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Introduction

Why this Book?
Hadoop has been the base for most of the emerging technologies in today’s big data 
world. It changed the face of distributed processing by using commodity hardware for 
large data sets. Hadoop and its ecosystem were used in Java, Scala, and Python languages. 
Developers coming from a .NET background had to learn one of these languages. But not 
anymore. This book solely focuses on .NET developers and uses C# as the base language. 
It covers Hadoop and its ecosystem components, such as Pig, Hive, Storm, HBase, and 
Spark, using C#. After reading this book, you—as a .NET developer—should be able to 
build end-to-end big data business solutions on the Azure HDInsight platform.

Azure HDInsight is Microsoft’s managed Hadoop-as-a-service offering in the cloud. 
Using HDInsight, you can get a fully configured Hadoop cluster up and running within 
minutes. The book focuses on the practical aspects of HDInsight and shows you how to 
use it to tackle real-world big data problems.

Who Is this Book For?
The audience for this book includes anyone who wants to kick-start Azure HDInsight, 
wants to understand its core fundamentals to modernize their business, or who wants 
to get more value out of their data. Anyone who wants to have a solid foundational 
knowledge of Azure HDInsight and the Hadoop ecosystem should take advantage of this 
book. The focus of the book appeals to the following two groups of readers.

•	 Software developers who come from a .NET background and want 
to use big data to build end-to-end business solutions. Software 
developers who want to leverage Azure HDInsight’s managed 
offerings in building their next big data project.

•	 Data scientists and data analysts who want to use Azure 
HDInsight’s capabilities to quickly build big data solutions.

What Will You Learn?
All the code samples are focused from the .NET developer perspective. The following 
topics are covered in detail.

•	 The fundamentals of HDInsight and Hadoop, along with its 
ecosystem
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•	 Provisioning an HDInsight cluster for different types of workloads

•	 Getting data in/out of an HDInsight cluster and running a 
MapReduce job on it

•	 Using Apache Pig and Apache Hive to query data stored inside 
HDInsight

•	 Working with HBase, a NoSQL database

•	 Using Apache Storm to carry out real-time stream analysis

•	 Working with Apache Spark for interactive, batch, and stream 
processing

How this Book Is Organized
This book has eight chapters. The following is a sneak peek of the chapters.

Chapter 1: This chapter covers the basics of big data, its history, and explains 
Hadoop. It introduces the Azure HDInsight service and the Hadoop ecosystem 
components available on Azure HDInsight, and explains the benefits of Azure HDInsight 
over other Hadoop distributions.

Chapter 2: The aim of this chapter is to get readers familiar with Azure’s offerings, 
show how to start an Azure subscription, and learn about the different workloads and 
types of HDInsight clusters.

Chapter 3: This chapter covers Azure blob storage, which is the default storage layer 
for HDInsight. After that, chapter looks at the different ways to work with HDInsight to 
submit MapReduce jobs. Finally, it covers Avro library integration.

Chapter 4: The focus of this chapter is to provide understanding of Apache Hive. 
First, the chapter covers Hive fundamentals, and then dives into working with Hive on 
HDInsight. It also describes how data scientists using HDInsight can connect with a Hive 
data store from popular dashboard tools like Power BI or ODBC-based tools. And finally, 
it covers writing user-defined functions in C#.

Chapter 5: Apache Pig is a platform to analyze large data sets using the procedural 
language known as Pig Latin, which is covered in this chapter. You learn to use Pig in 
HDInsight.

Chapter 6: This chapter covers Apache HBase, a NoSQL database on top of Hadoop. 
This chapter looks into the HBase architecture, HBase commands, and reading and 
writing data from/to HBase tables using C# code.

Chapter 7: Real-time stream analytics are covered in this chapter. Apache Storm in 
HDInsight is used to build a stream processing pipeline using C#. This chapter also covers 
Storm’s base architecture and explains different components related to Storm, while 
giving a sound fundamental overview.

Chapter 8: This chapter focuses on Apache Spark. It explores overall Spark 
architecture, components, and ways to utilize Spark, such as the batch query, interactive 
query, stream processing, and more. It then dives deeply into code using Python 
notebooks and building Spark programs to process data with Mobius and C#.

http://dx.doi.org/10.1007/978-1-4842-2869-2_1
http://dx.doi.org/10.1007/978-1-4842-2869-2_2
http://dx.doi.org/10.1007/978-1-4842-2869-2_3
http://dx.doi.org/10.1007/978-1-4842-2869-2_4
http://dx.doi.org/10.1007/978-1-4842-2869-2_5
http://dx.doi.org/10.1007/978-1-4842-2869-2_6
http://dx.doi.org/10.1007/978-1-4842-2869-2_7
http://dx.doi.org/10.1007/978-1-4842-2869-2_8
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To get the most out of this book, follow along with the sample code and do the 
hands-on programs directly in Sandbox or an Azure HDInsight environment.

About versions used in this book: Azure HDInsight changes very rapidly and comes 
in the form of Azure service updates. Also, HDInsight is a Hadoop distribution from 
Hortonworks; hence, it also introduces a new version when available. The basics covered 
in this book will be useful in upcoming versions too.

Happy coding.
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CHAPTER 1

Big Data, Hadoop, and 
HDInsight

Azure HDInsight is a managed Hadoop distribution, developed in partnership with 
Hortonworks and Microsoft. It uses the Hortonworks Data Platform (HDP) Hadoop 
distribution, which means that HDInsight is entirely Apache Hadoop on Azure. It deploys 
and provisions managed Apache Hadoop clusters in the cloud on Windows or Linux 
machines, which is a unique capability. It provides the Hadoop Distributed File System 
(HDFS) for reliable data storage. It uses the MapReduce programming model to process, 
analyze, and report on data stored in distributed file systems. Because it is a managed 
offering, within a few hours an enterprise can be up and running with a fully configured 
Hadoop cluster and other Hadoop ecosystem components, such as HBase, Apache Spark, 
and Apache Storm.

This chapter looks at history so that you understand what big data is and the 
approaches used to handle large data. It also introduces Hadoop and its components, and 
HDInsight.

What Is Big Data?
Big data is not a buzzword anymore. Enterprises are adopting, building, and 
implementing big-data solutions. By definition, big data describes any large body of 
digital information. It can be historical or in real time, and ranges from streams of 
tweets to customer purchase history, and from server logs to sensor data from industrial 
equipment. It all falls under big data. As far as the definition goes, there are many 
different interpretations. One that I like comes from Gartner, an information technology 
research and advisory company: “Big data is high-volume, high-velocity and/or  
high-variety information assets that demand cost-effective, innovative forms of 
information processing that enable enhanced insight, decision making, and process 
automation.” (www.gartner.com/it-glossary/big-data/) Another good description 
is by Forrester: “Big Data is techniques and technologies that make handling of data at 
extreme scale economical.” (http://blogs.forrestor.com)

http://www.gartner.com/it-glossary/big-data/
http://blogs.forrestor.com/
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Based on the preceding definitions, the following are the three Vs of big data.

•	 Volume: The amount of data that cannot be stored using  
scale-up/vertical scaling techniques due to physical and software 
limitations. It requires a scale-out or a horizontal scaling 
approach.

•	 Variety: When new data coming in has a different structure 
and format than what is already stored, or it is completely 
unstructured or semi-structured, this type of data is considered a 
data variety problem.

•	 Velocity: The rate at which data arrives or changes. When the 
window of processing data is comparatively small, then it is called 
a data velocity problem.

Normally, if you are dealing with more than one V, you need a big data solution; 
otherwise, traditional data management and processing tools can do the job very well. 
With large volumes of structured data, you can use a traditional relational database 
management system (RDBMS) and divide the data onto multiple RDBMS across different 
machines—allowing you to query all the data at once. This process is called sharding. 
Variety can be handled by parsing the schema using custom code at the source or 
destination side. Velocity can be treated using Microsoft SQL Server StreamInsight. Hence, 
think about your needs before you decide to use a big data solution for your problem.

We are generating data at breakneck speed. The problem is not with the storage of 
data, as storage costs are at an all-time low. In 1990, storage costs were around $10K for 
a GB (gigabyte), whereas now it is less than $0.07 per GB. A commercial airplane has so 
many sensors installed in it that every single flight generates over 5TB (terabyte) of data. 
Facebook, YouTube, Twitter, and LinkedIn are generating many petabytes worth of data 
each day.

With the adoption of Internet of Things (IoT), more and more data is being 
generated, not to mention all the blogs, websites, user click streams, and server logs. 
They will only add up to more and more data. So what is the issue? The problem is the 
amount of data that gets analyzed: large amounts of data are not easy to analyze with 
traditional tools and technology. Hadoop changed all of this and enabled us to analyze 
massive amounts of data using commodity hardware. In fact, until the cloud arrived, it 
was not economical for small and medium-sized businesses to purchase all the hardware 
required by a moderately sized Hadoop cluster. The cloud really enabled everyone to take 
advantage of on-demand scaling. Now if you want to analyze terabytes of data, you just 
spin up a cluster, tear it down when done processing, and pay only for the time that you 
used the hardware. This has really reduced the overall cost of data processing and has 
made it available to everyone. Now the actual question is this: How do you build a big 
data solution? Let’s look at the approaches taken so far.

The Scale-Up and Scale-Out Approaches
Traditionally, data is stored in a single processing unit and all requests go through this 
system only. Once this unit reaches its limit in terms of storage, processing power, or 
memory, a higher-powered system usually replaces it. This process of expanding a system 
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by adding more resources is called scale-up, or vertical scaling. The same approach 
has been used for years to tackle performance improvement issues: add more capable 
hardware—and performance will go up. But this approach can only go so far; at some 
point, data or query processing will overwhelm the hardware and you have to upgrade 
the hardware again. As you scale up, hardware costs begin to rise. At some point, it will no 
longer be cost effective to upgrade.

Think of a hotdog stand, where replacing a slow hotdog maker with a more 
experienced person who prepares hotdogs in less time, but for higher wages, improves 
efficiency. Yet, it can be improved up to only certain point, because the worker has to 
take their time to prepare the hotdogs no matter how long the queue is and he cannot 
serve the next customer in the queue until current one is served. Also, there is no control 
over customer behavior: customers can customize their orders, and payment takes each 
customer a different amount of time. So scaling up can take you so far, but in the end, it 
will start to bottleneck.

So if your resource is completely occupied, add another person to the job, but 
not at a higher wage. You should double the performance, thereby linearly scaling the 
throughput by distributing the work across different resources.

The same approach is taken in large-scale data storage and processing scenarios: 
you add more commodity hardware to the network to improve performance. But adding 
hardware to a network is a bit more complicated than adding more workers to a hotdog 
stand. These new units of hardware should be taken into account. The software has to 
support dividing processing loads across multiple machines. If you only allow a single 
system to process all the data, even if it is stored on multiple machines, you will hit the 
processing power cap eventually. This means that there has to be a way to distribute not 
only the data to new hardware on the network, but also instructions on how to process 
that data and get results back. Generally, there is a master node that instructs all the 
other nodes to do the processing, and then it aggregates the results from each of them. 
The scale-out approach is very common in real life—from overcrowded hotdog stands to 
grocery stores queues, everyone uses this approach. So in a way, big data problems and 
their solutions are not so new.

Apache Hadoop
Apache Hadoop is an open source project, and undoubtedly the most used framework 
for big data solutions. It is a very flexible, scalable, and fault-tolerant framework that 
handles massive amounts of data. It is called a framework because it is made up of many 
components and evolves at a rapid pace. Components can work together or separately, 
if you want them to. Hadoop and its component are discussed in accordance with 
HDInsight in this book, but all the fundamentals apply to Hadoop in general, too.

A Brief History of Hadoop
In 2003, Google released a paper on scalable distributed file systems for large distributed 
data-intensive applications. This paper spawned “MapReduce: Simplified Data 
Processing on Large Clusters” in December 2004. Based on these papers’ theory, an open 
source project started—Apache Nutch. Soon thereafter, a Hadoop subproject was started 
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by Doug Cutting, who worked for Yahoo! at the time. Cutting named the project Hadoop 
after his son’s toy elephant.

The initial code factored out of Nutch consisted of 5,000 lines of code for HDFS and 
6,000 lines of code for MapReduce. Since then, Hadoop has evolved rapidly, and at the 
time of writing, Hadoop v2.7 is available.

The core of Hadoop is HDFS and the MapReduce programming model. Let’s take a 
look at them.

HDFS
The Hadoop Distributed File System is an abstraction over a native file system, which 
is a layer of Java-based software that handles data storage calls and directs them to one 
or more data nodes in a network. HDFS provides an application programming interface 
(API) that locates the relevant node to store or fetch data from.

That is a simple definition of HDFS. It is actually more complicated. You have large 
file that is divided into smaller chunks—by default, 64 MB each—to distribute among 
data nodes. It also performs the appropriate replication of these chunks. Replication is 
required, because when you are running a one-thousand-nodes cluster, any node could 
have hard-disk failure, or the whole rack could go down; the system should be able to 
withstand such failures and continue to store and retrieve data without loss. Ideally, you 
should have three replicas of your data to achieve maximum fault tolerance: two on the 
same rack and one off the rack. Don’t worry about the name node or the data node; they 
are covered in an upcoming section.

HDFS allows us to store large amounts of data without worrying about its 
management. So it solves one problem for big data, while it creates another problem. 
Now, the data is distributed so you have to distribute processing of data as well. This is 
solved by MapReduce.

MapReduce
MapReduce is also inspired by the Google papers that I mentioned earlier. Basically, 
MapReduce moves the computing to the data nodes by using the Map and Reduce 
paradigm. It is a framework for processing parallelizable problems, spanning multiple 
nodes and large data sets. The advantage of MapReduce is that it processes data where 
it resides, or nearby; hence, it reduces the distance over which the data needs to be 
transmitted. MapReduce is twofold process of distributing computing loads. The first 
one is Map, which finds all the data nodes where it needs to run the compute and moves 
the work to those nodes, the second phase is reduce in which the system brings the 
intermediate results back together and computes them. MapReduce engines have many 
different implementations (this is discussed in upcoming chapters).

To understand how MapReduce works, take a look at Figure 1-1, which presents a 
distributed word-count problem that is solved using the MapReduce framework. Let’s 
assume that ABC, DCD, and DBC are stored on different nodes Figure 1-1 shows that 
first, input data is loaded and divided based on key/value pairs on which mapping is 
performed on individual nodes. The output of this process is intermediate key/value 
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pairs (i.e., List (K2, V2)). Afterward, this list is given to the reducer, and all similar keys 
are processed at the same reducer (i.e., K2, List (V2)). Finally, all the shuffling output is 
combined to form a final list of key/value pairs (i.e., List (K3, V3).

YARN
YARN stands for yet another resource negotiator. It does exactly what it says. YARN acts as 
a central operating system by providing resource management and application lifecycle 
management. A central platform to deliver consistent operations, security, and data 
governance tools across Hadoop clusters. It is a major step in Hadoop 2.0. Hortonworks 
describes YARN as follows: “YARN is the architectural center of Hadoop that allows 
multiple data processing engines such as interactive SQL, real-time streaming, data 
science and batch processing to handle data stored in a single platform, unlocking an 
entirely new approach to analytics.” (http://hortonworks.com/apache/yarn). This 

Figure 1-1.  MapReduce word count process

http://hortonworks.com/apache/yarn
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means that with YARN, you are not bound to use only MapReduce, but you can easily 
plug current and future engines—for graph processing of a social media website, for 
example. Also, if you want, you can get custom ISV engines. You can write your own 
engines as well. In Figure 1-2, you can see all the different engines and applications that 
can be used with YARN.

Hadoop Cluster Components
Figure 1-3 shows the data flow between a name node, the data nodes, and an HDFS client.

Figure 1-2.  YARN applications

Figure 1-3.  Data transfer from client to HDFS
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A typical Hadoop cluster consists of following components.

•	 Name node: The head node or master node of a cluster that 
keeps the metadata. A client application connects to the name 
node to get metadata information about the file system, and then 
connects directly to data nodes to transfer data between the client 
application and data nodes. Here, the name node keeps track 
of data blocks on different data nodes. The name node is also 
responsible for identifying dead nodes, decommissioning nodes, 
and replicating data blocks when needed, like in case of a data 
node failure. It ensures that the configured replication factor is 
maintained. It does this through heartbeat signals, which each 
data node sends to the name node periodically, along with their 
block reports, which contain data block details. In Hadoop 1.0, 
the name node is the single point of failure; whereas in Hadoop, 
2.0 there is also a secondary name node.

•	 Secondary name node: A secondary name node is in a Hadoop 
cluster, but its name is bit misleading because it might be 
interpreted as a backup name node when the name node goes 
down. The name node keeps track of all the data blocks through 
a metadata file called fsimage. The name node merges log files 
to fsimage when it starts. But the name node doesn’t update it 
after every modification of a data block; instead, another log 
file is maintained for each change. The secondary name node 
periodically connects to the name node and downloads log files 
as well as fsimage, updates the fsimage file, and writes it back to 
the name node. This frees the name node from doing this work, 
allowing the name node to restart very quickly; otherwise, in a 
restart, the name node has to merge all the logs since the last 
restart, which may take significant time. The secondary name 
node also takes a backup of the fsimage file from the name node.

In Hadoop 1.0, the name node is a single point of failure, 
because if it goes down, then there will be no HDFS location 
to read data from. Manual intervention is required to 
restart the process or run a separate machine, which takes 
time. Hadoop 2.0 addresses this issue with the HDFS high-
availability feature, where you get the option to run another 
name node in an active-passive configuration with a hot 
standby. In an active name node failure situation, the standby 
takes over and it continues to service requests from the client 
application.

•	 Data node: A data node stores actual HDFS data blocks. It also 
stores replicas of data blocks to provide fault tolerance and high 
availability.
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•	 JobTracker and TaskTracker: JobTracker processes 
MapReduce jobs. Similar to HDFS, MapReduce has a master/
slave architecture. Here, the master is JobTracker and the slave 
is TaskTracker. JobTracker pushes out the work to TaskTracker 
nodes in a cluster, keeping work as close to the data as possible. 
To do so, it utilizes rack awareness: if work cannot be started on 
the actual node where the data is stored, then priority is given 
to a nearby or the same rack node. JobTracker is responsible 
for the distribution of work among TaskTracker nodes. On the 
other hand, TaskTracker is responsible for instantiating and 
monitoring individual MapReduce work. TaskTracker may fail 
or time out; if this happens, only part of the work is restarted. To 
keep TaskTracker work restartable and separate from the rest of 
the environment, TaskTracker starts a new Java virtual machine 
process to do the job. It is TaskTracker’s job to send a status 
update on the assigned chunk of work to JobTracker; this is done 
using heartbeat signals that are sent every few minutes.

Figure 1-4 shows a JobTracker flow of submitting a job to TaskTrackers. Client 
applications submit jobs to JobTracker. JobTracker requests metadata about the 
data files required to complete the job, and then gets the location of the data nodes. 
JobTracker chooses the closest TaskTracker to the data and submits part of the job to it. 
TaskTracker continuously sends heartbeats. If there is any issue with the TaskTracker, 
and no heartbeat is received after a certain amount time, then JobTracker assumes that 
the TaskTracker is down and resubmits the job to a different TaskTracker, keeping data 
locality and rack awareness in mind. After all the TaskTrackers have finished their jobs, 
they submit their results to JobTracker, which then submits it to the client application.

HDInsight
HDInsight is a Hadoop distribution from Hortonworks. It is a common misconception 
that HDInsight is wrapped around Hadoop or is port of core Hadoop by Microsoft, 
but it is not. HDInsight is Apache Hadoop running on Azure. It is regular, open source 

Figure 1-4.  JobTracker and TaskTracker flow
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Hadoop—not a special Microsoft version of Hadoop. Hence, you can run any Hadoop 
application over HDInsight without modifying it. HDInsight is available on the cloud 
as a go-to solution for big data analysis. It includes the implementation of Apache 
products: Spark, HBase, Storm, Pig, Hive, Sqoop, Oozie, Ambari, and so forth. Not only 
that, HDInsight can be integrated with BI (business intelligence) tools, such as Power BI, 
Microsoft Excel, SQL Server Analysis Services, and SQL Server Reporting Services.

HDInsight provides a preconfigured Hadoop cluster with other components. At the 
time of writing, there are a number of options, including Apache Hadoop, Spark, Storm, 
HBase, Spark, R Server, Interactive Hive (preview), and Kafka (preview). Not all cluster 
types are available on Windows. Only Hadoop, HBase, and Storm are available on both 
operating systems, which will change in the future. You can also customize your cluster 
as you wish. To do this, HDInsight provides script actions. Using script actions, you can 
install components, such as Hue, R, Giraph, Solr, and so forth. These scripts are nothing 
but bash scripts, and can run during cluster creation on a running cluster, or when adding 
more nodes to a cluster using dynamic scaling.

Hadoop is generally preferred by Hadoop ecosystem of components, which includes 
Apache HBase, Apache Spark, Apache Storm, and others. The following are a few of the 
most useful components under Hadoop umbrella.

•	 Ambari: Apache Ambari is used for provisioning, managing, 
and monitoring Hadoop clusters. It simplifies the management 
of a cluster by providing an easy-to-use web UI. Also, it provides 
a robust API to allow developers to better integrate it in their 
applications. Note that web UI is only available on Linux clusters; 
for Windows clusters, REST APIs are the only option.

•	 Avro (Microsoft .NET Library for Avro): Microsoft Avro Library 
implements the Apache Avro data serialization system for 
the Microsoft .NET environment. Avro uses JSON (JavaScript 
Object Notation) to define a language-agnostic scheme, which 
means that data serialized in one language can be read by other. 
Currently, it supports C, C++, C#, Java, PHP, Python, and Ruby. To 
make a schema available to deserializers, it stores it along with the 
data in an Avro data container file.

•	 Hive: Most developers and BI folks already know that SQL and 
Apache Hive were created to enable those with SQL knowledge 
to submit MapReduce jobs using a SQL-like language called 
HiveQL. Hive is an abstraction layer over MapReduce. HiveQL 
queries are internally translated into MapReduce jobs. Hive is 
conceptually closer to relational databases; hence, it is suitable 
for structured data. Hive also supports user-defined functions on 
top of HiveQL for special-purpose processing.

•	 HCatalog: Apache HCatalog is an abstraction layer that presents 
a relational view of data in the Hadoop cluster. You can have 
Pig, or Hive, or any other higher-level processing tools on top of 
HCatalog. It supports the reading or writing of any file for which 
SerDe (serializer-deserializer) can be written.
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•	 Oozie: Apache Oozie is a Java web application that does workflow 
coordination for Hadoop jobs. In Oozie, a workflow is defined as 
directed acyclic graphs (DAGs) of actions. It supports different 
types of Hadoop jobs, such as MapReduce, Streaming, Pig, Hive, 
Sqoop, and more. Not only these, but also system-specific jobs, 
such as shell scripts and Java programs.

•	 Pig: Apache Pig is a high-level platform for analyzing large data 
sets. It requires complex MapReduce transformations that use a 
scripting language called Pig Latin. Pig translates Pig Latin scripts 
to a series of MapReduce jobs to run in the Hadoop environment. 
It automatically optimizes execution of complex tasks, allowing 
the user to focus on business logic and semantics rather than 
efficiency. Also, you can create your own user-defined functions 
(UDFs) to extend Pig Latin to do special-purpose processing.

•	 Spark: Apache Spark is a fast, in memory, parallel-processing 
framework that boosts the performance of big-data analytics 
applications. It is getting a lot of attention from the big data 
community because it can provide huge performance gains over 
MapReduce jobs. Also, it is a big data technology through which 
you can do streaming analytics. It works with SQL and machine 
learning as well.

•	 Storm: Apache Storm allows you to process large quantities of 
real-time data that is coming in at a high velocity. It can process 
up to a million records per second. It is also available as a 
managed service.

•	 Sqoop: Apache Sqoop is a tool to transfer bulk data to and from 
Hadoop and relational databases as efficiently as possible. It 
is used to import data from relational database management 
systems (RDBMS)— such as Oracle, MySQL, SQL Server, or any 
other structured relational database—and into the HDFS. It then 
does processing and/or transformation on the data using Hive or 
MapReduce, and then exports the data back to the RDBMS.

•	 Tez: Apache Tez is an application framework built on top of YARN 
to allow high-performance batch and interactive data processing. 
Tez is a Hindi word that means “fast,” and as the name implies, 
it makes Hadoop jobs dramatically faster while maintaining 
MapReduce’s scalability for petabytes of data. It is a successor of 
the MapReduce framework. It is more flexible and provides better 
performance for data-intensive processes, such as Hive and Pig.

•	 ZooKeeper: Apache ZooKeeper coordinates distributed processes 
on servers through shared a hierarchical name space of data 
registers (znode), similar to a file system. ZooKeeper is replicated 
over a number of hosts (called an ensemble) and the servers are 
aware of each other. Distributed applications use ZooKeeper to 
store and mediate updates to important configuration information.
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The Advantages of HDInsight
Hadoop in HDInsight offers a number of benefits. A few of them are listed here.

•	 Hassle-free provisioning. Quickly builds your cluster. Takes data 
from Azure Blob storage and tears down the cluster when it is 
not needed. Use the right cluster size and hardware capacity to 
reduce the time for analytics and cost—as per your needs.

•	 Choice of using a Windows or a Linux cluster, a unique flexibility 
that only HDInsight provides. It runs existing Hadoop workloads 
without modifying single line of code.

•	 Another pain area in building cluster is integrating different 
components, such as Hive, Pig, Spark, HBase, and so forth. 
HDInsight provides seamless integration without your worrying 
about which version works with a particular Hadoop version.

•	 A persistent data storage option that is reliable and economical. 
With traditional Hadoop, the data stored in HDFS is destroyed 
when you tear down your cluster; but with HDInsight and Azure 
Blob storage, since your data is not bound to HDInsight, the 
same data can be fed into multiple Hadoop clusters or different 
applications.

•	 Automate cluster tasks with easy and flexible PowerShell scripts 
or from an Azure command-line tool.

•	 Cluster scaling enables you to dynamically add and remove nodes 
without re-creating your cluster. You can scale cluster using Azure 
web portal or using PowerShell/Azure command-line script.

•	 It can be used with the Azure virtual network to support isolation 
of cloud resources or hybrid scenarios where you link cloud 
resources with your local data center.

Summary
We live in the era of data, and it is growing at an exponential rate. Hadoop is a technology 
that helps you extract information from large amounts of data in a cost-effective way. 
HDInsight, on the other hand, is a Hadoop distribution developed by Microsoft in 
partnership with Hortonworks. It is easy to provision, scale, and load data in a cluster.  
It integrates with other Hadoop ecosystem projects seamlessly.

Next, let’s dive into code and start building an HDInsight cluster.
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CHAPTER 2

Provisioning an HDInsight 
Cluster

This chapter dives into Azure HDInsight to create an HDInsight cluster. It also goes 
through the different ways to provision, run, and decommission a cluster. (To do so, you 
need an Azure subscription. You can opt for a trial subscription for learning and testing 
purposes.) And finally, the chapter covers HDInsight Sandbox for local development and 
testing.

Microsoft Azure is a set of cloud services. One of these services is HDInsight, which 
is Apache Hadoop running in the cloud. HDInsight abstracts away the implementation 
details of installation and configuration of individual nodes. Azure Blob storage is another 
service offered by Azure. A blob can contain any file format; in fact, it doesn’t need to 
know about file format at all. So you can safely dump anything from structured data to 
unstructured or semistructured data. HDInsight uses Blob storage as the default data 
store. If you store your data in Blob storage, and decommission an HDInsight cluster, data 
in Blob storage remains intact.

Creating an HDInsight cluster is quite easy. Open Azure portal, locate HDInsight, 
configure the nodes, and set permissions. You can even automate this process through 
PowerShell, Azure CLI, or .NET SDK if you have to do this repeatedly. The typical scenario 
with HDInsight and Blob storage is that you provision a cluster and run your jobs. Once 
the jobs are completed, you delete the cluster. With the use of Blob storage, your data 
remains intact in Azure for future use.

An Azure Subscription
To use any services from Azure, you need to have an Azure subscription. If you already 
have one, then you can skip this section; otherwise, for learning and testing purposes, you 
can get a free trial subscription. The trial lasts for 30 days. Note that you need to provide a 
valid credit card for verification, but you won’t be charged until or beyond the trial period 
unless you switch to a Pay-As-You-Go Azure subscription. See the Frequently Asked 
Questions on the Azure sign-up page for more details about a trial account.
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Creating a free trial Azure subscription:

	 1.	 To activate your trail subscription, you need to have a 
Microsoft account that has not already been used to sign up 
for a free Azure trial subscription. If you already have one, 
then continue to the next step; otherwise, you can get new 
Microsoft account by visiting https://signup.live.com.

	 2.	 Once you have a Microsoft account, browse to https://
azure.microsoft.com and follow the instructions to sign up 
for a free trial subscription.

a.	 First, you are asked to sign in with your Microsoft 
account, if you are not already signed in.

b.	 After sign in, you are asked basic information, such as 
your name, email, phone number, and so forth.

c.	 Then, you need to verify your identity, by phone and by 
credit card. Note that this information is collected only to 
verify your identity. You will not be charged unless you 
explicitly upgrade to a Pay-As-You-Go plan. After the trial 
period, your account is automatically deactivated if you 
do not upgrade to a paid account.

d.	 Finally, agree to the subscription. You are now entitled to 
Azure’s free trial subscription benefits.

You are not bound to only the trial period; if you want, you can continue to use the 
same Microsoft account and Azure service. You will be charged based on your usage and 
the type of subscription. To learn more about different services and their pricing, go to 
https://azure.microsoft.com/pricing.

Creating the First Cluster
To create a cluster, you can choose either a Windows-based or a Linux-based cluster. 
Both give different options for the type of cluster that you can create. Table 2-1 shows the 
different components that are available with different operating systems.

https://signup.live.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/pricing
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Please note that Interactive Hive and Kafka are in preview at the time of writing; also, 
they are only available on a Linux cluster. Hortonworks is the first to provide Spark 2.0, 
and hence, it is available on HDInsight as well; for now, only on Linux-based clusters.

Apart from cluster types and the OS, there is one more configuration property: 
cluster tier. There are currently two tiers: Standard and Premium. Table 2-1 is based on 
what is available on a Standard tier, except R Server on Spark, which is only available on 
the Premium cluster tier. The premium cluster tier is still in preview and only available on 
a Linux cluster as of this writing.

There are multiple ways to create clusters. You can use Azure management web 
portal, PowerShell, Azure command-line interface (Azure CLI), or .NET SDK. The easiest 
is the Azure portal method, where with just a few clicks, you can get up and running, scale 
a cluster as needed, and customize and monitor it. In fact, if you want to create any Azure 
service, then Azure portal provides an easy and quick way to find those services, and then 
create, configure and monitor them. Table 2-2 presents all the available cluster creation 
methods. Choose the one that suits you best.

Table 2-1.  Cluster Types in HDInsight

Cluster Type Windows OS Linux OS

Hadoop Hadoop 2.7.0 Hadoop 2.7.3

HBase HBase 1.1.2 HBase 1.1.2

Storm Storm 0.10.0 Storm 1.0.1

Spark - Spark 2.0.0

R Server - R Server 9.0

Interactive Hive (Preview) - Interactive Hive 2.1.0

Kafka (Preview) - Kafka 0.10.0

Table 2-2.  Cluster Creation Methods

Cluster Creation Browser Command Line REST API SDK Linux, Mac OS X, 
Unix or Windows

Azure portal ✔ ✔
Azure CLI ✔ ✔
Azure PowerShell ✔ ✔
.NET SDK ✔ ✔
cURL ✔ ✔ ✔

Azure Resource 
Manager template

✔ ✔

www.allitebooks.com

http://www.allitebooks.org
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Basic Configuration Options
No matter which method you choose to create a cluster with, you need to provide some 
basic configuration values. The following is a brief description of all such options.

•	 Cluster name: A unique name through which your cluster is 
identified. Note that the cluster name must be globally unique. 
At the end of the process, you are able to access the cluster by 
browsing to https://{clustername}.azurehdinsight.net.

•	 Subscription name: Choose the subscription to which you want 
to tie the cluster.

•	 Cluster Type: HDInsight provides six different types of cluster 
configurations, which are listed in Table 2-1; two are still in 
preview. The Hadoop-based cluster is used throughout this 
chapter.

•	 Operating system: You have two options here: Windows or 
Linux. HDInsight is the only place where you can deploy a 
Hadoop cluster on Windows OS. HDInsight on Windows uses 
the Windows Server 2012 R2 datacenter.

•	 HDInsight version: Identifies all the different components 
and the versions available on the cluster. (To learn more, go to 
https://go.microsoft.com/fwLink/?LinkID=320896)

•	 Cluster tier: There are two tiers: Standard and Premium. 
The Standard tier contains all the basic yet necessary 
functionalities for successfully running an HDInsight cluster 
in the cloud. The Premium tier contains all the functionalities 
from the Standard tier, plus enterprise-grade functionalities, 
such as multiuser authentication, authorization, and 
auditing.

•	 Credentials: When creating an HDInsight cluster, you are asked 
to provide multiple user account credentials, depending on the 
cluster OS.

•	 HTTP/Cluster user. This user submits jobs for admin cluster 
access and to access the cluster dashboard, notebook, and 
application HTTP/web endpoints.

•	 RDP user (Windows clusters). This user does the RDP 
connection with your cluster. When you create this user,  
you must set the expiry date, which cannot be longer than  
90 days.

•	 SSH user (Linux clusters). This user does the SSH 
connection with your cluster. You can choose whether you 
want to use password-based authentication or public key–
based authentication.

https://go.microsoft.com/fwLink/?LinkID=320896
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•	 Data source: HDInsight uses Azure Blob storage as the primary 
location for most data access, such as job input and logs. You 
can use an existing storage account or create a new one. You can 
use multiple storage containers with the same HDInsight cluster. 
Not only can you provide your own storage container, but also 
containers that are configured for public access.

■■ Caution I t is possible to use the same container as the primary storage for multiple 
HDInsight clusters—no one stops you from doing so. But this is not advisable because it 
may cause random problems. (More information is at http://bit.ly/2dU4tEE.)

•	 Pricing: On pricing the blade, you can configure the number of 
nodes that you want in the cluster and the size of those nodes. If 
you are just trying out HDInsight, then I suggest going with just 
a single worker node initially to keep the cost to a minimum. As 
you get comfortable and want to explore more scenarios, you can 
scale out and add more nodes. By default, there are a minimum of 
two head nodes.

•	 Resource group: A collection of resources that share the same 
life cycle, permissions, and policies. A resource group allows 
you to group related services into a logical unit. You can track 
total spending, and lock it so that no one can delete or modify it 
accidently. (More information is at http://bit.ly/2dU549v).

Creating a Cluster Using the Azure Portal
Microsoft Azure portal is the central place to provision and manage Azure resources. 
There are two different portals: an older portal available at https://manage.
windowsazure.com and a newer one at https://portal.azure.com. This book only uses 
the new portal. A brief overview of the Azure portal: it is designed to provide a consistent 
experience no matter which service you are accessing. Once you learn to navigate and use 
one service, you learn to manage every other resource that Azure provides. To maintain 
this consistency, the Azure portal uses a blade-based UI. These blades provide a way to 
expose settings, actions, billing information, health condition, usage data, and much 
more, in a standardized way.

When you navigate to the new portal (https://portal.azure.com), and log in 
with your Microsoft account (if you are not already logged in), you are presented with a 
dashboard. This is not a generic dashboard; it is totally customizable. You can add new 
tiles or remove unnecessary tiles. You can resize them, making important ones bigger 
and less used ones smaller. These tiles are updated in real time to reflect up-to-date 
information.

http://bit.ly/2dU4tEE
http://bit.ly/2dU549v
https://manage.windowsazure.com/
https://manage.windowsazure.com/
https://portal.azure.com/
https://portal.azure.com/


Chapter 2 ■ Provisioning an HDInsight Cluster

18

The following are the steps for creating an HDInsight cluster through the Azure 
portal.

	 1.	 Sign in to the Azure portal (https://portal.azure.com).

	 2.	 Click the New button. Next, click Data + analytics, and then 
choose HDInsight, as shown in Figure 2-1.

	 3.	 Configure different cluster settings.

a.	 Cluster name: Provide a unique name. If all rules are 
valid, then a green tick mark will appear at the end of it.

b.	 Cluster type: Select Hadoop for now.

c.	 Cluster operating system: Go with the Windows  
OS-based cluster.

d.	 Version: Hadoop 2.7.3 (HDI 3.5)

e.	 Subscription: Choose the Azure subscription that  
you want this cluster to be tied with.

f.	 Resource group: Select an existing one or create a  
new one.

Figure 2-1.  Create new HDInsight cluster on the Azure portal

https://portal.azure.com/
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g.	 Credentials: As this is a Windows-based cluster, it can 
have cluster credentials. If you choose to enable the 
RDP connection, then it can have credentials for RDP as 
well, as shown in Figure 2-2. You should enable the RDP 
connection if you wish to get onto a head node (Windows 
machine).

h.	 Data Source: Create a new or select an existing storage 
account, and specify a primary data container as well. 
Figure 2-3 shows the Data Source configuration options. 
Also, select the Azure location where you want to create 
your cluster. Choose a location close to you for better 
performance.

Figure 2-2.  Windows cluster credentials
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i.	 Node Pricing Tier: Configure the number of worker nodes 
that the cluster will have, and both the head node size and 
the worker node size. Make sure that you don’t create an 
oversized cluster unless absolutely required, because if 
you keep the cluster up without running any jobs, it will 
incur charges. These charges are based on the number of 
nodes and the node size that you select. (More information 
about node pricing is at http://bit.ly/2dN5olv).

j.	 Optional Configuration: You can also configure a virtual 
network, allowing you to create your own network in the 
cloud, and providing isolation and enhanced security. 
You can place your cluster in any of the existing virtual 
networks. External metastores allow you to specify an 
Azure SQL Database, which has Hive or Oozie metadata 
for your cluster. This is useful when you have to re-create 
a cluster every now and then. Script actions allow you to 
execute external scripts to customize a cluster as it is being 
created, or when you add a new node to the cluster. The 
last option is additional storage accounts. If you have data 
spread across multiple storage accounts, then this is the 
place where you can configure all such storage accounts.

You can optionally select to pin a cluster to the dashboard for quick access. 
Provisioning takes up to 20 minutes, depending on the options you have configured. 
Once the provisioning process completes, you see an icon on dashboard with the name of 
your cluster. Clicking it opens the cluster overview blade, which includes the URL of the 
cluster, the current status, and the location information.

Figure 2-3.  Cluster data source

http://bit.ly/2dN5olv
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Figure 2-4 shows the cluster provisioned just now. There is a range of settings, 
configurations, getting started guides, properties, and so forth, in the left sidebar. At the 
top, there are a few important links, discussed next.

•	 Dashboard: The central place to get a holistic view of your cluster. 
To get into it, you have to provide cluster credentials. Dashboard 
provides a browser-based Hive editor, job history, a file browser, 
Yarn UI, and Hadoop UI. Each provides a different functionality 
and easy access to all resources.

•	 Remote Desktop: Provides the RDP file, allowing you to get on 
to a Windows machine and the head node of your cluster. (Only 
available in a Windows cluster.)

•	 Scale Cluster: One of the benefits of having Hadoop in the cloud 
is dynamic scaling. HDInsight also allows you to change the 
number of worker nodes without taking the cluster down.

•	 Delete: Permanently decommissions the cluster. Note that the 
data stored in Blob storage isn’t affected by decommissioning the 
cluster.

Figure 2-4.  HDInsight cluster settings and configurations
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Connecting to a Cluster Using RDP
In the last section, you created a cluster and looked at a basic web-based management 
dashboard. Remote desktop (RDP) is another way to manage your Windows cluster.

To get to your Windows cluster, you must enable the RDP connection while creating 
the cluster or afterward. You can get the RDP file from the Azure portal by navigating to 
that cluster and clicking the Remote Desktop button in the header of the cluster blade. 
This RDP file contains information to connect to your HDInsight head node.

	 1.	 Click Remote Desktop to get the connection file for your 
cluster.

	 2.	 Open this file from your Windows machine, and when 
prompted, enter the remote desktop password.

	 3.	 Once you get to the head node, you see a few shortcuts on the 
desktop, as follows.

•	 Hadoop Command Line: The Hadoop command-line 
shortcut provides direct access to HDFS and MapReduce, 
which allows you to manage the cluster and run MapReduce 
jobs. For example, you can run existing samples provided 
with your cluster by executing the following command to 
submit a MapReduce job.

>hadoop jar C:\apps\dist\hadoop-2.7.1.2.3.3.1-25\
hadoop-mapreduce-examples.jar pi 16 1000

•	 Hadoop Name Node Status: This shortcut opens a browser 
and loads the Hadoop UI with a cluster summary. The same 
web page can be browsed using the cluster URL (https://
{clustername}.azurehdinsight.net) and navigating to the 
Hadoop UI menu item. From here, the user can view overall 
cluster status, startup progress, and logs, and browse the file 
system.

•	 Hadoop Service Availability: Opens a web page that lists 
services, their status, and where they are running. Services 
included Resource Manager, Oozie, Hive, and so forth.

•	 Hadoop Yarn Status: Provides details of jobs submitted, 
scheduled, running, and finished. There are many different 
links on it to view status of jobs, applications, nodes, and so 
forth.

Connecting to a Cluster Using SSH
Creating a Linux cluster is similar to Windows, except you have to provide SSH 
authentication instead of remote desktop credentials. SSH is a utility for logging in to 
Linux machines and for remotely executing commands on a remote machine. If you 
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are on Linux, Mac OS X, or Unix, then you already have the SSH tool on your machine; 
however, if you are using a Windows client, then you need to use PuTTY.

When creating a Linux cluster, you can choose between password-based 
authentication and public-private key–based authentication. A password is just a 
string, whereas a public key is a cryptographic key pair to uniquely identify you. While 
password-based authentication seems simple to use, key-based is more secure. To 
generate a public-private key pair, you need to use the PuTTYGen program (download 
it from http://bit.ly/1jsQjnt). You have to provide your public key while creating a 
Linux-based cluster. And when connecting to it by SSH, you have to provide your private 
key. If you lose your private key, then you won’t be able to connect to your name node.

The following are the steps to connect to your Linux cluster from a Windows 
machine.

	 1.	 Open PuTTY and enter the Host Name as {clustername}-ssh.
azurehdinsight.net (for a Windows client). Keep the rest of 
the settings as they are.

	 2.	 Configure PuTTY based on the authentication type that 
you select. For key-based authentication type, navigate to 
Connection, open SSH, and select Auth.

	 3.	 Under Options controlling SSH authentication, browse to the 
private key file (PuTTY private key file *.ppk).

	 4.	 If this is a first-time connection, then there is a security alert, 
which is normal. Click Yes to save the server’s RSA2 key in 
your cache.

	 5.	 Once the command prompt opens, you need to provide your 
SSH username (and password if configured so). Soon the SSH 
connection is established with the head node server.

To monitor cluster activity, there is Ambari Views. You can find a shortcut for the 
same in the Linux cluster’s Overview blade under the Quick Links section. Ambari shows 
a complete summary of the cluster, including HDFS Disk usage, memory, CPU and 
network usage, current cluster load, and more.

■■ Warning H DInsight clusters billing is pro-rated per minute, whether you are using them 
or not. Please be sure to delete your cluster after you have finished using it.

Creating a Cluster Using PowerShell
Azure PowerShell is a module that provides cmdlets to manage Azure resources from 
within Windows PowerShell. There are multiple ways to install the Azure PowerShell 
module; the easiest are the Microsoft Web Platform Installer or the PowerShell Gallery. 
All available installation options are at http://bit.ly/2bF85UH. You can verify installation 

http://bit.ly/1jsQjnt
http://bit.ly/2bF85UH


Chapter 2 ■ Provisioning an HDInsight Cluster

24

by opening Windows PowerShell and executing the "Get-Module -ListAvailable -Name 
Azure" command. As shown in Figure 2-5, the command returns the currently installed 
version of the Azure PowerShell module.

Now that you have PowerShell set up correctly, let’s create an Azure HDInsight 
cluster. First, log in to your Azure subscription. Execute the "Login-AzureRmAccount" 
command on the PowerShell console. This opens a web browser. Once you authenticate 
with a valid Azure subscription, PowerShell shows your subscription and a successful 
login, as shown in Figure 2-6.

If you happen to have more than one Azure subscription and you want to change 
from the selected default, then use the "Add-AzureRmAccount" command to add another 
account. The complete Azure cmdlet reference can be found at http://bit.ly/2dMxlMo.

With an Azure resource group, once you have PowerShell configured and you have 
logged in to your account, you can use it to provision, modify, or delete any service that 
Azure offers. To create an HDInsight cluster, you need to have a resource group storage 
account. To create a resource group, use the following command.

New-AzureRmResourceGroup -Name hdi -Location eastus

To find all available locations, use the "Get-AzureRmLocation" command. To view all 
the available resource group names, use the "Get-AzureRmResourceGroup" command.

On a default storage account, HDInsight uses a Blob storage account to store data. 
The following command creates a new storage account.

New-AzureRmStorageAccount -ResourceGroupName hdi -Name hdidata -SkuName 
Standard_LRS -Location eastus -Kind storage

Figure 2-5.  Azure PowerShell module version

Figure 2-6.  Log in to Azure from Windows PowerShell

http://bit.ly/2dMxlMo
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Everything in the preceding command is self-explanatory, except LRS. LRS is locally 
redundant storage. There are five types of storage replication strategies in Azure:

•	 Locally redundant storage (Standard_LRS)

•	 Zone-redundant storage (Standard_ZRS)

•	 Geo-redundant storage (Standard_GRS)

•	 Read-access geo-redundant storage (Standard_RAGRS)

•	 Premium locally redundant storage (Premium_LRS)

More information about storage accounts is in Chapter 3.

■■ Note T he storage account must be collocated with the HDInsight cluster in the  
data center.

After creating a storage account, you need to get an account key. The following 
command gets a key for a newly created or an existing storage account.

-- Lists Storage accounts
Get-AzureRmStorageAccount
-- Shows a Storage account
Get-AzureRmStorageAccount -AccountName "<Storage Account Name>" 
-ResourceGroupName "<Resource Group Name>"
-- Lists the keys for a Storage account
Get-AzureRmStorageAccountKey -ResourceGroupName "<Resource Group Name>" 
-Name "<Storage Account Name>" | Format-List KeyName,Value

After you are done with the resource group and the storage account, use the 
following command to create an HDInsight cluster.

New-AzureRmHDInsightCluster [-Location] <String> [-ResourceGroupName] 
<String>
        [-ClusterName] <String>  [-ClusterSizeInNodes] <Int32>
        [-HttpCredential] <PSCredential>
        [-DefaultStorageAccountName] <String>]
        [-DefaultStorageAccountKey] <String>
        [-DefaultStorageContainer <String>]
        [-HeadNodeSize <String>] [-WorkerNodeSize <String>]
        [-ClusterType <String>]
        [-OSType <OSType>] [-ClusterTier <Tier>]
        [-SshCredential <PSCredential>] [-SshPublicKey <String>]
        [-RdpCredential <PSCredential>] [-RdpAccessExpiry <DateTime>]

http://dx.doi.org/10.1007/978-1-4842-2869-2_3
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The preceding code block is a stripped-down version of all available options when 
creating a cluster. The following is a sample PowerShell script.

$clusterHttpCreds = Get-Credential
$clusterSSHCreds = Get-Credential
New-AzureRmHDInsightCluster -Location eastus -ResourceGroupName hdidata 
-ClusterName hdi
        -ClusterSizeInNodes 2 -HttpCredential $clusterHttpCreds
        -DefaultStorageAccountName "hdistorage.blob.core.windows.net"
        -DefaultStorageAccountKey "mXzSxbPsE2...oS9TSUw=="
        -DefaultStorageContainer hdicontainer -HeadNodeSize Standard_D3_V2
        -WorkerNodeSize Standard_D3_V2 -ClusterType Hadoop -OSType Linux
        -ClusterTier Standard -SshCredential $clusterSSHCreds

Note that this script assumes that you have already created the "hdidata" 
resource group and the "hdistorage" storage account as well. Also, note that 
defaultStorageAccountKey is not a complete key; you should replace it with yours 
before executing. To learn all the available node sizes, execute the "Get-AzureRmVMSize 
-Location eastus" command.

After the data processing task is complete and the cluster is no longer required, you 
can delete it using following command.

Remove-AzureRmHDInsightCluster -ClusterName "hdi"

Creating a Cluster Using an Azure Command-Line  
Interface
The Azure command-line interface has open source shell-based commands for managing 
resources in Microsoft Azure. Azure CLI can be installed using the node package manager 
(npm), installer file, or the Docker container. The simplest way is to install it using an 
installer: Windows installer (http://aka.ms/webpi-azure-cli) and Mac OS X installer 
(http://aka.ms/mac-azure-cli).

To install using npm, execute the "npm install -g azure-cli" command for a 
Windows machine, and on Linux, use "sudo npm install -g azure-cli". Please note 
that for npm to work, you need to install Node.js first. The third and last option is to install 
Azure CLI is Docker. You need to set up your machine as a Docker host. Run the "docker 
run -it microsoft/azure-cli" command (on Linux you need to use sudo). You can 
verify installation by running the "Azure" command on Azure CLI.

After configuration, Azure CLI is almost similar to PowerShell. Try to log in using 
the "Azure login" command. Just like PowerShell, this command provides you a token 
and a URL (https://aka.ms/devicelogin). You have to open a browser, navigate to the 
provided URL, and enter the given token. This logs you in to Azure CLI automatically. 
Also, if you have only one subscription, it selects it for all operations. You can change it by 

http://aka.ms/webpi-azure-cli
http://aka.ms/mac-azure-cli
https://aka.ms/devicelogin
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using the "azure account set <subscriptionNameOrId>" command where you need to 
provide a subscription name or id. Go to http://bit.ly/2dE50Yu for complete command 
references.

With an Azure resource group, once you have CLI configured, and you have logged 
into your account, you can use it to provision, modify, or delete any service that Azure 
offers. To create an HDInsight cluster, you need to have a resource group storage account. 
To create a resource group, use the following command.

azure group create -n "<Resource Group Name>" -l "<Azure Location>"

To find all available locations use the "azure location list" command. To view all 
available resource group names, use the "azure group list" command.

On a default storage account, HDInsight uses a Blob storage account to store data. 
The following command creates a new storage account.

azure storage account create "<NAME>" -g "<Resource Group Name>" -l "<Azure 
Location>" --sku-name LRS --kind Storage

Everything in this command is self-explanatory, except LRS. LRS is locally redundant 
storage. The following are four types of storage replication strategy in Azure:

•	 Locally redundant storage (LRS)

•	 Zone-redundant storage (ZRS)

•	 Geo-redundant storage (GRS)

•	 Read-access geo-redundant storage (RA-GRS)

More information about storage accounts is in Chapter 3.
After creating a storage account, you need to get an account key. The following 

command helps you get a key from a newly created or an existing storage account.

-- Lists Storage accounts
azure storage account list
-- Shows a Storage account
azure storage account show "<Storage Account Name>" -g "<Resource Group 
Name>"
-- Lists the keys for a Storage account
azure storage account keys list "<Storage Account Name>" -g "<Resource Group 
Name>"

http://bit.ly/2dE50Yu
http://dx.doi.org/10.1007/978-1-4842-2869-2_3
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After you are done with the resource group and the storage account, use the 
following command to create an HDInsight cluster.

azure hdinsight cluster create
-g <Resource Group Name> -c <HDInsight Cluster Name> -l <Location>
--osType <Windows | Linux> --version <Cluster Version>
--clusterType <Hadoop | HBase | Spark | Storm>
--workerNodeCount 2 --headNodeSize Large --workerNodeSize Large
--defaultStorageAccountName <Azure Storage Account Name>.blob.core.windows.net
--defaultStorageAccountKey "<Default Storage Account Key>"
--defaultStorageContainer <Default Blob Storage Container>
--userName admin --password "<HTTP User Password>"
--rdpUserName <RDP Username> --rdpPassword "<RDP User Password" 
--rdpAccessExpiry "<ExpiryDate>"

The preceding code block is a stripped-down version of all the available options 
when creating a cluster. The following is a sample command.

azure hdinsight cluster create -g hdidata -c hdiClusterName -l eastus 
--osType Windows --version 3.3 --clusterType Hadoop --workerNodeCount 2 
--headNodeSize Large --workerNodeSize Large --defaultStorageAccountName 
hdistorage.blob.core.windows.net --defaultStorageAccountKey lghpx6p94...
WXrvCsIb1atLIyhg== --defaultStorageContainer hdi1 --userName admin 
--password AbCdE@12345 --rdpUserName rdpuser --rdpPassword AbCdE@98765 
--rdpAccessExpiry "01/01/2017"

Note that the preceding command assumes that you have the "hdidata" resource 
group already created, as well as an "hdistorage" storage account. Also note that 
defaultStorageAccountKey is not a complete key; you should replace it with yours before 
executing.

After the data processing task is complete and the cluster is no longer required, you 
can delete it by using the following command.

azure hdinsight cluster delete <CLUSTERNAME>

Creating a Cluster Using .NET SDK
Microsoft provides .NET SDK to work with HDInsight clusters so that you can integrate 
it in .NET applications. Just like Azure CLI and PowerShell, if you learn to work with any 
one type of resource, you can literally work with almost any service Azure offers through 
.NET SDK. Next, let’s set up authentication and then create an HDInsight cluster.
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To start, open Visual Studio (2012 or higher) and follow these instructions:

	 1.	 Create a new C# console application. (VB.NET also works, if 
you prefer it.)

	 2.	 To get SDK components, run the following Nuget commands 
in the Nuget Package Management console. Please note that 
the resources Nuget is still in preview at the time of writing.

Install-Package Microsoft.Rest.ClientRuntime.Azure.Authentication
Install-Package Microsoft.Azure.Management.Resources -Pre
Install-Package Microsoft.Azure.Management.Storage
Install-Package Microsoft.Azure.Management.HDInsight

	 3.	 Once all packages are installed, you can create an HDInsight 
cluster. But as in the previous section, you will first create a 
resource group and a storage account. Before that, let’s have a 
look at authentication. The following code snipet shows how 
to log in to your Azure subscription.

static TokenCloudCredentials Authenticate(string TenantId, string 
ClientId, string SubscriptionId)
{
    �var authContext = new AuthenticationContext 

("https://login.microsoftonline.com/"
        + TenantId);

    �var tokenAuthResult = authContext.AcquireToken 
("https://management.core.windows.net/",

        ClientId,
        new Uri("urn:ietf:wg:oauth:2.0:oob"),
        PromptBehavior.Auto,
        UserIdentifier.AnyUser);

    �return new TokenCloudCredentials(SubscriptionId, 
tokenAuthResult.AccessToken);

}

	 4.	 The preceding method requires few ids. TenantId and 
SubscriptionId can be found in portal.azure.com. After 
login, go to Help and select Show Diagnostics. This opens a 
new browser window with a lot of information. You can find 
both TenantId and SubscriptionId in it. About ClientId: I 
use the PowerShell client’s GUID, which is used for interactive 
logins. If you have your own application attached with 
Azure Active Directory, then you can use the client id of that 
application as well.
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	 5.	 Once you execute the preceding method, and if you are 
already logged in to the Azure portal from Internet Explorer, 
then you automatically get an authentication token; 
otherwise, you have to enter your credentials in the browser 
window, opened by the code, to get an authentication token. 
The preceding method waits for execution on the second line 
until it gets an authentication token.

	 6.	 After the code receives the token, you can work with different 
services. The following are a few methods to work with 
resource groups. Note that all of these methods require 
credentials passed as a parameter, which you received from 
the authentication method.

static async Task CreateResourceGroup(string resourceGroupName, 
TokenCloudCredentials credentials)
{
    var resourceClient =
        �new Microsoft.Azure.Management.Resources.ResourceManagement

Client(credentials);

    �Microsoft.Azure.Management.Resources.Models.
ResourceGroupCreateOrUpdateResult result =

        await resourceClient.ResourceGroups.CreateOrUpdateAsync(
            resourceGroupName,
            �new Microsoft.Azure.Management.Resources.Models.

ResourceGroup(location: "eastus"));

    �Console.WriteLine($"Resource group creation result: {result.
StatusCode.ToString()}");

}

static async Task ListResourceGroups(TokenCloudCredentials 
credentials)
{
    var resourceClient =
        �new Microsoft.Azure.Management.Resources.ResourceManagement

Client(credentials);

    var resources =
        await resourceClient.ResourceGroups.ListAsync(
            �new Microsoft.Azure.Management.Resources.Models.

ResourceGroupListParameters());

    �foreach (Microsoft.Azure.Management.Resources.Models.
ResourceGroupExtended group

        in resources.ResourceGroups)
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    {
        Console.WriteLine($"Name: {group.Name}, Location:  
{group.Location}");
    }
}

static async Task DeleteResourceGroup(string resourceGroupName, 
TokenCloudCredentials credentials)
{
    var resourceClient =
        �new Microsoft.Azure.Management.Resources.ResourceManagement

Client(credentials);

    AzureOperationResponse result =
        �await resourceClient.ResourceGroups.DeleteAsync 

(resourceGroupName);

    �Console.WriteLine($"Resource group deletion result: {result.
StatusCode.ToString()}");

}

	 7.	 To work with a storage account, the following are the methods 
code to create, list, or delete. Note that all of these methods 
require credentials, as received from the authentication 
method.

static async Task CreateStorageAccount(string resourceGroupName, 
string accountName,
    TokenCloudCredentials credentials)
{
    var storageClient =
        �new Microsoft.Azure.Management.Storage.StorageManagement

Client(credentials);

    var result = await storageClient.StorageAccounts.CreateAsync(
        resourceGroupName: resourceGroupName,
        accountName: accountName,
        �parameters: new Microsoft.Azure.Management.Storage.

Models.StorageAccountCreateParameters
                 �(accountType: Microsoft.Azure.Management.

Storage.Models.AccountType.StandardLRS, 
location: "eastus"));

    �Console.WriteLine($"Storage Account creation result: {result.
StatusCode.ToString()}");

}
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static async Task ListStorageAccounts(TokenCloudCredentials 
credentials)
{
    var storageClient =
        �new Microsoft.Azure.Management.Storage.StorageManagement

Client(credentials);

    var resources = await storageClient.StorageAccounts.ListAsync();

    �foreach (Microsoft.Azure.Management.Storage.Models.
StorageAccount storageAccount

        in resources.StorageAccounts)
    {
        �Console.WriteLine($"Name: {storageAccount.Name}, 

Location: {storageAccount.Location}");
    }
}

static async Task DeleteStorageAccount(string resourceGroupName, 
string accountName,
    TokenCloudCredentials credentials)
{
    var storageClient =
        �new Microsoft.Azure.Management.Storage.StorageManagement

Client(credentials);

    AzureOperationResponse result =
        �await storageClient.StorageAccounts.

DeleteAsync(resourceGroupName, accountName);

    �Console.WriteLine($"Storage Account deletion result: {result.
StatusCode.ToString()}");

}

static async Task<Microsoft.Azure.Management.Storage.Models.
StorageAccountKeys>
    �GetStorageAccountKey(string resourceGroupName, string 

accountName, TokenCloudCredentials credentials)
{
    var storageClient =
        �new Microsoft.Azure.Management.Storage.StorageManagementC

lient(credentials);

    �var result = await storageClient.StorageAccounts.ListKeysAsync
(resourceGroupName, accountName);

    return result.StorageAccountKeys;
}
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static async Task<string> GetBlobLocation(string 
resourceGroupName, string accountName,
    TokenCloudCredentials credentials)
{
    var storageClient =
        �new Microsoft.Azure.Management.Storage.StorageManagement

Client(credentials);

    �var result = await storageClient.StorageAccounts.
GetPropertiesAsync(

        resourceGroupName, accountName);

    return result.StorageAccount.PrimaryEndpoints.Blob.Host;
}

	 8.	 Finally, after you have a resource group and a storage 
account, you can create an HDInsight cluster. The following 
main method uses previous code. Please note that this code 
doesn’t gracefully handle failures (such as a down Internet 
connection). It is used only for demonstration purposes.

static void Main(string[] args)
{
    string TenantId = "<Tenant Id>";
    string SubscriptionId = "<Azure Subscription Id>";

    �// This is the GUID for the PowerShell client. Used for 
interactive logins in this example.

    string ClientId = "1950a258-227b-4e31-a9cf-717495945fc2";

    string clusterName = "HDICluster";
    string resourceGroupName = "<Resource Group Name>";
    string storageAccountName = "<Storage Account Name>";

    // Get authentication token
    �var credentials = Authenticate(TenantId, ClientId, 

SubscriptionId);

    // Working with Resource group
    CreateResourceGroup(resourceGroupName, credentials).Wait();

    // Working with Storage Account
    �CreateStorageAccount(resourceGroupName, storageAccountName, 

credentials).Wait();
    �Microsoft.Azure.Management.Storage.Models.StorageAccountKeys 

storageAccountKeys =
        �GetStorageAccountKey(resourceGroupName, 

storageAccountName, credentials).Result;
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    �string blobContainer = GetBlobLocation(resourceGroupName, 
storageAccountName,

        credentials).Result;

    �System.Console.WriteLine("Creating a cluster. The process may 
take 10 to 20 minutes...");

    // Get an HDInsight management client
    �HDInsightManagementClient hdiManagementClient = new HDInsight

ManagementClient(credentials);

    // Set parameters for the new cluster
    var parameters = new ClusterCreateParameters
    {
        Location = "EAST US",
        OSType = OSType.Windows,
        Version = "3.3",
        ClusterType = "Hadoop",
        ClusterSizeInNodes = 2,
        HeadNodeSize = "Large",
        WorkerNodeSize = "Large",
        DefaultStorageAccountName = blobContainer,
        DefaultStorageAccountKey = storageAccountKeys.Key1,
        DefaultStorageContainer = "hdicontainer",
        UserName = "admin",
        Password = "AbCdE@12345",
        RdpUsername = "rdpuser",
        RdpPassword = "AbCdE@12345",
        RdpAccessExpiry = DateTime.Now.AddMonths(2)
    };

    // Create the cluster
    �hdiManagementClient.Clusters.Create(resourceGroupName, 

clusterName, parameters);

    �System.Console.WriteLine("The cluster has been created. Press 
any key to delete cluster...");

    System.Console.ReadLine();

    �// Delete the cluster (if required, otherwise remove the 
below code)

    �hdiManagementClient.Clusters.Delete(resourceGroupName, 
clusterName);

}

To run the whole app, just create a C# console app and paste all the code in a 
Program.cs file, change all the missing values (TenantId, SubscriberId, etc.), and press 
F5. You will have created a cluster.
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The Resource Manager Template
The Azure Resource Manager template makes it even easier to create an HDInsight 
cluster. The template is just a JSON file with all the configuration parameters and 
dependent components, such as a storage account or a SQL database (for Apache Sqoop), 
specified in it. This single file can contain any number of services that you want to deploy, 
working in single coordinated operation, making it a powerful way to provision services 
in Azure. Also, since it is just a JSON file, you don’t have to know PowerShell, Azure CLI, 
or .NET code to create it. The template defines the resources that need to be created with 
parameters to input values for different environments.

If you don’t want to create it manually, then there is a way around it. Log in into 
https://portal.azure.com and configure the HDInsight cluster as described in the 
“Creating Cluster Using the Azure Portal” section. Beside the Create button, there is an 
“Automation options” link. Clicking it opens a new blade with an HDInsight template and 
parameter file. PowerShell, Azure CLI, .NET, and Ruby also execute this template.

HDInsight in a Sandbox Environment
To do development, it is not feasible to keep an HDInsight cluster running on Azure. 
It would be neither cost effective nor easy to do development on a remote cluster. As 
developers, we always prefer our own local environment, where we can quickly test the 
app without any dependency. To help with such scenarios, Hortonworks provides the 
Sandbox environment. You can have either a Linux-based cluster or a Windows-based 
cluster. A Linux-based sandbox is available with the latest HDP 2.5 (Hortonworks Data 
Platform), whereas the Windows-based sandbox is currently available for HDP 2.3.4. The 
next section demonstrates how to set up both of these environments.

Hadoop on a Virtual Machine
With Hortonworks Sandbox, you can install and run Hadoop locally to learn about 
Hadoop, HDFS, and job submissions, as well as its ecosystem components. Make sure 
that you have a machine with a 64-bit multicode CPU that supports virtualization, has at 
least 8GB of RAM (the more, the better), a browser (Chrome 25+, IE9+, or Safari 6+), and 
the latest version of VirtualBox (4.2 or higher from www.virtualbox.org) installed. the 
following steps are for Windows, but are the same for Mac OS or Linux.

	 1.	 Hortonworks Sandbox is available for VirtualBox, VMware, 
and as a Docker image. You can choose any of these options 
and get the same result. Let’s continue with the VirtualBox 
option. The Hortonworks Sandbox is available as a VirtualBox 
appliance. To download, go to http://hortonworks.com/
downloads/ and download it for VirtualBox, as shown in 
Figure 2-7.

www.allitebooks.com

https://portal.azure.com/
http://www.virtualbox.org/
http://hortonworks.com/downloads/
http://hortonworks.com/downloads/
http://www.allitebooks.org
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	 2.	 After downloading the appliance file (*.ova), it needs to be 
imported into VirtualBox. Open the Oracle VirtualBox and 
go to File ➤ Import Appliance. First, you need to provide the 
appliance file. After selecting an .ova file and clicking Next, 
you see all the configuration details of the new VM that is 
to be created (change it as you will, but for now leave it as 
it is). On the same Appliance settings page, click Import, 
which starts the import process. Soon a new VM named 
Hortonworks Sandbox appears in VirtualBox.

	 3.	 To run it, just select the VM node and click the green start 
button. Once the virtual machine has started, open the web 
browser and go to http://127.0.0.1:8888. this opens a 
page showing two options: Launch Dashboard and Quick 
Links. The first one opens the Ambari dashboard and the 
other one lists the different services and explains how to 
access them. The Quick Links button opens the web page 
(http://127.0.0.1:8888/splash2.html) shown in Figure 2-8,  
which explains how to access services like Ambari, Atlas, 
Falcon, Ranger, Zeppelin, and SSH Client.

Figure 2-7.  Hortonworks Sandbox options

http://127.0.0.1:8888/
http://127.0.0.1:8888/splash2.html
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Apache Ambari simplifies the management and monitoring of a Hadoop cluster 
from within a web browser. Ambari also provides REST APIs so that the developer can 
integrate these capabilities in their custom apps. Figure 2-9 shows the Ambari dashboard 
from the Hortonworks Sandbox environment. Go ahead and play around with the 
Dashboard, Services, Hosts, Alerts, and Admin pages. You will be surprised how easy it is 
to work with Ambari.

Figure 2-8.  Hortonworks Sandbox with HDP 2.5 Quick Links web page
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	 4.	 To connect with a cluster through SSH, you can view details 
on the Quick Links page. If you are on a Windows host and 
don’t want to download the SSH client, then just navigate to 
http://127.0.0.1:4200 in your browser to connect using 
SSH. (If you are trying to connect for first time, then it asks you 
to change your password.) Once logged in, try running the 
"hive" command, which connect you to the Hive shell.

	 5.	 Once connected to the Hive shell, run the Show tables; 
command to view the available sample tables. HDP 2.5 shows 
your two tables: sample_07 and sample_08.

	 6.	 Run the select * from sample_07 limit 10; command to 
retrieve the first ten rows from the sample_07 table.

Figure 2-9.  Hortonworks Sandbox: Ambari Web UI

http://127.0.0.1:4200/#_blank
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You can also use Visual Studio to connect to the HDInsight cluster. Open Visual 
Studio or from Server Explorer ➤ Azure ➤ HDInsight. Right-click the HDInsight node 
and select Connect to HDInsight Emulator. This opens what’s shown in Figure 2-10, 
where you can enter information about the Sandbox environment to connect with it.

After Visual Studio connects to the Sandbox environment, right-click the emulator 
node. It shows the number of options, such as write a Hive query, view jobs, or browse 
HDFS UI. Without leaving Visual Studio, you can submit a Hive query directly. (If you 
want, you can try running the same query from the last section in here as well.)

Hadoop on Windows
The Hortonworks Data Platform is the only Hadoop distribution available on Windows 
host machines. They have provided a way to create local cluster on Windows machines 
too. Following are the steps to configure a Hadoop cluster on a Windows machine.

■■ Note H DP for Windows is available as a single-node cluster and for evaluation  
purposes only.

Figure 2-10.  Visual Studio HDInsight Emulator connection parameters
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Preparing the Host Machine
Before beginning cluster installation, the host machine should meet the following 
hardware and software requirements.

•	 Host OS should be one of the following:

•	 Windows Server 2008 R2 (64-bit)

•	 Windows Server 2012 (64-bit)

•	 Windows Server 2012 R1/R2 (64-bit)

•	 All of the following software should be installed and configured 
correctly:

•	 Microsoft Visual C++ 2010 Redistributable Package (64-bit) 
(Download from http://bit.ly/1dzHJyx.)

•	 Java JDK 1.7.x

•	 Python 2.7.x

•	 Disable your Windows firewall so that all the ports are available 
for use. (Instructions are at http://bit.ly/2eqLuR4.)

Installing and Configuring Java JDK

	 1.	 Download Java JDK (v1.7.x or higher) and install it in the  
C:\Java directory. After installation, verify that you have the 
JDK folder located inside the Java folder.

	 2.	 Add the JAVA_HOME environment variable:

a.	 Open Run and type SystemPropertiesAdvanced.
exe, which opens System Properties, and then click 
Environment Variables.

b.	 In the Environment Variables window, click New in 
the System variables section and add the JAVA_HOME 
environment variable pointing to c:\Java\jdk1.7.0_51. 
Verify that it saved successfully by opening a command 
prompt and executing Echo %JAVA_HOME%.

c.	 Change Path system variable to include Java bin folder, to 
do that find Path variable in list and click on Edit. Append 
c:\Java\jdk1.7.0_51\bin at the end of existing Path 
variable value.

http://bit.ly/1dzHJyx
http://bit.ly/2eqLuR4
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Installing and configuring Python 2.7.x

	 1.	 Download Python and install it in a directory C:\Python27. 
(Download from www.python.org/downloads/.)

	 2.	 After download and install, add C:\Python27 to the path 
system variable.

	 3.	 Verify installation by opening a command line or PowerShell 
and executing python -V Python 2.7.x (where x is the 
version that you downloaded).

Download and Install HDP for Windows

	 1.	 Download the HDP for Windows installer from http://
public-repo-1.hortonworks.com/HDP-Win/2.3/2.3.4.0/
hdp-2.3.4.0.zip.

	 2.	 Open a command line and write the following command to 
launch HDP for Windows installer.

Runas /user:administrator "cmd /C msiexe /lv c:\hdplog.txt  
/I {PATH_TO_MSI} MSIUSEREALADMINDETECTION=1"

	 3.	 This opens the HDP setup window, as shown in Figure 2-11.  
Make sure that it is configured correctly before starting 
installation. To configure, use the following steps:

a.	 Enter your Hadoop user password. A stronger password 
is preferred.

b.	 Enter the Hive and Oozie database details.

c.	 Modify the default DB flavor selection from MSSQL to 
Derby database.

d.	 Click the Additional Components tab. Uncheck Apache 
Ranger from the list of available additional components.

http://www.python.org/downloads/
http://public-repo-1.hortonworks.com/HDP-Win/2.3/2.3.4.0/hdp-2.3.4.0.zip
http://public-repo-1.hortonworks.com/HDP-Win/2.3/2.3.4.0/hdp-2.3.4.0.zip
http://public-repo-1.hortonworks.com/HDP-Win/2.3/2.3.4.0/hdp-2.3.4.0.zip


Chapter 2 ■ Provisioning an HDInsight Cluster

42

	 4.	 Add a password on the Additional Components screen and hit 
Install. It may take up to 20 minutes.

After installation finishes, you have a Hadoop cluster ready to explore. Similar to the 
RDP machine in Azure, you also get a few shortcuts on your desktop. You can start/stop 
all the services using the Hadoop command line. To start HDP services, open the Hadoop 
command line and navigate to the HDP install directory (if you followed the same paths 
as in Figure 2-11, then it is c:\hdp). Enter the start_local_hdp_services.cmd command. 
That is all that is needed to set up a local Windows cluster.

Figure 2-11.  HDP Windows setup
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Summary
Azure HDInsight offers many different ways to provision and maintain a Hadoop cluster. 
Whether you are a developer, a data scientist, or a DevOps engineer, you feel right at 
home with HDInsight’s provisioning methods. Hortonworks Data Platform (HDP) 
complements what Microsoft offers, and gives you a local environment on both Linux 
and Windows. Configuring a local environment is easy because it’s cloud counterpart 
and tooling support in Visual Studio makes developer’s life simple by shortening different 
integration pain points with services like Hive and Pig. By now, you have a cluster are 
ready to execute jobs on it. Let’s look at the different ways in which you can execute 
MapReduce jobs on an HDInsight cluster.
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CHAPTER 3

Working with Data in 
HDInsight

Azure Blob storage is the default and preferred way to store data in HDInsight. HDInsight 
supports the Hadoop distributed file system (HDFS) as well as Azure Blob storage 
for storing data. This chapter covers uploading data to Blob storage and executing 
MapReduce jobs on it. It starts with different command-line utilities to upload data and 
looks at a couple of graphical clients. You’ll create your first MapReduce job and execute 
it using PowerShell. Also, you’ll look at .NET SDK to create and execute job on HDInsight. 
And finally, you’ll learn about Avro serialization.

Azure Blob Storage
Azure Blob storage is a general-purpose storage solution that can store structured or 
unstructured data and integrate seamlessly with HDInsight. It is the default storage 
used by HDInsight. Keeping data in Blob storage facilitates the safe deletion of a cluster 
without losing any data. Using the HDFS interface, Hadoop components can directly 
work on data stored in Blob storage. HDInsight has a notion of the default file system, 
which implies a default schema and default authority, also resolving relative paths to 
the default storage account. You have to provide default an Azure Blob storage container 
while creating HDInsight a cluster, which you saw in the previous chapter’s discussion of 
the HDInsight cluster creation process.

The blob service contains three components: the storage account, the container, and 
Blob storage. There are two types of storage accounts: general purpose, which includes 
tables, queues, files, blobs, and Azure virtual machine disks, and the Blob storage 
account, which stores unstructured data as objects (blobs). A container is a logical 
grouping of blobs (a blob is a file of any type or size). To visualize a storage account, 
consider Figure 3-1, where there is a storage account HDI, which has two containers and 
each of them stores files as blobs.
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The Benefits of Blob Storage
Hadoop has a data locality principle, which states that data should reside as close to the 
compute node as possible to reduce the data movement and enable faster processing. With 
HDInsight, data is stored in Blob storage; not within the compute node. But performance is 
compensated by having data near to the HDInsight cluster, in the same Azure region, and a 
very high-speed network connecting them. The following are a few of the benefits of using 
Azure Blob storage for storing data vs. storing the data on individual compute nodes.

•	 Data stored inside HDFS can only be consumed by using 
HDFS APIs, while data inside Blob storage can be accessed 
through REST APIs too. Hence, a larger set of applications and 
components can use this data.

•	 HDFS keeps redundant files inside data nodes; whereas Blob 
storage can have georeplication. This also improves write 
operations, as HDFS has to finish all writes (if the replication 
factor is 3, then it writes three copies of data) before marking a 
write operation complete; on the other hand, Blob storage has to 
just write it once. Azure takes care of replication subsequently.

•	 Keeping data in DFS is pricier than using Blob storage for the 
same data because the cost of a compute cluster is higher than a 
Blob storage container.

•	 It is safe to delete a cluster without losing any data with Blob 
storage; whereas HDFS is destroyed along with the cluster.

•	 HDFS scale-out requires adding new nodes, even if you don't 
need more computation power, which is an overhead; whereas 
Azure Blob storage provides elastic scaling capabilities.

■■ Note  You can use most of the HDFS commands (i.e., ls, copyFromLocal, and mkdir) with 
HDInsight and Azure Blob storage. Only a few commands specific to HDFS implementation 
(DFS-related, i.e., fschk or dfadmin) will show different behavior in Azure Blob storage.

Figure 3-1.  Blob service components
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Blob storage is referred to as Windows Azure Storage Blob (WASB). WASB is an 
extension built on top of the HDFS APIs. To access data stored in a Blob storage container, 
the URI is as follows.

wasb[s]://<containername>@<accountname>.blob.core.windows.net/<path>

For example, to access a file named example/sample.txt, located at the root of a 
container named hdicontainer, inside the hdistorage storage account, the following 
URI schema can be used.

wasb[s]://hdicontainer@hdistorage.blob.core.windows.net/example/sample.txt
wasb[s]://example/sample.txt
/example/sample.txt

Here WASB uses SSL certificates for secure connection and improved security. WASB 
provides a layer of abstraction over the storage, which enables you to persist data even 
if the cluster is decommissioned. Also, it provides access to multiple applications and 
clusters at the same time, providing overall increased flexibility.

Along with Blob storage, you also get HDFS storage in the cluster nodes. That means 
WASB (virtually) and HDFS reside side by side in your node. To access the HDFS storage 
available inside your cluster nodes, use the following URI.

Hdfs://<namenodehost>:<port>/<path>

Figure 3-2 shows the HDInsight storage architecture, where DFS and WASB are 
shown side by side, and internally, WASB uses Azure Blob storage containers.

Figure 3-2.  HDInsight storage architecture
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Uploading Data
Azure Blob storage stores data as key-value pairs. Also, it is a flat structure and does not 
have directory hierarchy. However, you can add the / character to a key, making it look 
like directory. Many client tools (i.e., Azure Storage Explorer, etc.) consider it logical 
grouping and present it as a hierarchical structure. For example, a blob’s key can be 
example/sample.txt. Here, no actual example directory exists, and the / character has 
no special meaning; still, it appears as a file path.

There are many ways to upload data to Blob storage. Table 3-1 lists many command-
line utilities. Table 3-2 lists graphical clients that help you upload data.

Table 3-1.  Command-Line Utilities

Tool Linux OS Mac OS Windows

Azure Command-Line Interface • • •

Azure PowerShell •

AzCopy •

Hadoop command-line tool • • •

Table 3-2.  Graphical Clients

Tool Linux OS Mac OS Windows

Microsoft Visual Studio Tools for 
HDInsight

•

Azure Storage Explorer • • •

Cloud Storage Studio 2 •

CloudXplorer •

In addition to these tools, you can upload/download files programmatically with 
.NET SDK and integrate the process in custom applications. The next section covers 
cross-platform Azure CLI, Microsoft Azure Storage Explorer, and .NET SDK.

Using Azure Command-Line Interface
As discussed in Chapter 2, Azure CLI (command-line interface) is a cross-platform tool 
for managing Azure services. Installation instructions are in Chapter 2 in the “Creating a 
Cluster Using the Azure Command-Line Interface” section or at http://bit.ly/2jKtQXe. 
Follow these steps to upload data to Blob storage using Azure CLI.

	 1.	 Open Azure CLI and log in to your Azure subscription, using 
the azure login command. This shows a code and a URL: 
https://aka.ms/devicelogin.

http://dx.doi.org/10.1007/978-1-4842-2869-2_2
http://dx.doi.org/10.1007/978-1-4842-2869-2_2
http://bit.ly/2jKtQXe
https://aka.ms/devicelogin
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	 2.	 Open a browser and navigate to the provided URL. Enter the 
code and Azure subscription credentials when prompted. 
Afterward, the browser shows that you are signed in to the 
Microsoft Azure cross-platform command-line interface. 
Switch to Azure CLI and you see that you are now logged in.

	 3.	 To upload or download files requires a storage account name, 
a primary key, and a container name. To see all available 
storage accounts, execute the following command.

azure storage account list

	 4.	 Take any one of the storage accounts and find the primary key 
for the same. To do so, execute the following account with the 
storage account name and its resource group name.

azure storage account keys list <storage_account_name>  
-g <group_name>

■■ Note A zure Blob storage account has two keys: primary and secondary. You can access 
storage with only one key. Then why are there two keys? It is for rolling key changes. 
Assume that you want to change one of the keys because it was leaked somehow, but 
is also used by your web application. If you changed the key in Azure and then in your 
application, you would have downtime. To avoid this, you can change keys one by one; 
hence, two keys are provided.

	 5.	 You are presented with two keys: primary and secondary. Use 
the primary key in the next command to fetch all available 
containers in a storage account.

azure storage container list -a <storage_account_name>  
-k <primary-key>

	 6.	 Once you have the container name, you can upload or 
download files from it. The upload file command is as follows.

azure storage blob upload -a <storage-account-name>  
-k <primary-key><source-file><container-name><blob-name>
Example: azure storage blob upload -a hdistorage  
-k mXzSxb.../goS9TSUw== "C:\the_adventures_of_sherlock_ 
holmes.txt" hdicontainer "books\the_adventures_of_ 
sherlock_holmes.txt"

This example is uploading one of the books from Project 
Gutenberg, which you can download from www.gutenberg.
org/ebooks/1661. Also, notice the addition of the "books/" 
suffix, which allows you to logically group future books.

http://www.gutenberg.org/ebooks/1661
http://www.gutenberg.org/ebooks/1661
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	 7.	 Downloading file is somewhat similar and following is 
command for the same.

azure storage blob download -a <storage-account-name>  
-k <primary-key><container-name><blob-name><destination-file>
Example: azure storage blob download -a hdistorage  
-k mXzSxb.../goS9TSUw== hdicontainer "books\the_ 
adventures_of_sherlock_holmes.txt" "C:\the_adventures 
_of_sherlock_holmes.txt"

Using Windows PowerShell
Windows PowerShell is becoming popular among DevOps for good reasons. So, let’s 
start PowerShell and upload a file to Azure Blob Storage. You need to have configured 
Windows PowerShell with Azure cmdlets; if you haven’t, then you can find the 
configuration steps in Chapter 2.

	 1.	 Open Windows PowerShell and type the “Login-AzureRmAccount” 
command to log in. This opens a browser window to enter Azure 
subscription credentials. Once signed in, you can see your 
subscription details in the PowerShell console.

	 2.	 As discussed in the last section, you need a storage account, 
the primary key, and a container to upload files. Execute the 
following command to fetch all available storage accounts.

Get-AzureRmStorageAccount | Format-Table  
StorageAccountName, ResourceGroupName, Location

	 3.	 The default result format of the preceding command is not 
very readable; hence, let’s pipe another command: Format-
Table, which shows data in a tabular format.

	 4.	 Next, get the storage account primary key and save it for later use.

$storageAccountKey = (Get-AzureRmStorageAccountKey 
-ResourceGroupName<resource-group-name>  
-Name <storage-account-name>)[0].Value

	 5.	 To upload a file, you need to create a storage context, as 
shown the following. Note that the command uses the storage 
account key variable from the previous step.

$context = New-AzureStorageContext -StorageAccountName 
<storage-account-name> -StorageAccountKey $storageAccountKey

	 6.	 Next, to find the container name, use the following command.

Get-AzureStorageContainer -Context $context

http://dx.doi.org/10.1007/978-1-4842-2869-2_2
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	 7.	 Finally, use the Set-AzureStorageBlobContent command to 
upload the file.

Set-AzureStorageBlobContent -File <file_path> -Container 
$containerName -Context $context -Blob <blobname>
Example: Set-AzureStorageBlobContent -File  
"C:\the_adventures_of_sherlock_holmes.txt"  
-Container $containerName -Context $context -Blob  
"books\the_adventures_of_sherlock_holmes.txt"

	 8.	 Until now, you have only tried uploading a single file. By using 
a PowerShell script, you can upload all files from a folder. The 
following command goes through all files and folders inside a 
specified directory, and then uploads them to Blob storage in 
the same hierarchy present on the local file system.

ls <directory-to-upload> -File -Recurse | Set-
AzureStorageBlobContent -Container $containerName  
-Context $context

Using Microsoft Azure Storage Explorer
So far, you have seen command-line utilities, but if you want to upload a file quickly 
without writing all of those commands, then there are several graphical clients as 
well. One such graphical client is Microsoft Azure Storage Explorer. It is a free tool 
from Microsoft. It works on Windows, Linux, and Mac OS. It is available at http://
storageexplorer.com. It is very easy to configure and use. The following are that steps.

	 1.	 Go to http://storageexplorer.com. Download and install 
Microsoft Azure Storage Explorer.

	 2.	 Run Microsoft Azure Storage Explorer. Once you have it 
open, add the Azure subscription that you want to work with. 
Change tabs by clicking the icon marked as 1 in Figure 3-3. 
Then, click the “Add an account…” link.

Figure 3-3.  Add an Azure subscription to Microsoft Azure Storage Explorer

http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
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	 3.	 Next is the window where you enter your Windows Azure 
subscription credentials.

	 4.	 Once the credentials are accepted, you should see your 
subscription(s) listed in the tool, as shown in Figure 3-4. 
Select a subscription and click the Apply button to manage 
the storage account(s) available in the subscription.

Figure 3-4.  Subscriptions list

	 5.	 Once you select a storage account and a container inside it, 
you can completely manage the data, including upload a file/
folder, download, delete, rename, and so forth, as highlighted 
in Figure 3-5. Please note that you can manage a Blob 
container from this tool, but also handle file shares, queues, 
and tables, as well.
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Running MapReduce Jobs
MapReduce is a programming framework to process large amounts of data. In a 
MapReduce process, input data is split into small independent chunks. These chunks are 
then processed by multiple nodes in parallel in your cluster. A MapReduce job consists of 
Map ➤ Sort ➤ Shuffle ➤ Reduce phases. As the name suggests, a MapReduce job consists 
of two functions.

•	 Mapper: A mapper is a function that takes input chunks and 
outputs a tuple (key-value pairs) by analyzing data, which usually 
is a filtering and sorting operation. It reads key-value pairs and 
outputs zero or more key-value pairs.

Map(in_key, in_value) -> (inter_key, inter_value) list

In the preceding code, the input key may be completely 
ignored. For example, a standard pattern is to read a file line 
by line and process it. In such cases, a byte offset of line is key 
but irrelevant from a processing perspective. On the other 
hand, the output key cannot be ignored. A mapper should 
output as key-value pairs only.

•	 Reducer: A reducer consumes tuples emitted by the mapper and 
performs a summary operation on it. Typically, all the intermediate 
key-values are combined together into a list. There can be one 
or multiple reducers. All values associated with a particular 
intermediate key are guaranteed to go to the same reducer.

Figure 3-5.  Microsoft Azure Storage Explorer Blob container commands
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Since the reducer executes after the mapper, it is quite possible that some mappers take 
more time to complete than others do. This can be due to hardware failure or low-powered 
machines. This can be a bottleneck in the whole process, because the reducer cannot start before 
all mappers finish execution. To mitigate this problem, Hadoop uses speculative execution. 
If a mapper is running slower than others are, a new instance is started on another machine, 
doing the same job on the same data. Results can come from either of the mappers, whichever 
finishes first. The results are taken from it, and other running mapper processes are killed.

To understand how MapReduce works in conjunction, look at Figure 3-6.

	 1.	 First, input data is loaded and divided based on the key-value 
pairs on which mapping is performed.

	 2.	 The output of this process is the intermediate key-value pairs 
(i.e., List (K2, V2)).

	 3.	 Afterward, this list is given to the reducer and all similar keys 
are processed at the same reducer (i.e., K2, List (V2)). Finally, 
all the outputs of shuffling are combined together to form a 
final list of key-value pairs (i.e., List (K3, V3).

Figure 3-6.  MapReduce word-count process
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■■ Note O ptionally, there is a combiner, which performs local aggregation on the results of 
the mapper. This reduces the amount of data that needs to be transferred to reducers.

MapReduce is based on a master-and-slave architecture, where JobTracker is the 
master and TaskTrackers are slaves. When a MapReduce job is submitted, JobTracker, 
which is running on a master node, does the scheduling, monitoring, and tracking of 
the execution. JobTracker submits jobs to individual TaskTrackers. Failing tasks are re-
executed until a limit, and then the task is submitted to different TaskTrackers. JobTracker 
also communicates with the name node to understand where the data is present, and 
then creates an execution plan accordingly. On the other hand, TaskTracker’s job is to 
accept tasks and execute them on slave nodes. TaskTracker can only execute a defined 
number of tasks in parallel based on slots available (Map/Reduce slots). Each task in 
TaskTracker is executed in their own Java virtual machine (JVM) process. Due to this 
separation, if one task goes down, it won’t affect other tasks on the same node. Executing 
tasks are monitored by TaskTracker. Output as well as exit codes are captured here, which 
are then transferred back to JobTracker and eventually to the job client.

MapReduce jobs are mainly written in JVM-based languages. Hadoop streaming 
provides a way to write MapReduce jobs in C# or Python. If you already have a jar file that 
has MapReduce-based code in it, then you can submit it in multiple ways on HDInsight: 
PowerShell, SSH, cURL, or .NET SDK. PowerShell and .NET SDK are covered in coming 
sections.

Using PowerShell
Windows PowerShell provides cmdlets that allow you to submit MapReduce jobs to 
HDInsight from a Windows machine. The following commands will help you submit jobs 
remotely.

•	 Login-AzureRmAccount: Allows you to authenticate your Azure 
subscription within PowerShell.

•	 New-AzureRmHDInsightMapReduceJobDefinition: Creates a new 
MapReduce job object based on the information supplied for 
execution.

•	 Start-AzureRmHDInsightJob: Starts a defined HDInsight job on 
a specified cluster by submitting the job to a cluster and returning 
the job object for future job-status tracking.

•	 Wait-AzureRmHDInsightJob: Waits for the job to finish (success or 
failure) or until timeout. Accepts a job object.

•	 Get-AzureRmHDInsightJobOutput: Gets the log output for a job 
from the storage account associated with a specified cluster.
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The following script uses the preceding commands and executes a MapReduce 
job. It uses the word-count example provided in your HDInsight cluster. As input data, it 
uses the file that you uploaded in the previous section, the_adventures_of_sherlock_
holmes.txt. Save the following script as MapReduceWordCount.ps1 in your local hard 
drive, and then execute it from PowerShell. Also, don’t forget to replace the cluster 
information.

# Login to your Azure subscription
$sub = Get-AzureRmSubscription -ErrorAction SilentlyContinue
if(-not($sub))
{
    Login-AzureRmAccount
}

# Set cluster name
$clusterName = "hdi"

# Get HTTP Credential for cluster
$creds = Get-Credential

# Get rest of the cluster details to submit job
$clusterInfo = Get-AzureRmHDInsightCluster -ClusterName $clusterName
$resourceGroup = $clusterInfo.ResourceGroup
$storageAccountName=$clusterInfo.DefaultStorageAccount.split('.')[0]
$container=$clusterInfo.DefaultStorageContainer
$storageAccountKey=(Get-AzureRmStorageAccountKey -Name $storageAccountName 
-ResourceGroupName $resourceGroup)[0].Value

# Get the storage context
$context = New-AzureStorageContext -StorageAccountName $storageAccountName 
-StorageAccountKey $storageAccountKey

# New job definition
$wordCountJobDefinition = New-AzureRmHDInsightMapReduceJobDefinition 
-JarFile "wasbs:///example/jars/hadoop-mapreduce-examples.jar" -ClassName 
"wordcount" -Arguments "wasbs:///books/the_adventures_of_sherlock_holmes.
txt", "wasbs:///books/JobOutput/"

# Start the job and start the object
$wordCountJob = Start-AzureRmHDInsightJob -ClusterName $clusterName 
-JobDefinition $wordCountJobDefinition -HttpCredential $creds

Write-Host "Wait for the job to complete..." -ForegroundColor Green
Wait-AzureRmHDInsightJob -ClusterName $clusterName -JobId $wordCountJob.
JobId -HttpCredential $creds
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When prompted, enter the cluster login username and password that was given 
when the cluster was created. When the job finishes, you should see output similar to 
what’s shown in Figure 3-7.

Figure 3-7.  MapReduce job execution output

After the script executes successfully, you should get the results of the MapReduce 
job at books/JobOutput/part-r-00000 in the storage account. If your job produces 
multiple files, then they will be in the same location and the suffix number will be 
incremented accordingly. To download output, you can use either a graphical client or 
PowerShell. Use the following PowerShell command to download the result (make sure 
that you are in the same PowerShell window to make use of the context and container 
variable).The same folder also contains another file, named _SUCCESS. It signifies that the 
job has completed successfully.

Get-AzureStorageBlobContent -Blob 'books/JobOutput/part-r-00000' -Container 
$container -Destination output.txt -Context $context

Using .NET SDK
Microsoft provides .NET SDK to submit jobs from within your code. This is important 
because you can embed a job submission in your application without having to rely 
on other components. Submitting a job from .NET SDK is as equally simple as other 
methods. Let’s create a simple console application to submit a word-count method.

	 1.	 Create a C# console application in Visual Studio (use Visual 
Studio 2012 or higher) targeting the .NET Framework 4.5 or 
higher.

	 2.	 To get SDK bits, install a Nuget package for HDInsight using 
the Install-Package Microsoft.Azure.Management.
HDInsight.Job command. This installs its dependencies as 
well. The final package.config will look like Figure 3-8.
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HDInsightJobManagementClient is the main class that facilitates communicating 
with the HDInsight service. It comes from the Microsoft.Azure.Management.HDInsight.
Job namespace. It requires an object of cluster credentials and a cluster Uri to instantiate.

Important methods from the perspective of submitting MapReduce 
jobs are SubmitMapReduceJob, WaitForJobCompletion and GetJob in 
HDInsightJobManagementClient.

The following is the complete routine to submit a word-count MapReduce job (on 
the data uploaded earlier in this chapter) on an existing cluster.

private static void SubmitJob()
{
    // Cluster credentials
    Console.WriteLine("Enter cluster http credentils");
    Console.Write("Username: ");
    var clusterUsername = Console.ReadLine();
    Console.Write("Password: ");
    var clusterPassword = GetMaskedPassword();

    // Cluster name
    Console.Write("Enter cluster name: ");
    var clusterName = Console.ReadLine();
    var clusterUri = $"{clusterName}.azurehdinsight.net";

    var clusterCredentials = new BasicAuthenticationCloudCredentials()
    {
        Username = clusterUsername,
        Password = clusterPassword
    };
    HDInsightJobManagementClient jobManagementClient =
                new HDInsightJobManagementClient(clusterUri, clusterCredentials);

Figure 3-8.  HDInsight .NET SDK dependencies
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    // Prepare parameters, input, output, jar file and class to use
    var paras = new MapReduceJobSubmissionParameters
    {
        JarFile = @"/example/jars/hadoop-mapreduce-examples.jar",
        JarClass = "wordcount",
        Arguments = new List<string>() {
{ "wasbs:///books/the_adventures_of_sherlock_holmes.txt" },
{ "wasbs:///books/JobOutput" } }
    };

    // Submit job
    Console.WriteLine("Submitting MapReduce job.");
    JobSubmissionResponse jobResponse =

jobManagementClient.JobManagement.SubmitMapReduceJob(paras);
    var jobId = jobResponse.JobSubmissionJsonResponse.Id;
    Console.WriteLine("Response status code is " + jobResponse.StatusCode);
    Console.WriteLine($"Waiting for the job: {jobId} to completion ...");

    // Wait for job to complete
    �JobGetResponse waitResponse = jobManagementClient.JobManagement.

WaitForJobCompletion(jobId);

    // Show job detail
    var jobDetail = waitResponse.JobDetail;
    Console.WriteLine($"{Environment.NewLine}Job Completed.");
    Console.WriteLine($"Status              : {jobDetail.Status}");
    Console.WriteLine($"PercentCompelete    : {jobDetail.PercentComplete}");
    Console.WriteLine($"ExistValue          : {jobDetail.ExitValue}");
    Console.WriteLine($"User                : {jobDetail.User}");
    Console.WriteLine($"Callback            : {jobDetail.Callback}");
    Console.WriteLine($"Completed           : {jobDetail.Completed}");

    // Get job output
    var storageAccess = new AzureStorageAccess("{StorageAccountName}",
        "{StorageAccountKey}", "{StorageContainer}");
    var output = storageAccess.GetFileContent("books/JobOutput/part-r-00000");

    Console.Write("Enter output file path (with file name, i.e. C:\\Output.txt): ");
    var outputFile = Console.ReadLine();
    using (var fileStream = File.Create(outputFile))
    {
        output.Seek(0, SeekOrigin.Begin);
        output.CopyTo(fileStream);
    }
    // Open output file
    System.Diagnostics.Process.Start(outputFile);
}
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As you can see in the preceding code, it is pretty straightforward to submit a job. 
Also, the SubmitJob method uses the GetMaskedPassword method to allow the user to 
type the password on the console without exposing it. The GetMaskedPassword method’s 
code is shown in the following.

public static string GetMaskedPassword()
{
    var pwd = new StringBuilder();
    while (true)
    {
        ConsoleKeyInfo i = Console.ReadKey(true);
        if (i.Key == ConsoleKey.Enter)
        {
            Console.WriteLine();
            break;
        }
        else
        {
            pwd.Append(i.KeyChar);
            Console.Write("*");
        }
    }
    return pwd.ToString();
}

Finally, the SubmitJob method uses Azure storage to fetch the output file from the 
output folder defined in the job arguments; in this case, /books/JobOutput.

To run all of these, you just need to call the SubmitJob method from the Main method 
of your console application.

Hadoop Streaming
So far, you have seen how to submit MapReduce jobs. And you are using a jar file to do 
the actual work. So, if you want to write your own MapReduce code, then you have to use 
JVM-based languages. The Hadoop streaming API allows you to use any language (i.e., 
a language that can read/write to standard input/output). The Hadoop streaming API 
works with many languages including C#, Ruby, Python, Perl. In this section, you use 
C# to build your own MapReduce job and submit the same to an HDInsight cluster for 
processing. But first, let’s look at how streaming works.

Hadoop streaming is a utility provided by Hadoop distribution. This utility allows 
you to provide two executables: mapper and reducer. A mapper gets the input file, line 
by line, as it is written to stdin. A mapper should output key-value pairs separated by 
tabs. If it is a word-count program, then it should write each work as a key and "1" as a 
value, separated by a tab. This output by word is then read by the reducer program and 
acted upon. If the reducer is a word-count program, then it will group the same words, 
count their instances, sort them, and then write back to stdout to generate output. Again, 
reducer also generates key-value pair (i.e., word/count pair) separated by tabs.
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One limitation of Hadoop streaming is that it works with stdin/stdout; hence, it can 
only work with strings or UTF8-encoded bytes. Operations on it should be represented as 
strings only.

Streaming Mapper and Reducer
To create the mapper and reducer in C#, create two separate console applications. You 
will re-create the word-count MapReduce job executed earlier. The mapper code should 
read from stdin and output each word. The mapper code should look like the following 
snippet.

using System;
using System.IO;
using System.Linq;

namespace mapper
{
    class Program
    {
        static void Main(string[] args)
        {
            if (args.Length > 0)
            {
                Console.SetIn(new StreamReader(args[0]));
            }

            string line;

            // Loop through each line and output words
            while ((line = Console.ReadLine()) != null)
            {
                line.Split(new char[] { ' ' })
                    .ToList().ForEach(o => Console.WriteLine($"{o}\t1"));
            }
        }
    }
}

This is a very simple mapper, which just loops through all the lines and then outputs 
a word with value 1. Next, let’s look at the reducer code.

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
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namespace reducer
{
    class Program
    {
        static void Main(string[] args)
        {
            string line;

            if (args.Length > 0)
            {
                Console.SetIn(new StreamReader(args[0]));
            }

            List<Tuple<string, int>> mapOutput = new List<Tuple<string, int>>();
            string[] splitResult;

            // Loop until all lines are processed
            while ((line = Console.ReadLine()) != null)
            {
                splitResult = line.Split('\t');
                mapOutput.Add(new Tuple<string, int>(
                    splitResult[0], Convert.ToInt32(splitResult[1])));
            }

            // Generate output
            mapOutput
                .OrderBy(o => o.Item1)    // Sort result
                .GroupBy(o => o.Item1)      // Group by word to calculate count
                .ToList().ForEach(item => // �Loop through all words and 

output them
                {
                    Console.WriteLine($"{item.Key}\t{item.Count()}");
                });
        }
    }
}

The preceding code first loops through all the lines coming from the mapper, and 
then sorts them and counts the frequency of each word in the entire list. Then, it outputs 
the word and its frequency, separated by a tab, to stdout.

To execute C# mapper and reducer programs, you can use any of the available job 
submission methods discussed earlier in this chapter. To use PowerShell, you can replace 
the New-AzureRmHDInsightMapReduceJobDefinition line in the script with the following 
command.

$wordCountJobDefinition = New-AzureRmHDInsightStreamingMapReduceJobDefinition  
-Files "/example/streaming/mapper.exe","/example/streaming/reducer.exe"  
-Mapper "mapper.exe" -Reducer "reducer.exe" -InputPath "/books/the_
adventures_of_sherlock_holmes.txt" -OutputPath "/books/StreamingOutput/"
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Notice that this snippet uses mapper.exe and reducer.exe, which you already 
uploaded to Azure Blob storage under example/streaming.

To execute a streaming job using .NET, the SubmitMapReduceStreamingJob 
method is available in Microsoft.Azure.Management.HDInsight.Job.HDInsightJob 
ManagementClient’s JobManagement object.

Serialization with Avro Library
Apache Avro is a language-neutral data serialization system mostly used in Hadoop 
environments. It provides a compact binary data interchange format for serialization. 
Language-neutral means data serialized in one language can be read in another one. 
Currently C, C++, C#, Java, PHP, Python, and Ruby are supported. Serialization output 
with Avro is both compact and extensible. It is compact in terms of the number of bytes 
it takes to store in plain text. Extensible refers to the schema that can evolve without 
negatively impacting existing serialized data.

An Avro serialized representation of an object has two parts: schema and value. The 
schema part holds the description of the data model in a language-independent JSON 
format. It is presented side-by-side with a binary representation of data. Unlike JSON, 
where each record holds its schema within it, Avro keeps it once per file, avoiding the 
overhead of extra characters, repeating for each record, making serialization a fast and 
small footprint.

Data Serialization
Avro data is always serialized with its schema. Files that store Avro data should always 
include the schema for that data in the same file. Since schema is stored with data, even if 
the schema changes, existing data can be read using a schema stored in the Avro data file.

Avro has two types of serialization encoding: binary and JSON. Binary encoding is 
faster and produces a smaller footprint, but it is not human readable. On the other hand, 
JSON encoding is used for debugging and web-based applications.

Binary Encoding
Binary encoding is widely used in Hadoop environments due to its unique benefits. 
Primitive types are encoded in binary as follows.

•	 null is written as 0 bytes.

•	 boolean is written as a single byte whose value is either 0 (false) or 1 (true).

•	 int and long values are written using variable-length zigzag 
coding. Zigzag encoding maps signs integers to unsigned integers 
so that numbers with a small absolute value (for instance, –1) 
have a small variant encoded value too. So, –1 is encoded as 1, 1 is 
encoded as 2, –2 is encoded as 3, and so on. In other words, each 
n value is encoded using

(n << 1) ^ (n >> 31)
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Note that the second shift is an arithmetic shift (https://
en.wikipedia.org/wiki/Arithmetic_shift). So, the result 
of a shift is either a number that is all 0 bits (if n is positive) or 
all 1 bit (if n is negative). A left arithmetic shift moves binary 
numbers left by 1 and fills a vacant bit with 0 (zero). A right 
arithmetic shift moves binary numbers right by 1 and fills 
vacant a bit with the original bit in the leftmost position.

For example, let’s say that n is 5:

(5 << 1) ^ (5 >> 31)

If you represent it in binary, then it will look like following,

(00000101 << 1) ^ (00000101 >> 31)
(00001010) ^ (00000000)

00001010 converted to decimal results in 10.

Similarly, if you try n = –5

(-5 << 1) ^ (-5 >> 31)
(11111010 << 1) ^ (11111010 >> 31)
(11110100) ^ (11111111)

000001011 in decimal is 11.

•	 float is written as 4 bytes.

•	 double is written as 8 bytes.

•	 bytes are encoded as a long count value followed by that many 
bytes of data.

•	 string is encoded as a long count value followed by that many 
bytes of UTF-8 encoded character data. For example, a "bar" 
string would be encoded as a value 3 (encoded as hex 06 as per 
integer conversion) followed by 3 UTF-8 encoded char 'b', 'a', 
and 'r', resulting in 62, 61, 72; hence, a complete encoding of a 
"bar" string would be a 06 62 61 72 block.

•	 enum is encoded as int, representing the zero-based position of the 
symbol in the schema. For example, consider this enum:

{"type": "enum", "name": "bar", "symbols": ["A", "B", "C", "D"]}

This would be an int between 0 and 3, with A indicating 0 and 
D indicating 3.

https://en.wikipedia.org/wiki/Arithmetic_shift
https://en.wikipedia.org/wiki/Arithmetic_shift
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•	 arrays are encoded as a series of blocks, which consist of a long 
count value followed by that many array items. For example,  
array schema

{"type": "array", "items": "long"}

An array with value 6 and 14 could be encoded as a long value 2 
(hex 04) followed by a long value 6 and 14 (hex value 0C and 1C) 
terminated by 0 (hex 00).

04 0C 1C 00

•	 union is typically used to represent either of the types. Let’s say 
that you want to present a nullable string, then a union schema 
would be ["null", "string"]. Encoding first writes a long 
value indicating the zero-based position within the union of the 
schema, and followed by the value encoded per the indicated 
schema within the union. For example, schema ["null", 
"string"].

•	 null as 0 (the index of "null" in the union)

00

•	 The string "a" as one (hex 02) followed by UTF8 of char "a" 
(encoded as 61)

02 02 61

•	 Consider the following JSON object.

{"firstname": "Scott","age": 25,"contact": ["email", "phoneno"]}

The Avro JSON schema of the same object can be written as follows.

{
        "type": "record".
        "name": "Person",
        "fields": [
                {"name": "firstname",            "type": "string"},
                {"name": "age",                  "type": ["null", "long"]},
                {"name": "contact",              "type": {"type": "array",
                                                         "items": "string"}}
                ]
}

Binary encoding of the preceding record would look like Figure 3-9.
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As you can see from Figure 3-9, strings are nothing but bytes. There is no indication 
whether it is a string or something else. To make sense out of this binary data, read it 
based on the schema provided. The schema tells the reader what to expect next.

As far as schema evolution is concerned, there can be two schemas: the writer’s 
schema and the reader’s schema. That means there can be two different schemas at 
parsing time. Hence, if there is a type mismatch in the reader’s and writer’s schemas, it 
will use schema resolution rules (more information at http://bit.ly/2g61dp4).

JSON Encoding
JSON encoding is the usual encoding that you do in any language. An object value is 
represented in the default value field, unless it is a union. In a union type, null is encoded 
as JSON null; otherwise, it is encoded as a JSON object with the type’s name and value pair.

For example, the union schema ["null", "string", "bar"] where bar is a record 
name would be encoded as follows.

•	 null as null

•	 String "a" as {"string": "a"} and

•	 Bar instance as {"bar": {…}}, where {…} instances the JSON 
encoding of bar instance.

Using Microsoft Avro Library
Avro provides a convenient way to represent a complex data structure in a Hadoop 
MapReduce job. Avro is specifically designed to handle distributed MapReduce 
programming models. It does this by providing ability to split file in chunks; that is, you 
can seek any point in a file and start reading from a particular block. The .NET library for 
Avro supports two types of serialization: based on reflection and based on generic record. 

Figure 3-9.  Sample Avro object encoding

http://bit.ly/2g61dp4
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In the reflection method, a JSON schema for the types is automatically built from the data 
contract attribute of .NET types. On the other hand, in generic record-based serialization, 
a JSON schema is specified manually for serialization and deserialization. Here, I discuss 
generic record-based serialization.

Let’s look at the following JSON schema.

{
"type":"record",
"name":"movie",
"fields":
        [
                {"name": "title", "type": "string"},
                {"name": "director", "type": "string"},
                {"name": "duration", "type": "int"},
                {"name": "gross", "type": "double"},
                {"name": "genres", "type":
                        {"type": "array", "items": "string"}},
        ]
}

Let’s try to serialize data from a .csv file to the preceding JSON schema using Avro. This 
is a typical scenario in Hadoop, in which you take raw data (CSV, plain text, or JSON) and use 
some serialization system to convert and store them for processing by a MapReduce job. The 
output of a serialization operation is another file, which you can upload to a storage container 
for a MapReduce job to process it. You will use open movie data published by Kaggle (www.
kaggle.com). It can be downloaded from http://bit.ly/2c6YmXj.

To demonstrate usage of Microsoft Avro Library, let’s use Visual Studio 2015 and 
create a C# console app targeting .NET Framework 4.5. Once you have the console 
application ready, add a Nuget package using the following command.

Install-package Microsoft.Hadoop.Avro

You will create two methods: SerializeMovieData and DeserializeMovieData, 
which will perform serialization and deserialization, respectively. Both of these methods 
use common schema defined in JSON and stored in a string constant. They also use a 
couple of constants to locate input and output file paths. Schema and path constants are 
shown in the following.

const string sourceFilePath = @"C:\OpenData\movie_metadata.csv";
const string outputFilePath = @"C:\OpenData\movie_metadata.avro";

const string schema = @"{
                    ""type"":""record"",
                    ""name"":""movie"",
                    ""fields"":
                        [
                            {""name"": ""title"", ""type"": ""string""},

http://www.kaggle.com/
http://www.kaggle.com/
http://bit.ly/2c6YmXj
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                            {""name"": ""director"", ""type"": ""string""},
                            {""name"": ""duration"", ""type"": ""int""},
                            {""name"": ""gross"", ""type"": ""double""},
                            {""name"": ""genres"", ""type"":
                                {""type"": ""array"", ""items"": ""string""}},
                        ]
                    }";

Let’s first look at a serialize method to read a .csv file, and convert it to an 
AvroRecord list. As this demonstrates generic record serialization, you will use dynamic to 
define properties, because you don’t want to reply on a predefined type. After reading the 
data, you will use CreateGenericWriter to write an object to Avro blocks.

public void SerializeMovieData()
{
    //Create a generic serializer based on the schema
    var serializer = AvroSerializer.CreateGeneric(schema);

    var avroRecords = new List<AvroRecord>();

    // Read all csv data and create AvroRecord list
    File.ReadAllLines(sourceFilePath)
        .Select(line => line.Split(',')).Skip(1)
        .Where(o => !string.IsNullOrEmpty(o[3]) && !string.IsNullOrEmpty(o[8]))
        .ToList().ForEach(o =>
        {
            dynamic avroRecord = new AvroRecord(serializer.WriterSchema);
            avroRecord.title = o[11];
            avroRecord.director = o[1];
            avroRecord.duration = Convert.ToInt32(o[3]);
            avroRecord.gross = Convert.ToDouble(o[8]);
            avroRecord.genres = o[9].Split('|').ToArray<string>();
            avroRecords.Add(avroRecord);
        });

    //Create a memory stream buffer
    using (var stream = new MemoryStream())
    {
        �using (var writer = AvroContainer.CreateGenericWriter(schema, 

stream, Codec.Null))
        {
            using (var streamWriter = new SequentialWriter<object>(writer, 24))
            {
                // Serialize records
                avroRecords.ForEach(streamWriter.Write);
            }
        }
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        // Remove file if not available
        if (File.Exists(outputFilePath))
            File.Delete(outputFilePath);

        using (FileStream fs = File.Create(outputFilePath))
        {
            stream.Seek(0, SeekOrigin.Begin);
            stream.CopyTo(fs);
        }
    }
}

After you execute the SerializeMovieData method, you should have a new file in the 
output directory. And if you open this file in Notepad, you can see the schema in the top 
few lines of the file.

Now, the output file can be deserialized in any of the languages supported by Avro. 
The following is another method, DeserializeMovieData, which shows how to read an 
Avro file using generic record serialization.

public void DeserializeMovieData()
{
    //Reading and deserializing the data.
    //Create a memory stream buffer.
    using (var buffer = new MemoryStream())
    {
        Console.WriteLine("Reading data from file...");
        using (FileStream fs = File.Open(outputFilePath, FileMode.Open))
        {
            fs.CopyTo(buffer);
        }

        //Prepare the stream for deserializing the data
        buffer.Seek(0, SeekOrigin.Begin);

        �// Create a SequentialReader instance, which will deserialize all 
serialized objects.

        // It allows iterating over the deserialized objects
        // because it implements the IEnumerable<T> interface.
        �using (var reader = AvroContainer.CreateGenericReader(schema, 

buffer, true, new CodecFactory()))
        {
            using (var streamReader = new SequentialReader<object>(reader))
            {
                var results = streamReader.Objects;
                foreach (dynamic pair in results.Take(10))
                {
                    Console.WriteLine($"{pair.title},{pair.director}" +
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                        �$",{pair.duration},{pair.gross},{string.Join("|", 
pair.genres)}");

                }
            }
        }
    }
}

If you run both the serialize and deserialize methods in the same console app, you 
would see ten movie titles and their information in the console. This information is read 
from the Avro serialized file.

Summary
Azure Blob storage is a general-purpose and robust storage option. Working with Azure 
Blob storage is much easier than working with the HDFS file system. Graphical clients 
make it even more convenient for beginners to start using it without remembering all the 
commands.

Apache Avro, or more general encoding, plays an important part in the Hadoop 
environment. From saving disk space, increasing the performance of queries, to 
improving data saving and retrieval speed, data encoding is crucial. C# developers can 
easily work with Avro encoding using Microsoft Avro Library.

MapReduce provides a processing framework to work with large amount of data in 
a distributed manner. Creating your own MapReduce job requires you to learn a JVM-
based language. For C# developers, Hadoop streaming is one of the options for writing 
Map and Reduce code. On the other hand, submitting a MapReduce job on HDInsight 
can be done in C# directly, even for MapReduce code written in Java language.

Next, let’s look at how to work with data without writing tedious MapReduce code.
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CHAPTER 4

Querying Data with Hive

Hive is probably the most used tool in the Hadoop ecosystem. To work with Hadoop data, 
you need to write MapReduce jobs that are not convenient for ad hoc queries. Hive comes 
to the rescue by providing a SQL-like query language, which internally transforms the query 
to MapReduce jobs. In HDInsight, Hive sits on top of Azure Blob storage data and provides 
interactive queries to work with data. Hive can work with structured and semi-structured 
data. Hive resides on top of a YARN layer and makes use of all the resource negotiations that 
YARN does. Internally, it uses MapReduce, Tez, or the Spark execution engine.

MapReduce is very good at processing large volumes of data. While it sounds great, 
the only problem is that you have to learn to write MapReduce programs, which can be 
very low level, so SQL programmers don’t like it. Also, there are business analysts and BI 
folks who are comfortable in writing SQL queries. With Hive, all users with knowledge of 
SQL can query data from HDInsight. Hive can run SQL queries but it is not a relational 
database; actually, it doesn’t even store data by itself. Hive uses data stored on HDInsight 
and maps a schema on top of it. This schema is stored in an external SQL database or in 
HCatalog. The scripting language of Hive is called HiveQL.

Hive uses a schema-on-read approach, which means that you can create a table any 
time, whether there is existing data or no data at all. A schema is applied on data when 
you try to query it out. This is completely different from a traditional RDBMS, where you 
first define that schema and then insert data. Schema-on-read implies that you can dump 
your data in whatever format you want and worry about it later when you try to query it. 
You can even have files with different formats and work with them as well.

Hive Essentials
Hive is effective with structured and semi-structured data (i.e., web log or click-stream 
processing). Let’s understand Hive better by diving into the code. First, let’s get data for 
processing. Download the movie data from https://www.kaggle.com/deepmatrix/
imdb-5000-movie-dataset. You are using this data throughout this chapter. It is mostly 
structured data, except a few rows have a different column format. Also, keep only the 
columns with director_name, duration, gross, movie_title, language, country, content_
rating, title_year, and IMDB_score. Delete the rest of the columns. Upload it to your 
HDInsight cluster under the movie_data folder by using any of the methods discussed 
in previous chapters. After you have your data in HDInsight, open an SSH session (if you 
have a Windows cluster, then you can also go to the dashboard and open the Hive View 

https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset
https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset


Chapter 4 ■ Querying Data with Hive

72

to execute Hive queries). Once you are in your cluster through SSH, write Hive to get into 
the Hive console. Inside the Hive console, write the following query to create a table that 
is stored in the movie_data folder in your Azure Blob storage.

CREATE EXTERNAL TABLE movies
(
director STRING, duration INT, gross DECIMAL,
genres STRING, title STRING, language STRING,
country STRING, ratings STRING, budget DECIMAL,
release_year INT, score FLOAT
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE LOCATION 'wasb:///movie_data/';

When you execute the preceding query, you get a new table in our default database. 
The default database is already present in your HDInsight cluster and has a table named 
hivesampletable. To view the number of databases that you have, execute the show 
databases; command; similar to how you show tables inside the database—execute 
shows tables;. The following is the result of our current HDInsight cluster.

hive> show tables;
OK
hivesampletable
movies
Time taken: 0.145 seconds, Fetched: 2 row(s)

You can see that our newly created movies table is also present in the list. Next, 
let’s query data from the newly created table. Notice that it utilizes the CSV file that you 
uploaded earlier to Azure Blob storage in the movie_data folder. Let’s first fetch ten rows 
and a few columns. The query and results are shown in Figure 4-1.

Notice that the preceding data also shows row headers from the CSV file as one 
record. Also, there NULL appears in the duration, gross, and release_year columns, 
because you specified these columns’ data types as INT, DECIMAL, and INT, respectively, 

Figure 4-1.  Select query result of movies table
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and the data is not compatible; hence, Hive puts a NULL in place. Another thing to note is 
row 6, where it says “Doug Walker.” Everything else is null except movie_title. If you look 
into the data file, it doesn’t have any data in the columns; hence, Hive put NULL there.

The important thing to note is that it returned results in subseconds because it is not 
creating MapReduce jobs; instead, it is smart enough to get records from the file. If you 
want Hive to execute MapReduce jobs, then you have to execute a query that does some 
calculation. Take a query like SELECT COUNT(*) FROM movies;, for example. This query 
calculates the total rows using MapReduce; these results are shown in Figure 4-2.

Please note the time that it took to execute the job, which was around 42 seconds, 
you revisit the same query when you look at the Apache Tez execution engine later in 
the chapter. Tez is the default execution engine, for Hive, but you set MapReduce as the 
execution engine and then executed the preceding query. You are using the MapReduce 
engine until you learn about the Tez engine later in the chapter.

Now you might be wondering that to calculate only 5044 rows it took 42 seconds. 
RDBMS could have done this in milliseconds. Hive is designed to work with millions of 
records in distributed manner. Overhead of submitting MapReduce job to worker nodes 
and getting result back is quite big in case of small dataset just like in preceding query, 
hence it took 42 seconds. Later in the chapter, you look at the Tez engine and other 
improvements, such as LLAP (see http://hortonworks.com/blog/llap-enables-sub-
second-sql-hadoop/) happening in Hive makes it possible to get results in subseconds.

Figure 4-2.  Hive MapReduce job

http://hortonworks.com/blog/llap-enables-sub-second-sql-hadoop/
http://hortonworks.com/blog/llap-enables-sub-second-sql-hadoop/
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Hive Architecture
Hive sits on top of HDFS. To be more precise it works on top of YARN, as you can see in 
Figure 4-3. Any Hive query submitted to a Hadoop cluster gets compiled and optimized, 
which is then distributed to the worker nodes so that work can be parallelized. As seen in 
Figure 4-3, there are a number of ways that you can interact with Hive, which includes ODBC, 
JDBC (through Thrift server), the Hive web interface, Hive Command Line, and so forth.

As a user, when you submit a Hive query (which can come from any of the 
components like Hive Command Line, PowerShell, JDBC/ODBC, Excel or Web UI), then 
it is actually parsed and Hive prepares an execution plan. To create the execution plan, 
Hive reads its metadata store (HCatalog or Azure SQL Database), which you’ve already 
defined, and then compiles and optimizes it. So essentially, this is the phase where Hive 
SQL query is converted to a MapReduce program or a Tez program and then executed 
through a driver program in Hive. Figure 4-4 shows typical query execution steps.

Figure 4-3.  Hive structure in Hadoop cluster and components
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Figure 4-5 shows the driver and Hive components. The driver sits between all 
the components. It takes input from the client by any of the available ways that a user 
can submit a query. This passes to the compiler. Utilizing the metastore generates an 
execution plan and the actual MapReduce/Tez program. It then submits to Hadoop and 
returns the results back to the client.

Figure 4-4.  Hive query execution steps

Figure 4-5.  Hive components
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So, that is Hive. The following are typical use cases for Hive:

•	 Log processing

•	 Text mining

•	 Document indexing

•	 Customer-facing business intelligence (e.g., Google Analytics)

•	 Predictive modeling/hypothesis testing

Submitting a Hive Query
In HDInsight, you can run a HiveQL query using a variety of tools. Table 4-1 shows all the 
possible tools and their usages. It includes the cluster type on which they are supported.

Using Hive View
The Ambari management and monitoring utility provided with Linux-based clusters 
provides Hive View, through which you can execute Hive queries from any browser. To 
open the Ambari dashboard, go to https://CLUSTERNAME.azurehdinsight.net. In the 
Azure portal in a HDInsight cluster, look for Ambari Views in the Quick Links, as shown in 
Figure 4-6.

Table 4-1.  Hive Tools

Tool Cluster Operating System Client Operating System

Hive View Linux Any browser-based

Beeline command (from an 
SSH session)

Linux Linux, Unix, Mac OS X, or 
Windows

Hive command (from an SSH 
session)

Linux Linux, Unix, Mac OS X, or 
Windows

cURL Linux or Windows Linux, Unix, Mac OS X, or 
Windows

Query console Windows Any browser-based

HDInsight tools for Visual 
Studio

Linux or Windows Windows

Windows PowerShell Linux or Windows Windows

Remote Desktop Windows Windows

https://clustername.azurehdinsight.net/
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Once you are on the Ambari dashboard, select the set of squares from the Page menu 
(a button on the left of the page) to list the available views. Select the Hive View, as shown 
in Figure 4-7.

Figure 4-8 shows Hive View from where you can submit a Hive query for execution. 
Also on the left side, you can see all the databases and their tables. Clicking a table shows 
its columns. With HDInsight cluster, you get the default database. And unless you specify 
the database name to query, they execute against the default database. Also, for a new 
HDInsight cluster, you get one sample table, hivesampletable. On the right-hand side, 
you can see other tabs, such as Settings, Visual Explain, Tez, Notifications. Explore these 
sections to get familiar with the tool.

Figure 4-6.  HDInsight dashboard quick links

Figure 4-7.  Ambari Hive View menu item
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To see it in action, write a simple query: SELECT * FROM hivesampletable LIMIT 10; 
. Click the Execute button. Submit the query and get results back.

■■ Note   When you execute a job and it appears to run forever without updating the log or 
returning results, then try the latest browser.

In Figure 4-8, you see a menu at the top of the screenshot, showing Query as the 
current tab. Saved Queries stores the queries that you execute again and again. History 
keeps track of all the queries that you have submitted so far in the current session. UDF 
is User Defined Functions, which allows you to implement functionality or logic that isn’t 
easily modeled in HiveQL. And last, Upload Table allows you to upload a file from a local 
machine or from HDFS to create a table based on data (CSV, JSON, or XML).

Using Secure Shell (SSH)
Chapter 2 discussed how to connect to your HDInsight cluster using SSH. Follow the 
same steps to log in using SSH. Once you are connected to the cluster, use the Hive 
command to get into the Hive query console. Figure 4-9 shows a SSH connection and the 
result of the Hive command. Note that many lines were removed for brevity.

Figure 4-8.  Hive web view

http://dx.doi.org/10.1007/978-1-4842-2869-2_2
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Using Visual Studio
So far, you have seen the command-line tools that interact with Hive, but if you want, 
you can use Visual Studio as well. To get the necessary tools, go to the Azure portal and 
open your HDInsight cluster. Inside the Quick Start page, you can find a link to download 
Azure SDK for .NET. Clicking this link downloads the Microsoft Web Platform installer, 
which gives you the option to download Azure SDK for Visual Studio 2013/15/17. Install 
the appropriate version as per the Visual Studio version you have on your machine. I’m 
working with Visual Studio 2015, but you can also choose the 2013 or 2017 versions.

After installing Azure SDK for .NET, open Visual Studio and navigate to Server 
Explorer. You may need to enter your Azure subscription credentials. After that, you 
should be able to view your cluster under the HDInsight node. Expand your cluster node. 
After that, expand the Hive database node. Now you can see all the databases in Hive. 
If you are viewing a newly created cluster, then it should have a default database. Inside 
that, you can find the hivesampletable table, as shown in Figure 4-10.

Figure 4-9.  SSH using PuTTY on Windows with a Hive query console
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To execute a new query, right-click the cluster name and choose Write a Hive Query, 
which opens the Hive query editor. Note that this is not a simple text editor; you get full 
intelligence based on your HDInsight cluster. Let’s look at this tool in action.

	 1.	 Start by opening the Hive query editor and write “SELECT * 
FROM hivesampletable LIMIT 10;”.

	 2.	 Click the Submit button available on the top bar. Then select 
the correct HDInsight cluster from the drop-down menu 
beside the Submit button.

	 3.	 After the job finishes, you see the job results with summaries, 
execution graphs, and other related details, as shown in 
Figure 4-10. Execution graph is interactive graph. You can 
use the Job Playback button to actually see how your job was 
executed. This is really an interesting feature, because at times 
this visual representation helps you understand where your 
query lags and where the bottlenecks are present.

If you are not interested in the graph and all of this information, and you only want to 
see output from the query, then you can choose to run it in interactive mode. To change 
modes, there is a drop-down in the top panel inside the Hive query editor. Executing a 
query in interactive mode only shows you the results of the query.

Figure 4-10.  Hive tools for Visual Studio
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Using .NET SDK
The HDInsight .NET SDK provides libraries that make it easy to work with Hive. You can 
submit queries programmatically, allowing you to easily integrate a Hive query in your 
application flow. Let’s try to submit a simple query and get output from it.

	 1.	 Create a C# console application in Visual Studio (use Visual 
Studio 2012 or higher) targeting.NET framework 4.5 or higher.

	 2.	 To get SDK bits, install the Nuget package for HDInsight 
using the Install-Package Microsoft.Azure.Management.
HDInsight.Job command. This installs its dependencies as well.

	 3.	 HDInsightJobManagementClient is the main class, which 
facilitates communicating with the HDInsight service and 
comes from namespace Microsoft.Azure.Management.
HDInsight.Job. It requires object of cluster credentials and 
cluster Uri to instantiate.

	 4.	 The important methods from the perspective of submitting a 
Hive query job are SubmitHiveJob, WaitForJobCompletion, 
and GetJob in HDInsightJobManagementClient.

The following is the complete routine to submit a Hive query to fetch the first 10 
records from the hivesampletable table.

private static void SubmitHiveJob()
{
    // Cluster credentials
    Console.WriteLine("Enter cluster http credentils");
    Console.Write("Username: ");
    var clusterUsername = Console.ReadLine();
    Console.Write("Password: ");
    var clusterPassword = GetMaskedPassword();

    // Cluster name
    Console.Write("Enter cluster name: ");
    var clusterName = Console.ReadLine();
    var clusterUri = $"{clusterName}.azurehdinsight.net";

    var clusterCredentials = new BasicAuthenticationCloudCredentials()
    {
        Username = clusterUsername,
        Password = clusterPassword
    };
    HDInsightJobManagementClient jobManagementClient =
                �new HDInsightJobManagementClient(clusterUri, 

clusterCredentials);



Chapter 4 ■ Querying Data with Hive

82

    var parameters = new HiveJobSubmissionParameters
    {
        Query = "SELECT * FROM hivesampletable LIMIT 10;"
    };

    System.Console.WriteLine("Submitting the Hive job to the cluster...");
    �var jobResponse = jobManagementClient.JobManagement.SubmitHiveJob 

(parameters);
    var jobId = jobResponse.JobSubmissionJsonResponse.Id;
    �System.Console.WriteLine("Response status code is " + jobResponse 

.StatusCode);
    System.Console.WriteLine("JobId is " + jobId);

    System.Console.WriteLine("Waiting for the job completion ...");

    // Wait for job completion
    �JobGetResponse waitResponse = jobManagementClient.JobManagement 

.WaitForJobCompletion(jobId);

    // Get job output
    �var storageAccess = new AzureStorageAccess("{StorageAccount}",  

"{StorageAccountKey}", "{StorageAccountContainer");
    �// fetch stdout output in case of success or stderr output in case of  

failure
    var output = (waitResponse.JobDetail.ExitValue == 0)
        �? jobManagementClient.JobManagement.GetJobOutput(jobId,  

storageAccess)
        �: jobManagementClient.JobManagement.GetJobErrorLogs(jobId,  

storageAccess);

    System.Console.WriteLine("Job output is: ");

    using (var reader = new StreamReader(output, Encoding.UTF8))
    {
        string value = reader.ReadToEnd();
        System.Console.WriteLine(value);
    }
}

Writing HiveQL
The Hive Query Language (HiveQL) is a SQL-like language for writing Hive jobs. It does 
not support the complete SQL standard (SQL-92) but the support is improving day by 
day. Even with the current version of Hive, you get most of the SQL syntax. So, let’s look at 
all the things that are available and how to use HiveQL. I am using Hive version 0.14 (the 
latest at the time of writing).
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Data Types
Hive has a wide range of data types that cover almost all the cases that you can think of. 
The following list shows all available data types.

•	 Numeric types

•	 TINYINT: 1-byte signed integer

•	 SMALLINT: 2-byte signed integer

•	 INT/INTEGER: 4-byte signed integer

•	 BIGINT: 8-byte signed integer

•	 FLOAT: 4-byte single precision floating point number

•	 DOUBLE: 8-byte double precision floating point number

•	 DECIMAL: Introduced in Hive 0.11.0 with a precision of  
38 digits

•	 Date/time types

•	 TIMESTAMP: A traditional UNIX timestamp with optional 
nanosecond precision.

•	 DATE: A particular year/month/day, in the form YYYY-MM-DD.

•	 INTERVAL: Intervals of time units— second/minute/day/
month/year.

•	 String types

•	 STRING: String literals, expressed with either single quotes (') 
or double quotes (").

•	 VARCHAR: Created with a length specified between 1 and 
65355.

•	 CHAR: A fixed-length and similar to varchar, up to 255 max. 
Shorter than the specified length values are padded with 
spaces.

•	 Miscellaneous types

•	 BOOLEAN

•	 BINARY
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•	 Complex types

•	 ARRAY<data_type>: A collection of the same type values.

•	 MAP<primitive_type, data_type>: A dictionary of  
key-value pairs.

•	 STRUCT<col_name : data_type, ... >: A structs with a 
different column.

•	 UNIONTYPE<data_type, data_Type, ...>: A combination of 
multiple values of the same/different data types.

Create/Drop/Alter/Use Database
Apache Hive includes a default database named “default”. You can also create new 
databases as and when needed. You would create new database when you want to 
separate data for different applications. HiveQL provides create, alter, and drop database 
options. The following is the syntax for the same.

•	 CREATE: Allows you to create a new database.

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name [COMMENT 
database_comment][LOCATION hdfs_path][WITH DBPROPERTIES 
(property_name=property_value, ...)];

•	 IF NOT EXISTS: Statement creates a database only if it doesn’t 
exist already.

•	 ALTER: A database allows you to change the properties and owner 
of the database. This is the syntax:

ALTER (DATABASE|SCHEMA) database_name SET DBPROPERTIES  
(property_name=property_value, ...);
ALTER (DATABASE|SCHEMA) database_name SET OWNER [USER|ROLE]  
user_or_role;

•	 DROP: Removes a database permanently. The default behavior is 
RESTRICT, which means if there is table in the database, drop fail. 
To remove tables as well, use the CASCADE option.

DROP (DATABASE|SCHEMA) [IF EXISTS] database_name 
[RESTRICT|CASCADE];

•	 Use database sets the current database as default database for 
subsequent queries, where you don’t specify database to use to 
execute query upon.

USE database_name;
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■■ Note   In Hive, both DATABASE and SCHEMA refer to the same thing. That means 
CREATE DATABASE movies and CREATE SCHEMA movies create a new database named 
movies.

The Hive Table
Hive provides two types of tables: internal and external. Type of table you want to create 
depends on data retention mechanism you want for the table when the table is deleted. 
The following is the table-creation query syntax. Examples are provided in upcoming 
sections.

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_
  [(col_name data_type [COMMENT col_comment], ...)]
  [COMMENT table_comment]
  [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
  [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], 
...)]
INTO num_buckets BUCKETS]
[STORED AS DIRECTORIES]
  [
   [ROW FORMAT row_format]
   [STORED AS file_format]
  ]
  [LOCATION path]
  [TBLPROPERTIES (property_name=property_value, ...)]
  [AS select_statement];

Where row_format can be the following.

DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]]
        [COLLECTION ITEMS TERMINATED BY char]
        [MAP KEYS TERMINATED BY char]
        [LINES TERMINATED BY char]
        [NULL DEFINED AS char]

And file_format is shown in the following.

SEQUENCEFILE  | TEXTFILE    -- (Default, depending on hive.default.
fileformat configuration)
              | RCFILE| ORC
              | PARQUET| AVRO
              | �INPUTFORMAT input_format_classname OUTPUTFORMAT output_

format_classname
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Internal Tables
Internal tables are managed by Hive, and hence, called a managed table. To be managed 
by Hive means that when a user deletes a table, the data associated with it is also deleted 
from source files, along with the metadata. By default, Hive stores tables at /hive/
warehouse. You can change this per your needs.

To understand how internal tables work, upload the movie data that you used at the 
start of this chapter to the /sample/movie_data/movie_metadata.csv location.

Now, create an internal table (without specifying an external keyword) using the 
following query. Here you are using the same movie data that you used previously.

CREATE TABLE movies
(
        director STRING, duration INT, gross DECIMAL,
        genres STRING, title STRING, language STRING,
        country STRING, ratings STRING, budget DECIMAL,
        release_year INT, score FLOAT
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE;

Here you have not specified the location; hence, Hive creates a table in the default 
location at wasb://hive/warehouse. You can open Azure Storage Explorer and check the 
path. You’ll find a new file named movies in there. It is a 0-bytes file. Next, you load data 
from the /example/movie_data folder. This is the Hive query for it:

LOAD DATA INPATH '/example/movie_data' INTO TABLE movies;

Executing the preceding query takes all the files from /example/movie_data folder 
and moves them into the /hive/warehouse/movies folder. Use any of the Azure Storage 
Explorer tools to verify this. Also, you can execute the DESCRIBE EXTENDED movies; query 
to show complete metadata about the table.

Now let’s remove this table. Because it is an internal table, Hive also removes all the 
files associated with it. To drop a table, run the following query.

DROP TABLE movies;

At this point, if you open the Azure Storage Explorer tool and navigate to the  
/hive/warehouse folder, you won’t see the movies folder anymore. That means you have 
completely lost the files inside movies folder, from the source and the Hive table folders. 
Hence, it is not advisable to create an internal table on a master copy of your data.

www.allitebooks.com
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External Tables
External tables, opposite internal tables, do not copy your source files anywhere. Instead, 
Hive only stores table metadata. When a user submits a query on an external table, the 
data is read from the source location directly. That implies that when you drop am external 
table, Hive only removes the stored metadata and the data is kept intact for later use.

To see how an external table works, let’s create one. Again, you are using the same 
data from the previous section. Upload the movies data to the /example/movie_data 
folder and create an external table on it, as shown in the following.

CREATE EXTERNAL TABLE movies
(
        director STRING, duration INT, gross DECIMAL,
        genres STRING, title STRING, language STRING,
        country STRING, ratings STRING, budget DECIMAL,
        release_year INT, score FLOAT
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
LOCATION '/example/movie_data/';

Note that you are specifying the location from which to load data into the table. 
Actually, Hive does not need to load data at all; it just reads it when the user submits a 
query. Now if you drop this table, your source files won’t be affected. Run a drop query and 
verify that the files are inside the /example/movie_data/ folder; it won’t be affected at all.

■■ Note   The TRUNCATE TABLE command is only applicable to internal tables, because 
Hive does not manage data in external tables and cannot delete it.

Storage Formats
Hive supports built-in and custom-developed file formats. The following are few of the 
built-in formats supported by Hive.

•	 STORED AS TEXTFILE: The default file format unless the hive.
default.file format has been changed. As the name suggests, it 
stores as plain text files.

•	 STORED AS SEQUENCFILE: Sequence files are flat files, with 
key-value pairs in binary. It is compressed and it is the basic file 
format that Hadoop provides. Not only Hive but other tools in the 
Hadoop ecosystem also support the sequence file.
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•	 STORED AS ORC: An optimized row columnar (ORC) format 
reduces the size of data up to 75% of the source file. It takes 
less space to store and less time to retrieve back, improving 
Hive query performance. It takes a small performance hit while 
updating data, but compensates this by providing a very high 
reading speed.

•	 STORED AS PARQUET: Another columnar storage format 
that Hive can work with. If your query only returns a few of the 
columns, then a columnar file format improves performance 
significantly.

•	 STORED AS AVRO: An Avro file format optimizes space. Hive 
natively works with Avro files. Avro is a binary format that stores a 
schema along with the data, allowing Hadoop to split a large file 
easily.

•	 STORED AS RCFILE: A binary storage format optimized 
specifically for a table with a large number of columns. This 
format splits data horizontally and then vertically. That means 
that it first divides data into row groups, and then stores each 
row group by dividing them vertically based on columns. This 
way, the row groups can be scanned in parallel, improving 
query performance. On top of that, if a query retrieves only a few 
columns, then it scans those columns only, further improving 
overall query performance.

Row Formats and SerDe
Serializer and deserializer (SerDe) in Hive allows you to read and write custom formats 
of data. Assume that you have an XML file that you want Hive to read and write. To tell 
Hive how to read/write this XML file, you need to specify a deserializer and a serializer, 
respectively, which converts XML to an object, and vice versa, for Hive to work with.

SerDe provides a way to convert the bytes stored in a file into a record and vice versa. 
In Hive, there are several built-in SerDes available: Avro, ORC, CSV, RegEx, and TSV. You 
can write your own custom SerDe and for formats not processable by the out-of-the-box 
SerDe available in Hive.

Partitioned Tables
When you have too much data in one table, query performance degrades as more and 
more data comes into the table. Also, if you only need part of the data, which can be 
a different block in a different query, then you can use the PARTITIONED BY clause to 
divide your table into multiple partitions that hold similar kinds of data in each block. To 
understand this concept, take the example of a log data file generated by a web server. 
In most cases, you only need the current month’s data. If you have one large table with 
years of data in it, and you query only one of the months, Hive still has to scan all the 
data, which is not good for the user because this takes more time. What if Hive could 
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automatically scan only a particular month of data and return the results? This automatic 
part can be implemented with the help of partitioned tables. In a partitioned table, you 
can divide your table based on one or more columns.

When you create a partitioned table, Hive internally creates folders for each partition 
key. If you use more than one column, then Hive generates a folder inside the folder; 
for example, if a table is partitioned by year and month columns, then you have a folder 
named partitionyear=2016, and inside that, you have folders partitionmonth=1 to 12. 
This way, when you query for December 2016, Hive knows that it only has to scan folder 
../partitionyear=2016/partitionmonth=12, which improves the query performance 
significantly without adding any overhead to the client application. Clients can keep 
using the same query that they used before partitioning.

Let’s try to create a simple partitioned table on the movies data based on release year.

CREATE TABLE movies_p
(
        director STRING, duration INT, gross DECIMAL,
        genres STRING, title STRING, language STRING,
        country STRING, ratings STRING, budget DECIMAL,
        score FLOAT
)
PARTITIONED BY (release_year INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE;

Note that you are not adding a release_year in the column list, but adding it to the 
PARTITIONED BY clause. To load data into a partitioned table, use the following query. Note 
that the following query assumes that you already have a movies table with data in it.

INSERT OVERWRITE TABLE movies_p PARTITION (release_year)
SELECT director, duration, gross, genres, title, language, country, ratings, 
budget,score, release_year
FROM movies
WHERE release_year >= 2000 AND release_year <= 2016;

After executing the preceding statement, you should see a number of folders created 
in the /hive/warehouse/movies_p folder, as shown in Figure 4-11. All of these correspond 
to a year. And now you should query according to year only to optimize performance, like 
in the following query.

SELECT * FROM movies_p WHERE release_year = 2016;
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Furthermore, Hive can divide a table or partitions into buckets by using the CLUSTER 
BY clause on a column. Also, by using the SORT BY column clause, you can improve the 
performance significantly.

Create Table Options
Often with Hive, you want to create intermediate tables from the result of another query. 
In such cases, you can use the AS SELECT clause to create a table from the result of a 
query. Tables created using the AS SELECT clause are atomic, and cannot be seen by other 
users until the query results are populated. That is, other users either see the table with 
the complete results of a query or do not see the table at all.

Any select statement can be used with the AS SELECT clause, provided it is a valid 
HiveQL select statement. To copy data from a select statement, the target table should 
have matching table schemas. Please note that the AS SELECT clause cannot be used to 
create partitioned or external tables. The following is a sample snippet to create a table 
from another HiveQL query.

CREATE TABLE newtable
SELECT * FROM movies;

Figure 4-11.  Hive partitioned table
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If you don’t want to copy data but only the schema of a table to another table, then 
you can use the LIKE clause with the CREATE TABLE. The following is sample usage:

CREATE TABLE newtable LIKE movies;

Temporary Tables
Often, you need an intermediate table for the given calculation. In such scenarios, you 
can create temporary tables by using the TEMPRORARY clause with CREATE TABLE. These 
tables are only visible in the current session. They are deleted when the session ends. 
These tables don’t support creating indexes or partitions on them.

In case there is already a table in the database with the same name as the temporary 
table, then for the current session, any reference to the table is resolved to the temporary 
table only. If a user wants to access a permanent table, then the temporary table should 
be dropped or renamed.

Data Retrieval
I executed select statements in previous sections but I did not provide a complete guide 
on what is available with the select statement. This section introduces different clauses 
and statements that can be used with the select statement to retrieve data.

The select statement is used to retrieve data from a Hive table. It can be used to filter, 
group, sort, and limit data coming out of Hive. The following is the syntax.

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
  FROM table_reference
  [WHERE where_condition]
  [GROUP BY col_list]
  [HAVING expression]
  [ORDER BY col_list]
  [CLUSTER BY col_list| [DISTRIBUTE BY col_list] [SORT BY col_list]]
  [LIMIT number];

The following explains each clause and term. Also, everything that appears inside 
square brackets []is optional.

•	 ALL or DISTINCT: Tells the query to return all rows or only distinct 
rows for the specified columns, respectively. If omitted, ALL is 
taken as the default value.

•	 table_reference is the input for the query. This can be table, 
view, join, or subquery.

•	 WHERE clause: Evaluated on each row. Query result contains all the 
rows where clause evaluates to true.

•	 GROUP BY clause: Combines same column values from different 
rows into single row and by applying aggregation function  
(e.g., sum, count) on different value columns to combine them.
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•	 HAVING clause: Support for it was added in version 0.7.0. If you 
don’t want to use the having clause, then you can use subquery to 
get the same results.

•	 ORDER BY clause: Sorts query results by one or more column 
values. It sort in ascending or descending order.

•	 LIMIT clause: Limits the number of rows returned by the query. 
No matter how many rows satisfy your query, it only returns a 
number specified in the limit clause. If the rows satisfying your 
query are less than the limit, then only those rows are returned.

•	 SORT BY clause: Similar to the order by clause, you can specify 
this clause, which instructs the engine to sort data by the column 
name before feeding it to a reducer.

•	 DISTRIBUTE BY clause: Distributes the rows among the reducers.

•	 CLUSTER BY clause: It is a combination of sort by and distribute by 
clauses.

•	 JOIN: Hive supports many different joins (i.e., inner join, left/
right/full outer join, semi join, cross join, etc.), which covers most 
of the cases. A simple inner join can be written as shown in the 
following query:

SELECT a.* FROM a JOIN b ON (a.id = b.id)

•	 UNION clause: Hive also supports the Union clause, which you can 
use to merge output from different select statement results. The 
following shows the syntax for UNION:

select_statement UNION [ALL | DISTINCT] select_statement UNION 
[ALL | DISTINCT] select_statement

Note that this is not an exhaustive list of all clauses. HiveQL is expanding at a 
very rapid pace. There are many new clause supports coming. As of now, most of the 
traditional SQL stuff is already available.
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Hive Metastore
In HDInsight, Hive internally uses the Azure SQL database to store schema information 
and other metadata. You won’t get access to this SQL database unless you point it to your 
SQL database in Azure while creating a cluster. Normally, when you decommission your 
cluster, the associated SQL database is also deleted, and you lose your table structure. If 
you want to persist this structure, then you can point it to your SQL database. Note that 
your SQL database has to be in the same region as your HDInsight cluster. This way, you 
can be sure that whenever you spin up a cluster with an existing SQL database, you get 
your Hive structure back.

So, in a production environment, you might have hundreds of tables in Hive and you 
don’t want to spin them up whenever you create a cluster for data processing. In such cases, 
you just point your cluster Hive metadata store to the existing Azure SQL database where you 
have already defined the structure for all of your Hive tables. And every time your HDInsight 
cluster comes up, it’s pointing to that Azure SQL database to pull out the Hive metadata.

Apache Tez
Apache Tez, developed by Hortonworks, is built on top of YARN to provide high-
performance data processing. Tez is a Hindi word that means fast —and Apache Tez truly 
justifies the meaning of it. It is an extensible framework for building high-performance 
batch and interactive data processing applications. Tez improves that performance of 
MapReduce while maintaining that ability to scale to petabytes of data.

As Hadoop was picked up by different companies, use cases started to expand. 
People wanted the near real-time output from Hive or Pig queries. But MapReduce 
cannot offer such high performance in near real-time, not because it is implemented 
incorrectly, but the way it works hinders MapReduce performance. Assume that you are 
making a Hive query that generates multiple MapReduce jobs and executes them one 
after another. Now after each reduce, intermediate data needs to be stored back to HDFS 
so that the next mapper can take it for processing. And due to multiple MapReduce jobs 
in succession, data needs to be written multiple times to disk. A disk write operation is 
quite slow, which causes bottlenecks to the whole query performance.

Tez solved this by removing the intermediate map operation and data streaming 
directly from one reducer to another. This significantly improved the whole query 
performance. A graphical representation of how MapReduce and Tez execute a query is 
shown in Figure 4-12.
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To get a better perspective of how fast Tez is, in the beginning of the chapter, I executed 
the SELECT COUNT(*) FROM movies; query using a MapReduce execution engine. And the 
result came in at around 42 seconds. In Figure 4-13, I executed the same query, but this  
time using the Tez execution engine. You can see that the performance of the query only took 
3.7 seconds. Now you can imagine how much of a performance gain complex queries have.

Figure 4-13.  Hive query with Tez execution engine

Figure 4-12.  MapReduce vs. Tez execution engine
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Apache Tez creates a data flow graph to represent computation, where graph vertices 
represent application logic and edges represent data movement. Tez sits on top of YARN 
and provides execution for batch processing, Pig and Hive query execution, and other 
Hadoop components. In a distributed environment, estimating optimal data movement 
methods in advance is difficult. At runtime, as more information becomes available, it 
optimizes the execution plan further. YARN provides resources to the Tez engine based on 
available capacity and load at that point on the cluster. Also, it reuses every component in 
the pipeline so that operations are not duplicated unnecessarily.

There are two main benefits of Tez:

•	 Cost-based optimization (CBO): The CBO engine uses statistics 
of tables and columns stored in Hive to generate an optimal query 
plan, which essentially increases the performance of the query 
and ensures better cluster utilization.

•	 Vectorized query: Vectorization enables data to be fetched in 
chunks, which means that it reads data in batch of 1000 rows 
at a time, compared to the usual 1 row at a time. This increases 
performance where a query scans through a large number of 
rows. This feature can be enabled from Ambari and only works 
with Hive tables in an optimized row columnar (ORC) file format.

Connecting to Hive Using ODBC and Power BI
So far, you have seen usage of command-line tools, web UI, and code-based interaction with 
Hive. But Hive can be used with Excel, Tableau, Power BI, and other similar tools through 
ODBC/JDBC connectors. In this section, you concentrate on ODBC connectors only.

ODBC and Power BI Configuration
To configure an ODBC connector for any of the tools, you need to download and 
configure it first. To download the Apache Hive ODBC driver for any client OS, go to 
https://hortonworks.com/downloads/#data-platform and locate the Hortonworks 
ODBC driver for Apache Hive in the Hortonworks Data Platform Add-Ons section, as 
shown in Figure 4-14.

https://hortonworks.com/downloads/#data-platform
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The following configures the Windows 64-bit version. Follow these steps to install the 
ODBC driver.

	 1.	 Depending on the bits needs of your client application, 
double-click to run HortonworksHiveODBC32.msi or 
HortonworksHiveODBC64.msi. And then click Next.

	 2.	 Select the checkbox to accept the terms of the license 
agreement, and then click Next.

	 3.	 To change the installation location, click Change, browse to 
the desired folder, and then click OK. The default should also 
work.

	 4.	 To accept the installation location, click Next. Then click 
Install.

	 5.	 When the installation completes, click Finish.

	 6.	 Verify that you have installed it correctly by going into the 
ODBC Data Source Administrator, System DSN tab. You 
should see the Hortonworks Hive DSN with the driver name 
Hortonworks Hive ODBC driver in it, as shown in Figure 4-15.

Figure 4-14.  Hortonworks ODBC driver for Apache Hive download section
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Now you need to configure the data source as per our cluster values if you plan to 
use something other than Power BI for data querying. Since you are using Power BI, you 
can skip configuration because you are providing a connection string instead. So, let’s 
download and install Power BI.

	 1.	 To download, go to https://powerbi.microsoft.com/en-us/
get-started/ and download Power BI Desktop for Windows.

	 2.	 Once the installer is downloaded, open it and follow the 
installation instructions.

Prepare Data for Analysis
We will be analyzing flight delay data. The objective of the analysis is to identify airports with 
maximum delays (arrival and departure). The data that you are using comes from the Bureau 
of Transportation Statistics, (www.transtats.bts.gov/DL_SelectFields.asp?Table_
ID=236&DB_Short_Name=On-Time). The US Bureau of Transportation Statistics collects 
data on the performance of major airline carriers that operate domestic flights, including 
departure delays and arrival delays. Follow this next procedure to get the required data.

	 1.	 Browse http://www.transtats.bts.gov/DL_SelectFields.
asp?Table_ID=236&DB_Short_Name=On-Time.

Figure 4-15.  Hortonworks Hive ODBC driver

https://powerbi.microsoft.com/en-us/get-started/
https://powerbi.microsoft.com/en-us/get-started/
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
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	 2.	 You don’t want everything from that page, so just select 
the following values. (You can select any period of time 
that you would like to work with. It is not mandatory to 
download the same three months. The same is available at 
the GitHub repository at https://github.com/vinityad/
airlinedelays).

•	 Filter Year: 2016

•	 Filter Period: January, February, and March (download each 
month)

•	 Fields: Year, FlightDate, AirlineID, OriginAirportID, 
DestAirportID, DepDelay, and ArrDelay.

	 3.	 Save each month’s data as January.csv, February.csv, and 
March.csv in one folder on your local machine. Collectively, 
all three files have around +1.3 million records.

	 4.	 You also need to download airlines and airports data, which 
can be downloaded from the repository at https://github.
com/vinityad/airlinedelaysGitHub.

	 5.	 Upload all the folders—airlines, airports, and flight delay 
data—to Azure Blob storage in the /2016_flight_delay 
folder.

	 6.	 The final results in Azure Blob storage look like what’s shown 
in Figure 4-16.

Figure 4-16.  Flight delay data in blob storage

https://github.com/vinityad/airlinedelays
https://github.com/vinityad/airlinedelays
https://github.com/vinityad/airlinedelays
https://github.com/vinityad/airlinedelays
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Creating Hive Tables
You are creating one external table for each dataset pointing to each of the three folders 
by using the following queries:

CREATE EXTERNAL TABLE flight_delays
(
     YEAR int,
     FL_DATE string,
     AIRLINE_ID int,
     ORIGIN_AIRPORT_ID string,
DEST_AIRPORT_ID string,
     DEP_DELAY int,
     ARR_DELAY int
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
LOCATION '/2016_flight_delay/data'
TBLPROPERTIES ("skip.header.line.count"="1");

CREATE EXTERNAL TABLE airlines
(
     AIRLINE_ID int,
     Description string,
     Code string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
LOCATION '/2016_flight_delay/airlines'
TBLPROPERTIES ("skip.header.line.count"="1");

CREATE EXTERNAL TABLE airports
(
     ID int,
     City string,
     Code string,
     Name string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
LOCATION '/2016_flight_delay/airports'
TBLPROPERTIES ("skip.header.line.count"="1");

Once you have all the tables, it is time to open Power BI and fetch the data in it.
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Analyzing Data Using Power BI
To work with Hive, you need to download the Power BI desktop application. Power BI is a 
tool through which you can quickly analyze data from many different sources. The Power 
BI desktop tool can be downloaded from Power BI official website at https://powerbi.
microsoft.com. Once downloaded, follow the standard install instructions.

Our final goal is to visualize the flight delay data and then figure out which airports to 
avoid based on delays. To do so, follow this procedure.

	 1.	 Open Power BI Desktop and click the Get Data button. This 
opens the Get Data window on which you can search for 
ODBC data source. Select it.

	 2.	 In the next window, select Sample Hortonworks Hive DSN 
as the data source name. Add the following connection 
string in the advanced options, as shown in Figure 4-17: 
Driver={Hortonworks Hive ODBC Driver}; Host=hdi1.
azurehdinsight.net; Port=443;Schema=default; 
RowsFetchedPerBlock=10000; HiveServerType=2; 
AuthMech=6; DefaultStringColumnLength=200;.

	 3.	 Let’s look at individual items in the connection string.

•	 Driver: The type of driver. Since you are working with 
Hortonworks, the value is Hortonworks Hive ODBC Driver.

•	 Host: Your Azure HDInsight cluster URL, or {ClusterName}.
azurehdinsight.net.

•	 Port: 443 for a secure connection.

•	 Schema: The database that you want to connect with. In this 
case, you want to work with the default database only.

•	 RowsFetchedPerBlock: The number of rows fetched as a 
block to improve performance. The default value is 10,000.

•	 HiveServerType: You are working with Hive Server 2; hence, 
the value is 2.

•	 AuthMech: The authentication mechanism to use; 6 
means Windows authentication. 0: No Auth, 1: Kerberos, 2: 
Username, 3: Username and Password, 4: SSL Username and 
Password, 5: Windows Azure HDInsight Emulator, 6: Windows 
Azure HDInsight Service, 7: HTTP authentication, 8: HTTPS, 9: 
Kerberos over HTTP, and 10: Kerberos over HTTPS.

•	 DefaultStringColumnLength: A string column the length of 
the Hive table’s column. The default value is 32767, but you 
are using 200, because you know that you won’t have more 
than 200 characters in a string column. Lower is better here.

https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
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	 4.	 After you click OK on the ODBC data source screen, you are 
presented with all the databases and their tables (when asked 
for credentials, enter your cluster credentials). You can select 
the tables that you want to include in the project. In our case, 
you select three tables—airlines, airports, and flight_delays, as 
shown in Figure 4-18. The navigator window not only shows 
you tables but also previews of the data stored inside selected 
tables. In Figure 4-18, you can see a few columns and rows 
from the flight_delay table.

Figure 4-17.  Power BI ODBC data source configuration

Figure 4-18.  Hive table selection in Power BI
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	 5.	 Clicking Load on the Navigator window instructs Power BI to 
load data from your HDInsight cluster. It may take some time, 
depending on the Internet connection speed you have, but 
it should not take long. Once it is ready with data, Power BI 
shows three tables in the fields section on right-hand side. It 
has also detected the types of fields and added a sigma symbol 
against numeric fields.

	 6.	 Now you need to create a relation between these tables. Use 
the Manage Relationship button from the ribbon to create a 
relation, as shown in Figure 4-19.

	 7.	 Start by creating a new column in the flight_delays table to 
identify delayed flights. Assuming that a flight departure 
delay of more than 30 minutes is a delayed flight, create a new 
column named is_flight_delayed.

	 8.	 To create a new column, click the three dots on the flight_
delays table ä New Column; or from the ribbon menu, Home 
ä New Measure ä New Column. Enter is_flight_delayed 
= flight_delays[dep_delay] > 30 in the column creation 
box that appears below the ribbon menu. This should create a 
new column of type Boolean in the flight_delays table.

	 9.	 To make a simple bar chart from the data, drag any bar chart 
from the Visualizations panel.

	 10.	 As soon as you select the bar chart, you see different 
placeholders for the chart in the Visualizations panel below all 
the charts, as shown in Figure 4-20.

Figure 4-19.  Data relationship builder
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	 11.	 First drop the city from the airports table on the Axis 
placeholder. Then drop is_flight_delayed to the Value 
placeholder. Note that Power BI is smart enough to convert 
the value field to Count of is_flight_delayed.

	 12.	 Now if you look at the data, it is not correct. Atlanta shows 
around 90K records, which can’t be true. If you look at the 
value field, it is counting everything, whether true or false; 
hence, you should filter whole page data to only include 
delayed flights. To add a page level filter, drag the is_flight_
delayed field in the Filters section under the Page level filters 
placeholder. And then select only the True value in it, which 
gives data for only delayed flights. Chicago comes in first with 
the most delayed flights, at around 9.4K.

Figure 4-20.  Flight delay bar chart visualization
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	 13.	 If you change the Axis column to the Airline’s description 
field, which is actually airline name (you can rename it by 
right-clicking the column name). This changes the bar chart, 
as shown in Figure 4-21. You can immediately see which 
airline to avoid if you don’t want to be delayed.

	 14.	 But as I said before, you want to visualize the data on map and 
not some boring bars. Open a new page, using the plus icon in 
the bottom-left corner.

	 15.	 On the new page, put a new Map visualization (globe icon 
button).

	 16.	 In this visualization, you need to provide the city from airports 
to Location placeholder field.

	 17.	 Add the is_flight_delayed column to the Size placeholder.

	 18.	 Now, add is_flight_delayed to the Page level filter and 
select only the true value.

	 19.	 You are interested in only the top few cities with the most 
departure delays; hence, add a filter to City, select the filter 
type as Top N, and type 20 in the value field.

	 20.	 The final result of the procedure should look like what’s 
shown in Figure 4-22.

Figure 4-21.  Most number of delays by airlines
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Hive UDFs in C#
Hive is a great tool to work with HDInsight. But what if you want to do something that is 
not possible to write as HiveQL or is not yet supported by it. Also, many times you need 
more general-purpose methods in your query. Apache Hive solves both of these issues 
by providing User Defined Functions, which can be written in a variety of languages, 
including Java and C# (HDInsight cluster).

There are three types of functions in Hive.

•	 UDF: A regular User Defined Function. When you cannot write 
logic using built-in Hive functions.

•	 UDAF: User Defined Aggregate Function. Works on more than 
one row to produce aggregated output, like the Count or the Sum 
built-in functions.

•	 UDTF: User Defined Tabular Function. Works in the reverse way. 
It takes one row as input and returns multiple rows as output. For 
example, in the movies table, you have a genre column, which is 
pipe (|) delimited. You can use EXPLODE to get that data as rows, 
using a query such as this:

SELECT EXPLODE(genres) FROM (SELECT split(genres, '\\|') as genres FROM 
movies LIMIT 1) genre_table;

It returns the row Action|Adventure|Fantasy|Sci-Fi as four rows, each having a single 
genre value.

Figure 4-22.  Most delayed departures by city
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User Defined Function (UDF)
You can create functions in C# and execute it in a Hive query, just like EXPLODE in the last 
query. Let’s first create a simple program that takes an input and generates MD5 hash for it.

	 1.	 Create a new console application in C# and name it HiveUDF.

	 2.	 In your Main method, add the following code, which takes a 
line as input and returns an MD5 hash of the same.

class Program
{
    static void Main(string[] args)
    {
        string line;
        // Read stdin in a loop
        while ((line = Console.ReadLine()) != null)
        {
            �// Parse the string, trimming line feeds and splitting fields at 

tabs
            var field = line.TrimEnd('\n');

            // Emit new data to stdout, delimited by tabs
Console.WriteLine("{0}\t{1}", field, GetMD5Hash(field));
        }
    }

    /// <summary>
    /// Returns an MD5 hash for the given string
    /// </summary>
    /// <param name="input">string value</param>
    /// <returns>an MD5 hash</returns>
    static string GetMD5Hash(string input)
    {
        // Step 1, calculate MD5 hash from input
        MD5 md5 = System.Security.Cryptography.MD5.Create();
        byte[] inputBytes = System.Text.Encoding.ASCII.GetBytes(input);
        byte[] hash = md5.ComputeHash(inputBytes);

        // Step 2, convert byte array to hex string
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < hash.Length; i++)
        {
            sb.Append(hash[i].ToString("x2"));
        }
        return sb.ToString();
    }
}
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	 3.	 Compile it and upload the .exe file from the debug folder to 
Azure Blog storage for the HDInsight cluster in a folder called 
UDFs.

	 4.	 Use this .exe (UDF) in a Hive query. Fetch the title from the 
movies table and generate a hash of them. A query with UDF 
looks like the following:

SELECT TRANSFORM (title) USING 'wasbs:///UDFs/HiveUDF.exe' AS (title string, 
hash string) FROM movies LIMIT 5;

Here you are taking a title from the movies table. You know that our method (UDF) 
returns tab-separated fields by title because it is the first field and the MD5 hash is the 
second field. This output is then returned on the console. Figure 4-23 shows the output of 
the preceding query (the execution part has been removed for brevity).

User Defined Aggregate Functions (UDAF)
User Defined Aggregate Functions take multiple rows and return a single/aggregate row 
as output. Let’s look at how this is done in a C# program.

	 1.	 Create a new console application in C# and name it 
HiveUDAF.

	 2.	 In your Main method, add the following code, which takes all 
the genres as input and generates an aggregate output of the 
genres count.

static void Main(string[] args)
{
    string line;
    List<string> genres = new List<string>();

Figure 4-23.  User-defined function execution
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    // Read stdin in a loop
    while ((line = Console.ReadLine()) != null)
    {
        // Parse the string, trimming line feeds and splitting fields at tabs
        var field = line.TrimEnd('\n');

        // Saperate the genres into list
        genres.AddRange(field.Split('|'));
    }

    var distinctGenres = genres.Distinct().ToList();

    foreach (var genre in distinctGenres)
    {
        Console.WriteLine($"{genre}\t{genres.Count(o => o.Equals(genre))}");
    }
}

	 3.	 Compile it and upload the .exe file from the debug folder to 
Azure Blog storage of the HDInsight cluster in a folder called 
UDFs.

	 4.	 Use this HiveUDAF.exe (UDF) in a Hive query. Fetch genres 
from the movies table and count the total number of times 
they appear in the list. The query with UDF looks like the 
following:

SELECT TRANSFORM (genres) USING 'wasbs:///UDFs/HiveUDAF.exe' AS (genres 
string, count int) FROM movies ORDER BY count DESC LIMIT 5;

Here you are taking genres from the movies table. You know that our method (UDF) 
returns tab-separated fields for genres because it is the first field and counts it as the 
second field. This output is then returned on the console. Figure 4-24 shows the output of 
the preceding query (the execution part has been removed for brevity).
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User Defined Tabular Functions (UDTF)
User Defined Tabular Functions convert a single row to multiple rows. Like the EXPLODE 
function in Hive, which takes an array and returns it as rows, you try to build a similar C# 
function and use it in Hive query.

	 1.	 Create a new console application in C# and name it 
HiveUDAF.

	 2.	 In the Main method, add following code, which takes all the 
genres as input and generates aggregate output of each genre 
count.

class Program
{
    static void Main(string[] args)
    {
        string line;

        // Read stdin in a loop
        while ((line = Console.ReadLine()) != null)
        {
            �// Parse the string, trimming line feeds and splitting fields at 

tabs
            var field = line.TrimEnd('\n');

            // Saperate the genres into list
            foreach (var item in field.Split('|'))
            {
                Console.WriteLine(item);
            }
        }
    }
}

Figure 4-24.  User-defined aggregate function execution
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	 3.	 Compile it and upload the .exe file from the debug folder to 
the Azure Blog storage of the HDInsight cluster into a folder 
called UDFs.

	 4.	 Use this HiveUDTF.exe (UDF) in a Hive query. Fetch genres 
from the movies table and explode it into rows. A query with 
UDF looks like the following:

SELECT TRANSFORM (genres) USING 'wasbs:///UDFs/HiveUDTF.exe' AS (genres 
string) FROM (SELECT genres FROM movies LIMIT 1) genre_table;

Here you are taking genres from the movies table. You know that our method (UDF) 
returns a list of genres. Figure 4-25 shows the output of the preceding query (the execution 
part has been removed for brevity).

Summary
In this chapter, you explored Apache Hive fundamentals. Hive makes it easy for 
developers, BI professionals, and SQL users to interact with Hadoop data. They can use 
their SQL knowledge to query the data without writing complex MapReduce jobs. Then 
you went through different ways to connect to Hive on an HDInsight cluster, which not 
only includes graphical and command-line tools, but also code-based approaches. As a 
graphical tool, Power BI is an attractive option to quickly analyze and pattern discovery. 
Finally, you explored other advanced ways to query using User Defined Functions in Hive.

Overall, Hive is a complete package for working with Big Data projects. You can build 
almost everything related to querying with Hive.

The next chapter takes a look at another SQL-like tool: Apache Pig.

Figure 4-25.  User-defined tabular function execution
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CHAPTER 5

Using Pig with HDInsight

Apache Pig is a platform to analyze large data sets using a procedural language known as 
Pig Latin. One of the challenges with MapReduce is that to represent complex processing, 
you have to create multiple MapReduce operations and then chain them together to 
achieve the desired result, which is not easy or maintainable when requirements change 
very often. Instead, you can use Pig, which represents transformations as a data flow. 
You can write different transformations, one after another, to achieve the desired result. 
Apache Pig is mainly used in data manipulation operations, because it is easier to write in 
Pig Latin than to write basic MapReduce jobs in Java. Pig Latin is the language used by Pig 
to write procedures to do transformations. Pig Latin procedures usually consist of one or 
more operations, such as loading data from a file system, manipulating it, and storing the 
output for processing or dumping it on a screen.

Apache Pig’s main advantage is the capability to substantially parallelize, which 
allows it to handle very large data sets. Other advantages of Apache Pig and Pig Latin are 
as follows.

•	 Easy to program: Programmers not comfortable with writing 
low-level MapReduce in Java (or similar) languages can work with 
Hadoop using comparatively easy to write SQL, such as the Pig 
Latin language. Complex tasks can be easily encoded as data flow 
sequences. Pig procedures can do large amounts of work, yet they 
are easy to write and maintain.

•	 Extensible: Pig allows users to write complex operations as a 
custom function called user defined functions.

•	 Optimization: Pig automatically optimizes submitted jobs, 
allowing users to focus on business tasks.

Pig is designed to work with long-running data operations, which makes it suitable 
for the following situations.

•	 Data extract-transform-load (ETL) jobs

•	 Analysis/research on raw data

•	 Iterative data processing
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When you perform a transformation on data, you get a relation. In the next 
transformation, you use the resultant relation from the previous transformation. This 
way, you can chain together transformations such as filter, grouping, sorting, and so 
forth, which generates a relation as a result. Initially, relations are created using the Load 
command. It is also a schema on read, such as Hive. In Hive, when you create a table 
while in Pig, it is called a relation. Once the schema is created, it is overlaid on top of 
existing data. Like Hive, if there is a data-type mismatch, then Pig also puts null as the 
value. To run Pig Latin statements, there is a command-line shell called Grunt.

The Apache Pig architecture consists of a Parser, Optimizer, Compiler, and the 
execution engine. A Pig script goes through all of these components to generate output.  
A Pig script first goes through Parser, which checks for any syntactical errors, and 
performs type checking and other checks. It converts the Pig script to a directed acyclic 
graph, a logical plan in which nodes are the logical operator and edges are represented 
by data flow. Pig splits, merges, transforms, and reorders operations to optimize the 
plan. Then this logical plan is converted to a MapReduce plan. Here, the MapReduce job 
boundaries are defined. This plan is then compiled into a series of MapReduce jobs. And 
finally, MapReduce jobs are submitted to Hadoop in ordered fashion by the execution 
engine and output is generated in a file or in shell based on commands in the Pig script.

Understanding Relations, Bags, Tuples, and Fields
A Pig relation is similar to a table in relational databases. It is called an outer bag. A bag 
consists of one or more tuples, which you can think of as rows in a traditional database. 
It has multiple tuples, which represent the rows of data. Within each tuple, there are 
ordered sets of fields, which are actual values. But unlike a traditional database, Pig 
doesn’t require you to have the same number of fields in every tuple. Relations are also 
unordered, which means that tuples may be processed without any particular order. 
Figure 5-1 shows a sample relation, tuples, and fields. Relation is represented by curly 
braces. A sample relation contains three tuples represented by round braces, and each 
tuple contains two fields.

So far, a relation is totally identical to a relational database table. But things get 
interesting when you add another tuple with an inner bag in it. In Figure 5-2, the fourth 
tuple contains two fields: the first field’s value is d, while the second one is an inner bag, 
which again contains two tuples and two fields each. Not only can tuples have inner bags, 
but also there can be a different number of fields in a tuple. You can have a non-matching 
schema of tuples in a relation.

In Figure 5-2, the fifth and sixth tuples have completely different numbers of fields 
compared to previous tuples. The fifth tuple has only one field while the sixth tuple has 

Figure 5-1.  Sample relation, tuples and fields
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three fields. This is a very flexible structure to hold data. You can project a schema as per 
your data and not necessarily follow the same schema for every tuple, which makes it 
very powerful in ETL scenarios.

Relations can be referenced using a name (or alias). To create a relation with a 
reference, use the following syntax. Please note that the name of the relation, field, 
function, and so forth, is case sensitive.

EMP = LOAD 'employee' USING PigStorage() AS (name:chararray, 
address:chararray, phone:chararray, age:int, salary:float);

In the preceding code snippet, you are loading data into an EMP relation with 
five fields. Fields can be referenced by the name assigned by the schema or by using 
positional notation. Positional notation is system generated. It starts with 0 and is 
prefixed with a dollar $ sign (i.e., $0 refers to first field). In the preceding code snippet, it 
refers to the name field. Similarly, $1 refers to the address field, and so on. The following 
statement selects the name and age ($3) from the EMP relation.

EMP2 = FOREACH EMP GENERATE name, $3;
DUMP EMP2;
(Scott, 25)
(Bill, 40)
(Joe, 32)

Fields can have complex data types as well. In the next code snippet, there is the 
contact information schema. Each person can have multiple types of contact information, 
such as email, phone, fax, and so forth. There may be multiples of each type of contact 
information as well.

PERSON = LOAD 'data' AS (name: chararray, (contact: bag{c: tuple (type: 
chararray, value: chararray)});
DUMP PERSON;
(Joe, {(email, joe@mail.com), (phone, 1231231234)})
(Scott, {(phone, 0987654321), (phone, 1122334455)})

Figure 5-2.  Tuples with different schema/fields
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Data Types
Apache Pig has both simple and complex data types. Tables 5-1 and 5-2 list all available 
data types. The simple and the complex data types are listed, respectively.

Here are a few general observations about data types.

•	 To assign field types, use a schema. If a type is not specified, then 
the default type bytearray is used, and depending on the context, 
implicit conversions are applied. For example, in the following 
code, in relation Y, field a1 is converted to an integer, while in 
relation Z, a1 and a2 are converted to double, because you don’t 
know the type of either fields.

X = LOAD 'data' AS (a1, a2);
Y = FOREACH X GENERATE a1 + 10;
Z = FOREACH X GENERATE a1 + a2;

•	 If the load statement has a schema defined with it, then the 
load function tries to enforce it on the data; if any value doesn’t 
conform to the schema, then a null value or an error is generated.

Table 5-1.  Simple Data Types

Data Type Description Example

Int Signed 32-bit integer 10

Long Signed 64-bit integer 10L or 10l

Float 32-bit floating point 10.2F or 10.2f

Double 64-bit floating point 10.2 or 10.2e4 or 10.2E4

Chararray Character array (string) in 
Unicode UTF-8 format

Hello World

Bytearray Byte array (blob)

Table 5-2.  Complex Data Types

Data Type Description Example

Tuple An ordered set of fields (10, 1)

Bag A collection of tuples {(10, 2), (10, 3)}

Map A set of key value pairs [color#red]
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•	 If an explicit cast is specified and data cannot be converted, then 
an error is generated. For example, if the data is a chararray and 
the field type is an integer with an explicit cast, then it generates 
an error. In the following example, the second line generates an 
error.

X = LOAD 'data' AS (a1:chararray);
Y = FOREACH X GENERATE (int)a1;

Connecting to Pig
To execute a Pig script, you can connect to Pig using your choice of CLI utility. You can 
connect with PowerShell or SSH to a Linux cluster and then type Pig to get into the Grunt 
shell. Grunt shell is the shell used to work with Pig. Also, Pig supports .NET SDK in an 
HDInsight cluster. This allows you to integrate Pig scripts in your project directly without 
relying on external tools.

To connect, use SSH from the Linux host or use PuTTY from the Windows client 
machine (refer to the “Connecting to cluster using SSH” section in Chapter 2). Once 
connected, type Pig. You should see the grunt> prompt, which means that you are 
connected, and you can start writing Pig Latin statements and scripts. Figure 5-3 shows a 
screenshot of PuTTY connected to a Linux cluster and the Grunt shell started in it.

To integrate Pig into your project workflow through code, you can use .NET SDK.  
You saw how Hive integrates in .NET projects in Chapter 4. Submitting a Pig script should 
be very familiar. The following describes the method for submitting a Pig job.

	 1.	 Create a C# console application in Visual Studio (use Visual 
Studio 2012 or higher) targeting .NET Framework 4.5 or 
higher.

	 2.	 To get SDK bits, install a Nuget package for HDInsight using the 
Install-Package Microsoft.Azure.Management.HDInsight.
Job command. This installs its dependencies as well.

Figure 5-3.  Grunt shell on Windows host using PuTTY

http://dx.doi.org/10.1007/978-1-4842-2869-2_2
http://dx.doi.org/10.1007/978-1-4842-2869-2_4
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HDInsightJobManagementClient is the main class that facilitates communicating with 
the HDInsight service. It comes from the Microsoft.Azure.Management.HDInsight.Job 
namespace. It requires an object of cluster credentials and a cluster Uri to instantiate it.

Important methods from the perspective of submitting a Pig job are SubmitPigJob, 
WaitForJobCompletion and GetJob in HDInsightJobManagementClient.

The following is the complete routine to submit a Pig script to fetch sorted airlines 
data by their description and then store it in the ordered_airlines folder.

private static void SubmitPigJob()
{
    // Cluster credentials
    Console.WriteLine("Enter cluster http credentils");
    Console.Write("Username: ");
    var clusterUsername = Console.ReadLine();
    Console.Write("Password: ");
    var clusterPassword = GetMaskedPassword();

    // Cluster name
    Console.Write("Enter cluster name: ");
    var clusterName = Console.ReadLine();
    var clusterUri = $"{clusterName}.azurehdinsight.net";

    var clusterCredentials = new BasicAuthenticationCloudCredentials()
    {
        Username = clusterUsername,
        Password = clusterPassword
    };
    HDInsightJobManagementClient jobManagementClient =
                �new HDInsightJobManagementClient(clusterUri, 

clusterCredentials);

    //List<string> args = new List<string> { { "argA" }, { "argB" } };
    var parameters = new PigJobSubmissionParameters
    {
        �Query = "airlines = LOAD '/2016_flight_delay/airlines/airlines.csv' 

USING PigStorage(',') AS (airline_id:int, description:chararray, 
code:chararray);" +

        "ordered = ORDER airlines BY description;" +
        �"STORE ordered INTO '/2016_flight_delay/airlines/ordered_airlines' 

USING PigStorage(',');"
    };
    System.Console.WriteLine("Submitting the Hive job to the cluster...");
    �var jobResponse = jobManagementClient.JobManagement.

SubmitPigJob(parameters);
    var jobId = jobResponse.JobSubmissionJsonResponse.Id;
    �System.Console.WriteLine("Response status code is " + jobResponse.

StatusCode);
    System.Console.WriteLine("JobId is " + jobId);
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    System.Console.WriteLine("Waiting for the job completion ...");

    // Wait for job completion
    �JobGetResponse waitResponse = jobManagementClient.JobManagement.

WaitForJobCompletion(jobId);

    System.Console.WriteLine("Pig Job Completed.");
}

Please note that you are using the GetMaskedPassword method from the previous 
chapter. The job output is stored in Azure Blob storage in the /2016_flight_delay/
airlines/ordered_airlines folder.

Operators and Commands
So now, you know how to connect with Pig and start a Grunt shell. Next, let’s explore 
that different operators and commands available to work with data. To do this, let’s 
generate a list of the airlines that have the highest average number of delays in the month 
of January. You already have this data in Azure Blob storage from the previous chapter. 
Use airlines/airlines.csv and data/January.csv (if you don’t have this data, then 
have a look at the “Prepare Data for Analysis” section in Chapter 4). The following are the 
transformations to carry out on the data.

	 1.	 Find all the records with departure delays higher than or 
equal to 30 minutes.

	 2.	 Find the average departure delay for each airline.

	 3.	 Sort the results by average delay in descending order, or from 
highest to lowest.

	 4.	 Show the top 10 airlines with the highest average departure 
delay.

Let’s start by loading the data into a relation.

	 1.	 Load January’s data into a relation called data, which contains 
the year, flight_date, airline_id, origin_airport, dest_
airport, departure_delay, arrival_delay tuples separated 
by commas. Here you are using PigStorage to specify it is a 
comma-delimited file. All the fields are of type integer except 
flight_date, which is a chararray. The airline_id field has 
the id that matches with records in the airlines CSV file.

data = LOAD '/2016_flight_delay/data/january.csv' USING 
PigStorage(',') AS (year:int, flight_date:chararray, 
airline_id:int, origin_airport:int, dest_airport:int, 
departure_delay:int, arrival_delay:int);

http://dx.doi.org/10.1007/978-1-4842-2869-2_4
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	 2.	 Next, filter out records with departure delays less than 30 minutes. 
This prevents negative values and small delays from affecting 
the overall calculation.

filteredData = FILTER data BY departure_delay >= 30;

	 3.	 You have only the larger departure delay data now. The 
schema is still the same as when you loaded data, which 
contains multiple records for each airline, with different 
flights and their respective delays. Group this data by the 
airline_id field, which generates two tuples: airline_id and one 
containing a bag of tuples, the same as the original schema. 
Use filteredData relation from the previous step and 
generate a new relation, groupedData.

groupedData = GROUP filteredData BY airline_id;

	 4.	 Find the average departure delay of each grouped airline from 
the groupedData relation. To find the average, go through each 
record in the bag and then generate the average departure 
delay using the AVG inbuilt operator. After applying this step, 
you get a flattened schema with a bag of two tuples, airline_id, 
and the average departure delay of the airline. You are not 
interested in decimal points in the average delay; hence, 
explicitly cast the average departure delay to an integer. The 
Pig script is as follows.

groupedAvgs = FOREACH groupedData GENERATE group as 
airline_id, (int)AVG(filteredData.departure_delay) as 
avgDelay;

	 5.	 At this point, you have airlines’ average delays in January; but 
you don’t have the names of the airlines, just their ids. To get 
the name of an airline, you have to join the groupedAvgs result 
with the airlines data that you have in another CSV file. But 
before that, you need to load the airlines data into a relation. 
Let’s call this relation airlines, and the tuples are airline_
id, description(name), and the code for each airline.

airlines = LOAD '/2016_flight_delay/airlines/airlines.
csv' USING PigStorage(',') AS (airline_id:int, 
description:chararray, code:chararray);
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	 6.	 Join the airlines relation with the groupedAvgs relation. 
Using the join operator, you apply the join based on airline_
id. This join gives you a new relation with all the tuples from 
both relations. This means that now you have airline_id 
(twice), description, code, and average departure delay in the 
joinedData relation.

joinedData = JOIN groupedAvgs BY airline_id, airlines 
BY airline_id;

	 7.	 Because the processing was distributed across multiple jobs 
on multiple nodes, you don’t have any guarantees about the 
order of the data; it’s been distributed to different nodes and 
then reassembled into the relation. So, the next thing to do 
is sort the data by the average departure delay in descending 
order to have the airlines with the most delays at the top.

sortedData = ORDER joinedData BY avgDelay DESC;

	 8.	 You have all the airlines in the sorted list with the highest 
average departure delay at the top. The final step is to fetch 
only the first ten rows from the data, which you can do using 
limit operator.

top10AirlineDelays = LIMIT sortedData 10;

	 9.	 To see the data, use the dump operator to dump all the rows 
onto the screen in the top10AirlineDelays relation.

DUMP top10AirlineDelays;

The complete script for the whole process is as follows.

// Load flight delay data
data = LOAD '/2016_flight_delay/data/january.csv'
        USING PigStorage(',') AS
        (year:int, flight_date:chararray, airline_id:int, origin_
airport:int,
        dest_airport:int, departure_delay:int, arrival_delay:int);

// Filter delays less than 30 minutes
filteredData = FILTER data BY departure_delay >= 30;

// Group data by airline
groupedData = GROUP filteredData BY airline_id;
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// Flattern the grouped airlines and find average delay
groupedAvgs = FOREACH groupedData GENERATE group as airline_id,
        (int)AVG(filteredData.departure_delay) as avgDelay;

// Load airline names
airlines = LOAD '/2016_flight_delay/airlines/airlines.csv'
        USING PigStorage(',') AS (airline_id:int, description:chararray, 
code:chararray);

// Join airlines names with flattern airline delays
joinedData = JOIN groupedAvgs BY airline_id, airlines BY airline_id;

// Sort data by highest delay to lowest
sortedData = ORDER joinedData BY avgDelay DESC;

// Fetch only first 10 record and show them on console
top10AirlineDelays = LIMIT sortedData 10;
DUMP top10AirlineDelays;

The result of the script is shown in Figure 5-4.

When executing each statement, you might notice that it returns to shell immediately. 
That is because Pig won’t run any of the statement until you ask for the result using dump or 
store. So, as soon as you enter last dump statement in the script, it starts the MapReduce 
job based on the statements that you entered, and then shows the result.

You used quite a few operators and commands in the script, but there are a few 
more. The following is a list of the most commonly used operators and commands.

•	 The LOAD command instructs Pig to get data. It also tells the 
format in which it should be read and the location of the data. 
Often this is the entry point in the script.

Figure 5-4.  Top 10 average departure delayed airlines for January 2016
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•	 The FILTER command removes the rows that you are not 
interested in. In our sample, you removed the departure delays 
that were less than 30 minutes. In another scenario, you might 
want to remove the first row because it contains header text or 
remove blank fields. This leaves you with the rows that you are 
interested in working further with.

•	 FOR EACH ... GENERATE is a common operation in Pig. It allows 
you to iterate over the relation supplied after FOR EACH and 
performs operations on each row of data, generating new tuples 
from it.

•	 ORDER BY allows you to sort relations in a particular order, such as 
ascending or descending. Also, it supports multiple fields.

•	 JOIN allows you to combine two relations based on a common field. 
You can decide whether you want to keep the duplicated field value 
from both tables or if you just want to merge them into one.

•	 The GROUP command allows you to turn a flat tuple into a tuple 
and bag combination, effectively grouping similar tuple values 
into one tuple. You end up with a group-level tuple that contains 
a bag inside it. This bag contains all the tuples matching the 
grouped value.

•	 The FLATTEN command flattens out the nested tuple and inner 
bag, so you end up with just the fields.

•	 LIMIT is a way of restricting the number of tuples that you’re 
getting in the result. So, if you have a large set of results but you 
only want the first ten tuples, then you can limit the results to a 
certain number, as you did with our script.

•	 DUMP removes the contents of a relation and displays it on the 
console, or dumps out straight to the output from where it is 
called. Normally, it is used when you are troubleshooting a Pig 
Latin script as a way to peek into the data generated after any step.

•	 STORE saves the result of a script into a file on a shared file system. 
It takes a relation and formats it to store (i.e., comma delimited), 
and then creates file(s) for it, which you can use further with other 
tools such as Hive for analysis.

Internally, all of these commands are translated into Map and Reduce jobs, which 
are submitted to Hadoop. In addition to the commands listed, there are a few more 
available in Pig Latin, including IMPORT, DISTINCT, RANK, SPLIT, STREAM, and UNION.
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Executing Pig Scripts
You saw how to run Pig Latin statements line by line using the Grunt shell. It is a very 
common scenario initially, when you are exploring data. But typically, you bundle Pig 
Latin statements into a script and run it as one operation. So, let’s take a look at how you 
run Pig scripts.

First, you need to have Pig script, so create a text file with the script from the previous 
section, which generates the top 10 airlines with maximum delays. Save it as airline.
pig. You also need to upload it to the Azure Blob storage associated with the HDInsight 
cluster. Once you’ve saved the Pig Latin script, you can then run it using Pig, such as  
pig wasb://scripts/airlines.pig from the command line. Alternatively, you could use 
PowerShell or the Hue environment on the dashboard for your cluster. There are various 
ways to initiate a Pig job, but what you are effectively doing is running Pig and pointing it 
at the script file to run the job. Once you have run the job, it generates output in the form 
of a file or multiple files. Then you consume the results by using any of the clients, such as 
Excel, PowerBI, or anything else. Because you are using HDInsight, the results are stored 
in the shared storage in the Azure Blob store used by the cluster.

Summary
This chapter covered Apache Pig’s fundamentals. Pig helps you build data transformation 
pipelines before the data is ingested into analytical tools. Use it to clean data, remove 
outliers, normalize, and group and sort data. In HDInsight, Pig directly takes input from 
Azure Blob storage and stores the results as a file(s) back into Azure Blob storage. The 
results can be given as input to other tools. As a .NET developer, you also get .NET SDK, 
through which you can easily integrate it in your project workflow. Overall, Apache Pig is 
an easy to use tool when it comes to data processing.

In the next chapter, you look at Apache HBase to store large amounts of data with 
high read/write throughput over Hadoop.
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CHAPTER 6

Working with HBase

Previous chapters explored how to leverage an HDInsight cluster to store and process big 
data. You learned how MapReduce jobs process data. Also, you looked at Hive and Pig, 
and learned how they make it easy to work with data. All the technologies and tools that 
you saw so far work in batch mode. And they are accepted in online analytical processing 
(OLAP) scenarios where it is supposed to take time. But you cannot always use batch 
processing. What if you want a low-latency database that provides near real-time read/
write access, and quick random access to your big data in Hadoop? This is where Apache 
HBase comes into the picture.

Apache HBase is an open source, non-relational, distributed database. It is based 
on Google’s Bigtable implementation and is written in Java. It is a NoSQL database that 
provides real-time read/write access to large data sets. In this chapter, you explore HBase: 
its architecture, processing data using HBase Shell, and leveraging .NET SDK to read/
write/query data on an HBase cluster inside HDInsight.

Overview
Apache HBase is a NoSQL database that runs on top of HDFS. With HDInsight, it utilizes 
Azure Blob storage as the default file system. HBase provides a querying interface over 
Hadoop, enabling access to data in near real time. HBase can handle millions of columns 
and billions of rows. It gets this ability from its scaling capability. It exhibits linear 
scalability. It has a very good automatic sharding model in which HBase automatically 
distributes tables when they become too large. In HBase, you can have multiple machines 
acting as a single unified system. And if you need more capacity in terms of storage or 
transactions throughput, you can add more machines and it scales accordingly.

NoSQL databases are not a new concept, but they weren’t very popular at first. 
The data explosion made developers think about an alternative approach to traditional 
relational databases for storing and retrieving data. NoSQL databases use data structures 
like key-value pairs, wide columns, graphs, or documents. There are many different 
NoSQL databases; popular ones are MongoDB, Cassandra, Redis, and HBase. The 
suitability of a NoSQL database depends on the situation, as each database is designed to 
solve different problems.
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HBase wias built to host very large tables with varying structures, makng it a good 
choice to store multi-structure or sparse data. HBase consists of tables, and a table 
contains columns and rows, much like a traditional relational database (RDBMS) table. 
HBase provides fast random access to data, and it achieves that by having a fast tree 
lookup. HBase is known for high write throughput; hence, HBase works very well for 
systems that require a lot of writes. Data in HBase is timestamped and multiple versions 
are maintained. This makes point-in-time and flashback queries possible. You can 
control the number of versions of your data that you want retained. Querying without 
specifying the version returns the most recent data only.

HBase is a columnar store database. That means data from a single column is stored 
together. This is completely opposite from relational databases, where rows are stored 
together. Columnar storage provides flexibility in the number of columns a row can 
have, making a table sparse. This makes it easy and inexpensive to add new columns and 
it is done on a row-by-row basis. Column-oriented stores like HBase are a good fit for 
scenarios where only a partial scan of a table is required, and no query search through 
an entire table data. This should be avoided in cases where a frequent full table scan is 
needed, such as an average or a summation.

Now you might be asking why you need HBase when you already have relational 
databases. Relational databases have traditionally had the single-instance model, 
although you do have distributed databases, but a limiting factor of this is the amount 
that they can scale. The throughput that you get from HBase is typically higher compared 
to what you get from stand-alone or distributed databases. Most of these installations 
typically do not provide beyond 8 or 16 nodes. HBase offers thousands of nodes. And it 
makes petabytes of data instantly available to you.

You can have any number of columns in an HBase table, but you have to define the 
column family first. You can define the column family at table creation time or after you 
created the table. Columns are added to the column family when data is inserted into it.

HBase exhibits fault tolerance by using data replication provided by HDFS. In 
HDInsight, this is handled by Azure Blob storage. HBase is fault tolerant because its writes 
are atomic and consistent, which means that HBase guarantees saving data to disk, no 
matter what situation arises. It has automatic failover, so if a region goes down, another 
one takes over the responsibility. Also, it distributes read/write loads using automatic 
sharding and load balancing of tables.

Where to Use HBase?
Basically, HBase was built on Bigtable, which was created for web search. Search engines 
build indexes that map terms to the webpages that contain them. But there are many 
other use cases suitable for HBase. A few of them are outlined next.

•	 Sensor and IoT data: High-volume data streams coming from 
sensors and IoT devices are easily stored using HBase. Data is 
collected incrementally from various sources. This includes social 
analytics, time series data, an interactive dashboard, trends, and 
so forth.
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•	 Server or website log: HBase is ideal for storing log data because 
it allows a different number of columns for different log entries, 
making it cost-effective in terms of storage and maintenance.

•	 Real-time queries: Phoenix provides a SQL query engine 
on top of HBase. It can be accessed by JDBC (Java Database 
Connectivity) or ODBC (Open Database Connectivity) drivers. It 
enables querying and managing HBase tables by using SQL.

•	 Key-value store: HBase can be used as a key-value store. It is 
suitable for managing message systems. Facebook uses HBase for 
its messaging system. It is ideal for storing and managing Internet 
communications.

■■ Note H Base is used by many companies. Facebook uses it for a messaging platform, 
Twitter uses it for people searches, HubSpot stores primary customer data, and many 
others are using it for mission-critical operations. Read more about who uses HBase at 
http://hbase.apache.org/poweredbyhbase.html.

The Architecture of HBase
Apache HBase is composed of three types of servers: HBase Master server, the region 
servers, and ZooKeeper. Clients directly communicate with the region server to read 
or write data. HBase Master is a lightweight process that handles the assignment of 
regions and DDL (create, alter, delete, etc.) operations. ZooKeeper provides distributed 
synchronization and centralized monitoring servers. Figure 6-1 shows the overall 
architecture of HBase.

http://hbase.apache.org/poweredbyhbase.html


Chapter 6 ■ Working with HBase

126

To understand HBase architecture, let’s assume that there is a large table with simply 
a key and value pair. You sort this table by the key and then try to spread it across several 
machines. To do so, you split it into chunks of data. These chunks are called regions in 
HBase. And since this data needs to be served back, entity that does this is a region server. 
A region server can have multiple regions. The metadata about region mapping is stored 
in ZooKeeper.

When writing data to HBase, it guarantees write consistency and that utilizes 
HLog. Store files are the representation of the HBase file on disk. And every write from 
the user goes to HLog, as well as to MemStore. The DFS client is HDFS for on-premise 
installations; whereas on HDInsight on Azure, it is Azure Blob storage.

HBase HMaster
As you saw earlier, HBase HMaster handles region assignment and DDL (create, update 
and delete tables) operations. There are two main responsibilities of HMaster server, as 
described in the following.

•	 Region monitoring, which includes assigning and reassigning 
regions to the region server, listening for notification from 
ZooKeeper for failed regions, and load balancing.

•	 Creating, altering, and deleting tables issued from client. Typically 
handles all DDL operations.

Figure 6-1.  HBase architecture
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HRegion and HRegion Server
HBase divides data into smaller chunks and calls them regions. A region contains all of 
a table’s data, from the start row key to the end row key, including all rows and columns 
for those row keys. Regions are hosted on region servers, which are nodes of an HBase 
cluster. A region server can have thousands of regions. The following are the components 
of HRegionServer.

•	 HLog: A write ahead log implementation that stores all the edits 
to the HStore. It stores data that hasn’t yet been pushed to 
permanent storage. It is used in case of failure for recovery. It is a 
physical file that is not in memory.

•	 BlockCache or StoreCache: Serves as the cache for recently read 
data. When full, removes data in FIFO (first in, first out) order.

•	 MemStore: Stores sorted data that is yet to be written to disk. There 
is one MemStore per column family per region. Once MemStore 
reaches a certain size, it is flushed to disk.

•	 HFile: Stores actual data on a file in sorted in key-value pair order. 
You can go into your cluster and on HDFS/Azure Blob storage to 
see these files.

Initially, there is only one region per table (if split; not specified at table creation). 
Once a table accumulates enough data, HBase splits it into smaller regions, making 
two regions, with half the original data in each new region. At the time of the split, both 
regions reside on the same region server. Once HMaster is aware of the region split, it 
moves them to another region server as required per load balancing. If everything is 
balanced, then there is no movement. This movement won’t serve data from the region 
server; instead, until major compaction happens, data continues to reside on the remote 
server. It is major compaction’s job to move data to the region server’s local node (major 
compaction is discussed later in the chapter).

The region split policy can be configured. The default region split policy for 
HBase 0.94 and lower splits the regions when the total data size for one of the stores 
(corresponding to a column family) in the region gets bigger than the default value, which 
is 10GB. Since HBase version 0.94, the default split policy has been called the upper 
bound region split policy. In this policy, split size is increased based on data divided to all 
regions. The following is the formula for the maximum store file size.

minimum of (R^2 * MemStore flush size, max store size)

For example, the default MemStore flush size is 128MB, that max store size is 10GB, 
and then the first split happens at 128MB. After that, it increases as regions increase. 
The next split happens at 512MB (2^2 * 128), 1152MB (3^2 * 128), 2GB (4^2 * 128), and 
so on. After the ninth split, the size becomes bigger than 10GB, and from there, splits 
happen at 10GB.
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ZooKeeper
ZooKeeper is a high-performance coordination service for distributed applications 
like HBase. HBase relies on ZooKeeper for cluster configuration and management. 
It coordinates, communicates, and shares the state between the HMaster and 
HRegionServer. Region servers and masters send ZooKeeper heartbeat signals to tell that 
they are alive. In case of failure, ZooKeeper notifies interested parties to take action; for 
example, for a master failure, it notifies the standby/inactive master about it.

HBase Meta Table
A meta table is an HBase table that keeps a list of regions and their start row key 
information. In Azure HDInsight, this is stored in Azure Blob storage, which means that 
if you delete your cluster and re-create it using the same Blob storage, then you get all 
the tables back as is. A meta table stores the key and the value, where the key consists of 
a region start row key and region id, and the value contains the region server. ZooKeeper 
stores information about where to find the meta table.

Read and Write to an HBase Cluster
When a read request comes to an HBase cluster, the following steps are performed. They 
are also illustrated in Figure 6-2.

	 1.	 The client request comes, which requires metainformation 
from ZooKeeper.

	 2.	 A query is executed to find a region server that holds the data 
corresponding to the row key that the client wants to fetch.

	 3.	 This metainformation is cached for later use by client.

	 4.	 Once the region server is located, the client goes to the region 
server and fetches the row key related data, either from 
MemStore or from HFile.

Figure 6-2.  Read data flow in HBase cluster
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When the client wants to write data to an HBase table, following steps are performed. 
They are also illustrated in Figure 6-3.

	 1.	 A Put request is generated by the client.

	 2.	 It finds the meta details of the region server that handle  
the write.

	 3.	 Data is handed over to HLog, which stores it physically on 
disk until it is written to HFile. Before writing data to HFile, if 
failure occurs, HLog data is used to recover from failure. HLog 
data is used. HBase makes sure it always writes it to disk.

	 4.	 Once data gets through to HLog, it is transferred to MemStore 
as well, which maintains a sorted list and flushes it out to disk 
when full.

	 5.	 Once data is written to MemStore, acknowledgment is sent for 
a put request.

Figure 6-3.  Write a data flow in HBase cluster

Once MemStore is full, it flushes out the data to disk. Each flush creates a new 
HFile, which is compacted later if it is small. MemStores are maintained per column 
family, which means if any of the column families becomes full, then all MemStores are 
flushed together. This is one of the reasons that you should keep your column families to 
minimum. HBase supports approximately 10 column families per table (http://hbase.
apache.org/book.html#schema).

After the first read, data is available at a block cache and HFile. Also, updates to the 
same data can cause another copy of the data in MemStore. Now the same data with 
different/same versions can reside in three different places. So, in subsequent reads, 
HBase first looks into block cache for the row cells that were cached recently. If it cannot 
find it in block cache, then next it looks in MemStore, which contains recent writes. If 
the scanner cannot find all the rows, then it loads rows and cells from HFile. Also, there 
can be multiple versions of the row; hence, it has to load multiple HFiles, which causes 
performance hits; this phenomenon is called read amplification. HBase overcomes this 
issue using compaction, which you see later in the chapter.

http://hbase.apache.org/book.html#schema
http://hbase.apache.org/book.html#schema
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HFile
Actual data is stored in an HFile, which contains sorted key-value pairs. MemStore creates 
an HFile when it is full. Every flush creates a new HFile. As it is a sequential write and tries 
to avoid moving the disk driver head, it is very fast. It has multi-layer indexes; hence, data 
seek is really fast and doesn’t require a whole file scan. The HFile index is like a B-tree 
(binary tree), giving it efficient and fast lookup capability. When it is required to read an 
HFile, the relevant index is loaded into memory and lookup is performed on it. Finally, 
with a single disk seek, data is read from the file.

Major and Minor Compaction
When MemStore gets flushed to disk, it creates small files. As I have already discussed, 
this is not good for the performance of the HBase cluster. Hence, HBase automatically 
picks small HFiles and combines them to fewer but larger files. This automatic combining 
of files in HBase is called minor compaction. After a merge is complete, the small HFiles 
are deleted from the system.

On the other hand, major compaction merges and rewrites all the HFiles in a region 
to one HFile per column family. Deleting in HBase is not a physical deletion, rather a 
row is marked for deletion; hence causing duplicate keys to become scattered around 
multiple files. Major compaction removes these duplicate/deleted keys and merges the 
files together. Also, in the case of a region server failure and region split, there are some 
region movements required to balance the load. This process also happens in major 
compaction. It significantly improves the read performance because fewer files need 
to be accessed. Since this moves a lot of files and data, it involves a lot of disk and I/O 
operations. This might lead to high network traffic, which is a phenomenon called 
write amplification.

Creating an HBase Cluster
So far, you have only created Hadoop-based clusters. Azure HDInsight provides many 
different cluster types, as discussed in Chapter 2. To work with HBase, you need master 
nodes, ZooKeeper nodes, and worker nodes. HDInsight provides an easy-to-deploy 
HBase cluster type that automatically creates all of these nodes. There are multiple 
ways to create an HBase cluster—the Azure portal, PowerShell, and Azure Resource 
Manager templates. You already know how to create a cluster using the Azure portal and 
PowerShell. You just need to change the cluster type to HBase, as discussed in Chapter 2. 
In this section, you explore provisioning resources in Azure through templates.

The Azure Resource Manager (ARM) template is a JSON file with all the different 
resources and configuration options to deploy/provision/configure resources in Azure. 
You will use the template available at https://hditutorialdata.blob.core.windows.
NET/armtemplates/create-linux-based-hbase-cluster-in-hdinsight.json. This 
template creates a Hadoop cluster with two HMaster nodes, three ZooKeeper nodes, 
and two (default value) worker nodes. If you don’t need to create such a JSON template, 
and you only use them to deploy the resources, then you don’t need to worry about 
understanding the content of the template.

http://dx.doi.org/10.1007/978-1-4842-2869-2_2
http://dx.doi.org/10.1007/978-1-4842-2869-2_2
https://hditutorialdata.blob.core.windows.net/armtemplates/create-linux-based-hbase-cluster-in-hdinsight.json
https://hditutorialdata.blob.core.windows.net/armtemplates/create-linux-based-hbase-cluster-in-hdinsight.json
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■■ Note T here are many more ARM templates provided and maintained by Microsoft at 
https://github.com/Azure/azure-quickstart-templates.

The following procedure creates a Linux-based HBase cluster.

	 1.	 Click the following URI, which takes an ARM template URL 
and opens an easy-to-configure options page to create an 
HBase cluster.

https://portal.azure.com/#create/Microsoft.Template/
uri/https%3A%2F%2Fhditutorialdata.blob.core.windows.
NET%2Farmtemplates%2Fcreate-linux-based-hbase-cluster-in-
hdinsight.json

	 2.	 Once the template loads, it opens a Custom Deployment 
blade, where you can enter following details.

•	 Subscription: Select the Azure subscription to be utilized by 
your cluster.

•	 Resource group: You can choose to create a new resource 
group or select an existing group.

•	 Location: Specify where your cluster and data will reside, 
such as East US, North Europe, Southeast Asia, and so forth.

•	 ClusterName: The cluster’s unique name to access it, such as 
https://{clustername}.azurehdinsight.NET.

•	 Cluster credentials: The cluster username and password to 
open the dashboard. These credentials are used to submit 
jobs and get into the cluster. The default username is admin.

•	 SSH credentials: The username and password to get onto a 
Linux machine.

•	 Cluster Worker Node count: The number of worker nodes 
that you want the cluster to have. If you are creating a cluster 
for learning purposes, then two nodes are enough.

	 3.	 The last steps are to agree to the terms and conditions, and 
then click the Purchase button.

It takes time to provision all the nodes. Once the process is completed (a notification 
on Azure portal states this), you can open the HBase dashboard. Enter the URL (e.g.,  
https://{clustername}.azurehdinsight.NET) and click the HBase node from the 
services list. At the top of the HBase service summary page, select the active node in the 
Quick Links menu, and then click the HMaster UI menu item. Now you can see various 
stats about HBase region servers, tables, Standby Master, and so forth as shown in  
Figure 6-4.

https://github.com/Azure/azure-quickstart-templates


Chapter 6 ■ Working with HBase

132

You have gone through HBase and seen how it works. Now it is time to dive into the 
code and learn how to work with HBase using data.

Working with HBase
HBase provides a shell to execute commands, insert data, search, and retrieve data. You 
can also use .NET SDK to read/write data in HBase. You will look at both of these options 
in the coming sections. The HBase shell is an easy-to-use command-line utility, so let’s 
start with that first.

HBase Shell
To open HBase shell, you need to SSH to your Linux cluster (for a Windows cluster, you 
can RDP to it and use the Hadoop command-line utility). You use PuTTY to open the SSH 
connection. Once the connection is made, execute the HBaseshell command to get into 
the HBase shell. Once you are in the shell, you can execute a few commands to verify that 
everything is up and running correctly. Execute the status 'summary' and status 'simple' 
commands to see what is available. The result of these commands is shown in Figure 6-5.

Figure 6-4.  HBase Master UI
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In Figure 6-5, you can see that there is one active master and its network location, 
two backup masters, and two worker nodes. Also, there are other details about the worker 
nodes, such as requests per seconds, regions, and so forth.

Create Tables and Insert Data
HBase stores data in rows and columns, which are inside a table. You can relate a table in 
HBase to that of a traditional relational database table. But columns are quite a different 
concept here. As already discussed, columns are created when data is inserted and the 
column should be included in one of the column families. At table creation time, you 
only specify the column family. So, let’s look at how to store simple employee contact 
information.

Name: Joe Hayes
Email: joe@contoso.com, joe@live.com, Phone: 230-555-0191, 646-555-0113, 
508-555-0163

The first thing to do is divide data into column families. Table 6-1 shows one of the 
ways that you can divide data into column families in a table structure.

Figure 6-5.  HBase cluster status
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It is difficult to grasp the column family concept at first. But assume that some 
employees have two personal email addresses or only one mobile phone as the contact 
number. In such cases, a column family can have more/less columns than the previous 
record. Unlike a traditional relational database, you can create columns when inserting 
data. Hence, each record can have a different number of columns, optimizing both storage 
and performance. The following is the procedure to create a table and insert data into it.

	 1.	 The create command creates a new table. Name it employee 
and create three column families in it.

create 'employee', 'name', 'email', 'phone'

■■ Note H Base is case sensitive. A table named ‘employee’ is not same as ‘Employee’.  
The same applies to a column and a column family.

	 2.	 After the table is created, you can view existing tables by using 
the list command.

	 3.	 To insert data, the simplest way is to use the put command. 
Syntax for the put command is put 'table', 'rowkey', 
'columnfamily:column', 'value'. Based on this syntax, the code 
to insert all data for an employee table looks like the following.

put 'employee', 'E1', 'name:firstname', 'Joe'
put 'employee', 'E1', 'name:lastname', 'Hayes'
put 'employee', 'E1', 'email:work', 'joe@contoso.com'
put 'employee', 'E1', 'email:personal', 'joe@live.com'
put 'employee', 'E1', 'phone:home', '230-555-0191'
put 'employee', 'E1', 'phone:work', '646-555-0113'
put 'employee', 'E1', 'phone:mobile', '646-555-0113'

	 4.	 After all the rows are inserted, you can view data using the 
scan command shown next. The result shown in Figure 6-6.

scan 'employee'

In Figure 6-6, you can see that for a single row, the command returns multiple records, 
one for each column. Also, note that there is a timestamp field along with the column value. 
This timestamp is used to return the appropriate versions of flashback queries.

Table 6-1.  Employee Table

Column Family: name Column Family: email Column Family: phone

ID firstname lastname work personal home office mobile

E1 Joe Hayes joe@contoso.com joe@live.com 230-
555-
0191

646- 
555- 
0113

646- 
555- 
0113
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HBase Shell Commands
There is a long list of commands that you can execute on an HBase shell. This section 
looks at a few of the very common commands.

•	 The count command returns the number of rows in a table. By 
default, it returns a count every 1000 rows. You can change this 
default behavior by specifying an interval to the count command.

hbase> count 'table'
hbase> count 'table', INTERVAL => 10000

•	 The get command returns row or cell contents. It takes a table 
name and row key as the minimum parameters. Optionally, you 
can specify a dictionary of column(s), timestamp, time range, and 
versions.

hbase> get 'table', 'rowkey'
hbase> get 'table', 'rowkey', {COLUMN => 'column1', TIMESTAMP => ts1}
hbase> get 'table', 'rowkey', {TIMERANGE => [ts1, ts2]}
hbase> get 'table', 'rowkey', {VERSION => 4}

•	 The scan command, as the name suggests, scans a table. It takes a 
table name and optionally many different scanner specifications. 
Scanner specifications include TIMERANGE, FILTER, LIMIT, 
STARTROW, ENDROW, TIMESTAMP, MAXLENGTH, COLUMNS, 
and so forth. FILTER is discussed later in the chapter.

hbase> scan 'table', {COLUMNS => 'c:colname', LIMIT => 10}
hbase> scan 'table', {FILTER => "(PrefixFilter ('row')) AND 
(TimestampsFilter (123, 456))"}

Figure 6-6.  Employee table row
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•	 The disable command takes a table name and starts disabling 
the table. Disabling a table does not allow the user to query it 
or insert data. It is still available through the list and exists 
commands.

•	 The drop command removes the table from HBase, taking the 
table name only. Please note that before dropping the table, it 
must be disabled.

•	 The delete command puts a delete cell value at a specified table/
row/column and optionally, timestamp coordinates it.

•	 The deleteall command deletes all cells in a given row; pass a 
table name, row, and optionally a column and timestamp.

The scan command has a filter as one of its options. Filters are useful when it comes 
to querying data out of HBase. A filter language was introduced in Apache HBase 0.92. 
The following are the available filters.

•	 KeyOnlyFilter: The simplest filter, it takes no parameter and 
returns the key component of a row.

•	 FirstKeyOnlyFilter: A filter that only returns the first key value 
from each row. This filter can be used more effectively to perform 
a row count operation.

•	 PrefixFilter: Takes one argument, a prefix of a row key, and 
returns all the rows that match the prefix with the row key prefix.

•	 ColumnPrefixFilter: Similar to PrefixFilter, but in a column. 
It takes one argument, a column prefix, and returns only those 
key-values present in a column that starts with the specified 
column prefix.

•	 PageFilter: Limits the results to a specific page size. It terminates 
scanning once the number of rows satisfying the filter is greater 
than the given page size.

•	 QualifierFilter: Takes two parameters: an operator like equal, 
greater than, not equal, and so forth, and a byte array comparator 
for the column qualifier portion of a key.

•	 ValueFilter: Filters based on column value. It takes a 
comparator and an operator as parameters.

Using .NET SDK to read/write Data
Microsoft provides .NET SDK to work with HDInsight clusters, which you used in 
previous chapters. For HBase, there is the Nuget library to directly issue commands from 
.NET code. This allows you to seamlessly integrate HBase into .NET applications. To 
demonstrate the usage of .NET SDK for HBase, let’s implement the following scenario.
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You need to show the user all the places that fall under a specific postal code. There 
can be one or more places for a single postal code.

For this, you will use the data from http://geonames.org and download Indian 
postal codes from http://download.geonames.org/export/zip/IN.zip. I‘ve changed 
the data a bit to form a row key as per the filter need you have. The row key contains the 
state, city, community, and postal code combination. You group data by postal code 
and flatten the group into a single row, with a row key as the first column. The rest of the 
columns are location names (multiple columns). You can download it from http://bit.
ly/indian-post-codes.

One of the important parts of an HBase column is that you do not need to remember 
column names. In our case, you want to store the postal code and all the places with the 
same postal code in the same row. Some postal codes only contain one place, while some 
may contain ten places. This is an ideal scenario for an HBase column family. HBase is 
optimized for this. The following is the sample data from the IN.tsv file (http://bit.ly/
indian-post-codes)—handpicked and trimmed for brevity—to show what the data  
looks like.

IN|Delhi|Central Delhi|New Delhi|110004          Rashtrapati Bhawan
IN|Maharashtra|Mumbai|Mumbai|400001              Stock Exchange 
                                                 Town Hall (Mumbai)
IN|Karnataka|Bangalore|Bangalore North|560001    Mahatma Gandhi Road 
                                                 Highcourt
IN|West Bengal|Kolkata|Kolkata|700001            Treasury Building 
                                                 R.N. Mukherjee Road

Each line has two places that share a single postal code. Now let’s write the code to 
insert the data into the HBase table.

Writing Data
To write data from the local file, follow these steps.

	 1.	 Create a C# console application in Visual Studio 2012 or 
higher by clicking New ➤ Project from the File menu and then 
selecting Visual C# ➤ Windows ➤ Console Application.

	 2.	 Add a Nuget reference to the Microsoft.HBase.Client. This 
is a REST client for HBase. Installing this Nuget will add 
dependencies as well, which includes protobuf-net and the 
fault-handling library.

	 3.	 Read the data and create an in-memory list of row keys 
(string) and places (array of string). Assume that there is a 
IN.tsv file in the same folder as the application and read the 
content. The following method should be placed inside the 
Program class alongside the Main method. It will be called 
from your Main method directly; hence, it is a static method.

http://geonames.org/
http://download.geonames.org/export/zip/IN.zip
http://bit.ly/indian-post-codes
http://bit.ly/indian-post-codes
http://bit.ly/indian-post-codes
http://bit.ly/indian-post-codes
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private static List<Tuple<string, string[]>> ReadData()
{
    // Load data from CSV line by line
    var reader = new System.IO.StreamReader(System.IO.File.OpenRead(@"IN.tsv"));
    string line;
    List<Tuple<string, string[]>> postCodes = new List<Tuple<string, string[]>>();

    while (!reader.EndOfStream)
    {
        line = reader.ReadLine();

        string rowKey = line.Substring(0, line.IndexOf('\t'));
        string[] places = line.Substring(line.IndexOf('\t'))
            .Split(new char[] { '\t' }, StringSplitOptions.RemoveEmptyEntries);

        postCodes.Add(new Tuple<string, string[]>(rowKey, places));
    }
    Console.WriteLine($"Post code read completed with total: {postCodes.Count}");
    return postCodes;
}

In the ReadData method, you read a file line by line. Each 
line is separated by a tab character, which makes the first 
element the row key and the rest of the string are places, again 
separated by a tab character.

	 4.	 Write the data in to HBase. For this, create a new HBaseWriter 
class. Check whether you have the table in HBase or not. If 
you don’t, then create it. You will write in a batch of 1000 
records to optimize the write speed. The following is a method 
called WriteData the writes data into an HBase cluster. The 
following is the code for the HBaseWrite class.

public class HBaseWriter
{
    // HDinsight HBase cluster and HBase table information
    string _clusterName = "https://{0}.azurehdinsight.NET/";
    string _hadoopUsername;
    string _hadoopPassword;
    const string HBASETABLENAME = "postcodes";

    public HBaseWriter(string clusterName, string username, string password)
    {
        _clusterName = string.Format(_clusterName, clusterName);
        _hadoopUsername = username;
        _hadoopPassword = password;
    }
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    public async Task WriteDataAsync(List<Tuple<string, string[]>> postcodes)
    {
        HBaseClient client;
        ClusterCredentials credentials = new ClusterCredentials(
new Uri(_clusterName), _hadoopUsername, _hadoopPassword);
        client = new HBaseClient(credentials);

        // create the HBase table if it doesn't exist
        if (!client.ListTablesAsync().Result.name.Contains(HBASETABLENAME))
        {
            TableSchema tableSchema = new TableSchema();
            tableSchema.name = HBASETABLENAME;
            tableSchema.columns.Add(new ColumnSchema { name = "p" });
            client.CreateTableAsync(tableSchema).Wait();
            Console.WriteLine("Table \"{0}\" is created.", HBASETABLENAME);
        }
        int rows = 0;
        CellSet set = null;
        int pageSize = 1000;

        foreach (Tuple<string, string[]> data in postcodes)
        {
            if (rows % pageSize == 0)
                set = new CellSet();

            // Create a row
            �var row = new CellSet.Row { key = Encoding.UTF8.GetBytes(data.

Item1.Substring(3)) };

            foreach (string place in data.Item2)
            {
                // Add columns to the row
                var value = new Cell
                {
                    column = Encoding.UTF8.GetBytes("p:" +
                        Guid.NewGuid().ToString().Substring(0, 6)),
                    data = Encoding.UTF8.GetBytes(place)
                };
                row.values.Add(value);
            }

            // Add row to CellSet
            set.rows.Add(row);

            // Write the postal codes and places to the HBase table
            rows++;
            if (rows % pageSize == 0 || postcodes.Count == rows)
            {
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                await client.StoreCellsAsync(HBASETABLENAME, set);
                Console.WriteLine("\tRows written: {0}", rows);
            }
        }
    }
}

The important thing to notice here is the column name. You are never going to fetch 
the data based on column names. To us, all places are the same. Hence, you just put a 
random six-character string, which you can see in the code after the Add columns to the 
row comment.

Reading/Querying Data
After data is written to HBase, it is time to learn how to query it back. Let’s use the same 
project from the previous section and add a new class to it named HBaseReader. You’ll 
read the postal codes and the state–city–community (e.g., Delhi–Central Delhi–New 
Delhi). You can execute a scan command to query from an HBase shell. Here you don’t 
have a full row key; hence, you use PrefixFilter with the scan command.

scan 'postcodes', {FILTER => "PrefixFilter('Delhi|Central Delhi|New Delhi')" }

It returns 11 rows, starting with the given prefix filter. Now, let’s see how this is done 
in C#. In C#, you need to create a scanner that takes parameters, like the prefix filter 
and batch size, to return. Once you create a scanner object, you can call HBaseClient’s 
ScannerGetNextAsync method to fetch matching records. Since it returns data in batches, 
you need to loop on a batch of data until you get all the records out. the complete 
HBaseReader class is shown next.

public class HBaseReader
{
    // HDinsight HBase cluster and HBase table information
    string _clusterName = "https://{0}.azurehdinsight.NET/";
    string _hadoopUsername;
    string _hadoopPassword;

    const string HBASETABLENAME = "postcodes";

    public HBaseReader(string clusterName, string username, string password)
    {
        _clusterName = string.Format(_clusterName, clusterName);
        _hadoopUsername = username;
        _hadoopPassword = password;
    }
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    public async Task QueryDataAsync(string state, string city, string community)
    {
        ClusterCredentials creds = new ClusterCredentials(
            new Uri(_clusterName), _hadoopUsername, _hadoopPassword);
        HBaseClient client = new HBaseClient(creds);

        string startRow = $"{state}|{city}|{community}";
        Scanner scanSettings = new Scanner()
        {
            batch = 1000,
            startRow = Encoding.UTF8.GetBytes(startRow),
            �filter = new PrefixFilter(Encoding.UTF8.GetBytes(startRow)).

ToEncodedString()
        };

        // Make async scan call
        ScannerInformation scannerInfo =
            await client.CreateScannerAsync(HBASETABLENAME, scanSettings,
                RequestOptions.GetDefaultOptions());

        CellSet next;

        while ((next = await client.ScannerGetNextAsync(
            scannerInfo, RequestOptions.GetDefaultOptions())) != null)
        {
            foreach (CellSet.Row row in next.rows)
            {
                var places = row.values
                    �.Where(o => Encoding.UTF8.GetString(o.column).

StartsWith("p:"));
                Console.WriteLine(Encoding.UTF8.GetString(row.key));
                foreach (var item in places)
                {
                    Console.WriteLine("\t" + Encoding.UTF8.GetString(item.data));
                }
                Console.WriteLine("");
            }
        }
    }
}
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And finally, the main method looks like following.

static void Main(string[] args)
{
    // Read data from file and create in memeory list
    List<Tuple<string, string[]>> postCodes = ReadData();

    // Save it to HBase
    �HBaseWriter writer = new HBaseWriter("{ClusterName}", "{Username}", 

"{Password}");
    writer.WriteDataAsync(postCodes).Wait();

    // Query data back
    �HBaseReader reader = new HBaseReader("{ClusterName}", "{Username}", 

"{Password}");
    reader.QueryDataAsync("Delhi", "Central Delhi", "New Delhi").Wait();

    Console.ReadKey();
}

With this code, you can save and read data from HBase.

Summary
In this chapter, you explored HBase and learned how easy it is to query massive data with 
it. Apache HBase is a NoSQL database on top of Hadoop that has fast read/write speed 
with consistency. HBase guarantees that it will write everything to disk. The region and 
region server concepts provide high flexibility in reading and writing data. An automatic 
sharding process takes the load off developers, allowing them to focus on implementing 
business scenarios. It can easily be configured from the HBase dashboard. HBase 
Shell provides a powerful command-line tool to interact with HBase when developing 
applications and performing quick processing. HBase .NET SDK gives developers the 
ability to integrate HBase read/write seamlessly into their own applications.

In the next chapter, you look at Apache Storm, a real-time stream-processing system.
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CHAPTER 7

Real-Time Analytics  
with Storm

So far, you’ve seen how to work with batch data processing in Hadoop. Batch processing 
is used with data at rest. You typically generate a report at the end of the day. MapReduce, 
Hive, and HBase all help in implementing batch processing tasks. But there is another 
kind of data, which is in constant motion, called streams. To process such data, you 
need a real-time processing engine. A constant stream of click data for a campaign, user 
activity data, server logs, IoT, and sensor data—in all of these scenarios, data is constantly 
coming in and you need to process them in real time, perhaps within a window of time. 
Apache Storm is very well suited for real-time stream analytics. Storm is a distributed, 
fault-tolerant, open source computation system that processes data in real time and 
works on top of Hadoop.

This chapter looks into Storm on HDInsight to understand its components and 
workings. You will submit a Storm topology to process real-world streams of data.

Overview
Apache Storm is a reliable way to process unbounded streams of data. Similar to what 
Hadoop does for batch processing, Storm does for real-time processing. It is simple, easy 
to implement, and takes away the complexity of thinking and writing code that can run 
on multiple nodes simultaneously. I have been talking about streams of data. So what is 
it? A stream is an unbounded sequence of data. Unbounded means that it doesn’t have 
a start or an end. Hence, it is not like reading a file or records from a database. You will 
never get to the end of a stream because it is a never-ending continuous stream of data. 
Think of Twitter as a stream of data; continues without end.

So, unbounded streams mean that processing cannot wait until all the data is 
received, because that will never happen. It is not like running a query against a table, 
as you will never have all the data in a table. This signifies that processing has to be 
continuous as well. That is why you continuously process and get insight out of a stream 
as it passes through the data pipeline. And processing cannot be done on everything 
you have in a stream; for example, aggregating a whole stream is not as useful as one 
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on a temporal window. For example, if you are getting a stream from Twitter, and you 
are monitoring hashtags matching to a company or a person, then you might be more 
interested in knowing the most used hashtag in the past hour or past day, compared to 
the most used hashtag since the beginning of Twitter.

Now that you understand what a data stream is, let’s discuss Apache Storm, which 
can be used to make sense of data streams. Apache Storm is the project built on Hadoop 
technologies to process streams of data in a reliable and efficient manner. To do so, Storm 
uses the concept of topology. A topology consists of spouts and bolts. A spout is the part 
of topology that is responsible for getting data from an external stream and feeding it into 
the topology for processing. There can be one or more spouts in a topology. They connect 
to a source to fetch data. The spout then emits a stream itself. Each emission consists of a 
tuple, which is effectively a record or a row of data.

Bolts are also within a topology. Bolts consume the output stream from spout(s) or 
from another bolt(s), perform some operation on the existing tuples, and emit it further 
down the pipeline. Bolts are responsible for aggregating, counting, storing, or doing 
any other processing on a tuple. A bolt can also emit the same, or different, or multiple 
streams to the next bolts in the pipeline. This way, you can build any complex topology.

Ultimately, a topology has spouts, which convert a data source into a stream of 
tuples. Bolts act on tuples; they contain the logic to operate on those tuples. And this runs 
continuously. You submit a topology once, and it continues to process until you stop it.

To compare real-time analytics with traditional batch analytics, consider Figure 7-1. 
Traditional processing requires running an analytic query against stored historical data. 
For example, consider an app that calculates the cycling distance of a user who has cycled 
every month using global positioning system (GPS) location data. Traditionally, in batch 
processing mode, the app calculates the total distance at the end of each month, based on 
the data transmitted by the user over the previous month, which is stored in a database. 
In contrast, stream processing performs continuous analysis to keep running totals that 
are updated moment by moment as GPS data comes in while the user is actually cycling.

■■ Note   Storm is designed by Nathan Marz and open sourced by Twitter.

Figure 7-1.  Traditional vs. real-time analytics
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In the preceding case, a traditional approach answers questions by using historic 
data, while in the second case, answers are continuously updated using streaming data. 
Streaming analytics is different from a simple traditional database because traditional 
analytics load all the data first; even if it is in memory, all the data has to be loaded before 
running a query. On the other hand, real-time analytics continuously monitors data that 
is modified over time. For example, GPS data can be continuously monitored to identify if 
the user is deviating from his usual path or to motivate him to go further once he reaches 
his maximum distance.

Now that you have basic idea about Storm, it is a good time to discuss its benefits:

•	 Ease of use: Apache Storm is built on Hadoop; hence, as a 
developer, you don’t have to worry about the complexity that 
comes with big data, distributed computing, and scaling. Storm 
handles the scale-out complexities and the way that code is 
parallelized, so that you can focus on business logic.

•	 Low latency: Real-time streams can get really fast—like millions 
of events per second. If you have latency in processing in such a 
scenario, then your data starts to pile up, and sooner or later, you 
start losing messages. Things get worse in distributed processing. 
Storm has been battle-tested by many companies in the real 
world by running production workloads. Benchmarks have 
shown that Storm processes more than a million messages per 
second per node.

•	 Scalable: Just like Hadoop, Storm can be scaled anywhere from a 
single node to hundreds of nodes.

•	 Fault tolerant: Storm runs on top of Hadoop in a distributed 
environment, which means that it is run on commodity hardware, 
which can fail. But Storm guarantees message processing at 
least one. If any node goes down, then all the messages are 
automatically replayed to different nodes in the cluster.

•	 Reliable: Let’s say that there are many messages coming into 
Storm, and if any of them fails to complete the whole processing, 
then Storm knows this and replays that message. On top of that, 
you can be sure that your message is processed exactly once.

Now that you know the benefits of Apache Storm, I’ll list a few scenarios where real-
time analytics can be used.

•	 Internet of Things (IoT)

•	 Financial transaction and fraud detection

•	 Network and server log monitoring

•	 Intelligent traffic management

•	 Energy grid monitoring

•	 Social analysis

•	 Telecom customer churn prediction
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Storm Topology
As discussed, the Storm topology contains spouts and bolts. A spout emits tuples by 
consuming from a streaming data source, which can be Twitter, financial data, or data 
coming from a network port. Normally, Storm is used along with a queuing service like 
Azure Event Hub or Apache Kafka. Data comes to these queuing services and it is then 
picked up by a Storm spout. In a topology, data can come from multiple sources. Be it a 
single source or multiple sources, data comes into Storm only through a spout.

Spouts emit tuples, which you can think of as a record or a row of data in a stream. It 
is not necessary to emit only one stream; a spout can consume a stream, split it, and emit 
multiple streams based on the business logic and data. Also, a single spout can consume 
multiple streams and combine them into a single stream. In either case, a spout has to 
emit at least one stream.

Tuples emitted by a spout go to a bolt or multiple bolts. The bolt processes it and 
then emits a tuple for other bolts to process. Say, for example, data coming from a spout 
gets to the first bolt, which might aggregate it, or perhaps it sorts the data or just logs that 
the data arrived and passes the same or a new tuple downstream for more processing 
by other bolts. Just like a spout, a bolt can receive data from multiple streams emitted 
by different spouts. Usually, a bolt can differentiate between different streams and can 
act accordingly. So, Storm provides a very flexible and adaptable way of constructing 
a topology, which makes sense for the data that you want to process. Figure 7-2 shows 
a sample Storm topology, which illustrates the fundamentals of spouts and bolts. This 
sample topology consists of multiple spouts, and a bolt can receive data from these 
multiple spouts.

Figure 7-2.  Sample Storm topology
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Stream Groupings
The next thing to understand in the Storm topology is controlling the flow of tuples.  
At times, you may want to send the same value tuples to the same bolt so that you can 
count easily. To control this behavior, there is concept called stream groupings. When 
you define a topology, you build a graph of spouts and bolts. At a more granular level, 
each bolt is executed as multiple tasks in a topology. And a stream is partitioned among 
the bolts’ tasks. Hence, each task sees subsets of the whole tuple stream. To control how 
tuples are partitioned and assigned to a bolt, stream grouping is used. Stream grouping 
is specified on the bolt when you define the topology. The following are a few of the most 
used stream grouping types.

•	 Shuffle grouping: The most common type of grouping. Shuffle 
grouping distributes tuples to all bolts in a uniform but random 
way. Without any particular order, tuples are distributed to all 
bolts, but every bolt gets an equal number of tuples. Typically, this 
distributes the load across all the bolts uniformly. So, when you 
don’t have any specific data distribution requirements, use this.

•	 Field grouping: This controls the flow of the tuples to the 
same bolt based on one or more fields in the tuple. This 
grouping guarantees that all the same field value tuples will 
be processed by the same bolt. For example, if you want all 
the tweets with the same hashtag going to the same bolt for 
counting, then use the field grouping on the hashtag field of 
the tweet tuple. Also, partitions happen on the basis of the field 
value, not based on stream. You can combine multiple streams 
based on their field value.

•	 All grouping: If you want to send a tuple to all the bolts, then use 
this grouping. It is not used with data processing. It sends a signal 
to bolts. For example, to refresh cache data in each bolt every 
hour, you can send a signal to bolts using all grouping. Also, if you 
have bolts with filtering that needs to be changed from time to 
time, then you can use this feature to facilitate changing filters.

•	 Global grouping: You can use this grouping to get all the tuples 
in a stream to pass through a single bolt. It generally sends the 
whole stream to the bolt task with the smallest id. You might say 
this is redundant because you can achieve the same result if you 
create only a single bolt by defining its parallelism. But what if 
you only want all the data from a single stream and for the rest of 
the streams to continue to be processed parallel? In such case, 
you can achieve your goal by using global grouping. Typically, 
if you want to carry out some reduce phase in your topology 
over data coming from the previous step, then global grouping 
should be used.
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•	 Direct grouping: In this grouping, the source decides which bolt 
receives a tuple. For example, you have a web server log that you 
want to send to different bolts based on its HTTP response code. 
Direct grouping can only be used with direct streams.

•	 Custom grouping: This grouping provides a customized 
processing sequence. This gives maximum flexibility for  
in-designing topology, based on factors such as type, load, and 
seasonality.

Storm Architecture
The physical architecture of Apache Storm is also based on a master-slave arrangement, 
which is similar to the headnode-workernode in Hadoop. In Storm, a master is called 
Nimbus and a slave is called a supervisor node. Also, ZooKeeper coordinates between 
distributed processes. The following sections discuss the components that make up the 
Storm architecture.

Nimbus
The master node in Storm is called the Nimbus server. Its job is to distribute application 
code across worker nodes, determining when new instances are needed, monitoring the 
running instances for failures, and restarting them as and when needed. Nimbus is partly 
a task scheduler. If there is no Nimbus server, then no work can be scheduled and no 
work will be carried out. Hence, Azure HDInsight Storm cluster has two Nimbus servers. 
One is always in action and other is in passive mode. If active Nimbus goes down, then 
ZooKeeper as a monitoring service notifies the passive node to become active and takes 
over the responsibility. Nimbus stores state information in ZooKeeper, so in the event of a 
failure, the passive node can immediately take charge. And this makes Storm very stable. 
Also, restarting the Nimbus demon is very fast, which adds more stability.

The supervisor node (discussed in the next section) is a worker node in Storm. It 
does all the actual work. When a topology deployment request is received, it distributes 
the code to supervisor nodes, and assigns tasks for spouts and bolts instances to each 
supervisor. Also, it signals the supervisor nodes to spawn the required worker process for 
tasks. Afterward, it monitors the status of the tasks assigned to each supervisor node. If 
it finds any failure, then it reassigns the task to another supervisor. On the other hand, if 
Nimbus fails and is not restarted, then the topology continues to process because Nimbus 
doesn’t take part in data processing. So, as long as supervisors continue to work without 
fail, you don’t need the Nimbus demon. Once any of the supervisor tasks fails, Nimbus 
reassigns the task to another node.

Supervisor Node
The slave, or worker, node in Storm is called a supervisor node, which actually executes 
spouts and bolts. Each supervisor node can run multiple instances of each component 
(spout and bolt). Its primary responsibility includes creating, starting and stopping 
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workers processed to execute assigned tasks. Each worker process has one or more 
executor, which is essentially just a thread on which an actual component will run. This 
allows an instance of the same bolt to be created multiple times and distributed across all 
the nodes in a cluster.

ZooKeeper
When you work in a distributed environment, many processes need to share information, 
such as configuration settings and other metadata, with each other to coordinate various 
tasks. To facilitate information sharing in a reliable manner, Storm uses the ZooKeeper 
service. Apache ZooKeeper is a standalone project that can be used by any application 
to share information in a distributed environment. Since Storm is also a distributed 
application, it utilizes a ZooKeeper cluster for the coordination of different processes. 
ZooKeeper also acts as a communication point between the Nimbus and supervisor 
process on worker nodes, as illustrated in Figure 7-3.

Worker, Executor, and Task
Every Storm cluster has one or more worker process. Each worker process has one 
or more executor. Each executor has one or more tasks, which are nothing but the 
topology components—spouts and bolts. You can visualize a worker process as shown 
in Figure 7-4.

Figure 7-3. Storm cluster
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Here, the worker process communicates with the Nimbus. And there can be multiple 
worker processes running across a Storm cluster on your supervisor nodes. Each worker 
process is isolated from the other by running inside its own Java virtual machine. Each 
worker process can spawn one or more next level of compute, called an executor, which 
is basically a thread. Inside each executor, there are one or more tasks. A task is a running 
instance of the Storm component (a spout or a bolt).

Now there are some differences between Java topology and Hybrid .NET topology. 
As you know, an executor is a thread running in a JVM environment. In a hybrid .NET 
topology, you can’t run .NET code inside a Java process; hence, a .NET component runs 
its own process. An instance of the SCPHost (discussed in the next section) executable 
is created per executor, which then runs the component in its own thread. A visual 
comparison of a Java and a hybrid .NET topology worker process is shown in Figure 7-5.

This shows that in a hybrid topology, many Java executors are condensed into a 
few worker processes, but every .NET executor runs in its own separate process. A Java 
topology has a slight performance benefit because you can route tuples within the worker 
process and it does not incur the cost of sending a message over the wire. But note that 
unless you need hundreds of thousands of messages per second on a handful of servers, 
you can get good enough performance from a hybrid topology.

Figure 7-5.  Java vs. hybrid .NET topology

Figure 7-4.  Worker, executors, and tasks in supervisor node
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Creating a Storm Cluster
Azure HDInsight provides many different cluster types, as discussed in Chapter 2. To 
work with Storm, you need a Nimbus node, a supervisor node, and a ZooKeeper node. 
HDInsight provides a simple-to-deploy Storm cluster type that automatically creates 
all of these nodes. There are multiple ways to create a Storm cluster (i.e., Azure portal, 
PowerShell, and Azure Resource Manager templates). Let’s look at the Azure Resource 
Manager template and the Azure portal to create a Storm cluster.

Using Azure Resource Manager
The Azure Resource Manager (ARM) template is a JSON file with different resource 
and configuration options to deploy/provision/configure resources in Azure. You will 
use the template available at https://hditutorialdata.blob.core.windows.net /
armtemplates/create-linux-based-storm-cluster-in-hdinsight.json.

The following procedure creates a Linux-based Storm cluster.

	 1.	 Open the following URI, which takes the ARM template URL 
and opens an easily configurable options page to create a 
Storm cluster.

https://portal.azure.com/#create/Microsoft.Template/
uri/https%3A%2F%2Fhditutorialdata.blob.core.windows.
net%2Farmtemplates%2Fcreate-linux-based-storm-
cluster-in-hdinsight-35.json

	 2.	 Fill out the following requirements to complete the 
configuration.

•	 Subscription: Select the Azure subscription for your cluster 
from a list of your subscriptions.

•	 Resource group: Create a new resource group or select an 
existing group from a list.

•	 Location: Specify where your cluster and data will reside.

•	 ClusterName: A unique name for the cluster. Accesses your 
cluster using https://{clustername}.azurehdinsight.net.

•	 Cluster credentials: The username and password for your cluster 
to open on the dashboard. These credentials are used to submit 
jobs and get into a cluster. The default username is admin.

•	 SSH credentials: The username and password to get onto a 
Linux machine.

•	 Cluster Worker Node count: The number of worker nodes 
you want a cluster to have. If you are creating cluster for 
learning purposes, then two nodes are enough.

	 3.	 Agree to the terms and conditions, and then click the 
Purchase button.

http://dx.doi.org/10.1007/978-1-4842-2869-2_2
https://hditutorialdata.blob.core.windows.net/
https://portal.azure.com/#create/Microsoft.Template/uri/https://hditutorialdata.blob.core.windows.net/armtemplates/create-linux-based-storm-cluster-in-hdinsight-35.json
https://portal.azure.com/#create/Microsoft.Template/uri/https://hditutorialdata.blob.core.windows.net/armtemplates/create-linux-based-storm-cluster-in-hdinsight-35.json
https://portal.azure.com/#create/Microsoft.Template/uri/https://hditutorialdata.blob.core.windows.net/armtemplates/create-linux-based-storm-cluster-in-hdinsight-35.json
https://portal.azure.com/#create/Microsoft.Template/uri/https://hditutorialdata.blob.core.windows.net/armtemplates/create-linux-based-storm-cluster-in-hdinsight-35.json
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By default, this template provisions two Nimbus nodes and three ZooKeeper nodes, 
along with whatever number of worker/supervisor nodes that you select. Once you hit 
the Purchase button, it takes a few minutes to provision the cluster. You can browse the 
Ambari dashboard by going to https://{ClusterName}.azurehdinsight.net.

Using Azure Web Portal
Another way to provision a cluster is to use the Azure portal, which you already learned 
how to use in Chapter 2. Hence, the following only covers the steps you need to know for 
a Storm cluster.

•	 Cluster type selection. On the basic configuration settings page, 
under cluster type selection, choose Storm. You can also choose 
the operating system (Linux or Windows). Figure 7-6 shows the 
Windows operating system. In a Linux system, you can choose 
among different versions of Storm, up to Storm 1.0.1 with HDI3.5. 
Windows only supports Storm 0.10.0 with HDI 3.3 at the time of 
writing.

•	 Cluster size. On the custom settings tab, the fourth option is 
cluster size. Here you can choose the cluster’s supervisor nodes 
count and the Nimbus node, supervisor node, and ZooKeeper 
node sizes. Figure 7-7 shows four supervisor nodes, with a size D3 
v2 virtual machine with four cores each. Both the Nimbus node 
and the ZooKeeper node are using A3 virtual machine with four 
cores. There are two Nimbus nodes and three ZooKeeper nodes.

Figure 7-6.  Storm cluster type

http://dx.doi.org/10.1007/978-1-4842-2869-2_2


Chapter 7 ■ Real-Time Analytics with Storm 

153

Storm UI
The Storm UI (user interface) provides a web-based interface for working with 
running topologies. It is already included in your HDInsight cluster. Through the 
Storm UI, you can view the running topology, including its current stats for spouts 
and bolts.

To open the Storm UI, browse to http://{ClusterName}.azurehdinsight.net/
stormui, where ClusterName is the name of your cluster. Figure 7-8 shows a sample 
Storm UI with a topology named Wordcount. Also, you can see topology stats, like tuples 
emitted and transferred, through topologies in different time windows.

Figure 7-7.  Storm cluster size options
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You can view the following information on the Storm UI dashboard.

•	 Topology stats: Information about tuples passed through 
topology and performance of the same, organized into a time 
window.

•	 Spouts and bolts: Information about the executors, tasks, and 
emitted and transferred tuples. Includes spout performance 
in terms of average latency to process a tuple and acked 
(acknowledged) or failed messages.

•	 Topology configuration: A summary of the supervisor nodes and 
the Nimbus nodes, and other system stats.

Other actions are also available.

•	 Activate: Resumes the processing of a deactivated topology.

•	 Deactivate: Pauses a running topology.

•	 Rebalance: When a topology starts, it takes all the nodes into 
account and tries to get the best use out of them. Once you add 
or remove nodes from a cluster, the topology may become non-
uniform, making a few nodes work more/less than others do. 
Rebalancing a topology adjusts the parallelism to compensate an 
increased or a decreased number of nodes in a cluster.

•	 Kill: Permanently terminates the topology and stops all the 
processing.

Figure 7-8.  Storm UI
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In Storm UI, you can drill down to more specific components, such as spouts and 
bolts, by selecting them from the dashboard page. This opens an information page for 
the specific component. Figure 7-9 shows the Storm UI’s component view for a spout in a 
topology.

When viewing information about a spout or bolt, selecting the port number in the 
executor section opens the logs for the specific instance of the component. In our word 
count sample, a subset of a log might look like following.

2017-01-27 14:18:02 b.s.d.task [INFO] Emitting: split default ["with"]
2017-01-27 14:18:02 b.s.d.task [INFO] Emitting: split default ["nature"]
2017-01-27 14:18:02 b.s.d.executor [INFO] Processing received message 
source: split:21, stream: default, id: {}, [snow]
2017-01-27 14:18:02 b.s.d.task [INFO] Emitting: count default [snow, 747293]
2017-01-27 14:18:02 b.s.d.executor [INFO] Processing received message 
source: split:21, stream: default, id: {}, [white]
2017-01-27 14:18:02 b.s.d.task [INFO] Emitting: count default [white, 747293]
2017-01-27 14:18:02 b.s.d.executor [INFO] Processing received message 
source: split:21, stream: default, id: {}, [seven]
2017-01-27 14:18:02 b.s.d.task [INFO] Emitting: count default [seven, 1493957]

In this log, you can see the task and executor and their respective work-specific 
message.

Stream Computing Platform for .NET (SCP.NET)
The stream computing platform (SCP) for .NET or SCP.NET provides .NET C# 
programmability against Apache Storm on an Azure HDInsight cluster. SCP is a platform 
to build a real-time, reliable, consistent, and high-performance data processing 
application. SCP enables .NET developers to run C# code as a spout or bolt while 

Figure 7-9.  Storm UI spout stats
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leveraging JVM-based Storm under the cover. The .NET code and JVM communicates 
over a TCP (Transmission Control Protocol) local socket. As you saw earlier in this 
chapter, each component (spout and bolt) in .NET has a Java process pair, where the 
business logic runs in a .NET process as a plugin.

To design a data processing application with SCP.NET, you need to create at least 
one spout that pulls data from a stream, a bolt to do processing on the output stream of 
the spout, and a design topology. The topology defines the vertexes and the data flows 
between the vertexes. To create a spout, bolt, and topology, SCP.NET provides interfaces 
and methods. Let’s have a look at them next.

ISCP-Plugin
This is a base interface for all the plugins. Currently, it is empty, available to provide a 
common base. It has no functionality for developers to use. The following is the actual 
interface code.

public interface ISCPPlugin
{
}

ISCPSpout
ISCPSpout is the interface for non-transactional spout. It comprises three methods, as 
shown in the following code snippet.

public interface ISCPSpout : ISCPPlugin                    
{
     void NextTuple(Dictionary<string, Object> parms);         
     void Ack(long seqId, Dictionary<string, Object> parms);   
     void Fail(long seqId, Dictionary<string, Object> parms);  
}

It is derived from the ISCPPlugin. All the spout implementa tion in your application 
must implement the ISCPSpout interface. The main method is NextTuple, which is used 
to emit tuples for downstream components. To emit tuples, there is an Emit in SCP.
Context method (discussed later in this chapter). If there is no tuple to emit in NextTuple 
method, then it should return without emitting anything. And ideally, it should sleep for 
10–50 milliseconds, so as not to waste too much CPU.

The Ack and Fail methods are used when ack is enabled in topology (config value 
nontransactional.ack.enabled is true). The seqId parameter is used to identify a tuple 
that is acked or failed. And, if ack is not enabled in a non-transactional topology, then the 
Ack and Fail methods can be left empty. Lastly, the prams input parameter is an empty 
dictionary that is reserved for future use.

Depending on whether the ack is enabled or not, a different emit method overload 
will be used. 
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ISCPBolt
ISCPBolt is the interface for non-transactional bolts. It has only one method, as shown in 
next code snippet.

public interface ISCPBolt : ISCPPlugin
{
     void Execute(SCPTuple tuple);          
}

The Execute method is called whenever there is a tuple from any of the streams 
subscribed by the bolt. As you already know, a bolt can subscribe to multiple streams. 
To identify which tuple came from which stream, there is the GetSourceStreamId in 
SCPTuple method, which returns the stream name. After identifying the stream, a bolt can 
go ahead and process the data, save it, and/or emit for the next bolt(s) to process it.

ISCPTxSpout
The ISCPTxSpout interface is available for a transactional spout. And just like a non-
transactional spout, it has three methods.

public interface ISCPTxSpout : ISCPPlugin
{
    void NextTx(out long seqId, Dictionary<string, Object> parms);  
    void Ack(long seqId, Dictionary<string, Object> parms);        
    void Fail(long seqId, Dictionary<string, Object> parms);        
}

The only difference is the NextTx method. It has a seqId out parameter, which is 
used to identify the transaction. seqId is also used in Ack and Fail methods. Emitted 
data is stored in ZooKeeper to support replay. When any message fails, it is automatically 
replayed. Since there is limited capacity in ZooKeeper, a transactional spout should only 
emit metadata, and not the whole data.

ISCPBatchBolt
ISCPBatchBolt is a transactional bolt interface. It has two methods: Execute and 
FinishBatch.

public interface ISCPBatchBolt : ISCPPlugin           
{
    void Execute(SCPTuple tuple);
    void FinishBatch(Dictionary<string, Object> parms);  
}
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Whenever there is a new tuple from any of the streams that a bolt subscribed to, the 
Execute method is called. And this method is completely similar to a non-transactional 
bolt. FinishBatch is new method, only available in transactional bolts and only called 
when a transaction has ended.

SCP Context
SCP.NET provides the Context object, injected into a constructor in a spout and a bolt. 
The Context object provides a few helpful and required methods to work with Storm. It 
makes a developer’s life easy by providing common-purpose methods and objects. The 
following describes a few of the important methods and objects.

public static ILogger Logger;
public static SCPPluginType pluginType;                      
public static Config Config { get; set; }                    
public static TopologyContext TopologyContext { get; set; }

•	 The Logger object provides logging methods like Debug, Error, 
Info, Warn, Log, and so forth. These methods write to a Storm log, 
which can be viewed from a specific component.

•	 pluginType indicates a plugin type’s current process (i.e., spout, 
bolt, TxSpout, BatchBolt, etc.).

•	 The Config object gives access to the Storm config and plugin 
config dictionary.

•	 The TopologyContext class provides information about the 
component’s place within the topology, such as task ids, inputs 
and outputs, and so forth.

The following are the most-used methods in Context.

•	 The DeclareComponentSchema method defines the input and 
output schema of a component (spout and bolt). Once you 
declare the schema, your code needs to ensure that it emits 
tuples that obey the schema, or the system will throw a runtime 
exception.

public void DeclareComponentSchema(ComponentStream 
Schema schema);   

•	 The Emit method sends the tuple to the next component 
in the topology. An emitted tuple should match the output 
schema of the component. The output schema is defined by the 
components only. There are multiple overloads of this method 
for transactional and non-transactional components. The first 
overload only takes one argument, which is the actual value to 
emit. The second overload takes streamId as well, which signifies 
the stream to which the current tuple will be emitted. Another 
overload takes one more seqId parameter, which is used to 
identify the tuple for ack or fail.
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// Emit values to the default stream
public abstract void Emit(List<object> values);

// Emit values to specified stream
public abstract void Emit(string streamId, List<object> values);

//  For non-transactional Spout only which support Ack. Emit values to 
specified
//  stream, and ack is required to this tuple, by using the unique Sequence 
Id.
public abstract void Emit(string streamId, List<object> values, long seqId);

//  For non-transactional Bolt only which support Ack. Emit values to 
specified stream,
//  and ack is required to this tuple, by using the input tuples as the 
anchors.
public abstract void Emit(string streamId, IEnumerable<SCPTuple> anchors, 
List<object> values);

Topology Builder
To build a topology in C#, you have to use the TopologyBuilder class. And it should 
be provided to Storm using another class that inherits class TopologyDescriptor. 
TopologyDescriptor has abstract method, GetTopologyBuilder. You should return your 
TopologyBuilder object from this method after configuring your topology correctly. This 
is how the plumbing code works in SCP.NET on a Storm cluster.

There are two main methods available on TopologyBuilder class: SetSpout and 
SetBolt.

Let’s first examine usage of the SetSpout method. Here, let’s assume there is an 
object of the TopologyBuilder class named topologyBuilder.

topologyBuilder.SetSpout(
    spoutName: "myspout",
createDelegate: MySpout.Get,
    outputSchema: new Dictionary<string, List<string>>() {
        {Constants.DEFAULT_STREAM_ID, new List<string>(){"field1", 
"field2"}}
    },
parallelismHint: 1,
    customConfigFile: "Custom.config",
    enableAck: true);

Let’s examine each line of code.

•	 The first line calls the SetSpout method.

•	 Then you pass a parameter. The first parameter is the spout name, 
which will appear in the Storm UI and logs.
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•	 The second parameter is a delegate to the Get method, which 
should be defined in the MySpout class and return a MySpout 
object.

•	 The third parameter is the output schema (outputSchema). 
Here, you can specify the emitted tuple’s stream and field 
names. You can specify multiple streams and their respective 
output schemas.

•	 The fourth parameter is parallelism hint (parallelismHint) to 
the Storm, which defines how many instances of the spout can be 
created.

•	 The fifth parameter is the custom configuration file 
(customConfigFile), where you can specify other parameters that 
this component should consider.

•	 In the final sixth parameter, select whether you want to enable 
acknowledgement (enableAck) for the emitted tuple or not.

Next is the SetBolt method. Again, let’s assume there is an object of the 
TopologyBuilder class named topologyBuilder.

topologyBuilder.SetBolt(
    boltName: "mybolt",
    createDelegate: Splitter.Get,
    outputSchema: new Dictionary<string, List<string>>() {
        {Constants.DEFAULT_STREAM_ID, new List<string>(){"field1", "field2"}}
    },
    parallelismHint: 1,
    customConfigFile: "Custom.config",
    enableAck: true)
        .shuffleGrouping("myspout);

The SetBolt method is almost similar to the SetSpout method in terms 
of parameters, so I won’t discuss it again. One thing you should notice is the 
shuffleGrouping method call. If you remember from the field/stream grouping section, 
you have different grouping on bolts. One of them is shuffle grouping. You can specify 
other groupings as well, like allGrouping, fieldsGrouping, and globalGrouping, and the 
tuples are diverted accordingly. 

Using the Acker in Storm
There are three ways a topology can handle a message: non-transactional with no ack, 
non-transactional with ack, and transactional. (Ack stands for acknowledgment.) Each 
topology implementation has its own pros and cons. Let’s discuss them all to understand 
when to use one instead of the others.
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Non-Transactional Component Without Ack
Let’s assume there is a topology with a spout and two bolts. Stream passes through 
components in a series. You send a stream through a topology, and if any of the bolts 
fail to process any message/tuple, then you don’t have a mechanism to know about this 
failure. In the event of a failure in this kind of topology, you have potential data loss. This 
is at-most-once processing semantic, which means that if you try to process every tuple 
once, some of them are processed and some of them aren’t. This is fine if you are reading 
temperature-sensor data 10 times every second, so even if you miss one or two readings 
in between, you are fine. So, use this kind of topology when data loss is not a problem and 
you can function properly if some loss occurs.

Non-Transactional Component with Ack
As discussed in the last section, if you are not comfortable with data loss, and you want 
systems that are more resilient, then there are a couple of options to guarantee message 
processing throughout the topology. To help you guarantee at-least-once processing 
semantics, there is a component called acker in Storm. When a bolt is done processing, it 
issues ack to acker, which informs the spout. A spout keeps a cache of information about 
the tuples requiring ack. Once the spout receives an ack for a tuple, it removes the tuple 
from the cache. Now assume that out of two bolts, one sends ack but the other fails. This 
informs the spout to replay the message. In this case, a Bolt processes the tuple more than 
once; hence, you need to have your own logic in a bolt to avoid this. But topology ensures 
that each tuple is processed at least once.

Transaction Component
Transactional component topology provides exactly-once semantics, as it guarantees 
that the message is processed once and only once. To build such a topology, you need 
to use the TransactionalTopologyBuilder class. These topologies are similar to 
non-transactional with ack topology; the difference is that the end bolt in topology is a 
committer bolt. It commits to the transaction and makes sure that the message is stored 
or processed successfully.

Building Storm Application in C#
When it comes to building a Storm application in C#, you need to ensure that you have all 
the prerequisites, listed as follows:

•	 Visual Studio 2012 with Update 4, 2013 with Update 4 
(Community or higher), or 2015 (Community or higher)

•	 Azure SDK 2.9.5 or later

•	 HDInsight tool for Visual Studio (http://bit.ly/2lhvW4U)

http://bit.ly/2lhvW4U
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Let’s define the application that you are trying to build. You want to find influential 
tweets from the past hour or the past day. For this, you need to access the Twitter stream; 
hence, you will build a TwitterSpout. But before that, you need to know which tweets are 
the influential ones. For that, you take a very simple and naïve approach: you just count 
the sum of the number of retweets and the number of likes for a tweet. The tweets with 
the highest score qualify as influential tweets. To calculate the top tweet, you create two 
bolts: the first one calculates the total and finds the top 10 tweets during a window of 
time, let’s say 5 seconds, and then forwards it to the second bolt, which saves it into a SQL 
database or a Hive table. And from there, you can fetch data directly into a dashboard or 
PowerBI for visualization.

So, that is the idea for the final application. Let’s get started with the coding. After 
installing all the prerequisites, open Visual Studio. Go to File ä New ä Project. Select Azure 
Data Lake ➤ Storm (HDInsight). You see the different Storm starter templates, as shown 
in Figure 7-10. Note that this is the view from Visual Studio 2015.

Use the Storm Application template, which provides a basic spout, bolt, and a 
topology class. Also, this template adds the required Nuget packages to the project, 
including SCP.NET. The Storm cluster also has SCP installed on it. At the time of writing, 
the default template added SCP.NET version 0.10.0.6, but there is an updated version 
1.0.1 available for the package. Depending on the Storm version you have on your cluster, 
you need to install a SCP.NET package. Table 7-1 describes the versions of SCP.NET that 
work with particular versions of Storm and HDI.

Figure 7-10.  Storm application templates in Visual Studio
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Before you start TwitterSpout, you need to have the Twitter app to connect to the 
Twitter stream. The following procedure explains how to create the new Twitter app. If 
you already have it, then you can skip this section.

	 1.	 Navigate to https://apps.twitter.com and log in with your 
Twitter account.

	 2.	 On the Application Management page, click the Create New 
App button. This takes you to the Create New Application 
page.

	 3.	 Fill out the new application information, including the unique 
app name, description, website, and optional callback URL.

	 4.	 Read and accept the developer agreement and hit the Create 
Your Twitter Application button. If all goes well, you will be 
redirected to your application page.

	 5.	 Navigate to the Keys and Access Tokens tab and copy 
Consumer Key (API Key) and Consumer Secret (API Secret).

	 6.	 For a new application, you have to generate access tokens. 
On the same page, there is an Access Token section. Hit the 
Create Access Token button and the page reloads with Access 
Token and Access Token Secret. Copy them and keep aside for 
TwitterSpout.

By using consumer key/secret and access token/secret, you can make an HTTP 
request to get tweets, but it would be a long process. There are ready-made libraries 
to access Twitter API easily. You will use the open source Tweetinvi library (https://
github.com/linvi/tweetinvi).

Let’s now create TwitterSpout.

	 1.	 Rename the existing spout class created by the Visual Studio 
template with TwitterSpout. This gives you ISCPSpout 
implementation.

	 2.	 After creating a spout class, tap into the Twitter stream. For 
that, add TweetinviAPI Nuget in the project. And then add a 
using statement for the Tweetinvi and Tweetinvi.Models in 
the class.

Table 7-1.  HDI, Storm, and SCP.NET Compatibility Matrix

HDInsight version Apache Storm version SCP.NET version

3.3 0.10.x 0.10.x.x

3.4 0.10.x 0.10.x.x

3.5 1.0.x 1.0.x.x

https://apps.twitter.com/
https://github.com/linvi/tweetinvi
https://github.com/linvi/tweetinvi
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	 3.	 Next, add a StartStream method, which uses Twitter 
application tokens and assigns credentials to Tweetinvi for 
later use.

	 4.	 Create a filtered stream and add a filter on the language, 
because you are only interested in the English-language 
tweets.

	 5.	 Add a TweetReceived event handler and start the stream by 
calling the StartStream method. Whenever you receive a 
tweet, you add it to the queue. When the NextTuple method is 
called, you can pop a tweet from the queue and emit it to the 
downward stream.

The following is the code to configure Tweet API to receive tweets.

Queue<ITweet> queue = new Queue<ITweet>();
private void StartStream()
{
    Auth.SetUserCredentials(
        ConfigurationManager.AppSettings["ConsumerKey"],
        ConfigurationManager.AppSettings["ConsumerSecret"],
        ConfigurationManager.AppSettings["AccessToken"],
        ConfigurationManager.AppSettings["AccessTokenSecret"]);

    var stream = Tweetinvi.Stream.CreateSampleStream();
    stream.AddTweetLanguageFilter(LanguageFilter.English);
    stream.TweetReceived += (s, e) =>
    {
        if (e.Tweet.IsRetweet)
            queue.Enqueue(e.Tweet.RetweetedTweet);
    };
    stream.StartStream();
}

The following is the rest of the TwitterSpout code.

public class TwitterSpout : ISCPSpout
{
    private Context context;
    Thread listenerThread;

    long seqId = 0;
    Dictionary<long, ITweet> cache = new Dictionary<long, ITweet>(10000);
    private bool enableAck = false;

    �public static List<Type> OutputSchema = new List<Type>() { 
typeof(SerializableTweet) };
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    �public static List<string> OutputSchemaName = new List<string>() { 
"SerializableTweet" };

    public TwitterSpout(Context ctx)
    {
        this.context = ctx;

        �Dictionary<string, List<Type>> outSchema = new Dictionary<string, 
List<Type>>();

        outSchema.Add("default", OutputSchema);
        �this.context.DeclareComponentSchema(new ComponentStreamSchema 

(null, outSchema));

        // Get pluginConf info and enable ACK in Non-Tx topology
        �if (Context.Config.pluginConf.ContainsKey(Constants.

NONTRANSACTIONAL_ENABLE_ACK))
        {
            enableAck = (bool)(Context.Config.pluginConf
                     [Constants.NONTRANSACTIONAL_ENABLE_ACK]);
        }
        Context.Logger.Info("enableAck: {0}", enableAck);

        listenerThread = new Thread(new ThreadStart(StartStream));
        listenerThread.Start();
    }

    �public static TwitterSpout Get(Context ctx, Dictionary<string, Object> 
parms)

    {
        return new TwitterSpout(ctx);
    }

    public void NextTuple(Dictionary<string, Object> parms)
    {
        if (queue.Count > 0)
        {
            var tweet = queue.Dequeue();
            cache.Add(seqId++, tweet);

            this.context.Emit(Constants.DEFAULT_STREAM_ID,
                new Values(new SerializableTweet(tweet)), seqId);
            �Context.Logger.Info("Emit: {0}, seqId: { 1}", tweet.FullText, 

seqId);
        }
    }
}
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The TwitterSpout class defines SerializableTweet as the output schema. The 
SerializableTweet class is as follows. It needs to be serializable to make sure that it can 
be passed between components, and if required, it can work in hybrid topology as well.

[Serializable]
public class SerializableTweet
{
    public string Text { get; set; }
    public long Id { get; set; }
    public int RetweetCount { get; set; }
    public int FavoriteCount { get; set; }
    public decimal Score
    {
        get
        {
            return (RetweetCount + FavoriteCount);
        }
    }

    public SerializableTweet()
    {
        // For searialization and deserialization
    }

    public SerializableTweet(ITweet tweet)
    {
        this.Text = tweet.FullText;
        this.Id = tweet.Id;
        this.RetweetCount = tweet.RetweetCount;
        this.FavoriteCount = tweet.FavoriteCount;
    }

    public override string ToString()
    {
        �return $"{Id.ToString()}:{Text}:Retweet-{RetweetCount}:Likes-

{FavoriteCount}:Score-{Score}";
    }
}

Next, you need to create a bolt to find the top 10 tweets. Also, this bolt needs to find 
the top tweets during a 5-second period, and then emit those tweets to Azure SQL bolt 
to store them. You are going to use another feature of Storm, which is the Tick stream. 
The first bolt will subscribe to multiple streams: one coming from Spout and another one 
emitting a tuple every tick interval. Tick stream is special; it sends a tuple after the defined 
time interval. The following is the code for our first bolt, TopNTweetBolt. You can find the 
complete code on GitHub at http://bit.ly/2np3GeV.

http://bit.ly/2np3GeV


Chapter 7 ■ Real-Time Analytics with Storm 

167

public class TopNTweetBolt : ISCPBolt
{
    bool enableAck = false;
    private Context context;
    List<SerializableTweet> tweetCache = new List<SerializableTweet>();

    �public static List<Type> OutputSchema = new List<Type>() { 
typeof(SerializableTweet) };

    �public static List<string> OutputSchemaName = new List<string>() { 
"SerializableTweet" };

    public TopNTweetBolt(Context ctx, Dictionary<string, Object> parms)
    {
        this.context = ctx;

        // Input Schemas
        �Dictionary<string, List<Type>> inSchema = new Dictionary<string, 

List<Type>>();
        // Default stream
        �inSchema.Add(Constants.DEFAULT_STREAM_ID, TwitterSpout.OutputSchema);
        // Listen to the Tick tuple stream
        �inSchema.Add(Constants.SYSTEM_TICK_STREAM_ID, new List<Type> { 

typeof(long) });

        // Output Schema to new stream named TopNTweets
        �Dictionary<string, List<Type>> outSchema = new Dictionary<string, 

List<Type>>();
        outSchema.Add("TOPNTWEETS_STREAM", OutputSchema);

        �this.context.DeclareComponentSchema(new 
ComponentStreamSchema(inSchema, outSchema));

        �//If this task excepts acks you need to set enableAck as true in 
TopologyBuilder for it

        �if (Context.Config.pluginConf.ContainsKey(Constants.
NONTRANSACTIONAL_ENABLE_ACK))

        {
            enableAck = (bool)(Context.Config.pluginConf
                [Constants.NONTRANSACTIONAL_ENABLE_ACK]);
        }
        enableAck = true;
    }

    �public static TopNTweetBolt Get(Context ctx, Dictionary<string, Object> 
parms)

    {
        return new TopNTweetBolt(ctx, parms);
    }
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    int totalAck = 0;
    public void Execute(SCPTuple tuple)
    {
        �var isTickTuple = tuple.GetSourceStreamId().Equals(Constants.SYSTEM_

TICK_STREAM_ID);
        if (isTickTuple)
        {
            // Get top 10 higest score tweets from last time window
            �Context.Logger.Debug($"Total tweets in window: {tweetCache.

Count}");
            var topNTweets = tweetCache.OrderByDescending(o => o.Score)
                .Take(Math.Min(10, tweetCache.Count)).ToList();

            // Emit it to TopNTweet Stream
            foreach (var tweet in topNTweets)
            {
                this.context.Emit("TOPNTWEETS_STREAM", new Values(tweet));
            }

            // Remove all existing data and wait for new one
            tweetCache.Clear();
        }
        else
        {
            try
            {
                // Process tuple and then acknowledge it
                �SerializableTweet tweet = tuple.GetValue(0) as 

SerializableTweet;
                if (!tweetCache.Any(o => o.Id.Equals(tweet.Id)))
                    tweetCache.Add(tweet);

                Context.Logger.Info(tweet.ToString());

                if (enableAck)
                {
                    this.context.Ack(tuple);
                    Context.Logger.Info("Total Ack: " + ++totalAck);
                }
            }
            catch (Exception ex)
            {
                �Context.Logger.Error("An error occured while executing Tuple 

Id: {0}. Exception Details:\r\n{1}",
                    tuple.GetTupleId(), ex.ToString());

                �//Fail the tuple if enableAck is set to true in TopologyBuilder
                //so that the tuple is replayed.
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                if (enableAck)
                {
                    this.context.Fail(tuple);
                }
            }
        }
    }
}

In the execute method, you first differentiate between the streams you received. 
If it is a tick tuple stream, then you emit the top 10 tweets to a new stream named 
"TOPNTWEETS_STREAM". The next bolt (AzureSqlBolt) in the topology subscribes to this 
new stream and saves all the tweets to an Azure SQL database (to create a new Azure 
SQL database, follow the guide at https://docs.microsoft.com/en-us/azure/sql-
database/sql-database-get-started). From there, perhaps the top tweets from the past 
hour or past day can be read on a browser or PowerBI.

The next code is from AzureSqlBolt. You will use Visual Studio’s AzureSqlBolt 
template of to generate a new bolt AzureSqlBolt. The following only lists the execute 
method. The rest of the code is fairly straightforward.

public class AzureSqlBolt : ISCPBolt
{
...

    public void Execute(SCPTuple tuple)
    {
        try
        {
            SerializableTweet tweet = tuple as SerializableTweet;
            Context.Logger.Info("SQL AZURE: " + tweet.ToString());

            List<object> rowValue = new List<object>();
            rowValue.Add(tweet.Id);
            rowValue.Add(tweet.Text);
            rowValue.Add(tweet.RetweetCount);
            rowValue.Add(tweet.FavoriteCount);
            rowValue.Add(tweet.Score);
            rowValue.Add(DateTime.UtcNow);
            Upsert(new List<int> { 1 }, rowValue);
        }
        catch (Exception ex)
        {
            Context.Logger.Error(
                �"An error occured while executing Tuple Id: {0}. Exception 

Details:\r\n{1}",
                tuple.GetTupleId(), ex.ToString());
        }
    }

...
}

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started
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The final thing to do to make the code work is define the topology. The Program.cs 
file already has dummy code for this. Let’s replace it with the following.

[Active(true)]
class Program : TopologyDescriptor
{
    public ITopologyBuilder GetTopologyBuilder()
    {
        TopologyBuilder topologyBuilder = new TopologyBuilder(
            "TwitterStreaming" + DateTime.Now.ToString("yyyyMMddHHmmss"));

        topologyBuilder.SetSpout(
            "TwitterSpout",
            TwitterSpout.Get,
            new Dictionary<string, List<string>>()
            {
                {Constants.DEFAULT_STREAM_ID, TwitterSpout.OutputSchemaName}
            },
            1, true);

        var boltConfig = new StormConfig();
        boltConfig.Set("topology.tick.tuple.freq.secs", "5");
        topologyBuilder.SetBolt(
            "TopNTweetBolt",
            TopNTweetBolt.Get,
            new Dictionary<string, List<string>>(){
                {"TOPNTWEETS_STREAM", TopNTweetBolt.OutputSchemaName}
            }, 1, true)
            .shuffleGrouping("TwitterSpout")
            .addConfigurations(boltConfig);

        topologyBuilder.SetBolt(
            "AzureSqlBolt",
            AzureSqlBolt.Get,
            new Dictionary<string, List<string>>(),
            1).shuffleGrouping("TopNTweetBolt", "TOPNTWEETS_STREAM");

        return topologyBuilder;
    }
}

One thing you might notice is that the first bolt has a bolt configuration and you 
set topology.tick.tuple.freq.secs parameter to 5. This means the tick stream will 
generate a tuple every 5 seconds and send it to this bolt.

Lastly, you can submit this topology to a Storm cluster. I’m using a Windows-based 
cluster, but Linux clusters are also supported. To submit a topology, right-click the project 
node, and then select Submit to Storm on HDInsight. It should open a dialog similar to 
what’s shown in Figure 7-11.
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You may be asked for credentials. If you have any Storm clusters in your subscription, 
the name of the cluster will appear in first in the drop-down. Select one of the Storm 
clusters and then click the Submit button. This generates the package file and submits it 
to the Storm cluster. Once it starts running, you can see the topology from Visual Studio 
only. Figure 7-12 shows what the topology looks like after running for few minutes.

When you click any of the topology components, you get a detailed view of that 
component. So, let’s look at TopNTweetBolt. Figure 7-13 shows the bolt in a topology that 
has been running for a few minutes. It shows various stats about the component, input 
and output stats, and any errors that have occurred in it. You can change the time window 
by clicking the time shown in bolt stats, and the rest of the stats change accordingly. 

Figure 7-12.  Storm topology stats in Visual Studio

Figure 7-11.  Submit topology from Visual Studio
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And if you want to look at the logs, click the port number in the Executors section. This 
way, you can completely manage the Storm topology from within Visual Studio. To 
download the complete source for this example, go to https://github.com/vinityad/
InfluentialTweetWithStormHDInsight.

Summary
Apache Storm is a reliable way to process unbounded streams of data. It is easy to 
program and work with. It provides low-latency processing pipelines for streams. It is 
fault tolerant and resilient. It is based on Hadoop, hence it leverages the scaling behavior 
of Hadoop. Storm topology can be built in any shape or size with spouts and bolts. Stream 
grouping provides sophistication on top of the already great architecture. And finally, 
HDInsight provides C# developers a way to program any real-time processing pipeline in 
Storm, leveraging existing knowledge of C#. Visual Studio integration makes it very easy 
for .NET developers to jump in and start developing, deploying, testing, and monitoring 
Storm app. So, far you have learned everything from batch processing to real-time 
analytics. But each thing requires the learning a new tool or technology.

The next chapter looks at Apache Spark, which covers most of the big data scenarios.

Figure 7-13.  TopNTweetBolt summary

https://github.com/vinityad/InfluentialTweetWithStormHDInsight
https://github.com/vinityad/InfluentialTweetWithStormHDInsight
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CHAPTER 8

Exploring Data with Spark

Apache Spark changed the landscape of big data and analytics when it came out. 
Developers welcomed it like nothing else. It quickly became the superstar from 
ascendant technology. It is one of the most active and contributing open source projects 
in the big data ecosystem. At the time of writing, there are more than 1000 contributors 
to the project. Many big data companies have started moving from MapReduce to Spark. 
And there is no single reason for them to do so. Spark provides improvements in handling 
data, and it is very easy to work with. Before Spark, if you wanted to do batch processing, 
interactive query, machine learning, and stream analytics, then you would have used 
multiple tools like MapReduce, Hive, Storm, and so forth. And maintaining such a system 
with a wide range of technologies is not easy. Apache Spark can handle all of these 
scenarios and makes developers’ lives easy—one of the many reasons that Spark is so 
popular among the big data community.

This chapter first discusses Spark and the problems that it solves, and then looks 
at HDInsight’s Spark offering. In this chapter, you also perform practical with Spark 
shell and Notebooks. You also learn concepts such as RDD (Resilient Distributed 
Datasets), DataFrames and Datasets, Spark SQL, Spark Streaming, and finally, you build a 
standalone Spark application in C#. Let’s start with Spark overview.

Overview
Apache Spark is an open source, fast, in-memory data processing engine. It provides 
powerful and expressive development APIs, which allow the big data community 
to efficiently create and execute SQL workloads, machine learning tasks, and graph 
processing and streaming jobs. Also, it specifically boosts performance for iterative 
data access scenarios through in-memory computation capabilities. Spark running on 
Apache Hadoop YARN can leverage Spark’s power to handle their big data workloads on 
distributed data in Hadoop. The YARN-based architecture provides a foundation that 
enables Spark to utilize resources available to process data while maintaining a consistent 
level of service and response.

Spark was originally developed by UC Berkeley’s AMPLab in 2009. In 2010, it was 
open sourced as an Apache project. There are several advantages that Spark provides over 
MapReduce; the following are a few of them.

•	 Spark can work with a variety of workloads: batch processing, and 
real-time or graph data processing.
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•	 Spark’s in-memory computation gives 100 times faster 
performance and 10 times faster when running on disk compared 
to the MapReduce engine.

•	 Spark’s comprehensive developer APIs are easy to use and reduce 
the complexity of writing code to run in a distributed fashion.

•	 Easily develops applications in your choice of programming 
language: Java, Scala, Python, or R (or C# and F# using Mobius).

•	 Offers out-of-the-box capabilities to work with machine learning 
problems.

•	 Works with a variety of data sources, such as HDFS, HBase, 
Casandra, Azure Blob storage, and so forth.

The Spark ecosystem contains Spark Streaming, Spark SQL, MLlib, and GraphX. The 
following are brief descriptions.

•	 Spark Streaming: Allows the handling and processing of 
streaming data. Essentially, it is microbatching a continuous 
stream over a time window. Continuous RDDs (explained later 
in this chapter) called DStream process real-time data. For more 
information about Spark Streaming, refer to http://spark.
apache.org/docs/latest/streaming-programming-guide.html.

•	 Spark SQL: Spark provides running SQL queries on Spark 
datasets using traditional BI and visualization tools. Spark SQL 
can load data from various formats (text, JSON, Parquet, or from 
a database), transform it to RDD, and allow for ad hoc format-
independent querying. Spark 2.0 supports SQL 2003.

•	 Spark MLlib: Spark’s scalable machine learning library. MLlib 
contains many algorithms and utilities that cover almost all the 
basics of machine learning algorithms. MLlib uses Spark’s in-
memory processing capability to train and run models faster. For 
more information about Spark machine learning, go to http://
spark.apache.org/docs/latest/ml-guide.html.

•	 Spark GraphX: Allows you to process graph data using Spark’s 
RDD. It introduced a new graph abstraction with directed 
multigraph. In the graphs, properties are attached to each vertex 
and edge. Also, it supports a wide range of algorithms and 
builders to make graph analytics tasks easier.

Spark Architecture
Apache Spark uses a master/slave/worker architecture. A driver program runs on the 
master node and talks to an executor on worker node. Both the driver and the executors 
spawn their own JVM processes. Spark applications run as independent sets of processes, 
which is coordinated by the SparkContext object and created by the driver program. 

http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
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Spark can run in standalone mode or on a cluster of many nodes. Hence, a cluster 
manager can be a standalone cluster manager, Mesos, or YARN. SparkContext talks to the 
cluster manager to allocate resources across applications. Spark acquires executors on 
nodes in the cluster, and then sends application code to them. Executors are processes 
that actually run the application code and store data for these applications. And finally, 
the driver sends tasks to executors, as shown in the flowchart in Figure 8-1.

The following are a few observations about the Spark architecture.

•	 A worker node spawns an executor for each application. It stays 
there as long as the application exists. Each executor runs a 
task in which there can be multiple threads. This isolates each 
application from each other. And any cached data is stored in 
memory or on disk, based on the options provided.

•	 Spark does not care about which cluster manager it is working 
with as long as it can acquire executors and communicate with 
them. Given that, running Spark becomes easy on the cluster 
manager, which also supports other applications (e.g., Mesos/
YARN).

•	 Driver programs need to communicate with worker nodes to 
schedule tasks on them, due to which it is advisable to have the 
worker and driver program in the same local area network.

The following are the cluster manager types available for Spark.

Figure 8-1.  Spark architecture
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•	 Standalone: This cluster manager makes it easy to set up a 
cluster. It is already included in Spark to simplify the process 
further.

•	 Apache Mesos: A generic cluster manager type. It can also run 
the service application and MapReduce.

•	 Hadoop YARN: The de facto Hadoop 2 resource manager.

Spark clusters on HDInsight come with Anaconda libraries pre-installed. Anaconda 
provides close to 200 libraries for machine learning, data analysis, visualization, and so 
forth. Figure 8-2 shows the overall Spark architecture in HDInsight and the ecosystem 
structure discussed so far.

Creating a Spark Cluster
Azure HDInsight provides many different cluster types, which were discussed in Chapter 2. 
To work with Spark, you need a head node and worker node. HDInsight provides a simple-
to-deploy Spark cluster type that automatically creates all the nodes. There are multiple 

Figure 8-2.  Apache Spark in HDInsight

http://dx.doi.org/10.1007/978-1-4842-2869-2_2
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ways to create a Spark cluster (i.e., Azure portal, PowerShell and Azure Resource Manager 
templates). Let’s look at an Azure Resource Manager template to create a Spark cluster.

The Azure Resource Manager (ARM) template is a JSON file with different resource 
and configuration options to deploy/provision/configure a resource in Azure. You will 
use the template available at https://raw.githubusercontent.com/Azure/azure-
quickstart-templates/master/ 101-hdinsight-spark-linux/azuredeploy.json. The 
following procedure creates a Linux-based Spark cluster.

Open the following URI, which takes the ARM template URL and opens an easy-to-
configure options page to create a Spark cluster.

�https://portal.azure.com/#create/Microsoft.Template/uri/
https%3A%2F%2Fraw.githubusercontent.com%2FAzure%2Fazure-quickstart-
templates%2Fmaster%2F101-hdinsight-spark-linux%2Fazuredeploy.json

•	 Subscription: Select the Azure subscription to be used by your cluster.

•	 Resource group: You can choose to create a new resource group 
or to select an existing group.

•	 Location: Specify where your cluster and data will reside.

•	 ClusterName: A unique name for the cluster using https://
{clustername}.azurehdinsight.net. In the template, you may 
not be able to select the Spark cluster version but HDInsight 
provides support to Spark 1.5.2 (HDI 3.3), 1.6.2 (HDI 3.4), 1.6.3 
(HDI 3.5), 2.0.2 (HDI 3.5), and 2.1.0 (preview) (HDI 3.6) at the 
time of writing.

•	 Cluster credentials: The cluster’s username and password to 
open the dashboard. These credentials are used to submit jobs 
and get into the cluster. The default username is admin.

•	 SSH credentials: The username and password to get onto a Linux 
machine.

Agree to the terms and conditions and click the Purchase button.
By default, this template provisions two worker nodes and two head nodes. Once you 

hit the Purchase button, it takes a few minutes to provision the cluster. You can browse 
the Ambari dashboard by going to https://{ClusterName}.azurehdinsight.net once 
provisioning is completed.

Spark Shell
Spark shell is an interactive shell to run ad hoc queries in Spark. This helps in learning 
Spark commands and requires almost no setup once the HDInsight Spark cluster is up. 
Spark shell is like a playground, where you can try different things, run queries, and get 
familiar with Spark’s features.

Once you have provisioned your Spark cluster, you can get onto the Spark shell by 
using Putty, as discussed in earlier chapters. After you have successfully authenticated 
yourself, type pyspark in console, which creates a Spark shell and shows a screen like the 
one in Figure 8-3.

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/
https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/
https://portal.azure.com/#create/Microsoft.Template/uri/https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-hdinsight-spark-linux/azuredeploy.json
https://portal.azure.com/#create/Microsoft.Template/uri/https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-hdinsight-spark-linux/azuredeploy.json
https://portal.azure.com/#create/Microsoft.Template/uri/https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-hdinsight-spark-linux/azuredeploy.json
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After you get into Spark shell, you can load data and start processing it. Let’s assume 
that you want to count the number of non-empty lines in a text file. When you load Spark 
shell, it automatically creates a Spark context with the name sc. You can use SparkContext 
to load data, as shown in the following code snippet.

lines = sc.textFile('/example/data/gutenberg/davinci.txt')

Don’t worry about uploading the text file; it should already be in your Azure Blob 
storage linked to the HDInsight cluster. The important thing to note in this snippet is that 
it uses the new line as a delimiter and creates an RDD (more on this later) with each row.

Now that you have your data, you want to remove all the empty lines, and perform 
a count afterward. (Don’t worry about the syntax; you won’t be using it for a real-world 
application).

filtered_lines = lines.filter(lambda x: len(x) > 0)
filtered_lines.count()

Executing all of these statements in Spark shell gives an output similar to what’s 
shown in Figure 8-4.

Figure 8-3.  Spark shell

Figure 8-4.  Spark job output
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Spark RDD
Spark’s core concept is Resilient Distributed Dataset (RDD); everything else revolves 
around it. RDD is a fault-tolerant collection of elements. RDD can be operated on in 
parallel. As the name suggests, it is a resilient and distributed collection of records, which 
can be at one partition or more, depending on the configuration. RDD is an immutable 
distributed collection of objects, which implies that you cannot change data in RDD but 
you can apply transformation on one RDD to get another one as a result. It abstracts away 
the complexity of working in parallel. You can use a higher-level programming interface 
(API) to do processing without much focus on parallelism, which is handled by Spark itself.

You can create RDD either by parallelizing an existing collection or loading an 
external dataset, such as a shared file system, HDFS, HBase, or any data source offering a 
Hadoop input format.

Let’s decompose the name,

•	 Resilient: Fault tolerant, comes from an RDD linage graph, able 
to re-compute when it has missing records or damaged partitions 
due to node failures.

•	 Distributed: Data resides on multiple nodes in a cluster.

•	 Dataset: A collection of partitioned data with a key-value pair or 
primitive values called tuples. Represents the records of data you 
work with.

Other than the traits embedded in the name, the following are additional traits of RDD.

•	 Immutable: RDD never changes once created; they are read-
only and can only be transformed to another RDD using 
transformation operations.

•	 Lazy evaluated: In the example shown in the Spark shell section, 
you first load data into RDD, then apply a filter on it, and ask for a 
count. If you noticed, there were no computations shown in shell 
after the filter transformation and the actual job only kicks off 
after you perform an action on RDD. That implies that RDD is not 
transformed until an action is executed, which actually triggers 
the execution.

•	 In-memory: Spark keeps RDD in memory as much size as it can 
and for as long as possible.

•	 Typed: RDD records are strongly typed, like Int in RDD[Int] or 
tuple (Int, String) in RDD[(Int, String)].

•	 Cacheable: RDD can store data in a persistent storage-
like memory, which is the default and preferred for better 
performance, or on disk.

•	 Partitioned: Data is split into a number of logical partitions based 
on multiple parameters, and then distributed across nodes in a 
cluster.
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•	 Parallel: RDDs are normally distributed on multiple nodes, which 
is the abstraction it provides; after partitioning, it is acted upon in 
parallel fashion.

•	 Location aware: RDDs has location preference, Spark tries to 
create them as close to data as possible provided resources are 
available.

Determining partitions for an RDD is a distributed process;, it tries to achieve an 
even data distribution and to keep data as close to the source as possible (data locality). 
Partitions are created in a fixed number based on logical chunks of data. This division is 
for processing only; internal storage is not divided. Partitions are the units of parallelism 
in Spark. Spark automatically divides data into a number of partitions defined as per 
configuration and other parameters, but if you think Spark is dividing it incorrectly 
by over or under partitioning, then you can provide your own number of partitions in 
transformations. Spark always tries to avoid sending data to another node—a process 
called RDD shuffling. It usually follows one-to-one mapping between physical data 
chunks to partitions (e.g., HDFS partitions).

There are two kinds of operations you can perform on RDDs: transformations and 
actions. Transformations are lazy operations and return another RDD. Spark accumulates 
all such operations performed on RDDs and runs them as a job when an action is called 
on the final RDD. Actions, on the other hand, trigger the computation and return a value.

Let’s examine both operations in more detail.

RDD Transformations
Transformations take an RDD and generate one or more RDDs (e.g., filter, map, flatmap, 
join, reduceByKey). Transformations cannot change an RDD because it is immutable; 
hence, they generate new RDDs from the input RDD. When you apply transformations 
to an RDD, you are essentially building up RDD lineage graph. Spark does this for each 
transformation that you apply, which is how Spark can re-compute any intermediate RDD 
in the event of a failure. A lineage graph is the way that Spark achieves fault tolerance.

Transformations are lazy evaluated, and only executed when you perform actions on 
them. Lazy evaluation gives Spark a chance to build the optimum plan to execute them 
with a minimum of passes on data. Also, certain transformations can be pipelined, which 
is an optimization Spark does to improve the performance of operations.

There are two types of transformations: narrow and wide. In narrow transformations, 
each child RDD partition depends on—at most—one parent RDD partition. That means 
the task can be executed locally without shuffling data. Another way to think of this is 
that any row in a child RDD depends on only one row of the parent RDD. It is also called 
a narrow dependency. Example transformations are map, flatmap, filter, and so forth. 
Spark groups these transformations by a method called pipelining.

Wide transformations, on the other hand, can have multiple child partitions, 
depending on one partition of the parent RDD. In other words, data required to compute 
the output records in a single partition may reside in many partitions of the parent RDD 
(e.g., groupByKey and reduceByKey). All the tuples with the same key must end up in the 
same partition and must be processed by the same task.
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The following describes a few of the most common transformations.

•	 map(func): Generates a new RDD after passing each element of 
the source RDD through the func function. Figure 8-5 shows a 
sample map function that converts an input string into lowercase.

•	 flatmap(func): Similar to map, all elements of a parent RDD are 
passed through the func function, which may return multiple 
results. All of those results are then flattened to form a resultant 
RDD. Figure 8-6 shows a source RDD with statements. You want 
to have each word as a resultant RDD, applying a flatmap with a 
split function on a space gives the required output.

•	 filter(func): Returns a new dataset formed by passing the 
source element through the func function and selecting those 
elements where the func function returns true.

Figure 8-5.  Map transformation

Figure 8-6.  Flatmap transformation



Chapter 8 ■ Exploring Data with Spark

182

•	 mapPartitions(func): Similar to map, but runs on each partition; 
hence the func function should be of type Iterator<T> => 
Iterator<U> when running on an RDD of type T.

•	 sample(withReplacement, fraction, seed): Generates a new 
RDD from the fraction fractions of the data, with or without 
replacement, and using seed as random number generator.

•	 union(otherDataset): Creates a new dataset containing all the 
elements from the source and otherDataset.

•	 intersection(otherDataset): Generates a new RDD that 
contains the elements from the datasets that are in common.

•	 distinct(): As the name suggests, returns the distinct element 
from the source RDD.

•	 groupByKey(): When called on a RDD(tuple(k, v)), it returns 
RDD(tuple(k, iterable<v>)). The default level of parallelism 
depends on the number of partitions of the parent RDD, but you 
can also pass an optional numTasks argument to set a different 
number of tasks.

•	 reduceByKey(func): Similar to groupByKey, but optimized for 
aggregation. In this transformation, data is not shuffled at the 
beginning, because it knows that there is a reduce operation; 
hence, it applies a reduce on each partition and only sends 
the result of the reduce function over the network as a shuffle. 
This reduces significant network traffic and improves overall 
performance. Figure 8-7 shows a sample reduceByKey operation 
where from each partition data is reduced and then the shuffle 
operation is carried out to give a final result.

Figure 8-7.  reduceByKey transformation
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•	 aggregateByKey(zeroValue)(seqOp, combOp): When called on 
RDD(tuple(k, v)), it returns RDD(tuple(k, u)), where the value 
of each key is aggregated using the given combined function and 
natural “zero” value.

•	 join(otherDataset): Combines the two datasets based on a key. 
When called with RDD(tuple(k, v)) and RDD(tuple(k, w)), it 
generates a resultant RDD(tuple(k, (v, w))).

•	 repartition(numPartitions): If you think that Spark is dividing 
data into the wrong number of partitions, so you want to change 
it to fewer or more partitions, use this transformation with a new 
partition value. Please note that this always shuffles data over the 
network.

•	 coalesce(numPartitions): Decreases the number of partitions 
in the RDD to numPartitions. This is useful for running an 
operation more efficiently after filtering a large dataset.

RDD Actions
Actions are operations that return a value to the driver program. Actions produce 
non-RDD values. Once applied on an RDD, they trigger the actual execution of all the 
transformation applied before it. To put it simply, actions evaluate the RDD lineage 
graph. Note that if you are supposed to execute two or more actions on an RDD, then you 
should cache the RDD for better performance (more on caching in coming sections). The 
following are a few of the most commonly used actions.

•	 reduce(func): Aggregates the elements of the dataset using a 
func function. The function takes two arguments and returns 
the one that should be of the same type as input arguments. The 
function should be commutative and associative, making sure 
that it can execute correctly in parallel.

•	 collect(): This action asks each executor to return a value to the 
driver program as an array. You use this action usually after a filter 
or other operations that return a significantly small subset of data.

•	 count(): Returns the number of elements in the dataset.

•	 take(n): Returns the first n elements from the dataset.

•	 first(): Similar to take(1), returns the first element from the 
dataset.

•	 takeSample(withReplacement, num, [seed]): Returns random 
num elements from the dataset with an optional seed as the 
random number generator.

•	 takeOrdered(n, [ordering]): Returns the first n elements 
from the dataset using either their natural order or a custom 
comparator.
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•	 saveAsTextFile(path): Creates a text file with all the elements 
from the dataset in a given path. It can be local machine’s file 
system or any other Hadoop-supported file system. Spark will call 
toString on each element to convert it to a line of text in a file.

•	 countByKey(): Only available on RDDs of type Tuple(k, v). 
Returns tuple(k, int) with the count of each key.

•	 foreach(func): Executes the func function on each element of 
the dataset. This is usually done to print or update accumulator 
variables or to interact with external storage systems.

Shuffle Operations
Certain operations in Spark trigger an event known as the shuffle to redistribute data 
across a cluster so that it can be grouped differently across partitions. In a shuffle, data is 
copied between executors and nodes, which make it an expensive operation to perform 
and have performance impact.

To understand a shuffle and why it is required, assume a situation where you 
have server log data and you want to count that number of errors generated each hour 
throughout the day. So, you take all error records and get their timestamp, generate a new 
element with just hour of the day as the key, and have “1” as the value. Next, you combine 
all the same key values. But now assume you have data distributed all over your cluster in 
different machines. The same key is distributed on different nodes, making it impossible to 
count the total without getting all the same key data in one place. Hence, in this situation, 
the data needs to be transmitted to form different partitions, which is a shuffle operation.

Not every operation causes a shuffle. Operations the can cause a shuffle include 
repartition operations, such as coalesce and repartition; ByKey operations (not counting), 
such as groupByKey and reduceByKey; and join operations, such as cogroup and join.

A shuffle is an expensive operation because it involves moving data over a network, 
disk I/O, and data serialization. In a shuffle, Spark uses sets of tasks to organize data: 
map tasks to organize data and reduce tasks to aggregate data. Please note this map and 
reduce are not related to Spark’s operations. Internally, Spark stores all the result of map 
operations in memory until they can’t fit. Afterward, they are sorted based on target 
partition and written to a single file. The reduce task reads the sorted blocks.

A few shuffles can cause a lot of data to be stored in memory. And when data cannot 
fit into the memory, Spark spills the data to disk, which adds more performance hits due to 
I/O and increased garbage collection. Besides, Spark also generates a lot of intermediate 
files on the disk. These files are persisted until the related RDDs are in use and not garbage 
collected. This is done to avoid recalculation of the shuffle when RDD is re-computed 
from lineage. Storing files may pile up and take up a large amount of disk space if garbage 
collection doesn’t happen frequently or if the application retains reference to RDDs. Either 
way, it wastes disk space temporarily. But if you feel a shuffle is not optimum, you can 
control this behavior by using a variety of configuration parameters.
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Persisting RDD
Spark’s main selling point is persisting a dataset in memory. You can ask Spark to store 
an RDD for a subsequent operation in memory so that you can reuse that data again in 
another action without the overhead of computing the RDD again. This greatly improves 
the performance in iterative algorithms and fast interactive use. Whenever you ask to 
cache/persist an RDD, each partition stores their part of the data in their memory and 
reuses it when needed.

To store an RDD, you can use the persist() or cache() methods on it. When an 
action operation is performed on an RDD for the first time, the RDD is stored in the 
memory of the nodes. If for any reason the RDD is corrupt or lost, it can be recomputed 
easily from a lineage graph, as Spark’s cache is fault tolerant.

Spark also provides different storage levels, such as the persist dataset on disk, in 
memory as serialized Java objects or replicate across nodes. You can set the storage level 
in the persist() method. The cache() method is equivalent to persist with a MEMORY_
ONLY storage level. The following are all the storage levels available in Spark.

•	 MEMORY_ONLY: This is a default level and in this level, RDD is stored 
as a deserialized Java object in the JVM. And if a dataset cannot fit 
the memory, then it is recomputed as and when needed.

•	 MEMORY_AND_DISK: Similar to MEMORY_ONLY, but the difference is 
that if the RDD doesn’t fit in memory, then it stores partitions on 
a local disk.

•	 MEMORY_ONLY_SER: Data is stored in memory but as a serialized 
Java object. This greatly reduces the space of the data but it is 
more CPU-intensive to read.

•	 MEMORY_AND_DISK_SER: Similar to MEMORY_ONLY_SER, but it stores 
data on a local disk, which cannot fit into memory.

•	 DISK_ONLY: This option makes Spark store all RDDs on a local 
disk.

•	 MEMORY_ONLY2 and MEMORY_AND_DISK2: The same as their 
counterparts, but replicate partition on two cluster nodes.

•	 OFF_HEAP: This option is similar to MEMORY_ONLY_SER but it stores 
data in off-heap memory. To enable this storage level, off-heap 
memory needs to be enabled.

The in-memory option is best if your data fits in memory. This option is the default. 
It is also the most CPU-efficient and runs as fast as possible. If you can’t fit it in memory, 
then use MEMORY_ONLY_SER to make objects smaller and fit in memory. The local disk 
option should only be used when compute options are very expensive or if they are 
generated after scanning large amounts of data. Two replications should only be used 
when you need fast fault recovery.

After all of this, if you know you no longer need the data in application, then you can 
remove the persisted RDD by using the unpersist() method; otherwise, RDD is removed 
in a least recently used (LRU) fashion.
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Spark Applications in .NET
Spark doesn’t provide out-of-the-box support for C# applications. But thanks to 
Microsoft, you have an almost complete API for Spark in C# as well. A project called 
Mobius (https://github.com/Microsoft/Mobius) is an open source C# language 
binding to Apache Spark. Mobius enables the implementation of the Spark driver 
program and data processing operations in the .NET framework in language like C# and 
F#. With Mobius, developers can implement C#-based Spark applications for batch, 
interactive, and stream processing, which makes C# a first-class citizen in Spark app 
development.

Let’s explore Mobius in detail to understand how it works. Figure 8-8 shows .NET 
and Spark interaction. You can write the complete application in .NET and you don’t have 
to write a single line of code in Java or Scala. You interact with the Mobius API, which 
depends on Scala/Java public APIs and the Python API.

To develop a Spark application in .NET, you open Visual Studio, create a console app, 
add a Mobius-related Nuget, and use the sparkclr-submit command to submit your .exe 
to run inside the Spark installation. So, this is an obvious question to anyone familiar with 
.NET and Spark: Spark has all JVM process, driver and executors are both JVM processes, 
and .NET exe requires CLR to run, then how do both of these environments work on a 
Spark installation? The answer to the question is shown in Figure 8-9.

Figure 8-8.  .NET & Spark

https://github.com/Microsoft/Mobius


Chapter 8 ■ Exploring Data with Spark

187

Figure 8-9 shows a standard Spark setup, with the driver program communicating 
with executors. When you submit a .NET executable to this setup through Mobius and 
C#, the driver creates a SparkContext. It creates all the objects related to it as well, which 
JVM would have created. And if there is a C# user -defined function or any C#-specific 
functionality in the processing pipeline, then executor launches C# worker, because C# 
code can only be executed inside CLR. But please note that a C# worker is launched on 
demand, which means if there is any C-specific code, then only the executor will launch 
a C# worker’ otherwise, it will run completely inside the JVM process. For example, if 
you are just reading a file and doing counts on it, then this uses no C# functionality; so it 
executes without a C# worker completely inside JVM.

You might think that this is CLR process–based, hence it only works in Windows. 
That is not the case. On Linux machines, Mobius uses the Mono framework to do the 
same work. That means you can use Mobius on any installation of Spark where you have 
Mono or you are running on Windows.

Let’s build a simple word count program in C# and then run it in local mode and 
cluster mode. Let’s build the code and then submit it to different environments.

Developing a Word Count Program
You will create a word count program in C# to read a text file and count word frequency in 
it. The following procedure explains how to create a word count program.

	 1.	 Open Visual Studio (2012 or higher) and create a C# console 
application. Name it SparkClrWordCount.

	 2.	 Install a Mobius package by executing the install-package 
Microsoft.SparkCLR command in a package manager console. 
At the time of writing, the latest version is 2.0.200, which 
works with Spark 2.0.2. After installing Nuget and updating to 
latest version, package.config looks like the following.

Figure 8-9.  Mobius and Spark
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<?xml version="1.0" encoding="utf-8"?>
<packages>
<package id="log4net" version="2.0.7" targetFramework="net45" />
<package id="Microsoft.SparkCLR" version="2.0.200" 
targetFramework="net45" />
<package id="Newtonsoft.Json" version="9.0.1" 
targetFramework="net45" />
<package id="Razorvine.Pyrolite" version="4.18.0" 
targetFramework="net45" />
<package id="Razorvine.Serpent" version="1.18.0" 
targetFramework="net45" />
</packages>

	 3.	 Load the text file using the SparkContext.TextFile 
method. The path of the text file comes from a command-
line argument. Once loaded as RDD, apply a split by space 
by using the Split method with a space character as the 
parameter, convert it to a key-value pair using the Map 
method, and then use the ReduceByKey method to calculate 
word count. The following is code from the Program.cs file’s 
Main method.

public static int Main(string[] args)
{
    LoggerServiceFactory.SetLoggerService(Log4NetLoggerService.Instance);
    �ILoggerService Logger = LoggerServiceFactory.GetLogger(typeof(WordCount

Example));

    if (args.Length < 1)
    {
        Console.Error.WriteLine("Usage: SparkClrWordCount  <file>");
        return 1;
    }

    �var sparkContext = new SparkContext(new SparkConf().SetAppName("MobiusW
ordCount"));

    try
    {
        RDD<string> lines = sparkContext.TextFile(args[0]);
        RDD<Tuple<string, int>> counts = lines
            .FlatMap(x => x.Split(' '))
            .Map(w => new Tuple<string, int>(w, 1))
            .ReduceByKey((x, y) => x + y);

        foreach (var wordcount in counts.Collect())
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        {
            Console.WriteLine("{0}: {1}", wordcount.Item1, wordcount.Item2);
        }
    }
    catch (Exception ex)
    {
        Logger.LogError("Error performing Word Count");
        Logger.LogException(ex);
    }
sparkContext.Stop();
return 0;
}

In the Main method, you first create the SparkContext, with the AppName 
configuration option as MobiusWordCount. Using the same context object, load the text 
file as RDD. And then apply different transformations to the RDD (i.e., flatmap, map, and 
reduceByKey). Finally, in the for loop, ask for all the elements by applying a Collect 
action, which actually triggers the computation and returns the result to the driver 
program, where you just print it out on a console.

Next, you look at how to run this in local mode and on an HDInsight cluster.

Running in Local Mode
To run a C# program in local mode, the following lists the prerequisites you should have 
in your machine. Note that I’m assuming you have a Windows machine and want to run 
the word count program in the same box. To run it on a Linux box, use the instructions 
provided at GitHub (https://github.com/Microsoft/Mobius/blob/master/notes/
linux-instructions.md). You should have at least 4GB of RAM for smooth functioning 
and Windows 8 or higher.

•	 JDK: You need to install JDK 7u85 or 8u60 (or higher) from 
OpenJDK (http://www.azul.com/downloads/zulu/zulu-
windows/) or Oracle JDK (from http://www.oracle.com/
technetwork/java/javase/downloads/index.html). Add a 
system-level environment variable, JAVA_HOME, which should 
point to the JDK folder (i.e., C:\Program Files (x86)\Java\
jdk{version}).

•	 Spark: You need to download Spark and copy it to one of the 
folders. The version you download should be compatible with 
Mobius. Hence, check the Mobius versioning policy to identify 
which version of Spark you can use. You have used Mobius Nuget 
v2.0.2, which matches Spark 2.0.2; hence, you have to download 
the same version of Spark from http://spark.apache.org/
releases/spark-release-2-0-2.html. Once downloaded, I’ve 
extracted it to the C:\SparkMobius\spark-2.0.2-bin-hadoop2.7 
folder. Now set this folder path as a new environment variable 
called SPARK_HOME.

https://github.com/Microsoft/Mobius/blob/master/notes/linux-instructions.md
https://github.com/Microsoft/Mobius/blob/master/notes/linux-instructions.md
http://www.azul.com/downloads/zulu/zulu-windows/
http://www.azul.com/downloads/zulu/zulu-windows/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://spark.apache.org/releases/spark-release-2-0-2.html
http://spark.apache.org/releases/spark-release-2-0-2.html
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•	 Mobius: Download the appropriate version (in our case 2.0.2) 
of Mobius from https://github.com/Microsoft/Mobius 
and put it in the C:\SparkMobius\Mobius-2.0.200 folder. I’ve 
downloaded a Mobius source. Navigate to the build folder 
inside the Mobius-2.0.200 folder and start build.cmd, which 
will build Mobius and get all the necessary utilities to run it in 
local mode. And finally, create a new environment variable, 
SPARKCLR_HOME, and point it to the build\runtime folder inside 
your Mobius folder; hence for my case it is C:\SparkMobius\
Mobius-2.0.200\build\runtime.

•	 Winutils.exe: When running on Windows, Spark needs this 
utility. If you have built Mobius, then you already have it in the 
Mobius folder under tools\winutils. Create a new environment 
variable, HADOOP_HOME, and point it to the winutils.exe 
directory, which in our case is C:\SparkMobius\Mobius-2.0.200\
build\tools\winutils.

Once all the dependencies are set, go to the command prompt and execute the 
following commands to verify that the environment variables are set correctly.

echo JAVA_HOME=%JAVA_HOME% & echo.SPARK_HOME=%SPARK_HOME% & echo.SPARKCLR_
HOME=%SPARKCLR_HOME% & echo.HADOOP_HOME=%HADOOP_HOME%

The output of this command on my machine looks like Figure 8-10.

After all the environment variables are set correctly, go into the command prompt 
and type the following command.

%SPARKCLR_HOME%\scripts\sparkclr-submit.cmd --exe SparkClrWordCount.exe C:\
SparkClrWordCount\bin\debug file:///C:\data\the_adventures_of_sherlock_
holmes.txt

You are using the sparkclr-submit.cmd to execute the program in local mode. Also, 
note that you are passing the exe parameter, which is name of our exe, followed by path 
to the exe folder, and finally, a file from Project Gutenberg from which you want to run 

Figure 8-10.  Environment variables

https://github.com/Microsoft/Mobius
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the word count program. If you wish, you can use any other text file instead. The result of 
the sparkclr-submit is shown in Figure 8-11 (note that this is not the complete output, but 
only a few lines from the beginning of the script and a few lines at the end).

So, this is how you can execute your application in local mode. Also, it is possible to 
directly execute a Spark application from inside Visual Studio. It is called debug mode. 
Follow these instructions to run it.

	 1.	 Open a command prompt and navigate to the %SPARKCLR_
HOME%\scripts folder.

	 2.	 Execute the sparkclr-submit.cmd debug command. This will 
start sparkclr-submit in debug mode at default port 5567.

	 3.	 If you want run it on a different port, then you can specify the 
same, but make sure that you add the following settings in your 
application config if you are not running on the default port.

<appSettings>
<add key="CSharpWorkerPath" value="/path/to/
driverprogram/CSharpWorker.exe"/>
<add key="CSharpBackendPortNumber"  value="port_number_
from_previous_step"/>
</appSettings>

	 4.	 Hit F5 from Visual Studio and you should be able to run the 
application. It generates the same output as in the console 
execution.

Figure 8-11.  SparkClr-Shell result for word count
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■■ Note   While working with Mobius, if you find yourself in situation where sparkclr-submit 
does not work in debug mode and it gives exceptions when starting up, then you might 
have to set the execution memory option in the sparkclr-submit.cmd file’s line 81 (in version 
2.0.2) and add option "-Xmx512m" at the end of line.

Running in HDInsight Spark Cluster
Running a Mobius Spark application in an HDInsight Spark cluster is relatively easier 
than running in local mode. Also, you can use the same steps mentioned in this section 
to run on any Linux-based Spark cluster using YARN. The following are the steps to run a 
Mobius application on a YARN-based Spark cluster.

	 1.	 Mobius on a Linux cluster requires Mono 4.2 or higher to run C# 
code. First, check the version installed on your Linux node. Use 
PuTTY to get SSH to your cluster’s master node. And then run 
the mono --version command to check the installed version. If 
it is not 4.2, then you might need to install/upgrade it. Use the 
sudo apt-get install mono-complete command to do so.

	 2.	 After you have Mono installed, you need to get Mobius release 
bits onto the cluster. Use the following command script to 
create a Mobius directory and get the latest bits matching your 
Spark version.

>mkdir mobius
>cd mobius
>wget https://github.com/Microsoft/Mobius/releases/
download/v2.0.200/spark-clr_2.11-2.0.200.zip
>unzip spark-clr_2.11-2.0.200.zip
>export SPARKCLR_HOME=/home/sshuser/mobius/runtime

	 3.	 Upload your application code. Create a new examples 
directory in the user home directory using the mkdir 
examples command in putty.

	 4.	 Execute the following command in the Windows command 
prompt to upload zip. This zip typically containing all the files 
from your bin/debug folder.

C:\Program Files (x86)\PuTTY> pscp  
C:/SparkClrWordCount.zip sshuser@hdi-ssh.
azurehdinsight.net:/home/sshuser/examples/
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	 5.	 In the PuTTY folder, change the username (sshuser) and 
cluster URL (hdi-ssh.azurehdinsight.net) to match your 
cluster URL.

	 6.	 After uploading the zip, unzip it from PuTTY using the 
following command.

> unzip /home/sshuser/examples/SparkClrWordCount.zip

	 7.	 Once you have everything on the cluster, you can use sparkclr-
submit.sh to submit a Spark job. Also, you need to give 
execute permission to the sparkclr-submit.sh and exe.

cd /home/sshuser/mobius/runtime/scripts
chmod +x sparkclr-submit.sh
chmod +x /home/sshuser/examples/SparkClrWordCount.exe

	 8.	 And finally, submit it using the following command.

./sparkclr-submit.sh --master yarn --deploy-mode  
client --exe SparkClrWordCount.exe /home/sshuser/examples

Jupyter Notebook
The Jupyter Notebook is an open source web application in which you can write live 
code, and execute, save, and share it. It is an ideal tool for learning and quick testing. 
It is a feature-rich tool that can be used for live work as well. You can execute multiple 
notebooks and inherit one into another, creating complex notebooks that can do 
anything that you want with your Spark cluster. Jupyter Notebook allows code, equations, 
visualization, and explanatory text.

The HDInsight Spark cluster already has Jupyter Notebook installed on it. To open 
Jupyter Notebook, go to the cluster blade in HDInsight and click the cluster dashboards, 
which open another blade, as shown in Figure 8-12. From there, you can open Jupyter 
Notebook.

Figure 8-12.  HDInsight Spark cluster dashboards
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Another way is to directly navigate to https://{clustername}.azurehdinsight.
net/jupyter to go to the Jupyter Notebook dashboard. No matter how you create a 
notebook, Spark context is created for you to use.

■■ Note   Jupyter originally stood for Julia, Python, and R, which were the main languages 
used in the notebook.

On the Jupyter Notebook page, click New and select PySpark kernel, which is the 
default kernel. A kernel is a program that runs and interprets your code. The HDInsight 
Spark cluster provides four different kernels: PySpark, PySpark3, Spark, and SparkR, 
which you can see in Figure 8-13. PySpark and PySpark3 exposes the Spark programming 
model to Python. The Spark kernel uses Scala and SparkR uses the R language.

Once you are on new notebook, you can enter code or mark down in it. Code will be 
executed as per the kernel you selected. To demonstrate notebook usage, let’s create a 
Spark program to find the top ten words used in the Davinci text file (available on wasb 
storage at was:///example/data/gutenberg/davinci.txt).

	 9.	 Open a new PySpark notebook.

Figure 8-13.  Jupyter Notebook kernel
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	 10.	 Load a text file as RDD using the following snippet.

textLines = spark.sparkContext.textFile('wasb:///
example/data/gutenberg/davinci.txt')

	 11.	 Generate an RDD of words by splitting rows of text by space.

words = textLines.flatMap(lambda line: line.split(' '))

	 12.	 To count words, create a key-value pair of words and its total 
count.

wordPair = words.map(lambda word: (word, 1))
counts = wordPair.reduceByKey(lambda a, b: a + b)

	 13.	 Apply the takeOrdered action to find the top 10 words in 
descending order by word count.

counts.takeOrdered(10, lambda a: -a[1])

Figure 8-14 shows the complete notebook with the result of running it on an 
HDInsight Spark cluster.

Figure 8-14.  Jupyter Notebook finds top ten words in Davinci text file
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Spark UI
Spark UI, or Web UI, is the web interface that you use to learn what is going on inside your 
Spark jobs. You can drill down into job tasks, executor details, DAG (direct acyclic graph) 
visualization, the input/output of each stage of the jobs, and so forth. This is very useful 
information when trying to find out where any bottlenecks are and in understanding how 
things work internally. Execution DAG shows the chain of RDD dependencies. Developers 
can quickly see whether an RDD operation is performing in the right manner or not.

To open the Spark UI, you should have a running job or a past job. To open a past 
job, go to the cluster dashboard and select Spark History Server. For a running job, open 
YARN from the cluster dashboard and select the running application. If you want to run 
a previous Jupyter Notebook, it keeps a running job until you close the notebook. If you 
followed the last section and have a notebook open with the kernel connected, then 
you should see a YARN similar to the one shown in Figure 8-15, where the name of the 
application is livy-session-9 and the status is RUNNING.

But this is not the Spark UI. To open the Spark UI, click the application ID, and from 
the Application Overview page, click the Tracking URL field, as shown in Figure 8-16.

Figure 8-15.  YARN application execution history

Figure 8-16.  Application overview
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The Spark UI shows jobs launched by Jupyter Notebook. In my case, there is only one 
job launched in the current session, as shown in Figure 8-17.

There are several tabs available, such as Jobs, Stages, Storage, Environment, 
Executors, and SQL. Each tab gives different details about the job and its execution. 
The Jobs view shows the takeOrdered action, which you executed in last section, took 
7 seconds to execute and there were two stages. To understand what these two stages 
are, click takeOrdered. Figure 8-18 shows the stages of the task. As you can see, out of 7 
seconds, 6 seconds went into the reduce by key action, because to find the top ten words, 
you need to find the frequency of each word, which is what takes most of the time. The 
result of this stage is 657KB of data, which needs the shuffle as well. You can drill down 
more on each stage by clicking stage description. This brings more matrices for you to 
better understand what is going on inside the stage.

Figure 8-17.  Spark UI jobs view
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The Storage tab shows any RDD that is cached by memory. To demonstrate this 
behavior, open Jupyter Notebook and write the following Python code.

textLines = spark.sparkContext.textFile('wasb:///example/data/gutenberg/
davinci.txt').cache()
textLines.count()

Notice the cache() method call at the end of the first line. This call essentially tells 
Spark to keep the RDD in memory for further processing. This significantly improves 
performance. So, after executing the count action on the textLines RDD, if you try to find 
the top ten words, it executes quickly. Try executing the following line in another cell in 
the notebook, and then navigate to Spark UI.

textLines.flatMap(lambda line: line.split(' ')).map(lambda word: (word, 1)).
reduceByKey(lambda a, b: a + b).takeOrdered(10, lambda a: -a[1])

In my case, it previously took 7 seconds to finish the job; but after executing the 
count and then counting the top ten records, it is executed in less than a second, which 
you can see in Figure 8-19. This is how Spark can really improve iterative algorithms 
performance.

Figure 8-18.  Stages
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Now if you go to Storage view, you should see one RDD cached.
The other tabs are Environment and Executors, which as their names suggest, give 

you information about a cluster’s environment and executors.

DataFrames and Datasets
DataFrames is also like RDD, immutable distributed collection of data. But unlike an 
RDD, it is organized as named columns. You can think of DataFrames as a table in a 
relational database. It makes working with data even easier because you don’t have to rely 
on an array index to identify a column when working with CSV or JSON data. It allows 
developers to impose structure onto a distributed collection of data. It provides higher-
level abstraction and provides a domain-specific API to manipulate data. DataFrames 
is used easily with database tables, JSON, CSV, or serialized files. It is a higher-level API 
compared to RDD, which has benefits in terms of both storage and computation because 
Spark can decide in which format it needs to be handled. Under the hood, the Catalyst 
optimizer and Tungsten execution engine optimize applications in a way that is not 
possible with RDD, such as storing in raw binary form. The Tungsten execution engine 
chooses CPU and memory optimization over the network or I/O. It is designed to not 
waste a CPU cycle in SQL query execution and it works directly on the byte level. Catalyst 
optimizer is a query plan optimizer, which takes advantage of the Scala language feature, 
including pattern matching and runtime metaprogramming to allow developers to 
specify complex relational optimizations concisely.

A new Datasets API was introduced in Spark 1.6, making it even easier to work with 
data. The Datasets API allow type safety for structured data, and like DataFrames, it also 
takes advantage of Spark’s Catalyst optimizer. Datasets also leverages Tungsten’s fast 
in-memory encoding, and with compile-time type safety, which means an application 
can be checked for errors before it is deployed to a cluster. Another benefit of the Dataset 
API is the reduction in memory of object. As Spark understands the layout of objects 
in Datasets, it can create a more optimal layout in memory when caching Datasets. 
Encoders are highly optimized and use runtime code generation to build custom 
bytecode for serialization and deserialization. It performs significantly faster than Java 
or Kyro. Like RDD, DataFrames and Datasets also have their own APIs to make it easy to 
work with them.

Let’s move to next section, where you will use DataFrames and Datasets.

Figure 8-19.  Jobs view after cache
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The following is a sample DataFrame-based Mobius application to read data from an 
MS SQL database and find the total number of rows by using the DataFrame API.

static void Main(string[] args)
{
    LoggerServiceFactory.SetLoggerService(Log4NetLoggerService.Instance);  
//this is optional - DefaultLoggerService will be used if not set
    var logger = LoggerServiceFactory.GetLogger(typeof(JdbcDataFrameExample));

    var connectionString = args[0];
    var tableName = args[1];

    var sparkConf = new SparkConf();

// Create Spark Context
    var sparkContext = new SparkContext(sparkConf);

// Create SQL Context
    var sqlContext = new SqlContext(sparkContext);

// Create DataFrame fom JDBC connection
    var df = sqlContext
                .Read()
                .Jdbc(connectionString, tableName,
        new Dictionary<string, string> {
                            �{ "driver", "com.microsoft.sqlserver.jdbc.

SQLServerDriver" }});

    // Perform row count
    var rowCount = df.Count();
    logger.LogInfo("Row count is " + rowCount);
    sparkContext.Stop();
}

To run the preceding code in local mode, use the following sparkclr-submit. Note 
that you are using a local instance of MS SQL Server, which has a Temp database and a 
MyTable table.

%SPAKRCLR_HOME%\scripts\sparkclr-submit.cmd --exe SparkJdbc.exe C:\
SparkJdbc\bin\debug "jdbc:sqlserver://localhost;databaseName=Temp;user=MyUse
rName;password=myPassword;" "MyTable"

The results are the number of rows in the MyTable table with a bunch of log items.
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Spark SQL
So far, you have seen how to work with RDD and how to use different transformations 
and actions to get results from data. But sometimes it is easy to express the operations in 
terms of SQL rather than providing transformations and actions. Also, not all developers 
are comfortable working with transformation and actions. Spark SQL provides easy-
to-program abstraction using SQL over data with Spark. Compared to HiveQL, this is 
standard SQL. Spark SQL supports the SQL 2003 standard. Internally, everything is 
broken down to Map and Reduce jobs.

the first example reads a local JSON file and then filters it using a SQL query rather 
than transformations.

Assume that you have the following data in a JSON text file, with each line containing 
a single record.

{"name":"Michael" }
{"name":"Judas", "age":35}
{"name":"Andy", "age":30}
{"name":"Justin","age": 19}
{"name":"Jordan", "age":60}

You need to find all the records where age is greater than 20 and the name starts with 
letter J. To work with Spark SQL, you need to create SQLContext along with SparkContext. 
The following is code to read a JSON file and then do the filtering using SQL query.

static void Main(string[] args)
{
    LoggerServiceFactory.SetLoggerService(Log4NetLoggerService.Instance);
    var logger = LoggerServiceFactory.GetLogger(typeof(Program));

    var sparkConf = new SparkConf();
    sparkConf.SetAppName("myapp");
    var sparkContext = new SparkContext(sparkConf);
    var sqlContext = new SqlContext(sparkContext);

    try
    {
        logger.LogDebug(args[0]);

        // Read file
        var df = sqlContext.Read().Json(args[0]);
        df.Show();

        // Create temporary table
        df.RegisterTempTable("TempPersonTable");
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        // Execute SQL query
        var filteredDf = sqlContext
                    �.Sql("SELECT * FROM TempPersonTable where age > 20 AND 

name like 'J%'");

filteredDf.Show();
    }
    catch (Exception ex)
    {
        logger.LogException(ex);
    }
    sparkContext.Stop();
}

Submit this to local Spark using the following command.

%SPAKRCLR_HOME%\scripts\sparkclr-submit.cmd --exe SparkSQLApp.exe  
C:\SparkSQL\b
in\Debug file:///C:/data.json

It generates the following output.

+---+------+
|age|  name|
+---+------+
| 35| Judas|
| 60|Jordan|
+---+------+

In a similar fashion, you can query any DataFrames using Spark SQL. Note that even 
if you know transformations and actions, Spark SQL may give better performance due to 
that internal optimization applied on DataFrames.

Summary
In this chapter, you explored concepts related to Apache Spark. Apache Spark is an all-
in-one technology to do batch processing, stream analytics, machine learning, or graph 
data processing. It provides very easy-to-use developer APIs that allow developers to 
write code that can run in parallel on a cluster. It gives dual benefits in terms of better 
performance over MapReduce and is easier to code than other Hadoop technologies. SQL 
and R users can also use Spark for data processing.

In-memory distributed collection of data makes it the best suitable for iterative 
algorithms and fast interactive queries. The Mobius project has an almost identical to 
JAVA API used in C# and F#, which opens Spark to the whole .NET community. Mobius 
can be used on Windows and Linux clusters, easily giving power to a .NET developer to 
build Spark applications for any Spark cluster. Spark SQL provides rich SQL-based API to 
process data, which can become cumbersome when using transformations and actions. 
Overall, Spark is a complete package for today’s real-world big data processing application.
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