear: "both", padding: "5px"});
 $("<div id=bbox />").appendTo("body").append(total);

 $("input").change(function(e) {
 var total = 0;
 $("input").each(function(index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 });

 function handleArrowMouse(e) {
 var propValue = e.type == "mouseenter" ? "-50px 0px" : "0px 0px";
 $(this).css("background-position", propValue);
 }

 function handleArrowPress(e) {
 var elemSequence = ["row1", "row2", "row3"];

 var visibleRow = $("div.drow:visible");
 var visibleRowIndex = jQuery.inArray(visibleRow.attr("id"),elemSequence);

 var targetRowIndex;

 if (e.target.id == "left") {
 targetRowIndex = visibleRowIndex - 1;
 if (targetRowIndex < 0) {targetRowIndex = elemSequence.length -1};
 } else {
 targetRowIndex = (visibleRowIndex + 1) % elemSequence.length;
 }

Chapter 16 ■ refaCtorIng the example: part II

413

 visibleRow.fadeOut("fast", function() {
 $("#" + elemSequence[targetRowIndex]).fadeIn("fast")});
 }
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" />
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0"/>
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" />
 </div>
 </div>
 <div id="row2"class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" />
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" />
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" />
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

Tip ■ there are a number of points in the script where I insert elements dynamically. rather than making these static,
I am going to leave them as they are so that I can focus on adding the new features.

http://node.jacquisflowershop.com/order

Chapter 16 ■ refaCtorIng the example: part II

414

This isn’t exactly the same document: I have tidied the Cascading Style Sheet (CSS) additions by adding a style
element rather than using the css method on individual selections. You can see how this HTML document appears in
the browser in Figure 16-1, and, of course, Chapter 11 breaks down the set of changes I applied to the document to get
this far.

Figure 16-1. The starting point for the example document in this chapter

Updating the Node.js Script
I need to upgrade the formserver.js server-side script for this chapter. The changes, which are shown in Listing 16-2,
are to enrich the data that is sent back when a form is submitted and to support a new validation feature. As with all
of the examples in this book, you can download the revised formserver.js file from the Source Code/Download area
of the Apress web site (www.apress.com).

Listing 16-2. The Revised Node.js Script

var http = require("http");
var querystring = require("querystring");
var url = require("url");

var port = 80;

http.createServer(function (req, res) {
 console.log("[200 OK] " + req.method + " to " + req.url);

 if (req.method == "OPTIONS") {
 res.writeHead(200, "OK", {
 "Access-Control-Allow-Headers": "Content-Type",
 "Access-Control-Allow-Methods": "*",
 "Access-Control-Allow-Origin": "http://www.jacquisflowershop.com"
 });
 res.end();

 } else if (req.method == "POST") {
 var dataObj = new Object();
 var contentType = req.headers["content-type"];
 var fullBody = "";

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://www.apress.com/
http://www.jacquisflowershop.com/

Chapter 16 ■ refaCtorIng the example: part II

415

 if (contentType) {
 if (contentType.indexOf("application/x-www-form-urlencoded") > -1) {
 req.on("data", function (chunk) { fullBody += chunk.toString(); });
 req.on("end", function () {
 var dBody = querystring.parse(fullBody);
 writeResponse(req, res, dBody,
 url.parse(req.url, true).query["callback"])
 });
 } else {
 req.on("data", function (chunk) { fullBody += chunk.toString(); });
 req.on("end", function () {
 dataObj = JSON.parse(fullBody);
 var dprops = new Object();
 for (var i = 0; i < dataObj.length; i++) {
 dprops[dataObj[i].name] = dataObj[i].value;
 }
 writeResponse(req, res, dprops);
 });
 }
 }
 } else if (req.method == "GET") {
 var data = url.parse(req.url, true).query;
 writeResponse(req, res, data, data["callback"])
 }

 var flowerData = {
 aster: { price: 2.99, stock: 10, plural: "Asters" },
 daffodil: { price: 1.99, stock: 10, plural: "Daffodils" },
 rose: { price: 4.99, stock: 2, plural: "Roses" },
 peony: { price: 1.50, stock: 3, plural: "Peonies" },
 primula: { price: 3.12, stock: 20, plural: "Primulas" },
 snowdrop: { price: 0.99, stock: 5, plural: "Snowdrops" },
 carnation: { price: 0.50, stock: 1, plural: "Carnations" },
 lily: { price: 1.20, stock: 2, plural: "Lillies" },
 orchid: { price: 10.99, stock: 5, plural: "Orchids" }
 }

 function writeResponse(req, res, data, jsonp) {
 var jsonData;
 if (req.url == "/stockcheck") {
 for (flower in data) {
 if (flowerData[flower].stock >= data[flower]) {
 jsonData = true;
 } else {
 jsonData = "We only have " + flowerData[flower].stock + " "
 + flowerData[flower].plural + " in stock";
 }
 break;
 }
 jsonData = JSON.stringify(jsonData);
 } else {
 var totalCount = 0;

Chapter 16 ■ refaCtorIng the example: part II

416

 var totalPrice = 0;
 for (item in data) {
 if (item != "_" && data[item] > 0) {
 var itemNum = Number(data[item])
 totalCount += itemNum;
 totalPrice += (itemNum * flowerData[item].price);
 } else {
 delete data[item];
 }
 }
 data.totalItems = totalCount;
 data.totalPrice = totalPrice.toFixed(2);

 jsonData = JSON.stringify(data);
 if (jsonp) {
 jsonData = jsonp + "(" + jsonData + ")";
 }
 }
 res.writeHead(200, "OK", {
 "Content-Type": jsonp ? "text/javascript" : "application/json",
 "Access-Control-Allow-Origin": "*"
 });
 res.write(jsonData);
 res.end();
 }

}).listen(port);
console.log("Ready on port " + port);

The response to the browser now includes the total prices for the items selected using the form elements and
submitted to the server, returning a JSON result like the following:

{"aster":"1","daffodil":"2","rose":"4","totalItems":7,"totalPrice":"26.93"}

 I run the script by entering the following at the command prompt:

node.exe formserver.js

Preparing for Ajax
To begin, I am going to add some basic elements and styles that I will use to display Ajax request errors and set up the
basic configuration that will apply to all of my Ajax requests. Listing 16-3 shows the changes to the document.

Listing 16-3. Setting Up the Support for Ajax Requests and Error Handling

...
<style type="text/css">
 a.arrowButton {

Chapter 16 ■ refaCtorIng the example: part II

417

 background-image: url(leftarrows.png); float: left;
 margin-top: 15px; display: block; width: 50px; height: 50px;
 }
 #right {background-image: url(rightarrows.png)}
 h1 { min-width: 0px; width: 95%; }
 #oblock { float: left; display: inline; border: thin black solid; }
 form { margin-left: auto; margin-right: auto; width: 885px; }
 #bbox {clear: left}
 #error {color: red; border: medium solid red; padding: 4px; margin: auto;
 width: 300px; text-align: center; margin-bottom: 5px}
</style>
<script type="text/javascript">
 $(document).ready(function () {

 $.ajaxSetup({
 timeout: 5000,
 converters: {"text html": function (data) { return $(data); }}
 });

 $(document).ajaxError(function (e, jqxhr, settings, errorMsg) {
 $("#error").remove();
 var msg = "An error occurred. Please try again"
 if (errorMsg == "timeout") {
 msg = "The request timed out. Please try again"
 } else if (jqxhr.status == 404) {
 msg = "The file could not be found";
 }
 $("<div id=error/>").text(msg).insertAfter("h1");
 }).ajaxSuccess(function () {
 $("#error").remove();
 });

 var fNames = ["Carnation", "Lily", "Orchid"];
 var fRow = $("<div id=row3 class=drow/>").appendTo("div.dtable");
 var fTemplate = $("<div class=dcell><label/><input/></div>");
 for (var i = 0; i < fNames.length; i++) {
 fTemplate.clone().appendTo(fRow).children()
 .filter("img").attr("src", fNames[i] + ".png").end()
 .filter("label").attr("for", fNames[i]).text(fNames[i]).end()
 .filter("input").attr({
 name: fNames[i], value: 0, required: "required"
 })
 };

 $("").prependTo("form")
 .addClass("arrowButton").click(handleArrowPress).hover(handleArrowMouse);
 $("#right").appendTo("form");

 $("#row2, #row3").hide();

 var total = $("#buttonDiv")
 .prepend("<div>Total Items: 0</div>")

Chapter 16 ■ refaCtorIng the example: part II

418

 .css({ clear: "both", padding: "5px" });
 $("<div id=bbox />").appendTo("body").append(total).css("clear: left");

 $("input").change(function (e) {
 var total = 0;
 $("input").each(function (index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 });

 function handleArrowMouse(e) {
 var propValue = e.type == "mouseenter" ? "-50px 0px" : "0px 0px";
 $(this).css("background-position", propValue);
 }

 function handleArrowPress(e) {
 var elemSequence = ["row1", "row2", "row3"];
 var visibleRow = $("div.drow:visible");
 var visibleRowIndex =
 jQuery.inArray(visibleRow.attr("id"), elemSequence);

 var targetRowIndex;
 if (e.target.id == "left") {
 targetRowIndex = visibleRowIndex - 1;
 if (targetRowIndex < 0) { targetRowIndex = elemSequence.length - 1 };
 } else {
 targetRowIndex = (visibleRowIndex + 1) % elemSequence.length;
 }

 visibleRow.fadeOut("fast", function () {
 $("#" + elemSequence[targetRowIndex]).fadeIn("fast")
 });
 }
 });
</script>
...

I have used the global Ajax events to set up a simple display for errors. When an error occurs, new elements
are created to provide a description of the problem. The simple error messages that I show are derived from the
information I get from jQuery, but in a real web application, these messages should be more descriptive and provide
suggestions for resolution. You can see an example of an error being shown to the user in Figure 16-2.

Chapter 16 ■ refaCtorIng the example: part II

419

The error is displayed until a successful request is made or another error occurs, at which point the elements are
removed from the document. In addition to the global events, I used the ajaxSetup method to define values for the
timeout setting and to provide a converter for HTML fragments so that they are automatically processed by jQuery.

Sourcing the Product Information
The next change is to remove the existing product elements and the loop that adds three additional flowers
to the list, replacing them with a pair of Ajax calls and a data template. First, however, I created a file called
additionalflowers.json and placed it in the same directory as the other example files. Listing 16-4 shows the
contents of the additionalflowers.json file.

Listing 16-4. The Contents of the Additionalflowers.json File

[{"name":"Carnation","product":"carnation"},
 {"name":"Lily","product":"lily"},
 {"name":"Orchid","product":"orchid"}]

This file contains a JSON description of the additional products I want to display. I am going to get the main set of
products as an HTML fragment and then add to the set by processing the JSON data. Listing 16-5 shows the changes.

Listing 16-5. Setting Up the Products via HTML and JSON Obtained via Ajax

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 a.arrowButton {
 background-image: url(leftarrows.png); float: left;

Figure 16-2. Displaying an error message for Ajax

Chapter 16 ■ refaCtorIng the example: part II

420

 margin-top: 15px; display: block; width: 50px; height: 50px;
 }
 #right {background-image: url(rightarrows.png)}
 h1 { min-width: 0px; width: 95%; }
 #oblock { float: left; display: inline; border: thin black solid; }
 form { margin-left: auto; margin-right: auto; width: 885px; }
 #bbox {clear: left}
 #error {color: red; border: medium solid red; padding: 4px; margin: auto;
 width: 300px; text-align: center; margin-bottom: 5px}
 </style>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 $.ajaxSetup({
 timeout: 5000,
 converters: {"text html": function (data) { return $(data); }}
 });

 $(document).ajaxError(function (e, jqxhr, settings, errorMsg) {
 $("#error").remove();
 var msg = "An error occurred. Please try again"
 if (errorMsg == "timeout") {
 msg = "The request timed out. Please try again"
 } else if (jqxhr.status == 404) {
 msg = "The file could not be found";
 }
 $("<div id=error/>").text(msg).insertAfter("h1");
 }).ajaxSuccess(function () {
 $("#error").remove();
 });

 $("").prependTo("form")
 .addClass("arrowButton").click(handleArrowPress).hover(handleArrowMouse);
 $("#right").appendTo("form");

 $("#row2, #row3").hide();

 $.get("flowers.html", function (data) {
 var elems = data.filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 })

Chapter 16 ■ refaCtorIng the example: part II

421

 $.getJSON("additionalflowers.json", function (data) {
 $("#flowerTmpl").template({ flowers: data }).appendTo("#row3");
 })

 var total = $("#buttonDiv")
 .prepend("<div>Total Items: 0</div>")
 .css({ clear: "both", padding: "5px" });
 $("<div id=bbox />").appendTo("body").append(total).css("clear: left");

 $("input").change(function (e) {
 var total = 0;
 $("input").each(function (index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 });

 function handleArrowMouse(e) {
 var propValue = e.type == "mouseenter" ? "-50px 0px" : "0px 0px";
 $(this).css("background-position", propValue);
 }

 function handleArrowPress(e) {
 var elemSequence = ["row1", "row2", "row3"];
 var visibleRow = $("div.drow:visible");
 var visibleRowIndex =
 jQuery.inArray(visibleRow.attr("id"), elemSequence);

 var targetRowIndex;
 if (e.target.id == "left") {
 targetRowIndex = visibleRowIndex - 1;
 if (targetRowIndex < 0) { targetRowIndex = elemSequence.length - 1 };
 } else {
 targetRowIndex = (visibleRowIndex + 1) % elemSequence.length;
 }

 visibleRow.fadeOut("fast", function () {
 $("#" + elemSequence[targetRowIndex]).fadeIn("fast")
 });
 }
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow"></div>
 <div id="row2" class="drow"></div>
 <div id="row3" class="drow"></div>

http://node.jacquisflowershop.com/order

Chapter 16 ■ refaCtorIng the example: part II

422

 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

I have used the Ajax shorthand methods to get the HTML fragment and the JSON data I need to create the rows.
It may not be obvious from the script, but one of the nice things about the shorthand methods is that they are just
wrappers around calls to the low-level API—and this means that the settings you apply via the ajaxSetup method
work just as they do when you use the ajax method directly. In addition to the calls to the get and getJSON methods,
I have added a data template so I can process the JSON easily. There is no change to the appearance of the document,
but the source of the content has changed.

Adding Form Validation
The next stage is to add validation to the input elements. Listing 16-6 shows the additions that are required.

Listing 16-6. Adding Form Validation

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <script src="jquery.validate.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 a.arrowButton {
 background-image: url(leftarrows.png); float: left;
 margin-top: 15px; display: block; width: 50px; height: 50px;
 }
 #right {background-image: url(rightarrows.png)}
 h1 { min-width: 0px; width: 95%; }
 #oblock { float: left; display: inline; border: thin black solid; }
 form { margin-left: auto; margin-right: auto; width: 885px; }
 #bbox {clear: left}
 #error {color: red; border: medium solid red; padding: 4px; margin: auto;
 width: 300px; text-align: center; margin-bottom: 5px}
 .invalidElem {border: medium solid red}
 #errorSummary {border: thick solid red; color: red; width: 350px; margin: auto;
 padding: 4px; margin-bottom: 5px}
 </style>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />

Chapter 16 ■ refaCtorIng the example: part II

423

 </div>
 {{/flowers}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 $.ajaxSetup({
 timeout: 5000,
 converters: {"text html": function (data) { return $(data); }}
 });

 $(document).ajaxError(function (e, jqxhr, settings, errorMsg) {
 $("#error").remove();
 var msg = "An error occurred. Please try again"
 if (errorMsg == "timeout") {
 msg = "The request timed out. Please try again"
 } else if (jqxhr.status == 404) {
 msg = "The file could not be found";
 }
 $("<div id=error/>").text(msg).insertAfter("h1");
 }).ajaxSuccess(function () {
 $("#error").remove();
 });

 $("").prependTo("form")
 .addClass("arrowButton").click(handleArrowPress).hover(handleArrowMouse);
 $("#right").appendTo("form");

 $("#row2, #row3").hide();

 var flowerReq = $.get("flowers.html", function (data) {
 var elems = data.filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 });

 var jsonReq = $.getJSON("additionalflowers.json", function (data) {
 $("#flowerTmpl").template({ flowers: data }).appendTo("#row3");
 });

 $("<div id=errorSummary>").text("Please correct the following errors:")
 .append("<ul id='errorsList'>").hide().insertAfter("h1");

 $("form").validate({
 highlight: function(element, errorClass) {
 $(element).addClass("invalidElem");
 },
 unhighlight: function(element, errorClass) {
 $(element).removeClass("invalidElem");
 },
 errorContainer: "#errorSummary",

Chapter 16 ■ refaCtorIng the example: part II

424

 errorLabelContainer: "#errorsList",
 wrapper: "li",
 errorElement: "div"
 });

 var plurals = {
 aster: "Asters", daffodil: "Daffodils", rose: "Roses",
 peony: "Peonies", primula: "Primulas", snowdrop: "Snowdrops",
 carnation: "Carnations", lily: "Lillies", orchid: "Orchids"
 };

 $.when(flowerReq, jsonReq).then(function() {
 $("input").each(function(index, elem) {
 $(elem).rules("add", {
 required: true,
 min: 0,
 digits: true,
 messages: {
 required: "Please enter a number of " + plurals[elem.name],
 digits: "Please enter a number of" + plurals[elem.name],
 min: "Please enter a positive number of "
 + plurals[elem.name]
 }
 })
 }).change(function(e) {
 if ($("form").validate().element($(e.target))) {
 var total = 0;
 $("input").each(function(index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 }
 });
 });

 var total = $("#buttonDiv")
 .prepend("<div>Total Items: 0</div>")
 .css({ clear: "both", padding: "5px" });
 $("<div id=bbox />").appendTo("body").append(total).css("clear: left");

 $("input").change(function (e) {
 var total = 0;
 $("input").each(function (index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 });

 function handleArrowMouse(e) {
 var propValue = e.type == "mouseenter" ? "-50px 0px" : "0px 0px";
 $(this).css("background-position", propValue);
 }

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 16 ■ refaCtorIng the example: part II

425

 function handleArrowPress(e) {
 var elemSequence = ["row1", "row2", "row3"];
 var visibleRow = $("div.drow:visible");
 var visibleRowIndex =
 jQuery.inArray(visibleRow.attr("id"), elemSequence);

 var targetRowIndex;
 if (e.target.id == "left") {
 targetRowIndex = visibleRowIndex - 1;
 if (targetRowIndex < 0) { targetRowIndex = elemSequence.length - 1 };
 } else {
 targetRowIndex = (visibleRowIndex + 1) % elemSequence.length;
 }

 visibleRow.fadeOut("fast", function () {
 $("#" + elemSequence[targetRowIndex]).fadeIn("fast")
 });
 }
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow"></div>
 <div id="row2" class="drow"></div>
 <div id="row3" class="drow"></div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

In this listing, I imported the validation plug-in and defined some CSS that will be used to style validation errors.
I call the validate method on the form element to set up form validation, specifying a single validation summary,
just as I did in Chapter 13.

The fact that I am using Ajax to generate elements for the flower products gives me a problem to solve. These are,
of course, asynchronous calls, so I can’t make assumptions about the presence of the input elements in the document
in the statements that follow the Ajax calls. This is the common pitfall I described in Chapter 14, and if the browser
executes my selection of the input elements before both Ajax requests are complete, I won’t match any elements
(because they have yet to be created and added to the document), and my validation setup will fail.

To solve this problem, I have used the when and then methods, which are part of the jQuery deferred objects
feature that I describe in Chapter 35. Following are the relevant statements:

...
$.when(flowerReq, jsonReq).then(function() {
 $("input").each(function(index, elem) {
 $(elem).rules("add", {
 required: true,

http://node.jacquisflowershop.com/order

Chapter 16 ■ refaCtorIng the example: part II

426

 min: 0,
 digits: true,
 messages: {
 required: "Please enter a number of " + plurals[elem.name],
 digits: "Please enter a number of" + plurals[elem.name],
 min: "Please enter a positive number of "
 + plurals[elem.name]
 }
 })
 }).change(function(e) {
 if ($("form").validate().element($(e.target))) {
 var total = 0;
 $("input").each(function(index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 }
 });
})
...

I don’t want to get ahead of myself, but the jqXHR objects that are returned by all of the Ajax methods can be
passed as arguments to the when method, and if both requests are successful, the function passed to the then method
will be executed.

I set up my form validation in the function I pass to the then method, selecting the input elements and adding
the validation rules I require to each of them. I have specified that values are required, that they must be digits, and
that the minimum acceptable value is zero. I have defined custom messages for each validation check and these refer
to an array of plural flower names to help them make sense to the user.

Since I have the input elements selected, I take the opportunity to provide a handler function for the change
event, which is triggered when the value entered into the field changes. Notice that I call the element method,
as follows:

...
if ($("form").validate().element($(e.target))) {
...

This triggers validation on the changed element, and the result from the method is a Boolean indicating the
validity of the entered value. By using an if block, I avoid adding invalid values to my running total of selected items.

Adding Remote Validation
The validation I performed in the Listing 16-6 and that I described in Chapter 13 are examples of local validation,
which is to say that the rules and the data required to enforce them are part of the HTML document.

The validation plug-in also supports remote validation, where the value entered by the user is sent to the server
and the rules are applied there. This is useful when you don’t want to send the validation rules to the browser because
it would require too much data (e.g., you might validate a user name for a new account by checking that it has not
already been used—something that would require all account names to be sent to the client for local validation).

Chapter 16 ■ refaCtorIng the example: part II

427

Caution ■ Some caution is required when using remote validation because the load it can place on a server is
significant. In this example, I perform a remote validation every time the user changes the value of an input element and
this is likely to generate a lot of requests in a real application. a more sensible approach is usually to perform remote
validation only as a precursor to submitting the form.

I didn’t explain remote validation in Chapter 13 because it relies on JSON and Ajax, and I didn’t want to get into
those topics too early. Listing 16-7 shows how I set up remote validation, which I use to ensure that the user cannot
order more items than are in stock.

Listing 16-7. Performing Remote Validation

...
$.when(flowerReq, jsonReq).then(function() {
 $("input").each(function(index, elem) {
 $(elem).rules("add", {
 required: true,
 min: 0,
 digits: true,
 remote: {
 url: "http://node.jacquisflowershop.com/stockcheck",
 type: "post",
 global: false
 },
 messages: {
 required: "Please enter a number of " + plurals[elem.name],
 digits: "Please enter a number of" + plurals[elem.name],
 min: "Please enter a positive number of "
 + plurals[elem.name]
 }
 })
 }).change(function(e) {
 if ($("form").validate().element($(e.target))) {
 var total = 0;
 $("input").each(function(index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 }
 });
});
...

Setting remote validation is easy: I specify the validation check by setting the remote property to a map object that
configures the Ajax request the validation plug-in will make to the user. In this example, I have used the url setting
to specify the URL that will be called to perform the remote validation, the type setting to specify that I want a POST
request, and the global setting to disable global events.

http://node.jacquisflowershop.com/stockcheck

Chapter 16 ■ refaCtorIng the example: part II

428

I have disabled global events because I don’t want errors that arise when making the remote validation Ajax
request to be treated as general errors that the user can do something about. Instead, I want them to fail quietly, on
the basis that the server will perform further validation when the form is submitted (the formserver.js script doesn’t
perform any validation, but it is important that real web applications do, as I explained in Chapter 13).

The validation plug-in uses the standard jQuery Ajax settings to make a request to the specified remote validation
URL, sending the name of the input element and the value that the user has entered. If I enter 22 into the Aster input
element and then navigate away to trigger the change event, the validation plug-in will make an HTTP POST request
to the server that contains the following information:

aster=22

The response that the server sends is simple. If the response is the word true, then the value is valid. Any other
response is considered to be an error message that will be displayed to the user. My formserver.js script will send
back an error message such as the following:

We only have 10 Asters in stock

This message is treated just like a local validation message, as illustrated in Figure 16-3.

Figure 16-3. Displaying remote validation messages

Submitting the Form Data Using Ajax
Submitting the values in the form is exceptionally simple, and Listing 16-8 shows the technique I used in Chapter 15.

Listing 16-8. Submitting the Form Using Ajax

<!DOCTYPE html>
<html>
<head>

Chapter 16 ■ refaCtorIng the example: part II

429

 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <script src="jquery.validate.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 a.arrowButton {
 background-image: url(leftarrows.png); float: left;
 margin-top: 15px; display: block; width: 50px; height: 50px;
 }
 #right {background-image: url(rightarrows.png)}
 h1 { min-width: 0px; width: 95%; }
 #oblock { float: left; display: inline; border: thin black solid; }
 form { margin-left: auto; margin-right: auto; width: 885px; }
 #bbox {clear: left}
 #error {color: red; border: medium solid red; padding: 4px; margin: auto;
 width: 300px; text-align: center; margin-bottom: 5px}
 .invalidElem {border: medium solid red}
 #errorSummary {border: thick solid red; color: red; width: 350px; margin: auto;
 padding: 4px; margin-bottom: 5px}
 #popup {
 text-align: center; position: absolute; top: 100px;
 left: 0px; width: 100%; height: 1px; overflow: visible; visibility: visible;
 display: block }
 #popupContent { color: white; background-color: black; font-size: 14px;
 font-weight: bold; margin-left: -75px; position: absolute; top: -55px;
 left: 50%; width: 150px; height: 60px; padding-top: 10px; z-index: 2; }
 </style>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 $("<div id='popup'><div id='popupContent'><img src='progress.gif'"
 + "alt='progress'/><div>Placing Order</div></div></div>")
 .appendTo("body");

 $.ajaxSetup({
 timeout: 5000,
 converters: {"text html": function (data) { return $(data); }}
 });

 $(document).ajaxError(function (e, jqxhr, settings, errorMsg) {
 $("#error").remove();

Chapter 16 ■ refaCtorIng the example: part II

430

 var msg = "An error occurred. Please try again"
 if (errorMsg == "timeout") {
 msg = "The request timed out. Please try again"
 } else if (jqxhr.status == 404) {
 msg = "The file could not be found";
 }
 $("<div id=error/>").text(msg).insertAfter("h1");
 }).ajaxSuccess(function () {
 $("#error").remove();
 });

 $("").prependTo("form")
 .addClass("arrowButton").click(handleArrowPress).hover(handleArrowMouse);
 $("#right").appendTo("form");

 $("#row2, #row3, #popup").hide();

 var flowerReq = $.get("flowers.html", function (data) {
 var elems = data.filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 });

 var jsonReq = $.getJSON("additionalflowers.json", function (data) {
 $("#flowerTmpl").template({ flowers: data }).appendTo("#row3");
 });

 $("<div id=errorSummary>").text("Please correct the following errors:")
 .append("<ul id='errorsList'>").hide().insertAfter("h1");

 $("form").validate({
 highlight: function(element, errorClass) {
 $(element).addClass("invalidElem");
 },
 unhighlight: function(element, errorClass) {
 $(element).removeClass("invalidElem");
 },
 errorContainer: "#errorSummary",
 errorLabelContainer: "#errorsList",
 wrapper: "li",
 errorElement: "div"
 });

 var plurals = {
 aster: "Asters", daffodil: "Daffodils", rose: "Roses",
 peony: "Peonies", primula: "Primulas", snowdrop: "Snowdrops",
 carnation: "Carnations", lily: "Lillies", orchid: "Orchids"
 };

 $.when(flowerReq, jsonReq).then(function() {
 $("input").each(function(index, elem) {
 $(elem).rules("add", {

Chapter 16 ■ refaCtorIng the example: part II

431

 required: true,
 min: 0,
 digits: true,
 remote: {
 url: "http://node.jacquisflowershop.com/stockcheck",
 type: "post",
 global: false
 },
 messages: {
 required: "Please enter a number of " + plurals[elem.name],
 digits: "Please enter a number of" + plurals[elem.name],
 min: "Please enter a positive number of "
 + plurals[elem.name]
 }
 })
 }).change(function(e) {
 if ($("form").validate().element($(e.target))) {
 var total = 0;
 $("input").each(function(index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 }
 });
 });

 $("button").click(function (e) {
 e.preventDefault();
 var formData = $("form").serialize();
 $("body *").not("#popup, #popup *").css("opacity", 0.5);
 $("input").attr("disabled", "disabled");
 $("#popup").show();
 $.ajax({
 url: "http://node.jacquisflowershop.com/order",
 type: "post",
 data: formData,
 complete: function () {
 setTimeout(function () {
 $("body *").not("#popup, #popup *").css("opacity", 1);
 $("input").removeAttr("disabled");
 $("#popup").hide();
 }, 1500);
 }
 })
 });

 var total = $("#buttonDiv")
 .prepend("<div>Total Items: 0</div>")
 .css({ clear: "both", padding: "5px" });
 $("<div id=bbox />").appendTo("body").append(total).css("clear: left");

http://node.jacquisflowershop.com/stockcheck
http://node.jacquisflowershop.com/order

Chapter 16 ■ refaCtorIng the example: part II

432

 $("input").change(function (e) {
 var total = 0;
 $("input").each(function (index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 });

 function handleArrowMouse(e) {
 var propValue = e.type == "mouseenter" ? "-50px 0px" : "0px 0px";
 $(this).css("background-position", propValue);
 }

 function handleArrowPress(e) {
 var elemSequence = ["row1", "row2", "row3"];
 var visibleRow = $("div.drow:visible");
 var visibleRowIndex =
 jQuery.inArray(visibleRow.attr("id"), elemSequence);

 var targetRowIndex;
 if (e.target.id == "left") {
 targetRowIndex = visibleRowIndex - 1;
 if (targetRowIndex < 0) { targetRowIndex = elemSequence.length - 1 };
 } else {
 targetRowIndex = (visibleRowIndex + 1) % elemSequence.length;
 }

 visibleRow.fadeOut("fast", function () {
 $("#" + elemSequence[targetRowIndex]).fadeIn("fast")
 });
 }
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow"></div>
 <div id="row2" class="drow"></div>
 <div id="row3" class="drow"></div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

http://node.jacquisflowershop.com/order

Chapter 16 ■ refaCtorIng the example: part II

433

I have gone beyond just making an Ajax POST request because I want to provide some additional context for how
these requests can be handled in real projects. To start with, I have added an element that is positioned above all of
the other elements in the document and tells the user that her order is being placed. Following is the statement that
creates these elements:

...
$("<div id='popup'><div id='popupContent'><img src='progress.gif'"
 + "alt='progress'/><div>Placing Order</div></div></div>").appendTo("body");
...

I also added some CSS to the style element for these new elements.

...
#popup {
 text-align: center; position: absolute; top: 100px;
 left: 0px; width: 100%; height: 1px; overflow: visible; visibility: visible;
 display: block }
#popupContent { color: white; background-color: black; font-size: 14px;
 font-weight: bold; margin-left: -75px; position: absolute; top: -55px;
 left: 50%; width: 150px; height: 60px; padding-top: 10px; z-index: 2; }
...

It is hard to create an element that looks like a pop-up and that is properly positioned on the screen, and you can
see that the amount of CSS required to make it work is substantial. The HTML elements themselves are simple by
comparison and the HTML that is generated from the jQuery statement looks like the following:

...
<div id="popup" style="display: none;">
 <div id="popupContent">

 <div>Placing Order</div>
 </div>
</div>
...

The img element I have specified (progress.gif) is an animated GIF image. There are a number of web sites that
will generate progress images to your specification, and I used one of them. If you don’t want to create your own, then
use the one from this example, which is included in the Source Code/Download area for this book (freely available
from the Apress web site [www.apress.com]). You can see how the progress elements appear in Figure 16-4 (I have
removed the other elements for clarity).

http://www.apress.com/

Chapter 16 ■ refaCtorIng the example: part II

434

I hide these elements initially because it makes no sense to show the user a progress display until he actually
places the order.

...
$("#row2, #row3, #popup").hide();
...

With these elements in place and hidden, I turn to the form submission. I register a handler function for the
click event for the button element, as follows:

...
$("button").click(function (e) {
 e.preventDefault();
 var formData = $("form").serialize();
 $("body *").not("#popup, #popup *").css("opacity", 0.5);
 $("input").attr("disabled", "disabled");
 $("#popup").show();
 $.ajax({
 url: "http://node.jacquisflowershop.com/order",
 type: "post",
 data: formData,
 complete: function () {
 setTimeout(function () {
 $("body *").not("#popup, #popup *").css("opacity", 1);
 $("input").removeAttr("disabled");
 $("#popup").hide();
 }, 1500);
 }
 })
});
...

Figure 16-4. Showing progress to the user

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://node.jacquisflowershop.com/order

Chapter 16 ■ refaCtorIng the example: part II

435

Before starting the Ajax request, I show the pop-up elements and make all of the other elements partially
transparent. I disable the input elements by adding the disabled attribute because I don’t want the user to be able to
change the value of any of the input elements while I am sending the data to the user.

...
$("body *").not("#popup, #popup *").css("opacity", 0.5);
$("input").attr("disabled", "disabled");
$("#popup').show();
...

The problem with disabling the input elements is that their values won’t be included in the data sent to the
server. The serialize method will include values only from input elements that are considered successful controls,
as defined by the HTML specification; this excludes those elements that are disabled or don’t have a name attribute.
I could iterate through the input elements myself and get the values anyway, but it is simpler to gather the data to
send before disabling the elements, as follows:

...
var formData = $("form").serialize();
...

I have used the complete setting to restore the interface to its normal state by making all of the elements opaque,
removing the disabled attribute from the input elements, and hiding the pop-up elements. I have introduced an
artificial 1.5-second delay after the request has completed before restoring the interface, as follows:

...
complete: function() {
 setTimeout(function() {
 $("body *").not("#popup, #popup *").css("opacity", 1);
 $("input").removeAttr("disabled");
 $("#popup").hide();
 }, 1500);
}
...

I would not do this in a real web application, but for demonstration purposes when the development machine
and the server are on the same local network, this is useful to emphasize the transition. You can see how the browser
appears during the Ajax request in Figure 16-5.

Chapter 16 ■ refaCtorIng the example: part II

436

Processing the Server Response
All that remains is to do something useful with the data that I get back from the server. For this chapter, I am going
to use a simple table. You will learn about creating rich user interfaces with jQuery UI in the next part of this book,
and I don’t want to have to do by hand what I can do much more elegantly with the UI widgets. Figure 16-6 shows the
finished result.

Figure 16-5. The browser during the form submission request

Figure 16-6. Displaying the order summary

Chapter 16 ■ refaCtorIng the example: part II

437

Listing 16-9 shows the changes to the HTML document that support this enhancement. I’ll break down the
changes I made step by step in the sections that follow.

Listing 16-9. Processing the Response from the Server

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js" type="text/javascript"></script>
 <script src="handlebars-jquery.js" type="text/javascript"></script>
 <script src="jquery.validate.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 a.arrowButton {
 background-image: url(leftarrows.png); float: left;
 margin-top: 15px; display: block; width: 50px; height: 50px;
 }
 #right {background-image: url(rightarrows.png)}
 h1 { min-width: 0px; width: 95%; }
 #oblock { float: left; display: inline; border: thin black solid; }
 #orderForm { margin-left: auto; margin-right: auto; width: 885px; }
 #bbox {clear: left}
 #error {color: red; border: medium solid red; padding: 4px; margin: auto;
 width: 300px; text-align: center; margin-bottom: 5px}
 .invalidElem {border: medium solid red}
 #errorSummary {border: thick solid red; color: red; width: 350px; margin: auto;
 padding: 4px; margin-bottom: 5px}
 #popup {
 text-align: center; position: absolute; top: 100px;
 left: 0px; width: 100%; height: 1px; overflow: visible; visibility: visible;
 display: block }
 #popupContent { color: white; background-color: black; font-size: 14px;
 font-weight: bold; margin-left: -75px; position: absolute; top: -55px;
 left: 50%; width: 150px; height: 60px; padding-top: 10px; z-index: 2; }
 #summary {text-align: center}
 table {border-collapse: collapse; border: medium solid black; font-size: 18px;
 margin: auto; margin-bottom: 5px;}
 th {text-align: left}
 th, td {padding: 2px}
 tr > td:nth-child(1) {text-align: left}
 tr > td:nth-child(2) {text-align: right}
 </style>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}

Chapter 16 ■ refaCtorIng the example: part II

438

 </script>
 <script id="productRowTmpl" type="text/x-handlebars-template">
 {{#rows}}
 <tr><td>{{name}}</td><td>{{quantity}}</td></tr>
 {{/rows}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 $("<div id='popup'><div id='popupContent'><img src='progress.gif'"
 + "alt='progress'/><div>Placing Order</div></div></div>")
 .appendTo("body");

 $.ajaxSetup({
 timeout: 5000,
 converters: {"text html": function (data) { return $(data); }}
 });

 $(document).ajaxError(function (e, jqxhr, settings, errorMsg) {
 $("#error").remove();
 var msg = "An error occurred. Please try again"
 if (errorMsg == "timeout") {
 msg = "The request timed out. Please try again"
 } else if (jqxhr.status == 404) {
 msg = "The file could not be found";
 }
 $("<div id=error/>").text(msg).insertAfter("h1");
 }).ajaxSuccess(function () {
 $("#error").remove();
 });

 $("").prependTo("#orderForm")
 .addClass("arrowButton").click(handleArrowPress).hover(handleArrowMouse);
 $("#right").appendTo("#orderForm");

 $("#row2, #row3, #popup, #summaryForm").hide();

 var flowerReq = $.get("flowers.html", function (data) {
 var elems = data.filter("div").addClass("dcell");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3).appendTo("#row2");
 });

 var jsonReq = $.getJSON("additionalflowers.json", function (data) {
 $("#flowerTmpl").template({ flowers: data }).appendTo("#row3");
 });

 $("<div id=errorSummary>").text("Please correct the following errors:")
 .append("<ul id='errorsList'>").hide().insertAfter("h1");

 $("#orderForm").validate({
 highlight: function(element, errorClass) {

Chapter 16 ■ refaCtorIng the example: part II

439

 $(element).addClass("invalidElem");
 },
 unhighlight: function(element, errorClass) {
 $(element).removeClass("invalidElem");
 },
 errorContainer: "#errorSummary",
 errorLabelContainer: "#errorsList",
 wrapper: "li",
 errorElement: "div"
 });

 var plurals = {
 aster: "Asters", daffodil: "Daffodils", rose: "Roses",
 peony: "Peonies", primula: "Primulas", snowdrop: "Snowdrops",
 carnation: "Carnations", lily: "Lillies", orchid: "Orchids"
 };

 $.when(flowerReq, jsonReq).then(function() {
 $("input").each(function(index, elem) {
 $(elem).rules("add", {
 required: true,
 min: 0,
 digits: true,
 remote: {
 url: "http://node.jacquisflowershop.com/stockcheck",
 type: "post",
 global: false
 },
 messages: {
 required: "Please enter a number of " + plurals[elem.name],
 digits: "Please enter a number of" + plurals[elem.name],
 min: "Please enter a positive number of "
 + plurals[elem.name]
 }
 })
 }).change(function(e) {
 if ($("#orderForm").validate().element($(e.target))) {
 var total = 0;
 $("input").each(function(index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 }
 });
 });

 $("#orderForm button").click(function (e) {
 e.preventDefault();
 var formData = $("#orderForm").serialize();
 $("body *").not("#popup, #popup *").css("opacity", 0.5);
 $("input").attr("disabled", "disabled");
 $("#popup").show();

http://node.jacquisflowershop.com/stockcheck

Chapter 16 ■ refaCtorIng the example: part II

440

 $.ajax({
 url: "http://node.jacquisflowershop.com/order",
 type: "post",
 data: formData,
 dataType: "json",
 dataFilter: function (data, dataType) {
 data = $.parseJSON(data);
 var cleanData = {
 totalItems: data.totalItems,
 totalPrice: data.totalPrice
 };
 delete data.totalPrice; delete data.totalItems;
 cleanData.products = [];
 for (prop in data) {
 cleanData.products.push({
 name: plurals[prop],
 quantity: data[prop]
 })
 }
 return cleanData;
 },
 converters: { "text json": function (data) { return data; } },
 success: function (data) {
 processServerResponse(data);
 },
 complete: function () {
 $("body *").not("#popup, #popup *").css("opacity", 1);
 $("input").removeAttr("disabled");
 $("#popup").hide();
 }
 })
 });

 function processServerResponse(data) {
 if (data.products.length > 0) {
 $("body > *:not(h1)").hide();
 $("#summaryForm").show();
 $("#productRowTmpl")
 .template({ rows: data.products }).appendTo("tbody");
 $("#totalitems").text(data.totalItems);
 $("#totalprice").text("$" + data.totalPrice);
 } else {
 var elem = $("input").get(0);
 var err = new Object();
 err[elem.name] = "No products selected";
 $("#orderForm").validate().showErrors(err);
 $(elem).removeClass("invalidElem");
 }
 }

 var total = $("#buttonDiv")
 .prepend("<div>Total Items: 0</div>")

http://node.jacquisflowershop.com/order

Chapter 16 ■ refaCtorIng the example: part II

441

 .css({ clear: "both", padding: "5px" });
 $("<div id=bbox />").appendTo("body").append(total).css("clear: left");

 $("input").change(function (e) {
 var total = 0;
 $("input").each(function (index, elem) {
 total += Number($(elem).val());
 });
 $("#total").text(total);
 });

 function handleArrowMouse(e) {
 var propValue = e.type == "mouseenter" ? "-50px 0px" : "0px 0px";
 $(this).css("background-position", propValue);
 }

 function handleArrowPress(e) {
 var elemSequence = ["row1", "row2", "row3"];
 var visibleRow = $("div.drow:visible");
 var visibleRowIndex =
 jQuery.inArray(visibleRow.attr("id"), elemSequence);

 var targetRowIndex;
 if (e.target.id == "left") {
 targetRowIndex = visibleRowIndex - 1;
 if (targetRowIndex < 0) { targetRowIndex = elemSequence.length - 1 };
 } else {
 targetRowIndex = (visibleRowIndex + 1) % elemSequence.length;
 }

 visibleRow.fadeOut("fast", function () {
 $("#" + elemSequence[targetRowIndex]).fadeIn("fast")
 });
 }
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form id="orderForm" method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow"></div>
 <div id="row2" class="drow"></div>
 <div id="row3" class="drow"></div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
 <form id="summaryForm" method="post" action="">
 <div id="summary">
 <h3>Order Summary</h3>

http://node.jacquisflowershop.com/order

Chapter 16 ■ refaCtorIng the example: part II

442

 <table border="1">
 <thead>
 <tr><th>Product</th><th>Quantity</th>
 </thead>
 <tbody>
 </tbody>
 <tfoot>
 <tr><th>Number of Items:</th><td id="totalitems"></td></tr>
 <tr><th>Total Price:</th><td id="totalprice"></td></tr>
 </tfoot>
 </table>
 <div id="buttonDiv2"><button type="submit">Complete Order</button></div>
 </div>
 </form>
</body>
</html>

Adding the New Form
The first thing that I did was add a new form to the static HTML part of the document, as follows:
...
<form id="summaryForm" method="post" action="">
 <div id="summary">
 <h3>Order Summary</h3>
 <table border="1">
 <thead>
 <tr><th>Product</th><th>Quantity</th>
 </thead>
 <tbody>
 </tbody>
 <tfoot>
 <tr><th>Number of Items:</th><td id="totalitems"></td></tr>
 <tr><th>Total Price:</th><td id="totalprice"></td></tr>
 </tfoot>
 </table>
 <div id="buttonDiv2"><button type="submit">Complete Order</button></div>
 </div>
</form>
...

This is the heart of the new functionality. When the user submits his product selection to the server, the table in
this form will be used to display the data I get back from the Ajax request.

Tip ■ I had been using the $("form") selector in previous examples, but since they are two forms in the document
now, I have gone through and switched these references to the use the form elements’ id attribute values.

Chapter 16 ■ refaCtorIng the example: part II

443

I don’t want to display the new form immediately, so I added it to the list of elements that I hide in the script,
as follows:

...
$("#row2, #row3, #popup, #summaryForm").hide();
...

And, as you might expect by now, where there are new elements there is new CSS to style them, as follows:

...
#summary {text-align: center}
table {border-collapse: collapse; border: medium solid black; font-size: 18px;
 margin: auto; margin-bottom: 5px;}
th {text-align: left}
th, td {padding: 2px}
tr > td:nth-child(1) {text-align: left}
tr > td:nth-child(2) {text-align: right}
...

These styles ensure that the table is displayed in the middle of the browser window and the text in the table
columns is aligned to the correct edge.

Completing the Ajax Request
The next step is to complete the call to the ajax request.

...
$("#orderForm button").click(function (e) {
 e.preventDefault();
 var formData = $("#orderForm").serialize();
 $("body *").not("#popup, #popup *").css("opacity", 0.5);
 $("input").attr("disabled", "disabled");
 $("#popup").show();
 $.ajax({
 url: "http://node.jacquisflowershop.com/order",
 type: "post",
 data: formData,
 dataType: "json",
 dataFilter: function (data, dataType) {
 data = $.parseJSON(data);
 var cleanData = {
 totalItems: data.totalItems,
 totalPrice: data.totalPrice
 };
 delete data.totalPrice; delete data.totalItems;
 cleanData.products = [];
 for (prop in data) {

http://node.jacquisflowershop.com/order

Chapter 16 ■ refaCtorIng the example: part II

444

 cleanData.products.push({
 name: plurals[prop],
 quantity: data[prop]
 })
 }
 return cleanData;
 },
 converters: { "text json": function (data) { return data; } },
 success: function (data) {
 processServerResponse(data);
 },
 complete: function () {
 $("body *").not("#popup, #popup *").css("opacity", 1);
 $("input").removeAttr("disabled");
 $("#popup").hide();
 }
 })
});
...

I removed the explicit delay in the complete function and added the dataFilter, converters, and success
settings to the request. I use the dataFilters setting to provide a function that transforms the JSON data from the
server into something more useful. The server sends me a JSON string like the following:

{"aster":"4","daffodil":"1","snowdrop":"2","totalItems":7,"totalPrice":"15.93"}

I parse the JSON data and restructure it so that I get the following:

{"totalItems":7,"totalPrice":"15.93",
 "products":[{"name":"Asters","quantity":"4"}, {"name":"Daffodils","quantity":"1"},
 {"name":"Snowdrops","quantity":"2"}]
}

This format gives me two advantages. The first is that it is better suited for use with data templates because I can
pass the products property to the template method. The second is that I can check whether the user has selected
any elements with products.length. These are two quite minor advantages, but I wanted to integrate as many of the
features from the earlier chapters as possible. Notice that I have also replaced the name of the product (orchid, for
example) with the plural name (ochids).

Having already parsed the JSON data into a JavaScript object (using the parseJSON method, which I describe in
Chapter 34), I want to disable the built-in converter, which will try to do the same thing. To that end, I have defined a
custom converter for JSON, which just passes the data through without modification.

...
converters: {"text json": function(data) { return data;}}
...

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 16 ■ refaCtorIng the example: part II

445

Processing the Data
For the ajax method success callback, I specified the processServerResponse function, which I defined as follows:

...
function processServerResponse(data) {
 if (data.products.length > 0) {
 $("body > *:not(h1)").hide();
 $("#summaryForm").show();
 $("#productRowTmpl").template({ rows: data.products }).appendTo("tbody");
 $("#totalitems").text(data.totalItems);
 $("#totalprice").text("$" + data.totalPrice);
 } else {
 var elem = $("input").get(0);
 var err = new Object();
 err[elem.name] = "No products selected";
 $("#orderForm").validate().showErrors(err);
 $(elem).removeClass("invalidElem");
 }
}
...

If the data from the server contain product information, then I hide all of the elements in the document that
I don’t want (including the original form element and the additions I made in the script) and show the new form.
I populate the table using the following data template:

...
<script id="productRowTmpl" type="text/x-handlebars-template">
 {{#rows}}
 <tr><td>{{name}}</td><td>{{quantity}}</td></tr>
 {{/rows}}
</script>
...

This template produces a table row for each selected product. Finally, I set contents of the cells that display the
total price and item count using the text method.

...
$("#totalitems").text(data.totalItems);
$("#totalprice").text("$" + data.totalPrice);
...

However, if the data from the server don’t contain any product information (which indicates that the user has left
all of the input element values as zero), then I do something different. First I select the first of the input elements,
as follows:

...
var elem = $("input").get(0);
...

Chapter 16 ■ refaCtorIng the example: part II

446

I then create an object that contains a property whose name is the name value of the input element and whose
value is a message to the user. I then call the validate method on the form element and the showErrors method on
the result, as follows:

...
var err = new Object();
err[elem.name] = "No products selected";
$("#orderForm").validate().showErrors(err);
...

This allows me to manually inject an error into the validation system and take advantage of the structure and
formatting that I put in place earlier. I have to provide the name of an element so that the validation plug-in can
highlight where the error occurs, which is not ideal, as you can see in Figure 16-7.

Figure 16-7. Display the selection error

I am displaying a general message, but the highlighting is applied to just one input element, which will be
confusing to the user. To deal with this, I remove the class that the validation plug-in uses for highlighting, as follows:

...
$(elem).removeClass("invalidElem");
...

This produces the effect shown in Figure 16-8.

Chapter 16 ■ refaCtorIng the example: part II

447

Summary
In this chapter, I refactored the example to bring together the themes and features covered in this part of the book.
I used Ajax widely (using both the shorthand and low-level methods), applied a pair of data templates, and used the
validation plug-in to check values locally and remotely (and to display an error manually). In the next part of the book,
I turn to jQuery UI and the next time that I refactor the example document, it will have a very different appearance.

Figure 16-8. Removing the highlighting from the element associated with the error

449

Chapter 17

Setting Up jQuery UI

Downloading and installing jQuery UI is more complicated than for other JavaScript libraries. It is not burdensome,
but it requires some explanation, which I provide in this chapter. You only need to get set up for development for this
book, but I have also included details of how to install the minimized files that are suitable for production deployment
and how to use jQuery UI through a content distribution network (CDN).

Note ■ As I explained in Chapter 1, the jQuery UI API changed with the release of version 1.10, and I highlight these
changes in the chapters that follow.

Obtaining jQuery UI
There are four main areas of functionality in jQuery UI and you create a custom download that includes and
configures each of them. In this part of the book, I show you all the jQuery UI features, but for a real web application
you can omit the parts you don’t need and create a smaller library for browsers to download.

Tip ■ jQuery UI isn’t the only UI toolkit that is based on jQuery, although it is by far the most popular. An alternative
is jQuery Tools, which is open source and can be downloaded without any license or restrictions from
http://flowplayer.org/tools. There are also some commercial alternatives such as jQWidgets (www.jqwidgets.com)
and Wijmo (http://wijmo.com). And, of course, there is jQuery Mobile, which I describe in Part 5 of this book.

Deciding on a Theme
Before you build your custom jQuery UI library, you need to select a theme. jQuery UI is endlessly configurable and
you can change the appearance of every aspect of every feature that you use. In fact, there are so many choices that it
can be somewhat overwhelming. The jQuery UI web site includes a tool for creating custom themes, but there is also a
gallery of predefined themes that you can choose to make life easier.

To start, go to http://jqueryui.com and click the Themes button. This loads the ThemeRoller page, which
consists of a display of jQuery UI widgets and a panel on the left that lets you configure the theme settings, as shown in
Figure 17-1.

http://flowplayer.org/tools
http://www.jqwidgets.com/
http://wijmo.com/
http://jqueryui.com/

ChAPTer 17 ■ SeTTIng UP jQUery UI

450

Use the Roll Your Own tab (which is selected by default) if you have a certain visual style that you need to follow
to make jQuery UI fit in with the rest of a site or application. You can change every aspect of the theme used by
jQuery UI.

The predefined themes are available on the Gallery tab. As I write this, 24 themes are available in the gallery and
they range from the understated and subtle to the bright and garish. As you click each gallery theme, the widgets in
the rest of the page are updated to show you what your application will look like, as shown in Figure 17-2.

Figure 17-1. The jQuery UI web site theme page

ChAPTer 17 ■ SeTTIng UP jQUery UI

451

The default theme for jQuery UI is called UI lightness, but it doesn’t have enough contrast to show up well on a
book page, so I will be using the Sunny theme, which shows up a little better. You don’t need to do anything with the
theme at the moment, other than to remember which one you want to use. The themes don’t look that good when
printed, but they have a better appearance on the screen and I recommend you look through the list until you find one
you like.

Tip ■ you don’t have to select the same theme that I will be using, but if you pick a different one, you will obviously get
results that look different from mine.

Creating the jQuery UI Custom Download
Now that you have a theme in mind, you can create your jQuery UI download. Click the Download button at the top of
the page to move to the Build Your Download page.

The first step is to select the version of jQuery UI that you want to download. As I write this, the latest version is
1.10.3 and that is the version I will be using in this book.

In addition to specifying the jQuery UI version, this page has a list of jQuery UI components, broken into four
functional groups: UI Core, Interactions, Widgets, and Effects.

Figure 17-2. The gallery showing the Sunny theme

ChAPTer 17 ■ SeTTIng UP jQUery UI

452

By selecting only the features that you require for a project, you can create a set of smaller files for the browser
to download. I think this a nice idea, but it is something that I tend not to use as I prefer to reduce the bandwidth
required to deliver jQuery UI by using a CDN, which I show you how to do in the section “Using jQuery UI via a
Content Distribution Network.”

For this chapter, you will need all of the components, so make sure that all four options are checked.

Tip ■ Some of the components in the list depend on others, but you don’t have to worry about this when you build a
custom jQuery UI library. When you enable a component, any other component it depends on is also loaded.

The next step is to select the theme you want. The selector for this is at the bottom of the page, just above the
Download button, as shown in Figure 17-3.

Once you have selected all of the components, the theme you want, and the stable version, click the Download
button to download the customized jQuery UI library.

Installing jQuery UI for Development
The jQuery UI download is a zip file that contains all the files that you need for development and production. For this book,
you will use the development files that include the unminified source code. This makes it easy to look into the internals of
jQuery UI if you have a problem. You need to copy the following into the folder that contains your example files:

The •	 js\jquery-ui-1.10.3.custom.js file

The •	 themes\sunny\jquery-ui-1.10.3.custom.css file

The •	 themes\sunny\images folder

Figure 17-3. Selecting the theme

ChAPTer 17 ■ SeTTIng UP jQUery UI

453

You will notice that there are JavaScript and Cascading Style Sheets (CSS) files for individual components and
features in the ui and themes folders. You don’t need to use them, but they can be helpful if you need to work with
only a limited set of jQuery UI features.

Tip ■ The name of the javaScript and CSS files include the version number of the release that was downloaded. For
me, this is version 1.10.3. jQuery UI is actively developed and you may have downloaded a later release. If so, you’ll need
to change the references to the jQuery UI files in the hTML examples.

Adding jQuery UI to an HTML Document
All that remains is to add jQuery UI to an example HTML document, which is done through script and link elements
that refer to the JavaScript and CSS files that I listed in the previous section, as shown in Listing 17-1.

Listing 17-1. Adding jQuery UI to an HTML Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {
 $("a").button();
 });
 </script>
</head>
<body>
 Visit Apress
</body>
</html>

Tip ■ you don’t need to refer directly to the images directory. As long as the images directory and the CSS file are in
the same place, jQuery UI will be able to find the resources it needs.

Tip ■ jQuery UI depends on jQuery. you must have added jQuery to a document in order to use jQuery UI.

The document shown in the listing includes a simple test that allows you to check that jQuery UI has been added
properly. If you view this in the browser, you should see a button like the one in Figure 17-4. Don’t worry about the call
to the button method in the script element in the listing. I’ll explain what this does and how it works in Chapter 18.

http://apress.com

ChAPTer 17 ■ SeTTIng UP jQUery UI

454

If you have not properly specified the path to either of the two files, then you will see a simple a element instead,
as illustrated by Figure 17-5.

Installing jQuery UI for Production
When you have finished developing your web application and are ready to deploy it, you can use the minified file
that is included in the jQuery UI download. This file is smaller but harder to read for debugging purposes. To use the
production files, you must copy the following into your web server directory:

The •	 js\jquery-ui-1.10.3.custom.min.js file

The •	 themes\sunny\jquery-ui-1.10.3.custom.css file

The •	 themes\sunny\images folder

The images directory and CSS file are the same as for the development version; only the JavaScript file changes.

Using jQuery UI via a Content Distribution Network
I touched upon using a CDN for jQuery in Chapter 5. If this is an approach that appeals to you, you will be pleased to
learn that you can do the same with jQuery UI. Both Google and Microsoft host the jQuery UI files on their CDNs. For
this example, I’ll use the Microsoft service, because it hosts the standard themes as well as the jQuery UI JavaScript.

To use a CDN, you just need the URLs to the files you want. For the Microsoft service, go to www.asp.net/
ajaxlibrary/cdn.ashx to get started. If you scroll down the page, you will see a section for jQuery UI releases, broken
down by version. Click the link for the version you are using. You will see the URLs for the regular and minimized
version of the jQuery UI library file. For the version that is current as I write this, the URL for the minimized file is as
follows:

http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.3/jquery-ui.min.js

Figure 17-5. Identifying a problem importing jQuery UI into a document

Figure 17-4. Checking that jQuery UI has been added to the document correctly

http://www.asp.net/ajaxlibrary/cdn.ashx
http://www.asp.net/ajaxlibrary/cdn.ashx
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.3/jquery-ui.min.js

ChAPTer 17 ■ SeTTIng UP jQUery UI

455

The rest of the page shows each of the predefined jQuery UI themes, with the URL for the theme CSS shown
underneath. The URL for the Sunny theme is as follows:

http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.3/themes/sunny/jquery-ui.css

To use these files on the CDN, you simply place the URLs in the script and link elements that refer to the local
jQuery UI files, as shown in Listing 17-2.

Listing 17-2. Using jQuery UI via a CDN

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>

<script src="http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.3/jquery-ui.min.js"
 type="text/javascript"></script>
 <link

href="http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.3/themes/sunny/jquery-ui.css"
 rel="stylesheet" />
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function () {
 $("a").button();
 });
 </script>
</head>
<body>
 Visit Apress
</body>
</html>

Once again, you can tell whether you have the correct URLs by loading the document and seeing whether the
browser displays a button similar to the one in Figure 17-4.

Summary
In this chapter, I showed you the steps required to create and prepare a jQuery UI download. There is a lot of flexibility
in the features you include and the default appearance jQuery UI imparts on your web application. I particularly like
the ThemeRoller application. It is an elegant way of creating a completely customized theme to fit into an existing
visual scheme, which is ideal for adding jQuery UI to corporate-branded sites. In the next chapter, you’ll start to look
at the different jQuery UI features, starting with the most popular functional area: widgets.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.3/themes/sunny/jquery-ui.css
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.3/jquery-ui.min.js
http://ajax.aspnetcdn.com/ajax/jquery.ui/1.10.3/themes/sunny/jquery-ui.css
http://apress.com">Visit

457

Chapter 18

Using the Button, Progress Bar,
and Slider Widgets

Now that you have configured, downloaded, and installed jQuery UI, you can start to look at the widgets it contains.
These are the major functional blocks of jQuery UI, and although there are other features (such as effects, which
I describe in Chapter 35), jQuery UI is known for the widgets.

In this chapter, I describe the three simplest widgets: the button, the progress bar, and the slider. All jQuery
UI widgets have common characteristics: settings, methods, and events. Mastering one widget provides a solid
foundation for working with all of them, so I spend some time at the start of this chapter providing overall context.

It is hard to tie all of the widgets into the flower shop example, so you will find that many of the examples in this
part of the book are small, self-contained HTML documents that demonstrate a single widget. I return to the flower
shop example in Chapter 26 when I refactor it to include jQuery UI. Table 18-1 provides the summary for this chapter.

Table 18-1. Chapter Summary

Problem Solution Listing

Create a jQuery UI button Select an element and use the button method 1

Configure a button element Pass a map object to the button method or use the
option method

2, 3

Use icons in jQuery UI buttons Use the icons setting 4

Use a custom image in a jQuery UI button Set the content of the button to be an img element 5

Remove the jQuery UI button widget Use the destroy method 6

Enable or disable the jQuery UI button Use the enable or disable method 7

Refresh the state of a jQuery UI button to reflect
a programmatic change to the underlying element

Use the refresh method 8

Respond to a jQuery UI button being created Specify a function for the create event 9

Create uniform buttons from different kinds
of element

Create jQuery UI buttons from input, button, or
a element

10

Create a toggle button Create a jQuery UI from a check box 11

Create a button set Use the buttonset method 12, 13

Create a jQuery UI progress bar Use the progressbar method 14, 15

(continued)

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

458

JQUerY UI ChaNGeS SINCe the LaSt eDItION

as of jQuery Ui 1.10, the progress widget can be used to display indeterminate tasks. see the section “Using the
jQuery Ui progress Bar” for details and an example.

Using the jQuery UI Button
The first widget I look at provides a good introduction into the world of jQuery UI. The button widget is simple but
has a transformational effect on HTML documents. The button widget applies the jQuery UI theme to button and
a elements. This means that the size, shape, font, and color of the element are transformed to match the theme
I selected when I created my custom jQuery UI download in Chapter 17. Applying jQuery UI widgets is simple,
as Listing 18-1 shows.

Listing 18-1. A Simple HTML Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <link rel="stylesheet" type="text/css" href="styles.css"/>

 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

Problem Solution Listing

Get or set the progress shown to the user Use the value method 16

Respond to changes in the progress bar Specify functions for the create, change,
or complete event

17

Create a jQuery UI slider Use the slider method 18

Change the orientation of a jQuery UI slider Use the orientation setting 19, 20

Animate the movement of the handle when the
user clicks the slider

Use the animate setting 21

Create a jQuery UI slider that allows the user to
specify a range of values

Use the range and values settings 22

Control a jQuery UI slider programmatically Use the value or values methods 23

Respond to changes in the slider handle positions Handle the start, stop, change, or slide event 24

Table 18-1. (continued)

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

459

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" data-price="{{price}}" data-stock="{{stocklevel}}"
 value="0" required />
 </div>
 {{/flowers}}
 </script>

 <script type="text/javascript">
 $(document).ready(function () {
 $.ajax("mydata.json", {
 success: function (data) {
 var tmplData = $("#flowerTmpl")
 .template({ flowers: data }).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 }
 });

 $("button").button();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 </div>
 <div id="row2"class="drow">
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

To apply the button widget, I use jQuery to select the elements I want to transform and call the button method;
jQuery UI takes care of the rest. You can see the effect in Figure 18-1.

http://node.jacquisflowershop.com/order

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

460

Tip ■ notice that i apply the button method to a jQuery selection object. the integration between jQuery and jQuery
Ui is close, and it means that using jQuery Ui is generally a natural extension of using the core jQuery techniques that
i showed you earlier in this book.

Like all of the jQuery UI widgets, the button shown in the figure is a series of CSS styles applied to the existing
HTML elements. The button method transforms an element like this

<button type="submit">Place Order</button>

to this

<button type="submit" class="ui-button ui-widget ui-state-default ui-corner-all
 ui-button-text-only" role="button" aria-disabled="false">
 Place Order
</button>

This is a nice approach because it works around the standard HTML elements, meaning that you don’t have to
make any special provision for jQuery UI when you create HTML content.

Configuring the Button
The jQuery UI button widget can be configured via settings properties, allowing control over the way that you create
the button. Table 18-2 describes these properties.

Figure 18-1. Applying the Button widget

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

461

These settings can be applied in two ways. The first is using a map object when calling the button method,
as highlighted in Listing 18-2.

Listing 18-2. Configuring the Button Widget Using a Map Object

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax("mydata.json", {
 success: function (data) {
 var tmplData = $("#flowerTmpl")
 .template({ flowers: data }).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 }
 });

 $("button").button({
 label: "Place Your Order",
 disabled: true
 });

 $("button").button("option", "disabled", false);
 });
</script>
...

I have set the text that the button displays with the label property and used the disabled property to disable the
button. Using a map object is the approach for defining the initial configuration for a widget and follows the style you
saw most recently in Chapter 15 for configuring Ajax requests.

Listing 18-2 also shows the technique used to change the value for a settings property after the widget has been
created, as follows:

...
$("button").button("option", "disabled", false);
...

I call the button method again, but with three arguments this time. The first argument is the string option and
tells jQuery UI that I want to change a setting. The second argument is the setting I want to change and the third
argument is the new value for the setting. This statement sets the disabled setting to false, enabling the button and
changing the value I set with the map object when I created the widget.

Table 18-2. The Settings Properties for the Button Widget

Property Description

disabled Gets or sets the disabled state of the button. A true value indicates that the button is disabled.
jQuery UI doesn’t take into account the state of the underlying HTML element.

text Gets or sets whether the button will display text. This setting is ignored if the icons property is false.

icons Gets or sets whether the button will display an icon.

label Gets or sets the text that is displayed by the button.

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

462

You can combine these techniques so that you call the button method with a first argument of option and a map
object as the second argument. This allows you to change multiple settings in one go, as shown in Listing 18-3.

Listing 18-3. Using the Option Argument with a Map Object

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax("mydata.json", {
 success: function (data) {
 var tmplData = $("#flowerTmpl")
 .template({ flowers: data }).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 }
 });

 $("button").button();

 $("button").button("option", {
 label: "Place Your Order",
 disabled: false
 });

 console.log("Disabled: " + $("button").button("option", "disabled"));
 });
</script>
...

You can use the same technique to read the value of a setting as well. In this case, you call the button method
with just two arguments. The first is the string option and the second is the name of the setting whose value you want
to read, as the following statement from the listing demonstrates:

...
console.log("Disabled: " + $("button").button("option", "disabled"));
...

When used this way, the button method returns the current setting value. The example statement reads the value
of the disabled setting and writes it to the console, producing the following output:

Disabled: false

Using jQuery UI Icons in Buttons
The jQuery UI themes include a set of icons that you can use for any purpose, including displaying them in buttons.
Listing 18-4 shows the use of icons in a jQuery UI button.

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

463

Listing 18-4. Displaying an Icon in a Button

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax("mydata.json", {
 success: function (data) {
 var tmplData = $("#flowerTmpl")
 .template({ flowers: data }).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 }
 });

 $("button").button({
 icons: {
 primary: "ui-icon-star",
 secondary: "ui-icon-circle-arrow-e"
 }
 });
 });
</script>
...

The icons property specifies which icons will be displayed. The button widget has two positions for icons.
The primary icon is displayed to the left of the text and the secondary icon is displayed to the right of the text and both
are specified with a map object. You can omit either property to display an icon in just one of the positions. The icons
themselves are quite small, as you can see in Figure 18-2.

Figure 18-2. Displaying icons in a button

Icons are specified using classes that are defined in the jQuery UI CSS file. There are 173 different icons
available, which is too many to list here. The easiest way to figure out the name of the icon you want is to go to
http://jqueryui.com, select the Themes page and scroll down the page. You will see all of the icons listed in
a grid, and moving the mouse button over each icon reveals the class name to use for the icon, as shown in
Figure 18-3.

http://jqueryui.com/

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

464

Tip ■ the name that pops up on the web page has a leading period that must be omitted to be used with the icons
setting. so, for example, if the mouse hovers over the first icon in the grid, .ui-icon-caret-1-n will pop up. to use this
icon with a button, set the primary or secondary property to ui-icon-caret-1-n.

Using a Custom Image
I don’t find the jQuery UI icons all that useful because they are usually too small for my needs. Fortunately, there is
a pair of alternate techniques to display a custom image in a jQuery UI button.

The first is to insert an img element inside the button element to which you intend to apply the jQuery UI button
widget. The jQuery UI button widget respects the content of the underlying button element and—as long as you use
an image with a transparent background—you don’t have to worry about making the image match the theme.
Listing 18-5 gives a simple demonstration.

Listing 18-5. Using a Custom Image with a jQuery UI Button

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax("mydata.json", {
 success: function (data) {
 var tmplData = $("#flowerTmpl")
 .template({ flowers: data }).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 }
 });

 $("button")
 .text("")
 .append("")

Figure 18-3. The jQuery UI icon grid

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

465

 .button();
 });
</script>
...

Since I want neither text nor a jQuery UI icon, I use the jQuery text method to set the content to an empty string.
I then use the append method to insert an img element into the button element and finally call the button method to
apply jQuery UI. You can see the result in Figure 18-4.

Figure 18-4. Showing a custom image in a button

Table 18-3. Button Methods

Method Description

button("destroy") Returns the HTML element to its original state

button("disable") Disables the button

button("enable") Enables the button

button("option") Sets one or more options; see the section “Configuring the Button”

button("refresh") Refreshes the button; see the section “Refreshing the State of a jQuery UI Button”

Using the Button Methods
The jQuery UI widgets also define methods that you use to control the widget once it has been created. These
methods are a little odd because you call the same JavaScript method but pass in different argument values to change
the jQuery UI behavior. These are, however, still called methods by the jQuery UI team and I will refer to them as such.
Table 18-3 shows the different jQuery UI methods you can use on the button widget and the effect each has.

Removing the Widget
The destroy method removes the jQuery UI button widget from the HTML button element, returning it to its original
state, as shown in Listing 18-6.

Listing 18-6. Using the destroy Method

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax("mydata.json", {
 success: function (data) {
 var tmplData = $("#flowerTmpl")

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

466

 .template({ flowers: data }).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 }
 });

 $("button").button().click(function (e) {
 $("button").button("destroy");
 e.preventDefault();
 });
 });
</script>
...

In Listing 18-6, I have used the standard jQuery click method to register a handler function for the button
element. This is the technique I demonstrated for handling events in Chapter 9 and requires no adjustment to support
jQuery UI. The click handler function in the listing means that clicking the button removes the jQuery UI widget from
the button element, as illustrated by Figure 18-5.

Enabling and Disabling the Button
The enable and disable methods change the state of the jQuery UI button, as shown in Listing 18-7.

Listing 18-7. Enabling and Disabling a Button

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax("mydata.json", {
 success: function (data) {
 var tmplData = $("#flowerTmpl")
 .template({ flowers: data }).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 }
 });

Figure 18-5. Destroying the jQuery UI button widget

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

467

 $("Enabled:<input type=checkbox checked />").prependTo("#buttonDiv");
 $(":checkbox").change(function (e) {
 $("button").button(
 $(":checked").length == 1 ? "enable" : "disable"
)
 });

 $("button").button();
 });
</script>
...

I have inserted a check box into the document and used the change method to register a function that will be
called when the box is checked or unchecked. I call the enable and disable methods to change the state of the button
to match the check box. You can see the effect in Figure 18-6.

Figure 18-6. Enabling and disabling a jQuery UI button

Refreshing the State of a jQuery UI Button
The refresh method updates the state of the jQuery UI button widget to reflect changes in the underlying HTML
element. This can be useful when you modify elements elsewhere in the code as shown in Listing 18-8.

Listing 18-8. Refreshing the jQuery UI Button

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax("mydata.json", {
 success: function (data) {
 var tmplData = $("#flowerTmpl")
 .template({ flowers: data }).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 }
 });

 $("Enabled:<input type=checkbox checked />").prependTo("#buttonDiv");
 $(":checkbox").change(function (e) {

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

468

 var buttons = $("button");
 if ($(":checked").length == 1) {
 buttons.removeAttr("disabled");
 } else {
 buttons.attr("disabled", "disabled");
 }
 buttons.button("refresh");
 });

 $("button").button();
 });
</script>
...

In this example, I use the check box to trigger adding and removing the disabled attribute from the HTML
button element that underpins the button widget. This change isn’t automatically detected by jQuery UI, so I call the
refresh method to bring everything back in sync.

Tip ■ You might be wondering why i would not just use the jQuery Ui enable and disable methods, but the scenario
in listing 18-8 is surprisingly common because jQuery Ui is often applied to htMl content late in the development
process, frequently to give a face-lift to an existing web application. in this situation, htMl elements will be
generated and manipulated by code which predates the user of jQuery Ui and doesn't know that a button widget
will be used—and so being able to update the state of the widget to reflect the state of the underlying htMl
element can be an important feature.

Using the Button Event
The jQuery UI widgets define events in addition to those of the underlying HTML elements. The button widget
defines a single event called create, which is triggered when you create a jQuery UI button widget. Handlers for
jQuery UI events are defined by passing a JavaScript map object to the jQuery UI method for the widget, which is
button in this case, as illustrated by Listing 18-9.

Listing 18-9. Using the jQuery UI Button create Event

...
<script type="text/javascript">
 $(document).ready(function () {
 $.ajax("mydata.json", {
 success: function (data) {
 var tmplData = $("#flowerTmpl")
 .template({ flowers: data }).filter("*");
 tmplData.slice(0, 3).appendTo("#row1");
 tmplData.slice(3).appendTo("#row2");
 }
 });

 $("button").button({
 create: function (e) {

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

469

 $(e.target).click(function (e) {
 alert("Button was pressed");
 e.preventDefault();
 })
 }
 });
 });
</script>
...

In Listing 18-9, I use the create event to set up a function to respond to the click event on the button. I don’t
find the create event useful and generally find that anything that can be done in response to this event can be done in
a way that is more in keeping with the broader jQuery approach.

Creating Different Types of Button
The jQuery UI button widget is sensitive to the kind of element it is applied to. The basic behavior, a regular button, is
created when you call the button method on button elements, or on a elements, or on input elements whose types are
set to submit, reset, or button. Listing 18-10 shows all of these elements being transformed into jQuery UI buttons.

Listing 18-10. Creating Standard Buttons

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-1.7.js" type="text/javascript"></script>
 <script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {
 $(".jqButton").click(function(e) {
 e.preventDefault();
 $(this).button();
 });
 });
 </script>
</head>
<body>
 <form>
 <input class="jqButton" type="submit" id="inputSubmit" value="Submit">
 <input class="jqButton" type="reset" id="inputReset" value="Reset">
 <input class="jqButton" type="button" id="inputButton" value="Input Button">
 <button class="jqButton">Button Element</button>
 A Element
 </form>
</body>
</html>

I have defined one of each type of the HTML elements I have described. I have used the click method so that
each element is transformed into a jQuery UI button widget when it is clicked. You can see the transformation in
Figure 18-7.

http://apress.com

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

470

Creating a Toggle Button
If you call the button method on an input element whose type is set to checkbox, you get a toggle button widget.
A toggle button is switched on or off when you click it, following the checked and unchecked states of the underlying
HTML element. Listing 18-11 provides a demonstration.

Listing 18-11. Applying jQuery UI to a Check Box

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <script type="text/javascript">
 $(document).ready(function () {
 $(".jqButton").button();
 });
 </script>
</head>
<body>
 <form>
 <input class="jqButton" type="checkbox" id="toggle">
 <label for="toggle">Toggle Me</label>
 </form>
</body>
</html>

To create a jQuery UI button from a check box, you must have an input element and a matching label element,
as shown in the listing. jQuery UI creates a button that has the same appearance as a basic button but that toggles its
state when clicked. You can see the effect in Figure 18-8.

Figure 18-7. Creating standard jQuery UI buttons

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

471

Remember that jQuery UI doesn’t change the underlying HTML element, so the check box is still treated the
same way by the browser when included in forms. The change of state is reflected using the checked attribute, just as
it would be without jQuery UI.

Creating a Button Set
You can use the buttonset method to create jQuery UI buttons from radio button elements, as shown in Listing 18-12.

Listing 18-12. Creating a Button Set

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <script type="text/javascript">
 $(document).ready(function () {
 $("#radioDiv").buttonset();
 });
 </script>
</head>
<body>
 <form>
 <div id="radioDiv">
 <input type="radio" name="flower" id="rose" checked />
 <label for="rose">Rose</label>
 <input type="radio" name="flower" id="lily"/><label for="lily">Lily</label>
 <input type="radio" name="flower" id="iris"/><label for="iris">Iris</label>
 </div>
 </form>
</body>
</html>

Figure 18-8. Creating a toggle button from a check box

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

472

Notice that I have selected the div element that contains the radio buttons in order to call the buttonset
method: you don’t call the button method on the individual input elements. You can see the effect of the buttonset
method in Figure 18-9.

Figure 18-9. Creating a button set

At most, one of the buttons in the set can be selected, allowing you to provide the user with a fixed set of choices
in a way that is visually consistent with other jQuery UI buttons. Notice that jQuery UI emphasizes the relationship
between the buttons in a set by applying different styling to the edges where buttons meet. This is shown more clearly
in Figure 18-10.

Figure 18-10. The jQuery UI styling for button sets

Creating Button Sets from Regular Buttons
You can use the buttonset method on any element that can be used with the regular button method. This has the
effect of applying the style of a set of radio buttons but not the behavior, so that each button works individually.
Listing 18-13 shows this use of the buttonset method.

Listing 18-13. Creating a Button Set from Regular Buttons

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <script type="text/javascript">

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

473

 $(document).ready(function () {
 $("#radioDiv").buttonset();
 });
 </script>
</head>
<body>
 <form>
 <div id="radioDiv">
 <input type="submit" value="Submit"/>
 <input type="reset" value="Reset"/>
 <input type="button" value="Press Me"/>
 Visit Apress
 </div>
 </form>
</body>
</html>

Any suitable element in the div container will be transformed into a button, and the adjoining edges will be
styled just as with the radio button, as you can see in Figure 18-11.

Figure 18-11. Creating a button set from regular buttons

Tip ■ Be careful when using this technique. it can be confusing to the user, especially if you are using radio buttons
elsewhere in the same document or web application.

Using the jQuery UI Progress Bar
Now that I have used the button to explore the basic structure of a jQuery UI widget, I will look at the other widgets
that jQuery UI supports, starting with the progress bar.

The progress bar allows you to show the user progress in completing a task. The progress bar is designed to show
determinate tasks, where you can give the user an accurate indication of how far you are through the task as
a percentage, and indeterminate tasks, where the percentage of progress is currently unknown.

Tip ■ the support for displaying indeterminate tasks was added to jQuery Ui in version 1.10. see the section “Creating
an indeterminate progress Bar” for details of this feature.

http://apress.com

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

474

ShOWING USeFUL prOGreSS INFOrMatION

there are no rules for the way widgets should be used in web applications, but the user expectations of controls
such as progress bars are informed by the standards set by operating systems such as Windows and Mac os.
to help the user make sense of your progress bar, there are a couple of rules to follow.

First, only increment the progress. don’t be tempted to reduce the progress when the task has more steps than
initially expected. the progress bar shows the percentage of a task that been completed and is not an estimate
of the remaining time. if there are different possible paths for a task to follow, then show the most pessimistic
progress. it is better to take a giant leap in progress than to confuse the user.

second, don’t loop around the progress bar more than once. if you have enough information to show the user
reasonably accurate completion information, then you should be using an indeterminate progress indicator. When
the progress nears 100%, the user expects the task to complete. if the progress bar then resets and starts to
build up again, you have simply confused the user and made the use of the progress bar meaningless.

Creating the Progress Bar
You create a progress bar by selecting a div element and calling the progressbar method, as shown in Listing 18-14.

Listing 18-14. Creating a Progress Bar

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <script type="text/javascript">
 $(document).ready(function () {
 $("#progressDiv").progressbar({
 value: 21
 });
 });
 </script>
</head>
<body>
 <div id="progressDiv"></div>
</body>
</html>

The document contains a div element with an id of progressDiv. To create a progress bar, I must use an empty
div element–if the div element has any content, it will affect the layout of the progress bar. I use jQuery to select the
progressDiv element and call the jQuery UI progressbar method, passing in a map object to provide the initial
configuration. The progress bar supports three settings, which I have described in Table 18-4.

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

475

In the example, I specified an initial value of 21 (which will be equivalent to 21% since I have not changed the
value of the max setting), and you can see the effect in Figure 18-12.

Figure 18-12. Creating a progress bar

Table 18-4. The Settings for the Progress Bar Widget

Setting Description

disabled If true, the progress bar will be disabled. The default value is false.

value Sets the percentage complete displayed to the user. The default is zero. Set the property to false
to display an indeterminate progress bar, as described in the section “Creating an Indeterminate
Progress Bar.”

max Sets the maximum value that the progress bar will display. The default is 100.

Creating an Indeterminate Progress Bar
As of jQuery UI 1.10, the jQuery UI progress bar widget supports displaying progress for indeterminate tasks, which
is configured by setting the value configuration property to false rather than specifying a numeric value, as shown
in Listing 18-15.

Listing 18-15. Creating an Indeterminate Progress Bar

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <script type="text/javascript">
 $(document).ready(function () {
 $("#progressDiv").progressbar({
 value: false
 });
 });
 </script>
</head>
<body>
 <div id="progressDiv"></div>
</body>
</html>

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

476

jQuery UI displays an indeterminate progress with a simple animation applied to the entire bar. You need to run
the example to see the effect of the animation, but Figure 18-13 shows one frame.

Figure 18-13. Creating an indeterminate progress bar

Table 18-5. Progress Bar Methods

Method Description

progressbar("destroy") Returns the div element to its original state

progressbar("disable") Disables the progress bar

progressbar("enable") Enables the progress bar

progressbar("option") Sets one or more options; see the section “Configuring the Button” for details of
configuring a jQuery UI widget

progressbar("value", value) Gets and sets the value displayed by the progress bar and switches between an
indeterminate and determinate progress bar

Using the Progress Bar Methods
The progress bar widget defines a number of methods, which are in the same style as for the button. In other words,
you call the JavaScript progressbar method, and the first argument specifies the jQuery UI widget method you want.
Table 18-5 describes the available methods.

Most of these methods work in the same way as for the button widget, so I am not going to demonstrate
them again. The exception is the value method, which lets you get and set the value that is displayed by the
progress bar and switch between the determinate and indeterminate states. Listing 18-16 demonstrates the use
of the value method.

Listing 18-16. Using the Progress Bar Value Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <script type="text/javascript">
 $(document).ready(function () {

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

477

 $("#progressDiv").progressbar({
 value: 21
 });

 $("button").click(function (e) {
 var divElem = $("#progressDiv");
 if (this.id == "mode") {
 divElem.progressbar("value", false);
 } else {
 var currentProgress = divElem.progressbar("value");
 if (!currentProgress) {
 divElem.progressbar("value", 21);
 } else {
 divElem.progressbar("value",
 this.id == "decr" ? currentProgress - 10 :
 currentProgress + 10)
 }
 }
 });
 });
 </script>
</head>
<body>
 <div id="progressDiv"></div>
 <button id="decr">Decrease</button>
 <button id="incr">Increase</button>
 <button id="mode">Indeterminate</button>
</body>
</html>

I have added button elements to this example. I use them to increase or decrease the value displayed by the
progress bar and switch between the determinate and indeterminate modes. Each press of the Decrease or Increase
button changes the value by 10% as shown in Figure 18-14.

Figure 18-14. Using the value method to change the progress displayed

The Indeterminate button calls the value method to switch the progress bar to its intermediate mode. Clicking
either of the other buttons will set a numeric value, which will put the progress bar back to its determinate mode,
as shown in Figure 18-15.

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

478

Using the Progress Bar Events
The jQuery UI progress bar widget defines three events, as described in Table 18-6.

Figure 18-15. Changing the Mode of the Progress Bar

Table 18-6. Progress Bar Events

Event Description

create Triggered when the progress bar is created

change Triggered when the value of the progress bar changes

complete Triggered when the value of the progress bar is set to 100

Listing 18-17 shows the events in use.

Listing 18-17. Using the Progress Bar Events

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <script type="text/javascript">
 $(document).ready(function () {

 $("button").button();

 $("#progressDiv").progressbar({
 value: 21,
 create: function (e) {
 $("#progVal").text($("#progressDiv").progressbar("value"));
 },
 complete: function (e) {
 $("#incr").button("disable")
 },
 change: function (e) {

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

479

 var currentValue = $("#progressDiv").progressbar("value");
 if (!currentValue) {
 $("#progWrapper").hide();
 } else {
 if ($(this).progressbar("value") < 100) {
 $("#incr").button("enable")
 }
 $("#progVal").text(currentValue);
 $("#progWrapper").show();
 }
 }
 });

 $("button").click(function (e) {
 var divElem = $("#progressDiv");
 if (this.id == "mode") {
 divElem.progressbar("value", false);
 } else {
 var currentProgress = divElem.progressbar("value");
 if (!currentProgress) {
 divElem.progressbar("value", 21);
 } else {
 divElem.progressbar("value",
 this.id == "decr" ? currentProgress - 10 :
 currentProgress + 10)
 }
 }
 });
 });
 </script>
</head>
<body>
 <div id="progressDiv"></div>
 <button id="decr">Decrease</button>
 <button id="incr">Increase</button>
 <button id="mode">Indeterminate</button>
 Progress: %
</body>
</html>

In Listing 18-17, I use span elements to display the numeric progress value while the progress bar is in
the determinate mode. I use the create event to display the initial value, which is set using the value
configuration property.

Tip ■ notice that i have used the same map object for the settings and events of the progress bar. this isn’t required,
but it does allow me to create and configure a widget in a single method call.

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

480

I use the complete event to disable the Increase button when the progress reaches 100% and the change event to
ensure that the button is enabled for other values, to display the current value and to switch between the determinate
and indeterminate modes. You can see the effect in Figure 18-16.

Figure 18-16. Responding to progress bar events

Tip ■ there are a couple of things to remember when using the events. First, the complete event fires every time the
value is set to 100 or greater. this means the event can fire multiple times if you repeatedly set the value to 100, for
example. second, both the change and complete events are triggered for values of 100 or more, so you have to be able
to deal with both when you complete the progress update.

Using the jQuery UI Slider
As its name suggests, the slider widget creates a slider out of an element in the HTML document and allows the user to
select a value without having to enter text into an input element. The slider widget is applied to HTML elements using
the slider method, as shown in Listing 18-18.

Listing 18-18. Creating a Slider

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <style>
 #slider { margin: 10px; }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#slider").slider();
 });
 </script>
</head>
<body>
 <div id="slider"></div>
</body>
</html>

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

481

The slider is themed consistently with the other jQuery UI widgets and allows the user to use the mouse or arrow
keys to move the slider handle up and down the scale. You can see how the basic slider appears in Figure 18-17.
(Notice that I defined a CSS style for the element that underpins the slider in this example—without this, the slider is
displayed right up against the edges of its parent element.)

Table 18-7. The Settings for the Slider Widget

Setting Description

animate When true, animates the slider when the user clicks a position outside the handle.
The default is false.

disabled Disables the slider when set to true. The default is false.

max Defines the maximum value for the slider. The default is 100.

min Defines the minimum value for the slider. The default is 0.

orientation Defines the orientation for the slider; see Listing 18-19 for details.

range Used with the values setting to create a multihandle slider.

step Defines the interval that the slider moves between the min and max values.

value Defines the value that the slider represents.

values Used with the range setting to create a multihandle slider.

Figure 18-17. A basic jQuery UI slider

Configuring the Slider
A with all jQuery UI widgets, the slider widget defines a number of settings that you can use to configure the
appearance and behavior of sliders. Table 18-7 describes these settings, and I show you how to use these settings to
configure the widget in the sections that follow.

Tip ■ the min and max values are exclusive, meaning that if you set a min value of 0 and a max value of 100, the user
can select values between 1 and 99.

Changing the Slider Orientation
By default, sliders are horizontal, but you can use the orientation setting to create vertical sliders as well, as shown
by Listing 18-19.

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

482

Listing 18-19. Using the orientation Setting

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <style>
 #hslider, #vslider { margin: 10px}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#hslider").slider({
 value: 35
 });

 $("#vslider").slider({
 orientation: "vertical",
 value: 35
 });
 });
 </script>
</head>
<body>
 <div id="hslider"></div>
 <div id="vslider"></div>
</body>
</html>

I created two sliders, one of which has the orientation setting of vertical. I have also changed the style element
so that I can apply a margin to the slider elements to keep them apart. You control the size and position of sliders (and any
jQuery UI widget) by styling the underlying element (which is why div elements work best; they can be readily manipulated
with CSS). You can see the sliders in Figure 18-18. Notice that I used the value setting to set the initial position of the handle.

Figure 18-18. Creating vertical and horizontal sliders

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

483

Although I am keeping the options and methods separate, I could have written Listing 18-19 differently to make
better use of the underlying jQuery functionality, as shown in Listing 18-20.

Listing 18-20. Making Better Use of jQuery

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <style>
 #hslider, #vslider { margin: 10px}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#hslider, #vslider").slider({
 value: 35,
 orientation: "vertical"
 }).filter("#hslider").slider("option", "orientation", "horizontal");
 });
 </script>
</head>
<body>
 <div id="hslider"></div>
 <div id="vslider"></div>
</body>
</html>

It is a minor point but I don’t want you to forget that jQuery UI is built on and tightly integrated with jQuery and
that you can use all of the selections and manipulations you saw earlier in the book.

Tip ■ notice that i set the initial orientation to vertical and then changed it to horizontal. there is a bug with the
slider where changing the orientation to vertical after the slider has been created causes the handle to be misaligned.

Animating the Slider
The animate setting enables smooth handle movement when the user clicks the slider at the point he wants the
handle to move to (as opposed to setting a value by dragging the slider). You can enable the default animation by
setting animate to true, set a speed for the animation by using fast or slow, or specify the number of milliseconds
that the animation should last for. Listing 18-21 shows the use of the animate setting.

Listing 18-21. Using the animate Setting

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-1.7.js" type="text/javascript"></script>

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

484

 <script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
 <style type="text/css">
 #slider {margin: 10px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#slider").slider({
 animate: "fast"
 });
 });
 </script>
</head>
<body>
 <div id="slider"></div>
</body>
</html>

I have set the animate setting to fast. It is hard to show animations in a screenshot, but Figure 18-19 shows what
the animate setting does.

Figure 18-19. Animating the movement of the handle

This screenshot shows the slider just before I clicked the mouse button. If I had not enabled animations, then
the handle would snap to the location I clicked, immediately setting the new value for the slider. But since I have
enabled animations, the slider will gracefully move to its new position in a less jarring way. However, like any effect or
animation, I don’t want to overdo the effect, which is why I have selected the fast option.

Tip ■ this is an example that you need to play with to see the full result. if you don’t want to type in the code and
htMl, you can find the code samples for this chapter in the source Code/download area of the apress web site at
www.apress.com. it is freely available from apress.com and contains all of the examples in this book.

Creating a Range Slider
A range slider has two handles and lets the user specify a range of values rather than a single value. For example, you
might want to let the user express the price range she is willing to pay for products so that you can filter anything else
out. Listing 18-22 demonstrates creating a range slider.

http://www.apress.com/
http://apress.com/

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

485

Listing 18-22. Creating a Range Slider

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <style>
 #slider {margin: 20px}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#slider").slider({
 values: [35, 65],
 range: true,
 create: displaySliderValues,
 slide: displaySliderValues
 });

 function displaySliderValues() {
 $("#lower").text($("#slider").slider("values", 0));
 $("#upper").text($("#slider").slider("values", 1));
 }
 });
 </script>
</head>
<body>
 <div id="slider"></div>
 <div>Lower Value:
 Upper Value: </div>
</body>
</html>

To create a range slider, you must set the range setting to true and set the value setting to an array that contains
the initial lower and upper bounds of the range. (When using a regular slider, you use the value setting, and when
using a range slider, you use the values setting.) In this example, I have set the bounds to 35 and 65. You can see the
effect in Figure 18-20.

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

486

Figure 18-20. Creating a range slider

I have added a handler function for the create and slide events. I’ll get to the events supported by the slider in
the section “Using Slider Events,” but I want to demonstrate how to obtain the position of the handles in a range slider.
You do this through the values method, specifying the index of the slider you are interested in, as follows:

...
$("#slider").slider("values", 0);
...

The index is zero based, so this statement gets the value for the handle that represents the lower bound of the
range. I have used the events to set the contents of two span elements.

Using the Slider Methods
The slider defines the same set of basic methods that all jQuery UI widgets define, plus a couple that let you set either
a single value or the range of values to be shown. Table 18-8 describes the methods.

Table 18-8. Slider Methods

Method Description

slider("destroy") Returns the underlying element to its original state

slider("disable") Disables the slider

slider("enable") Enables the slider

slider("option") Sets one or more options; see the section “Configuring the Button” for details of
configuring a jQuery UI widget

slider("value", value) Gets or sets the value for a regular slider

slider("values", [values]) Gets or sets the values for a range slider

Listing 18-23 shows how you can use the value and values methods to control a slider programmatically.

Listing 18-23. Controlling Sliders Programmatically

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

487

 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <style>
 #slider, #rangeslider, *.inputDiv { margin: 10px}
 label {width: 80px; display: inline-block; margin: 4px}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {

 $("#slider").slider({
 value: 50,
 create: function () {
 $("#slideVal").val($("#slider").slider("value"));
 }
 });

 $("#rangeslider").slider({
 values: [35, 65],
 range: true,
 create: function () {
 $("#rangeMin").val($("#rangeslider").slider("values", 0));
 $("#rangeMax").val($("#rangeslider").slider("values", 1));
 }
 })

 $("input").change(function (e) {
 switch (this.id) {
 case "rangeMin":
 case "rangeMax":
 var index = (this.id == "rangeMax") ? 1 : 0;
 $("#rangeslider").slider("values", index, $(this).val())
 break;
 case "slideVal":
 $("#slider").slider("value", $(this).val())
 break;
 }
 })
 });
 </script>
</head>
<body>
 <div id="rangeslider"></div>
 <div class="inputDiv">
 <label for="rangeMin">Range Min: </label><input id="rangeMin" />
 <label for="rangeMax">Range Max: </label><input id="rangeMax" />
 </div>
 <div id="slider"></div>
 <div class="inputDiv">
 <label for="slideVal">Slide Val: </label><input id="slideVal" />
 </div>
</body>
</html>

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

488

This document contains two sliders and three input elements that allow the values for the handles to be specified
without moving the handles themselves. You can see the layout of the elements in Figure 18-21.

Figure 18-21. Controlling sliders programmatically

I used jQuery to select the input elements and called the change method to set up a handler for the change event,
meaning that the function is invoked whenever the value of one of the input elements is changed.

Within the handler function, I use the id attribute of the element that triggered the event to figure out which
slider I need to manipulate and call the value or values methods to set the handle positions. The relationship
between the input elements and the sliders is one-way, meaning that moving the handles doesn’t update the input
elements. I’ll show you how to create a two-way relationship in the next section.

Using Slider Events
Table 18-9 shows the events that the slider supports. The best feature of these events is the support for both change
and stop, which allows you to differentiate between new values created by the user moving the handle and values that
you set programmatically.

Table 18-9. Slider Events

Event Description

create Triggered when the slider is created

start Triggered when the user starts sliding the handle

slide Triggered for every mouse move while the handle is sliding

change Triggered when the user stops sliding the handle or when the value is changed programmatically

stop Triggered when the user stops sliding the handle

Listing 18-24 shows the use of slider events to create a two-way (bidirectional) relationship between sliders and
input elements, similar to the example in the previous section, albeit I have removed one of the sliders to keep the
example simple. The two-way relationship allows me to tie together programmatic support and user interaction to
manage the sliders.

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

489

Listing 18-24. Using Slider Events to Create a Bidirectional Relationship Between Sliders and Inputs

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js"></script>
 <script src="jquery-ui-1.10.3.custom.js"></script>
 <link href="jquery-ui-1.10.3.custom.css" rel="stylesheet" />
 <style>
 #rangeslider, *.inputDiv { margin: 10px}
 label {width: 80px; display: inline-block; margin: 4px}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#rangeslider").slider({
 values: [35, 65],
 range: true,
 create: setInputsFromSlider,
 slide: setInputsFromSlider,
 stop: setInputsFromSlider
 });

 function setInputsFromSlider() {
 $("#rangeMin").val($("#rangeslider").slider("values", 0));
 $("#rangeMax").val($("#rangeslider").slider("values", 1));
 }

 $("input").change(function (e) {
 var index = (this.id == "rangeMax") ? 1 : 0;
 $("#rangeslider").slider("values", index, $(this).val())
 });
 });
 </script>
</head>
<body>
 <div id="rangeslider"></div>
 <div class="inputDiv">
 <label for="rangeMin">Range Min: </label><input id="rangeMin" />
 <label for="rangeMax">Range Max: </label><input id="rangeMax" />
 </div>
</body>
</html>

I handle the create, slide, and stop events in this example. Now the slider handles are moved when new
values are entered into the input elements, and the values in the input elements are updated when the slider is
moved. You can see how the document appears in Figure 18-22, but this is an example that requires interaction to
see the full effect.

Chapter 18 ■ Using the BUtton, progress Bar, and slider Widgets

490

Summary
In this chapter, I introduced you to the first three jQuery UI widgets: the button, the progress bar, and the slider. Each
widget follows the same basic structure: there is a single method that creates and configures the widget as well as
letting you supply functions that will respond to its events. Some methods and events are common to each widget, but
there are unique additions as well that expose the special functionality that some widgets offer. Now that I have the
basics out of the way, I’ll show you some more flexible and complex widgets in the chapters that follow. In Chapter 19,
I show you the autocomplete and accordion widgets.

Figure 18-22. Responding to slider events

491

Chapter 19

Using the Autocomplete and
Accordion Widgets

In this chapter, I describe the jQuery UI autocomplete and accordion widgets. They are more complex than the widgets
I showed you in Chapter 18, but they follow the same pattern of settings, methods, and events. These are highly
configurable, flexible, and clever user interface controls, and used wisely they can significantly enhance the appearance
and usability of your documents and web applications. Table 19-1 provides the summary for this chapter.

Table 19-1. Chapter Summary

Problem Solution Listing

Add the jQuery UI autocomplete feature to an input
element

Use the autocomplete method 1, 2

Obtain autocomplete suggestions from a remote server Set the source setting to a URL 3–5

Generate autocomplete suggestions dynamically Specify a function for the source setting 6

Return autocomplete results from an asynchronous task Call the response function 7

Control the placement of the autocomplete pop-up Use the position property 8

Control the autocomplete feature programmatically Use the search and close methods 9

Receive notification of the selected autocomplete item Use the focus, select, and change events 10

Modify the autocomplete results shown to the user Handle the response event 11

Override the default autocomplete action Override the default action for the
select event

12

Create a jQuery UI accordion widget Use the accordion method 13

Set the height of the accordion and its content panels Use the heightStyle setting 14–16

Change the action that the user has to perform to activate
a content element

Use the event setting 17

Set the active content element in a jQuery UI accordion Use the active and collapsible settings 18, 19

Change the icons used by an accordion Use the icons setting 20

Receive notifications when the active element in an
accordion changes

Handle the activate or beforeactivate
events

21

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

492

JQUerY UI ChaNGeS SINCe the LaSt eDItION

there have been a number of api changes to the accordion widget in the jQuery Ui 1.10 release: the configuration
options, methods, and events have all changed. i have listed the changes in the relevant sections throughout
this chapter.

the autocomplete widget, which i also describe in this chapter, has a useful new feature: you can control how the
pop-up that offers completion choices to the user is positioned (see the section “positioning the pop-up”).

Using jQuery UI Autocomplete
The autocomplete widget provides suggestions to the user as she enters values into an input element. Used well, this
widget can be a helpful time-saver to the user, speeding up data entry and reducing errors. In the sections that follow,
I show you how to create, configure, and use the jQuery UI autocomplete widget.

Creating the Autocomplete Element
You use the autocomplete method on an input element to create an autocomplete widget. Listing 19-1 demonstrates
how to set up basic autocompletion.

Listing 19-1. Creating an Autocompleting Input Element

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {

 var flowers = ["Aster", "Daffodil", "Rose", "Peony", "Primula", "Snowdrop",
 "Poppy", "Primrose", "Petuna", "Pansy"];

 $("#acInput").autocomplete({
 source: flowers
 })
 });
 </script>
</head>
<body>
 <form>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>
 </div>
 </form>
</body>
</html>

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

493

The autocomplete method is applied to HTML elements just like the other jQuery UI methods you have seen
and is configured with a map object that defines a source property. This property specifies where the autocomplete
entries will come from.

You can use a range of different data sources for the autocomplete values, which I demonstrate later in this
chapter. In Listing 19-1, I have used a simple array of values. Figure 19-1 illustrates the way that the autocomplete
feature is presented to the user.

Figure 19-1. A basic jQuery UI autocomplete element

Caution ■ the autocomplete feature doesn’t enforce any kind of validation, and the user can enter any value into the
input element, not just those that are defined by the source setting.

There are two screenshots in Figure 19-1. The first shows what happens when I type the letter P. As you can see,
the first screenshot shows a list of the data items that contain the letter P. This list includes the flower names that start
with P, but it also includes Snowdrop as well (because it contains the letter p). In the second screenshot, I have typed
Pe, and jQuery UI shows only the items that contain that combination of letters. The user can continue to type his
entry or select one from the autocomplete list.

Tip ■ in the document, i put the input element and its label inside a div element that belongs to the ui-widget
class. this sets the Css font properties for the label and input elements to match those used by the autocomplete
pop-up. i explain more about how you can use the jQuery Ui Css classes in Chapter 35.

Using an Object Array as the Data Source
An alternative approach is to use an array of objects, rather than strings. This allows me to separate the label that is
displayed in the pop-up menu from the value inserted into the input element, as demonstrated by Listing 19-2.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

494

Listing 19-2. Using an Array of Objects for Autocompletion

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {

 var flowers = [{label: "Aster (Purple)", value: "Aster"},
 {label: "Daffodil (White)", value: "Daffodil"},
 {label: "Rose (Pink)", value: "Rose"},
 {label: "Peony (Pink)", value: "Peony"}]

 $("#acInput").autocomplete({
 source: flowers
 })

 });
 </script>
</head>
<body>
 <form>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>
 </div>
 </form>
</body>
</html>

When using an array of objects, the autocomplete feature looks for properties called label and value. The label
property is used to create the pop-up list, and the value entry is inserted into the input element if the item is selected.
In Listing 19-2, I have added some color information to the labels that is not included in the values when they are
selected, as shown in Figure 19-2.

Figure 19-2. Using an array of objects to separate labels from values

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

495

Configuring Autocomplete
The autocomplete feature supports a number of settings that let you control different aspects of its functionality,
as described by Table 19-2. In the sections that follow, I show you how to use these settings to configure the widget.

Using a Remote Data Source
The most interesting autocomplete setting is source because you can use it to work with a wide range of different
kinds of data to populate the pop-up menu. I used a JavaScript array in Listing 19-2, which is fine for simple static lists
of data. For more complex situations, you can get the list of matching items from a server. All you have to do is specify
the URL that will generate the data, as shown in Listing 19-3.

Listing 19-3. Using a Remote Data Source

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {

 $("#acInput").autocomplete({
 source: "http://node.jacquisflowershop.com/auto"
 })
 });
 </script>
</head>

Table 19-2. Autocomplete Settings

Setting Description

appendTo Specifies the element that the pop-up menu should be appended to. The default is the body element.

autoFocus If set to true, the first item in the list will be given the focus, meaning that the user can select this
item by pressing the Return key. The default is false.

delay Specifies the delay (in milliseconds) after a keystroke after which the autocomplete data are
updated. The default is 300.

disabled Disables the autocomplete feature when set to true. This setting does not affect the underlying
input element. The default is false.

minLength Specifies the minimum number of characters that the user has to type before the autocomplete
menu is displayed. The default is 1.

position Sets the position of the pop-up menu relative to the input element.

source Specifies the source of items to be added to the autocomplete menu. There is no default for this
setting, which must be specified when calling the autocomplete method.

http://node.jacquisflowershop.com/auto

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

496

<body>
 <form>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>
 </div>
 </form>
</body>
</html>

When jQuery UI needs the list of items for the pop-up autocomplete menu, it will make an HTTP GET request to
the specified URL. The characters that the user has typed so far are included in the request query string using the key
term. So, for example, if the user has typed the letter s, then jQuery UI will request the following URL:

http://node.jacquisflowershop.com/auto?term=s

If the user then types the letter n, jQuery UI will request the following:

http://node.jacquisflowershop.com/auto?term=sn

This technique is useful when there are a lot of data items and you don’t want to send them all to the client. It can
also be useful when the list of items changes dynamically and you want to make sure the user benefits from the latest
data available.

The server is responsible for taking the term value from the query string and returning a JSON string representing
the array of items to display to the user. Listing 19-4 shows how I have updated the formserver.js script for Node.js
script to do just that. (See Chapter 1 for details of obtaining and installing Node.js.)

Listing 19-4. The Node.js Script to Support Remote Autocompletion

var http = require("http");
var querystring = require("querystring");
var url = require("url");

var port = 80;

http.createServer(function (req, res) {
 console.log("[200 OK] " + req.method + " to " + req.url);

 var flowers = ["Aster", "Daffodil", "Rose", "Peony", "Primula", "Snowdrop",
 "Poppy", "Primrose", "Petuna", "Pansy"];

 var matches = [];
 var term = url.parse(req.url, true).query["term"];

 if (term) {
 var pattern = new RegExp("^" + term, "i");
 for (var i = 0; i < flowers.length; i++) {
 if (pattern.test(flowers[i])) {
 matches.push(flowers[i]);
 }
 }

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://node.jacquisflowershop.com/auto?term=s
http://node.jacquisflowershop.com/auto?term=sn

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

497

 } else {
 matches = flowers;
 }

 res.writeHead(200, "OK", {
 "Content-Type": "application/json",
 "Access-Control-Allow-Origin": "*"
 });
 res.write(JSON.stringify(matches));
 res.end();

}).listen(port);
console.log("Ready on port " + port);

This Node.js script uses the same set of flower names as in Listing 19-2 and returns those that match the term
sent by the browser. I have changed the search slightly so that only those names that start with the term are returned.
For example, if jQuery UI sends a request like the following:

http://node.jacquisflowershop.com/auto?term=p

then the Node.js server will return the following JSON:

["Peony","Primula","Poppy","Primrose","Petuna","Pansy"]

Because I am matching at the start of the flower name, Snowdrop is omitted from the list, as you can see
in Figure 19-3.

Figure 19-3. Obtaining autocomplete entries from a remote server

http://node.jacquisflowershop.com/auto?term=p

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

498

This is a nice technique but it can generate a lot of requests to the server. This isn’t a problem in my example
because I am performing a simple search and my server and browser are on the same network. But for complex
searches, across a wide-area network that can suffer delays, the load on the server can become an issue.

The best way to manage the rate at which autocomplete requests are made is to use the minLength and delay
settings. The minLength setting specifies the number of characters that the user has to type before jQuery UI makes
an autocomplete request to the server. You can use this setting such that you only request data from the server after
several characters have been entered, by which time you have enough information to narrow the scope of the search.

The delay setting specifies the amount of time after a key press that the autocomplete information will be
requested. You can use this setting to prevent requests from being made when the user is typing quickly. So, if the
user types s and n, you can avoid hitting the server for the s list and then immediately doing so again for the sn list.
By combining these settings, you can reduce the number of requests and still provide the user with guidance when it
is needed. Listing 19-5 shows the uses of these settings.

Listing 19-5. Using the delay and minLength Settings to Reduce Server Requests

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {

 $("#acInput").autocomplete({
 source: "http://node.jacquisflowershop.com/auto",
 minLength: 3,
 delay: 1000
 })
 });
 </script>
</head>
<body>
 <form>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>
 </div>
 </form>
</body>
</html>

In Listing 19-5, the initial request to the server won’t be made until the user has entered three characters and has
not typed any additional characters for one second.

Using a Function as the Data Source
You can use a function to create a truly customized source for autocomplete entries. You assign the function to the
source setting, and it is called each time the autocomplete feature needs to display items to the user. Listing 19-6
demonstrates.

http://node.jacquisflowershop.com/auto

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

499

Listing 19-6. Using a Function to Generate Autocomplete Items

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {

 var flowers = ["Aster", "Daffodil", "Rose", "Peony", "Primula", "Snowdrop",
 "Poppy", "Primrose", "Petuna", "Pansy"];

 $("#acInput").autocomplete({
 source: function(request, response) {
 var term = request.term;
 var pattern = new RegExp("^" + term, "i");

 var results = $.map(flowers, function(elem) {
 if (pattern.test(elem)) {
 return elem;
 }
 })
 response(results);
 }
 })
 });
 </script>
</head>
<body>
 <form>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>
 </div>
 </form>
</body>
</html>

Two arguments are passed to the function. The first argument is an object that has a single property called term.
The value of this property is the string of characters that the user has entered into the input element. The second
argument is a function that you call when you have generated the list of autocomplete items that you want to show to
the user. The argument to this function is an array of strings or objects.

In Listing 19-6, I have reproduced the server-side functionality from Listing 19-5, and I generate an array
containing those items that start with the specified term.

Tip ■ i processed the contents of the array using the jQuery map utility method, which i describe in Chapter 34.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

500

I then pass the results back to jQuery UI by passing the array as an argument to the response function, as follows:

...
response(results);
...

This seems like an odd way to process the results, but it means that you can call the function after an
asynchronous task has completed. In Listing 19-7, you can see how I have used a function that makes an Ajax request
to get details of the flowers, performs a local search of the content that is returned, and then calls the response
function to give the final result to jQuery UI.

Listing 19-7. Using a Custom Data Source Function That Performs an Asynchronous Task

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 button {margin-bottom: 5px}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#acInput").autocomplete({
 source: function (request, response) {
 $.getJSON("http://node.jacquisflowershop.com/auto",
 function(flowers) {
 var term = request.term;
 var pattern = new RegExp("^" + term, "i");

 var results = $.map(flowers, function (elem) {
 if (pattern.test(elem)) {
 return elem;
 }
 })
 response(results);
 });
 }
 })
 });
 </script>
</head>
<body>
 <form>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>
 </div>

 </form>
</body>
</html>

o

http://node.jacquisflowershop.com/auto

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

501

In this example, I use the getJSON method to get the complete set of flower values from the Node.js server.
I search for matches locally and call the response function when I have a set of suggestions to present to jQuery UI.

Positioning the Pop-up
By default, the pop-up that allows the user to select a value will appear beneath the input element, but you can
change this by setting the position property—although the syntax for doing so is a little awkward. Listing 19-8 shows
an example that changes the position.

Listing 19-8. Changing the Position of the Pop-up

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style>
 #target { margin-top: 40px; display:inline-block }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {

 var flowers = [{ label: "Aster (Purple)", value: "Aster" },
 { label: "Daffodil (White)", value: "Daffodil" },
 { label: "Rose (Pink)", value: "Rose" },
 { label: "Peony (Pink)", value: "Peony" }]

 $("#acInput").autocomplete({
 source: flowers,
 position: {
 my: "left top",
 at: "right bottom+20",
 of: "#target",
 collision: "fit"
 }
 })

 });
 </script>
</head>
<body>
 <form>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>
 </div>
 </form>
 Target
</body>
</html>

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

502

The position property is configured with an object that specifies properties for different aspects of the policy for
placing the pop-up and I have described the four properties I used in the listing in Table 19-3.

Table 19-3. Autocomplete Position Properties

Name Description

my Specifies the part of the pop-up that will be used to determine placement (see below for details of
the range of values that can be used)

at Specifies the part of the target element that the pop-up will be positioned relative to (see below for
details of the range of values that can be used)

of Specifies the target element that the pop-up will be positioned relative to; this is the input element if
omitted, but can be specified as an HTMLElement, a selector, or a jQuery object

collision Specifies how the placement of the pop-up should be adjusted if it overflows the window
(Table 19-4 shows the values for this property)

Table 19-4. Autocomplete Position Properties

Name Description

flip jQuery UI checks to see if more of the pop-up can be displayed on the opposite side of the element
specified by the of property; the side that will display the greatest amount of the pop-up will be
selected

fit jQuery UI moves the pop-up away from the edge of the window

flipfit Combines the behavior of both the flip and fit values

none Tells jQuery UI not to adjust the position of the pop-up

Tip ■ the autocomplete pop-up is placed using the jQuery Ui position utility feature, which has more configuration
options than the ones i use in this chapter. see http://api.jqueryui.com/position for further details.

The my and at properties are set using values that specify horizontal and vertical positions, separated by a space.
The horizontal values are left, right, and center and the vertical values are top, bottom, and center. You can also
specify offsets from a position, either as a percentage or as a number of pixels. In the listing, you can see that I have set
the my, at, and of properties as follows:

...
my: "left top",
at: "right bottom+20",
of: "#target",
...

This combination means the following: position the top-left corner of the autocomplete pop-up against the point
which is 20 pixels below the bottom-right corner of the element whose id is target. You would not commonly specify
an element using the of property because it breaks the visual association between the pop-up menu and the input
element, but I wanted to demonstrate that there is a lot of flexibility in how the pop-up is placed and you can see the
effect of these configuration properties in Figure 19-4.

http://api.jqueryui.com/position

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

503

The collision property specifies what happens if the pop-up won’t fit in the space available. Table 19-4
describes the supported values for this property.

I selected the fit value for the collision property and this means that jQuery UI will move the pop-up to fit it
inside the browser window, as shown in Figure 19-5.

Figure 19-4. Configuring the placement of the autocomplete pop-up

Figure 19-5. Moving the autocomplete pop-up to accommodate the edge of the browser window

Using the Autocomplete Methods
The jQuery UI autocomplete feature supports a number of methods that you can use to manipulate the autocomplete
process. Table 19-5 describes these methods.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

504

The two methods unique to the autocomplete widget are search and close, which you can use to explicitly start
and end the autocomplete process, as demonstrated in Listing 19-9.

Listing 19-9. Using the search and close Methods

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 button {margin-bottom: 5px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 var flowers = ["Aster", "Daffodil", "Rose", "Peony", "Primula", "Snowdrop",
 "Poppy", "Primrose", "Petuna", "Pansy"];

 $("#acInput").autocomplete({
 source: flowers
 });

 $("button").click(function(e) {
 e.preventDefault();
 switch (this.id) {
 case "close":
 $("#acInput").autocomplete("close");
 break;
 case "input":
 $("#acInput").autocomplete("search");
 break;

Table 19-5. Autocomplete Methods

Method Description

autocomplete("close") Closes the autocomplete menu

autocomplete("destroy") Removes the autocomplete functionality from the input element

autocomplete("disable") Disables autocomplete

autocomplete("enable") Enables autocomplete

autocomplete("option") Sets one or more options

autocomplete("search", value) Explicitly triggers autocomplete using the specified value; if no value
argument is provided, then the contents of the input element are used

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

505

 default:
 $("#acInput").autocomplete("search", this.id);
 break;
 }
 });
 });
 </script>
</head>
<body>
 <form>
 <button id="s">S</button>
 <button id="p">P</button>
 <button id="input">Input Content</button>
 <button id="close">Close</button>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>
 </div>
 </form>
</body>
</html>

I added button elements and used the jQuery click method to set up different autocomplete method calls.
When the buttons marked S or P are pressed, I call the search method, passing in the selected letter as the search
value. This triggers the autocomplete feature using the selected letter, irrespective of the contents of the input
element, as shown in Figure 19-6.

Figure 19-6. Using the search method with a search term

As you can see in the figure, the pop-up menu displays the entries that contain the letter from the button even
though the input element contains the word hello.

The Input Content button triggers the autocomplete feature using whatever characters are contained in the
input element, as shown in Figure 19-7.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

506

The final button, Close, calls the close method that dismisses the pop-up menu.

Using the Autocomplete Events
The autocomplete feature defines a number of events, as described in Table 19-6.

Figure 19-7. Searching using the contents of the input element

Table 19-6. Autocomplete Events

Event Description

change Triggered when the focus leaves the input element after the value has changed

close Triggered when the pop-up menu is closed

create Triggered when the autocomplete is created

focus Triggered when an item in the pop-up menu gains the focus

open Triggered when the pop-up menu is displayed

response Triggered after a search has been completed but before the results are displayed to the user

search Triggered before the list of autocomplete items is generated or requested

select Triggered when an item is selected from the menu

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

507

Getting Details of the Selected Item
jQuery UI provides additional information about an event through a second argument, typically called ui. For the
change, focus, and select events, jQuery UI gives the ui object an item property that returns an object describing the
selected or focused item from the pop-up menu. Listing 19-10 shows how you can use this feature to get information
about the item.

Listing 19-10. Using the ui Object in Event Handlers

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {

 var flowers = ["Aster", "Daffodil", "Rose", "Peony", "Primula", "Snowdrop",
 "Poppy", "Primrose", "Petuna", "Pansy"];

 $("#acInput").autocomplete({
 source: flowers,
 focus: displayItem,
 select: displayItem,
 change: displayItem
 })

 function displayItem(event, ui) {
 $("#itemLabel").text(ui.item.label)
 }
 });
 </script>
</head>
<body>
 <form>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>
 Item Label:
 </div>
 </form>
</body>
</html>

I have added a span element that I use to display the label property of the selected object. jQuery UI creates
objects with label and value properties even when you use a simple string array for the source setting, so you always
need to read one of these properties from the ui.item object. In this example, I use the same function to display the
item from the focus, select, and change events. You can see the effect in Figure 19-8.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

508

Modifying Search Results
The response event provides an opportunity to modify the results before they are shown to the user. In Listing 19-11,
you can see how I handle the response event to prevent the Peony value from being shown.

Listing 19-11. Handling the response Event

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function () {

 var flowers = ["Aster", "Daffodil", "Rose", "Peony", "Primula", "Snowdrop",
 "Poppy", "Primrose", "Petuna", "Pansy"];

 $("#acInput").autocomplete({
 source: flowers,
 response: filterResults
 });

 function filterResults(event, ui) {
 for (var i = 0; i < ui.content.length; i++) {
 if (ui.content[i].label == "Peony") {
 ui.content.splice(i, 1);
 }
 }
 }
 });
 </script>
</head>

Figure 19-8. Getting the details of the selected item

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

509

<body>
 <form>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>
 </div>
 </form>
</body>
</html>

I have defined a function called filterResults to handle the response event. Within the function, I enumerate
the results that will be presented to the user, which are available as an array accessed through the ui.content
property. The handler function for the response event must modify the array directly and so I use the splice method
to remove the Peony entry from the ui.content array.

Overriding the Default Select Action
The select event has a default action, which is to replace the contents of the input element with the contents of the
value property of the item selected from the pop-up menu. This is exactly what is required most of the time, but this
event can be used to supplement the default action or prevent it and do something entirely different. Listing 19-12
contains an example of supplementing the default by setting the value of a related field.

Listing 19-12. Overriding the Default Action of the select Event

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {

 var flowers = ["Aster", "Daffodil", "Rose"];

 var skus = { Aster: 100, Daffodil: 101, Rose: 102};

 $("#acInput").autocomplete({
 source: flowers,
 select: function(event, ui) {
 $("#sku").val(skus[ui.item.value]);
 }
 })
 });
 </script>
</head>
<body>
 <form>
 <div class="ui-widget">
 <label for="acInput">Flower Name: </label><input id="acInput"/>

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

510

 <label for="sku">Stock Keeping Unit: </label><input id="sku"/>
 </div>
 </form>
</body>
</html>

Tip ■ i described default actions for events in Chapter 9.

When the select event is triggered, my handler function uses the ui argument to get the value of the selected
item and set the value of a related field—in this case, the stock keeping unit, which is obtained from the skus object.
In this way, I can help the user by providing default values for other fields based on the initial selection. This can be
helpful in lots of situations, especially when selecting items such as shipping addresses. You can see the result in
Figure 19-9, although this is an example where you should load a browser to get the full effect. The HTML for this
document and all of the other examples in this book are freely available in the Source Code/Download area of the
Apress web site (www.apress.com).

Using the jQuery UI Accordion
The accordion widget takes a set of content elements and presents them so that at most one is visible to the user.
The visible content is hidden when the user selects another, creating an effect that is reminiscent of the bellows in the
musical instrument of the same name.

Accordions are great for presenting content that can be broken into discrete sections when you don’t want to
overwhelm the user by displaying it all at once. Ideally, the individual content sections share some overarching theme
that can be expressed using simple headers.

Creating the Accordion
The jQuery UI accordion widget is applied using the accordion method, as shown in Listing 19-13.

Listing 19-13. Creating an Accordion

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js"></script>

Figure 19-9. Using the select event to populate another field

http://www.apress.com/

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

511

 <script src="handlebars-jquery.js"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 #accordion {margin: 5px}
 .dcell img {height: 60px}
 </style>
 <script id="flowerTmpl" type="text/x-jquery-tmpl">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 var data = {
 flowers: [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" },
 { "name": "Primula", "product": "primula" },
 { "name": "Snowdrop", "product": "snowdrop" },
 { "name": "Carnation", "product": "carnation" },
 { "name": "Lily", "product": "lily" },
 { "name": "Orchid", "product": "orchid" }]
 };

 var elems = $("#flowerTmpl").template(data).filter("*");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3, 6).appendTo("#row2");
 elems.slice(6).appendTo("#row3");

 $("#accordion").accordion();

 $("button").button();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="accordion">
 <h2>Row 1</h2>
 <div id="row1"></div>
 <h2>Row 2</h2>
 <div id="row2"></div>

http://node.jacquisflowershop.com/order

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

512

 <h2>Row 3</h2>
 <div id="row3"></div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

The most important part of this example is the content of the div element whose id is accordion.

...
<div id="accordion">
 <h2>Row 1</h2>
 <div id="row1"></div>

 <h2>Row 2</h2>
 <div id="row2"></div>

 <h2>Row 3</h2>
 <div id="row3"></div>
</div>
...

I have changed the formatting to make the structure more obvious. The top-level div element is the one that
is targeted with the accordion method. jQuery UI looks at the contents of the div for header elements (the h1 to h6
elements) and breaks up the content so that each header is associated with the element that follows it. In this case,
I have used h2 elements as headers, each of which is followed by a div element. I use data templates to populate these
div elements with details of the products offered by the flower shop.

Notice that I have added an a element within each h2 element. This is the means by which the title for each
content section is specified. You can see how jQuery UI transforms the top-level div element and its contents
in Figure 19-10.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

513

Tip ■ setting the href attribute to # is a common technique when defining a elements that are going to be used solely
for Javascript. i have used this approach because it makes the example simpler, but i generally recommend using
jQuery to insert the a elements dynamically so that they don’t interfere with non-Javascript users.

When the accordion is created, the first content section is displayed while the others are hidden. The content of
the a elements are used as the labels for each section, and clicking a label closes the current section and opens the
selected one (there is a nice animation effect during the transition that I can’t show using screenshots). You can see
the effect of clicking the headers in Figure 19-11.

Figure 19-10. A jQuery UI accordion

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

514

Configuring the Accordion
The accordion supports a number of configuration settings that can be used to fine-tune its behavior. Table 19-7
describes these settings, and I show you how to use these settings to configure the widget in the sections that follow.

Figure 19-11. The accordion transitions

Table 19-7. Accordion Settings

Setting Description

active Gets or sets the content element to be displayed. The default is to initially display the first
content element.

animate Specifies the animation that will be used during the transition from one content element to
another. See Chapter 35 for details of the jQuery UI animations.

collapsible When true, all of the content sections can be collapsed. The default is false.

disabled When true, the accordion is disabled. The default is false.

event Specifies the event from the header element that triggers the transition to another content
element. The default is click.

header Specifies which elements will be used as headers.

heightStyle Controls the height of the accordion and its panels.

icons Specifies the icons used in the accordion.

Tip ■ in jQuery Ui 1.10, the animate setting replaces the animated setting; the heightStyle option replaces the
autoHeight, clearStyle, and fillSpace settings; and a new property name is used to specify the icons used for the
selected content panels (activeHeader) when using the icons property.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

515

Setting the Height of the Accordion
The heightStyle property controls the height of the accordion and its panels. There are three supported values,
which I have described in Table 19-8.

Table 19-8. The Values for the heightStyle

Name Description

auto All of the panels will be set to the height of the tallest panel

fill Expands the accordion to fill the parent element’s height

content Each panel will be as high as its content

Figure 19-12. Problems caused by incorrect height information

You can set the height of the accordion based on either the height of the content elements or the height of the
parent element. The most common technique is to rely on the auto value, which is the default, and which sets all of
the content elements to be the same height (the height of the tallest content element) and sizes the accordion based
on that height.

This is the approach I used in the previous example, although some caution is required when using content
elements that contain images, especially when the img elements are inserted into the document using jQuery.
The problem is that the call to the accordion method can be made before all of the images are loaded, which causes
jQuery UI to get misleading information from the browser about the height of the content elements. In my example
document, the height of the content div elements is 55 pixels before the images are loaded and 79 pixels when they
are loaded. You can tell whether you have hit this problem when the accordion shows unexpected scrollbars to display
the content, as shown in Figure 19-12.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

516

jQuery UI doesn’t detect the change in the content element’s height when the images are loaded and ends up
displaying the content incorrectly. To address this, you need to provide information about the height that the content
elements will be once you load all of the external resources. There are lots of ways of doing this, and in the example,
I chose to set the CSS height property for the img elements in a style element, as follows:

...
<style type="text/css">
 #accordion {margin: 5px}
 .dcell img {height: 60px}
</style>
...

Image issues aside, the auto value is useful when you want consistent heights for each of the content elements,
but it can lead to some unappealing visuals when there is a large disparity between the sizes of the content elements.
Listing 19-14 shows a script element that inserts the product information elements in a different way.

Listing 19-14. An Accordion with a Large Height Differential

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 flowers: [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" },
 { "name": "Primula", "product": "primula" },
 { "name": "Snowdrop", "product": "snowdrop" },
 { "name": "Carnation", "product": "carnation" },
 { "name": "Lily", "product": "lily" },
 { "name": "Orchid", "product": "orchid" }]
 };

 var elems = $("#flowerTmpl").template(data).filter("*");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3, 6).appendTo("#row2");
 elems.slice(6).appendTo("#row3");

 $("<h2>All</h2><div id=row0></div>").prependTo("#accordion")
 .filter("div").append($("#row1, #row2, #row3").clone());

 $("#accordion").accordion();

 $("button").button();
 });
</script>
...

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

517

To create an extra-high content element, I have used jQuery to clone the existing content div elements and insert
them into a new content element, creating a panel that displays all of the products. This new panel is three times the
height of the others, which causes the accordion to display a lot of empty space when the smaller content elements
are displayed, as shown in Figure 19-13.

Figure 19-13. The effect of the auto setting with a large height difference

If a large expanse of empty space doesn’t suit your application, then you can simple change the heightStyle
property to content, as shown in Listing 19-15.

Listing 19-15. Changing the heightStyle Setting

...
$("#accordion").accordion({
 heightStyle: "content"
});
...

The accordion will now change its height as part of the transition between content elements, as shown
in Figure 19-14.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

518

This is a neater approach to displaying the content, but it does mean that the layout of the page changes as the
accordion resizes itself. This can be annoying to users if key controls are constantly moving around the screen.

Using the Parent to Determine the Height of the Accordion
An entirely different approach is to set the size of the accordion so that it simply fills its parent element. I find this most
useful when I am working with content that is generated dynamically such that I don’t have a good handle on the size and I
don’t want the layout to be adjusted. You can size the accordion this way through the fill setting, as shown in Listing 19-16.

Listing 19-16. Sizing the Accordion to Fill the Parent Element

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 flowers: [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" },
 { "name": "Primula", "product": "primula" },
 { "name": "Snowdrop", "product": "snowdrop" },
 { "name": "Carnation", "product": "carnation" },
 { "name": "Lily", "product": "lily" },
 { "name": "Orchid", "product": "orchid" }]
 };

Figure 19-14. The accordion resizing itself to accomodate different content heights

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

519

 var elems = $("#flowerTmpl").template(data).filter("*");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3, 6).appendTo("#row2");
 elems.slice(6).appendTo("#row3");

 $("<h2>All</h2><div id=row0></div>").prependTo("#accordion")
 .filter("div").append($("#row1, #row2, #row3").clone());

 $("#accordion").wrap("<div style='height:300px'></div>");

 $("#accordion").accordion({
 heightStyle: "fill"
 });

 $("button").button();
 });
</script>
...

In this example, I have wrapped the accordion element in a new parent div element that has a fixed size of
300 pixels. When I call the accordion method, I set heightStyle to fill. If the parent is smaller than a content
element, then the accordion adds a scrollbar. If the parent is larger than a content element, then padding is added.
You can see the application of the scrollbar in Figure 19-15. This arises because the content element that displays all of
the flowers is taller than the 300 pixels of the parent element.

Figure 19-15. Using the accordion to fill the height of the parent

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

520

Changing the Event Type
By default, the user opens and closes content elements by clicking them. You can change this behavior through the
event setting, as shown in Listing 19-17.

Listing 19-17. Using the event Setting

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 flowers: [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" },
 { "name": "Primula", "product": "primula" },
 { "name": "Snowdrop", "product": "snowdrop" },
 { "name": "Carnation", "product": "carnation" },
 { "name": "Lily", "product": "lily" },
 { "name": "Orchid", "product": "orchid" }]
 };

 var elems = $("#flowerTmpl").template(data).filter("*");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3, 6).appendTo("#row2");
 elems.slice(6).appendTo("#row3");

 $("#accordion").accordion({
 event: "mouseover"
 });

 $("button").button();
 });
</script>
...

In Listing 19-17, I have used the event setting to specify that content elements should be opened in response to
the mouseover event (which I described in Chapter 9). The effect of this change is that as soon as the mouse pointer
enters the label for a content element, jQuery UI opens the element and displays its content. I can’t show this effect in
a screenshot, but I recommend you load this example to see how it works. It is a neat feature, but I recommend that
you use it carefully. Users are generally quick to grasp the idea of clicking the icon to open a section of content, but
responding to mouse events can make for a twitchy and surprising user experience.

Selecting the Active Header
The default behavior of the accordion is initially to show the first content element to the user. You can change this
behavior using the active property. You set active to the index of the content element you want to display as shown
in Listing 19-18.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

521

Listing 19-18. Using the Active Property

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 flowers: [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" },
 { "name": "Primula", "product": "primula" },
 { "name": "Snowdrop", "product": "snowdrop" },
 { "name": "Carnation", "product": "carnation" },
 { "name": "Lily", "product": "lily" },
 { "name": "Orchid", "product": "orchid" }]
 };

 var elems = $("#flowerTmpl").template(data).filter("*");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3, 6).appendTo("#row2");
 elems.slice(6).appendTo("#row3");

 $("#accordion").accordion({
 active: 1
 });

 $("button").button();
 });
</script>
...

The effect is that the accordion opens the row at index 1 (the indexes are zero based, so this is the second content
element) initially, as shown in Figure 19-16.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

522

You can also have no content initially active by setting active to false. If you do this, you must also set the
collapsible setting to true. This disables the default policy that one content element must always be visible.
Listing 19-19 shows the application of these settings.

Listing 19-19. Disabling the Initially Active Content Element

...
$("#accordion").accordion({
 active: false,
 collapsible: true
});
...

You can see the effect of these settings in Figure 19-17.

Figure 19-16. Selecting the initial content element to display

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

523

The accordion works as before, with the exception that there is no initially active content element and that all of
the content elements can be closed. This is a useful technique when screen estate is limited and the content in the
accordion is not of primary interest to the user.

Changing the Accordion Icons
You can use the icons setting to change the icons used in the accordion content headers. Listing 19-20 provides
an example.

Listing 19-20. Changing the Icons Used by the Accordion

...
$("#accordion").accordion({
 collapsible: true,
 icons: {
 header: "ui-icon-zoomin",
 activeHeader: "ui-icon-zoomout"
 }
});
...

Tip ■ in jQuery Ui 1.10, the activeHeader property replaced the headerSelected property.

You set icons to be an object that has header and activeHeader properties. The first property specifies the icon
to use when the content element is closed, and the second specifies the icon to use when it is open. I tend to use this
feature in conjunction with the collapsible setting because it gives a more natural feel when using icons that suggest
that user can perform an action. You can see how these icons appear in Figure 19-18.

Figure 19-17. The accordion with no initially active content element

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

524

Using the Accordion Methods
The jQuery UI accordion defines a number of methods, as described in Table 19-9.

Figure 19-18. Using custom icons for the accordion section headers

Table 19-9. Accordion Methods

Method Description

accordion("destroy") Removes the accordion functionality from the input element

accordion("disable") Disables the accordion

accordion("enable") Enables the accordion

accordion("option") Sets one or more options

accordion("refresh") Refreshes the size of the widget panels.

Tip ■ the activate method was removed in jQuery Ui 1.10. Use the active option i described in the previous section
instead. the resize method has been replaced with the refresh method.

The refresh method updates the sizes of the accordion panels to reflect changes in the content elements. The effect
of size changes depends on the value used for the heightStyle option I described in the previous section. The other
methods are those which jQuery UI provides for all elements.

Tip ■ as of jQuery Ui 1.10, calling the refresh method will also update the set of panels to reflect changes in the
content elements, allowing elements to be added or removed.

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

525

Using the Accordion Events
The jQuery UI accordion widget supports the three events shown in Table 19-10.

Table 19-10. Accordion Events

Event Description

activate Triggered when a content panel is activated

beforeActivate Triggered just before a content panel is activated

create Triggered when the accordion is created

Tip ■ the events defined by the accordion widget have changed in jQuery Ui 1.10. the changestart event has been
replaced by beforeActivate and the change event has been replaced with activate. the additional ui object passed to
handler functions for these events use different property names from the old events, as described in table 19-11.

Table 19-11. The Properties of the ui Object for the change and changestart Events

Name Description

newHeader The header element for the newly active content element

oldHeader The header element for the previously active content element

newPanel The newly active content element

oldPanel The previously active content element

You can use the beforeActivate and active events to monitor the transition between content elements,
as shown in Listing 19-21.

Listing 19-21. Using the change Event

...
<script type="text/javascript">
 $(document).ready(function () {

 var data = {
 flowers: [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" },
 { "name": "Primula", "product": "primula" },
 { "name": "Snowdrop", "product": "snowdrop" },
 { "name": "Carnation", "product": "carnation" },
 { "name": "Lily", "product": "lily" },
 { "name": "Orchid", "product": "orchid" }]
 };

Chapter 19 ■ Using the aUtoComplete and aCCordion Widgets

526

 var elems = $("#flowerTmpl").template(data).filter("*");
 elems.slice(0, 3).appendTo("#row1");
 elems.slice(3, 6).appendTo("#row2");
 elems.slice(6).appendTo("#row3");

 $("#accordion").accordion({
 active: false,
 collapsible: true,
 activate: handleAccordionChange
 })

 function handleAccordionChange(event, ui) {
 if (ui.oldHeader.length) {
 console.log("Old header: " + ui.oldHeader[0].innerText);
 }
 if (ui.newHeader.length) {
 console.log("New header: " + ui.newHeader[0].innerText);
 }
 }

 $("button").button();
 });
</script>
...

I use the activate event to respond to the content element being changed. jQuery UI passes information to the event
handler function about the active elements via an additional argument to the handler function, just as for the autocomplete
widget. This additional argument, usually given the name ui, defines the properties shown in Table 19-11.

These properties are arrays, which is why I test for the length property before getting the HTMLElement object at
the first index and writing the value of the innerText property to the console.

Summary
In this chapter, I showed you the jQuery UI autocomplete and accordion widgets. These follow the same basic pattern
I used in Chapter 18 but offer richer functionality and a wider range of configuration options to customize the widgets
so that they fit neatly into your web application model. In Chapter 20, I show you the tabs widget.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

527

Chapter 20

Using the Tabs Widget

The tabs widget is superficially similar to the accordion that I described in Chapter 19 but offers more functionality
and opportunities for customization. In common with the earlier widget chapters, I start with details of how to create
the widget and then show you the settings, methods, and events that the widgets support. I finish this chapter with
an example of how you can use the tabs widget to present forms to users in sections, which is a useful technique for
dealing with long forms that require a lot of data input. Table 20-1 provides the summary for this chapter.

Table 20-1. Chapter Summary

Problem Solution Listing

Create a tabs widget Define a label and content element structure
and call the tabs method

1

Get the content for a tab via Ajax Set the href attribute for the tab a element to the HTML
document that should be displayed in the content panel

2, 3

Get or set the active tab Use the active setting 4

Disable individual tabs Use the disabled setting 5

Change the event that activates a tab Use the event setting 6

Allow all of the tabs to be deactivated Use the collapsible setting 7

Add or remove tabs Change the underlying HTML elements
and then call the refresh method

8

Force remote content to be loaded Use the load method 9

Configure Ajax requests before they are
made and modify the remote content
when it is loaded

Handle the beforeLoad and load events 10, 11

Display a form across multiple tabs Partition the form using div elements,
add a label structure, and call the tabs method

12–14

Validate the content of a form displayed in
multiple tabs

Handle the beforeActivate and activate events 15

Chapter 20 ■ Using the tabs Widget

528

JQUerY UI ChaNGeS SINCe the LaSt eDItION

the tabs widget underwent a significant api change in jQuery Ui 1.10. there are fewer methods and configuration
options and, in keeping with changes to other widgets, there is more reliance on directly manipulating the
elements to which the widget has been applied when making changes.

the following options have been removed: fx, ajaxOptions, cache, spinner, selected, idPrefix, tabTemplate,
panelTemplate, and cookie. the following methods have been removed: url, abort, select, add, remove,
and length. the set of events that the tabs widget defines has been simplified. see the section “Using the tabs
events” for details of the new events.

the changes may seem drastic, but the result is a widget which is simpler and easier to work with. all of the
functionality provided by the methods and options remains available by using jQuery to manipulate the underlying
htML elements and then using the new refresh method to update the state of the widget, as demonstrated by
the listings in this chapter.

Creating the Tabs
You create jQuery UI tabs using the tabs method. As with the accordion widget, the tab widget requires a specific
HTML element structure to work, as shown in Listing 20-1.

Listing 20-1. Creating jQuery UI Tabs

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script id="flowerTmpl" type="text/x-jquery-tmpl">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 var data = {
 flowers: [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" },

Chapter 20 ■ Using the tabs Widget

529

 { "name": "Primula", "product": "primula" },
 { "name": "Snowdrop", "product": "snowdrop" },
 { "name": "Carnation", "product": "carnation" },
 { "name": "Lily", "product": "lily" },
 { "name": "Orchid", "product": "orchid" }]
 };

 var elems = $("#flowerTmpl").template(data).filter("*");
 elems.slice(0, 3).appendTo("#tab1");
 elems.slice(3, 6).appendTo("#tab2");
 elems.slice(6).appendTo("#tab3");

 $("#tabs").tabs();
 $("button").button();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="tabs">

 Row 1
 Row 2
 Row 3

 <div id="tab1"></div>
 <div id="tab2"></div>
 <div id="tab3"></div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

The element that the tabs method is applied to must contain two kinds of element. The first is the content
elements, which are those elements whose contents should appear inside the tabs. The second kind of element is the
structure elements, which give the jQuery UI tab widget the information it needs to create the tab structure.

I use div elements to provide the structure. In the following example, I have used three div elements, each of
which will hold one row of flower product information, just as in earlier examples:

...
<div id="tab1"></div>
<div id="tab2"></div>
<div id="tab3"></div>
...

http://node.jacquisflowershop.com/order

Chapter 20 ■ Using the tabs Widget

530

It is important that each content element has an id attribute so that the jQuery UI tab widget can find the right
element to display. For the structure, I use li elements, each of which contains an a element, as follows:

...

 Row 1
 Row 2
 Row 3

...

The number of li items defines the number of tabs. The content of the a element is used as the tab label, and the
href attribute specifies which content element the tab relates to.

Tip ■ i used data templates to generate the tab content dynamically because it lets me show the required structure
more clearly. the content can be defined statically or, as i explain in the next section, obtained dynamically from the server.

You can see how the structure in the example is transformed into a set of tabs in Figure 20-1.

Figure 20-1. Creating jQuery UI tabs

Tabs are a familiar user interface metaphor. Clicking a tab causes jQuery UI to display the corresponding content
element. As with the accordion, the tabs widget lets you present a lot of content in a relatively compact manner,
allowing the user to focus on what is important to him. This means you have to think carefully about how the tabs and
their content relate to one another. The goal should be to group your content to minimize the amount of switching
the user has to do between tabs to find what she is looking for, while preserving the natural grouping of the content
elements. As with any user interface, this requires a solid understanding of the task that the user is performing and
how her workflow (and not your systems) operates.

Chapter 20 ■ Using the tabs Widget

531

Getting Tab Content with Ajax
One of the nice features of the tab widget is the ability to obtain tab content via Ajax. To do this, you simply specify a
URL as the href attribute for the appropriate a element. A tab that gets its content via Ajax is known as a remote tab.
To demonstrate this feature, I have created an HTML document called tabflowers.html, the contents of which are
shown in Listing 20-2.

Listing 20-2. The Contents of the tabflowers.html File

<div>
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" />
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" />
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" />
 </div>
</div>
<div>
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" />
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" />
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" />
 </div>
</div>

I have used the same structure and content as for the generated content elements in order to keep the example
simple. Listing 20-3 shows how I can use the tabflowers.html file as the content for a tab.

Listing 20-3. Obtaining the Content of a Tab via Ajax

...
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="tabs">

 Ajax Content
 Row 1

http://node.jacquisflowershop.com/order

Chapter 20 ■ Using the tabs Widget

532

 Row 2
 Row 3

 <div id="tab1"></div>
 <div id="tab2"></div>
 <div id="tab3"></div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
...

In Listing 20-2, I have added a new tab called Ajax Content and specified the URL of the content that should be
loaded. You can see the effect in Figure 20-2.

Figure 20-2. Getting the contents of a tab via Ajax

Tip ■ You don’t need to create a content element for a remote tab. this is done for you automatically by the tabs widget.

Chapter 20 ■ Using the tabs Widget

533

Configuring the Tabs Widget
At first glance, the tabs widget may look like a vertical variation of the accordion widget that I showed you in Chapter
19. There are some common characteristics, but there is a wider set of configuration options and settings when you
use tabs. Table 20-2 describes the settings that are supported by the jQuery UI tabs widget. In the sections that follow,
I show you how to use these settings to configure the widget.

Table 20-2. Tabs Settings

Setting Description

active Gets or sets the currently displayed tab; individual panels are specified using a zero-based index
and all panels can be closed by specifying false (but this only works if collapsible is set to true)

collapsible When set to true, all of the tabs are closed

disabled Used to enable/disable individual tabs

event Used to set the event that triggers transition between tabs

heightStyle Specifies how the height of the widget and its tabs is determined

hide Specifies how tabs are animated when they are closed—I describe the jQuery UI animations in
Chapter 35.

show Specifies how tabs are animated when they are opened—I describe the jQuery UI animations
in Chapter 35.

Tip ■ the set of configuration options for the tabs widget changed substantially in the jQuery Ui 1.10 release. see the
note at the start of this chapter for full details, but the new set of options—as shown in table 20-2—are simpler and
more consistent with those of the other jQuery Ui widgets.

Selecting the Active Tab
The active setting provides support for determining and changing the tab that is currently shown, as demonstrated
by Listing 20-4.

Listing 20-4. Using the active Option to Get and Set the Displayed Tab

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 #radioDiv { text-align: center; margin-top: 10px;}
 </style>

Chapter 20 ■ Using the tabs Widget

534

 <script id="flowerTmpl" type="text/x-jquery-tmpl">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 var data = {
 flowers: [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" },
 { "name": "Primula", "product": "primula" },
 { "name": "Snowdrop", "product": "snowdrop" },
 { "name": "Carnation", "product": "carnation" },
 { "name": "Lily", "product": "lily" },
 { "name": "Orchid", "product": "orchid" }]
 };

 var elems = $("#flowerTmpl").template(data).filter("*");
 elems.slice(0, 3).appendTo("#tab1");
 elems.slice(3, 6).appendTo("#tab2");
 elems.slice(6).appendTo("#tab3");

 $("#tabs").tabs();

 $("#radioDiv").buttonset().change(function (e) {
 $("#tabs").tabs("option", "active", e.target.value);
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="tabs">

 Ajax Content
 Row 1
 Row 2
 Row 3

 <div id="tab1"></div>
 <div id="tab2"></div>
 <div id="tab3"></div>
 </div>
 <div id="radioDiv">
 <input type="radio" name="tabNo" id="one" value="1" />

http://node.jacquisflowershop.com/order

Chapter 20 ■ Using the tabs Widget

535

 <label for="one">1</label>
 <input type="radio" name="tabNo" id="two" value="2"/>
 <label for="two">2</label>
 <input type="radio" name="tabNo" id="three" value="3"/>
 <label for="three">3</label>
 </div>
 </form>
</body>
</html>

I have added a jQuery UI button set to the document, as described in Chapter 18. I use the jQuery change method
to register a handler function that is called when one of the buttons in the set is clicked. The handler function uses the
option method to set the active property, producing the effect shown in Figure 20-3.

Figure 20-3. Using the active setting to change the active tab

Disabling Individual Tabs
The disabled setting changes the state of the tabs widget if you use boolean values, but it can also be employed to
enable and disable individual tabs by using an array of numbers. Listing 20-5 demonstrates.

Listing 20-5. Enabling and Disabling Individual Tabs

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 #buttonDiv {margin: 5px}
 </style>

Chapter 20 ■ Using the tabs Widget

536

 <script type="text/javascript">
 $(document).ready(function () {

 $("#tabs").tabs();

 $("input:checkbox").button().click(function () {
 var disabledPositions = [];
 $("input:checked").each(function (index, elem) {
 disabledPositions.push(Number(elem.value));
 })

 $("#tabs").tabs("option", "disabled", disabledPositions)
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="tabs">

 Tab 1
 Tab 2
 Tab 3

 <div id="tab1">This is the content for tab 1</div>
 <div id="tab2">This is the content for tab 2</div>
 <div id="tab3">This is the content for tab 3</div>
 </div>
 <div id="buttonDiv">
 <label for="cb0">Tab 1</label><input type="checkbox" id="cb0" value=0>
 <label for="cb1">Tab 2</label><input type="checkbox" id="cb1" value="1">
 <label for="cb2">Tab 3</label><input type="checkbox" id="cb2" value="2">
 </div>
 </form>
</body>
</html>

I have created a tabs widget with static content and added a set of check boxes that I have transformed into
jQuery UI toggle buttons. When one of the buttons is clicked, the corresponding tab is enabled or disabled, as shown
in Figure 20-4.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://node.jacquisflowershop.com/order

Chapter 20 ■ Using the tabs Widget

537

Changing the Event Trigger
The tabs widget responds to the click event by default, meaning that users must click a tab to activate it. You can
use the event setting to specify a different event to respond to. This is most useful for responding to mouse events, as
shown in Listing 20-6.

Listing 20-6. Changing the Event That Activates a Tab

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css"> #buttonDiv {margin: 5px}</style>
 <script type="text/javascript">
 $(document).ready(function() {

 $("#tabs").tabs({
 event: "mouseover"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="tabs">

 Tab 1
 Tab 2
 Tab 3

Figure 20-4. Disabling and enabling tabs in response to button clicks

http://node.jacquisflowershop.com/order

Chapter 20 ■ Using the tabs Widget

538

 <div id="tab1">This is the content for tab 1</div>
 <div id="tab2">This is the content for tab 2</div>
 <div id="tab3">This is the content for tab 3</div>
 </div>
 </form>
</body>
</html>

I specified the mouseover event in this listing, which means that the tabs widget will switch between tabs as the
mouse moves across the tab labels.

Tip ■ i recommend using this approach sparingly, just as i did for the same setting of the accordion widget.
it is visually appealing but creates an annoying effect, forcing the user to take care not to move the mouse away from
the label of the tab he wants to interact with.

Using Collapsible Tabs
You can create a sort of hybrid between tabs and accordions by using the collapsible setting, as shown in Listing 20-7.

Listing 20-7. Using the collapsible Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#tabs").tabs({
 collapsible: true
 });
 });
</script>
...

When the collapsible setting is true, clicking the active tab collapses it just like an accordion content element.
You can see the transition in Figure 20-5.

Figure 20-5. Collapsing the active tab

Chapter 20 ■ Using the tabs Widget

539

Table 20-3. Tabs Methods

Method Description

tabs("destroy") Removes the tab widget from the underlying HTML element

tabs("disable") Disables the entire widget or individual tabs (see the section “Using Collapsible Tabs”
for an example of using the corresponding setting)

tabs("enable") Enables the entire widget or an individual tab

tabs("option") Changes one or more settings (see the section “Configuring the Button” in Chapter 18
for details of configuring a jQuery UI widget)

tabs("load") Explicitly loads the contents of a tab using an Ajax request

tabs("refresh") Updates the widget to reflect changes in the underlying HTML elements

Tip ■ i have included this setting for completeness, but it is one that i never use in my own projects because the result
is confusing to users.

Using the Tabs Methods
Table 20-3 shows the methods that are supported by the jQuery UI tabs widget.

Tip ■ the set of methods supported by the tabs widget changed in version 1.10. the following methods have been
removed: add, remove, select, url, length, and abort. the add and remove methods have been replaced by a new
method called refresh; the functionality of the select method is available through the active setting; you can
implement the functionality abort method using the new beforeActivate event. there is no alternative functionality
for the length method.

Adding and Removing Tabs
I use the jQuery UI tabs widget to define add and remove methods for manipulating the set of tabs that were displayed
to the user. These methods were removed in jQuery UI 1.10 and replaced with the refresh method, which updates the
tabs based on changes to the underlying HTML elements that the widget has been applied to. In Listing 20-8, you can
see how to use the refresh method.

Listing 20-8. Using the refresh Method to Update the Tabs Widget

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>

Chapter 20 ■ Using the tabs Widget

540

 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 #buttons {margin: 5px 0}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {

 $("#tabs").tabs();

 $("button").button().click(function (e) {
 var tabsElem = $("#tabs");
 if (this.id == "add") {
 var tabID = tabsElem.children("div").length + 1;
 tabsElem.children("ul").append($("").append($("<a>")
 .attr("href", "#tab" + tabID).text("Tab " + tabID)));
 $("<div>").attr("id", "tab" + tabID)
 .text("This is the content for tab " + tabID).appendTo(tabsElem);
 } else {
 tabsElem.find("li").first().remove();
 tabsElem.children("div").first().remove();
 }
 tabsElem.tabs("refresh");
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="buttons" class="ui-widget">
 <button id="add">Add Tab</button>
 <button id="remove">Remove Tab</button>
 </div>
 <div id="tabs">

 Tab 1
 Tab 2
 Tab 3

 <div id="tab1">This is the content for tab 1</div>
 <div id="tab2">This is the content for tab 2</div>
 <div id="tab3">This is the content for tab 3</div>
 </div>
</body>
</html>

I have added a pair of button elements that add and remove the li and div elements used by the tabs widget.
When the Add Tab button is clicked I generate new elements and add them to the Document Object Model (DOM).
When the Remove Tab button is clicked I remove the first li and div element I can find.

I call the refresh method after making these changes, notifying the tabs widget that it should update itself to
reflect the changes I have made, creating the effect shown in Figure 20-6.

Chapter 20 ■ Using the tabs Widget

541

Triggering Tab Ajax Requests
By default, the tabs widget will only make Ajax requests for tabs that have remote content when the user opens that
tab. This approach prevents requesting content that may never be displayed, but it can lead to delays when the user
opens a tab. You can tell the tabs widget to explicitly load the contents of a remote tab using the load method, as
demonstrated in Listing 20-9.

Listing 20-9. Using the load Method to Explicitly Obtain Remote Content

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 #buttons {margin: 5px 0}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {

 $("#tabs").tabs();

 $("#load").button().click(function (e) {
 var tabsElem = $("#tabs");

Figure 20-6. Adding and removing tabs

Chapter 20 ■ Using the tabs Widget

542

 tabsElem.find("a").each(function (index, elem) {
 if (elem.href.indexOf("example.html") == -1) {
 tabsElem.tabs("load", index);
 }
 });
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div id="buttons" class="ui-widget">
 <button id="load">Load</button>
 </div>

 <div id="tabs">

 Tab 1
 Tab 2
 Tab 3
 Ajax Content

 <div id="tab1">This is the content for tab 1</div>
 <div id="tab2">This is the content for tab 2</div>
 <div id="tab3">This is the content for tab 3</div>
 </div>
</body>
</html>

The argument to the load method is the index of the remote tab you want to load content for. In this case, I have
used the load method in response to a button being clicked.

Using the Tabs Events
The set of events supported by the jQuery UI tabs widget is described in Table 20-4 and I describe them in the sections
that follow.

Table 20-4. Tabs Events

Event Description

create Triggered when the tabs widget is applied to an underlying HTML element

beforeActivate Triggered before a tab panel is shown to the user

activate Triggered after a tab panel is shown to the user

beforeLoad Triggered when the contents of a remote tab are about to be loaded

load Triggered when the contents of a remote tab have been loaded

Chapter 20 ■ Using the tabs Widget

543

Tip ■ the set of events supported by the tabs widget changed in jQuery Ui version 1.10, removing the select,
show, add, remove, enable, and disable events and adding the beforeActivate, activate, and beforeLoad events.
the events that are removed are moot either because the tabs widget now relies on the state of the underlying htML
elements (and the refresh method) or because the functionality can be recreated using the new events.

Intercepting Ajax Requests
The beforeLoad event is triggered before a request for the contents of a remote tab is made. Handler functions are
passed a jQuery event object and an additional object—usually assigned the name ui in the handler function—that
defines the properties shown in Table 20-5.

Table 20-5. The Properties of the Additional Object Passed to beforeLoad Event Handler Functions

Name Description

tab Returns a jQuery object containing the tab element for the remote tab

panel Returns a jQuery object containing the panel element for the remote tab

jqXHR Returns the jqXHR object that will be used to make the Ajax request

ajaxSettings Returns a map object that will be passed to the $.ajax method to make the request

These properties reveal the close integration between jQuery UI and jQuery, by building on the jQuery Ajax
functionality that I described in Chapters 14 and 15. In Listing 20-10, you can see how I handle the beforeLoad event
to adjust the settings of the Ajax request.

Listing 20-10. Handling the beforeLoad Event

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#tabs").tabs({
 beforeLoad: function (e, ui) {
 ui.ajaxSettings.url = "flowers.html";
 }
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="tabs">

Chapter 20 ■ Using the tabs Widget

544

 Tab 1
 Tab 2
 Tab 3
 Ajax Content

 <div id="tab1">This is the content for tab 1</div>
 <div id="tab2">This is the content for tab 2</div>
 <div id="tab3">This is the content for tab 3</div>
 </div>
</body>
</html>

The handler function that I registered for the beforeLoad event sets the url property on the ui.ajaxSettings
object to change the source of the content that will be displayed by the remote tab. Instead of the tabflowers.html
file specified by the HTML elements, the flowers.html file will be loaded instead.

Manipulating Remote Tab Data
The load event is triggered when the data for a remote tab have been loaded from the server and can be used to
manipulate the content before it is shown to the user. The handler function is passed a jQuery event object and an
additional ui object that defines the properties shown in Table 20-6.

Table 20-6. The Properties of the Additional Object Passed to load Event Handler Functions

Name Description

tab Returns a jQuery object that contains the tab element that was loaded

panel Returns a jQuery object that contains the element into which the content was loaded

Notice that neither of the properties returned by the ui object directly refers to the content that was loaded
from the server. Instead, the handler function has access to the elements that are used by the tabs widget for the tab
header and the content panel. In Listing 20-11, you can see how I use these elements to change the title of the tab and
manipulate the content loaded from the server.

Listing 20-11. Handling the Tabs load Event

...
<script type="text/javascript">
 $(document).ready(function () {
 $("#tabs").tabs({
 load: function (e, ui) {
 ui.tab.find("a").text("Loaded!");
 ui.panel.children().first().remove();
 }
 });
 });
</script>
...

Chapter 20 ■ Using the tabs Widget

545

I use the ui.tab property to locate the a element used for the tab and call the jQuery text method to change the
title. I use the ui.panel property to locate the first child content element loaded from the server and remove it from
the DOM. You can see the effect in Figure 20-7.

Figure 20-7. Handling the load event

Tip ■ notice that i don’t have to call the refresh method, even though i am modifying the dOM elements on which the
tabs widget relies. the refresh is applied automatically after the load event has been triggered.

Using Tabs to Display a Form
This is a useful technique for making a long form more approachable while giving the user a sense of how far she has
progressed through the form. To begin, Listing 20-12 shows the document that contains the form that I will use.

Listing 20-12. The Document That Contains a Form

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 #tab2 input, #tab3 input {width: 200px; text-align: left}
 #tab1, #tab2, #tab3 {padding: 10px}

Chapter 20 ■ Using the tabs Widget

546

 .fl {float: left}
 #buttonDiv {clear: both}
 #tabs, h1 {margin: 10px}
 .regLabel {width: auto}
 </style>
 <script id="flowerTmpl" type="text/x-jquery-tmpl">
 {{#flowers}}
 <div class="dcell ui-widget">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0"/>
 </div>
 {{/flowers}}
 </script>
 <script id="detailsTmpl" type="text/x-jquery-tmpl">
 {{#details}}
 <div class="ui-widget">
 <label for="{{name}}">{{name}}:</label>
 <input name="{{name}}" placeholder="{{hint}}"/>
 </div>
 {{/details}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 var data = [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" }];

 var elems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 elems.slice(0, 2).appendTo("#row1");
 elems.slice(2, 4).appendTo("#row2");

 var detailsData = [{ name: "Name", hint: "Enter your name" },
 { name: "Street", hint: "Enter your street" },
 { name: "City", hint: "Enter your city" },
 { name: "State", hint: "Enter your state" },
 { name: "Zip", hint: "Enter your zip code" }];

 $("#detailsTmpl").template({ details: detailsData }).filter("*")
 .appendTo("#tab2").clone().appendTo("#tab3")

 $("button").button();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="tabs" class="ui-widget">

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://node.jacquisflowershop.com/order

Chapter 20 ■ Using the tabs Widget

547

 1. Select Products
 2. Your Details
 3. Your Shipping Address

 <div id="tab1">
 <h2>1. Select Products</h2>
 <div id="row1"></div>
 <div id="row2"></div>
 </div>
 <div id="tab2" class="fl">
 <h2>2. Your Details</h2>
 </div>
 <div id="tab3" class="fl">
 <h2>3. Your Shipping Address</h2>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

I have added some extra content and structure to the document to flesh out earlier examples. There are fewer
flower products, but I have added regions of the document to capture the user’s personal and shipping details. You
can see the basic form in Figure 20-8.

Chapter 20 ■ Using the tabs Widget

548

There is nothing special about the form, other than being well-suited for use with the jQuery UI tabs widget
because it is neatly divided into distinct regions, each of which can be displayed in a tab.

I have added most of the content programmatically using data templates and you can see how I use the jQuery
functionality I demonstrated in earlier chapters to generate elements from the data, clone them as required, and then
add the results to the document. This isn’t a requirement for using tabs to display forms, but in a book about jQuery,
I like to use the core features as much as possible.

You can also see the ul element in the figure and the links that it contains that point to the content elements.
I would usually hide this element, but I wanted to show you a nice side effect of the structure that the tabs widget uses
for the labels. Creating a list where each list item contains a link means that clicking that link will jump to that part of
the document, and, if the link is to another file, then the browser will navigate to that document. This will help me get
the behavior I want from the tab headers.

Figure 20-8. The multipart form for use with the tabs widget

Chapter 20 ■ Using the tabs Widget

549

Applying the Tabs
I am ready to apply the tabs widget to the example. Listing 20-13 shows the changes that are required in the script
element. No changes are required anywhere else in the document.

Listing 20-13. Creating the Tabs Widget

...
<script type="text/javascript">

 $(document).ready(function () {

 var data = [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" }];

 var elems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 elems.slice(0, 2).appendTo("#row1");
 elems.slice(2, 4).appendTo("#row2");

 var detailsData = [{ name: "Name", hint: "Enter your name" },
 { name: "Street", hint: "Enter your street" },
 { name: "City", hint: "Enter your city" },
 { name: "State", hint: "Enter your state" },
 { name: "Zip", hint: "Enter your zip code" }];

 $("#detailsTmpl").template({ details: detailsData }).filter("*")
 .appendTo("#tab2").clone().appendTo("#tab3")

 $(".fl").removeClass("fl");
 $("#tabs").tabs().find("h2").remove();

 $("button").button();
 });
</script>
...

I remove the fl class that I used to position the content for the details and shipping address regions and remove
the h2 elements that I was using for section headers. I then call the tabs method, which uses the content elements as
the basis for the tabs, as you can see in Figure 20-9.

Chapter 20 ■ Using the tabs Widget

550

Handling the Button Presses
To make the form easier to fill in using the tabs, I have registered a handler for the click event of the button element.
In this handler, I suppress the default action for the event and move to the next tab in the sequence until the last tab
is reached. At this point, clicking the button submits the form to the server. Listing 20-14 shows the additions I have
made to the script element.

Listing 20-14. Progressing Through the Form Using the Submit Button

...
<script type="text/javascript">

 $(document).ready(function () {

 var data = [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" }];

 var elems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 elems.slice(0, 2).appendTo("#row1");
 elems.slice(2, 4).appendTo("#row2");

 var detailsData = [{ name: "Name", hint: "Enter your name" },
 { name: "Street", hint: "Enter your street" },
 { name: "City", hint: "Enter your city" },
 { name: "State", hint: "Enter your state" },
 { name: "Zip", hint: "Enter your zip code" }];

 $("#detailsTmpl").template({ details: detailsData }).filter("*")
 .appendTo("#tab2").clone().appendTo("#tab3")

Figure 20-9. Applying tabs to the form

Chapter 20 ■ Using the tabs Widget

551

 $(".fl").removeClass("fl");
 $("#tabs").tabs().find("h2").remove();

 $("button").button().click(function (e) {
 var tabsElem = $("#tabs");
 var activeTab = tabsElem.tabs("option", "active");
 if (activeTab < tabsElem.find("ul > li").length -1) {
 tabsElem.tabs("option", "active", activeTab + 1)
 e.preventDefault();
 }
 });
 });
</script>
...

I use the active option to get the index of the active tab and use a jQuery selector to get the set of tab header
elements and work out how many there are. If the user has not reached the last tab, then I set the active option to
advance to the next tab in the sequence. I call the preventDefault method only when the user isn’t on the final tab,
which allows the form to be submitted at the end of the tab sequence.

Performing Validation
At the moment, the user can just jump to the last page and submit the form. To prevent this, I am going to apply some
basic form validation. To keep this example simple, I am going to handle the validation manually, but for real projects
I recommend using the validation plug-in and the techniques I described in Chapter 13. Listing 20-15 shows the
changes to the script element to implement some basic validation and stop the user from jumping to the end of the
tab sequence prematurely.

Listing 20-15. Preventing the User from Skipping Through the Tabs with Some Basic Validation

...
<script type="text/javascript">

 $(document).ready(function () {

 var data = [{ "name": "Aster", "product": "aster" },
 { "name": "Daffodil", "product": "daffodil" },
 { "name": "Rose", "product": "rose" },
 { "name": "Peony", "product": "peony" }];

 var elems = $("#flowerTmpl").template({ flowers: data }).filter("*");
 elems.slice(0, 2).appendTo("#row1");
 elems.slice(2, 4).appendTo("#row2");

 var detailsData = [{ name: "Name", hint: "Enter your name" },
 { name: "Street", hint: "Enter your street" },
 { name: "City", hint: "Enter your city" },
 { name: "State", hint: "Enter your state" },
 { name: "Zip", hint: "Enter your zip code" }];

Chapter 20 ■ Using the tabs Widget

552

 $("#detailsTmpl").template({ details: detailsData }).filter("*")
 .appendTo("#tab2").clone().appendTo("#tab3")

 var activePanel;

 $(".fl").removeClass("fl");
 $("#tabs").tabs({
 beforeActivate: function (e, ui) {
 validatePanel(e, ui.oldPanel);
 },
 activate: function (e, ui) {
 activePanel = ui.newPanel;
 }
 }).find("h2").remove();

 function validatePanel(e, panelElem) {
 var inputElems = panelElem.find("input");
 if (panelElem.attr("id") == "tab1" ?
 sumInputElems(inputElems) : countEmptyOrZeroValues(inputElems)) {
 alert("Validation Problem!");
 e.preventDefault();
 }
 }

 function sumInputElems(inputs) {
 var total = 0;
 inputs.each(function (index, elem) {
 total+= Number($(elem).val());
 });
 return total == 0;
 }

 function countEmptyOrZeroValues(inputs) {
 var count = 0;
 inputs.each(function (index, elem) {
 if (elem.value == null || elem.value == "") {
 count++;
 }
 });
 return count > 0;
 }

 $("button").button().click(function (e) {
 var tabsElem = $("#tabs");
 var activeTab = tabsElem.tabs("option", "active");
 if (activeTab < tabsElem.find("ul > li").length - 1) {
 tabsElem.tabs("option", "active", activeTab + 1)
 e.preventDefault();

Chapter 20 ■ Using the tabs Widget

553

 } else {
 validatePanel(e, activePanel);
 }
 });
 });
</script>
...

I use two of the tabs events to get the effect I want. The beforeActivated event is useful when the user is
navigating from one tab to the next because it provides me with a reference to the content panel of the tab that is
about to be closed, which I access through the properties of the second argument passed to my handler function—the
ui object—as described in Table 20-7.

Table 20-7. The Properties of the Additional Object Passed to beforeActivate and activate Event Handlers

Name Description

newHeader The header element for the newly active tab

oldHeader The header element for the previously active tab

newPanel The newly active content panel

oldPanel The previously active content panel

I use the oldPanel reference to perform validation and stop the transition to another tab by calling the
preventDefaultAction method on the event object (as described in Chapter 9).

There is a wrinkle with this approach, which is that the beforeActivate event isn't triggered when the user clicks
the button element after completing the last tab because the form is submitted to the server. For this reason, I also
handle the activate event and store a reference to the new tab that is displayed (which I access through the newPanel
property of the ui object, which also defines the properties shown in Table 20-7). I use this reference to perform
validation before allowing the form to be submitted to the server.

My approach to telling the user about a validation error is to call the alert function and display a message
in a dialog box, as shown in Figure 20-10. Obviously, in a real project, you could use the summary features of the
validation plug-in, as I described in Chapter 13.

Chapter 20 ■ Using the tabs Widget

554

Summary
In this chapter, I showed you the jQuery UI tabs widget. This widget offers rich and complex functionality and can be
used in a wide range of situations. I find myself using this widget a lot. It is flexible and completely customizable, and
users are generally familiar with the idea of selectively revealing content contained in individual tabs, something that
is not always the case with other widgets such as the accordion. In Chapter 21, I show you the datepicker widget.

Figure 20-10. The alert box shown in response to a validation error

555

Chapter 21

Using the Datepicker Widget

This chapter focuses on the jQuery UI datepicker widget, which provides a convenient mechanism for helping users
select dates. Getting date information from users is notoriously problematic because of the wide range of formats in
which dates can be expressed. The datepicker widget can make it easier for the user to select a date in a way that is
more consistent and less prone to errors and using a regular text input element. Table 21-1 provides the summary
for this chapter.

Table 21-1. Chapter Summary

Problem Solution Listing

Create a pop-up jQuery UI datepicker Use the datepicker method on an input element 1

Create an inline datepicker Use the datepicker method on a span or div element 2

Specify the date displayed by the datepicker Use the defaultDate setting 3

Specify an additional element that will be
updated when the user selects a date

Use the altField setting 4

Change the action that causes a pop-up
datepicker to appear

Use the showOn setting 5

Specify the text displayed in the datepicker
trigger button

Use the buttonText setting 6

Show an image in place of the trigger button Use the buttonImage and buttonImageOnly settings 7

Restrict the date selection Use the constrainInput, minDate, and maxDate settings 8, 9

Display several months in the datepicker Use the numberOfMonths setting 10–12

Enable drop-down menus to aid navigation to
months and years

Use the changeMonth and changeYear settings 13

Show week information in the datepicker Use the showWeek and weekHeader settings 14

Fill the date grid with dates from the previous
and subsequent months

Use the showOtherMonths and selectOtherMonths
settings

15

Display a button bar at the base of the datepicker Use the showButtonBar and gotoCurrent settings 16

Show a formatting hint to the user Use the appendText setting (or the HTML5
placeholder feature)

17, 18

Get or set the date programmatically Use the getDate and setDate methods 19

(continued)

Chapter 21 ■ Using the DatepiCker WiDget

556

Creating the Datepicker
You can use the datepicker in two ways. The most common is to attach the widget to an input element, using the
datapicker method. There is no immediate visual change to the input, but when the element gains the focus
(because the user either tabs from other elements or clicks the input field), the datepicker pops up to help the user
select a date. Listing 21-1 demonstrates this pop-up datepicker.

Listing 21-1. Creating a Pop-up Datepicker

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 input {width: 200px; text-align: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div class="ui-widget">
 <label for="datep">Date: </label><input id="datep"/>
 </div>
 </form>
</body>
</html>

You can see how focusing on the input element displays the datepicker in Figure 21-1.

Problem Solution Listing

Show or hide a pop-up datepicker
programmatically

Use the show and hide methods 20

Respond to the user navigating to a new month
or year

Use the onChangeMonthYear event 21

Respond to a pop-up datepicker closing Use the onClose event 22

Localize the datepicker Use the jQuery UI i8n support 23

Table 21-1. (continued)

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://node.jacquisflowershop.com/order

Chapter 21 ■ Using the DatepiCker WiDget

557

When the datepicker pop-up is displayed, the user can choose to enter a date manually or use the datepicker
window to select a date. The datepicker pop-up disappears when the input element loses the focus or when the user
hits the Enter or Escape keys.

Creating an Inline Datepicker
The other way to use the datepicker is to use it inline. To achieve this, you select a div or span element using jQuery
and then call the datepicker method. An inline datepicker is visible whenever the underlying element is visible.
Listing 21-2 demonstrates the creation of an inline datepicker.

Listing 21-2. Creating an Inline Datepicker

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>

Figure 21-1. The datepicker pop ups up when the input element gains the focus

Chapter 21 ■ Using the DatepiCker WiDget

558

 <style type="text/css">
 input {width: 200px; text-align: left; margin-right: 10px}
 #wrapper > * {float: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#inline").datepicker();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="wrapper" class="ui-widget">
 <label for="datep">Date: </label>
 <input id="datep"/>

 </div>
 </form>
</body>
</html>

In this example, I have added a span element and used it as the target of the datepicker method. You can see
the effect in Figure 21-2.

Figure 21-2. An inline datepicker

http://node.jacquisflowershop.com/order

Chapter 21 ■ Using the DatepiCker WiDget

559

An inline datepicker can be useful when you don’t want to work with pop-ups. In some applications dates
are so important that it makes sense to display the datepicker all of the time, but in most cases hiding the pop-up
until it is required is more sensible. The problem with hiding and showing an inline datepicker is that the layout of
the document has to flex to accommodate the datepicker, which can cause presentation problems. For almost all
situations, I find the pop-up datepicker to be more useful.

Configuring the Datepicker
If you have done any work with dates before, you will understand that they are complicated to deal with. You see this
complexity reflected in the large number of settings supported by the datepicker widget. In the following sections,
I describe groups of related settings that can be used to configure the datepicker.

Performing Basic Configuration
Table 21-2 describes the settings that perform the basic configuration for the datepicker widget. I show you how to use
these settings in the sections that follow.

Specifying the Default Date
The most basic setting is also one of the most useful. The defaultDate setting specifies the date that will be shown
when the datepicker is displayed. If you don’t provide a value for the defaultDate setting, then the current date will
be used. (This is, of course, the date as defined by the user’s system. Time zones, date lines, and misconfiguration can
all present the user with a different date from the one you might be expecting to appear.)

Tip ■ this setting is used only if there isn’t a value attribute for the input element. if there is, either because you have
included the value attribute in the document or because the user has previously made a selection, then the datepicker
ignores the setting.

Table 21-2. Basic Datepicker Settings

Setting Description

altField Specifies an additional field that will be updated with the data selection.

buttonImageOnly Specifies that the image specified by buttonImage should be contained in an img element
rather than a button. The default is false.

buttonImage Specifies the URL of an image to use for the pop-up trigger button. Not used by default.

buttonText Specifies the text for the pop-up trigger button. The default is an ellipsis (...).

defaultDate Sets the date to highlight when the datepicker is displayed.

disabled Specifies whether the datepicker widget is initially disabled. The default is false.

showOn Specifies the trigger for displaying a pop-up datepicker. The default is focus.

Chapter 21 ■ Using the DatepiCker WiDget

560

Listing 21-3 shows the use of the defaultDate setting to specify a date five years in the future.

Listing 21-3. Using the defaultDate Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 defaultDate: "+5y"
 });
 });
</script>
...

I am writing this chapter in June 2013, and you can see in Figure 21-3 that the +5y value for the defaultDate
setting focuses the datepicker on June 2018.

Table 21-3. Formats and Values for the defaultDate Setting

Value/Format Description

null Use the current system date.

Date object Use the value represented by the Date object.

+days, -days Use the date that is the specified number of days from today. For example, +3 means show
three days from today, and -2 means show the date two days ago.

+1d +7w -1m +1y Use a date that is relative to today, expressed as a number of days (d), weeks (w), months (m),
and years (y) in the future (+) or in the past (-). Positive and negative values can be mixed
in a single date so that a value of -1d +1m used on November 12, 2011, selects the date
December 11, 2011.

If you don’t want today’s date, then you can choose from several different formats to express the date you want
to start with. Table 21-3 shows the range of formats and values you can use.

Chapter 21 ■ Using the DatepiCker WiDget

561

As in the example, you can omit any interval that you don’t want to change such that you can use +5y rather than
+0d +0w +0m +5y. You can mix and match negative and positive values for different intervals to zero in on the date
you want.

Specifying the Alternate Element
The altField setting specifies an input element that will be updated when you make a date selection. This is the
easiest way of linking an input element with an inline datepicker. Listing 21-4 shows the use of the altField setting
as a means of displaying the selection from an inline datepicker.

Listing 21-4. Using the altField Setting with an Inline Datepicker

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#inline").datepicker({
 altField: "#datep"
 });
 });
</script>
...

In Listing 21-4, I have used a selector string to identify the element I want to use, but the altField setting will
also accept a jQuery object or a Document Object Model (DOM) HTMLElement object. The effect of this example is that
the input element displays the date each time I make a selection using the datepicker, as shown in Figure 21-4.

Figure 21-3. Displaying a future date using the defaultDate setting

Chapter 21 ■ Using the DatepiCker WiDget

562

Managing the Pop-up Trigger
The showOn setting controls what causes a pop-up datepicker to be shown to the user. There are three allowed values
for this setting.

•	 focus: The pop-up is shown when the input element gains the focus. This is the default.

•	 button: The pop-up is shown when a button is clicked.

•	 both: The pop-up is shown when a button is clicked or when the input gains focus.

When you use the button or both value, the datepicker widget creates a button element and adds it to the
document immediately after the input element. Listing 21-5 shows the use of the showOn setting.

Listing 21-5. Using the showOn Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 showOn: "both"
 });
 });
</script>
...

You can see the button element created by the widget in Figure 21-5. Since I used the both value in this example,
the pop-up will be displayed when the user either clicks the button or focuses on the input element.

Figure 21-4. Specifying the input element that the datepicker will update

Chapter 21 ■ Using the DatepiCker WiDget

563

Tip ■ the button that the datepicker widget adds is not a jQuery Ui button widget. if you want to keep your buttons
consistent, then you will need to select the button element and call the jQuery Ui button method, as described
in Chapter 18.

You can format the button element using the buttonImage or buttonText setting. If you set buttonImage to a
URL, the datepicker widget will use the image in the button. Alternatively, you can use the buttonText setting to set
a phrase to replace the default content (which is ...). Listing 21-6 shows the use of the buttonText setting.

Listing 21-6. Using the buttonText Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 showOn: "both",
 buttonText: "Select"
 });
 });
</script>
...

You can do away with the button text entirely if you use the buttonImage and buttonTextOnly settings together.
This causes the datepicker to add an img element to the document rather than a button. Listing 21-7 provides a
demonstration.

Listing 21-7. Using an Image Rather Than a Button

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>

Figure 21-5. The button added in response to the showOn setting

Chapter 21 ■ Using the DatepiCker WiDget

564

 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 input {width: 200px; text-align: left}
 #dpcontainer * {vertical-align: middle}
 #dpcontainer img {width: 35px;}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 showOn: "both",
 buttonImage: "right.png",
 buttonImageOnly: true
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="dpcontainer" class="ui-widget">
 <label for="datep">Date: </label><input id="datep"/>
 </div>
 </form>
</body>
</html>

I have specified an image called right.png and set buttonImageOnly to true. I have also added some CSS styles
to the document to control the appearance of the image relative to the label and input elements. The datepicker
widget isn’t particularly smart about how it creates the img element, so I need to compensate to bring the style of
the image in line with the rest of the document. You can see the effect of having an image rather than a button in
Figure 21-6.

Figure 21-6. Using an image instead of a button with a pop-up datepicker

http://node.jacquisflowershop.com/order

Chapter 21 ■ Using the DatepiCker WiDget

565

Managing the Date Selection
You will often want to apply constraints to the range of dates that the user can select using the datepicker widget.
Table 21-4 describes the settings that allow you to apply selection constraints to guide the user to a date you can
work with.

Limiting the Input Character and Date Range
When set to true, the constrainInput setting restricts the characters that can be entered into the input element to
those that are contained in a valid date. The set of characters is dependent on the localization configuration you are
using, which I talk more about in the section “Localizing Date Selection.” If you have not localized the datepicker
widget, then you can expect the input element to be restricted so that the user can enter only numbers and the
/ character.

This setting doesn’t mean that the user can only enter valid dates because a value like 99/99/99 can be entered,
but it can help reduce errors. The importance of this setting increases when the showOn setting is set to button
because the pop-up won’t automatically appear when the input element gains the focus. Users will typically select
from the datepicker when it is presented to them but won’t always realize that a button will display a picker. Every
opportunity you give the user to enter a date directly increases the chances you have to process a badly formatted
value. Listing 21-8 shows the use of the constrainInput setting.

Table 21-4. Datepicker Settings for Managing Date Selection

Setting Description

changeMonth When true, the datepicker displays a drop-down menu that allows direct navigation to
a month. The default is false.

changeYear When true, the datepicker displays a drop-down menu that allows direct navigation to
a year. The default is false.

constrainInput When true, limits the characters in the input element to those contained in a valid date.
The default is true.

hideIfNoPrevNext When true, the previous and next buttons are hidden, rather than disabled, when there are
no selectable dates in the past or future relative to the displayed period. The default is false.

maxDate Specifies the latest date that the user can select. The default is to allow the user to select
any date.

minDate Specifies the earliest date that the user can select. The default is to allow the user to select
any date.

numberOfMonths Specifies the number of months displayed by the datepicker. The default is 1.

showCurrentAtPos Specifies where the current or default month is displayed in a multimonth datepicker.
The default is 0.

stepMonths Specifies the number of months that the display jumps when the previous and next buttons
are clicked. The default is 1.

yearRange Specifies the range of years that can be selected in the drop-down list that is enabled by
the changeYear setting. The default is to display ten years before and ten years after the
present year.

Chapter 21 ■ Using the DatepiCker WiDget

566

Listing 21-8 . Applying Basic Constraints to the Date Selection

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 input {width: 200px; text-align: left; margin-right: 10px}
 #wrapper > * {float: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 constrainInput: true,
 minDate: "-3",
 maxDate: "+5"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="wrapper" class="ui-widget">
 <label for="datep">Date: </label><input id="datep"/>
 </div>
 </form>
</body>
</html>

The constrainInput setting is true by default, so I have added values for the minDate and maxDate settings as well,
just to make the example a little more interesting. These settings allow me to specify the earliest and latest dates that the
user can select. As with the defaultDate setting I showed you in section “Specifying the Default Date,” I can specify the
dates for the minDate and maxDate settings as null (no date), a Date object, a number of days, or a relative date string.
In Listing 21-8, I used the number option that specifies the number of days relative to today. In Figure 21-7, you can
see that the datepicker widget disables any date that the user cannot select.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

http://node.jacquisflowershop.com/order

Chapter 21 ■ Using the DatepiCker WiDget

567

Tip ■ notice that the previous and next buttons are disabled automatically when they are not required. these are
the buttons at the top left and top right of the datepicker that allow the user to move to the previous and next months.
in Figure 21-7, all of the dates that the user can select are in the current or previous month, so the next button is
 disabled. You can hide, rather than disable, buttons in this situation by setting hideIfNoPrevNext to true.

The minDate need not be in past, the maxDate need not be in the future, and you don’t have to provide values for
both settings. If you need the user to pick a date for which there is some kind of lead time, you can specify a future
date for the minDate setting to prevent dates from being selected that are inside the period you need to prepare,
as shown in Listing 21-9.

Listing 21-9. Providing One Date Restriction to Create a Delay Window

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 minDate: "+7"
 });
 });
</script>
...

Figure 21-7. Restricting the dates that the user can select

Chapter 21 ■ Using the DatepiCker WiDget

568

In this example, I have specified that the user cannot select any date that occurs sooner than a week from today.
There is no maxDate value, meaning that any future date after a week from now can be selected. You can see the result
in Figure 21-8. Notice that the next button (which allows the user to navigate to the next month) is enabled in this
figure, but the previous button is disabled (since there are no dates in the past that the user is allowed to select).

Tip ■ the minDate and maxDate settings work in conjunction with the defaultDate setting, meaning that you can
specify ranges of dates relative to a date that is not today.

Creating a Multimonth Display
The datepicker allows you to specify how many months are displayed to the user through the numberOfMonths setting.
You can specify either a number of months or a two-element array, which specifies the size of a grid of months.
Listing 21-10 shows the array-based approach, which I find is most suited to inline datepickers because the grid
is often too big to use as a pop-up (I’ll explain why in a moment).

Figure 21-8. Creating an open-ended date selection range

Chapter 21 ■ Using the DatepiCker WiDget

569

Listing 21-10. Using the numberofMonths Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#inline").datepicker({
 numberOfMonths: [1, 3]
 });
 });
</script>
...

In this example, I have specified a grid of one month high and three months wide. You can see the effect
in Figure 21-9.

Tip ■ the two-element array [1, 3] is equivalent to the numeric value 3. When you provide a number for the
 numberOfMonths setting, the datepicker displays the specified number of months in a single row.

The reason that I rarely use this feature with pop-up datepickers is that a large grid requires assumptions about
the size of the user’s browser window and display. The datepicker pop-up isn’t an operating system dialog box. It is
a carefully formatted HTML element that is displayed as part of the HTML document. This means that when a large
datepicker is displayed on a small screen or in a small browser window, much of the detail is displaced off the edge
of the screen. Listing 21-11 shows a grid of months applied to a pop-up datepicker.

Figure 21-9. Displaying a grid of months

Chapter 21 ■ Using the DatepiCker WiDget

570

Listing 21-11. Using the numberOfMonths Setting with a Pop-up Datepicker

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 numberOfMonths: [1, 3]
 });
 });
</script>
...

You can see the result in Figure 21-10. Not only are many of the available dates hidden from the user, but the next
button (which allows the user to advance the displayed months) is off the screen as well.

Figure 21-10. Displaying a large pop-up datepicker

You can change the position of the selected date in a multimonth datepicker using the showCurrentAtPos setting.
As you can see in Figures 21-9 and 21-10, the default is to display the current month first, followed by the next two
months in the future. The showCurrentAtPos setting takes a zero-based index value that specifies the location where
the current month should be displayed. This is a handy feature if you need to allow the user to select dates on either
side of today. Listing 21-12 shows the use of this setting.

Chapter 21 ■ Using the DatepiCker WiDget

571

Listing 21-12. Using the showCurrentAtPos Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#inline").datepicker({
 numberOfMonths: 3,
 showCurrentAtPos: 1
 });
 });
</script>
...

I have specified that the current date should be shown in the middle of the three months shown by the
datepicker. You can see the result in Figure 21-11.

Providing Direct Access to Months and Years
You can replace the month and year in the header of the datepicker header with drop-down menus that provide
direct access to months and years. This can be a useful shortcut for users when there is a large date range to select
from. The settings that control these features are changeMonth and changeYear. A true value for these settings enables
the corresponding menu, and the menus can be enabled independently of one another. Listing 21-13 shows the use
of these settings.

Figure 21-11. Specifying the location of the current month in a multimonth datepicker

Chapter 21 ■ Using the DatepiCker WiDget

572

Listing 21-13. Providing Direct Access to Months and Years Through Drop-Down Menus

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 changeMonth: true,
 changeYear: true,
 yearRange: "-1:+2"

 });
 });
</script>
...

In this listing, I have enabled both drop-down menus. I have also used the yearRange setting to limit the range
of years that the user can navigate to. I specified a value of -1:+2, which means that the user can select one year back
from today through to two years into the future. Since I am writing this chapter in 2013, the range of years that the
user is presented with is 2012 to 2015. You can see how the menus are displayed (and how the year range appears)
in Figure 21-12.

Tip ■ You can also supply a range of actual years for the yearRange setting. i could have achieved the same result
in Figure 21-12 with a value of 2012:2015.

Figure 21-12. Providing the user with direct access to months and years

Chapter 21 ■ Using the DatepiCker WiDget

573

Managing the Appearance of the Datepicker
You can use a number of settings to tailor the appearance of the datepicker when it is displayed to the user. For
general date selection purposes, the default appearance that you have seen in earlier examples is usually suitable,
but the ability to tweak the appearance to suit the requirements of a web application is extremely useful. Table 21-5
describes the appearance-related settings.

Displaying Weeks
For some applications, knowing which week of the year a date falls in is essential. This is often the case in budget
management applications, for example. The jQuery UI datepicker can display week information, configured through
the showWeek and weekHeader settings, as shown in Listing 21-14.

Table 21-5. Datepicker Settings for Controlling Appearance

Setting Description

appendText Specifies a formatting hint that will be inserted into the document after the input element.

closeText Specifies the text to use for the button in the button bar that dismisses a pop-up datepicker.
The default is Done.

currentText Specifies the text to use for the button in the button bar that returns to the current date.
The default is Today.

duration Specifies the speed or duration for the animation specified by the showAnim setting is
performed. The default is normal. I described the jQuery UI animation effects in Chapter 35.

gotoCurrent When true, the Today button in the button bar will return to the selected date rather than
today’s date. The default is false.

selectOtherMonths When true, the dates shown as a result of the showOtherMonths setting can be selected.
The default is false.

showAnim Specifies the animation used to show and hide pop-up datepickers. I describe the jQuery
UI animation effects in Chapter 35. The default is show.

showButtonPanel When true, the datepicker displays a button bar allowing the user to jump to the current
date and (when used with a pop-up) to dismiss the datepicker. The default is false.

showOptions Specifies the options for the animation defined by the showAnim setting. I describe the
jQuery UI animation effects in Chapter 35.

showOtherMonths When true, the datepicker fills blanks in the date grid with dates from the previous and
subsequent months. The default is false.

showWeek When true, the datepicker displays a column showing week information. The default is true.

weekHeader Sets the header for the week column enabled through the showWeek setting. The default is Wk.

Chapter 21 ■ Using the DatepiCker WiDget

574

Listing 21-14. Displaying Week Information in the Datepicker

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 showWeek: true,
 weekHeader: "Week"
 });
 });
</script>
...

When the showWeek setting is true, the datepicker displays a column that shows week numbers. You can use the
weekHeader setting to change the title of the week column from the default, Wk. In the example, I have enabled the
week column and changed the title to Week. You can see the result in Figure 21-13.

Allowing Bleed Between Months
The datepicker displays only the dates in the current month by default. This means there are blank entries in the date
grid before and after the range of dates. You can show dates from the previous and next months by using a value of
true for the showOtherMonth setting, as shown in Listing 21-15.

Figure 21-13. Showing week information in the datepicker

Chapter 21 ■ Using the DatepiCker WiDget

575

Listing 21-15. Allowing Months to Bleed into One Another

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 showOtherMonths: true
 });
 });
</script>
...

You can see the result in Figure 21-14. The dates from the other months cannot be selected unless
selectOtherMonths is set to true.

Using the Button Bar
When true, the showButtonBar setting enables a button bar at the bottom of the datepicker window. When using a
pop-up datepicker, the button bar contains Today and Done buttons. The Today button jumps back to the current date,
and the Done button dismisses the pop-up. You can see the buttons in Figure 21-15. When part of an inline datepicker,
only the Today button is shown.

Figure 21-14. Showing dates from previous and subsequent months

Chapter 21 ■ Using the DatepiCker WiDget

576

Tip ■ You can change the text used for the Today and Done buttons using the currentText and closeText settings.

When true, the gotoCurrent setting will return the datepicker to the currently selected date rather than today’s
date. This is useful when you have configured the datepicker with the defaultDate setting. It doesn’t always make
sense to return to the current date if the purpose of the date selection is related to historical or future events.
Listing 21-16 contains an example.

Listing 21-16. Using the gotoCurrent Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 showButtonPanel: true,
 gotoCurrent: true,
 defaultDate: "+1m +1y"
 }).val("12/25/2012");
 });
</script>
...

Note that the gotoCurrent setting causes the button to go to the selected date. In Listing 21-16, the date will be
taken from the value attribute of the input element, but if the user selects another date and later opens the datepicker
again, the button will return to the date the user selected rather than the dates you specified.

Figure 21-15. Showing the button bar

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 21 ■ Using the DatepiCker WiDget

577

Providing a Format Hint to the User
You can use the appendText setting to provide the user with a hint about the date format that you are expecting.
Listing 21-17 demonstrates.

Listing 21-17. Using the appendText Setting to Provide a Format Hint

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 appendText: "(mm/dd/yyyy)"
 });
 });
</script>
...

The datepicker inserts the text you specify into the document, as shown in Figure 21-16.

This setting is most useful when you rely on a button to make the pop-up datepicker appear. When the user is
free to enter the text without the datepicker, then the hint you give her about the format can significantly reduce the
errors you have to deal with (which is good for you and less frustrating for the user). Recently, I have started using
the HTML5 placeholder attribute for input elements as a neater alternative to the datepicker appendTo setting.
Listing 21-18 demonstrates.

Listing 21-18. Providing a Formatting Hint Using the HTML5 Placeholder Attribute

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#datep").attr("placeholder", "mm/dd/yyyy").datepicker();
 });
</script>
...

Obviously, this requires the user to have an HTML5-enabled browser, but the effect is more elegant. The user is
presented with the hint in grayed-out text that disappears as soon as he starts typing. I prefer this because it is more
closely associated the formatting hint with the input element, and it doesn’t require space in the document layout.
You can see how the placeholder is displayed in Google Chrome in Figure 21-17.

Figure 21-16. Using the appendText setting to provide a format hint to the user

Chapter 21 ■ Using the DatepiCker WiDget

578

Using the Datepicker Methods
The datepicker widget supports the methods that are shown in Table 21-6.

Getting and Setting the Date Programmatically
I find the getDate and setDate methods most useful when I am using multiple inline date pickers to allow the user to
select a date range. In this situation, I don’t want to display the selected dates in input elements. I want to display just
the number of days between the first and second dates. Listing 21-19 demonstrates.

Listing 21-19. Using Two Datepickers to Select a Date Range

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>

Figure 21-17. Using an HTML5 placeholder as a formatting hint

Table 21-6. Accordion Methods

Method Description

datepicker("destroy") Removes the datepicker from the underlying element

datepicker("disable") Disables the datepicker

datepicker("enable") Enables the datepicker

datepicker("option") Sets one or more options for the datepicker

datepicker("isDisabled") Returns true if the datepicker is disabled

datepicker("hide") Hides a pop-up datepicker

datepicker("show") Shows a pop-up datepicker

datepicker("refresh") Refreshes a datepicker to reflects changes in the underlying element

datepicker("getDate") Gets the selected date from the datepicker

datepicker("setDate", date) Sets the selected date for the datepicker

Chapter 21 ■ Using the DatepiCker WiDget

579

 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 input {width: 200px; text-align: left; margin-right: 10px}
 #wrapper > * {float: left}
 #result {margin: auto; padding: 10px; width: 200px; clear: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $("#result").hide();

 $("#dateStart, #dateEnd").datepicker({
 minDate: "-7d",
 maxDate: "+7d",
 onSelect: function(date, datepicker) {
 if (datepicker.id == "dateStart") {
 $("#dateEnd").datepicker("setDate", date)
 .datepicker("enable").datepicker("option", "minDate", date)
 }

 if (!$("#dateEnd").datepicker("isDisabled")) {
 var startDate = $("#dateStart").datepicker("getDate");
 var endDate = $("#dateEnd").datepicker("getDate");
 var diff = endDate.getDate() - startDate.getDate();
 $("#dayCount").text(diff).parent().show();
 }
 }

 }).filter("#dateEnd").datepicker("disable");
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="wrapper" class="ui-widget">
 <label for="dateStart">Start: </label>
 <label for="dateEnd">End: </label>
 </div>
 <div id="result" class="ui-widget">
 Number of Days:
 </div>
 </form>
</body>
</html>

There are two datepickers in Listing 21-19, the second of which is disabled when the document is first loaded.
I use the onSelect event (which is triggered when a date is selected) to respond to the user making date selections.
When the user makes a selection in the first datepicker, I use the setDate method to prepare the second datepicker
and the getDate method to get the dates from both datepicker in order to work out the number of days between the

http://node.jacquisflowershop.com/order

Chapter 21 ■ Using the DatepiCker WiDget

580

first and second selected dates (to keep this example simple, I have done a comparison that assumes that both dates
are in the same month). You can see how this document is displayed in the browser in Figure 21-18.

Showing and Hiding Pop-up Datepickers Programmatically
You can use the show and hide methods to programmatically control the presence of a pop-up datepicker on the
screen. This can be useful if you want to associate the datepicker with something other than the focus of the input
element or the button that the datepicker widget creates. I am not much of a fan of letting the datepicker create a
button in the document, so I occasionally find myself using these methods to control the datepicker from a button
I have added myself, as demonstrated in Listing 21-20.

Listing 21-20. Using the show and hide Methods

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 input {width: 200px; text-align: left; margin-right: 10px}
 #wrapper > * {float: left}
 label {padding: 4px; text-align: right; width: auto}
 </style>

Figure 21-18. Using the getDate and setDate methods

Chapter 21 ■ Using the DatepiCker WiDget

581

 <script type="text/javascript">
 $(document).ready(function() {

 $("#datep").datepicker();

 $("button").click(function(e) {
 e.preventDefault();
 $("#datep").datepicker("show");
 setTimeout(function() {
 $("#datep").datepicker("hide");
 }, 5000)
 })

 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="wrapper" class="ui-widget">
 <label for="datep">Date: </label><input id="datep"/>
 <button>Datepicker</button>
 </div>
 </form>
</body>
</html>

I call the datepicker show method when the button is clicked. I don’t often use the hide method because
I want the user to be able to dismiss the pop-up when he has made a selection, but for completeness, I have used
the setTimeout function so that the pop-up is dismissed five seconds after the button has been pressed.

Using the Datepicker Events
Like all jQuery UI widgets, the datepicker supports a set of events that allow you to receive notifications of important
changes. Table 21-7 describes these events.

I am not going to demonstrate the onSelect method again because I have already used it in a couple of examples,
including the one in the section “Getting and Setting the Date Programmatically.” The arguments passed to the
handler function for this event are a string representation of the selected date and the datepicker that has triggered
the event.

Table 21-7. Datepicker Events

Event Description

create Triggered when the datepicker is created

onChangeMonthYear Triggered when the user moves to a different month or year

onClose Triggered when a pop-up datepicker is closed

onSelect Triggered when the user selects a date

http://node.jacquisflowershop.com/order

Chapter 21 ■ Using the DatepiCker WiDget

582

Responding to a Month or Year Change
The onChangeMonthYear event allows you to respond when the user selects a new month or year, either from the
drop-down menus enabled by the changeMonth and changeYear settings or through the previous and next buttons.
Listing 21-21 shows how you can use this event to keep two datepickers consistent.

Listing 21-21. Using the onChangeMonthYear Event

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 input {width: 200px; text-align: left; margin-right: 10px}
 #wrapper > * {float: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $("#dateStart, #dateEnd").datepicker({
 onSelect: function(date, datepicker) {
 if (datepicker.id == "dateStart") {
 $("#dateEnd").datepicker("setDate", date)
 }
 },
 onChangeMonthYear: function(year, month, datepicker) {
 if (datepicker.id == "dateStart") {
 var newDate = new Date();
 newDate.setMonth(month -1);
 newDate.setYear(year);
 $("#dateEnd").datepicker("setDate", newDate);
 }
 }
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="wrapper" class="ui-widget">
 <label for="dateStart">Start: </label>
 <label for="dateEnd">End: </label>
 </div>
 </form>
</body>
</html>

http://node.jacquisflowershop.com/order

Chapter 21 ■ Using the DatepiCker WiDget

583

The three arguments to the function for this event are the displayed year, the displayed month, and the
datepicker that triggered the event. The this variable is set to the input element for pop-up datepickers. When
the user navigates to a new month or year on the first datepicker, I set the date on the second datepicker to keep
them in sync.

Notice that the datepicker widget represents January as month 1 while the JavaScript Date object uses 0.
This is why I have to make an ugly adjustment like this

...
newDate.setMonth(month -1);
...

when I am creating the date I want displayed in the second datepicker.

Responding to the Pop-up Closing
You can use the onClose method to respond to the pop-up datepicker being closed. This event is triggered even when
the user has not made a date selection. The arguments to the handler function are a string representation of the date
(or the empty string if the user dismissed the datepicker without making a selection) and the datepicker that triggered
the event. Listing 21-22 shows a simple response to this event.

Listing 21-22. Using the onClose Event

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 input {width: 200px; text-align: left; margin-right: 10px}
 #wrapper > * {float: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#datep").datepicker({
 onClose: function(date, datepicker) {
 if (date != "") {
 alert("Selected: " + date);
 }
 }
 });
 });
 </script>
</head>

Chapter 21 ■ Using the DatepiCker WiDget

584

<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="wrapper" class="ui-widget">
 <label for="datep">Date: </label><input id="datep"/>
 </div>
 </form>
</body>
</html>

In Listing 21-22, I display an alert box to the user displaying the selection, if one has been made. I must admit that
I have never found myself using this event in a real project; the onSelect event is the one that I find most useful.

Localizing Date Selection
The jQuery UI datepicker has comprehensive support for the different date formats used around the world.
To use them, you need to import an additional JavaScript file into your document and tell the datepicker which
locale you want to use. Listing 21-23 provides an example.

Listing 21-23. Using the Localized Datepicker

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <script src="jquery-ui-i18n.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 input {width: 200px; text-align: left; margin-right: 10px}
 #wrapper > * {float: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#inline").datepicker($.datepicker.regional["es"]);
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="wrapper" class="ui-widget">
 <label for="datep">Date: </label><input id="datep"/>
 </div>
 </form>
</body>
</html>

http://node.jacquisflowershop.com/order
http://node.jacquisflowershop.com/order

Chapter 21 ■ Using the DatepiCker WiDget

585

The jquery-ui-i18n.js file can be found in the development-bundle/ui/i18n folder of the customized jQuery
UI download you created in Chapter 17. Copy this file into place alongside the main jQuery and jQuery UI script files
and add the following to your document:

...
<script src="jquery-ui-i18n.js" type="text/javascript"></script>
...

You can specify the locale to use for the datepicker when you create it, as follows:

...
$("#inline").datepicker($.datepicker.regional["es"]);
...

This is a messy syntax, but it allows you to specify the localized formats you want. In this example, I have
specified es, which means that I will be using the Spanish date formats. You can see the result in Figure 21-19.

My advice for localization is that it should be done properly or not at all. This means going far beyond just date
formats and presenting the user with an interface that fully follows language, address, gender, currency, time, and
every other local convention. Users find it jarring if you localize only part of a web application or following conventions
inconsistently. To properly localize an application, you should hire an individual or a company that specializes in such
work. There are so many ways to go wrong that you are doomed to fail without professional support.

Figure 21-19. Localizing the date display

Chapter 21 ■ Using the DatepiCker WiDget

586

If you find yourself trying to localize an application using Google Translate (which is not uncommon), then
I recommend you just deliver the application using US English and US localization conventions. This limits your
customer base to those who are familiar with US variants on spelling, dates, currency, and so on, but at least you
will avoid the train wreck that almost always arises when ad hoc localization is attempted.

Summary
In this chapter, I showed you the workings of the jQuery UI datepicker widget, which you can use to assist the user in
selecting dates. The datepicker is a flexible widget that allows you to tailor the way that date selections are made and
the appearance of the datepicker. My own experience with datepickers is that they are invaluable for reducing the
number of formatting problems I have to deal with when requesting date information from users. In Chapter 22,
I show you the jQuery UI dialog and spinner widgets.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

587

Chapter 22

Using the Dialog and Spinner Widgets

In this chapter, I describe the jQuery UI dialog and spinner widgets. Table 22-1 provides the summary for this chapter.

Table 22-1. Chapter Summary

Problem Solution Listing

Create a jQuery UI dialog Select a div element with a title attribute
and call the dialog method

1

Prevent a dialog from being displayed
as soon as it is created

Set the autoOpen setting to false 2

Prevent the user from resizing a dialog Set the resizable setting to false 3

Focus on an element in the dialog Set the autofocus attribute 4

Change the initial position of a dialog Use the position setting 5

Add one or more buttons to a dialog Use the buttons setting 6

Display icons on the dialog buttons Use the icons setting 7

Allow the user to move the dialog Use the draggable setting 8

Create a model dialog Set the modal setting to true 9, 10

Programmatically open and close a dialog Use the open, close, and isOpen methods 11

Prevent a dialog from closing Return false in the handler function for the
beforeClose event

12

Respond to the user moving or changing
the size of a dialog

Respond to the dragStart, dragStop, drag,
resizeStart, resizeStop, and resize events

13

Create a jQuery UI spinner Select an input element and call the spinner method 14–16

Configure the basic spinner behavior Use the min, max, step and page settings 17

Change the icons used for the spinner buttons Use the icons property 18

Control the rate of change when the
spin buttons are held down

Use the incremental setting 19

Change the format of the spinner number Use the culture and numberFormat settings 20

Change the spinner value programmatically Call the pageDown, pageUp, stepDown, and stepUp methods 21

Respond to changes in the spinner value Handle the spinner events 22

Chapter 22 ■ Using the Dialog anD spinner WiDgets

588

JQUerY UI ChaNGeS SINCe the LaSt eDItION

the spinner widget didn’t exist when i wrote the first edition of this book. the dialog widget did exist and the
api (application programming interface) has been updated in jQuery Ui version 1.10. there are some new dialog
features: an appendTo setting which specifies where in the DoM (Document object Model) the dialog elements
will be located; support for setting focus on dialog elements; the position option has changed to use the format
i described in Chapter 19; and there is support for displaying icons in the dialog buttons. some features have
been removed as well: the stack and zIndex settings.

Using the jQuery UI Dialog Widget
The jQuery UI dialog widget creates a floating window with a title and content area, similar to the kind of dialog you
might see from a native application. Dialogs are useful for focusing the user’s attention on an important event or
message. As with any element that can obscure the document content, the dialog must be used sparingly and only
when displaying the content inside the document layout isn’t feasible.

Creating the Dialog
The dialog widget is created by selecting a div element and then calling the dialog method on the resulting jQuery
object. The dialog widget requires a specific structure of HTML elements in order to operate, although the structure
is simpler than the tabs widget requires, for example. Listing 22-1 shows a document that contains the required
elements and that creates a dialog box.

Listing 22-1. Creating a Dialog Box Using jQuery UI

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#dialog").dialog();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dialog" title="Dialog Box">
 This is the content that will be displayed in the dialog box. This content
 can be styled.
 </div>
</body>
</html>

Chapter 22 ■ Using the Dialog anD spinner WiDgets

589

Figure 22-1. A simple dialog box

The dialog widget requires a div element that has a title attribute. The value of this attribute is used as the title
bar of the dialog box. The content of the div element is used as the content for the dialog box, and, as Listing 22-1
shows, this content can contain other elements. When you call the dialog method with no settings, as I have done in
the listing, the dialog box appears immediately. Figure 22-1 shows how the browser presents the dialog.

The dialog widget is created through the clever use of HTML elements and not through the operating system.
This means a jQuery UI dialog doesn’t behave in quite the same way as a native dialog box does. For example, it
doesn’t show up in the operating system’s list of open windows and it is possible to resize the browser window so that
you obscure part (or all) of the jQuery UI dialog.

That being said, the jQuery UI team has done a good job of making the dialog as fully featured as possible. By clicking
the title and dragging, the user can reposition the dialog within the browser window. The dialog can be resized and can be
dismissed by clicking the close button at the top right. And, since the jQuery UI dialog widget is constructed from HTML, it
is styled using the jQuery UI theme I selected in Chapter 17 and can display complex and styled HTML content.

I want to demonstrate a common usage of the dialog before I get into the details of the settings, methods, and
events that the widget supports. When you call the dialog method with no arguments, as I did in the first example,
the dialog appears immediately, but this isn’t usually convenient. A more common scenario is that you want to create
the dialog box when the document loads (so that the element structure isn’t visible to the user) and then display the
dialog box later in response to an event. Listing 22-2 shows how you can do this.

Listing 22-2. Deferring the Appearance of a jQuery UI Dialog Box

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">

Chapter 22 ■ Using the Dialog anD spinner WiDgets

590

 $(document).ready(function() {
 $("#dialog").dialog({
 autoOpen: false
 });

 $("button").button().click(function(e) {
 $("#dialog").dialog("open")
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dialog" title="Dialog Box">
 This is the content that will be displayed in the dialog box. This content
 can be styled.
 </div>
 <button>Show Dialog</button>
</body>
</html>

You use the autoOpen setting to prevent the dialog from appearing immediately. When this setting is false, the
HTML element structure is hidden from the user, but the dialog isn’t displayed. When you are ready to display the
dialog, you can call the open method. You can see how this works in Figure 22-2.

Configuring the Dialog
The dialog widget supports a range of settings that allow you to customize the way that you present the dialog to the
user. I showed you the autoOpen setting in the previous section, but there other settings, as described in Table 22-2.

Figure 22-2. Deferring the appearance of a dialog box

Chapter 22 ■ Using the Dialog anD spinner WiDgets

591

Tip ■ jQuery Ui 1.10 added the appendTo option, which allows the element to which the dialog will be appended to
be specified. another new feature is that dialog will also focus automatically on content elements. (i demonstrate these
features later in this part of the chapter). other changes include a change in the way that the value of the position
setting is specified and the removal of the stack and zIndex configuration options.

Table 22-2. Dialog Settings

Setting Description

appendTo Specifies the element that the dialog should be appended to.

autoOpen When true, the dialog is displayed as soon as it is created with the dialog method.
The default is true.

buttons Specifies the set of buttons to add to the dialog and the functions that will be invoked when
those buttons are clicked. The default is to use no buttons.

closeOnEscape When true, pressing the Escape key dismisses the dialog. The default is true.

draggable When true, the user can click the dialog title and drag to move the dialog within the browser.
The default is true.

height Specifies the initial height of the dialog in pixels. The default is auto, which allows the dialog to
size itself.

hide Specifies the animation effect that is used to hide the dialog. See Chapter 35 for details of the
jQuery UI effects.

maxHeight Specifies the maximum height (in pixels) of the dialog. The default is false, which means
that there is no size limit.

maxWidth Specifies the maximum width (in pixels) of the dialog. The default is false, which means that
there is no size limit.

minHeight Specifies the minimum height (in pixels) of the dialog. The default is false, which means
that there is no minimum size limit.

minWidth Specifies the minimum width (in pixels) of the dialog. The default is false, which means
that there is no minimum size limit.

modal When true, the dialog is modal and the user cannot interact with the document until the
dialog is dismissed. The default is false.

position Specifies the initial position of the dialog.

resizable When true, the dialog is displayed with a drag handle that allows the user to resize the dialog.
The default is true.

show Specifies the animation effect that is used to show the dialog. See Chapter 35 for details of the
jQuery UI effects.

title Specifies the title of the dialog.

width Specifies the initial width of the dialog in pixels. The default is auto, which allows the dialog
to size itself.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

592

Configuring the Basic Dialog Appearance
The title setting allows you to create a dialog from a div element that doesn’t have a title attribute. This can be
useful if you are unable to control the generation of the elements that you want to use in the dialog. Listing 22-3 shows
the application of the title setting.

Listing 22-3. Using the title Setting

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#dialog").dialog({
 title: "Hello",
 resizable: false
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dialog">
 This is the content that will be displayed in the dialog box. This content
 can be styled.
 </div>
</body>
</html>

I have also applied the resizable setting in this example. This setting prevents the user from resizing the dialog.
I usually leave the resizable setting set to true because I like to leave the user with the opportunity to resize the
dialog to accommodate the content. You can see how the browser shows the dialog in the example in Figure 22-3.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

593

The dialog will automatically focus on the first content element it finds that has the autofocus attribute, which
can be useful when using the dialog widget to solicit input from the user, as shown in Listing 22-4.

Listing 22-4. Using the autofocus Attribute on a Content Element

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#dialog").dialog({
 title: "Hello",
 resizable: false
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dialog">
 This is the content that will be displayed in the dialog box. This content
 can be styled.
 <p>Name: <input id="name"/> City: <input id="city" autofocus="autofocus" /></p>
 </div>
</body>
</html>

I have added input elements to the content for the dialog, the second of which has the autofocus attribute. You
can see how the dialog widget focuses on this element in Figure 22-4.

Figure 22-3. A dialog box with a custom title and no resize drag handle

Chapter 22 ■ Using the Dialog anD spinner WiDgets

594

Setting the Location of the Dialog
The position setting allows you to specify where the dialog will be displayed in the browser window. The position is
expressed using the same properties and values that I described in Chapter 19 for the autocomplete pop-up, which
I have repeated in Table 22-3.

Figure 22-4. The effect of the autofocus attribute

Table 22-3. Position Properties

Name Description

my Specifies the part of the dialog that will be used to determine placement

at Specifies the part of the target element that the dialog will be positioned relative to

of Specifies the target element that the dialog will be positioned relative to; this is the body element
if omitted

collision Specifies how the placement of the dialog should be adjusted if it overflows the window

The my and at properties are set using values that specify horizontal and vertical positions, separated by a space.
The horizontal values are left, right, and center and the vertical values are top, bottom, and center. You can see
how I have set these properties in Listing 22-5. (You can learn about the other position properties in Chapter 19.)

Chapter 22 ■ Using the Dialog anD spinner WiDgets

595

Listing 22-5. Positioning the Dialog

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#dialog").dialog({
 title: "Positioned Dialog",
 position: {
 my: "left top",
 at: "left top"
 }
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dialog">
 This is the content that will be displayed in the dialog box. This content
 can be styled.
 </div>
</body>
</html>

I have positioned the dialog so that the top-left edge is positioned with the top-left edge of its parent element,
which is the body element by default. You can see how the dialog is positioned in Figure 22-5.

Figure 22-5. Specifying the position of the dialog

Chapter 22 ■ Using the Dialog anD spinner WiDgets

596

Adding Buttons to a Dialog
You can add buttons to a jQuery UI dialog using the buttons setting. The value of this setting is an array of objects,
each of which has text and click properties. The value of the text property is used as the label for the button, and
you provide a function as the value of click property, which will be invoked when the button is clicked. Listing 22-6
shows the use of this setting.

Listing 22-6. Adding Buttons to a Dialog

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#dialog").dialog({
 title: "Dialog",
 buttons: [{text: "OK", click: function() {/* do something */}},
 {text: "Cancel", click: function() {$(this).dialog("close")}}]

 });
 });
</script>
...

In this script, I have added two buttons. The function for the OK button doesn’t do anything, but for the Cancel
button, I close the dialog. Notice that I use the this variable in the jQuery selector within the Cancel function. This
is set to the div element that was used to create the dialog. You can see how the buttons are displayed in Figure 22-6.
This example uses the close method, which dismisses the dialog. I describe the dialog methods later in this chapter.

Figure 22-6. Adding buttons to a jQuery UI dialog

w

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 22 ■ Using the Dialog anD spinner WiDgets

597

As of jQuery UI version 1.10, you can specify icons for buttons in a dialog by adding an icons property to the
objects that define each button, as shown in Listing 22-7.

Listing 22-7. Adding Icons to the Buttons in a Dialog Widget

...
<script type="text/javascript">
 $(document).ready(function () {
 $("#dialog").dialog({
 title: "Dialog",
 buttons: [{
 text: "OK",
 click: function () {/* do something */ },
 icons: {
 primary: "ui-icon-star",
 secondary: "ui-icon-circle-arrow-e"
 }
 },{ text: "Cancel", click: function () { $(this).dialog("close") }}]
 });
 });
</script>
...

The icons property is set to an object that defines properties named primary and secondary, which define icons
to the left and right of the button text. These properties are used to specify icons in the same way as for the button
widget, as described in Chapter 18. You can see the effect of the additions to the listing in Figure 22-7.

Figure 22-7. Using icons in dialog buttons

Chapter 22 ■ Using the Dialog anD spinner WiDgets

598

Tip ■ You can disable the text in a dialog button by defining a property called showText on the object that defines the
button (not the icons object) and setting it to false.

Dragging Dialogs
The draggable setting determines whether the user can drag the dialog box within the browser window. This setting
is true by default, and I recommend that you leave the setting unchanged. It allows the user to see the underlying
content. This can be particularly important if you are showing a dialog to express some kind of error or problem. If the
draggable setting is false, then the user won’t be able to reposition the dialog box.

The draggable setting can also be important when you are using multiple dialogs in the same window. This is not
something I recommend, but if you must display dialog boxes, you need to make sure the user can arrange them so
that they can all be read. On small screens, they tend to pile up on top of each other, as shown in Listing 22-8.

Listing 22-8. Using the draggable Setting

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function () {
 $(".dialog").dialog({
 draggable: true
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="d1" class="dialog" title="First Dialog">
 This is the first dialog
 </div>
 <div id="d2" class="dialog" title="Second Dialog">
 This is the second dialog
 </div>
 <div id="d3" class="dialog" title="Third Dialog">
 This is the third dialog
 </div>
</body>
</html>

I create three dialogs in this document and the default positioning stacks them up. Setting the draggable setting
to true allows me to move the dialogs, as shown in Figure 22-8.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

599

Creating Modal Dialogs
A modal dialog prevents the user from interacting with the elements in the document until the dialog has been
dismissed. A value of true for the modal setting creates a modal dialog, as shown in Listing 22-9.

Listing 22-9. Creating a Modal Dialog

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#dialog").dialog({
 buttons: [{text: "OK", click: function() {$(this).dialog("close")}}],
 modal: true,
 autoOpen: false
 })

 $("#show").button().click(function() {
 $("#dialog").dialog("open");
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dialog" title="Modal Dialog">

Figure 22-8. Dragging dialogs

Chapter 22 ■ Using the Dialog anD spinner WiDgets

600

 This is a modal dialog. Press OK to continue.
 </div>
 <button id="show">Show Dialog</button>
</body>
</html>

In Listing 22-9, I have created a modal dialog that is not initially visible to the user. The dialog is shown in
response to a button being clicked and you can see the effect in Figure 22-9. This example relies on the open and
close methods, which show and dismiss the dialog. I explain all of the methods that the dialog widget supports later
in this chapter.

Figure 22-9. Displaying a modal dialog

When showing a modal dialog, jQuery UI places a dark layer behind the dialog but in front of the rest of the
document. The document doesn’t return to its original state until the dialog is dismissed. In this example, I have
provided the user with an OK button that does this.

Tip ■ When selecting the button you have added to the document to show the dialog, be careful not to use $("button")
if you are also adding buttons to the dialog itself. this selector matches the buttons that you have added and those that
are created by the dialog method, which means that the dialog buttons will end up with the same click handler as the
button in the document, rather than the handlers specified by the buttons setting.

Showing a Form in a Modal Dialog
The benefit of a modal dialog is that it focuses the user’s attention. You can use this to your advantage by displaying
forms in modal dialogs, as shown in Listing 22-10.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

601

Listing 22-10. Displaying a Form in a Model Dialog

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 #dialog input {width: 150px; margin: 5px; text-align: left}
 #dialog label {width: 100px}
 table {border-collapse: collapse; border: thin solid black; margin: 10px}
 #placeholder {text-align: center}
 #show {margin: 10px}
 td, th {padding: 5px; width: 100px}
 </style>
 <script id="rowTmpl" type="text/x-handlebars-template">
 <tr><td>{{product}}</td><td>{{color}}</td><td>{{count}}</td></tr>
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#dialog").dialog({
 buttons: [{ text: "OK", click: addDataToTable }],
 modal: true,
 autoOpen: false,
 width: 340
 })

 $("#show").button().click(function () {
 $("#dialog").dialog("open");
 })

 function addDataToTable() {
 var data = {
 product: $("#product").val(),
 color: $("#color").val(),
 count: $("#count").val()
 }
 $("#placeholder").hide();
 $("#rowTmpl").template(data).filter("*").appendTo("#prods tbody");
 $("#dialog").dialog("close");
 }
 });
 </script>
</head>
<body>
 <h1>Jacqui"s Flower Shop</h1>
 <div id="dialog" title="Enter Details" class="ui-widget">

Chapter 22 ■ Using the Dialog anD spinner WiDgets

602

 <div><label for="product">Product: </label><input id="product" /></div>
 <div><label for="color">Color: </label><input id="color" /></div>
 <div><label for="count">Quantity: </label><input id="count" /></div>
 </div>
 <table id="prods" class="ui-widget" border="1">
 <tr><th>Product</th><th>Color</th><th>Quantity</th></tr>
 <tr id="placeholder"><td colspan=3>No Products Selected</td></tr>
 </table>
 <button id="show">Add Product</button>
</body>
</html>

In Listing 22-10, I have defined a set of input elements inside the div element that I use to create the modal
dialog. When the user clicks the button in the document, the dialog is shown and gathers data from the user. When
the user clicks the OK button (which I defined using the buttons setting), I collect the values from the input elements
and use a data template to generate a new row for an HTML table. You can see the sequence in Figure 22-10.

Figure 22-10. Using a modal dialog to capture input from the user

I have tried to keep this example simple, but you can readily apply the validation techniques I showed you in
Chapter 13 to reduce the risk of data errors, and you can use the Ajax techniques I showed in Chapters 14 and 15 to
submit the data entered by the user to a remote server.

Caution ■ showing a form inside a modal dialog is a useful technique for simple forms only. You are at risk of confus-
ing and annoying the user if you find yourself trying to combine tabs or accordions with a modal dialog. if a form repre-
sents a substantial effort to fill in, then it warrants being properly integrated into the document itself.

Using the Dialog Methods
The jQuery UI dialog widget supports the methods described in Table 22-4.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

603

As you might expect, most of these methods allow you to manage a dialog programmatically. The methods that I
find myself using most frequently are open and close, of course. Listing 22-11 shows these methods.

Listing 22-11. Using the Dialog Methods

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#d1, #d2").dialog({
 autoOpen: false,
 });

 $("#t1, #t2").button().click(function (e) {
 var target = this.id == "t1" ? "#d1" : "#d2";
 if ($(target).dialog("isOpen")) {
 $(target).dialog("close")
 } else {
 $(target).dialog("open")
 }
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="d1" class="dialog" title="First Dialog" class="ui-widget">
 This is the first dialog
 </div>
 <div id="d2" class="dialog" title="Second Dialog" class="ui-widget">
 This is the second dialog
 </div>

Table 22-4. Dialog Methods

Method Description

dialog("destroy") Removes the dialog widget from the underlying element

dialog("option") Changes one or more settings

dialog("close") Dismisses the dialog

dialog("isOpen") Returns true if the dialog is visible

dialog("moveToTop") Moves the dialog to the top of the stack

dialog("open") Displays the dialog to the user

Chapter 22 ■ Using the Dialog anD spinner WiDgets

604

Figure 22-11. Toggling the visibility of dialogs using widget methods

 <div>
 <button id="t1">Toggle Dialog 1</button>
 </div>
 <button id="t2">Toggle Dialog 2</button>
</body>
</html>

This document includes two button elements that toggle the visibility of two dialogs. The visibility of each dialog is
assessed using the isOpen method. Figure 22-11 shows the document displayed in the browser with both dialogs visible.

Using the Dialog Events
The jQuery UI dialog widget supports the events described in Table 22-5. I describe some of the more useful events in
the sections that follow.

Table 22-5. Dialog Events

Event Description

create Triggered when the dialog widget is applied to an underlying HTML element

beforeClose Triggered when the dialog is about to close; returning false from the handler function forces
the dialog to remain open

open Triggered when the dialog is opened

focus Triggered when the dialog gains the focus

dragStart Triggered when the user starts to drag a dialog

drag Triggered for every mouse movement while a dialog is being dragged

(continued)

Chapter 22 ■ Using the Dialog anD spinner WiDgets

605

Keeping the Dialog Open
The beforeClose event allows you to receive notification that the user has requested that the dialog be closed. This
can be because the user pressed the Escape key (if the closeOnEscape setting is true), clicked the close icon at the
top-right of the dialog, or clicked a button you have added through the buttons setting.

Most of the time, you should respect the user’s wishes and allow the dialog to close, but there are rare occasions
when you require the user to perform some action using the dialog first, or, as Listing 22-12 demonstrates, you require
the dialog to be displayed for a certain period before allowing the user to continue.

Listing 22-12. Preventing a Dialog from Closing

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 input {width: 150px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 var canClose = false;
 var delay = 15;

 $("#dialog").dialog({
 modal: true,
 autoOpen: false,
 beforeClose: function() {
 return canClose;
 },
 open: function() {
 var count = delay;
 var intID = setInterval(function() {
 count--;
 $("#time").text(count);
 if (count == 0) {

Event Description

dragStop Triggered when the user finishes dragging a dialog

resizeStart Triggered when the user beings resizing a dialog

resize Triggered for every mouse movement while a dialog is being resized

resizeStop Triggered when the user finishes resizing a dialog

close Triggered when a dialog is closed

Table 22-5. (continued)

Chapter 22 ■ Using the Dialog anD spinner WiDgets

606

 clearInterval(intID)
 canClose = true;
 $("#dialog").dialog("close")
 }
 }, 1000)
 }
 })

 $("button").click(function(e) {
 $("#dialog").dialog("open")
 })

 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div class="ui-widget">
 <label for="user">Username: </label><input id="user"/>
 <label for="pass">Password: </label><input id="pass"/>
 <button id="send">Login</button>
 </div>
 <div id="dialog" title="Wrong Password">
 The password you entered was incorrect. Please try again in
 15 seconds.
 </div>
</body>
</html>

In Listing 22-12, I have defined a pair of input elements to collect a username and password from the user.
It doesn’t matter what the user enters, however, because I respond to the Login button being clicked by displaying a
Wrong Password modal dialog.

I respond to the open event by starting a repeating function that counts down from 15 seconds. During this period,
I use the beforeClose event to prevent the user from closing the dialog. At the end of the 15 seconds, I call the close method
and dismiss the dialog. By combining the open and beforeClose events, I can ensure that the user cannot immediately
try other username or password combinations (well, at least not without reloading the HTML document, anyway).

Responding to Changing Sizes and Positions
The dialog widget provides a comprehensive set of events for tracking the dialog as it is resized or dragged. These
are events that are usually not required but are handy to have in those rare situations where being able to track the
changes becomes important. Listing 22-13 demonstrates using the dragStart and dragStop events to disable the
input and button elements in a document while a dialog is being dragged.

Listing 22-13. Responding to a Dialog Being Dragged

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 22 ■ Using the Dialog anD spinner WiDgets

607

 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 input {width: 150px; text-align: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $("#dialog").dialog({
 autoOpen: true,
 dragStart: function() {
 $("input, #send").attr("disabled", "disabled")
 },
 dragStop: function() {
 $("input, #send").removeAttr("disabled")
 }
 })

 $("button").click(function(e) {
 $("#dialog").dialog("open")
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div class="ui-widget">
 <label for="user">Username: </label><input id="user"/>
 <label for="pass">Password: </label><input id="pass"/>
 <button id="send">Login</button>
 </div>
 <div id="dialog" title="Wrong Password">
 The password you entered was incorrect. Please try again in
 15 seconds.
 </div>
</body>
</html>

Using the jQuery UI Spinner Widget
The spinner widget was added to jQuery UI in version 1.9 and enhances an input element with up and down buttons
so that the user can spin through a range of values. The spinner widget is applied using the spinner method, as shown
in Listing 22-14.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

608

Listing 22-14. Creating a Basic Spinner Widget

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 input {width: 150px;}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#entry").spinner();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div class="ui-widget">
 Enter value: <input id="entry" value="0" />
 </div>
</body>
</html>

You can see the way in which the input element is transformed in Figure 22-12, as well as the effect of clicking on
the buttons that jQuery UI adds to the element.

Figure 22-12. Creating and using a spinner

Using the Spinner Widget with the HTML5 Input Element Types
HTML5 supports some new values for the type attribute of the input element, one of which has a similar effect to
using the spinner widget: the number type. You can see how I have used this type in Listing 22-15.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

609

Listing 22-15. Using the HTML5 Number Input Element

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 input {width: 150px;}
 </style>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div class="ui-widget">
 Enter value: <input id="entry" value="0" type="number" />
 </div>
</body>
</html>

I have taken out all of the JavaScript libraries and code from this example to emphasize the built-in browser
support for the new type of input element. Figure 22-13 shows you how Google Chrome displays this listing.

Figure 22-13. Using the number type input element in Google Chrome

This approach has some advantages over the jQuery UI spinner because the implementation of the controls that
change the value is not part in the HTML5 standard—this allows browsers to present the user with device-specific
navigation. jQuery UI spinners always use the up and down buttons, which can be hard to use on small touch screen
devices like smartphones.

The biggest problem with the new number type is that most browsers just ignore it, even those that implement
other HTML5 features. And it is hard to mix and match the native HTML5 spinner with jQuery UI because the spinner
widget doesn’t check the type of the input element when the spinner method is called. Listing 22-16 shows an
example HTML document that applies the spinner widget to an input element whose type is number.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

610

Listing 22-16. Mixing jQuery UI Widgets and HTML5 input Element Types

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 input {width: 150px;}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#entry").spinner();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div class="ui-widget">
 Enter value: <input id="entry" value="0" type="number" />
 </div>
</body>
</html>

I have restored the JavaScript libraries and code and you can see the effect in Figure 22-14—two sets of buttons to
change the value in the input element. The browser implementation of the new input element types and the jQuery UI
handling of them are not yet mature enough to be reliable and I recommend avoiding them, especially in combination.

Figure 22-14. Combining the HTML5 number input element and the jQuery UI spinner

Chapter 22 ■ Using the Dialog anD spinner WiDgets

611

Configuring the Spinner Widget
The spinner widget supports a range of settings that allow you to customize the way that it operates, as described in
Table 22-6 and as demonstrated in the sections that follow.

Table 22-6. Spinner Settings

Setting Description

culture Specifies the locale setting for parsing and formatting the data value.

disabled Disables the spinner when set to true.

icons Specifies the icons used for the spinner buttons (the default icons are up and down arrows).

incremental Specifies how the value is incremented when one of the buttons is held down. When set to true,
the rate of change will increase the longer the button is held. When set to false, the rate of
change will remain constant. You can also specify a function to customize the rate change.

max Specifies the largest allowed value.

min Specifies the smallest allowed value.

numberFormat Specifies the format of the number that the spinner displays.

page Specifies the size of a page, which is the amount the value changes when the pageUp and
pageDown method (described later in the chapter).

step Specifies the amount by which the value will change when the up and down buttons are clicked.

Configuring the Basic Spinner Behavior
The basic behavior of the spinner widget is controlled by four settings: min, max, step, and page. In Listing 22-17,
you can see how I have used these properties to constrain the values the spinner will support and how they are
incremented and decremented.

Listing 22-17. Configuring the Basic Spinner Behavior

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 input {width: 150px;}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#entry").spinner({
 min: 2,
 max: 100,
 step: 2,
 page: 5

Chapter 22 ■ Using the Dialog anD spinner WiDgets

612

Tip ■ notice that the min value doesn’t affect the initial value displayed by the input element. i have set the value
attribute on the input element to zero, which is less than the min value i used when setting up the spinner.

 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div class="ui-widget">
 Enter value: <input id="entry" value="0" />
 </div>
</body>
</html>

The min and max properties don’t enforce validation on the input element—they only control the range of
values that will be used by the up and down buttons. Once the limit defined by the max property has been reached
(e.g., pressing the up button won’t increment the value any further), the user can still edit the contents of the input
element directly and insert a larger value (or a non-numeric value).

Tip ■ see Chapter 13 for details of how you can perform validation on input elements

The step and page properties control how the spinner widget increments and decrements the numeric value.
The step property specifies the amount by which the value is changed when the user presses one of the buttons
added by the widget; the page property specifies the amount by which the value is changed when the pageUp and
pageDown methods are called (I describe these methods later in the chapter).

In the listing, I have specified a minimum value of 2 and a maximum value of 100. I used the step property to
tell jQuery UI that the up and down buttons should change the value by 2 and the page property to tells jQuery UI to
respond to the pageUp and pageDown methods by incrementing or decrementing the value by 5. You can see the effect
in Figure 22-15.

Figure 22-15. Controlling the basic behavior of the spinner widget

Chapter 22 ■ Using the Dialog anD spinner WiDgets

613

Figure 22-16. The spinner resetting the input element value

The spinner widget will reset the contents of the input element to the smallest allowed value if the user enters a
value which is outside the allowed range and then clicks the up or down buttons. You can see the effect in Figure 22-16.

Changing the Spinner Button Icons
The icons displayed by the up and down buttons are set using the icons property. The default icons are up and down
arrows, but they can be set to any of the jQuery UI icons (which I described in Chapter 18) as shown in Listing 22-18.

Listing 22-18. Changing the Spinner Button Icons

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 input {width: 150px;}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#entry").spinner({
 min: 2,
 max: 100,
 step: 2,
 page: 5,

Chapter 22 ■ Using the Dialog anD spinner WiDgets

614

 icons: {
 up: "ui-icon-circle-plus",
 down: "ui-icon-circle-minus",
 }
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div class="ui-widget">
 Enter value: <input id="entry" value="0" />
 </div>
</body>
</html>

The icons property is set with an object that has up and down properties, which define the icon that will be used
for the corresponding button. I specified plus and minus icons and you can see the result in Figure 22-17.

Figure 22-17. Changing the icons used by the spinner widget

Controlling the Change Rate
The incremental property is used to set the rate at which the value is changed when the user holds the up or down
button. Setting this property to true will gradually increase the rate at which the value is changed the longer the
button is held for; a value of false keeps the rate of change constant. The third option is to specify a function that
customizes the rate of change, which Listing 22-19 demonstrates.

Listing 22-19. Specifying a Function for the incremental Setting Property

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>

Chapter 22 ■ Using the Dialog anD spinner WiDgets

615

 <style type="text/css">
 input {width: 150px;}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#entry").spinner({
 incremental: function (spins) {
 return Math.pow(spins, 2);
 }
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div class="ui-widget">
 Enter value: <input id="entry" value="0" />
 </div>
</body>
</html>

The argument passed to the function is the number of spins that the duration for which the button has been held
is equivalent to. The function returns the value that should be displayed and my example returns the square of the
spin count.

Setting the Number Format
The format of the number which is displayed by the spinner is controlled by the numberFormat and culture properties
and is dependent on an external library called Globalize.

You can get the Globalize files from https://github.com/jquery/globalize. Click the Releases link, select the
version you want (as I write this, the latest version is 0.1.1), and download either a zip or tar.gz archive. Extract
the files from the archive and copy the following files to the folder that contains example.html and the JavaScript
library files.

•	 lib/globalize.js

•	 lib/cultures/globalize.cultures.js

The first file contains the JavaScript code for dealing with localization and the second file contains a complete set
of the locales that the Globalize library comes with.

Tip ■ there are other, smaller, files in the lib/cultures folder that deal with a single locale and which you can use if
you are only working with a limited set of regions.

The numberFormat property for the spinner widget specifies the format for the number, and the culture property
specifies the locale whose formatting conventions will be used. In Listing 22-20, you can see both properties in use.

https://github.com/jquery/globalize

Chapter 22 ■ Using the Dialog anD spinner WiDgets

616

Listing 22-20. Using the numberFormat and culture Properties

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script src="globalize.js"></script>
 <script charset="utf-8" src="globalize.cultures.js"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 input {width: 150px;}
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#entry").spinner({
 culture: "fr-FR",
 numberFormat: "C"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div class="ui-widget">
 Enter value: <input id="entry" value="5.00"/>
 </div>
</body>
</html>

The globalize.js file must be imported before the globalize.cultures.js file so that the locale information
can be registered with the main library. When configuring the spinner, I have set the culture to fr-FR (which is the
locale designator for French-speaking France) and the numberFormat to C, which specifies a currency. You can see the
result in Figure 22-18.

Figure 22-18. Setting the culture and format for the spinner widget

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 22 ■ Using the Dialog anD spinner WiDgets

617

Tip ■ if you omit the culture setting, the locale defaults to the settings for the United states.

France uses the euro as its currency, places the symbol after the number, and separates the whole and fractional
parts of a number with a comma.

Notice that I set the charset attribute of the script element for the local information, as follows:

...
<script charset="utf-8" src="globalize.cultures.js"></script>
...

You can set the character set for an HTML document using a meta element, but if you have not done so—and
I have not in the example document—then you should set the character set explicitly for the script element that
contains the locale information. Without this, most browsers have problems displaying currency symbols of other
locales, as shown in Figure 22-19, which should display the euro symbol, but it gets interpreted as nonsense.

Figure 22-19. The effect of omitting the charset attribute from the locale script element

Table 22-7. Spinner Methods

Method Description

spinner("destroy") Removes the dialog widget from the underlying element

spinner("disable") Disables the spinner widget

spinner("enable") Enables the spinner widget

spinner("option") Gets or sets settings

spinner("pageDown", count) Decrements the spinner value by the specified number of pages

spinner("pageUp", count) Increments the spinner value by the specified number of pages

spinner("stepDown", count) Decrements the spinner value by the specified number of steps

spinner("stepUp", count) Increments the spinner value by the specified number of steps

spinner("value") Gets or sets the current value of the spinner

Using the Spinner Methods
The jQuery UI spinner widget supports the methods described in Table 22-7.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

618

In Listing 22-21, you can see how I have applied the spinner-specific methods to the example.

Listing 22-21. Using the Spinner Methods

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <script src="globalize.js"></script>
 <script src="globalize.cultures.js"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 input {width: 150px;}
 button { margin-top: 10px; }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {

 $("#entry").spinner({
 culture: "en-US",
 numberFormat: "C",
 step: 2,
 page: 10
 });

 $("button").button().click(function () {
 $("#entry").spinner(this.id);
 console.log("Value: " + $("#entry").spinner("value"));
 });

 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div class="ui-widget">
 Enter value: <input id="entry" value="5.00"/>
 </div>
 <div>
 <button id="pageDown">Page Down</button>
 <button id="stepDown">Step Down</button>
 <button id="stepUp">Step Up</button>
 <button id="pageUp">Page Up</button>
 </div>
</body>
</html>

I have added button elements which I use to call the methods on the spinner control, incrementing and
decrementing the value based on the step and page values. You can see the result in Figure 22-20.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

619

Figure 22-20. Controlling the value of the spinner programmatically

Table 22-8. Dialog Events

Event Description

create Triggered when the widget is created

change Triggered when the value of the spinner changes and the underlying input element has lost the focus

spin Triggered when the value is incremented or decremented

start Triggered before the value is incremented or decremented

stop Triggered after the value is incremented or decremented

If you look at the browser console, you will see output like the following:

Value: 8
Value: 10
Value: 12

The spinner value method returns the unformatted value, without the effect of the culture and numberFormat
settings. You’ll get the formatted value if you use jQuery to select the underlying input element and use the val method.

Using the Spinner Events
The jQuery UI spinner widget supports the events described in Table 22-8.

In Listing 22-22, you can see how I have updated the previous example to write out the value of the spinner in
response to the stop event.

Chapter 22 ■ Using the Dialog anD spinner WiDgets

620

Listing 22-22. Using the stop Event

...
<script type="text/javascript">
 $(document).ready(function () {
 $("#entry").spinner({
 culture: "en-US",
 numberFormat: "C",
 step: 2,
 page: 10,
 stop: function () {
 console.log("Value: " + $("#entry").spinner("value"));
 }
 });

 $("button").button().click(function () {
 $("#entry").spinner(this.id);
 //console.log("Value: " + $("#entry").spinner("value"));
 });

 });
</script>
...

Tip ■ You can stop the value from changing by canceling the spin or start events. see Chapter 9 for details of the
jQuery support for events.

Summary
In this chapter, I showed you the jQuery UI dialog and spinner widgets. Following the same format as the other widget
chapters, I focused on the settings, methods, and events that the dialog and spinner widgets support. In Chapter 23,
I show you the menu and tooltip widgets.

621

Chapter 23

Using the Menu and Tooltip Widgets

In this chapter, I describe the jQuery UI menu and tooltip widgets. Table 23-1 provides the summary for this chapter.

Table 23-1. Chapter Summary

Problem Solution Listing

Create a menu widget Select an element structure and call the menu method; the
structure is usually created using ul, li, and a elements

1

Add separators and disabled menu items Add elements that contain only dashes or spaces and apply
the ui-state-disabled class

2

Perform basic navigation Add href attributes to a elements in the menu element
structure

3

Use custom element structures Use the menus setting 4, 5

Add custom icons to submenus Use the icons setting 6

Add icons to menu items Add span elements that are assigned to the ui-icon class
and that specify the jQuery UI icon.

7

Set the location of submenus Use the position setting 8

Receive notifications when menu items
are active and selected

Handle the blur, focus, and select events 9

Create a tooltip widget Select an element with a title attribute and call the
tooltip menu

10, 11

Set the content of tooltips Use the content and items settings 12–15

Add custom styles to tooltips Use the tooltipClass setting and the ui-tooltip-content
class

16, 17

Move the tooltip to follow the mouse Use the track setting 18

Set the location of the tooltip Use the position setting 19

Control the tooltips programmatically Call the open and close methods 20

Receive notifications when tooltips are
shown and hidden

Handle the open and close events 21

Chapter 23 ■ Using the MenU and tooltip Widgets

622

JQUerY UI ChaNGeS SINCe the LaSt eDItION

the menu and tooltip widgets didn’t exist when i wrote the first edition of this book and have been added as part
of an ongoing effort to expand the scope of the jQuery Ui widgets.

Using the jQuery UI Menu Widget
The menu widget—as its name suggests—provides a menu that allows the user to navigate through a tree of options.
This widget is useful when presenting the user with content that has a deep structure, such as product categories for
an online store.

Creating the Menu
The menu widget relies on the menu structure being expressed as a structure of HTML elements, which are selected
and transformed with the menu method, as shown in Listing 23-1.

Listing 23-1. Creating a Menu Widget

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 .ui-menu { width: 200px; }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#menu").menu();
 });
 </script>

</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <ul id="menu">
 <a>Bouquets
 <a>Heirloom Blooms
 <a>Summer Color

 <a>Aster
 <a>Rose
 <a>Orchid

Chapter 23 ■ Using the MenU and tooltip Widgets

623

 <a>Wedding Classics
 <a>Exotica

</body>
</html>

The structure of the menu is defined using an ul element, where individual menu items are li elements that
contain an a element and the label for menu items is taken from the text of the a element. Nested submenus can be
created by defining a ul element within an li element and you can see the effect of applying the menu method to the
structure in the listing in Figure 23-1.

In the figure, you can see how I have opened a submenu and have positioned my mouse over one of the items
that have been revealed. This example demonstrates two key characteristics of the menu widget. First of all, the menu
is always visible—it isn’t a pop-up menu and is intended to be a permanent feature in a web page, similar to the way
that Amazon presents its top-level product categories.

Second, the menu widget preserves the structure of the elements that it is applied to—the menu items are not
sorted by name or any other characteristic. You can see in Figure 23-1 that ordering has been preserved, including
the position of the submenu.

Tip ■ notice that i have set the width of the top-level ul element to 200 pixels using Css). By default, the menu widget
will fill all of the available horizontal space.

Formatting Menu Items
In addition to nesting submenus, the element structure can also be used to format menu items, creating disabled
items and separators between groups of related items. Listing 23-2 shows both types of formatting.

Figure 23-1. Creating a simple menu widget

Chapter 23 ■ Using the MenU and tooltip Widgets

624

Listing 23-2. Formatting the Menu via the Element Structure

...
<body>
 <h1>Jacqui's Flower Shop</h1>
 <ul id="menu">
 <a>Bouquets
 <a>Heirloom Blooms
 -
 <a>Summer Color

 <a>Aster
 <a>Rose
 <a>Orchid

 <a>Wedding Classics
 -
 <li class="ui-state-disabled"><a>Exotica

</body>
...

Any element with content that is all spaces or dashes is interpreted as a menu divider—I have added two
such elements in the listing. Assigning an element to the ui-state-disabled class tells the menu widget that the
corresponding menu item should be disabled. You can see the result of these additions in Figure 23-2.

Figure 23-2. Adding separators and disabling menu items

Chapter 23 ■ Using the MenU and tooltip Widgets

625

Performing Basic Navigation
One common use for the menu widget is to provide navigation between the web pages that make up a web application
and the simplest way to perform this task is to define the href attribute on the a elements in the HTML element
structure that underpins the menu widget. When the user selects a menu item that corresponds to an a element with
an href attribute, the browser will navigate to the specified URL. In Listing 23-3, you can see how I have added an
href attribute to one of the menu item elements.

Listing 23-3. Adding an href Attribute to a Menu Element

...
<body>
 <h1>Jacqui's Flower Shop</h1>

 <ul id="menu">
 <a>Bouquets
 <a>Heirloom Blooms
 -
 <a>Summer Color

 Aster
 <a>Rose
 <a>Orchid

 <a>Wedding Classics
 -
 <li class="ui-state-disabled"><a>Exotica

</body>
...

I added an href attribute to one of the menu items, meaning that selecting the Summer Color ➤ Aster menu
item will cause the browser to navigate to Apress.com.

Tip ■ not all menus are used to navigate between web pages. You can perform arbitrary actions when the user selects
a menu item by handling the select event, which i describe in the Using the Menu Events section later in this chapter.

Configuring the Menu
The menu widget supports a range of settings that allow you to customize the way that the menu is presented to the
user, as described in Table 23-2.

http://apress.com">Aster</li
http://apress.com/

Chapter 23 ■ Using the MenU and tooltip Widgets

626

Using a Different Element Structure
Although the use of ul, li, and a elements to define menus is the standard technique, the menu widget can work
with any element structure where there is a clearly defined parent-child relationship. In Listing 23-4, you can see
how I have redefined the example menu using div elements.

Listing 23-4. Using a Different Element Type for the Menu Structure

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 .ui-menu { width: 200px; }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#menu").menu();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="menu">
 <div><a>Bouquets</div>
 <div><a>Heirloom Blooms</div>
 <div>-</div>
 <div><a>Summer Color
 <div>
 <div><a>Aster</div>
 <div><a>Rose</div>
 <div><a>Orchid</div>
 </div>
 </div>

Table 23-2. Menu Settings

Setting Description

disabled Disables the entire menu when set to true

icons Specifies icons to be used on submenus

menus Specifies the elements to be used for the menu structure

position Specifies the position of the submenus relative to the main widget

role Sets a custom ARIA role for accessibility

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 23 ■ Using the MenU and tooltip Widgets

627

 <div><a>Wedding Classics</div>
 <div>-</div>
 <div><a>Exotica</div>
 </div>
</body>
</html>

This is most useful when you want to make a menu out of existing HTML elements, typically those which are
generated from a template or obtained from a remote server via Ajax. The problem is that the menu widget doesn’t
know which of my div elements represents submenus and so all of my div elements are treated as top-level menu
items, as shown in Figure 23-3.

I can give the menu widget information about the elements through the menus property, which is set to a selector
that matches the elements I want for my submenus, as shown in Listing 23-5.

Listing 23-5. Using the Menus Configuration Property

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>

Figure 23-3. The menu widget treating all elements as menu items

Chapter 23 ■ Using the MenU and tooltip Widgets

628

 <style>
 .ui-menu { width: 200px; }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#menu").menu({
 menus: "div.subMenu"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div id="menu">
 <div><a>Bouquets</div>
 <div><a>Heirloom Blooms</div>
 <div>-</div>
 <div><a>Summer Color
 <div class="subMenu">
 <div><a>Aster</div>
 <div><a>Rose</div>
 <div><a>Orchid</div>
 </div>
 </div>
 <div><a>Wedding Classics</div>
 <div>-</div>
 <div><a>Exotica</div>
 </div>
</body>
</html>

I have assigned the div element that I want as a submenu to the subMenu class and specified a selector of
div.subMenu for the menus property when creating the menu widget.

Tip ■ You don’t have to use a class and—if you do—it doesn’t have to be called subMenu. any selector that matches
your elements will work.

Using Icons in Menus
The icons setting specifies the icons that the menu widget uses for submenus and is set to the name of one of the
icons that I described in Chapter 18. Listing 23-6 shows the use of the icons setting.

Chapter 23 ■ Using the MenU and tooltip Widgets

629

Listing 23-6. Setting the Icons Used in Submenus

...
<script type="text/javascript">
 $(document).ready(function () {
 $("#menu").menu({
 menus: "div.subMenu",
 icons: { submenu: "ui-icon-circle-plus" }
 });
 });
</script>
...

The icons property is set using an object that defines a submenu property which, in turn, is set to the name of the
icon you want to use. In the listing, I have specified the icon which shows a plus symbol in a circle and you can see
the effect in Figure 23-4.

You can specify icons for individual menu items by adding span elements to the menu structure and using the
class attribute to specify the icon name, as shown in Listing 23-7.

Listing 23-7. Adding Icons to Menu Items

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 .ui-menu { width: 200px; }
 </style>

Figure 23-4. Changing the icon used for submenus

Chapter 23 ■ Using the MenU and tooltip Widgets

630

 <script type="text/javascript">
 $(document).ready(function () {
 $("#menu").menu({
 icons: { submenu: "ui-icon-circle-plus" }
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <ul id="menu">
 <a>Bouquets
 <a>Heirloom Blooms
 -
 <a>Summer Color

 <a>Aster
 <a>Rose
 <a>Orchid

 <a>Wedding Classics

 -
 <li class="ui-state-disabled"><a>Exotica

</body>
</html>

The span element must appear within the a element and be assigned to the ui-icon class and the class that
represents the icon to display, which is ui-icon-circle-check in this example. You can see the effect of this change
in Figure 23-5.

Figure 23-5. Adding icons to menu items

Chapter 23 ■ Using the MenU and tooltip Widgets

631

Positioning Submenu Pop-ups
The position setting determines where the pop-up appears for submenus and uses the same position format that
I described in Chapter 19. My advice is to allow the menu widget to position submenus automatically, not least
because the pop-ups for submenus are transparent and you can see the underlying menu structure when the pop-up
is positioned over the parent widget. In Listing 23-8, you can see the position setting used to display submenus so
that they are centered over the menu widget.

Listing 23-8. Positioning the Pop-ups for Submenus

...
<script type="text/javascript">
 $(document).ready(function () {
 $("#menu").menu({
 icons: { submenu: "ui-icon-circle-plus" },
 position: {
 my: "left center",
 at: "center center"
 }
 });
 });
</script>
...

The effect can be seen in Figure 23-6, with the underlying menu items visible through the pop-up.

Using the Menu Methods
The jQuery UI menu widget supports the methods described in Table 23-3. I don’t find these methods useful because
they mainly provide the means to drive navigation in the menu widget, something that is best left to the user. These
methods make it easy to create a jarring user experience and I recommend against using them.

Figure 23-6. Positioning a submenu pop-up over the menu widget

Chapter 23 ■ Using the MenU and tooltip Widgets

632

It is difficult to demonstrate these methods because the behavior of the menu widget is tied closely to the
currently selected menu items. Trying to control a menu with buttons, for example, doesn’t work because clicking
the button takes the focus away from the menu. My advice is to avoid using these methods and rely on standard user
interaction, handling the events that I describe in the next section.

Note ■ the menu widget also defines methods for navigating through menus that can scroll, but this feature doesn’t
work reliably at the time of this writing and so i have omitted the methods from the table.

Using the Menu Events
The jQuery UI menu widget supports the events described in Table 23-4.

Table 23-4. Menu Events

Event Description

blur Triggered when the menu loses focus (this event can be explicitly triggered by calling the blur method)

create Triggered when the widget is created

focus Triggered when the menu gains the focus and when a menu item is activated (this event can be explicitly
triggered by calling the focus method)

select Triggered when menu item is selected, either by the user or because the select method has been called

Table 23-3. Menu Methods

Method Description

menu("blur") Removes the focus from the menu – triggers the blur event (described later in the chapter)

menu("collapse") Closes the currently active submenu

menu("collapseAll") Closes all open submenus

menu("destroy") Removes the menu widget from the underlying element

menu("disable") Disables the menu

menu("enable") Enables the menu

menu("expand") Opens the submenu associated with the currently selected menu item

menu("focus") Focuses on a menu item

menu("isFirstItem") Returns true if the currently selected item is the first in the menu

menu("isLastItem") Returns true if the currently selected item is the last in the menu

menu("next") Moves the focus to the next menu item

menu("option") Changes one or more settings

menu("previous") Moves the focus to the previous menu item

menu("refresh") Updates the menu to reflect changes in the underlying HTML elements

menu("select") Selects the active menu item, closes all open submenus, and triggers the select event
(described later in the chapter)

Chapter 23 ■ Using the MenU and tooltip Widgets

633

In Listing 23-9, you can see how I have used the blur and focus events to keep track of which menu items are
activated by the user and the select event to respond when the user clicks on a menu item.

Listing 23-9. Handling the Blur, Focus, and Select Events from the Menu Widget

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 .ui-menu { width: 200px; }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#menu").menu({
 focus: function (e, ui) {
 console.log("Focus: " + ui.item.find("a").first().text());
 },
 blur: function () {
 console.log("Blur");
 },
 select: function (e, ui) {
 console.log("Select: " + ui.item.find("a").first().text());
 e.preventDefault();
 }
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <ul id="menu">
 <a>Bouquets
 <a>Heirloom Blooms
 -
 <a>Summer Color

 Aster
 <a>Rose
 <a>Orchid

 <a>Wedding Classics
 -
 <li class="ui-state-disabled"><a>Exotica

</body>
</html>

http://apress.com">Aster</li

Chapter 23 ■ Using the MenU and tooltip Widgets

634

The handler functions for all three events are passed a jQuery event object (which I described in Chapter 9) and
an additional ui object whose item property returns a jQuery object. The jQuery object is meant to contain the HTML
element that the event corresponds to, but as I write this, the value of this property isn’t set properly for the blur event.

With this in mind, I handle the focus and select events by writing the text content of the first a element
contained by the element that the event relates to and simply note that the blur event has been triggered. If you run
this example and navigate around the menu, you will see output similar to the following:

Focus: Bouquets
Blur
Focus: Heirloom Blooms
Blur
Focus: Summer Color
Select: Summer Color
Blur
Focus: Aster
Blur
Focus: Aster
Select: Aster
Blur
Focus: Aster
Blur

I have highlighted one of the statements written to the console because it demonstrates that items which contain
submenus can themselves be selected—in this case, I was able to click on the Summer Color menu item even though
it contains a submenu. This can lead to unexpected behavior when the handler for the select method doesn’t take
this into account.

Tip ■ notice that i call the preventDefault method when handling the select event to prevent the browser from
navigating to the Url specified by the href attribute of the a elements.

Using the jQuery UI Tooltip Widget
The tooltip widget provides small pop-ups that can be used to provide the user with helpful context information.
Tooltips can be a force for good or evil. When used carefully, tooltips can help users navigate a complex process,
but more often they are misused and become a distraction or an annoyance.

The most common pitfall is telling the user something she already knows and, in doing so, missing an
opportunity to provide something more useful—this happens most frequently in web forms which require complex
data. A recent example I saw came in an online tax form. Taxes are naturally complex and the developers felt it
would be helpful to provide tooltips to give users information about the data required for each field. This was a noble
gesture, but each tooltip simply restated information that was already evident from the form labels. So, for example,
the tooltip for the form labeled Birth Date told me to “Enter your date of birth.” What wasn’t provided was the format
I had to use—month/day/year, day/month/year, year/month/day, and so on. You can see examples of this problem
all over the web and each one represents a lost opportunity to provide the user with a helpful insight. A related
problem is tooltips preventing the user from completing a task. Each time I made another wrong guess in the tax form
at the required format for key fields, I would be presented with a tooltip that obscured the input element, slowing
down my attempts to get through the process.

Chapter 23 ■ Using the MenU and tooltip Widgets

635

My advice is to use tooltips sparingly and to think carefully about what value they offer to the user. If you are
simply restating information that the user already has, then reconsider your goals.

Creating the Tooltip
The jQuery UI tooltip widget can be applied to any HTML element with the tooltip method and, by default, displays
the contents of the title attribute, as shown in Listing 23-10.

Tip ■ the mainstream browsers will use the title attribute to display tooltips anyway, without needing to use
jQuery Ui. the advantage of the tooltip widget is that it allows you to style the tooltip consistently with the rest of the
application, take control of how the tooltip is used, and use a wider range of content.

Listing 23-10. Creating a Tooltip Widget

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 [title] { font-weight: bold; font-style:italic }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("[title]").tooltip();
 });
 </script>
</head>
<body class="ui-widget">
 <h1>Jacqui's Flower Shop</h1>

 <h3>Color and Beauty to Your Door</h3>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a
 20 mile radius
 of the store for free and $1/mile thereafter.</p>
</body>
</html>

In this example I have defined a span element that has a title attribute. I select any element that has a title
attribute and call the tooltip method and—to emphasize which elements have tooltips—I have defined a CSS style
that uses the same selector. The result is that jQuery UI creates a tooltip widget which is shown when the mouse
hovers over the span element, as shown in Figure 23-7.

Chapter 23 ■ Using the MenU and tooltip Widgets

636

Using Tooltips with Input Elements
Tooltips are also shown when the element they relate to has the focus—something that can be useful when working
with input elements because the tooltips will appear for each element as the user tabs through the form. Applying
tooltips to an input element is just the same as for other elements, as demonstrated in Listing 23-11.

Listing 23-11. Applying Tooltips to Input Elements

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 input { width: 150px; }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("input").tooltip();
 });
 </script>
</head>
<body class="ui-widget">
 <h1>Jacqui's Flower Shop</h1>
 <div><label>Name:</label><input title="Use lastname, firstname" /></div>
 <div><label>City:</label><input title="Don't include your state" /></div>
</body>
</html>

Figure 23-7. A jQuery UI tooltip

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 23 ■ Using the MenU and tooltip Widgets

637

There are two input elements with title attributes in this listing and you can see the effect of tabbing through
the elements in Figure 23-8.

Configuring the Tooltip
The tooltip widget supports a range of settings that allow you to customize the way that the widget is presented
to the user, as described in Table 23-5 and demonstrated in the sections that follow.

Figure 23-8. Using tooltips with input elements

Table 23-5. Tooltip Settings

Setting Description

content Sets the content for the tooltip, which can be expressed as a string of HTML or as a function

disabled Disables the tooltip when set to true

hide Specifies how the tooltip is animated when it is hidden—see Chapter 34 for details of the
jQuery UI animation support

items Specifies a selector that can narrow the set of elements for which tooltips are created

position Specifies the position of the tooltip in relation to the element it corresponds to

show Specifies how the tooltip is animated when it is shown—see Chapter 34 for details of the
jQuery UI animation support

tooltipClass Specifies an additional class that the tooltip element will be added to, allowing styling for
different types of tooltip (errors, for example)

track When set to true, the position of the tooltip will change to track the position of the mouse
as it moves over the underlying HTML element

Chapter 23 ■ Using the MenU and tooltip Widgets

638

Setting the Tooltip Content
One of the big advantages of using jQuery UI tooltips is that you can use them to display rich content, which can
be specified either as a fragment of HTML or via a JavaScript function. You can see the first of these in Listing 23-12,
where I use the content property to specify a fragment of HTML that contains formatting.

Listing 23-12. Using the Content Setting to Display Formatted Content

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 span.toolTip { font-weight: bold; font-style:italic }
 </style>
 <script id="tipContent" type="text/html">
 We are at 200 Main Street
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 $("span.toolTip").tooltip({
 content: $("#tipContent").html(),
 items: "span.toolTip"
 });
 });
 </script>
</head>
<body class="ui-widget">
 <h1>Jacqui's Flower Shop</h1>

 <h3>Color and Beauty to Your Door</h3>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a
 20 mile radius
 of the store for free and $1/mile thereafter.</p>
</body>
</html>

I have defined a new script element but set the type attribute to be text/html—this has the effect of preventing
the browser from treating the contents of the script element as JavaScript or as part of the HTML content. This is
the same technique that is used for data templates (as described in Chapter 12), but my goal is just to stash an HTML
fragment out of the main part of the document until I need it.

I use the content setting to pass the HTML fragment to the tooltip widget. Notice that I have to select the script
element that contains the fragment using jQuery and then call the html method to get its content—the tooltip widget
isn’t nicely integrated into jQuery and will only take HTML as a string.

I have had to use the items setting as well—and that’s because I am no longer using the title attribute, which
the tooltip widget looks for by default. Without this change, the call to the tooltip method will ignore my span
element. I have added the span element to a class called toolTip and used this as the basis for the selector I provided
for the items setting.

Chapter 23 ■ Using the MenU and tooltip Widgets

639

The HTML fragment contained in the script element is used as the content for the tooltip and the effect is shown
in Figure 23-9, including the modest styling I added through a b element.

Tip ■ i have shown formatted text in this example, but you can use a jQuery Ui tooltip to display any htMl content,
including images.

Generating Tooltip Content with a Function
I can also specify content using a function. For locally generated tooltip content, I can simply return an HTML
fragment directly from the function, as shown in Listing 23-13.

Listing 23-13. Generating Tooltip Content from a Function

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 span.toolTip { font-weight: bold; font-style:italic }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("span.toolTip").tooltip({
 content: function () {
 if (this.id == "address") {
 return "We are at 200 Main Street";

Figure 23-9. Styling the content in a tooltip

Chapter 23 ■ Using the MenU and tooltip Widgets

640

 } else {
 return "Fee capped at <i>$20</i> during June!"
 }
 },
 items: "span.toolTip"
 });
 });
 </script>
</head>
<body class="ui-widget">
 <h1>Jacqui's Flower Shop</h1>

 <h3>Color and Beauty to Your Door</h3>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a
 20 mile radius of the store for free and
 $1/mile thereafter.</p>
</body>
</html>

I have defined two span elements that have tooltips in this example and I use the function I provided to the
content setting to give unique content to each tooltip. When the function is called, the value of the this variable is set
to the element that has triggered the need for tooltip content. I use the id property to get the value of the id attribute
and return different HTML fragments based on the element. You can see the result in Figure 23-10.

Getting Remote Tooltip Content
You can also obtain tooltip content asynchronously using Ajax and provide the fragment you want to display to
jQuery UI via a callback. To demonstrate how this works, I have created a new JSON file called tooltips.json
and placed it in the same directory as the other files in the example. You can see the content of the tooltips.json
file in Listing 23-14.

Figure 23-10. Generating tooltip content using a function

Chapter 23 ■ Using the MenU and tooltip Widgets

641

Listing 23-14. The Contents of the tooltips.json File

{"address": "We are at 200 Main Street",
 "maxPrice": "Fee capped at <i>$20</i> during June!"}

In a real application, the server would usually send back a specific message for a given element, but for simplicity
my JSON file contains all of the tooltip content that my example requires. You can see how I can obtain this data and
use it to provide tooltip content in Listing 23-15.

Listing 23-15. Obtaining Remote Tooltip Content

...
<script type="text/javascript">
 $(document).ready(function () {

 var tooltipData;

 $("span.toolTip").tooltip({
 content: function (callback) {
 if (tooltipData != null) {
 console.log("Requested serviced locally: " + this.id);
 return tooltipData[this.id];
 } else {
 var elemID = this.id;
 $.getJSON("tooltips.json", function (data) {
 tooltipData = data;
 console.log("Requested serviced remotely: " + elemID);
 callback(tooltipData[elemID]);
 });
 }
 },
 items: "span.toolTip"
 });
 });
</script>
...

Given that the JSON file contains all of the values I require, I can make one request to the server and then store
the data I retrieve for subsequent tooltips—and that’s what most of the code in the example relates to. The key point
in this example is that the callback that I pass to the getJSON method (which I described in Chapter 14) won’t be
executed until after the function used for the content setting has completed, meaning that I can’t simply return the
HTML fragment for the tooltip as the result.

Instead, my content function is passed an argument, which is a function to invoke when I have prepared the
HTML fragment.

 ...
content: function (callback) {
...

Chapter 23 ■ Using the MenU and tooltip Widgets

642

When my Ajax request completes, I call this function with the data I want to display:

...
callback(tooltipData[elemID]);
...

The resulting tooltips are indistinguishable from the earlier examples, but the content that is displayed has been
obtained via an Ajax request.

Tip ■ i have included this feature for completeness, but you should use it with caution. tooltips work best when they
provide immediate feedback to the user and this may not happen if your ajax request takes a while to complete.

Adding Extra CSS Classes to Tooltips
The tooltipClass setting lets you specify one or more CSS classes that will be applied to tooltips for custom styling.
Listing 23-16 provides an example.

Listing 23-16. Using the tooltipClass Setting

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 span.toolTip { font-weight: bold; font-style:italic }
 *.customTip { border-color: red; }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("span.toolTip").tooltip({
 content: function () {
 if (this.id == "address") {
 return "We are at 200 Main Street";
 } else {
 return "Fee capped at <i>$20</i> during June!"
 }
 },
 items: "span.toolTip",
 tooltipClass: "customTip"
 });
 });
 </script>
</head>

Chapter 23 ■ Using the MenU and tooltip Widgets

643

<body class="ui-widget">
 <h1>Jacqui's Flower Shop</h1>
 <h3>Color and Beauty to Your Door</h3>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a
 20 mile radius of the store for free and
 $1/mile thereafter.</p>
</body>
</html>

I have defined a CSS style for a class called customTip and applied this class to the tooltips using the
tooltipClass setting. My style sets the color of the border, which produces the result shown in Figure 23-11.

The HTML generated by jQuery UI for tooltips includes another class that can be useful for styling. Following
is an example of the HTML generated for one of the widgets in the example:

...
<div id="ui-tooltip-3" role="tooltip" class="ui-tooltip ui-widget ui-corner-all
 ui-widget-content customTip" style="top: 210.15625px; left: 161px; display: block;">
 <div class="ui-tooltip-content">We are at 200 Main Street</div>
</div>
...

There is an outer div element to which the class specified by the tooltipClass setting is applied, but the content
displayed by the tooltip is contained within an inner div element, which belongs to the ui-tooltip-content class.
For advanced styling, you can use both classes to target the widget and its content separately, as shown in Listing 23-17.

Tip ■ the other classes applied to the tooltip, such as ui-widget and ui-corner-all, are part of the jQuery Ui Css
framework, which i describe in Chapter 35.

Figure 23-11. Applying a custom class to tooltips

Chapter 23 ■ Using the MenU and tooltip Widgets

644

Listing 23-17. Styling the Widget and Its Content Separately

...
<style>
 span.toolTip { font-weight: bold; font-style:italic }
 *.customTip { border-color: red; }
 *.ui-tooltip-content { border: thick solid black; margin: 10px; padding: 10px;
 background-color: white; }
</style>
...

You can see the effect of this change in Figure 23-12.

Tip ■ if you want to change the background color of a tooltip, you will need to set the background-image property
to none in the class that is specified with the tooltipClass setting. jQuery Ui widget backgrounds are generated using
 images from the theme rather than colors.

Tracking the Mouse
When the track setting is true, the tooltip will follow the movements of the mouse over the HTML element that the
tooltip corresponds to. This is useful when you want to change the content of the tooltip based on the position of
the mouse, reflecting different regions of the underlying HTML element, as shown in Listing 23-18.

Listing 23-18. Tracking the Position of the Mouse with the Tooltip

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>

Figure 23-12. Changing the style of the tooltip content independently from the tooltip itself

Chapter 23 ■ Using the MenU and tooltip Widgets

645

 <style>
 span.toolTip { font-weight: bold; font-style:italic }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("span.toolTip").tooltip({
 content: "Move the mouse",
 items: "span.toolTip",
 track: true
 }).mousemove(function(e) {
 $(this).tooltip("option", "content",
 "X: " + e.pageX + " Y: " + e.pageY);
 });
 });
 </script>
</head>
<body class="ui-widget">
 <h1>Jacqui's Flower Shop</h1>
 <h3>Color and Beauty to Your Door</h3>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a
 20 mile radius of the store for free and
 $1/mile thereafter.</p>
</body>
</html>

I enable tracking the mouse with the track setting and set up a handler function for the mousemove event
(as described in Chapter 9) which uses the option method to update the content that the tooltip displays. This is
an example that you need to experience firsthand to see the updates being performed, but Figure 23-13 shows a
snapshot of the new behavior.

Figure 23-13. Tracking the position of the mouse with the tooltip

Chapter 23 ■ Using the MenU and tooltip Widgets

646

Positioning the Tooltip
The position setting specifies how the tooltip will be positioned relative to the element it corresponds to,
using the same format I described in Chapter 19. You can see an example in Listing 23-19.

Listing 23-19. Positioning the Tooltip

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 span.toolTip { font-weight: bold; font-style:italic }
 </style>
 <script type="text/javascript">
 $(document).ready(function () {
 $("span.toolTip").tooltip({
 content: function () {
 if (this.id == "address") {
 return "We are at 200 Main Street";
 } else {
 return "Fee capped at <i>$20</i> during June!"
 }
 },
 items: "span.toolTip",
 position: {
 my: "center bottom",
 at: "center top"
 }
 });
 });
 </script>
</head>
<body class="ui-widget">
 <h1>Jacqui's Flower Shop</h1>
 <h3>Color and Beauty to Your Door</h3>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a
 20 mile radius of the store for free and
 $1/mile thereafter.</p>
</body>
</html>

I have used the position setting to specify that the tooltip should be positioned directly above the element it
relates to, as shown in Figure 23-14.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 23 ■ Using the MenU and tooltip Widgets

647

Using the Tooltip Methods
The jQuery UI tooltip widget supports the methods described in Table 23-6.

The methods of note are open and close, which allow programmatic control over the tooltips. In Listing 23-20,
you can see how I have used these methods to show and hide all of the tooltips contained in the HTML document
using buttons.

Listing 23-20. Using the open and close Methods

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 span.toolTip { font-weight: bold; font-style:italic }
 </style>

Figure 23-14. Positioning the tooltip

Table 23-6. Tooltip Methods

Method Description

tooltip("close") Closes the tooltip if it is open

tooltip("destroy") Removes the tooltip widget from the underlying HTML element

tooltip("disable") Disables the tooltip, preventing it from being shown

tooltip("enable") Enables the tooltip, allowing it to be shown

tooltip("open") Opens the tooltip if it is closed

tooltip("option") Sets a configuration option

Chapter 23 ■ Using the MenU and tooltip Widgets

648

 <script type="text/javascript">
 $(document).ready(function () {
 $("span.toolTip").tooltip({
 content: function () {
 if (this.id == "address") {
 return "We are at 200 Main Street";
 } else {
 return "Fee capped at <i>$20</i> during June!"
 }
 },
 items: "span.toolTip",
 position: {
 my: "center bottom",
 at: "center top"
 }
 });
 $("button").button().click(function (e) {
 $("span.toolTip").tooltip(this.id);
 });
 });
 </script>
</head>
<body class="ui-widget">
 <h1>Jacqui's Flower Shop</h1>
 <h3>Color and Beauty to Your Door</h3>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a
 20 mile radius of the store for free and
 $1/mile thereafter.</p>
 <div>
 <button id="open">Open</button>
 <button id="close">Close</button>
 </div>
</body>
</html>

You can see the effect in Figure 23-15.

Chapter 23 ■ Using the MenU and tooltip Widgets

649

Using the Tooltip Events
The jQuery UI tooltip widget supports the events described in Table 23-7.

I have demonstrated the open and close events in Listing 23-21. The handler function is passed a jQuery event
object (as described in Chapter 9) and an additional ui object whose tooltip property returns a jQuery object that
contains the tooltip element.

Listing 23-21. Handling the open and close Events

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style>
 span.toolTip { font-weight: bold; font-style:italic }
 span.active { border: medium solid red; padding: 10px; background-color: white }
 </style>

Table 23-7. Tooltip Events

Event Description

close Triggered when the tooltip is closed

create Triggered when the widget is applied

open Triggered when the tooltip is shown

Figure 23-15. Showing and hiding the tooltips programmatically

Chapter 23 ■ Using the MenU and tooltip Widgets

650

 <script type="text/javascript">
 $(document).ready(function () {
 $("span.toolTip").tooltip({
 content: function () {
 if (this.id == "address") {
 return "We are at 200 Main Street";
 } else {
 return "Fee capped at <i>$20</i> during June!"
 }
 },
 items: "span.toolTip",
 open: function (e, ui) {
 $(this).toggleClass("active");
 },
 close: function (e, ui) {
 $(this).toggleClass("active");
 }
 });
 });
 </script>
</head>
<body class="ui-widget">
 <h1>Jacqui's Flower Shop</h1>
 <h3>Color and Beauty to Your Door</h3>
 <p>We are pleased to announce that we are starting a home delivery service for
 your flower needs. We will deliver within a
 20 mile radius of the store for free and
 $1/mile thereafter.</p>
</body>
</html>

In this example I handle the open and close events by toggling a CSS class called active on the element that
the tooltip relates to (which is available via the this variable). The effect is that the element is highlighted when the
tooltip is shown, as illustrated by Figure 23-16.

Chapter 23 ■ Using the MenU and tooltip Widgets

651

Summary
In this chapter, I have shown you how the jQuery UI menu and tooltip widgets work. Following the same format
as the other widget chapters, I focused on the settings, methods, and events that these widgets support. In Chapter 24,
I describe the first of the jQuery UI interactions.

Figure 23-16. Handling the open and close events

653

Chapter 24

Using the Drag-and-Drop Interactions

In addition to the widgets I showed you in Chapters 18–23, jQuery UI includes a set of interactions. These are
lower-level building blocks that allow you to add functionality to your web application interface. In this chapter,
I describe the draggable and droppable interactions, which you can use to add drag and drop to an HTML document.

The interactions follow the same basic structure as the widgets. They have settings, methods, and events.
I will follow the same pattern in describing the interactions, but I’ll be jumping around a little to accommodate the
unique nature of some of the interactions.

It is hard to show the effect of applying the interactions using screenshots. They are, as the name suggests,
dependent on interaction. I tried to give you the essence of what is happening, but to truly understand interactions
you should experiment with them in the browser. All of the examples in this chapter (and every other chapter for that
matter) are included in the free Source Code/Download area of the Apress web site (www.apress.com). Table 24-1
provides the summary for this chapter.

Table 24-1. Chapter Summary

Problem Solution Listing

Apply the draggable interaction Use the draggable method 1

Constrain the direction in which an element can be dragged Use the axis setting 2

Limit the area in which the element can be dragged Use the containment setting 3

Constrain dragging to the cells in a grid Use the grid setting 4

Delay dragging for a period of time or
for a number of pixels

Use the delay and distance settings 5

Respond to an element being dragged Use the start, drag, and stop events 6

Apply the droppable interaction Use the droppable method 7

Highlight a droppable element
when an element is being dragged

Use the activate and deactivate events 8

Respond when a draggable element overlaps with
a droppable element

Use the over and out events 9

Specify which draggable elements
a droppable element will accept

Use the accept setting 10

Automatically apply CSS classes to a droppable
element when dragging starts or overlaps

Use the activeClass and hoverClass settings 11

(continued)

http://www.apress.com/

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

654

Problem Solution Listing

Changing the amount of overlap that
will trigger the over event

Use the tolerance setting 12

Create groups of compatible
draggable and droppable elements

Use the scope setting 13

Leave the draggable element in
place during and after dragging

Use the helper setting 14, 15

Manipulate the helper element in
response to a droppable event

Use the ui.helper property 16

Force the draggable element to snap
to the edge of other elements

Use the snap, snapMode,
and snapTolerance settings

17

Table 24-1. (continued)

Creating the Draggable Interaction
An element to which you apply the draggable interaction can be moved (dragged) around the browser window.
The element appears in the initial document layout as it would normally, but the element’s position changes if the
user holds down the pointer over the draggable element and moves the mouse. Listing 24-1 provides a demonstration
of the draggable interaction.

Listing 24-1. Using the Draggable Interaction

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 #draggable {font-size: x-large; border: thin solid black;
 width: 5em; text-align: center}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#draggable").draggable();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="draggable">
 Drag me
 </div>
</body>
</html>

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

655

In Listing 24-1, I selected a div element and called the draggable method to create a draggable element.
As Figure 24-1 shows, the element starts in its regular position but can be dragged anywhere in the browser window.
Note that the other element in the document, the h1, is not affected by the draggable method.

Figure 24-1. Dragging an element around the browser window

Tip ■ Being able to drag elements can be useful in its own right, but it becomes much more powerful when combined
with the droppable interaction, which i describe in later in this chapter.

The draggable interaction is performed using some clever HTML and CSS. This means that it works in almost any
browser—but it also means draggable elements are not able to interact with the native drag and drop implemented by
the user’s operating system.

Tip ■ htML5 includes support for drag and drop that is usually implemented using the native operating system
mechanisms. i provide details and examples of htML5 drag and drop in my book The Definitive Guide to HTML5,
also published by apress. if you are using the jQuery Ui drag-and-drop mechanism, i recommend disabling the htML5
equivalent to avoid confusion. to do this, set the draggable attribute to false on the body element in your document.

Configuring the Draggable Interaction
There are lots of ways you can configure the draggable interaction. Table 24-2 summarizes the most important settings
available, which I demonstrate in the sections that follow.

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

656

Tip ■ in the Tuning Drag & Drop section later in the chapter, i describe some additional settings that change the
relationship between the draggable and droppable elements.

Constraining the Drag Axis
There are several ways in which you can constrain the way an element can be dragged. The first is to use the axis
setting, which allows you to limit dragging to the x-axis or y-axis. Listing 24-2 provides an example.

Listing 24-2. Using the axis Setting to Constrain Dragging

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.dragElement {font-size: large; border: thin solid black;
 width: 5em; text-align: center; background-color: lightgray; margin: 4px }
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $(".dragElement").draggable({
 axis: "x"
 }).filter("#dragV").draggable("option", "axis", "y");

 });
 </script>
</head>

Table 24-2. Draggable Settings

Setting Description

axis Restricts the drag to a particular direction. The default is false, meaning no restriction,
but you can also specify x (for the x-axis) and y (for the y-axis).

containment Restricts the draggable element to a region of the screen. See Table 24-3 for details of the
supported range of values. The default is false, meaning no restriction.

delay Specifies a duration for which the user must drag the element before it moves. The default is 0,
meaning no delay.

distance Specifies a distance that the user must drag the element from its initial position before it moves.
The default is 1 pixel.

grid Forces the draggable element to snap to a grid. The default is false, meaning no grid will be used.

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

657

<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dragV" class="dragElement">
 Drag Vertically
 </div>
 <div id="dragH" class="dragElement">
 Drag Horizontally
 </div>
</body>
</html>

In Listing 24-2, I defined two div elements, selected them with jQuery, and called the draggable method. I use
the settings object to define a value of x for both div elements initially, and then use the jQuery filter method to
select the dragV element so that I can change the y setting without having to make jQuery search the entire document
again. The result is one div element that can be dragged vertically and another that can be dragged horizontally.
You can see the effect in Figure 24-2.

Constraining the Drag Region
You can limit the region of the screen in which an element can be dragged. You do this through the containment
setting. This setting can be set using several formats, as described in Table 24-3.

Figure 24-2. Constraining the direction in which an element can be dragged

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

658

Listing 24-3 shows the use of the containment setting.

Listing 24-3. Using the containment Setting

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.dragElement {font-size: large; border: thin solid black; padding: 4px;
 width: 5em; text-align: center; background-color: lightgray; margin: 4px }
 #container { border: medium double black; width: 400px; height: 150px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $(".dragElement").draggable({
 containment: "parent"
 }).filter("#dragH").draggable("option", "axis", "x");

 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="container">
 <div id="dragH" class="dragElement">
 Drag Horizontally
 </div>
 <div class="dragElement">
 Drag within Parent
 </div>
 </div>
</body>
</html>

Table 24-3. Values for the Containment Setting

Value Description

Selector When you specify a selector string, the draggable element is constrained to the area occupied by
the first matching element

HTMLElement The draggable element is constrained to the area occupied by the specified element

string You can specify the values parent, document, and window to restrict dragging

Number Array You can use a number array in the format [x1, y1, x2, y2] to restrict dragging to a region

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

659

In Listing 24-3, I constrained both div elements such that they can be dragged only within their parent element,
which is a fixed-size div element. For one of the draggable div elements, I also applied the axis setting, meaning that
it can be dragged only horizontally within the parent element. You can see the result in Figure 24-3.

Figure 24-3. Restricting dragging to the parent element

Constraining Dragging to a Grid
The grid setting can be used to make a draggable element snap to a grid as it is dragged. The value for this setting is a
two-element array specifying the width and the height of the grid in pixels. Listing 24-4 shows the grid setting in use.

Listing 24-4. Using the Grid Setting

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 #draggable {font-size: large; border: thin solid black; padding: 4px;
 width: 100px; text-align: center; background-color: lightgray; margin: 4px; }
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#draggable").draggable({
 grid: [100, 50]
 })
 });
 </script>
</head>

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

660

<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="draggable">
 Drag Me
 </div>
</body>
</html>

In Listing 24-4, I specified a grid in which the cells are 100 pixels wide and 50 pixels high. As you drag the
element, it snaps from one (invisible) cell to the next, as shown in Figure 24-4.

Figure 24-4. Dragging an element with a grid

The snapping effect is hard to represent in a screenshot and this is an example that particularly benefits
from interaction.

Tip ■ You can snap-to-grid in one direction only by specifying a value of 1 for the free-movement axis. For example,
setting a value of [100, 1] forces the draggable element to snap to 100 pixel cells along the x-axis but allows free
movement along the y-axis.

Delaying Dragging
There are two settings that allow you to delay the dragging action. You can use the delay setting to specify a time
span so that the user has to drag the element for a number of milliseconds before the element starts to move. You can
also use the distance setting, which forces the user make the drag motion for a certain number of pixels before the
element begins to follow the mouse. Listing 24-5 shows both settings in use.

Listing 24-5. Using the delay and distance Settings

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

661

 #time, #distance {font-size: large; border: thin solid black; padding: 4px;
 width: 100px; text-align: center; background-color: lightgray; margin: 4px; }
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#time").draggable({
 delay: 1000
 })

 $("#distance").draggable({
 distance: 150
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="time">Time Delay</div>
 <div id="distance">Distance</div>
</body>
</html>

I have two draggable div elements in Listing 24-5, one of which I configured with the delay setting and the
other with the distance setting. When using the delay, the user has to continue dragging for the specified number of
milliseconds before the element will begin to move. This is 1,000 milliseconds in the example. The user doesn’t have
to keep the mouse moving for this duration, but the mouse button has to be held down for the entire period and the
mouse has to have been moved to start the dragging process. When the time span has elapsed, the draggable element
will snap to the location of the mouse pointer, subject to the grid, region, and axis constraints I showed you earlier.

The distance setting has a similar effect, but the user has to have moved the mouse pointer at least the specified
number of pixels in any direction from the element’s starting point. When the mouse has moved that far, the draggable
element will snap to the current mouse location.

Tip ■ if you apply both settings to a single element, the draggable element won’t move until both conditions have been
met—that is, the user has to have been dragging for the specified time span and moved the mouse the specified number
of pixels.

Using the Draggable Methods
The draggable interaction defines only the set of core methods you saw implemented by the widgets. There are no
draggable-specific methods. Table 24-4 describes those that are available.

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

662

Using the Draggable Events
The draggable interaction supports a simple set of events that notify you when an element is dragged. Table 24-5 describes
the events.

Table 24-5. Draggable Events

Event Description

create Triggered when the draggable interaction is applied to an element

start Triggered when dragging starts

drag Triggered as the mouse moves during dragging

stop Triggered when dragging stops

Table 24-4. Draggable Methods

Method Description

draggable("destroy") Removes the interaction from the element

draggable("disable") Disables the draggable interaction

draggable("enable") Enables the draggable interaction

draggable("option") Changes one or more settings

You respond to interaction events just as you do for widget events. Listing 24-6 demonstrates handling the start
and stop events.

Listing 24-6. Using the Draggable start and stop Events

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 #draggable {font-size: large; border: thin solid black; padding: 4px;
 width: 100px; text-align: center; background-color: lightgray; margin: 4px; }
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#draggable").draggable({
 start: function() {
 $("#draggable").text("Dragging...")
 },

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

663

 stop: function() {
 $("#draggable").text("Drag Me")
 }
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="draggable">
 Drag Me
 </div>
</body>
</html>

In Listing 24-6, I use the start and stop events to change the contents of the element while it is being dragged.
This is a benefit of the way that the draggable interaction (and all of the other jQuery UI interactions, for that matter) is
implemented using HTML and CSS: you can use jQuery to modify the draggable element even when it is being moved
around the screen. You can see the effect that this example creates in Figure 24-5.

Figure 24-5. Using the draggable events to modify an element while it is being dragged

Using the Droppable Interaction
The real utility of the draggable interaction arises when you combine it with the droppable interaction. You create
droppable elements using the droppable method, but to get any real functionality you need to provide handler
functions for the events that the interaction defines. Table 24-6 describes the events that are available.

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

664

You can create a basic droppable element with just the drop event, as shown in Listing 24-7.

Listing 24-7. Creating a Basic Droppable Interaction

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 #draggable, #droppable {font-size: large; border: thin solid black; padding: 4px;
 width: 100px; text-align: center; background-color: lightgray; margin: 4px;}
 #droppable {padding: 20px; position: absolute; left: 5px; bottom: 5px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#draggable").draggable();

 $("#droppable").droppable({
 drop: function() {
 $("#draggable").text("Dropped")
 }
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="droppable">
 Drop Here
 </div>

Table 24-6. Droppable Events

Event Description

create Triggered when the droppable interaction is applied

activate Triggered when the user starts to drag a draggable element

deactivate Triggered when the user stops dragging a draggable element

over Triggered when the user drags a draggable element over the droppable element
(but has not yet released the mouse button)

out Triggered when the user drags a draggable element out of the droppable element

drop Triggered when the user drops a draggable element on the droppable element

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

665

 <div id="draggable">
 Drag Me
 </div>
</body>
</html>

I added a div element whose text content is Drop Here. I use jQuery to select this element and call the droppable
method, passing in a settings object that defines a handler for the drop event. In response to this method, I change
the text of the draggable element using the text method. Listing 24-7 creates the dullest possible drag-and-drop
interaction, but it also provides a useful foundation to explain the way that the draggable and droppable interactions
can be used together. You can see the different stages of the example in Figure 24-6.

Figure 24-6. Using simple drag and drop

This is pretty basic stuff. I drag the draggable element over the droppable element and let go. The draggable
element stays where I left it, and its text content is changed in response to the drop event. In the sections that follow,
I’ll show you how to use the other droppable events to improve the experience.

Highlighting a Drop Target
You can use the activate and deactivate events to highlight the drop target when the user starts the drag motion.
This is usually a good idea, because it gives the user a clear signal regarding which elements are part of the drag-and-drop
model. Listing 24-8 provides an example.

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

666

Listing 24-8. Responding to the activate and deactivate Events

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#draggable").draggable();

 $("#droppable").droppable({
 drop: function() {
 $("#draggable").text("Dropped");
 },
 activate: function() {
 $("#droppable").css({
 border: "medium double green",
 backgroundColor: "lightGreen"
 });
 },
 deactivate: function() {
 $("#droppable").css("border", "").css("background-color", "");
 }
 });
 });
</script>
...

When the user starts dragging an element, my droppable element triggers the activate event and my handler
function uses the css method to apply new values for the CSS border and background-color properties. This causes
the drop target to light up, indicating to the user that the droppable element has a relationship to the element being
dragged. I use the deactivate event to remove the CSS property values and return the droppable element to its
original state when the user releases the mouse button. (This event is triggered whenever dragging stops, regardless of
whether the user has dropped the draggable element on a droppable element.) You can see the effect in Figure 24-7.

Figure 24-7. Using the activate and deactivate events

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

667

Dealing with Overlapping Elements
You can refine your drag-and-drop technique by handling the over and out events. The over event is triggered when
50% of a draggable element is over any part of the droppable element. The out event is triggered when the elements
no longer overlap. Listing 24-9 shows how you can respond to these events.

Listing 24-9. Using the over and out Events

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#draggable").draggable();

 $("#droppable").droppable({
 drop: function() {
 $("#draggable").text("Dropped");
 },
 over: function() {
 $("#droppable").css({
 border: "medium double green",
 backgroundColor: "lightGreen"
 });
 },
 out: function() {
 $("#droppable").css("border", "").css("background-color", "");
 }
 });
 });
</script>
...

I used the same event handler functions as in the previous example, but I associated them with the over and
out events. The droppable element will show the border and background color when at least 50% of the draggable
element overlaps with it, as shown in Figure 24-8.

Figure 24-8. Responding to the over and out events

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

668

Tip ■ the 50% limit is known as the tolerance, and you can configure the droppable element with different tolerances,
as i demonstrate in the section “Changing the overlap tolerance.”

Configuring the Droppable Interaction
I broke away from the usual pattern in this part of the book because the events are so central to the droppable
interaction. Of course, this interaction does have a number of settings you can use to change the way that it behaves
and these are described in Table 24-7.

Table 24-7. Droppable Settings

Setting Description

disabled When true, the interaction is disabled initially. The default is false.

accept Narrows the draggable elements that the droppable element will respond to. The default is *,
which matches all elements.

activeClass Specifies a class that will be applied in response to the activate event and removed in response to
the deactivate event.

hoverClass Specifies a class that will be applied in response to the over event and removed in response to the
out event.

tolerance Specifies the amount of overlap that has to occur before the on event is triggered.

Tip ■ in the section “tuning Drag and Drop,” i describe some additional settings that change the relationship between
the draggable and droppable elements.

Restricting Acceptable Draggable Elements
You can restrict the set of elements you are willing to receive with your droppable interaction by applying the accept
setting. You use the accept setting by providing a selector as the value. This has the effect of triggering only the
droppable events when a draggable element matches the selector. Listing 24-10 provides an example.

Listing 24-10. Restricting the Acceptable Elements

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

669

 .draggable, #droppable {font-size: large; border: thin solid black; padding: 4px;
 width: 100px; text-align: center; background-color: lightgray; margin: 4px;}
 #droppable {padding: 20px; position: absolute; left: 5px; bottom: 5px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $(".draggable").draggable();

 $("#droppable").droppable({
 drop: function(event, ui) {
 ui.draggable.text("Dropped");
 },
 activate: function() {
 $("#droppable").css({
 border: "medium double green",
 backgroundColor: "lightGreen"
 });
 },
 deactivate : function() {
 $("#droppable").css("border", "").css("background-color", "");
 },
 accept: "#drag1"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="droppable">
 Drop Here
 </div>
 <div id="drag1" class="draggable">
 Drag 1
 </div>
 <div id="drag2" class="draggable">
 Drag 2
 </div>
</body>
</html>

There are two draggable elements in this example, with the IDs drag1 and drag2. When creating the droppable
element, I used the accept setting to specify that only the drag1 element should be accepted. When the drag1 element
is dragged, you see the same effect as in the previous example. The activate, deactivate, over, out, and drop events are
all fired at the appropriate moments. However, when you drag the drag2 element, it fails to match the selector I specified
for the accept setting and those events don’t fire. I can still drag the element around, but I can no longer drop it on the
droppable element. You can see the effect in Figure 24-9.

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

670

Notice that I changed the way I select the dropped element so that I can call the text method. When there was
only one draggable element in the document, I just used the id attribute, as follows:

...
$("#draggable").text("Dropped");
...

In this example, there are multiple draggable elements, so selecting by id won’t work because I’ll always be
changing the text on the same element, regardless of which one was dropped. Instead, I use the ui object, which
jQuery UI provides as an additional argument to the event handling functions. The draggable property of the ui object
returns a jQuery object that contains the element that the user is dragging or has dropped, allowing me to target that
element as follows:

...
ui.draggable.text("Dropped");
...

Highlighting the Droppable Using Classes
You can use the activeClass and hoverClass settings to change the appearance of the droppable element without
using the activate, deactivate, over, and out events. Listing 24-11 provides a demonstration.

Figure 24-9. Using the accept setting

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

671

Listing 24-11. Using the activeClass and hoverClass Settings

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 .draggable, #droppable {font-size: large; border: thin solid black; padding: 4px;
 width: 100px; text-align: center; background-color: lightgray; margin: 4px;}
 #droppable {padding: 20px; position: absolute; left: 5px; bottom: 5px}
 #droppable.active {border: thick solid green}
 #droppable.hover {background-color: lightgreen}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $(".draggable").draggable();

 $("#droppable").droppable({
 drop: function(event, ui) {
 ui.draggable.text("Dropped");
 },
 activeClass: "active",
 hoverClass: "hover"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="droppable">
 Drop Here
 </div>
 <div class="draggable">
 Drag Me
 </div>
</body>
</html>

I defined two new CSS styles, which I have highlighted in the listing. I created classes that are specific to the id of
the draggable element (e.g., #draggable.active) so that they are more specific than the other styles I have been using
(e.g., #droppable) and so that they take precedence. See Chapter 3 for details of the rules by which CSS styles are
applied to elements.

Having defined these styles, I then name them as the values to the activeClass and hoverClass settings.
The droppable interaction takes care of adding and removing these classes from the droppable elements in response
to the events. You can see the result in Figure 24-10.

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

672

Changing the Overlap Tolerance
By default, the over event will trigger only when at least 50% of the draggable element overlaps with the droppable
element. You can change this using the tolerance setting, which accepts the values shown in Table 24-8.

Figure 24-10. Using the activeClass and hoverClass Settings

Table 24-8. Tolerance Values

Value Description

fit The dragged element must completely overlap the droppable element.

intersect At least 50% of the dragged element must overlap the droppable element. This is the default.

pointer The mouse pointer must be over the droppable element, regardless of where the user has grabbed
the draggable element.

touch The dragged element must overlap the droppable element by any amount.

The two values I use most frequently are fit and touch, because these represent the most readily understood
approaches to the user. I use fit when I preserve the location of the dropped item and touch when I have the dropped
item revert to its original location (something I demonstrate later in the chapter). Listing 24-12 shows the use of the
fit and touch settings.

Listing 24-12. Changing the Tolerance for Draggable Elements

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

673

 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 .draggable, .droppable {font-size: large; border: thin solid black; padding: 4px;
 width: 100px; text-align: center; background-color: lightgray;}
 .droppable {margin-bottom: 10px; margin-right: 5px; height: 50px; width: 120px}
 #dropContainer {position: absolute; right: 5px;}
 div span {position: relative; top: 25%}
 .droppable.active {border: thick solid green}
 .droppable.hover {background-color: lightgreen}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $(".draggable").draggable();

 $("div.droppable").droppable({
 drop: function(event, ui) {
 ui.draggable.text("Dropped");
 },
 activeClass: "active",
 hoverClass: "hover",
 tolerance: "fit"
 });

 $("#touchDrop").droppable("option", "tolerance", "touch");
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dropContainer">
 <div id="fitDrop" class="droppable">
 Fit
 </div>
 <div id="touchDrop" class="droppable">
 Touch
 </div>
 </div>
 <div class="draggable">
 Drag Me
 </div>
</body>
</html>

In Listing 24-12, I created two droppable elements, one of which is configured with the fit value for the tolerance
setting and the other with the touch value. There is a single draggable element, and Figure 24-11 shows the effect that
the different values create. I took each screenshot at the moment that the over event triggered. Notice that the border
I applied to the droppable elements is included when the tolerance setting is used to determine overlap.

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

674

Using the Droppable Methods
The droppable interaction defines only the set of core methods you saw implemented by the widgets. There are no
interaction-specific methods. Table 24-9 describes those that are available.

Figure 24-11. Using the fit and touch values for the tolerance setting

Table 24-9. Droppable Methods

Method Description

droppable("destroy") Removes the interaction from the element

droppable("disable") Disables the droppable interaction

droppable("enable") Enables the droppable interaction

droppable("option") Changes one or more settings

Tuning Drag and Drop
There are some additional settings you can use to fine-tune the way jQuery UI drag and drop works. In this section,
I describe the settings and demonstrate their use.

Using Element Scope
Earlier in the chapter, I showed how the droppable accept setting can be used to filter the elements that will activate
the drop zone. Using selectors works just fine for simple projects, but the selectors can become overly complex and
error prone if you have a lot of draggable elements to manage.

An alternative is to apply the scope setting on both the draggable and droppable elements. A draggable element
will activate droppable elements with the same scope value. Listing 24-13 shows the scope setting in use.

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

675

Tip ■ the scope setting can be combined with the accept setting in droppable elements. the droppable element will be
activated only if the draggable element shares the same scope and matches the selector defined by the accept setting.

Listing 24-13. Using the scope Setting

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 .draggable, .droppable {font-size: large; border: medium solid black;
 padding: 4px; width: 100px; text-align: center;
 background-color: lightgray; margin-bottom: 10px;}
 .droppable {margin-right: 5px; height: 50px; width: 120px}
 #dropContainer {position: absolute; right: 5px;}
 div span {position: relative; top: 25%}
 .droppable.active {border: medium solid green}
 .droppable.hover {background-color: lightgreen}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $("#apple").draggable({
 scope: "fruit"
 });
 $("#orchid").draggable({
 scope: "flower"
 });

 $("#flowerDrop").droppable({
 activeClass: "active",
 hoverClass: "hover",
 scope: "flower"
 });

 $("#fruitDrop").droppable({
 activeClass: "active",
 hoverClass: "hover",
 scope: "fruit"
 });
 });
 </script>
</head>

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

676

<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dropContainer">
 <div id="flowerDrop" class="droppable">
 Flowers
 </div>
 <div id="fruitDrop" class="droppable">
 Fruit
 </div>
 </div>
 <div id="orchid" class="draggable">
 Orchid
 </div>
 <div id="apple" class="draggable">
 Apple
 </div>
</body>
</html>

In Listing 24-13, I created two draggable elements and two droppable elements. When creating these elements,
I assigned them to one of two scope values: fruit and flower. The result is that each draggable element will activate
and be accepted only by the droppable element with the same scope, as shown in Figure 24-12.

Figure 24-12. Grouping draggable and droppable elements by scope

Caution ■ notice that i defined the scope for each element in the initial call to the draggable and droppable
methods, rather than using the option method. as i write this, there is a bug in jQuery Ui where assigning a scope after
the interaction has been created doesn’t work.

Using a Helper Element
The helper setting allows you to specify an element that will be dragged in place of the draggable element, leaving the
original draggable element in place. This is an entirely different effect from previous examples, where the draggable
element has been moved from its original position. Listing 24-14 shows an example of using a helper element.

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

677

Listing 24-14. Using a Large Draggable Element

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 .draggable, .droppable {font-size: large; border: medium solid black;
 padding: 4px; width: 150px; text-align: center;
 background-color: lightgray; margin-bottom: 10px;}
 .droppable {margin-right: 5px; height: 50px; width: 120px}
 #dropContainer {position: absolute; right: 5px;}
 div span {position: relative; top: 25%}
 .droppable.active {border: medium solid green}
 .droppable.hover {background-color: lightgreen}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $("div.draggable").draggable({
 helper: "clone"
 });

 $("#basket").droppable({
 activeClass: "active",
 hoverClass: "hover"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dropContainer">
 <div id="basket" class="droppable">
 Basket
 </div>
 </div>
 <div class="draggable">
 <label for="lily">Lily</label>
 </div>
</body>
</html>

The value clone tells jQuery UI to make a copy of the draggable element and all of its contents and use the result
as the helper element. You can see the effect in Figure 24-13. The helper element is removed when the user drops it,
leaving the draggable and droppable elements in their original positions.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

678

As the figure shows, the original draggable element remains in position and only the helper is moved across the
screen to follow the user’s mouse. Large draggable elements like the one in this example make it difficult for the user
to see the underlying elements in the document, including the position of the droppable element. You can address
this issue by providing a function as the value for the helper setting, as shown in Listing 24-15.

Listing 24-15. Using the helper Setting

...
<script type="text/javascript">
 $(document).ready(function() {

 $("div.draggable").draggable({
 helper: function() {
 return $("")
 }
 });

 $("#basket").droppable({
 activeClass: "active",
 hoverClass: "hover"
 });
 });
</script>
...

When the user starts to drag the element, jQuery UI calls the helper function and uses the element that it returns
as the draggable item. In this case, I use jQuery to create an img element. You can see the effect in Figure 24-14.

Figure 24-13. A large draggable element

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

679

The smaller image acts as a more compact stand-in for the draggable element, making it easier to see the rest of
the document while dragging.

Manipulating the Helper Element
The ui object that jQuery UI passes to the droppable events contains a helper property, which you can use to
manipulate the helper element as it is being dragged. Listing 24-16 shows the use of this property, tied to the over
and out events.

Listing 24-16. Using the ui.helper Property

...
<script type="text/javascript">
 $(document).ready(function() {

 $("div.draggable").draggable({
 helper: function() {
 return $("")
 }
 });

 $("#basket").droppable({
 over: function(event, ui) {
 ui.helper.css("border", "thick solid green")
 },
 out: function(event, ui) {
 ui.helper.css("border", "")
 }
 });
 });
</script>
...

I use the over and out events and the ui.helper property to display a border on the helper element when it
overlaps the droppable element. You can see the result in Figure 24-15.

Figure 24-14. Using a helper

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

680

Snapping to the Edges of Elements
You can make the draggable element snap to the edges of the elements that it passes over using the snap setting.
The value for this setting is a selector. The draggable will snap to the edges of any element that it is near that matches
the selector. Listing 24-17 shows the use of the snap setting.

Listing 24-17. Using the snap Setting

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 #snapper, .draggable, .droppable {font-size: large; border: medium solid black;
 padding: 4px; width: 150px; text-align: center;
 background-color: lightgray; margin-bottom: 10px;}
 .droppable {margin-right: 5px; height: 50px; width: 120px}
 #dropContainer {position: absolute; right: 5px;}
 div span {position: relative; top: 25%}
 .droppable.active {border: medium solid green}
 .droppable.hover {background-color: lightgreen}
 #snapper {position: absolute; left: 35%; border: medium solid black;
 width: 180px; height: 50px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $("div.draggable").draggable({
 snap: "#snapper, .droppable",
 snapMode: "both",
 snapTolerance: 50
 });

Figure 24-15. Manipulating the helper element

Chapter 24 ■ Using the Drag-anD-Drop interaCtions

681

 $("#basket").droppable({
 activeClass: "active",
 hoverClass: "hover"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="dropContainer">
 <div id="basket" class="droppable">
 Basket
 </div>
 </div>
 <div id="snapper">Snap Here</div>
 <div class="draggable">
 Drag Me
 </div>
</body>
</html>

As the draggable element nears one of the matching elements, it jumps (snaps) so that the two closest edges
touch. You can select any element to snap to, not just droppable elements. In Listing 24-17, I added a div element and
defined a value for the snap setting, which selects it and the droppable element in the document. It is pretty much
impossible to show the effect of snapping using a screenshot, so I encourage you to experiment with this example in
the browser.

There are a couple of supporting settings you can use to tweak the snapping behavior. The first is snapMode.
This setting lets you specify which edges the draggable will snap to. The accepted values are inner (snap to the inner edges
of the underlying element), outer (snap to the outer edges), and both (snap to all edges, which is the default value).

You use the snapTolerance setting to specify how far the draggable element has to be away from the target
before it snaps into position. The default is 20, meaning 20 pixels. In Listing 24-17, I specified a value of 50, which
makes snapping occur from further away. Getting the right value for this setting is important. The user won’t notice
the snapping effect if the snapTolerance value is too small, and if the value is too large the draggable element starts
leaping unexpectedly across the screen to snap to faraway elements

Summary
In this chapter, I introduced you to the two most important and useful of the jQuery UI interactions: draggable and
droppable. I showed you how to apply and configure these interactions individually, how to respond to their events,
and how to tune the way that they work together to get fine-grained control over the drag-and-drop experience you
provide to your web application users. In Chapter 25, I show you the other jQuery UI interactions.

683

Chapter 25

Using the Other Interactions

In this chapter, I describe the three remaining jQuery UI interactions: sortable, selectable, and resizable. These
interactions are less used (and less useful) than draggable and droppable, which I described in Chapter 24. The
interactions in this chapter can be useful, but they use models that are hard to highlight to the user. Because of that, they
perform best as supplements to other, more conventional, approaches. Table 25-1 provides the summary for this chapter.

Table 25-1. Chapter Summary

Problem Solution Listing

Apply the sortable interaction Select the container element, and call the
sortable method

1

Obtain the order that the user created with a sortable
interaction

Call the toArray or serialize method 2, 3

Enable dragging elements from one sortable item to
another

Use the connectWith setting 4

Connect a draggable element with a sortable item Use the connectToSortable setting on the
draggable element

5

Specify which elements are sortable Use the items setting 6

Style the empty space created while a sortable item
is being dragged

Use the placeholder setting 7

Ignore a change in order Use the cancel method 8

Refresh the set of elements in a sortable item Use the refresh method 9

Get information about the sort operation in progress Use the ui object provided to event handler
functions

10

Apply the selectable interaction Select the container element, and call the
selectable method

11, 12

Prevent an element from being selected Use the cancel method 13

Apply the resizable interaction Use the resizable method 14

Resize multiple elements Use the alsoResize setting 15, 16

Limit the size of a resizable element Use the maxHeight, maxWidth, minHeight,
and minWidth settings

17

Select the draggable edges and corners for
a resizable element

Use the handles setting 18

Chapter 25 ■ Using the Other interaCtiOns

684

Using the Sortable Interaction
The sortable interaction lets the user change the order of a set of elements by dragging them around. You apply the
sortable interaction by selecting the element that contains the individual items that you want to sort and then calling
the sortable method, as shown in Listing 25-1.

Listing 25-1. Using the sortable Interaction

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.sortable { width: 100px; background-color: lightgrey; font-size: large;
 float: left; margin: 4px; text-align: center; border: medium solid black;
 padding: 4px;}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#sortContainer").sortable();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="sortContainer">
 <div id="item1" class="sortable">Item 1</div>
 <div id="item2" class="sortable">Item 2</div>
 <div id="item3" class="sortable">Item 3</div>
 </div>
</body>
</html>

In Listing 25-1, I created a number of div elements and assigned them to the sortable class. This class has no
effect on the interaction: I use it only to style the elements. To create the interaction, I select the parent div element
(the one whose id is sortContainer) and call the sortable method. The result is that I can change the order of
my three div elements simply by dragging them into a new position. You can see the effect in Figure 25-1
(although, like all the examples in this chapter, you will get a better sense of what is happening by running the
example in the browser).

Chapter 25 ■ Using the Other interaCtiOns

685

To demonstrate the sortable interaction, I dragged the element labeled Item 2 to the right of the browser
window. Once I drag the element past the one labeled Item 3, jQuery UI rearranges the items so that they are in a new
order. I only dragged an element one position, but you can move them around several positions at a time.

Getting the Sortable Order
At some point, you need to know the order that the user created by moving the elements around. To get this
information, you can call the toArray method, which returns a JavaScript array of the id attribute values for the sorted
elements. Listing 25-2 shows the addition of a button to the example that writes the current order to the console.

Listing 25-2. Obtaining the Sorted Element Order

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#sortContainer").sortable();

 $("<div id=buttonDiv><button>Get Order</button></div>").appendTo("body");
 $("button").button().click(function() {
 var order = $("#sortContainer").sortable("toArray");
 for (var i = 0; i < order.length; i++) {
 console.log("Position: " + i + " ID: " + order[i]);
 }
 });
 });
</script>
...

You can see the effect in Figure 25-2. When the button is pressed, I call the toArray method and enumerate the
contents of the resulting array to the console.

Figure 25-1. Sorting items by dragging them

Chapter 25 ■ Using the Other interaCtiOns

686

For the order in the figure, pressing the button produces the following output:

Position: 0 ID: item2
Position: 1 ID: item3
Position: 2 ID: item1

You can also use the serialize method to generate a string that can easily be used with a form. Listing 25-3
provides an example.

Listing 25-3. Using the serialize Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.sortable { width: 100px; background-color: lightgrey; font-size: large;
 float: left; margin: 4px; text-align: center; border: medium solid black;
 padding: 4px;}
 #buttonDiv {clear: both}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#sortContainer").sortable();

Figure 25-2. Adding a button to write out the sort order

Chapter 25 ■ Using the Other interaCtiOns

687

 $("<div id=buttonDiv><button>Get Order</button></div>").appendTo("body");
 $("button").button().click(function() {
 var formstring = $("#sortContainer").sortable("serialize");
 console.log(formstring);
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="sortContainer">
 <div id="item_1" class="sortable">Item 1</div>
 <div id="item_2" class="sortable">Item 2</div>
 <div id="item_3" class="sortable">Item 3</div>
 </div>
</body>
</html>

Notice that I had to change the id values of the sortable elements. The serialize method looks for a pattern
of <key>_<index> when generating its string. The output for the order shown in Figure 25-2 is as follows:

item[]=2&item[]=3&item[]=1

Configuring the Sortable Interaction
The sortable interaction relies on the draggable interaction I described in Chapter 24. This means that the options
I described for that interaction (such as axis and tolerance) can be applied with the same effect to configure sortable
interactions. I won’t describe those settings again. Instead, Table 25-2 shows the settings that are unique to the
sortable interaction and the most useful. I describe these settings in the sections that follow.

Table 25-2. Sortable Settings

Setting Description

connectWith Specifies another sortable element to connect to so that items can be dragged between them.
The default is false, meaning that there is no connection.

dropOnEmpty When false, items cannot be dropped on a connected sortable interaction that contains
no items. The default is true.

items Specifies the items that will be sortable through a selector. The default is > *, which selects
any descendant of the element on which the sortable method has been called.

placeholder Specifies a class that will be assigned to the element that is created to preserve space while
a sortable item is being dragged to a new location.

Chapter 25 ■ Using the Other interaCtiOns

688

Connecting Sortable Interactions
The sortable feature I like most is the ability to connect two sortable interactions, allowing items to be dragged
between them. You achieve this using the connectWith setting, specifying a selector that matches the element you
want to connect with. You can create a bidirectional connection by using the connectWith setting on both sortable
elements, as shown in Listing 25-4.

Listing 25-4. Connecting Sortable Interactions

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.sortable { width: 100px; background-color: lightgrey; font-size: large;
 margin: 4px; text-align: center; border: medium solid black; padding: 4px;}
 #fruitContainer {position: absolute; right:50px}
 #flowerContainer {position: absolute; left:50px}
 div.flower {background-color: lightgreen}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#fruitContainer").sortable({
 connectWith: "#flowerContainer"
 });
 $("#flowerContainer").sortable({
 connectWith: "#fruitContainer"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="fruitContainer" class="sortContainer">
 <div id="fruit_1" class="sortable fruit">Apple</div>
 <div id="fruit_2" class="sortable fruit">Orange</div>
 <div id="fruit_3" class="sortable fruit">Banana</div>
 <div id="fruit_4" class="sortable fruit">Pear</div>
 </div>
 <div id="flowerContainer" class="sortContainer">
 <div id="flower_1" class="sortable flower">Aster</div>
 <div id="flower_2" class="sortable flower">Peony</div>
 <div id="flower_3" class="sortable flower">Lily</div>
 <div id="flower_4" class="sortable flower">Orchid</div>
 </div>
</body>
</html>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 25 ■ Using the Other interaCtiOns

689

In Listing 25-4, I created two groups of items and called the sortable method on their container element.
I used the connectwith setting to associate each sortable with the other, and Figure 25-3 shows the result.

Connecting a Draggable Element with a Sortable Element
You can also connect a draggable element with a sortable one. You do this by applying the connectToSortable
setting on the draggable element, specifying a selector that matches the draggable element you want to connect to.
Listing 25-5 shows how this is done.

Listing 25-5. Connecting a Draggable Element and a Sortable Element

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.sortable { width: 100px; background-color: lightgrey; font-size: large;
 margin: 4px; text-align: center; border: medium solid black; padding: 4px;}
 #fruitContainer {position: absolute; right:50px}
 #flowerContainer {position: absolute; left:50px}
 div.flower {background-color: lightgreen}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#fruit_1").draggable({
 connectToSortable: "#flowerContainer",
 helper: "clone"
 });
 $("#flowerContainer").sortable();
 });
 </script>
</head>

Figure 25-3. Dragging elements between connected sortable interactions

Chapter 25 ■ Using the Other interaCtiOns

690

<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="fruitContainer" class="sortContainer">
 <div id="fruit_1" class="sortable fruit">Apple</div>
 </div>
 <div id="flowerContainer" class="sortContainer">
 <div id="flower_1" class="sortable flower">Aster</div>
 <div id="flower_2" class="sortable flower">Peony</div>
 <div id="flower_3" class="sortable flower">Lily</div>
 <div id="flower_4" class="sortable flower">Orchid</div>
 </div>
</body>
</html>

In Listing 25-5, I reduced the number of fruit items to one and made it draggable, connecting to the sortable
list of flowers. The result is that the draggable item can be added to the sortable list, as shown in Figure 25-4.
This setting works best when the helper setting for the draggable item is clone. It will work for other values,
but an error will be reported.

Selecting the Sortable Items
You can be selective about which items in the container are sortable. You do this through the items setting, the
value of which is a selector that matches the elements you want to enable sorting for. Elements that do not match
the selector cannot be rearranged. Listing 25-6 demonstrates.

Listing 25-6. Selecting Specific Elements to Be Sortable

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>

Figure 25-4. Connecting a sortable item and a draggable item

Chapter 25 ■ Using the Other interaCtiOns

691

 <style type="text/css">
 div.sortable { width: 100px; background-color: lightgrey; font-size: large;
 margin: 4px; text-align: center; border: medium solid black; padding: 4px;}
 #fruitContainer {position: absolute; right:50px}
 #flowerContainer {position: absolute; left:50px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("div.flower:even").css("background-color", "lightgreen")
 $("#flowerContainer").sortable({
 items: ".flower:even"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="flowerContainer" class="sortContainer">
 <div id="flower_1" class="sortable flower">Aster</div>
 <div id="flower_2" class="sortable flower">Peony</div>
 <div id="flower_3" class="sortable flower">Lily</div>
 <div id="flower_4" class="sortable flower">Orchid</div>
 </div>
</body>
</html>

In Listing 25-6, I used the items setting to specify that only the even-numbered elements in the container should
be sortable. In Figure 25-5, the Aster and Lily elements can be sorted, but the Peony and Orchid elements won’t
respond to being dragged and remain in position.

Figure 25-5. Selecting the items that can be sorted

Chapter 25 ■ Using the Other interaCtiOns

692

There is an oddity you should be aware of when using the items setting, and I have shown it in the last frame
of the figure. An element that doesn’t match the selector cannot be dragged into a new position unless it has been
dislodged by another element. So in the figure, I dragged the Aster element to a new position, which forces the Peony
element to move. Once it is moved, the Peony element will respond to being dragged and sorted as though it matches
the items selector.

Styling the Empty Space
While you are dragging an item into a new position, the space it leaves behind remains empty. You can apply a
CSS class to this space through the placeholder setting. This can be a useful way to emphasize that the empty space
is a drop target. Listing 25-7 shows the use of the placeholder setting.

Listing 25-7. Using the placeholder Setting

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.sortable {width: 100px; background-color: lightgrey; font-size: large;
 margin: 4px; text-align: center; border: medium solid black; padding: 4px;}
 #flowerContainer {position: absolute; left:25%}
 .emptySpace {border: medium dotted red; height: 25px; margin: 4px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#flowerContainer").sortable({
 placeholder: "emptySpace"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="flowerContainer" class="sortContainer">
 <div id="flower_1" class="sortable ">Aster</div>
 <div id="flower_2" class="sortable ">Peony</div>
 <div id="flower_3" class="sortable">Lily</div>
 <div id="flower_4" class="sortable">Orchid</div>
 </div>
</body>
</html>

In Listing 25-7, I defined a CSS class called emptySpace, which defines sizes for the height and margin properties
and defines a red dotted border. I specify this class using the placeholder setting and, as Figure 25-6 shows, when I
drag an element to sort it, the space that it leaves behind is assigned to the emptySpace class.

Chapter 25 ■ Using the Other interaCtiOns

693

Using the Sortable Methods
The sortable interaction defines all of the standard jQuery UI methods, plus a few that are specific to working with
sortable elements. Table 25-3 describes these methods.

Cancelling a Sort
You can use the cancel method to prevent elements from being sorted. This is something that should be done
sparingly because it effectively ignores the actions that the user has taken. If you do cancel a sort, you should make
sure the user knows why this happened. Listing 25-8 provides an example of using the cancel method in conjunction
with the update event. The update event is triggered when the user releases the mouse button after having dragged an
element to create a new sorted order. I describe the sortable events in the section “Using the Sortable Events.”

Figure 25-6. Using the placeholder setting

Table 25-3. Sortable Methods

Method Description

sortable("destroy") Removes the interaction from the element

sortable("disable") Disables the sortable interaction

sortable("enable") Enables the sortable interaction

sortable("option") Changes one or more settings

sortable("toArray") Returns an array containing the sorted set of id attribute values (see the section
“Getting the Sortable Order” for an example)

sortable("refresh") Refreshes the sortable interaction

sortable("cancel") Cancels a sort operation

Chapter 25 ■ Using the Other interaCtiOns

694

Listing 25-8. Using the cancel Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.sortable {width: 100px; background-color: lightgrey; font-size: large;
 margin: 4px; text-align: center; border: medium solid black; padding: 4px;}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#error").dialog({autoOpen: false, modal: true})

 $("#flowerContainer").sortable({
 update: function() {
 var sortedItems = $("#flowerContainer").sortable("toArray");
 if (sortedItems[0] != "item_1") {
 $("#error").dialog("open")
 $("#flowerContainer").sortable("cancel")
 }
 }
 });
 });
 </script>
</head>
<body>
 <div id="error">The King must be first</div>
 <h1>Jacqui's Flower Shop</h1>
 <div id="flowerContainer" class="sortContainer">
 <div id="item_1" class="sortable ">King</div>
 <div id="item_2" class="sortable ">Queen</div>
 <div id="item_3" class="sortable ">Jack</div>
 <div id="item_4" class="sortable">10</div>
 </div>
</body>
</html>

In Listing 25-8, I call the cancel method if the new sorted order that the user has created means that the King
element isn’t in the first place in the list. I use the dialog widget, described in Chapter 22, to alert the user to the
problem. Changes that affect the other sortable elements are allowed to continue.

Chapter 25 ■ Using the Other interaCtiOns

695

Refreshing the Sortable Elements
The refresh method causes the sortable interaction to refresh its cache of the elements in the sortable container.
Listing 25-9 shows how you can use this feature to add new sortable elements.

Listing 25-9. Adding New Sortable Elements

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.sortable {width: 100px; background-color: lightgrey; font-size: large;
 margin: 4px; text-align: center; border: medium solid black; padding: 4px;}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#flowerContainer").sortable();

 var itemCount = 2;

 $("button").click(function() {
 $("<div id=flower_" + (itemCount++) + " class=sortable>Item " +
 itemCount + "</div>").appendTo("#flowerContainer");
 $("#flowerContainer").sortable("refresh");
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <button>Add Sortable Item</button>
 <div id="flowerContainer" class="sortContainer">
 <div id="flower_1" class="sortable">Aster</div>
 <div id="flower_2" class="sortable">Peony</div>
 </div>
</body>
</html>

In Listing 25-9, I added a button to the document that adds new items to the sortable container and calls the
refresh method to make sure that the items are properly sortable.

Using the Sortable Events
The sortable interaction supports all of the events defined by the draggable interaction, which I described in
Chapter 24. Table 25-4 describes the events that are unique to the sortable interaction.

Chapter 25 ■ Using the Other interaCtiOns

696

When triggering these events, jQuery UI provides additional information via a ui object argument, which has the
properties shown in Table 25-5.

Listing 25-10 shows the use of the ui object with the sort and change events.

Listing 25-10. Using the change and sort Events

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.sortable {width: 100px; background-color: lightgrey; font-size: large;
 margin: 4px; text-align: center; border: medium solid black; padding: 4px;}
 #flowerContainer {position: absolute; left:10px}
 #info {position: absolute; right: 10px; border: medium solid black; padding: 4px}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#flowerContainer").sortable({
 sort: function(event, ui) {
 $("#itemId").text(ui.item.attr("id"))
 },

Table 25-5. Sortable ui Object Properties

Property Description

helper Returns the helper element

position Returns the current position of the helper as an object with top and left properties

item Returns a jQuery object containing the currently dragged item

placeholder Returns a jQuery object containing the placeholder element

sender Returns a jQuery object containing the connected sortable from which the element originates
(this property is null when there is no connected sortable)

Table 25-4. Sortable Events

Event Description

change Triggered when positions change while an element is being sorted by the user

receive Triggered when an item is dragged to this sortable item from a connected one

remove Triggered when an item is dragged from this sortable item to a connected one

sort Triggered for each mouse move during a sort

update Triggered when the user stops dragging an item and the order of items has changed

Chapter 25 ■ Using the Other interaCtiOns

697

 change: function(event, ui) {
 $("#pos").text($("#flowerContainer *").index(ui.placeholder))
 }
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="flowerContainer" class="sortContainer">
 <div id="flower_1" class="sortable ">Aster</div>
 <div id="flower_2" class="sortable ">Peony</div>
 <div id="flower_3" class="sortable">Lily</div>
 <div id="flower_4" class="sortable">Orchid</div>
 </div>
 <div id="info" class="ui-widget">
 <div>Item ID: None</div>
 <div>Pos: None</div>
 </div>
</body>
</html>

I use the events to display information about the sorting operation. For the sort event, I read the ui.item
property and get the id attribute of the element being dragged. For the change event, I use the ui.placeholder
property, and I use the index method to figure out its position among the sortable elements.

Using the Selectable Interaction
The selectable interaction allows the user to select one or more elements, either by dragging the mouse or by clicking
individual elements. You apply the interaction through the selectable method as demonstrated in Listing 25-11.

Listing 25-11. Applying the Selectable Interaction

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 div.flower {width: 200px; background-color: lightgrey; font-size: large;
 margin: 4px; text-align: center; border: medium solid black; padding: 4px;}
 #flowerContainer {position: absolute; left:10px}
 div.ui-selected {border: medium solid green; background-color: lightgreen}
 div.ui-selecting {border: medium solid green}
 </style>

Chapter 25 ■ Using the Other interaCtiOns

698

 <script type="text/javascript">
 $(document).ready(function() {
 $("#flowerContainer").selectable();
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="flowerContainer">
 <div id="flower_1" class="flower">Aster</div>
 <div id="flower_2" class="flower">Peony</div>
 <div id="flower_3" class="flower">Lily</div>
 <div id="flower_4" class="flower">Orchid</div>
 </div>
</body>
</html>

You apply the selectable interaction to the element that contains the elements you want the user to be able to
select. In this case, I use the same div elements I used for the sortable interaction earlier in the chapter. I select the
container and call the selectable method as follows:

...
$("#flowerContainer").selectable();
...

Although I have now applied the selectable interaction to my container, I need to define a pair of CSS styles for
specific classes to give the user visual feedback. Here are the styles I associated with these classes:

...
div.ui-selected {border: medium solid green; background-color: lightgreen}
div.ui-selecting {border: medium solid green}
...

The selectable interaction applies these classes to my elements to reflect their selection status. The ui.selecting
class is applied when the user is dragging the mouse to select the elements in a specific area, and the ui-selected
class is applied when an element has been selected (either because the user has clicked the element or because it was
in the area covered by a mouse drag). I used simple styles that just apply green borders and backgrounds. You can see
the effect of selecting elements by dragging the mouse in Figure 25-7.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 25 ■ Using the Other interaCtiOns

699

The user must start dragging the mouse within the container element to start the selection process. You can see
the outline of the area that has been selected (known as the marquee) in the middle frame of the figure—at that point,
jQuery UI has applied the ui-selecting class. When the mouse is released, the elements that the marquee overlaps
are selected and the ui-selected class is applied, as shown in the last frame of the figure.

The user can also select elements by clicking on them. Multiple elements can be selected, and holding the
Control/Meta key allows for noncontiguous selections. If you find that clicking causes a single selected element to
toggle, you need the addition shown in Listing 25-12.

Listing 25-12. Enabling Multiple Element Selection for the Selectable Interaction

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#flowerContainer")
 .bind("mousedown", function(e) {e.metaKey = true;})
 .selectable();
 });
</script>
...

When the user presses the mouse button, the ui-selecting class is applied. The ui-selected class is applied
when the mouse button is released.

Configuring the Selectable Interaction
You can configure the selectable interaction using the settings described in Table 25-6.

Figure 25-7. Selecting elements with a mouse

Chapter 25 ■ Using the Other interaCtiOns

700

Most of these settings are self-evident or are the same as for other interactions. Of particular interest, though,
is the cancel setting, which you can use to make elements unselectable by the user. Listing 25-13 demonstrates.

Listing 25-13. Using the cancel Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#flowerContainer")
 .bind("mousedown", function(e) {e.metaKey = true;})
 .selectable({
 cancel: "#flower_3"
 });
 });
</script>
...

In this script, I use a selector that prevents the element with the ID of flower_3 from being selected. This works
well when the user is selecting elements by clicking on them, but it doesn’t prevent selection by dragging. For this
reason, use the cancel setting with care.

Using the Selectable Interaction Methods
The selectable interaction defines only one unique method, as described in Table 25-7. The other methods are those
that are common to all widgets and interactions.

Table 25-6. Selectable Settings

Setting Description

disabled When true, the interaction is initially disabled. The default is false.

autoRefresh When true, the interaction refreshes the size and position of each of the selectable elements
at the start of each select operation. The default is true.

cancel A selector string that prevents matching elements from being selected.

delay See the delay setting on the draggable interaction in Chapter 24.

distance See the distance setting on the draggable interaction in Chapter 24.

filter A selector used to match selectable elements in the container. The default is *, which matches
all elements.

Chapter 25 ■ Using the Other interaCtiOns

701

Using the Selectable Interaction Events
The selectable interaction defines the events shown in Table 25-8.

jQuery UI provides additional information for most of these events through a ui object. For the selected and
selecting events, the ui object has a property called selected, which contains the HTMLElement corresponding to the
element that has been (or is about to be) selected. For the unselected and unselecting events, the ui object has an
unselected property that performs the same purpose.

Using the Resizable Interaction
The resizable interaction adds drag handles to elements that allow them to be resized by the user. Some browsers do
this automatically with text areas, but the resizable interaction lets us apply this feature to any element in a document.
Listing 25-14 shows the application of the resizable interaction that you perform using the resizable method.

Listing 25-14. Applying the resizable Interaction

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>

Table 25-7. Selectable Methods

Method Description

selectable("destroy") Removes the interaction from the element

selectable("disable") Disables the selectable interaction

selectable("enable") Enables the selectable interaction

selectable("option") Changes one or more settings

selectable("refresh") Refreshes the selectable interaction; this is the manual alternative to using false
for the value of the autoRefresh setting

Table 25-8. Selectable Methods

Event Description

create Triggered when the interaction is applied to an element.

selected Triggered when an item has been selected. If multiple items have been selected, this event will
be triggered once for each of them.

selecting Triggered when the user has started the selection process (by pressing the mouse button or by
dragging the mouse).

unselected Triggered when an item has been unselected. If multiple items have been unselected, this event
will be triggered once for each of them.

unselecting Triggered when the user has started the unselection process by pressing the mouse button.

Chapter 25 ■ Using the Other interaCtiOns

702

 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 #aster, #lily {text-align: center; width: 150px; border: thin solid black;
 padding: 5px; float: left; margin: 20px}
 #aster img, #lily img {display: block; margin: auto}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#aster").resizable({
 alsoResize: "#aster img"
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <div id="aster" class="ui-widget">

 Aster
 </div>
 <div id="lily" class="ui-widget">

 Lilly
 </div>
</body>
</html>

In Listing 25-14, I created two div elements whose contents are an img and some text. I select one of these in
the script and apply the resizable method (using the alsoResize setting, which I’ll describe later in this chapter).
jQuery UI adds a drag handle to the selected element, allowing me to resize it vertically and horizontally, as shown in
Figure 25-8. In the figure, I increased the height of the element and reduced the width.

Figure 25-8. Using the drag handle to change the dimensions of a resizable element

Chapter 25 ■ Using the Other interaCtiOns

703

Configuring the Resizable Interaction
You can configure the resizable interaction using the settings described in Table 25-9. The resizable interaction relies
on the draggable interaction I described in Chapter 24. This means that, in addition to the settings described in the
table, you can configure the resizable interaction using the draggable settings as well, including delay, distance,
grid, and containment.

Resizing Related Elements
To my mind, alsoResize is the most useful setting for configuring the resizable interaction. It allows you to specify
additional elements that will be resized along with the element to which you applied the resizable method. I use this
mainly to ensure that content elements are resized in sync with their parent, as I demonstrated earlier in the chapter
when I selected the img element to be resized with the div. First of all, it helps to understand what happens when you
have content elements and don’t use the alsoResize setting. Listing 25-15 sets the scene.

Listing 25-15. Resizing an Element with Content Without the alsoResize Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#aster").resizable();
 });
</script>
...

Without the alsoResize setting, only the div element will change size. The content elements will be left as they
are. You can see what happens in Figure 25-9.

Table 25-9. Resizable Settings

Setting Description

alsoResize A selector used to match elements that should be resized at the same time as the resizable element.
The default is false, meaning no other elements are resized.

aspectRatio When true, the element’s aspect ratio is preserved when resized. The default is false.

autoHide When true, the drag handles are visible only when the mouse hovers over the resizable element.
The default is false.

ghost When true, a semitransparent helper element is drawn to show the user what the new size of the
element will be. The default is true.

handles Specifies where the drag handles will be placed on the resizable element. See later in this chapter
for a list of supported values.

maxHeight Specifies the maximum height that the element can be resized to. The default is null, meaning no limit.

maxWidth Specifies the maximum width that the element can be resized to. The default is null, meaning no limit.

minHeight Specifies the minimum height that the element can be resized to. The default is 10 pixels.

minWidth Specifies the minimum width that the element can be resized to. The default is 10 pixels.

Chapter 25 ■ Using the Other interaCtiOns

704

There are times when this is useful, but I find myself using the alsoResize setting almost every time I use the
resizable interaction. For me, the neat thing about the alsoResize setting is that the matched elements are not limited
to the contents of the element you are resizing. You can specify any element, as Listing 25-16 shows.

Listing 25-16. Resizing Additional Elements with the alsoResize Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#aster").resizable({
 alsoResize: "#aster img, #lily, #lily img"
 });
 });
</script>
...

In this script, I broadened the selection to include the other div and img elements in the document. This means
that when I resize the resizable div element, jQuery UI resizes four elements simultaneously. You can see the effect
in Figure 25-10.

Figure 25-9. Resizing an element, but not its content

Chapter 25 ■ Using the Other interaCtiOns

705

Constraining the Resizable Element Size
You can limit the size of resizable elements by applying the maxHeight, maxWidth, minHeight, and minWidth settings.
The value for all four settings is a number of pixels or null, meaning that there is no limit. Listing 25-17 shows how
you can use these settings.

Tip ■ the default values for the minWidth and minHeight settings are 10 pixels. if the value is any smaller, jQuery Ui
cannot display the drag handles, which means the user would be unable to increase the size again. Use smaller values
with caution.

Listing 25-17. Limiting the Size of a Resizable Element

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#aster").resizable({
 alsoResize: "#aster img",
 maxWidth: 200,
 maxHeight: 150
 });
 });
</script>
...

Figure 25-10. Resizing multiple elements

Chapter 25 ■ Using the Other interaCtiOns

706

Tip ■ You can also use the containment setting that is defined by the draggable interaction, which i described in
 Chapter 24. this allows you to limit the maximum size of a resizable element to the size of another element.

Positioning the Drag Handles
You can specify which edges and corners can be dragged through the handles setting. The value for this setting is
either all (meaning that all edges and corners are draggable) or a combination of compass points (n, e, s, w, ne, se, nw, sw)
to specify individual corners and edges.

You can specify multiple values, separated by commas. The default value for this setting is e, s, se, which means
that the lower-right corner (se) and the right (e) and bottom (s) edges will be draggable. jQuery UI draws a diagonal
drag handle only in the lower-right corner and only if you have specified se as part of the handles value.
For all other edges and corners, the cursor will change to indicate that dragging is possible when the mouse hovers
above the edge or corner. Listing 25-18 shows the use of the handles setting.

Listing 25-18. Using the handles Setting

...
<script type="text/javascript">
 $(document).ready(function() {
 $("#aster").resizable({
 alsoResize: "#aster img"
 });

 $("#lily").resizable({
 alsoResize: "#lilyimg",
 handles: "n, s, e, w"

 });
 });
</script>
...

In this script, I made both div elements resizable and applied a custom set of drag handles to one of them.
You can see how jQuery UI handles the visible drag handles and the cursor change in Figure 25-11.

Chapter 25 ■ Using the Other interaCtiOns

707

Summary
In this chapter, I explained and demonstrated three of the jQuery UI interactions: sortable, selectable, and resizable.
These are less commonly used than the draggable and droppable interactions I described in Chapter 24, but they can
still be useful if applied carefully. As with all of the interactions, the main challenge is in making the user aware that
he or she can drag, select, sort, or resize an element when there are no standardized visual cues in web applications.
For that reason, the interactions should be used as supplements to other mechanisms for interacting with your
application or document. This allows advanced users to discover the advantages of the interactions, while other users
rely on more obvious and conventional techniques.

Figure 25-11. Using the handles setting

709

Chapter 26

Refactoring the Example: Part III

In this part of the book, I introduced you to the jQuery UI widgets and interactions. These allow you to create rich
web applications that are consistently themed and that can be endlessly configured and tweaked to meet your needs.
In this chapter, I’ll add some of these features to the example to demonstrate how they can fit together.

Reviewing the Refactored Example
When you last refactored the example, you were at the verge of re-creating some of the jQuery UI functionality that
uses the core jQuery library. You can see where I got to in Figure 26-1.

Figure 26-1. The previously refactored example document

The additions in the previous part of the book included data templates, form validation, and Ajax, but I also
added a simple product carousel that displayed the available products in a single row. I am going to use some of
these features in this chapter, but my emphasis will be on applying jQuery UI. Listing 26-1 shows the starting point
for this chapter.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 26 ■ refaCtoring the example: part iii

710

Listing 26-1. The Starting Document for This Chapter

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 $.getJSON("mydata.json", function (data) {
 $("#flowerTmpl").template({ flowers: data })
 .filter("*").appendTo("#products");
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="products"></div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

I use the getJSON method to get the details of the products from a JSON file and generate elements using a data
template. I add the product elements to a single div element, which has an id of products. You can see the result
in Figure 26-2.

http://node.jacquisflowershop.com/order

Chapter 26 ■ refaCtoring the example: part iii

711

Displaying the Products
I am going to use an accordion to display products to the user. I have only six products to deal with, but I am going
to break them into groups of two and use jQuery to create the structure of elements that the accordion requires.
Listing 26-2 shows the changes to the document.

Listing 26-2. Sorting and Structuring the Flower Elements

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 .dcell img {height: 60px}
 </style>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 $.getJSON("mydata.json", function (data) {

Figure 26-2. The starting document for this chapter

Chapter 26 ■ refaCtoring the example: part iii

712

 var flowers = $("#flowerTmpl").template({ flowers: data }).filter("*");

 var rowCount = 1;
 for (var i = 0; i < flowers.length; i += 2) {

 $("<a>").text(data[i].name + " & " + data[i + 1].name)
 .appendTo("<h2>").parent().appendTo("#products");

 $("<div>").attr("id", "row" + (rowCount++))
 .appendTo("#products")
 .append(flowers.slice(i, i + 2))
 }
 $("#products").accordion();
 });
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="products"></div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

I have rewritten the function passed to the getJSON method to create the accordion, including constructing the
element structure and calling the accordion method. The new implementation uses the JSON data object to extract
the names of the flowers for the section titles but still uses the data template to generate the HTML elements, which
are sliced and placed into wrapper div elements to suit the accordion widget. You can see how the document appears
before and after the addition of the call to the accordion method in Figure 26-3.

Figure 26-3. Creating the element structure and calling the accordion method

http://node.jacquisflowershop.com/order

Chapter 26 ■ refaCtoring the example: part iii

713

Adding the Shopping Basket
The next step is to add a simple shopping basket to show the user the selections she has made. Listing 26-3 shows the
additions to the example document.

Listing 26-3. Adding the Shopping Basket

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 .dcell img {height: 60px}
 #basketTable {border: thin solid black; border-collapse: collapse}
 th, td {padding: 4px; width: 50px}
 td:first-child, th:first-child {width: 150px}
 #placeholder {text-align: center}
 #productWrapper {float: left; width: 65%}
 #basket {width: 30%; text-align: left; float: left; margin-left: 10px}
 #buttonDiv {clear: both}
 </style>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}
 </script>
 <script id="rowTmpl" type="text/x-handlebars-template">
 <tr id="{{name}}"><td>{{product}}</td><td>{{val}}</td>
 <td>Remove</td>
 </tr>
 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 $.getJSON("mydata.json", function (data) {

 var flowers = $("#flowerTmpl").template({ flowers: data }).filter("*");

 var rowCount = 1;
 for (var i = 0; i < flowers.length; i += 2) {
 $("<a>").text(data[i].name + " & " + data[i + 1].name)
 .appendTo("<h2>").parent().appendTo("#products");

Chapter 26 ■ refaCtoring the example: part iii

714

 $("<div>").attr("id", "row" + (rowCount++))
 .appendTo("#products")
 .append(flowers.slice(i, i + 2));
 }
 $("#products").accordion();

 $("input").change(function (event) {
 $("#placeholder").hide();
 var fname = $(this).attr("name");
 var row = $("tr[id=" + fname + "]");

 if (row.length == 0) {
 $("#rowTmpl").template({
 name: fname,
 val: $(this).val(),
 product: $(this).siblings("label").text()
 }).appendTo("#basketTable").find("a").click(function () {
 removeTableRow($(this).closest("tr"));
 var iElem = $("#products").find("input[name=" + fname + "]");
 $("#products").accordion("option", "active",
 iElem.closest("div[id^=row]").index("div[id^=row]"));
 iElem.val(0).select();
 });
 } else if ($(this).val() != "0") {
 row.children().eq(1).text($(this).val());
 } else {
 removeTableRow(row);
 }
 });
 });

 function removeTableRow(row) {
 row.remove();
 if ($("#basketTable tbody").children(":visible").length == 1) {
 $("#placeholder").show();
 }
 }
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="productWrapper">
 <div id="products"></div>
 </div>
 <div id="basket" class="ui-widget">
 <table border=1 id="basketTable">
 <tr><th>Product</th><th>Quantity</th><th>Remove</th></tr>
 <tr id="placeholder"><td colspan=3>No Products</td></tr>

http://node.jacquisflowershop.com/order

Chapter 26 ■ refaCtoring the example: part iii

715

 </table>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

Wrapping the Accordion
I want to display the basket alongside the accordion. To do this, I have wrapped the element that I select for the
accordion method in another div element, like this:

...
<div id="productWrapper">
 <div id="products"></div>
</div>
...

The accordion widget gets confused if it isn’t set to occupy 100 percent of the parent element’s width, so I add the
wrapper element and then use the CSS width property to fix its size, as follows:

...
#productWrapper {float: left; width: 65%}
...

The accordion widget happily occupies 100 percent of the wrapper div element, which occupies only 65 percent
of its parent element.

Adding the Table
I decided to display the basket using a table element, which I have added to the static elements in the document,
as follows:

...
<div id="basket" class="ui-widget">
 <table border=1 id="basketTable">
 <tr><th>Product</th><th>Quantity</th><th>Remove</th></tr>
 <tr id="placeholder"><td colspan=3>No Products</td></tr>
 </table>
</div>
...

Just as for the accordion, I have put the table element inside a wrapper whose width I set using CSS:

...
#basket {width: 30%; text-align: left; float: left; margin-left: 10px}
...

The table element contains a header row and a placeholder that spans the entire table. You can see the effect
that is created in Figure 26-4.

Chapter 26 ■ refaCtoring the example: part iii

716

Handling Input Value Changes
To link the table to the accordion, I listen to the change event on the input elements that I create in the getJSON
function, like this:

...
$("input").change(function (event) {
 $("#placeholder").hide();
 var fname = $(this).attr("name");
 var row = $("tr[id=" + fname + "]");

 if (row.length == 0) {
 $("#rowTmpl").template({
 name: fname,
 val: $(this).val(),
 product: $(this).siblings("label").text()
 }).appendTo("#basketTable").find("a").click(function () {
 removeTableRow($(this).closest("tr"));
 var iElem = $("#products").find("input[name=" + fname + "]");
 $("#products").accordion("option", "active",
 iElem.closest("div[id^=row]").index("div[id^=row]"));
 iElem.val(0).select();
 });
 } else if ($(this).val() != "0") {
 row.children().eq(1).text($(this).val());
 } else {
 removeTableRow(row);
 }
});
...

Figure 26-4. Adding the table to the document

Chapter 26 ■ refaCtoring the example: part iii

717

A lot is going on in this function. When the user changes a value, I check to see whether there is already a row
in the table for the corresponding product. If there is not, then I use the following template to create a new row:

...
<script id="rowTmpl" type="text/x-handlebars-template">
 <tr id="{{name}}"><td>{{product}}</td><td>{{val}}</td>
 <td>Remove</td>
 </tr>
</script>
...

To get the values for this template, I use core jQuery methods to get information from the input element that
triggered the event. I also want the display name for the product, which I obtain by navigating the DOM to find the
nearby label element and reading its content, like this:

...
$(this).siblings("label").text()
...

I append the new row to the table. The placeholder row has already been hidden, back at the start of the function:

...
$("#placeholder").hide();
...

You can see how newly added rows appear in Figure 26-5. The user enters a value in an input element, and a
new row appears in the basket table when the focus changes.

Figure 26-5. Adding rows to the basket table

Chapter 26 ■ refaCtoring the example: part iii

718

Deleting Rows
You can see that I have added an a element to the table row as part of the data template. I register a handler for this
element when I create the row from the data template, as follows:

...
}).appendTo("#basketTable").find("a").click(function () {
 removeTableRow($(this).closest("tr"));
 var iElem = $("#products").find("input[name=" + fname + "]");
 $("#products").accordion("option", "active",
 iElem.closest("div[id^=row]").index("div[id^=row]"));
 iElem.val(0).select();
});
...

The first thing I do is call the removeTableRow function, passing in the closest ancestor tr element to the a
element. The removeTableRow function uses the remove method to remove the specified element from the document.
It also restores the placeholder row in the table if there are no product-related rows, like this:

...
function removeTableRow(row) {
 row.remove();
 if ($("#basketTable tbody").children(":visible").length == 1) {
 $("#placeholder").show();
 }
}
...

Once the row has been deleted, I find the input element that is associated with the row in the product. I then
navigate through the DOM to find the accordion panel element that is the parent to the input element, get its index
among its peers, and set this as the active option for the accordion widget. This has the effect of opening the part of
the accordion that contains the product that the user has just deleted from the basket. Finally, I set the value of the
input element to zero and call the select method so that it is focused and the value is selected. You can see the effect
in Figure 26-6 (although this is something that you really need to see in the browser to appreciate).

Chapter 26 ■ refaCtoring the example: part iii

719

Tip ■ i also delete rows when the user enters a value of zero in an input element for which there is a row in the table.
i do this using the removeTableRow function so that the placeholder is shown if needed.

Updating Existing Rows
If there is already a row for the product, then the user is effectively changing the quantity that she wants to order.
Rather than remove and replace the row, I find it in the table and update the contents of the cell:

...
row.children().eq(1).text($(this).val())
...

The row variable is a jQuery object containing the tr element for the product in the table. I access the td element
by position (using the index method) and then set its content using the text method.

Figure 26-6. Focusing on an input element in the accordion when a table row is deleted

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 26 ■ refaCtoring the example: part iii

720

Applying the Theme Style
The functionality of the basket is fine, but the appearance is terrible. Fortunately, jQuery UI provides a framework
of CSS styles that you can apply to elements to give them the same visual appearance as applied to the widgets by
your theme. Listing 26-4 shows some simple additions to the HTML elements in the document.

Listing 26-4. Applying the jQuery UI CSS Framework Styles to the table Element

...
<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="productWrapper">
 <div id="products"></div>
 </div>
 <div id="basket" class="ui-widget ui-widget-content">
 <table border=0 id="basketTable">
 <tr class="ui-widget-header">
 <th>Product</th><th>Quantity</th><th>Remove</th></tr>
 <tr id="placeholder"><td colspan=3>No Products</td></tr>
 </table>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
...

You may have noticed that I have used the ui-widget class in some of the examples in preceding chapters.
This is the basic jQuery UI style, and it is applied to the outer container of sets of elements that require an appearance
that is consistent with the jQuery UI widgets. The ui-widget-content class is used for elements that contain content,
and the ui-widget-header is, as its name suggests, used for header elements.

Tip ■ i describe the jQuery Ui CSS framework classes in Chapter 35.

In addition to applying these classes, I disabled the border for the table element as follows:

...
#basketTable {border: none; border-collapse: collapse}
...

You can see the effect in Figure 26-7.

http://node.jacquisflowershop.com/order

Chapter 26 ■ refaCtoring the example: part iii

721

Applying the CSS Framework More Widely
You can go further and apply the framework styles more widely. Listing 26-5 shows some useful additions
to the document.

Listing 26-5. Applying the Framework Styles More Widely

...
<body>
 <div id="logoWrapper" class="ui-widget ui-widget-content ui-corner-all">
 <h1 id="logo">Jacqui's Flower Shop</h1>
 </div>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="productWrapper">
 <div id="products"></div>
 </div>
 <div id="basket" class="ui-widget ui-widget-content">
 <table border=0 id="basketTable">
 <tr class="ui-widget-header">
 <th>Product</th><th>Quantity</th><th>Remove</th></tr>
 <tr id="placeholder"><td colspan=3>No Products</td></tr>
 </table>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
...

Figure 26-7. Applying the jQuery UI CSS framework classes to the table

http://node.jacquisflowershop.com/order

Chapter 26 ■ refaCtoring the example: part iii

722

I have placed the h1 element inside a div and applied several of the framework styles, including ui-corner-all,
which creates the rounded corners that you can see in Figure 26-8. I also applied some new styles to this document
to create the effect I wanted, overriding the styles in the styles.css file you have been using since Chapter 3:

...
<style type="text/css">
 .dcell img {height: 60px}
 #basketTable {border: none; border-collapse: collapse}
 th, td {padding: 4px; width: 50px}
 td:first-child, th:first-child {width: 150px}
 #placeholder {text-align: center}
 #productWrapper {float: left; width: 65%}
 #basket {width: 33%; text-align: left; float: left; margin-left: 10px;
 position: absolute; right: 10px}
 #buttonDiv {clear: both}
 #logo {font-size: 1.5em; background-size: contain; margin: 1px;
 border: none; color: inherit}
 #logoWrapper {margin-bottom: 5px}
</style>
...

Applying Rounded Corners to the Table
Applying the ui-corner-all class to table elements causes some problems, as shown in Figure 26-9. You will notice
that the table element doesn’t have rounded corners. This is caused by an interaction between the jQuery UI CSS
framework classes and the way that tables are handled in most browsers.

Figure 26-8. Applying the CSS framework styles to the document header

Chapter 26 ■ refaCtoring the example: part iii

723

To get around this problem, you need to change the table element, apply the jQuery UI CSS framework classes
slightly differently, and define a new custom style. First, you need to modify the table, as shown in Listing 26-6.

Listing 26-6. Modifying the table Element to Support Rounded Corners

...
<form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="productWrapper">
 <div id="products"></div>
 </div>
 <div id="basket" class="ui-widget ui-widget-content ui-corner-all">
 <table border=0 id="basketTable">
 <thead id="theader" class="ui-widget-header">
 <tr>
 <th class="ui-corner-tl">Product</th>
 <th>Quantity</th>
 <th class="ui-corner-tr">Remove</th></tr>
 </thead>
 <tr id="placeholder"><td colspan=3>No Products</td></tr>
 </table>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
</form>
...

I have added a thead element to the table, separating the header from the body rows. It is important to assign
the thead element an id and to apply the ui-widget-header class. Since the header is part of the ui-widget-header
class, you can remove it from the tr element.

Next, you apply the ui-corner-tl and ui-corner-tr classes to the outer cells in the header row. These classes
create rounded corners for the top-left and top-right corners of the elements to which they are assigned. (I describe
all of the jQuery UI CSS framework classes in Chapter 35.)

Next, you need to use the id you gave to the thead element to disable the CSS border property in the style
element and do the same for the table element, like this:

...
<style type="text/css">
 .dcell img {height: 60px}
 #basketTable {border: none; border-collapse: collapse}
 th, td {padding: 4px; width: 50px}
 td:first-child, th:first-child {width: 150px}
 #placeholder {text-align: center}
 #productWrapper {float: left; width: 65%}
 #basket {width: 33%; text-align: left; float: left; margin-left: 10px;
 position: absolute; right: 10px}

Figure 26-9. The effect of rounded corners on a table

http://node.jacquisflowershop.com/order

Chapter 26 ■ refaCtoring the example: part iii

724

 #buttonDiv {clear: both}
 #logo {font-size: 1.5em; background-size: contain; margin: 1px;
 border: none; color: inherit}
 #logoWrapper {margin-bottom: 5px}
 #theader {border: none}
</style>
...

Finally, you need to make a small tweak to the removeTableRow function. Now that you have separated the header
row and placed it in a thead element, you have one fewer row in the tbody. Here is the change:

...
function removeTableRow(row) {
 row.remove();
 if ($("#basketTable tbody").children(":visible").length == 0) {
 $("#placeholder").show();
 }
}
...

Tip ■ the tbody element is created automatically by the browser when the table element is parsed. it is an oddity
of html that you don’t have to specify this element (although you can if preferred).

With these changes, you have a table with rounded corners that matches the other elements in the document,
as Figure 26-10 shows.

Figure 26-10. A table with rounded corners

Chapter 26 ■ refaCtoring the example: part iii

725

Creating the jQuery UI Button
The next step is to relocate the button and transform it into a jQuery UI widget. Listing 26-7 shows the changes
to the document.

Listing 26-7. Relocating and Transforming the Button

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 .dcell img {height: 60px}
 #basketTable {border: none; border-collapse: collapse}
 th, td {padding: 4px; width: 50px}
 td:first-child, th:first-child {width: 150px}
 #placeholder {text-align: center}
 #productWrapper {float: left; width: 65%}
 #basket {text-align: left;}
 #buttonDiv {clear: both; margin: 5px}
 #logo {font-size: 1.5em; background-size: contain; margin: 1px;
 border: none; color: inherit}
 #logoWrapper {margin-bottom: 5px}
 #theader {border: none}
 </style>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}
 </script>
 <script id="rowTmpl" type="text/x-handlebars-template">
 <tr id="{{name}}"><td>{{product}}</td><td>{{val}}</td>
 <td>Remove</td>
 </tr>
 </script>
 <script type="text/javascript">
 $(document).ready(function () {

 $.getJSON("mydata.json", function (data) {

 var flowers = $("#flowerTmpl").template({ flowers: data }).filter("*");

Chapter 26 ■ refaCtoring the example: part iii

726

 var rowCount = 1;
 for (var i = 0; i < flowers.length; i += 2) {
 $("<a>").text(data[i].name + " & " + data[i + 1].name)
 .appendTo("<h2>").parent().appendTo("#products");
 $("<div>").attr("id", "row" + (rowCount++))
 .appendTo("#products")
 .append(flowers.slice(i, i + 2));
 }
 $("#products").accordion();

 $("input").change(function (event) {
 $("#placeholder").hide();
 var fname = $(this).attr("name");
 var row = $("tr[id=" + fname + "]");

 if (row.length == 0) {
 $("#rowTmpl").template({
 name: fname,
 val: $(this).val(),
 product: $(this).siblings("label").text()
 }).appendTo("#basketTable").find("a").click(function () {
 removeTableRow($(this).closest("tr"));
 var iElem = $("#products").find("input[name=" + fname + "]");
 $("#products").accordion("option", "active",
 iElem.closest("div[id^=row]").index("div[id^=row]"));
 iElem.val(0).select();
 });
 } else if ($(this).val() != "0") {
 row.children().eq(1).text($(this).val());
 } else {
 removeTableRow(row);
 }
 });
 });

 $("#buttonDiv, #basket").wrapAll("<div>").parent().css({
 float: "left",
 marginLeft: "2px"
 });

 $("button").button();

 function removeTableRow(row) {
 row.remove();
 if ($("#basketTable tbody").children(":visible").length == 0) {
 $("#placeholder").show();
 }
 }
 });
 </script>
</head>

Chapter 26 ■ refaCtoring the example: part iii

727

<body>
 <div id="logoWrapper" class="ui-widget ui-widget-content ui-corner-all">
 <h1 id="logo">Jacqui's Flower Shop</h1>
 </div>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="productWrapper">
 <div id="products"></div>
 </div>
 <div id="basket" class="ui-widget ui-widget-content ui-corner-all">
 <table border=0 id="basketTable">
 <thead id="theader" class="ui-widget-header">
 <tr>
 <th class="ui-corner-tl">Product</th>
 <th>Quantity</th>
 <th class="ui-corner-tr">Remove</th></tr>
 </thead>
 <tr id="placeholder"><td colspan=3>No Products</td></tr>
 </table>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

I have wrapped the buttonDiv and basket elements in a new div element and adjusted some of the CSS styles
to adjust the positioning of these elements. And, as Figure 26-11 shows, I call the button method to create a
jQuery UI button.

Figure 26-11. Repositioning and transforming the button element

http://node.jacquisflowershop.com/order

Chapter 26 ■ refaCtoring the example: part iii

728

Adding the Completion Dialog
When the user clicks the Place Order button, I want to collect some additional information from them. I showed you
how to display a multipart form using tabs in Chapter 20, so for some variety, I’ll use a dialog widget this time.
Listing 26-8 shows the changes to the document for the dialog.

Listing 26-8. Adding the Dialog

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style type="text/css">
 .dcell img {height: 60px}
 #basketTable {border: none; border-collapse: collapse}
 th, td {padding: 4px; width: 50px}
 td:first-child, th:first-child {width: 150px}
 #placeholder {text-align: center}
 #productWrapper {float: left; width: 65%}
 #basket {text-align: left;}
 #buttonDiv {clear: both; margin: 5px}
 #logo {font-size: 1.5em; background-size: contain; margin: 1px;
 border: none; color: inherit}
 #logoWrapper {margin-bottom: 5px}
 #theader {border: none}
 #completeDialog input {width: 150px; margin-left: 5px; text-align: left}
 #completeDialog label {width: 60px; text-align: right}
 </style>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#flowers}}
 <div class="dcell">

 <label for="{{product}}">{{name}}:</label>
 <input name="{{product}}" value="0" />
 </div>
 {{/flowers}}
 </script>
 <script id="rowTmpl" type="text/x-handlebars-template">
 <tr id="{{name}}"><td>{{product}}</td><td>{{val}}</td>
 <td>Remove</td>
 </tr>
 </script>

Chapter 26 ■ refaCtoring the example: part iii

729

 <script type="text/javascript">
 $(document).ready(function () {

 $.getJSON("mydata.json", function (data) {

 var flowers = $("#flowerTmpl").template({ flowers: data }).filter("*");

 var rowCount = 1;
 for (var i = 0; i < flowers.length; i += 2) {
 $("<a>").text(data[i].name + " & " + data[i + 1].name)
 .appendTo("<h2>").parent().appendTo("#products");
 $("<div>").attr("id", "row" + (rowCount++))
 .appendTo("#products")
 .append(flowers.slice(i, i + 2));
 }
 $("#products").accordion();

 $("#products input").change(function (event) {
 $("#placeholder").hide();
 var fname = $(this).attr("name");
 var row = $("tr[id=" + fname + "]");

 if (row.length == 0) {
 $("#rowTmpl").template({
 name: fname,
 val: $(this).val(),
 product: $(this).siblings("label").text()
 }).appendTo("#basketTable").find("a").click(function () {
 removeTableRow($(this).closest("tr"));
 var iElem = $("#products").find("input[name=" + fname + "]");
 $("#products").accordion("option", "active",
 iElem.closest("div[id^=row]").index("div[id^=row]"));
 iElem.val(0).select();
 });
 } else if ($(this).val() != "0") {
 row.children().eq(1).text($(this).val());
 } else {
 removeTableRow(row);
 }
 });
 });

 $("#buttonDiv, #basket").wrapAll("<div>").parent().css({
 float: "left",
 marginLeft: "2px"
 });

 $("button").button();

 $("#completeDialog").dialog({
 modal: true,
 buttons: [{ text: "OK", click: sendOrder },

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 26 ■ refaCtoring the example: part iii

730

 {
 text: "Cancel", click: function () {
 $("#completeDialog").dialog("close");
 }
 }]
 });

 function sendOrder() {

 }

 function removeTableRow(row) {
 row.remove();
 if ($("#basketTable tbody").children(":visible").length == 0) {
 $("#placeholder").show();
 }
 }
 });
 </script>
</head>
<body>
 <div id="logoWrapper" class="ui-widget ui-widget-content ui-corner-all">
 <h1 id="logo">Jacqui's Flower Shop</h1>
 </div>
 <form method="post" action="http://node.jacquisflowershop.com/order">
 <div id="productWrapper">
 <div id="products"></div>
 </div>
 <div id="basket" class="ui-widget ui-widget-content ui-corner-all">
 <table border=0 id="basketTable">
 <thead id="theader" class="ui-widget-header">
 <tr>
 <th class="ui-corner-tl">Product</th>
 <th>Quantity</th>
 <th class="ui-corner-tr">Remove</th></tr>
 </thead>
 <tr id="placeholder"><td colspan=3>No Products</td></tr>
 </table>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
 <div id="completeDialog" title="Complete Purchase">
 <div><label for="name">Name: </label><input name="first" /></div>
 <div><label for="email">Email: </label><input name="email" /></div>
 <div><label for="city">City: </label><input name="city" /></div>
 </div>
</body>
</html>

I have added a div element with the content that will be displayed to the user in the body element, along with
some CSS styles to override those that are in the styles.css file that is imported into the document using a link
element. Here is the call to the dialog method that creates the dialog widget:

http://node.jacquisflowershop.com/order

Chapter 26 ■ refaCtoring the example: part iii

731

...
$("#completeDialog").dialog({
 modal: true,
 buttons: [{ text: "OK", click: sendOrder },
 {
 text: "Cancel", click: function () {
 $("#completeDialog").dialog("close");
 }
 }]
});
...

I have created a modal dialog that has two buttons. Clicking the Cancel button will close the dialog. Clicking
the OK button will call the sendOrder function. This function doesn’t do anything at the moment.

As you will remember from Chapter 22, the dialog widget is open by default, which means that it is shown
to the user as soon as it is created. You can see how it appears in Figure 26-12.

Tip ■ notice that i have narrowed the selection when i set up the change event on the input elements. i limit the
selection to exclude those input elements in the dialog. if i had not done this, entering a value in the Complete purchase
dialog would have added a new item in the basket.

Handling the Place Order Button Click
I don’t want the user to see the dialog box until they click the Place Order button. I use the autoOpen setting to hide
the dialog until it is needed and use the click method to handle the button click, as Listing 26-9 shows.

Figure 26-12. The dialog used to complete the purchase

Chapter 26 ■ refaCtoring the example: part iii

732

Listing 26-9. Hiding the Dialog and Handling the Button Click

...
<script type="text/javascript">
 $(document).ready(function () {

 $.getJSON("mydata.json", function (data) {

 var flowers = $("#flowerTmpl").template({ flowers: data }).filter("*");

 var rowCount = 1;
 for (var i = 0; i < flowers.length; i += 2) {
 $("<a>").text(data[i].name + " & " + data[i + 1].name)
 .appendTo("<h2>").parent().appendTo("#products");
 $("<div>").attr("id", "row" + (rowCount++))
 .appendTo("#products")
 .append(flowers.slice(i, i + 2));
 }
 $("#products").accordion();

 $("#products input").change(function (event) {
 $("#placeholder").hide();
 var fname = $(this).attr("name");
 var row = $("tr[id=" + fname + "]");

 if (row.length == 0) {
 $("#rowTmpl").template({
 name: fname,
 val: $(this).val(),
 product: $(this).siblings("label").text()
 }).appendTo("#basketTable").find("a").click(function () {
 removeTableRow($(this).closest("tr"));
 var iElem = $("#products").find("input[name=" + fname + "]");
 $("#products").accordion("option", "active",
 iElem.closest("div[id^=row]").index("div[id^=row]"));
 iElem.val(0).select();
 });
 } else if ($(this).val() != "0") {
 row.children().eq(1).text($(this).val());
 } else {
 removeTableRow(row);
 }
 });
 });

 $("#buttonDiv, #basket").wrapAll("<div>").parent().css({
 float: "left",
 marginLeft: "2px"
 });

Chapter 26 ■ refaCtoring the example: part iii

733

 $("button").button().click(function (e) {
 e.preventDefault();
 if ($("#placeholder:visible").length) {

 $("<div>Please select some products</div>").dialog({
 modal: true,
 buttons: [{
 text: "OK",
 click: function () { $(this).dialog("close") }
 }]
 })
 } else {
 $("#completeDialog").dialog("open");
 }
 });

 $("#completeDialog").dialog({
 modal: true,
 autoOpen: false,
 buttons: [{ text: "OK", click: sendOrder },
 {
 text: "Cancel", click: function () {
 $("#completeDialog").dialog("close");
 }
 }]
 });

 function sendOrder() {

 }

 function removeTableRow(row) {
 row.remove();
 if ($("#basketTable tbody").children(":visible").length == 0) {
 $("#placeholder").show();
 }
 }
 });
</script>
...

When the user clicks the button, I check to see whether the placeholder element is visible. I do this using jQuery,
using a selector that produces a jQuery object that will contain elements only if the placeholder is visible.

I am using the visibility of the placeholder as a proxy for the user having selected some products. The placeholder
is hidden if there are any selections in the basket, and so a visible placeholder tells me that there are no selections.

Tip ■ this is a nice example of the way you can layer functionality in a document, but it does mean that my simple test
for product selection depends on the implementation of the basket and will need to change if i ever modify the way that
the basket works.

Chapter 26 ■ refaCtoring the example: part iii

734

I create and display a dialog widget dynamically if the user clicks the button without having selected any
products. You can see how this appears in Figure 26-13. If selections have been made, then the completion dialog is
shown to capture the final information I want from the user.

Completing the Order
All that remains is to implement the sendOrder function. I have already shown you the different ways that you can
send data to the server via Ajax, so to keep this chapter simple, I will simply collect the values from the various input
elements and create a JSON object that can be sent to a server for processing. Listing 26-10 shows the additions to the
document.

Listing 26-10. Completing the Order Process

...
function sendOrder() {
 var data = new Object();
 $("input").each(function(index, elem) {
 var jqElem = $(elem);
 data[jqElem.attr("name")] = jqElem.val();
 })
 console.log(JSON.stringify(data));
 $("#completeDialog").dialog("close");
 $("#products input").val("0");
 $("#products").accordion("option", "active", 0)
 $("#basketTable tbody").children(":visible").remove();
 $("#placeholder").show();
}
...

Figure 26-13. Displaying a dialog if there is no product selection

Chapter 26 ■ refaCtoring the example: part iii

735

When I click the Place Order button, I am presented with the dialog requesting additional information, as shown
in Figure 26-15.

In this function I get the value from each of the input elements and add them as properties to an object that
I then convert to JSON and write to the console.

More usefully, I then reset the document, closing the dialog, resetting the values of the input elements, switching
to the first panel of the accordion, and resetting the basket. Figure 26-14 shows the document with some product
selection. I’ll use these to generate the JSON string.

Figure 26-14. Selecting products using the example document

Figure 26-15. Providing additional information to complete the order

Chapter 26 ■ refaCtoring the example: part iii

736

Finally, clicking the OK button generates the JSON and resets the document. The JSON for this example
is as follows:

{"aster":"12","daffodil":"7","rose":"5","peony":"2","primula":"0","snowdrop":"0",
 "first":"Adam Freeman","email":"adam@my.com","city":"London"}

And, as Figure 26-16 shows, you are back where you started, ready to go through the process again.

Summary
In this chapter, I refactored the example document to incorporate features from jQuery UI. I added some of the
widgets, such as accordion, dialog, and button, as well as gave an initial look at how you can apply the jQuery UI CSS
framework classes to manage the appearance of other elements. I give more detail about these CSS classes in Chapter 35.
In Part 5, I turn to jQuery Mobile, which you can use to create web applications that are targeted at mobile devices.

Figure 26-16. Resetting the document

http://adam@my.com/

737

Chapter 27

Getting Started with jQuery Mobile

In this chapter, I show you how to obtain jQuery Mobile and add it to an HTML document. I also explain that jQuery
Mobile takes a different approach to creating widgets and how you must adapt to accommodate this approach.
Touch-enabled devices provide some unique challenges for web application developers, and I explain some of the
core features that jQuery Mobile provides to help simplify the process and set out some general guidance for the
development and testing of mobile web apps. Table 27-1 provides the summary for this chapter.

Note ■ As I explained in Chapter 1, the jQuery Mobile API changed with the release of version 1.3, and I highlight these
changes in the chapters that follow.

Setting Up jQuery Mobile
To start this chapter, I’ll show you how to obtain and install jQuery Mobile. jQuery Mobile is built on the foundation of
jQuery and jQuery UI, so you’ll see some common patterns that are consistent with these libraries.

Table 27-1. Chapter Summary

Problem Solution Listing

Add jQuery Mobile to an HTML
document.

Add a script element to import the jQuery and jQuery
Mobile libraries and a link element to import the CSS.

1

Create a jQuery Mobile page. Use the data-role attribute with a value of page. 2

Disable the browser virtual page. Configure the viewport. 3

Defer the execution of custom
JavaScript code until after jQuery
Mobile has enhanced a document.

Use the pageinit event. 4

Simplify touch event handling. Use the jQuery Mobile gesture and virtual mouse events. 5–7

Respond to changes in device
orientation.

Handle the orientationchange event or use CSS media
queries.

8, 9

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

738

Obtaining jQuery Mobile
The first thing you need is jQuery Mobile, which is available from http://jquerymobile.com. As I write this, the
current version of jQuery Mobile is 1.3.1, and you can get a zip file from the download page. For version 1.3.1, this is
called jquery.mobile-1.3.1.zip.

Tip ■ just as with jQuery and jQuery uI, jQuery Mobile can be loaded via a content distribution network (Cdn).
I described Cdns in Chapter 5, and they can be a great idea for Internet-deployed web applications (but rarely for
intranet applications). the jQuery Mobile download page includes details of the links you will require to use jQuery
Mobile via a Cdn.

Creating a Theme
jQuery Mobile supports a theme framework, which is like a simplified version of the one that jQuery UI uses. There
is a default theme included in the jQuery Mobile package, but if you want to create a custom theme, you can do so
at http://jquerymobile.com/themeroller. Using the ThemeRoller application generates a zip file that contains
a CSS file to include in your web documents. I describe how to use the theme framework in Chapter 28, but I’ll be
using the default theme rather than creating a custom one in this part of the book – in part because the jQuery Mobile
ThemeRoller doesn’t have a library of convenient themes available.

Getting jQuery
You also need jQuery. Version 1.3.1 of jQuery Mobile is intended to work only with versions 1.7.0 through 1.9.1 of
jQuery. jQuery Mobile tends to lag behind releases of jQuery, and support for jQuery 2.0 is not available as I write this.
However, you can use the latest 1.x release without any problems, and so I will use jQuery 1.10.1 for the examples in
this part of the book.

Tip ■ even though jQuery Mobile is built on jQuery uI, you don’t need to install the jQuery uI library. everything you
need is included in the jQuery Mobile download.

Installing jQuery Mobile
You need to copy three items from the jQuery Mobile download into the directory from which you serve your web
content:

The •	 jquery.mobile-1.3.1.js file (the jQuery Mobile JavaScript library)

The •	 jquery.mobile-1.3.1.css file (the CSS styles jQuery Mobile uses)

The •	 images directory (the jQuery Mobile icons)

You also need the jQuery library, of course, and once everything is in place, you can create an HTML document
that uses jQuery Mobile. As with the earlier chapters, I called my file example.html, and I saved it in the same
directory as the items in the previous list. Listing 27-1 shows the contents of this file.

http://jquerymobile.com/
http://jquerymobile.com/themeroller

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

739

Listing 27-1. The Contents of example.html

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
</head>
<body>
 <div data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 <p><button>Press Me</button></p>
 </div>
 </div>
</body>
</html>

The elements I highlighted are required for jQuery Mobile. The two script elements import the jQuery and
jQuery Mobile JavaScript libraries, and the link element imports the CSS that jQuery Mobile relies on. Since my
HTML file is in the same directory as the JavaScript and CSS files, I am able to refer to these files simply by name.

Tip ■ Ignore the rest of the document for the moment. I’ll explain shortly what the meta element does and how the
contents of the body element are.

Understanding the jQuery Mobile Approach
Although jQuery Mobile is based on jQuery UI, there are some significant differences that you need to be aware of.
Before you start digging into the capabilities of jQuery Mobile, I need to explain those differences to provide a context
for the information in the following chapters.

tIereD SUppOrt

jQuery Mobile offers different levels of support for different mobile browsers. there are three grades of support
available and a long list of the supported devices and browsers in each. At the high end, A-grade support provides
the richest experience and implements all of the features that I describe in this part of the book.

B-grade support provides everything except Ajax navigation, which I describe in Chapter 28. this is still a good
level of functionality, but the movement between pages in an application won’t be as smooth as for an
A-grade device.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

740

the C-grade category is basic. only old devices fall into this category, and jQuery Mobile is unable to provide
much functionality for these devices.

happily, most modern mobile devices fall into the A-grade category of support. you can see a detailed list of
supported devices at http://jquerymobile.com/gbs.

Understanding Automatic Enhancement
The most striking difference when using jQuery Mobile is that widgets don’t have to be created explicitly. When using
jQuery UI, you use jQuery to select one or more elements and then apply a method such as button or tabs to create
a specific jQuery UI widget in the document. If you look at Listing 27-1, you will notice that I have not added a script
element to the document to create any widgets. The only script elements are there to import jQuery and jQuery
Mobile libraries. And yet, as Figure 27-1 shows, I get formatted content. (This figure shows the Opera Mobile emulator
that I use extensively in this part of the book and that I properly introduce later in this chapter.)

Note ■ For most of the figures in this part of the book, I’ll be using the opera Mobile browser emulator in a landscape
resolution, which lets me pack more examples into each page.

When you bring the jQuery Mobile library into a web page with a script element, the page is enhanced
automatically. First jQuery Mobile looks for elements that have a data-role attribute. The value of these attributes
tells jQuery Mobile what enhancements should be applied to the elements. Listing 27-2 highlights the data-role
attributes in the example document.

Tip ■ Attributes whose name begins with data- are known as data attributes. data attributes have been an informal
convention for defining custom attributes for some time and have been included in the official standard for htMl5.

Figure 27-1. The example document

http://jquerymobile.com/gbs

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

741

Listing 27-2. The data-role Attributes in the Example Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
</head>
<body>
 <div data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 <p><button>Press Me</button></p>
 </div>
 </div>
</body>
</html>

One of the unusual features of jQuery Mobile is that a single HTML document can contain multiple pages
(a feature that I demonstrate in Chapter 28). The page is the building block of a jQuery Mobile application. There is
only one page in this example, and it is denoted by the div element whose data-role value is page. Because the page
is nested inside an HTML document, you also need to provide jQuery Mobile with additional information about
the purpose of the elements contained within the page. There are two other data-role attributes, which tell jQuery
Mobile which element contains the header information for page and which element contains the content. Table 27-2
summarizes the three data-role values in this example and their significance. You can readily correlate the div
elements and their data-role values with the structure of the page shown in Figure 27-1.

Tip ■ jQuery Mobile will automatically insert the wrapper for the content part of a page. this means that any
elements that are not part of another section are treated as content, allowing you to explicitly skip defining an element
for that section.

Table 27-2. Data-Role Attribute Values in the Example Document

Value Description

page Tells jQuery Mobile to treat the content of the element as a page.

header Tells jQuery Mobile that the element represents the page header.

content Tells jQuery Mobile that the element contains the content for the page.

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

742

You don’t have to take any explicit action to make jQuery Mobile find the elements with data-role attributes and
generate a page. This all happens automatically when the HTML document is loaded. Some elements, such as button,
are automatically styled (although, as I demonstrate in later chapters, you can configure most widgets using other
data attributes).

Tip ■ jQuery Mobile goes to great lengths to minimize the amount of custom javaScript that is needed to create a
mobile web application. In fact, it is possible to create simple applications without any custom javaScript at all.
this doesn’t mean you can build jQuery Mobile applications for browsers that have javaScript disabled, however.
jQuery Mobile is a javaScript library and requires javaScript support to perform automatic enhancement of pages.

Understanding the Viewport
Although not part of jQuery Mobile, an important element to add to your HTML documents is the one highlighted in
Listing 27-3.

Listing 27-3. The meta Element That Configures the Viewport

...
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
</head>
...

I have highlighted the meta element whose name attribute is viewport. Many mobile browsers use a virtual
page to display web content in order to improve compatibility with web sites that have been designed with desktop
browsers in mind. This is generally a sensible idea because it provides the user with an overall sense of the page
structure, even though the details are too small to read. Figure 27-2 shows the jQuery Mobile home page as it is
displayed initially and zoomed so that the text is readable.

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

743

The first frame shows the jQuery Mobile web site in a portrait orientation (which accentuates the effect). The
text is too small to read, but mobile browsers have support for zooming in to regions of the page, as the second frame
shows. The virtual page is a compromise, to be sure, but it’s an understandable one given that relatively few web sites
are tailored to mobile devices.

The problem is that the virtual page is applied without much discrimination and causes problems for jQuery
Mobile applications. Figure 27-3 shows how the example document is displayed when the virtual page is used.

Figure 27-2. The mobile browser virtual page

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

744

As the figure demonstrates, the jQuery Mobile elements are displayed so small that they are unusable. The meta
element in the example document tells the browser that the width of the page should be the width of the screen. This
causes the browser to display your jQuery Mobile elements at a sensible size.

Understanding jQuery Mobile Events
There are two important pieces of information about events as they relate to jQuery Mobile. In the sections that
follow, I describe each of them.

Understanding the Page Events
jQuery Mobile defines a series of events that describe the life cycle of pages. The most important of these is the
pageinit event. jQuery Mobile automatically enhances pages by registering its functions to handle the jQuery
ready event that you have been relying on in earlier parts of the book. If you want to include custom JavaScript in a
document, you have to take care not to have your code executed before jQuery Mobile has finished processing the
document. This means you have to wait for the pageinit event, and then it is triggered when jQuery Mobile has
finished initializing the document. There is no convenient method like there is for the ready event, so you have to use
the bind method to associate your function with the event, as demonstrated in Listing 27-4.

Listing 27-4. Using the pageinit Event

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <script type="text/javascript" src="jquery-1.10.1.js"></script>

Figure 27-3. The example document displayed in a wide virtual page

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

745

 <script type="text/javascript">
 $(document).bind("pageinit", function () {
 $("button").click(function () {
 console.log("Button pressed")
 })
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
</head>
<body>
 <div data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 <p><button>Press Me</button></p>
 </div>
 </div>
</body>
</html>

The arguments to the bind method are the name of the event you are interested in and the function that should
be executed when the event is triggered. Your function will be executed only when the event is triggered for the
element or elements you have selected and applied the bind method to.

In this example, I have used the bind method to register a function that will be executed when the pageinit
event is triggered. Inside that function, I place the statements that I want performed when the document has been
loaded and processed. In this case, I have used jQuery to select the button element in the document and used the
click method to register another function that will be performed when the button is clicked, just as I have been doing
throughout this book.

Tip ■ notice that I have inserted my new script element before the jQuery Mobile javaScript library is imported into
the document. this isn’t essential for the pageinit event but is required for the mobileinit event that you use to change
some jQuery Mobile settings (I demonstrate how to do this in Chapter 28). I find it a good idea to always put the custom
code before importing the jQuery Mobile library, even if I am only responding to the pageinit event.

Understanding Touch Events
There is a specification for touch events in a browser, but it is pretty low level because there is a lot of variety in the
touch interaction model. Some devices support multi-touch, for example, and there is wide variety in the way that
touch gestures are interpreted. Table 27-3 describes these low-level touch events.

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

746

The responsibility of interpreting these events and working out their significance falls to the developer. It is a
painful task that is fraught with errors and one that I recommend you avoid wherever possible. It’s something that
jQuery Mobile helps with, as I explain shortly.

Tip ■ If you do want to get into the details of touch events, then you can find the specification at
www.w3.org/TR/touch-events. this includes full descriptions of the events and the properties that are available for get-
ting the detail of each touch interaction.

Most web sites have not been designed with touch events in mind. To support the widest possible range of web
site scripts, the mobile browsers synthesize mouse events from the touch events. This means the browser triggers the
touch events and then generates corresponding (fake) mouse events that represent the same actions, but as though
they had been performed with a traditional mouse. Listing 27-5 contains a useful script that demonstrates how this is
done.

Listing 27-5. Monitoring Touch and Synthesized Mouse Events

<!DOCTYPE html>
<html>
<head>
 <title>Event Test</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <style type="text/css">
 table {border-collapse: collapse; border: medium solid black; padding: 4px}
 #placeholder {text-align: center}
 #countContainer * {display: inline; width:50px}
 th {width: 100px}
 </style>
 <script type="text/javascript">
 $(document).bind("pageinit", function() {
 var eventList = [
 "mousedown", "mouseup", "click", "mousecancel",
 "touchstart", "touchend", "touchmove", "touchcancel"]

Table 27-3. The Standard Touch Events

Event Description

touchstart Triggered when the user touches the screen. For multi-touch devices, this event will be triggered
each time a finger touches the screen.

touchend Triggered when the user removes a finger from the screen.

touchmove Triggered when the user holds or moves a finger while it is touching the screen.

touchcancel Triggered when a touch sequence is disrupted. The meaning of this is device specific, but a common
example is when the user slides a finger off the edge of the screen.

http://www.w3.org/TR/touch-events

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

747

 for (var i = 0; i < eventList.length; i++) {
 $("#pressme").bind(eventList[i], handleEvent)
 }

 $("#reset").bind("tap", function() {
 $("tbody").children().remove();
 $("#placeholder").show();
 startTime = 0;
 })
 });

 startTime = 0;
 function handleEvent(ev) {
 var timeDiff = startTime == 0 ? 0 : (ev.timeStamp - startTime);
 if (startTime == 0) {
 startTime = ev.timeStamp
 }
 $("#placeholder").hide();
 $("<tr><td>" + ev.type + "</td><td>" + timeDiff + "</td></tr>")
 .appendTo("tbody");
 }
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div data-role="page">
 <div data-role="content">
 <div id="tcontainer" class="ui-grid-a">
 <div class="ui-block-a">
 <button id="pressme">Press Me</button>
 <button id="reset">Reset</button>
 </div>
 <div class="ui-block-b">
 <table border=1>
 <thead>
 <tr><th>Event</th><th>Time</th></tr>
 <tr id="placeholder"><td colspan=2>No Events</td><tr>
 </thead>
 <tbody></tbody>
 </table>
 </div>
 </div>
 </div>
 </div>
</body>
</html>

There are two buttons and a table in this example. The Press Me button is wired up so that a selection of mouse
and touch events are displayed in the table when the button is clicked. For each event, the event type and the number
of milliseconds since the last event are shown. The Reset button clears the table and resets the timer. You can see the
effect in Figure 27-4.

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

748

Table 27-4 shows the sequence of events and timings that arise when clicking the button in the Opera Mobile
browser.

You can see that the touchstart and touchend events are triggered first, responding to the moments when I
touched and then released the screen. The browser then generates mousedown and mouseup events and then a click
event. Notice that there is quite a delay between the touchend and mousedown events being triggered, roughly 300
milliseconds. This is enough of a delay to make relying on the synthesized events problematic because your web
application will lag behind the user’s touch interactions. Not all browsers have this problem, but it is common enough
to be an issue, and I recommend you measure the latency on the browsers you intend to target.

Using the jQuery Mobile Gesture Methods
jQuery Mobile does two things to make working with events easier. The first is a set of gesture events that are triggered
in response to certain sequences of low-level touch events, meaning that you don’t have to analyze the touch
sequence yourself to make sense of what gesture the user was making. These events are described in Table 27-5.

Figure 27-4. Observing the sequence of touch and mouse events

Table 27-4. The Event Sequence from Opera Mobile

Event Relative Time

touchstart 0

touchend 96

mousedown 315

mouseup 315

click 321

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

749

These events make dealing with basic gestures simple. Listing 27-6 adds these events to the timing example.

Listing 27-6. Adding the jQuery Mobile Gesture Events to the Timing Example

...
<script type="text/javascript">
 $(document).bind("pageinit", function() {
 var eventList = [
 "mousedown", "mouseup", "click", "mousecancel",
 "touchstart", "touchend", "touchmove", "touchcancel",
 "tap", "taphold", "swipe", "swipeleft", "swiperight"]

 for (var i = 0; i < eventList.length; i++) {
 $("#pressme").bind(eventList[i], handleEvent)
 }

 $("#reset").bind("tap", function() {
 $("tbody").children().remove();
 $("#placeholder").show();
 startTime = 0;
 })
 });

 startTime = 0;
 function handleEvent(ev) {
 var timeDiff = startTime == 0 ? 0 : (ev.timeStamp - startTime);
 if (startTime == 0) {
 startTime = ev.timeStamp
 }
 $("#placeholder").hide();
 $("<tr><td>" + ev.type + "</td><td>" + timeDiff + "</td></tr>")
 .appendTo("tbody");
 }
</script>
...

Figure 27-5 shows what happens when I click the button in the browser.

Table 27-5. The Standard Touch Events

Event Description

tap Triggered when the user touches the screen and then removes her finger in quick succession.

taphold Triggered after the user touches the screen, keeps her finger in place for about a second, and then
releases.

swipe Triggered when the user performs a horizontal drag of at least 30 pixels with a vertical variation of
less than 20 pixels within a one-second period.

swipeleft Triggered when the user swipes in the left direction.

swiperight Triggered when the user swipes in the right direction.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

750

Table 27-6 shows the event sequence in an easy-to-read table. Since I am clicking a button, the only gesture event
that appears is tap. The important thing to note is that the tap event is triggered quickly, usually within a couple of
milliseconds of my releasing from the screen.

The nice thing about the gesture events is that jQuery Mobile will trigger them even in browsers that don’t
support touch events or that are running on devices without touch interfaces. Figure 27-6 shows the example running
in the Google Chrome desktop browser.

Table 27-6. The Event Sequence from Opera Mobile

Event Relative Time

touchstart 0

touchend 63

tap 63

mousedown 317

mouseup 321

click 328

Figure 27-5. Adding the jQuery Mobile gesture events to the timing example

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

751

Table 27-7 shows the sequence of events and their relative timings more clearly.

As you might expect, there are no touchstart and touchend events in this sequence, and the order of the events
is different (because the mouse events are real, rather than synthesized). Even so, the tap event is still triggered
immediately after the click event.

Tip ■ I use the tap event instead of click in mobile web applications because it avoids the timing issue that comes
from the synthesized events and because it is also generated on non-touch platforms.

Using the jQuery Mobile Virtual Mouse Events
Browsers are not required to synthesize mouse events, meaning that a web application that works on touch and non-
touch devices should listen for both mouse events and touch events. For mobile browses that do synthesize events,
you end up with touch and mouse events for each interaction. To help simplify this process, jQuery Mobile defines a
set of virtual mouse events. When you register for these events, jQuery Mobile takes care of removing the duplicates
and ensuring that the appropriate events are triggered, irrespective of whether you have touch support. Table 27-8
describes the virtual events.

Figure 27-6. The event sequence in a desktop browser

Table 27-7. The Event Sequence from Google Chrome

Event Relative Time

mousedown 0

mouseup 79

click 80

tap 80

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

752

The way that these events are generated creates a mouse-like sequence, even on touch devices. To explain what I
mean, I have added some of the virtual events to the timing example, as shown in Listing 27-7.

Listing 27-7. Adding the jQuery Mobile Virtual Events to the Timing Example

...
<script type="text/javascript">
 $(document).bind("pageinit", function() {
 var eventList = [
 "mousedown", "mouseup", "click", "mousecancel",
 "touchstart", "touchend", "touchmove", "touchcancel",
 "tap", "taphold", "swipe", "swipeleft", "swiperight",
 "vmouseover", "vmousedown", "vmouseup", "vclick", "vmousecancel"]

 for (var i = 0; i < eventList.length; i++) {
 $("#pressme").bind(eventList[i], handleEvent)
 }

 $("#reset").bind("tap", function() {
 $("tbody").children().remove();
 $("#placeholder").show();
 startTime = 0;
 })
 });

 startTime = 0;
 function handleEvent(ev) {
 var timeDiff = startTime == 0 ? 0 : (ev.timeStamp - startTime);
 if (startTime == 0) {
 startTime = ev.timeStamp
 }
 $("#placeholder").hide();
 $("<tr><td>" + ev.type + "</td><td>" + timeDiff + "</td></tr>")
 .appendTo("tbody");
 }
</script>
...

Table 27-8. The Standard Touch Events

Event Description

vmouseover Triggered in response to mouseover events (there is no equivalent touch
event because the user’s finger isn’t always in contact with the screen).

vmousedown Triggered in response to touchstart or mousedown events.

vmousemove Triggered in response to touchmove or mousemove events.

vmouseup Triggered in response to touchend or mouseup events.

vclick Triggered in response to the click event.

vmousecancel Triggered in response to touchcancel or mousecancel events.

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

753

When I touch the screen, jQuery Mobile generates the vmouseover and vmousedown events. These don’t have any
meaning in a purely touch environment. If you are writing an application that works across platforms, then you might
want to perform some action when the user moves the desktop mouse over an element. The triggering of the synthetic
vmouseover event in response to the real touchstart allows you to perform the same action seamlessly for touch
devices. You can see the result in Figure 27-7.

Table 27-9 shows the event and timing sequence in a more easily readable form. Although the vclick event is
triggered long before the synthetic click event, this isn’t always the case, and I do not recommend using vclick as a
substitute for click as a way to address the event latency issue.

Table 27-9. The Event Sequence from Google Chrome

Event Relative Time

touchstart 0

vmouseover 0

vmousedown 0

touchend 64

vmouseup 64

vclick 64

tap 64

mousedown 320

mouseup 327

click 331

Figure 27-7. Adding the virtual events to the timing example

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

754

Caution ■ It is important not to make assumptions about the way that the real and virtual events are interleaved.
this is because the event sequence on a non-touch device will be different. the order of the virtual events relative to one
another will be the same; the intervening real events can change.

Responding to Device Orientation Changes
Most mobile browsers support an event called orientationchange, which is triggered every time the device is rotated
through 90 degrees. To make life easier, jQuery Mobile will synthesize the orientationevent when it is not supported
by the browser. This is done by listening for changes in the window size and looking at the ratio of the new height and
width values. Listing 27-8 shows how you can respond to this event.

Listing 27-8. Responding to Changes in Orientation

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">
 $(document).bind("pageinit", function() {
 $(window).bind("orientationchange", function(e) {
 $("#status").text(e.orientation)
 })
 $("#status").text(jQuery.event.special.orientationchange.orientation())
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <p>Device orientation is: </p>
 </div>
 </div>
</body>
</html>

You must select the window object in order to bind to the orientationchange event. In this example, I change the
text of a span element indicating the new orientation. This information is available through the orientation property
of the Event object that is passed to the handler function.

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

755

jQuery Mobile also provides a method for determining the current orientation, as follows:

...
jQuery.event.special.orientationchange.orientation()
...

I use this method in the example to set the contents of the span element, since the orientationchange event isn’t
fired when the page is processed, only when the device is subsequently reoriented.

If you don’t have a real mobile device to test this example with, then you can use one of the emulators that I
describe later in this chapter. Most of them have the ability to simulate a rotation, triggered by a particular key stroke
or button press. For the Opera Mobile emulator that I am using, pressing Ctrl+Alt+R triggers the effect, which is shown
in Figure 27-8.

The synthesized event that jQuery Mobile produces means you can get the same effect when you resize the
window of a browser that doesn’t support orientation changes, such as a desktop browser. In this case, the orientation
is determined by the width and height of the window.

Using Media Queries to Manage Orientation
The orientationchange event allows you to respond to changes in orientation using JavaScript. An alternative
approach is to use CSS, applying different styles to elements for each orientation, something you can achieve using a
CSS media query. Listing 27-9 shows how this can be done.

Figure 27-8. Responding to a change in orientation

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

756

Listing 27-9. Responding to Orientation Using CSS Media Queries

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 @media screen and (orientation:portrait) {
 #pstatus {display: none}
 #lstatus {display: inline}
 }

 @media screen and (orientation:landscape) {
 #pstatus {display: inline}
 #lstatus {display: none}
 }
 </style>
</head>
<body>
 <div data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <p>Device orientation is:
 Portrait
 Landscape
 </p>
 </div>
 </div>
</body>
</html>

CSS media queries allow you to define sets of styles that are applied under specific circumstances, in this case
when the orientation is landscape or portrait. I use the CSS display property to show or hide elements, allowing me
to create the same effect I had with JavaScript in the previous example. There is no need for any kind of synthesis in
this situation. Media queries for orientation work equally well for desktop browsers and mobile browsers.

Working with Mobile Devices
Developing applications for mobile devices has some distinct differences from regular desktop development. In the
sections that follow, I provide some guidance and information to help you get started and to highlight some of the key
issues you will face.

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

757

IDeNtIFYING MOBILe DeVICeS

If you are offering an application to desktop and mobile users, you may want to tailor the interface you present.
A common approach is to offer a jQuery uI interface to desktop browsers and a jQuery Mobile interface to mobile
devices.

the difficulty is recognizing which browsers are running on mobile devices. there are various techniques for
doing this, all of which are performed at the server, redirecting the browser to the appropriate htMl documents.
I am not going to get into the detail of these, since they are outside the scope of this book. If you are new to this issue,
then I suggest you look at http://wurfl.sourceforge.net, which contains a useful server-side component
that can identify most mobile devices. you should also consider https://github.com/kaimallea/isMobile,
which offers a client-side solution.

I recommend against automatically forcing the user to the mobile version of your application based on their
browser. Some users prefer to use the desktop versions of applications, even on mobile devices, especially since
mobile versions often have restricted functionality. My recommendation is to give the user a simple choice when
he arrives at your site if you detect a mobile device and to make it easy to switch between the versions of your
application even when the initial decision has been made.

Avoiding the Two Cardinal Sins of Mobile Development
There are two pitfalls to avoid when building web applications for mobile devices: bad assumptions and unrealistic
simulation. I explain both and provide some context to help you avoid making some common mistakes.

Avoiding Bad Assumptions
The market for mobile devices is extremely vibrant, relatively immature, and lacking in standardization. When
building web applications for desktops, there are some assumptions that are usually made (although they are often
unstated). There is a general expectation about the minimum screen resolution, JavaScript support, the availability of
certain plug-ins, and that the user will be able to point using a mouse and enter text using a keyboard.

That’s not to say that these are reasonable assumptions. If you assume that JavaScript will be available, for
example, then you eliminate potential customers who don’t (or can’t) enable JavaScript in their browser. You might
decide that this is a good trade-off, that most users could enable JavaScript if they wanted, and that you’ll just forgo
users who don’t meet the specification you require.

The situation in the mobile device market is more complicated because the market is so fragmented. The desktop
space may seem diverse, but a Mac, a Windows PC, and a Linux box all have quite a lot in common. The same can’t
be said for mobile devices, and assumptions about screen size, network connectivity, and input method will eliminate
some large segments of the market.

The World Is Not an iPhone
One of the worst assumptions I see made (and made often) is that the target market is the iPhone. The iPhone has
been a wild success, but it isn’t the totality of the mobile device market, and there are even variations between
different iPhone models. A common target screen resolution is 320 by 480 pixels, which comes from the older iPhone
models. A lot of devices have this resolution, but a growing number do not. Using a fixed-screen resolution in your
mobile application will simply eliminate users who have screens that are too small and annoy users who have paid a
premium to get a higher-resolution device.

http://wurfl.sourceforge.net/
https://github.com/kaimallea/isMobile

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

758

The World Is Not a Phone at All
Another common assumption is that the target market is mobile phones, ignoring the success of the tablet market.
Not only do tablets typically have higher screen resolutions, but the way that people hold them and use them
is different. To see what I mean, head to any coffee shop and watch the customers. My (entirely unscientific but
consistent) observation is that the greater size of tablets makes them slightly awkward to hold and so they are usually
propped up against something else. This means they are somewhat unstable, and dragging a finger across the screen
makes the tablet wobble slightly (making accuracy a problem) and obscures a lot of the screen (because the user’s
hand and arm are over the tablet itself).

My point is that the nature of mobile devices dictates a lot about how they are used and what kind of interactions
are sensible and desirable. The best way to figure this out is to observe people interacting with a range of devices. If
you have money and time available, then a usability lab is a fantastic resource. But even if you are in a hurry and on a
budget, an afternoon spent in Starbucks can provide some valuable insights.

The World Is Not Touch Enabled
Not all mobile devices have touch screens. Some rely on a tiny mouse combined with a keyboard, and some have
multiple input methods. One of my test machines is a small laptop that converts into a tablet. It has a touch screen as
well as a full keyboard and mouse. Users expect to be able to use the best input method available to them, and making
assumptions about the inputs available just leads to user frustration (which is why I rarely use the laptop/tablet
combination device other than for testing).

Mobile Bandwidth Is Not Free and Not Infinite
The price of network connectivity goes through cycles, driven by the kinds of activities that the users of the network
perform. At the moment, network providers are struggling to fund and build enough network capacity to satisfy
demand, especially in densely populated urban areas. Eventually, the cost of capacity will fall and bandwidth
available will increase, but at the moment, network providers are charging a premium for data access and applying
low caps on the amount of data that a user can download in a month.

It is dangerous to assume that users are willing to dedicate a serious amount of their data to your web application.
As a general rule, customers don’t care as much about your application as you’d like them to. It may hurt to hear, but it
is almost always true. Your application fills your world, as it should, but it is just one of many to a user.

In Chapter 28, I show you how jQuery Mobile can pre-fetch the content for a web application before the user
needs it. It is a great feature, but it should be used with caution because it assumes that the user is willing to spend
bandwidth on content they may never need. The same goes for automatic and frequent data updates. Use sparingly,
cautiously, and only when the user has explicitly indicated that your application should be a heavy user of his network
quota.

Equally, do not make assumptions about the data rate available to a mobile device. Think about your use of large
resources such as images and video. Some users will have the capacity to quickly download such content, but many
won’t, and a low-bandwidth option is always welcome in my experience.

You should also be prepared to deal with the network being unavailable. I used to commute by train, and the
network would drop out whenever I went into a tunnel. A well-written web application expects connectivity issues,
reports them to the user, and recovers elegantly when the network becomes available again. Sadly, most applications
are not well written.

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

759

Tip ■ I once did some work for a global container shipping company, and the constraints they faced led them to create
some of the most robust and adaptable applications I have seen. they had shipping agents at almost every port in the
world, in places so remote that the agent’s office was just a shack at the end of a pier. they could ship modern PCs to
these locations (that didn’t present a problem because they were a shipping company), but networking was often limited
to a slow dial-up connection that worked for a couple of hours a day between power cuts, meaning that several days
might pass between connections being established. every application had to allow the local shipping office to carry on
working even when there was no network link and synchronize the local data to the global network whenever a
connection could be established. It took a lot of thought and testing, but the result was an It infrastructure that helped
them dominate global container shipping. I often think of these constraints when designing mobile applications – modern
devices can usually expect better operating conditions, but the best applications always hope for the best, assume the
worst, and deal with problems on behalf of the user.

Avoiding Unrealistic Simulation and Testing
The wide variation in mobile devices means you have to test thoroughly. Working with actual mobile devices during
the early stages of development can be frustrating. The network requests are routed via the cell network, which
requires the development machines to be publicly available. There are developer modes for some mobile devices, but
they have their own drawbacks.

In short, you want a simulated environment in which to start your development, something that gives you
the ability to build and test rapidly and conveniently and to do so without having to expose your development
environments to the outside world. Fortunately, there are emulators that provide the facilities you require. I’ll describe
some of the available options later in this chapter, but they fall into two categories.

The first category of emulator is where the actual mobile browser has been ported to another platform.
Everything about the browser is as close to the real thing as possible. The second category relies on the fact that most
browsers use a common rendering engine for mobile and desktop machines. So, for example, if you want to get a
rough idea of how the iPhone browser will handle a document, you can use the Apple Safari browser because it shares
common roots. The emulator is little more than a visual wrapper and a screen size constraint around the desktop
rendering engine.

Both approaches can be useful, and they are worth exploring. I use them often in the early stages of mobile
product development. But once I have the basic functionality in place, I start including testing on real devices, and as
the project nears completion, I switch to using only real devices and stop using the emulators altogether.

The reason for this is that the emulators have two main failings. The first is that they are not 100 percent accurate
in their emulation. Even the best of emulators don’t always present content the way that real devices using the same
browser will. The second – and to my mind the most important – failing is that the touch inputs are simulated.

The mouse is used to make a touch-enabled browser work on a non-touch desktop PC, and a mouse just doesn’t
create the same effect as a finger. Three touch factors are missing in a desktop emulation: tactility, obstruction, and
inaccuracy.

The Lack of Tactility
The lack of tactility means that you don’t get a good idea about how using the web application will feel. Tapping and
sliding on a glass display is an odd activity. When the application is properly responsive, the effect is elegant and
enjoyable. The result is frustration when the application lags behind the input or misconstrues the touch interaction.
The mouse isn’t capable of giving you feedback about how well you are dealing with touch.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

760

The Lack of Obstruction
I have already alluded to the issue of obstruction. When you use touch devices, even small ones, your finger and hand
cover up part of the screen. You need to take this into account when designing a web application for a touch device.
You need to place controls carefully so that the user can still see what’s happening while she is touching the screen,
and you need to bear in mind that roughly 10 percent of the population is left handed and so a different part of the
screen will be obscured for these users. Only touching the buttons and links with your own hands gives you a true
understanding of how easy your web application is to use.

Tip ■ If you go and do some user observation at the coffee shop, look out for users following a distinctive pattern. they
touch the screen and then move their hand completely out of the way for a second, before reaching back in and making
another touch gesture. this is often indicative of an application that has located its widgets so that the visual feedback
resulting from an action is under the user’s hand. the user has to move her hand out of the way to see what happened
before moving back in for another gesture, a tiring and frustrating experience.

The Lack of Inaccuracy
With the mouse, the user can be exceptionally accurate hitting a target on the screen. Per-pixel accuracy can be
achieved with a modern mouse and a little practice. This is not the case with the human finger, and the most accuracy
you can expect is “roughly in the area” of the target. This means you have to select widgets that are easy and create
layout that takes inaccuracy into account. You can’t get a feel for how easy it is to hit your widgets in the emulator. The
mouse is not a good-enough proxy. You need to test on a range of different screen sizes and resolutions to understand
what your users will face. This information provides essential cues as to the size and density of the widgets on
your pages.

a perSONaL taLe OF INaCCUraCY

My personal frustration goes back to when I used to commute to work by train. I live in the united Kingdom where
the timely arrival of a train is seen as an unobtainable goal. In the summer, I didn’t really mind when the train was
late. I could linger in the sunshine. I never wanted to linger in the winter, and after a few minutes I would want to
check to see just how late the train was going to be, which is possible with an online application.

Imagine the scene. the sun hasn’t yet come up, the wind is bitter, and the ground is icy. I am wrapped up warm,
but the heat I carried with me from the car is quickly ebbing away. I want to load the application, navigate to
the information for my local station, and get an idea of how long I will be waiting (and if it is going to be a while,
return to my car and consider driving to the office).

As soon as I take off my gloves, my fingers start to feel cold. After a few minutes, I can’t flex my fingers properly
and my hands start to shake, which is unfortunate because the widgets I need to hit are tiny; they are just regular
web links displayed in a small font. I never managed to easily navigate to the information I wanted. I would hit
the wrong link, be forced to wait for the wrong information to load, and then navigate back to try again. All the
while, my ability to hit a widget accurately is getting worse as my hand gets colder. I grew to hate mobile web
applications that assume pixel accuracy and that application in particular.

ChAPter 27 ■ GettInG StArted wIth jQuery MobIle

761

Using a Mobile Browser Emulator
Even though they have limitations, mobile browser emulators have a useful role to play. In the previous edition of this
book, I described a range of different emulators and the benefits and drawbacks of each. Since then, my development
style has changed, and I only use two tools: the Opera Mobile Emulator and BrowserStack.

USING DeSKtOp BrOWSerS tO teSt MOBILe appLICatIONS

desktop browsers are obviously not the same as the mobile versions, but share common underpinnings and can
be useful for quick and dirty testing prior to deploying to real devices. I often use these browsers when I have the
major building blocks of an application in place and I am fleshing out the functional areas. the main benefit of
using the desktop browsers is that they have excellent development tools, including javaScript debuggers and,
for the most part, desktop browsers make excellent development tools for the early stages of a mobile project or
when you are trying to track down problems in your code or markup.

Using the Opera Mobile Emulator
I use the Opera Mobile Emulator during the initial stages of my projects, at which point it tends to be the only
testing I do. This browser allows me to simulate devices with different screen sizes, including tablets and landscape
orientations.

The Opera Mobile browser that is being emulated is widely used, and the emulator does a reasonable (if not
perfect) job of accurately laying out the content. Some jQuery Mobile features, such as navigation transitions (which
I describe in Chapter 28), are not supported. This is the emulator that I used to obtain the screen shots for the figures
earlier in the chapter.

The main benefit of this kind of testing is that it is fast, allowing for the quick write-and-test style of development
style that I prefer. One nice feature is that you can debug the mobile emulator using the debugger built into the
desktop version of Opera. The process for setting this up is a little clunky, but it can be a helpful feature. The Opera
Mobile emulator is available without charge at http://www.opera.com/developer/mobile-emulator.

Using BrowserStack
BrowserStack is a commercial service that provides virtual machines running a wide range of browsers on
common operating systems. I have started using this service because it is simpler than maintaining my own testing
environments. It is not a perfect solution – the mobile browsers are emulators rather than actual hardware, for
example, but the service is quick, easy to use, and pretty comprehensive. You can get a trial account at
http://browserstack.com, and there are competing services available that offer similar functionality.

Note ■ I have no affiliation with browserStack other than as a regular user – I pay for my account just like anyone else
would and I don’t receive any special treatment or discounts.

Summary
In this chapter, I explained how to obtain jQuery Mobile and add it to an HTML document and set out the basic
approach that jQuery Mobile takes for automatically enhancing HTML documents and separating pages from those
documents. I described the custom events that jQuery Mobile provides to make it easier to create touch applications,
and I set out some basic guidance about how to approach mobile development and testing.

http://www.opera.com/developer/mobile-emulator
http://browserstack.com/

763

Chapter 28

Pages, Themes & Layouts

In this chapter, I describe one of the key building blocks for jQuery Mobile applications: pages. I touched on pages
in Chapter 27, but now I’ll go into the detail and show how to define, configure, and navigate between pages. I’ll also
show you two useful jQuery Mobile features for styling and structuring the content in pages: themes and grid layouts.
Table 28-1 provides the summary for this chapter.

Table 28-1. Chapter Summary

Problem Solution Listing

Define a jQuery Mobile page. Apply the data-role attribute to an element with a value of
page.

1

Add a header or footer to a page. Apply the data-role attribute to elements using a value of
header or footer.

2

Define multiple pages in a document. Create several elements whose data-role is page. 3

Navigate between pages. Create an a element whose href element is the id of a page
element.

4

Specify a transition effect for an a
element.

Apply the data-transition attribute. 5

Set a global transition effect. Assign a value to the defaultPageTransition setting. 6

Link to a page in another document. Specify the URL of the document as the href value of an a
element.

7, 8

Disable Ajax for a single link. Set the data-ajax attribute to false. 9

Disable Ajax globally. Set the ajaxEnable event to false. 10

Prefetch a page. Use the data-prefetch attribute. 11, 12

Change the current page. Use the changePage method. 13

Control the direction of the transition
effect.

Use the reverse setting for the changePage method. 14

Specify the delay after which the loading
dialog is shown.

Use the loadMsgDelay setting. 15

Disable the loading dialog. Use the showLoadMsg setting. 16

(continued)

Chapter 28 ■ pages, themes & Layouts

764

Understanding jQuery Mobile Pages
In Chapter 27, I showed you how to define jQuery Mobile pages within an HTML document using elements with
specific roles. To recap, Listing 28-1 shows a simple page.

Listing 28-1. A Simple jQuery Mobile Page in an HTML Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div data-role="page">
 <div data-role="content">
 This is Jacqui's Flower Shop
 </div>
 </div>
</body>
</html>

This is a minimal page, which consists of two key elements, each of which has a data-role attribute. The element
whose role is page denotes the region of the HTML content that contains the jQuery Mobile page. As I mentioned
in Chapter 27, one of the key characteristics of jQuery Mobile is that the pages that are displayed to the user are not
directly related to the HTML elements that contain them.

The other important element has a role of content. This denotes the part of the jQuery Mobile page that contains
the page content. A page can contain different sections of which the content is only one, as I’ll demonstrate shortly.
You can see how the HTML in the listing is displayed in the browser in Figure 28-1.

Problem Solution Listing

Determine the current page. Use the activePage property. 17

Load pages in the background. Use the loadPage method. 18

Respond to page loading. Use the page loading events. 19

Respond to page transitions. Use the page transition events. 20

Apply a swatch to a page or an element. Use the data-theme attribute and set the value to the swatch
that should be used.

21, 22

Lay out elements in a grid. Use the jQuery Mobile layout CSS classes. 23

Table 28-1. (continued)

Chapter 28 ■ pages, themes & Layouts

765

Adding Headers and Footers to a Page
In addition to a content section, a jQuery Mobile page can contain a header and footer, denoted by elements whose
data-role attributes are set to header and footer, respectively. Listing 28-2 shows both of these sections added to the
example page.

Listing 28-2. Adding a Header and a Footer to the Example Page

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 </div>
 <div data-role="footer">
 <h1>Home Page</h1>
 </div>
 </div>
</body>
</html>

Figure 28-1. Displaying a minimal jQuery Mobile page in the browser

Chapter 28 ■ pages, themes & Layouts

766

You can see the effect of these additions in Figure 28-2.

Caution ■ headers and footers can occupy a lot of space on a small screen, as the figure shows.

Figure 28-2. Adding a header and footer to the page

Tip ■ Notice that the footer is displayed at the end of the content section, rather than at the bottom of the page.
you can fix the position of headers and footers by setting the data-position attribute to fixed – this has the effect of
keeping the header and/or footer in place while allowing the rest of the content to scroll freely. test thoroughly when
using this option: not all browsers support the Css features that fixed headers and footers require.

Adding Pages to a Document
You can define multiple jQuery Mobile pages in a single document. This can be useful for simple web applications
because you can bundle everything you need into a single HTML file, which can reduce the number of requests that
have to be made to the server and the overall amount of data that has to be transferred (because some elements – like
those in the head section – are only specified once for multiple pages). Listing 28-3 shows a multipage document.

Listing 28-3. Defining Multiple jQuery Mobile Pages in an HTML Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>

Chapter 28 ■ pages, themes & Layouts

767

<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 2
 </div>
 </div>
</body>
</html>

This example defines two pages in the document. I have used the id attribute to assign each page a unique
identifier, and these values form the basis for navigating between pages. Only the first page is shown when the HTML
document is loaded. To let the user navigate between pages, I add an a element whose href is the id of the target
page, as shown in Listing 28-4.

Listing 28-4. Navigating between Pages

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 <p>Go to page 2</p>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Chapter 28 ■ pages, themes & Layouts

768

 <div data-role="content">
 This is page 2
 <p>Go to page 1</p>
 </div>
 </div>
</body>
</html>

In this example, I have added links between the pages. When a link is clicked, jQuery Mobile takes care of
displaying the appropriate page from the document, as demonstrated in Figure 28-3.

Figure 28-3. Navigating between pages in a document

Configuring Page Transitions
When the user navigates between pages, jQuery Mobile uses an animation effect to transition between one page and
the next. The default effect is called slide, which has the outgoing page slide to the left while the new page slides in
from the right. jQuery Mobile defines a number of different effects, as follows:

•	 slide

•	 pop

•	 slideup

•	 slidedown

•	 slidefade

•	 fade

•	 flip

Chapter 28 ■ pages, themes & Layouts

769

•	 turn

•	 flow

•	 none (meaning no effect, also expressed as null)

Not all mobile devices support all of the transitions correctly and you may encounter flickering and stuttering.
Each new release of jQuery Mobile improves the number of devices that can support all of the transitions, but you
should always test thoroughly to make sure that you don’t see any problems on the devices you are targeting. If in
doubt, try the fade or slide transitions, which I have found have problems on the fewest devices.

Tip ■ the mobile browser emulators don’t handle transitions well and generally ignore them. they work just fine on
real mobile devices, however. If you want to see the transition on the desktop, then use either google Chrome or apple
safari, both of which handle the effects well.

You can change the way that an individual page transition is animated by using the data-transition attribute on
the a element, setting the value to the effect you want. Listing 28-5 provides an example.

Listing 28-5. Using the data-transition Attribute

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 <p>Go to page 2</p>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 2
 <p>Go to page 1</p>
 </div>
 </div>
</body>
</html>

g

Chapter 28 ■ pages, themes & Layouts

770

Note ■ I can’t easily show you the different animation effects using figures. this example is one that requires
experimentation in the browser. you can avoid having to type in the htmL by downloading the source code that
accompanies this book and is freely available from Apress.com.

When the user clicks the highlighted link, the turn transition is used to display the target page. The turn effect is
applied only to that single link. Other links in the page or in other pages in the same document will continue to use the
default. Set the data-transition attribute to none if you want to disable the animation effect.

Tip ■ you can change the direction in which the effect is played by applying the data-direction attribute to the a
element with a value of reverse. In the “Changing the Current page” section, I give an example of reversing the transition
direction and explain why it can be useful.

If you want to change the animation effect used for all navigation, then you need to set a global option. jQuery
Mobile defines the defaultPageTransition setting, which you can set when the mobileinit event is triggered.
Listing 28-6 shows how this is done.

Listing 28-6. Changing the default page Transition

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">
 $(document).bind("mobileinit", function() {
 $.mobile.defaultPageTransition = "fade";
 })
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 <p>Go to page 2</p>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 28 ■ pages, themes & Layouts

771

 <div data-role="content">
 This is page 2
 <p>Go to page 1</p>
 </div>
 </div>
</body>
</html>

There is no convenient method for registering a handler function for the mobileinit event, so you have to select
the document object and use the bind method. The arguments to this method are the name of the event you want to
handle and the handler function to use when the event is triggered.

Caution ■ the mobileinit event is triggered as soon as the jQuery mobile script library is loaded, which means you
have to register the handler function to change the global jQuery mobile setting before the jQuery mobile library is
referenced in a script element. you can see how I have done this in the listing. the function will never be executed if
the call to the bind method is not defined before the script element that loads the jQuery mobile code.

To change the value of a global setting, you assign a new value to a property of the $.mobile object. Since I want
to change the defaultPageTransition setting, I assign a value to the $.mobile.defaultPageTransition property,
like this:

...
$.mobile.defaultPageTransition = "fade";
...

This statement sets the default effect to fade. I can still override this setting with the data-transition attribute.

Linking to External Pages
You don’t have to include all the pages in a single document. You can add links just as you would if using regular HTML.
To demonstrate this, I have created a new file called document2.html, the content of which is shown in Listing 28-7.

Listing 28-7. The Content of the document2.html File

<!DOCTYPE html>
<html>
<head>
 <title>Document 2</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Chapter 28 ■ pages, themes & Layouts

772

 <div data-role="content">
 This is page 1 in document2.html
 <p>Go to page 2 in this document</p>
 <p>Return to example.html</p>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 2 in document2.html
 <p>Go to page 1</p>
 </div>
 </div>
</body>
</html>

This document contains a pair of jQuery Mobile pages, following the same structure as in the other examples.
Linking to pages in other documents is simple. You just define an a element whose href attribute contains the URL of
the target document, as shown in Listing 28-8.

Listing 28-8. Navigating to a Page in Another HTML Document

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 <p>Go to page 2</p>
 <p>Go to document2.html</p>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Chapter 28 ■ pages, themes & Layouts

773

 <div data-role="content">
 This is page 2
 <p>Go to page 1</p>
 </div>
 </div>
</body>
</html>

jQuery Mobile uses Ajax to load the specified document and displays the first page automatically, using a
transition effect if one has been specified. You can see the result in Figure 28-4.

Figure 28-4. Navigating to a page in another document

Tip ■ jQuery mobile automatically applies its styles and enhancements to remote documents that are loaded via ajax.
this means you don’t have to include the jQuery and jQuery mobile script and link elements in files such as the
document2.html file I used in the example. that said, I recommend you do include those references because it is
possible to prevent jQuery mobile from using ajax when making such requests, and if this is done, then the automatic
processing of content isn’t performed.

Dealing with the Ajax/Page ID Issue
It isn’t all plain sailing when linking to pages in other documents. There is a conflict between the way that Ajax content
is managed and the way that jQuery Mobile pages are defined. Both rely on the value of the id attribute of elements.
Figure 28-5 shows the problem.

Chapter 28 ■ pages, themes & Layouts

774

In this figure, I click the link that should display the page2 element in document2.html, but what I get is actually
the page2 element in example.html, a confusing and unexpected result.

You can address this in two ways. The first is to define only one jQuery Mobile page per HTML document – this is
the advice from the jQuery Mobile team.

The second approach is to disable Ajax when loading multipage documents. This fixes the problem, but it does
mean that jQuery Mobile is unable to apply a transition effect when showing the new page. You can disable Ajax for a
single a element by setting the data-ajax attribute to false, as shown in Listing 28-9.

Listing 28-9. Disabling Ajax for a Single Link

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 <p>Go to page 2</p>
 <p>Go to document2.html</p>
 </div>
 </div>

Figure 28-5. The multipage Ajax issue

Chapter 28 ■ pages, themes & Layouts

775

 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 2
 <p>Go to page 1</p>
 </div>
 </div>
</body>
</html>

In this example, I have disabled Ajax for the link that navigates to document2.html. As Figure 28-6 shows,
this produces the expected navigation sequence.

Figure 28-6. Disabling Ajax to avoid an element id conflict

You can turn off Ajax by default using the ajaxEnabled global setting, which is demonstrated in Listing 28-10.
When this setting is false, Ajax will not be used for navigation unless you apply the data-ajax attribute to an element
with a value of true.

Listing 28-10. Using the global Setting to Disable Ajax

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">
 $(document).bind("mobileinit", function() {
 $.mobile.ajaxEnable = false
 })
 </script>

Chapter 28 ■ pages, themes & Layouts

776

 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 <p>Go to page 2</p>
 <p>Go to document2.html</p>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 2
 <p>Go to page 1</p>
 </div>
 </div>
</body>
</html>

Prefetching Pages
You can ask jQuery Mobile to prefetch documents so that the pages they contain are immediately available when
the user clicks a link. The advantage of this is that you create a more responsive application, but you do so by
downloading content that the user may not require. To demonstrate this feature, I created a document called
singlepage.html, the content of which is shown in Listing 28-11.

Listing 28-11. The singlepage.html File

<!DOCTYPE html>
<html>
<head>
 <title>Single Page</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Chapter 28 ■ pages, themes & Layouts

777

 <div data-role="content">
 This is the only page in this document
 <p>Return to example.html</p>
 </div>
 </div>
</body>
</html>

DeCIDING Whether tO preFetCh CONteNt

the decision about prefetching content is a difficult one. From the point of view of the application, prefetching can
be a great idea because it produces immediate responses when the user navigates between pages. this can be
particularly important when mobile connections are slow and coverage is spotty. users don’t like waiting, and a
connection that keeps dropping out will make your application unusable if the content isn’t available.

on the other hand, you run the risk of downloading content in anticipation of navigation actions that the user may
not make. this can be unwelcome when mobile data plans charge punitive amounts to download data and have
low monthly bandwidth limits. By prefetching content, you are assuming that the user considers your application
to be important enough to trade bandwidth (and cost) for performance, something that may well not be the case.
the sad fact is that although you may have lived and breathed your project for the last year, it may be nothing
more than a mild convenience to your user.

my recommendation is not to prefetch pages. For those users who do consider your application important enough,
you can give them an option to enable prefetching.

You enable prefetching by applying the data-prefetch attribute to the a element and setting it to true. Listing 28-12
shows the data-prefetch attribute applied to the example.html document.

Listing 28-12. Prefetching Content

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Jacqui's Flower Shop
 <p>Go to page 2</p>

Chapter 28 ■ pages, themes & Layouts

778

 <p>
 Go to singlepage.html
 </p>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 2
 <p>Go to page 1</p>
 </div>
 </div>
</body>
</html>

In this example, I have asked jQuery Mobile to prefetch the target of my URL. When I click the link, jQuery Mobile
is able to navigate to the prefetched content, avoiding any delay.

Tip ■ It can be hard to be sure that features such as prefetching are working when you are developing on a fast,
reliable network. I like to check these features by using a debugging http proxy, which shows me the requests that
are sent from the browser. If you are a Windows user, then I recommend Fiddler, which is an excellent tool that can be
 endlessly configured and customized. Fiddler can be downloaded from www.fiddler2.com.

Using Scripting to Control jQuery Mobile Pages
You don’t always want to rely on the user clicking links to manage page navigation. Fortunately, jQuery Mobile
provides you with methods and settings that allow you to control navigation using JavaScript. In the sections that
follow, I’ll show you how to take advantage of these methods to get fine-grained control over the navigation in a
jQuery Mobile web application.

Changing the Current Page
The changePage method allows you to change the page that jQuery Mobile displays. Listing 28-13 shows the basic use
of this method, which changes the displayed page based when a button is clicked.

Listing 28-13. Changing the Page That jQuery Mobile Displays

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>

http://www.fiddler2.com/

Chapter 28 ■ pages, themes & Layouts

779

 <script type="text/javascript">
 $(document).bind("pageinit", function() {
 $("button").bind("tap", function(e) {
 var target = this.id == "local" ? "#page2" : "document2.html";
 $.mobile.changePage(target)
 })
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <fieldset class="ui-grid-a">
 <div class="ui-block-a"><button id="local">Local</button></div>
 <div class="ui-block-b"><button id="remote">Remote</button></div>
 </fieldset>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 2
 <p>Go to page 1</p>
 </div>
 </div>
</body>
</html>

In this example, I have added two buttons that cause the changePage method to be called when clicked. The
event that I listen for using the bind method is tap, which is one of a small set of helpful custom events that jQuery
Mobile defines. This event is triggered when the user taps the screen (or clicks the mouse on a non-touch enabled
device). I described this event, along with the rest of the jQuery Mobile events in Chapter 27.

The buttons are standard HTML elements that jQuery Mobile automatically converts into button widgets.
I describe the options for configuring jQuery Mobile buttons in Chapter 30. Finally, you will notice that I have
assigned some elements to the classes ui-grid-a, ui-block-a, and ui-block-b. These are part of the jQuery Mobile
support for creating page layouts, which I describe later in this chapter. The result of this example is pretty simple,
as Figure 28-7 shows. When the user clicks one of the buttons, the changePage method is called, passing either the
id value of a local page or a URL of another document for jQuery Mobile to display. The content is loaded, and the
transition effect is displayed, just as when I was using regular links.

Chapter 28 ■ pages, themes & Layouts

780

That’s the basic use of the changePage method, but there are configuration options available. To configure the
page transition, you pass a settings object as the second argument to the changePage method, specifying values for
one or more settings. Table 28-2 describes the settings that are available. Most of these settings are best left with their
defaults, but in the sections that follow, I show two of the settings that it can be useful to modify more frequently.

Table 28-2. Settings for the changePage Method

Setting Description

allowSamePage
Transition

When set to false (the default), jQuery Mobile will ignore changePage requests where the target
page is the current page. A value of true allows such requests, although this can cause some
problems with the transition animations.

changeHash When true, the hash fragment in the URL bar will be updated to the new location (so that the
page identifier is included in the URL). The default is true.

data Specifies data to be included in the Ajax request used to load a document.

dataUrl Specifies the URL used when updating the browser URL bar. The default is no value, which
means the value is taken from the id of an internal page or the URL of a remote document.

loadMsgDelay Specifies the number of milliseconds after which the loading image will be displayed to the user.
The default is 50.

pageContainer Specifies the element that should contain the new page.

reloadPage When true, jQuery Mobile will reload the contents of a remote document, even if the data is
already cached. The default is false.

reverse When true, the transition effect will be played backward. The default is false.

role Sets the data-role value for the new content – you can see this setting in use in Chapter 29.

showLoadMsg A value of true will show the loading image when loading remote documents. The default is true.

transition Specifies the transition effect to be used when displaying the new page.

type Specifies the HTTP method used to request a document. The allowed values are get and post.
The default is get.

Figure 28-7. Using the changePage method

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 28 ■ pages, themes & Layouts

781

Tip ■ these options are also used by the loadPage method, which I describe later in the chapter.

Controlling the Direction of the Transition Effect
The reverse setting is the one I use most often. jQuery Mobile will always play transition effects in the same way,
which doesn’t always make sense when you have presented the user with an action that effectively sends them back to
an earlier page or where you are responding to a jQuery Mobile swiperight event. Listing 28-14 shows how to address
this problem.

Listing 28-14. Transition Effect Direction Mismatched with Navigation Intent

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">
 $(document).bind("pageinit", function() {
 $.mobile.defaultPageTransition = "slide";
 $("button").bind("tap", function(e) {
 var target = this.id == "forward" ? "#page2" : "#page1";
 $.mobile.changePage(target, {
 reverse: (target == "#page1")
 });
 })
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 1
 <button id="forward">Go to Page 2</button>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Chapter 28 ■ pages, themes & Layouts

782

 <div data-role="content">
 This is page 2
 <button id="back">Back to Page 1</button>
 </div>
 </div>
</body>
</html>

There are two pages in this document, each of which contains a button that navigates to the other page. The
button on the second page is labeled Back to Page 1. When the button on the second page is clicked, I change the
direction of the transition effect by using a reverse value of true. I can’t show this effect on a static page, but the effect
feels much more natural. There is some subconscious expectation formed about the animation should be played in
based on the navigational cue that you are returning to a previous page, rather than progressing to a new one. You will
understand exactly what I mean if you view this example in a browser.

Controlling the Load Animation
jQuery Mobile displays an animated image when it loads a remote document via Ajax for longer than 50 milliseconds.
When using a mobile browser emulator and a fast network, jQuery Mobile is able to load the document so quickly that
the dialog box is never shown. But if you use an actual mobile data network or, as I have done, introduce a delay into
the request, then the dialog remains on the screen long enough to be seen, as Figure 28-8 illustrates.

Figure 28-8. The jQuery Mobile loading dialog box

You can change the period after which the dialog is displayed by providing a value for the loadMsgDelay setting,
as shown in Listing 28-15.

Chapter 28 ■ pages, themes & Layouts

783

Listing 28-15. Changing the Delay for the Loading Dialog

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">

 $(document).bind("mobileinit", function() {
 $.mobile.loadingMessage = "Loading Data..."
 })

 $(document).bind("pageinit", function() {
 $("button").bind("tap", function(e) {
 $.mobile.changePage("document2.html",{
 loadMsgDelay: 1000
 });
 })
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <button id="forward">Go</button>
 </div>
 </div>
</body>
</html>

In this example, I have specified that jQuery Mobile should wait for one second before displaying the loading
dialog to the user.

Tip ■ you can change the text in the loading dialog by setting a new value for the global loadingMessage property,
as shown in the example. as with all jQuery mobile global properties, this should be set in a function executed when the
mobileinit event is triggered.

You can disable this dialog by specifying false for the showLoadMsg setting when you call the changePage
method. This is not something I recommend doing, because providing the user with feedback is always a good thing,
but Listing 28-16 shows the setting in use.

Chapter 28 ■ pages, themes & Layouts

784

Listing 28-16. Disabling the Loading Dialog

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">
 $(document).bind("pageinit", function() {
 $("button").bind("tap", function(e) {
 $.mobile.changePage("document2.html", {
 showLoadMsg: false
 });
 })
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <button id="forward">Go</button>
 </div>
 </div>
</body>
</html>

Determining the Current Page
You can use the $.mobile.activePage property to determine the current page that jQuery Mobile is displaying.
Listing 28-17 shows the use of the activePage property.

Listing 28-17. Using the activatePage Property

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">

 var eventHandlerCreated = false;

Chapter 28 ■ pages, themes & Layouts

785

 $(document).bind("pageinit", function () {
 if (!eventHandlerCreated) {
 $("button").bind("tap", function (e) {
 var nextPages = {
 page1: "#page2",
 page2: "#page3",
 page3: "#page1"
 }
 var currentPageId = $.mobile.activePage.attr("id");
 $.mobile.changePage(nextPages[currentPageId]);
 })
 eventHandlerCreated = true;
 }
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 1
 <button id="forward">Go</button>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 2
 <button id="Button1">Go</button>
 </div>
 </div>
 <div id="page3" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 3
 <button id="Button2">Go</button>
 </div>
 </div>
</body>
</html>

There are three pages in this example, each of which has a button. When the button is clicked, I read the
activePage property to get the current page. The activePage property returns a jQuery object that contains the
current page, so I use the jQuery attr method to get the value of the id attribute.

Chapter 28 ■ pages, themes & Layouts

786

My script includes a simple map that tells me what the next page should be for each of the pages in my
document, and I use the id value obtained from the activePage property as the argument to the changePage method,
ensuring that I progress through my pages in the sequence defined by my map.

Tip ■ Notice that I use a variable called eventHandlerCreated to ensure that I only create one handler function for the
tap event. the changePage method triggers the pageinit event and this can lead to multiple handler functions being set
up – a common problem in jQuery mobile applications and the likely cause if a single button click results in multiple page
transitions. the most reliable way to prevent this problem is to use a variable like the one in the example.

Loading Pages in the Background
You can use the loadPage method to load remote documents without displaying them to the user. This is the
programmatic equivalent of the prefetching that I demonstrated earlier in the chapter. The loadPage method takes
two arguments. The first is the URL of the document to load, and the second is an optional settings object. The
loadPage method supports settings as the changePage method, which I described in Table 28-2. Listing 28-18 shows
the loadPage method in use.

Listing 28-18. Using the loadPage Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">

 var loadedPages = false;

 $(document).bind("pageinit", function () {
 if (!loadedPages) {
 $.mobile.loadPage("document2.html", {}).done(function () {
 $("#gobutton").button("enable").bind("tap", function () {
 $.mobile.changePage("document2.html");
 loadedPages = true;
 })
 })
 }
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Chapter 28 ■ pages, themes & Layouts

787

 <div data-role="content">
 <button id="gobutton" disabled="disabled">Go</button>
 </div>
 </div>
</body>
</html>

Tip ■ Notice that I have passed an empty settings object ({}) as the second argument to the loadPage method.
there is a bug in version 1.3.1 of jQuery that requires a settings object even if no settings are changed.

In this example, I use the loadPage method to preload the document2.html file. The loadPage method returns
a deferred object that you can use to receive notification when the page has loaded. I explain deferred objects in
Chapter 35, but for now it is enough to know that you can call the done method on the object returned by the loadPage
method, specifying a function that will be executed when the Ajax request started by loadPage has completed.

In this example, I use the enable method on the jQuery UI button widget to enable a button in the page and
to register a handle for the tap event. When the button is clicked, I call the changePage method to navigate to the
prefetched document. (I describe the jQuery Mobile support for buttons in Chapter 30.)

Notice that I have defined a variable called loadedPages. This addresses the same problem I had when using
the changePage method (which calls loadPage internally): the pageinit event is triggered whenever jQuery Mobile
initializes a page. This means the event is triggered when the document in the example is loaded and again when
loadPage loads document2.html via Ajax. I use the loadedPages variable to ensure that I try to preload the content
only once. It wouldn’t be the end of the world to call loadPage twice (which is what would happen without the
loadedPages variable) unless I enabled the reload setting. This would cause the cached copy of the document to be
ignored and transfer document.html twice. I explain the set of jQuery Mobile page events in the following section.

Using Page Events
jQuery Mobile defines a set of events that you can use to receive notifications about change in pages. These events are
described in Table 28-3, and I demonstrate some of the more useful ones in the sections that follow.

Table 28-3. jQuery Mobile Page Events

Event Description

pagebeforecreate Triggered when the page is being initialized.

pagecreate Triggered when the page has been created but before most
automatic enhancement has been performed.

pageinit Triggered when the page has been initialized.

pageremove Triggered before a page is removed.

pagebeforeload Triggered before a page is requested via Ajax.

pageload Triggered when a page has been successfully loaded via Ajax.

pageloadfailed Triggered when a page has failed to load via Ajax.

(continued)

Chapter 28 ■ pages, themes & Layouts

788

Handling the Page Initialization Event
The pageinit event is the most useful of the jQuery Mobile page events, as described in Chapter 27. It is this
event that you respond to when you want to configure your page using a script. I am not going to demonstrate this
event again because you have seen it in every example so far, but I will emphasize that using the standard jQuery
$(document).ready() approach is not reliable when working with jQuery Mobile.

Handling Page Load Events
The pagebeforeload, pageload, and pageloadfailed events can be useful for monitoring Ajax requests made for
remote pages, either automatically generated by jQuery Mobile or programmatically via the changePage and loadPage
methods. When demonstrating the loadPage method, I used a deferred object to respond when the page had been
loaded, but you can achieve the same result using the pageload method (and, of course, the pageloadfailed method
when things go wrong). Listing 28-19 shows the loadPage example updated to use the pageload event.

Listing 28-19. Using the pageload Event

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">

 $(document).bind("pageload", function(event, data) {
 if (data.url == "document2.html") {
 $("#gobutton").button("enable").bind("tap", function() {
 $.mobile.changePage("document2.html");
 })
 }
 })

Event Description

pagebeforechange Triggered before a page transition is performed.

pagechange Triggered after a page transition has been performed.

pagechangefailed Triggered when a page change fails (this is usually because the
requested document cannot be loaded).

pagebeforeshow Triggered before a page is displayed to the user.

pagebeforehide Triggered before a page is removed from the display.

pageshow Triggered after a page has been displayed to the user.

pagehide Triggered after a page has been hidden from the user.

Table 28-3. (continued)

Chapter 28 ■ pages, themes & Layouts

789

 var loadedPages = false;
 $(document).bind("pageinit", function() {
 if (!loadedPages) {
 loadedPages = true;
 $.mobile.loadPage("document2.html", {});
 }
 });

 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <button id="gobutton" disabled>Go</button>
 </div>
 </div>
</body>
</html>

In this example, I have specified a function that will be executed when the pageload event is triggered. jQuery
Mobile provides information about the request by passing a data object as the second argument to the function.
I use the url property to check that the document that has been loaded is the one I am expecting. The set of properties
defined by the data object for the pageload event is described in Table 28-4. You can see from the table that most of
the properties correspond to the jQuery Ajax support, which I described in Chapters 14 and 15.

Table 28-4. pageload Data Object Event Properties

Property Description

url Returns the URL passed to the loadPage method (this is method is used by jQuery Mobile when it
requests pages and by the changePage method).

absUrl The absolute URL that was requested.

options The Ajax request options. See Chapters 14 and 15 for details of configuring Ajax.

xhr The jQuery Ajax request object used for the request. See Chapters 14 and 15 for details of this object.

textStatus The string description of the request status. See Chapters 14 and 15 for details.

Responding to Page Transitions
You can use the page transition events to be notified when the user navigates from one page to another (or when you
do this programmatically using the changePage method). These events (pagebeforehide, pagehide, pagebeforeshow,
and pageshow) are triggered for every page transition, even if the page has been displayed to the user before.
Listing 28-20 shows the use of one of these events.

Chapter 28 ■ pages, themes & Layouts

790

Listing 28-20. Responding to a Page Being Hidden

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">

 var registeredHandlers = false;
 $(document).bind("pageinit", function() {
 if (!registeredHandlers) {
 registeredHandlers = true;
 $("#page1").bind("pagehide", function(event, data) {
 $.mobile.changePage($("#page1"));
 })
 }
 });

 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Go to document2.html
 </div>
 </div>
</body>
</html>

In this example, I register a handler function for the pagehide event on the page1 element, by selecting the
element I want and calling the bind method. This means I will receive the event only when that selected page is
hidden. This is a pretty dumb example, because it simply uses the changePage method to return to page1 whenever
the pagehide event is triggered, but it does demonstrate the use of the event. Notice that I am still using a variable to
ensure that I register my handler function only once. If I did not do this, then two functions would be registered for the
same event on the same element when document2.html page is loaded.

Applying jQuery Mobile Themes
jQuery Mobile provides support for themes, rather like a simplified version of the themes support offered by jQuery UI.
There is a default theme included in the jQuery Mobile files that you downloaded and installed in Chapter 27, and
you can create custom themes using the jQuery Mobile ThemeRoller application, which is a variation on the
application of the same name you used for jQuery UI.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 28 ■ pages, themes & Layouts

791

Note ■ as I mentioned in Chapter 27, I won’t be creating and using a custom theme in this part of the book. the jQuery
mobile themeroller application doesn’t have a collection of pre-built themes, and it is difficult to describe the process to
create a theme in writing. I’ll be using the default themes in this chapter, but you can see the jQuery mobile themeroller
at http://jquerymobile.com/themeroller.

A jQuery Mobile theme consists of one or more swatches, which is a set of styles that are applied to different kinds
of elements. Swatches are identified by a single letter, starting with A. The default theme has five swatches, named
A through E.

To view the default theme in ThemeRoller, navigate to http://jquerymobile.com/themeroller; click the Import
link; and click on the Import Default Theme link, which imports the contents of the jquery.mobile-1.3.1.css file
into the dialog (this is the CSS file that you downloaded and installed in Chapter 27). Click the Import button, and the
ThemeRoller will process the CSS and display the default swatches, as shown in Figure 28-9.

Figure 28-9. The swatches in the default theme

You apply a theme to a jQuery Mobile page by using the data-theme attribute, setting the value to the name of the
swatch you want. Listing 28-21 provides an example.

Listing 28-21. Using the Swatches in a Theme

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>

http://jquerymobile.com/themeroller
http://jquerymobile.com/themeroller

Chapter 28 ■ pages, themes & Layouts

792

<body>
 <div id="page1" data-role="page" data-theme="a">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Theme A
 Switch Theme
 </div>
 </div>
 <div id="page2" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is Theme B
 Switch Theme
 </div>
 </div>
</body>
</html>

I have applied the data-theme attribute to the page element, which has the effect of applying the specified swatch
to all of the child elements within the page. There are two pages in this example so that I can show how the same
content is displayed by a pair of contrasting themes—and to make the point that there is no reliable way in jQuery
Mobile to change the theme once a page has been through the automatic enhancement process. The data-theme
attribute is transformed into a set of CSS classes that are applied to elements during page initialization, and so changing
the value of the attribute doesn’t do anything to change the classes. You can see the two-page example in Figure 28-10.

Figure 28-10. Two pages in the same application using different swatches

Chapter 28 ■ pages, themes & Layouts

793

Tip ■ there is also a swatch called active, which is used to highlight selected buttons. this is applied automatically
by jQuery mobile, but you can use it directly as well. If you do, be sure that you are not confusing the user by creating
conflicting active elements.

Applying Swatches to Individual Elements
The previous example shows how you can style entire pages, but you can also apply swatches on a per-element basis,
mixing and matching to get a specific effect. Listing 28-22 provides a demonstration.

Listing 28-22. Applying Swatches to Individual Elements

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="a">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Press Me
 Press Me
 Press Me
 </div>
 </div>
</body>
</html>

In this example, I have applied the data-theme to the page and to the three button elements, each specifying a
different swatch. You can see the effect in Figure 28-11.

Chapter 28 ■ pages, themes & Layouts

794

The jQuery Mobile support for themes is simple and easy to work with. It would be nice if you were able to
change the swatches used by elements on the fly, but even with this omission, you can use swatches to tailor the
appearance of your mobile applications.

Creating Grid Layouts
jQuery Mobile defines some useful CSS classes that you can use to lay out the contents of your mobile pages in grid
form. This is something you could do yourself, but having them built into the library is useful and reduces the amount
of custom development is needed, especially for simple mobile applications. jQuery Mobile defines four grid classes,
each of which contains a different number of columns, as summarized by Table 28-5.

Figure 28-11. Applying different swatches to elements in the same page

Table 28-5. jQuery Mobile Layout Grid

CSS Class Columns

ui-grid-a 2

ui-grid-b 3

ui-grid-c 4

ui-grid-d 5

Chapter 28 ■ pages, themes & Layouts

795

You apply one of the grid classes to a container element and then apply classes to each of the content items
within, starting with ui-block-a, ui-block-b, and so on, for each column. Listing 28-23 shows the use of these classes
to create a simple grid.

Listing 28-23. Creating a Grid Using the jQuery Mobile Layout Classes

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <div class="ui-grid-b">
 <div class="ui-block-a"><button>Press Me</button></div>
 <div class="ui-block-b"><button>Press Me</button></div>
 <div class="ui-block-c"><button>Press Me</button></div>
 </div>
 <div class="ui-grid-a">
 <div class="ui-block-a"><button>Press Me</button></div>
 <div class="ui-block-b"><button>Press Me</button></div>
 </div>
 <div><button>Press Me</button></div>
 </div>
 </div>
</body>
</html>

In this example, I have created two grids: one with three columns and one with two columns. Each column
contains a button element, and I have added a button outside of the grid to emphasize the default behavior, which is
for elements to span the screen. You can see the result in Figure 28-12.

Chapter 28 ■ pages, themes & Layouts

796

Figure 28-12. Laying out elements in a grid

Summary
In this chapter, I described pages, which are one of the key building blocks of jQuery Mobile. I also described the
jQuery Mobile support for themes and grid layouts. These features provide the foundation for the most important
jQuery Mobile features: the widgets. In Chapter 29, I start by describing the dialog and popup widgets.

797

Chapter 29

The Dialog & Popup Widgets

In this chapter, I introduce the first two jQuery Mobile widgets: the dialog and popup. jQuery Mobile widgets behave
slightly differently from those in jQuery UI, but – as you’ll learn – there is a common approach that underpins both
libraries. Table 29-1 provides the summary for this chapter.

Table 29-1. Chapter Summary

Problem Solution Listing

Create a dialog widget. Add the data-role attribute with a value of dialog to a div
element that contains the dialog content or the data-rel
attribute, also with a value of dialog, to a navigation
link that will open the dialog.

1, 2

Create a dialog programmatically. Use the changePage method. 3

Add buttons to the dialog. Add a elements to the dialog element. 4, 5

Configure the dialog. Use the configuration data attributes or call the dialog
method and use the configuration options.

6, 7

Close the dialog. Call the close method. 8

Create a popup widget. Add the data-role attribute with a value of popup to a div
element within the jQuery Mobile page that will
display the widget.

9

Configure the popup. Apply data attributes to the a element that opens the popup,
or to the div element that contains the popup or call
the popup method.

10–12

Control the popup programmatically. Use the open, close, and reposition methods. 13

Respond to changes in the popup. Handle the popup events. 14

Chapter 29 ■ the Dialog & popup WiDgets

798

Using the jQuery Mobile Dialog Widget
As its name suggests, the dialog widget presents the user with a dialog. Since this is the first of the jQuery Mobile
widgets that I describe, I’ll show you different ways in which widgets can be created and managed to set the scene for
the rest of this chapter and the chapters that follow.

Creating the Dialog Widget
jQuery Mobile will automatically create dialog widgets when it encounters an element whose data-role attribute is
set to dialog, as shown in Listing 29-1.

Listing 29-1. Creating a Dialog Widget Declaratively with the data-role Attribute

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Show the dialog
 </div>
 </div>
 <div id="dialog1" data-role="dialog">
 <div data-role="header">
 <h1>You clicked the link!</h1>
 </div>
 <div data-role="content">
 This is the content area of the dialog
 </div>
 </div>
</body>
</html>

This example contains a page with an a element that, when clicked, will navigate to the element called dialog1.
The data-role attribute for the dialog1 element is set to dialog, which causes jQuery Mobile to display the element
and its contents as a dialog, as illustrated by Figure 29-1.

Chapter 29 ■ the Dialog & popup WiDgets

799

Dialogs can also be created through the application of the data-rel attribute to the navigation a element.
In Listing 29-2, you can see how I have set the data-rel attribute to dialog in order to create an instance of the dialog
widget from an element whose data-role attribute is set to page.

Listing 29-2. Using the data-rel Attribute to Create a Dialog Widget from a page

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Show the dialog
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>You clicked the link!</h1>
 </div>
 <div data-role="content">
 This is the content area of the dialog
 </div>
 </div>
</body>
</html>

Figure 29-1. Displaying a page as a dialog

Chapter 29 ■ the Dialog & popup WiDgets

800

In this example, there are two regular jQuery Mobile pages. The link in the first page is just like the links I was
using for navigation in Chapter 28, with the exception that I have applied the data-rel attribute and set the value
to dialog.

Creating the Dialog Widget Programmatically
The declarative approach is useful, but it requires you to fix the way that your content is displayed statically in the HTML.
Sometimes you will want to decide to display a page as a dialog dynamically, which can be done through the changePage
method and the role setting it supports. Listing 29-3 shows the use of the changePage method to create a dialog.

Listing 29-3. Creating a Dialog Programmatically with the changePage Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function (event, data) {
 $("#dialogLink").click(function (e) {
 $.mobile.changePage(this.href, {
 role: "dialog"
 });
 });
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <p>Show the dialog</p>
 <p>Show the page</p>
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>You clicked the link!</h1>
 </div>
 <div data-role="content">
 This is page 2
 Close
 </div>
 </div>
</body>
</html>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 29 ■ the Dialog & popup WiDgets

801

This technique means you can use the same content in different ways. In the listing, I have defined two links,
one of which I allow to use standard navigation to load a page defined in the same HTML document. I have defined a
handler function for the click event from the other a element, which I process by calling the changePage method with
a role setting of dialog. This means the way that the page is handled will depend on which link is clicked, as shown
in Figure 29-2.

Figure 29-2. Creating a dialog programmatically

Note ■ Caution is required when using this technique because jQuery Mobile caches the role associated with
content – and that means that once you have displayed a page as a dialog, it will always be displayed as a dialog,
even if you call changePage again with a role setting of page (or until the htMl document is reloaded).

Adding Buttons to the Dialog
You can add a close button to the dialog by adding a button element to the dialog’s content, setting the data-role
attribute to button and the data-rel attribute to back. I describe the jQuery Mobile button widget fully in Chapter 30,
but you can see how it is applied for the dialog widget in Listing 29-4.

Chapter 29 ■ the Dialog & popup WiDgets

802

Listing 29-4. Adding a Close Button to a Dialog

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Show the dialog
 </div>
 </div>
 <div id="page2" data-role="page">
 <div data-role="header">
 <h1>You clicked the link!</h1>
 </div>
 <div data-role="content">
 This is the content area of the dialog
 Close
 </div>
 </div>
</body>
</html>

I don’t have to specify the target for the link. I just set the href attribute to # and leave jQuery Mobile to figure out
what to do. This is useful because you may want to display a dialog from different pages, and you don’t know which of
them caused the dialog to be shown and therefore where the browser should return to. Figure 29-3 shows the effect of
adding this element to the dialog.

Figure 29-3. Adding a close button to a dialog

You can additional buttons to a dialog with further a elements whose href attributes point to the pages that you
want to display. This is what I have done in Listing 29-5, where I have added a link to another jQuery Mobile page in
the same HTML document.

Chapter 29 ■ the Dialog & popup WiDgets

803

Tip ■ if you don’t want to respond to a button by navigating to a new page, then you can handle the click event from
the a element and use the close method to close the dialog – see the “using the Dialog Methods” section later in the
chapter for an example.

Listing 29-5. Adding a Navigation Button to a Dialog

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Show the dialog
 </div>
 </div>
 <div id="page2" data-role="page" data-overlay-theme="d">
 <div data-role="header">
 <h1>You clicked the link!</h1>
 </div>
 <div data-role="content">
 This is the content area of the dialog
 OK
 Close
 </div>
 </div>
 <div id="page3" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 This is page 3. You came here via the dialog.
 </div>
 </div>
</body>
</html>

In this example, I have added an a element that takes the user to page3, which I have also added to the document.
Figure 29-4 shows the navigation from the dialog to the new page.

Chapter 29 ■ the Dialog & popup WiDgets

804

Configuring the Dialog Widget
The dialog widget defines a set of configuration options, which can either be set declaratively using data attributes
or set using a JavaScript method call. I have listed both sets of options in Table 29-2, and below I describe how to use
declarative and programmatic configuration.

Figure 29-4. Adding a navigation link/button to a dialog

Table 29-2. Settings for the Dialog Widget

Data Attribute Setting Description

data-close-btn closeBtn Gets or sets the position of the close button in the dialog header.
The supported values are left, right, and none.

data-close-btn-text closeBtnText Gets or sets the text for the close button in the dialog header.
This text is not displayed to the user, but it is detected by
accessibility software.

data-corners corners Gets or sets whether the dialog should be displayed with rounded
corners. The default value is true.

data-overlay-theme overlayTheme Gets or sets the theme over which the dialog is drawn.
The setting is case sensitive and must be expressed in lower case.

In most situations it is simpler and easier to configure widgets using data attributes and let automatic
enhancement apply your settings. This is the standard jQuery Mobile approach to configuration, and you can see how
I have used it for the data-overlay-theme attribute in Listing 29-6.

Chapter 29 ■ the Dialog & popup WiDgets

805

Listing 29-6. Configuring the Dialog Widget with a Data Attribute

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Show the dialog
 </div>
 </div>
 <div id="dialog1" data-role="dialog" data-overlay-theme="d">
 <div data-role="header">
 <h1>You clicked the link!</h1>
 </div>
 <div data-role="content">
 This is the content area of the dialog
 </div>
 </div>
</body>
</html>

I have specified that the D swatch should be used as the overlay on which the dialog is displayed. You can see the
effect in Figure 29-5: the dialog is displayed on a light-colored background instead of the black background associated
with the default A swatch. (I described the jQuery Mobile approach to themes and swatches in Chapter 28.)

Chapter 29 ■ the Dialog & popup WiDgets

806

You can configure a dialog widget after it has been created by calling the jQuery Mobile dialog method, passing
in an object whose properties correspond to the settings from Table 29-2 that you want to change. In Listing 29-7,
you can see how I have used the dialog method to configure the dialog.

Listing 29-7. Configuring a Dialog Widget Programmatically

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("#dialog1").dialog({
 corners: false,
 overlayTheme: "e"
 });
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>

Figure 29-5. Configuring a dialog widget with a data attribute

Chapter 29 ■ the Dialog & popup WiDgets

807

<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Show the dialog
 </div>
 </div>
 <div id="dialog1" data-role="dialog" data-overlay-theme="d">
 <div data-role="header">
 <h1>You clicked the link!</h1>
 </div>
 <div data-role="content">
 This is the content area of the dialog
 </div>
 </div>
</body>
</html>

You can configure widgets in response to the pageinit event, and in the listing you can see how I select the
element that underlies the widget and call the dialog method on it. The object that I pass to the dialog method
has properties that correspond to the settings in Table 29-2, and you can see that I have defined new values for the
corners and overlayTheme settings. The options passed to the dialog method override the data property values,
and you can see the effect in Figure 29-6.

Figure 29-6. Configuring a dialog widget programmatically

Chapter 29 ■ the Dialog & popup WiDgets

808

Caution ■ the jQuery Mobile api documentation suggests that you can use the jQuery ui style option method call
to configure dialog widgets, like this: $("#dialog1"), dialog("option," "corners," false). however, if you use
this approach, you will see an error message telling you that you can’t call methods before widgets are initialized.
this method call will only work once the widget has been displayed, but which time it is too late to perform configuration
tasks. instead, use the technique shown in the listing: pass in a configuration object to the dialog method in response to
the pageinit event.

Using the Dialog Methods
The dialog widget only defines one method, which closes the dialog programmatically. I have described the method
in Table 29-3 so that you can find it more easily when performing a quick search in the future.

Table 29-3. Dialog Methods

Method Description

dialog("close") Closes the dialog.

In Listing 29-8, I have created a dialog that is displayed for a fixed amount of time. In addition to the close
method I have used the data-close-btn attribute to remove the close button from the menu bar.

Listing 29-8. Using the Dialog close Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("#page1 a").click(function (e) {
 var duration = 15;
 $("#remaining").text(duration);
 var interval = setInterval(function () {
 $("#remaining").text(--duration);
 if (duration == 0) {
 clearInterval(interval);
 $("#dialog1").dialog("close");
 }
 }, 1000);
 });
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>

Chapter 29 ■ the Dialog & popup WiDgets

809

<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Show the dialog
 </div>
 </div>
 <div id="dialog1" data-role="dialog" data-close-btn="none" data-overlay-theme="d">
 <div data-role="header">
 <h1>Important</h1>
 </div>
 <div data-role="content">
 This in an important message that will be displayed
 for seconds.
 </div>
 </div>
</body>
</html>

The script element in this example sets up a handler for the click event triggered when the link that opens
the dialog is triggered. The only way to open a dialog programmatically is with the changePage method, so I just let
the default event action take care of opening the dialog and start a timer that counts down 15 seconds. I update the
contents of a span element displayed by the dialog every second and call the dialog close method when the timer
expires. The result is the dialog shown in Figure 29-7.

Figure 29-7. A self-closing dialog widget

Table 29-4. Dialog Events

Event Description

create This event is triggered when the dialog widget is created.

There are a couple of points to note. The first is that I don’t have to explicitly refresh the content of the dialog to
reflect the changes in the span element – the dialog automatically updates itself. The second point is that while I have
created a dialog that doesn’t have close buttons, the user can still dismiss my dialog by using the browser back button.

Using the Dialog Events
The jQuery Mobile dialog widget defines a single event, which I have described in Table 29-4. I never use this event
and tend to handle the page-level events that I described in Chapter 28 instead.

Chapter 29 ■ the Dialog & popup WiDgets

810

Using the jQuery Mobile Popup Widget
The jQuery Mobile popup widget presents content in a popup. Popups are light-weight alternatives to dialogs but offer
more programmatic control.

Creating the Popup Widget
Popups are created by applying the data-role attribute to an element and setting the value to popup. Popups are not
displayed automatically but are opened when the user clicks on an a element that targets the popup element and
whose data-rel attribute is also set to popup. The popup and the link that opens it must be within the same jQuery
Mobile page, as shown in Listing 29-9.

Listing 29-9. Creating a jQuery Mobile Popup Widget

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Show the popup
 </div>
 <div id="popup" data-role="popup">
 <p>This is the popup content</p>
 </div>
 </div>
</body>
</html>

Clicking the link causes the popup to appear, as shown in Figure 29-8. Clicking outside of the popup dismisses it.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 29 ■ the Dialog & popup WiDgets

811

Configuring the Popup Widget
As you can see from the figure, the popup is positioned over the link that opened it, which is rarely the effect that
you want. You can configure the popup in two ways – either by configuring the a element that opens the popup or by
configuring the popup itself.

Configuring the Link That Opens the Popup
The advantage of configuring the a element is that you can use the same popup several times, but apply different
configurations. The drawback is that there are only two configuration options – but, fortunately, they are the ones that
you are likely to want to adjust. I have listed the data attributes that can be applied to the a elements in Table 29-5.

Figure 29-8. Creating a jQuery Mobile popup

Table 29-5. Data Attributes for a Elements That Open Popups

Data Attribute Description

data-position-to Specifies the position of the popup relative to the a element that opens it.
The options are described in Table 29-6.

data-transition Specifies the transition used to display the popup – see Chapter 28
for the list of jQuery Mobile transitions.

The data-position-to attribute specifies the position of the popup relative to the a element and can be set to the
values shown in Table 29-6.

Chapter 29 ■ the Dialog & popup WiDgets

812

In Listing 29-10, you can see how I have used the data-position-to attribute to change the position of the popup
using a selector.

Listing 29-10. Configuring the Popup via the Link That Opens It

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style>
 #anchor { position: absolute; right: 10px; }
 </style>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <a href="#popup" data-rel="popup"
 data-position-to="#anchor">Show the popup
 Anchor
 </div>
 <div id="popup" data-role="popup">
 <p>This is the popup content</p>
 </div>
 </div>
</body>
</html>

I have used the selector option, specifying #anchor for the value for the data-position-to attribute on the a
element that opens the popup. This selector matches the id of a div element that I have positioned at the right edge of
the window with CSS. You can see the effect in Figure 29-9.

Table 29-6. Values for the data-position-to Attribute

Value Description

origin Centers the popup over the a element.

window Centers the popup in the window.

selector Centers the popup on the first element that matches the selector.
If that element is not visible, then the popup is centered in the window.

Chapter 29 ■ the Dialog & popup WiDgets

813

Configuring the Popup Directly
There are more configuration options available when you configure the widget directly. As with the dialog widget, you
can configure the popup with data attributes or via the popup method, and I have listed both in Table 29-7. Most of the
configuration options are self-evident or similar to those used by the dialog widget.

Table 29-7. Settings for the Dialog Widget

Data Attribute Setting Description

data-corners corners Specifies whether the popup is drawn with round corners.
The default is true.

data-dismissable dismissable If set to false, the popup is not dismissed when the user clicks
outside of the widget. The default is true.

data-history history Specifies whether a history item is created before the popup is
open. The default is true, which means that the browser is closed
when the browser back button is clicked.

data-overlay-theme overlayTheme Specifies the theme used for the overlay. The default is null,
which presents a transparent background.

data-position-to positionTo Specifies the position of the popup using the values in Table 29-6.

data-shadow shadow Specifies whether the popup will be drawn with a shadow.
The default is true.

data-tolerance tolerance Specifies the minimum distances between the popup and the edges
of the window. The default values are 30, 15, 30, 15.

data-transition transition Specifies the transition used when the popup is opened and closed.

Figure 29-9. Configuring the position of the popup via the a element

Chapter 29 ■ the Dialog & popup WiDgets

814

Using the History Setting

The setting that causes the most confusion with the popup widget is data-history, which determines if a new entry
in the browser history is created before the popup is opened. The effect of this setting means that the popup is closed
by the browser back button – but this is a feature that doesn’t always make sense, especially when the popup is
opened and closed in response to a touch event, as demonstrated by Listing 29-11.

Listing 29-11. The Effect of Popup History Entries and Mouse Triggers

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <script>
 var mouseHandlerSet = false;
 $(document).bind("pageinit", function () {
 if (!mouseHandlerSet) {
 $("#page1 a").mouseenter(function (e) {
 $("#popup").popup("open", {
 x: e.pageX, y: e.pageY
 });
 });
 $("#popup").mouseleave(function (e) {
 $(this).popup("close");
 });
 mouseHandlerSet = true;
 }
 });
 </script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <p>Popup</p>
 </div>
 <div id="popup" data-role="popup" data-history="false">
 <p>This is the popup content</p>
 </div>
 </div>
</body>
</html>

This example uses the popup open and close methods, which I describe later in the chapter, so that the popup is
shown when the user moves the mouse or pointer over the a element and hidden when the user moves the mouse out
of the popup (I used a configuration option passed to the open method to ensure that the popup is opened under the
mouse pointer).

Chapter 29 ■ the Dialog & popup WiDgets

815

In this situation, the user may not expect the back button to simply close the popup since no explicit navigation
was performed to open it in the first place – and this is a good opportunity to consider the data-history attribute as
to create a consistent experience.

Tip ■ i am qualifying the use of this configuration setting carefully because understanding the mechanism is only
part of the confusion that surrounds the use of popups. the other issue is deciding which approach to take – and this is
something that can only be decided in the context of the rest of your application. user expectations in this kind of situation
are hard to predict, and only user testing will show you which approach creates a natural experience for your web app.
Don’t be tempted to skimp on testing and simply make this a configurable option – most users attribute inconsistent
behaviors to bad implementation and won’t make the effort to see if it can be changed.

Using Popups to Present Rich Content

Popups can be used to present rich content, and a common use for popups is to present the user with a set of image
thumbnails that open the full-size image in a popup, which is what I have done in Listing 29-12. (I included the images
from this example in the free download from Apress.com that accompanies this book.)

Listing 29-12. Using the Popup to Display Rich Content

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style>
 .smallImage { height: 40%; width: 40%; padding: 5px}
 </style>
 <script>
 $(document).bind("pageinit", function () {

 var data = ["beach.png", "clouds.png", "fishing.png", "storms.png"];

 for (var i = 0; i < data.length; i++) {
 $("").addClass("smallImage").attr("src",
 data[i]).appendTo("#contentHolder");
 }

 $("#popup").popup({
 corners: false,
 overlayTheme: "a"
 });

 $("#contentHolder img").bind("tap", function (e) {
 var maxHeight = $(window).height() - 10 + "px";

Chapter 29 ■ the Dialog & popup WiDgets

816

 $("#LgImage").attr("src", e.target.src).css("max-height", maxHeight);
 $("#popup").popup("open");
 });
 });
 </script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="d">
 <div id="contentHolder" data-role="content"></div>
 <div id="popup" data-role="popup" data-history="true">

 </div>
 </div>
</body>
</html>

I use a for loop to generate a set of four thumbnail img elements that I add to the jQuery Mobile page and use
standard CSS to ensure that they are all the same size. I create a handler for the tap event (which I described in
Chapter 27) that sets the selected image as the content of the popup and calls the open method to display it to the user
(I describe the open method in the Using the Popup Methods section later in this chapter, but for now it is enough to
know that calling it will display the popup). You can see the effect in Figure 29-10: the user taps one of the thumbnail
images and a larger version is displayed in the popup.

Figure 29-10. Using a popup to display images

I have used a mix of data attributes and settings to configure the popup, just to show both in use. The div element
that underlies the popup has the data-history attribute, as follows:

...
<div id="popup" data-role="popup" data-history="true">

</div>
...

Chapter 29 ■ the Dialog & popup WiDgets

817

This is the default value for the data-history attribute, but I like to be specific about this setting since it causes so
much confusion. I used the popup method in the script element to set other options, as follows:

...
$("#popup").popup({
 corners: false,
 overlayTheme: "a"
});
...

Using rounded corners would clip part of the large image, so I specify square corners using the corners
setting. I want to focus the user’s attention on the large image when the popup is displayed, and so I have used the
overlayTheme setting to provide a dark background for the popup.

A little extra work is required when using a popup to display content that might be larger than the popup itself
because, by default, the content will scroll. To avoid this, I get the height of the window and use it as the basis for
setting the height of the image in the popup, like this:

...
var maxHeight = $(window).height() - 10 + "px";
$("#LgImage").attr("src", e.target.src).css("max-height", maxHeight);
...

I make the image 10 pixels smaller than the window, which gives me a small border around the image to
emphasize the fact that the user is seeing a popup. In theory, I should align my border with the tolerance setting, but
it is unreliable as I write this and so I just use an explicit value to get the effect I want. I made the beach.png image,
which is the first thumbnail in the sequence, larger than the others, and in Figure 29-11 you can what happens if I
don’t set the setting for the CSS max-height property: the top and bottom of the image are not displayed and there is
no visual cue to indicate that the user can scroll to see the rest of the image.

Figure 29-11. The effect of displaying content that is larger than the popup

Chapter 29 ■ the Dialog & popup WiDgets

818

Using the Popup Methods
The popup widget defines the methods shown in Table 29-8.

Table 29-8. Popup Methods

Method Description

popup("open") Opens the popup.

popup("close") Closes the popup.

popup("reposition") Changes the position of the popup.

I demonstrated the basic use of the open method in the previous example, but you can provide an optional
argument that configures how the popup is opened, providing equivalent functionality to the data attributes that are
used with a elements. The optional argument is an object whose property names are shown in Table 29-9.

Table 29-9. Properties for the Optional Argument to the open Method

Name Description

x Specifies the X coordinate where the popup should be displayed.

y Specifies the Y coordinate where the popup should be displayed.

transition Specifies the transition used to animate the popup opening – see Chapter 28 for details
of the jQuery Mobile transitions.

positionTo Specifies the position of the popup, using the values described in Table 29-6.

The reposition method also takes a configuration object argument and you can use the x, y, and positionTo
properties to specify the new location for the popup. The close method doesn’t take any arguments and just
dismisses the popup. In Listing 29-13, you can see all three methods in use.

Listing 29-13. Using the Popup Methods

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("button").bind("vmousedown", function (e) {
 var pop = $("#popup");
 switch (e.target.innerText) {
 case "Open":
 pop.popup("open", {

Chapter 29 ■ the Dialog & popup WiDgets

819

 x: 10, y: 10, transition: "fade"
 });
 break;
 case "Close":
 pop.popup("close");
 break;
 default:
 pop.popup("reposition", {
 positionTo: e.target.innerText == "Window"
 ? "window" : "#page1 button"
 });
 break;
 }
 });
 });
 </script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="d">
 <div data-role="content">
 <button>Open</button>
 </div>
 <div id="popup" data-role="popup" data-history="true"
 data-dismissible="false">
 <button>Selector</button>
 <button>Window</button>
 <button>Close</button>
 </div>
 </div>
</body>
</html>

The jQuery Mobile page in this listing contains a button whose vmousedown event I handle by calling the open
method on the popup. I pass in the optional configuration object to specify that the popup should be shown at a
specific location (10 pixels from the top-left corner on the x- and y- axis) with the fade transition.

The popup contains additional buttons. The Close button calls the close method to hide the popup, and the
others call the reposition method to specify different locations that the popup should be moved to. You can see the
results in Figure 29-12.

Chapter 29 ■ the Dialog & popup WiDgets

820

Table 29-10. Popup Events

Event Description

create Triggered when the popup widget is created.

beforeposition Triggered before the popup is repositioned.

afteropen Triggered after the popup has been displayed.

afterclose Triggered after the popup has been hidden.

Tip ■ Notice that i have set the data-dismissible attribute to false in this example. Without this setting, the
synthetically generated mouse events that most touch browsers produce (as described in Chapter 27) are interpreted as
clicks outside of the popup, causing the popup to be closed just after it is open. setting the data-dismissible attribute
to false ensures that this won’t happen, and the popup can only be dismissed by the button that calls the close method.

Using the Popup Events
The jQuery Mobile popup widget defines the events shown in Table 29-10.

Figure 29-12. Using the popup methods

I rarely find these events useful and my use of the popup widget is generally limited to the methods and
configuration options. The one exception is when I want to display a popup for a limited period of time, in which case
the afteropen event can be useful, as Listing 29-14 demonstrates.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 29 ■ the Dialog & popup WiDgets

821

Listing 29-14. Handling Popup Events

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("#popup").popup({
 afteropen: function (e) {
 setTimeout(function () {
 $("#popup").popup("close");
 }, 5000);
 }
 });
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 Show the popup
 </div>
 <div id="popup" data-role="popup" data-position-to="window">
 <p>This is the popup content</p>
 </div>
 </div>
</body>
</html>

Caution ■ i only use this technique when i can’t negotiate an alternative approach with the client. My feeling is that
popups should be solely under the control of the user and that making them appear and disappear in ways that are not

directly linked to user interactions can cause confusion.

In this example I handle the afteropen method be calling the setTimeout function to register a callback that will
be executed five seconds later. The callback calls the close method to dismiss the popup.

Summary
In this chapter, I introduced the first two jQuery Mobile widgets: the dialog and the popup. jQuery Mobile widgets
follow the same basic structure and philosophy as jQuery UI widgets, but with the obvious optimizations for mobile
devices. In Chapter 30, I describe the button and collapsible block widgets.

823

Chapter 30

Buttons and Collapsible Blocks

In this chapter, I describe two additional jQuery Mobile widgets: buttons and collapsible blocks. The jQuery Mobile
button widget works in a similar way to the jQuery UI buttons you saw earlier in the book, with the exception that you
can create and use simple buttons without using any custom JavaScript code at all, relying instead on data attributes.

A collapsible block is like a single panel from an accordion; in fact, you can use collapsible blocks on their own or
combine several together to form a simple accordion. Table 30-1 provides the summary for this chapter. I also show
you widgets that offer variations on the same theme – Navbars, which group buttons to provide consistent navigation
support and collapsible sets, which can be used to create accordion widgets.

Table 30-1. Chapter Summary

Problem Solution Listing

Create a button widget automatically. Add a button element or an input element whose
type is submit, reset, or button.

1

Create button widgets from other elements. Apply the data-role attribute with a value of button. 2

Create a group of buttons. Use the data-role attribute with a value of
controlgroup. Use the data-type attribute to change
the orientation.

3, 4

Add and position icons on buttons. Use the data-icon and data-iconpos attributes. 5

Create smaller buttons. Use the data-mini and data-inline attributes. 6

Update a button to reflect changes in the
underlying element.

Use the refresh method. 7

Respond to button events. Handle events from the underlying element. 8

Provide consistent navigation buttons. Use the navbar widget. 9

Position the icons in a navbar. Use the data-iconpos attribute 10

Create a collapsible block. Apply the data-role attribute with a value of
collapsible. Ensure that there is a header element as
the first child.

11, 12

Receive notifications when a block is
collapsed or expanded.

Handle the collapse and expand events. 13

Create an accordion. Use the data-role attribute with a value of
collapsible-set value.

14

Chapter 30 ■ Buttons and CollapsiBle BloCks

824

Using jQuery Mobile Buttons
I already used some button widgets in earlier examples, but now it is time to loop back and explain how they work.

Creating the Button Widget
As part of the automatic page-enhancement process, jQuery Mobile creates buttons widgets from button elements
or from input elements whose type attribute is set to submit, reset, button, or image. You don’t have to take any
special action for these element types because jQuery Mobile does all the work for you. Listing 30-1 shows a page that
contains some of these automatically enhanced elements.

Listing 30-1. Relying on the Automatic Creation of Button Widgets

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <button>Button</button>
 <input type="submit" value="Input (Submit)" />
 <input type="reset" value="Input (Reset)" />
 <input type="button" value="Input (Button)" />
 </div>
 </div>
</body>
</html>

You can see how a button widget is created for each type of element in Figure 30-1.

Chapter 30 ■ Buttons and CollapsiBle BloCks

825

Creating Buttons from Other Elements
jQuery Mobile can also create buttons widgets from other elements. In earlier chapters, you saw me create a button
widget from an a element by applying the data-role attribute with a value of button. You can also do this for other
types of elements, such as div. Listing 30-2 contains an example.

Listing 30-2. Creating Buttons from Other Elements

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 A Element
 <div data-role="button">DIV Element</div>
 </div>

Figure 30-1. Button widgets created automatically by jQuery Mobile

Chapter 30 ■ Buttons and CollapsiBle BloCks

826

 </div>
</body>
</html>

You can see how jQuery Mobile deals with the elements in this example in Figure 30-2.

Figure 30-2. Creating button widgets using other elements

Creating Grouped Buttons
You can create a group of buttons that have no spacing between them by creating a control group. You do this by
applying the data-role attribute with a value of controlgroup to the parent element for two or more button widgets.
Listing 30-3 provides a demonstration.

Listing 30-3. Creating a Set of Grouped Buttons

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">

Chapter 30 ■ Buttons and CollapsiBle BloCks

827

 <div data-role="controlgroup">
 <button>Back</button>
 <button>Home</button>
 <button>Next</button>
 </div>
 </div>
 </div>
</body>
</html>

In this example, there are three buttons, all of which are children of a div element whose data-role is control
group. You can see the effect in Figure 30-3. Notice how only the top and bottom buttons have rounded corners.

Figure 30-3. A set of buttons displayed in a group

You can change the orientation of the button group by setting the data-type attribute to horizontal, as shown in
Listing 30-4.

Listing 30-4. Creating a Horizontal Button Group

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>

Chapter 30 ■ Buttons and CollapsiBle BloCks

828

<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <div data-role="controlgroup" data-type="horizontal">
 <button>Back</button>
 <button>Home</button>
 <button>Next</button>
 </div>
 </div>
 </div>
</body>
</html>

You can see how the browser displays a horizontal button group in Figure 30-4. Once again, notice how the
rounded corners are applied only to the outside elements.

Figure 30-4. Creating a horizontal button group

Configuring jQuery Mobile Buttons
jQuery Mobile defines a number of data attributes and configuration settings you can use to configure buttons and to
create buttons from different element types. These attributes are described in Table 30-2, and I demonstrate those that
are unique to buttons in the sections that follow.

Chapter 30 ■ Buttons and CollapsiBle BloCks

829

Table 30-2. Data Attributes and Configuration Settings for Buttons

Data Attribute Setting Description

data-corners corners When true, buttons are drawn with rounded corners. A value of false
means that square corners will be used. The default is true.

data-icon icon Specifies an icon to be used in the button.

data-iconpos iconpos Specifies the position of an icon, if one is used.

data-iconshadow iconshadow Applies a shadow to the icon when set to true.

data-inline inline Creates a button that is sized to its contents (rather than filling the screen).

data-mini mini When set to true, displays a compact button.

data-shadow shadow When true, buttons are drawn with a shadow. A value of false means that
no shadow will be used. The default is true.

Table 30-3. Icons Included in jQuery Mobile

Icon Name Description

arrow-l
arrow-r
arrow-u
arrow-d

Arrows that are facing left, right, up, and down.

bars A set of three horizontal lines.

edit A pencil, used to indicate that the user can edit content.

check
delete

A check and a cross.

plus
minus

Plus and minus signs.

gear A cog.

refresh
forward
back
home
search

Browser style icons to refresh, advance to the next page, return
to the previous page, return to the home page, or search.

grid A grid of small squares.

star A star.

alert A caution warning.

info A stylized letter i.

Adding Icons to Buttons
jQuery Mobile includes a set of icons that can be used in buttons. These are included in a single image file in the
images directory you installed in Chapter 27. Table 30-3 shows a list of the icon names and a brief description of each.

Chapter 30 ■ Buttons and CollapsiBle BloCks

830

You apply the icons to a button using the data-icon attribute, where the value specifies the name of the icon to
use. You use the data-iconpos attribute to specify where the icon will be located in the button. The default is left, but
you can also specify top, right, and bottom. If you set data-iconpos to notext, only the icon is displayed. Listing 30-5
provides an example of using both of these attributes.

Listing 30-5. Adding Icons to Buttons

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <div class="ui-grid-b">
 <div class="ui-block-a">
 <button data-icon="home">Home</button>
 </div>
 <div class="ui-block-b">
 <button data-icon="home" data-iconpos="top">Home</button>
 </div>
 <div class="ui-block-c">
 <button data-icon="home" data-iconpos="notext"></button>
 </div>
 </div>
 </div>
 </div>
</body>
</html>

In this example, I created three buttons, all of which display the home icon. The first button uses the default icon
position, the second button uses the top position, and the last button uses the notext value, which creates an
icon-only button. You can see how these buttons appear in Figure 30-5.

Chapter 30 ■ Buttons and CollapsiBle BloCks

831

You can see that each button has a distinctive style. The most striking is the last button, which displays no text.
This looks visually appealing, but my experience with this kind of button is that they are hard to hit with a finger, and
not all users immediately recognize them as a means of navigating elsewhere in the application.

Creating Inline and Mini Buttons
jQuery Mobile buttons span the entire width of the screen by default. You can see an example of the default button
width in Figure 30-1. I used the layout grid to create smaller buttons in subsequent examples, but I could have
achieved a similar effect using inline buttons, which are just big enough to accommodate their content and are
created by setting the data-inline attribute to true.

I can also create mini buttons by setting the data-mini attribute to true. Mini buttons have the standard
approach to width, but occupy less vertical space. Finally, you can combine both data attributes to create inline
mini buttons, which are just wide enough to accommodate their content and occupy less vertical space than regular
buttons. Listing 30-6 shows all three types of buttons.

Listing 30-6. Using Inline and Mini Buttons

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>

Figure 30-5. Creating icon buttons

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 30 ■ Buttons and CollapsiBle BloCks

832

 </div>
 <div data-role="content">
 <button data-icon="home" data-inline="true">Home</button>
 <button data-icon="home" data-mini="true">Home</button>
 <button data-icon="home" data-inline="true" data-mini="true">Home</button>
 </div>
 </div>
</body>
</html>

You can see the effect in Figure 30-6.

Table 30-4. Button Methods

Method Description

button("disable") Disables the button so that it can't be clicked.

button("enable") Enables the button so that it can be clicked.

button("refresh") Refreshes the widget to reflect changes in the
underlying HTML element.

Figure 30-6. Using inline and mini buttons

Using the Button Methods
The button widget defines three methods, which I have described in Table 30-4.

Chapter 30 ■ Buttons and CollapsiBle BloCks

833

The enable and disable methods are self-evident. The refresh method is required when the contents of the
underlying button or input element changes, as demonstrated by Listing 30-7.

Listing 30-7. Updating the Contents of Button Widgets

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 var counter = 0;
 setInterval(function () {
 var msg = "Counter " + counter++;
 $("#buttonElem").text(msg).button("refresh");
 $("#inputElem").val(msg).button("refresh");
 $("#divElem span.ui-btn-text").text(msg);
 }, 1000);
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <button id="buttonElem">Button</button>
 <input id="inputElem" type="button" value="Input" />
 <div id="divElem" data-role="button">Div</div>
 </div>
 </div>
</body>
</html>

There are three button widgets in this example, created from a button element, an input element, and a
div element. The script element handles the pageinit event (which I described in Chapter 29) by calling the
setInterval function to update the contents of the elements that underpin the button widgets every second.

I have to call the refresh method for the button and input elements; otherwise the changes I make to the
elements won't be reflected in the button widgets:

...
$("#buttonElem").text(msg).button("refresh");
$("#inputElem").val(msg).button("refresh");
...

Chapter 30 ■ Buttons and CollapsiBle BloCks

834

A different approach is required when you create button widgets from other elements, such as a div element.
In this situation, jQuery Mobile adds content elements so that it can apply CSS styles to shape the widget, and changing
the content of the element affects the shape of the widget. Instead, you will need to look at the HTML that jQuery
Mobile generates inside of the element and locate the textual content. The div element in my example is populated
with span elements, and I can change the text content by locating the element that is part of the ui-btn-text class,
like this:

...
$("#divElem span.ui-btn-text").text(msg);
...

Tip ■ i located this element by using the browser F12 tools to explore the content that jQuery Mobile generates during
the enhancement process.

Using the Button Events
The button widget defines the standard create event that is triggered when the widget is created, but the widgets
that underpin the widget will still trigger their own events, which will be supplemented by the jQuery Mobile events
that I described in Chapter 29. This means that you can create handlers for the tap event, for example, to receive
notification when the button is clicked, as demonstrated in Listing 30-8.

Tip ■ don’t forget that events can have a default action for some elements – for example, this means that button
widgets created from input elements will submit the form they are part of. see Chapter 28 for details of jQuery event
handling.

Listing 30-8. Handling Button Events

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("button").tap(function (e) {
 $(this).text("Tapped!").button("refresh");
 });
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>

Chapter 30 ■ Buttons and CollapsiBle BloCks

835

<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <button>Button</button>
 </div>
 </div>
</body>
</html>

In this listing I use the tap method to register a handler function for the tap event on a button. When the button is
clicked, I handle the event by changing the button text and calling the refresh method to update the widget content.

Using jQuery Mobile NavBars
NavBars are groups of buttons that present navigation support in a header or footer, allowing the users to move
through a set of content pages. NavBars are pretty simple, but they can be a useful tool when you have a set of related
pages to display and you need to give the user a clear signal about which of those pages is currently displayed.
NavBars are created using a specific element structure, which you can see in Listing 30-9.

Listing 30-9. Creating a NavBar

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 <div data-role="navbar">

 <a href="#page1"
 class="ui-btn-active ui-state-persist">Page 1
 Page 2
 Page 3

 </div>
 </div>
 <div data-role="content">This is page 1</div>
 </div>

 <div id="page2" data-role="page">
 <div data-role="header">

Chapter 30 ■ Buttons and CollapsiBle BloCks

836

 <h1>Jacqui's Shop</h1>
 <div data-role="navbar">

 Page 1
 <a href="#page2"
 class="ui-btn-active ui-state-persist">Page 2
 Page 3

 </div>
 </div>
 <div data-role="content">This is page 2</div>
 </div>

 <div id="page3" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 <div data-role="navbar">

 Page 1
 Page 2
 <a href="#page3"
 class="ui-btn-active ui-state-persist">Page 3

 </div>
 </div>
 <div data-role="content">This is page 3</div>
 </div>
</body>
</html>

The NavBar is defined by a div element whose data-role attribute is set to navbar. The individual buttons within
the NavBar are defined as a elements contained in li elements contained, in turn, in an ul element. In the listing,
I have used the Navbar in its most common form, which is where it is duplicated across multiple jQuery Mobile pages
to give a consistent reference to the user, as shown in Figure 30-7.

Figure 30-7. The NavBar widget

Chapter 30 ■ Buttons and CollapsiBle BloCks

837

The NavBar widget allocates the available screen space equally between the navigation buttons, and clicking one
of the buttons displays the page identified by the href attribute of the underlying a element.

There are two CSS classes that must be applied to the a elements to indicate to the user that page is being
displayed. The ui-btn-active class marks the button as active, and the ui-state-persist class ensures that the
active state is displayed if the user navigates back to a previously displayed page.

Configuring jQuery Mobile NavBar
The NavBar supports just one data attribute/configuration option, which I have described in Table 30-5.

Table 30-5. Data Attributes and Configuration Settings for NavBar

Data Attribute Setting Description

data-iconpos iconpos Specifies the position of icons in the NavBar buttons. The supported
positions are left, right, top (the default), and bottom. You can also use
the notext value to display an icon without any text.

I listed the jQuery Mobile icons earlier in the chapter. Individual icons are applied to the a elements using the
data-icon attribute, and you can see how I have positioned the icons with the data-iconpos attribute in Listing 30-10.

Listing 30-10. Positioning the Icons in a NavBar

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 <div data-role="navbar" data-iconpos="left">

 <a href="#page1" data-icon="alert"
 class="ui-btn-active ui-state-persist">Page 1
 Page 2
 Page 3

 </div>
 </div>
 <div data-role="content">This is page 1</div>
 </div>
</body>
</html>

Chapter 30 ■ Buttons and CollapsiBle BloCks

838

You can see the effect of the icons in Figure 30-8.

Figure 30-8. Adding and positioning icons in a NavBar

Using the NavBar Methods & Events
The NavBar widget doesn't define any methods and supports only the create event, which is triggered when the
widget is instantiated.

Tip ■ handle the events from the a elements to respond to user navigation.

Using Collapsible Content Blocks
jQuery Mobile includes support for creating collapsible content blocks, which are sections of content with a header
that can be closed so that only the header is available. This is similar to a single panel of a jQuery UI accordion, which
I described in Chapter 19.

Creating the Collapsible Block
A collapsible block has a specific structure you need to follow in order to give jQuery Mobile the elements it needs.
Listing 30-11 contains an example.

Listing 30-11. Creating a Single Collapsible Block

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>

Chapter 30 ■ Buttons and CollapsiBle BloCks

839

<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <div data-role="collapsible">
 <h1>New Delivery Service</h1>
 <p>We are pleased to announce that we are starting a home delivery
 service for your flower needs. We will deliver within a 20 mile radius
 of the store for free and $1/mile thereafter.</p>
 </div>
 </div>
 </div>
</body>
</html>

The first thing you have to do is create a div element and apply the data-role attribute with a value of
collapsible. This tells jQuery Mobile that you want a collapsible block and that it should look for a header element
as the first child of the div. You can use any of the header elements, h1 through h6. I used an h1 element, but jQuery
Mobile treats all of the headers equally for this kind of widget. The remaining child elements of the div are used as the
content for the collapsible element, creating the effect that is shown in Figure 30-9.

Figure 30-9. Expanding a collapsible block

The block is collapsed when it is first displayed, meaning that the content is hidden and only the header can be
seen. As a cue for the user, a plus icon is drawn at the left edge of the header area (which is styled in the same way as a
non-inline button). Clicking on the header reveals the content and replaces the icon with a minus sign, indicating that
the block can be collapsed again.

Configuring jQuery Mobile Collapsible Content Blocks
jQuery Mobile defines the data attributes and configuration settings shown in Table 30-6.

Chapter 30 ■ Buttons and CollapsiBle BloCks

840

In Listing 30-12, you can see how I have applied some of the data attributes to the example.

Listing 30-12. Configuring the Collapsible Block Widget

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <div data-role="collapsible" data-content-theme="e" data-collapsed="false"
 data-inset="false" data-iconpos="top">
 <h1>New Delivery Service</h1>
 <p>We are pleased to announce that we are starting a home delivery
 service for your flower needs. We will deliver within a 20 mile radius
 of the store for free and $1/mile thereafter.</p>
 </div>
 </div>
 </div>
</body>
</html>

Table 30-6. Data Attributes and Configuration Settings for Collapsible Blocks

Data Attribute Setting Description

data-collapsed collapsed When true, the default value, the block is shown collapsed
(that is, only the header is visible to the user). A value of false
means that the block is shown expanded.

data-collapsed-icon collapsedIcon Specifies the icon displayed when the block is collapsed.

data-content-theme contentTheme Specifies the theme for the content area of the collapsible block.

data-corners corners When true, the collapsible block is drawn with rounded corners.
A value of false results in square corners.

data-expanded-icon expandedIcon Specifies the icon displayed when the block is expanded.

data-iconpos iconPos Specifies the position of the icon in the header, using the same
values as for the NavBar and Button widgets.

data-inset inset When set to false, the header will fill the window without any
padding. The default is true.

data-mini mini When set to true, the header is drawn in a compact form.

Chapter 30 ■ Buttons and CollapsiBle BloCks

841

I have changed the values for the data-content-theme, data-inset, data-iconpos, and data-collapsed
attributes. You can see the effect in Figure 30-10.

Figure 30-10. Configuring the collapsible block widget

Table 30-7. Collapsible Block Events

Event Description

create This event is triggered when the widget is created.

collapse Triggered when the collapsible block is collapsed.

expand Triggered when the collapsible block is expanded.

Using Collapsible Block Methods
The collapsible block widget does not define any methods.

Using Collapsible Block Events
The collapsible block widget defines the events shown in Table 30-7.

In Listing 30-13, you can see how I have handled the collapse and expand events to report on the status of a
collapsible block. If this seems like a contrived example, it is because these events are rarely useful.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 30 ■ Buttons and CollapsiBle BloCks

842

Listing 30-13. Using the Collapse and Expand Events

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">
 $(document).bind("pageinit", function() {
 $('#colBlock').bind("collapse expand", function(event) {
 $('#status').text(event.type == "expand" ? "Expanded" : "Collapsed");
 })
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 The block is Expanded

 <div id="colBlock" data-role="collapsible" data-content-theme="e"
 data-collapsed=false>
 <h1>New Delivery Service</h1>
 <p>We are pleased to announce that we are starting a home
 delivery service for your flower needs. We will deliver within a
 20 mile radius of the store for free and $1/mile thereafter.</p>
 </div>
 </div>
 </div>
</body>
</html>

In this example, I use the bind method to listen for the expand and collapse events. I do this in a single call to
the bind method by listing the events I am interested in, separated by spaces. When one of the events is triggered,
I update the content of a span element to reflect the status of the collapsible block. You can see the change in status
in Figure 30-11.

Chapter 30 ■ Buttons and CollapsiBle BloCks

843

Using jQuery Mobile Collapsible Sets (Accordions)
The collapsible set widget combines multiple collapsible blocks to create an accordion. Collapsible sets are defined by
using a div element that wraps two or more collapsible blocks in a single parent element and applying the data-role
attribute to the div element with a value of collapsible-set. You can see how this is done in Listing 30-14.

Listing 30-14. Creating a jQuery Mobile Accordion

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div data-role="content">
 <div data-role="collapsible-set" data-content-theme="e">
 <div data-role="collapsible">
 <h1>New Delivery Service</h1>
 <p>We are pleased to announce that we are starting a home
 delivery service for your flower needs. We will deliver within a
 20 mile radius of the store for free and $1/mile thereafter.</p>
 </div>
 <div data-role="collapsible" data-collapsed=false>
 <h1>Summer Specials</h1>
 <p>We have a wide range of special summer offers.

Figure 30-11. Responding to the expand and collapse events

Chapter 30 ■ Buttons and CollapsiBle BloCks

844

 Ask instore for details</p>
 </div>
 <div data-role="collapsible">
 <h1>Bulk Orders</h1>
 <p>We offer discounts for large orders. Ask us for prices</p>
 </div>
 </div>
 </div>
 </div>
</body>
</html>

In this example, I defined a div element with the collapsible-set value for the data-role attribute, which
contains three collapsible blocks.

Tip ■ notice that i applied the data-content-theme attribute to the outer container. this has the same effect as using
the attribute on each individual collapsible block.

The default is for all of the collapsible blocks to be collapsed initially, so I applied the data-collapsed attribute to
one of the blocks with a value of false so that it is expanded when the page is first displayed. When the user clicks on
a header, the presently expanded element is collapsed. You can see the effect in Figure 30-12.

Figure 30-12. Expanding a block in a jQuery Mobile accordion

Configuring the Collapsible Set
The collapsible set supports the same set of data attributes and settings as the collapsible block widget.

Chapter 30 ■ Buttons and CollapsiBle BloCks

845

Table 30-8. The Collapsible Set Method

Method Description

collapsibleset("refresh") Refreshes the widget to reflect changes in the
underlying HTML element.

Using the Collapsible Set Methods
The collapsible set widget supports one method, as described in Table 30-8.

Using the Collapsible Set Events
The collapsible set widget only defines the create event, which is triggered when the widget is applied to an
HTML element.

Summary
In this chapter, I described more jQuery Mobile widgets: buttons and collapsible blocks and widgets that offer variations
on the same theme – NavBars and collapsible sets. In Chapter 31, I show you the jQuery Mobile form widgets.

847

Chapter 31

Using jQuery Mobile Forms

There are particular difficulties when presenting a form on a mobile device. There is little enough screen real estate
available to start with, and you need to give the user form elements that are easy to manipulate by touch without
creating a page that requires endless scrolling to complete. In this chapter, I show you how jQuery Mobile enhances
form elements so that they are consistent with other widgets and can be readily used on a touch screen.

jQuery Mobile does a lot of work automatically when the page is loaded. Form elements are enhanced without
your intervention, and Ajax is automatically used when the form is submitted so that jQuery Mobile can smoothly
transition to the results returned by the server.

I recommend careful thought when you are creating forms for mobile devices. By their nature, forms are intended
to gather input from users, but this can be a tedious process on a mobile device, especially when it comes to typing.
In addition, some mobile devices don’t display scrollbars when the user isn’t actively scrolling through a page.
This means that the user isn’t always aware there are form elements just off of the immediate display. To create the
best possible experience for users, you need to follow some basic guidelines:

•	 Require as little typing as you can. Where possible, use alternative widgets that allow the user
to make simple touch selections, such as check boxes or radio buttons. This can reduce the
range of inputs that the user can make, but it might have the effect of increasing the number of
users who are willing to complete the form.

•	 Use navigation between pages to display sections of a form. This gives users a clear indication
of their progress through the form and doesn’t require them to speculatively scroll to see if
they are missing anything.

•	 Eliminate any form elements that are not required. Mobile forms should be as streamlined
as possible, and that can mean accepting less data from mobile users than you get from
desktop users.

Table 31-1 provides the summary for this chapter.

Table 31-1. Chapter Summary

Problem Solution Listing

Create widgets for form elements. No specific action is required – jQuery Mobile will apply
the widgets automatically.

1

Add a button that clears the contents of an
input element or change the way that the
widget for an input element is displayed.

Use the data-clear-btn and data-mini attributes. 2

Enable or disable an input element. Use the enable and disable methods. 3

(continued)

Chapter 31 ■ Using jQUery Mobile ForMs

848

Creating Form Element Widgets
jQuery Mobile uses automatic enhancement to create widgets for form elements when HTML pages are loaded,
just as with the widgets I described in earlier chapters. Listing 31-1 shows a jQuery Mobile page that contains a form
element and some form-related child elements.

Listing 31-1. A Simple Form in a jQuery Mobile Page

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 #buttonContainer {text-align: center}
 div[data-role=fieldcontain] { padding: 0 10px; }
 </style>
</head>

Problem Solution Listing

Create a slider widget. Define an input element with a type attribute of range. 4

Create a range slider widget. Define a pair of input elements within a div element
whose data-role attribute is set to rangeslider.

5

Configure the appearance of sliders. Use the data-highlight, data-mini and data-track-theme
attributes.

6, 7

Update a range slider to reflect changes in the
underlying input elements.

Use the refresh method. 8

Receive notifications when a slider widget
is used.

Handle the start, stop, and normalize events. 9, 10

Create a widget for a select element. No specific action is required. 11

Configure the button displayed for a select
element.

Use the data-corners, data-icon, data-iconpos, and
data-mini attributes.

12

Configure the popup that allows users to pick
a value for a select element.

Use the data-native-menu, data-overlay-theme, and
data-divider-theme attributes.

13

Add a placeholder to a selectmenu. Set the data-placeholder attribute to true on one of the
option elements contained by the select element.

14

Control a selectmenu widget programmatically. Use the open, close, disable, enable, and refresh methods. 15

Create a flip switch widget. Define a select element that contains two option elements
and that has the data-role attribute set to slider.

16

Create checkbox and radio button widgets. No specific action is required. 17–20

Table 31-1. (continued)

Chapter 31 ■ Using jQUery Mobile ForMs

849

<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <form method="get">
 <div data-role="fieldcontain">
 <label for="name">Name: </label>
 <input id="name">
 </div>
 <div data-role="fieldcontain">
 <label for="address">Address: </label>
 <textarea id="address"></textarea>
 </div>
 <div id="buttonContainer">
 <input type="submit" data-inline="true" value="Submit"/>
 </div>
 </form>
 </div>
</body>
</html>

This is a simple form, but it sets the scene for how jQuery Mobile handles forms overall. There are two form
elements: a text input and a textarea, each of which is paired with a label element. You can see the result in
Figure 31-1, which I created using the BrowserStack service because the Opera Mobile Emulator doesn’t properly
implement a feature that jQuery Mobile relies on for form elements, which I explain in the next section.

Figure 31-1. A simple form displayed by jQuery Mobile

Chapter 31 ■ Using jQUery Mobile ForMs

850

Tip ■ notice that i have used Css to set the padding property for the div elements that contain the form elements.
Without this setting, jQuery Mobile would have drawn the label and the form element right up against the left and right
edges of the window.

jQuery Mobile will automatically submit the form when an input element whose type is submit is included within a form
element. the form will be submitted using ajax by default, but this behavior can be disabled by applying the data-ajax
attribute with a value of false to the form element.

In the last example, each form element and its label are wrapped in a div element. I set the data-role of the
div element to be fieldcontain, which tells jQuery Mobile that I want the label and the form element displayed in a
single line, and you can see the effect in Figure 31-1.

The styles that jQuery Mobile applies to align the label and the form element are used only when the screen is at
least 450 pixels wide. Below that width value, the label and the input/textarea element are displayed on separate
rows, as illustrated by Figure 31-2. The Opera Mobile Emulator always reports that its screen is less than 450 pixels
wide, which is why I had to generate the figures for these examples using a different browser. (This is just a problem
with the emulator – the real Opera Mobile browser implements the feature correctly.)

Figure 31-2. Displaying a form in portrait orientation

Chapter 31 ■ Using jQUery Mobile ForMs

851

Using the Textinput Widget
jQuery Mobile uses different widgets for each of the form elements that it supports and the first of these I describe
is the textinput widget, which is used for textarea elements and input elements. This is the widget used in the
previous example.

Configuring the Textinput Widget
The textinput widget defines the attributes and settings properties described in Table 31-2. The settings are applied
via the textinput method.

Table 31-2. Attributes and Configuration Settings for TextInput Widgets

Data Attribute Setting Description

data-clear-btn clearBtn When set to true, the widget is displayed with a button that
clears the contents. The default is false.

data-clearn-btn-text clearBtnText Sets the text for the clear button for accessibility software.

data-mini mini When set to true, creates a small version of the widget.
The default is false.

data-prevent-focus-zoom preventFocusZoom When set to true, the browser is prevented from zooming
while the widget has the focus.

In Listing 31-2, you can see how I have applied the data-clear-btn and data-mini attributes to configure the
textinput widget on an input element.

Listing 31-2. Configuring the Textinput Widget

...
<form method="get">
 <div data-role="fieldcontain">
 <label for="name">Name: </label>
 <input id="name" data-clear-btn="true" data-mini="true">
 </div>
 <div data-role="fieldcontain">
 <label for="address">Address: </label>
 <textarea id="address"></textarea>
 </div>
 <div id="buttonContainer">
 <input type="submit" data-inline="true" value="Submit"/>
 </div>
</form>
...

You can see the result in Figure 31-3. The clear button isn’t shown until the user starts to enter text into the input
element, and clicking the button deletes any content that has been entered. If you use the clear button feature, then be
sure to do so consistently for all of your input elements.

Chapter 31 ■ Using jQUery Mobile ForMs

852

Using the Textinput Widget Methods
The textinput widget defines the two methods shown in Table 31-3.

Figure 31-3. Configuring the textinput widget

Table 31-3. TextInput Methods

Method Description

textinput("disable") Disables the widget, preventing the user from entering or editing content.

textinput("enable") Enables the widget, allowing content to be entered or edited.

In Listing 31-3 I have used both methods to change the state of an input element.

Listing 31-3. Using the Textwidget Methods

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("button").tap(function (e) {
 $("#name").textinput(e.target.id);
 e.preventDefault();
 });
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 #buttonContainer {text-align: center}
 div[data-role=fieldcontain] { padding: 0 10px; }
 </style>
</head>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 31 ■ Using jQUery Mobile ForMs

853

<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <form method="get">
 <div data-role="fieldcontain">
 <label for="name">Name: </label>
 <input id="name" data-clear-btn="true" data-mini="true">
 </div>
 <div id="buttonContainer">
 <button id="enable">Enable</button>
 <button id="disable">Disable</button>
 </div>
 </form>
 </div>
</body>
</html>

I added buttons to change the state of the input element, and you can see how a disabled element appears
in Figure 31-4.

Using the Textinput Widget Events
The textinput widget defines only the create event, which is triggered when the widget is applied to an element.

Using the Slider and Range Slider Widgets
The slider widget is applied to input elements whose type attribute is set to range. The value of the input element is
used to set the initial position of a slider on a scale, which is defined by the values of the min and max attributes.
Listing 31-4 shows a simple example of a range input element.

Figure 31-4. Disabling a textinput widget

Chapter 31 ■ Using jQUery Mobile ForMs

854

Listing 31-4. Using the Slider Widget

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 div[data-role=fieldcontain] { padding: 0 10px; }
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <form method="get">
 <div data-role="fieldcontain">
 <label for="quantity">Quantity: </label>
 <input id="quantity" type="range" value="10" min="1" max="20">
 </div>
 </form>
 </div>
</body>
</html>

Tip ■ the range value for the type attribute was added in htMl5, as part of a broader set of enhancements to the
input element. For full details, see my book The Definitive Guide to HTML5, which is also published by apress.

I have defined an input element with the type attribute set to range, specifying that the initial value is 10 and the
range of values is 1 to 20. You can see how jQuery Mobile enhances this element with the slider widget in Figure 31-5.

Figure 31-5. Using the slider widget

You can also create a range slider by pairing two input elements, allowing the user to select an upper and lower
value in a single widget. In Listing 31-5, you can see how I have created a range slider.

Chapter 31 ■ Using jQUery Mobile ForMs

855

Listing 31-5. Using the Range Slider Widget

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 div[data-role=fieldcontain] { padding: 0 10px; }
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <form method="get">
 <div data-role="fieldcontain">
 <div data-role="rangeslider">
 <label for="quantityLow">Quantity: </label>
 <input id="quantityLow" type="range" value="10" min="1" max="20">
 <input id="quantityHigh" type="range" value="15" min="1" max="20">
 </div>
 </div>
 </form>
 </div>
</body>
</html>

The input elements are contained in a div element whose data-role attribute is set to rangeslider. The min and
max values of the input elements must be the same and the value attribute values are used to set the initial position of
the handles that are used to select the range, as shown in Figure 31-6.

Figure 31-6. Using the range slider widget

Tip ■ the range slider widget doesn’t change the way that form data is sent to the server. separate values will be sent
for both of the input elements.

Chapter 31 ■ Using jQUery Mobile ForMs

856

Configuring the Slider and Range Slider Widgets
The slider and range slider widgets support the same set of data attributes and configuration settings, as described
in Table 31-4.

Table 31-4. Attributes and Configuration Settings for Slider and Range Slider Widgets

Data Attribute Setting Description

data-highlight highlight When set to true, the section of the slider track that represents the
selected value is highlighted. The default value is false.

data-mini mini When set to true, the widget is drawn in a more compact form.
The default is false.

data-track-theme trackTheme Specifies the theme for the track part of the slider.

Figure 31-7. The effect of the data-highlight attribute

Tip ■ When setting options, use the slider method to configure slider widgets and the rangeslider method to
configure range slider widgets.

You have seen the effect of the data-mini attribute in earlier widgets and so I won’t repeat the description here.
I usually set the data-highlight attribute to true because I think it makes the purpose of the slider – especially the
range slider – more obvious. In Listing 31-6, you can see how I set the attribute on the div element of a range slider.

Listing 31-6. Using the data-highlight Attribute on a Range Slider Widget

...
<form method="get">
 <div data-role="fieldcontain">
 <div data-role="rangeslider" data-highlight="false">
 <label for="quantityLow">Quantity: </label>
 <input id="quantityLow" type="range" value="10" min="1" max="20">
 <input id="quantityHigh" type="range" value="15" min="1" max="20">
 </div>
 </div>
</form>
...

In Figure 31-7 you can see the range slider with and without the highlight enabled.

Chapter 31 ■ Using jQUery Mobile ForMs

857

You can further emphasize the slider by combining the data-track-theme attribute with the globally available
data-theme attribute. The data-theme attribute affects the slider handle or handles and data-track-theme affects the
slider track. In Listing 31-7, I have applied both attributes to the range slider from the previous example.

Listing 31-7. Using Themes for Slider Handles and Tracks

...
<form method="get">
 <div data-role="fieldcontain">
 <div data-role="rangeslider" data-highlight="true"
 data-theme="b" data-track-theme="a">
 <label for="quantityLow">Quantity: </label>
 <input id="quantityLow" type="range" value="10" min="1" max="20">
 <input id="quantityHigh" type="range" value="15" min="1" max="20">
 </div>
 </div>
</form>
...

You can see the effect of the themes in Figure 31-8.

Using the Slider and Range Slider Methods
The slider and range slider widgets define the methods shown in Table 31-5.

Figure 31-8. Applying Themes to a Range Slider and Its Track

Table 31-5. Slider and Range Slider Methods

Slider Method Range Slider Method Description

slider("disable") rangeslider("disable") Disables the widget, preventing the user from changing the
slider value or values.

slider("enable") rangeslider("enable") Enables the widget, allowing the user to change the slider
value or values.

slider("refresh") rangeslider("refresh") Updates the widget to reflect changes in the underlying
HTML elements.

The refresh method lets you change the value of the attributes on an underlying input element and have those
changes reflected in the widget, as demonstrated by Listing 31-8.

Chapter 31 ■ Using jQUery Mobile ForMs

858

Listing 31-8. Using the Refresh Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("button").tap(function (e) {
 var currentMax = Number($("#quantityLow").attr("max"));
 $("#quantityLow, #quantityHigh").attr("max", currentMax - 1);
 $("#slider").rangeslider("refresh");
 e.preventDefault();
 });
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 div[data-role=fieldcontain] { padding: 0 10px; }
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <form method="get">
 <div data-role="fieldcontain">
 <div id="slider" data-role="rangeslider" data-highlight="true"
 data-theme="b" data-track-theme="a">
 <label for="quantityLow">Quantity: </label>
 <input id="quantityLow" type="range" value="10" min="1" max="20">
 <input id="quantityHigh" type="range" value="15" min="1" max="20">
 </div>
 <div id="buttonContainer">
 <button>Change Range</button>
 </div>
 </div>
 </form>
 </div>
</body>
</html>

In this example I use a button to decrement the value of the max attribute of the input elements that underpin the
slider and call the refresh method so that the widget is updated to reflect the changes.

Chapter 31 ■ Using jQUery Mobile ForMs

859

Using the Slider Events
The slider and range slider widgets define different sets of events. In Table 31-6 I have described the events that are
available for the slider widget.

In Listing 31-9, I use the start and stop events to update the content of a span element.

Listing 31-9. Using the Slider Widget Events

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("#quantity").slider({
 start: function () {
 $("#message").text("Sliding");
 },
 stop: function () {
 $("#message").text(quantity.value);
 }
 });
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 div[data-role=fieldcontain] { padding: 0 10px; }
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Table 31-6. Slider Events

Event Description

create Triggered when the slider widget is created.

start Triggered at the start of any interaction with the slider, including when the widget is tapped
(to set a specific value) or when the handle is dragged.

stop Triggered at the end of any interaction with the slider.

Chapter 31 ■ Using jQUery Mobile ForMs

860

 <form method="get">
 <div data-role="fieldcontain">
 <label for="quantity">Quantity: </label>
 <input id="quantity" type="range" value="10" min="1" max="20">
 </div>
 Value: Ready
 </form>
 </div>
</body>
</html>

When I receive the start event, I change the contents of the span element to indicate that the slider value is
changing. When I receive the stop event, I update the span element to display the value that has been selected – notice
that I get the value directly from the input element and not via the slider widget.

Using the Range Slider Events
In Table 31-7, I have described the events that are defined by the range slider widget.

Table 31-7. Range Slider Events

Event Description

create Triggered when the range slider widget is created.

normalize Triggered when the widget has to normalize the values in the input elements, which happens
when the user drags one handle past the other.

As I write this, the event handling for the range slider widget doesn’t work consistently when using the
rangeslider method. Instead, event handlers must be created using the bind method, which you can see used
in Listing 31-10.

Listing 31-10. Using the Range Slider Widget Events

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("#slider").bind("rangeslidernormalize", function () {
 alert("Normalized!");
 });
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 div[data-role=fieldcontain] { padding: 0 10px; }
 </style>
</head>

Chapter 31 ■ Using jQUery Mobile ForMs

861

<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <form method="get">
 <div id="slider" data-role="rangeslider" data-highlight="true"
 data-theme="b" data-track-theme="a">
 <label for="quantityLow">Quantity: </label>
 <input id="quantityLow" type="range" value="10" min="1" max="20">
 <input id="quantityHigh" type="range" value="15" min="1" max="20">
 </div>
 </form>
 </div>
</body>
</html>

I have to use the name rangeslidernormalize in order to receive the event, which is an artifact of having to use
the bind method. In this example I call the alert function when I get the normalize event – not least because I have
yet to find a real-world situation when this event is useful.

Using the Selectmenu Widget
jQuery Mobile provides you with two ways to deal with select elements. The first is to use the selectmenu widget,
which presents the user with a stylized version of the select element, with a drop-down button. The selectmenu
widget is the default widget applied to select elements, as demonstrated by Listing 31-11.

Listing 31-11. A Page Containing a Select Element

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 #buttonContainer {text-align: center}
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <form method="get">
 <div data-role="fieldcontain">
 <label for="name">Name: </label>
 <input id="name" placeholder="Your Name">
 </div>

Chapter 31 ■ Using jQUery Mobile ForMs

862

 <div data-role="fieldcontain">
 <label for="speed">Speed: </label>
 <select id="speed" name="speed">
 <option value="vfast">Very Fast</option>
 <option value="fast">Fast</option>
 <option value="normal" selected>Normal</option>
 <option value="slow">Slow</option>
 </select>
 </div>
 <div id="buttonContainer">
 <input type="submit" data-inline="true" value="Submit"/>
 </div>
 </form>
 </div>
</body>
</html>

You can see how jQuery Mobile enhances select elements in Figure 31-9. The Opera Mobile Emulator doesn’t
display the selectmenu widget correctly, so I obtained the screenshot using BrowserStack.

Configuring the SelectMenu Widget
The selectmenu widget defines data attributes and configuration settings shown in Table 31-8. The configuration
options are applied via the selectmenu method. The configuration of the selectmenu widget can be broken down into
two areas: configuring the button that is displayed most of the time, and configuring the popup that allows the user to
make a selection. I describe both configuration areas in the sections that follow.

Figure 31-9. A select element that has been enhanced by jQuery Mobile

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 31 ■ Using jQUery Mobile ForMs

863

Configuring the SelectMenu Button
The selectmenu widget replaces the standard select element with a button that matches the rest of the jQuery Mobile
theme. You can configure how the button appears using the data-corners, data-icon, data-iconpos, data-inline,
and data-mini attributes or their configuration property counterparts. I have described all of these configuration
options as they have appeared in earlier chapters, so I am not going to cover them in depth, but in Listing 31-12 you
can see how I have applied some of the attributes to change the way that the button is displayed.

Listing 31-12. Configuring the Selectmenu Button

...
<div data-role="fieldcontain">
 <label for="speed">Speed: </label>
 <select id="speed" name="speed"
 data-iconpos="left" data-icon="gear" data-mini="true">
 <option value="vfast">Very Fast</option>
 <option value="fast">Fast</option>
 <option value="normal" selected>Normal</option>
 <option value="slow">Slow</option>
 </select>
</div>
...

I have changed the icon that is displayed and moved it to the left side of the button with the data-icon and
data-iconpos attributes and specified a smaller button size with the data-mini attribute. You can see the effect of
these changes in Figure 31-10.

Table 31-8. Attributes and Configuration Settings for Selectmenu Widgets

Data Attribute Setting Description

data-corners corners Specifies whether the button that displays the list of options is drawn
with rounded corners. The default value is true.

data-divider-theme dividerTheme Specifies the theme used for optgroup elements when the nativeMenu
option is false.

data-icon icon Specifies the icon that will be displayed on the widget button.

data-iconpos iconPos Specifies the position of the icon on the widget button.

data-inline inline Specifies that the widget will be drawn in a compact style.

data-mini mini Specifies that the widget will be drawn in a smaller style.

data-native-menu nativeMenu Specifies whether the native selectmenu will be used. The default is true.

data-overlay-theme overlayTheme Specifies the theme used for the selectmenu popup when the
nativeMenu option is set to false.

Chapter 31 ■ Using jQUery Mobile ForMs

864

Configuring the SelectMenu Popup
By default, the selectmenu widget will display the native browser menu when the user clicks on the button to make a
selection. This is a sensible idea, because it provides the user with access to whatever optimizations the browser offers
to take advantage of the device features. In Figure 31-11, you can see the native menus for the iOS, Android, and Opera
browsers and these are shown by default when the user clicks on the selectmenu widget button.

Figure 31-11. The Native Select Menus

Figure 31-10. Configuring the selectmenu widget button

You can disable the native menu and have the selectmenu widget display one that matches the rest of the jQuery
Mobile theme by setting the data-native-menu attribute to false. This prevents the user from benefiting from the
native enhancements, but has the advantage of offering consistency. In Listing 31-13, you can see how I have used the
data-native-menu to disable the native menu and the data-overlay-theme attribute to set the theme used for
the popup.

Chapter 31 ■ Using jQUery Mobile ForMs

865

Listing 31-13. Configuring the Selectmenu Popup

...
<div data-role="fieldcontain">
 <label for="speed">Speed: </label>
 <select id="speed" name="speed" data-native-menu="false" data-overlay-theme="e">
 <option value="vfast">Very Fast</option>
 <option value="fast">Fast</option>
 <option value="normal" selected>Normal</option>
 <option value="slow">Slow</option>
 </select>
</div>
...

You can see the effect of these changes in Figure 31-12.

Specifying Placeholders
You can use an option element as the placeholder for a select element by setting the value of the data-placeholder
attribute to true. Placeholders are shown when the select element is initially displayed but isn’t present in the list of
options that the user chooses from. Listing 31-14 shows the use of the data-placeholder attribute.

Listing 31-14. Using the data-placeholder Attribute

...
<div data-role="fieldcontain">
 <label for="speed">Speed: </label>
 <select id="speed" name="speed" data-native-menu="false" data-overlay-theme="e">
 <option value="placeholder" data-placeholder="true">Select a Speed</option>
 <option value="vfast">Very Fast</option>

Figure 31-12. Disabling the native selectmenu

Chapter 31 ■ Using jQUery Mobile ForMs

866

 <option value="fast">Fast</option>
 <option value="normal">Normal</option>
 <option value="slow">Slow</option>
 </select>
</div>
...

You can see the effect in Figure 31-13. I generally like to use placeholders with select menus, but this is an
especially useful technique for giving the user context when hiding label elements in portrait layouts.

Using the Selectmenu Methods
The selectmenu widget defines the methods shown in Table 31-9.

Table 31-9. Methods for the selectmenu Widget

Method Description

selectmenu("open") Opens the selectmenu widget to display the popup.

selectmenu("close") Closes the popup.

selectmenu("disable") Disables the widget so that values cannot be selected.

selectmenu("enable") Enables the widget so that values can be selected.

selectmenu("refresh") Refreshes the widget to incorporate changes in the underlying select element.

Figure 31-13. Specifying a placeholder element

Chapter 31 ■ Using jQUery Mobile ForMs

867

Listing 31-15 shows how to use buttons to control the selectmenu.

Listing 31-15. Controlling the Selectmenu Programmatically

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">
 $(document).bind("pageinit", function () {
 $("button").bind("tap", function (e) {
 e.preventDefault();
 if (this.id == "open") {
 $("#speed").selectmenu("open");
 setTimeout(function () {
 $("#speed").selectmenu("close")
 }, 3000);
 } else {
 $("#speed").selectmenu(this.id)
 }
 });
 })
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 [data-role=fieldcontain], .ui-grid-b { margin: 10px; }
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <form method="get">
 <div class="ui-grid-b">
 <div class="ui-block-a">
 <button id="open">Open</button>
 </div>
 <div class="ui-block-b">
 <button id="enable">Enable</button>
 </div>
 <div class="ui-block-c">
 <button id="disable">Disable</button>
 </div>
 </div>
 <div data-role="fieldcontain">
 <label for="speed">Speed: </label>
 <select id="speed" name="speed"
 data-native-menu="false" data-overlay-theme="e">

Chapter 31 ■ Using jQUery Mobile ForMs

868

 <option value="placeholder"
 data-placeholder="true">Select a Speed</option>
 <option value="vfast">Very Fast</option>
 <option value="fast">Fast</option>
 <option value="normal">Normal</option>
 <option value="slow">Slow</option>
 </select>
 </div>
 </form>
 </div>
</body>
</html>

I have defined three buttons that call the open, enable and disable methods. When I call the open method, I also
use the setTimeout function to call the close method after three seconds.

Using the Selectmenu Events
The selectmenu widget defines only the create event, which is triggered when the widget is applied to the
underlying elements.

Using Flip Switches
If a select element contains only two option elements, you can elect to create a flip switch instead of a regular
selectmenu widget. You create a flip switch by applying the data-role attribute to the select element with a value of
slider, as shown in Listing 31-16.

Listing 31-16. Creating a Flip Switch

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 #buttonContainer {text-align: center}
 [data-role=fieldcontain] { margin: 10px; text-align: center }
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Chapter 31 ■ Using jQUery Mobile ForMs

869

 <form method="get">
 <div data-role="fieldcontain">
 <label for="speed">Speed: </label>
 <select id="speed" name="speed" data-role="slider">
 <option value="fast">Fast</option>
 <option value="slow">Slow</option>
 </select>
 </div>
 <div data-role="fieldcontain">
 <label for="size">Size: </label>
 <select id="size" name="size" data-role="slider">
 <option value="large">Large</option>
 <option value="small" selected>Small</option>
 </select>
 </div>
 <div id="buttonContainer">
 <input type="submit" data-inline="true" value="Submit"/>
 </div>
 </form>
 </div>
</body>
</html>

There are two flip switches in this example. You can see how they are displayed in the browser in Figure 31-14.
The user can change the setting either by tapping or clicking on the exposed value or by dragging the slider into position.

Using the Checkboxradio Widget
The checkboxradio widget is automatically applied to input elements whose type attribute is set to checkbox or radio.

Creating Check Boxes
The simplest way to create check boxes is to define an input element whose type is checkbox, followed by a label
element, as shown in Listing 31-17.

Figure 31-14. Using flip switches

Chapter 31 ■ Using jQUery Mobile ForMs

870

Listing 31-17. Creating Simple Check Boxes

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 #buttonContainer {text-align: center}
 form { margin: 10px; }
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <form method="get">
 <div data-role="fieldcontain">
 <label for="name">Name: </label>
 <input id="name" placeholder="Your Name">
 </div>

 <input type="checkbox" name="check" id="check"/>
 <label for="check">I agree</label>

 <div id="buttonContainer">
 <input type="submit" data-inline="true" value="Submit"/>
 </div>
 </form>
 </div>
</body>
</html>

You can see how this check box is presented in Figure 31-15. I have shown the checked and unchecked state of
the check box in the figure.

Figure 31-15. A jQuery Mobile check box

Chapter 31 ■ Using jQUery Mobile ForMs

871

Applying a Label to a Check Box
By default, check boxes span the entire width of their parent element, which means, in this case, that the check box is
the entire width of the screen. You need to use a particular element structure if you want to make the check box fit into
the layout so that it matches the textinput widget above it, as shown in Listing 31-18.

Listing 31-18. Changing the Layout of a Check Box

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 #buttonContainer {text-align: center}
 form { margin: 10px; }
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <form method="get">
 <div data-role="fieldcontain">
 <label for="name">Name: </label>
 <input id="name" placeholder="Your Name">
 </div>

 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Terms & Conditions:</legend>
 <input type="checkbox" name="check" id="check"/>
 <label for="check">I agree</label>
 </fieldset>
 </div>

 <div id="buttonContainer">
 <input type="submit" data-inline="true" value="Submit"/>
 </div>
 </form>
 </div>
</body>
</html>

Chapter 31 ■ Using jQUery Mobile ForMs

872

Grouping Check Boxes
You can use a fieldset element with a data-role of controlgroup to group multiple check boxes together.
Listing 31-19 contains a demonstration.

Listing 31-19. Grouping Check Boxes Together

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 #buttonContainer {text-align: center}
 form { margin: 10px; }
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Figure 31-16. Changing the layout of a check box

The outer element should be familiar by now—a div element with the data-role attribute set to fieldcontain.
The problem that jQuery Mobile faces is that there is already a label element associated with the input element,
so you have to take an alternative path to give jQuery Mobile the information it needs. You do this by adding a
fieldset element whose data-role is set to controlgroup and adding a legend element before the input, containing
the text you want displayed. You can see the effect in Figure 31-16.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 31 ■ Using jQUery Mobile ForMs

873

 <form method="get">
 <div data-role="fieldcontain">
 <label for="name">Name: </label>
 <input id="name" placeholder="Your Name">
 </div>

 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Choose Your Flowers:</legend>
 <input type="checkbox" name="roses" id="roses"/>
 <label for="roses">Roses</label>
 <input type="checkbox" name="orchids" id="orchids"/>
 <label for="orchids">Orchids</label>
 <input type="checkbox" name="asters" id="asters"/>
 <label for="asters">Asters</label>
 </fieldset>
 </div>

 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup" data-type="horizontal">
 <legend>Font:</legend>
 <input type="checkbox" name="bold" id="bold"/>
 <label for="bold">b</label>
 <input type="checkbox" name="italic" id="italic"/>
 <label for="italic">i</label>
 <input type="checkbox" name="underline" id="underline"/>
 <label for="underline"><u>u</u></label>
 </fieldset>
 </div>

 <div id="buttonContainer">
 <input type="submit" data-inline="true" value="Submit"/>
 </div>
 </form>
 </div>
</body>
</html>

There are two groups of check boxes in this example. The first set is laid out vertically, which is the default
orientation. jQuery Mobile changes the style of the widgets so that there is no space between the individual input
elements and only the outer corners of the block are rounded. For the second set, I set the data-type attribute to
horizontal, which changes the direction of the layout and causes jQuery Mobile to hide the check box, creating a set
of buttons that can be toggled on and off. You can see the result in Figure 31-17.

Chapter 31 ■ Using jQUery Mobile ForMs

874

Creating and Formatting Radio Buttons
You create radio buttons and format them in much the same way as you format check boxes. Listing 31-20 contains
an example.

Listing 31-20. Creating a Group of Radio Buttons

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 #buttonContainer {text-align: center}
 form { margin: 10px; }
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Figure 31-17. Grouping check boxes

Chapter 31 ■ Using jQUery Mobile ForMs

875

 <form method="get">
 <div data-role="fieldcontain">
 <label for="name">Name: </label>
 <input id="name" placeholder="Your Name">
 </div>

 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Choose Your Flowers:</legend>
 <input type="radio" name="flowers" id="roses"/>
 <label for="roses">Roses</label>
 <input type="radio" name="flowers" id="orchids"/>
 <label for="orchids">Orchids</label>
 <input type="radio" name="flowers" id="asters"/>
 <label for="asters">Asters</label>
 </fieldset>
 </div>

 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup" data-type="horizontal">
 <legend>Choose Your Flowers:</legend>
 <input type="radio" name="flowers" id="roses"/>
 <label for="roses">Roses</label>
 <input type="radio" name="flowers" id="orchids"/>
 <label for="orchids">Orchids</label>
 <input type="radio" name="flowers" id="asters"/>
 <label for="asters">Asters</label>
 </fieldset>
 </div>

 <div id="buttonContainer">
 <input type="submit" data-inline="true" value="Submit"/>
 </div>
 </form>
 </div>
</body>
</html>

Once again, I created horizontal and vertical groups, and you can see how they are displayed in the browser
in Figure 31-18.

Chapter 31 ■ Using jQUery Mobile ForMs

876

Configuring the Checkboxradio Widget
The checkboxradio widget supports only one configuration option, which I have described in Table 31-10.

Using the Checkboxradio Methods
The checkboxradio widget defines the methods shown in Table 31-11.

Table 31-10. Attribute and Configuration Setting for checkboxradio Widgets

Data Attribute Setting Description

data-mini mini When set to true, the widget is created in a compact form.

Figure 31-18. Creating groups of radio buttons

Table 31-11. Methods for the checkboxradio Widget

Method Description

checkboxradio("disable") Disables the widget so that values cannot be selected.

checkboxradio("enable") Enables the widget so that values can be selected.

checkboxradio("refresh") Refreshes the widget to incorporate changes in the underlying elements.

Chapter 31 ■ Using jQUery Mobile ForMs

877

Using the Checkboxradio Events
The checkboxradio widget defines only the create event, which is triggered when the widget is applied to the
underlying elements.

Summary
In this chapter, I showed how jQuery Mobile enhances form elements to make them consistent with the broader
touch-enabled style. You don’t have to take any special action to submit a form, which is done automatically using
Ajax so that jQuery Mobile can smoothly manage the transition to the page returned by the server. You can rely on
jQuery Mobile to automatically enhance form elements, but there are some good reasons to apply some additional
elements and data-role attributes, especially when it comes to dealing with select elements. In Chapter 32,
I continue my description of jQuery Mobile widgets, turning to the listview and panel widgets.

879

Chapter 32

Using Lists and Panels

In this chapter, I describe the jQuery Mobile list and panel widgets. Lists are an important tool in building mobile
web applications, and they often provide simple and obvious navigation around the different functional areas of a
web application. The beauty of lists is that they are compact, even when the individual list items are large enough
to be selected by touch. They are also extremely well understood by users. Simply placing an arrow icon at the right
edge of a list item (which jQuery Mobile does by default) makes it clear to most users that selecting the item will
cause some kind of selection or navigation to occur.

Panels are a general-purpose widget that brings content into context on the left or right side of the window.
Panels can be used to display any content, but are most frequently used for settings or navigation features that are
persistent throughout the application. Table 32-1 provides the summary for this chapter.

Table 32-1. Chapter Summary

Problem Solution Listing

Create a list. Define a ul or ol element that contains one or more li
elements and has the data-role attribute set to listview.
The contents of the li elements should be links.

1

Create an inset list. Set the data-inset attribute to true. 2

Create a list whose items are made of two
distinct parts.

Add a second link to each li element. 3

Allow the user to filter the contents of the list. Set the data-filter attribute to true. 4, 5

Add dividers to a list. Set the data-role attribute to list-divider on
individual li elements.

6

Add a count bubble to a list item. Use the ui-li-count class. 7

Use different text emphasis. Use the h1-h6 and p elements. 8

Add an aside to a list item. Use the ui-li-aside class. 9

Create a panel. Set the data-role attribute to panel on a div element
contained within the page to which the panel relates.

10

Set the position and the display style of a panel. Use the data-display and data-position attributes. 11

Specify how a panel can be dismissed. Use the data-swipe-close and data-dismissable attributes. 12

Chapter 32 ■ Using Lists and paneLs

880

Using the ListView Widget
jQuery Mobile provides flexible support for handling lists through the listview widget. Listing 32-1 shows a basic
list that links to jQuery Mobile pages inside the same document. Each page describes a different flower, and the list
provides the user with a mechanism to navigate to these pages.

Listing 32-1. A Basic List

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 .lcontainer {float: left; text-align: center; padding-top: 10px}
 .productData {float: right; padding: 10px; width: 60%}
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <ul data-role="listview">
 Roses
 Orchids
 Asters

 </div>

 <div id="roses" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Roses</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 A rose is a woody perennial within the family Rosaceae.
 They form a group of erect shrubs, and climbing or trailing plants.
 <div>Price: $4.99</div>
 </div>
 </div>
 </div>

Chapter 32 ■ Using Lists and paneLs

881

 <div id="orchids" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Orchids</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 The orchid family is a diverse and widespread family in the order
 Asparagales. It is one of the largest families of flowering plants.
 <div>Price: $10.99</div>
 </div>
 </div>
 </div>

 <div id="asters" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Asters</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 The name Aster comes from the Ancient Greek word meaning "star",
 referring to the shape of the flower head.
 <div>Price: $2.99</div>
 </div>
 </div>
 </div>
</body>
</html>

Most of this document is given over to the pages that describe the flowers. The actual list is just a few elements,
as follows:

...
<ul data-role="listview">
 Roses
 Orchids
 Asters

...

Chapter 32 ■ Using Lists and paneLs

882

Tip ■ i used the ul element in this example, but jQuery Mobile treats numbered lists (created with the ol element)
in just the same way.

This is a standard HTML unnumbered list, expressed using the ul element, which contains three li elements.
To apply the listview widget, I set the data-role attribute on the ul element to listview.

The basic use for a list widget is to provide navigation, and to this end, the content of each li element is an a
element that links to one of the other pages in the document. Clicking or tapping the individual list items takes the user
to the appropriate page. You can see the listview widget and one of the content pages in Figure 32-1. I added a link-based
button to each content page that takes the user back to the list, using the standard transition (but in reverse).

Configuring the Listview Widget
The listview widget supports a number of data attributes and configuration settings that can be used to change the
appearance and behavior of the list. These are described in Table 32-2 and demonstrated in the sections that follow.

Figure 32-1. A simple jQuery Mobile listview widget

Table 32-2. Attributes and Configuration Settings for Listview Widgets

Data Attribute Setting Description

data-count-theme countTheme Specifies the theme for count bubbles.

data-divider-theme dividerTheme Specifies the theme for dividers.

data-filter filter When set to true, the listview is shown with a filter.

N/A filterCallback Specifies a function that is invoked by the filter.

data-filter-placeholder filterPlaceholder Specifies a placeholder for filtering.

data-filter-theme filterTheme Specifies the theme for the filter search bar.

data-header-theme headerTheme Specifies the theme for nested headers.

data-icon icon Specifies the icon used on headers.

data-inset inset When set to true, the listview is drawn in a style that suits nested lists.

data-split-icon splitIcon Specifies the icon for a split list.

data-split-theme splitTheme Specifies the theme for a split list.

Chapter 32 ■ Using Lists and paneLs

883

Creating Inset Lists
The default layout for lists is to fill the width of the container element and to have square corners, which doesn’t
match the style of other jQuery Mobile widgets. To make the style consistent, you can create an inset list, which has
rounded corners and can be used in elements that do not touch the edges of the screen. You create an inset list by
applying the data-inset attribute with a value of true to the ul or ol element, as shown in Listing 32-2.

Listing 32-2. Creating an Inset List

...
<div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div id="container" style="padding: 20px">
 <ul data-role="listview" data-inset=true>
 Roses
 Orchids
 Asters

 </div>
</div>
...

In this example, I placed the ul element inside a div element. I used the CSS padding setting to inset the list from
the edge of the parent element, and I used the data-inset attribute to change the style of the list. You can see the
result in Figure 32-2.

Creating Split Lists
Split lists are useful when there are two actions that can be performed for each item in the list. The list item is split into
two sections, and clicking or tapping on each part of the item leads to a different action. Listing 32-3 shows a split list
that allows users to get information about a flower or simply add it to their shopping basket.

Figure 32-2. Creating an inset list

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 32 ■ Using Lists and paneLs

884

Listing 32-3. Using a Split List

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 .lcontainer {float: left; text-align: center; padding-top: 10px}
 .productData {float: right; padding: 10px; width: 60%}
 .cWrapper {text-align: center; margin: 20px}
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div id="container" style="padding: 20px">
 <ul data-role="listview" data-inset=true>
 Roses
 Roses
 Orchids
 Orchids
 Asters
 Asters

 </div>
 </div>

 <div id="basket" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div class="cWrapper">
 Basket will go here
 </div>
 <div class="cWrapper">
 <a href="#" data-rel="back" data-role="button" data-inline=true
 data-direction="reverse">Back
 </div>
 </div>

 <div id="roses" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Roses</h1>
 </div>
 <div>
 <div class="lcontainer">

Chapter 32 ■ Using Lists and paneLs

885

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 A rose is a woody perennial within the family Rosaceae.
 They form a group of erect shrubs, and climbing or trailing plants.
 <div>Price: $4.99</div>
 </div>
 </div>
 </div>

 <div id="orchids" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Orchids</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 The orchid family is a diverse and widespread family in the order
 Asparagales. It is one of the largest families of flowering plants.
 <div>Price: $10.99</div>
 </div>
 </div>
 </div>

 <div id="asters" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Asters</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 The name Aster comes from the Ancient Greek word meaning "star",
 referring to the shape of the flower head.
 <div>Price: $2.99</div>
 </div>
 </div>
 </div>
</body>
</html>

Chapter 32 ■ Using Lists and paneLs

886

To create a split list, add a second a element to the li elements. jQuery Mobile splits each list item in two and
inserts a vertical divider between the parts. Clicking or tapping the left part of the item navigates to the target of the
first a element, and clicking or tapping on the right part navigates to the second a element. You can see how the list
items are presented in Figure 32-3.

In this example, I set all of the left parts of the list items to point to a new page I added to the document called
basket. I’ll come back to this example in Chapter 33 and expand on it to put a simple shopping basket in place.
For this example, the basket page is simply a placeholder.

Tip ■ jQuery Mobile uses the arrow icon for the split button by default. You can change this by applying the
data-split-icon attribute to the ul or ol element, specifying the name of the icon you want. Chapter 30 contains
a list of the available icons.

Filtering Lists
The listview widget provides a mechanism for filtering the content of lists, which is enabled by applying the
data-filter attribute with a value of true to the ul or ol element, as shown in Listing 32-4.

Listing 32-4. Using List Filtering

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 .lcontainer {float: left; text-align: center; padding-top: 10px}
 .productData {float: right; padding: 10px; width: 60%}
 </style>
</head>

Figure 32-3. Creating split lists

Chapter 32 ■ Using Lists and paneLs

887

<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview" data-inset=true data-filter=true>
 Roses
 Orchids
 Asters

 </div>
 </div>

 <div id="roses" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Roses</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 A rose is a woody perennial within the family Rosaceae.
 They form a group of erect shrubs, and climbing or trailing plants.
 <div>Price: $4.99</div>
 </div>
 </div>
 </div>

 <div id="orchids" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Orchids</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 The orchid family is a diverse and widespread family in the order
 Asparagales. It is one of the largest families of flowering plants.
 <div>Price: $10.99</div>
 </div>
 </div>
 </div>

Chapter 32 ■ Using Lists and paneLs

888

 <div id="asters" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Asters</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 The name Aster comes from the Ancient Greek word meaning "star",
 referring to the shape of the flower head.
 <div>Price: $2.99</div>
 </div>
 </div>
 </div>
</body>
</html>

As you can see in Figure 32-4, jQuery Mobile adds a search bar above the list. When the user enters characters
into the search bar, jQuery Mobile removes all of the items from the list that don’t contain that sequence of characters.
(By default, filtering isn't performed until at least two characters have been entered into the filter.)

Caution ■ the ability to filter lists is a great feature, but it isn’t always useful on small touch screens. to support
 character input, most mobile devices show a popup touch keyboard when the user activates a text input element such
as the search bar. On small devices, the keyboard can occupy so much of the screen that the user can’t easily see the
results of the filter. this does not mean you should not support list filtering, but it is important to provide other navigation
mechanisms if you are targeting devices with small screens.

Figure 32-4. Enabling list filtering

Chapter 32 ■ Using Lists and paneLs

889

Using a Custom Filtering Function
The default filter matches any list item that contains the set of characters the user has entered. These are matched
anywhere in the list item text and are case insensitive. You can provide a custom filter function by using a jQuery
UI-style method, as shown in Listing 32-5.

Listing 32-5. Using a Custom List Filter Function

...
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript">
 $(document).bind("pageinit", function () {
 $("ul").listview("option", "filterCallback", function (listItem, filter) {
 var pattern = new RegExp("^" + filter, "i");
 return !pattern.test(listItem)
 })
 })
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 .lcontainer {float: left; text-align: center; padding-top: 10px}
 .productData {float: right; padding: 10px; width: 60%}
 </style>
</head>
...

You set the custom function by calling the option method and using the function as the value for the
filterCallback setting. The arguments to the function are the text from a list item and the filter that the user has
entered. The function is called once for each item in the list, and if you return true, the item for which the function has
been called is hidden. In this example, I use a regular expression to restrict matches to list items that begin with the
filter text. You can see the result in Figure 32-5, where typing the letter R into the filter box matches only the Roses item.

Figure 32-5. Using a custom filter

Chapter 32 ■ Using Lists and paneLs

890

Adding Dividers
The listview widget can add dividers between list items. These dividers are specified by elements whose data-role
attribute is set to list-divider, and they can be styled by the use of the data-divider-theme attribute applied to the
ul or ol element that defines the list.

List dividers are useful for providing structure to long or complex lists without changing the way that the user
navigates through the list. In Listing 32-6, you can see how I have added some divider elements and applied the
data-divider-theme attribute to the example.

Listing 32-6. Using List Dividers

...
<div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview" data-inset=true data-theme="c"
 data-divider-theme="b">

 <li data-role="list-divider">A
 Asters
 <li data-role="list-divider">C
 Carnations
 <li data-role="list-divider">D
 Daffodils
 <li data-role="list-divider">L
 Lilies
 <li data-role="list-divider">O
 Orchids
 <li data-role="list-divider">P
 Peonies
 Primulas
 <li data-role="list-divider">R
 Roses
 <li data-role="list-divider">S
 Snowdrops

 </div>
</div>
...

You can see the effect that the dividers create in Figure 32-6.

Chapter 32 ■ Using Lists and paneLs

891

Tip ■ You can apply the data-theme attribute directly to individual list items if you want a different appearance
for just one element.

Using Convention-Based Configuration
Some configuration options are handled by convention rather than configuration. You already saw an example of this
when you looked at split lists. If you add a second a element to the content of an li element, jQuery Mobile automatically
creates a split list item. You don’t have to apply a data attribute to create this effect – it just happens. In this section,
I show you three different conventions you can use to format list items: count bubbles, text emphasis, and asides.

Adding Count Bubbles

You can add a small numeric indicator to a list item. These are called count bubbles, and they can be useful when
list items represent a category of some sort and you want to provide information about how many are available. For
example, if your list items represent e-mail folders, you can use count bubbles to indicate how many messages are in
each folder. You might also use count bubbles to show how many items are in stock in an e-commerce application.

Although this effect is typically used to present numeric values, you can display any information you like.
The meaning of the value needs to be self-evident, because you don’t have room to provide an explanation to the
user – just the value.

You create a count bubble by adding an additional child element to the contents of an li element. This child
element must contain the value and be assigned to the ui-li-count class. You can see examples of count bubbles
defined in Listing 32-7, including one that uses a nonnumeric value.

Listing 32-7. Adding Count Bubbles to List Items

...
<div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

Figure 32-6. Adding dividers to a list

Chapter 32 ■ Using Lists and paneLs

892

 <div data-role="content">
 <ul data-role="listview" data-inset=true data-filter=true>
 Roses<div class="ui-li-count">23</div>
 <div class="ui-li-count">7</div>Orchids
 Asters<div class="ui-li-count">Pink</div>

 </div>
</div>
...

Notice that you can position the child element anywhere within the li element. It doesn’t have to be the last
element (although this is a common convention). You can see how the count bubbles are displayed in Figure 32-7.

Adding Text Emphasis

The listview widget will apply different levels of emphasis when you use content that is wrapped in a header element
(the h1 through h6 elements) instead of a p element (indicating a paragraph). This allows you to create a list item that
contains a headline and some supporting details text, as shown in Listing 32-8.

Listing 32-8. Adding Text Emphasis

...
<div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview" data-inset=true data-filter=true>

 <h1>Roses</h1>
 <p>A rose is a woody perennial within the family Rosaceae.</p>
 <div class="ui-li-count">$4.99</div>

Figure 32-7. Using counter bubbles

Chapter 32 ■ Using Lists and paneLs

893

 <div class="ui-li-count">7</div>Orchids
 Asters<div class="ui-li-count">Pink</div>

 </div>
</div>
...

In this example, I used the h1 element to denote the name of the product and the p element to denote the
detailed information. I included a count bubble, indicating the price of the item. (Prices are ideally suited to count
bubbles because the currency symbol provides immediate meaning to the numeric value.) You can see the effect in
Figure 32-8.

Adding an Aside

An aside is an alternative to using count bubbles. To create an aside, you add a child to the li element that contains
the information you want to display and that is assigned to the ui-li-aside class. You can see the use of an aside
in Listing 32-9.

Listing 32-9. Creating an Aside in a List Item

...
<div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview" data-inset=true data-filter=true>

 <h1>Roses</h1>
 <p>A rose is a woody perennial within the family Rosaceae.</p>
 <p class="ui-li-aside">(Pink) $4.99</p>

Figure 32-8. Using text emphasis in a list item

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 32 ■ Using Lists and paneLs

894

 <div class="ui-li-count">7</div>Orchids
 Asters<div class="ui-li-count">Pink</div>

 </div>
</div>
...

You can see the style with which an aside is displayed for the Roses item in Figure 32-9.

Using the Listview Methods
The listview widget defines the two methods shown in Table 32-3.

Using the Listview Events
The listview widget defines only the create event, which is triggered when the widget is applied to an element.

Using the Panel Widget
The panel widget appears to the left or right of the current page – you can use a panel to display any content, but the
frequent uses are to provide access navigation options and application settings. Panels are created by setting the
data-role attribute to panel on a div element, as shown in Listing 32-10.

Figure 32-9. Using an aside

Table 32-3. Listview Methods

Method Description

listview("refresh") Updates the listview widget to reflect changes in the underlying elements.

Chapter 32 ■ Using Lists and paneLs

895

Listing 32-10. Creating a Panel Widget

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style>
 .buttonContainer { text-align: center; }
 </style>
</head>
<body>

 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div data-role="content" class="buttonContainer">
 <a data-role="button" data-inline="true" href="#panel">Open Panel
 </div>

 <div id="panel" data-role="panel" data-theme="a">
 <div data-role="panel-content">
 <h3>Simple Panel</h3>
 <p>This is the the panel</p>
 <button data-rel="close" data-inline="true">Close</button>
 </div>
 </div>
 </div>
</body>
</html>

The elements for the panel widget are defined within the page that will show the panel. In the example, I have
defined a panel that contains some simple HTML elements, wrapped in a div element whose data-role attribute
I have set as panel-content, which ensures that the content is positioned properly within the panel.

The main page in this example contains an a element whose href element specifies the id of the panel element.
Clicking the link – or the button since I have set the data-role attribute to button on the a element – opens the panel.
You can see the effect in Figure 32-10.

Chapter 32 ■ Using Lists and paneLs

896

This is an example that you need to experience firsthand to properly appreciate, but clicking on the Open Panel
button slides the main page to the right to reveal the panel. I can close the panel by clicking on the Close button in the
panel (which I configured by setting the data-rel attribute to close) or by clicking in the part of the main page that
remains visible.

Configuring the Panel Widget
The panel widget defines the data attributes and configuration settings shown in Table 32-4.

Positioning and Displaying the Panel
The data-display and data-position attributes determine where the panel is displayed (the left or right side of
the window) and how it is displayed relative to the page that opened it. There are three values for the data-display
attribute, which I have described in Table 32-5.

Table 32-4. Attributes and Configuration Settings for Panel Widgets

Data Attribute Setting Description

data-animate animate Specifies whether the panel will be animated when it is opened
or closed. The default is true.

data-dismissable dismissable Specifies whether the panel can be closed by tapping the page that
opened it. The default is true.

data-display display Specifies the relationship between the panel and the page. The values
are reveal, push, and overlay and are described below

data-position position Specifies where the panel is shown. The values are left and right.
The default is left.

data-position-fixed positionFixed Specifies whether the contents of the panel will remain visible even
if the user scrolls down the page. The default is false.

data-swipe-close swipeClose Specifies whether the panel can be closed by swiping it. The default is true.

Figure 32-10. Using the popup widget

Chapter 32 ■ Using Lists and paneLs

897

In Listing 32-11, you can see how the effect of both settings, demonstrating all of the permutations of display
and position options.

Listing 32-11. Positioning the Panel

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("#pageContent button").tap(function (e) {
 $("#" + this.id + "Panel").panel({
 display: $("input[type=radio]:checked").attr("id")
 }).panel("open");
 });
 });
 </script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div id="pageContent" data-role="content">
 <div class="ui-grid-a">
 <div class="ui-block-a"><button id="left">Left</button></div>
 <div class="ui-block-b"><button id="right">Right</button></div>
 </div>

 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup" data-type="horizontal">
 <input type="radio" name="display" id="reveal" checked="checked"/>
 <label for="reveal">Reveal</label>
 <input type="radio" name="display" id="push"/>
 <label for="push">Push</label>

Table 32-5. Values for the data-display Attribute

Value Description

reveal The default value: the panel pushes the page out of the way.

push The page is resized to share space with the panel.

overlay The panel slides over the page.

Chapter 32 ■ Using Lists and paneLs

898

 <input type="radio" name="display" id="overlay"/>
 <label for="overlay">Overlay</label>
 </fieldset>
 </div>
 </div>

 <div id="leftPanel" data-role="panel" data-theme="a" data-position="left">
 <div data-role="panel-content">
 <h3>Left Panel</h3>
 <p>This is the the left panel</p>
 <button data-rel="close" data-inline="true">Close</button>
 </div>
 </div>

 <div id="rightPanel" data-role="panel" data-theme="a" data-position="right">
 <div data-role="panel-content">
 <h3>Right Panel</h3>
 <p>This is the the right panel</p>
 <button data-rel="close" data-inline="true">Close</button>
 </div>
 </div>
 </div>
</body>
</html>

I use a pair of buttons to open left and right panels (using the open method, which I describe later in this chapter)
and a set of radio buttons (as described in Chapter 30) to select the display mode. You can see some of the permutations
in Figure 32-11.

The panel widget can't display the same elements to the left and the right of the window: the process for
preparing the content aligns it one way or the other. It is for this reason that I have used two separate panels
in this example.

Figure 32-11. Changing the display and position options

Chapter 32 ■ Using Lists and paneLs

899

Dismissing the Panel
The data-swipe-close and data-dismissable attributes allow you to control how the user can close the panel, either
by making a swipe gesture or by tapping the page that opened the panel. Setting these attributes to false creates a
panel that can only be closed when the user interacts with the panel content (or programmatically using the open
or toggle methods, which I describe later in the chapter).

I am wary of taking control of widgets away from users and if you decide to use these attributes, then you should
ensure that you do so consistently throughout your web app – having panels that are dismissed in different ways just
causes frustration. In Listing 32-12, I have created a panel that is displayed for a fixed period and then dismisses
itself – not something that I would recommend in a real application, but useful for demonstrating the widget features.
The user can't dismiss the panel by tapping the page that opened it or by swiping, but the button can still be used to
close the panel.

Listing 32-12. Creating Panels That Cannot Be Dismissed by Tapping the Page or Swiping

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script>
 $(document).bind("pageinit", function () {
 $("a").tap(function (e) {
 var timeRemaining = 15;
 var intervalId = setInterval(function () {
 $("#remaining").text(timeRemaining--);
 if (timeRemaining == 0) {
 $("#panel").panel("close");
 clearInterval(intervalId);
 }
 }, 1000);
 $("#panel").panel("open");
 });
 });
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div data-role="content" class="buttonContainer">
 <a data-role="button" data-inline="true">Open Panel
 </div>

Chapter 32 ■ Using Lists and paneLs

900

 <div id="panel" data-role="panel" data-theme="a"
 data-dismissable="false" data-swipe-close="false">
 <div data-role="panel-content">
 <h3>Simple Panel</h3>
 <p>This panel will close in
 15 seconds.</p>
 <button data-rel="close" data-inline="true">Close</button>
 </div>
 </div>
 </div>
</body>
</html>

I use the open and close methods to control the visibility of the panel – I describe these methods properly in the
next section – and use the JavaScript setInterval function to manage a countdown that closes the panel 15 seconds
after it has been opened. The user can close the panel early by using the button element displayed in the panel – if
you want to prevent the user from closing the panel, then you must ensure that the panel contains no such elements.
The panel widget reflects changes in the underlying elements as they happen, as shown in Figure 32-12.

Using the Panel Methods
The panel widget defines the methods shown in Table 32-6. The open and close methods are demonstrated
in the previous example.

Figure 32-12. A self-closing panel

Table 32-6. Panel Methods

Method Description

panel("open") Shows the panel.

panel("close") Hides the panel.

panel("toggle") Toggles the visibility of the panel: hidden panels are shown and visible panels are hidden.

Chapter 32 ■ Using Lists and paneLs

901

Using the Panel Events
The panel widget defines the events shown in Table 32-7. I don't find these events useful in my own projects because
I prefer to deal with the events from the elements that lead to the panel being shown or hidden.

Summary
In this chapter, I described the jQuery Mobile list widget, which can be an essential navigation tool for mobile
web applications. I showed you the different kinds of lists you can create, the different styles of list you can present
to the user, and the configurations and conventions you can use to manage the content of individual list items.

Table 32-7. Panel Events

Event Description

create Triggered when the widget is created.

beforeopen Triggered before the panel is shown.

beforeclose Triggered before the panel is hidden.

open Triggered after the panel is shown.

close Triggered after the panel is hidden.

903

Chapter 33

Refactoring the Example: Part IV

In prior chapters in this part of the book, I introduced you to jQuery Mobile. In this chapter, I’ll build a more complete
example that uses the jQuery Mobile functionality. By its nature, jQuery Mobile is a lot simpler than jQuery UI, and
there are a lot fewer design choices available. Your development efforts with jQuery Mobile are further constrained by
the unique issues that face mobile device development.

Starting with the Basics
In Chapter 32, I showed you an example that used split lists. This example is the starting point for this chapter and I'll
use it to build out some additional functionality. Listing 33-1 shows the initial example document for this chapter.

Listing 33-1. The Starting Point for This Chapter

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 .lcontainer {float: left; text-align: center; padding-top: 10px}
 .productData {float: right; padding: 10px; width: 60%}
 .cWrapper {text-align: center; margin: 20px}
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div id="container" style="padding: 20px">
 <ul data-role="listview" data-inset=true>
 Roses
 Roses
 Orchids
 Orchids

Chapter 33 ■ refaCtoring the example: part iV

904

 Asters
 Asters

 </div>
 </div>

 <div id="basket" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div class="cWrapper">
 Basket will go here
 </div>
 <div class="cWrapper">
 <a href="#" data-rel="back" data-role="button" data-inline=true
 data-direction="reverse">Back
 </div>
 </div>

 <div id="roses" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Roses</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 A rose is a woody perennial within the family Rosaceae.
 They form a group of erect shrubs, and climbing or trailing plants.
 <div>Price: $4.99</div>
 </div>
 </div>
 </div>

 <div id="orchids" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Orchids</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 33 ■ refaCtoring the example: part iV

905

 <div class="productData">
 The orchid family is a diverse and widespread family in the order
 Asparagales. It is one of the largest families of flowering plants.
 <div>Price: $10.99</div>
 </div>
 </div>
 </div>
 <div id="asters" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Asters</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">
 The name Aster comes from the Ancient Greek word meaning "star",
 referring to the shape of the flower head.
 <div>Price: $2.99</div>
 </div>
 </div>
 </div>
</body>
</html>

Inserting Products Programmatically
The first thing I’ll do is replace the static pages that describe each flower with some that are created dynamically. This
change allows me to have a more compact document and to easily add more flowers for the user to pick from without
duplicating HTML elements. I will generate the pages using a data template, which I described in Chapter 12. Data
templates work with the core jQuery library and so fit nicely into a jQuery Mobile application as well. I created a file
called data.json that contains the data I need for the flowers. Listing 33-2 shows the contents of data.json.

Listing 33-2. The Content of the data.json file

[{ "name": "aster",
 "label": "Asters",
 "price": "$2.99",
 "text": "The name Aster comes from the Ancient Greek word meaning star..."
},{ "name": "carnation",
 "label": "Carnations",
 "price": "$1.99",
 "text": "Carnations require well-drained, neutral to slightly alkaline soil..."
},{ "name": "daffodil",
 "label": "Daffodils",
 "price": "$1.99",
 "text": "Daffodil is a common English name, sometimes used for all varieties..."

Chapter 33 ■ refaCtoring the example: part iV

906

},{ "name": "rose",
 "label": "Roses",
 "price": "$4.99",
 "text": "A rose is a woody perennial within the family Rosaceae. They form a..."
},{ "name": "orchid",
 "label": "Orchids",
 "price": "$10.99",
 "text": "The orchid family is a diverse and widespread family in the order..."
}]

The data describes five flowers. For each of them, I defined the product name, the label to display to the user, the
price per unit, and a text description.

Note ■ i did not show the full text description in the listing, but it is included in the data.json file that is part of the
source code download for this book (which you can get from apress.com).

Now that I have the data, I can integrate it into the document. Listing 33-3 shows the changes from static to
programmatically generated pages using a data template.

Listing 33-3. Adding Pages Dynamically

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <style type="text/css">
 .lcontainer {float: left; text-align: center; padding-top: 10px}
 .productData {float: right; padding: 10px; width: 60%}
 .cWrapper {text-align: center}
 </style>
 <script id="flowerTmpl" type="text/x-handlebars-template">
 {{#products}}
 <div id="{{name}}" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>{{label}}</h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>

http://apress.com

Chapter 33 ■ refaCtoring the example: part iV

907

 <div class="productData">
 {{text}}
 <div>Price: {{price}}</div>
 </div>
 </div>
 </div>
 {{/products}}
 </script>

 <script id="liTmpl" type="text/x-handlebars-template">
 {{#products}}

 {{label}}
 {{label}}

 {{/products}}
 </script>

 <script type="text/javascript">
 var initComplete = false;
 $(document).bind("pageinit", function () {
 if (!initComplete) {
 $.getJSON("data.json", function (data) {
 $("#flowerTmpl").template({ products: data })
 .filter("*").appendTo("body");
 $("ul").append($("#liTmpl").template({ products: data })
 .filter("*")).listview("refresh")
 });
 initComplete = true;
 }
 })
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div id="container" style="padding: 20px">
 <ul data-role="listview" data-inset=true>
 </div>
 </div>

 <div id="basket" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div class="cWrapper">
 Basket will go here
 </div>

Chapter 33 ■ refaCtoring the example: part iV

908

 <div class="cWrapper">
 <a href="#" data-rel="back" data-role="button" data-inline=true
 data-direction="reverse">Back
 </div>
 </div>
</body>
</html>

I removed the per-flower pages and used data templates to generate what I need from the data, which I obtain
using the getJSON method (described in Chapter 14). The key to this change is the simple custom JavaScript code,
as follows:

..
<script type="text/javascript">
 var initComplete = false;
 $(document).bind("pageinit", function () {
 if (!initComplete) {
 $.getJSON("data.json", function (data) {
 $("#flowerTmpl").template({ products: data })
 .filter("*").appendTo("body");
 $("ul").append($("#liTmpl").template({ products: data })
 .filter("*")).listview("refresh")
 });
 initComplete = true;
 }
 })
</script>
...

When I obtain the data, I use a template to generate elements form the data and add the dynamically generated
pages to the body element in the document. I also use a template to generate the items for the main list of flowers.
I tell jQuery Mobile that I have modified the contents of the list, which I do by calling the refresh method on the
listview widget, like this:

...
$("ul").append($("#liTmpl").template({ products: data })
 .filter("*")).listview("refresh");
...

The data templates are simple and use the standard techniques I described in Chapter 12. You can see the result
in Figure 33-1—a list whose items are generated programmatically and link to pages that have been added to the
document programmatically.

Chapter 33 ■ refaCtoring the example: part iV

909

Reusing Pages
I like the data template approach because it shows how jQuery underpins such a wide range of functionality, allowing
you to bring together features like templates with an interface toolkit like jQuery Mobile.

That said, you can adopt a more elegant approach for dealing with the per-flower pages. Rather than generate a
set of elements for each flower you want to show, you can generate one set of elements and modify them to show the
flower that the user has selected. Listing 33-4 shows the changes to the document that make this possible.

Listing 33-4. Reusing a Single Page for Multiple Products

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <script id="liTmpl" type="text/x-handlebars-template">
 {{#products}}

 {{label}}
 {{label}}

 {{/products}}
 </script>
 <script type="text/javascript">
 var initComplete = false;

 $(document).bind("pageinit", function () {

Figure 33-1. Programmatically generated list items and pages

Chapter 33 ■ refaCtoring the example: part iV

910

 if (!initComplete) {

 $.getJSON("data.json", function (data) {

 $("ul").append($("#liTmpl").template({ products: data })
 .filter("*")).listview("refresh");

 $("a.productLink").bind("tap", function () {
 var targetFlower = $(this).attr("data-flower");
 for (var i = 0; i < data.length; i++) {
 if (data[i].name == targetFlower) {
 var page = $("#productPage");
 page.find("#header").text(data[i].label);
 page.find("#image").attr("src", data[i].name + ".png");
 page.find("#description").text(data[i].text);
 page.find("#price").text(data[i].price);

 $.mobile.changePage("#productPage");
 break;
 }
 }
 })
 });
 initComplete = true;
 }
 })
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 .lcontainer {float: left; text-align: center; padding-top: 10px}
 .productData {float: right; padding: 10px; width: 60%}
 .cWrapper {text-align: center}
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div id="container" style="padding: 20px">
 <ul data-role="listview" data-inset=true>

 </div>
 </div>

 <div id="productPage" data-role="page" data-theme="b">
 <div data-role="header">
 <h1 id="header"></h1>
 </div>
 <div>
 <div class="lcontainer">

Chapter 33 ■ refaCtoring the example: part iV

911

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">

 <div>Price: </div>
 </div>
 </div>
 </div>

 <div id="basket" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div class="cWrapper">
 Basket will go here
 </div>
 <div class="cWrapper">
 <a href="#" data-rel="back" data-role="button" data-inline=true
 data-direction="reverse">Back
 </div>
 </div>
</body>
</html>

Tip ■ this is an approach that is particularly suited to jQuery mobile because multiple pages are contained within
a single html document. as a rule, you want to keep your html documents as simple as possible because of the
limitations inherent in mobile devices.

I removed one of the data templates from the document and added a new page (whose id is productPage) that
I use for each flower. I modified the template used to generate the list items so that there is no target page in the href
attribute and to add my own data attribute so that I know which flower any given link relates to. When the data has
been retrieved from JSON, the revised script selects all of the per-product links from the list elements I just created
using the template and binds to the tap event. When a list item is tapped, I find the appropriate data item and use its
properties to configure the productPage page, setting the text and image to display to the user, as follows:

...
<script type="text/javascript">

 var initComplete = false;

 $(document).bind("pageinit", function () {
 if (!initComplete) {
 $.getJSON("data.json", function (data) {

 $("ul").append($("#liTmpl").template({ products: data })
 .filter("*")).listview("refresh");

Chapter 33 ■ refaCtoring the example: part iV

912

 $("a.productLink").bind("tap", function () {
 var targetFlower = $(this).attr("data-flower");
 for (var i = 0; i < data.length; i++) {
 if (data[i].name == targetFlower) {
 var page = $("#productPage");
 page.find("#header").text(data[i].label);
 page.find("#image").attr("src", data[i].name + ".png");
 page.find("#description").text(data[i].text);
 page.find("#price").text(data[i].price);

 $.mobile.changePage("#productPage");
 break;
 }
 }
 })
 });
 initComplete = true;
 }
 })
</script>
...

After I configure the page, I use the changePage method to trigger the navigation. There is no change in the
appearance of the example, but you have a smaller set of elements for the mobile browser to manage, and it’s a nice
example of how you can manipulate the page structure of a jQuery Mobile document.

Creating the Shopping Basket
I am using a split list in this example, and the left side of the list item leads to the basket page. In this section,
I’ll define the elements for the page and add some JavaScript so that there is a simple basket in place. Listing 33-5
shows the changes to the document.

Listing 33-5. Implementing the Shopping Basket

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <script id="liTmpl" type="text/x-handlebars-template">
 {{#products}}

 {{label}}
 {{label}}

 {{/products}}
 </script>

Chapter 33 ■ refaCtoring the example: part iV

913

 <script id="trTmpl" type="text/x-handlebars-template">
 <tr data-price="{{price}}" id="{{name}}"><td>{{label}}</td><td id="count">1</td>
 <td id="subtotal">0</td></tr>
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 $.getJSON("data.json", function (data) {
 $("ul").append($("#liTmpl").template({ products: data }))
 .filter("*").listview("refresh");

 $("a.productLink").bind("tap", function () {
 var targetFlower = $(this).attr("data-flower");
 for (var i = 0; i < data.length; i++) {
 if (data[i].name == targetFlower) {
 var page = $("#productPage");
 page.find("#header").text(data[i].label);
 page.find("#image").attr("src", data[i].name + ".png");
 page.find("#description").text(data[i].text);
 page.find("#price").text(data[i].price);
 $.mobile.changePage("#productPage");
 break;
 }
 }
 });

 $("a.buy").bind("tap", function () {
 var targetFlower = this.id;
 var row = $("#basketTable tbody #" + targetFlower);
 if (row.length > 0) {
 var countCell = row.find("#count");
 countCell.text(Number(countCell.text()) + 1);
 } else {
 for (var i = 0; i < data.length; i++) {
 if (data[i].name == targetFlower) {
 $("#trTmpl").template(data[i])
 .appendTo("#basketTable tbody")
 break;
 }
 }
 }
 calculateTotals();
 $.mobile.changePage("#basket")
 });
 })
 })

 function calculateTotals() {
 var total = 0;
 $("#basketTable tbody").children().each(function (index, elem) {
 var count = Number($(elem).find("#count").text())
 var price = Number($(elem).attr("data-price").slice(1))

Chapter 33 ■ refaCtoring the example: part iV

914

 var subtotal = count * price;
 $(elem).find("#subtotal").text("$" + subtotal.toFixed(2));
 total += subtotal;
 })
 $("#total").text("$" + total.toFixed(2))
 }
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 .lcontainer {float: left; text-align: center; padding-top: 10px}
 .productData {float: right; padding: 10px; width: 60%}
 .cWrapper {text-align: center}
 table {display: inline-block; margin: auto; margin-top: 20px; text-align: left;
 border-collapse: collapse}
 td {min-width: 100px}
 th, td {text-align: right}
 th:nth-child(1), td:nth-child(1) {text-align: left}
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div id="container" style="padding: 20px">
 <ul data-role="listview" data-inset=true>
 </div>
 </div>

 <div id="productPage" data-role="page" data-theme="b">
 <div data-role="header">
 <h1 id="header"></h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">

 <div>Price: </div>
 </div>
 </div>
 </div>

 <div id="basket" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 33 ■ refaCtoring the example: part iV

915

 <div class="cWrapper">
 <table id="basketTable" border=0>
 <thead>
 <tr><th>Flower</th><th>Quantity</th><th>Subtotal</th></tr>
 </thead>
 <tbody></tbody>
 <tfoot>
 <tr><th colspan=2>Total:</th><td id="total"></td></tr>
 </tfoot>
 </table>
 </div>
 <div class="cWrapper">
 <a href="#" data-rel="back" data-role="button" data-inline=true
 data-direction="reverse">Back
 <button data-inline="true">Checkout</button>
 </div>
 </div>
</body>
</html>

I added a table to the basket page, which shows one row for each selected product. Each row shows the name
of the product, the quantity, and the subtotal. There is a footer in the table that shows the overall total. I bound to the
tap event so that when the user clicks on the left side of the split button, either a new row is added to the table or the
quantity is incremented if there is already a row for this product in the table. New rows are generated using another
data template, and everything else is handled by reading the contents of elements in the document.

I determine and maintain the entire state of the customer’s basket using the DOM itself. I could have created
a JavaScript object to model the order and driven the contents of the table from the object, but in a book about
jQuery, I like to take every opportunity to work with the document itself. The result is a simple basket, which is
shown in Figure 33-2.

Figure 33-2. The basket page

Chapter 33 ■ refaCtoring the example: part iV

916

Adding for Quantity Changes
The basket is functional, but if the user wants two roses, for example, she has to tap the Rose list item, tap the Back
button, and then tap the Rose item again. This process is pretty ridiculous, so to make it easier to change the quantity
of a product, I added some input elements to the table. You can see the changes in Listing 33-6.

Listing 33-6. Adding Range Sliders to the Basket Table

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <script id="liTmpl" type="text/x-handlebars-template">
 {{#products}}

 {{label}}
 {{label}}

 {{/products}}
 </script>
 <script id="trTmpl" type="text/x-handlebars-template">
 <tr data-theme="b" data-price="{{price}}" id="{{name}}"><td>{{label}}</td>
 <td id="count"><input type=number value=1 min=0 max=10></td>
 <td id="subtotal">0</td>
 </tr>
 </script>
 <script type="text/javascript">

 var initComplete = false;

 $(document).bind("pageinit", function () {
 if (!initComplete) {
 $.getJSON("data.json", function (data) {

 $("ul").append($("#liTmpl")
 .template({ products: data })).listview("refresh");

 $("a.productLink").bind("tap", function () {
 var targetFlower = $(this).attr("data-flower");
 for (var i = 0; i < data.length; i++) {
 if (data[i].name == targetFlower) {
 var page = $("#productPage");
 page.find("#header").text(data[i].label);
 page.find("#image").attr("src", data[i].name + ".png");
 page.find("#description").text(data[i].text);
 page.find("#price").text(data[i].price);

Chapter 33 ■ refaCtoring the example: part iV

917

 $.mobile.changePage("#productPage");
 break;
 }
 }
 })

 $("a.buy").bind("tap", function () {
 var targetFlower = this.id;
 var row = $("#basketTable tbody #" + targetFlower);
 if (row.length > 0) {
 var countCell = row.find("#count input");
 countCell.val(Number(countCell.val()) + 1);
 } else {
 for (var i = 0; i < data.length; i++) {
 if (data[i].name == targetFlower) {
 $("#trTmpl").template(data[i])
 .appendTo("#basketTable tbody")
 .find("input").textinput()

 break;
 }
 }
 }
 calculateTotals();
 $.mobile.changePage("#basket")
 })

 $(document).on("change click", "input", function (event) {
 calculateTotals();
 })
 });
 initComplete = true;
 }
 })

 function calculateTotals() {
 var total = 0;
 $("#basketTable tbody").children().each(function (index, elem) {
 var count = Number($(elem).find("#count input").val())
 var price = Number($(elem).attr("data-price").slice(1))
 var subtotal = count * price;
 $(elem).find("#subtotal").text("$" + subtotal.toFixed(2));
 total += subtotal;
 })
 $("#total").text("$" + total.toFixed(2))
 }
 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 .lcontainer {float: left; text-align: center; padding-top: 10px}
 .productData {float: right; padding: 10px; width: 60%}
 .cWrapper {text-align: center}

Chapter 33 ■ refaCtoring the example: part iV

918

 table {display: inline-block; margin: auto; margin-top: 20px; text-align: left;
 border-collapse: collapse}
 td {min-width: 100px; padding-bottom: 10px}
 td:nth-child(2) {min-width: 75px; width: 75px}
 th, td {text-align: right}
 th:nth-child(1), td:nth-child(1) {text-align: left}
 input[type=number] {background-color: white}
 tfoot tr {border-top: medium solid black}
 tfoot tr td {padding-top: 10px}
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div id="container" style="padding: 20px">
 <ul data-role="listview" data-inset=true>
 </div>
 </div>

 <div id="productPage" data-role="page" data-theme="b">
 <div data-role="header">
 <h1 id="header"></h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">

 <div>Price: </div>
 </div>
 </div>
 </div>

 <div id="basket" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div class="cWrapper">
 <table id="basketTable" border=0>
 <thead>
 <tr><th>Flower</th><th>Quantity</th><th>Subtotal</th></tr>
 </thead>
 <tbody></tbody>

Chapter 33 ■ refaCtoring the example: part iV

919

 <tfoot>
 <tr><th colspan=2>Total:</th><td id="total"></td></tr>
 </tfoot>
 </table>
 </div>
 <div class="cWrapper">
 <a href="#" data-rel="back" data-role="button" data-inline=true
 data-direction="reverse">Back
 <button data-inline="true">Checkout</button>
 </div>
 </div>
</body>
</html>

I inserted an input element into the quantity cell in the template, which is used to generate rows for the table.
The type of this input element is number, which causes some browsers to insert small up and down buttons alongside
the text entry area. These buttons are too small to be useful for touch, but the browser will also filter the characters
to discard anything that isn’t appropriate for a number. Although it’s acceptable for this chapter, this isn’t a perfect
approach for real projects because floating point numbers are supported, which means that the user can input
fractions of products.

I call the textinput method when I add input elements to the document after the pages have been enhanced by
jQuery Mobile:

...
$("#trTmpl").template(data[i]).appendTo("#basketTable tbody").find("input").textinput()
...

If I do not add this method call, the browser displays the native input element. Calling the textinput method
causes jQuery Mobile to enhance the element, although it doesn’t properly assign the swatch. So I defined a style for
the input element to set the background color consistently:

...
input[type=number] {background-color: white}
...

I need to calculate the subtotals and totals more frequently now that the user can change the quantity of a
product in the basket page. Because I add input elements to the document throughout the life of the application, I use
the jQuery on method to handle events. The on method is described in Chapter 9. Here is the event handler code:

...
$(document).on("change click", "input", function (event) {
 calculateTotals();
})
...

I use the on method to associate my handler function with both the change and click events. The browsers that
add up and down buttons to numeric input elements trigger the click event when those buttons are pressed, so I need
to handle this event in addition to the more expected change event. My handler function calls the calculateTotals
function when either event is triggered. You can see how the basket looks in Figure 33-3.

Chapter 33 ■ refaCtoring the example: part iV

920

Adding a Button to the Information Page
The product information describes the flower the user has selected, but it doesn’t provide any way for the user to add
it to the basket. To round out the basic basket functionality, I added a button to the product page that adds the item to
the basket. Listing 33-7 shows the changes to the product page.

Listing 33-7. Adding a Button to the Product Page

...
<div id="productPage" data-role="page" data-theme="b">
 <div data-role="header">
 <h1 id="header"></h1>
 </div>
 <div>
 <div class="lcontainer">

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">

 <div>
 Price:
 <a href="#" id="buybutton" data-flower="" data-role="button"
 data-inline=true>Buy
 </div>
 </div>
 </div>
 </div>
...

Figure 33-3. Adding input elements to the basket page

Chapter 33 ■ refaCtoring the example: part iV

921

I defined an a element that jQuery Mobile will transform into a button widget. I added a data attribute
(data-flower) so that I can keep track of which flower is being displayed when the user taps the button. To support
this button, I made some changes to the script. These changes are shown in Listing 33-8.

Listing 33-8. Adding Support for the Buy Button in the Script

...
<script type="text/javascript">

 var initComplete = false;

 $(document).bind("pageinit", function () {
 if (!initComplete) {
 $.getJSON("data.json", function (data) {

 $("ul").append($("#liTmpl")
 .template({ products: data })).listview("refresh");

 $("a.productLink").bind("tap", function () {
 var targetFlower = $(this).attr("data-flower");
 for (var i = 0; i < data.length; i++) {
 if (data[i].name == targetFlower) {
 var page = $("#productPage");
 page.find("#header").text(data[i].label);
 page.find("#image").attr("src", data[i].name + ".png");
 page.find("#description").text(data[i].text);
 page.find("#price").text(data[i].price);
 page.find("#buybutton").attr("data-flower", data[i].name);
 $.mobile.changePage("#productPage");
 break;
 }
 }
 })

 $("#buybutton").bind("tap", function () {
 addProduct($(this).attr("data-flower"));
 })

 $("a.buy").bind("tap", function () {
 addProduct(this.id);
 })

 function addProduct(targetFlower) {
 var row = $("#basketTable tbody #" + targetFlower);
 if (row.length > 0) {
 var countCell = row.find("#count input");
 countCell.val(Number(countCell.val()) + 1);
 } else {
 for (var i = 0; i < data.length; i++) {
 if (data[i].name == targetFlower) {
 $("#trTmpl").template(data[i])
 .appendTo("#basketTable tbody")
 .find("input").textinput()

Chapter 33 ■ refaCtoring the example: part iV

922

 break;
 }
 }
 }
 calculateTotals();
 $.mobile.changePage("#basket")
 }

 $(document).on("change click", "input", function (event) {
 calculateTotals();
 })
 });
 initComplete = true;
 }
 })

 function calculateTotals() {
 var total = 0;
 $("#basketTable tbody").children().each(function (index, elem) {
 var count = Number($(elem).find("#count input").val())
 var price = Number($(elem).attr("data-price").slice(1))
 var subtotal = count * price;
 $(elem).find("#subtotal").text("$" + subtotal.toFixed(2));
 total += subtotal;
 })
 $("#total").text("$" + total.toFixed(2))
 }
</script>
...

These changes are pretty straightforward. When the user selects a product from the main list, I set the value of the
data-flower attribute on the a element. I register a function to handle the tap event for the button and use the value
data-flower to call the addProduct function, which contains code I extracted from another handler function. With
these changes, the user can add products to the basket from the main list (by tapping on the left side of the split list item)
or from the information page (by tapping the Buy button). Figure 33-4 shows the addition of the Buy button to the page.

Figure 33-4. Adding a button to the product information page

Chapter 33 ■ refaCtoring the example: part iV

923

Implementing the Checkout Process
To round out this example, I’ll demonstrate gathering the data from the various jQuery Mobile pages in a form
that can be used to make an Ajax request. I will not make the request itself or implement the server. jQuery
Mobile uses the core jQuery support for Ajax, which I described in Chapters 14 and 15. Listing 33-9 shows the
addition of a page that is shown to the user when the Checkout button is tapped and the handler function that
gathers the data.

Listing 33-9. Implementing the Checkout Process

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.3.1.css" type="text/css" />
 <script type="text/javascript" src="jquery-1.10.1.js"></script>
 <script src="handlebars.js"></script>
 <script src="handlebars-jquery.js"></script>
 <script id="liTmpl" type="text/x-handlebars-template">
 {{#products}}

 {{label}}
 {{label}}

 {{/products}}
 </script>
 <script id="trTmpl" type="text/x-handlebars-template">
 <tr data-theme="b" data-price="{{price}}" id="{{name}}"><td>{{label}}</td>
 <td id="count"><input type=number value=1 min=0 max=10></td>
 <td id="subtotal">0</td>
 </tr>
 </script>
 <script type="text/javascript">
 var initComplete = false;
 $(document).bind("pageinit", function () {
 if (!initComplete) {
 $.getJSON("data.json", function (data) {
 $("ul").append($("#liTmpl")
 .template({ products: data })).listview("refresh");

 $("a.productLink").bind("tap", function () {
 var targetFlower = $(this).attr("data-flower");
 for (var i = 0; i < data.length; i++) {
 if (data[i].name == targetFlower) {
 var page = $("#productPage");
 page.find("#header").text(data[i].label);
 page.find("#image").attr("src", data[i].name + ".png");
 page.find("#description").text(data[i].text);
 page.find("#price").text(data[i].price);

Chapter 33 ■ refaCtoring the example: part iV

924

 page.find("#buybutton")
 .attr("data-flower", data[i].name);
 $.mobile.changePage("#productPage");
 break;
 }
 }
 })

 $("#buybutton").bind("tap", function () {
 addProduct($(this).attr("data-flower"));
 })

 $("a.buy").bind("tap", function () {
 addProduct(this.id);
 })

 function addProduct(targetFlower) {
 var row = $("#basketTable tbody #" + targetFlower);
 if (row.length > 0) {
 var countCell = row.find("#count input");
 countCell.val(Number(countCell.val()) + 1);
 } else {
 for (var i = 0; i < data.length; i++) {
 if (data[i].name == targetFlower) {
 $("#trTmpl").template(data[i])
 .appendTo("#basketTable tbody")
 .find("input").textinput();
 break;
 }
 }
 }
 calculateTotals();
 $.mobile.changePage("#basket")
 }

 $(document).on("change click", "input", function (event) {
 calculateTotals();
 })

 $("#submit").bind("tap", function () {
 var dataObject = new Object();
 $("#basketTable tbody").children().each(function (index, elem) {
 dataObject[elem.id] = $(elem).find("#count input").val();
 })
 dataObject["name"] = $("#name").val();
 dataObject["wrap"] = $("option:selected").val();
 dataObject["shipping"] = $("input:checked").attr("id")

 console.log("DATA: " + JSON.stringify(dataObject))
 })
 });

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 33 ■ refaCtoring the example: part iV

925

 initComplete = true;
 }
 })

 function calculateTotals() {
 var total = 0;
 $("#basketTable tbody").children().each(function (index, elem) {
 var count = Number($(elem).find("#count input").val())
 var price = Number($(elem).attr("data-price").slice(1))
 var subtotal = count * price;
 $(elem).find("#subtotal").text("$" + subtotal.toFixed(2));
 total += subtotal;
 })
 $("#total").text("$" + total.toFixed(2))
 }

 </script>
 <script type="text/javascript" src="jquery.mobile-1.3.1.js"></script>
 <style type="text/css">
 .lcontainer {float: left; text-align: center; padding: 10px}
 .productData {float: right; padding: 10px; width: 60%}
 .cWrapper {text-align: center}
 table {display: inline-block; margin: auto; margin-top: 20px; text-align: left;
 border-collapse: collapse}
 td {min-width: 100px; padding-bottom: 10px}
 td:nth-child(2) {min-width: 75px; width: 75px}
 th, td {text-align: right}
 th:nth-child(1), td:nth-child(1) {text-align: left}
 input[type=number] {background-color: white}
 tfoot tr {border-top: medium solid black}
 tfoot tr td {padding-top: 10px}
 </style>
</head>
<body>
 <div id="page1" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div id="container" style="padding: 20px">
 <ul data-role="listview" data-inset=true>
 </div>
 </div>

 <div id="productPage" data-role="page" data-theme="b">
 <div data-role="header">
 <h1 id="header"></h1>
 </div>
 <div>
 <div class="lcontainer">

Chapter 33 ■ refaCtoring the example: part iV

926

 <div><a href="#" data-rel="back" data-role="button"
 data-inline=true data-direction="reverse">Back
 </div>
 </div>
 <div class="productData">

 <div>
 Price:
 <a href="#" id="buybutton" data-flower="" data-role="button"
 data-inline=true>Buy
 </div>
 </div>
 </div>
 </div>

 <div id="basket" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>
 <div class="cWrapper">
 <table id="basketTable" border=0>
 <thead>
 <tr><th>Flower</th><th>Quantity</th><th>Subtotal</th></tr>
 </thead>
 <tbody></tbody>
 <tfoot>
 <tr><th colspan=2>Total:</th><td id="total"></td></tr>
 </tfoot>
 </table>
 </div>
 <div class="cWrapper">
 <a href="#" data-rel="back" data-role="button" data-inline=true
 data-direction="reverse">Back
 Checkout
 </div>
 </div>

 <div id="checkout" data-role="page" data-theme="b">
 <div data-role="header">
 <h1>Jacqui's Shop</h1>
 </div>

 <div data-role="content">
 <label for="name">Name: </label>
 <input id="name" placeholder="Your Name">

 <label for="wrap">Gift Wrap: </label>
 <select id="wrap" name="wrap" data-role="slider">
 <option value="yes" selected>Yes</option>
 <option value="no">No</option>
 </select>

Chapter 33 ■ refaCtoring the example: part iV

927

 <fieldset data-role="controlgroup" data-type="horizontal">
 <legend>Shipping:</legend>
 <input type="radio" name="ship" id="overnight" checked />
 <label for="overnight">Overnight</label>
 <input type="radio" name="ship" id="23day"/>
 <label for="23day">2-3 days</label>
 <input type="radio" name="ship" id="710day"/>
 <label for="710day">7-10 days</label>
 </fieldset>

 <div class="cWrapper">
 <a href="#" data-rel="back" data-role="button" data-inline="true"
 data-direction="reverse">Back
 <a href="#" id="submit" data-role="button"
 data-inline="true">Submit Order
 </div>
 </div>
 </div>
</body>
</html>

The new page is called checkout. I kept this form simple, prompting the user for a name and providing choices
for gift wrapping and the shipping method. You can see how the page appears in Figure 33-5. I have shown the page in
the portrait orientation because it allows me to display all of the elements without having to scroll.

Figure 33-5. The checkout page

Chapter 33 ■ refaCtoring the example: part iV

928

When the user taps the Submit Order button, I gather the data from the different pages in the HTML document
and write the result as a JSON string to the console. The following is an example of such a string:

{"carnation":"3","rose":"1","orchid":"1",
 "name":"Adam Freeman","wrap":"yes","shipping":"23day"}

Summary
In this chapter, I took some of the core features of jQuery Mobile and combined them to create a simple mobile
implementation of the flower shop example. By its nature, jQuery Mobile is a lot simpler than jQuery UI. The main
challenge is to design an approach that gives the user the information he requires within the confines of a small screen.

929

Chapter 34

Using the jQuery Utility Methods

jQuery includes a number of utility methods that perform advanced operations on jQuery objects or which
supplement the JavaScript language to provide features that are usually present in programing languages. You may
never need any of these methods, but they are used internally by jQuery, and making them publicly available means
that you can save time and effort when you come across an odd problem that the jQuery team has already solved.

Some of these methods are applied to jQuery object and some are called against the main jQuery function, which
I have illustrated using the $ notation (described in Chapter 5). Table 34-1 provides the summary for this chapter.

Table 34-1. Chapter Summary

Problem Solution Listing

Queue operations for later execution. Use the general purpose queues. 1, 2

Filter the contents of an array. Use the grep method. 3, 4

Determine if an array contains a specific
object or value.

Use the inArray method. 5

Project the contents of an array. Use the map method. 6, 7

Concatenate two arrays. Use the merge method. 8

Remove duplicates from a jQuery object and
sort those that remain by the order they
appear in the document.

Use the unique method. 9

Determine the type of an object. Use the isXXX or type methods. 10, 11

Prepare the contents of a form for submission. Use the serialize or serializeArray methods. 12

Parse data into a more useful form. Use the parseJSON or parseXML methods. 13

Remove the leading and trailing
whitespace from a string.

Use the trim method. 14

Determine if one element contains another. Use the contains method. 15

Queues Revisited: Using General Purpose Queues
In Chapter 10, I showed you how to use the jQuery effects queue to manage a chain of effects to apply to a set of
elements. In fact, the effects queue is just one queue and the feature is a general purpose one that can be use more
widely. Table 34-2 restates the queue-related methods, tweaked for general purpose use.

Chapter 34 ■ Using the jQUery Utility Methods

930

When these methods are used without specifying a queue name, jQuery defaults to fx, which is the queue for
visual effects. I can use any other queue name to create a queue of functions.

When applying jQuery queues to general use, I use the clearQueue method instead of the stop method – stop
has special support for jQuery effects that are not appropriate for broader use. Listing 34-1 provides an example of
using a general purpose queue.

Listing 34-1. Using a Queue

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <script type="text/javascript">
 $(document).ready(function() {

 var elems = $("input");

 elems.queue("gen", function(next) {
 $(this).val(100).css("border", "thin red solid");
 next();
 });

 elems.delay(1000, "gen");

 elems.queue("gen", function(next) {
 $(this).val(0).css("border", "");
 $(this).dequeue("gen");
 });

 $("<button>Process Queue</button>").appendTo("#buttonDiv")
 .click(function(e) {
 elems.dequeue("gen");
 e.preventDefault();
 });

 });
 </script>
</head>

Table 34-2. Queue Methods

Method Description

clearQueue(<name>) Removes any functions that have not yet been run in the specified queue.

queue(<name>) Returns the specified queue of functions to be performed on the elements in the
jQuery object.

queue(<name>, function) Add a function to the end of the queue.

dequeue(<name>) Removes and executes the first item in the queue for the elements in the jQuery object.

delay(<time>, <name>) Insert a delay between effects in the specified queue.

Chapter 34 ■ Using the jQUery Utility Methods

931

<body>
 <h1>Jacqui's Flower Shop</h1>
 <form method="post">
 <div id="oblock">
 <div class="dtable">
 <div id="row1" class="drow">
 <div class="dcell">
 <label for="aster">Aster:</label>
 <input name="aster" value="0" required />
 </div>
 <div class="dcell">
 <label for="daffodil">Daffodil:</label>
 <input name="daffodil" value="0" required />
 </div>
 <div class="dcell">
 <label for="rose">Rose:</label>
 <input name="rose" value="0" required />
 </div>
 </div>
 <div id="row2"class="drow">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" required />
 </div>
 <div class="dcell">
 <label for="primula">Primula:</label>
 <input name="primula" value="0" required />
 </div>
 <div class="dcell">
 <label for="snowdrop">Snowdrop:</label>
 <input name="snowdrop" value="0" required />
 </div>
 </div>
 </div>
 </div>
 <div id="buttonDiv"><button type="submit">Place Order</button></div>
 </form>
</body>
</html>

Tip ■ the styles.css file that i reference in this example is the one i used in part 2 of this book.

In this example, I add three functions to a queue called gen that operates on the input elements in the document.
First, I use the val method to set all of the input values to 100 and the css method to add a border. Second, I use
the delay method to add a one-second delay to the queue. Finally, I use the val and css methods to reset the input
elements to their original state.

I also added a button to the document, which calls the dequeue method – unlike the effects queue, I am
responsible for starting queue processing ourselves. You can see the effect in Figure 34-1.

Chapter 34 ■ Using the jQUery Utility Methods

932

Figure 34-1. Using a general purpose queue

The functions that I place in the queue work in the same way as for the events queue and, as before, I am
responsible for either calling the dequeue method or invoking the function that is passed as an argument. I tend to
use the function argument – just because I often forget to specify the queue name when calling the dequeue method,
which means that my queue grinds to a halt.

Manually Processing Queue Items
Of course, you don’t have to trigger one queued function from another – you could rely on an external trigger to
dequeue each item, such as the user pressing the button I added to the document. Listing 34-2 shows how to do this.

Listing 34-2. Dequeuing Functions Explicitly

...
<script type="text/javascript">
 $(document).ready(function() {

 $("input").queue("gen", function() {
 $(this).val(100).css("border", "thin red solid");
 }).queue("gen", function() {
 $(this).val(0).css("border", "");
 }).queue("gen", function() {
 $(this).css("border", "thin blue solid");
 $("#dequeue").attr("disabled", "disabled");
 });

Chapter 34 ■ Using the jQUery Utility Methods

933

 $("<button id=dequeue>Dequeue Item</button>").appendTo("#buttonDiv")
 .click(function(e) {
 $("input").dequeue("gen");
 e.preventDefault();
 });
 });
</script>
...

In this script, I have chained the queue calls together and added a function that sets a border on the selected
elements and disables the button element, which must be clicked to process each item in the queue – there is no
automated chaining.

Utility Methods for Arrays
jQuery provides a number of useful methods for working with arrays – these methods are described in Table 34-3.
For the most part, there are better ways of working with HTMLElement arrays – just use the standard jQuery methods
for handling and filtering elements. For other kinds of arrays, these methods can be helpful.

Table 34-3. Utility Methods for Working with Arrays

Method Description

$.grep(<array>, function)
$.grep(<array>, function, <invert>)

Filters the contents of an array based on a function.

$.inArray(<value>, <array>) Determines if a particular item in contained in an array.

$.map(<array>, function)
$.map(<array>, <map>)

Projects an array or map object using a function.

$.merge(<array>, <array>) Appends the contents of the second array to the first.

$.unique(HTMLElement[]) Sorts an array of HTMLElement objects into document order and
removes any duplicates.

Using the Grep Method
The grep method allows us to find all of the elements in an array that are matched by a filter function. Listing 34-3
provides a demonstration of this method.

Listing 34-3. Using the Grep Method

...
<script type="text/javascript">
 $(document).ready(function() {
 var flowerArray = ["aster", "daffodil", "rose", "peony", "primula", "snowdrop"];

 var filteredArray = $.grep(flowerArray, function(elem, index) {
 return elem.indexOf("p") > -1;
 });

Chapter 34 ■ Using the jQUery Utility Methods

934

 for (var i = 0; i < filteredArray.length; i++) {
 console.log("Filtered element: " + filteredArray[i]);
 }
 });
</script>
...

Our filter function is passed two arguments – the first is the element in the array, and the second is the array
index of that element. Our function is called for each item in the array and returns true if the current item to be
included in the filtered results.

In this example, I use the grep method on an array of strings, filtering out those that don’t contain the letter p.
I write the contents of the filtered array to the console, producing the following results:

Filtered element: peony
Filtered element: primula
Filtered element: snowdrop

You can supply an additional argument to the grep method – if this argument is true, then the filtering process
is inverted and the result contains those elements that the function filtered out. Listing 34-4 shows the effect of
this argument.

Listing 34-4. Inverting the Selection Using the Grep Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var flowerArray = ["aster", "daffodil", "rose", "peony", "primula", "snowdrop"];

 var filteredArray = $.grep(flowerArray, function(elem, index) {
 return elem.indexOf("p") > -1;
 }, true);

 for (var i = 0; i < filteredArray.length; i++) {
 console.log("Filtered element: " + filteredArray[i]);
 }

 });
</script>
...

This change produces the following results:

Filtered element: aster
Filtered element: daffodil
Filtered element: rose

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 34 ■ Using the jQUery Utility Methods

935

Using the inArray Method
The inArray method determines if an array contains a specified value – the method returns the index of the item if it
is in the array and -1 otherwise. Listing 34-5 demonstrates the inArray method.

Listing 34-5. Using the inArray Method

...
<script type="text/javascript">
 $(document).ready(function() {
 var flowerArray = ["aster", "daffodil", "rose", "peony", "primula", "snowdrop"];
 console.log("Array contains rose: " + $.inArray("rose", flowerArray));
 console.log("Array contains lily: " + $.inArray("lily", flowerArray));
 });
</script>
...

This script checks to see if the array of flowers contains rose and lily. The results are as follows:

Array contains rose: 2
Array contains lily: -1

Using the Map Method
The map method uses a function to project the contents of an array or a map object into a new array, using a function
to determine how each item is represented in the result. Listing 34-6 shows the use of the map method with an array.

Listing 34-6. Using the Map Method to Project an Array

...
<script type="text/javascript">
 $(document).ready(function() {
 var flowerArray = ["aster", "daffodil", "rose", "peony", "primula", "snowdrop"];

 var result = $.map(flowerArray, function(elem, index) {
 return index + ": " + elem;
 });

 for (var i = 0; i < result.length; i++) {
 console.log(result[i]);
 }
 });
</script>
...

Chapter 34 ■ Using the jQUery Utility Methods

936

Our mapping function is executed for each item in the array and is passed the item and its index in the array as
arguments. The result from the function is included in the array returned by the map method. In this script, I transform
each item in the array by concatenating the value with its index, producing the following results:

0: aster
1: daffodil
2: rose
3: peony
4: primula
5: snowdrop

You can use the map method to selectively project an array – there will be no corresponding item in the result if
you don’t return a value from the function for the item being processed. Listing 34-7 shows how you can selectively
project from an array.

Listing 34-7. Selectively Mapping an Array

...
<script type="text/javascript">
 $(document).ready(function() {
 var flowerArray = ["aster", "daffodil", "rose", "peony", "primula", "snowdrop"];

 var result = $.map(flowerArray, function(elem, index) {
 if (elem != "rose") {
 return index + ": " + elem;
 }
 });

 for (var i = 0; i < result.length; i++) {
 console.log(result[i]);
 }
 });
</script>
...

Results are generated for all of the array values except rose, which gives rise to the following results:

0: aster
1: daffodil
3: peony
4: primula
5: snowdrop

Chapter 34 ■ Using the jQUery Utility Methods

937

Using the Merge Method
The merge method concatenates two arrays, as demonstrated in Listing 34-8.

Listing 34-8. Using the Merge Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var flowerArray = ["aster", "daffodil", "rose", "peony", "primula", "snowdrop"];
 var additionalFlowers = ["carnation", "lily", "orchid"];

 $.merge(flowerArray, additionalFlowers);

 for (var i = 0; i < flowerArray.length; i++) {
 console.log(flowerArray[i]);
 }
 });
</script>
...

The items from the second array are appended to the first array, and the array specified by the first argument is
modified by the merge process. The script in the example produces the following results:

aster
daffodil
rose
peony
primula
snowdrop
carnation
lily
orchid

Using the Unique Method
The unique method sorts an array of HTMLElement objects into the order in which they appear in the document and
removes any duplicate elements. Listing 34-9 shows how to use this method.

Listing 34-9. Using the Unique Method

...
<script type="text/javascript">
 $(document).ready(function() {

 var selection = $("img[src*=rose], img[src*=primula]").get();
 $.merge(selection, $("img[src*=aster]"));
 $.merge(selection, $("img"));

 $.unique(selection);

Chapter 34 ■ Using the jQUery Utility Methods

938

 for (var i =0; i < selection.length; i++) {
 console.log("Elem: " + selection[i].src);
 }

 });
</script>
...

The sorting process is done in-place, meaning that the array passed as the argument to the unique method is
modified. In this example, I created an array of HTMLElement objects that contain duplicates and which are not in
document order and then apply the unique method.

Utility Methods for Types
jQuery provides a set of methods that are useful for determining the nature of a JavaScript object – these methods are
described in Table 34-4.

Table 34-4. Utility Methods for Working with Types

Method Description

$.isArray(Object) Returns true if the object is an array.

$.isEmptyObject(Object) Returns true if the object doesn’t define any methods or properties.

$.isFunction(Object) Returns true if the object is a function.

$.isNumeric(Object) Returns true if the object is a number.

$.isWindow(Object) Returns true if the object is a Window.

$.isXMLDoc(Object) Returns true if the object is an XML document.

$.type(Object) Returns the built-in JavaScript type for the object.

Most of these methods are simple – you pass an object to the method, which returns true if the object is of the
type that the method detects and false otherwise. As a simple demonstration, Listing 34-10 contains an example
using the isFunction method.

Listing 34-10. Using the isFunction Method

...
<script type="text/javascript">
 $(document).ready(function() {

 function myFunc() {
 console.log("Hello!");
 }

 console.log("IsFunction: " + $.isFunction(myFunc));
 console.log("IsFunction: " + $.isFunction("hello"));
 });
</script>
...

Chapter 34 ■ Using the jQUery Utility Methods

939

In this example, I use the isFunction method to test two objects. The results are as follows:

IsFunction: true
IsFunction: false

Using the Type Method
The type method is slightly different in that is returns the base JavaScript type of an object. The result will be one of
the following strings:

•	 boolean

•	 number

•	 string

•	 function

•	 array

•	 date

•	 regexp

•	 object

Listing 34-11 shows the use of the type method.

Listing 34-11. Using the Type Method

...
<script type="text/javascript">
 $(document).ready(function() {

 function myFunc() {
 console.log("Hello!");
 }

 var jq = $("img");
 var elem = document.getElementById("row1");

 console.log("Type: " + $.type(myFunc));
 console.log("Type: " + $.type(jq));
 console.log("Type: " + $.type(elem));
 });
</script>
...

In this script, I use the type method on a function, a jQuery object, and an HTMLElement object. The results are
as follows:

Type: function
Type: object
Type: object

Chapter 34 ■ Using the jQUery Utility Methods

940

Utility Methods for Data
jQuery defines a number of utility methods that can be useful for working with various kinds of data – these methods
are described in Table 34-5.

Table 34-5. Utility Methods for Working with Data

Method Description

serialize() Encodes a set of form elements into a string suitable for submission to a server.

serializeArray() Encodes a set of form elements into an array ready for encoding into JSON.

$.parseJSON(<json>) Creates a JavaScript object from JSON data.

$.parseXML(<xml>) Creates an XMLDocument object from an XML string.

$.trim(String) Removes all whitespace from the beginning and end of a string.

Serializing Form Data
The serialize and serializeArray methods are a convenient way to extract the details from a set of form elements
in a way that is useful for regular or Ajax form submissions. Listing 34-12 shows both methods in use.

Listing 34-12. Serializing Form Data

...
<script type="text/javascript">
 $(document).ready(function() {

 $("<button>Serialize</button>").appendTo("#buttonDiv").click(function(e) {

 var formArray = $("form").serializeArray();
 console.log("JSON: " + JSON.stringify(formArray))

 var formString = $("form").serialize();
 console.log("String: " + formString)

 e.preventDefault();
 });

 });
</script>
...

In this example, I serialize the form elements in the document using both methods and write the results to the
console. The serializeArray method returns a JavaScript array that contains one object for each form element in
the document. These objects have two properties: the name property contains the value of the name attribute of the
element, and the value property contains the element’s value. Here is the output from the example document:

[{"name":"aster","value":"1"},{"name":"daffodil","value":"0"},
 {"name":"rose","value":"0"},{"name":"peony","value":"0"},
 {"name":"primula","value":"2"},{"name":"snowdrop","value":"0"}]

Chapter 34 ■ Using the jQUery Utility Methods

941

By contrast, the serialize method creates an encoded string, as follows:

aster=1&daffodil=0&rose=0&peony=0&primula=2&snowdrop=0

Parsing Data
The parseJSON and parseXML methods are especially useful when dealing with the results of Ajax requests. For most
web applications, JSON has taken over as the data format of choice, for the reasons I outlined in Chapter 14. XML is
still used, but I only find myself using this XML data when integrating new applications with legacy back-end systems.
Listing 34-13 shows the parseJSON method in use.

Listing 34-13. Parsing JSON Data

...
<script type="text/javascript">
 $(document).ready(function() {

 $("<button>Serialize</button>").appendTo("#buttonDiv").click(function(e) {

 var jsonData = '{"name": "Adam Freeman", "city": "London", "country": "UK"}'

 var dataObject = $.parseJSON(jsonData)

 for (var prop in dataObject) {
 console.log("Property: " + prop + " Value: " + dataObject[prop])
 }

 e.preventDefault();
 });

 });
</script>
...

In this example, I define a simple JSON string and use the parseJSON method to convert it into a JavaScript object.
I then enumerate the properties in the object and their values to the console, producing the following output:

Property: name Value: Adam Freeman
Property: city Value: London
Property: country Value: UK

Trimming Strings
The trim method removes all of the whitespace from the start and end of string – this includes spaces, tabs, and
newlines. This is a feature that most programming languages support as part of their core handling of character data,
but which is missing from JavaScript for some reason. Listing 34-14 shows the trim method in use.

Chapter 34 ■ Using the jQUery Utility Methods

942

Listing 34-14. Using the Trim Method

...
<script type="text/javascript">
 $(document).ready(function() {

 $("<button>Serialize</button>").appendTo("#buttonDiv").click(function(e) {

 var sourceString = "\n This string contains whitespace ";
 console.log(">" + sourceString + "<")

 var resultString = $.trim(sourceString);
 console.log(">" + resultString + "<")

 e.preventDefault();
 });

 });
</script>
...

In this example, I use the trim method and write the original and trimmed strings to the console, producing the
following results:

> This string contains whitespace <
>This string contains whitespace<

Other Utility Methods
There are a number of jQuery methods that don’t neatly fit into another category, but which can still be useful – these
are described in Table 34-6.

Table 34-6. Other Utility Methods

Method Description

$.contains(HTMLElement, HTMLElement) Returns true if the first element contains the second element.

$.now() Returns the current time, shorthand for new Date().getTime().

Checking Element Containment
The contains method checks to see if one element contains another. Both arguments are expressed as HTMLElement
objects, and the method returns true if the element represented by the first argument contains the element
represented by the second argument. Listing 34-15 provides a demonstration of the contains method.

Chapter 34 ■ Using the jQUery Utility Methods

943

Listing 34-15. Using the Contains Method

...
<script type="text/javascript">
 $(document).ready(function() {
 $("img").hover(function(e) {
 var elem = document.getElementById("row1");
 if ($.contains(elem, this)) {
 $(e.target).css("border", e.type == "mouseenter" ?
 "thick solid red" : "");
 }
 });
 });
</script>
...

In this script, I obtain an HTMLElement object using the DOM API and check to see that it contains the element
passed to an event handler method – if it does, I set a border for the element that triggered the event.

Tip ■ this method only works on HTMLElement objects – if you want to perform the same check on jQuery objects,
then consider using the find method, which i described in Chapter 6.

Summary
In this chapter, I have described the jQuery utility methods – an eclectic set of helpful functions that can be used to
perform advanced operations on jQuery objects or which supplement the JavaScript language features to provide
support that programmers commonly need. These are the kinds of methods that you are glad exist when you need
them, but can be safely forgotten about for most web application projects.

945

Chapter 35

The jQuery UI Effects & CSS
Framework

In this chapter I describe two utility features that jQuery UI provides. The first is a set of enhancements to existing
jQuery methods that can animate colors, changes in element visibility, and the application of CSS classes. The other
feature is a set of CSS classes that to apply a jQuery UI theme to the rest of our HTML documents in order to create a
consistent look across an entire web application. Table 35-1 provides the summary for this chapter.

Using the jQuery UI Effects
jQuery UI extends some core jQuery methods to animate different transitions for an element – this ranges from
the animation of color changes through to the application of CSS classes. These can be valuable additions to a
web application when used carefully, and to supplement these features, jQuery UI also defines some additional
animation effects.

Table 35-1. Chapter Summary

Problem Solution Listing

Animate changes in color. Use the enhanced animate method. 1

Animate the application of classes. Use the enhanced addClass, removeClass
and toggleClass methods and the
switchClass method.

2, 3

Animate visibility transitions. Use the enhanced show, hide and
toggle methods.

4

Apply an effect without changing element visibility. Use the effect method. 5

Style an element as a widget. Use the widget container classes. 6

Apply rounded corners to an element. Use the corner classes. 7

Apply the styles of a clickable widget to an element. Use the interaction state classes. 8

Provide the user with cues about the state of an element. Use the cue classes. 9, 10

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 35 ■ the jQuery uI effeCts & Css framework

946

Animating Colors
jQuery UI extends the jQuery animate method, which I described in Chapter 10, to add support for animating colors.
You can animate one of several CSS properties that define an element’s colors. Table 35-2 describes the CSS properties
that the animate method supports.

Table 35-2. CSS Properties Supported by the jQuery UI Animate Method

Property Description

backgroundColor Sets the background color of the element.

borderTopColor
borderBottomColor
borderLeftColor
borderRightColor

Sets the color for individual sides of the element border.

color Sets the text color for the element.

outlineColor Sets the color for the outline, used to emphasize the element.

To animate colors, pass a map object as the argument to the animate method, detailing the properties to animate
and the target values. Listing 35-1 contains an example.

Listing 35-1. Animating Colors

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 #animTarget {
 background-color: white;
 color: black;
 border: medium solid black;
 width: 200px; height: 50px;
 text-align: center;
 font-size: 25px;
 line-height: 50px;
 display: block;
 margin-bottom: 10px;
 }
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 $("button").click(function() {
 $("#animTarget").animate({
 backgroundColor: "black",

Chapter 35 ■ the jQuery uI effeCts & Css framework

947

 color: "white"
 })
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div id=animTarget>
 Hello!
 </div>

 <button>Animate Color</button>
</body>
</html>

I style the div element in this document so that it has an initial background color of white and a color of black.
When the button in the document is clicked, I call the animate method, specifying that these properties be changed
to black and white respectively. The transition from one color to another is done gradually and both properties are
animated simultaneously. You can see the effect in Figure 35-1.

Figure 35-1. Animating colors

Tip ■ Notice that I use the standard Css property names in the style element – background-color, for example.
But when specifying the same property in the map object, I switched to using camel case – backgroundColor.
this allows me to specify the Css property as a javascript object property without having to enclose the term in quotes.

In this example, I specified the colors I wanted using the CSS color shorthand values, black and white. There
are shorthand values for a wide range of colors, but the animate method will also accept hexadecimal colors
(#FFFFFF, for example) and RGB function colors, such as rgb(255, 255, 255).

Tip ■ aside from the support for the color properties, you can use the animate method just as I described in Chapter 10.

Chapter 35 ■ the jQuery uI effeCts & Css framework

948

Animating Classes
jQuery UI provides a convenient way of animating sets of CSS properties using classes. Rather than specify each
property, you simply define properties and values in a class and tell jQuery UI to add the class to one or more
elements. jQuery UI will animate the transition from one state to another. Listing 35-2 provides a demonstration.

Listing 35-2. Animating Using Classes

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 .elemClass {
 background-color: white;
 color: black;
 border: medium solid black;
 width: 200px; height: 50px;
 text-align: center;
 font-size: 25px;
 line-height: 50px;
 display: block;
 margin-bottom: 10px;
 }
 .myClass {
 font-size: 40px; background-color: black; color: white;
 }
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $("button").click(function() {
 if (this.id == "add") {
 $("#animTarget").addClass("myClass", "fast")
 } else {
 $("#animTarget").removeClass("myClass", "fast")
 }
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div id=animTarget class="elemClass">
 Hello!
 </div>

Chapter 35 ■ the jQuery uI effeCts & Css framework

949

 <button id="add">Add Class</button>
 <button id="remove">Remove Class</button>
</body>
</html>

Once again, jQuery UI extends an existing jQuery method to add functionality. In this case, it is the addClass and
removeClass methods that have been enhanced. I described the standard versions of these methods in Chapter 8.
The jQuery UI versions do exactly the same thing: the second argument to the method to the duration and jQuery UI
animates the transition from one class to the other.

In this example, I have defined a class called myClass, and there are buttons in the document that add and
remove this class using the duration shorthand of fast. You can see the effect in Figure 35-2.

Figure 35-2. Animating elements using classes

Tip ■ the standard Css style cascading rules apply, which means that the properties in a class will only be applied if
the class is the most specific for the target element or elements. In the previous example I styled the initial state of the
element by id, but in this example I use a class so that my modifications have effect. see Chapter 3 for details of Css
style cascading.

jQuery uI also enhances the toggleClass method – this works in the same way as the standard toggleClass method
that I described in Chapter 8, but takes a duration argument and animates the transition, just as in the addClass and
removeClass example above.

Switching Classes
In addition to enhancing some of the standard methods, jQuery UI also defines the switchClass method, which
removes one class and adds another, animating the transition from one state to the other. Listing 35-3 contains a
demonstration.

Chapter 35 ■ the jQuery uI effeCts & Css framework

950

Listing 35-3. Using the switchClass Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 .elemClass {
 border: medium solid black;
 width: 200px; height: 50px;
 text-align: center;
 line-height: 50px;
 display: block;
 margin-bottom: 10px;
 }
 .classOne {
 font-size: 25px; background-color: white; color: black;
 }
 .classTwo {
 font-size: 40px; background-color: black; color: white;
 }
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $("button").click(function() {
 $("#animTarget").switchClass("classOne", "classTwo", "fast")
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div id=animTarget class="elemClass classOne">
 Hello!
 </div>
 <button>Switch Class</button>
</body>
</html>

The arguments to the switchClass method are the class that should be removed, the class that should be added
and the duration for the animation. In the example, my two classes define the same properties, but this need not be
the case.

Chapter 35 ■ the jQuery uI effeCts & Css framework

951

Using the jQuery UI Animations
jQuery UI includes a number of animation effects that can be applied to elements, much as with the core jQuery
effects in Chapter 10. My recommendation is to use these effects sparingly. Animations applied carefully can be a
genuine enhancement to the user experience – but all too often, they become a source of annoyance and frustration
to the user. There are many different animation effects available, including blind, bounce, clip, drop, explode, fade,
fold, highlight, puff, pulsate, scale, shake, size, and slide.

Note ■ In this chapter, I am going to show you how to apply these effects, but I am not going to get into the detail of
each individual effect. there is a good summary of the effects and the settings that can be applied to some of them at
http://docs.jquery.com/UI/Effects.

Using Effects to Show and Hide Elements
jQuery UI enhances the jQuery UI show, hide, and toggle methods to apply animation effects. I described the
original versions of these methods in Chapter 10. To use the enhanced jQuery UI versions of these methods, provide
additional arguments specifying the effect you want to use and the duration over which it should be applied.
Listing 35-4 shows the use of these enhanced methods.

Listing 35-4. Using the Enhanced Show, Hide, and Toggle Methods

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 .elemClass {
 font-size: 25px; background-color: white; color: black;
 border: medium solid black; width: 200px; height: 50px;
 text-align: center; line-height: 50px; display: block; margin-bottom: 10px;
 }
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 $("button").click(function() {
 switch (this.id) {
 case "show":
 $("#animTarget").show("fold", "fast");
 break;
 case "hide":
 $("#animTarget").hide("fold", "fast");
 break;

http://docs.jquery.com/UI/Effects

Chapter 35 ■ the jQuery uI effeCts & Css framework

952

 case "toggle":
 $("#animTarget").toggle("fold", "fast");
 break;
 }
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <button id="hide">Hide</button>
 <button id="show">Show</button>
 <button id="toggle">Toggle</button>

 <div id=animTarget class="elemClass">
 Hello!
 </div>
</body>
</html>

There are three buttons in this example and clicking them leads to the show, hide, or toggle methods being
called. For all three buttons, I have specified that the fold animation should be applied, using the fast duration.
These methods work just like their core jQuery counterparts, except that the transition is animated.

Applying Standalone Effects
jQuery UI defines the effect method, which allows us to apply an animation to an element without having to show or
hide it. When used with the right animation, this can be a useful way of drawing the user’s attention to an element in
the document. Listing 35-5 contains an example.

Listing 35-5. Using the Effect Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 .elemClass {
 font-size: 25px; background-color: white; color: black;
 border: medium solid black; width: 200px; height: 50px;
 text-align: center; line-height: 50px; display: block; margin-bottom: 10px;
 }
 </style>

Chapter 35 ■ the jQuery uI effeCts & Css framework

953

 <script type="text/javascript">
 $(document).ready(function() {

 $("button").click(function() {
 $("#animTarget").effect("pulsate", "fast")
 })
 });
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div id=animTarget class="elemClass">
 Hello!
 </div>
 <button>Effect</button>
</body>
</html>

When the button in this example is clicked, the effect is applied in situ, without any permanent changes to
visibility. In this case, I have used the pulsate effect, which causes the element to pulse on and off.

Using the jQuery UI CSS Framework
jQuery UI manages the appearance of widgets by applying a set of classes to elements that apply some complex CSS
styles. Some of these classes are exposed to programmers so that elements that are not part of widgets can be styled in
a consistent manner – I used some of these classes in the examples in Part IV of this book.

Using the Widget Container Classes
The three most basic classes in the CSS framework apply the core styles that are used on widgets. These classes are
described in Table 35-3.

Table 35-3. jQuery UI Widget Container Classes

Class Description

ui-widget Applied to overall container elements.

ui-widget-header Applied to header container elements.

ui-widget-content Applied to the content container element.

These classes are applied to container elements – that is, those elements that contain all of the header and
content elements (or, in the case of ui-widget, the outermost element). Listing 35-6 shows how to apply
these classes.

Chapter 35 ■ the jQuery uI effeCts & Css framework

954

Listing 35-6. Using the jQuery UI Widget Container Classes

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 body > div {float: left; margin: 10px}
 </style>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div>
 <div>
 Flowers
 </div>
 <div>
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" />
 </div>
 </div>
 </div>

 <div class="ui-widget">
 <div class="ui-widget-header">
 Flowers
 </div>
 <div class="ui-widget-content">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" />
 </div>
 </div>
 </div>
</body>
</html>

There are two sets of elements in this example, to one of which I have applied the container classes. You can see
the effect in Figure 35-3.

Chapter 35 ■ the jQuery uI effeCts & Css framework

955

Applying Rounded Corners
The next set of CSS framework classes lets us apply rounded corners to our widget-like elements. Table 35-4 describes
the classes in this category.

Figure 35-3. Applying the jQuery UI Widget Container Classes

Table 35-4. jQuery UI Widget Rounded Corner Classes

Class Description

ui-corner-all Rounds all of the element’s corners.

ui-corner-bl Rounds the bottom-left corner.

ui-corner-bottom Rounds the bottom-left and bottom-right corners.

ui-corner-br Rounds the bottom-right corner.

ui-corner-left Rounds the top-left and bottom-left corners.

ui-corner-right Rounds the top-right and bottom-right corners.

ui-corner-tl Rounds the top-left corner.

ui-corner-top Rounds the top-left and top-right corner.

ui-corner-tr Rounds the top-right corner.

These classes only take effect when an element has a background or margin, which means that they can be
applied to the ui-widget-header and ui-widget-content classes, as shown in Listing 35-7.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 35 ■ the jQuery uI effeCts & Css framework

956

Listing 35-7. Using the Rounded Corner Classes

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 body > div {float: left; margin: 10px}
 </style>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div>
 <div>
 Flowers
 </div>
 <div>
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" />
 </div>
 </div>
 </div>

 <div class="ui-widget">
 <div class="ui-widget-header ui-corner-top" style="padding-left: 5px">
 Flowers
 </div>
 <div class="ui-widget-content ui-corner-bottom">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" />
 </div>
 </div>
 </div>
</body>
</html>

In order to create an overall effect, I have rounded the top corners of the header element and the bottom corners
of the content element. You can see the result in Figure 35-4. Notice that I have added a little padding to the header
element – the rounded corners are applied within the element’s content box, which can require some additional
space to avoid clipping content.

Chapter 35 ■ the jQuery uI effeCts & Css framework

957

Using the Interaction State Classes
You can also apply CSS framework classes to show different interaction states, which allows to create elements that
respond to user interaction in the same way that jQuery UI widgets do. Table 35-5 describes the classes available.

Figure 35-4. Applying rounded corners to elements

Table 35-5. jQuery UI Interaction Classes

Class Description

ui-state-default Applies the default style for clickable widget.

ui-state-hover Applies the style used when the mouse hovers over a clickable widget.

ui-state-focus Applies the style used when a clickable widget has the focus.

ui-state-active Applies the style used when a clickable widget is active.

Listing 35-8 applies these four classes. Notice that I have applied padding to an inner span element in each case.
The interaction state classes define padding values, and the easiest way to create spacing between the container
element and the content is to target an inner element.

Listing 35-8. Applying the Interaction State Classes

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>

Chapter 35 ■ the jQuery uI effeCts & Css framework

958

Using the Cue Classes
Some CSS framework classes allow us to provide the user with cues about the state of elements in the document.
These classes are described in Table 35-6.

 <style type="text/css">
 body > div {float: left; margin: 10px}
 span {padding: 10px; display: block}
 </style>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div class="ui-widget ui-state-default ui-corner-all">
 Default
 </div>
 <div class="ui-widget ui-state-hover ui-corner-all">
 Hover
 </div>
 <div class="ui-widget ui-state-focus ui-corner-all">
 Focus
 </div>
 <div class="ui-widget ui-state-active ui-corner-all">
 Active
 </div>
</body>
</html>

You can see the effect of each class in Figure 35-5. Some of these states are similar in the jQuery UI theme that
I am using, but you can use ThemeRoller (described in Chapter 17) to create a theme with increased state emphasis
if required.

Figure 35-5. The effect of the interaction state classes

Chapter 35 ■ the jQuery uI effeCts & Css framework

959

Table 35-6. jQuery UI Interaction Cue Classes

Class Description

ui-state-highlight Highlights an element to draw the user’s attention.

ui-state-error Emphasizes an element that contains an error message.

ui-state-disabled Applies the disabled style to an element (but doesn’t actually disable the element itself).

Listing 35-9 shows the use of the highlight and disabled cues.

Listing 35-9. Using the jQuery UI highlight Class

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 body > div {float: left; margin: 10px}
 span {padding: 10px; display: block}
 </style>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div class="ui-widget">
 <div class="ui-widget-header ui-corner-top" style="padding-left: 5px">
 Flowers
 </div>
 <div class="ui-widget-content ui-corner-bottom">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" />
 </div>
 </div>
 </div>

 <div class="ui-widget ui-state-highlight ui-corner-all">
 <div class="ui-widget-header ui-corner-top" style="padding-left: 5px">
 Flowers
 </div>
 <div class="ui-widget-content ui-corner-bottom">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" />
 </div>
 </div>
 </div>

Chapter 35 ■ the jQuery uI effeCts & Css framework

960

 <div class="ui-widget ui-state-disabled">
 <div class="ui-widget-header ui-corner-top" style="padding-left: 5px">
 Flowers
 </div>
 <div class="ui-widget-content ui-corner-bottom">
 <div class="dcell">
 <label for="peony">Peony:</label>
 <input name="peony" value="0" />
 </div>
 </div>
 </div>
</body>
</html>

You can see the effect of the classes in Figure 35-6. Notice that I have also applied the ui-corner-all style when
using the ui-state-highlight class. This class applies a border, which will be shown with square corners by default.
If the child elements have rounded corners, then you need to round the corners of the highlighted element as well.

Figure 35-6. Applying the highlight cue class

Listing 35-10 shows the use of the error state.

Listing 35-10. Using the Error Cue

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>

Chapter 35 ■ the jQuery uI effeCts & Css framework

961

Figure 35-7. Using the error cue class

 <style type="text/css">
 body > div {float: left; margin: 10px; padding: 20px}
 </style>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <div class="ui-state-error">
 Oops! Something went wrong.
 </div>
</body>
</html>

You can see the effect in Figure 35-7.

Summary
In this chapter, I described the enhancements that jQuery UI provides for animating transitions for color, visibility.
and CSS classes. These are useful features, but they must be used with caution to avoid bombarding the user with
distracting and annoying effects. I also described the principle classes of the jQuery UI CSs framework, which allows
us to style elements in a way that is consistent with jQuery UI widgets, allowing us to extend the appearance of our
jQuery UI theme to the rest of our HTML documents.

963

Chapter 36

Using Deferred Objects

Throughout this book, you have seen examples that relied on callbacks – you provide a function that is executed when
something occurs. A good example is the way events are handled, using a method such as click, passing in a function
as an argument. The code statements in the function are not performed until the user triggers the event – until that
point our function is dormant.

Deferred objects is the jQuery term for a set of enhancements to the way callbacks are used. When using deferred
objects, callbacks can be used in any situation and not just for events; and they provide a lot of options and control
over when and how callback functions are executed.

In this chapter, I’ll start with a reasonably simple example and then build upon it to show the features and some
useful patterns for managing deferred objects and background tasks.

I say reasonably simply, because using deferred objects bring us into the world of asynchronous or parallel
programming. Effective parallel programming is a difficult skill to master, and JavaScript makes it more difficult
because it lacks some of the advanced features that are present in other languages, such as Java and C#. Most projects
don’t need to use deferred objects and, if you are new to parallel programming, my recommendation is to skip this
chapter until you are working on a project that does. Table 36-1 provides the summary for this chapter.

Table 36-1. Chapter Summary

Problem Solution Listing

Use the basic features of a deferred object. Register a callback function using the done method.
Call the resolve method to trigger the callback.

1

Use a deferred object with a background task. Use the setTimeout function to create a background
task and call the resolve method when the task
is complete.

2-4

Signal a task failure. Use the reject method to trigger the handlers
registered using the fail method.

5, 6

Register handlers for both deferred object
outcomes in a single method call.

Use the then method. 7

Specify a function that will be executed
irrespective of whether the deferred object is
resolved or rejected.

Use the always method. 8

Use multiple callbacks for the same outcome. Call the registration method multiple times or pass
the functions as comma-separated arguments.

9

(continued)

Chapter 36 ■ Using DeferreD ObjeCts

964

A First Deferred Objects Example
I am going to start by showing you how deferred objects work and then show you how to use them. Listing 36-1 is a
simple example that contains a deferred object.

Listing 36-1. A Simple Deferred Object Example

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 td {text-align: left; padding: 5px}
 table {width: 200px; border-collapse: collapse; width: 50%; float: left}
 #buttonDiv {width: 15%; text-align: center; margin: 20px; float: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {
 var def = $.Deferred();

 def.done(function() {
 displayMessage("Callback Executed");
 })

 $("button").button().click(function() {
 def.resolve();
 })

Problem Solution Listing

Create a deferred object whose outcome is
determined by the outcome of other deferred
objects.

Use the when method. 10

Signal task progress. Call the notify method, which will trigger callback
handlers which have been registered using the
progress method.

11, 12

Get information about the state of a deferred
object.

Use the state method. 13

Use Ajax Promises. Treat the response from the jQuery Ajax methods as
you would a deferred object.

14

Table 36-1. (continued)

Chapter 36 ■ Using DeferreD ObjeCts

965

 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <table class="ui-widget" border=1>
 <thead class="ui-widget-header">
 <tr><th>Message</th></tr>
 </thead>
 <tbody class="ui-widget-content">
 </tbody>
 </table>

 <div id="buttonDiv">
 <button>Go</button>
 </div>
</body>
</html>

This is a simple demonstration of how a deferred object works. I will step through it to set the context for the rest
of the chapter. First of all, I created a deferred object by calling the $.Deferred method, like so:

...
var def = $.Deferred();
...

The Deferred method returns a deferred object – I have assigned this one to the variable called def. Deferred
objects are all about callbacks, and so my next step is to register a function with the deferred object using the done
method, like this:

...
def.done(function() {
 displayMessage("Callback Executed");
})
...

When it is executed, the callback function will call the displayMessage function, which adds a row to the table
element in the document.

The final step is to set things up so that I can trigger the callback function, which I do by calling the resolve
method. Triggering the callback like this is known as resolving the deferred object. I want to be able to control when
the deferred object is resolved, and so I have added a button to the document and use the click method to handle
an event. The irony here is that I am using one callback mechanism to help describe another – for the purposes of

Chapter 36 ■ Using DeferreD ObjeCts

966

this chapter I want you to ignore the event system and focus on the fact that the deferred object isn’t resolved until
the button is pressed. Here is the function that calls resolve and so triggers the callback function registered with
the done method:

...
$("button").button().click(function() {
 def.resolve();
})
...

Until the resolve method is called, the deferred object remains unresolved and our callback function won’t be
executed. Pressing the button resolves the deferred object, executes the callback, and displays the message in the
table, as shown in Figure 36-1.

Figure 36-1. Resolving a deferred object

The important thing to understand here is that the deferred object isn’t doing anything special. We register
a callback function using the done method and they won’t be executed until the resolve method is called. In this
example, the deferred object isn’t resolved until the button is clicked, at which point the callback function is executed
and a new message is added to the table element.

Understanding Why Deferred Objects Are Useful
Deferred objects are useful when you want to execute functions at the end of some task without having to monitor that
task directly – especially when that task is being performed in the background. Listing 36-2 contains a demonstration,
which I’ll then start to modify to add features.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 36 ■ Using DeferreD ObjeCts

967

Listing 36-2. Using Callbacks with a Long-Lived Task

...
<script type="text/javascript">
 $(document).ready(function() {
 var def = $.Deferred();

 def.done(function() {
 displayMessage("Callback Executed");
 })

 function performLongTask() {

 var start = $.now();

 var total = 0;
 for (var i = 0; i < 500000000 ; i++) {
 total += i;
 }
 var elapsedTime = (($.now() - start)/1000).toFixed(1)
 displayMessage("Task Complete. Time: " + elapsedTime + " sec")
 def.resolve();
 }

 $("button").button().click(function() {
 displayMessage("Calling performLongTask()")
 performLongTask()
 displayMessage("performLongTask() Returned")
 })

 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
</script>
...

The process in this example is defined by the performLongTask function, which adds together a series of
numbers – I want something simple and which takes a few seconds to complete and this fits the bill.

Tip ■ On my system, the for loop in the performLongTask function takes about 0.5 seconds to complete, but you may
need to adjust the upper limit for the loop to get a similar result on your system. anywhere up to 4–5 seconds is a good
duration for these examples – long enough to demonstrate the deferred object features, but not so long that you have
time to make coffee while waiting for the task to complete.

Chapter 36 ■ Using DeferreD ObjeCts

968

Clicking the button now calls the performLongTask function. That function calls the deferred object’s resolve
method when its work is complete, causing the callback function to be invoked. The performLongTask function adds
its own message to the table element before it calls resolve, so we can see the sequence of progression through the
script. You can see the results in Figure 36-2.

Figure 36-2. Using a deferred object to observe task completion

This is an example of a synchronous task. You push the button and then have to wait while each function that
is called completes. The best indicator that you are working synchronously is the way that the Go button stays in its
pressed state while the performLongTask function does its work. Definitive proof comes in the sequence of messages
displayed in Figure 36-2 – the messages from the click event handler come before and after the messages from the
performLongTask and the callback functions.

The major benefit of deferred objects comes when working with asynchronous tasks – tasks that are being
performed in the background. You don’t want the user interface to lock up like it did in the last example; and
so instead, you start tasks in the background, keep an eye on them, and update the document to give the user
information about the progress and result of the work.

The simplest way to start a background task is to use the setTimeout function, which means using yet
another callback mechanism. This may seem a little odd, but JavaScript lacks the language facilities for managing
asynchronous tasks that other languages are designed with and so we have do make do with those features that are
available. Listing 36-3 shows the example modified so that the time-consuming part of the performLongTask function
is done in the background.

Chapter 36 ■ Using DeferreD ObjeCts

969

Listing 36-3. Performing the Work Asynchronously

...
<script type="text/javascript">
 $(document).ready(function() {
 var def = $.Deferred();

 def.done(function() {
 displayMessage("Callback Executed");
 })

 function performLongTask() {
 setTimeout(function() {
 var start = $.now();

 var total = 0;
 for (var i = 0; i < 500000000 ; i++) {
 total += i;
 }
 var elapsedTime = (($.now() - start)/1000).toFixed(1)
 displayMessage("Task Complete. Time: " + elapsedTime + " sec")
 def.resolve();
 }, 10);
 }

 $("button").button().click(function() {
 displayMessage("Calling performLongTask()")
 performLongTask()
 displayMessage("performLongTask() Returned")
 })

 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
</script>
...

I use the setTimeout function to perform the for loop in the performLongTask function after a delay of
10 milliseconds. You can see the effect this has in Figure 36-3 – notice that the messages from the click handler
function appear before those form the performLongTask and callback functions. If you run this example yourself,
you will notice that the button pops back into its regular state immediately, rather than waiting for the work
to complete.

Chapter 36 ■ Using DeferreD ObjeCts

970

Callbacks are particularly important when working with background tasks because you don’t know when they are
complete. You could set up your own signaling system – updating a variable, for example – but you would need to do
this for every background task that is performed, which quickly becomes tiresome and error prone. Deferred objects
provide a standardized mechanism for indicating that tasks have completed and, as I’ll demonstrate in later examples,
they offer a lot of flexibility in how this is done.

Tidying Up the Example
Before I start digging into the feature of deferred objects, I am going to update the example to use the pattern that I tend
to work with in real projects. This is purely personal preference, but I like to split out the workload from the asynchronous
wrapper and integrate the production of the deferred object into the function. Listing 36-4 shows the changes.

Listing 36-4. Tidying Up the Example

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 td {text-align: left; padding: 5px}
 table {width: 200px; border-collapse: collapse; float: left; width: 300px}
 #buttonDiv {text-align: center; margin: 20px; float: left}
 </style>

Figure 36-3. Performing the task in the background

Chapter 36 ■ Using DeferreD ObjeCts

971

 <script type="text/javascript">
 $(document).ready(function() {

 function performLongTaskSync() {
 var start = $.now();

 var total = 0;
 for (var i = 0; i < 500000000 ; i++) {
 total += i;
 }
 var elapsedTime = (($.now() - start)/1000).toFixed(1)
 displayMessage("Task Complete. Time: " + elapsedTime + " sec")
 return total;
 }

 function performLongTask() {
 return $.Deferred(function(def) {
 setTimeout(function() {
 performLongTaskSync();
 def.resolve();
 }, 10)
 })
 }

 $("button").button().click(function() {
 if ($(":checked").length > 0) {
 displayMessage("Calling performLongTask()")
 var observer = performLongTask();
 observer.done(function() {
 displayMessage("Callback Executed");
 });
 displayMessage("performLongTask() Returned")
 } else {
 displayMessage("Calling performLongTaskSync()")
 performLongTaskSync();
 displayMessage("performLongTaskSync() Returned")
 }
 })

 $(":checkbox").button();
 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

Chapter 36 ■ Using DeferreD ObjeCts

972

 <table class="ui-widget" border=1>
 <thead class="ui-widget-header">
 <tr><th>Message</th></tr>
 </thead>
 <tbody class="ui-widget-content">
 </tbody>
 </table>

 <div id="buttonDiv">
 <button>Go</button>
 <input type="checkbox" id="async" checked>
 <label for="async">Async</label>
 </div>
</body>
</html>

In this example, I have broken out the workload into a function called performLongTasksync, which is just
responsible for performing the calculations. It has no knowledge of background tasks or callback functions. I like to
keep the workload separate because it makes testing the code easier during the early stages of development. Here is
the synchronous function:

...
function performLongTaskSync() {
 var start = $.now();

 var total = 0;
 for (var i = 0; i < 500000000 ; i++) {
 total += i;
 }
 var elapsedTime = (($.now() - start)/1000).toFixed(1)
 displayMessage("Task Complete. Time: " + elapsedTime + " sec")
 return total;
}
...

I have separated out the code to perform the task asynchronously – this is in the performLongTask function,
which is an asynchronous wrapper around the performLongTasksync function and which uses a deferred object to
trigger callbacks when the work has completed. Here is the revised performLongTask function:

...
function performLongTask() {
 return $.Deferred(function(def) {
 setTimeout(function() {
 performLongTaskSync();
 def.resolve();
 }, 10)
 })
}
...

If I pass a function to the Deferred method, it is executed as soon as the object is created, and the function
is passed the new deferred object as a parameter. Using this feature, I can create a simple wrapper function that
performs the work asynchronously and triggers the callbacks when the work has finished.

Chapter 36 ■ Using DeferreD ObjeCts

973

Tip ■ if you are observant, you will have noticed that there is a chance that calling the done method to register a
callback function may occur after the task has been completed and the resolve method has been called. this may occur
for short tasks, but the callback function will still be called, even if done is called after resolve.

The other reason that I like to create a wrapper like this is because deferred objects can’t be reset once they are
resolved or rejected (I explain rejection in a moment). By creating the deferred object inside of the wrapper function,
I ensure that I am always using fresh, unresolved deferred objects.

The other change I have made to this example is to add a toggle button, which allows the task to be performed
synchronously or asynchronously. I will take this feature out of future examples because this is a chapter about
asynchronous tasks, but it is a good way to make sure that you are comfortable with the difference. You can see the
output from both modes in Figure 36-4.

Figure 36-4. Performing the same task synchronously and asynchronously

Using Other Callbacks
Now that I have a basic asynchronous example in place, I can turn to some of the useful features that deferred objects
provide. The first is that I can signal different outcomes from our tasks. Table 36-2 describes the methods available for
registering callbacks and the methods that are called on the deferred object that trigger them. I have already explained
the done and resolve methods, and I cover the others in the sections that follow.

Table 36-2. Methods for Registering Callbacks

Callback Registration Method Triggered By

done resolve

fail reject

always resolve or reject

Chapter 36 ■ Using DeferreD ObjeCts

974

Rejecting a Deferred Object
Not all tasks complete successfully. When they do, I resolve the deferred object by calling the resolve method.
But when something goes wrong, we reject the deferred object using the reject method. Callbacks functions are
registered for failed tasks using the fail method. The reject methods triggers callbacks registered with the fail
method in the same way that the resolve method triggers callbacks registered with done. Listing 36-5 shows a task
that will either resolve or reject its deferred object.

Listing 36-5. Rejecting Deferred Objects

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 td {text-align: left; padding: 5px}
 table {width: 200px; border-collapse: collapse; float: left; width: 300px}
 #buttonDiv {text-align: center; margin: 20px; float: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 function performLongTaskSync() {
 var start = $.now();

 var total = 0;
 for (var i = 0; i < 5000000 ; i++) {
 total += (i + Number((Math.random() + 1).toFixed(0)));
 }
 var elapsedTime = (($.now() - start)/1000).toFixed(1)
 displayMessage("Task Complete. Time: " + elapsedTime + " sec")
 return total;
 }

 function performLongTask() {
 return $.Deferred(function(def) {
 setTimeout(function() {
 var total = performLongTaskSync();
 if (total % 2 == 0) {
 def.resolve(total);
 } else {
 def.reject(total);
 }
 }, 10)})
 }

Chapter 36 ■ Using DeferreD ObjeCts

975

 $("button").button().click(function() {
 displayMessage("Calling performLongTask()")
 var observer = performLongTask();
 displayMessage("performLongTask() Returned")
 observer.done(function(total) {
 displayMessage("Done Callback Executed: " + total);
 });
 observer.fail(function(total) {
 displayMessage("Fail Callback Executed: " + total);
 });
 })

 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <table class="ui-widget" border=1>
 <thead class="ui-widget-header">
 <tr><th>Message</th></tr>
 </thead>
 <tbody class="ui-widget-content">
 </tbody>
 </table>

 <div id="buttonDiv">
 <button>Go</button>
 </div>
</body>
</html>

In this example, I have tweaked the task so that a small random number is added to the total in each iteration of
the for loop. The asynchronous wrapper function performLongTask checks the total returned by the synchronous
function and resolves the deferred object if the total is even. If the total is odd, then the performLongTask function
rejects the deferred object, as follows:

...
if (total % 2 == 0) {
 def.resolve(total);
} else {
 def.reject(total);
}
...

Chapter 36 ■ Using DeferreD ObjeCts

976

After calling the performLongTask function, my click event handler registers callback functions for both
outcomes, using the done and fail methods, as follows:

...
var observer = performLongTask();
displayMessage("performLongTask() Returned")
observer.done(function(total) {
 displayMessage("Done Callback Executed: " + total);
});
observer.fail(function(total) {
 displayMessage("Fail Callback Executed: " + total);
});
...

Notice that I pass arguments to the resolve and reject methods when I call them. You don’t have to pass
arguments to these methods, but if you do the objects you supply will be passed as arguments to the callback
functions, which allows you to provide additional context or detail about what has happened. In this example, the
status of the task is determined by the calculation total, which I have passed as the argument to both the done and
reject methods. You can see the outcome of a resolved and rejected deferred object in Figure 36-5.

Figure 36-5. A task that can succeed or fail

Chaining Deferred Object Method Calls
The deferred object methods are chainable, meaning that each method returns a deferred object on which other
methods can be called. This is something I have been doing with jQuery objects throughout this book. Listing 36-6
shows how the calls to the done and fail methods can be chained together.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 36 ■ Using DeferreD ObjeCts

977

Listing 36-6. Chaining Deferred Object Method Calls

...
$("button").button().click(function() {
 performLongTask().done(function(total) {
 displayMessage("Done Callback Executed: " + total);
 }).fail(function(total) {
 displayMessage("Fail Callback Executed: " + total);
 });
})
...

Covering Both Outcomes
If there are callbacks for each outcome, they can be registered in one go using the then method. The first argument
is the callback to use if the deferred object is resolved, and the second argument is the callback to use if the deferred
object is rejected. Listing 36-7 shows the then method in use.

Listing 36-7. Using the Then Method

...
$("button").button().click(function() {
 displayMessage("Calling performLongTask()")
 var observer = performLongTask();
 displayMessage("performLongTask() Returned")

 observer.then(
 function(total) {
 displayMessage("Done Callback Executed");
 },
 function(total) {
 displayMessage("Fail Callback Executed");
 }
);
})
...

I tend to use method chaining because I find it produces code where the outcome each function is prepared to
deal with is more obvious.

Using Outcome-Indifferent Callbacks
There are occasions when you will want to execute a callback function irrespective of the outcome of the task.
A common pattern is to use the always method to register a function that removes or hides elements which indicate
that some background task is being performed and use the done and fail method to display the next steps to the user.
Listing 36-8 shows the use of the always method to register a function which behaves the same regardless of the
task outcome.

Chapter 36 ■ Using DeferreD ObjeCts

978

Listing 36-8. Using the Always Method to Register an Outcome-Indifferent Function

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 td {text-align: left; padding: 5px}
 table {width: 200px; border-collapse: collapse; float: left; width: 300px}
 #buttonDiv {text-align: center; margin: 20px; float: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 function performLongTaskSync() {
 var start = $.now();

 var total = 0;
 for (var i = 0; i < 5000000 ; i++) {
 total += (i + Number((Math.random() + 1).toFixed(0)));
 }
 var elapsedTime = (($.now() - start)/1000).toFixed(1)
 displayMessage("Task Complete. Time: " + elapsedTime + " sec")
 return total;
 }

 function performLongTask() {
 return $.Deferred(function(def) {
 setTimeout(function() {
 var total = performLongTaskSync();
 if (total % 2 == 0) {
 def.resolve(total);
 } else {
 def.reject(total);
 }
 }, 10)})
 }

 $("button").button().click(function() {
 displayMessage("Calling performLongTask()")
 var observer = performLongTask();
 displayMessage("performLongTask() Returned")

 $("#dialog").dialog("open");

 observer.always(function() {
 $("#dialog").dialog("close");
 });

Chapter 36 ■ Using DeferreD ObjeCts

979

 observer.done(function(total) {
 displayMessage("Done Callback Executed: " + total);
 });
 observer.fail(function(total) {
 displayMessage("Fail Callback Executed: " + total);
 });

 })

 $("#dialog").dialog({
 autoOpen: false,
 modal: true

 })

 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <table class="ui-widget" border=1>
 <thead class="ui-widget-header">
 <tr><th>Message</th></tr>
 </thead>
 <tbody class="ui-widget-content">
 </tbody>
 </table>

 <div id="buttonDiv">
 <button>Go</button>
 </div>

 <div id="dialog">
 Performing Task...
 </div>
</body>
</html>

In this example, I have added a jQuery UI modal dialog that is displayed when the task is running. I use the
always method to register a function that closes the dialog when the task is complete – this means that I don’t have
to duplicate the code for tidying up after the task has finished in my functions that handle resolved or rejected
deferred objects.

Chapter 36 ■ Using DeferreD ObjeCts

980

Tip ■ Callbacks functions are called in the order in which they are registered with the deferred object. in this example,
i call the always method before calling the done or fail methods, which means that a outcome-indifferent function is
always called before the functions that handle the resolved or rejected outcomes.

Using Multiple Callbacks
One of the benefits that arise from using deferred objects is that we can partition our code up into small functions that
handle specific activities. To allow further decomposition of our code, deferred objects provide support for registering
multiple callbacks for the same outcome. Listing 36-9 provides a demonstration.

Listing 36-9. Registering Multiple Callback Functions with a Deferred Object

...
<script type="text/javascript">
 $(document).ready(function() {

 function performLongTaskSync() {
 var start = $.now();

 var total = 0;
 for (var i = 0; i < 5000000 ; i++) {
 total += (i + Number((Math.random() + 1).toFixed(0)));
 }
 var elapsedTime = (($.now() - start)/1000).toFixed(1)
 displayMessage("Task Complete. Time: " + elapsedTime + " sec")
 return total;
 }

 function performLongTask() {
 return $.Deferred(function(def) {
 setTimeout(function() {
 var total = performLongTaskSync();
 if (total % 2 == 0) {
 def.resolve({
 total: total
 });
 } else {
 def.reject(total);
 }
 }, 10)})
 }

 $("button").button().click(function() {
 displayMessage("Calling performLongTask()")
 var observer = performLongTask();
 displayMessage("performLongTask() Returned")

Chapter 36 ■ Using DeferreD ObjeCts

981

 $("#dialog").dialog("open");

 observer.done(function(data) {
 data.touched = 1;
 displayMessage("1st Done Callback Executed");
 });

 observer.done(function(data) {
 data.touched++;
 displayMessage("2nd Done Callback Executed");
 }, function(data) {
 data.touched++;
 displayMessage("3rd Done Callback Executed");
 });

 observer.done(function(data) {
 displayMessage("4th Done Callback Executed: " + data.touched);
 });

 observer.fail(function(total) {
 displayMessage("Fail Callback Executed: " + total);
 });

 observer.always(function() {
 displayMessage("Always Callback Executed");
 $("#dialog").dialog("close");
 });

 })

 $("#dialog").dialog({
 autoOpen: false,
 modal: true
 })

 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
</script>
...

In this example, I have registered four callback functions using the done method. As the code shows, we can
register functions individually or in groups by passing multiple functions, separated by commas, to the registration
method. The deferred object ensures that the callback functions are executed in the order in which they were
registered.

Chapter 36 ■ Using DeferreD ObjeCts

982

Notice that I have changed the argument passed to the resolve method in this example, making the result of
the calculation a property in a JavaScript object. I did this to demonstrate that callback functions are able to modify
the data passed via the deferred object. This can be useful for providing simple communication between handler
functions (to declare that some particular action has been taken). You can see the effect of having multiple
handlers in Figure 36-6.

Figure 36-6. Using multiple callbacks for the same outcome

Tip ■ You can specify multiple callbacks for each outcome using the then method by passing arrays of functions
as arguments.

Chapter 36 ■ Using DeferreD ObjeCts

983

Using the Outcomes of Multiple Deferred Objects
We can use the when method to create deferred objects whose outcome is derived from several other deferred
objects. This technique is useful when we are relying on the results from several background tasks, or when we
don’t want to start a task until we are sure that a set of other tasks have achieved a specific outcome. Listing 36-10
provides a demonstration.

Listing 36-10. Using the When Method

...
$("button").button().click(function() {

 var ob1 = performLongTask()
 .done(function() {
 displayMessage("1st Task Resolved")
 })
 .fail(function() {
 displayMessage("1st Task Failed")
 })

 var ob2 = performLongTask()
 .done(function() {
 displayMessage("2nd Task Resolved</b")
 })
 .fail(function() {
 displayMessage("2nd Task Failed")
 })

 var ob3 = performLongTask()
 .done(function() {
 displayMessage("3rd Task Resolved")
 })
 .fail(function() {
 displayMessage("3rd Task Failed")
 })

 $.when(ob1, ob2, ob3)
 .done(function() {
 displayMessage("Aggregate Resolved")
 })
 .fail(function() {
 displayMessage("Aggregate Failed")
 })
})
...

In this example, I have three deferred objects, each of which was created calling the performLongTask function
and to which I have attached callback functions using the done and fail methods.

Chapter 36 ■ Using DeferreD ObjeCts

984

I have passed all three deferred objects to the when method, which returns another deferred object (known as
the aggregate deferred object). I have I have attached callback functions to the aggregate using the normal done and
fail methods. The outcome of the aggregate is determined by the outcome of the other three deferred objects. If all
three of the regular deferred objects are resolved, then the aggregate is also resolved and the done functions will be
called. However, if any of the regular deferred objects are rejected, then the aggregate is rejected as well, and the fail
functions will be called. You can see both outcomes for the aggregate in Figure 36-7.

Figure 36-7. Using the when method

Caution ■ if you look closely at the sequence of messages in the figure, you will spot a timing anomaly. the aggregate
deferred object is rejected as soon as any of the underlying objects are rejected – this means that the callback functions
registered with the fail method can be triggered while there are still tasks running. When dealing with a rejected
aggregate object, you cannot assume that all of the tasks it depends on are complete.

Providing Progress Information
It is generally a good idea to provide the user with progress information when performing a long-lived task in the
background. Deferred objects can be used to pass progress information from the task to callback functions, in much
the same way we have been passing information about outcomes. We produce progress information using the notify
method and register our callback function using the progress method. Listing 36-11 contains an example.

Chapter 36 ■ Using DeferreD ObjeCts

985

Listing 36-11. Producing and Consuming Progress Information via a Deferred Object

...
<script type="text/javascript">
 $(document).ready(function() {

 function performLongTaskSync() {
 var total = 0;
 for (var i = 0; i < 5000000 ; i++) {
 total += (i + Number((Math.random() + 1).toFixed(0)));
 }
 return total;
 }

 function performLongTask() {
 return $.Deferred(function(def) {
 setTimeout(function() {
 var progressValue = 0;
 for (var i = 0; i < 4; i++) {
 performLongTaskSync();
 progressValue += 25;
 def.notify(progressValue)
 }
 def.resolve();
 }, 10)}
)
 }

 $("button").button().click(function() {

 performLongTask().progress(function(val) {
 displayMessage("Progress: " + val + "%")
 }).done(function() {
 displayMessage("Task Resolved");
 })
 })

 $("#dialog").dialog({
 autoOpen: false,
 modal: true
 })

 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
</script>
...

Chapter 36 ■ Using DeferreD ObjeCts

986

In this example, the task is to perform the calculation four times. After each calculation, I call the notify method
on the deferred object and pass in my percentage progress (although you can pass any object or value that makes
sense for your web application – I am using percentages for simplicity). In the click handler function, I have used the
progress method to register a function that will be called in response to a progress update – I use this function to add
a message to the table in the document.

This example demonstrates the basic ability to provide progress information, but it doesn’t quite work in the way
that we might hope. The problem is that the browser doesn’t get the change to update the DOM with the new rows
until after all four iterations are complete – this is a facet of the way that JavaScript tasks are managed and means
that we get all of the progress updates in one go at the end of the task. To address this, we need to add small delays
between each stage in the task to give the browser the time it needs to perform updates. Listing 36-12 shows how we
can use the setTimeout function to introduce these delays and create a chain of deferred objects. I would usually use
a for loop to set up the delays and the deferred objects, but to make this example clearer to read, I have defined all of
the steps explicitly.

Listing 36-12. Breaking the Task Down to Allow DOM Changes

...
<script type="text/javascript">
 $(document).ready(function() {

 function performLongTaskSync() {
 var total = 0;
 for (var i = 0; i < 5000000 ; i++) {
 total += (i + Number((Math.random() + 1).toFixed(0)));
 }
 return total;
 }

 function performLongTask() {

 function doSingleIteration() {
 return $.Deferred(function(innerDef) {
 setTimeout(function() {
 performLongTaskSync();
 innerDef.resolve();
 }, 10)
 })
 }

 var def = $.Deferred();

 setTimeout(function() {

 doSingleIteration().done(function() {
 def.notify(25);
 doSingleIteration().done(function() {
 def.notify(50);
 doSingleIteration().done(function() {
 def.notify(75);
 doSingleIteration().done(function() {

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Chapter 36 ■ Using DeferreD ObjeCts

987

 def.notify(100);
 def.resolve();
 })
 })
 })
 })
 }, 10);

 return def;
 }

 $("button").button().click(function() {

 performLongTask().progress(function(val) {
 displayMessage("Progress: " + val + "%")
 }).done(function() {
 displayMessage("Task Resolved");
 })
 })

 $("#dialog").dialog({
 autoOpen: false,
 modal: true
 })

 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
</script>
...

With this change, the progress updates are properly displayed. You can see the updates shown in Figure 36-8.

Chapter 36 ■ Using DeferreD ObjeCts

988

Getting Information about a Deferred Object
Deferred objects define the state method, which we can use to establish the state of the object and, by implication,
the task that is being performed. The values that the method can return are described in Table 36-3.

Figure 36-8. Using a deferred object to provide progress information

Table 36-3. Values for the State Object

Value Description

pending Neither the resolve or reject method has been called on the deferred object.

resolved The deferred object has been resolved (using the resolve method).

rejected The deferred object has been rejected (using the rejected method).

Chapter 36 ■ Using DeferreD ObjeCts

989

Caution ■ be careful when using this method. in particular, you should stop and think if you find yourself polling the
status of a deferred object – you may have some design problems in your web application. polling for status, especially
in a while or for loop can mean that you have effectively made your task synchronous while incurring the overhead and
complexity associated with asynchronous tasks.

The only time that I find the state method useful is when I have registered a callback using the always method
and I am interested in the outcome of the task. Generally, I use the done and fail methods with separate callbacks
functions, but there are times when I have code that is largely, but not quite, the same for both outcomes. Listing 36-13
contains a demonstration of using the state method.

Listing 36-13. Using the State Method

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 td {text-align: left; padding: 5px}
 table {width: 200px; border-collapse: collapse; float: left; width: 300px}
 #buttonDiv {text-align: center; margin: 20px; float: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 function performLongTaskSync() {
 var start = $.now();

 var total = 0;
 for (var i = 0; i < 5000000 ; i++) {
 total += (i + Number((Math.random() + 1).toFixed(0)));
 }
 var elapsedTime = (($.now() - start)/1000).toFixed(1)
 displayMessage("Task Complete. Time: " + elapsedTime + " sec")
 return total;
 }

 function performLongTask() {
 return $.Deferred(function(def) {
 setTimeout(function() {
 var total = performLongTaskSync();
 if (total % 2 == 0) {
 def.resolve(total);
 } else {
 def.reject(total);
 }

Chapter 36 ■ Using DeferreD ObjeCts

990

 }, 10)})
 }

 $("button").button().click(function() {
 displayMessage("Calling performLongTask()")
 var observer = performLongTask();
 displayMessage("performLongTask() Returned")

 $("#dialog").dialog("open");

 observer.always(function() {
 if (observer.state() == "resolved") {
 $("#dialog").dialog("close");
 } else {
 $("#dialog").text("Error!")
 }
 });

 observer.done(function(total) {
 displayMessage("Done Callback Executed: " + total);
 });
 observer.fail(function(total) {
 displayMessage("Fail Callback Executed: " + total);
 });

 })

 $("#dialog").dialog({
 autoOpen: false,
 modal: true

 })

 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <table class="ui-widget" border=1>
 <thead class="ui-widget-header">
 <tr><th>Message</th></tr>
 </thead>
 <tbody class="ui-widget-content">
 </tbody>
 </table>

Chapter 36 ■ Using DeferreD ObjeCts

991

 <div id="buttonDiv">
 <button>Go</button>
 </div>

 <div id="dialog">
 Performing Task...
 </div>
</body>
</html>

Using Ajax Deferred Objects
Perhaps the most useful aspect of the deferred object functionality is the way it has been incorporated into the jQuery
support for Ajax (which I described in Chapters 14 and 15). The jxXHR object that we get back from methods such
as ajax and getJSON implement the Promise interface, which provides us with a subset of the methods defined by a
regular deferred object. A Promise defines the done, fail, then, and always methods and can be used with the when
method. Listing 36-14 shows how we can mix and match Ajax promises with deferred objects.

Listing 36-14. Using Ajax Promises and Deferred Objects

<!DOCTYPE html>
<html>
<head>
 <title>Example</title>
 <script src="jquery-2.0.2.js" type="text/javascript"></script>
 <script src="jquery-ui-1.10.3.custom.js" type="text/javascript"></script>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="stylesheet" type="text/css" href="jquery-ui-1.10.3.custom.css"/>
 <style type="text/css">
 td {text-align: left; padding: 5px}
 table {width: 200px; border-collapse: collapse; float: left; width: 300px}
 #buttonDiv {text-align: center; margin: 20px; float: left}
 </style>
 <script type="text/javascript">
 $(document).ready(function() {

 function performLongTaskSync() {
 var start = $.now();

 var total = 0;
 for (var i = 0; i < 5000000 ; i++) {
 total += (i + Number((Math.random() + 1).toFixed(0)));
 }
 var elapsedTime = (($.now() - start)/1000).toFixed(1)
 displayMessage("Task Complete. Time: " + elapsedTime + " sec")
 return total;
 }

Chapter 36 ■ Using DeferreD ObjeCts

992

 function performLongTask() {
 return $.Deferred(function(def) {
 setTimeout(function() {
 performLongTaskSync();
 def.resolve();
 }, 10)})
 }

 $("button").button().click(function() {
 displayMessage("Calling performLongTask()")
 var observer = performLongTask().done(function() {
 displayMessage("Task complete")
 });
 displayMessage("performLongTask() Returned")

 displayMessage("Calling getJSON()")
 var ajaxPromise = $.getJSON("mydata.json").done(function() {
 displayMessage("Ajax Request Completed")
 });
 displayMessage("getJSON() Returned")

 $.when(observer, ajaxPromise).done(function() {
 displayMessage("All Done");
 })
 })
 displayMessage("Ready")
 })

 function displayMessage(msg) {
 $("tbody").append("<tr><td>" + msg + "</td></tr>")
 }
 </script>
</head>
<body>
 <h1>Jacqui's Flower Shop</h1>

 <table class="ui-widget" border=1>
 <thead class="ui-widget-header">
 <tr><th>Message</th></tr>
 </thead>
 <tbody class="ui-widget-content">
 </tbody>
 </table>

 <div id="buttonDiv">
 <button>Go</button>
 </div>
</body>
</html>

Chapter 36 ■ Using DeferreD ObjeCts

993

Figure 36-9. Using Ajax promises

Tip ■ You can create your own promise objects by calling the promise method on a deferred object. this can be
useful if you are writing a javascript library and you only want to allow other programmers to attach callbacks and
not to resolve or reject your deferred objects.

In this example, I have used the getJSON method and treated the result just as I would a deferred object.
I attached a callback function using the done method and use it as an argument to the when method. You can see
the output from this example in Figure 36-9.

Summary
In this chapter, I have demonstrated the jQuery deferred object feature, which lets us signal progress and outcomes
of tasks, typically tasks which are being performed in the background. Deferred objects are used within the jQuery
support for Ajax, which lets us treat our Ajax requests and our custom background tasks in a consistent manner.
Deferred objects are an advanced feature, and most web applications won’t need them – but for those projects that do
significant background tasks, they can help preserve a response experience for the user.

A���������
abort method, 409
accept setting, 668, 674
Access-Control-Allow-Origin header, 363
accordion method, 712
Accordions. See Collapsible set widget
activate event, 665
activatePage property, 784
activeClass setting, 670
activePage property, 785
addClass method, 186
Ajax, 991

advanced configuration settings
async property, 401
data conversion, 406
dataFilter property, 405
ifModified property, 402
statusCode property, 403

advantage, 351
ajaxPrefilter method, 408
ajaxSetup method, 407
basic request configuration settings, 398

sending JSON data to server, 399
timeouts and headers, 398

callback functions
beforeSend property, 392
complete property, 390
context property, 393
error property, 389
event properties, 387
multiple event handling functions, 393
success property, 388

common mistake, 369
convenience methods

(see Convenience methods)
error message, 370
forms plug-in, 378, 380
global events

check box, 397
displaying, 397
displayMessage function, 396
methods, 395

jqXHR object, 384
jQuery deferred object features, 384
members, 384
readyState property, 385
setInterval method, 385
XMLHttpRequest object, 384

low-level API, 382
meaning, 351
POST request, 386
refactoring (see Refactoring)
shorthand methods (see Shorthand methods)
url property, 385

Ajaxconverters property, 406
ajaxError method, 395
ajaxForm method, 380
ajaxPrefilter method, 408
ajaxSetup method, 407, 422
alsoResize setting, 703
Apple Safari browser, 759
Array

built-in array methods, 85
for loop, 84
modification, 84
new Array(), 82
reading, 83
style, 83

Asynchronous task, 352
attr method, 178
autoHide setting, 703
axis setting, 656

B���������
Basket page, 886
beforeSend property, 392

Index

995

bind method, 218, 771, 779, 790
BrowserStack, 761
Button widget, 824

configuration, 828
data attributes, 829
disabled setting, 462
icons to, 829
inline and mini buttons, 831
map object, 461
option argument, 462
setting properties, 460
string option, 461

creation, 824
automatic creation, 824
from other elements, 825
grouped buttons, 826
horizontal button group, 827–828

custom image, 464–465
element transformation, 460
events, 468–469, 834
HTML document, 458
jQuery selection object, 460
jQuery UI icons

display, 462
grid, 463

methods, 465, 832
contents of, 833
destroy method, 465–466
enable and disable methods, 466–467, 833
refresh method, 467–468, 833
script element, 833

types
button set, 471–473
standard buttons, 469
toggle button, 470–471

C���������
Cascading style sheet (CSS), 414

border style values, 59
border width values, 59
properties, 33–34

absolute lengths, 54
browser styles, 47
color functions, 53–54
color property, 48
embedded style, 36–37, 39
external style sheet, 39–40
important property value, 49
inline value, 35–36
% (percent) unit, 58
pixel unit, 56–57
relative lengths, 55
specificity and order assessment, 50, 52
user styles, 48

selectors
attribute selectors, 41–42
core selectors, 40
pseudo-class selectors, 44–46
pseudo-element selector, 44–46
relationship selectors, 43–44
unions and the

negation selectors, 46–47
shorthand property, 60

changePage method, 778, 912
Checkboxradio widget

configuration, 876
creating and formatting

radio buttons, 874
creation

grouping, 872
label to, 871
methods, 876

events, 877
Checkout process, 923
Clone method, 148
Collapsible content blocks, 838

configuration, 839
creation, 838
events, 841

Collapsible set widget, 843
configuration, 844
events, 845
methods, 845

complete property, 390
console.log method, 62
containment setting, 657
Content delivery network (CDN), 96
Content distribution network (CDN), 454–455
contentType property, 399
context property, 393
Convenience methods

getJSON method
CORS, 377
JSONP request, 378

getScript method
JavaScript file, 375
myscript.js file, 374
requesting and executing scripts, 375
row2 element, 376

load method
adding elements, 372
callback function, 373
elements manipulate, 372

Count bubbles, 891
create event, 664
Cross-Origin Resource Sharing (CORS), 363
Cross-site scripting (CSS) attack, 362
Custom filtering function, 889
cycleEffects function, 257

■ index

996

D���������
dataFilter property, 405
data.json, 905
Data templates

broader view, 282
definition, 286
elements, 282
filter method, 289–290
flower data, 286
input, 290
layout, 289
logic template

arrays and properties, 294–296
built-in helpers, 291
data context, 296–298
full-logic template, 291
#if helper, 291–292
logic-less template, 291
parent data context, 299–300
#unless helper, 293
#with helper, 298–299

processing, 288
script element, 284–285
slice and end methods, 288
template helpers

application, 302
arguments, 305
@attributeValue, 308
data preparation, 300–301
#gt helper, 303
#gtValAttr helper, 304–305
handlebars-jquery.js file, 302
HTML string, 307
#inputElem helper, 306
option.hash object, 306
options object, 303
registerHelper, 302
#stockValue helper, 307–308

template library, 283–284
template method, 287

Data-transition, 769–770
Datepicker methods

accordion methods, 578
getDate and setDate

methods, 578–580
show and hide methods, 580–581

Datepicker widget
appearance

bleed between months, 574–575
button bar, 575–576
control setting, 573
format hint, 577
gotoCurrent setting, 576
HTML5 placeholder, 577–578

showWeek setting, 573–574
weekHeader setting, 573–574
week information, 574

configuration
altField setting, 561
buttonImageOnly, 564
buttonText setting, 563
date selection (see Date selection)
defaultDate setting, 559–561
showOn setting, 562

creation
inline datepicker, 557–559
pop-up datepicker, 556–557

events
onChangeMonthYear event, 582
onClose event, 583
onClose method, 583
onSelect method, 581

localization, 584–586
methods (see Datepicker methods)

Date selection
basic constraints, 566
constrainInput setting, 565
direct access, 572
minDate and maxDate settings, 566–567
multimonth display

direct access, 572
grid display, 569
numberOfMonths setting, 568
pop-up datepicker, 570
showCurrentAtPos setting, 570–571

one date restriction, 567
open-ended range, 568
settings for managing, 565
showOn setting, 565

deactivate event, 665
defaultPrevented property, 32
Deferred objects

Ajax, 991
asynchronous tasks, 969, 973
background tasks, 970
callbacks

multiple callback functions, 980
outcome-indifferent function, 977
reject method, 974
then method, 977

click method, 965
definition, 963
demonstration, 964
displayMessage function, 965
performLongTask function, 967
performLongTasksync, 972
progress information, 984
resolve method, 965, 968
setTimeout function, 968

■ index

997

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

state method, 988
synchronous task, 968, 973
when method, 983

delay method, 262
delay setting, 660
delegate method, 224–225
dequeue method, 931–932
Dialog methods

isOpen method, 604
open and close, 603
widget methods, 604

Dialog widget, 798
configuration, 806–807

adding buttons, 596
adding icons, 597
autofocus attribute, 593–594
autoOpen setting, 590
buttons setting, 596
corners and overlayTheme settings, 807
custom title, 593
data attribute, 805–806
data-overlay-theme attribute, 804
draggable setting, 598
pageinit event, 807
position setting, 594–595
settings for, 804
title setting, 592

creation, 798
buttons, 801
changePage method, 800–801
close button, 802
data-rel attribute, 799–800
data-role attribute, 798–799, 801
dialog box, 588–590
dialog1 element, 798
HTML content, 589
modal dialog (see Modal dialog)
navigation button, 803
navigation link/button, 804

dialog events, 809
dialog methods, 808

changePage method, 809
click event, 809
close method, 808
data-close-btn attribute, 808
script element, 809
self-closing dialog widget, 809
span element, 809

events
beforeClose event, 605–606
closeOnEscape setting, 605
close prevent, 605–606
dragStart and dragStop events, 606–607

methods (see Dialog methods)

displayMessage function, 396
distance setting, 660
Document Object Model (DOM)

CSS selectors, 26
Document object, 26
elements searching, 27–28
handling events

default action, 32
event flow, 31
functions, 30
onmouseover and onmouseout properties, 31

HTMLImageElement object, 26
img elements, 28
JavaScript, 26
modifications, 28
properties, 26
styles modification, 29–30

Document object model (DOM) manipulation
description of, 145
detach method, 173–174
element creation

$ function, 146–148
cloning element, 148–149
DOM API, 149–150

empty method, 174
inserting child and descendant elements

append method, 151–152
appendTo method, 156–157
in different position, 154, 156
function, 157–158
prepend method, 152, 154

remove method, 172–173
replace elements, 169–171
sibling elements

before and after methods, 166–167
function, 168–169
insertAfter and insertBefore methods, 167–168

unwrap method, 175–176
wrapping elements, 159

function, 164–165
wrapAll method, 161, 163
wrapInner method, 163–164
wrap method, 159–160

Drag-and-drop interactions
draggable interaction (see Draggable interaction)
droppable interaction (see Droppable interaction)
helper setting

helper function, 678–679
large draggable element, 677–678
ui.helper property, 679

scope setting, 674
snap setting, 680

Draggable interaction
constrain

axis setting, 656

■ index

998

Deferred objects (cont.)

containment setting, 657
grid setting, 659

delay and distance settings, 660
demonstration, 654
div element, 655
events, 662
HTML5, 655
methods, 661

dragV element, 657
Droppable interaction

accept setting, 668
activate and deactivate events, 665
activeClass and hoverClass settings, 670
create event, 664
methods, 674
over and out events, 667
tolerance setting, 672

E���������
Element selection

add method, 118–120
description of, 117
DOM navigation

children and find methods, 131–132
closest method, 137
hierarchy methods, 131, 134
intersection, 133
nextAll and prevAll methods, 142–143
offsetParent method, 138–139
overlapping descendants, 132
parent method, 134
parentsUntil method, 136
position property, 139
reference objects, 137
siblings method, 140–142

filter method
filter results, 124
HTMLElement object, 123
not method, 124–125
src attribute, 123
techniques, 123

first, last, and eq methods, 121
has method, 125–126
is method, 127–128
map method, 126–127
reduced element selection, 120
selection stack

addBack method, 130
children method, 130
div elements, 130
end method, 129
label elements, 129

slice method, 122
Embedded style, definition, 36
error property, 389

Errors handling, JavaScript, 85
Event handler function

bind method, 213–214
default action, 217
Event.data property, 216–217
Event object, 227–228
event shorthand methods

browser, 231
document object, 231
forms, 233
hover method, 232–233
keyboard events, 233
mouse events, 231–232
ready method, 231

img elements, 214
jQuery Event object, 214
live event binding

append methods, 221
delegate method, 224–225
new element, 221
off method, 223–224
on method, 222–223
registering, 222

map object, 216
methods, 212
mouseenter and mouseout events, 215
one method, 221
triggerHandler method, 228–229
triggering, 225–226
unbind method, 218–220

External style sheet, definition, 39

F���������
Filtering lists, 886
Filter method, 356
finish method, 260–262
Flip switches, 868
flowers.html file, 407
Form elements, 847

checkboxradio widget
configuration, 876
creating and formatting

radio buttons, 874
creation, 869
events, 877
grouping, 872
label to, 871
methods, 876

creation, 848
flip switches, 868
label element, 849
portrait orientation, 850
selectmenu widget, 861

attributes, 863
configuration, 862

■ index

999

events, 868
methods, 866
placeholders, 865
popup, 864
select elements, 861
selectmenu button, 863

slider and range slider widgets, 853
configuration, 856
methods, 857
range slider events, 860
refresh method, 857–858
slider events, 859

textarea, 849
text input, 849
textinput widget, 851

configuration, 851
events, 853
methods, 852

Form-event method
dealing with value changes, 316
description, 314
form focus

demonstration, 314
emphasize focused element, 315
input vs. :input selectors, 316

form submission
button elements, 319
demonstration, 317
jQuery submit method without arguments, 318
submit method by HTML5 specification, 318

Form validation, 22
apply validation rules, 323
configure validation, 322
custom check

define validation function, 340
define validation message, 341
demonstration, 339

define validation rules, 323
http://jqueryvalidation.org, 320
import JavaScript file, 322
input element, 319
validation checks

apply validation rules directly to elements, 328
apply validation rules

using element attributes, 333
apply validation rules via classes, 325
apply validation rules via

element name attribute, 332
description, 324

validation error display
class for invalid elements, 343
configuration options for, 342
error message element, 344
highlighting for invalid elements, 344

validation messages
for attribute and name validation, 334
for per-element validation, 337

validation plug-in, 320
validation summary

create validation summary, 348
example, 346
listing for, 345
prepare validation messages, 347
tidying up error message composition, 350

G���������
getAttribute method, 124
getJSON method, 376, 383, 710, 712, 908
getScript method, 374
ghost setting, 703
Grep method, 933
Grid layouts, 794
Grid setting, 659

H���������
handleMouseEvent function, 220
handles setting, 703
hasClass method, 186
Headers and footers, 765
helper setting

helper function, 678–679
large draggable element, 677–678
ui.helper property, 679

holdReady method, 103
hoverClass setting, 670
hover method, 232
HTML5. See HTML document
HTML document

ad infinitum, 24
attributes

class attribute, 15
definition, 14
id attribute, 14
name, 14
value, 14

body element
ancestor-descendant relationship, 25
button element, 22
compatibility, 20
definition, 20
external resources, 23
form element, 21
input element, 22
parent-child relationship, 24
script, 17–18
section/article, 20
siblings relationships, 25

■ index

1000

Form elements (cont.)

structure and significance, 20
style element, 18–19
table layout, 22

in browser, 13
content, 13
div element, 15
DOCTYPE element, 16
DOM (see Document

Object Model (DOM))
end tag, 13
flower shop example document, 24
head element

script, 17–18
style, 18–19

nested elements, 15
start tag, 13
structure, 11–12
void/self-closing elements, 16

HTMLElement object, 394
HTML forms

form-event methods (see Form-event method)
Node.js server

entering data into input elements, 313
example document, 311
response from, 313
servers, 312
server-side script, 310

validating form values (see Form validation)

I���������
ifModified property, 402
inArray method, 935
Inline buttons, 831
Inset lists, 883
isFunction method, 938–939

J, K���������
JavaScript

array
built-in array methods, 85
for loop, 84
modification, 84
new Array(), 82
read, 83
style, 82

console, 62
error handling, 85
external script, 61
functions

myFunc function, 64
parameters, 64
return function, 65
script element, 63

inline script, 61
local and global variables, 66
objects creation, 68

adding and deleting properties, 73
for…in statement, 72
hasDate property, 74–75
literal format, 69
printMessages method, 70
reading and modifying properties, 71

operators (see Operators)
statement, 62–63
types

boolean type, 67
number type, 67
string types, 66

undefined and null values
equality and identity, 90
if statement, 89
weather property, 89

JavaScript Object Notation (JSON) data, 357
jQuery

$ function, 99–100
CDN, 96
conditional comments, 96
CSS color property, 115
DOM

context, 106–107
countImgElements function, 102
$(document).ready approach, 102
each method, 110
extension selectors, 104–106
get method, 112
HTMLElement object, 108
index method, 111–112
objects creation, 109
odd img elements, 104
ready event, 103
ready function, 101–102
techniques, 101
toArray method, 109

flower shop example document, 94–95
handler functions, 116
jquery-2.0.2.js file, 95
method chaining method calls, 114
minified script, 95
multiple elements, 113
script element, 97–98
selector property, 94
styles.css, 95

jQuery context
advanced features, 2
core features, 2
core library, 3
Data and Ajax, 2
HTML document, 4–5

■ index

1001

image attribution, 9
jQuery Mobile, 1–3
plug-ins, 1
software

HTML editor, 7
jQuery library, 6
Node.js, 8–9
web browser, 7
web server, 7

user interface (UI), 1–3
jQuery effects

animation effects, 264
callbacks function, 242

hideVisibleElement function, 243
inline functions, 244
looping effects, 245
showHiddenElement function, 243
switchRowVariables function, 243

custom effects
animation, 253
h1 element, 253
methods, 252
target property values, 254–255

description, 236
fade effect, 250

fadeToggle method, 249
fadeTo method, 250–251
opacity range, 251
show and hide elements, 248–249

queue effect
creation, 256
custom function, 263–264
cycleEffects function, 257
delay method, 262
finish method, 260–262
items, 257–258
methods, 256
stop method, 259–260

show and hide methods, 236–239
slide effects, 247–248
toggle method, 239–240
visibility

animation, 240
hiding elements, 241
showing elements, 242
time span arguments, 240

web application, 246
jQuery filter method, 657
jQuery Mobile

automatic enhancement, 740
basics, 903
basket page, 912, 920
button widget, 921
calculateTotals function, 919
change event, 919

checkout process, 923
data.json, 905
data template, 906
gesture methods, 748
href attribute, 911
installation, 738
jquery.mobile-1.3.1.zip, 738
list items and pages, 909
listview widget, 908
mobile devices

bandwidth, 758
BrowserStack, 761
desktop browsers, 761
developer modes, 759
inaccuracy, 760
iPhone models, 757
market, 757
obstruction, 760
Opera Mobile emulator, 761
tactility, 759
touch factors, 759
touch screens, 758

multiple products, single page for, 909
on method, 919
orientation changes

current orientation determination, 755
media queries, 755
Opera Mobile emulator, 755
orientationevent, 754
span element, 754

page events, 744
product information

page, button to, 920
productPage page, 911
quantity changes, 916
refresh method, 908
reusing pages, 909
textinput method, 919
theme creation, 738
tiered support, 739
touch events, 745
viewport, 742
virtual mouse events, 751

jQuery UI
animating classes, 948
animating colors, 946
CSS framework

cue classes, 958
rounded corners, 955
widget container classes, 953

custom download, 451
installation

CDN, 454–455
CSS file, 454
document checking, 454
HTML document, 453

■ index

1002

jQuery context (cont.)

JavaScript and CSS files, 453
problem identification, 454
unminified source code, 452

refactoring (see Refactoring)
show and hide elements, 951
standalone effects, 952
Sunny theme, 451
switchClass, 949
ThemeRoller page, 449
theme selection, 452

jQuery UI accordion
accordion methods, 524
configuration

accordion events, 525
active header selection, 520
event setting, 520
height determination, 518
heightStyle property, 515
icons setting, 523
settings, 514

creation, 510
jQuery UI autocomplete

autocomplete events, 506
default select action, 509
search results modification, 508
span element, 507
ui object, 507

autocomplete methods, 504
close method, 504
search method, 504

basic element, 493
configuration

data source function, 498
pop-up positioning, 501
remote data source, 495
settings, 495

input element creation, 492
object array, 493
source property, 493

jQuery UI menu widget
configuration

adding icons to menu items, 629–630
element structure, 626
icons setting, 629
menu items, 627
menu setting, 626
menus property, 627
submenu pop-up position, 631
submenu property, 629

menu creation
formatting types, 624
href attribute for navigation, 625
menu method, 622
menu structure, 623

menu events, 632
menu method, 632

jQuery UI tooltip widget
configuration

content setting, 638
CSS classes to, 642
generating content using function, 639
positioning tooltip, 646
remote tooltip content, 640
track mouse position, 644

creation
span element, 636
tooltip method, 635
with input elements, 636

tooltip events, 649
tooltip methods, 647

JSON.stringify method, 405

L���������
List dividers, 890
List filtering, 886
Listview widget, 880

basic list, 880
configuration, 882

attributes, 882
custom filtering function, 889
dividers, 890
filtering lists, 886
inset lists, 883
split lists, 883

convention-based configuration, 891
aside in, 893
count bubbles, 891
events, 894
methods, 894
text emphasis, 892

data-role attribute, 882
loadPage method, 786

M���������
Manipulate elements

attributes
each method, 180
img elements, 182
map object, 181
properties, 184
removing, 184
setting, 180
src attribute, 180
this variable, 183

classes
addClass method, 186–187
hasClass method, 186
HTMLElement object, 188
redBorder class, 186
removeClass method, 186, 188

■ index

1003

style element, 185
toggling (see Toggling classes)

CSS property
css method, 197
multiple properties, 198
position method, 202
relative values, 200
setting, 200
single CSS value, 197
width and height, 203

element content
function, 205
html method, 204
setting, 204

element data, 209
form elements

function, 208
setting, 207
val method, 206

Map method, 935
maxHeight setting, 703, 705
maxWidth setting, 703, 705
merge method, 937
Microsoft IIS, 358
minHeight setting, 703, 705
Mini buttons, 831
minWidth setting, 703, 705
Modal dialog

capture input, 602
creation, 599
forms, 601
open and close methods, 600

mydata.json file, 383
myFunc function, 64

N���������
NavBars, 835

configuration, 837
creation, 835
methods and events, 838
positioning, 837–838

NoSuchFile.json, 389

O���������
off method, 223–224
one method, 220
on method, 222
Opera Mobile emulator, 755, 761, 850
Operators, 75

conditional statements, 75
convert types

complementary technique, 81
Number method, 81

number type, 80
string concatenation operator, 79
toString method, 80

equality and identity operators, 76
Option method, 889
out event, 667
over event, 667

P���������
Pages, 763

document, 766
document2.html, 771
events, 787

pageinit event, 788
page initialization event, 788
page load events, 788
page transitions, 789

external pages, 771
ajaxEnabled global setting, 775
Ajax/page id issue, 773
data-ajax attribute, 774–775
data-prefetch attribute, 777
disabled Ajax, 774–775
document2.html, 775
multipage Ajax issue, 774
prefetching pages, 776

grid layouts, 794
headers and footers, 765
HTML document, 764

data-role, 764
role of content, 764

id attribute, 767
scripting, 778

activatePage property, 784
activePage property, 784–785
changePage method, 778
load animation, 782
loadMsgDelay setting, 782
loadPage method, 786
reverse setting, 781
showLoadMsg setting, 783
transition effect, 781

singlepage.html, 776
themes, 790
transitions, 768

bind method, 771
data-transition, 769
defaultPageTransition, 770–771
fade, 769, 771
mobileinit event, 770–771
slide, 768–769
turn effect, 770

Panel widget, 894
configuration, 896

data-display attribute, 897

■ index

1004

Manipulate elements (cont.)

dismissing, 899
position and display options, 896

creation, 895
data-swipe-close and

data-dismissable attributes, 899
events, 901
methods, 900
popup widget, 896
self-closing panel, 900

parseJSON method, 941
parseXML method, 941
Polymorphism, 65
Popup widget

afteropen event, 820
afteropen method, 821
configuration, 811–812

advantage of, 811
close method, 814
corners setting, 817
data attributes, 811, 813
data-history attribute, 815–817
effect of, 814, 817
history setting, 814
images, 816
open method, 814, 816
overlayTheme setting, 817
rich content, 815
script element, 817
settings for, 813
tolerance setting, 817
values for, 812

creation, 810
data-rel attribute, 810
data-role attribute, 810
popup events, 820
popup methods, 818

close button, 819
close method, 818
open method, 818–819
reposition method, 818–819
vmousedown event, 819

setTimeout function, 821
position method, 202
preventDefault function, 32
preventDefault method, 217, 357, 366
Progress bar widget

creation, 474–475
determinate and indeterminate task, 473
events, 478, 480
indeterminate progress bar, 475–476
methods, 476

modes, 477
value method, 476–477

user expectations, 474
Pulsate effect, 953

Q���������
queue method, 263

R���������
Range slider widget, 484, 486, 854

attributes, 856
configuration, 856
data-highlight attribute, 856
input elements, 854–855
methods, 857
range slider events, 860
themes to, 857

Refactoring
accordion method, 712
adding dialog

dialog method, 730
dialog script, 728–730
sendOrder function, 731

carousel buttons
addition, 271
a elements, 271
append method, 272
background-position property, 275
click, mouseenter,

and mouseexit events, 272
document, 273
handleArrowMouse function, 275
handleArrowPress function, 276
key property, 272
modulo operator, 277
product rows, 277
statement, 277

CSS, 414
document, 267–269
flower products, 269–271
form submission

handler function, 434
jQuery statement, 433
new elements, 433
progress elements, 433
submission script, 429–432

form validation
input elements, 425
remote validation, 426–428
validation script, 422–425
when and then methods, 425

JavaScript, 280
jQuery UI button

button method, 727
CSS styles, 727
relocating and

transforming, 725–727
jQuery UI starting document, 709, 711

■ index

1005

order completion
additional information, 735
document reset, 736
process, 734
products selection, 735

place order button
autoOpen setting, 731
button click script, 732–733
jQuery object, 733
placeholder element, 733

product information
additionalflowers.json file, 419
product set up script, 419–421

product selection total, 278–279
requests and error handling, 416, 418
revised Node.js script, 414–416
server response

order summary, 436
processing script, 437–441

shopping basket
adding rows, 717
adding table, 715–716
deleting rows, 718
getJSON function, 716
removeTableRow function, 718
script document, 713–714
updating exiting rows, 719
wrapping accordion, 715

sorting and structuring, 711
starting point, 411
submit button

CSS, 275
dealing, 273–274
div and a span element, 274
h1 element, 274

theme style
CSS framework styles, 720–721
document header, 722
framework styles, 722
rounded corners, 722–724

Remote validation, 426–428
removeAttr method, 184
remove method, 119
replaceWith method, 170
Reposition method, 818–819
Resizable interactions

configuration
constrain resizable

element size, 705
draggable settings, 703
handles setting, 706
resizing related elements, 703

resizable method, 701
script element, 702

S���������
scope setting, 674
Selectable interactions

events, 701
selectable method, 697, 700
settings, 699
ui.selecting and ui.selected class, 698

Selectmenu widget, 861
attributes, 863
configuration, 862

button, 863
native select menus, 864
placeholders, 865
popup, 864

events, 868
methods, 866
select elements, 861, 862

serializeArray method, 400, 940
serialize method, 366, 940–941
Shorthand methods

expected data type, 368
GET requests vs. POST requests, 360
HTTP GET request

callback functions, 355
data processing, 355
div elements, 356
filter method, 356
flowers.html file, 353–354
Google Chrome F12 tools, 359
HTML document, 352–353
HTML fragment, 354
JSON data file, 358
mydata.json file, 357
preventDefault method, 357
response making, 356–357
script element, 355
send data, 358
URL, 355

HTTP POST method
CORS specification, 363
cross-origin request, 362–363
formserver.js file, 360–361
JSON response, 362
Node.js script, 362
nonform data, 367
processServerResponse function, 366
sending data, 364
serialize method, 366
starting point, 365

Shorthand property, 60
Slice method, 370
Slider widget, 853

attributes, 856
basic UI slider, 481

■ index

1006

Refactoring (cont.)

configuration, 481, 856
animate setting, 483–484
orientation setting, 481–483
range slider, 484, 486

creation, 480
events, 488–489
input element, 853–854
methods, 486, 857

change method, 488
program control, 486, 488

settings for, 481
slider events, 859

Slide transitions, 769
snapMode setting, 681
snap setting, 680
snapTolerance setting, 681
snowdrop, 22
Sortable interactions

cancel method, 693
configuration

connectToSortable setting, 689
connectWith setting, 688
items setting, 690
placeholder setting, 692

div elements, 684
events, 695
refresh method, 695
sortable method, 684
sorted element order

serialize method, 686
toArray method, 685

Spinner methods, 617–619
Spinner widget

configuration
basic behavior, 611–612
button icons, 613–614
charset attribute, 617
culture properties, 615
globalize.cultures.js file, 616
incremental setting property, 614–615
input element value, 613
min and max properties, 612
numberFormat property, 615
and page properties, 612
pageUp and pageDown methods, 612
spinner settings, 611

creation
HTML5 input element, 608, 610
spinner method, 607

events, 619–620
methods, 617–619

Split lists, 883, 912
Standalone effects, 952
start event, 662
status argument, 388, 390

statusCode property, 403
stop event, 662
stop method, 259–260
Submit Order button, 928
success function, 407
success property, 388
Sunny theme, 451
switchClass method, 949

T���������
Tabs widget

Ajax
content generation, 531–532
tabflowers.html file, 531

configuration, 533
active tab selection, 533, 535
collapsible tabs, 538–539
enable and disable settings, 535–536
event trigger, 537–538
settings, 533

creation, 528–529, 549
elements

content, 530
div elements, 529
structure, 529

events, 542
alert function, 553
beforeActivated event, 553
beforeLoad event, 543–544
button element, 550–551
form, 545, 547
multipart form, 547
newPanel property, 553
remote tab data

manipulation, 544–545
validation, 551, 553

methods, 539
adding and removing tabs, 539–540
Ajax request, 541

Text emphasis, 892
Textinput method, 851
Textinput widget, 851

configuration, 851
data-clear-btn and

data-mini attributes, 851
events, 853
input element, 851–852
methods, 852

Themes, 790
data-theme attribute, 791–792
Import Default Theme link, 791
swatches to individual elements, 793

Toggle button, 470–471
toggleClass method, 192–194, 949

■ index

1007

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

Toggling classes
addClass method, 193
blueBorder style, 191
CSS declaration order, 191
doToggle, 190
dynamic elements, 195
img elements, 190
multiple class, 192
in one direction, 194
redBorder class, 190
toggleClass method, 189–190

tolerance setting, 672
toString method, 80
triggerHandler method, 228–229
trigger method, 226
Trim method, 941
Turn transition, 770

U���������
unbind method, 218
Unique method, 937
Utility methods, 929, 942

for arrays, 933
grep method, 933
inArray method, 935
map method, 935
merge method, 937
unique method, 937

clearQueue method, 930
contains method, 942
css method, 931
for data, 940

parsing data, 941
serializing form data, 940
trim method, 941

dequeue method, 931
gen, 931
input elements, 931
isFunction method, 938
queue methods, 929
stop method, 930
type method, 938
val method, 931

V���������
validate method, 425
val method, 206

W���������
W3C. See World Wide

Web Consortium (W3C)
Widget

button widget (see Button widget)
collapsible set widget

(see Collapsible set widget)
panel widget (see Panel widget)

Widgets
dialog (see Dialog widget)
form elements (see Form elements)
listview widget (see Listview widget)
popup (see Popup widget)

World Wide Web Consortium (W3C), 384
wrapAll method, 161–162
wrapInner method, 163–164
wrap method, 159–160

X, Y, Z���������
X-HTTP-Method-Override header, 387

■ index

1008

Pro jQuery 2.0
Second Edition

Adam Freeman

Pro jQuery 2.0

Copyright © 2013 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6388-3

ISBN-13 (electronic): 978-1-4302-6389-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew
Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan
Copy Editor: Lori Jacobs and Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Dedicated to my lovely wife, Jacqui Griffyth.

—Adam Freeman

vii

Contents

About the Author ��� xxix

About the Technical Reviewer ��� xxxi

Acknowledgments ��� xxxiii

Chapter 1: Putting jQuery in Context ■ ���1

Understanding jQuery UI and jQuery Mobile ���1

Understanding jQuery Plug-ins ���1

What Do I Need to Know? ��2

What Is the Structure of This Book? ��2

Part 1: Getting Ready ��� 2

Part 2: Working with jQuery ��� 2

Part 3: Working with Data and Ajax ��� 2

Part 4: Using jQuery UI ��� 2

Part 5: Using jQuery Mobile ��� 2

Part 6: Advanced Features ��� 2

What’s New in This Edition? ��3

What’s New for Core jQuery? ��� 3

What’s New for jQuery UI? ��� 3

What’s New for jQuery Mobile? ��� 3

What Else Is New? ��� 4

Are There Lots of Examples? ���4

Where Can I Get the Example Code? ���6

■ Contents

viii

What Software Do I Need for This Book? ��6

Getting jQuery �� 6

Getting an HTML Editor �� 7

Getting a Web Browser �� 7

Getting a Web Server ��� 7

Getting Node�js �� 8

Image Attribution ���9

Summary ���9

Chapter 2: HTML Primer ■ ��11

Introducing a Basic HTML Document ��11

Understanding the Anatomy of an HTML Element ���13

Understanding Attributes���14

The id and class Attributes �� 14

Understanding Element Content ��15

Understanding Void Elements��16

Understanding the Document Structure ��16

Understanding the Metadata Elements ��� 17

Understanding the Content Elements �� 19

Understanding the Element Hierarchy ���24

Understanding Parent-Child Relationships �� 24

Understanding Ancestor-Descendant Relationships �� 25

Understanding Sibling Relationships ��� 25

Understanding the Document Object Model ��25

Using the DOM ��� 26

Modifying the DOM �� 28

Modifying Styles �� 29

Handling Events ��� 30

Summary ���32

■ Contents

ix

Chapter 3: CSS Primer ■ ���33

Getting Started with CSS ���33

Setting an Inline Value ���35

Defining an Embedded Style ���36

Defining an External Style Sheet ���39

Understanding CSS Selectors ���40

Selecting by Attribute �� 41

Selecting by Relationship �� 42

Selecting Using the Pseudo-element and Pseudo-class Selectors ��� 44

Unions and the Negation Selectors ��� 46

Understanding Style Cascading ��47

Understanding How Styles Cascade �� 48

Tweaking the Order with Important Styles �� 49

Tie-Breaking with Specificity and Order Assessments �� 50

Understanding CSS Units ��52

Working with CSS Colors ��� 53

Understanding CSS Lengths �� 54

Using Shorthand Properties and Custom Values ���58

Summary ���60

Chapter 4: JavaScript Primer ■ ��61

Getting Ready to Use JavaScript ���61

Using Statements ��62

Defining and Using Functions��63

Defining Functions with Parameters ��� 64

Defining Functions That Return Results �� 65

Using Variables and Types ���66

Using the Primitive Types �� 66

Creating Objects �� 68

Working with Objects��� 70

■ Contents

x

Using JavaScript Operators ���75

Using Conditional Statements ��� 75

The Equality Operator vs� the Identity Operator ��� 76

Explicitly Converting Types �� 79

Working with Arrays ��82

Using an Array Literal �� 82

Reading and Modifying the Contents of an Array �� 83

Enumerating the Contents of an Array ��� 84

Using the Built-in Array Methods ��� 85

Handling Errors ���85

Comparing undefined and null Values ���87

Checking for null or undefined �� 89

Differentiating Between null and undefined �� 90

Summary ���91

Chapter 5: jQuery Basics ■ ���93

Setting Up jQuery ��94

Using Conditional Comments ��� 96

A First jQuery Script ��97

Understanding the jQuery $ Function ��99

Waiting for the Document Object Model��101

Using the Alternative Notation ��� 102

Deferring the ready Event �� 103

Selecting Elements ��104

Narrowing the Selection with a Context �� 106

Understanding the Selection Result ��107

Determining the Context �� 108

Dealing with DOM Objects ��� 109

Modifying Multiple Elements and Chaining Method Calls ���113

Handling Events ��116

Summary ���116

■ Contents

xi

Chapter 6: Managing the Element Selection ■ ���117

Expanding the Selection ��118

Narrowing the Selection ��120

Reducing the Selection to a Specific Element ��� 121

Reducing the Selection by Range �� 122

Filtering Elements �� 122

Reducing the Selection Based on Descendants ��� 125

Mapping the Selection ��126

Testing the Selection ���127

Changing and Then Unwinding the Selection ��128

Navigating the DOM ��130

Navigating Down the Hierarchy ��� 131

Navigating Up the Hierarchy �� 133

Navigating Across the Hierarchy�� 139

Summary ���143

Chapter 7: Manipulating the DOM ■ ���145

Creating New Elements ���146

Creating Elements Using the $ Function ��� 146

Creating New Elements by Cloning Existing Elements �� 148

Creating Elements Using the DOM API ��� 149

Inserting Child and Descendant Elements���150

Prepending Elements ��� 152

Inserting the Same Elements in Different Positions �� 154

Inserting from a jQuery Object ��� 156

Inserting Elements Using a Function ��� 157

Inserting Parent and Ancestor Elements ���159

Wrapping Elements Together in a Single Parent �� 161

Wrapping the Content of Elements �� 163

Wrapping Elements Using a Function �� 164

■ Contents

xii

Inserting Sibling Elements ��166

Inserting Siblings from a jQuery Object ��� 167

Inserting Siblings Using a Function ��� 168

Replacing Elements ���169

Replacing Elements Using a Function ��� 170

Removing Elements ���172

Detaching Elements ��� 173

Empting Elements �� 174

Unwrapping Elements ��� 175

Summary ���176

Chapter 8: Manipulating Elements ■ ��177

Working with Attributes and Properties ��178

Setting an Attribute Value �� 180

Setting Multiple Attributes ��� 181

Setting Attribute Values Dynamically ��� 183

Removing an Attribute ��� 184

Working with Properties �� 184

Working with Classes ��185

Adding and Removing Classes Using a Function ��� 187

Toggling Classes �� 189

Toggling Multiple Classes �� 192

Toggling All Classes ��� 193

Toggling Classes in One Direction ��� 194

Toggling Classes Dynamically ��� 195

Working with CSS ��196

Getting and Setting a Single CSS Value ��� 197

Getting Multiple CSS Properties �� 198

Setting Multiple CSS Properties ��� 198

Setting Relative Values �� 200

Setting Properties Using a Function �� 200

Using the Property-Specific CSS Convenience Methods ��� 201

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

■ Contents

xiii

Working with Element Content ��203

Setting Element Content �� 204

Setting Element Content Using a Function �� 205

Working with Form Elements ��206

Setting Form Element Values��� 207

Setting Form Element Values Using a Function ��� 208

Associating Data with Elements ��209

Summary ���210

Chapter 9: Working with Events ■ ��211

Handling Events ��212

Registering a Function to Handle Multiple Event Types ��� 215

Providing Data to the Event Handler Function ��� 216

Suppressing the Default Action ��� 217

Removing Event Handler Functions ��� 218

Executing a Handler Once ��� 220

Performing Live Event Binding ��221

Limiting DOM Traversal for Live Event Handlers �� 224

Manually Invoking Event Handlers ��225

Using an Event Object �� 227

Using the triggerHandler Method �� 228

Using the Event Shorthand Methods ���229

Using the Document Event Shorthand Methods �� 231

Using the Browser Event Shorthand Methods ��� 231

Using the Mouse Event Shorthand Methods �� 231

Using the Form Event Shorthand Methods �� 233

Using the Keyboard Event Shorthand Methods ��� 233

Summary ���233

■ Contents

xiv

Chapter 10: Using jQuery Effects ■ ���235

Using the Basic Effects ���236

Toggling Elements ��� 239

Toggling in One Direction ��� 240

Animating the Visibility of Elements �� 240

Using Effect Callbacks ��� 242

Creating Looping Effects ��� 245

Using the Slide Effects ��247

Using the Fade Effects ��248

Fading to a Specific Opacity �� 250

Creating Custom Effects ��252

Using Absolute Target Property Values �� 254

Using Relative Target Property Values ��� 255

Creating and Managing the Effect Queue ��256

Displaying the Items in the Effect Queue��� 257

Stopping Effects and Clearing the Queue �� 259

Inserting a Delay into the Queue ��� 262

Inserting Functions into the Queue �� 263

Enabling and Disabling Effect Animations ���264

Summary ���265

Chapter 11: Refactoring the Example: Part I ■ ���267

Reviewing the Example Document ��267

Adding Additional Flower Products ���269

Adding the Carousel Buttons ���271

Dealing with the Submit Button ��273

Implementing the Carousel Event Handler Functions ���275

Totaling the Product Selection ��278

Disabling JavaScript ��280

Summary ���280

■ Contents

xv

Chapter 12: Using Data Templates ■ ���281

Understanding the Problem That Templates Solve ��282

Setting Up the Template Library ��283

A First Data Templates Example ��284

Defining the Data ��� 286

Defining the Template �� 286

Applying the Template ��� 287

Using Template Logic ��291

Creating Conditional Content ��� 291

Enumerating Arrays and Properties ��� 294

Changing the Data Context �� 296

Creating Custom Template Helpers ���300

Creating a Conditional Template Helper �� 301

Returning More Complex Content �� 304

Receiving Optional Arguments in the Helper Function �� 305

Providing Custom Template Properties �� 307

Summary ���308

Chapter 13: Working with Forms ■ ���309

Preparing the Node�js Server ��310

Recapping the Form-Event Methods ���314

Dealing with Form Focus ��� 314

Dealing with Value Changes �� 316

Dealing with Form Submission �� 317

Validating Form Values ��319

Using the Validation Checks ��� 324

Specifying Validation Messages �� 334

Creating a Custom Check �� 339

Formatting the Validation Error Display ��� 342

Using a Validation Summary �� 345

Summary ���350

■ Contents

xvi

Chapter 14: Using Ajax: Part I ■ ���351

Using the Ajax Shorthand Methods ���352

Performing an Ajax GET Request ��� 352

Performing an Ajax POST Request ��� 360

Specifying the Expected Data Type �� 368

Avoiding the Most Common Ajax Pitfall ���369

Using the Type-Specific Convenience Methods���371

Getting an HTML Fragment �� 371

Getting and Executing Scripts ��� 374

Getting JSON Data ��� 376

Using the Ajax Forms Plug-in ��378

Summary ���380

Chapter 15: Using Ajax: Part II ■ ��381

Making a Simple Ajax Request with the Low-Level API ��382

Understanding the jqXHR Object ���384

Setting the Request URL ���385

Making a POST Request ��386

Handling Ajax Callbacks ��387

Dealing with Successful Requests �� 388

Dealing with Errors �� 389

Dealing with Completed Requests ��� 390

Configuring Requests Before They Are Sent �� 392

Specifying Multiple Event Handler Functions �� 393

Setting the Context for Events ��� 393

Using the Global Ajax Events ���394

Controlling Global Events ��� 397

Configuring the Basic Settings for an Ajax Request ��398

Setting Timeouts and Headers ��� 398

Sending JSON Data to the Server �� 399

■ Contents

xvii

Using Advanced Configuration Settings ��401

Making the Request Synchronously �� 401

Ignoring Unmodified Data �� 402

Dealing with the Response Status Code �� 403

Cleaning Up the Response Data �� 405

Managing Data Conversion �� 406

Setting Up and Filtering Ajax Requests ���407

Defining Default Settings ��� 407

Filtering Requests �� 408

Summary ���409

Chapter 16: Refactoring the Example: Part II ■ ��411

Reviewing the Refactored Example ��411

Updating the Node�js Script ���414

Preparing for Ajax ��416

Sourcing the Product Information ���419

Adding Form Validation ���422

Adding Remote Validation �� 426

Submitting the Form Data Using Ajax��428

Processing the Server Response ��436

Adding the New Form �� 442

Completing the Ajax Request ��� 443

Processing the Data��� 445

Summary ���447

Chapter 17: Setting Up jQuery UI ■ ���449

Obtaining jQuery UI ���449

Deciding on a Theme ��� 449

Creating the jQuery UI Custom Download �� 451

Installing jQuery UI for Development ���452

Adding jQuery UI to an HTML Document�� 453

■ Contents

xviii

Installing jQuery UI for Production ���454

Using jQuery UI via a Content Distribution Network �� 454

Summary ���455

Chapter 18: Using the Button, Progress Bar, and Slider Widgets ■ ����������������������������������457

Using the jQuery UI Button ��458

Configuring the Button��� 460

Using jQuery UI Icons in Buttons ��� 462

Using a Custom Image ��� 464

Using the Button Methods ��� 465

Using the Button Event �� 468

Creating Different Types of Button ��469

Creating a Toggle Button ��� 470

Creating a Button Set �� 471

Using the jQuery UI Progress Bar ��473

Creating the Progress Bar ��� 474

Creating an Indeterminate Progress Bar ��� 475

Using the Progress Bar Methods ��� 476

Using the Progress Bar Events �� 478

Using the jQuery UI Slider ���480

Configuring the Slider �� 481

Using the Slider Methods �� 486

Using Slider Events �� 488

Summary ���490

Chapter 19: Using the Autocomplete and Accordion Widgets ■ ���������������������������������������491

Using jQuery UI Autocomplete ���492

Creating the Autocomplete Element �� 492

Configuring Autocomplete ��� 495

Using the Autocomplete Methods �� 503

Using the Autocomplete Events ��� 506

■ Contents

xix

Using the jQuery UI Accordion ���510

Creating the Accordion �� 510

Configuring the Accordion �� 514

Using the Accordion Methods �� 524

Using the Accordion Events ��� 525

Summary ���526

Chapter 20: Using the Tabs Widget ■ ��527

Creating the Tabs ���528

Getting Tab Content with Ajax ���531

Configuring the Tabs Widget ��533

Selecting the Active Tab��� 533

Disabling Individual Tabs ��� 535

Changing the Event Trigger �� 537

Using Collapsible Tabs ��� 538

Using the Tabs Methods ��539

Adding and Removing Tabs ��� 539

Triggering Tab Ajax Requests ��� 541

Using the Tabs Events ���542

Intercepting Ajax Requests �� 543

Manipulating Remote Tab Data �� 544

Using Tabs to Display a Form �� 545

Summary ���554

Chapter 21: Using the Datepicker Widget ■ ��555

Creating the Datepicker���556

Creating an Inline Datepicker �� 557

Configuring the Datepicker ��559

Performing Basic Configuration ��� 559

Managing the Date Selection �� 565

Managing the Appearance of the Datepicker ��� 573

■ Contents

xx

Using the Datepicker Methods ��578

Getting and Setting the Date Programmatically �� 578

Showing and Hiding Pop-up Datepickers Programmatically �� 580

Using the Datepicker Events ���581

Responding to a Month or Year Change��� 582

Responding to the Pop-up Closing �� 583

Localizing Date Selection ��584

Summary ���586

Chapter 22: Using the Dialog and Spinner Widgets ■ ���587

Using the jQuery UI Dialog Widget ���588

Creating the Dialog �� 588

Configuring the Dialog ��� 590

Using the Dialog Methods �� 602

Using the Dialog Events ��� 604

Using the jQuery UI Spinner Widget ��607

Using the Spinner Widget with the HTML5 Input Element Types ��� 608

Configuring the Spinner Widget �� 611

Using the Spinner Methods ��� 617

Using the Spinner Events��� 619

Summary ���620

Chapter 23: Using the Menu and Tooltip Widgets ■ ��621

Using the jQuery UI Menu Widget ��622

Creating the Menu �� 622

Configuring the Menu �� 625

Using the Menu Methods ��� 631

Using the Menu Events �� 632

Using the jQuery UI Tooltip Widget ���634

Creating the Tooltip �� 635

Configuring the Tooltip ��� 637

■ Contents

xxi

Using the Tooltip Methods ��� 647

Using the Tooltip Events��� 649

Summary ���651

Chapter 24: Using the Drag-and-Drop Interactions ■ ���653

Creating the Draggable Interaction ���654

Configuring the Draggable Interaction ��� 655

Using the Draggable Methods ��� 661

Using the Draggable Events��� 662

Using the Droppable Interaction ��663

Highlighting a Drop Target ��� 665

Dealing with Overlapping Elements ��� 667

Configuring the Droppable Interaction ��� 668

Using the Droppable Methods ��� 674

Tuning Drag and Drop ��674

Using Element Scope ��� 674

Using a Helper Element ��� 676

Snapping to the Edges of Elements ��� 680

Summary ���681

Chapter 25: Using the Other Interactions ■ ��683

Using the Sortable Interaction ���684
Getting the Sortable Order ��� 685

Configuring the Sortable Interaction �� 687

Using the Sortable Methods �� 693

Using the Sortable Events�� 695

Using the Selectable Interaction ���697
Configuring the Selectable Interaction �� 699

Using the Selectable Interaction Methods ��� 700

Using the Selectable Interaction Events �� 701

Using the Resizable Interaction ���701
Configuring the Resizable Interaction �� 703

Summary ���707

■ Contents

xxii

Chapter 26: Refactoring the Example: Part III ■ ���709

Reviewing the Refactored Example ��709

Displaying the Products ��711

Adding the Shopping Basket ���713

Wrapping the Accordion �� 715

Adding the Table �� 715

Handling Input Value Changes ��� 716

Applying the Theme Style ���720

Applying the CSS Framework More Widely ��� 721

Applying Rounded Corners to the Table ��� 722

Creating the jQuery UI Button ��725

Adding the Completion Dialog ���728

Handling the Place Order Button Click ��731

Completing the Order ��734

Summary ���736

Chapter 27: Getting Started with jQuery Mobile ■ ��737

Setting Up jQuery Mobile ��737

Obtaining jQuery Mobile �� 738

Installing jQuery Mobile �� 738

Understanding the jQuery Mobile Approach ��739

Understanding Automatic Enhancement ��� 740

Understanding the Viewport ��� 742

Understanding jQuery Mobile Events ��� 744

Responding to Device Orientation Changes��� 754

Working with Mobile Devices ��756

Avoiding the Two Cardinal Sins of Mobile Development �� 757

Avoiding Bad Assumptions �� 757

Avoiding Unrealistic Simulation and Testing �� 759

Using a Mobile Browser Emulator ��� 761

Summary ���761

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

c2
74

82
14

@
dr

dr
b.

co
m

■ Contents

xxiii

Chapter 28: Pages, Themes & Layouts ■ ��763

Understanding jQuery Mobile Pages ���764

Adding Headers and Footers to a Page ��� 765

Adding Pages to a Document �� 766

Linking to External Pages �� 771

Using Scripting to Control jQuery Mobile Pages ��778

Changing the Current Page �� 778

Determining the Current Page ��� 784

Loading Pages in the Background ��� 786

Using Page Events ���787

Handling the Page Initialization Event ��� 788

Handling Page Load Events ��� 788

Responding to Page Transitions��� 789

Applying jQuery Mobile Themes ��790

Applying Swatches to Individual Elements �� 793

Creating Grid Layouts ��794

Summary ���796

Chapter 29: The Dialog & Popup Widgets ■ ��797

Using the jQuery Mobile Dialog Widget ���798

Creating the Dialog Widget �� 798

Configuring the Dialog Widget ��� 804

Using the Dialog Methods �� 808

Using the Dialog Events ��� 809

Using the jQuery Mobile Popup Widget ���810

Creating the Popup Widget �� 810

Configuring the Popup Widget ��� 811

Using the Popup Methods �� 818

Using the Popup Events ��� 820

Summary ���821

■ Contents

xxiv

Chapter 30: Buttons and Collapsible Blocks ■ ���823

Using jQuery Mobile Buttons ���824

Creating the Button Widget �� 824

Configuring jQuery Mobile Buttons �� 828

Using the Button Methods ��� 832

Using the Button Events �� 834

Using jQuery Mobile NavBars ��835

Configuring jQuery Mobile NavBar �� 837

Using the NavBar Methods & Events ��� 838

Using Collapsible Content Blocks ��838

Creating the Collapsible Block ��� 838

Configuring jQuery Mobile Collapsible Content Blocks �� 839

Using Collapsible Block Methods��� 841

Using Collapsible Block Events �� 841

Using jQuery Mobile Collapsible Sets (Accordions) ���843

Configuring the Collapsible Set ��� 844

Using the Collapsible Set Methods �� 845

Using the Collapsible Set Events ��� 845

Summary ���845

Chapter 31: Using jQuery Mobile Forms ■ ��847

Creating Form Element Widgets ��848

Using the Textinput Widget ��851

Configuring the Textinput Widget ��� 851

Using the Textinput Widget Methods ��� 852

Using the Textinput Widget Events��� 853

Using the Slider and Range Slider Widgets ���853

Configuring the Slider and Range Slider Widgets �� 856

Using the Slider and Range Slider Methods �� 857

Using the Slider Events �� 859

Using the Range Slider Events �� 860

■ Contents

xxv

Using the Selectmenu Widget ���861
Configuring the SelectMenu Widget �� 862

Using the Selectmenu Methods ��� 866

Using the Selectmenu Events �� 868

Using Flip Switches ���868

Using the Checkboxradio Widget ���869
Creating Check Boxes �� 869

Creating and Formatting Radio Buttons �� 874

Configuring the Checkboxradio Widget ��� 876

Using the Checkboxradio Methods �� 876

Using the Checkboxradio Events ��� 877

Summary ���877

Chapter 32: Using Lists and Panels ■ ���879

Using the ListView Widget ���880
Configuring the Listview Widget �� 882

Using the Listview Methods��� 894

Using the Listview Events �� 894

Using the Panel Widget ���894
Configuring the Panel Widget �� 896

Using the Panel Methods ��� 900

Using the Panel Events �� 901

Summary ���901

Chapter 33: Refactoring the Example: Part IV ■ ���903

Starting with the Basics ��903

Inserting Products Programmatically ��905
Reusing Pages ��� 909

Creating the Shopping Basket ���912
Adding for Quantity Changes ��� 916

Adding a Button to the Information Page �� 920

Implementing the Checkout Process ���923

Summary ���928

■ Contents

xxvi

Chapter 34: Using the jQuery Utility Methods ■ ��929

Queues Revisited: Using General Purpose Queues ��929

Manually Processing Queue Items �� 932

Utility Methods for Arrays ��933

Using the Grep Method �� 933

Using the inArray Method �� 935

Using the Map Method��� 935

Using the Merge Method ��� 937

Using the Unique Method �� 937

Utility Methods for Types ���938

Using the Type Method �� 939

Utility Methods for Data ���940

Serializing Form Data �� 940

Parsing Data �� 941

Trimming Strings ��� 941

Other Utility Methods ���942

Checking Element Containment �� 942

Summary ���943

Chapter 35: The jQuery UI Effects & CSS Framework ■ ��945

Using the jQuery UI Effects ��945

Animating Colors ��� 946

Animating Classes ��� 948

Using the jQuery UI Animations ��� 951

Using the jQuery UI CSS Framework ���953

Using the Widget Container Classes �� 953

Applying Rounded Corners �� 955

Using the Interaction State Classes ��� 957

Using the Cue Classes ��� 958

Summary ���961

■ Contents

xxvii

Chapter 36: Using Deferred Objects ■ ��963

A First Deferred Objects Example ���964

Understanding Why Deferred Objects Are Useful �� 966

Using Other Callbacks ���973

Rejecting a Deferred Object ��� 974

Covering Both Outcomes ��� 977

Using Outcome-Indifferent Callbacks �� 977

Using Multiple Callbacks ���980

Using the Outcomes of Multiple Deferred Objects ��983

Providing Progress Information ���984

Getting Information about a Deferred Object ��988

Using Ajax Deferred Objects ��991

Summary ���993

Index ���995

xxix

About the Author

Adam Freeman is an experienced IT professional who has held senior positions
in a range of companies, most recently serving as chief technology officer and
chief operating officer of a global bank. Now retired, he spends his time writing
and running.

xxxi

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft technologies.
He works for Brain Force (www.brainforce.com) in its Italian branch (www.brainforce.it). Fabio is a Microsoft
Certified Solution Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified
Professional, and a prolific author and technical reviewer. Over the past ten years, he has written articles for Italian
and international magazines and has coauthored more than ten books on a variety of computer topics.

http://blogs.msdn.com/ianisms
http://blogs.msdn.com/ianisms

xxxiii

Acknowledgments

I would like to thank everyone at Apress for working so hard to bring this book to print. In particular, I would like to
thank Ewan Buckingham for commissioning and editing this title and Katie Sullivan for keeping track of everything.
I would also like to thank the technical reviewer, Fabio, whose efforts made this book far better than it otherwise
would have been.

—Adam Freeman

	Pro jQuery 2.0
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Putting jQuery in Context
	Understanding jQuery UI and jQuery Mobile
	Understanding jQuery Plug-ins
	What Do I Need to Know?
	What Is the Structure of This Book?
	Part 1: Getting Ready
	Part 2: Working with jQuery
	Part 3: Working with Data and Ajax
	Part 4: Using jQuery UI
	Part 5: Using jQuery Mobile
	Part 6: Advanced Features

	What’s New in This Edition?
	What’s New for Core jQuery?
	What’s New for jQuery UI ?
	What’s New for jQuery Mobile?
	What Else Is New?

	Are There Lots of Examples?
	Where Can I Get the Example Code?
	What Software Do I Need for This Book?
	Getting jQuery
	Getting an HTML Editor
	Getting a Web Browser
	Getting a Web Server
	Getting Node.js
	Setting Up and Testing Node.js

	Image Attribution
	Summary

	Chapter 2: HTML Primer
	Introducing a Basic HTML Document
	Understanding the Anatomy of an HTML Element
	Understanding Attributes
	The id and class Attributes
	Using the id Attribute
	Using the class Attribute

	Understanding Element Content
	Understanding Void Elements
	Understanding the Document Structure
	Understanding the Metadata Elements
	Understanding the script Element
	Understanding the style Element

	Understanding the Content Elements
	Understanding the Semantic/Presentation Divide
	Understanding Forms and Inputs
	Understanding Structural Elements
	Understanding Elements with External Resources

	Understanding the Element Hierarchy
	Understanding Parent-Child Relationships
	Understanding Ancestor-Descendant Relationships
	Understanding Sibling Relationships

	Understanding the Document Object Model
	Using the DOM
	Modifying the DOM
	Modifying Styles
	Handling Events
	Understanding Event Flow
	Understanding Default Actions

	Summary

	Chapter 3: CSS Primer
	Getting Started with CSS
	Setting an Inline Value
	Defining an Embedded Style
	Defining an External Style Sheet
	Understanding CSS Selectors
	Selecting by Attribute
	Selecting by Relationship
	Selecting Using the Pseudo-element and Pseudo-class Selectors
	Unions and the Negation Selectors

	Understanding Style Cascading
	Understanding How Styles Cascade
	Tweaking the Order with Important Styles
	Tie-Breaking with Specificity and Order Assessments

	Understanding CSS Units
	Working with CSS Colors
	Specifying More Complex Colors

	Understanding CSS Lengths
	Working with Absolute Lengths
	Working with Relative Lengths
	Working with Pixels
	Working with Percentages

	Using Shorthand Properties and Custom Values
	Summary

	Chapter 4: JavaScript Primer
	Getting Ready to Use JavaScript
	Using Statements
	Defining and Using Functions
	Defining Functions with Parameters
	Defining Functions That Return Results

	Using Variables and Types
	Using the Primitive Types
	Working with Strings
	Working with Booleans
	Working with Numbers

	Creating Objects
	Using Object Literals
	Using Functions as Methods

	Working with Objects
	Read and Modify the Property Values
	Enumerating an Object’s Properties
	Adding and Deleting Properties and Methods
	Determine Whether an Object Has a Property

	Using JavaScript Operators
	Using Conditional Statements
	The Equality Operator vs. the Identity Operator
	Explicitly Converting Types
	Converting Numbers to Strings
	Converting Strings to Numbers

	Working with Arrays
	Using an Array Literal
	Reading and Modifying the Contents of an Array
	Enumerating the Contents of an Array
	Using the Built-in Array Methods

	Handling Errors
	Comparing undefined and null Values
	Checking for null or undefined
	Differentiating Between null and undefined

	Summary

	Chapter 5: jQuery Basics
	Setting Up jQuery
	Using Conditional Comments

	A First jQuery Script
	Understanding the jQuery $ Function
	Waiting for the Document Object Model
	Using the Alternative Notation
	Deferring the ready Event

	Selecting Elements
	Narrowing the Selection with a Context

	Understanding the Selection Result
	Determining the Context
	Dealing with DOM Objects
	Creating jQuery Objects from DOM Objects
	Treating a jQuery Object as an Array
	Iterate a Function over DOM Objects
	Finding Indices and Specific Elements

	Modifying Multiple Elements and Chaining Method Calls
	Handling Events
	Summary

	Chapter 6: Managing the Element Selection
	Expanding the Selection
	Narrowing the Selection
	Reducing the Selection to a Specific Element
	Reducing the Selection by Range
	Filtering Elements
	Reducing the Selection Based on Descendants

	Mapping the Selection
	Testing the Selection
	Changing and Then Unwinding the Selection
	Navigating the DOM
	Navigating Down the Hierarchy
	Using the find Method to Create an Intersection

	Navigating Up the Hierarchy
	Selecting Parent Elements
	Selecting Ancestors
	Selecting the First Matching Ancestor

	Navigating Across the Hierarchy
	Selecting All Siblings
	Selecting Next and Previous Siblings

	Summary

	Chapter 7: Manipulating the DOM
	Creating New Elements
	Creating Elements Using the $ Function
	Creating New Elements by Cloning Existing Elements
	Creating Elements Using the DOM API

	Inserting Child and Descendant Elements
	Prepending Elements
	Inserting the Same Elements in Different Positions
	Inserting from a jQuery Object
	Inserting Elements Using a Function

	Inserting Parent and Ancestor Elements
	Wrapping Elements Together in a Single Parent
	Wrapping the Content of Elements
	Wrapping Elements Using a Function

	Inserting Sibling Elements
	Inserting Siblings from a jQuery Object
	Inserting Siblings Using a Function

	Replacing Elements
	Replacing Elements Using a Function

	Removing Elements
	Detaching Elements
	Empting Elements
	Unwrapping Elements

	Summary

	Chapter 8: Manipulating Elements
	Working with Attributes and Properties
	Setting an Attribute Value
	Setting Multiple Attributes
	Setting Attribute Values Dynamically
	Removing an Attribute
	Working with Properties

	Working with Classes
	Adding and Removing Classes Using a Function
	Toggling Classes
	Toggling Multiple Classes
	Toggling All Classes
	Toggling Classes in One Direction
	Toggling Classes Dynamically

	Working with CSS
	Getting and Setting a Single CSS Value
	Getting Multiple CSS Properties
	Setting Multiple CSS Properties
	Setting Relative Values
	Setting Properties Using a Function
	Using the Property-Specific CSS Convenience Methods
	Setting the Width and Height Using a Function

	Working with Element Content
	Setting Element Content
	Setting Element Content Using a Function

	Working with Form Elements
	Setting Form Element Values
	Setting Form Element Values Using a Function

	Associating Data with Elements
	Summary

	Chapter 9: Working with Events
	Handling Events
	Registering a Function to Handle Multiple Event Types
	Providing Data to the Event Handler Function
	Suppressing the Default Action
	Removing Event Handler Functions
	Unbinding from Within the Event Handler Function

	Executing a Handler Once

	Performing Live Event Binding
	Limiting DOM Traversal for Live Event Handlers

	Manually Invoking Event Handlers
	Using an Event Object
	Using the triggerHandler Method

	Using the Event Shorthand Methods
	Using the Document Event Shorthand Methods
	Using the Browser Event Shorthand Methods
	Using the Mouse Event Shorthand Methods
	Using the Form Event Shorthand Methods
	Using the Keyboard Event Shorthand Methods

	Summary

	Chapter 10: Using jQuery Effects
	Using the Basic Effects
	Toggling Elements
	Toggling in One Direction
	Animating the Visibility of Elements
	Using Effect Callbacks
	Creating Looping Effects

	Using the Slide Effects
	Using the Fade Effects
	Fading to a Specific Opacity

	Creating Custom Effects
	Using Absolute Target Property Values
	Using Relative Target Property Values

	Creating and Managing the Effect Queue
	Displaying the Items in the Effect Queue
	Stopping Effects and Clearing the Queue
	Inserting a Delay into the Queue
	Inserting Functions into the Queue

	Enabling and Disabling Effect Animations
	Summary

	Chapter 11: Refactoring the Example: Part I
	Reviewing the Example Document
	Adding Additional Flower Products
	Adding the Carousel Buttons
	Dealing with the Submit Button
	Implementing the Carousel Event Handler Functions
	Totaling the Product Selection
	Disabling JavaScript
	Summary

	Chapter 12: Using Data Templates
	Understanding the Problem That Templates Solve
	Setting Up the Template Library
	A First Data Templates Example
	Defining the Data
	Defining the Template
	Applying the Template
	Tweaking the Result
	Tweaking the Input

	Using Template Logic
	Creating Conditional Content
	Enumerating Arrays and Properties
	Changing the Data Context
	Using the #with Helper
	Access Parent Data Contexts

	Creating Custom Template Helpers
	Creating a Conditional Template Helper
	Returning More Complex Content
	Receiving Optional Arguments in the Helper Function
	Providing Custom Template Properties

	Summary

	Chapter 13: Working with Forms
	Preparing the Node.js Server
	Recapping the Form-Event Methods
	Dealing with Form Focus
	Dealing with Value Changes
	Dealing with Form Submission
	Importing the JavaScript File
	Configuring the Validation
	Defining the Validation Rules
	Applying the Validation Rules

	Validating Form Values
	Using the Validation Checks
	Applying Validation Rules via Classes
	Applying Validation Rules Directly to Elements
	Applying Validation Rules via the Element Name Attribute
	Applying Validation Rules Using Element Attributes

	Specifying Validation Messages
	Specifying Messages for Attribute and Name Validation
	Specifying Messages for Per-Element Validation

	Creating a Custom Check
	Defining the Validation Function
	Defining the Validation Message

	Formatting the Validation Error Display
	Setting the Class for Invalid Elements
	Setting the Error Message Element
	Setting the Highlighting for Invalid Elements

	Using a Validation Summary
	Preparing the Validation Messages
	Creating the Validation Summary
	Tidying Up the Error Message Composition

	Summary

	Chapter 14: Using Ajax: Part I
	Using the Ajax Shorthand Methods
	Performing an Ajax GET Request
	Processing the Response Data
	Making the Effect Easier to See
	Getting Other Kinds of Data
	Providing Data to GET Requests

	Performing an Ajax POST Request
	Preparing Node.js to Receive Form Data
	Understanding Cross-Origin Ajax Requests
	Using the post Method to Submit Form Data
	Sending Other Data Using the post Method

	Specifying the Expected Data Type

	Avoiding the Most Common Ajax Pitfall
	Using the Type-Specific Convenience Methods
	Getting an HTML Fragment
	Manipulating the Elements Added by the load Method

	Getting and Executing Scripts
	Getting JSON Data
	Working with JSONP

	Using the Ajax Forms Plug-in
	Summary

	Chapter 15: Using Ajax: Part II
	Making a Simple Ajax Request with the Low-Level API
	Understanding the jqXHR Object
	Setting the Request URL
	Making a POST Request
	Handling Ajax Callbacks
	Dealing with Successful Requests
	Dealing with Errors
	Dealing with Completed Requests
	Configuring Requests Before They Are Sent
	Specifying Multiple Event Handler Functions
	Setting the Context for Events

	Using the Global Ajax Events
	Controlling Global Events

	Configuring the Basic Settings for an Ajax Request
	Setting Timeouts and Headers
	Sending JSON Data to the Server

	Using Advanced Configuration Settings
	Making the Request Synchronously
	Ignoring Unmodified Data
	Dealing with the Response Status Code
	Cleaning Up the Response Data
	Managing Data Conversion

	Setting Up and Filtering Ajax Requests
	Defining Default Settings
	Filtering Requests

	Summary

	Chapter 16: Refactoring the Example: Part II
	Reviewing the Refactored Example
	Updating the Node.js Script
	Preparing for Ajax
	Sourcing the Product Information
	Adding Form Validation
	Adding Remote Validation

	Submitting the Form Data Using Ajax
	Processing the Server Response
	Adding the New Form
	Completing the Ajax Request
	Processing the Data

	Summary

	Chapter 17: Setting Up jQuery UI
	Obtaining jQuery UI
	Deciding on a Theme
	Creating the jQuery UI Custom Download

	Installing jQuery UI for Development
	Adding jQuery UI to an HTML Document

	Installing jQuery UI for Production
	Using jQuery UI via a Content Distribution Network

	Summary

	Chapter 18: Using the Button, Progress Bar, and Slider Widgets
	Using the jQuery UI Button
	Configuring the Button
	Using jQuery UI Icons in Buttons
	Using a Custom Image
	Using the Button Methods
	Removing the Widget
	Enabling and Disabling the Button
	Refreshing the State of a jQuery UI Button

	Using the Button Event

	Creating Different Types of Button
	Creating a Toggle Button
	Creating a Button Set
	Creating Button Sets from Regular Buttons

	Using the jQuery UI Progress Bar
	Creating the Progress Bar
	Creating an Indeterminate Progress Bar
	Using the Progress Bar Methods
	Using the Progress Bar Events

	Using the jQuery UI Slider
	Configuring the Slider
	Changing the Slider Orientation
	Animating the Slider
	Creating a Range Slider

	Using the Slider Methods
	Using Slider Events

	Summary

	Chapter 19: Using the Autocomplete and Accordion Widgets
	Using jQuery UI Autocomplete
	Creating the Autocomplete Element
	Using an Object Array as the Data Source

	Configuring Autocomplete
	Using a Remote Data Source
	Using a Function as the Data Source
	Positioning the Pop-up

	Using the Autocomplete Methods
	Using the Autocomplete Events
	Getting Details of the Selected Item
	Modifying Search Results
	Overriding the Default Select Action

	Using the jQuery UI Accordion
	Creating the Accordion
	Configuring the Accordion
	Setting the Height of the Accordion
	Using the Parent to Determine the Height of the Accordion
	Changing the Event Type
	Selecting the Active Header
	Changing the Accordion Icons

	Using the Accordion Methods
	Using the Accordion Events

	Summary

	Chapter 20: Using the Tabs Widget
	Creating the Tabs
	Getting Tab Content with Ajax
	Configuring the Tabs Widget
	Selecting the Active Tab
	Disabling Individual Tabs
	Changing the Event Trigger
	Using Collapsible Tabs

	Using the Tabs Methods
	Adding and Removing Tabs
	Triggering Tab Ajax Requests

	Using the Tabs Events
	Intercepting Ajax Requests
	Manipulating Remote Tab Data
	Using Tabs to Display a Form
	Applying the Tabs
	Handling the Button Presses
	Performing Validation

	Summary

	Chapter 21: Using the Datepicker Widget
	Creating the Datepicker
	Creating an Inline Datepicker

	Configuring the Datepicker
	Performing Basic Configuration
	Specifying the Default Date
	Specifying the Alternate Element
	Managing the Pop-up Trigger

	Managing the Date Selection
	Limiting the Input Character and Date Range
	Creating a Multimonth Display
	Providing Direct Access to Months and Years

	Managing the Appearance of the Datepicker
	Displaying Weeks
	Allowing Bleed Between Months
	Using the Button Bar
	Providing a Format Hint to the User

	Using the Datepicker Methods
	Getting and Setting the Date Programmatically
	Showing and Hiding Pop-up Datepickers Programmatically

	Using the Datepicker Events
	Responding to a Month or Year Change
	Responding to the Pop-up Closing

	Localizing Date Selection
	Summary

	Chapter 22: Using the Dialog and Spinner Widgets
	Using the jQuery UI Dialog Widget
	Creating the Dialog
	Configuring the Dialog
	Configuring the Basic Dialog Appearance
	Setting the Location of the Dialog
	Adding Buttons to a Dialog
	Dragging Dialogs
	Creating Modal Dialogs
	Showing a Form in a Modal Dialog

	Using the Dialog Methods
	Using the Dialog Events
	Keeping the Dialog Open
	Responding to Changing Sizes and Positions

	Using the jQuery UI Spinner Widget
	Using the Spinner Widget with the HTML5 Input Element Types
	Configuring the Spinner Widget
	Configuring the Basic Spinner Behavior
	Changing the Spinner Button Icons
	Controlling the Change Rate
	Setting the Number Format

	Using the Spinner Methods
	Using the Spinner Events

	Summary

	Chapter 23: Using the Menu and Tooltip Widgets
	Using the jQuery UI Menu Widget
	Creating the Menu
	Formatting Menu Items
	Performing Basic Navigation

	Configuring the Menu
	Using a Different Element Structure
	Using Icons in Menus
	Positioning Submenu Pop-ups

	Using the Menu Methods
	Using the Menu Events

	Using the jQuery UI Tooltip Widget
	Creating the Tooltip
	Using Tooltips with Input Elements

	Configuring the Tooltip
	Setting the Tooltip Content
	Generating Tooltip Content with a Function
	Getting Remote Tooltip Content
	Adding Extra CSS Classes to Tooltips
	Tracking the Mouse
	Positioning the Tooltip

	Using the Tooltip Methods
	Using the Tooltip Events

	Summary

	Chapter 24: Using the Drag-and-Drop Interactions
	Creating the Draggable Interaction
	Configuring the Draggable Interaction
	Constraining the Drag Axis
	Constraining the Drag Region
	Constraining Dragging to a Grid
	Delaying Dragging

	Using the Draggable Methods
	Using the Draggable Events

	Using the Droppable Interaction
	Highlighting a Drop Target
	Dealing with Overlapping Elements
	Configuring the Droppable Interaction
	Restricting Acceptable Draggable Elements
	Highlighting the Droppable Using Classes
	Changing the Overlap Tolerance

	Using the Droppable Methods

	Tuning Drag and Drop
	Using Element Scope
	Using a Helper Element
	Manipulating the Helper Element

	Snapping to the Edges of Elements

	Summary

	Chapter 25: Using the Other Interactions
	Using the Sortable Interaction
	Getting the Sortable Order
	Configuring the Sortable Interaction
	Connecting Sortable Interactions
	Connecting a Draggable Element with a Sortable Element
	Selecting the Sortable Items
	Styling the Empty Space

	Using the Sortable Methods
	Cancelling a Sort
	Refreshing the Sortable Elements

	Using the Sortable Events

	Using the Selectable Interaction
	Configuring the Selectable Interaction
	Using the Selectable Interaction Methods
	Using the Selectable Interaction Events

	Using the Resizable Interaction
	Configuring the Resizable Interaction
	Resizing Related Elements
	Constraining the Resizable Element Size
	Positioning the Drag Handles

	Summary

	Chapter 26: Refactoring the Example: Part III
	Reviewing the Refactored Example
	Displaying the Products
	Adding the Shopping Basket
	Wrapping the Accordion
	Adding the Table
	Handling Input Value Changes
	Deleting Rows
	Updating Existing Rows

	Applying the Theme Style
	Applying the CSS Framework More Widely
	Applying Rounded Corners to the Table

	Creating the jQuery UI Button
	Adding the Completion Dialog
	Handling the Place Order Button Click
	Completing the Order
	Summary

	Chapter 27: Getting Started with jQuery Mobile
	Setting Up jQuery Mobile
	Obtaining jQuery Mobile
	Creating a Theme
	Getting jQuery

	Installing jQuery Mobile

	Understanding the jQuery Mobile Approach
	Understanding Automatic Enhancement
	Understanding the Viewport
	Understanding jQuery Mobile Events
	Understanding the Page Events
	Understanding Touch Events
	Using the jQuery Mobile Gesture Methods
	Using the jQuery Mobile Virtual Mouse Events

	Responding to Device Orientation Changes
	Using Media Queries to Manage Orientation

	Working with Mobile Devices
	Avoiding the Two Cardinal Sins of Mobile Development
	Avoiding Bad Assumptions
	The World Is Not an iPhone
	The World Is Not a Phone at All
	The World Is Not Touch Enabled
	Mobile Bandwidth Is Not Free and Not Infinite

	Avoiding Unrealistic Simulation and Testing
	The Lack of Tactility
	The Lack of Obstruction
	The Lack of Inaccuracy

	Using a Mobile Browser Emulator
	Using the Opera Mobile Emulator
	Using BrowserStack

	Summary

	Chapter 28: Pages, Themes & Layouts
	Understanding jQuery Mobile Pages
	Adding Headers and Footers to a Page
	Adding Pages to a Document
	Configuring Page Transitions

	Linking to External Pages
	Dealing with the Ajax/Page ID Issue
	Prefetching Pages

	Using Scripting to Control jQuery Mobile Pages
	Changing the Current Page
	Controlling the Direction of the Transition Effect
	Controlling the Load Animation

	Determining the Current Page
	Loading Pages in the Background

	Using Page Events
	Handling the Page Initialization Event
	Handling Page Load Events
	Responding to Page Transitions

	Applying jQuery Mobile Themes
	Applying Swatches to Individual Elements

	Creating Grid Layouts
	Summary

	Chapter 29: The Dialog & Popup Widgets
	Using the jQuery Mobile Dialog Widget
	Creating the Dialog Widget
	Creating the Dialog Widget Programmatically
	Adding Buttons to the Dialog

	Configuring the Dialog Widget
	Using the Dialog Methods
	Using the Dialog Events

	Using the jQuery Mobile Popup Widget
	Creating the Popup Widget
	Configuring the Popup Widget
	Configuring the Link That Opens the Popup
	Configuring the Popup Directly
	Using the History Setting
	Using Popups to Present Rich Content

	Using the Popup Methods
	Using the Popup Events

	Summary

	Chapter 30: Buttons and Collapsible Blocks
	Using jQuery Mobile Buttons
	Creating the Button Widget
	Creating Buttons from Other Elements
	Creating Grouped Buttons

	Configuring jQuery Mobile Buttons
	Adding Icons to Buttons
	Creating Inline and Mini Buttons

	Using the Button Methods
	Using the Button Events

	Using jQuery Mobile NavBars
	Configuring jQuery Mobile NavBar
	Using the NavBar Methods & Events

	Using Collapsible Content Blocks
	Creating the Collapsible Block
	Configuring jQuery Mobile Collapsible Content Blocks
	Using Collapsible Block Methods
	Using Collapsible Block Events

	Using jQuery Mobile Collapsible Sets (Accordions)
	Configuring the Collapsible Set
	Using the Collapsible Set Methods
	Using the Collapsible Set Events

	Summary

	Chapter 31: Using jQuery Mobile Forms
	Creating Form Element Widgets
	Using the Textinput Widget
	Configuring the Textinput Widget
	Using the Textinput Widget Methods
	Using the Textinput Widget Events

	Using the Slider and Range Slider Widgets
	Configuring the Slider and Range Slider Widgets
	Using the Slider and Range Slider Methods
	Using the Slider Events
	Using the Range Slider Events

	Using the Selectmenu Widget
	Configuring the SelectMenu Widget
	Configuring the SelectMenu Button
	Configuring the SelectMenu Popup
	Specifying Placeholders

	Using the Selectmenu Methods
	Using the Selectmenu Events

	Using Flip Switches
	Using the Checkboxradio Widget
	Creating Check Boxes
	Applying a Label to a Check Box
	Grouping Check Boxes

	Creating and Formatting Radio Buttons
	Configuring the Checkboxradio Widget
	Using the Checkboxradio Methods
	Using the Checkboxradio Events

	Summary

	Chapter 32: Using Lists and Panels
	Using the ListView Widget
	Configuring the Listview Widget
	Creating Inset Lists
	Creating Split Lists
	Filtering Lists
	Using a Custom Filtering Function
	Adding Dividers
	Using Convention-Based Configuration
	Adding Count Bubbles
	Adding Text Emphasis
	Adding an Aside

	Using the Listview Methods
	Using the Listview Events

	Using the Panel Widget
	Configuring the Panel Widget
	Positioning and Displaying the Panel
	Dismissing the Panel

	Using the Panel Methods
	Using the Panel Events

	Summary

	Chapter 33: Refactoring the Example: Part IV
	Starting with the Basics
	Inserting Products Programmatically
	Reusing Pages

	Creating the Shopping Basket
	Adding for Quantity Changes
	Adding a Button to the Information Page

	Implementing the Checkout Process
	Summary

	Chapter 34: Using the jQuery Utility Methods
	Queues Revisited: Using General Purpose Queues
	Manually Processing Queue Items

	Utility Methods for Arrays
	Using the Grep Method
	Using the inArray Method
	Using the Map Method
	Using the Merge Method
	Using the Unique Method

	Utility Methods for Types
	Using the Type Method

	Utility Methods for Data
	Serializing Form Data
	Parsing Data
	Trimming Strings

	Other Utility Methods
	Checking Element Containment

	Summary

	Chapter 35: The jQuery UI Effects & CSS Framework
	Using the jQuery UI Effects
	Animating Colors
	Animating Classes
	Switching Classes

	Using the jQuery UI Animations
	Using Effects to Show and Hide Elements
	Applying Standalone Effects

	Using the jQuery UI CSS Framework
	Using the Widget Container Classes
	Applying Rounded Corners
	Using the Interaction State Classes
	Using the Cue Classes

	Summary

	Chapter 36: Using Deferred Objects
	A First Deferred Objects Example
	Understanding Why Deferred Objects Are Useful
	Tidying Up the Example

	Using Other Callbacks
	Rejecting a Deferred Object
	Chaining Deferred Object Method Calls

	Covering Both Outcomes
	Using Outcome-Indifferent Callbacks

	Using Multiple Callbacks
	Using the Outcomes of Multiple Deferred Objects
	Providing Progress Information
	Getting Information about a Deferred Object
	Using Ajax Deferred Objects
	Summary

	Index

